WorldWideScience

Sample records for rhythmic electrical modulation

  1. Endocannabinoid release modulates electrical coupling between CCK cells connected via chemical and electrical synapses in CA1

    Directory of Open Access Journals (Sweden)

    Jonathan eIball

    2011-11-01

    Full Text Available Electrical coupling between some subclasses of interneurons is thought to promote coordinated firing that generates rhythmic synchronous activity in cortical regions. Synaptic activity of cholesystokinin (CCK interneurons which co-express cannbinoid type-1 (CB1 receptors are powerful modulators of network activity via the actions of endocannabinoids. We investigated the modulatory actions of endocannabinoids between chemically and electrically connected synapses of CCK cells using paired whole-cell recordings combined with biocytin and double immunofluorescence labelling in acute slices of rat hippocampus at P18-20 days. CA1 stratum radiatum CCK Schaffer collateral associated (SCA cells were coupled electrically with each other as well as CCK basket cells and CCK cells with axonal projections expanding to dentate gyrus. Approximately 50% of electrically coupled cells received facilitating, asynchronously released IPSPs that curtailed the steady-state coupling coefficient by 57%. Tonic CB1 receptor activity which reduces inhibition enhanced electrical coupling between cells that were connected via chemical and electrical synapses. Blocking CB1 receptors with antagonist, AM-251 (5M resulted in the synchronized release of larger IPSPs and this enhanced inhibition further reduced the steady-state coupling coefficient by 85%. Depolarization induced suppression of inhibition (DSI, maintained the asynchronicity of IPSP latency, but reduced IPSP amplitudes by 95% and enhanced the steady-state coupling coefficient by 104% and IPSP duration by 200%. However, DSI did not did not enhance electrical coupling at purely electrical synapses. These data suggest that different morphological subclasses of CCK interneurons are interconnected via gap junctions. The synergy between the chemical and electrical coupling between CCK cells probably plays a role in activity-dependent endocannabinoid modulation of rhythmic synchronization.

  2. Endocannabinoid Release Modulates Electrical Coupling between CCK Cells Connected via Chemical and Electrical Synapses in CA1

    Science.gov (United States)

    Iball, Jonathan; Ali, Afia B.

    2011-01-01

    Electrical coupling between some subclasses of interneurons is thought to promote coordinated firing that generates rhythmic synchronous activity in cortical regions. Synaptic activity of cholecystokinin (CCK) interneurons which co-express cannabinoid type-1 (CB1) receptors are powerful modulators of network activity via the actions of endocannabinoids. We investigated the modulatory actions of endocannabinoids between chemically and electrically connected synapses of CCK cells using paired whole-cell recordings combined with biocytin and double immunofluorescence labeling in acute slices of rat hippocampus at P18–20 days. CA1 stratum radiatum CCK Schaffer collateral-associated cells were coupled electrically with each other as well as CCK basket cells and CCK cells with axonal projections expanding to dentate gyrus. Approximately 50% of electrically coupled cells received facilitating, asynchronously released inhibitory postsynaptic potential (IPSPs) that curtailed the steady-state coupling coefficient by 57%. Tonic CB1 receptor activity which reduces inhibition enhanced electrical coupling between cells that were connected via chemical and electrical synapses. Blocking CB1 receptors with antagonist, AM-251 (5 μM) resulted in the synchronized release of larger IPSPs and this enhanced inhibition further reduced the steady-state coupling coefficient by 85%. Depolarization induced suppression of inhibition (DSI), maintained the asynchronicity of IPSP latency, but reduced IPSP amplitudes by 95% and enhanced the steady-state coupling coefficient by 104% and IPSP duration by 200%. However, DSI did not did not enhance electrical coupling at purely electrical synapses. These data suggest that different morphological subclasses of CCK interneurons are interconnected via gap junctions. The synergy between the chemical and electrical coupling between CCK cells probably plays a role in activity-dependent endocannabinoid modulation of rhythmic synchronization. PMID

  3. Synthesis of high-complexity rhythmic signals for closed-loop electrical neuromodulation.

    Science.gov (United States)

    Zalay, Osbert C; Bardakjian, Berj L

    2013-06-01

    We propose an approach to synthesizing high-complexity rhythmic signals for closed-loop electrical neuromodulation using cognitive rhythm generator (CRG) networks, wherein the CRG is a hybrid oscillator comprised of (1) a bank of neuronal modes, (2) a ring device (clock), and (3) a static output nonlinearity (mapper). Networks of coupled CRGs have been previously implemented to simulate the electrical activity of biological neural networks, including in silico models of epilepsy, producing outputs of similar waveform and complexity to the biological system. This has enabled CRG network models to be used as platforms for testing seizure control strategies. Presently, we take the application one step further, envisioning therapeutic CRG networks as rhythmic signal generators creating neuromimetic signals for stimulation purposes, motivated by recent research indicating that stimulus complexity and waveform characteristics influence neuromodulation efficacy. To demonstrate this concept, an epileptiform CRG network generating spontaneous seizure-like events (SLEs) was coupled to a therapeutic CRG network, forming a closed-loop neuromodulation system. SLEs are associated with low-complexity dynamics and high phase coherence in the network. The tuned therapeutic network generated a high-complexity, multi-banded rhythmic stimulation signal with prominent theta and gamma-frequency power that suppressed SLEs and increased dynamic complexity in the epileptiform network, as measured by a relative increase in the maximum Lyapunov exponent and decrease in phase coherence. CRG-based neuromodulation outperformed both low and high-frequency periodic pulse stimulation, suggesting that neuromodulation using complex, biomimetic signals may provide an improvement over conventional electrical stimulation techniques for treating neurological disorders such as epilepsy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Synthesis of asymmetric movement trajectories in timed rhythmic behaviour by means of frequency modulation.

    Science.gov (United States)

    Waadeland, Carl Haakon

    2017-01-01

    Results from different empirical investigations on gestural aspects of timed rhythmic movements indicate that the production of asymmetric movement trajectories is a feature that seems to be a common characteristic of various performances of repetitive rhythmic patterns. The behavioural or neural origin of these asymmetrical trajectories is, however, not identified. In the present study we outline a theoretical model that is capable of producing syntheses of asymmetric movement trajectories documented in empirical investigations by Balasubramaniam et al. (2004). Characteristic qualities of the extension/flexion profiles in the observed asymmetric trajectories are reproduced, and we conduct an experiment similar to Balasubramaniam et al. (2004) to show that the empirically documented movement trajectories and our modelled approximations share the same spectral components. The model is based on an application of frequency modulated movements, and a theoretical interpretation offered by the model is to view paced rhythmic movements as a result of an unpaced movement being "stretched" and "compressed", caused by the presence of a metronome. We discuss our model construction within the framework of event-based and emergent timing, and argue that a change between these timing modes might be reflected by the strength of the modulation in our model. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Proteomic identification of rhythmic proteins in rice seedlings.

    Science.gov (United States)

    Hwang, Heeyoun; Cho, Man-Ho; Hahn, Bum-Soo; Lim, Hyemin; Kwon, Yong-Kook; Hahn, Tae-Ryong; Bhoo, Seong Hee

    2011-04-01

    Many aspects of plant metabolism that are involved in plant growth and development are influenced by light-regulated diurnal rhythms as well as endogenous clock-regulated circadian rhythms. To identify the rhythmic proteins in rice, periodically grown (12h light/12h dark cycle) seedlings were harvested for three days at six-hour intervals. Continuous dark-adapted plants were also harvested for two days. Among approximately 3000 reproducible protein spots on each gel, proteomic analysis ascertained 354 spots (~12%) as light-regulated rhythmic proteins, in which 53 spots showed prolonged rhythm under continuous dark conditions. Of these 354 ascertained rhythmic protein spots, 74 diurnal spots and 10 prolonged rhythmic spots under continuous dark were identified by MALDI-TOF MS analysis. The rhythmic proteins were functionally classified into photosynthesis, central metabolism, protein synthesis, nitrogen metabolism, stress resistance, signal transduction and unknown. Comparative analysis of our proteomic data with the public microarray database (the Plant DIURNAL Project) and RT-PCR analysis of rhythmic proteins showed differences in rhythmic expression phases between mRNA and protein, suggesting that the clock-regulated proteins in rice are modulated by not only transcriptional but also post-transcriptional, translational, and/or post-translational processes. 2011 Elsevier B.V. All rights reserved.

  6. Effects of rhythmic stimulus presentation on oscillatory brain activity: the physiology of cueing in Parkinson's disease.

    Science.gov (United States)

    te Woerd, Erik S; Oostenveld, Robert; Bloem, Bastiaan R; de Lange, Floris P; Praamstra, Peter

    2015-01-01

    The basal ganglia play an important role in beat perception and patients with Parkinson's disease (PD) are impaired in perception of beat-based rhythms. Rhythmic cues are nonetheless beneficial in gait rehabilitation, raising the question how rhythm improves movement in PD. We addressed this question with magnetoencephalography recordings during a choice response task with rhythmic and non-rhythmic modes of stimulus presentation. Analyses focused on (i) entrainment of slow oscillations, (ii) the depth of beta power modulation, and (iii) whether a gain in modulation depth of beta power, due to rhythmicity, is of predictive or reactive nature. The results show weaker phase synchronisation of slow oscillations and a relative shift from predictive to reactive movement-related beta suppression in PD. Nonetheless, rhythmic stimulus presentation increased beta modulation depth to the same extent in patients and controls. Critically, this gain selectively increased the predictive and not reactive movement-related beta power suppression. Operation of a predictive mechanism, induced by rhythmic stimulation, was corroborated by a sensory gating effect in the sensorimotor cortex. The predictive mode of cue utilisation points to facilitation of basal ganglia-premotor interactions, contrasting with the popular view that rhythmic stimulation confers a special advantage in PD, based on recruitment of alternative pathways.

  7. EEG Oscillations Are Modulated in Different Behavior-Related Networks during Rhythmic Finger Movements.

    Science.gov (United States)

    Seeber, Martin; Scherer, Reinhold; Müller-Putz, Gernot R

    2016-11-16

    Sequencing and timing of body movements are essential to perform motoric tasks. In this study, we investigate the temporal relation between cortical oscillations and human motor behavior (i.e., rhythmic finger movements). High-density EEG recordings were used for source imaging based on individual anatomy. We separated sustained and movement phase-related EEG source amplitudes based on the actual finger movements recorded by a data glove. Sustained amplitude modulations in the contralateral hand area show decrease for α (10-12 Hz) and β (18-24 Hz), but increase for high γ (60-80 Hz) frequencies during the entire movement period. Additionally, we found movement phase-related amplitudes, which resembled the flexion and extension sequence of the fingers. Especially for faster movement cadences, movement phase-related amplitudes included high β (24-30 Hz) frequencies in prefrontal areas. Interestingly, the spectral profiles and source patterns of movement phase-related amplitudes differed from sustained activities, suggesting that they represent different frequency-specific large-scale networks. First, networks were signified by the sustained element, which statically modulate their synchrony levels during continuous movements. These networks may upregulate neuronal excitability in brain regions specific to the limb, in this study the right hand area. Second, movement phase-related networks, which modulate their synchrony in relation to the movement sequence. We suggest that these frequency-specific networks are associated with distinct functions, including top-down control, sensorimotor prediction, and integration. The separation of different large-scale networks, we applied in this work, improves the interpretation of EEG sources in relation to human motor behavior. EEG recordings provide high temporal resolution suitable to relate cortical oscillations to actual movements. Investigating EEG sources during rhythmic finger movements, we distinguish sustained from

  8. Distributed Attention Is Implemented through Theta-Rhythmic Gamma Modulation.

    Science.gov (United States)

    Landau, Ayelet Nina; Schreyer, Helene Marianne; van Pelt, Stan; Fries, Pascal

    2015-08-31

    When subjects monitor a single location, visual target detection depends on the pre-target phase of an ∼8 Hz brain rhythm. When multiple locations are monitored, performance decrements suggest a division of the 8 Hz rhythm over the number of locations, indicating that different locations are sequentially sampled. Indeed, when subjects monitor two locations, performance benefits alternate at a 4 Hz rhythm. These performance alternations were revealed after a reset of attention to one location. Although resets are common and important events for attention, it is unknown whether, in the absence of resets, ongoing attention samples stimuli in alternation. Here, we examined whether spatially specific attentional sampling can be revealed by ongoing pre-target brain rhythms. Visually induced gamma-band activity plays a role in spatial attention. Therefore, we hypothesized that performance on two simultaneously monitored stimuli can be predicted by a 4 Hz modulation of gamma-band activity. Brain rhythms were assessed with magnetoencephalography (MEG) while subjects monitored bilateral grating stimuli for a unilateral target event. The corresponding contralateral gamma-band responses were subtracted from each other to isolate spatially selective, target-related fluctuations. The resulting lateralized gamma-band activity (LGA) showed opposite pre-target 4 Hz phases for detected versus missed targets. The 4 Hz phase of pre-target LGA accounted for a 14.5% modulation in performance. These findings suggest that spatial attention is a theta-rhythmic sampling process that is continuously ongoing, with each sampling cycle being implemented through gamma-band synchrony. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. A little elastic for a better performance: kinesiotaping of the motor effector modulates neural mechanisms for rhythmic movements.

    Science.gov (United States)

    Bravi, Riccardo; Quarta, Eros; Cohen, Erez J; Gottard, Anna; Minciacchi, Diego

    2014-01-01

    A rhythmic motor performance is brought about by an integration of timing information with movements. Investigations on the millisecond time scale distinguish two forms of time control, event-based timing and emergent timing. While event-based timing asserts the existence of a central internal timekeeper for the control of repetitive movements, the emergent timing perspective claims that timing emerges from dynamic control of nontemporal movements parameters. We have recently demonstrated that the precision of an isochronous performance, defined as performance of repeated movements having a uniform duration, was insensible to auditory stimuli of various characteristics (Bravi et al., 2014). Such finding has led us to investigate whether the application of an elastic therapeutic tape (Kinesio® Tex taping; KTT) used for treating athletic injuries and a variety of physical disorders, is able to reduce the timing variability of repetitive rhythmic movement. Young healthy subjects, tested with and without KTT, have participated in sessions in which sets of repeated isochronous wrist's flexion-extensions (IWFEs) were performed under various auditory conditions and during their recall. Kinematics was recorded and temporal parameters were extracted and analyzed. Our results show that the application of KTT decreases the variability of rhythmic movements by a 2-fold effect: on the one hand KTT provides extra proprioceptive information activating cutaneous mechanoreceptors, on the other KTT biases toward the emergent timing thus modulating the processes for rhythmic movements. Therefore, KTT appears able to render movements less audio dependent by relieving, at least partially, the central structures from time control and making available more resources for an augmented performance.

  10. A little elastic for a better performance: kinesiotaping of the motor effector modulates neural mechanisms for rhythmic movements

    Directory of Open Access Journals (Sweden)

    Riccardo eBravi

    2014-09-01

    Full Text Available A rhythmic motor performance is brought about by an integration of timing information with movements. Investigations on the millisecond time scale distinguish two forms of time control, event-based timing and emergent timing. While event-based timing asserts the existence of a central internal timekeeper for the control of repetitive movements, the emergent timing perspective claims that timing emerges from dynamic control of nontemporal movements parameters. We have recently demonstrated that the precision of an isochronous performance, defined as performance of repeated movements having a uniform duration, was insensible to auditory stimuli of various characteristics (Bravi et al., 2014. Such finding has led us to investigate whether the application of an elastic therapeutic tape (Kinesio® Tex taping; KTT used for treating athletic injuries and a variety of physical disorders, is able to reduce the timing variability of repetitive rhythmic movement. Young healthy subjects, tested with and without KTT, have participated in sessions in which sets of repeated isochronous wrist's flexion-extensions (IWFEs were performed under various auditory conditions and during their recall. Kinematics was recorded and temporal parameters were extracted and analyzed. Our results show that the application of KTT decreases the variability of rhythmic movements by a twofold effect: on the one hand KTT provides extra proprioceptive information activating cutaneous mechanoreceptors, on the other KTT biases toward the emergent timing thus modulating the processes for rhythmic movements. Therefore, KTT appears able to render movements less audio dependent by relieving, at least partially, the central structures from time control and making available more resources for an augmented performance.

  11. Effects of rhythmic stimulus presentation on oscillatory brain activity: the physiology of cueing in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Erik S. te Woerd

    2015-01-01

    Full Text Available The basal ganglia play an important role in beat perception and patients with Parkinson’s disease (PD are impaired in perception of beat-based rhythms. Rhythmic cues are nonetheless beneficial in gait rehabilitation, raising the question how rhythm improves movement in PD. We addressed this question with magnetoencephalography recordings during a choice response task with rhythmic and non-rhythmic modes of stimulus presentation. Analyses focused on (i entrainment of slow oscillations, (ii the depth of beta power modulation, and (iii whether a gain in modulation depth of beta power, due to rhythmicity, is of predictive or reactive nature. The results show weaker phase synchronisation of slow oscillations and a relative shift from predictive to reactive movement-related beta suppression in PD. Nonetheless, rhythmic stimulus presentation increased beta modulation depth to the same extent in patients and controls. Critically, this gain selectively increased the predictive and not reactive movement-related beta power suppression. Operation of a predictive mechanism, induced by rhythmic stimulation, was corroborated by a sensory gating effect in the sensorimotor cortex. The predictive mode of cue utilisation points to facilitation of basal ganglia-premotor interactions, contrasting with the popular view that rhythmic stimulation confers a special advantage in PD, based on recruitment of alternative pathways.

  12. Rhythmic abilities and musical training in Parkinson's disease: do they help?

    Science.gov (United States)

    Cochen De Cock, V; Dotov, D G; Ihalainen, P; Bégel, V; Galtier, F; Lebrun, C; Picot, M C; Driss, V; Landragin, N; Geny, C; Bardy, B; Dalla Bella, S

    2018-01-01

    Rhythmic auditory cues can immediately improve gait in Parkinson's disease. However, this effect varies considerably across patients. The factors associated with this individual variability are not known to date. Patients' rhythmic abilities and musicality (e.g., perceptual and singing abilities, emotional response to music, and musical training) may foster a positive response to rhythmic cues. To examine this hypothesis, we measured gait at baseline and with rhythmic cues in 39 non-demented patients with Parkinson's disease and 39 matched healthy controls. Cognition, rhythmic abilities and general musicality were assessed. A response to cueing was qualified as positive when the stimulation led to a clinically meaningful increase in gait speed. We observed that patients with positive response to cueing ( n  = 17) were more musically trained, aligned more often their steps to the rhythmic cues while walking, and showed better music perception as well as poorer cognitive flexibility than patients with non-positive response ( n  = 22). Gait performance with rhythmic cues worsened in six patients. We concluded that rhythmic and musical skills, which can be modulated by musical training, may increase beneficial effects of rhythmic auditory cueing in Parkinson's disease. Screening patients in terms of musical/rhythmic abilities and musical training may allow teasing apart patients who are likely to benefit from cueing from those who may worsen their performance due to the stimulation.

  13. Frequency-dependent tACS modulation of BOLD signal during rhythmic visual stimulation.

    Science.gov (United States)

    Chai, Yuhui; Sheng, Jingwei; Bandettini, Peter A; Gao, Jia-Hong

    2018-05-01

    Transcranial alternating current stimulation (tACS) has emerged as a promising tool for modulating cortical oscillations. In previous electroencephalogram (EEG) studies, tACS has been found to modulate brain oscillatory activity in a frequency-specific manner. However, the spatial distribution and hemodynamic response for this modulation remains poorly understood. Functional magnetic resonance imaging (fMRI) has the advantage of measuring neuronal activity in regions not only below the tACS electrodes but also across the whole brain with high spatial resolution. Here, we measured fMRI signal while applying tACS to modulate rhythmic visual activity. During fMRI acquisition, tACS at different frequencies (4, 8, 16, and 32 Hz) was applied along with visual flicker stimulation at 8 and 16 Hz. We analyzed the blood-oxygen-level-dependent (BOLD) signal difference between tACS-ON vs tACS-OFF, and different frequency combinations (e.g., 4 Hz tACS, 8 Hz flicker vs 8 Hz tACS, 8 Hz flicker). We observed significant tACS modulation effects on BOLD responses when the tACS frequency matched the visual flicker frequency or the second harmonic frequency. The main effects were predominantly seen in regions that were activated by the visual task and targeted by the tACS current distribution. These findings bridge different scientific domains of tACS research and demonstrate that fMRI could localize the tACS effect on stimulus-induced brain rhythms, which could lead to a new approach for understanding the high-level cognitive process shaped by the ongoing oscillatory signal. © 2018 Wiley Periodicals, Inc.

  14. Feedback Signal from Motoneurons Influences a Rhythmic Pattern Generator.

    Science.gov (United States)

    Rotstein, Horacio G; Schneider, Elisa; Szczupak, Lidia

    2017-09-20

    Motoneurons are not mere output units of neuronal circuits that control motor behavior but participate in pattern generation. Research on the circuit that controls the crawling motor behavior in leeches indicated that motoneurons participate as modulators of this rhythmic motor pattern. Crawling results from successive bouts of elongation and contraction of the whole leech body. In the isolated segmental ganglia, dopamine can induce a rhythmic antiphasic activity of the motoneurons that control contraction (DE-3 motoneurons) and elongation (CV motoneurons). The study was performed in isolated ganglia where manipulation of the activity of specific motoneurons was performed in the course of fictive crawling ( crawling ). In this study, the membrane potential of CV was manipulated while crawling was monitored through the rhythmic activity of DE-3. Matching behavioral observations that show that elongation dominates the rhythmic pattern, the electrophysiological activity of CV motoneurons dominates the cycle. Brief excitation of CV motoneurons during crawling episodes resets the rhythmic activity of DE-3, indicating that CV feeds back to the rhythmic pattern generator. CV hyperpolarization accelerated the rhythm to an extent that depended on the magnitude of the cycle period, suggesting that CV exerted a positive feedback on the unit(s) of the pattern generator that controls the elongation phase. A simple computational model was implemented to test the consequences of such feedback. The simulations indicate that the duty cycle of CV depended on the strength of the positive feedback between CV and the pattern generator circuit. SIGNIFICANCE STATEMENT Rhythmic movements of animals are controlled by neuronal networks that have been conceived as hierarchical structures. At the basis of this hierarchy, we find the motoneurons, few neurons at the top control global aspects of the behavior (e.g., onset, duration); and within these two ends, specific neuronal circuits control

  15. Predictive coding of music--brain responses to rhythmic incongruity.

    Science.gov (United States)

    Vuust, Peter; Ostergaard, Leif; Pallesen, Karen Johanne; Bailey, Christopher; Roepstorff, Andreas

    2009-01-01

    During the last decades, models of music processing in the brain have mainly discussed the specificity of brain modules involved in processing different musical components. We argue that predictive coding offers an explanatory framework for functional integration in musical processing. Further, we provide empirical evidence for such a network in the analysis of event-related MEG-components to rhythmic incongruence in the context of strong metric anticipation. This is seen in a mismatch negativity (MMNm) and a subsequent P3am component, which have the properties of an error term and a subsequent evaluation in a predictive coding framework. There were both quantitative and qualitative differences in the evoked responses in expert jazz musicians compared with rhythmically unskilled non-musicians. We propose that these differences trace a functional adaptation and/or a genetic pre-disposition in experts which allows for a more precise rhythmic prediction.

  16. Content congruency and its interplay with temporal synchrony modulate integration between rhythmic audiovisual streams

    Directory of Open Access Journals (Sweden)

    Yi-Huang eSu

    2014-12-01

    Full Text Available Both lower-level stimulus factors (e.g., temporal proximity and higher-level cognitive factors (e.g., content congruency are known to influence multisensory integration. The former can direct attention in a converging manner, and the latter can indicate whether information from the two modalities belongs together. The present research investigated whether and how these two factors interacted in the perception of rhythmic, audiovisual streams derived from a human movement scenario. Congruency here was based on sensorimotor correspondence pertaining to rhythm perception. Participants attended to bimodal stimuli consisting of a humanlike figure moving regularly to a sequence of auditory beat, and detected a possible auditory temporal deviant. The figure moved either downwards (congruently or upwards (incongruently to the downbeat, while in both situations the movement was either synchronous with the beat, or lagging behind it. Greater cross-modal binding was expected to hinder deviant detection. Results revealed poorer detection for congruent than for incongruent streams, suggesting stronger integration in the former. False alarms increased in asynchronous stimuli only for congruent streams, indicating greater tendency for deviant report due to visual capture of asynchronous auditory events. In addition, a greater increase in perceived synchrony was associated with a greater reduction in false alarms for congruent streams, while the pattern was reversed for incongruent ones. These results demonstrate that content congruency as a top-down factor not only promotes integration, but also modulates bottom-up effects of synchrony. Results are also discussed regarding how theories of integration and attentional entrainment may be combined in the context of rhythmic multisensory stimuli.

  17. Content congruency and its interplay with temporal synchrony modulate integration between rhythmic audiovisual streams.

    Science.gov (United States)

    Su, Yi-Huang

    2014-01-01

    Both lower-level stimulus factors (e.g., temporal proximity) and higher-level cognitive factors (e.g., content congruency) are known to influence multisensory integration. The former can direct attention in a converging manner, and the latter can indicate whether information from the two modalities belongs together. The present research investigated whether and how these two factors interacted in the perception of rhythmic, audiovisual (AV) streams derived from a human movement scenario. Congruency here was based on sensorimotor correspondence pertaining to rhythm perception. Participants attended to bimodal stimuli consisting of a humanlike figure moving regularly to a sequence of auditory beat, and detected a possible auditory temporal deviant. The figure moved either downwards (congruently) or upwards (incongruently) to the downbeat, while in both situations the movement was either synchronous with the beat, or lagging behind it. Greater cross-modal binding was expected to hinder deviant detection. Results revealed poorer detection for congruent than for incongruent streams, suggesting stronger integration in the former. False alarms increased in asynchronous stimuli only for congruent streams, indicating greater tendency for deviant report due to visual capture of asynchronous auditory events. In addition, a greater increase in perceived synchrony was associated with a greater reduction in false alarms for congruent streams, while the pattern was reversed for incongruent ones. These results demonstrate that content congruency as a top-down factor not only promotes integration, but also modulates bottom-up effects of synchrony. Results are also discussed regarding how theories of integration and attentional entrainment may be combined in the context of rhythmic multisensory stimuli.

  18. Study of curved glass photovoltaic module and module electrical isolation design requirements

    Science.gov (United States)

    1980-06-01

    The design of a 1.2 by 2.4 m curved glass superstrate and support clip assembly is presented, along with the results of finite element computer analysis and a glass industry survey conducted to assess the technical and economic feasibility of the concept. Installed costs for four curved glass module array configurations are estimated and compared with cost previously reported for comparable flat glass module configurations. Electrical properties of candidate module encapsulation systems are evaluated along with present industry practice for the design and testing of electrical insulation systems. Electric design requirements for module encapsulation systems are also discussed.

  19. Physiological modules for generating discrete and rhythmic movements: component analysis of EMG signals.

    Science.gov (United States)

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana Maria; Dan, Bernard; Cheron, Guy; McIntyre, Joseph

    2014-01-01

    A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90°. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMG) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each shoulder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figure eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activation. From these results, we surmise that both "discrete-rhythmic movements" such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the

  20. Rhythmic entrainment source separation: Optimizing analyses of neural responses to rhythmic sensory stimulation

    OpenAIRE

    Cohen, M.S.; Gulbinaite, R.

    2017-01-01

    Steady-state evoked potentials (SSEPs) are rhythmic brain responses to rhythmic sensory stimulation, and are often used to study perceptual and attentional processes. We present a data analysis method for maximizing the signal-to-noise ratio of the narrow-band steady-state response in the frequency and time-frequency domains. The method, termed rhythmic entrainment source separation (RESS), is based on denoising source separation approaches that take advantage of the simultaneous but differen...

  1. Plug-in electric vehicle (PEV) smart charging module

    Science.gov (United States)

    Harper, Jason; Dobrzynski, Daniel S.

    2017-09-12

    A smart charging system for charging a plug-in electric vehicle (PEV) includes an electric vehicle supply equipment (EVSE) configured to supply electrical power to the PEV through a smart charging module coupled to the EVSE. The smart charging module comprises an electronic circuitry which includes a processor. The electronic circuitry includes electronic components structured to receive electrical power from the EVSE, and supply the electrical power to the PEV. The electronic circuitry is configured to measure a charging parameter of the PEV. The electronic circuitry is further structured to emulate a pulse width modulated signal generated by the EVSE. The smart charging module can also include a first coupler structured to be removably couple to the EVSE and a second coupler structured to be removably coupled to the PEV.

  2. Shared rhythmic subcortical GABAergic input to the entorhinal cortex and presubiculum.

    Science.gov (United States)

    Viney, Tim James; Salib, Minas; Joshi, Abhilasha; Unal, Gunes; Berry, Naomi; Somogyi, Peter

    2018-04-05

    Rhythmic theta frequency (~5-12 Hz) oscillations coordinate neuronal synchrony and higher frequency oscillations across the cortex. Spatial navigation and context-dependent episodic memories are represented in several interconnected regions including the hippocampal and entorhinal cortices, but the cellular mechanisms for their dynamic coupling remain to be defined. Using monosynaptically-restricted retrograde viral tracing in mice, we identified a subcortical GABAergic input from the medial septum that terminated in the entorhinal cortex, with collaterals innervating the dorsal presubiculum. Extracellularly recording and labeling GABAergic entorhinal-projecting neurons in awake behaving mice show that these subcortical neurons, named orchid cells, fire in long rhythmic bursts during immobility and locomotion. Orchid cells discharge near the peak of hippocampal and entorhinal theta oscillations, couple to entorhinal gamma oscillations, and target subpopulations of extra-hippocampal GABAergic interneurons. Thus, orchid cells are a specialized source of rhythmic subcortical GABAergic modulation of 'upstream' and 'downstream' cortico-cortical circuits involved in mnemonic functions. © 2018, Viney et al.

  3. Model of rhythmic ball bouncing using a visually controlled neural oscillator.

    Science.gov (United States)

    Avrin, Guillaume; Siegler, Isabelle A; Makarov, Maria; Rodriguez-Ayerbe, Pedro

    2017-10-01

    The present paper investigates the sensory-driven modulations of central pattern generator dynamics that can be expected to reproduce human behavior during rhythmic hybrid tasks. We propose a theoretical model of human sensorimotor behavior able to account for the observed data from the ball-bouncing task. The novel control architecture is composed of a Matsuoka neural oscillator coupled with the environment through visual sensory feedback. The architecture's ability to reproduce human-like performance during the ball-bouncing task in the presence of perturbations is quantified by comparison of simulated and recorded trials. The results suggest that human visual control of the task is achieved online. The adaptive behavior is made possible by a parametric and state control of the limit cycle emerging from the interaction of the rhythmic pattern generator, the musculoskeletal system, and the environment. NEW & NOTEWORTHY The study demonstrates that a behavioral model based on a neural oscillator controlled by visual information is able to accurately reproduce human modulations in a motor action with respect to sensory information during the rhythmic ball-bouncing task. The model attractor dynamics emerging from the interaction between the neuromusculoskeletal system and the environment met task requirements, environmental constraints, and human behavioral choices without relying on movement planning and explicit internal models of the environment. Copyright © 2017 the American Physiological Society.

  4. Using an Artificial Neural Bypass to Restore Cortical Control of Rhythmic Movements in a Human with Quadriplegia

    Science.gov (United States)

    Sharma, Gaurav; Friedenberg, David A.; Annetta, Nicholas; Glenn, Bradley; Bockbrader, Marcie; Majstorovic, Connor; Domas, Stephanie; Mysiw, W. Jerry; Rezai, Ali; Bouton, Chad

    2016-09-01

    Neuroprosthetic technology has been used to restore cortical control of discrete (non-rhythmic) hand movements in a paralyzed person. However, cortical control of rhythmic movements which originate in the brain but are coordinated by Central Pattern Generator (CPG) neural networks in the spinal cord has not been demonstrated previously. Here we show a demonstration of an artificial neural bypass technology that decodes cortical activity and emulates spinal cord CPG function allowing volitional rhythmic hand movement. The technology uses a combination of signals recorded from the brain, machine-learning algorithms to decode the signals, a numerical model of CPG network, and a neuromuscular electrical stimulation system to evoke rhythmic movements. Using the neural bypass, a quadriplegic participant was able to initiate, sustain, and switch between rhythmic and discrete finger movements, using his thoughts alone. These results have implications in advancing neuroprosthetic technology to restore complex movements in people living with paralysis.

  5. Different types of theta rhythmicity are induced by social and fearful stimuli in a network associated with social memory.

    Science.gov (United States)

    Tendler, Alex; Wagner, Shlomo

    2015-02-16

    Rhythmic activity in the theta range is thought to promote neuronal communication between brain regions. In this study, we performed chronic telemetric recordings in socially behaving rats to monitor electrophysiological activity in limbic brain regions linked to social behavior. Social encounters were associated with increased rhythmicity in the high theta range (7-10 Hz) that was proportional to the stimulus degree of novelty. This modulation of theta rhythmicity, which was specific for social stimuli, appeared to reflect a brain-state of social arousal. In contrast, the same network responded to a fearful stimulus by enhancement of rhythmicity in the low theta range (3-7 Hz). Moreover, theta rhythmicity showed different pattern of coherence between the distinct brain regions in response to social and fearful stimuli. We suggest that the two types of stimuli induce distinct arousal states that elicit different patterns of theta rhythmicity, which cause the same brain areas to communicate in different modes.

  6. The Beat Goes on: Rhythmic Modulation of Cortical Potentials by Imagined Tapping

    Science.gov (United States)

    Osman, Allen; Albert, Robert; Ridderinkhof, K. Richard; Band, Guido; van der Molen, Maurits

    2006-01-01

    A frequency analysis was used to tag cortical activity from imagined rhythmic movements. Participants synchronized overt and imagined taps with brief visual stimuli presented at a constant rate, alternating between left and right index fingers. Brain potentials were recorded from across the scalp and topographic maps made of their power at the…

  7. Rhythmic Haptic Stimuli Improve Short-Term Attention.

    Science.gov (United States)

    Zhang, Shusheng; Wang, Dangxiao; Afzal, Naqash; Zhang, Yuru; Wu, Ruilin

    2016-01-01

    Brainwave entrainment using rhythmic visual and/or auditory stimulation has shown its efficacy in modulating neural activities and cognitive ability. In the presented study, we aim to investigate whether rhythmic haptic stimulation could enhance short-term attention. An experiment with sensorimotor rhythm (SMR) increasing protocol was performed in which participants were presented sinusoidal vibrotactile stimulus of 15 Hz on their palm. Test of Variables of Attention (T.O.V.A.) was performed before and after the stimulating session. Electroencephalograph (EEG) was recorded across the stimulating session and the two attention test sessions. SMR band power manifested a significant increase after stimulation. Results of T.O.V.A. tests indicated an improvement in the attention of participants who had received the stimulation compared to the control group who had not received the stimulation. The D prime score of T.O.V.A. reveals that participants performed better in perceptual sensitivity and sustaining attention level compared to their baseline performance before the stimulating session. These findings highlight the potential value of using haptics-based brainwave entrainment for cognitive training.

  8. Rhythmic entrainment source separation: Optimizing analyses of neural responses to rhythmic sensory stimulation

    NARCIS (Netherlands)

    Cohen, M.S.; Gulbinaite, R.

    2017-01-01

    Steady-state evoked potentials (SSEPs) are rhythmic brain responses to rhythmic sensory stimulation, and are often used to study perceptual and attentional processes. We present a data analysis method for maximizing the signal-to-noise ratio of the narrow-band steady-state response in the frequency

  9. Effects of Rhythmic and Melodic Alterations and Selected Musical Experiences on Rhythmic Processing.

    Science.gov (United States)

    Sink, Patricia E.

    1984-01-01

    Study showed that music listening habits and preferences and instrument training may affect ways an individual processes the multiple dimensions of rhythm. Apparent alterations in tempo, duration and pitch characteristics, rhythmic and melodic phrase patterning, and monotony may serve as organizers of rhythmic processing. (Author/RM)

  10. Rhythmic ganglion cell activity in bleached and blind adult mouse retinas.

    Science.gov (United States)

    Menzler, Jacob; Channappa, Lakshmi; Zeck, Guenther

    2014-01-01

    In retinitis pigmentosa--a degenerative disease which often leads to incurable blindness--the loss of photoreceptors deprives the retina from a continuous excitatory input, the so-called dark current. In rodent models of this disease this deprivation leads to oscillatory electrical activity in the remaining circuitry, which is reflected in the rhythmic spiking of retinal ganglion cells (RGCs). It remained unclear, however, if the rhythmic RGC activity is attributed to circuit alterations occurring during photoreceptor degeneration or if rhythmic activity is an intrinsic property of healthy retinal circuitry which is masked by the photoreceptor's dark current. Here we tested these hypotheses by inducing and analysing oscillatory activity in adult healthy (C57/Bl6) and blind mouse retinas (rd10 and rd1). Rhythmic RGC activity in healthy retinas was detected upon partial photoreceptor bleaching using an extracellular high-density multi-transistor-array. The mean fundamental spiking frequency in bleached retinas was 4.3 Hz; close to the RGC rhythm detected in blind rd10 mouse retinas (6.5 Hz). Crosscorrelation analysis of neighbouring wild-type and rd10 RGCs (separation distance rhythmic RGC spiking in these retinas is driven by a network of presynaptic neurons. The inhibition of glutamatergic ganglion cell input or the inhibition of gap junctional coupling abolished the rhythmic pattern. In rd10 and rd1 retinas the presynaptic network leads to local field potentials, whereas in bleached retinas additional pharmacological disinhibition is required to achieve detectable field potentials. Our results demonstrate that photoreceptor bleaching unmasks oscillatory activity in healthy retinas which shares many features with the functional phenotype detected in rd10 retinas. The quantitative physiological differences advance the understanding of the degeneration process and may guide future rescue strategies.

  11. Distinguishing rhythmic from non-rhythmic brain activity during rest in healthy neurocognitive aging.

    Science.gov (United States)

    Caplan, Jeremy B; Bottomley, Monica; Kang, Pardeep; Dixon, Roger A

    2015-05-15

    Rhythmic brain activity at low frequencies (healthy neurocognitive aging are mixed. Here we address two reasons conventional spectral analyses may have led to inconsistent results. First, spectral-power measures are compared to a baseline condition; when resting activity is the signal of interest, it is unclear what the baseline should be. Second, conventional methods do not clearly differentiate power due to rhythmic versus non-rhythmic activity. The Better OSCillation detection method (BOSC; Caplan et al., 2001; Whitten et al., 2011) avoids these problems by using the signal's own spectral characteristics as a reference to detect elevations in power lasting a few cycles. We recorded electroencephalographic (EEG) signal during rest, alternating eyes open and closed, in healthy younger (18-25 years) and older (60-74 years) participants. Topographic plots suggested the conventional and BOSC analyses measured different sources of activity, particularly at frequencies, like delta (1-4Hz), at which rhythms are sporadic; topographies were more similar in the 8-12Hz alpha band. There was little theta-band activity meeting the BOSC method's criteria, suggesting prior findings of theta power in healthy aging may reflect non-rhythmic signal. In contrast, delta oscillations were present at higher levels than theta in both age groups. In summary, applying strict and standardized criteria for rhythmicity, slow rhythms appear present in the resting brain at delta and alpha, but not theta frequencies, and appear unchanged in healthy aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Rhythmic complexity and predictive coding

    DEFF Research Database (Denmark)

    Vuust, Peter; Witek, Maria A G

    2014-01-01

    Musical rhythm, consisting of apparently abstract intervals of accented temporal events,has a remarkable capacity to move our minds and bodies. How does the cognitive systemenable our experiences of rhythmically complex music? In this paper, we describe somecommon forms of rhythmic complexity...

  13. [Role of rhythmicity in infant development].

    Science.gov (United States)

    Ciccone, A

    2015-09-01

    This article deals with rhythm in the experiences of infants, focusing in particular on the function of rhythmicity in the baby's sense of being and its continuity. Infants are inevitably subjected to experiences of discontinuity. These experiences are necessary to development, but they expose the child to chaotic experiences when a basic rhythmicity is not ensured. The rhythmicity of childcare experiences gives the illusion of permanence and enables anticipation. This nourishes the basic feeling of security and supports the development of thought. Interactive and intersubjective exchanges must be rhythmic and must be in keeping with the rhythm of the baby, who needs to withdraw regularly from the interaction to internalize the experience of the exchange. Without this retreat, the interaction is over-stimulating and prevents internalization. Object presence/ absence must also be rhythmic, to enable the infant to keep the object alive inside him/ herself. Observation of babies has demonstrated their ability to manage experiences of discontinuity: they are able to sustain a continuous link via their gaze, look for clues indicating the presence of a lost object, search for support in sensations, and fabricate rhythmicity to remain open to the self and the world. The author gives some examples of infant observations that provide evidence of these capacities. One observation shows how a baby defends itself against a discontinuity by actively maintaining a link via his/her gaze. Another example shows an infant holding on to "hard sensations" in order to stay away from "soft" ones, which represent the fragility of the separation experience. This example pertains to a seven-month-old's prelanguage and "prosodic tonicity". The author takes this opportunity to propose the notion of "psychic bisensuality" to describe these two sensation poles, which must be harmoniously articulated to guarantee an inner sense of security. Such repairs of discontinuity are only possible if the

  14. Theta oscillations locked to intended actions rhythmically modulate perception.

    Science.gov (United States)

    Tomassini, Alice; Ambrogioni, Luca; Medendorp, W Pieter; Maris, Eric

    2017-07-07

    Ongoing brain oscillations are known to influence perception, and to be reset by exogenous stimulations. Voluntary action is also accompanied by prominent rhythmic activity, and recent behavioral evidence suggests that this might be coupled with perception. Here, we reveal the neurophysiological underpinnings of this sensorimotor coupling in humans. We link the trial-by-trial dynamics of EEG oscillatory activity during movement preparation to the corresponding dynamics in perception, for two unrelated visual and motor tasks. The phase of theta oscillations (~4 Hz) predicts perceptual performance, even >1 s before movement. Moreover, theta oscillations are phase-locked to the onset of the movement. Remarkably, the alignment of theta phase and its perceptual relevance unfold with similar non-monotonic profiles, suggesting their relatedness. The present work shows that perception and movement initiation are automatically synchronized since the early stages of motor planning through neuronal oscillatory activity in the theta range.

  15. Report on the SCT Forward Electrical Module Program

    CERN Document Server

    Benes, J; Feld, L; Hornung, M; Joos, D; Ketterer, C; Kodys, P; Kubik, P; Ludwig, J; Modesto, P; Rieth, G; Runge, K; Smith, T; Snow, S W; Taylor, G; Webel, M

    1999-01-01

    IN THE CONTEXT OF THE ATLAS SCT FORWARD HYBRID PROGRAM, THREEELECTRICAL DETECTOR MODULES HAVE BEEN BUILT. THIS NOTE DESCRIBES THEASSEMBLY AND SUMMARISES THE MECHANICAL AND ELECTRICAL PROPERTIES OFTHESE MODULES. SOME COMMENTS ON THE SPECIAL REQUIREMENTS OF THEPRODUCTION OF A REAL MODULE AS COMPARED TO DUMMY MODULES ARE GIVEN.A LIST OF OPEN QUESTIONS ARISING FROM THIS ASSEMBLY RUN IS APPENDED.

  16. High-density EEG characterization of brain responses to auditory rhythmic stimuli during wakefulness and NREM sleep.

    Science.gov (United States)

    Lustenberger, Caroline; Patel, Yogi A; Alagapan, Sankaraleengam; Page, Jessica M; Price, Betsy; Boyle, Michael R; Fröhlich, Flavio

    2018-04-01

    Auditory rhythmic sensory stimulation modulates brain oscillations by increasing phase-locking to the temporal structure of the stimuli and by increasing the power of specific frequency bands, resulting in Auditory Steady State Responses (ASSR). The ASSR is altered in different diseases of the central nervous system such as schizophrenia. However, in order to use the ASSR as biological markers for disease states, it needs to be understood how different vigilance states and underlying brain activity affect the ASSR. Here, we compared the effects of auditory rhythmic stimuli on EEG brain activity during wake and NREM sleep, investigated the influence of the presence of dominant sleep rhythms on the ASSR, and delineated the topographical distribution of these modulations. Participants (14 healthy males, 20-33 years) completed on the same day a 60 min nap session and two 30 min wakefulness sessions (before and after the nap). During these sessions, amplitude modulated (AM) white noise auditory stimuli at different frequencies were applied. High-density EEG was continuously recorded and time-frequency analyses were performed to assess ASSR during wakefulness and NREM periods. Our analysis revealed that depending on the electrode location, stimulation frequency applied and window/frequencies analysed the ASSR was significantly modulated by sleep pressure (before and after sleep), vigilance state (wake vs. NREM sleep), and the presence of slow wave activity and sleep spindles. Furthermore, AM stimuli increased spindle activity during NREM sleep but not during wakefulness. Thus, (1) electrode location, sleep history, vigilance state and ongoing brain activity needs to be carefully considered when investigating ASSR and (2) auditory rhythmic stimuli during sleep might represent a powerful tool to boost sleep spindles. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Classifying Written Texts Through Rhythmic Features

    NARCIS (Netherlands)

    Balint, Mihaela; Dascalu, Mihai; Trausan-Matu, Stefan

    2016-01-01

    Rhythm analysis of written texts focuses on literary analysis and it mainly considers poetry. In this paper we investigate the relevance of rhythmic features for categorizing texts in prosaic form pertaining to different genres. Our contribution is threefold. First, we define a set of rhythmic

  18. Circadian rhythmicity of active GSK3 isoforms modulates molecular clock gene rhythms in the suprachiasmatic nucleus.

    Science.gov (United States)

    Besing, Rachel C; Paul, Jodi R; Hablitz, Lauren M; Rogers, Courtney O; Johnson, Russell L; Young, Martin E; Gamble, Karen L

    2015-04-01

    The suprachiasmatic nucleus (SCN) drives and synchronizes daily rhythms at the cellular level via transcriptional-translational feedback loops comprising clock genes such as Bmal1 and Period (Per). Glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, phosphorylates at least 5 core clock proteins and shows diurnal variation in phosphorylation state (inactivation) of the GSK3β isoform. Whether phosphorylation of the other primary isoform (GSK3α) varies across the subjective day-night cycle is unknown. The purpose of this study was to determine if the endogenous rhythm of GSK3 (α and β) phosphorylation is critical for rhythmic BMAL1 expression and normal amplitude and periodicity of the molecular clock in the SCN. Significant circadian rhythmicity of phosphorylated GSK3 (α and β) was observed in the SCN from wild-type mice housed in constant darkness for 2 weeks. Importantly, chronic activation of both GSK3 isoforms impaired rhythmicity of the GSK3 target BMAL1. Furthermore, chronic pharmacological inhibition of GSK3 with 20 µM CHIR-99021 enhanced the amplitude and shortened the period of PER2::luciferase rhythms in organotypic SCN slice cultures. These results support the model that GSK3 activity status is regulated by the circadian clock and that GSK3 feeds back to regulate the molecular clock amplitude in the SCN. © 2015 The Author(s).

  19. Cascaded Amplitude Modulations in Sound Texture Perception

    DEFF Research Database (Denmark)

    McWalter, Richard Ian; Dau, Torsten

    2017-01-01

    . In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as "beating" in the envelope-frequency domain. We developed an auditory texture...... model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures-stimuli generated using time-averaged statistics measured from real-world textures....... In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model...

  20. Effects of task complexity on rhythmic reproduction performance in adults.

    Science.gov (United States)

    Iannarilli, Flora; Vannozzi, Giuseppe; Iosa, Marco; Pesce, Caterina; Capranica, Laura

    2013-02-01

    The aim of the present study was to investigate the effect of task complexity on the capability to reproduce rhythmic patterns. Sedentary musically illiterate individuals (age: 34.8±4.2 yrs; M±SD) were administered a rhythmic test including three rhythmic patterns to be reproduced by means of finger-tapping, foot-tapping and walking. For the quantification of subjects' ability in the reproduction of rhythmic patterns, qualitative and quantitative parameters were submitted to analysis. A stereophotogrammetric system was used to reconstruct and evaluate individual performances. The findings indicated a good internal stability of the rhythmic reproduction, suggesting that the present experimental design is suitable to discriminate the participants' rhythmic ability. Qualitative aspects of rhythmic reproduction (i.e., speed of execution and temporal ratios between events) varied as a function of the perceptual-motor requirements of the rhythmic reproduction task, with larger reproduction deviations in the walking task. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Sequentially allocated clinical trial of rhythmic stabilization exercises and TENS in women with chronic low back pain.

    Science.gov (United States)

    Kofotolis, Nikolaos D; Vlachopoulos, Symeon P; Kellis, Eleftherios

    2008-02-01

    To examine the effectiveness of rhythmic stabilization exercises and transcutaneous electrical nerve stimulation (TENS) and their combination in treating women with chronic low back pain. Sequentially allocated, single-blinded and controlled study, with a two-month follow-up. The data were collected in a patient rehabilitation setting. A total of 92 women (34-46 years old) with chronic low back pain were studied. Sequential allocation was undertaken into four groups: ;rhythmic stabilization' (n=23), ;rhythmic stabilization - TENS' (n=23), TENS (n=23), and a placebo group (n = 23). Each programme lasted for four weeks. All outcome measures were assessed prior to, immediately after, four weeks and eight weeks post intervention. Data were obtained on functional disability, pain intensity, trunk extension range of motion, dynamic endurance of trunk flexion and static endurance of trunk extension. A total of 88 patients provided two-month follow-up data. The ;rhythmic stabilization' and the ;rhythmic stabilization - TENS' groups displayed statistically significant (Ppain intensity (ranging from 21.2 to 42.8%), trunk extension range of motion (ranging from 6.5 to 25.5%), dynamic endurance of trunk flexion and static endurance of trunk extension (ranging from 13.5 to 74.3%) compared with the remaining groups. The rhythmic stabilization programmes resulted in more gains in women with chronic low back pain regarding the present outcome variables compared with the other groups; therefore, its application in female chronic low back pain patients aged 34-46 years is recommended.

  2. Evidence for Multiple Rhythmic Skills

    Science.gov (United States)

    Tierney, Adam; Kraus, Nina

    2015-01-01

    Rhythms, or patterns in time, play a vital role in both speech and music. Proficiency in a number of rhythm skills has been linked to language ability, suggesting that certain rhythmic processes in music and language rely on overlapping resources. However, a lack of understanding about how rhythm skills relate to each other has impeded progress in understanding how language relies on rhythm processing. In particular, it is unknown whether all rhythm skills are linked together, forming a single broad rhythmic competence, or whether there are multiple dissociable rhythm skills. We hypothesized that beat tapping and rhythm memory/sequencing form two separate clusters of rhythm skills. This hypothesis was tested with a battery of two beat tapping and two rhythm memory tests. Here we show that tapping to a metronome and the ability to adjust to a changing tempo while tapping to a metronome are related skills. The ability to remember rhythms and to drum along to repeating rhythmic sequences are also related. However, we found no relationship between beat tapping skills and rhythm memory skills. Thus, beat tapping and rhythm memory are dissociable rhythmic aptitudes. This discovery may inform future research disambiguating how distinct rhythm competencies track with specific language functions. PMID:26376489

  3. Evidence for Multiple Rhythmic Skills.

    Directory of Open Access Journals (Sweden)

    Adam Tierney

    Full Text Available Rhythms, or patterns in time, play a vital role in both speech and music. Proficiency in a number of rhythm skills has been linked to language ability, suggesting that certain rhythmic processes in music and language rely on overlapping resources. However, a lack of understanding about how rhythm skills relate to each other has impeded progress in understanding how language relies on rhythm processing. In particular, it is unknown whether all rhythm skills are linked together, forming a single broad rhythmic competence, or whether there are multiple dissociable rhythm skills. We hypothesized that beat tapping and rhythm memory/sequencing form two separate clusters of rhythm skills. This hypothesis was tested with a battery of two beat tapping and two rhythm memory tests. Here we show that tapping to a metronome and the ability to adjust to a changing tempo while tapping to a metronome are related skills. The ability to remember rhythms and to drum along to repeating rhythmic sequences are also related. However, we found no relationship between beat tapping skills and rhythm memory skills. Thus, beat tapping and rhythm memory are dissociable rhythmic aptitudes. This discovery may inform future research disambiguating how distinct rhythm competencies track with specific language functions.

  4. Rhythmic entrainment source separation: Optimizing analyses of neural responses to rhythmic sensory stimulation.

    Science.gov (United States)

    Cohen, Michael X; Gulbinaite, Rasa

    2017-02-15

    Steady-state evoked potentials (SSEPs) are rhythmic brain responses to rhythmic sensory stimulation, and are often used to study perceptual and attentional processes. We present a data analysis method for maximizing the signal-to-noise ratio of the narrow-band steady-state response in the frequency and time-frequency domains. The method, termed rhythmic entrainment source separation (RESS), is based on denoising source separation approaches that take advantage of the simultaneous but differential projection of neural activity to multiple electrodes or sensors. Our approach is a combination and extension of existing multivariate source separation methods. We demonstrate that RESS performs well on both simulated and empirical data, and outperforms conventional SSEP analysis methods based on selecting electrodes with the strongest SSEP response, as well as several other linear spatial filters. We also discuss the potential confound of overfitting, whereby the filter captures noise in absence of a signal. Matlab scripts are available to replicate and extend our simulations and methods. We conclude with some practical advice for optimizing SSEP data analyses and interpreting the results. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Individualization of music-based rhythmic auditory cueing in Parkinson's disease.

    Science.gov (United States)

    Bella, Simone Dalla; Dotov, Dobromir; Bardy, Benoît; de Cock, Valérie Cochen

    2018-06-04

    Gait dysfunctions in Parkinson's disease can be partly relieved by rhythmic auditory cueing. This consists in asking patients to walk with a rhythmic auditory stimulus such as a metronome or music. The effect on gait is visible immediately in terms of increased speed and stride length. Moreover, training programs based on rhythmic cueing can have long-term benefits. The effect of rhythmic cueing, however, varies from one patient to the other. Patients' response to the stimulation may depend on rhythmic abilities, often deteriorating with the disease. Relatively spared abilities to track the beat favor a positive response to rhythmic cueing. On the other hand, most patients with poor rhythmic abilities either do not respond to the cues or experience gait worsening when walking with cues. An individualized approach to rhythmic auditory cueing with music is proposed to cope with this variability in patients' response. This approach calls for using assistive mobile technologies capable of delivering cues that adapt in real time to patients' gait kinematics, thus affording step synchronization to the beat. Individualized rhythmic cueing can provide a safe and cost-effective alternative to standard cueing that patients may want to use in their everyday lives. © 2018 New York Academy of Sciences.

  6. Electrical performance of ATLAS-SCT KB end-cap modules

    CERN Document Server

    D'Onofrio, M; Donegà, M; Ferrère, D; Mangin-Brinet, M; Mikulec, B; Weber, M; Ikegami, Y; Kohriki, T; Kondo, T; Terada, S; Unno, Y; Pernegger, H; Roe, S; Wallny, R; Moorhead, G F; Taylor, G; García, J E; Gonzáles, S; Vos, M A; Toczek, B

    2003-01-01

    The Semiconductor Tracker (SCT) is one of the ATLAS Inner Detector elements which aims to track charged particles in the ATLAS experiment. It consists of four cylindrical layers (barrels) of silicon strip detectors, with nine disks in each of the forward and backward directions. Carbon fibre structures will support a total of 4088 modules, which are the basic functional sub-unit of the SCT. Each module consists of single sided silicon micro-strip detectors glued back to back with a 40 mrad stereo-angle, and attached to a hybrid. The scope of this document is to present the electrical performances of prototype end-cap modules proposed for the ATLAS-SCT, as an alternative to the baseline. The layout of these modules is based on the implementation of the barrel module hybrid in the end-cap geometry. A complete set of electrical measurements is summarized in this paper, including irradiated module tests and beam tests.

  7. Thermal and electrical energy yield analysis of a directly water cooled photovoltaic module

    Directory of Open Access Journals (Sweden)

    Mtunzi Busiso

    2016-01-01

    Full Text Available Electrical energy of photovoltaic modules drops by 0.5% for each degree increase in temperature. Direct water cooling of photovoltaic modules was found to give improved electrical and thermal yield. A prototype was put in place to analyse the field data for a period of a year. The results showed an initial high performance ratio and electrical power output. The monthly energy saving efficiency of the directly water cooled module was found to be approximately 61%. The solar utilisation of the naturally cooled photovoltaic module was found to be 8.79% and for the directly water cooled module its solar utilisation was 47.93%. Implementation of such systems on households may reduce the load from the utility company, bring about huge savings on electricity bills and help in reducing carbon emissions.

  8. Importance of Practical Relevance and Design Modules in Electrical Circuits Education

    Directory of Open Access Journals (Sweden)

    Kalpathy Sundaram

    2011-05-01

    Full Text Available The interactive technical electronic book, TechEBook, currently under development at the University of Central Florida (UCF, provides a useful tool for engineers and scientists through unique features compared to the most used traditional electrical circuit textbooks available in the market. TechEBook has comprised the two worlds of classical circuit books and an interactive operating platform such as iPads, laptops and desktops utilizing Java Virtual Machine operator. The TechEBook provides an interactive applets screen that holds many modules, in which each had a specific application in the self learning process. This paper describes two of the interactive techniques in the TechEBook known as, Practical Relevance Modules (PRM and Design Modules (DM. The Practical Relevance Module will assist the readers to learn electrical circuit analysis and to understand the practical application of the electrical network theory through solving real world examples and problems. The Design Module will help students design real-life problems. These modules will be displayed after each section in the TechEBook for the user to relate his/her understanding with the outside world, which introduces the term me-applying and me-designing, as a comprehensive full experience for self or individualized education. The main emphasis of this paper is the PRM while the DM will be discussed in brief. A practical example of applying the PRM and DM features is discussed as part of a basic electrical engineering course currently given at UCF and results show improved student performances in learning materials in Electrical Circuits. In the future, such modules can be redesigned to become highly interactive with illustrated animations.

  9. Situational influences on rhythmicity in speech, music, and their interaction.

    Science.gov (United States)

    Hawkins, Sarah

    2014-12-19

    Brain processes underlying the production and perception of rhythm indicate considerable flexibility in how physical signals are interpreted. This paper explores how that flexibility might play out in rhythmicity in speech and music. There is much in common across the two domains, but there are also significant differences. Interpretations are explored that reconcile some of the differences, particularly with respect to how functional properties modify the rhythmicity of speech, within limits imposed by its structural constraints. Functional and structural differences mean that music is typically more rhythmic than speech, and that speech will be more rhythmic when the emotions are more strongly engaged, or intended to be engaged. The influence of rhythmicity on attention is acknowledged, and it is suggested that local increases in rhythmicity occur at times when attention is required to coordinate joint action, whether in talking or music-making. Evidence is presented which suggests that while these short phases of heightened rhythmical behaviour are crucial to the success of transitions in communicative interaction, their modality is immaterial: they all function to enhance precise temporal prediction and hence tightly coordinated joint action. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  10. Situational influences on rhythmicity in speech, music, and their interaction

    Science.gov (United States)

    Hawkins, Sarah

    2014-01-01

    Brain processes underlying the production and perception of rhythm indicate considerable flexibility in how physical signals are interpreted. This paper explores how that flexibility might play out in rhythmicity in speech and music. There is much in common across the two domains, but there are also significant differences. Interpretations are explored that reconcile some of the differences, particularly with respect to how functional properties modify the rhythmicity of speech, within limits imposed by its structural constraints. Functional and structural differences mean that music is typically more rhythmic than speech, and that speech will be more rhythmic when the emotions are more strongly engaged, or intended to be engaged. The influence of rhythmicity on attention is acknowledged, and it is suggested that local increases in rhythmicity occur at times when attention is required to coordinate joint action, whether in talking or music-making. Evidence is presented which suggests that while these short phases of heightened rhythmical behaviour are crucial to the success of transitions in communicative interaction, their modality is immaterial: they all function to enhance precise temporal prediction and hence tightly coordinated joint action. PMID:25385776

  11. Destruction of Spiral Wave Using External Electric Field Modulated by Logistic Map

    International Nuclear Information System (INIS)

    Ma Jun; Chen Yong; Jin Wuyin

    2007-01-01

    Evolution of spiral wave generated from the excitable media within the Barkley model is investigated. The external gradient electric field modulated by the logistic map is imposed on the media (along x- and y-axis). Drift and break up of spiral wave are observed when the amplitude of the electric field is modulated by the chaotic signal from the logistic map, and the whole system could become homogeneous finally and the relevant results are compared when the gradient electric field is modulated by the Lorenz or Roessler chaotic signal.

  12. Music Games: Potential Application and Considerations for Rhythmic Training.

    Science.gov (United States)

    Bégel, Valentin; Di Loreto, Ines; Seilles, Antoine; Dalla Bella, Simone

    2017-01-01

    Rhythmic skills are natural and widespread in the general population. The majority can track the beat of music and move along with it. These abilities are meaningful from a cognitive standpoint given their tight links with prominent motor and cognitive functions such as language and memory. When rhythmic skills are challenged by brain damage or neurodevelopmental disorders, remediation strategies based on rhythm can be considered. For example, rhythmic training can be used to improve motor performance (e.g., gait) as well as cognitive and language skills. Here, we review the games readily available in the market and assess whether they are well-suited for rhythmic training. Games that train rhythm skills may serve as useful tools for retraining motor and cognitive functions in patients with motor or neurodevelopmental disorders (e.g., Parkinson's disease, dyslexia, or ADHD). Our criteria were the peripheral used to capture and record the response, the type of response and the output measure. None of the existing games provides sufficient temporal precision in stimulus presentation and/or data acquisition. In addition, games do not train selectively rhythmic skills. Hence, the available music games, in their present form, are not satisfying for training rhythmic skills. Yet, some features such as the device used, the interface or the game scenario provide good indications for devising efficient training protocols. Guidelines are provided for devising serious music games targeting rhythmic training in the future.

  13. Music Games: Potential Application and Considerations for Rhythmic Training

    Directory of Open Access Journals (Sweden)

    Valentin Bégel

    2017-05-01

    Full Text Available Rhythmic skills are natural and widespread in the general population. The majority can track the beat of music and move along with it. These abilities are meaningful from a cognitive standpoint given their tight links with prominent motor and cognitive functions such as language and memory. When rhythmic skills are challenged by brain damage or neurodevelopmental disorders, remediation strategies based on rhythm can be considered. For example, rhythmic training can be used to improve motor performance (e.g., gait as well as cognitive and language skills. Here, we review the games readily available in the market and assess whether they are well-suited for rhythmic training. Games that train rhythm skills may serve as useful tools for retraining motor and cognitive functions in patients with motor or neurodevelopmental disorders (e.g., Parkinson’s disease, dyslexia, or ADHD. Our criteria were the peripheral used to capture and record the response, the type of response and the output measure. None of the existing games provides sufficient temporal precision in stimulus presentation and/or data acquisition. In addition, games do not train selectively rhythmic skills. Hence, the available music games, in their present form, are not satisfying for training rhythmic skills. Yet, some features such as the device used, the interface or the game scenario provide good indications for devising efficient training protocols. Guidelines are provided for devising serious music games targeting rhythmic training in the future.

  14. Development of conductor feedthrough module of LV electrical penetration assembly for research reactors

    International Nuclear Information System (INIS)

    Luo Zhiyuan; Wang Guangjin; Zhou Bin

    2007-01-01

    A LV electrical penetration assembly with perfusion sealing conductor feedthrough module was developed, which can be used for the connection of internal and external cables through the wall of the research reactor workshop. The LV electrical penetration assembly was combined with several independent modules. The maintenance and replacement of the assembly can be easily done in service. The sealing of conductor feedthrough module was achieved with the perfusion of self-extinguishing epoxy. The leakage between the conductor feedthrough module and the end plate module was blocked with rubber rings. The result of the leakage test and the electrical performance test for the samples of conductor feedthrough module satisfied the requirement of research reactor. The structure of the new electrical penetration assembly is simple and compact. It can be manufactured with mature technology and cost low price. The performance of the assembly is steady. It can be used widely in research reactors. (authors)

  15. The evolution of locomotor rhythmicity in tetrapods.

    Science.gov (United States)

    Ross, Callum F; Blob, Richard W; Carrier, David R; Daley, Monica A; Deban, Stephen M; Demes, Brigitte; Gripper, Janaya L; Iriarte-Diaz, Jose; Kilbourne, Brandon M; Landberg, Tobias; Polk, John D; Schilling, Nadja; Vanhooydonck, Bieke

    2013-04-01

    Differences in rhythmicity (relative variance in cycle period) among mammal, fish, and lizard feeding systems have been hypothesized to be associated with differences in their sensorimotor control systems. We tested this hypothesis by examining whether the locomotion of tachymetabolic tetrapods (birds and mammals) is more rhythmic than that of bradymetabolic tetrapods (lizards, alligators, turtles, salamanders). Species averages of intraindividual coefficients of variation in cycle period were compared while controlling for gait and substrate. Variance in locomotor cycle periods is significantly lower in tachymetabolic than in bradymetabolic animals for datasets that include treadmill locomotion, non-treadmill locomotion, or both. When phylogenetic relationships are taken into account the pooled analyses remain significant, whereas the non-treadmill and the treadmill analyses become nonsignificant. The co-occurrence of relatively high rhythmicity in both feeding and locomotor systems of tachymetabolic tetrapods suggests that the anatomical substrate of rhythmicity is in the motor control system, not in the musculoskeletal components. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  16. Daily rhythmicity of body temperature in the dog.

    Science.gov (United States)

    Refinetti, R; Piccione, G

    2003-08-01

    Research over the past 50 years has demonstrated the existence of circadian or daily rhythmicity in the body core temperature of a large number of mammalian species. However, previous studies have failed to identify daily rhythmicity of body temperature in dogs. We report here the successful recording of daily rhythms of rectal temperature in female Beagle dogs. The low robustness of the rhythms (41% of maximal robustness) and the small range of excursion (0.5 degrees C) are probably responsible for previous failures in detecting rhythmicity in dogs.

  17. An Extensive Unified Thermo-Electric Module Characterization Method

    Science.gov (United States)

    Attivissimo, Filippo; Guarnieri Calò Carducci, Carlo; Lanzolla, Anna Maria Lucia; Spadavecchia, Maurizio

    2016-01-01

    Thermo-Electric Modules (TEMs) are being increasingly used in power generation as a valid alternative to batteries, providing autonomy to sensor nodes or entire Wireless Sensor Networks, especially for energy harvesting applications. Often, manufacturers provide some essential parameters under determined conditions, like for example, maximum temperature difference between the surfaces of the TEM or for maximum heat absorption, but in many cases, a TEM-based system is operated under the best conditions only for a fraction of the time, thus, when dynamic working conditions occur, the performance estimation of TEMs is crucial to determine their actual efficiency. The focus of this work is on using a novel procedure to estimate the parameters of both the electrical and thermal equivalent model and investigate their relationship with the operating temperature and the temperature gradient. The novelty of the method consists in the use of a simple test configuration to stimulate the modules and simultaneously acquire electrical and thermal data to obtain all parameters in a single test. Two different current profiles are proposed as possible stimuli, which use depends on the available test instrumentation, and relative performance are compared both quantitatively and qualitatively, in terms of standard deviation and estimation uncertainty. Obtained results, besides agreeing with both technical literature and a further estimation method based on module specifications, also provides the designer a detailed description of the module behavior, useful to simulate its performance in different scenarios. PMID:27983575

  18. Differences between the sexes in technical mastery of rhythmic gymnastics.

    Science.gov (United States)

    Bozanic, Ana; Miletic, Durdica

    2011-02-01

    The aims of this study were to determine possible differences between the sexes in specific rhythmic gymnastics techniques, and to examine the influence of various aspects of technique on rhythmic composition performance. Seventy-five students aged 21 ± 2 years (45 males, 30 female) undertook four test sessions to determine: coefficients of asymmetry, stability, versatility, and the two rhythmic compositions (without apparatus and with rope). An independent-sample t-test revealed sex-based differences in technique acquisition: stability for ball (P rhythmic composition without apparatus (P analysis revealed that the variables for assessing stability (beta = 0.44; P rhythmic composition performance of females, and the variables for assessing asymmetry (beta = -0.38; P rhythmic composition performance of males. The results suggest that female students dominate in body skill technique, while male students have the advantage with apparatus. There was a lack of an expressive aesthetic component in performance for males. The need for ambidexterity should be considered in the planning of training programmes.

  19. Entrainment of Breast Cell Lines Results in Rhythmic Fluctuations of MicroRNAs

    Directory of Open Access Journals (Sweden)

    Rafael Chacolla-Huaringa

    2017-07-01

    Full Text Available Circadian rhythms are essential for temporal (~24 h regulation of molecular processes in diverse species. Dysregulation of circadian gene expression has been implicated in the pathogenesis of various disorders, including hypertension, diabetes, depression, and cancer. Recently, microRNAs (miRNAs have been identified as critical modulators of gene expression post-transcriptionally, and perhaps involved in circadian clock architecture or their output functions. The aim of the present study is to explore the temporal expression of miRNAs among entrained breast cell lines. For this purpose, we evaluated the temporal (28 h expression of 2006 miRNAs in MCF-10A, MCF-7, and MDA-MB-231 cells using microarrays after serum shock entrainment. We noted hundreds of miRNAs that exhibit rhythmic fluctuations in each breast cell line, and some of them across two or three cell lines. Afterwards, we validated the rhythmic profiles exhibited by miR-141-5p, miR-1225-5p, miR-17-5p, miR-222-5p, miR-769-3p, and miR-548ay-3p in the above cell lines, as well as in ZR-7530 and HCC-1954 using RT-qPCR. Our results show that serum shock entrainment in breast cells lines induces rhythmic fluctuations of distinct sets of miRNAs, which have the potential to be related to endogenous circadian clock, but extensive investigation is required to elucidate that connection.

  20. Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression

    OpenAIRE

    Kojima, Shihoko; Sher-Chen, Elaine L.; Green, Carla B.

    2012-01-01

    Green and colleagues perform a global analysis of circadian-controlled poly(A) tails and identify hundreds of mRNAs that display dynamic rhythmic polyadenylation states. They identify three distinct classes of mRNAs with rhythmic poly(A) tails. Interestingly, class III mRNAs are controlled not by transcription, but by rhythmic cytoplasmic polyadenylation, and are regulated by the components of the cytoplasmic polyadenylation machinery, CPEB2 in particular, which are themselves rhythmically ex...

  1. Rhythmic speech and stuttering reduction in a syllable-timed language.

    Science.gov (United States)

    Law, Thomas; Packman, Ann; Onslow, Mark; To, Carol K-S; Tong, Michael C-F; Lee, Kathy Y-S

    2018-06-06

    Speaking rhythmically, also known as syllable-timed speech (STS), has been known for centuries to be a fluency-inducing condition for people who stutter. Cantonese is a tonal syllable-timed language and it has been shown that, of all languages, Cantonese is the most rhythmic (Mok, 2009). However, it is not known if STS reduces stuttering in Cantonese as it does in English. This is the first study to investigate the effects of STS on stuttering in a syllable-timed language. Nineteen native Cantonese-speaking adults who stutter were engaged in conversational tasks in Cantonese under two conditions: one in their usual speaking style and one using STS. The speakers' percentage syllables stuttered (%SS) and speech rhythmicity were rated. The rhythmicity ratings were used to estimate the extent to which speakers were using STS in the syllable-timed condition. Results revealed a statistically significant reduction in %SS in the STS condition; however, this reduction was not as large as in previous studies in other languages and the amount of stuttering reduction varied across speakers. The rhythmicity ratings showed that some speakers were perceived to be speaking more rhythmically than others and that the perceived rhythmicity correlated positively with reductions in stuttering. The findings were unexpected, as it was anticipated that speakers of a highly rhythmic language such as Cantonese would find STS easy to use and that the consequent reductions in stuttering would be great, even greater perhaps than in a stress-timed language such as English. The theoretical and clinical implications of the findings are discussed.

  2. Danish music education and the 'rhythmic music' concept

    DEFF Research Database (Denmark)

    Pedersen, Peder Kaj

    2014-01-01

    ' was avoided and the Danish phrase 'rytmisk musik' (rhythmic music) was created to emphasize the educational and pedagogical content. The aim was also to prevent the prejudicious idea associated with jazz, especially by opponents. The article intends to evaluate the situation of 'rhythmic music' in the context......The article reflects on Danish music education and the concept of 'rhythmic music'. It highligths the so-called "jazz-oratorio", a unique genre, created by the composer Bernhard Christensen (1906-2004) and the librettist Sven Møller Kristensen (1909-91). The article shows that the term 'jazz...... of Danish music education....

  3. Music Games: Potential Application and Considerations for Rhythmic Training

    OpenAIRE

    Valentin Bégel; Valentin Bégel; Ines Di Loreto; Antoine Seilles; Simone Dalla Bella; Simone Dalla Bella; Simone Dalla Bella; Simone Dalla Bella

    2017-01-01

    Rhythmic skills are natural and widespread in the general population. The majority can track the beat of music and move along with it. These abilities are meaningful from a cognitive standpoint given their tight links with prominent motor and cognitive functions such as language and memory. When rhythmic skills are challenged by brain damage or neurodevelopmental disorders, remediation strategies based on rhythm can be considered. For example, rhythmic training can be used to improve motor pe...

  4. Rhythmic Effects of Syntax Processing in Music and Language.

    Science.gov (United States)

    Jung, Harim; Sontag, Samuel; Park, YeBin S; Loui, Psyche

    2015-01-01

    Music and language are human cognitive and neural functions that share many structural similarities. Past theories posit a sharing of neural resources between syntax processing in music and language (Patel, 2003), and a dynamic attention network that governs general temporal processing (Large and Jones, 1999). Both make predictions about music and language processing over time. Experiment 1 of this study investigates the relationship between rhythmic expectancy and musical and linguistic syntax in a reading time paradigm. Stimuli (adapted from Slevc et al., 2009) were sentences broken down into segments; each sentence segment was paired with a musical chord and presented at a fixed inter-onset interval. Linguistic syntax violations appeared in a garden-path design. During the critical region of the garden-path sentence, i.e., the particular segment in which the syntactic unexpectedness was processed, expectancy violations for language, music, and rhythm were each independently manipulated: musical expectation was manipulated by presenting out-of-key chords and rhythmic expectancy was manipulated by perturbing the fixed inter-onset interval such that the sentence segments and musical chords appeared either early or late. Reading times were recorded for each sentence segment and compared for linguistic, musical, and rhythmic expectancy. Results showed main effects of rhythmic expectancy and linguistic syntax expectancy on reading time. There was also an effect of rhythm on the interaction between musical and linguistic syntax: effects of violations in musical and linguistic syntax showed significant interaction only during rhythmically expected trials. To test the effects of our experimental design on rhythmic and linguistic expectancies, independently of musical syntax, Experiment 2 used the same experimental paradigm, but the musical factor was eliminated-linguistic stimuli were simply presented silently, and rhythmic expectancy was manipulated at the critical

  5. Multi-functional Electric Module for a Vehicle

    Science.gov (United States)

    Bluethmann, William J. (Inventor); Waligora, Thomas M. (Inventor); Fraser-Chanpong, Nathan (Inventor); Reed, Ryan (Inventor); Akinyode, Akinjide Akinniyi (Inventor); Spain, Ivan (Inventor); Dawson, Andrew D. (Inventor); Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Markee, Mason M. (Inventor)

    2015-01-01

    A multi-functional electric module (eModule) is provided for a vehicle having a chassis, a master controller, and a drive wheel having a propulsion-braking module. The eModule includes a steering control assembly, mounting bracket, propulsion control assembly, brake controller, housing, and control arm. The steering control assembly includes a steering motor controlled by steering controllers in response to control signals from the master controller. A mounting feature of the bracket connects to the chassis. The propulsion control assembly and brake controller are in communication with the propulsion-braking module. The control arm connects to the lower portion and contains elements of a suspension system, with the control arm being connectable to the drive wheel via a wheel input/output block. The controllers are responsive to the master controller to control a respective steering, propulsion, and braking function. The steering motor may have a dual-wound stator with windings controlled via the respective steering controllers.

  6. Vector electric field measurement via position-modulated Kelvin probe force microscopy

    Science.gov (United States)

    Dwyer, Ryan P.; Smieska, Louisa M.; Tirmzi, Ali Moeed; Marohn, John A.

    2017-10-01

    High-quality spatially resolved measurements of electric fields are critical to understanding charge injection, charge transport, and charge trapping in semiconducting materials. Here, we report a variation of frequency-modulated Kelvin probe force microscopy that enables spatially resolved measurements of the electric field. We measure electric field components along multiple directions simultaneously by employing position modulation and lock-in detection in addition to numeric differentiation of the surface potential. We demonstrate the technique by recording linescans of the in-plane electric field vector in the vicinity of a patch of trapped charge in a 2,7-diphenyl[1]benzothieno[3,2-b][1]benzothiophene (DPh-BTBT) organic field-effect transistor. This technique is simple to implement and should be especially useful for studying electric fields in spatially inhomogeneous samples like organic transistors and photovoltaic blends.

  7. Rhythmic Engagement with Music in Early Childhood: A Replication and Extension

    Science.gov (United States)

    Ilari, Beatriz

    2015-01-01

    The purpose of this study was to replicate and extend previous findings on spontaneous movement and rhythmic engagement with music in infancy. Using the identical stimuli and procedures from the original study, I investigated spontaneous rhythmic movements in response to music, infant-directed speech, and contrasting rhythmic patterns in 30…

  8. Lunar Module Electrical Power System Design Considerations and Failure Modes

    Science.gov (United States)

    Interbartolo, Michael

    2009-01-01

    This slide presentation reviews the design and redesign considerations of the Apollo lunar module electrical power system. Included in the work are graphics showing the lunar module power system. It describes the in-flight failures, and the lessons learned from these failures.

  9. Different corticospinal control between discrete and rhythmic movement of the ankle.

    Science.gov (United States)

    Goto, Yumeno; Jono, Yasutomo; Hatanaka, Ryota; Nomura, Yoshifumi; Tani, Keisuke; Chujo, Yuta; Hiraoka, Koichi

    2014-01-01

    We investigated differences in corticospinal and spinal control between discrete and rhythmic ankle movements. Motor evoked potentials (MEPs) in the tibialis anterior and soleus muscles and soleus H-reflex were elicited in the middle of the plantar flexion phase during discrete ankle movement or in the initial or later cycles of rhythmic ankle movement. The H-reflex was evoked at an intensity eliciting a small M-wave and MEPs were elicited at an intensity of 1.2 times the motor threshold of the soleus MEPs. Only trials in which background EMG level, ankle angle, and ankle velocity were similar among the movement conditions were included for data analysis. In addition, only trials with a similar M-wave were included for data analysis in the experiment evoking H-reflexes. Results showed that H reflex and MEP amplitudes in the soleus muscle during discrete movement were not significantly different from those during rhythmic movement. MEP amplitude in the tibialis anterior muscle during the later cycles of rhythmic movement was significantly larger than that during the initial cycle of the rhythmic movement or during discrete movement. Higher corticospinal excitability in the tibialis anterior muscle during the later cycles of rhythmic movement may reflect changes in corticospinal control from the initial cycle to the later cycles of rhythmic movement.

  10. Visual cortex responses reflect temporal structure of continuous quasi-rhythmic sensory stimulation.

    Science.gov (United States)

    Keitel, Christian; Thut, Gregor; Gross, Joachim

    2017-02-01

    Neural processing of dynamic continuous visual input, and cognitive influences thereon, are frequently studied in paradigms employing strictly rhythmic stimulation. However, the temporal structure of natural stimuli is hardly ever fully rhythmic but possesses certain spectral bandwidths (e.g. lip movements in speech, gestures). Examining periodic brain responses elicited by strictly rhythmic stimulation might thus represent ideal, yet isolated cases. Here, we tested how the visual system reflects quasi-rhythmic stimulation with frequencies continuously varying within ranges of classical theta (4-7Hz), alpha (8-13Hz) and beta bands (14-20Hz) using EEG. Our findings substantiate a systematic and sustained neural phase-locking to stimulation in all three frequency ranges. Further, we found that allocation of spatial attention enhances EEG-stimulus locking to theta- and alpha-band stimulation. Our results bridge recent findings regarding phase locking ("entrainment") to quasi-rhythmic visual input and "frequency-tagging" experiments employing strictly rhythmic stimulation. We propose that sustained EEG-stimulus locking can be considered as a continuous neural signature of processing dynamic sensory input in early visual cortices. Accordingly, EEG-stimulus locking serves to trace the temporal evolution of rhythmic as well as quasi-rhythmic visual input and is subject to attentional bias. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Neural correlates of rhythmic expectancy

    Directory of Open Access Journals (Sweden)

    Theodore P. Zanto

    2006-01-01

    Full Text Available Temporal expectancy is thought to play a fundamental role in the perception of rhythm. This review summarizes recent studies that investigated rhythmic expectancy by recording neuroelectric activity with high temporal resolution during the presentation of rhythmic patterns. Prior event-related brain potential (ERP studies have uncovered auditory evoked responses that reflect detection of onsets, offsets, sustains,and abrupt changes in acoustic properties such as frequency, intensity, and spectrum, in addition to indexing higher-order processes such as auditory sensory memory and the violation of expectancy. In our studies of rhythmic expectancy, we measured emitted responses - a type of ERP that occurs when an expected event is omitted from a regular series of stimulus events - in simple rhythms with temporal structures typical of music. Our observations suggest that middle-latency gamma band (20-60 Hz activity (GBA plays an essential role in auditory rhythm processing. Evoked (phase-locked GBA occurs in the presence of physically presented auditory events and reflects the degree of accent. Induced (non-phase-locked GBA reflects temporally precise expectancies for strongly and weakly accented events in sound patterns. Thus far, these findings support theories of rhythm perception that posit temporal expectancies generated by active neural processes.

  12. The Effect of Haptic Guidance on Learning a Hybrid Rhythmic-Discrete Motor Task.

    Science.gov (United States)

    Marchal-Crespo, Laura; Bannwart, Mathias; Riener, Robert; Vallery, Heike

    2015-01-01

    Bouncing a ball with a racket is a hybrid rhythmic-discrete motor task, combining continuous rhythmic racket movements with discrete impact events. Rhythmicity is exceptionally important in motor learning, because it underlies fundamental movements such as walking. Studies suggested that rhythmic and discrete movements are governed by different control mechanisms at different levels of the Central Nervous System. The aim of this study is to evaluate the effect of fixed/fading haptic guidance on learning to bounce a ball to a desired apex in virtual reality with varying gravity. Changing gravity changes dominance of rhythmic versus discrete control: The higher the value of gravity, the more rhythmic the task; lower values reduce the bouncing frequency and increase dwell times, eventually leading to a repetitive discrete task that requires initiation and termination, resembling target-oriented reaching. Although motor learning in the ball-bouncing task with varying gravity has been studied, the effect of haptic guidance on learning such a hybrid rhythmic-discrete motor task has not been addressed. We performed an experiment with thirty healthy subjects and found that the most effective training condition depended on the degree of rhythmicity: Haptic guidance seems to hamper learning of continuous rhythmic tasks, but it seems to promote learning for repetitive tasks that resemble discrete movements.

  13. Performance degradation of integrated optical modulators due to electrical crosstalk

    NARCIS (Netherlands)

    Yao, W.; Gilardi, G.; Smit, M.K.; Wale, M.J.

    2016-01-01

    In this paper, we investigate electrical crosstalk in integrated Mach-Zehnder modulator arrays based on n-doped InP substrate and show that it can be the cause for transmitter performance degradations. In particular, a common ground return path between adjacent modulators can cause high coupling

  14. Module Ten: Transformers; Basic Electricity and Electronics Individualized Learning System.

    Science.gov (United States)

    Bureau of Naval Personnel, Washington, DC.

    The module introduces a very important electrical device, the transformer. The module is divided into six lessons: transformer construction, transformer theory and operation, turns and voltage ratios, power and current, transformer efficiency, and semiconductor rectifiers. Each lesson consists of an overview, a list of study resources, lesson…

  15. Physiological modules for generating discrete and rhythmic movements: action identification by a dynamic recurrent neural network.

    Science.gov (United States)

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana M; Dan, Bernard; McIntyre, Joseph; Cheron, Guy

    2014-01-01

    In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane). We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others elliciting patterns of reciprocal activation operating in orthogonal directions.

  16. Rhythmic patterning in Malaysian and Singapore English.

    Science.gov (United States)

    Tan, Rachel Siew Kuang; Low, Ee-Ling

    2014-06-01

    Previous work on the rhythm of Malaysian English has been based on impressionistic observations. This paper utilizes acoustic analysis to measure the rhythmic patterns of Malaysian English. Recordings of the read speech and spontaneous speech of 10 Malaysian English speakers were analyzed and compared with recordings of an equivalent sample of Singaporean English speakers. Analysis was done using two rhythmic indexes, the PVI and VarcoV. It was found that although the rhythm of read speech of the Singaporean speakers was syllable-based as described by previous studies, the rhythm of the Malaysian speakers was even more syllable-based. Analysis of the syllables in specific utterances showed that Malaysian speakers did not reduce vowels as much as Singaporean speakers in cases of syllables in utterances. Results of the spontaneous speech confirmed the findings for the read speech; that is, the same rhythmic patterning was found which normally triggers vowel reductions.

  17. RHYTHMIC MUSIC PEDAGOGY: A SCANDINAVIAN APPROACH TO MUSIC EDUCATION

    Directory of Open Access Journals (Sweden)

    Hauge Torunn Bakken

    2012-06-01

    Full Text Available Rhythmic music pedagogy is a relatively new Scandinavian approach to classroom music education that offers a variety of methods and strategies for teaching and learning music, especially within the performance of improvised and rhythmic music. This article is based on two earlier projects published in Norwegian, in which the concept of rytmisk musikkpedagogikk (or “rhythmic music pedagogy” as well as its applications and implications were thoroughly described. This research confirms that rhythmic music pedagogy may be an effective strategy for learning music in general, but most especially for learning skills associated with ensemble musicianship and playing by ear. In a multicultural and fluid society in which there are tendencies toward passivity and fragmentation, it may be more important than ever to maintain the idea of music as a collaborative creative process that extends across borders; in this context, rhythmic music pedagogy can play a central role in children’s social development. As a social medium, ensemble playing requires the participant to decentralize socially, since the perspectives of the other participants are necessary for a successful performance. The activity’s general potential for re-structuring social settings and moving boundaries in a positive way should not be underestimated.

  18. The development of rhythmic preferences by Dutch-learning infants

    NARCIS (Netherlands)

    Keij, B.M.; Kager, R.W.J.

    2016-01-01

    In this chapter the early acquisition of word stress is discussed. This study is aimed at examining rhythmic preferences for either strong-weak or weak-strong stress patterns of Dutch-learning infants between 4 and 8 months of age. It is complementary to previous rhythmic preference studies

  19. The development of rhythmic preferences by Dutch-learning infants

    NARCIS (Netherlands)

    Keij, B.M.|info:eu-repo/dai/nl/374786097; Kager, R.W.J.|info:eu-repo/dai/nl/072294124

    In this chapter the early acquisition of word stress is discussed. This study is aimed at examining rhythmic preferences for either strong-weak or weak-strong stress patterns of Dutch-learning infants between 4 and 8 months of age. It is complementary to previous rhythmic preference studies

  20. Rhythmic expression of DEC2 protein in vitro and in vivo.

    Science.gov (United States)

    Sato, Fuyuki; Muragaki, Yasuteru; Kawamoto, Takeshi; Fujimoto, Katsumi; Kato, Yukio; Zhang, Yanping

    2016-06-01

    Basic helix-loop-helix (bHLH) transcription factor DEC2 (bHLHE41/Sharp1) is one of the clock genes that show a circadian rhythm in various tissues. DEC2 regulates differentiation, sleep length, tumor cell invasion and apoptosis. Although studies have been conducted on the rhythmic expression of DEC2 mRNA in various tissues, the precise molecular mechanism of DEC2 expression is poorly understood. In the present study, we examined whether DEC2 protein had a rhythmic expression. Western blot analysis for DEC2 protein revealed a rhythmic expression in mouse liver, lung and muscle and in MCF-7 and U2OS cells. In addition, AMP-activated protein kinase (AMPK) activity (phosphorylation of AMPK) in mouse embryonic fibroblasts (MEFs) exhibited a rhythmic expression under the condition of medium change or glucose-depleted medium. However, the rhythmic expression of DEC2 in MEF gradually decreased in time under these conditions. The medium change affected the levels of DEC2 protein and phosphorylation of AMPK. In addition, the levels of DEC2 protein showed a rhythmic expression in vivo and in MCF-7 and U2OS cells. The results showed that the phosphorylation of AMPK immunoreactivity was strongly detected in the liver and lung of DEC2 knockout mice compared with that of wild-type mice. These results may provide new insights into rhythmic expression and the regulation between DEC2 protein and AMPK activity.

  1. BK channels regulate spontaneous action potential rhythmicity in the suprachiasmatic nucleus.

    Directory of Open Access Journals (Sweden)

    Jack Kent

    Full Text Available BACKGROUND: Circadian ( approximately 24 hr rhythms are generated by the central pacemaker localized to the suprachiasmatic nucleus (SCN of the hypothalamus. Although the basis for intrinsic rhythmicity is generally understood to rely on transcription factors encoded by "clock genes", less is known about the daily regulation of SCN neuronal activity patterns that communicate a circadian time signal to downstream behaviors and physiological systems. Action potentials in the SCN are necessary for the circadian timing of behavior, and individual SCN neurons modulate their spontaneous firing rate (SFR over the daily cycle, suggesting that the circadian patterning of neuronal activity is necessary for normal behavioral rhythm expression. The BK K(+ channel plays an important role in suppressing spontaneous firing at night in SCN neurons. Deletion of the Kcnma1 gene, encoding the BK channel, causes degradation of circadian behavioral and physiological rhythms. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis that loss of robust behavioral rhythmicity in Kcnma1(-/- mice is due to the disruption of SFR rhythms in the SCN, we used multi-electrode arrays to record extracellular action potentials from acute wild-type (WT and Kcnma1(-/- slices. Patterns of activity in the SCN were tracked simultaneously for up to 3 days, and the phase, period, and synchronization of SFR rhythms were examined. Loss of BK channels increased arrhythmicity but also altered the amplitude and period of rhythmic activity. Unexpectedly, Kcnma1(-/- SCNs showed increased variability in the timing of the daily SFR peak. CONCLUSIONS/SIGNIFICANCE: These results suggest that BK channels regulate multiple aspects of the circadian patterning of neuronal activity in the SCN. In addition, these data illustrate the characteristics of a disrupted SCN rhythm downstream of clock gene-mediated timekeeping and its relationship to behavioral rhythms.

  2. Electrically modulated transparent liquid crystal-optical grating projection

    DEFF Research Database (Denmark)

    Buss, Thomas; Smith, Cameron; Kristensen, Anders

    2013-01-01

    A transparent, fully integrated electrically modulated projection technique is presented based on light guiding through a thin liquid crystal layer covering sub-wavelength gratings. The reported device operates at 10 V with response times of 4.5 ms. Analysis of the liquid crystal alignment shows...

  3. Rhythmic Cognition in Humans and Animals: Distinguishing Meter and Pulse Perception

    Directory of Open Access Journals (Sweden)

    W Tecumseh eFitch

    2013-10-01

    Full Text Available This paper outlines a cognitive and comparative perspective on human rhythmic cognition that emphasizes a key distinction between pulse perception and meter perception. Pulse perception involves the extraction of a regular pulse or 'tactus' from a stream of events. Meter perception involves grouping of events into hierarchical trees with differing levels of 'strength', or perceptual prominence. I argue that metrically-structured rhythms are required to either perform or move appropriately to music (e.g. to dance. Rhythms, from this metrical perspective, constitute 'trees in time'. Rhythmic syntax represents a neglected form of musical syntax, and warrants more thorough neuroscientific investigation. The recent literature on animal entrainment clearly demonstrates the capacity to extract the pulse from rhythmic music, and to entrain periodic movements to this pulse, in several parrot species and a California sea lion, and a more limited ability to do so in one chimpanzee. However, the ability of these or other species to infer hierarchical rhythmic trees remains, for the most part, unexplored (with some apparent negative results from macaques. The results from this new animal comparative research, combined with new methods to explore rhythmic cognition neurally, provide exciting new routes for understanding not just rhythmic cognition, but hierarchical cognition more generally, from a biological and neural perspective.

  4. Jazz drummers recruit language-specific areas for the processing of rhythmic structure.

    Science.gov (United States)

    Herdener, Marcus; Humbel, Thierry; Esposito, Fabrizio; Habermeyer, Benedikt; Cattapan-Ludewig, Katja; Seifritz, Erich

    2014-03-01

    Rhythm is a central characteristic of music and speech, the most important domains of human communication using acoustic signals. Here, we investigated how rhythmical patterns in music are processed in the human brain, and, in addition, evaluated the impact of musical training on rhythm processing. Using fMRI, we found that deviations from a rule-based regular rhythmic structure activated the left planum temporale together with Broca's area and its right-hemispheric homolog across subjects, that is, a network also crucially involved in the processing of harmonic structure in music and the syntactic analysis of language. Comparing the BOLD responses to rhythmic variations between professional jazz drummers and musical laypersons, we found that only highly trained rhythmic experts show additional activity in left-hemispheric supramarginal gyrus, a higher-order region involved in processing of linguistic syntax. This suggests an additional functional recruitment of brain areas usually dedicated to complex linguistic syntax processing for the analysis of rhythmical patterns only in professional jazz drummers, who are especially trained to use rhythmical cues for communication.

  5. Electrical Procedures and Environmental Control Systems. Building Maintenance. Module IV. Instructor's Guide.

    Science.gov (United States)

    Sloan, Garry

    This curriculum guide, one of six modules keyed to the building maintenance competency profile developed by industry and education professionals, provides materials for two units on electrical procedures and environmental control systems. Unit 1, on electrical procedures, includes the following lessons: electrical safety; troubleshooting and…

  6. System and method of modulating electrical signals using photoconductive wide bandgap semiconductors as variable resistors

    Science.gov (United States)

    Harris, John Richardson; Caporaso, George J; Sampayan, Stephen E

    2013-10-22

    A system and method for producing modulated electrical signals. The system uses a variable resistor having a photoconductive wide bandgap semiconductor material construction whose conduction response to changes in amplitude of incident radiation is substantially linear throughout a non-saturation region to enable operation in non-avalanche mode. The system also includes a modulated radiation source, such as a modulated laser, for producing amplitude-modulated radiation with which to direct upon the variable resistor and modulate its conduction response. A voltage source and an output port, are both operably connected to the variable resistor so that an electrical signal may be produced at the output port by way of the variable resistor, either generated by activation of the variable resistor or propagating through the variable resistor. In this manner, the electrical signal is modulated by the variable resistor so as to have a waveform substantially similar to the amplitude-modulated radiation.

  7. Body composition and cardiac dimensions in elite rhythmic gymnasts.

    Science.gov (United States)

    Galetta, F; Franzoni, F; D'alessandro, C; Piazza, M; Tocchini, L; Fallahi, P; Antonelli, A; Cupisti, F; Santoro, G

    2015-09-01

    Rhythmic gymnasts are often believed to be a population at risk of malnutrition because of their tendency to keep a low weight and a lean appearance for better athletic performance, and because they start intensive training at a very young age. The purpose of this study was to evaluate in adolescent elite gymnasts the effects of physical activity on body composition and cardiac morphology and function. Sixteen national level rhythmic gymnasts and 16 control adolescent female underwent anthropometric measurements, bioelectric impedance and echocardiography to assess body composition and cardiac morphology and function. As compared to controls, gymnasts had lower body mass index (16.9±1.1 vs. 18.7±1.0, Panalysis showed a lower percentage of body fat in the gymnasts, together with a higher percentage of fat-free mass. Echocardiographic findings indicate that elite rhythmic gymnastics present left ventricular remodeling as training-induced cardiac adaptation. Intensive training, dietary attitude and evident leanness of rhythmic gymnasts are not associated with cardiac abnormalities, as it is the case of pathological leanness.

  8. Processing rhythmic pattern during Chinese sentence reading: An eye movement study

    Directory of Open Access Journals (Sweden)

    Yingyi eLuo

    2015-12-01

    Full Text Available Prosodic constraints play a fundamental role during both spoken sentence comprehension and silent reading. In Chinese, the rhythmic pattern of the verb-object (V-O combination has been found to rapidly affect the semantic access/integration process during sentence reading (Luo and Zhou, 2010. Rhythmic pattern refers to the combination of words with different syllabic lengths, with certain combinations disallowed (e.g., [2+1]; numbers standing for the number of syllables of the verb and the noun respectively and certain combinations preferred (e.g., [1+1] or [2+2]. This constraint extends to the situation in which the combination is used to modify other words. A V-O phrase could modify a noun by simply preceding it, forming a V-O-N compound; when the verb is disyllabic, however, the word order has to be O-V-N and the object is preferred to be disyllabic. In this study, we investigated how the reader processes the rhythmic pattern and word order information by recording the reader’s eye-movements. We created four types of sentences by crossing rhythmic pattern and word order in compounding. The compound, embedding a disyllabic verb, could be in the correct O-V-N or the incorrect V-O-N order; the object could be disyllabic or monosyllabic. We found that the reader spent more time and made more regressions on and after the compounds when either type of anomaly was detected during the first pass reading. However, during re-reading (after all the words in the sentence have been viewed, less regressive eye movements were found for the anomalous rhythmic pattern, relative to the correct pattern; moreover, only the abnormal rhythmic pattern, not the violated word order, influenced the regressive eye movements. These results suggest that while the processing of rhythmic pattern and word order information occurs rapidly during the initial reading of the sentence, the process of recovering from the rhythmic pattern anomaly may ease the reanalysis

  9. Processing Rhythmic Pattern during Chinese Sentence Reading: An Eye Movement Study.

    Science.gov (United States)

    Luo, Yingyi; Duan, Yunyan; Zhou, Xiaolin

    2015-01-01

    Prosodic constraints play a fundamental role during both spoken sentence comprehension and silent reading. In Chinese, the rhythmic pattern of the verb-object (V-O) combination has been found to rapidly affect the semantic access/integration process during sentence reading (Luo and Zhou, 2010). Rhythmic pattern refers to the combination of words with different syllabic lengths, with certain combinations disallowed (e.g., [2 + 1]; numbers standing for the number of syllables of the verb and the noun respectively) and certain combinations preferred (e.g., [1 + 1] or [2 + 2]). This constraint extends to the situation in which the combination is used to modify other words. A V-O phrase could modify a noun by simply preceding it, forming a V-O-N compound; when the verb is disyllabic, however, the word order has to be O-V-N and the object is preferred to be disyllabic. In this study, we investigated how the reader processes the rhythmic pattern and word order information by recording the reader's eye-movements. We created four types of sentences by crossing rhythmic pattern and word order in compounding. The compound, embedding a disyllabic verb, could be in the correct O-V-N or the incorrect V-O-N order; the object could be disyllabic or monosyllabic. We found that the reader spent more time and made more regressions on and after the compounds when either type of anomaly was detected during the first pass reading. However, during re-reading (after all the words in the sentence have been viewed), less regressive eye movements were found for the anomalous rhythmic pattern, relative to the correct pattern; moreover, only the abnormal rhythmic pattern, not the violated word order, influenced the regressive eye movements. These results suggest that while the processing of rhythmic pattern and word order information occurs rapidly during the initial reading of the sentence, the process of recovering from the rhythmic pattern anomaly may ease the reanalysis processing at the

  10. A method for discrimination of noise and EMG signal regions recorded during rhythmic behaviors.

    Science.gov (United States)

    Ying, Rex; Wall, Christine E

    2016-12-08

    Analyses of muscular activity during rhythmic behaviors provide critical data for biomechanical studies. Electrical potentials measured from muscles using electromyography (EMG) require discrimination of noise regions as the first step in analysis. An experienced analyst can accurately identify the onset and offset of EMG but this process takes hours to analyze a short (10-15s) record of rhythmic EMG bursts. Existing computational techniques reduce this time but have limitations. These include a universal threshold for delimiting noise regions (i.e., a single signal value for identifying the EMG signal onset and offset), pre-processing using wide time intervals that dampen sensitivity for EMG signal characteristics, poor performance when a low frequency component (e.g., DC offset) is present, and high computational complexity leading to lack of time efficiency. We present a new statistical method and MATLAB script (EMG-Extractor) that includes an adaptive algorithm to discriminate noise regions from EMG that avoids these limitations and allows for multi-channel datasets to be processed. We evaluate the EMG-Extractor with EMG data on mammalian jaw-adductor muscles during mastication, a rhythmic behavior typified by low amplitude onsets/offsets and complex signal pattern. The EMG-Extractor consistently and accurately distinguishes noise from EMG in a manner similar to that of an experienced analyst. It outputs the raw EMG signal region in a form ready for further analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Rhythmic components in renal autoregulation: Nonlinear modulation phenomena

    International Nuclear Information System (INIS)

    Pavlov, A.N.; Sosnovtseva, O.V.; Pavlova, O.N.; Mosekilde, E.; Holstein-Rathlou, N.-H.

    2009-01-01

    Autoregulation of nephron blood flow involves two oscillatory processes: the tubular-flow sensitive tubuloglomerular feedback (TGF) mechanism and the blood-pressure sensitive myogenic mechanism. Both act to regulate the diameter of the afferent arteriole, which carries blood to the nephron. In this paper, we apply wavelet analysis to time series of the proximal tubular pressure obtained from normotensive and hypertensive rats to study how the TGF-mediated oscillations modulate both the frequency and the amplitude of the myogenic oscillations. The tubular pressure oscillations are nearly periodic for normotensive rats, but irregular (or chaotic) for rats with hypertension. Modulation phenomena are clearly observed in both types of rats, but the effect is stronger in those with hypertension.

  12. Electrical modulation and switching of transverse acoustic phonons

    Science.gov (United States)

    Jeong, H.; Jho, Y. D.; Rhim, S. H.; Yee, K. J.; Yoon, S. Y.; Shim, J. P.; Lee, D. S.; Ju, J. W.; Baek, J. H.; Stanton, C. J.

    2016-07-01

    We report on the electrical manipulation of coherent acoustic phonon waves in GaN-based nanoscale piezoelectric heterostructures which are strained both from the pseudomorphic growth at the interfaces as well as through external electric fields. In such structures, transverse symmetry within the c plane hinders both the generation and detection of the transverse acoustic (TA) modes, and usually only longitudinal acoustic phonons are generated by ultrafast displacive screening of potential gradients. We show that even for c -GaN, the combined application of lateral and vertical electric fields can not only switch on the normally forbidden TA mode, but they can also modulate the amplitudes and frequencies of both modes. By comparing the transient differential reflectivity spectra in structures with and without an asymmetric potential distribution, the role of the electrical controllability of phonons was demonstrated as changes to the propagation velocities, the optical birefringence, the electrically polarized TA waves, and the geometrically varying optical sensitivities of phonons.

  13. Group Rhythmic Synchrony and Attention in Children

    Directory of Open Access Journals (Sweden)

    Alexander K Khalil

    2013-09-01

    Full Text Available Synchrony, or the coordinated processing of time, is an often-overlooked yet critical context for human interaction. This study tests the relationship between the ability to synchronize rhythmically in a group setting with the ability to attend in 102 elementary schoolchildren. Impairments in temporal processing have frequently been shown to exist in clinical populations with learning disorders, particularly those with Attention Deficit Hyperactivity Disorder (ADHD. Based on this evidence, we hypothesized that the ability to synchronize rhythmically in a group setting—an instance of the type of temporal processing necessary for successful interaction and learning—would be correlated with the ability to attend across the continuum of the population. A music class is an ideal setting for the study of interpersonal timing. In order to measure synchrony in this context, we constructed instruments that allowed the recording and measurement of individual rhythmic performance. The SWAN teacher questionnaire was used as a measurement of attentional behavior. We find that the ability to synchronize with others in a group music class can predict a child’s attentional behavior.

  14. Spontaneous oscillatory rhythms in the degenerating mouse retina modulate retinal ganglion cell responses to electrical stimulation

    Directory of Open Access Journals (Sweden)

    Yong Sook eGoo

    2016-01-01

    Full Text Available Characterization of the electrical activity of the retina in the animal models of retinal degeneration has been carried out in part to understand the progression of retinal degenerative diseases like age-related macular degeneration (AMD and retinitis pigmentosa (RP, but also to determine optimum stimulus paradigms for use with retinal prosthetic devices. The models most studied in this regard have been the two lines of mice deficient in the β-subunit of phosphodiesterase (rd1 and rd10 mice, where the degenerating retinas exhibit characteristic spontaneous hyperactivity and oscillatory local field potentials (LFPs. Additionally, there is a robust ~10 Hz rhythmic burst of retinal ganglion cell (RGC spikes on the trough of the oscillatory LFP. In rd1 mice, the rhythmic burst of RGC spikes is always phase-locked with the oscillatory LFP and this phase-locking property is preserved regardless of postnatal ages. However, in rd10 mice, the frequency of the oscillatory rhythm changes according to postnatal age, suggesting that this rhythm might be a marker of the stage of degeneration. Furthermore when a biphasic current stimulus is applied to rd10 mice degenerate retina, distinct RGC response patterns that correlate with the stage of degeneration emerge. This review also considers the significance of these response properties.

  15. Cascaded Amplitude Modulations in Sound Texture Perception

    Directory of Open Access Journals (Sweden)

    Richard McWalter

    2017-09-01

    Full Text Available Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as “beating” in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures—stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches.

  16. Electrical field excitation in non-uniform plasma by a modulated electron beam

    International Nuclear Information System (INIS)

    Anisimov, I.O.; Borisov, O.A.

    2000-01-01

    Excitation of electric fields due to a modulated electron beam in a warm non-uniform plasma is treated for weak beams in warm plasma. It is shown that the maximum electric field magnitude that is reached near the local plasma resonance point depends significantly on the direction of the electron stream motion. In collisional plasma the magnitude of the Langmuir wave that propagates to the subcritical plasma also depends on the direction of the electron stream motion. The motion of the modulated electron stream front results in beatings between oscillations on the modulation frequency and on the local electron plasma frequencies at the initial moment. Later these beatings damp in the supercritical plasma, whereas in the subcritical plasma they are transformed into spatial beatings between the field of the modulated electron stream and the excited Langmuir wave. (orig.)

  17. MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Anita, E-mail: anita.balakrishnan@doctors.org.uk [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States); School of Clinical Sciences, Division of Gastroenterology, University of Liverpool, Liverpool L69 3GE (United Kingdom); Stearns, Adam T. [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States); Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 2JD (United Kingdom); Park, Peter J. [Department of Medicine, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Harvard Medical School, Center for Biomedical Informatics, Boston, MA 02115 (United States); Dreyfuss, Jonathan M. [Department of Medicine, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Ashley, Stanley W. [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States); Rhoads, David B. [Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States); Pediatric Endocrine Unit, MassGeneral Hospital for Children, Boston, MA 02114 (United States); Tavakkolizadeh, Ali, E-mail: atavakkoli@partners.org [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States)

    2010-12-10

    Background and aims: The intestine exhibits profound diurnal rhythms in function and morphology, in part due to changes in enterocyte proliferation. The regulatory mechanisms behind these rhythms remain largely unknown. We hypothesized that microRNAs are involved in mediating these rhythms, and studied the role of microRNAs specifically in modulating intestinal proliferation. Methods: Diurnal rhythmicity of microRNAs in rat jejunum was analyzed by microarrays and validated by qPCR. Temporal expression of diurnally rhythmic mir-16 was further quantified in intestinal crypts, villi, and smooth muscle using laser capture microdissection and qPCR. Morphological changes in rat jejunum were assessed by histology and proliferation by immunostaining for bromodeoxyuridine. In IEC-6 cells stably overexpressing mir-16, proliferation was assessed by cell counting and MTS assay, cell cycle progression and apoptosis by flow cytometry, and cell cycle gene expression by qPCR and immunoblotting. Results: mir-16 peaked 6 hours after light onset (HALO 6) with diurnal changes restricted to crypts. Crypt depth and villus height peaked at HALO 13-14 in antiphase to mir-16. Overexpression of mir-16 in IEC-6 cells suppressed specific G1/S regulators (cyclins D1-3, cyclin E1 and cyclin-dependent kinase 6) and produced G1 arrest. Protein expression of these genes exhibited diurnal rhythmicity in rat jejunum, peaking between HALO 11 and 17 in antiphase to mir-16. Conclusions: This is the first report of circadian rhythmicity of specific microRNAs in rat jejunum. Our data provide a link between anti-proliferative mir-16 and the intestinal proliferation rhythm and point to mir-16 as an important regulator of proliferation in jejunal crypts. This function may be essential to match proliferation and absorptive capacity with nutrient availability.

  18. MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts

    International Nuclear Information System (INIS)

    Balakrishnan, Anita; Stearns, Adam T.; Park, Peter J.; Dreyfuss, Jonathan M.; Ashley, Stanley W.; Rhoads, David B.; Tavakkolizadeh, Ali

    2010-01-01

    Background and aims: The intestine exhibits profound diurnal rhythms in function and morphology, in part due to changes in enterocyte proliferation. The regulatory mechanisms behind these rhythms remain largely unknown. We hypothesized that microRNAs are involved in mediating these rhythms, and studied the role of microRNAs specifically in modulating intestinal proliferation. Methods: Diurnal rhythmicity of microRNAs in rat jejunum was analyzed by microarrays and validated by qPCR. Temporal expression of diurnally rhythmic mir-16 was further quantified in intestinal crypts, villi, and smooth muscle using laser capture microdissection and qPCR. Morphological changes in rat jejunum were assessed by histology and proliferation by immunostaining for bromodeoxyuridine. In IEC-6 cells stably overexpressing mir-16, proliferation was assessed by cell counting and MTS assay, cell cycle progression and apoptosis by flow cytometry, and cell cycle gene expression by qPCR and immunoblotting. Results: mir-16 peaked 6 hours after light onset (HALO 6) with diurnal changes restricted to crypts. Crypt depth and villus height peaked at HALO 13-14 in antiphase to mir-16. Overexpression of mir-16 in IEC-6 cells suppressed specific G1/S regulators (cyclins D1-3, cyclin E1 and cyclin-dependent kinase 6) and produced G1 arrest. Protein expression of these genes exhibited diurnal rhythmicity in rat jejunum, peaking between HALO 11 and 17 in antiphase to mir-16. Conclusions: This is the first report of circadian rhythmicity of specific microRNAs in rat jejunum. Our data provide a link between anti-proliferative mir-16 and the intestinal proliferation rhythm and point to mir-16 as an important regulator of proliferation in jejunal crypts. This function may be essential to match proliferation and absorptive capacity with nutrient availability.

  19. Hyperfine interaction mediated electric-dipole spin resonance: the role of frequency modulation

    International Nuclear Information System (INIS)

    Li, Rui

    2016-01-01

    The electron spin in a semiconductor quantum dot can be coherently controlled by an external electric field, an effect called electric-dipole spin resonance (EDSR). Several mechanisms can give rise to the EDSR effect, among which there is a hyperfine mechanism, where the spin-electric coupling is mediated by the electron–nucleus hyperfine interaction. Here, we investigate the influence of frequency modulation (FM) on the spin-flip efficiency. Our results reveal that FM plays an important role in the hyperfine mechanism. Without FM, the electric field almost cannot flip the electron spin; the spin-flip probability is only about 20%. While under FM, the spin-flip probability can be improved to approximately 70%. In particular, we find that the modulation amplitude has a lower bound, which is related to the width of the fluctuated hyperfine field. (paper)

  20. Perturbed rhythmic activation of signaling pathways in mice deficient for Sterol Carrier Protein 2-dependent diurnal lipid transport and metabolism.

    Science.gov (United States)

    Jouffe, Céline; Gobet, Cédric; Martin, Eva; Métairon, Sylviane; Morin-Rivron, Delphine; Masoodi, Mojgan; Gachon, Frédéric

    2016-04-21

    Through evolution, most of the living species have acquired a time keeping system to anticipate daily changes caused by the rotation of the Earth. In all of the systems this pacemaker is based on a molecular transcriptional/translational negative feedback loop able to generate rhythmic gene expression with a period close to 24 hours. Recent evidences suggest that post-transcriptional regulations activated mostly by systemic cues play a fundamental role in the process, fine tuning the time keeping system and linking it to animal physiology. Among these signals, we consider the role of lipid transport and metabolism regulated by SCP2. Mice harboring a deletion of the Scp2 locus present a modulated diurnal accumulation of lipids in the liver and a perturbed activation of several signaling pathways including PPARα, SREBP, LRH-1, TORC1 and its upstream regulators. This defect in signaling pathways activation feedbacks upon the clock by lengthening the circadian period of animals through post-translational regulation of core clock regulators, showing that rhythmic lipid transport is a major player in the establishment of rhythmic mRNA and protein expression landscape.

  1. Range extender module. Enabler for electric mobility; Range-Extender-Modul. Wegbereiter fuer elektrische Mobilitaet

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Robert; Fraidl, Guenter Karl; Hubmann, Christian; Kapus, Paul Ernst; Kunzemann, Ralf; Sifferlinger, Bernhard; Beste, Frank [AVL List GmbH, Graz (Austria)

    2009-10-15

    The Range Extender as an auxiliary power supply for extended driving ranges is of significant importance in achieving a high level of customer acceptance for electric vehicles. The AVL concept is optimized for electric power generation in single-point operation and allows a compactly integrated, cost-efficient and weight-efficient module design. The internal combustion engine requirements of the Pure Range Extender from AVL permit not only the use of simplified four-stroke concepts but also the application of emission-optimized and fuel consumption-optimized two-stroke and rotary piston engines. (orig.)

  2. Decoding magnetoencephalographic rhythmic activity using spectrospatial information.

    Science.gov (United States)

    Kauppi, Jukka-Pekka; Parkkonen, Lauri; Hari, Riitta; Hyvärinen, Aapo

    2013-12-01

    We propose a new data-driven decoding method called Spectral Linear Discriminant Analysis (Spectral LDA) for the analysis of magnetoencephalography (MEG). The method allows investigation of changes in rhythmic neural activity as a result of different stimuli and tasks. The introduced classification model only assumes that each "brain state" can be characterized as a combination of neural sources, each of which shows rhythmic activity at one or several frequency bands. Furthermore, the model allows the oscillation frequencies to be different for each such state. We present decoding results from 9 subjects in a four-category classification problem defined by an experiment involving randomly alternating epochs of auditory, visual and tactile stimuli interspersed with rest periods. The performance of Spectral LDA was very competitive compared with four alternative classifiers based on different assumptions concerning the organization of rhythmic brain activity. In addition, the spectral and spatial patterns extracted automatically on the basis of trained classifiers showed that Spectral LDA offers a novel and interesting way of analyzing spectrospatial oscillatory neural activity across the brain. All the presented classification methods and visualization tools are freely available as a Matlab toolbox. © 2013.

  3. Rational modulation of neuronal processing with applied electric fields.

    Science.gov (United States)

    Bikson, Marom; Radman, Thomas; Datta, Abhishek

    2006-01-01

    Traditional approaches to electrical stimulation, using trains of supra-threshold pulses to trigger action potentials, may be replaced or augmented by using 'rational' sub-threshold stimulation protocols that incorporate knowledge of single neuron geometry, inhomogeneous tissue properties, and nervous system information coding. Sub-threshold stimulation, at intensities (well) below those sufficient to trigger action potentials, may none-the-less exert a profound effect on brain function through modulation of concomitant neuronal activity. For example, small DC fields may coherently polarize a network of neurons and thus modulate the simultaneous processing of afferent synaptic input as well as resulting changes in synaptic plasticity. Through 'activity-dependent plasticity', sub-threshold fields may allow specific targeting of pathological networks and are thus particularly suitable to overcome the poor anatomical focus of noninvasive (transcranial) electrical stimulation. Additional approaches to improve targeting in transcranial stimulation using novel electrode configurations are also introduced.

  4. Broadband modulation of terahertz waves through electrically driven hybrid bowtie antenna-VO2 devices.

    Science.gov (United States)

    Han, Chunrui; Parrott, Edward P J; Humbert, Georges; Crunteanu, Aurelian; Pickwell-MacPherson, Emma

    2017-10-05

    Broadband modulation of terahertz (THz) light is experimentally realized through the electrically driven metal-insulator phase transition of vanadium dioxide (VO 2 ) in hybrid metal antenna-VO 2 devices. The devices consist of VO 2 active layers and bowtie antenna arrays, such that the electrically driven phase transition can be realized by applying an external voltage between adjacent metal wires extended to a large area array. The modulation depth of the terahertz light can be initially enhanced by the metal wires on top of VO 2 and then improved through the addition of specific bowties in between the wires. As a result, a terahertz wave with a large beam size (~10 mm) can be modulated within the measurable spectral range (0.3-2.5 THz) with a frequency independent modulation depth as high as 0.9, and the minimum amplitude transmission down to 0.06. Moreover, the electrical switch on/off phase transition depends very much on the size of the VO 2 area, indicating that smaller VO 2 regions lead to higher modulation speeds and lower phase transition voltages. With the capabilities in actively tuning the beam size, modulation depth, modulation bandwidth as well as the modulation speed of THz waves, our study paves the way in implementing multifunctional components for terahertz applications.

  5. Modeling discrete and rhythmic movements through motor primitives: a review.

    Science.gov (United States)

    Degallier, Sarah; Ijspeert, Auke

    2010-10-01

    Rhythmic and discrete movements are frequently considered separately in motor control, probably because different techniques are commonly used to study and model them. Yet the increasing interest in finding a comprehensive model for movement generation requires bridging the different perspectives arising from the study of those two types of movements. In this article, we consider discrete and rhythmic movements within the framework of motor primitives, i.e., of modular generation of movements. In this way we hope to gain an insight into the functional relationships between discrete and rhythmic movements and thus into a suitable representation for both of them. Within this framework we can define four possible categories of modeling for discrete and rhythmic movements depending on the required command signals and on the spinal processes involved in the generation of the movements. These categories are first discussed in terms of biological concepts such as force fields and central pattern generators and then illustrated by several mathematical models based on dynamical system theory. A discussion on the plausibility of theses models concludes the work.

  6. The development of rhythmic abilities among of secondary school age pupils

    Directory of Open Access Journals (Sweden)

    Chaskina O. V.

    2016-07-01

    Full Text Available this article is aimed to examine the system of development of rhythmic abilities. It is also studied and analyzed systems of development of rhythmicity of Jacques Dalcroze, V.A. Griner. The definition of the concept «rhythm» is revealed.

  7. Comparison between treadmill training with rhythmic auditory stimulation and ground walking with rhythmic auditory stimulation on gait ability in chronic stroke patients: A pilot study.

    Science.gov (United States)

    Park, Jin; Park, So-yeon; Kim, Yong-wook; Woo, Youngkeun

    2015-01-01

    Generally, treadmill training is very effective intervention, and rhythmic auditory stimulation is designed to feedback during gait training in stroke patients. The purpose of this study was to compare the gait abilities in chronic stroke patients following either treadmill walking training with rhythmic auditory stimulation (TRAS) or over ground walking training with rhythmic auditory stimulation (ORAS). Nineteen subjects were divided into two groups: a TRAS group (9 subjects) and an ORAS group (10 subjects). Temporal and spatial gait parameters and motor recovery ability were measured before and after the training period. Gait ability was measured by the Biodex Gait trainer treadmill system, Timed up and go test (TUG), 6 meter walking distance (6MWD) and Functional gait assessment (FGA). After the training periods, the TRAS group showed a significant improvement in walking speed, step cycle, step length of the unaffected limb, coefficient of variation, 6MWD, and, FGA when compared to the ORAS group (p <  0.05). Treadmill walking training during the rhythmic auditory stimulation may be useful for rehabilitation of patients with chronic stroke.

  8. Rhythmic components in renal autoregulation: Nonlinear modulation phenomena

    DEFF Research Database (Denmark)

    Pavlov, A. N.; Sosnovtseva, Olga; Pavlova, O. N.

    2009-01-01

    . In this paper, we apply wavelet analysis to time series of the proximal tubular pressure obtained from normotensive and hypertensive rats to study how the TGF-mediated oscillations modulate both the frequency and the amplitude of the myogenic oscillations. The tubular pressure oscillations are nearly periodic...

  9. Mechanisms of circadian rhythmicity of carbon tetrachloride hepatotoxicity.

    Science.gov (United States)

    Bruckner, James V; Ramanathan, Raghupathy; Lee, K Monica; Muralidhara, Srinivasa

    2002-01-01

    The toxicity of carbon tetrachloride (CCl(4)) and certain other chemicals varies over a 24-h period. Because the metabolism of some drugs follows a diurnal rhythm, it was decided to investigate whether the hepatic metabolic activation of CCl(4) was rhythmic and coincided in time with maximum susceptibility to CCl(4) hepatotoxicity. A related objective was to test the hypothesis that abstinence from food during the sleep cycle results in lipolysis and formation of acetone, which participates in induction of liver microsomal cytochrome P450IIE1 (CYP2E1), resulting in a diurnal increase in CCl(4) metabolic activation and acute liver injury. Groups of fed and fasted male Sprague-Dawley rats were given a single oral dose of 800 mg of CCl(4)/kg at 2- to 4-h intervals over a 24-h period. Serum enzyme activities, measured 24 h post dosing as indices of acute liver injury, exhibited distinct maxima in both fed and fasted animals dosed with CCl(4) near the beginning of their dark/active cycle. Blood acetone, hepatic CYP2E1 activity, and covalent binding of (14)CCl(4)/metabolites to hepatic microsomal proteins in untreated rats fed ad libitum followed circadian rhythms similar to that of susceptibility to CCl(4). Parallel fluctuations of greater amplitude were seen in rats fasted for 24 h. Hepatic glutathione levels were lowest at the time of greatest susceptibility to CCl(4). Acetone dose-response experiments showed high correlations between blood acetone levels, CYP2E1 induction, and CCl(4)-induced liver injury. Pretreatment with diallyl sulfide suppressed CYP2E1 and abolished the circadian rhythmicity of susceptibility to CCl(4). These findings provide additional support for acetone's physiological role in CYP2E1 induction and for CYP2E1's role in modulating CCl(4) chronotoxicity in rats.

  10. Simple neural substrate predicts complex rhythmic structure in duetting birds

    Science.gov (United States)

    Amador, Ana; Trevisan, M. A.; Mindlin, G. B.

    2005-09-01

    Horneros (Furnarius Rufus) are South American birds well known for their oven-looking nests and their ability to sing in couples. Previous work has analyzed the rhythmic organization of the duets, unveiling a mathematical structure behind the songs. In this work we analyze in detail an extended database of duets. The rhythms of the songs are compatible with the dynamics presented by a wide class of dynamical systems: forced excitable systems. Compatible with this nonlinear rule, we build a biologically inspired model for how the neural and the anatomical elements may interact to produce the observed rhythmic patterns. This model allows us to synthesize songs presenting the acoustic and rhythmic features observed in real songs. We also make testable predictions in order to support our hypothesis.

  11. What is orgasm? A model of sexual trance and climax via rhythmic entrainment

    Science.gov (United States)

    Safron, Adam

    2016-01-01

    Orgasm is one of the most intense pleasures attainable to an organism, yet its underlying mechanisms remain poorly understood. On the basis of existing literatures, this article introduces a novel mechanistic model of sexual stimulation and orgasm. In doing so, it characterizes the neurophenomenology of sexual trance and climax, describes parallels in dynamics between orgasms and seizures, speculates on possible evolutionary origins of sex differences in orgasmic responding, and proposes avenues for future experimentation. Here, a model is introduced wherein sexual stimulation induces entrainment of coupling mechanical and neuronal oscillatory systems, thus creating synchronized functional networks within which multiple positive feedback processes intersect synergistically to contribute to sexual experience. These processes generate states of deepening sensory absorption and trance, potentially culminating in climax if critical thresholds are surpassed. The centrality of rhythmic stimulation (and its modulation by salience) for surpassing these thresholds suggests ways in which differential orgasmic responding between individuals—or with different partners—may serve as a mechanism for ensuring adaptive mate choice. Because the production of rhythmic stimulation combines honest indicators of fitness with cues relating to potential for investment, differential orgasmic response may serve to influence the probability of continued sexual encounters with specific mates. PMID:27799079

  12. Photonic Implementation of 4-QAM/QPSK Electrical Modulation at Millimeter-Wave Frequency

    DEFF Research Database (Denmark)

    Yu, Xianbin; Jensen, Jesper Bevensee; Tafur Monroy, Idelfonso

    2008-01-01

    We propose a photonic method for generating millimeter-wave 4-QAM/QPSK modulated signals. The method is based on optical phase modulation by multilevel electrical signals and optical carrier-suppression. Simulation results are presented for 2.5 Gsymbol/s 4-QAM and QPSK signals at a 36 GHz carrier...

  13. Neural entrainment to rhythmically-presented auditory, visual and audio-visual speech in children

    Directory of Open Access Journals (Sweden)

    Alan James Power

    2012-07-01

    Full Text Available Auditory cortical oscillations have been proposed to play an important role in speech perception. It is suggested that the brain may take temporal ‘samples’ of information from the speech stream at different rates, phase-resetting ongoing oscillations so that they are aligned with similar frequency bands in the input (‘phase locking’. Information from these frequency bands is then bound together for speech perception. To date, there are no explorations of neural phase-locking and entrainment to speech input in children. However, it is clear from studies of language acquisition that infants use both visual speech information and auditory speech information in learning. In order to study neural entrainment to speech in typically-developing children, we use a rhythmic entrainment paradigm (underlying 2 Hz or delta rate based on repetition of the syllable ba, presented in either the auditory modality alone, the visual modality alone, or as auditory-visual speech (via a talking head. To ensure attention to the task, children aged 13 years were asked to press a button as fast as possible when the ba stimulus violated the rhythm for each stream type. Rhythmic violation depended on delaying the occurrence of a ba in the isochronous stream. Neural entrainment was demonstrated for all stream types, and individual differences in standardized measures of language processing were related to auditory entrainment at the theta rate. Further, there was significant modulation of the preferred phase of auditory entrainment in the theta band when visual speech cues were present, indicating cross-modal phase resetting. The rhythmic entrainment paradigm developed here offers a method for exploring individual differences in oscillatory phase locking during development. In particular, a method for assessing neural entrainment and cross-modal phase resetting would be useful for exploring developmental learning difficulties thought to involve temporal sampling

  14. Genome-wide profiling of 24 hr diel rhythmicity in the water flea, Daphnia pulex: network analysis reveals rhythmic gene expression and enhances functional gene annotation.

    Science.gov (United States)

    Rund, Samuel S C; Yoo, Boyoung; Alam, Camille; Green, Taryn; Stephens, Melissa T; Zeng, Erliang; George, Gary F; Sheppard, Aaron D; Duffield, Giles E; Milenković, Tijana; Pfrender, Michael E

    2016-08-18

    Marine and freshwater zooplankton exhibit daily rhythmic patterns of behavior and physiology which may be regulated directly by the light:dark (LD) cycle and/or a molecular circadian clock. One of the best-studied zooplankton taxa, the freshwater crustacean Daphnia, has a 24 h diel vertical migration (DVM) behavior whereby the organism travels up and down through the water column daily. DVM plays a critical role in resource tracking and the behavioral avoidance of predators and damaging ultraviolet radiation. However, there is little information at the transcriptional level linking the expression patterns of genes to the rhythmic physiology/behavior of Daphnia. Here we analyzed genome-wide temporal transcriptional patterns from Daphnia pulex collected over a 44 h time period under a 12:12 LD cycle (diel) conditions using a cosine-fitting algorithm. We used a comprehensive network modeling and analysis approach to identify novel co-regulated rhythmic genes that have similar network topological properties and functional annotations as rhythmic genes identified by the cosine-fitting analyses. Furthermore, we used the network approach to predict with high accuracy novel gene-function associations, thus enhancing current functional annotations available for genes in this ecologically relevant model species. Our results reveal that genes in many functional groupings exhibit 24 h rhythms in their expression patterns under diel conditions. We highlight the rhythmic expression of immunity, oxidative detoxification, and sensory process genes. We discuss differences in the chronobiology of D. pulex from other well-characterized terrestrial arthropods. This research adds to a growing body of literature suggesting the genetic mechanisms governing rhythmicity in crustaceans may be divergent from other arthropod lineages including insects. Lastly, these results highlight the power of using a network analysis approach to identify differential gene expression and provide novel

  15. Primate beta oscillations and rhythmic behaviors.

    Science.gov (United States)

    Merchant, Hugo; Bartolo, Ramón

    2018-03-01

    The study of non-human primates in complex behaviors such as rhythm perception and entrainment is critical to understand the neurophysiological basis of human cognition. Next to reviewing the role of beta oscillations in human beat perception, here we discuss the role of primate putaminal oscillatory activity in the control of rhythmic movements that are guided by a sensory metronome or internally gated. The analysis of the local field potentials of the behaving macaques showed that gamma-oscillations reflect local computations associated with stimulus processing of the metronome, whereas beta-activity involves the entrainment of large putaminal circuits, probably in conjunction with other elements of cortico-basal ganglia-thalamo-cortical circuit, during internally driven rhythmic tapping. Thus, this review emphasizes the need of parametric neurophysiological observations in non-human primates that display a well-controlled behavior during high-level cognitive processes.

  16. Low-Frequency Components in Rat Pial Arteriolar Rhythmic Diameter Changes.

    Science.gov (United States)

    Lapi, Dominga; Mastantuono, Teresa; Di Maro, Martina; Varanini, Maurizio; Colantuoni, Antonio

    2017-01-01

    This study aimed to analyze the frequency components present in spontaneous rhythmic diameter changes in rat pial arterioles. Pial microcirculation was visualized by fluorescence microscopy. Rhythmic luminal variations were evaluated via computer-assisted methods. Spectral analysis was carried out on 30-min recordings under baseline conditions and after administration of acetylcholine (Ach), papaverine (Pap), Nω-nitro-L-arginine (L-NNA) prior to Ach, indomethacin (INDO), INDO prior to Ach, charybdotoxin and apamin, and charybdotoxin and apamin prior to Ach. Under baseline conditions all arteriolar orders showed 3 frequency components in the ranges of 0.0095-0.02, 0.02-0.06, and 0.06-0.2 Hz, another 2 in the ranges of 0.2-2.0 and 2.5-4.5 Hz, and another ultra-low-frequency component in the range of 0.001-0.0095 Hz. Ach caused a significant increase in the spectral density of the frequency components in the range of 0.001-0.2 Hz. Pap was able to slightly increase spectral density in the ranges of 0.001-0.0095 and 0.0095-0.02 Hz. L-NNA mainly attenuated arteriolar responses to Ach. INDO prior to Ach did not affect the endothelial response to Ach. Charybdotoxin and apamin, suggested as endothelium-derived hyperpolarizing factor inhibitors, reduced spectral density in the range of 0.001-0.0095 Hz before and after Ach administration. In conclusion, regulation of the blood flow distribution is due to several mechanisms, one of which is affected by charibdotoxin and apamin, modulating the vascular tone. © 2017 S. Karger AG, Basel.

  17. A multiresolution model of rhythmic expectancy

    NARCIS (Netherlands)

    Smith, L.M.; Honing, H.; Miyazaki, K.; Hiraga, Y.; Adachi, M.; Nakajima, Y.; Tsuzaki, M.

    2008-01-01

    We describe a computational model of rhythmic cognition that predicts expected onset times. A dynamic representation of musical rhythm, the multiresolution analysis using the continuous wavelet transform is used. This representation decomposes the temporal structure of a musical rhythm into time

  18. Rhythmic walking interaction with auditory feedback

    DEFF Research Database (Denmark)

    Maculewicz, Justyna; Jylhä, Antti; Serafin, Stefania

    2015-01-01

    We present an interactive auditory display for walking with sinusoidal tones or ecological, physically-based synthetic walking sounds. The feedback is either step-based or rhythmic, with constant or adaptive tempo. In a tempo-following experiment, we investigate different interaction modes...

  19. Now you hear it: a predictive coding model for understanding rhythmic incongruity

    DEFF Research Database (Denmark)

    Vuust, Peter; Dietz, Martin; Witek, Maria

    2018-01-01

    Rhythmic incongruity in the form of syncopation is a prominent feature of many contemporary musical styles. Syncopations afford incongruity between rhythmic patterns and the meter, giving rise to mental models of differently accented isochronous beats. Syncopations occur either in isolation or as...

  20. Self-sustained firing activities of the cortical network with plastic rules in weak AC electrical fields

    International Nuclear Information System (INIS)

    Qin Ying-Mei; Wang Jiang; Men Cong; Zhao Jia; Wei Xi-Le; Deng Bin

    2012-01-01

    Both external and endogenous electrical fields widely exist in the environment of cortical neurons. The effects of a weak alternating current (AC) field on a neural network model with synaptic plasticity are studied. It is found that self-sustained rhythmic firing patterns, which are closely correlated with the cognitive functions, are significantly modified due to the self-organizing of the network in the weak AC field. The activities of the neural networks are affected by the synaptic connection strength, the external stimuli, and so on. In the presence of learning rules, the synaptic connections can be modulated by the external stimuli, which will further enhance the sensitivity of the network to the external signal. The properties of the external AC stimuli can serve as control parameters in modulating the evolution of the neural network. (interdisciplinary physics and related areas of science and technology)

  1. Independent effects of bottom-up temporal expectancy and top-down spatial attention. An audiovisual study using rhythmic cueing.

    Directory of Open Access Journals (Sweden)

    Alexander eJones

    2015-01-01

    Full Text Available Selective attention to a spatial location has shown enhance perception and facilitate behaviour for events at attended locations. However, selection relies not only on where but also when an event occurs. Recently, interest has turned to how intrinsic neural oscillations in the brain entrain to rhythms in our environment, and, stimuli appearing in or out of synch with a rhythm have shown to modulate perception and performance. Temporal expectations created by rhythms and spatial attention are two processes which have independently shown to affect stimulus processing but it remains largely unknown how, and if, they interact. In four separate tasks, this study investigated the effects of voluntary spatial attention and bottom-up temporal expectations created by rhythms in both unimodal and crossmodal conditions. In each task the participant used an informative cue, either colour or pitch, to direct their covert spatial attention to the left or right, and respond as quickly as possible to a target. The lateralized target (visual or auditory was then presented at the attended or unattended side. Importantly, although not task relevant, the cue was a rhythm of either flashes or beeps. The target was presented in or out of sync (early or late with the rhythmic cue. The results showed participants were faster responding to spatially attended compared to unattended targets in all tasks. Moreover, there was an effect of rhythmic cueing upon response times in both unimodal and crossmodal conditions. Responses were faster to targets presented in sync with the rhythm compared to when they appeared too early in both crossmodal tasks. That is, rhythmic stimuli in one modality influenced the temporal expectancy in the other modality, suggesting temporal expectancies created by rhythms are crossmodal. Interestingly, there was no interaction between top-down spatial attention and rhythmic cueing in any task suggesting these two processes largely influenced

  2. Randomly modulated periodic signals in Alberta's electricity market

    Energy Technology Data Exchange (ETDEWEB)

    Hinich, M. [Texas Univ., Austin, TX (United States); Serletis, A. [Calgary Univ., AB (Canada)

    2005-04-01

    The physical laws that determine the delivery of power across a transmission grid require a synchronized energy balance between the injection of power at generating points and offtake at demand points. Grid operators must continuously monitor the demand process and respond quickly to fluctuations in demand. This paper presented a parametric statistical model called Randomly Modulated Periodicity (RMP) which examined Alberta's spot wholesale power market, defined on hourly intervals. The concern was to test for periodic signals that can be perfectly predicted far into the future. A univariate approach was taken, although it was acknowledged that from an economic perspective, the interest in the price of electricity is in its relationship with the electricity load as well as with the prices of other primary fuel commodities. Sections 2 and 3 of the paper discussed the RMP model for the study of periodic signals. In section 4, randomly modulated periodicity was tested in hourly electricity prices and MWh demand for Alberta, over the deregulated period after 1996. It was concluded that electricity prices have low coherence with daily and weekly cycles. The mean value at each half hour of the daily demand and the weekend demand yielded good forecasts after the end of the data series. It was suggested that a statistical forecasting based on historical demand and co-factors such as the average hourly temperature per day and patterns of industrial usage should yield better short term forecasts. The development of a statistical technology for forecasting electricity demand is a challenging area of research. 6 refs., 4 figs.

  3. The bZIP transcription factor HY5 interacts with the promoter of the monoterpene synthase gene QH6 in modulating its rhythmic expression.

    Science.gov (United States)

    Zhou, Fei; Sun, Tian-Hu; Zhao, Lei; Pan, Xi-Wu; Lu, Shan

    2015-01-01

    The Artemisia annua L. β-pinene synthase QH6 was previously determined to be circadian-regulated at the transcriptional level, showing a rhythmic fluctuation of steady-state transcript abundances. Here we isolated both the genomic sequence and upstream promoter region of QH6. Different regulatory elements, such as G-box (TGACACGTGGCA, -421 bp from the translation initiation site) which might have effects on rhythmic gene expression, were found. Using the yeast one-hybrid and electrophoretic mobility shift assay (EMSA), we confirmed that the bZIP transcription factor HY5 binds to this motif of QH6. Studies with promoter truncations before and after this motif suggested that this G-box was important for the diurnal fluctuation of the transgenic β-glucuronidase gene (GUS) transcript abundance in Arabidopsis thaliana. GUS gene driven by the promoter region immediately after G-box showed an arrhythmic expression in both light/dark (LD) and constant dark (DD) conditions, whereas the control with G-box retained its fluctuation in both LD and DD. We further transformed A. thaliana with the luciferase gene (LUC) driven by an 1400 bp fragment upstream QH6 with its G-box intact or mutated, respectively. The luciferase activity assay showed that a peak in the early morning disappeared in the mutant. Gene expression analysis also demonstrated that the rhythmic expression of LUC was abolished in the hy5-1 mutant.

  4. Somatotype of top-level serbian rhythmic gymnasts.

    Science.gov (United States)

    Purenović-Ivanović, Tijana; Popović, Ružena

    2014-03-27

    Body size and build influence performance in many sports, especially in those belonging to the group of female aesthetic sports (rhythmic gymnastics, artistic gymnastics, and figure skating). These sports pose high specific demands upon the functional, energy, motor and psychological capacities of athletes, but also upon the size, body build and composition of the performers, particularly of the top-level female athletes. The study of the top athletes (rhythmic gymnasts, in this case) may provide valuable information on the morphological requirements for achieving success in this sport. Therefore, the main objective of this research was to analyze the somatotype of 40 Serbian top-level rhythmic gymnasts, aged 13.04±2.79, and to form the five age group categories. The anthropometric variables included body height, body mass, the selected diameters, girths and skinfolds, and the Heath-Carter anthropometric somatotype. All of the anthropometric data were collected according to International Biological Programme, and then processed in the Somatotype 1.2. The applied analysis of variance indicated an increase in endomorphic component with age. The obtained results show that the balanced ectomorph is a dominant somatotype, being similar for all of the athletes that took part in the research (3.54-3.24-4.5). These results are in line with the ones obtained in previous studies.

  5. Rhythmic interaction in VR

    DEFF Research Database (Denmark)

    Erkut, Cumhur

    2017-01-01

    Cinematic virtual reality is a new and relatively unexplored area in academia. While research in guiding the spectator's attention in this new medium has been conducted for some time, a focus on editing in conjunction with spectator orientation is only currently emerging. In this paper, we consid...... in rhythm perception, and complement it with applications in traditional editing. Through the notion of multimodal listening we provide guidelines that can be used in rhythmic and sonic interaction design in VR....

  6. Rhythmic EEG patterns in extremely preterm infants: Classification and association with brain injury and outcome.

    Science.gov (United States)

    Weeke, Lauren C; van Ooijen, Inge M; Groenendaal, Floris; van Huffelen, Alexander C; van Haastert, Ingrid C; van Stam, Carolien; Benders, Manon J; Toet, Mona C; Hellström-Westas, Lena; de Vries, Linda S

    2017-12-01

    Classify rhythmic EEG patterns in extremely preterm infants and relate these to brain injury and outcome. Retrospective analysis of 77 infants born Rhythmic patterns were observed in 62.3% (ictal 1.3%, PEDs 44%, other waveforms 86.3%) with multiple patterns in 36.4%. Ictal discharges were only observed in one and excluded from further analyses. The EEG location of the other waveforms (pRhythmic waveforms related to head position are likely artefacts. Rhythmic EEG patterns may have a different significance in extremely preterm infants. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  7. EIA model documentation: Electricity market module - electricity fuel dispatch

    International Nuclear Information System (INIS)

    1997-01-01

    This report documents the National Energy Modeling System Electricity Fuel Dispatch Submodule (EFD), a submodule of the Electricity Market Module (EMM) as it was used for EIA's Annual Energy Outlook 1997. It replaces previous documentation dated March 1994 and subsequent yearly update revisions. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This document serves four purposes. First, it is a reference document providing a detailed description of the model for reviewers and potential users of the EFD including energy experts at the Energy Information Administration (EIA), other Federal agencies, state energy agencies, private firms such as utilities and consulting firms, and non-profit groups such as consumer and environmental groups. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports. Third, it facilitates continuity in model development by providing documentation which details model enhancements that were undertaken for AE097 and since the previous documentation. Last, because the major use of the EFD is to develop forecasts, this documentation explains the calculations, major inputs and assumptions which were used to generate the AE097

  8. EIA model documentation: Electricity market module - electricity fuel dispatch

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This report documents the National Energy Modeling System Electricity Fuel Dispatch Submodule (EFD), a submodule of the Electricity Market Module (EMM) as it was used for EIA`s Annual Energy Outlook 1997. It replaces previous documentation dated March 1994 and subsequent yearly update revisions. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This document serves four purposes. First, it is a reference document providing a detailed description of the model for reviewers and potential users of the EFD including energy experts at the Energy Information Administration (EIA), other Federal agencies, state energy agencies, private firms such as utilities and consulting firms, and non-profit groups such as consumer and environmental groups. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports. Third, it facilitates continuity in model development by providing documentation which details model enhancements that were undertaken for AE097 and since the previous documentation. Last, because the major use of the EFD is to develop forecasts, this documentation explains the calculations, major inputs and assumptions which were used to generate the AE097.

  9. POWER ELECTRONIC SYSTEM FOR POWER ELECTRIC VEHICLES WITH ALGORITHMS OF SYNCHRONOUS MODULATION

    Directory of Open Access Journals (Sweden)

    Oleschuk V.

    2014-04-01

    Full Text Available Schemes of synchronous space-vector modulation have been adapted for control of split-phase drive for electric vehicle with open-end windings of induction motor, supplied by several voltage source inverters. MATLAB-based simulation of processes in this system has been executed. It has been shown, that the use of algorithms of synchronous modulation provides symmetry of phase voltage waveforms for any ratio between the switching frequency and fundamental frequency, and for any voltage magnitudes of dc-sources. Spectra of the phase voltage of system do not contain even harmonics and subharmonics (of the fundamental frequency, which is especially important for drives for the medium-power and high-power electric vehicles.

  10. Method for Signal Processing of Electric Field Modulation Sensor in a Conductive Environment

    Directory of Open Access Journals (Sweden)

    O. I. Miseyk

    2015-01-01

    Full Text Available In investigating the large waters and deep oceans the most promising are modulation sensors for measuring electric field in a conducting environment in a very low frequency range in devices of autonomous or non-autonomous vertical sounding. When using sensors of this type it is necessary to solve the problem of enhancement and measurement of the modulated signal from the baseband noise.The work analyses hydrodynamic and electromagnetic noise at the input of transducer with "rotating" sensitive axis. By virtue of matching the measuring electrodes with the signal processing circuit a conclusion has been drawn that the proposed basic model of a transducer with "rotating” sensitive axis is the most efficient in terms of enhancement and measurement of modulated signal from the baseband noise. It has been shown that it is undesirable for transducers to have the rotation of electrodes resulting, in this case, in arising noise to be synchronously changed with transducer rotation frequency (modulation frequency. This will complicate the further signal-noise enhancement later in their processing.The paper justifies the choice of demodulation output signal, called synchronous demodulation using a low-pass filter with a cutoff frequency much lower than the carrier frequency to provide an output signal in the range of very low frequency and dc electric fields.The paper offers an original circuit to process the signals taken from the modulation sensor with "rotating" measurement base. This circuit has advantages over the earlier known circuits for measuring electric fields in a conducting (marine environment in the ultralow frequency range of these fields in terms of sensitivity and measuring accuracy of modulation sensors.

  11. Electrically and spatially controllable PDLC phase gratings for diffraction and modulation of laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Hadjichristov, Georgi B., E-mail: georgibh@issp.bas.bg [Laboratory of Optics and Spectroscopy, Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., BG-1784 Sofia (Bulgaria); Marinov, Yordan G.; Petrov, Alexander G. [Laboratory of Biomolecular Layers, Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., BG-1784 Sofia, Bulgaria (Bulgaria)

    2016-03-25

    We present a study on electrically- and spatially-controllable laser beam diffraction, electrooptic (EO) phase modulation, as well as amplitude-frequency EO modulation by single-layer microscale polymer-dispersed liquid crystal (PDLC) phase gratings (PDLC SLPGs) of interest for device applications. PDLC SLPGs were produced from nematic liquid crystal (LC) E7 in photo-curable NOA65 polymer. The wedge-formed PDLC SLPGs have a continuously variable thickness (2–25 µm). They contain LC droplets of diameters twice as the layer thickness, with a linear-gradient size distribution along the wedge. By applying alternating-current (AC) electric field, the PDLC SLPGs produce efficient: (i) diffraction splitting of transmitted laser beams; (ii) spatial redistribution of diffracted light intensity; (iii) optical phase modulation; (iv) amplitude-frequency modulation, all controllable by the driven AC field and the droplet size gradient.

  12. Transitions between discrete and rhythmic primitives in a unimanual task

    Science.gov (United States)

    Sternad, Dagmar; Marino, Hamal; Charles, Steven K.; Duarte, Marcos; Dipietro, Laura; Hogan, Neville

    2013-01-01

    Given the vast complexity of human actions and interactions with objects, we proposed that control of sensorimotor behavior may utilize dynamic primitives. However, greater computational simplicity may come at the cost of reduced versatility. Evidence for primitives may be garnered by revealing such limitations. This study tested subjects performing a sequence of progressively faster discrete movements in order to “stress” the system. We hypothesized that the increasing pace would elicit a transition to rhythmic movements, assumed to be computationally and neurally more efficient. Abrupt transitions between the two types of movements would support the hypothesis that rhythmic and discrete movements are distinct primitives. Ten subjects performed planar point-to-point arm movements paced by a metronome: starting at 2 s, the metronome intervals decreased by 36 ms per cycle to 200 ms, stayed at 200 ms for several cycles, then increased by similar increments. Instructions emphasized to insert explicit stops between each movement with a duration that equaled the movement time. The experiment was performed with eyes open and closed, and with short and long metronome sounds, the latter explicitly specifying the dwell duration. Results showed that subjects matched instructed movement times but did not preserve the dwell times. Rather, they progressively reduced dwell time to zero, transitioning to continuous rhythmic movements before movement times reached their minimum. The acceleration profiles showed an abrupt change between discrete and rhythmic profiles. The loss of dwell time occurred earlier with long auditory specification, when subjects also showed evidence of predictive control. While evidence for hysteresis was weak, taken together, the results clearly indicated a transition between discrete and rhythmic movements, supporting the proposal that representation is based on primitives rather than on veridical internal models. PMID:23888139

  13. Transitions between Discrete and Rhythmic Primitives in a Unimanual Task

    Directory of Open Access Journals (Sweden)

    Dagmar eSternad

    2013-07-01

    Full Text Available Given the vast complexity of human actions and interactions with objects, we proposed that control of sensorimotor behavior may utilize dynamic primitives. However, greater computational simplicity may come at the cost of reduced versatility. Evidence for primitives may be garnered by revealing such limitations. This study tested subjects performing a sequence of progressively faster discrete movements, in order to stress the system. We hypothesized that the increasing pace would elicit a transition to rhythmic movements, assumed to be computationally and neurally more efficient. Abrupt transitions between the two types of movements would support the hypothesis that rhythmic and discrete movements are distinct primitives. Ten subjects performed planar point-to-point arm movements paced by a metronome: Starting at 2s the metronome intervals decreased by 36ms per cycle to 200ms, stayed at 200ms for several cycles, then increased by similar increments. Instructions emphasized to insert explicit stops between each movement with a duration that equaled the movement time. The experiment was performed with eyes open and closed, and with short and long metronome sounds, the latter explicitly specifying the dwell duration. Results showed that subjects matched instructed movement times but did not preserve the dwell times. Rather, they progressively reduced dwell time to zero, transitioning to continuous rhythmic movements before movement times reached their minimum. The acceleration profiles showed an abrupt change between discrete and rhythmic profiles. The loss of dwell time occurred earlier with long auditory specification, when subjects also showed evidence of predictive control. While evidence for hysteresis was weak, taken together, the results clearly indicated a transition between discrete and rhythmic movements, supporting the proposal that representation is based on primitives rather than on veridical internal models.

  14. Circadian remodeling of neuronal circuits involved in rhythmic behavior.

    Directory of Open Access Journals (Sweden)

    María Paz Fernández

    2008-03-01

    Full Text Available Clock output pathways are central to convey timing information from the circadian clock to a diversity of physiological systems, ranging from cell-autonomous processes to behavior. While the molecular mechanisms that generate and sustain rhythmicity at the cellular level are well understood, it is unclear how this information is further structured to control specific behavioral outputs. Rhythmic release of pigment dispersing factor (PDF has been proposed to propagate the time of day information from core pacemaker cells to downstream targets underlying rhythmic locomotor activity. Indeed, such circadian changes in PDF intensity represent the only known mechanism through which the PDF circuit could communicate with its output. Here we describe a novel circadian phenomenon involving extensive remodeling in the axonal terminals of the PDF circuit, which display higher complexity during the day and significantly lower complexity at nighttime, both under daily cycles and constant conditions. In support to its circadian nature, cycling is lost in bona fide clockless mutants. We propose this clock-controlled structural plasticity as a candidate mechanism contributing to the transmission of the information downstream of pacemaker cells.

  15. Understanding Epileptiform After-Discharges as Rhythmic Oscillatory Transients.

    Science.gov (United States)

    Baier, Gerold; Taylor, Peter N; Wang, Yujiang

    2017-01-01

    Electro-cortical activity in patients with epilepsy may show abnormal rhythmic transients in response to stimulation. Even when using the same stimulation parameters in the same patient, wide variability in the duration of transient response has been reported. These transients have long been considered important for the mapping of the excitability levels in the epileptic brain but their dynamic mechanism is still not well understood. To investigate the occurrence of abnormal transients dynamically, we use a thalamo-cortical neural population model of epileptic spike-wave activity and study the interaction between slow and fast subsystems. In a reduced version of the thalamo-cortical model, slow wave oscillations arise from a fold of cycles (FoC) bifurcation. This marks the onset of a region of bistability between a high amplitude oscillatory rhythm and the background state. In vicinity of the bistability in parameter space, the model has excitable dynamics, showing prolonged rhythmic transients in response to suprathreshold pulse stimulation. We analyse the state space geometry of the bistable and excitable states, and find that the rhythmic transient arises when the impending FoC bifurcation deforms the state space and creates an area of locally reduced attraction to the fixed point. This area essentially allows trajectories to dwell there before escaping to the stable steady state, thus creating rhythmic transients. In the full thalamo-cortical model, we find a similar FoC bifurcation structure. Based on the analysis, we propose an explanation of why stimulation induced epileptiform activity may vary between trials, and predict how the variability could be related to ongoing oscillatory background activity. We compare our dynamic mechanism with other mechanisms (such as a slow parameter change) to generate excitable transients, and we discuss the proposed excitability mechanism in the context of stimulation responses in the epileptic cortex.

  16. Effects of Electrical and Optogenetic Deep Brain Stimulation on Synchronized Oscillatory Activity in Parkinsonian Basal Ganglia.

    Science.gov (United States)

    Ratnadurai-Giridharan, Shivakeshavan; Cheung, Chung C; Rubchinsky, Leonid L

    2017-11-01

    Conventional deep brain stimulation of basal ganglia uses high-frequency regular electrical pulses to treat Parkinsonian motor symptoms but has a series of limitations. Relatively new and not yet clinically tested, optogenetic stimulation is an effective experimental stimulation technique to affect pathological network dynamics. We compared the effects of electrical and optogenetic stimulation of the basal gangliaon the pathologicalParkinsonian rhythmic neural activity. We studied the network response to electrical stimulation and excitatory and inhibitory optogenetic stimulations. Different stimulations exhibit different interactions with pathological activity in the network. We studied these interactions for different network and stimulation parameter values. Optogenetic stimulation was found to be more efficient than electrical stimulation in suppressing pathological rhythmicity. Our findings indicate that optogenetic control of neural synchrony may be more efficacious than electrical control because of the different ways of how stimulations interact with network dynamics.

  17. Rhythmic Patterns in Ragtime and Jazz

    NARCIS (Netherlands)

    Odekerken, Daphne; Volk, A.; Koops, Hendrik Vincent

    2017-01-01

    This paper presents a corpus-based study on rhythmic patterns in ragtime and jazz. Ragtime and jazz are related genres, but there are open questions on what specifies the two genres. Earlier studies revealed that variations of a particular syncopation pattern, referred to as 121, are among the most

  18. Strength Recovery Following Rhythmic or Sustained Exercise as a Function of Time.

    Science.gov (United States)

    Kearney, Jay T.

    The relative rates of strength recovery subsequent to bouts of rhythmic or sustained isometric exercise were investigated. The 72 undergraduates who served as subjects were tested seven times within the framework of a repeated measures design. Each testing session involved two bouts of either rhythmic or sustained isometric exercise separated by a…

  19. The bZIP transcription factor HY5 interacts with the promoter of the monoterpene synthase gene QH6 in modulating its rhythmic expression

    Directory of Open Access Journals (Sweden)

    Fei eZhou

    2015-04-01

    Full Text Available The Artemisia annua L. β-pinene synthase QH6 was previously determined to be circadian-regulated at the transcriptional level, showing a rhythmic fluctuation of steady-state transcript abundances. Here we isolated both the genomic sequence and upstream promoter region of QH6. Different regulatory elements, such as G-box (TGACACGTGGCA, -421 bp from the translation initiation site which might have effects on rhythmic gene expression, were found. Using the yeast one-hybrid and electrophoretic mobility shift assay (EMSA, we confirmed that the bZIP transcription factor HY5 binds to this motif of QH6. Studies with promoter truncations before and after this motif suggested that this G-box was important for the diurnal fluctuation of the transgenic β-glucuronidase gene (GUS transcript abundance in Arabidopsis thaliana. GUS gene driven by the promoter region immediately after G-box showed an arrhythmic expression in both light/dark (LD and constant dark (DD conditions, whereas the control with G-box retained its fluctuation in both LD and DD. We further transformed A. thaliana with the luciferase gene (LUC driven by an 1400 bp fragment upstream QH6 with its G-box intact or mutated, respectively. The luciferase activity assay showed that a peak in the early morning disappeared in the mutant. Gene expression analysis also demonstrated that the rhythmic expression of LUC was abolished in the hy5-1 mutant.

  20. Artistic versus rhythmic gymnastics: effects on bone and muscle mass in young girls.

    Science.gov (United States)

    Vicente-Rodriguez, G; Dorado, C; Ara, I; Perez-Gomez, J; Olmedillas, H; Delgado-Guerra, S; Calbet, J A L

    2007-05-01

    We compared 35 prepubertal girls, 9 artistic gymnasts and 13 rhythmic gymnasts with 13 nonphysically active controls to study the effect of gymnastics on bone and muscle mass. Lean mass, bone mineral content and areal density were measured by dual energy X-ray absorptiometry, and physical fitness was also assessed. The artistic gymnasts showed a delay in pubertal development compared to the other groups (partistic gymnasts had a 16 and 17 % higher aerobic power and anaerobic capacity, while the rhythmic group had a 14 % higher anaerobic capacity than the controls, respectively (all partistic gymnasts had higher lean mass (partistic and the rhythmic gymnasts (partistic group compared to the other groups. Lean mass strongly correlated with bone mineral content (r=0.84, partistic gymnastic participation is associated with delayed pubertal development, enhanced physical fitness, muscle mass, and bone density in prepubertal girls, eliciting a higher osteogenic stimulus than rhythmic gymnastic.

  1. Entrained rhythmic activities of neuronal ensembles as perceptual memory of time interval.

    Science.gov (United States)

    Sumbre, Germán; Muto, Akira; Baier, Herwig; Poo, Mu-ming

    2008-11-06

    The ability to process temporal information is fundamental to sensory perception, cognitive processing and motor behaviour of all living organisms, from amoebae to humans. Neural circuit mechanisms based on neuronal and synaptic properties have been shown to process temporal information over the range of tens of microseconds to hundreds of milliseconds. How neural circuits process temporal information in the range of seconds to minutes is much less understood. Studies of working memory in monkeys and rats have shown that neurons in the prefrontal cortex, the parietal cortex and the thalamus exhibit ramping activities that linearly correlate with the lapse of time until the end of a specific time interval of several seconds that the animal is trained to memorize. Many organisms can also memorize the time interval of rhythmic sensory stimuli in the timescale of seconds and can coordinate motor behaviour accordingly, for example, by keeping the rhythm after exposure to the beat of music. Here we report a form of rhythmic activity among specific neuronal ensembles in the zebrafish optic tectum, which retains the memory of the time interval (in the order of seconds) of repetitive sensory stimuli for a duration of up to approximately 20 s. After repetitive visual conditioning stimulation (CS) of zebrafish larvae, we observed rhythmic post-CS activities among specific tectal neuronal ensembles, with a regular interval that closely matched the CS. Visuomotor behaviour of the zebrafish larvae also showed regular post-CS repetitions at the entrained time interval that correlated with rhythmic neuronal ensemble activities in the tectum. Thus, rhythmic activities among specific neuronal ensembles may act as an adjustable 'metronome' for time intervals in the order of seconds, and serve as a mechanism for the short-term perceptual memory of rhythmic sensory experience.

  2. Rhythmic Auditory Cueing in Motor Rehabilitation for Stroke Patients: Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Yoo, Ga Eul; Kim, Soo Ji

    2016-01-01

    Given the increasing evidence demonstrating the effects of rhythmic auditory cueing for motor rehabilitation of stroke patients, this synthesized analysis is needed in order to improve rehabilitative practice and maximize clinical effectiveness. This study aimed to systematically analyze the literature on rhythmic auditory cueing for motor rehabilitation of stroke patients by highlighting the outcome variables, type of cueing, and stage of stroke. A systematic review with meta-analysis of randomized controlled or clinically controlled trials was conducted. Electronic databases and music therapy journals were searched for studies including stroke, the use of rhythmic auditory cueing, and motor outcomes, such as gait and upper-extremity function. A total of 10 studies (RCT or CCT) with 356 individuals were included for meta-analysis. There were large effect sizes (Hedges's g = 0.984 for walking velocity; Hedges's g = 0.840 for cadence; Hedges's g = 0.760 for stride length; and Hedges's g = 0.456 for Fugl-Meyer test scores) in the use of rhythmic auditory cueing. Additional subgroup analysis demonstrated that although the type of rhythmic cueing and stage of stroke did not lead to statistically substantial group differences, the effect sizes and heterogeneity values in each subgroup implied possible differences in treatment effect. This study corroborates the beneficial effects of rhythmic auditory cueing, supporting its expanded application to broadened areas of rehabilitation for stroke patients. Also, it suggests the future investigation of the differential outcomes depending on how rhythmic auditory cueing is provided in terms of type and intensity implemented. © the American Music Therapy Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Analysis of amplitude-phase disturbances of Wolf's numbers rhythmic structure

    International Nuclear Information System (INIS)

    Vojchishin, K.S.

    1978-01-01

    Statistical analysis of Wolf's number rhythmic structure has been carried out. Wolf's number time series is considered as a stochastic signal with irregular disturbances of rhythmic structure appearing because of random variability of single cycle parameters. A method and an algorythm for transforming the signal, to reduce all quasi-eleven-year cycles of mean-monthly Wolf's numbers to a signal mean duration, to find out and to eliminate rhythmic phase disturbances, are proposed. An estimate of the accuracy of the procedure is given. The results of calculations (on the mean duration range of cycles) of estimates of their mathematical expectation, dispersion and correlation function depending on time and its shift are given. The conclusion that Wolf's number time series may be treated as a sequence of stochastic cycles with randomly varying amplitude, duration and phase is grounded. A possibility for reducing the forecast of smoothed mean-monthly Wolf's numbers for one or more cycles ahead to the forecast of only three abovementioned parameters is pointed out

  4. The hormonal Zeitgeber melatonin: Role as a circadian modulator in memory processing

    Directory of Open Access Journals (Sweden)

    Oliver eRawashdeh

    2012-03-01

    Full Text Available The neuroendocrine substance melatonin is a hormone synthesized rhythmically by the pineal gland under the influence of the circadian system and alternating light/dark cycles. Melatonin has been shown to have broad applications, and consequently becoming a molecule of great controversy. Undoubtedly, however, melatonin plays an important role as a time cue for the endogenous circadian system. This review focuses on melatonin as a regulator in the circadian modulation of memory processing. Memory processes (acquisition, consolidation and retrieval are modulated by the circadian system. However, the mechanism by which the biological clock is rhythmically influencing cognitive processes remains unknown. We also discuss, how the circadian system by generating cycling melatonin levels can implant information about daytime into memory processing, depicted as day and nighttime differences in acquisition, memory consolidation and/or retrieval.

  5. Sympathetic network drive during water deprivation does not increase respiratory or cardiac rhythmic sympathetic nerve activity.

    Science.gov (United States)

    Holbein, Walter W; Toney, Glenn M

    2013-06-15

    Effects of water deprivation on rhythmic bursting of sympathetic nerve activity (SNA) were investigated in anesthetized, bilaterally vagotomized, euhydrated (control) and 48-h water-deprived (WD) rats (n = 8/group). Control and WD rats had similar baseline values of mean arterial pressure, heart rate, end-tidal CO2, and central respiratory drive. Although integrated splanchnic SNA (sSNA) was greater in WD rats than controls (P analysis of respiratory rhythmic bursting of sSNA revealed that inspiratory rhythmic burst amplitude was actually smaller (P analysis revealed that water deprivation had no effect on either the amplitude or periodicity of the cardiac rhythmic oscillation of sSNA. Collectively, these data indicate that the increase of sSNA produced by water deprivation is not attributable to either increased respiratory or cardiac rhythmic burst discharge. Thus the sympathetic network response to acute water deprivation appears to differ from that of chronic sympathoexcitation in neurogenic forms of arterial hypertension, where increased respiratory rhythmic bursting of SNA and baroreflex adaptations have been reported.

  6. Transcriptome analysis in oak uncovers a strong impact of endogenous rhythmic growth on the interaction with plant-parasitic nematodes.

    Science.gov (United States)

    Maboreke, Hazel R; Feldhahn, Lasse; Bönn, Markus; Tarkka, Mika T; Buscot, Francois; Herrmann, Sylvie; Menzel, Ralph; Ruess, Liliane

    2016-08-12

    Pedunculate oak (Quercus robur L.), an important forest tree in temperate ecosystems, displays an endogenous rhythmic growth pattern, characterized by alternating shoot and root growth flushes paralleled by oscillations in carbon allocation to below- and aboveground tissues. However, these common plant traits so far have largely been neglected as a determining factor for the outcome of plant biotic interactions. This study investigates the response of oak to migratory root-parasitic nematodes in relation to rhythmic growth, and how this plant-nematode interaction is modulated by an ectomycorrhizal symbiont. Oaks roots were inoculated with the nematode Pratylenchus penetrans solely and in combination with the fungus Piloderma croceum, and the systemic impact on oak plants was assessed by RNA transcriptomic profiles in leaves. The response of oaks to the plant-parasitic nematode was strongest during shoot flush, with a 16-fold increase in the number of differentially expressed genes as compared to root flush. Multi-layered defence mechanisms were induced at shoot flush, comprising upregulation of reactive oxygen species formation, hormone signalling (e.g. jasmonic acid synthesis), and proteins involved in the shikimate pathway. In contrast during root flush production of glycerolipids involved in signalling cascades was repressed, suggesting that P. penetrans actively suppressed host defence. With the presence of the mycorrhizal symbiont, the gene expression pattern was vice versa with a distinctly stronger effect of P. penetrans at root flush, including attenuated defence, cell and carbon metabolism, likely a response to the enhanced carbon sink strength in roots induced by the presence of both, nematode and fungus. Meanwhile at shoot flush, when nutrients are retained in aboveground tissue, oak defence reactions, such as altered photosynthesis and sugar pathways, diminished. The results highlight that gene response patterns of plants to biotic interactions, both

  7. Effects of Musicality on the Perception of Rhythmic Structure in Speech

    Directory of Open Access Journals (Sweden)

    Natalie Boll-Avetisyan

    2017-04-01

    Full Text Available Language and music share many rhythmic properties, such as variations in intensity and duration leading to repeating patterns. Perception of rhythmic properties may rely on cognitive networks that are shared between the two domains. If so, then variability in speech rhythm perception may relate to individual differences in musicality. To examine this possibility, the present study focuses on rhythmic grouping, which is assumed to be guided by a domain-general principle, the Iambic/Trochaic law, stating that sounds alternating in intensity are grouped as strong-weak, and sounds alternating in duration are grouped as weak-strong. German listeners completed a grouping task: They heard streams of syllables alternating in intensity, duration, or neither, and had to indicate whether they perceived a strong-weak or weak-strong pattern. Moreover, their music perception abilities were measured, and they filled out a questionnaire reporting their productive musical experience. Results showed that better musical rhythm perception ability was associated with more consistent rhythmic grouping of speech, while melody perception ability and productive musical experience were not. This suggests shared cognitive procedures in the perception of rhythm in music and speech. Also, the results highlight the relevance of considering individual differences in musicality when aiming to explain variability in prosody perception.

  8. Optimization of Pockels electric field in transverse modulated optical voltage sensor

    Science.gov (United States)

    Huang, Yifan; Xu, Qifeng; Chen, Kun-Long; Zhou, Jie

    2018-05-01

    This paper investigates the possibilities of optimizing the Pockels electric field in a transverse modulated optical voltage sensor with a spherical electrode structure. The simulations show that due to the edge effect and the electric field concentrations and distortions, the electric field distributions in the crystal are non-uniform. In this case, a tiny variation in the light path leads to an integral error of more than 0.5%. Moreover, a 2D model cannot effectively represent the edge effect, so a 3D model is employed to optimize the electric field distributions. Furthermore, a new method to attach a quartz crystal to the electro-optic crystal along the electric field direction is proposed to improve the non-uniformity of the electric field. The integral error is reduced therefore from 0.5% to 0.015% and less. The proposed method is simple, practical and effective, and it has been validated by numerical simulations and experimental tests.

  9. Relationships between early literacy and nonlinguistic rhythmic processes in kindergarteners.

    Science.gov (United States)

    Ozernov-Palchik, Ola; Wolf, Maryanne; Patel, Aniruddh D

    2018-03-01

    A growing number of studies report links between nonlinguistic rhythmic abilities and certain linguistic abilities, particularly phonological skills. The current study investigated the relationship between nonlinguistic rhythmic processing, phonological abilities, and early literacy abilities in kindergarteners. A distinctive aspect of the current work was the exploration of whether processing of different types of rhythmic patterns is differentially related to kindergarteners' phonological and reading-related abilities. Specifically, we examined the processing of metrical versus nonmetrical rhythmic patterns, that is, patterns capable of being subdivided into equal temporal intervals or not (Povel & Essens, 1985). This is an important comparison because most music involves metrical sequences, in which rhythm often has an underlying temporal grid of isochronous units. In contrast, nonmetrical sequences are arguably more typical to speech rhythm, which is temporally structured but does not involve an underlying grid of equal temporal units. A rhythm discrimination app with metrical and nonmetrical patterns was administered to 74 kindergarteners in conjunction with cognitive and preliteracy measures. Findings support a relationship among rhythm perception, phonological awareness, and letter-sound knowledge (an essential precursor of reading). A mediation analysis revealed that the association between rhythm perception and letter-sound knowledge is mediated through phonological awareness. Furthermore, metrical perception accounted for unique variance in letter-sound knowledge above all other language and cognitive measures. These results point to a unique role for temporal regularity processing in the association between musical rhythm and literacy in young children. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Time-frequency analysis of human motion during rhythmic exercises.

    Science.gov (United States)

    Omkar, S N; Vyas, Khushi; Vikranth, H N

    2011-01-01

    Biomechanical signals due to human movements during exercise are represented in time-frequency domain using Wigner Distribution Function (WDF). Analysis based on WDF reveals instantaneous spectral and power changes during a rhythmic exercise. Investigations were carried out on 11 healthy subjects who performed 5 cycles of sun salutation, with a body-mounted Inertial Measurement Unit (IMU) as a motion sensor. Variance of Instantaneous Frequency (I.F) and Instantaneous Power (I.P) for performance analysis of the subject is estimated using one-way ANOVA model. Results reveal that joint Time-Frequency analysis of biomechanical signals during motion facilitates a better understanding of grace and consistency during rhythmic exercise.

  11. Rhythmic activity of feline dorsal and ventral spinocerebellar tract neurons during fictive motor actions

    DEFF Research Database (Denmark)

    Fedirchuk, Brent; Stecina, Katinka; Kristensen, Kasper Kyhl

    2013-01-01

    (without phasic afferent feedback). In this study, we compared the activity of DSCT and VSCT neurons during fictive rhythmic motor behaviors. We used decerebrate cat preparations in which fictive motor tasks can be evoked while the animal is paralyzed and there is no rhythmic sensory input from hindlimb......Neurons of the dorsal spinocerebellar tracts (DSCT) have been described to be rhythmically active during walking on a treadmill in decerebrate cats, but this activity ceased following deafferentation of the hindlimb. This observation supported the hypothesis that DSCT neurons primarily relay...

  12. POWER ELECTRONIC SYSTEM FOR POWER ELECTRIC VEHICLES WITH ALGORITHMS OF SYNCHRONOUS MODULATION

    OpenAIRE

    Oleschuk V.; Ermuratskii V.

    2014-01-01

    Schemes of synchronous space-vector modulation have been adapted for control of split-phase drive for electric vehicle with open-end windings of induction motor, supplied by several voltage source inverters. MATLAB-based simulation of processes in this system has been executed. It has been shown, that the use of algorithms of synchronous modulation provides symmetry of phase voltage waveforms for any ratio between the switching frequency and fundamental frequency, and for any voltage magnitud...

  13. Rhythmic Behavior Is Controlled by the SRm160 Splicing Factor in Drosophila melanogaster.

    Science.gov (United States)

    Beckwith, Esteban J; Hernando, Carlos E; Polcowñuk, Sofía; Bertolin, Agustina P; Mancini, Estefania; Ceriani, M Fernanda; Yanovsky, Marcelo J

    2017-10-01

    Circadian clocks organize the metabolism, physiology, and behavior of organisms throughout the day-night cycle by controlling daily rhythms in gene expression at the transcriptional and post-transcriptional levels. While many transcription factors underlying circadian oscillations are known, the splicing factors that modulate these rhythms remain largely unexplored. A genome-wide assessment of the alterations of gene expression in a null mutant of the alternative splicing regulator SR-related matrix protein of 160 kDa (SRm160) revealed the extent to which alternative splicing impacts on behavior-related genes. We show that SRm160 affects gene expression in pacemaker neurons of the Drosophila brain to ensure proper oscillations of the molecular clock. A reduced level of SRm160 in adult pacemaker neurons impairs circadian rhythms in locomotor behavior, and this phenotype is caused, at least in part, by a marked reduction in period ( per ) levels. Moreover, rhythmic accumulation of the neuropeptide PIGMENT DISPERSING FACTOR in the dorsal projections of these neurons is abolished after SRm160 depletion. The lack of rhythmicity in SRm160-downregulated flies is reversed by a fully spliced per construct, but not by an extra copy of the endogenous locus, showing that SRm160 positively regulates per levels in a splicing-dependent manner. Our findings highlight the significant effect of alternative splicing on the nervous system and particularly on brain function in an in vivo model. Copyright © 2017 by the Genetics Society of America.

  14. Comparison of rhythmic masticatory muscle activity during non-rapid eye movement sleep in guinea pigs and humans.

    Science.gov (United States)

    Kato, Takafumi; Toyota, Risa; Haraki, Shingo; Yano, Hiroyuki; Higashiyama, Makoto; Ueno, Yoshio; Yano, Hiroshi; Sato, Fumihiko; Yatani, Hirofumi; Yoshida, Atsushi

    2017-09-27

    Rhythmic masticatory muscle activity can be a normal variant of oromotor activity, which can be exaggerated in patients with sleep bruxism. However, few studies have tested the possibility in naturally sleeping animals to study the neurophysiological mechanisms of rhythmic masticatory muscle activity. This study aimed to investigate the similarity of cortical, cardiac and electromyographic manifestations of rhythmic masticatory muscle activity occurring during non-rapid eye movement sleep between guinea pigs and human subjects. Polysomnographic recordings were made in 30 freely moving guinea pigs and in eight healthy human subjects. Burst cycle length, duration and activity of rhythmic masticatory muscle activity were compared with those for chewing. The time between R-waves in the electrocardiogram (RR interval) and electroencephalogram power spectrum were calculated to assess time-course changes in cardiac and cortical activities in relation to rhythmic masticatory muscle activity. In animals, in comparison with chewing, rhythmic masticatory muscle activity had a lower burst activity, longer burst duration and longer cycle length (P motor activation in comparison to human subjects. © 2017 European Sleep Research Society.

  15. Enhanced musical rhythmic perception in Turkish early and late learners of German

    Directory of Open Access Journals (Sweden)

    Maria Paula eRoncaglia-Denissen

    2013-09-01

    Full Text Available As language rhythm relies partly on general acoustic properties, such as intensity and duration, mastering two languages with distinct rhythmic properties (i.e., stress position may enhance musical rhythm perception. We investigated whether second language (L2 competence affects musical rhythm aptitude in Turkish early (TELG and late learners (TLLG of German in comparison to German monolingual speakers (GMC. To account for inter-individual differences, we measured participants’ short-term and working memory capacity, melodic aptitude, and time they spent listening to music. Both L2 speaker groups perceived rhythmic variations significantly better than monolinguals. No differences were found between early and late learners’ performances. Our findings suggest that mastering two languages with different rhythmic properties enhances musical rhythm perception, providing further evidence of cognitive share between language and music.

  16. Different corticospinal control between discrete and rhythmic movement of the ankle

    OpenAIRE

    Goto, Yumeno; Jono, Yasutomo; Hatanaka, Ryota; Nomura, Yoshifumi; Tani, Keisuke; Chujo, Yuta; Hiraoka, Koichi

    2014-01-01

    We investigated differences in corticospinal and spinal control between discrete and rhythmic ankle movements. Motor evoked potentials (MEPs) in the tibialis anterior and soleus muscles and soleus H-reflex were elicited in the middle of the plantar flexion phase during discrete ankle movement or in the initial or later cycles of rhythmic ankle movement. The H-reflex was evoked at an intensity eliciting a small M-wave and MEPs were elicited at an intensity of 1.2 times the motor threshold of t...

  17. Interface Control Document for the EMPACT Module that Estimates Electric Power Transmission System Response to EMP-Caused Damage

    Energy Technology Data Exchange (ETDEWEB)

    Werley, Kenneth Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mccown, Andrew William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)ory

    2016-06-26

    The EPREP code is designed to evaluate the effects of an Electro-Magnetic Pulse (EMP) on the electric power transmission system. The EPREP code embodies an umbrella framework that allows a user to set up analysis conditions and to examine analysis results. The code links to three major physics/engineering modules. The first module describes the EM wave in space and time. The second module evaluates the damage caused by the wave on specific electric power (EP) transmission system components. The third module evaluates the consequence of the damaged network on its (reduced) ability to provide electric power to meet demand. This third module is the focus of the present paper. The EMPACT code serves as the third module. The EMPACT name denotes EMP effects on Alternating Current Transmission systems. The EMPACT algorithms compute electric power transmission network flow solutions under severely damaged network conditions. Initial solutions are often characterized by unacceptible network conditions including line overloads and bad voltages. The EMPACT code contains algorithms to adjust optimally network parameters to eliminate network problems while minimizing outages. System adjustments include automatically adjusting control equipment (generator V control, variable transformers, and variable shunts), as well as non-automatic control of generator power settings and minimal load shedding. The goal is to evaluate the minimal loss of customer load under equilibrium (steady-state) conditions during peak demand.

  18. Module Embedded Micro-inverter Smart Grid Ready Residential Solar Electric System

    Energy Technology Data Exchange (ETDEWEB)

    Agamy, Mohammed [GE Global Research Center, Niskayuna, NY (United States)

    2015-10-27

    The “Module Embedded Micro-inverter Smart Grid Ready Residential Solar Electric System” program is focused on developing innovative concepts for residential photovoltaic (PV) systems with the following objectives: to create an Innovative micro-inverter topology that reduces the cost from the best in class micro-inverter and provides high efficiency (>96% CEC - California Energy Commission), and 25+ year warranty, as well as reactive power support; integrate micro-inverter and PV module to reduce system price by at least $0.25/W through a) accentuating dual use of the module metal frame as a large area heat spreader reducing operating temperature, and b) eliminating redundant wiring and connectors; and create micro-inverter controller handles smart grid and safety functions to simplify implementation and reduce cost.

  19. Association of Periodic and Rhythmic Electroencephalographic Patterns With Seizures in Critically Ill Patients.

    Science.gov (United States)

    Rodriguez Ruiz, Andres; Vlachy, Jan; Lee, Jong Woo; Gilmore, Emily J; Ayer, Turgay; Haider, Hiba Arif; Gaspard, Nicolas; Ehrenberg, J Andrew; Tolchin, Benjamin; Fantaneanu, Tadeu A; Fernandez, Andres; Hirsch, Lawrence J; LaRoche, Suzette

    2017-02-01

    Periodic and rhythmic electroencephalographic patterns have been associated with risk of seizures in critically ill patients. However, specific features that confer higher seizure risk remain unclear. To analyze the association of distinct characteristics of periodic and rhythmic patterns with seizures. We reviewed electroencephalographic recordings from 4772 critically ill adults in 3 academic medical centers from February 2013 to September 2015 and performed a multivariate analysis to determine features associated with seizures. Continuous electroencephalography. Association of periodic and rhythmic patterns and specific characteristics, such as pattern frequency (hertz), Plus modifier, prevalence, and stimulation-induced patterns, and the risk for seizures. Of the 4772 patients included in our study, 2868 were men and 1904 were women. Lateralized periodic discharges (LPDs) had the highest association with seizures regardless of frequency and the association was greater when the Plus modifier was present (58%; odds ratio [OR], 2.00, P rhythmic delta activity (LRDA) were associated with seizures in a frequency-dependent manner (1.5-2 Hz: GPDs, 24%,OR, 2.31, P = .02; LRDA, 24%, OR, 1.79, P = .05; ≥ 2 Hz: GPDs, 32%, OR, 3.30, P rhythmic delta activity compared with no periodic or rhythmic pattern (13%, OR, 1.18, P = .26). Higher prevalence of LPDs and GPDs also conferred increased seizure risk (37% frequent vs 45% abundant/continuous, OR, 1.64, P = .03 for difference; 8% rare/occasional vs 15% frequent, OR, 2.71, P = .03, vs 23% abundant/continuous, OR, 1.95, P = .04). Patterns associated with stimulation did not show an additional risk for seizures from the underlying pattern risk (P > .10). In this study, LPDs, LRDA, and GPDs were associated with seizures while generalized rhythmic delta activity was not. Lateralized periodic discharges were associated with seizures at all frequencies with and without Plus modifier, but LRDA and GPDs were associated with

  20. Source localization of rhythmic ictal EEG activity

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Lantz, Göran; Rosenzweig, Ivana

    2013-01-01

    Although precise identification of the seizure-onset zone is an essential element of presurgical evaluation, source localization of ictal electroencephalography (EEG) signals has received little attention. The aim of our study was to estimate the accuracy of source localization of rhythmic ictal...... EEG activity using a distributed source model....

  1. Electrically-driven pure amplitude and frequency modulation in a quantum cascade laser.

    Science.gov (United States)

    Shehzad, Atif; Brochard, Pierre; Matthey, Renaud; Blaser, Stéphane; Gresch, Tobias; Maulini, Richard; Muller, Antoine; Südmeyer, Thomas; Schilt, Stéphane

    2018-04-30

    We present pure amplitude modulation (AM) and frequency modulation (FM) achieved electrically in a quantum cascade laser (QCL) equipped with an integrated resistive heater (IH). The QCL output power scales linearly with the current applied to the active region (AR), but decreases with the IH current, while the emission frequency decreases with both currents. Hence, a simultaneous modulation applied to the current of the AR and IH sections with a proper relative amplitude and phase can suppress the AM, resulting in a pure FM, or vice-versa. The adequate modulation parameters depend on the applied modulation frequency. Therefore, they were first determined from the individual measurements of the AM and FM transfer functions obtained for a modulation applied to the current of the AR or IH section, respectively. By optimizing the parameters of the two modulations, we demonstrate a reduction of the spurious AM or FM by almost two orders of magnitude at characteristic frequencies of 1 and 10 kHz compared to the use of the AR current only.

  2. Rhythmic Characteristics of Colloquial and Formal Tamil

    Science.gov (United States)

    Keane, Elinor

    2006-01-01

    Application of recently developed rhythmic measures to passages of read speech in colloquial and formal Tamil revealed some significant differences between the two varieties, which are in diglossic distribution. Both were also distinguished from a set of control data from British English speakers reading an equivalent passage. The findings have…

  3. Electrophysiology of Hypothalamic Magnocellular Neurons In vitro: A Rhythmic Drive in Organotypic Cultures and Acute Slices.

    Science.gov (United States)

    Israel, Jean-Marc; Oliet, Stéphane H; Ciofi, Philippe

    2016-01-01

    Hypothalamic neurohormones are released in a pulsatile manner. The mechanisms of this pulsatility remain poorly understood and several hypotheses are available, depending upon the neuroendocrine system considered. Among these systems, hypothalamo-neurohypophyseal magnocellular neurons have been early-considered models, as they typically display an electrical activity consisting of bursts of action potentials that is optimal for the release of boluses of the neurohormones oxytocin and vasopressin. The cellular mechanisms underlying this bursting behavior have been studied in vitro, using either acute slices of the adult hypothalamus, or organotypic cultures of neonatal hypothalamic tissue. We have recently proposed, from experiments in organotypic cultures, that specific central pattern generator networks, upstream of magnocellular neurons, determine their bursting activity. Here, we have tested whether a similar hypothesis can be derived from in vitro experiments in acute slices of the adult hypothalamus. To this aim we have screened our electrophysiological recordings of the magnocellular neurons, previously obtained from acute slices, with an analysis of autocorrelation of action potentials to detect a rhythmic drive as we recently did for organotypic cultures. This confirmed that the bursting behavior of magnocellular neurons is governed by central pattern generator networks whose rhythmic drive, and thus probably integrity, is however less satisfactorily preserved in the acute slices from adult brains.

  4. Electrophysiology of hypothalamic magnocellular neurons in vitro: a rhythmic drive in organotypic cultures and acute slices

    Directory of Open Access Journals (Sweden)

    Jean-Marc eIsrael

    2016-03-01

    Full Text Available Hypothalamic neurohormones are released in a pulsatile manner. The mechanisms of this pulsatility remain poorly understood and several hypotheses are available, depending upon the neuroendocrine system considered. Among these systems, hypothalamo-neurohypophyseal magnocellular neurons have been early-considered models, as they typically display an electrical activity consisting of bursts of action potentials that is optimal for the release of boluses of the neurohormones oxytocin and vasopressin. The cellular mechanisms underlying this bursting behavior have been studied in vitro, using either acute slices of the adult hypothalamus, or organotypic cultures of neonatal hypothalamic tissue. We have recently proposed, from experiments in organotypic cultures, that specific central pattern generator networks, upstream of magnocellular neurons, determine their bursting activity. Here, we have tested whether a similar hypothesis can be derived from in vitro experiments in acute slices of the adult hypothalamus. To this aim we have screened our electrophysiological recordings of the magnocellular neurons, previously obtained from acute slices, with an analysis of autocorrelation of action potentials to detect a rhythmic drive as we recently did for organotypic cultures. This confirmed that the bursting behavior of magnocellular neurons is governed by central pattern generator networks whose rhythmic drive, and thus probably integrity, is however less satisfactorily preserved in the acute slices from adult brains.

  5. Strain- and electric field-induced band gap modulation in nitride nanomembranes

    International Nuclear Information System (INIS)

    Amorim, Rodrigo G; Zhong Xiaoliang; Mukhopadhyay, Saikat; Pandey, Ravindra; Rocha, Alexandre R; Karna, Shashi P

    2013-01-01

    The hexagonal nanomembranes of the group III-nitrides are a subject of interest due to their novel technological applications. In this paper, we investigate the strain- and electric field-induced modulation of their band gaps in the framework of density functional theory. For AlN, the field-dependent modulation of the bandgap is found to be significant whereas the strain-induced semiconductor-metal transition is predicted for GaN. A relatively flat conduction band in AlN and GaN nanomembranes leads to an enhancement of their electronic mobility compared to that of their bulk counterparts. (paper)

  6. Time-varying spectral analysis revealing differential effects of sevoflurane anaesthesia: non-rhythmic-to-rhythmic ratio.

    Science.gov (United States)

    Lin, Y-T; Wu, H-T; Tsao, J; Yien, H-W; Hseu, S-S

    2014-02-01

    Heart rate variability (HRV) may reflect various physiological dynamics. In particular, variation of R-R peak interval (RRI) of electrocardiography appears regularly oscillatory in deeper levels of anaesthesia and less regular in lighter levels of anaesthesia. We proposed a new index, non-rhythmic-to-rhythmic ratio (NRR), to quantify this feature and investigated its potential to estimate depth of anaesthesia. Thirty-one female patients were enrolled in this prospective study. The oscillatory pattern transition of RRI was visualised by the time-varying power spectrum and quantified by NRR. The prediction of anaesthetic events, including skin incision, first reaction of motor movement during emergence period, loss of consciousness (LOC) and return of consciousness (ROC) by NRR were evaluated by serial prediction probability (PK ) analysis; the ability to predict the decrease of effect-site sevoflurane concentration was also evaluated. The results were compared with Bispectral Index (BIS). NRR well-predicted first reaction (PK  > 0.90) 30 s ahead, earlier than BIS and significantly better than HRV indices. NRR well-correlated with sevoflurane concentration, although its correlation was inferior to BIS, while HRV indices had no such correlation. BIS indicated LOC and ROC best. Our findings suggest that NRR provides complementary information to BIS regarding the differential effects of anaesthetics on the brain, especially the subcortical motor activity. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  7. Control of a Dual-Stator Flux-Modulated Motor for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xinhua Guo

    2016-07-01

    Full Text Available This paper presents the control strategies for a novel dual-stator flux-modulated (DSFM motor for application in electric vehicles (EVs. The DSFM motor can be applied to EVs because of its simple winding structure, high reliability, and its use of two stators and rotating modulation steels in the air gap. Moreover, it outperforms conventional brushless doubly-fed machines in terms of control performance. Two stator-current-oriented vector controls with different excitation in the primary winding, direct and alternating current excitation, are designed, simulated, and evaluated on a custom-made DSFM prototype allowing the decoupled control of torque. The stable speed response and available current characteristics strongly validate the feasibility of the two control methods. Furthermore, the proposed control methods can be employed in other applications of flux-modulated motors.

  8. Calorimetric Measurement for Internal Conversion Efficiency of Photovoltaic Cells/Modules Based on Electrical Substitution Method

    Science.gov (United States)

    Saito, Terubumi; Tatsuta, Muneaki; Abe, Yamato; Takesawa, Minato

    2018-02-01

    We have succeeded in the direct measurement for solar cell/module internal conversion efficiency based on a calorimetric method or electrical substitution method by which the absorbed radiant power is determined by replacing the heat absorbed in the cell/module with the electrical power. The technique is advantageous in that the reflectance and transmittance measurements, which are required in the conventional methods, are not necessary. Also, the internal quantum efficiency can be derived from conversion efficiencies by using the average photon energy. Agreements of the measured data with the values estimated from the nominal values support the validity of this technique.

  9. Electric-field assisted spin torque nano-oscillator and binary frequency shift keying modulation

    Science.gov (United States)

    Zhang, Xiangli; Chen, Hao-Hsuan; Zhang, Zongzhi; Liu, Yaowen

    2018-04-01

    Electric-controlled magnetization precession introduces technologically relevant possibility for developing spin torque nano-oscillators (STNO) with potential applications in microwave emission. Using the perpendicularly magnetized magnetic tunnel junction (MTJ), we show that the magnetization oscillation frequency can be tuned by the co-action of electric field and spin polarized current. The dynamical phase diagram of MTJ-based STNO is analytically predicted through coordinate transformation from the laboratory frame to the rotation frame, by which the nonstationary out-of-plane magnetization precession process is therefore transformed into the stationary process in the rotation frame. Furthermore, using this STNO as a microwave source, we numerically demonstrate that the bit signal can be transmitted by a binary frequency shift keying (BFSK) modulation technique. The BFSK scheme shows good modulation features with no transient state.

  10. Differential effects of rhythmic auditory stimulation and neurodevelopmental treatment/Bobath on gait patterns in adults with cerebral palsy: a randomized controlled trial.

    Science.gov (United States)

    Kim, Soo Ji; Kwak, Eunmi E; Park, Eun Sook; Cho, Sung-Rae

    2012-10-01

    To investigate the effects of rhythmic auditory stimulation (RAS) on gait patterns in comparison with changes after neurodevelopmental treatment (NDT/Bobath) in adults with cerebral palsy. A repeated-measures analysis between the pretreatment and posttreatment tests and a comparison study between groups. Human gait analysis laboratory. Twenty-eight cerebral palsy patients with bilateral spasticity participated in this study. The subjects were randomly allocated to either neurodevelopmental treatment (n = 13) or rhythmic auditory stimulation (n = 15). Gait training with rhythmic auditory stimulation or neurodevelopmental treatment was performed three sessions per week for three weeks. Temporal and kinematic data were analysed before and after the intervention. Rhythmic auditory stimulation was provided using a combination of a metronome beat set to the individual's cadence and rhythmic cueing from a live keyboard, while neurodevelopmental treatment was implemented following the traditional method. Temporal data, kinematic parameters and gait deviation index as a measure of overall gait pathology were assessed. Temporal gait measures revealed that rhythmic auditory stimulation significantly increased cadence, walking velocity, stride length, and step length (P rhythmic auditory stimulation (P rhythmic auditory stimulation (P rhythmic auditory stimulation showed aggravated maximal internal rotation in the transverse plane (P rhythmic auditory stimulation or neurodevelopmental treatment elicited differential effects on gait patterns in adults with cerebral palsy.

  11. Corpus-Based Rhythmic Pattern Analysis of Ragtime Syncopation

    NARCIS (Netherlands)

    Koops, Hendrik Vincent; Volk, A.; de Haas, W.B.

    2015-01-01

    This paper presents a corpus-based study on rhythmic patterns in the RAG-collection of approximately 11.000 symbolically encoded ragtime pieces. While characteristic musical features that define ragtime as a genre have been debated since its inception, musicologists argue that specific syncopation

  12. Effects of rhythmic stimulus presentation on oscillatory brain activity: the physiology of cueing in Parkinson’s disease

    OpenAIRE

    te Woerd, Erik S.; Oostenveld, Robert; Bloem, Bastiaan R.; de Lange, Floris P.; Praamstra, Peter

    2015-01-01

    The basal ganglia play an important role in beat perception and patients with Parkinson's disease (PD) are impaired in perception of beat-based rhythms. Rhythmic cues are nonetheless beneficial in gait rehabilitation, raising the question how rhythm improves movement in PD. We addressed this question with magnetoencephalography recordings during a choice response task with rhythmic and non-rhythmic modes of stimulus presentation. Analyses focused on (i) entrainment of slow oscillations, (ii) ...

  13. Electric-field modulation of ferromagnetism in hexagonal chromium telluride thin film

    International Nuclear Information System (INIS)

    Akiyama, Ryota; Oikawa, Haruyoshi; Yamawaki, Kazuma; Kuroda, Shinji

    2014-01-01

    We report the electric-field modulation of magnetism of a hexagonal Cr 1-δ Te thin film. A gate voltage V G is ap-plied in the field effect capacitor (FEC) structure consisting of electric double-layer capacitor (EDLC) of an ion liquid and a 2nm-thick Cr 1-δ Te layer grown by molecular beam epitaxy (MBE) and the magnetization of the layer is directly measured using a superconducting quantum interference device (SQUID) magnetometer in the both configurations with magnetic fields perpendicular or parallel to the film plane. As a result, we observe a clear change in the magnetization vs. magnetic field (M-H) curves by applying VG at a low temperature of 15 K in the perpendicular field configuration; the magnetization increases and the coercivity decreases by applying either positive or negative gate voltage. When the temperature is increased up to 160K, slightly lower than the Curie temperature, or the magnetization was measured in the in-plane field configuration, the magnetization increases similarly by applying either positive or negative gate voltage, but the amount of the increase becomes much smaller. A possible mechanism of the electric-field modulation is discussed in relation to the Cr vacancies in the Cr 1-δ Te layer. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Electric-field modulation of ferromagnetism in hexagonal chromium telluride thin film

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Ryota; Oikawa, Haruyoshi; Yamawaki, Kazuma; Kuroda, Shinji [Institute of Materials Science, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573 (Japan)

    2014-07-15

    We report the electric-field modulation of magnetism of a hexagonal Cr{sub 1-δ}Te thin film. A gate voltage V{sub G} is ap-plied in the field effect capacitor (FEC) structure consisting of electric double-layer capacitor (EDLC) of an ion liquid and a 2nm-thick Cr{sub 1-δ}Te layer grown by molecular beam epitaxy (MBE) and the magnetization of the layer is directly measured using a superconducting quantum interference device (SQUID) magnetometer in the both configurations with magnetic fields perpendicular or parallel to the film plane. As a result, we observe a clear change in the magnetization vs. magnetic field (M-H) curves by applying VG at a low temperature of 15 K in the perpendicular field configuration; the magnetization increases and the coercivity decreases by applying either positive or negative gate voltage. When the temperature is increased up to 160K, slightly lower than the Curie temperature, or the magnetization was measured in the in-plane field configuration, the magnetization increases similarly by applying either positive or negative gate voltage, but the amount of the increase becomes much smaller. A possible mechanism of the electric-field modulation is discussed in relation to the Cr vacancies in the Cr{sub 1-δ}Te layer. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Electrical crosstalk in integrated Mach-Zehnder modulators caused by a shared ground path

    NARCIS (Netherlands)

    Yao, W.; Gilardi, G.; Smit, M.K.; Wale, M.J.

    2015-01-01

    We show that the majority of electrical crosstalk between integrated Mach-Zehnder modulators can be caused by a shared ground path and demonstrate that in its absence crosstalk and related transmission penalty is greatly reduced.

  16. Modulating patterns of two-phase flow with electric fields.

    Science.gov (United States)

    Liu, Dingsheng; Hakimi, Bejan; Volny, Michael; Rolfs, Joelle; Anand, Robbyn K; Turecek, Frantisek; Chiu, Daniel T

    2014-07-01

    This paper describes the use of electro-hydrodynamic actuation to control the transition between three major flow patterns of an aqueous-oil Newtonian flow in a microchannel: droplets, beads-on-a-string (BOAS), and multi-stream laminar flow. We observed interesting transitional flow patterns between droplets and BOAS as the electric field was modulated. The ability to control flow patterns of a two-phase fluid in a microchannel adds to the microfluidic tool box and improves our understanding of this interesting fluid behavior.

  17. Electrical power inverter having a phase modulated, twin-inverter, high frequency link and an energy storage module

    Science.gov (United States)

    Pitel, I.J.

    1987-02-03

    The present invention provides an electrical power inverter method and apparatus, which includes a high frequency link, for converting DC power into AC power. Generally stated, the apparatus includes a first high frequency module which produces an AC voltage at a first output frequency, and a second high frequency inverter module which produces an AC voltage at a second output frequency that is substantially the same as the first output frequency. The second AC voltage is out of phase with the first AC voltage by a selected angular phase displacement. A mixer mixes the first and second output voltages to produce a high frequency carrier which has a selected base frequency impressed on the sidebands thereof. A rectifier rectifies the carrier, and a filter filters the rectified carrier. An output inverter inverts the filtered carrier to produce an AC line voltage at the selected base frequency. A phase modulator adjusts the relative angular phase displacement between the outputs of the first and second high frequency modules to control the base frequency and magnitude of the AC line voltage. 19 figs.

  18. Electrical power inverter having a phase modulated, twin-inverter, high frequency link and an energy storage module

    Science.gov (United States)

    Pitel, Ira J.

    1987-02-03

    The present invention provides an electrical power inverter method and apparatus, which includes a high frequency link, for converting DC power into AC power. Generally stated, the apparatus includes a first high frequency module which produces an AC voltage at a first output frequency, and a second high frequency inverter module which produces an AC voltage at a second output frequency that is substantially the same as the first output frequency. The second AC voltage is out of phase with the first AC voltage by a selected angular phase displacement. A mixer mixes the first and second output voltages to produce a high frequency carrier which has a selected base frequency impressed on the sidebands thereof. A rectifier rectifies the carrier, and a filter filters the rectified carrier. An output inverter inverts the filtered carrier to produce an AC line voltage at the selected base frequency. A phase modulator adjusts the relative angular phase displacement between the outputs of the first and second high frequency modules to control the base frequency and magnitude of the AC line voltage.

  19. Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system.

    Science.gov (United States)

    Thaut, Michael H; McIntosh, Gerald C; Hoemberg, Volker

    2014-01-01

    Entrainment is defined by a temporal locking process in which one system's motion or signal frequency entrains the frequency of another system. This process is a universal phenomenon that can be observed in physical (e.g., pendulum clocks) and biological systems (e.g., fire flies). However, entrainment can also be observed between human sensory and motor systems. The function of rhythmic entrainment in rehabilitative training and learning was established for the first time by Thaut and colleagues in several research studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic patterns could entrain movement patterns in patients with movement disorders (see for a review: Thaut et al., 1999). Physiological, kinematic, and behavioral movement analysis showed very quickly that entrainment cues not only changed the timing of movement but also improved spatial and force parameters. Mathematical models have shown that anticipatory rhythmic templates as critical time constraints can result in the complete specification of the dynamics of a movement over the entire movement cycle, thereby optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment has been successfully extended into applications in cognitive rehabilitation and speech and language rehabilitation, and thus become one of the major neurological mechanisms linking music and rhythm to brain rehabilitation. These findings provided a scientific basis for the development of neurologic music therapy.

  20. Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system

    Science.gov (United States)

    Thaut, Michael H.; McIntosh, Gerald C.; Hoemberg, Volker

    2015-01-01

    Entrainment is defined by a temporal locking process in which one system’s motion or signal frequency entrains the frequency of another system. This process is a universal phenomenon that can be observed in physical (e.g., pendulum clocks) and biological systems (e.g., fire flies). However, entrainment can also be observed between human sensory and motor systems. The function of rhythmic entrainment in rehabilitative training and learning was established for the first time by Thaut and colleagues in several research studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic patterns could entrain movement patterns in patients with movement disorders (see for a review: Thaut et al., 1999). Physiological, kinematic, and behavioral movement analysis showed very quickly that entrainment cues not only changed the timing of movement but also improved spatial and force parameters. Mathematical models have shown that anticipatory rhythmic templates as critical time constraints can result in the complete specification of the dynamics of a movement over the entire movement cycle, thereby optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment has been successfully extended into applications in cognitive rehabilitation and speech and language rehabilitation, and thus become one of the major neurological mechanisms linking music and rhythm to brain rehabilitation. These findings provided a scientific basis for the development of neurologic music therapy. PMID:25774137

  1. Neurobiological Foundations of Neurologic Music Therapy: Rhythmic Entrainment and the Motor System

    Directory of Open Access Journals (Sweden)

    Michael eThaut

    2015-02-01

    Full Text Available AbstractEntrainment is defined by a temporal locking process in which one system’s motion or signal frequency entrains the frequency of another system. This process is a universal phenomenon that can be observed in physical (e.g., pendulum clocks and biological systems (e.g. fire flies. However, entrainment can also be observed between human sensory and motor systems. The function of rhythmic entrainment in rehabilitative training and learning was established for the first time by Thaut and colleagues in several research studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic patterns could entrain movement patterns in patients with movement disorders (see for a review: Thaut et al, 1999. Physiological, kinematic and behavioral movement analysis showed very quickly that entrainment cues not only changed the timing of movement but also improved spatial and force parameters. Mathematical models have shown that anticipatory rhythmic templates as critical time constraints can result in the complete specification of the dynamics of a movement over the entire movement cycle, thereby optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment has been successfully extended into applications in cognitive rehabilitation and speech and language rehabilitation, and thus become one of the major neurological mechanisms linking music and rhythm to brain rehabilitation. These findings provided a scientific basis for the development of Neurologic Music Therapy.

  2. Krüppel-like factor 15: Regulator of BCAA metabolism and circadian protein rhythmicity.

    Science.gov (United States)

    Fan, Liyan; Hsieh, Paishiun N; Sweet, David R; Jain, Mukesh K

    2018-04-01

    Regulation of nutrient intake, utilization, and storage exhibits a circadian rhythmicity that allows organisms to anticipate and adequately respond to changes in the environment across day/night cycles. The branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are important modulators of metabolism and metabolic health - for example, their catabolism yields carbon substrates for gluconeogenesis during periods of fasting. Krüppel-like factor 15 (KLF15) has recently emerged as a critical transcriptional regulator of BCAA metabolism, and the absence of this transcription factor contributes to severe pathologies such as Duchenne muscular dystrophy and heart failure. This review highlights KLF15's role as a central regulator of BCAA metabolism during periods of fasting, throughout day/night cycles, and in experimental models of muscle disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The design of a device for hearer and feeler differentiation, part A. [speech modulated hearing device

    Science.gov (United States)

    Creecy, R.

    1974-01-01

    A speech modulated white noise device is reported that gives the rhythmic characteristics of a speech signal for intelligible reception by deaf persons. The signal is composed of random amplitudes and frequencies as modulated by the speech envelope characteristics of rhythm and stress. Time intensity parameters of speech are conveyed through the vibro-tactile sensation stimuli.

  4. Electrical production testing of the D0 Silicon microstrip tracker detector modules

    Energy Technology Data Exchange (ETDEWEB)

    D0, SMT Production Testing Group; /Fermilab

    2006-03-01

    The D0 Silicon Microstrip Tracker (SMT) is the innermost system of the D0 detector in Run 2. It consists of 912 detector units, corresponding to 5 different types of assemblies, which add up to a system with 792,576 readout channels. The task entrusted to the Production Testing group was to thoroughly debug, test and grade each detector module before its installation in the tracker. This note describes the production testing sequence and the procedures by which the detector modules were electrically tested and characterized at the various stages of their assembly.

  5. Theta-rhythmic drive between medial septum and hippocampus in slow-wave sleep and microarousal: a Granger causality analysis.

    Science.gov (United States)

    Kang, D; Ding, M; Topchiy, I; Shifflett, L; Kocsis, B

    2015-11-01

    Medial septum (MS) plays a critical role in controlling the electrical activity of the hippocampus (HIPP). In particular, theta-rhythmic burst firing of MS neurons is thought to drive lasting HIPP theta oscillations in rats during waking motor activity and REM sleep. Less is known about MS-HIPP interactions in nontheta states such as non-REM sleep, in which HIPP theta oscillations are absent but theta-rhythmic burst firing in subsets of MS neurons is preserved. The present study used Granger causality (GC) to examine the interaction patterns between MS and HIPP in slow-wave sleep (SWS, a nontheta state) and during its short interruptions called microarousals (a transient theta state). We found that during SWS, while GC revealed a unidirectional MS→HIPP influence over a wide frequency band (2-12 Hz, maximum: ∼8 Hz), there was no theta peak in the hippocampal power spectra, indicating a lack of theta activity in HIPP. In contrast, during microarousals, theta peaks were seen in both MS and HIPP power spectra and were accompanied by bidirectional GC with MS→HIPP and HIPP→MS theta drives being of equal magnitude. Thus GC in a nontheta state (SWS) vs. a theta state (microarousal) primarily differed in the level of HIPP→MS. The present findings suggest a modification of our understanding of the role of MS as the theta generator in two regards. First, a MS→HIPP theta drive does not necessarily induce theta field oscillations in the hippocampus, as found in SWS. Second, HIPP theta oscillations entail bidirectional theta-rhythmic interactions between MS and HIPP. Copyright © 2015 the American Physiological Society.

  6. Study of light-absorbing crystal birefringence and electrical modulation mechanisms for coupled thermal-optical effects.

    Science.gov (United States)

    Zhou, Ji; He, Zhihong; Ma, Yu; Dong, Shikui

    2014-09-20

    This paper discusses Gaussian laser transmission in double-refraction crystal whose incident light wavelength is within its absorption wave band. Two scenarios for coupled radiation and heat conduction are considered: one is provided with an applied external electric field, the other is not. A circular heat source with a Gaussian energy distribution is introduced to present the crystal's light-absorption process. The electromagnetic field frequency domain analysis equation and energy equation are solved to simulate the phenomenon by using the finite element method. It focuses on the influence of different values such as wavelength, incident light intensity, heat transfer coefficient, ambient temperature, crystal thickness, and applied electric field strength. The results show that the refraction index of polarized light increases with the increase of crystal temperature. It decreases as the strength of the applied electric field increases if it is positive. The mechanism of electrical modulation for the thermo-optical effect is used to keep the polarized light's index of refraction constant in our simulation. The quantitative relation between thermal boundary condition and strength of applied electric field during electrical modulation is determined. Numerical results indicate a possible approach to removing adverse thermal effects such as depolarization and wavefront distortion, which are caused by thermal deposition during linear laser absorption.

  7. PKA Controls Calcium Influx into Motor Neurons during a Rhythmic Behavior

    Science.gov (United States)

    Wang, Han; Sieburth, Derek

    2013-01-01

    Cyclic adenosine monophosphate (cAMP) has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine) rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR) signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels. PMID:24086161

  8. PKA controls calcium influx into motor neurons during a rhythmic behavior.

    Directory of Open Access Journals (Sweden)

    Han Wang

    Full Text Available Cyclic adenosine monophosphate (cAMP has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels.

  9. The Edit Distance as a Measure of Perceived Rhythmic Similarity

    Directory of Open Access Journals (Sweden)

    Olaf Post

    2012-07-01

    Full Text Available The ‘edit distance’ (or ‘Levenshtein distance’ measure of distance between two data sets is defined as the minimum number of editing operations – insertions, deletions, and substitutions – that are required to transform one data set to the other (Orpen and Huron, 1992. This measure of distance has been applied frequently and successfully in music information retrieval, but rarely in predicting human perception of distance. In this study, we investigate the effectiveness of the edit distance as a predictor of perceived rhythmic dissimilarity under simple rhythmic alterations. Approaching rhythms as a set of pulses that are either onsets or silences, we study two types of alterations. The first experiment is designed to test the model’s accuracy for rhythms that are relatively similar; whether rhythmic variations with the same edit distance to a source rhythm are also perceived as relatively similar by human subjects. In addition, we observe whether the salience of an edit operation is affected by its metric placement in the rhythm. Instead of using a rhythm that regularly subdivides a 4/4 meter, our source rhythm is a syncopated 16-pulse rhythm, the son. Results show a high correlation between the predictions by the edit distance model and human similarity judgments (r = 0.87; a higher correlation than for the well-known generative theory of tonal music (r = 0.64. In the second experiment, we seek to assess the accuracy of the edit distance model in predicting relatively dissimilar rhythms. The stimuli used are random permutations of the son’s inter-onset intervals: 3-3-4-2-4. The results again indicate that the edit distance correlates well with the perceived rhythmic dissimilarity judgments of the subjects (r = 0.76. To gain insight in the relationships between the individual rhythms, the results are also presented by means of graphic phylogenetic trees.

  10. Status-Dependent Vasotocin Modulation of Dominance and Subordination in the Weakly Electric Fish Gymnotus omarorum

    Directory of Open Access Journals (Sweden)

    Rossana Perrone

    2018-01-01

    Full Text Available Dominant-subordinate status emerges from agonistic encounters. The weakly electric fish, Gymnotus omarorum, displays a clear-cut example of non-breeding territorial aggression. The asymmetry in the behavior of dominants and subordinates is outstanding. Dominants are highly aggressive and subordinates signal submission in a precise sequence of locomotor and electric traits: retreating, decreasing their electric organ discharge rate, and emitting transient electric signals. The hypothalamic neuropeptide arginine-vasotocin (AVT and its mammalian homolog arginine-vasopressin, are key modulators of social behavior, known to adapt their actions to different contexts. By analyzing the effects of pharmacological manipulations of the AVT system in both dominants and subordinates, we show evidence of distinct status-dependent actions of AVT. We demonstrate an endogenous effect of AVT on dominants' aggression levels: blocking the V1a AVT receptor induced a significant decrease in dominants' attack rate. AVT administered to subordinates enhanced the expression of the electric signals of submission, without affecting subordinates' locomotor displays. This study contributes a clear example of status-dependent AVT modulation of agonistic behavior in teleosts, and reveals distinctive activation patterns of the AVT system between dominants and subordinates.

  11. Status-Dependent Vasotocin Modulation of Dominance and Subordination in the Weakly Electric Fish Gymnotus omarorum.

    Science.gov (United States)

    Perrone, Rossana; Silva, Ana C

    2018-01-01

    Dominant-subordinate status emerges from agonistic encounters. The weakly electric fish, Gymnotus omarorum , displays a clear-cut example of non-breeding territorial aggression. The asymmetry in the behavior of dominants and subordinates is outstanding. Dominants are highly aggressive and subordinates signal submission in a precise sequence of locomotor and electric traits: retreating, decreasing their electric organ discharge rate, and emitting transient electric signals. The hypothalamic neuropeptide arginine-vasotocin (AVT) and its mammalian homolog arginine-vasopressin, are key modulators of social behavior, known to adapt their actions to different contexts. By analyzing the effects of pharmacological manipulations of the AVT system in both dominants and subordinates, we show evidence of distinct status-dependent actions of AVT. We demonstrate an endogenous effect of AVT on dominants' aggression levels: blocking the V1a AVT receptor induced a significant decrease in dominants' attack rate. AVT administered to subordinates enhanced the expression of the electric signals of submission, without affecting subordinates' locomotor displays. This study contributes a clear example of status-dependent AVT modulation of agonistic behavior in teleosts, and reveals distinctive activation patterns of the AVT system between dominants and subordinates.

  12. Precision of Discrete and Rhythmic Forelimb Movements Requires a Distinct Neuronal Subpopulation in the Interposed Anterior Nucleus

    Directory of Open Access Journals (Sweden)

    Aloysius Y.T. Low

    2018-02-01

    Full Text Available The deep cerebellar nuclei (DCN represent output channels of the cerebellum, and they transmit integrated sensorimotor signals to modulate limb movements. But the functional relevance of identifiable neuronal subpopulations within the DCN remains unclear. Here, we examine a genetically tractable population of neurons in the mouse interposed anterior nucleus (IntA. We show that these neurons represent a subset of glutamatergic neurons in the IntA and constitute a specific element of an internal feedback circuit within the cerebellar cortex and cerebello-thalamo-cortical pathway associated with limb control. Ablation and optogenetic stimulation of these neurons disrupt efficacy of skilled reach and locomotor movement and reveal that they control positioning and timing of the forelimb and hindlimb. Together, our findings uncover the function of a distinct neuronal subpopulation in the deep cerebellum and delineate the anatomical substrates and kinematic parameters through which it modulates precision of discrete and rhythmic limb movements.

  13. Precision of Discrete and Rhythmic Forelimb Movements Requires a Distinct Neuronal Subpopulation in the Interposed Anterior Nucleus.

    Science.gov (United States)

    Low, Aloysius Y T; Thanawalla, Ayesha R; Yip, Alaric K K; Kim, Jinsook; Wong, Kelly L L; Tantra, Martesa; Augustine, George J; Chen, Albert I

    2018-02-27

    The deep cerebellar nuclei (DCN) represent output channels of the cerebellum, and they transmit integrated sensorimotor signals to modulate limb movements. But the functional relevance of identifiable neuronal subpopulations within the DCN remains unclear. Here, we examine a genetically tractable population of neurons in the mouse interposed anterior nucleus (IntA). We show that these neurons represent a subset of glutamatergic neurons in the IntA and constitute a specific element of an internal feedback circuit within the cerebellar cortex and cerebello-thalamo-cortical pathway associated with limb control. Ablation and optogenetic stimulation of these neurons disrupt efficacy of skilled reach and locomotor movement and reveal that they control positioning and timing of the forelimb and hindlimb. Together, our findings uncover the function of a distinct neuronal subpopulation in the deep cerebellum and delineate the anatomical substrates and kinematic parameters through which it modulates precision of discrete and rhythmic limb movements. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Rhythmic Firing of Pedunculopontine Tegmental Nucleus Neurons in Monkeys during Eye Movement Task.

    Directory of Open Access Journals (Sweden)

    Ken-Ichi Okada

    Full Text Available The pedunculopontine tegmental nucleus (PPTN has been thought to be involved in the control of behavioral state. Projections to the entire thalamus and reciprocal connections with the basal ganglia nuclei suggest a potential role for the PPTN in the control of various rhythmic behaviors, including waking/sleeping and locomotion. Recently, rhythmic activity in the local field potentials was recorded from the PPTN of patients with Parkinson's disease who were treated with levodopa, suggesting that rhythmic firing is a feature of the functioning PPTN and might change with the behaving conditions even within waking. However, it remains unclear whether and how single PPTN neurons exhibit rhythmic firing patterns during various behaving conditions, including executing conditioned eye movement behaviors, seeking reward, or during resting. We previously recorded from PPTN neurons in healthy monkeys during visually guided saccade tasks and reported task-related changes in firing rate, and in this paper, we reanalyzed these data and focused on their firing patterns. A population of PPTN neurons demonstrated a regular firing pattern in that the coefficient of variation of interspike intervals was lower than what would be expected of theoretical random and irregular spike trains. Furthermore, a group of PPTN neurons exhibited a clear periodic single spike firing that changed with the context of the behavioral task. Many of these neurons exhibited a periodic firing pattern during highly active conditions, either the fixation condition during the saccade task or the free-viewing condition during the intertrial interval. We speculate that these task context-related changes in rhythmic firing of PPTN neurons might regulate the monkey's attentional and vigilance state to perform the task.

  15. Standard Test Method for Electrical Performance of Concentrator Terrestrial Photovoltaic Modules and Systems Under Natural Sunlight

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers the determination of the electrical performance of photovoltaic concentrator modules and systems under natural sunlight using a normal incidence pyrheliometer. 1.2 The test method is limited to module assemblies and systems where the geometric concentration ratio specified by the manufacturer is greater than 5. 1.3 This test method applies to concentrators that use passive cooling where the cell temperature is related to the air temperature. 1.4 Measurements under a variety of conditions are allowed; results are reported under a select set of concentrator reporting conditions to facilitate comparison of results. 1.5 This test method applies only to concentrator terrestrial modules and systems. 1.6 This test method assumes that the module or system electrical performance characteristics do not change during the period of test. 1.7 The performance rating determined by this test method applies only at the period of the test, and implies no past or future performance level. 1.8...

  16. Age-Related Changes in Bimanual Instrument Playing with Rhythmic Cueing

    Directory of Open Access Journals (Sweden)

    Soo Ji Kim

    2017-09-01

    Full Text Available Deficits in bimanual coordination of older adults have been demonstrated to significantly limit their functioning in daily life. As a bimanual sensorimotor task, instrument playing has great potential for motor and cognitive training in advanced age. While the process of matching a person’s repetitive movements to auditory rhythmic cueing during instrument playing was documented to involve motor and attentional control, investigation into whether the level of cognitive functioning influences the ability to rhythmically coordinate movement to an external beat in older populations is relatively limited. Therefore, the current study aimed to examine how timing accuracy during bimanual instrument playing with rhythmic cueing differed depending on the degree of participants’ cognitive aging. Twenty one young adults, 20 healthy older adults, and 17 older adults with mild dementia participated in this study. Each participant tapped an electronic drum in time to the rhythmic cueing provided using both hands simultaneously and in alternation. During bimanual instrument playing with rhythmic cueing, mean and variability of synchronization errors were measured and compared across the groups and the tempo of cueing during each type of tapping task. Correlations of such timing parameters with cognitive measures were also analyzed. The results showed that the group factor resulted in significant differences in the synchronization errors-related parameters. During bimanual tapping tasks, cognitive decline resulted in differences in synchronization errors between younger adults and older adults with mild dimentia. Also, in terms of variability of synchronization errors, younger adults showed significant differences in maintaining timing performance from older adults with and without mild dementia, which may be attributed to decreased processing time for bimanual coordination due to aging. Significant correlations were observed between variability of

  17. Outdoor thermal and electrical characterisation of photovoltaic modules and systems

    OpenAIRE

    Herteleer, Bert

    2016-01-01

    Current and future investors in photovoltaic systems are interested in how well the system performs, and how predictable this is over the expected lifetime. To do so, models have been developed and measurements of photovoltaic systems have been done. This dissertation presents the outdoor measurement set-up that has been developed for thermal and electrical characterisation of photovoltaic modules and systems, aimed at measuring transient effects and changes. The main design decisions and ...

  18. Temporal modulations in speech and music.

    Science.gov (United States)

    Ding, Nai; Patel, Aniruddh D; Chen, Lin; Butler, Henry; Luo, Cheng; Poeppel, David

    2017-10-01

    Speech and music have structured rhythms. Here we discuss a major acoustic correlate of spoken and musical rhythms, the slow (0.25-32Hz) temporal modulations in sound intensity and compare the modulation properties of speech and music. We analyze these modulations using over 25h of speech and over 39h of recordings of Western music. We show that the speech modulation spectrum is highly consistent across 9 languages (including languages with typologically different rhythmic characteristics). A different, but similarly consistent modulation spectrum is observed for music, including classical music played by single instruments of different types, symphonic, jazz, and rock. The temporal modulations of speech and music show broad but well-separated peaks around 5 and 2Hz, respectively. These acoustically dominant time scales may be intrinsic features of speech and music, a possibility which should be investigated using more culturally diverse samples in each domain. Distinct modulation timescales for speech and music could facilitate their perceptual analysis and its neural processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. MEG time-frequency analyses for pre- and post-surgical evaluation of patients with epileptic rhythmic fast activity.

    Science.gov (United States)

    Sueda, Keitaro; Takeuchi, Fumiya; Shiraishi, Hideaki; Nakane, Shingo; Asahina, Naoko; Kohsaka, Shinobu; Nakama, Hideyuki; Otsuki, Taisuke; Sawamura, Yutaka; Saitoh, Shinji

    2010-02-01

    To evaluate the effectiveness of surgery for epilepsy, we analyzed rhythmic fast activity by magnetoencephalography (MEG) before and after surgery using time-frequency analysis. To assess reliability, the results obtained by pre-surgical MEG and intraoperative electrocorticography were compared. Four children with symptomatic localization-related epilepsy caused by circumscribed cortical lesion were examined in the present study using 204-channel helmet-shaped MEG with a sampling rate of 600Hz. One patient had dysembryoplastic neuroepithelial tumor (DNT) and three patients had focal cortical dysplasia (FCD). Aberrant areas were superimposed, to reconstruct 3D MRI images, and illustrated as moving images. In three patients, short-time Fourier transform (STFT) analyses of MEG showed rhythmic activities just above the lesion with FCD and in the vicinity of DNT. In one patient with FCD in the medial temporal lobe, rhythmic activity appeared in the ipsilateral frontal lobe and temporal lateral aspect. These findings correlate well with the results obtained by intraoperative electrocorticography. After the surgery, three patients were relieved of their seizures, and the area of rhythmic MEG activity disappeared or become smaller. One patient had residual rhythmic MEG activity, and she suffered from seizure relapse. Time-frequency analyses using STFT successfully depicted MEG rhythmic fast activity, and would provide valuable information for pre- and post-surgical evaluations to define surgical strategies for patients with epilepsy.

  20. Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver.

    Science.gov (United States)

    Mauvoisin, Daniel; Wang, Jingkui; Jouffe, Céline; Martin, Eva; Atger, Florian; Waridel, Patrice; Quadroni, Manfredo; Gachon, Frédéric; Naef, Felix

    2014-01-07

    Diurnal oscillations of gene expression controlled by the circadian clock underlie rhythmic physiology across most living organisms. Although such rhythms have been extensively studied at the level of transcription and mRNA accumulation, little is known about the accumulation patterns of proteins. Here, we quantified temporal profiles in the murine hepatic proteome under physiological light-dark conditions using stable isotope labeling by amino acids quantitative MS. Our analysis identified over 5,000 proteins, of which several hundred showed robust diurnal oscillations with peak phases enriched in the morning and during the night and related to core hepatic physiological functions. Combined mathematical modeling of temporal protein and mRNA profiles indicated that proteins accumulate with reduced amplitudes and significant delays, consistent with protein half-life data. Moreover, a group comprising about one-half of the rhythmic proteins showed no corresponding rhythmic mRNAs, indicating significant translational or posttranslational diurnal control. Such rhythms were highly enriched in secreted proteins accumulating tightly during the night. Also, these rhythms persisted in clock-deficient animals subjected to rhythmic feeding, suggesting that food-related entrainment signals influence rhythms in circulating plasma factors.

  1. Speak on time! Effects of a musical rhythmic training on children with hearing loss.

    Science.gov (United States)

    Hidalgo, Céline; Falk, Simone; Schön, Daniele

    2017-08-01

    This study investigates temporal adaptation in speech interaction in children with normal hearing and in children with cochlear implants (CIs) and/or hearing aids (HAs). We also address the question of whether musical rhythmic training can improve these skills in children with hearing loss (HL). Children named pictures presented on the screen in alternation with a virtual partner. Alternation rate (fast or slow) and the temporal predictability (match vs mismatch of stress occurrences) were manipulated. One group of children with normal hearing (NH) and one with HL were tested. The latter group was tested twice: once after 30 min of speech therapy and once after 30 min of musical rhythmic training. Both groups of children (NH and with HL) can adjust their speech production to the rate of alternation of the virtual partner. Moreover, while children with normal hearing benefit from the temporal regularity of stress occurrences, children with HL become sensitive to this manipulation only after rhythmic training. Rhythmic training may help children with HL to structure the temporal flow of their verbal interactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Interactive rhythmic auditory stimulation reinstates natural 1/f timing in gait of Parkinson's patients.

    Directory of Open Access Journals (Sweden)

    Michael J Hove

    Full Text Available Parkinson's disease (PD and basal ganglia dysfunction impair movement timing, which leads to gait instability and falls. Parkinsonian gait consists of random, disconnected stride times--rather than the 1/f structure observed in healthy gait--and this randomness of stride times (low fractal scaling predicts falling. Walking with fixed-tempo Rhythmic Auditory Stimulation (RAS can improve many aspects of gait timing; however, it lowers fractal scaling (away from healthy 1/f structure and requires attention. Here we show that interactive rhythmic auditory stimulation reestablishes healthy gait dynamics in PD patients. In the experiment, PD patients and healthy participants walked with a no auditory stimulation, b fixed-tempo RAS, and c interactive rhythmic auditory stimulation. The interactive system used foot sensors and nonlinear oscillators to track and mutually entrain with the human's step timing. Patients consistently synchronized with the interactive system, their fractal scaling returned to levels of healthy participants, and their gait felt more stable to them. Patients and healthy participants rarely synchronized with fixed-tempo RAS, and when they did synchronize their fractal scaling declined from healthy 1/f levels. Five minutes after removing the interactive rhythmic stimulation, the PD patients' gait retained high fractal scaling, suggesting that the interaction stabilized the internal rhythm generating system and reintegrated timing networks. The experiment demonstrates that complex interaction is important in the (reemergence of 1/f structure in human behavior and that interactive rhythmic auditory stimulation is a promising therapeutic tool for improving gait of PD patients.

  3. Quantum well saturable absorber mirror with electrical control of modulation depth

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Rafailov, Edik U.; Livshits, Daniil

    2010-01-01

    in the range 2.5–0.5%, as measured by nonlinear reflectivity of 450 fs long laser pulses with 1065 nm central wavelength, in the pump fluence range 1.6–26.7 J /cm2. This electrical control of the modulation depth is achieved by controlling the small-signal loss of the SESAM via quantum-confined Stark effect......We demonstrate a quantum well QW semiconductor saturable absorber mirror SESAM comprising low-temperature grown InGaAs/GaAs QWs incorporated into a p-i-n structure. By applying the reverse bias voltage in the range 0–2 V to the p-i-n structure, we were able to change the SESAM modulation depth...

  4. Rhesus monkeys (Macaca mulatta) detect rhythmic groups in music, but not the beat.

    Science.gov (United States)

    Honing, Henkjan; Merchant, Hugo; Háden, Gábor P; Prado, Luis; Bartolo, Ramón

    2012-01-01

    It was recently shown that rhythmic entrainment, long considered a human-specific mechanism, can be demonstrated in a selected group of bird species, and, somewhat surprisingly, not in more closely related species such as nonhuman primates. This observation supports the vocal learning hypothesis that suggests rhythmic entrainment to be a by-product of the vocal learning mechanisms that are shared by several bird and mammal species, including humans, but that are only weakly developed, or missing entirely, in nonhuman primates. To test this hypothesis we measured auditory event-related potentials (ERPs) in two rhesus monkeys (Macaca mulatta), probing a well-documented component in humans, the mismatch negativity (MMN) to study rhythmic expectation. We demonstrate for the first time in rhesus monkeys that, in response to infrequent deviants in pitch that were presented in a continuous sound stream using an oddball paradigm, a comparable ERP component can be detected with negative deflections in early latencies (Experiment 1). Subsequently we tested whether rhesus monkeys can detect gaps (omissions at random positions in the sound stream; Experiment 2) and, using more complex stimuli, also the beat (omissions at the first position of a musical unit, i.e. the 'downbeat'; Experiment 3). In contrast to what has been shown in human adults and newborns (using identical stimuli and experimental paradigm), the results suggest that rhesus monkeys are not able to detect the beat in music. These findings are in support of the hypothesis that beat induction (the cognitive mechanism that supports the perception of a regular pulse from a varying rhythm) is species-specific and absent in nonhuman primates. In addition, the findings support the auditory timing dissociation hypothesis, with rhesus monkeys being sensitive to rhythmic grouping (detecting the start of a rhythmic group), but not to the induced beat (detecting a regularity from a varying rhythm).

  5. Rhesus monkeys (Macaca mulatta detect rhythmic groups in music, but not the beat.

    Directory of Open Access Journals (Sweden)

    Henkjan Honing

    Full Text Available It was recently shown that rhythmic entrainment, long considered a human-specific mechanism, can be demonstrated in a selected group of bird species, and, somewhat surprisingly, not in more closely related species such as nonhuman primates. This observation supports the vocal learning hypothesis that suggests rhythmic entrainment to be a by-product of the vocal learning mechanisms that are shared by several bird and mammal species, including humans, but that are only weakly developed, or missing entirely, in nonhuman primates. To test this hypothesis we measured auditory event-related potentials (ERPs in two rhesus monkeys (Macaca mulatta, probing a well-documented component in humans, the mismatch negativity (MMN to study rhythmic expectation. We demonstrate for the first time in rhesus monkeys that, in response to infrequent deviants in pitch that were presented in a continuous sound stream using an oddball paradigm, a comparable ERP component can be detected with negative deflections in early latencies (Experiment 1. Subsequently we tested whether rhesus monkeys can detect gaps (omissions at random positions in the sound stream; Experiment 2 and, using more complex stimuli, also the beat (omissions at the first position of a musical unit, i.e. the 'downbeat'; Experiment 3. In contrast to what has been shown in human adults and newborns (using identical stimuli and experimental paradigm, the results suggest that rhesus monkeys are not able to detect the beat in music. These findings are in support of the hypothesis that beat induction (the cognitive mechanism that supports the perception of a regular pulse from a varying rhythm is species-specific and absent in nonhuman primates. In addition, the findings support the auditory timing dissociation hypothesis, with rhesus monkeys being sensitive to rhythmic grouping (detecting the start of a rhythmic group, but not to the induced beat (detecting a regularity from a varying rhythm.

  6. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor

    NARCIS (Netherlands)

    Buijink, A. W. G.; Broersma, M.; van der Stouwe, A. M. M.; van Wingen, G. A.; Groot, P. F. C.; Speelman, J. D.; Maurits, N. M.; van Rootselaar, A. F.

    Introduction: Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of

  7. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor

    NARCIS (Netherlands)

    Buijink, A. W. G.; Broersma, M.; van der Stouwe, A. M. M.; van Wingen, G. A.; Groot, P. F. C.; Speelman, J. D.; Maurits, N. M.; van Rootselaar, A. F.

    2015-01-01

    Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of cerebellar

  8. A Rhythmic Musical Intervention for Poor Readers: A Comparison of Efficacy with a Letter-Based Intervention

    Science.gov (United States)

    Bhide, Adeetee; Power, Alan; Goswami, Usha

    2013-01-01

    There is growing evidence that children with reading difficulties show impaired auditory rhythm perception and impairments in musical beat perception tasks. Rhythmic musical interventions with poorer readers may thus improve rhythmic entrainment and consequently improve reading and phonological skills. Here we compare the effects of a musical…

  9. Phase modulation of mid-infrared radiation in double-quantum-well structures under a lateral electric field

    Energy Technology Data Exchange (ETDEWEB)

    Balagula, R. M.; Vinnichenko, M. Ya.; Makhov, I. S.; Sofronov, A. N., E-mail: sofronov@rphf.spbstu.ru; Firsov, D. A.; Vorobjev, L. E. [Peter the Great St. Petersburg Polytechnic University (Russian Federation)

    2017-03-15

    The modulation of polarized radiation by GaAs/AlGaAs structures with tunnel-coupled double quantum wells in a strong lateral electric field is studied. The spectra of the variation in the refractive index under a lateral electric field in the vicinity of the intersubband resonance are experimentally investigated.

  10. Effects of Articulation Styles on Perception of Modulated Tempos in Violin Excerpts

    Science.gov (United States)

    Geringer, John M.; Madsen, Clifford K.; Macleod, Rebecca B.

    2007-01-01

    We investigated effects of legato, staccato and pizzicato articulation styles on the perception of modulated tempos. Seventy-two music majors served as participants. Two solo violin excerpts were chosen with contrasting rhythmic rates and were recorded in all three articulation styles. Examples were presented to listeners in three conditions of…

  11. Amino-termini isoforms of the Slack K+ channel, regulated by alternative promoters, differentially modulate rhythmic firing and adaptation.

    Science.gov (United States)

    Brown, Maile R; Kronengold, Jack; Gazula, Valeswara-Rao; Spilianakis, Charalampos G; Flavell, Richard A; von Hehn, Christian A A; Bhattacharjee, Arin; Kaczmarek, Leonard K

    2008-11-01

    The rates of activation and unitary properties of Na+-activated K+ (K(Na)) currents have been found to vary substantially in different types of neurones. One class of K(Na) channels is encoded by the Slack gene. We have now determined that alternative RNA splicing gives rise to at least five different transcripts for Slack, which produce Slack channels that differ in their predicted cytoplasmic amino-termini and in their kinetic properties. Two of these, termed Slack-A channels, contain an amino-terminus domain closely resembling that of another class of K(Na) channels encoded by the Slick gene. Neuronal expression of Slack-A channels and of the previously described Slack isoform, now called Slack-B, are driven by independent promoters. Slack-A mRNAs were enriched in the brainstem and olfactory bulb and detected at significant levels in four different brain regions. When expressed in CHO cells, Slack-A channels activate rapidly upon depolarization and, in single channel recordings in Xenopus oocytes, are characterized by multiple subconductance states with only brief transient openings to the fully open state. In contrast, Slack-B channels activate slowly over hundreds of milliseconds, with openings to the fully open state that are approximately 6-fold longer than those for Slack-A channels. In numerical simulations, neurones in which outward currents are dominated by a Slack-A-like conductance adapt very rapidly to repeated or maintained stimulation over a wide range of stimulus strengths. In contrast, Slack-B currents promote rhythmic firing during maintained stimulation, and allow adaptation rate to vary with stimulus strength. Using an antibody that recognizes all amino-termini isoforms of Slack, Slack immunoreactivity is present at locations that have no Slack-B-specific staining, including olfactory bulb glomeruli and the dendrites of hippocampal neurones, suggesting that Slack channels with alternate amino-termini such as Slack-A channels are present at

  12. Phase-Modulation Laser Interference Microscopy

    DEFF Research Database (Denmark)

    Brazhe, Alexey; Brazhe, Nadezda; Maximov, G. V.

    2008-01-01

    We describe how phase-modulation laser interference microscopy and wavelet analysis can be applied to noninvasive nonstained visualization and study of the structural and dynamical properties of living cells. We show how phase images of erythrocytes can reveal the difference between various...... erythrocyte forms and stages of hemolysis and how phase images of neurons reveal their complex intracellular structure. Temporal variations of the refractive index are analyzed to detect cellular rhythmic activity on different time scales as well as to uncover interactions between the cellular processes....

  13. Passive listening to preferred motor tempo modulates corticospinal excitability.

    Science.gov (United States)

    Michaelis, Kelly; Wiener, Martin; Thompson, James C

    2014-01-01

    Rhythms are an essential characteristic of our lives, and auditory-motor coupling affects a variety of behaviors. Previous research has shown that the neural regions associated with motor system processing are coupled to perceptual rhythmic and melodic processing such that the perception of rhythmic stimuli can entrain motor system responses. However, the degree to which individual preference modulates the motor system is unknown. Recent work has shown that passively listening to metrically strong rhythms increases corticospinal excitability, as indicated by transcranial magnetic stimulation (TMS). Furthermore, this effect is modulated by high-groove music, or music that inspires movement, while neuroimaging evidence suggests that premotor activity increases with tempos occurring within a preferred tempo (PT) category. PT refers to the rate of a hypothetical endogenous oscillator that may be indicated by spontaneous motor tempo (SMT) and preferred perceptual tempo (PPT) measurements. The present study investigated whether listening to a rhythm at an individual's PT preferentially modulates motor system excitability. SMT was obtained in human participants through a tapping task in which subjects were asked to tap a response key at their most comfortable rate. Subjects listened a 10-beat tone sequence at 11 log-spaced tempos and rated their preference for each (PPT). We found that SMT and PPT measurements were correlated, indicating that preferred and produced tempos occurred at a similar rate. Crucially, single-pulse TMS delivered to left M1 during PPT judgments revealed that corticospinal excitability, measured by motor-evoked potentials (MEPs), was modulated by tempos traveling closer to individual PT. However, the specific nature of this modulation differed across individuals, with some exhibiting an increase in excitability around PT and others exhibiting a decrease. These findings suggest that auditory-motor coupling induced by rhythms is preferentially

  14. Body Temperature Cycles Control Rhythmic Alternative Splicing in Mammals.

    Science.gov (United States)

    Preußner, Marco; Goldammer, Gesine; Neumann, Alexander; Haltenhof, Tom; Rautenstrauch, Pia; Müller-McNicoll, Michaela; Heyd, Florian

    2017-08-03

    The core body temperature of all mammals oscillates with the time of the day. However, direct molecular consequences of small, physiological changes in body temperature remain largely elusive. Here we show that body temperature cycles drive rhythmic SR protein phosphorylation to control an alternative splicing (AS) program. A temperature change of 1°C is sufficient to induce a concerted splicing switch in a large group of functionally related genes, rendering this splicing-based thermometer much more sensitive than previously described temperature-sensing mechanisms. AS of two exons in the 5' UTR of the TATA-box binding protein (Tbp) highlights the general impact of this mechanism, as it results in rhythmic TBP protein levels with implications for global gene expression in vivo. Together our data establish body temperature-driven AS as a core clock-independent oscillator in mammalian peripheral clocks. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Intensive gait training with rhythmic auditory stimulation in individuals with chronic hemiparetic stroke: a pilot randomized controlled study.

    Science.gov (United States)

    Cha, Yuri; Kim, Young; Hwang, Sujin; Chung, Yijung

    2014-01-01

    Motor relearning protocols should involve task-oriented movement, focused attention, and repetition of desired movements. To investigate the effect of intensive gait training with rhythmic auditory stimulation on postural control and gait performance in individuals with chronic hemiparetic stroke. Twenty patients with chronic hemiparetic stroke participated in this study. Subjects in the Rhythmic auditory stimulation training group (10 subjects) underwent intensive gait training with rhythmic auditory stimulation for a period of 6 weeks (30 min/day, five days/week), while those in the control group (10 subjects) underwent intensive gait training for the same duration. Two clinical measures, Berg balance scale and stroke specific quality of life scale, and a 2-demensional gait analysis system, were used as outcome measure. To provide rhythmic auditory stimulation during gait training, the MIDI Cuebase musical instrument digital interface program and a KM Player version 3.3 was utilized for this study. Intensive gait training with rhythmic auditory stimulation resulted in significant improvement in scores on the Berg balance scale, gait velocity, cadence, stride length and double support period in affected side, and stroke specific quality of life scale compared with the control group after training. Findings of this study suggest that intensive gait training with rhythmic auditory stimulation improves balance and gait performance as well as quality of life, in individuals with chronic hemiparetic stroke.

  16. Rate control and quality assurance during rhythmic force tracking.

    Science.gov (United States)

    Huang, Cheng-Ya; Su, Jyong-Huei; Hwang, Ing-Shiou

    2014-02-01

    Movement characteristics can be coded in the single neurons or in the summed activity of neural populations. However, whether neural oscillations are conditional to the frequency demand and task quality of rhythmic force regulation is still unclear. This study was undertaken to investigate EEG dynamics and behavior correlates during force-tracking at different target rates. Fourteen healthy volunteers conducted load-varying isometric abduction of the index finger by coupling the force output to sinusoidal targets at 0.5 Hz, 1.0 Hz, and 2.0 Hz. Our results showed that frequency demand significantly affected EEG delta oscillation (1-4 Hz) in the C3, CP3, CPz, and CP4 electrodes, with the greatest delta power and lowest delta peak around 1.5 Hz for slower tracking at 0.5 Hz. Those who had superior tracking congruency also manifested enhanced alpha oscillation (8-12 Hz). Alpha rhythms of the skilled performers during slow tracking spread through the whole target cycle, except for the phase of direction changes. However, the alpha rhythms centered at the mid phase of a target cycle with increasing target rate. In conclusion, our findings clearly suggest two advanced roles of cortical oscillation in rhythmic force regulation. Rate-dependent delta oscillation involves a paradigm shift in force control under different time scales. Phasic organization of alpha rhythms during rhythmic force tracking is related to behavioral success underlying the selective use of bimodal controls (feedback and feedforward processes) and the timing of attentional focus on the target's peak velocity. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Differential processing of melodic, rhythmic and simple tone deviations in musicians--an MEG study.

    Science.gov (United States)

    Lappe, Claudia; Lappe, Markus; Pantev, Christo

    2016-01-01

    Rhythm and melody are two basic characteristics of music. Performing musicians have to pay attention to both, and avoid errors in either aspect of their performance. To investigate the neural processes involved in detecting melodic and rhythmic errors from auditory input we tested musicians on both kinds of deviations in a mismatch negativity (MMN) design. We found that MMN responses to a rhythmic deviation occurred at shorter latencies than MMN responses to a melodic deviation. Beamformer source analysis showed that the melodic deviation activated superior temporal, inferior frontal and superior frontal areas whereas the activation pattern of the rhythmic deviation focused more strongly on inferior and superior parietal areas, in addition to superior temporal cortex. Activation in the supplementary motor area occurred for both types of deviations. We also recorded responses to similar pitch and tempo deviations in a simple, non-musical repetitive tone pattern. In this case, there was no latency difference between the MMNs and cortical activation was smaller and mostly limited to auditory cortex. The results suggest that prediction and error detection of musical stimuli in trained musicians involve a broad cortical network and that rhythmic and melodic errors are processed in partially different cortical streams. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Classification of rhythmic locomotor patterns in electromyographic signals using fuzzy sets

    Directory of Open Access Journals (Sweden)

    Thrasher Timothy A

    2011-12-01

    Full Text Available Abstract Background Locomotor control is accomplished by a complex integration of neural mechanisms including a central pattern generator, spinal reflexes and supraspinal control centres. Patterns of muscle activation during walking exhibit an underlying structure in which groups of muscles seem to activate in united bursts. Presented here is a statistical approach for analyzing Surface Electromyography (SEMG data with the goal of classifying rhythmic "burst" patterns that are consistent with a central pattern generator model of locomotor control. Methods A fuzzy model of rhythmic locomotor patterns was optimized and evaluated using SEMG data from a convenience sample of four able-bodied individuals. As well, two subjects with pathological gait participated: one with Parkinson's Disease, and one with incomplete spinal cord injury. Subjects walked overground and on a treadmill while SEMG was recorded from major muscles of the lower extremities. The model was fit to half of the recorded data using non-linear optimization and validated against the other half of the data. The coefficient of determination, R2, was used to interpret the model's goodness of fit. Results Using four fuzzy burst patterns, the model was able to explain approximately 70-83% of the variance in muscle activation during treadmill gait and 74% during overground gait. When five burst functions were used, one function was found to be redundant. The model explained 81-83% of the variance in the Parkinsonian gait, and only 46-59% of the variance in spinal cord injured gait. Conclusions The analytical approach proposed in this article is a novel way to interpret multichannel SEMG signals by reducing the data into basic rhythmic patterns. This can help us better understand the role of rhythmic patterns in locomotor control.

  19. Conceptual design of an electrical power module for the tokamak fusion test reactor

    International Nuclear Information System (INIS)

    Jassby, D.L.; Bullis, R.; Sedgeley, D.; Caldwell, C.S.; Pettus, W.G.; Schluderberg, D.C.

    1979-01-01

    The TFTR Engineering Test Station (ETS) can support blanket modules with a fusion-neutron view area of 0.5 m/sup 2/. If the TFTR magnetic systems and beam injectors can operate with pulse lengths of 5 s, once every 300 s, the time-averaged neutron power incident on a module will be 1.5 kW, which can be enhanced by a suitable blanket energy multiplier. A preliminary conceptual design of a dual-loop steam-generating power system that can be housed in the ETS has been carried out. The optimal heat transfer fluid in the primary loop is an organic liquid, which allows an operating temperature of 700/degree/F at low pressure. The primary coolant must be preheated electrically to operating temperature. A ballast tank levels the temperature at the steam generator, so that the secondary loop is in steady-state operation. With a natural-uranium blanket multiplier, the time-averaged net electrical power is 1.2 kW(e). 8 refs

  20. Evoked potentials after painful cutaneous electrical stimulation depict pain relief during a conditioned pain modulation.

    Science.gov (United States)

    Höffken, Oliver; Özgül, Özüm S; Enax-Krumova, Elena K; Tegenthoff, Martin; Maier, Christoph

    2017-08-29

    Conditioned pain modulation (CPM) evaluates the pain modulating effect of a noxious conditioning stimulus (CS) on another noxious test stimulus (TS), mostly based solely on subjective pain ratings. We used painful cutaneous electrical stimulation (PCES) to induce TS in a novel CPM-model. Additionally, to evaluate a more objective parameter, we recorded the corresponding changes of cortical evoked potentials (PCES-EP). We examined the CPM-effect in 17 healthy subjects in a randomized controlled cross-over design during immersion of the non-dominant hand into 10 °C or 24 °C cold water (CS). Using three custom-built concentric surface electrodes, electrical stimuli were applied on the dominant hand, inducing pain of 40-60 on NRS 0-100 (TS). At baseline, during and after CS we assessed the electrically induced pain intensity and electrically evoked potentials recorded over the central electrode (Cz). Only in the 10 °C-condition, both pain (52.6 ± 4.4 (baseline) vs. 30.3 ± 12.5 (during CS)) and amplitudes of PCES-EP (42.1 ± 13.4 μV (baseline) vs. 28.7 ± 10.5 μV (during CS)) attenuated during CS and recovered there after (all p pain ratings during electrical stimulation and amplitudes of PCES-EP correlated significantly with each other (r = 0.5) and with CS pain intensity (r = 0.5). PCES-EPs are a quantitative measure of pain relief, as changes in the electrophysiological response are paralleled by a consistent decrease in subjective pain ratings. This novel CPM paradigm is a feasible method, which could help to evaluate the function of the endogenous pain modulation processes. German Clinical Trials Register DRKS-ID: DRKS00012779 , retrospectively registered on 24 July 2017.

  1. A Bootstrap Based Measure Robust to the Choice of Normalization Methods for Detecting Rhythmic Features in High Dimensional Data.

    Science.gov (United States)

    Larriba, Yolanda; Rueda, Cristina; Fernández, Miguel A; Peddada, Shyamal D

    2018-01-01

    Motivation: Gene-expression data obtained from high throughput technologies are subject to various sources of noise and accordingly the raw data are pre-processed before formally analyzed. Normalization of the data is a key pre-processing step, since it removes systematic variations across arrays. There are numerous normalization methods available in the literature. Based on our experience, in the context of oscillatory systems, such as cell-cycle, circadian clock, etc., the choice of the normalization method may substantially impact the determination of a gene to be rhythmic. Thus rhythmicity of a gene can purely be an artifact of how the data were normalized. Since the determination of rhythmic genes is an important component of modern toxicological and pharmacological studies, it is important to determine truly rhythmic genes that are robust to the choice of a normalization method. Results: In this paper we introduce a rhythmicity measure and a bootstrap methodology to detect rhythmic genes in an oscillatory system. Although the proposed methodology can be used for any high-throughput gene expression data, in this paper we illustrate the proposed methodology using several publicly available circadian clock microarray gene-expression datasets. We demonstrate that the choice of normalization method has very little effect on the proposed methodology. Specifically, for any pair of normalization methods considered in this paper, the resulting values of the rhythmicity measure are highly correlated. Thus it suggests that the proposed measure is robust to the choice of a normalization method. Consequently, the rhythmicity of a gene is potentially not a mere artifact of the normalization method used. Lastly, as demonstrated in the paper, the proposed bootstrap methodology can also be used for simulating data for genes participating in an oscillatory system using a reference dataset. Availability: A user friendly code implemented in R language can be downloaded from http://www.eio.uva.es/~miguel/robustdetectionprocedure.html.

  2. Spectroelectrochemical properties of ultra-thin indium tin oxide films under electric potential modulation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xue, E-mail: x0han004@louisville.edu; Mendes, Sergio B., E-mail: sbmend01@louisville.edu

    2016-03-31

    In this work, the spectroscopic properties of ultra-thin ITO films are characterized under an applied electric potential modulation. To detect minute spectroscopic features, the ultra-thin ITO film was coated over an extremely sensitive single-mode integrated optical waveguide, which provided a long pathlength with more than adequate sensitivity for optical interrogation of the ultra-thin film. Experimental configurations with broadband light and several laser lines at different modulation schemes of an applied electric potential were utilized to elucidate the nature of intrinsic changes. The imaginary component of the refractive index (absorption coefficient) of the ultra-thin ITO film is unequivocally shown to have a dependence on the applied potential and the profile of this dependence changes substantially even for wavelengths inside a small spectral window (500–600 nm). The characterization technique and the data reported here can be crucial to several applications of the ITO material as a transparent conductive electrode, as for example in spectroelectrochemical investigations of surface-confined redox species. - Highlights: • Optical waveguides are applied for spectroscopic investigations of ultra-thin films. • Ultra-thin ITO films in aqueous environment are studied under potential modulation. • Unique spectroscopic features of ultra-thin ITO films are unambiguously observed.

  3. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Steve A. [Univ. of Southern California, Los Angeles, CA (United States)

    2017-10-20

    Objectives: Several breakthroughs have been recently made in our understanding of plant growth and biomass accumulation. It was found that plant growth is rhythmically controlled throughout the day by the circadian clock through a complex interplay of light and phytohormone signaling pathways. While plants such as the C4 energy crop sorghum (Sorghum bicolor (L.) Moench) and possibly the C3 grass Brachypodium distachyon also exhibit daily rhythms in growth rate, the molecular details of its regulation remain to be explored. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield. Here we propose to devise a systems approach to identify, in parallel, regulatory hubs associated with rhythmic growth in C3 and C4 plants. We propose to use rhythmicity in daily growth patterns to drive the discovery of regulatory network modules controlling biomass accumulation. Description: The project is divided in three main parts: 1) Performing time-lapse imaging and growth measurement in B. distachyon and S. bicolor to determine growth rate dynamic during the day/night cycle. Identifying growth-associated genes whose expression patterns follow the observed growth dynamics using deep sequencing technology, 2) identifying regulators of these genes by screening for DNA-binding proteins interacting with the growth-associated gene promoters identified in Aim 1. Screens will be performed using a validated yeast-one hybrid strategy paired with a specifically designed B. distachyon and S. bicolor transcription factor libraries (1000 clones each), and 3) Selecting 50 potential growth regulators from the screen for downstream characterization. The selection will be made by using a sytems biology approach by calculating the connectivity between growth rate, rhythmic gene expression profiles and TF expression profile and determine which TF is likely part of a hub

  4. Spin transport through electric field modulated graphene periodic ferromagnetic barriers

    International Nuclear Information System (INIS)

    Sattari, F.; Faizabadi, E.

    2014-01-01

    Using the transfer matrix method, the spin transmission coefficient and the spin conductivity are studied theoretically through the monolayer and bilayer graphene periodic ferromagnetic barriers modulated by a homogeneous electric field. The spin conductivity of the systems has an oscillatory behavior with respect to the external electric field which depends on the spin state of electron. In addition, the oscillation amplitude of the spin conductivity and spin polarization increase by increasing the number of barriers, but for a monolayer system with number of barriers greater than thirty, also for a bilayer system with the number of barriers greater than four, the oscillation amplitude does not change significantly. Our probes show that for bilayer system unlike monolayer structure the highest value of spin polarization achieved can be 1 or (−1). So, for designing spintronic devices, bilayer graphene is more efficient

  5. Fault-tolerant electric drive and space-phasor modulation of flux-switching permanent magnet machine for aerospace application

    NARCIS (Netherlands)

    Wang, L.; Aleksandrov, S.; Tang, Y.; Paulides, J.J.H.; Lomonova, E.A.

    2017-01-01

    This study investigates how to improve the fault tolerance or availability of an electrical drive containing a three-phase 12 stator teeth/10 rotor poles (12/10) the flux-switching permanent magnet machine. In this respect, space-vector modulation and space-phasor modulation will be analysed in this

  6. Spatiotemporal dynamics of rhythmic spinal interneurons measured with two-photon calcium imaging and coherence analysis.

    Science.gov (United States)

    Kwan, Alex C; Dietz, Shelby B; Zhong, Guisheng; Harris-Warrick, Ronald M; Webb, Watt W

    2010-12-01

    In rhythmic neural circuits, a neuron often fires action potentials with a constant phase to the rhythm, a timing relationship that can be functionally significant. To characterize these phase preferences in a large-scale, cell type-specific manner, we adapted multitaper coherence analysis for two-photon calcium imaging. Analysis of simulated data showed that coherence is a simple and robust measure of rhythmicity for calcium imaging data. When applied to the neonatal mouse hindlimb spinal locomotor network, the phase relationships between peak activity of >1,000 ventral spinal interneurons and motor output were characterized. Most interneurons showed rhythmic activity that was coherent and in phase with the ipsilateral motor output during fictive locomotion. The phase distributions of two genetically identified classes of interneurons were distinct from the ensemble population and from each other. There was no obvious spatial clustering of interneurons with similar phase preferences. Together, these results suggest that cell type, not neighboring neuron activity, is a better indicator of an interneuron's response during fictive locomotion. The ability to measure the phase preferences of many neurons with cell type and spatial information should be widely applicable for studying other rhythmic neural circuits.

  7. Rhythmic Extended Kalman Filter for Gait Rehabilitation Motion Estimation and Segmentation.

    Science.gov (United States)

    Joukov, Vladimir; Bonnet, Vincent; Karg, Michelle; Venture, Gentiane; Kulic, Dana

    2018-02-01

    This paper proposes a method to enable the use of non-intrusive, small, wearable, and wireless sensors to estimate the pose of the lower body during gait and other periodic motions and to extract objective performance measures useful for physiotherapy. The Rhythmic Extended Kalman Filter (Rhythmic-EKF) algorithm is developed to estimate the pose, learn an individualized model of periodic movement over time, and use the learned model to improve pose estimation. The proposed approach learns a canonical dynamical system model of the movement during online observation, which is used to accurately model the acceleration during pose estimation. The canonical dynamical system models the motion as a periodic signal. The estimated phase and frequency of the motion also allow the proposed approach to segment the motion into repetitions and extract useful features, such as gait symmetry, step length, and mean joint movement and variance. The algorithm is shown to outperform the extended Kalman filter in simulation, on healthy participant data, and stroke patient data. For the healthy participant marching dataset, the Rhythmic-EKF improves joint acceleration and velocity estimates over regular EKF by 40% and 37%, respectively, estimates joint angles with 2.4° root mean squared error, and segments the motion into repetitions with 96% accuracy.

  8. Alpha-Band Rhythms in Visual Task Performance: Phase-Locking by Rhythmic Sensory Stimulation

    Science.gov (United States)

    de Graaf, Tom A.; Gross, Joachim; Paterson, Gavin; Rusch, Tessa; Sack, Alexander T.; Thut, Gregor

    2013-01-01

    Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour, such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality. These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may be closely linked to brain oscillations. We here investigated this link for a prominent rhythm of the visual system (the alpha-rhythm, 8–12 Hz) by applying rhythmic visual stimulation at alpha-frequency (10.6 Hz), known to lead to a resonance response in visual areas, and testing its effects on subsequent visual target discrimination. Our data show that rhythmic visual stimulation at 10.6 Hz: 1) has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz, 7.1 Hz, 14.2 Hz), and 2) leads to alpha-band oscillations in visual performance measures, that 3) correlate in precise frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious explanation for these three findings is entrainment (phase-locking) of ongoing perceptually relevant alpha-band brain oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal influences of these rhythms on task performance to study their functional roles. PMID:23555873

  9. Functional magnetic resonance imaging study comparing rhythmic finger tapping in children and adults.

    Science.gov (United States)

    De Guio, François; Jacobson, Sandra W; Molteno, Christopher D; Jacobson, Joseph L; Meintjes, Ernesta M

    2012-02-01

    This study compared brain activation during unpaced rhythmic finger tapping in 12-year-old children with that of adults. Subjects pressed a button at a pace initially indicated by a metronome (12 consecutive tones), and then continued for 16 seconds of unpaced tapping to provide an assessment of their ability to maintain a steady rhythm. These analyses focused on the superior vermis of the cerebellum, which is known to play a key role in timing. Twelve adults and 12 children performed this rhythmic finger tapping task in a 3 T scanner. Whole-brain analyses were performed in Brain Voyager, with a random-effects analysis of variance using a general linear model. A dedicated cerebellar atlas was used to localize cerebellar activations. As in adults, unpaced rhythmic finger tapping in children demonstrated activations in the primary motor cortex, premotor cortex, and cerebellum. However, overall activation was different, in that adults demonstrated much more deactivation in response to the task, particularly in the occipital and frontal cortices. The other main differences involved the additional recruitment of motor and premotor areas in children compared with adults, and increased activity in the vermal region of the cerebellum. These findings suggest that the timing component of the unpaced rhythmic finger tapping task is less efficient and automatic in children, who need to recruit the superior vermis more intensively to maintain the rhythm, although they performed somewhat more poorly than adults. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Emerging subspecialties in neurology: deep brain stimulation and electrical neuro-network modulation.

    Science.gov (United States)

    Hassan, Anhar; Okun, Michael S

    2013-01-29

    Deep brain stimulation (DBS) is a surgical therapy that involves the delivery of an electrical current to one or more brain targets. This technology has been rapidly expanding to address movement, neuropsychiatric, and other disorders. The evolution of DBS has created a niche for neurologists, both in the operating room and in the clinic. Since DBS is not always deep, not always brain, and not always simply stimulation, a more accurate term for this field may be electrical neuro-network modulation (ENM). Fellowships will likely in future years evolve their scope to include other technologies, and other nervous system regions beyond typical DBS therapy.

  11. Hybrid Modulation of Bidirectional Three-Phase Dual-Active-Bridge DC Converters for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Yen-Ching Wang

    2016-06-01

    Full Text Available Bidirectional power converters for electric vehicles (EVs have received much attention recently, due to either grid-supporting requirements or emergent power supplies. This paper proposes a hybrid modulation of the three-phase dual-active bridge (3ΦDAB converter for EV charging systems. The designed hybrid modulation allows the converter to switch its modulation between phase-shifted and trapezoidal modes to increase the conversion efficiency, even under light-load conditions. The mode transition is realized in a real-time manner according to the charging or discharging current. The operation principle of the converter is analyzed in different modes and thus design considerations of the modulation are derived. A lab-scaled prototype circuit with a 48V/20Ah LiFePO4 battery is established to validate the feasibility and effectiveness.

  12. Visualizing Carrier Transport in Metal Halide Perovskite Nanoplates via Electric Field Modulated Photoluminescence Imaging.

    Science.gov (United States)

    Hu, Xuelu; Wang, Xiao; Fan, Peng; Li, Yunyun; Zhang, Xuehong; Liu, Qingbo; Zheng, Weihao; Xu, Gengzhao; Wang, Xiaoxia; Zhu, Xiaoli; Pan, Anlian

    2018-05-09

    Metal halide perovskite nanostructures have recently been the focus of intense research due to their exceptional optoelectronic properties and potential applications in integrated photonics devices. Charge transport in perovskite nanostructure is a crucial process that defines efficiency of optoelectronic devices but still requires a deep understanding. Herein, we report the study of the charge transport, particularly the drift of minority carrier in both all-inorganic CsPbBr 3 and organic-inorganic hybrid CH 3 NH 3 PbBr 3 perovskite nanoplates by electric field modulated photoluminescence (PL) imaging. Bias voltage dependent elongated PL emission patterns were observed due to the carrier drift at external electric fields. By fitting the drift length as a function of electric field, we obtained the carrier mobility of about 28 cm 2 V -1 S -1 in the CsPbBr 3 perovskite nanoplate. The result is consistent with the spatially resolved PL dynamics measurement, confirming the feasibility of the method. Furthermore, the electric field modulated PL imaging is successfully applied to the study of temperature-dependent carrier mobility in CsPbBr 3 nanoplates. This work not only offers insights for the mobile carrier in metal halide perovskite nanostructures, which is essential for optimizing device design and performance prediction, but also provides a novel and simple method to investigate charge transport in many other optoelectronic materials.

  13. Use of Sine Shaped High-Frequency Rhythmic Visual Stimuli Patterns for SSVEP Response Analysis and Fatigue Rate Evaluation in Normal Subjects.

    Science.gov (United States)

    Keihani, Ahmadreza; Shirzhiyan, Zahra; Farahi, Morteza; Shamsi, Elham; Mahnam, Amin; Makkiabadi, Bahador; Haidari, Mohsen R; Jafari, Amir H

    2018-01-01

    Background: Recent EEG-SSVEP signal based BCI studies have used high frequency square pulse visual stimuli to reduce subjective fatigue. However, the effect of total harmonic distortion (THD) has not been considered. Compared to CRT and LCD monitors, LED screen displays high-frequency wave with better refresh rate. In this study, we present high frequency sine wave simple and rhythmic patterns with low THD rate by LED to analyze SSVEP responses and evaluate subjective fatigue in normal subjects. Materials and Methods: We used patterns of 3-sequence high-frequency sine waves (25, 30, and 35 Hz) to design our visual stimuli. Nine stimuli patterns, 3 simple (repetition of each of above 3 frequencies e.g., P25-25-25) and 6 rhythmic (all of the frequencies in 6 different sequences e.g., P25-30-35) were chosen. A hardware setup with low THD rate ( 90% for CCA and LASSO (for TWs > 1 s). High frequency rhythmic patterns group with low THD rate showed higher accuracy rate (99.24%) than simple patterns group (98.48%). Repeated measure ANOVA showed significant difference between rhythmic pattern features ( P rhythmic [3.85 ± 2.13] compared to the simple patterns group [3.96 ± 2.21], ( P = 0.63). Rhythmic group had lower within group VAS variation (min = P25-30-35 [2.90 ± 2.45], max = P35-25-30 [4.81 ± 2.65]) as well as least individual pattern VAS (P25-30-35). Discussion and Conclusion: Overall, rhythmic and simple pattern groups had higher and similar accuracy rates. Rhythmic stimuli patterns showed insignificantly lower fatigue rate than simple patterns. We conclude that both rhythmic and simple visual high frequency sine wave stimuli require further research for human subject SSVEP-BCI studies.

  14. Electrical connectors for blanket modules in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Poddubnyi, I., E-mail: poddubnyyii@nikiet.ru [Open Joint-Stock Company “N.A. Dollezhal Research and Development Institute of Power Engineering”, 107140, Malaya Krasnoselskaya Street 2/8, Moscow (Russian Federation); Khomiakov, S.; Kolganov, V. [Open Joint-Stock Company “N.A. Dollezhal Research and Development Institute of Power Engineering”, 107140, Malaya Krasnoselskaya Street 2/8, Moscow (Russian Federation); Sadakov, S.; Calcagno, B.; Chappuis, Ph.; Roccella, R.; Raffray, R. [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul-Lez-Durance (France); Danilov, I.; Leshukov, A.; Strebkov, Y. [Open Joint-Stock Company “N.A. Dollezhal Research and Development Institute of Power Engineering”, 107140, Malaya Krasnoselskaya Street 2/8, Moscow (Russian Federation); Ulrickson, M. [Sandia National Laboratories MS-1129, PO Box 5800, Albuquerque, NM 87185 (United States)

    2014-10-15

    Highlights: • Analysis of static and cyclic strength for L-shaped and Z-shaped ES has been performed. • Analysis results do show that for L-shaped ES static and cyclic strength criteria are not satisfied. • Static and cyclic strength criteria are met well by ES with Z-shaped elastic elements. • ES with Z-shaped elastic elements has been adopted as a new baseline design for ITER. - Abstract: Blanket electrical connectors (E-straps, ES) are low-impedance electrical bridges crossing gaps between blanket modules (BMs) and vacuum vessel (VV). Similar ES are used between two parts on each BM: the first wall panel (FW) and shield block (SB). The main functions of E-straps are to: (a) conduct halo currents intercepting some rows of BM, (b) provide grounding paths for all BMs, and (c) operate as electrical shunts which protect water cooling pipes (branch pipes) from excessive halo and eddy currents. E-straps should be elastic enough to absorb 3-D imposed displacements of BM relative VV in a scale of ±2 mm and at the same time strong enough to not be damaged by EM loads. Each electrical strap is a package of flexible conductive sheets made of CuCrZr bronze. Halo current up to 137 kA and some components of eddy currents do pass through one E-strap for a few tens or hundreds milliseconds during the plasma vertical displacement events (VDE) and disruptions. These currents deposit Joule heat and cause rather high electromagnetic loads in a strong external magnetic field, reaching 9 T. A gradual failure of ES to conduct Halo and Eddy currents with low enough impedance gradually redistributes these currents into branch pipes and cause excessive EM loads. When branch pipes will be bent so much that will touch surrounding structures, the Joule heating in accidental electrical contact spots will cause local melting and may lead to a water leak. The paper presents and compares two design options of E-straps: with L-shaped and Z-shaped elastic elements. The latter option was

  15. Differential maturation of rhythmic clock gene expression during early development in medaka (Oryzias latipes).

    Science.gov (United States)

    Cuesta, Ines H; Lahiri, Kajori; Lopez-Olmeda, Jose Fernando; Loosli, Felix; Foulkes, Nicholas S; Vallone, Daniela

    2014-05-01

    One key challenge for the field of chronobiology is to identify how circadian clock function emerges during early embryonic development. Teleosts such as the zebrafish are ideal models for studying circadian clock ontogeny since the entire process of development occurs ex utero in an optically transparent chorion. Medaka (Oryzias latipes) represents another powerful fish model for exploring early clock function with, like the zebrafish, many tools available for detailed genetic analysis. However, to date there have been no reports documenting circadian clock gene expression during medaka development. Here we have characterized the expression of key clock genes in various developmental stages and in adult tissues of medaka. As previously reported for other fish, light dark cycles are required for the emergence of clock gene expression rhythms in this species. While rhythmic expression of per and cry genes is detected very early during development and seems to be light driven, rhythmic clock and bmal expression appears much later around hatching time. Furthermore, the maturation of clock function seems to correlate with the appearance of rhythmic expression of these positive elements of the clock feedback loop. By accelerating development through elevated temperatures or by artificially removing the chorion, we show an earlier onset of rhythmicity in clock and bmal expression. Thus, differential maturation of key elements of the medaka clock mechanism depends on the developmental stage and the presence of the chorion.

  16. Rhythm, movement, and autism: Using rhythmic rehabilitation research as a model for autism

    Directory of Open Access Journals (Sweden)

    A. Blythe eLaGasse

    2013-03-01

    Full Text Available Recently, there has been increased focus on movement and sensory abnormalities in autism spectrum disorders (ASD. This has come from research demonstrating cortical and cerebellar difference in autism, with suggestion of early cerebellar dysfunction. As evidence for an extended profile of ASD grows, there are vast implications for treatment and therapy for individuals with autism. Persons with autism are often provided behavioral or cognitive strategies for navigating their environment; however, these strategies do not consider differences in motor functioning. One accommodation that has not yet been explored in the literature is the use of auditory rhythmic cueing to improve motor functioning in ASD. The purpose of this paper is to illustrate the potential impact of auditory rhythmic cueing for motor functioning in persons with ASD. To this effect, we review research on rhythm in motor rehabilitation, draw parallels to motor dysfunction in ASD, and propose a rationale for how rhythmic input can improve sensorimotor functioning, thereby allowing individuals with autism to demonstrate their full cognitive, behavioral, social, and communicative potential.

  17. Rhythmic regularity revisited : Is beat induction indeed pre-attentive?

    NARCIS (Netherlands)

    Bouwer, F.; Honing, H.; Cambouropoulos, E.; Tsougras, C.; Mavromatis, P.; Pastiadis, K.

    2012-01-01

    When listening to musical rhythm, regularity in time is often perceived in the form of a beat or pulse. External rhythmic events can give rise to the perception of a beat, through a process known as beat induction. In addition, internal processes, like long-term memory, working memory and automatic

  18. Rhythmic Density Affects Listeners' Emotional Response to Microtiming

    Directory of Open Access Journals (Sweden)

    Olivier Senn

    2017-10-01

    – Study A investigates the effect of fixed time displacements within and between the parts played by different musicians. Listeners (n = 160 reacted negatively to irregularities within the drum track, but the mutual displacement of bass vs. drums did not have an effect.– Study B develops three metrics to calculate the average microtiming magnitude in a musical excerpt. The experiment showed that listeners' (n = 160 emotional responses to expert performance microtiming aligned with each other across styles, when microtiming magnitude was adjusted for rhythmic density. This indicates that rhythmic density is a unifying moderator for listeners' emotional response to microtiming in swing and funk.– Study C used the data from both experiments in order to compare the effect of fixed microtiming displacements (from Study A with scaled versions of the originally performed microtiming patterns (from Study B. It showed that fixed snare drum displacements irritated expert listeners more than the more flexible deviations occurring in the original performances. This provides some evidence that listeners' emotional response to microtiming deviations not only depends on the magnitude of the deviations, but also on the kind and origin of the microtiming patterns (fixed lab displacements vs. flexible performance microtiming.

  19. Rhythmic synchronization tapping to an audio–visual metronome in budgerigars

    Science.gov (United States)

    Hasegawa, Ai; Okanoya, Kazuo; Hasegawa, Toshikazu; Seki, Yoshimasa

    2011-01-01

    In all ages and countries, music and dance have constituted a central part in human culture and communication. Recently, vocal-learning animals such as parrots and elephants have been found to share rhythmic ability with humans. Thus, we investigated the rhythmic synchronization of budgerigars, a vocal-mimicking parrot species, under controlled conditions and a systematically designed experimental paradigm as a first step in understanding the evolution of musical entrainment. We trained eight budgerigars to perform isochronous tapping tasks in which they pecked a key to the rhythm of audio–visual metronome-like stimuli. The budgerigars showed evidence of entrainment to external stimuli over a wide range of tempos. They seemed to be inherently inclined to tap at fast tempos, which have a similar time scale to the rhythm of budgerigars' natural vocalizations. We suggest that vocal learning might have contributed to their performance, which resembled that of humans. PMID:22355637

  20. Rhythmic synchronization tapping to an audio-visual metronome in budgerigars.

    Science.gov (United States)

    Hasegawa, Ai; Okanoya, Kazuo; Hasegawa, Toshikazu; Seki, Yoshimasa

    2011-01-01

    In all ages and countries, music and dance have constituted a central part in human culture and communication. Recently, vocal-learning animals such as parrots and elephants have been found to share rhythmic ability with humans. Thus, we investigated the rhythmic synchronization of budgerigars, a vocal-mimicking parrot species, under controlled conditions and a systematically designed experimental paradigm as a first step in understanding the evolution of musical entrainment. We trained eight budgerigars to perform isochronous tapping tasks in which they pecked a key to the rhythm of audio-visual metronome-like stimuli. The budgerigars showed evidence of entrainment to external stimuli over a wide range of tempos. They seemed to be inherently inclined to tap at fast tempos, which have a similar time scale to the rhythm of budgerigars' natural vocalizations. We suggest that vocal learning might have contributed to their performance, which resembled that of humans.

  1. The problem of the quality of judging in rhythmic gymnastics

    Directory of Open Access Journals (Sweden)

    V.V. Perederij

    2013-03-01

    Full Text Available The aim of the study is to develop a classification of factors influencing the quality of judging in rhythmic gymnastics. As a result of consolidation of theoretical information and practical experience was a list of the factors that negatively affect the behavior of judges in gymnastics, which were divided into two groups: the objective and non-objective (subjective. Objective factors include intense competition schedule, fatigue, especially memory, attention, competition rules, to the subjective: the ratio of judges to their gymnast (team or to the opposing team, the lack of interest in the performance, composition of the judging panel, the influence of authority and popularity sportswomen dependence on its management. Respondents were unanimous in that independent professional judges are needed in a rhythmic gymnastics. It is set that 64% respondent mark the presence of pressure on judges from the side of competitors.

  2. YOUNG LEARNERS’ RHYTHMIC AND INTONATION SKILLS THROUGH DRAMA

    Directory of Open Access Journals (Sweden)

    Olena Beskorsa

    2016-11-01

    Full Text Available The article is devoted to the problem of implementing drama techniques into the process of developing young learners’ rhythmic and intonation skills. The main task of learning the foreign language is using it as a mean of pupils’ communication in oral and written forms. The author proves that drama techniques integrate successfully all types of speech activities. It is specified that this method transfers the focus from teaching grammatically correct speech to training clear and effective communication. The author emphasizes on that sentence stress and speed of speech has the greatest influence on the rhythm. The application of these drama techniques are thought to increase primary school pupils’ level of motivation to master the language skills perfectly, it provides a positive psychological climate in English classes. The teachers’ role has a tendency to minimizing. They act as facilitators. In author’s opinion if they do impose the authority implementing drama activities into the classroom, the educational value of drama techniques will be never gained. It is also disclosed that rhythmic and intonation skills shouldn’t be formed spontaneously, the process of their development has to be conducted in certain stages (presentation and production to make pupils’ speech fluent and pronunciation clear, introducing the exercises based on drama techniques. At the stage of presentation the following exercises have the most methodological value: speed dictations, dictogloss, asking questions to practise recognizing word boundaries, matching phrases to stress patterns, marking stresses and weak forms, authentic listening. At production stage they suggest using exercises like play reading and play production. The following pieces of drama texts are recommended to be applied for teaching primary school children: jazz chants, poems, scripted plays and simple scenes from different movie genres. It is also proved that drama techniques and

  3. Electricity Market Module: Electricity finance and pricing submodule

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The purpose of this report is to document the updates to the Electricity Financial Pricing Module (EFP) to reflect the rate impacts of nuclear decommissioning. The EFP is part of the National Energy Modeling System (NEMS). The updates to the EFP related to nuclear decommissioning include both changes to the underlying data base and the methodology. Nuclear decommissioning refers to the activities performed to take a nuclear plant permanently out of service. The costs of nuclear decommissioning are substantial and uncertain. The recovery of these costs from ratepayers is to occur over the operating life of the nuclear plant. Utilities are obligated to make estimates of the nuclear decommissioning cost every few years. Given this estimate, utilities are to assess a charge upon ratepayers, such that over the operating life of the plant they collect sufficient funds to pay for the decommissioning. However, cost estimates for decommissioning have been increasing and it appears that utilities have not been collecting adequate funds to date. In addition, there is a real risk that many nuclear plants may be closed earlier than originally planned, further exacerbating the under collection problem. The updates performed in this project provide the EFP with the capability to analyze these issues. The remainder of this document is divided into two discussions: (1) Nuclear Decommissioning Data Base, and (2) Methodology. Appendix A contains the actual data base developed during the project.

  4. Electrical Modulation of Fano Resonance in Plasmonic Nanostructures Using Graphene

    DEFF Research Database (Denmark)

    Emani, Naresh K.; Chung, Ting-Fung; Kildishev, Alexander V.

    2014-01-01

    Pauli blocking of interband transistions gives rise to tunable optical properties in single layer graphene (SLG). This effect is exploited in a graphene-nanoantenna hybrid device where Fano resonant plasmonic nanostructures are fabricated on top of a graphene sheet. The use of Fano resonant eleme......-element simulations. Our approach can be used for development of next generation of tunable plasmonic and hybrid nanophotonic devices.......Pauli blocking of interband transistions gives rise to tunable optical properties in single layer graphene (SLG). This effect is exploited in a graphene-nanoantenna hybrid device where Fano resonant plasmonic nanostructures are fabricated on top of a graphene sheet. The use of Fano resonant...... elements enhances the interaction of incident radiation with the graphene sheet and enables efficient electrical modulation of the plasmonic resonance. We observe electrically controlled damping in the Fano resonances occurring at approximately 2 μm, and the results are verified by full-wave 3D finite...

  5. Modulation of Illusory Auditory Perception by Transcranial Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Giulia Prete

    2017-06-01

    Full Text Available The aim of the present study was to test whether transcranial electrical stimulation can modulate illusory perception in the auditory domain. In two separate experiments we applied transcranial Direct Current Stimulation (anodal/cathodal tDCS, 2 mA; N = 60 and high-frequency transcranial Random Noise Stimulation (hf-tRNS, 1.5 mA, offset 0; N = 45 on the temporal cortex during the presentation of the stimuli eliciting the Deutsch's illusion. The illusion arises when two sine tones spaced one octave apart (400 and 800 Hz are presented dichotically in alternation, one in the left and the other in the right ear, so that when the right ear receives the high tone, the left ear receives the low tone, and vice versa. The majority of the population perceives one high-pitched tone in one ear alternating with one low-pitched tone in the other ear. The results revealed that neither anodal nor cathodal tDCS applied over the left/right temporal cortex modulated the perception of the illusion, whereas hf-tRNS applied bilaterally on the temporal cortex reduced the number of times the sequence of sounds is perceived as the Deutsch's illusion with respect to the sham control condition. The stimulation time before the beginning of the task (5 or 15 min did not influence the perceptual outcome. In accordance with previous findings, we conclude that hf-tRNS can modulate auditory perception more efficiently than tDCS.

  6. ANALYSIS OF SOLAR POWER STATION SCHEMES ON PHOTOELECTRIC MODULES FOR ELECTRIC CARS CHARGING STATIONS

    Directory of Open Access Journals (Sweden)

    A. Hnatov

    2017-12-01

    Full Text Available The analysis of existing schemes for building solar power stations on photoelectric modules with the revealing of their operation principles and functionality has been conducted. The specified technical characteristics of each of the analyzed schemes are given. The structural scheme of the solar charging station for electric cars with determining its functional capabilities and operation features is proposed. The practical application of this scheme will help to reduce the dependence on the general electric power supply network and will create conditions for its total rejection.

  7. Inter-limb coupling in bimanual rhythmic coordination in Parkinson's disease

    NARCIS (Netherlands)

    Verheul, M.H.G.; Geuze, RH

    2004-01-01

    Recently, it has been shown that rhythmic inter-limb coordination is disturbed in patients with Parkinson's disease (PD). The present study aims to investigate whether this coordination deficit is primarily the result of an impaired coupling, related to hypoactivation of the supplementary motor area

  8. Attentional loads associated with interlimb interactions underlying rhythmic bimanual coordination.

    NARCIS (Netherlands)

    Ridderikhoff, A.; Peper, C.E.; Beek, P.J.

    2008-01-01

    Studies of rhythmic bimanual coordination under dual-task conditions revealed (1) a dependence of secondary task performance on the stability of coordinative tasks, in that secondary task performance was better during in-phase than antiphase coordination, and (2) a shift in the mean relative phasing

  9. Calibration-free absolute frequency response measurement of directly modulated lasers based on additional modulation.

    Science.gov (United States)

    Zhang, Shangjian; Zou, Xinhai; Wang, Heng; Zhang, Yali; Lu, Rongguo; Liu, Yong

    2015-10-15

    A calibration-free electrical method is proposed for measuring the absolute frequency response of directly modulated semiconductor lasers based on additional modulation. The method achieves the electrical domain measurement of the modulation index of directly modulated lasers without the need for correcting the responsivity fluctuation in the photodetection. Moreover, it doubles measuring frequency range by setting a specific frequency relationship between the direct and additional modulation. Both the absolute and relative frequency response of semiconductor lasers are experimentally measured from the electrical spectrum of the twice-modulated optical signal, and the measured results are compared to those obtained with conventional methods to check the consistency. The proposed method provides calibration-free and accurate measurement for high-speed semiconductor lasers with high-resolution electrical spectrum analysis.

  10. Nuclear modules for space electric propulsion

    International Nuclear Information System (INIS)

    Difilippo, F.C.

    1998-01-01

    Analysis of interplanetary cargo and piloted missions requires calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options iteratively by using fast computer simulations. The Oak Ridge National Laboratory (ORNL) has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition. dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one-dimensional versions of the equations of conservation of mass, energy, and momentum with compressible flow. 10 refs., 1 tab

  11. High-precision thermal and electrical characterization of thermoelectric modules

    Science.gov (United States)

    Kolodner, Paul

    2014-05-01

    This paper describes an apparatus for performing high-precision electrical and thermal characterization of thermoelectric modules (TEMs). The apparatus is calibrated for operation between 20 °C and 80 °C and is normally used for measurements of heat currents in the range 0-10 W. Precision thermometry based on miniature thermistor probes enables an absolute temperature accuracy of better than 0.010 °C. The use of vacuum isolation, thermal guarding, and radiation shielding, augmented by a careful accounting of stray heat leaks and uncertainties, allows the heat current through the TEM under test to be determined with a precision of a few mW. The fractional precision of all measured parameters is approximately 0.1%.

  12. Electrical system for pulse-width modulated control of a power inverter using phase-shifted carrier signals and related operating methods

    Science.gov (United States)

    Welchko, Brian A [Torrance, CA

    2012-02-14

    Systems and methods are provided for pulse-width modulated control of power inverter using phase-shifted carrier signals. An electrical system comprises an energy source and a motor. The motor has a first set of windings and a second set of windings, which are electrically isolated from each other. An inverter module is coupled between the energy source and the motor and comprises a first set of phase legs coupled to the first set of windings and a second set of phase legs coupled to the second set of windings. A controller is coupled to the inverter module and is configured to achieve a desired power flow between the energy source and the motor by modulating the first set of phase legs using a first carrier signal and modulating the second set of phase legs using a second carrier signal. The second carrier signal is phase-shifted relative to the first carrier signal.

  13. Improvement of technical training of sportswomen in rhythmic gymnastics by means of acrobatics at the stage of preliminary basic preparation

    Directory of Open Access Journals (Sweden)

    Petro Kyzim

    2016-10-01

    Full Text Available Purpose: to prove experimentally the technique of improvement of technical training of sportswomen in rhythmic gymnastics by means of acrobatics at the stage of preliminary basic preparation. Material & Methods: the following methods of the research were used: analysis and synthesis of references, pedagogical observations, pedagogical testing, pedagogical experiment, method of expert assessment (qualimetry, methods of mathematical statistics. Results: the level of technical skill of performance of pre-acrobatic elements by sportswomen of rhythmic gymnastics before carrying out the pedagogical experiment is determined. The dynamics of indicators of the level of technical preparedness of sportswomen of rhythmic gymnastics is defined. Conclusions: it is established that additional resources of acrobatics influence significantly the level of technical preparedness of sportswomen of rhythmic gymnastics at the stage of preliminary basic preparation.

  14. Modulation of terahertz generation in dual-color filaments by an external electric field and preformed plasma

    International Nuclear Information System (INIS)

    Li Min; Li An-Yuan; Yuan Shuai; Zeng He-Ping; He Bo-Qu

    2016-01-01

    Terahertz generation driven by dual-color filaments in air is demonstrated to be remarkably enhanced by applying an external electric field to the filaments. As terahertz generation is sensitive to the dual-color phase difference, a preformed plasma is verified efficiently in modulating terahertz radiation from linear to elliptical polarization. In the presence of preformed plasma, a dual-color filament generates terahertz pulses of elliptical polarization and the corresponding ellipse rotates regularly with the change of the preformed plasma density. The observed terahertz modulation with the external electric field and the preformed plasma provides a simple way to estimate the plasma density and evaluate the photocurrent dynamics of the dual-color filaments. It provides further experimental evidence of the photo-current model in governing the dual-color filament driven terahertz generation processes. (paper)

  15. Effect of rhythmic auditory cueing on gait in cerebral palsy: a systematic review and meta-analysis.

    Science.gov (United States)

    Ghai, Shashank; Ghai, Ishan; Effenberg, Alfred O

    2018-01-01

    Auditory entrainment can influence gait performance in movement disorders. The entrainment can incite neurophysiological and musculoskeletal changes to enhance motor execution. However, a consensus as to its effects based on gait in people with cerebral palsy is still warranted. A systematic review and meta-analysis were carried out to analyze the effects of rhythmic auditory cueing on spatiotemporal and kinematic parameters of gait in people with cerebral palsy. Systematic identification of published literature was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses and American Academy for Cerebral Palsy and Developmental Medicine guidelines, from inception until July 2017, on online databases: Web of Science, PEDro, EBSCO, Medline, Cochrane, Embase and ProQuest. Kinematic and spatiotemporal gait parameters were evaluated in a meta-analysis across studies. Of 547 records, nine studies involving 227 participants (108 children/119 adults) met our inclusion criteria. The qualitative review suggested beneficial effects of rhythmic auditory cueing on gait performance among all included studies. The meta-analysis revealed beneficial effects of rhythmic auditory cueing on gait dynamic index (Hedge's g =0.9), gait velocity (1.1), cadence (0.3), and stride length (0.5). This review for the first time suggests a converging evidence toward application of rhythmic auditory cueing to enhance gait performance and stability in people with cerebral palsy. This article details underlying neurophysiological mechanisms and use of cueing as an efficient home-based intervention. It bridges gaps in the literature, and suggests translational approaches on how rhythmic auditory cueing can be incorporated in rehabilitation approaches to enhance gait performance in people with cerebral palsy.

  16. Dispersed solar thermal generation employing parabolic dish-electric transport with field modulated generator systems

    Science.gov (United States)

    Ramakumar, R.; Bahrami, K.

    1981-01-01

    This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.

  17. Power module assembly

    Science.gov (United States)

    Campbell, Jeremy B [Torrance, CA; Newson, Steve [Redondo Beach, CA

    2011-11-15

    A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.

  18. An electric vehicle dispatch module for demand-side energy participation

    International Nuclear Information System (INIS)

    Zhou, Bowen; Yao, Feng; Littler, Tim; Zhang, Huaguang

    2016-01-01

    Highlights: • Real-time measurement and assessment to calculate EV initial state-of-charge (SOC). • Flexible EV charging allocation using measured available time duration (ATD). • Owner participation using mobile phone apps and a new EV dispatch module. • Online algorithm for real-time calculation of maximum and minimum adjustable limits. • Business-trading models with data security, trending and commercial impacts of EV. - Abstract: The penetration of the electric vehicle (EV) has increased rapidly in recent years mainly as a consequence of advances in transport technology and power electronics and in response to global pressure to reduce carbon emissions and limit fossil fuel consumption. It is widely acknowledged that inappropriate provision and dispatch of EV charging can lead to negative impacts on power system infrastructure. This paper considers EV requirements and proposes a module which uses owner participation, through mobile phone apps and on-board diagnostics II (OBD-II), for scheduled vehicle charging. A multi-EV reference and single-EV real-time response (MRS2R) online algorithm is proposed to calculate the maximum and minimum adjustable limits of necessary capacity, which forms part of decision-making support in power system dispatch. The proposed EV dispatch module is evaluated in a case study and the influence of the mobile app, EV dispatch trending and commercial impact is explored.

  19. A Monolithic Interconnected module with a tunnel Junction for Enhanced Electrical and Optical Performance

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Christopher Sean; Wilt, David Morgan

    1999-06-30

    An improved thermophotovoltaic (TPV) n/p/n device is provided. Monolithic Interconnected Modules (MIMs), semiconductor devices converting infrared radiation to electricity, have been developed with improved electrical and optical performance. The structure is an n-type emitter on a p-type base with an n-type lateral conduction layer. The incorporation of a tunnel junction and the reduction in the amount of p-type material used results in negligible parasitic absorption, decreased series resistance, increased voltage and increased active area. The novel use of a tunnel junction results in the potential for a TPV device with efficiency greater than 24%.

  20. The Performance of Bach: Study of Rhythmic Timing by Skilled Musicians.

    Science.gov (United States)

    Johnson, Christopher M.

    1999-01-01

    Analyzes 15 performances of "Bach's Suite Number 3 for Violoncello solo, Bourree Number 1" and determines what patterns of rhythmic variation (rubato) were used by soloists. Indicates that the soloists demonstrated four identifiable and similar trends in the performances. (CMK)

  1. Chapter 11 - Electrical Coupling in the Generation of Vertebrate Motor Rhythms

    DEFF Research Database (Denmark)

    Li, W.C.; Rekling, Jens Christian

    2017-01-01

    Many forms of vertebrate motor activity like chewing, breathing, and locomotion are rhythmic. This requires synchronized discharges of motoneurons controlling different muscle groups in an orchestrated manner. We provide a brief review of the presence and role of electrical coupling in a few well...... of electrical coupling in vertebrate motor rhythms appears to be critically dependent on developmental age, with more crucial functions in the early postnatal period than in the adult.......-studied systems: the pacemaker nucleus in weakly electric fish; mesencephalic trigeminal nucleus involved in chewing rhythms; mammalian spinal motoneurons and excitatory interneurons in the Xenopus tadpole swimming circuit, brainstem circuits underlying breathing rhythm, and central respiratory chemosensitivity...

  2. A tapping device for recording and quantitative characterization of rhythmic/auditory sequences.

    Science.gov (United States)

    Piazza, Caterina; Cesareo, Ambra; Caccia, Martina; Reni, Gianluigi; Lorusso, Maria L

    2017-07-01

    The processing of auditory stimuli is essential for the correct perception of language and deficits in this ability are often related to the presence or development of language disorders. The motor imitation (e.g. tapping or beating) of rhythmic sequences can be a very sensitive correlate of deficits in auditory processing. Thus, the study of the tapping performance, with the investigation of both temporal and intensity information, might be very useful. The present work is aimed at the development and preliminary testing of a tapping device to be used for the imitation and/or the production of rhythmic sequences, allowing the recording of both tapping duration and intensity. The device is essentially made up of a Force Sensing Resistor and an Arduino UNO board. It was validated using different sampling frequencies (f s ) in a group of 10 young healthy adults investigating its efficacy in terms of touch and intensity detection by means of two testing procedures. Results demonstrated a good performance of the device when programmed with fs equal to 50 and 100Hz. Moreover, both temporal and intensity parameters were extracted, thus supporting the potential use of the device for the analysis of the imitation or production of rhythmic sequences. This work represents a first step for the development of a useful, low cost tool to support the diagnosis, training and rehabilitation of language disorders.

  3. The impact of the perception of rhythmic music on self-paced oscillatory movements.

    Science.gov (United States)

    Peckel, Mathieu; Pozzo, Thierry; Bigand, Emmanuel

    2014-01-01

    Inspired by theories of perception-action coupling and embodied music cognition, we investigated how rhythmic music perception impacts self-paced oscillatory movements. In a pilot study, we examined the kinematic parameters of self-paced oscillatory movements, walking and finger tapping using optical motion capture. In accordance with biomechanical constraints accounts of motion, we found that movements followed a hierarchical organization depending on the proximal/distal characteristic of the limb used. Based on these findings, we were interested in knowing how and when the perception of rhythmic music could resonate with the motor system in the context of these constrained oscillatory movements. In order to test this, we conducted an experiment where participants performed four different effector-specific movements (lower leg, whole arm and forearm oscillation and finger tapping) while rhythmic music was playing in the background. Musical stimuli consisted of computer-generated MIDI musical pieces with a 4/4 metrical structure. The musical tempo of each song increased from 60 BPM to 120 BPM by 6 BPM increments. A specific tempo was maintained for 20 s before a 2 s transition to the higher tempo. The task of the participant was to maintain a comfortable pace for the four movements (self-paced) while not paying attention to the music. No instruction on whether to synchronize with the music was given. Results showed that participants were distinctively influenced by the background music depending on the movement used with the tapping task being consistently the most influenced. Furthermore, eight strategies put in place by participants to cope with the task were unveiled. Despite not instructed to do so, participants also occasionally synchronized with music. Results are discussed in terms of the link between perception and action (i.e., motor/perceptual resonance). In general, our results give support to the notion that rhythmic music is processed in a motoric

  4. The impact of the perception of rhythmic music on oscillatory self-paced movements

    Directory of Open Access Journals (Sweden)

    Mathieu ePeckel

    2014-09-01

    Full Text Available Inspired by theories of perception-action coupling and embodied music cognition, we investigated how rhythmic music perception impacts self-paced oscillatory movements. In a pilot study, we examined the kinematic parameters of self-paced oscillatory movements, walking and finger tapping using optical motion capture. In accordance with biomechanical constraints accounts of motion, we found that movements followed a hierarchical organization depending on the proximal/distal characteristic of the limb used. Based on these findings, we were interested in knowing how and when the perception of rhythmic music could resonate with the motor system in the context of these constrained oscillatory movements. In order to test this, we conducted an experiment where participants performed four different effector-specific movements (lower leg, whole arm and forearm oscillation and finger tapping while rhythmic music was playing in the background. Musical stimuli consisted of computer-generated MIDI musical pieces with a 4/4 metrical structure. The musical tempo of each song increased from 60 BPM to 120 BPM by 6 BPM increments. A specific tempo was maintained for 20s before a 2s transition to the higher tempo. The task of the participant was to maintain a comfortable pace for the four movements (self-paced while not paying attention to the music. No instruction on whether to synchronize with the music was given. Results showed that participants were distinctively influenced by the background music depending on the movement used with the tapping task being consistently the most influenced. Furthermore, eight strategies put in place by participants to cope with task were unveiled. Despite not instructed to do so, participants also occasionally synchronized with music. Results are discussed in terms of the link between perception and action (i.e. motor/perceptual resonance. In general, our results give support to the notion that rhythmic music is processed in a

  5. A photovoltaic module

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a photovoltaic module comprising a carrier substrate, said carrier substrate carrying a purely printed structure comprising printed positive and negative module terminals, a plurality of printed photovoltaic cell units each comprising one or more printed...... photovoltaic cells, wherein the plurality of printed photovoltaic cell units are electrically connected in series between the positive and the negative module terminals such that any two neighbouring photovoltaic cell units are electrically connected by a printed interconnecting electrical conductor....... The carrier substrate comprises a foil and the total thickness of the photovoltaic module is below 500 [mu]m. Moreover, the nominal voltage level between the positive and the negative terminals is at least 5 kV DC....

  6. Electric field modulation of electronic structures in InSe and black phosphorus heterostructure

    Science.gov (United States)

    Ding, Yi-min; Shi, Jun-jie; Zhang, Min; Xia, Congxin; Wu, Meng; Wang, Hui; Cen, Yu-lang; Pan, Shu-hang

    2018-01-01

    The electronic structures of InSe and black phosphorus (BP) heterostructure modulated by an external electric field (E⊥) have been investigated based on first-principles calculations. We find that InSe/BP has type II band offset with a direct band gap of 0.39 eV, and the electrons (holes) are spatially located in InSe (BP) layer. Meanwhile, the band structures of InSe/BP can be effectively modulated by E⊥. The band gap shows linear variation with E⊥ and its maximum of 0.69 eV is observed when E⊥ is 0.4 V / Å. The InSe/BP experiences a transition from semiconductor to metal with E⊥ of -0.6 and 0.8 V / Å. The band offsets are also modulated by E⊥, resulting in different spatial distribution of electron-hole pairs. Most importantly, the high carrier mobility can be preserved well under E⊥. Our results show that the novel InSe/BP heterostructure has great potential application in electronic and optoelectronic devices.

  7. Goal orientations and sport motivation, differences between the athletes of competitive and non-competitive rhythmic gymnastics.

    Science.gov (United States)

    Koumpoula, M; Tsopani, D; Flessas, K; Chairopoulou, C

    2011-09-01

    The present study examines the sport motivation and the goal orientations in the competitive and non-competitive structure of rhythmic gymnastics. Participation of individuals in one or the other structure of the sport differs in line with the goals they want to achieve and possibly also with respect to the factors that impulse them to take part in one or the other. The purpose of this study is to examine how individuals who participate in different structures of the sport of rhythmic gymnastics differentiate with regard to the type of motivation (intrinsic, extrinsic, amotivation) and goal orientations. The study involved 98 young female rhythmic gymnastics athletes (aged 14 years and up), out of which 40 were athletes of competitive clubs or members of national teams, and 58 were athletes of non-competitive clubs. For the evaluation of motivation and goal orientations the following tools were used: the Sport Motivation Scale (SMS) and the Task and Ego Orientation in Sport Questionnaire (TEOSQ). Descriptive and inductive statistical data analysis was conducted. The results showed that the athletes of the non-competitive structure presented higher levels of introjected regulation (extrinsic motivation), amotivation and lower levels of ego orientation (PRhythmic gymnastics athletes' (regardless of the structure of the sport) presented high level in task orientation while the high levels of task orientation is positively associated with high levels of intrinsic motivation regardless of the levels of ego orientation. The intrinsic motivation of athletes participating in rhythmic gymnastics runs at high levels. The amotivation of rhythmic gymnastics athletes' is a phenomenon which is also presented in the the non-competitive sport structure. It is important that the two different structures of sports be determined with accurate criteria.

  8. Effect of rhythmic auditory cueing on gait in cerebral palsy: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Ghai S

    2017-12-01

    Full Text Available Shashank Ghai,1 Ishan Ghai,2 Alfred O. Effenberg1 1Institute for Sports Science, Leibniz University Hannover, Hannover, Germany; 2School of Life Sciences, Jacobs University, Bremen, Germany Abstract: Auditory entrainment can influence gait performance in movement disorders. The entrainment can incite neurophysiological and musculoskeletal changes to enhance motor execution. However, a consensus as to its effects based on gait in people with cerebral palsy is still warranted. A systematic review and meta-analysis were carried out to analyze the effects of rhythmic auditory cueing on spatiotemporal and kinematic parameters of gait in people with cerebral palsy. Systematic identification of published literature was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses and American Academy for Cerebral Palsy and Developmental Medicine guidelines, from inception until July 2017, on online databases: Web of Science, PEDro, EBSCO, Medline, Cochrane, Embase and ProQuest. Kinematic and spatiotemporal gait parameters were evaluated in a meta-analysis across studies. Of 547 records, nine studies involving 227 participants (108 children/119 adults met our inclusion criteria. The qualitative review suggested beneficial effects of rhythmic auditory cueing on gait performance among all included studies. The meta-analysis revealed beneficial effects of rhythmic auditory cueing on gait dynamic index (Hedge’s g=0.9, gait velocity (1.1, cadence (0.3, and stride length (0.5. This review for the first time suggests a converging evidence toward application of rhythmic auditory cueing to enhance gait performance and stability in people with cerebral palsy. This article details underlying neurophysiological mechanisms and use of cueing as an efficient home-based intervention. It bridges gaps in the literature, and suggests translational approaches on how rhythmic auditory cueing can be incorporated in rehabilitation approaches to

  9. The Acoustic Reality of the Kachruvian Circles: A Rhythmic Perspective

    Science.gov (United States)

    Low, Ee Ling

    2010-01-01

    This paper investigates whether the rhythmic properties of varieties of English found in each of the concentric circles of Kachru's model can, in any way, be elucidated by the "Three Circles" model. A measurement and comparison of the rhythm of three varieties of English: British English (from the Inner Circle), Singapore English (from…

  10. Gap opening and tuning in single-layer graphene with combined electric and magnetic field modulation

    Institute of Scientific and Technical Information of China (English)

    Lin Xin; Wang Hai-Long; Pan Hui; Xu Huai-Zhe

    2011-01-01

    The energy band structure of single-layer graphene under one-dimensional electric and magnetic field modulation is theoretically investigated. The criterion for bandgap opening at the Dirac point is analytically derived with a two-fold degeneracy second-order perturbation method. It is shown that a direct or an indirect bandgap semiconductor could be realized in a single-layer graphene under some specific configurations of the electric and magnetic field arrangement. Due to the bandgap generated in the single-layer graphene, the Klein tunneling observed in pristine graphene is completely suppressed.

  11. High post-movement parietal low-beta power during rhythmic tapping facilitates performance in a stop task.

    Science.gov (United States)

    Fischer, Petra; Tan, Huiling; Pogosyan, Alek; Brown, Peter

    2016-09-01

    Voluntary movements are followed by a post-movement electroencephalography (EEG) beta rebound, which increases with practice and confidence in a task. We hypothesized that greater beta modulation reflects less load on cognitive resources and may thus be associated with faster reactions to new stimuli. EEG was recorded in 17 healthy subjects during rhythmically paced index finger tapping. In a STOP condition, participants had to interrupt the upcoming tap in response to an auditory cue, which was timed such that stopping was successful only in ~ 50% of all trials. In a second condition, participants carried on tapping twice after the stop signal (CONTINUE condition). Thus the conditions were distinct in whether abrupt stopping was required as a second task. Modulation of 12-20 Hz power over motor and parietal areas developed with time on each trial and more so in the CONTINUE condition. Reduced modulation in the STOP condition went along with reduced negative mean asynchronies suggesting less confident anticipation of the timing of the next tap. Yet participants were more likely to stop when beta modulation prior to the stop cue was more pronounced. In the STOP condition, expectancy of the stop signal may have increased cognitive load during movement execution given that the task might have to be stopped abruptly. However, within this condition, stopping ability was increased if the preceding tap was followed by a relatively larger beta increase. Significant, albeit weak, correlations confirmed that increased post-movement beta power was associated with faster reactions to new stimuli, consistent with reduced cognitive load. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Study on the rhythmic variation of plasma cortisol levels in patients with essential hypertension (EH) and coronary heart disease (CHD)

    International Nuclear Information System (INIS)

    Zhu Mei; Wu Guo; Li Ying

    2007-01-01

    Objective: To study the rhythmic fluctuation of plasma cortisol levels in patients with EH and CHD. Methods: Plasma cortisol levels were determined with RIA at 8Am, 4Pm and midnight in 61 patients with EH, 46 patients with CHD and 36 controls. Results: The normal rhythmic fluctuation pattern of plasma cortisol levels was retained in the EH and CHD patients. However, the levels were all significantly higher in the patients than those in the controls, especially in the midnight specimens. Conclusion: Marked elevated plasma cortisol levels were observed in patients with EH and CHD, with the normal rhythmic fluctuation pattern retained. (authors)

  13. Modulating Spatial Processes and Navigation via Transcranial Electrical Stimulation: A Mini Review

    Directory of Open Access Journals (Sweden)

    Tad T. Brunyé

    2018-01-01

    Full Text Available Transcranial electrical stimulation (tES uses low intensity current to alter neuronal activity in superficial cortical regions, and has gained popularity as a tool for modulating several aspects of perception and cognition. This mini-review article provides an overview of tES and its potential for modulating spatial processes underlying successful navigation, including spatial attention, spatial perception, mental rotation and visualization. Also considered are recent advances in empirical research and computational modeling elucidating several stable cortical-subcortical networks with dynamic involvement in spatial processing and navigation. Leveraging these advances may prove valuable for using tES, particularly transcranial direct and alternating current stimulation (tDCS/tACS, to indirectly target subcortical brain regions by altering neuronal activity in distant yet functionally connected cortical areas. We propose future research directions to leverage these advances in human neuroscience.

  14. Use of Sine Shaped High-Frequency Rhythmic Visual Stimuli Patterns for SSVEP Response Analysis and Fatigue Rate Evaluation in Normal Subjects

    Directory of Open Access Journals (Sweden)

    Ahmadreza Keihani

    2018-05-01

    Full Text Available Background: Recent EEG-SSVEP signal based BCI studies have used high frequency square pulse visual stimuli to reduce subjective fatigue. However, the effect of total harmonic distortion (THD has not been considered. Compared to CRT and LCD monitors, LED screen displays high-frequency wave with better refresh rate. In this study, we present high frequency sine wave simple and rhythmic patterns with low THD rate by LED to analyze SSVEP responses and evaluate subjective fatigue in normal subjects.Materials and Methods: We used patterns of 3-sequence high-frequency sine waves (25, 30, and 35 Hz to design our visual stimuli. Nine stimuli patterns, 3 simple (repetition of each of above 3 frequencies e.g., P25-25-25 and 6 rhythmic (all of the frequencies in 6 different sequences e.g., P25-30-35 were chosen. A hardware setup with low THD rate (<0.1% was designed to present these patterns on LED. Twenty two normal subjects (aged 23–30 (25 ± 2.1 yrs were enrolled. Visual analog scale (VAS was used for subjective fatigue evaluation after presentation of each stimulus pattern. PSD, CCA, and LASSO methods were employed to analyze SSVEP responses. The data including SSVEP features and fatigue rate for different visual stimuli patterns were statistically evaluated.Results: All 9 visual stimuli patterns elicited SSVEP responses. Overall, obtained accuracy rates were 88.35% for PSD and > 90% for CCA and LASSO (for TWs > 1 s. High frequency rhythmic patterns group with low THD rate showed higher accuracy rate (99.24% than simple patterns group (98.48%. Repeated measure ANOVA showed significant difference between rhythmic pattern features (P < 0.0005. Overall, there was no significant difference between the VAS of rhythmic [3.85 ± 2.13] compared to the simple patterns group [3.96 ± 2.21], (P = 0.63. Rhythmic group had lower within group VAS variation (min = P25-30-35 [2.90 ± 2.45], max = P35-25-30 [4.81 ± 2.65] as well as least individual pattern VAS (P25

  15. Circadian disruption and health: Shift work as a harbinger of the toll taken by electric lighting.

    Science.gov (United States)

    Stevens, Richard G

    Electric light is one of the signature inventions of human beings. A problem, however, is that electric light can confuse our endogenous circadian rhythmicity. It has now become apparent that circadian biology is fundamental to the functioning and adaptation of almost all life forms. In the modern world, everyone is exposed to electric light during the day and night, and thereby can experience some level of circadian disruption. Perhaps as a canary in the coal mine, study of people whose work hours include nighttime (shift workers) is beginning to yield insights on the adverse health effects of circadian disruption from electric light.

  16. Effect of rhythmic auditory stimulation on gait in Parkinsonian patients with and without freezing of gait.

    Directory of Open Access Journals (Sweden)

    Pablo Arias

    Full Text Available Freezing of gait (FOG in Parkinson's disease (PD rises in prevalence when the effect of medications decays. It is known that auditory rhythmic stimulation improves gait in patients without FOG (PD-FOG, but its putative effect on patients with FOG (PD+FOG at the end of dose has not been evaluated yet. This work evaluates the effect of auditory rhythmic stimulation on PD+FOG at the end of dose. 10 PD+FOG and 9 PD-FOG patients both at the end of dose periods, and 10 healthy controls were asked to perform several walking tasks. Tasks were performed in the presence and absence of auditory sensory stimulation. All PD+FOG suffered FOG during the task. The presence of auditory rhythmic stimulation (10% above preferred walking cadence led PD+FOG to significantly reduce FOG. Velocity and cadence were increased, and turn time reduced in all groups. We conclude that auditory stimulation at the frequency proposed may be useful to avoid freezing episodes in PD+FOG.

  17. Metastable Electrical Characteristics of Polycrystalline Thin-Film Photovoltaic Modules upon Exposure and Stabilization: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Deline, C. A.; del Cueto, J. A.; Albin, D. S.; Rummel, S. R.

    2011-09-01

    The significant features of a series of stabilization experiments conducted at the National Renewable Energy Laboratory (NREL) between May 2009 and the present are reported. These experiments evaluated a procedure to stabilize the measured performance of thin-film polycrystalline cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS) thin-film photovoltaic (PV) modules. The current-voltage (I-V) characteristics of CdTe and CIGS thin-film PV devices and modules exhibit transitory changes in electrical performance after thermal exposure in the dark and/or bias and light exposures. We present the results of our case studies of module performance versus exposure: light-soaked at 65 degrees C; exposed in the dark under forward bias at 65 degrees C; and, finally, longer-term outdoor exposure. We find that stabilization can be achieved to varying degrees using either light-soaking or dark bias methods and that the existing IEC 61646 light-soaking interval may be appropriate for CdTe and CIGS modules with one caveat: it is likely that at least three exposure intervals are required for stabilization.

  18. Nuclear modules for space electric propulsion

    International Nuclear Information System (INIS)

    Difilippo, F.C.

    1998-01-01

    The analysis of interplanetary cargo and piloted missions requires the calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options in an iterative way by using simulations that run fast on a computer. As a consequence of a collaborative agreement between the National Aeronautic and Space Administration (NASA) and the Oak Ridge National Laboratory (ORNL), ORNL has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition, dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one

  19. Relations between female students' personality traits and reported handicaps to rhythmic gymnastics performance.

    Science.gov (United States)

    Ferrand, Claude; Champely, Stephane; Brunel, Philippe C

    2005-04-01

    The present study evaluated the relative contributions of Self-esteem, Trait anxiety, and Public Self-consciousness to self-handicapping on a sex-typed task, within a specific academic sport context. Prior to the competitive examination used to recruit French Physical Education Teachers, female sport students (N = 74) were asked to list and rate on a 7-point scale handicaps which could be disruptive to their Rhythmic Gymnastics performance. Self-esteem did not account for significant variance in any category of handicaps. Trait Anxiety was negatively related to handicaps related to Rhythmic Gymnastics and to Social and Work Commitments. Public Self-consciousness was significantly related to endorsement of Friends and Family Commitments handicaps. These results were discussed in relation to the literature.

  20. Tempo discrimination of musical patterns: effects due to pitch and rhythmic structure.

    Science.gov (United States)

    Boltz, M G

    1998-11-01

    The purpose of this research was to investigate a set of factors that may influence the perceived rate of an auditory event. In a paired-comparison task, subjects were presented with a set of music-like patterns that differed in their relative number of contour changes and in the magnitude of pitch skips (Experiment 1) as well as in the compatibility of rhythmic accent structure with the arrangement of pitch relations (Experiment 2) Results indicated that, relative to their standard referents, comparison melodies were judged to unfold more slowly when they displayed more changes in pitch direction, greater pitch distances, and an incompatible rhythmic accent structure. These findings are suggested to stem from an imputed velocity hypothesis, in which people overgeneralize certain invariant relations that typically occur between melodic and temporal accent structure within Western music.

  1. Electric current modulation by gate frequency in a quantum ring nanotransistor

    International Nuclear Information System (INIS)

    Konopka, M.; Bokes, P.

    2013-01-01

    We presented a computational study of a dynamical gate effect applied to a tight-binding model of a ring-shaped quantum-interference nanotransistor. Compared to our former analysis, we used a model of the gate that not only controls on-site energies of the atoms but can also transfer electrons to or from the device. We have found that the electric current is modulated by the gate frequency also in this more general model. The simulations have been performed using our home-developed generalised stroboscopic wave packet approach which is very suitable for open systems and time-dependent effects. (authors)

  2. Standard Test Methods for Electrical Performance of Nonconcentrator Terrestrial Photovoltaic Modules and Arrays Using Reference Cells

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 These test methods cover the electrical performance of photovoltaic modules and arrays under natural or simulated sunlight using a calibrated reference cell. 1.1.1 These test methods allow a reference module to be used instead of a reference cell provided the reference module has been calibrated using these test methods against a calibrated reference cell. 1.2 Measurements under a variety of conditions are allowed; results are reported under a select set of reporting conditions (RC) to facilitate comparison of results. 1.3 These test methods apply only to nonconcentrator terrestrial modules and arrays. 1.4 The performance parameters determined by these test methods apply only at the time of the test, and imply no past or future performance level. 1.5 These test methods apply to photovoltaic modules and arrays that do not contain series-connected photovoltaic multijunction devices; such module and arrays should be tested according to Test Methods E 2236. 1.6 The values stated in SI units are to be re...

  3. Power Enhancement of Partial Shaded PV Array by Optimizing the Electrical Connection of Module

    Directory of Open Access Journals (Sweden)

    Wang Mengyao

    2015-01-01

    Full Text Available The maximum output power (Pmax generated from photovoltaic (PV array will be apparently reduced if the array is partially shaded. In order to enhance Pmax generated from partial shaded PV array, several interconnection schemes of array are proposed. Among these schemes, the totally cross tied (TCT scheme and the recently proposed static scheme are widely discussed. It was reported that Pmax produced with static scheme is equal to the TCT scheme even under worst conditions. However, in these simulations the illumination of every single module is assumed to be uniform, but in urban environments the illumination of modules on the edge of shadow is more likely to be non-uniform. In this paper, first, a comprehensive circuit-level simulation, which is implemented in PSpice, has been done to investigate performance of PV array with both TCT scheme and static scheme under different partial shading conditions. And the results show that Pmax generated from static scheme is higher than that form TCT scheme if the illumination of every single module is uniform, however if some modules are partially shaded, the Pmax with static scheme is more likely less than that with TCT scheme. Then, the electrical connection of a module is improved for the purpose of enhancing Pmax under partial shading conditions in which some modules in the array are partially shaded. And the simulation results show that Pmax is apparently increased by employing the improved modules.

  4. Muscle metabolism from near infrared spectroscopy during rhythmic handgrip in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Pott, F; Madsen, P

    1998-01-01

    The rate of metabolism in forearm flexor muscles (MO2) was derived from near-infrared spectroscopy (NIRS-O2) during ischaemia at rest rhythmic handgrip at 15% and 30% of maximal voluntary contraction (MVC), post-exercise muscle ischaemia (PEMI), and recovery in seven subjects. The MO2 was compared...

  5. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Ten: Transformers. Study Booklet.

    Science.gov (United States)

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on transformers is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Six lessons are included in the module:…

  6. The properties and interrelationships of various force-time parameters during maximal repeated rhythmic grip.

    Science.gov (United States)

    Nakada, Masakatsu; Demura, Shinichi; Yamaji, Shunsuke

    2007-01-01

    The purpose of this study was to examine the properties and interrelationships of various force-time parameters including the inflection point for the rate of decline in force during a maximal repeated rhythmic grip. Fifteen healthy males (age M=21.5, SD=2.1 yr, height M=172.4, SD=5.7 cm, body mass M=68.2, SD=9.2 kg) participated in this study. Subjects performed a maximal repeated rhythmic grip with maximal effort with a target frequency of 30 grip.min(-1) for 6 min. The force value decreased linearly and markedly until about 70% of maximal strength for about 55 s after the onset of a maximal repeated rhythmic grip, and then decreased moderately. Because all parameters showed fair or good correlations between 3 min and 6 min, they are considered to be able to sufficiently evaluate muscle endurance for 3 min instead of 6 min. However, there were significant differences between 3 min and 6 min in the integrated area, the final force, the rate of the decrement constant (k) fitting the force decreasing data to y=ae(-kx)+b and the force of maximal difference between the force and a straight line from peak force to the final force. Their parameters may vary generally by the length of a steady state, namely, a measurement time. The final force value before finishing and the rate of the decrement constant (k) reflect the latter phase during a maximal repeated rhythmic grip. Although many parameters show relatively high mutual relationships, the rate constant (k) shows relatively low correlations with other parameters. We inferred that decreasing the time until 80% of maximal strength and the amount of the decrement force for the first 1 min reflect a linear decrease in the initial phase.

  7. High frequency electrical stimulation concurrently induces central sensitization and ipsilateral inhibitory pain modulation.

    Science.gov (United States)

    Vo, L; Drummond, P D

    2013-03-01

    In healthy humans, analgesia to blunt pressure develops in the ipsilateral forehead during various forms of limb pain. The aim of the current study was to determine whether this analgesic response is induced by ultraviolet B radiation (UVB), which evokes signs of peripheral sensitization, or by high-frequency electrical stimulation (HFS), which triggers signs of central sensitization. Before and after HFS and UVB conditioning, sensitivity to heat and to blunt and sharp stimuli was assessed at and adjacent to the treated site in the forearm. In addition, sensitivity to blunt pressure was measured bilaterally in the forehead. The effect of ipsilateral versus contralateral temple cooling on electrically evoked pain in the forearm was then examined, to determine whether HFS or UVB conditioning altered inhibitory pain modulation. UVB conditioning triggered signs of peripheral sensitization, whereas HFS conditioning triggered signs of central sensitization. Importantly, ipsilateral forehead analgesia developed after HFS but not UVB conditioning. In addition, decreases in electrically evoked pain at the HFS-treated site were greater during ipsilateral than contralateral temple cooling, whereas decreases at the UVB-treated site were similar during both procedures. HFS conditioning induced signs of central sensitization in the forearm and analgesia both in the ipsilateral forehead and the HFS-treated site. This ipsilateral analgesia was not due to peripheral sensitization or other non-specific effects, as it failed to develop after UVB conditioning. Thus, the supra-spinal mechanisms that evoke central sensitization might also trigger a hemilateral inhibitory pain modulation process. This inhibitory process could sharpen the boundaries of central sensitization or limit its spread. © 2012 European Federation of International Association for the Study of Pain Chapters.

  8. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor.

    Science.gov (United States)

    Buijink, A W G; Broersma, M; van der Stouwe, A M M; van Wingen, G A; Groot, P F C; Speelman, J D; Maurits, N M; van Rootselaar, A F

    2015-04-01

    Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of cerebellar output in essential tremor during rhythmic finger tapping employing functional MRI. Thirty-one propranolol-sensitive essential tremor patients with upper limb tremor and 29 healthy controls were measured. T2*-weighted EPI sequences were acquired. The task consisted of alternating rest and finger tapping blocks. A whole-brain and region-of-interest analysis was performed, the latter focusing on the cerebellar cortex, dentate nucleus and inferior olive nucleus. Activations were also related to tremor severity. In patients, dentate activation correlated positively with tremor severity as measured by the tremor rating scale part A. Patients had reduced activation in widespread cerebellar cortical regions, and additionally in the inferior olive nucleus, and parietal and frontal cortex, compared to controls. The increase in dentate activation with tremor severity supports involvement of the dentate nucleus in essential tremor. Cortical and cerebellar changes during a motor timing task in essential tremor might point to widespread changes in cerebellar output in essential tremor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Investigation of surface charge density on solid–liquid interfaces by modulating the electrical double layer

    International Nuclear Information System (INIS)

    Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu

    2015-01-01

    A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid–liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid–liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid–liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid–liquid interfaces. (paper)

  10. Joint Rhythmic Movement Increases 4-Year-Old Children's Prosocial Sharing and Fairness Toward Peers.

    Science.gov (United States)

    Rabinowitch, Tal-Chen; Meltzoff, Andrew N

    2017-01-01

    The allocation of resources to a peer partner is a prosocial act that is of fundamental importance. Joint rhythmic movement, such as occurs during musical interaction, can induce positive social experiences, which may play a role in developing and enhancing young children's prosocial skills. Here, we investigated whether joint rhythmic movement, free of musical context, increases 4-year-olds' sharing and sense of fairness in a resource allocation task involving peers. We developed a precise procedure for administering joint synchronous experience, joint asynchronous experience, and a baseline control involving no treatment. Then we tested how participants allocated resources between self and peer. We found an increase in the generous allocation of resources to peers following both synchronous and asynchronous movement compared to no treatment. At a more theoretical level, this result is considered in relation to previous work testing other aspects of child prosociality, for example, peer cooperation, which can be distinguished from judgments of fairness in resource allocation tasks. We draw a conceptual distinction between two types of prosocial behavior: resource allocation (an other-directed individual behavior) and cooperation (a goal-directed collaborative endeavor). Our results highlight how rhythmic interactions, which are prominent in joint musical engagements and synchronized activity, influence prosocial behavior between preschool peers.

  11. Enhanced musical rhythmic perception in Turkish early and late learners of German

    NARCIS (Netherlands)

    Roncaglia-Denissen, M.P.; Schmidt-Kassow, M.; Heine, A.; Vuust, P.; Kotz, S.A.

    2013-01-01

    As language rhythm relies partly on general acoustic properties, such as intensity and duration, mastering two languages with distinct rhythmic properties (i.e., stress position) may enhance musical rhythm perception. We investigated whether competence in a second language (L2) with different

  12. Internal ribosomal entry site-mediated translation is important for rhythmic PERIOD1 expression.

    Directory of Open Access Journals (Sweden)

    Kyung-Ha Lee

    Full Text Available The mouse PERIOD1 (mPER1 plays an important role in the maintenance of circadian rhythm. Translation of mPer1 is directed by both a cap-dependent process and cap-independent translation mediated by an internal ribosomal entry site (IRES in the 5' untranslated region (UTR. Here, we compared mPer1 IRES activity with other cellular IRESs. We also found critical region in mPer1 5'UTR for heterogeneous nuclear ribonucleoprotein Q (HNRNPQ binding. Deletion of HNRNPQ binding region markedly decreased IRES activity and disrupted rhythmicity. A mathematical model also suggests that rhythmic IRES-dependent translation is a key process in mPER1 oscillation. The IRES-mediated translation of mPer1 will help define the post-transcriptional regulation of the core clock genes.

  13. Amelioration of Electrical Power Quality based on Modulated Power Filter Compensator

    Directory of Open Access Journals (Sweden)

    Karrar Hameed Kadhim

    2017-08-01

    Full Text Available This paper deals with the performance of modeling and implementation of Modulated Power Filter Compensator ( MPFC based on synchronous generator to enhance Electrical Power Quality (EPQ performance , rectification power factor , voltage fixity and decreasing transmission line losses for 300 km transmission line . In this paper (MPFC sketch attendants for intelligent network stability and optimum exploitation. The proposal Flexible AC Transmission Systems ( FACTS can be expanded to distributed renewable energy interface and exploitation systems and also will be easy to modify for voltage fixity, Achieve the required stability, perfect usage and Compensation requirements. MATLAB SIMLINK version R2009b were used as a model of (MPFC.

  14. Magnetoresistance effect in a both magnetically and electrically modulated nanostructure

    International Nuclear Information System (INIS)

    Lu, Mao-Wang; Yang, Guo-Jian

    2007-01-01

    We propose a magnetoresistance device in a both magnetically and electrically modulated two-dimensional electron gas, which can be realized experimentally by the deposition, on the top and bottom of a semiconductor heterostructure, of two parallel metallic ferromagnetic strips under an applied voltage. It is shown that a considerable magnetoresistance effect can be achieved in such a device due to the significant transmission difference for electrons through parallel and antiparallel magnetization configurations. It is also shown that the magnetoresistance ratio depends strongly on the applied voltage to the stripe in the device. These interesting properties may provide an alternative scheme to realize magnetoresistance effect in hybrid ferromagnetic/semiconductor nanosystems, and this system may be used as a voltage-tunable magnetoresistance device

  15. Rhythmic complexity and predictive coding: a novel approach to modeling rhythm and meter perception in music

    Science.gov (United States)

    Vuust, Peter; Witek, Maria A. G.

    2014-01-01

    Musical rhythm, consisting of apparently abstract intervals of accented temporal events, has a remarkable capacity to move our minds and bodies. How does the cognitive system enable our experiences of rhythmically complex music? In this paper, we describe some common forms of rhythmic complexity in music and propose the theory of predictive coding (PC) as a framework for understanding how rhythm and rhythmic complexity are processed in the brain. We also consider why we feel so compelled by rhythmic tension in music. First, we consider theories of rhythm and meter perception, which provide hierarchical and computational approaches to modeling. Second, we present the theory of PC, which posits a hierarchical organization of brain responses reflecting fundamental, survival-related mechanisms associated with predicting future events. According to this theory, perception and learning is manifested through the brain’s Bayesian minimization of the error between the input to the brain and the brain’s prior expectations. Third, we develop a PC model of musical rhythm, in which rhythm perception is conceptualized as an interaction between what is heard (“rhythm”) and the brain’s anticipatory structuring of music (“meter”). Finally, we review empirical studies of the neural and behavioral effects of syncopation, polyrhythm and groove, and propose how these studies can be seen as special cases of the PC theory. We argue that musical rhythm exploits the brain’s general principles of prediction and propose that pleasure and desire for sensorimotor synchronization from musical rhythm may be a result of such mechanisms. PMID:25324813

  16. Rhythmic complexity and predictive coding: A novel approach to modeling rhythm and meter perception in music

    Directory of Open Access Journals (Sweden)

    Peter eVuust

    2014-10-01

    Full Text Available Musical rhythm, consisting of apparently abstract intervals of accented temporal events, has a remarkable capacity to move our minds and bodies. How does the cognitive system enable our experiences of rhythmically complex music? In this paper, we describe some common forms of rhythmic complexity in music and propose the theory of predictive coding as a framework for understanding how rhythm and rhythmic complexity are processed in the brain. We also consider why we feel so compelled by rhythmic tension in music. First, we consider theories of rhythm and meter perception, which provide hierarchical and computational approaches to modeling. Second, we present the theory of predictive coding, which posits a hierarchical organization of brain responses reflecting fundamental, survival-related mechanisms associated with predicting future events. According to this theory, perception and learning is manifested through the brain’s Bayesian minimization of the error between the input to the brain and the brain’s prior expectations. Third, we develop a predictive coding model of musical rhythm, in which rhythm perception is conceptualized as an interaction between what is heard (‘rhythm’ and the brain’s anticipatory structuring of music (‘meter’. Finally, we review empirical studies of the neural and behavioral effects of syncopation, polyrhythm and groove, and propose how these studies can be seen as special cases of the predictive coding theory. We argue that musical rhythm exploits the brain’s general principles of prediction and propose that pleasure and desire for sensorimotor synchronization from musical rhythm may be a result of such mechanisms.

  17. Rhythmicity and plasticity of digestive physiology in a euryhaline teleost fish, permit (Trachinotus falcatus)

    DEFF Research Database (Denmark)

    Lazado, Carlo Cabacang; Pedersen, Per Bovbjerg; Nguyen, Huy Quang

    2017-01-01

    Digestive physiology is considered to be under circadian control, but there is little evidence in teleost fish. The present study explored the rhythmicity and plasticity to feeding schedules of enzymatic digestion in a candidate aquaculture fish, the permit (Trachinotus falcatus). The first...... experiment identified the rhythms of digestive factors throughout the light-dark (LD) cycle. Gastric luminal pH and pepsin activity showed significant daily variation albeit not rhythmic. These dynamic changes were likewise observed in several digestive enzymes, in which the activities of intestinal protease......, chymotrypsin and lipase exhibited significant daily rhythms. In the second experiment, the existence of feed anticipatory activity in the digestive factors was investigated by subjecting the fish to either periodic or random feeding. Anticipatory gastric acidification prior to feeding was identified...

  18. 2. Rhythmical Creativity in Duple and Triple Meter of Students of Early-School Education in the Light of Their Stabilised Musical Aptitudes and Rhythm Readiness to Improvise

    Directory of Open Access Journals (Sweden)

    Kołodziejski Maciej

    2018-03-01

    Full Text Available The article presents the results of (author's own research on the students of earlyschool education imitation and the rhythmical improvisation in the light of their stabilised musical aptitudes measured with Edwin E. Gordon's AMMA test and also Edwin E. Gordon's readiness to rhythm improvisation readiness record (RIRR. In the first part of the research the students imitated some rhythmical patterns diversified in terms of difficulty in duple and triple meter and the subsequent part concerned guiding the oral rhythmical dialogue (on the BAH syllable by the teacher with the application of various rhythmical motives in different metres. The students' both imitative and improvising performances were rated by three competent judges. What was undertaken was searching for the relations between musical aptitudes, improvisation readiness and the pupils' rhythmical imitation and improvisation abilities.

  19. Assembly and Electrical Tests of the First Full-size Forward Module for the ATLAS ITk Strip Detector

    CERN Document Server

    Garcia-Argos, Carlos; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment will replace the existing Inner Detector by an all-silicon detector named the Inner Tracker (ITk) for the High Luminosity LHC upgrades. In the outer region of the Inner Tracker is the strip detector, which consists of a four layer barrel and six discs to each side of the barrel, with silicon-strip modules as basic units. Each module is composed of a sensor and one or more flex circuits that hold the read-out electronics. In the experiment, the modules are mounted on support structures with integrated power and cooling. The modules are designed with geometries that accommodate the central and forward regions, with rectangular sensors in the barrels and wedge shaped sensors in the end-caps. The strips lengths and pitch sizes vary according to the occupancy of the region. In this contribution, we present the construction and the results of the electrical tests of the first full-size module of the innermost forward region, named Ring 0 in the ATLAS ITk strip detector nomenclature. This module...

  20. An analysis of rhythmic ratios in scores of various kinds of music

    NARCIS (Netherlands)

    Sadakata, M.; Desain, P.W.M.; Honing, H.J.; Lipscomb, S.D.; Ashley, R.; Gjerdignen, R.O.; Webster, P.

    2004-01-01

    The aim of this study is to investigate our daily experience of rhythm. The frequency of occurrence of rhythmic patterns consisting of two intervals was counted in different music corpora. Only subdivisions of metrical units were considered. A very large corpus of diverse kinds of music (western

  1. Facial Muscle Coordination in Monkeys During Rhythmic Facial Expressions and Ingestive Movements

    Science.gov (United States)

    Shepherd, Stephen V.; Lanzilotto, Marco; Ghazanfar, Asif A.

    2012-01-01

    Evolutionary hypotheses regarding the origins of communication signals generally, and primate orofacial communication signals in particular, suggest that these signals derive by ritualization of noncommunicative behaviors, notably including ingestive behaviors such as chewing and nursing. These theories are appealing in part because of the prominent periodicities in both types of behavior. Despite their intuitive appeal, however, there are little or no data with which to evaluate these theories because the coordination of muscles innervated by the facial nucleus has not been carefully compared between communicative and ingestive movements. Such data are especially crucial for reconciling neurophysiological assumptions regarding facial motor control in communication and ingestion. We here address this gap by contrasting the coordination of facial muscles during different types of rhythmic orofacial behavior in macaque monkeys, finding that the perioral muscles innervated by the facial nucleus are rhythmically coordinated during lipsmacks and that this coordination appears distinct from that observed during ingestion. PMID:22553017

  2. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 34: Linear Integrated Circuits. Study Booklet.

    Science.gov (United States)

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on linear integrated circuits is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Two lessons are included in…

  3. Anatomy of Respiratory Rhythmic Systems in Brain Stem and Cerebellum of the Carp

    NARCIS (Netherlands)

    Jüch, P.J.W.; Luiten, P.G.M.

    1981-01-01

    The afferent and efferent connections of two respiratory rhythmic loci in the dorsal mesencephalic tegmentum were studied by retrograde and anterograde transport of horseradish peroxidase. The injection areas were determined with extracellular activity recording using HRP filled glass micropipettes,

  4. Judging in Rhythmic Gymnastics at Different Levels of Performance.

    Science.gov (United States)

    Leandro, Catarina; Ávila-Carvalho, Lurdes; Sierra-Palmeiro, Elena; Bobo-Arce, Marta

    2017-12-01

    This study aimed to analyse the quality of difficulty judging in rhythmic gymnastics, at different levels of performance. The sample consisted of 1152 difficulty scores concerning 288 individual routines, performed in the World Championships in 2013. The data were analysed using the mean absolute judge deviation from the final difficulty score, a Cronbach's alpha coefficient and intra-class correlations, for consistency and reliability assessment. For validity assessment, mean deviations of judges' difficulty scores, the Kendall's coefficient of concordance W and ANOVA eta-squared values were calculated. Overall, the results in terms of consistency (Cronbach's alpha mostly above 0.90) and reliability (intra-class correlations for single and average measures above 0.70 and 0.90, respectively) were satisfactory, in the first and third parts of the ranking on all apparatus. The medium level gymnasts, those in the second part of the ranking, had inferior reliability indices and highest score dispersion. In this part, the minimum of corrected item-total correlation of individual judges was 0.55, with most values well below, and the matrix for between-judge correlations identified remarkable inferior correlations. These findings suggest that the quality of difficulty judging in rhythmic gymnastics may be compromised at certain levels of performance. In future, special attention should be paid to the judging analysis of the medium level gymnasts, as well as the Code of Points applicability at this level.

  5. Differentiation of PC12 Cells Results in Enhanced VIP Expression and Prolonged Rhythmic Expression of Clock Genes

    DEFF Research Database (Denmark)

    Pretzmann, C.P.; Fahrenkrug, J.; Georg, B.

    2008-01-01

    To examine for circadian rhythmicity, the messenger RNA (mRNA) amount of the clock genes Per1 and Per2 was measured in undifferentiated and nerve-growth-factor-differentiated PC12 cells harvested every fourth hour. Serum shock was needed to induce circadian oscillations, which in undifferentiated...... PC12 cultures lasted only one 24-h period, while in differentiated cultures, the rhythms continued for at least 3 days. Thus, neuronal differentiation provided PC12 cells the ability to maintain rhythmicity for an extended period. Both vasoactive intestinal polypeptide (VIP) and its receptor VPAC(2...

  6. Where Is the Beat? The Neural Correlates of Lexical Stress and Rhythmical Well-formedness in Auditory Story Comprehension.

    Science.gov (United States)

    Kandylaki, Katerina D; Henrich, Karen; Nagels, Arne; Kircher, Tilo; Domahs, Ulrike; Schlesewsky, Matthias; Bornkessel-Schlesewsky, Ina; Wiese, Richard

    2017-07-01

    While listening to continuous speech, humans process beat information to correctly identify word boundaries. The beats of language are stress patterns that are created by combining lexical (word-specific) stress patterns and the rhythm of a specific language. Sometimes, the lexical stress pattern needs to be altered to obey the rhythm of the language. This study investigated the interplay of lexical stress patterns and rhythmical well-formedness in natural speech with fMRI. Previous electrophysiological studies on cases in which a regular lexical stress pattern may be altered to obtain rhythmical well-formedness showed that even subtle rhythmic deviations are detected by the brain if attention is directed toward prosody. Here, we present a new approach to this phenomenon by having participants listen to contextually rich stories in the absence of a task targeting the manipulation. For the interaction of lexical stress and rhythmical well-formedness, we found one suprathreshold cluster localized between the cerebellum and the brain stem. For the main effect of lexical stress, we found higher BOLD responses to the retained lexical stress pattern in the bilateral SMA, bilateral postcentral gyrus, bilateral middle fontal gyrus, bilateral inferior and right superior parietal lobule, and right precuneus. These results support the view that lexical stress is processed as part of a sensorimotor network of speech comprehension. Moreover, our results connect beat processing in language to domain-independent timing perception.

  7. Electric Power Self-Supply Module for WSN Sensor Node Based on MEMS Vibration Energy Harvester

    Directory of Open Access Journals (Sweden)

    Wenyang Zhang

    2018-04-01

    Full Text Available This paper proposes an electric power self-supply module for the wireless sensor network (WSN sensor node. The module includes an electromagnetic vibration energy harvester based on micro-electro-mechanical system (MEMS technology and a processing circuit. The vibration energy harvester presented in this paper is fabricated by an integrated microfabrication process and consists of four similar and relatively independent beam vibration elements. The main functions of the processing circuit are to convert the output of the harvester from unstable alternating current (AC to stable direct current (DC, charge the super capacitor, and ensure the stable output of the super capacitor. The preliminary test results of the harvester chip show that the chip can output discontinuous pulse voltage, and the range of the voltage value is from tens to hundreds of millivolts in the vibration frequency range of 10–90 Hz. The maximum value that can be reached is 563 mV (at the vibration frequency of 18 Hz. The results of the test show that the harvester can output a relatively high voltage, which can meet the general electric power demand of a WSN sensor node.

  8. Effect of rhythmic auditory stimulation on gait kinematic parameters of patients with multiple sclerosis.

    Science.gov (United States)

    Shahraki, M; Sohrabi, M; Taheri Torbati, H R; Nikkhah, K; NaeimiKia, M

    2017-01-01

    Purpose: This study aimed to examine the effect of rhythmic auditory stimulation on gait kinematic parameters of patients with multiple sclerosis. Subjects and Methods: In this study, 18 subjects, comprising 4 males and 14 females with Multiple Sclerosis with expanded disability status scale of 3 to 6 were chosen. Subjects were selected by available and targeted sampling and were randomly divided into two experimental (n = 9) and control (n = 9) groups. Exercises were gait with rhythmic auditory stimulation by a metronome device, in addition to gait without stimulation for the experimental and control groups, respectively. Training was carried out for 3 weeks, with 30 min duration for each session 3 times a week. Stride length, stride time, double support time, cadence and gait speed were measured by motion analysis device. Results: There was a significant difference between stride length, stride time, double support time, cadence and gait speed in the experimental group, before and after the training. Furthermore, there was a significant difference between the experimental and control groups in the enhancement of stride length, stride time, cadence and gait speed in favor of the experimental group. While this difference was not significant for double support time. Conclusion: The results of this study showed that rhythmic auditory stimulation is an effective rehabilitation method to improve gait kinematic parameters in patients with multiple sclerosis.

  9. Effectiveness of the teaching of perceptual-motor practices and rhythmic movement on motor development in children with intellectual disability

    Directory of Open Access Journals (Sweden)

    Behrouz Ghorban Zadeh

    2015-10-01

    Full Text Available Objective: Fundamental motor skills are the foundation of special skills. The purpose of this study was to study the effectiveness of the teaching of perceptual-motor practices and rhythmic movement on motor development in children with intellectual disability. Materials & Methods: In this quasi-excremental study, 30 children aged 7 to 10 years old were selected through random cluster sampling method from elementary schools in Tabriz city. They were homogenized in two experimental groups (perceptual-motor practices and rhythmic movement and one control group based on their age and IQ. Programs were held in 9 weeks, two sessions per week, and each session was 45 minutes. Before beginning the training and at the end of the last session, pre-test and post-test were conducted. In order to assess motor development TGMD-2 test was used, and to analyze data covariance and bonferroni postdoc test were used. Results: The results showed that both perceptual-motor practices and rhythmic movement groups performed better in locomotors and object control skills than the control group (P&le 0.05 and there was no significant difference between these two groups  (P&ge0.05Perceptual-motor skills training group had a greater impact on the development of control object skills than rhythmic movement group. Program rhythmic movement group had a greater impact on the development of object control skills than the control group. Conclusion: According to the results, educational programs which are used can be as an appropriate experiencing motion for children. These programs can be used at schools to to provide suitable program and the opportunity for training and developing motor skills.

  10. Low amplitude rhythmic contraction frequency in human detrusor strips correlates with phasic intravesical pressure waves.

    Science.gov (United States)

    Colhoun, Andrew F; Speich, John E; Cooley, Lauren F; Bell, Eugene D; Barbee, R Wayne; Guruli, Georgi; Ratz, Paul H; Klausner, Adam P

    2017-08-01

    Low amplitude rhythmic contractions (LARC) occur in detrusor smooth muscle and may play a role in storage disorders such as overactive bladder and detrusor overactivity. The purpose of this study was to determine whether LARC frequencies identified in vitro from strips of human urinary bladder tissue correlate with in vivo LARC frequencies, visualized as phasic intravesical pressure (p ves ) waves during urodynamics (UD). After IRB approval, fresh strips of human urinary bladder were obtained from patients. LARC was recorded with tissue strips at low tension (rhythmic frequency similar to the in vitro LARC frequency quantified in human urinary bladder tissue strips. Further refinements of this technique may help identify subsets of individuals with LARC-mediated storage disorders.

  11. Thermal and Electrical Characterization of a Semi-Transparent Dye-Sensitized Photovoltaic Module under Real Operating Conditions

    Directory of Open Access Journals (Sweden)

    Cristina Cornaro

    2018-01-01

    Full Text Available Dye-sensitized solar cell technology is having an important role in renewable energy research due to its features and low-cost manufacturing processes. Devices based on this technology appear very well suited for integration into glazing systems due to their characteristics of transparency, color tuning and manufacturing directly on glass substrates. Field data of thermal and electrical characteristics of dye-sensitized solar modules (DSM are important since they can be used as input of building simulation models for the evaluation of their energy saving potential when integrated into buildings. However, still few studies in the literature provide this information. The study presented here aims to contribute to fill this lack providing a thermal and electrical characterization of a DSM in real operating conditions using a method developed in house. This method uses experimental data coming from test boxes exposed outdoor and dynamic simulation to provide thermal transmittance (U-value and solar heat gain coefficient (SHGC of a DSM prototype. The device exhibits a U-value of 3.6 W/m2·K, confirmed by an additional measurement carried on in the lab using a heat flux meter, and a SHGC of 0.2, value compliant with literature results. Electrical characterization shows an increase of module power with respect to temperature resulting DSM being suitable for integration in building facades.

  12. Superior short-term learning effect of visual and sensory organisation ability when sensory information is unreliable in adolescent rhythmic gymnasts.

    Science.gov (United States)

    Chen, Hui-Ya; Chang, Hsiao-Yun; Ju, Yan-Ying; Tsao, Hung-Ting

    2017-06-01

    Rhythmic gymnasts specialise in dynamic balance under sensory conditions of numerous somatosensory, visual, and vestibular stimulations. This study investigated whether adolescent rhythmic gymnasts are superior to peers in Sensory Organisation test (SOT) performance, which quantifies the ability to maintain standing balance in six sensory conditions, and explored whether they plateaued faster during familiarisation with the SOT. Three and six sessions of SOTs were administered to 15 female rhythmic gymnasts (15.0 ± 1.8 years) and matched peers (15.1 ± 2.1 years), respectively. The gymnasts were superior to their peers in terms of fitness measures, and their performance was better in the SOT equilibrium score when visual information was unreliable. The SOT learning effects were shown in more challenging sensory conditions between Sessions 1 and 2 and were equivalent in both groups; however, over time, the gymnasts gained marginally significant better visual ability and relied less on visual sense when unreliable. In conclusion, adolescent rhythmic gymnasts have generally the same sensory organisation ability and learning rates as their peers. However, when visual information is unreliable, they have superior sensory organisation ability and learn faster to rely less on visual sense.

  13. Chronic intravitreous infusion of ciliary neurotrophic factor modulates electrical retinal stimulation thresholds in the RCS rat.

    Science.gov (United States)

    Kent, Tiffany L; Glybina, Inna V; Abrams, Gary W; Iezzi, Raymond

    2008-01-01

    To determine whether the sustained intravitreous delivery of CNTF modulates cortical response thresholds to electrical retinal stimulation in the RCS rat model of retinal degeneration. Animals were assigned to four groups: untreated, nonsurgical control and infusion groups of 10 ng/d CNTF, 1 ng/d CNTF, and PBS vehicle control. Thresholds for electrically evoked cortical potentials (EECPs) were recorded in response to transcorneal electrical stimulation of the retina at p30 and again at p60, after a three-week infusion. As the retina degenerated over time, EECP thresholds in response to electrical retinal stimulation increased. Eyes treated with 10 ng/d CNTF demonstrated significantly greater retinal sensitivity to electrical stimulation when compared with all other groups. In addition, eyes treated with 1 ng/d CNTF demonstrated significantly greater retinal sensitivity than both PBS-treated and untreated control groups. Retinal sensitivity to electrical stimulation was preserved in animals treated with chronic intravitreous infusion of CNTF. These data suggest that CNTF-mediated retinal neuroprotection may be a novel therapy that can lower stimulus thresholds in patients about to undergo retinal prosthesis implantation. Furthermore, it may maintain the long-term efficacy of these devices in patients.

  14. Reciprocal links between metabolic and ionic events in islet cells. Their relevance to the rhythmics of insulin release.

    Science.gov (United States)

    Malaisse, W J

    1998-02-01

    The notion of reciprocal links between metabolic and ionic events in islet cells and the rhythmics of insulin release is based on (i) the rhythmic pattern of hormonal release from isolated perfused rat pancreas, which supports the concept of an intrapancreatic pacemaker; (ii) the assumption that this phasic pattern is due to the integration of secretory activity in distinct functional units, e.g. distinct islets; and (iii) the fact that reciprocal coupling between metabolic and ionic events is operative in the secretory sequence.

  15. Electric field modulated conduction mechanism in Al/BaTiO3/La0.67Sr0.33MnO3 heterostructures

    KAUST Repository

    Zheng, Dongxing; Li, Dong; Gong, Junlu; Jin, Chao; Li, Peng; Zhang, Xixiang; Bai, Haili

    2017-01-01

    Mediating a metastable state is a promising way to achieve a giant modulation of physical properties in artificial heterostructures. A metastable state La0.67Sr0.33MnO3 (LSMO) layer suffering tensile strain was grown on MgO substrates. Incorporating with the ferroelectric BaTiO3 (BTO) layer, an accumulation or depletion state controlled by electric fields can be formed at the BTO/LSMO interface, which drives a switching of the conduction mechanism between space charge limited conduction and Poole-Frenkel emission, corresponding to the low and high resistance states. Our results lighten an effective way for electric-field modulated resistance states in multiferroic magnetoelectric devices.

  16. Electric field modulated conduction mechanism in Al/BaTiO3/La0.67Sr0.33MnO3 heterostructures

    KAUST Repository

    Zheng, Dongxing

    2017-08-08

    Mediating a metastable state is a promising way to achieve a giant modulation of physical properties in artificial heterostructures. A metastable state La0.67Sr0.33MnO3 (LSMO) layer suffering tensile strain was grown on MgO substrates. Incorporating with the ferroelectric BaTiO3 (BTO) layer, an accumulation or depletion state controlled by electric fields can be formed at the BTO/LSMO interface, which drives a switching of the conduction mechanism between space charge limited conduction and Poole-Frenkel emission, corresponding to the low and high resistance states. Our results lighten an effective way for electric-field modulated resistance states in multiferroic magnetoelectric devices.

  17. Bandstructure modulation for Si-h and Si-g nanotubes in a transverse electric field: Tight binding approach

    Science.gov (United States)

    Chegel, Raad; Behzad, Somayeh

    2013-11-01

    We have investigated the electronic properties of SiNTs, under the external electric field, using Tight Binding (TB) approximation. It was found that the energy levels, energy gaps, and density of states (DOS) strongly depend on the electric field strength. The large electric strength leads to coupling the neighbor subbands and induce destruction of subband degeneracy, increase of low-energy states, and strong modulation of energy gap which these effects reflect in the DOS spectrum. It has been shown that, the band gap reduction of Si g-NTs is linearly proportional to the electric field strength. The band gap variation for Si h-NTs increases first and later decreases (Metallic) or first remains constant and then decreases (semiconductor). Also we show that the larger diameter tubes are more sensitive to the field strength than smaller ones. The semiconducting metallic transition or vice versa can be achieved through an increasing of applied fields. Number and position of peaks in DOS spectrum are dependent on electric field strength.

  18. Joint Rhythmic Movement Increases 4-Year-Old Children’s Prosocial Sharing and Fairness Toward Peers

    Directory of Open Access Journals (Sweden)

    Tal-Chen Rabinowitch

    2017-06-01

    Full Text Available The allocation of resources to a peer partner is a prosocial act that is of fundamental importance. Joint rhythmic movement, such as occurs during musical interaction, can induce positive social experiences, which may play a role in developing and enhancing young children’s prosocial skills. Here, we investigated whether joint rhythmic movement, free of musical context, increases 4-year-olds’ sharing and sense of fairness in a resource allocation task involving peers. We developed a precise procedure for administering joint synchronous experience, joint asynchronous experience, and a baseline control involving no treatment. Then we tested how participants allocated resources between self and peer. We found an increase in the generous allocation of resources to peers following both synchronous and asynchronous movement compared to no treatment. At a more theoretical level, this result is considered in relation to previous work testing other aspects of child prosociality, for example, peer cooperation, which can be distinguished from judgments of fairness in resource allocation tasks. We draw a conceptual distinction between two types of prosocial behavior: resource allocation (an other-directed individual behavior and cooperation (a goal-directed collaborative endeavor. Our results highlight how rhythmic interactions, which are prominent in joint musical engagements and synchronized activity, influence prosocial behavior between preschool peers.

  19. Playing-related musculoskeletal disorders among icelandic music students: differences between students playing classical vs rhythmic music.

    Science.gov (United States)

    Arnason, Kári; Arnason, Arni; Briem, Kristín

    2014-06-01

    Most research studies investigating the prevalence of musculoskeletal disorders affecting musicians and music students have focused on classical music, while less is known about their prevalence in other music genres. The purpose of this study was to document cumulative and point prevalence of playing-related musculoskeletal disorders (PRMD) among music students in Iceland and, specifically, to identify differences between those studying classical vs rhythmic music. We hypothesized that students of classical music would report more frequent and more severe musculoskeletal disorders than students involved in rhythmic music, as classical instruments and composition typically require more demanding, sustained postures during practice and performance. A total of 74 students from two classical music schools (schools A and B) and 1 rhythmic school (school C) participated in the study by answering a questionnaire assessing PRMDs. The results showed that 62% of participants had, at some point in their musical career, suffered a PRMD. The cumulative prevalence was highest in music school A (71.4%) and lowest in music school C (38.9%). A statistically significant difference was identified between the cumulative prevalence of PRMD from schools A and B combined compared to music school C (p=0.019). Over 40% of participants reported a "current PRMD," and a significant difference was identified between the three schools (p=0.011), with the highest point prevalence being registered in music school A (66.6%) and the lowest in music school C (22.2%). The prevalence of PRMDs among Icelandic music students was high. The difference found between students who play classical vs rhythmic music may be explained by different demands of the instruments and composition on playing posture.

  20. All-electric spin modulator based on a two-dimensional topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xianbo; Ai, Guoping [School of Computer Science, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004 (China); Liu, Ying; Yang, Shengyuan A., E-mail: shengyuan-yang@sutd.edu.sg [Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372 (Singapore); Liu, Zhengfang [School of Science, East China Jiaotong University, Nanchang 330013 (China); Zhou, Guanghui, E-mail: ghzhou@hunnu.edu.cn [Key Laboratory for Low-Dimensional Structures and Quantum Manipulation (Ministry of Education), and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081 (China)

    2016-01-18

    We propose and investigate a spin modulator device consisting of two ferromagnetic leads connected by a two-dimensional topological insulator as the channel material. It exploits the unique features of the topological spin-helical edge states, such that the injected carriers with a non-collinear spin-polarization direction would travel through both edges and show interference effect. The conductance of the device can be controlled in a simple and all-electric manner by a side-gate voltage, which effectively rotates the spin-polarization of the carrier. At low voltages, the rotation angle is linear in the gate voltage, and the device can function as a good spin-polarization rotator by replacing the drain electrode with a non-magnetic material.

  1. Bent Electro-Absorption Modulator

    DEFF Research Database (Denmark)

    2002-01-01

    by applying a variable electric or electronmagnetic field. The modulation of the complex refractive index results in a modulation of the refractive index contrast and the absorption coefficient for the waveguide at the frequency of the light. By carefully adjusting the composition of the semiconducting...... components and the applied electric field in relation to the frequency of the modulated radiation, the bending losses (and possibly coupling losses) will provide extinction of light guided by the bent waveguide section. The refractive index contract may be modulated while keeping the absorption coefficient......The present invention relates to a method and a device for modulating optical signals based on modulating bending losses in bend, quantum well semiconductor waveguide sections. The complex refractive index of the optical active semiconducting components of the waveguide section is modulated...

  2. Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films

    Science.gov (United States)

    Yang, C.-H.; Seidel, J.; Kim, S. Y.; Rossen, P. B.; Yu, P.; Gajek, M.; Chu, Y. H.; Martin, L. W.; Holcomb, M. B.; He, Q.; Maksymovych, P.; Balke, N.; Kalinin, S. V.; Baddorf, A. P.; Basu, S. R.; Scullin, M. L.; Ramesh, R.

    2009-06-01

    Many interesting materials phenomena such as the emergence of high-Tc superconductivity in the cuprates and colossal magnetoresistance in the manganites arise out of a doping-driven competition between energetically similar ground states. Doped multiferroics present a tantalizing evolution of this generic concept of phase competition. Here, we present the observation of an electronic conductor-insulator transition by control of band-filling in the model antiferromagnetic ferroelectric BiFeO3 through Ca doping. Application of electric field enables us to control and manipulate this electronic transition to the extent that a p-n junction can be created, erased and inverted in this material. A `dome-like' feature in the doping dependence of the ferroelectric transition is observed around a Ca concentration of ~1/8, where a new pseudo-tetragonal phase appears and the electric modulation of conduction is optimized. Possible mechanisms for the observed effects are discussed on the basis of the interplay of ionic and electronic conduction. This observation opens the door to merging magnetoelectrics and magnetoelectronics at room temperature by combining electronic conduction with electric and magnetic degrees of freedom already present in the multiferroic BiFeO3.

  3. Development of a multifunction module for the neutron electric dipole moment experiment at PSI

    Energy Technology Data Exchange (ETDEWEB)

    Bourrion, O., E-mail: olivier.bourrion@lpsc.in2p3.fr [Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53, Rue des Martyrs, Grenoble (France); Pignol, G. [Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53, Rue des Martyrs, Grenoble (France); Rebreyend, D. [Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53, Rue des Martyrs, Grenoble (France); Paul Scherrer Institut (PSI), CH-5232 Villigen PSI (Switzerland); Vescovi, C. [Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53, Rue des Martyrs, Grenoble (France)

    2013-02-11

    Experiments aiming at measuring the neutron electric dipole moment (nEDM) are at the forefront of precision measurements and demand instrumentation of increasing sensitivity and reliability. In this paper, we report on the development of a dedicated acquisition and control electronics board for the nEDM experiment at the Paul Scherrer Institute (PSI) in Switzerland. This multifunction module is based on a FPGA (Field Programmable Gate Array) which allows an optimal combination of versatility and evolution capacities.

  4. Numerical investigation of the thermal and electrical performances for combined solar photovoltaic/thermal (PV/T) modules based on internally extruded fin flow channel

    Science.gov (United States)

    Deng, Y. C.; Li, Q. P.; Wang, G. J.

    2017-11-01

    A solar photovoltaic/thermal (PV/T) module based on internally extruded fin flow channel was investigated numerically in this paper. First of all, the structures of the thin plate heat exchanger and the PV/T module were presented. Then, a numerical model of the PV/T module considering solar irradiation, fluid flow and heat transfer was developed to analyze the performance of the module. Finally, the steady electrical and thermal efficiencies of the PV/T module at different inlet water temperatures and mass flow rates were achieved. These numerical results supply theory basis for practical application of the PV/T module.

  5. Assembly and Electrical Tests of the First Full-size Forward Module for the ATLAS ITk Strip Detector

    CERN Document Server

    Garcia-Argos, Carlos; The ATLAS collaboration

    2018-01-01

    The ATLAS experiment will replace the existing Inner Detector by an all-silicon detector named the Inner Tracker (ITk) for the High Luminosity LHC upgrades. In the outer region of the Inner Tracker is the strip detector, which consists of a four layer barrel and six discs to each side of the barrel, with silicon-strip modules as basic units. Each module is composed of a sensor and one or more flex circuits that hold the read-out electronics. In the experiment, the modules are mounted on support structures with integrated power and cooling. The modules are designed with geometries that accommodate the central and forward regions, with rectangular sensors in the barrels and wedge shaped sensors in the end-caps. The strips lengths and pitch sizes vary according to the occupancy of the region. In this contribution, we present the construction and results of the electrical tests of the first full-size module of the innermost forward region, named \\textit{Ring 0} in the ATLAS ITk strip detector nomenclature. This m...

  6. The Involvement of Endogenous Neural Oscillations in the Processing of Rhythmic Input: More Than a Regular Repetition of Evoked Neural Responses

    Science.gov (United States)

    Zoefel, Benedikt; ten Oever, Sanne; Sack, Alexander T.

    2018-01-01

    It is undisputed that presenting a rhythmic stimulus leads to a measurable brain response that follows the rhythmic structure of this stimulus. What is still debated, however, is the question whether this brain response exclusively reflects a regular repetition of evoked responses, or whether it also includes entrained oscillatory activity. Here we systematically present evidence in favor of an involvement of entrained neural oscillations in the processing of rhythmic input while critically pointing out which questions still need to be addressed before this evidence could be considered conclusive. In this context, we also explicitly discuss the potential functional role of such entrained oscillations, suggesting that these stimulus-aligned oscillations reflect, and serve as, predictive processes, an idea often only implicitly assumed in the literature. PMID:29563860

  7. Electrical Pressurization Concept for the Orion MPCV European Service Module Propulsion System

    Science.gov (United States)

    Meiss, Jan-Hendrik; Weber, Jorg; Ierardo, Nicola; Quinn, Frank D.; Paisley, Jonathan

    2015-01-01

    The paper presents the design of the pressurization system of the European Service Module (ESM) of the Orion Multi-Purpose Crew Vehicle (MPCV). Being part of the propulsion subsystem, an electrical pressurization concept is implemented to condition propellants according to the engine needs via a bang-bang regulation system. Separate pressurization for the oxidizer and the fuel tank permits mixture ratio adjustments and prevents vapor mixing of the two hypergolic propellants during nominal operation. In case of loss of pressurization capability of a single side, the system can be converted into a common pressurization system. The regulation concept is based on evaluation of a set of tank pressure sensors and according activation of regulation valves, based on a single-failure tolerant weighting of three pressure signals. While regulation is performed on ESM level, commanding of regulation parameters as well as failure detection, isolation and recovery is performed from within the Crew Module, developed by Lockheed Martin Space System Company. The overall design and development maturity presented is post Preliminary Design Review (PDR) and reflects the current status of the MPCV ESM pressurization system.

  8. Some phonetic experiments on : Double stress and rhythmic variation in R.P. English

    NARCIS (Netherlands)

    Heuven, van V.J.J.P.

    1974-01-01

    This thesis examines the phonetic nature of so-called double-stressed words in English (also called equal- stressed or even-stressed), and the susceptibility of these words to rhythmic adjustment (stress clash avoidance). An acoustic analysis of stress correlates was made of disyllabic words

  9. Performance of Photovoltaic Modules of Different Solar Cells

    Directory of Open Access Journals (Sweden)

    Ankita Gaur

    2013-01-01

    Full Text Available In this paper, an attempt of performance evaluation of semitransparent and opaque photovoltaic (PV modules of different generation solar cells, having the maximum efficiencies reported in the literature at standard test conditions (STC, has been carried out particularly for the months of January and June. The outdoor performance is also evaluated for the commercially available semitransparent and opaque PV modules. Annual electrical energy, capitalized cost, annualized uniform cost (unacost, and cost per unit electrical energy for both types of solar modules, namely, semitransparent and opaque have also been computed along with their characteristics curves. Semitransparent PV modules have shown higher efficiencies compared to the opaque ones. Calculations show that for the PV modules made in laboratory, CdTe exhibits the maximum annual electrical energy generation resulting into minimum cost per unit electrical energy, whereas a-Si/nc-Si possesses the maximum annual electrical energy generation giving minimum cost per unit electrical energy when commercially available solar modules are concerned. CIGS has shown the lowest capitalized cost over all other PV technologies.

  10. Rhythmic walking interactions with auditory feedback

    DEFF Research Database (Denmark)

    Jylhä, Antti; Serafin, Stefania; Erkut, Cumhur

    2012-01-01

    of interactions based on varying the temporal characteristics of the output, using the sound of human walking as the input. The system either provides a direct synthesis of a walking sound based on the detected amplitude envelope of the user's footstep sounds, or provides a continuous synthetic walking sound...... as a stimulus for the walking human, either with a fixed tempo or a tempo adapting to the human gait. In a pilot experiment, the different interaction modes are studied with respect to their effect on the walking tempo and the experience of the subjects. The results tentatively outline different user profiles......Walking is a natural rhythmic activity that has become of interest as a means of interacting with software systems such as computer games. Therefore, designing multimodal walking interactions calls for further examination. This exploratory study presents a system capable of different kinds...

  11. Graphene based terahertz phase modulators

    Science.gov (United States)

    Kakenov, N.; Ergoktas, M. S.; Balci, O.; Kocabas, C.

    2018-07-01

    Electrical control of amplitude and phase of terahertz radiation (THz) is the key technological challenge for high resolution and noninvasive THz imaging. The lack of active materials and devices hinders the realization of these imaging systems. Here, we demonstrate an efficient terahertz phase and amplitude modulation using electrically tunable graphene devices. Our device structure consists of electrolyte-gated graphene placed at quarter wavelength distance from a reflecting metallic surface. In this geometry, graphene operates as a tunable impedance surface which yields electrically controlled reflection phase. Terahertz time domain reflection spectroscopy reveals the voltage controlled phase modulation of π and the reflection modulation of 50 dB. To show the promises of our approach, we demonstrate a multipixel phase modulator array which operates as a gradient impedance surface.

  12. Modulation of Cortical-subcortical Networks in Parkinson’s Disease by Applied Field Effects

    Directory of Open Access Journals (Sweden)

    Christopher William Hess

    2013-09-01

    Full Text Available Studies suggest that endogenous field effects may play a role in neuronal oscillations and communication. Non-invasive transcranial electrical stimulation with low-intensity currents can also have direct effects on the underlying cortex as well as distant network effects. While Parkinson's disease (PD is amenable to invasive neuromodulation in the basal ganglia by deep brain stimulation, techniques of non-invasive neuromodulation like transcranial direct current stimulation (tDCS and transcranial alternating current stimulation (tACS are being investigated as possible therapies. tDCS and tACS have the potential to influence the abnormal cortical-subcortical network activity that occurs in PD through sub-threshold changes in cortical excitability or through entrainment or disruption of ongoing rhythmic cortical activity. This may allow for the targeting of specific features of the disease involving abnormal oscillatory activity, as well as the enhancement of potential cortical compensation for basal ganglia dysfunction and modulation of cortical plasticity in neurorehabilitation. However, little is currently known about how cortical stimulation will affect subcortical structures, the size of any effect, and the factors of stimulation that will influence these effects.

  13. Effect of rhythmic auditory cueing on gait in people with Alzheimer disease.

    Science.gov (United States)

    Wittwer, Joanne E; Webster, Kate E; Hill, Keith

    2013-04-01

    To determine whether rhythmic music and metronome cues alter spatiotemporal gait measures and gait variability in people with Alzheimer disease (AD). A repeated-measures study requiring participants to walk under different cueing conditions. University movement laboratory. Of the people (N=46) who met study criteria (a diagnosis of probable AD and ability to walk 100m) at routine medical review, 30 (16 men; mean age ± SD, 80±6y; revised Addenbrooke's Cognitive Examination range, 26-79) volunteered to participate. Participants walked 4 times over an electronic walkway synchronizing to (1) rhythmic music and (2) a metronome set at individual mean baseline comfortable speed cadence. Gait spatiotemporal measures and gait variability (coefficient of variation [CV]). Data from individual walks under each condition were combined. A 1-way repeated-measures analysis of variance was used to compare uncued baseline, cued, and retest measures. Gait velocity decreased with both music and metronome cues compared with baseline (baseline, 110.5cm/s; music, 103.4cm/s; metronome, 105.4cm/s), primarily because of significant decreases in stride length (baseline, 120.9cm; music, 112.5cm; metronome, 114.8cm) with both cue types. This was coupled with increased stride length variability compared with baseline (baseline CV, 3.4%; music CV, 4.3%; metronome CV, 4.5%) with both cue types. These changes did not persist at (uncued) retest. Temporal variability was unchanged. Rhythmic auditory cueing at comfortable speed tempo produced deleterious effects on gait in a single session in this group with AD. The deterioration in spatial gait parameters may result from impaired executive function associated with AD. Further research should investigate whether these instantaneous cue effects are altered with more practice or with learning methods tailored to people with cognitive impairment. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights

  14. Study on Quality Indicator System of Rhythmic Gymnasts in Analytic Hierarchy Process

    Science.gov (United States)

    Luo, Lin

    2017-08-01

    The rhythmic gymnastics (RG) is a sport item with the direct aim of winning as well as a good ornamental value. The scientific selection by the rhythmic gymnasts is necessary for the success, and also the beginning for the scientific training of the gymnasts in their special training stage. According to RG characteristics and the physical characteristics of the gymnasts, also in combination with the investigations & interviews to the coaches who have years of training experience in RG, the experts & scholars on RG study & teaching in universities, and by referring to relevant documents, this paper established the quality indicator system in analytic hierarchy process (AHP). We summarized and selected several indicators obviously influencing the RG training and divided them into the three types of factors: physical factors, flexibility & strength factors, and speed & dexterity factors, according to which 12 specific indicators, their weights and comprehensive evaluation coefficients. Based on these indicators, we established the quality indicator system of the gymnasts, and developed corresponding software system, providing scientific theoretical basis & practical application basis for the selection & evaluation of the gymnasts.

  15. Electrophysiological Study of Algorithmically Processed Metric/Rhythmic Variations in Language and Music

    Directory of Open Access Journals (Sweden)

    Magne Cyrille

    2007-01-01

    Full Text Available This work is the result of an interdisciplinary collaboration between scientists from the fields of audio signal processing, phonetics and cognitive neuroscience aiming at studying the perception of modifications in meter, rhythm, semantics and harmony in language and music. A special time-stretching algorithm was developed to work with natural speech. In the language part, French sentences ending with tri-syllabic congruous or incongruous words, metrically modified or not, were made. In the music part, short melodies made of triplets, rhythmically and/or harmonically modified, were built. These stimuli were presented to a group of listeners that were asked to focus their attention either on meter/rhythm or semantics/harmony and to judge whether or not the sentences/melodies were acceptable. Language ERP analyses indicate that semantically incongruous words are processed independently of the subject's attention thus arguing for automatic semantic processing. In addition, metric incongruities seem to influence semantic processing. Music ERP analyses show that rhythmic incongruities are processed independently of attention, revealing automatic processing of rhythm in music.

  16. Electrophysiological Study of Algorithmically Processed Metric/Rhythmic Variations in Language and Music

    Directory of Open Access Journals (Sweden)

    Richard Kronland-Martinet

    2007-12-01

    Full Text Available This work is the result of an interdisciplinary collaboration between scientists from the fields of audio signal processing, phonetics and cognitive neuroscience aiming at studying the perception of modifications in meter, rhythm, semantics and harmony in language and music. A special time-stretching algorithm was developed to work with natural speech. In the language part, French sentences ending with tri-syllabic congruous or incongruous words, metrically modified or not, were made. In the music part, short melodies made of triplets, rhythmically and/or harmonically modified, were built. These stimuli were presented to a group of listeners that were asked to focus their attention either on meter/rhythm or semantics/harmony and to judge whether or not the sentences/melodies were acceptable. Language ERP analyses indicate that semantically incongruous words are processed independently of the subject's attention thus arguing for automatic semantic processing. In addition, metric incongruities seem to influence semantic processing. Music ERP analyses show that rhythmic incongruities are processed independently of attention, revealing automatic processing of rhythm in music.

  17. DNA Replication Is Required for Circadian Clock Function by Regulating Rhythmic Nucleosome Composition.

    Science.gov (United States)

    Liu, Xiao; Dang, Yunkun; Matsu-Ura, Toru; He, Yubo; He, Qun; Hong, Christian I; Liu, Yi

    2017-07-20

    Although the coupling between circadian and cell cycles allows circadian clocks to gate cell division and DNA replication in many organisms, circadian clocks were thought to function independently of cell cycle. Here, we show that DNA replication is required for circadian clock function in Neurospora. Genetic and pharmacological inhibition of DNA replication abolished both overt and molecular rhythmicities by repressing frequency (frq) gene transcription. DNA replication is essential for the rhythmic changes of nucleosome composition at the frq promoter. The FACT complex, known to be involved in histone disassembly/reassembly, is required for clock function and is recruited to the frq promoter in a replication-dependent manner to promote replacement of histone H2A.Z by H2A. Finally, deletion of H2A.Z uncoupled the dependence of the circadian clock on DNA replication. Together, these results establish circadian clock and cell cycle as interdependent coupled oscillators and identify DNA replication as a critical process in the circadian mechanism. Published by Elsevier Inc.

  18. Non-equilibrium thermodynamical description of rhythmic motion patterns of active systems: a canonical-dissipative approach.

    Science.gov (United States)

    Dotov, D G; Kim, S; Frank, T D

    2015-02-01

    We derive explicit expressions for the non-equilibrium thermodynamical variables of a canonical-dissipative limit cycle oscillator describing rhythmic motion patterns of active systems. These variables are statistical entropy, non-equilibrium internal energy, and non-equilibrium free energy. In particular, the expression for the non-equilibrium free energy is derived as a function of a suitable control parameter. The control parameter determines the Hopf bifurcation point of the deterministic active system and describes the effective pumping of the oscillator. In analogy to the equilibrium free energy of the Landau theory, it is shown that the non-equilibrium free energy decays as a function of the control parameter. In doing so, a similarity between certain equilibrium and non-equilibrium phase transitions is pointed out. Data from an experiment on human rhythmic movements is presented. Estimates for pumping intensity as well as the thermodynamical variables are reported. It is shown that in the experiment the non-equilibrium free energy decayed when pumping intensity was increased, which is consistent with the theory. Moreover, pumping intensities close to zero could be observed at relatively slow intended rhythmic movements. In view of the Hopf bifurcation underlying the limit cycle oscillator model, this observation suggests that the intended limit cycle movements were actually more similar to trajectories of a randomly perturbed stable focus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Decoding emotional valence from electroencephalographic rhythmic activity.

    Science.gov (United States)

    Celikkanat, Hande; Moriya, Hiroki; Ogawa, Takeshi; Kauppi, Jukka-Pekka; Kawanabe, Motoaki; Hyvarinen, Aapo

    2017-07-01

    We attempt to decode emotional valence from electroencephalographic rhythmic activity in a naturalistic setting. We employ a data-driven method developed in a previous study, Spectral Linear Discriminant Analysis, to discover the relationships between the classification task and independent neuronal sources, optimally utilizing multiple frequency bands. A detailed investigation of the classifier provides insight into the neuronal sources related with emotional valence, and the individual differences of the subjects in processing emotions. Our findings show: (1) sources whose locations are similar across subjects are consistently involved in emotional responses, with the involvement of parietal sources being especially significant, and (2) even though the locations of the involved neuronal sources are consistent, subjects can display highly varying degrees of valence-related EEG activity in the sources.

  20. Slowed EEG rhythmicity in patients with chronic pancreatitis: evidence of abnormal cerebral pain processing?

    DEFF Research Database (Denmark)

    Olesen, Søren Schou; Hansen, Tine Maria; Gravesen, Carina

    2011-01-01

    Intractable pain usually dominates the clinical presentation of chronic pancreatitis (CP). Slowing of electroencephalogram (EEG) rhythmicity has been associated with abnormal cortical pain processing in other chronic pain disorders. The aim of this study was to investigate the spectral distribution...

  1. Laminated photovoltaic modules using back-contact solar cells

    Science.gov (United States)

    Gee, James M.; Garrett, Stephen E.; Morgan, William P.; Worobey, Walter

    1999-09-14

    Photovoltaic modules which comprise back-contact solar cells, such as back-contact crystalline silicon solar cells, positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The module designs allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  2. Studies of the phase gradient at the boundary of the phase diffusion equation, motivated by peculiar wave patterns of rhythmic contraction in the amoeboid movement of Physarum polycephalum

    Science.gov (United States)

    Iima, Makoto; Kori, Hiroshi; Nakagaki, Toshiyuki

    2017-04-01

    The boundary of a cell is the interface with its surroundings and plays a key role in controlling the cell movement adaptations to different environments. We propose a study of the boundary effects on the patterns and waves of the rhythmic contractions in plasmodia of Physarum polycephalum, a tractable model organism of the amoeboid type. Boundary effects are defined as the effects of both the boundary conditions and the boundary shape. The rhythmicity of contraction can be modulated by local stimulation of temperature, light and chemicals, and by local deformation of cell shape via mechanosensitive ion channels as well. First, we examined the effects of boundary cell shapes in the case of a special shape resembling a tadpole, while requiring that the natural frequency in the proximity of the boundary is slightly higher and uniform. The simulation model reproduced the approximate propagated wave, from the tail to the head, while the inward waves were observed only near the periphery of the head section of the tadpole-shape. A key finding was that the frequency of the rhythmic contractions depended on the local shape of cell boundary. This implies that the boundary conditions of the phase were not always homogeneous. To understand the dependency, we reduced the two-dimensional model into a one-dimensional continuum model with Neumann boundary conditions. Here, the boundary conditions reflect the frequency distribution at the boundary. We described the analytic solutions and calculated the relationship between the boundary conditions and the wave propagation for a one-dimensional model of the continuous oscillatory field and a discrete coupled oscillator system. The results obtained may not be limited to cell movement of Physarum, but may be applicable to the other physical systems since the analysis used a generic phase diffusion equation.

  3. Studies of the phase gradient at the boundary of the phase diffusion equation, motivated by peculiar wave patterns of rhythmic contraction in the amoeboid movement of Physarum polycephalum

    International Nuclear Information System (INIS)

    Iima, Makoto; Kori, Hiroshi; Nakagaki, Toshiyuki

    2017-01-01

    The boundary of a cell is the interface with its surroundings and plays a key role in controlling the cell movement adaptations to different environments. We propose a study of the boundary effects on the patterns and waves of the rhythmic contractions in plasmodia of Physarum polycephalum , a tractable model organism of the amoeboid type. Boundary effects are defined as the effects of both the boundary conditions and the boundary shape. The rhythmicity of contraction can be modulated by local stimulation of temperature, light and chemicals, and by local deformation of cell shape via mechanosensitive ion channels as well. First, we examined the effects of boundary cell shapes in the case of a special shape resembling a tadpole, while requiring that the natural frequency in the proximity of the boundary is slightly higher and uniform. The simulation model reproduced the approximate propagated wave, from the tail to the head, while the inward waves were observed only near the periphery of the head section of the tadpole-shape. A key finding was that the frequency of the rhythmic contractions depended on the local shape of cell boundary. This implies that the boundary conditions of the phase were not always homogeneous. To understand the dependency, we reduced the two-dimensional model into a one-dimensional continuum model with Neumann boundary conditions. Here, the boundary conditions reflect the frequency distribution at the boundary. We described the analytic solutions and calculated the relationship between the boundary conditions and the wave propagation for a one-dimensional model of the continuous oscillatory field and a discrete coupled oscillator system. The results obtained may not be limited to cell movement of Physarum , but may be applicable to the other physical systems since the analysis used a generic phase diffusion equation. (paper)

  4. Composite modulation of Fano resonance in plasmonic microstructures by electric-field and microcavity

    International Nuclear Information System (INIS)

    Zhang, Fan; Wu, Chenyun; Yang, Hong; Hu, Xiaoyong; Gong, Qihuang

    2014-01-01

    Composite modulation of Fano resonance by using electric-field and microcavity simultaneously is realized in a plasmonic microstructure, which consists of a gold nanowire grating inserted into a Fabry-Perot microcavity composited of a liquid crystal layer sandwiched between two indium tin oxide layers. The Fano resonance wavelength varies with the applied voltage and the microcavity resonance. A large shift of 48 nm in the Fano resonance wavelength is achieved when the applied voltage is 20 V. This may provide a new way for the study of multi-functional integrated photonic circuits and chips based on plasmonic microstructures

  5. Composite modulation of Fano resonance in plasmonic microstructures by electric-field and microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; Wu, Chenyun; Yang, Hong [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Hu, Xiaoyong, E-mail: xiaoyonghu@pku.edu.cn; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2014-11-03

    Composite modulation of Fano resonance by using electric-field and microcavity simultaneously is realized in a plasmonic microstructure, which consists of a gold nanowire grating inserted into a Fabry-Perot microcavity composited of a liquid crystal layer sandwiched between two indium tin oxide layers. The Fano resonance wavelength varies with the applied voltage and the microcavity resonance. A large shift of 48 nm in the Fano resonance wavelength is achieved when the applied voltage is 20 V. This may provide a new way for the study of multi-functional integrated photonic circuits and chips based on plasmonic microstructures.

  6. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Six: Parallel Circuits. Study Booklet.

    Science.gov (United States)

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on parallel circuits is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Four lessons are included in the…

  7. ANALISIS PERFORMA SISTEM PENDINGIN RAMAH LINGKUNGAN UNTUK KABIN MOBIL CITY CAR MENGGUNAKAN MODUL TERMO ELECTRIC COOLER TERHADAP KONSUMSI BAHAN BAKAR

    Directory of Open Access Journals (Sweden)

    Mirza Yusuf

    2017-12-01

    Full Text Available Ramah lingkungan menjadi isu yang gencar dalam penelitian. Cloro Fluoro Carbon (CFC yang digunakan dalam AC konvensional akan menguap ke udara bebas  berdampak kerusakan lapisan ozon. Ditinjau secara micro dalam penggunaan sitem pendingin dapat diterapkan pada pendingin kabin mobil. System pendingin mobil konfensional menimbulkan 2 kerugian yaitu lebih boros bahan bakar karena couple pulley compressor AC membebani putaran mesin dan penggunaan CFC yang tidak ramah lingkungan.   System pendingin ramah lingkunagan dan mampu menghemat bahan bakar mesin tersebut dapat kita temukan pada modul thermoelectric.  terobosan baru sistem pendingin tersebut menggunakan modul pendingin Thermo Electric Cooler (TEC yang memanfaatkan sisi dingin pada Thermo Electric Cooler (TEC dengan memanfaatkan seaback effect .  Thermo Electric Cooler (TEC ketika dialiri tegangan DC (arus searah pada kedua jalur kabel penghubungnya maka salah satu sisi akan menjadi panas, sementara sisi satunya akan menjadi dingin. Salahsatu cara yang dapat ditempuh untuk memaksimalkan proses pendinginan, maka sisi panas Thermo Electric Cooler (TEC harus diturunkan temperaturenya serendah mungkin mungkin dengan menggunakan alat penukar kalor heat sink serta dibantu kipas(fan. semakin lama proses pendinginan, maka semakin optimal suhu ruangan yang didinginkan. Dari data Hasil pengujian dapat diketahui perangkat pendingin tersebut mampu bekerja dengan rate penurunan temperature memadai. Selanjutnya dapat dapat diaplikasikan sebagai alat pendingin ruangan yang efektif, efisien dan ramah lingkungan.    Kata kunci:  Kabin mobil, Air Conditioner (AC konvensional, Cloro Fluoro Carbon (CFC, Thermo Electric Cooler (TEC, komponen sistem pendingin.

  8. Effect of Rhythmic Auditory Stimulation on Hemiplegic Gait Patterns.

    Science.gov (United States)

    Shin, Yoon-Kyum; Chong, Hyun Ju; Kim, Soo Ji; Cho, Sung-Rae

    2015-11-01

    The purpose of our study was to investigate the effect of gait training with rhythmic auditory stimulation (RAS) on both kinematic and temporospatial gait patterns in patients with hemiplegia. Eighteen hemiplegic patients diagnosed with either cerebral palsy or stroke participated in this study. All participants underwent the 4-week gait training with RAS. The treatment was performed for 30 minutes per each session, three sessions per week. RAS was provided with rhythmic beats using a chord progression on a keyboard. Kinematic and temporospatial data were collected and analyzed using a three-dimensional motion analysis system. Gait training with RAS significantly improved both proximal and distal joint kinematic patterns in hip adduction, knee flexion, and ankle plantar flexion, enhancing the gait deviation index (GDI) as well as ameliorating temporal asymmetry of the stance and swing phases in patients with hemiplegia. Stroke patients with previous walking experience demonstrated significant kinematic improvement in knee flexion in mid-swing and ankle dorsiflexion in terminal stance. Among stroke patients, subacute patients showed a significantly increased GDI score compared with chronic patients. In addition, household ambulators showed a significant effect on reducing anterior tilt of the pelvis with an enhanced GDI score, while community ambulators significantly increased knee flexion in mid-swing phase and ankle dorsiflexion in terminal stance phase. Gait training with RAS has beneficial effects on both kinematic and temporospatial patterns in patients with hemiplegia, providing not only clinical implications of locomotor rehabilitation with goal-oriented external feedback using RAS but also differential effects according to ambulatory function.

  9. Auditory Processing Interventions and Developmental Dyslexia: A Comparison of Phonemic and Rhythmic Approaches

    Science.gov (United States)

    Thomson, Jennifer M.; Leong, Victoria; Goswami, Usha

    2013-01-01

    The purpose of this study was to compare the efficacy of two auditory processing interventions for developmental dyslexia, one based on rhythm and one based on phonetic training. Thirty-three children with dyslexia participated and were assigned to one of three groups (a) a novel rhythmic processing intervention designed to highlight auditory…

  10. Gender Differences in Musical Aptitude, Rhythmic Ability and Motor Performance in Preschool Children

    Science.gov (United States)

    Pollatou, Elisana; Karadimou, Konstantina; Gerodimos, Vasilios

    2005-01-01

    Most of the preschool curricula involve integrated movement activities that combine music, rhythm and locomotor skills. The purpose of the current study was to examine whether there are any differences between boys and girls at the age of five concerning their musical aptitude, rhythmic ability and performance in gross motor skills. Ninety-five…

  11. Acousto-optic modulation of III-V semiconductor multiple quantum wells

    International Nuclear Information System (INIS)

    Smith, D.L.; Kogan, S.M.; Ruden, P.P.; Mailhiot, C.

    1996-01-01

    We present an analysis of the effect of surface acoustic waves (SAW close-quote s) on the optical properties of III-V semiconductor multiple quantum wells (MQW close-quote s). Modulation spectra at the fundamental and second harmonic of the SAW frequency are presented. The SAW modulates the optical properties of the MQW primarily by changing optical transition energies. The SAW generates both strains, which modulate the transition energies by deformation potential effects, and electric fields, which modulate the transition energies by the quantum confined Stark effect. We find that modulation of the transition energies by strain effects is usually more important than by electric-field effects. If large static electric fields occur in the MQW, the SAW-generated electric field can mix with the static field to give optical modulation, which is comparable in magnitude to modulation from the deformation potential effect. If there are no large static electric fields, modulation by the SAW-generated fields is negligible. A large static electric field distributes oscillator strength among the various optical transitions so that no single transition is as strong as the primary allowed transitions without a static electric field. To achieve the maximum modulation for fixed SAW parameters, it is best to modulate a strong optical transition. Thus optimum modulation occurs when there are no large static electric fields present and that modulation is primarily from deformation potential effects. We specifically consider Ga x In 1-x As/Ga x Al 1-x As MQW close-quote s grown on (100) and (111) oriented substrates, but our general conclusions apply to other type I MQW close-quote s fabricated from III-V semiconductors. copyright 1996 The American Physical Society

  12. Electric field modulation of Schottky barrier height in graphene/MoSe2 van der Waals heterointerface

    International Nuclear Information System (INIS)

    Sata, Yohta; Moriya, Rai; Morikawa, Sei; Yabuki, Naoto; Masubuchi, Satoru; Machida, Tomoki

    2015-01-01

    We demonstrate a vertical field-effect transistor based on a graphene/MoSe 2 van der Waals (vdW) heterostructure. The vdW interface between the graphene and MoSe 2 exhibits a Schottky barrier with an ideality factor of around 1.3, suggesting a high-quality interface. Owing to the low density of states in graphene, the position of the Fermi level in the graphene can be strongly modulated by an external electric field. Therefore, the Schottky barrier height at the graphene/MoSe 2 vdW interface is also modulated. We demonstrate a large current ON-OFF ratio of 10 5 . These results point to the potential high performance of the graphene/MoSe 2 vdW heterostructure for electronics applications

  13. Block-Module Electric Machines of Alternating Current

    Science.gov (United States)

    Zabora, I.

    2018-03-01

    The paper deals with electric machines having active zone based on uniform elements. It presents data on disk-type asynchronous electric motors with short-circuited rotors, where active elements are made by integrated technique that forms modular elements. Photolithography, spraying, stamping of windings, pressing of core and combined methods are utilized as the basic technological approaches of production. The constructions and features of operation for new electric machine - compatible electric machines-transformers are considered. Induction motors are intended for operation in hermetic plants with extreme conditions surrounding gas, steam-to-gas and liquid environment at a high temperature (to several hundred of degrees).

  14. Hepatic rhythmicity of endoplasmic reticulum stress is disrupted in perinatal and adult mice models of high-fat diet-induced obesity.

    Science.gov (United States)

    Soeda, Junpei; Cordero, Paul; Li, Jiawei; Mouralidarane, Angelina; Asilmaz, Esra; Ray, Shuvra; Nguyen, Vi; Carter, Rebeca; Novelli, Marco; Vinciguerra, Manlio; Poston, Lucilla; Taylor, Paul D; Oben, Jude A

    2017-06-01

    We investigated the regulation of hepatic ER stress in healthy liver and adult or perinatally programmed diet-induced non-alcoholic fatty liver disease (NAFLD). Female mice were fed either obesogenic or control diet before mating, during pregnancy and lactation. Post-weaning, offspring from each maternal group were divided into either obesogenic or control diet. At six months, offspring were sacrificed at 4-h intervals over 24 h. Offspring fed obesogenic diets developed NAFLD phenotype, and the combination of maternal and offspring obesogenic diets exacerbated this phenotype. UPR signalling pathways (IREα, PERK, ATF6) and their downstream regulators showed different basal rhythmicity, which was modified in offspring exposed to obesogenic diet and maternal programming. The double obesogenic hit increased liver apoptosis measured by TUNEL staining, active caspase-3 and phospho-JNK and GRP78 promoter methylation levels. This study demonstrates that hepatic UPR is rhythmically activated. The combination of maternal obesity (MO) and obesogenic diets in offspring triggered altered UPR rhythmicity, DNA methylation and cellular apoptosis.

  15. Aberrant rhythmic expression of cryptochrome2 regulates the radiosensitivity of rat gliomas.

    Science.gov (United States)

    Fan, Wang; Caiyan, Li; Ling, Zhu; Jiayun, Zhao

    2017-09-29

    In this study, we investigated the role of the clock regulatory protein cryptochrome 2 (Cry2) in determining the radiosensitivity of C6 glioma cells in a rat model. We observed that Cry2 mRNA and protein levels showed aberrant rhythmic periodicity of 8 h in glioma tissues, compared to 24 h in normal brain tissue. Cry2 mRNA and protein levels did not respond to irradiation in normal tissues, but both were increased at the ZT4 (low Cry2) and ZT8 (high Cry2) time points in gliomas. Immunohistochemical staining of PCNA and TUNEL assays demonstrated that high Cry2 expression in glioma tissues was associated with increased cell proliferation and decreased apoptosis. Western blot analysis showed that glioma cell fate was independent of p53, but was probably dependent on p73, which was more highly expressed at ZT4 (low Cry2) than at ZT8 (high Cry2). Levels of both p53 and p73 were unaffected by irradiation in normal brain tissues. These findings suggest aberrant rhythmic expression of Cry2 influence on radiosensitivity in rat gliomas.

  16. INFLUENCE OF COMPETITIVE EXPERIENCE ON STATIC POSTURAL BALANCE IN A GROUP OF RHYTHMIC GYMNASTICS OF HIGH LEVEL

    Directory of Open Access Journals (Sweden)

    Isabella Scursatone

    2015-05-01

    Full Text Available Rhythmic gymnastics is the unique female sport which includes aspects of both artistic gymnastics and dance and is characterized by the use of small apparatuses (e.g., rope, clubs, ribbon, hoop and ball. Many studies compared the balance ability of athletes from different sports, underlying that gymnasts tended to have the best balance ability (Hrysomallis, 2011; Bressel, Yonker, Kras & Heath, 2007. No literature analysed the influence of  the competitive experience of rhytmic gymnasts on the static postural balance.Objective: The purpose of the study is to evaluate the influence of years of competitive experience, hours of physical training and competition level on static postural balance in elite rhythmic gymnastics female athletes.  

  17. Separating bathymetric data representing multiscale rhythmic bed forms : a geostatistical and spectral method compared

    NARCIS (Netherlands)

    van Dijk, Thaiënne A.G.P.; Lindenbergh, Roderik C.; Egberts, Paul J.P.

    2008-01-01

    The superimposition of rhythmic bed forms of different spatial scales is a common and natural phenomenon on sandy seabeds. The dynamics of such seabeds may interfere with different offshore activities and are therefore of interest to both scientists and offshore developers. State-of-the-art echo

  18. Towards a Rhythmanalysis of Debt Dressage: Education as Rhythmic Resistance in Everyday Indebted Life

    Science.gov (United States)

    Wozniak, Jason Thomas

    2017-01-01

    Debt shapes subjectivity by rhythmically training indebted subjects. Stated slightly differently, there exists a debt dressage that produces indebted subjectivity. One of the principle aims of this article is to introduce rhythm into the debt analysis debates. Building on Henri Lefebvre's book "Rhythmanalysis: Space, Time and Everyday…

  19. Double-wavelet approach to study frequency and amplitude modulation in renal autoregulation

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Pavlov, A N; Mosekilde, E

    2004-01-01

    Biological time series often display complex oscillations with several interacting rhythmic components. Renal autoregulation, for instance, involves at least two separate mechanisms both of which can produce oscillatory variations in the pressures and flows of the individual nephrons. Using double......-wavelet analysis we propose a method to examine how the instantaneous frequency and amplitude of a fast mode is modulated by the presence of a slower mode. Our method is applied both to experimental data from normotensive and hypertensive rats showing different oscillatory patterns and to simulation results...

  20. Recovery of rhythmic activity in a central pattern generator: analysis of the role of neuromodulator and activity-dependent mechanisms.

    Science.gov (United States)

    Zhang, Yili; Golowasch, Jorge

    2011-11-01

    The pyloric network of decapods crustaceans can undergo dramatic rhythmic activity changes. Under normal conditions the network generates low frequency rhythmic activity that depends obligatorily on the presence of neuromodulatory input from the central nervous system. When this input is removed (decentralization) the rhythmic activity ceases. In the continued absence of this input, periodic activity resumes after a few hours in the form of episodic bursting across the entire network that later turns into stable rhythmic activity that is nearly indistinguishable from control (recovery). It has been proposed that an activity-dependent modification of ionic conductance levels in the pyloric pacemaker neuron drives the process of recovery of activity. Previous modeling attempts have captured some aspects of the temporal changes observed experimentally, but key features could not be reproduced. Here we examined a model in which slow activity-dependent regulation of ionic conductances and slower neuromodulator-dependent regulation of intracellular Ca(2+) concentration reproduce all the temporal features of this recovery. Key aspects of these two regulatory mechanisms are their independence and their different kinetics. We also examined the role of variability (noise) in the activity-dependent regulation pathway and observe that it can help to reduce unrealistic constraints that were otherwise required on the neuromodulator-dependent pathway. We conclude that small variations in intracellular Ca(2+) concentration, a Ca(2+) uptake regulation mechanism that is directly targeted by neuromodulator-activated signaling pathways, and variability in the Ca(2+) concentration sensing signaling pathway can account for the observed changes in neuronal activity. Our conclusions are all amenable to experimental analysis.

  1. Daily rhythmicity of clock gene transcripts in atlantic cod fast skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Carlo C Lazado

    Full Text Available The classical notion of a centralized clock that governs circadian rhythmicity has been challenged with the discovery of peripheral oscillators that enable organisms to cope with daily changes in their environment. The present study aimed to identify the molecular clock components in Atlantic cod (Gadus morhua and to investigate their daily gene expression in fast skeletal muscle. Atlantic cod clock genes were closely related to their orthologs in teleosts and tetrapods. Synteny was conserved to varying degrees in the majority of the 18 clock genes examined. In particular, aryl hydrocarbon receptor nuclear translocator-like 2 (arntl2, RAR-related orphan receptor A (rora and timeless (tim displayed high degrees of conservation. Expression profiling during the early ontogenesis revealed that some transcripts were maternally transferred, namely arntl2, cryptochrome 1b and 2 (cry1b and cry2, and period 2a and 2b (per2a and per2b. Most clock genes were ubiquitously expressed in various tissues, suggesting the possible existence of multiple peripheral clock systems in Atlantic cod. In particular, they were all detected in fast skeletal muscle, with the exception of neuronal PAS (Per-Arnt-Single-minded domain-containing protein (npas1 and rora. Rhythmicity analysis revealed 8 clock genes with daily rhythmic expression, namely arntl2, circadian locomotor output cycles kaput (clock, npas2, cry2, cry3 per2a, nuclear receptor subfamily 1, group D, member 1 (nr1d1, and nr1d2a. Transcript levels of the myogenic genes myogenic factor 5 (myf5 and muscleblind-like 1 (mbnl1 strongly correlated with clock gene expression. This is the first study to unravel the molecular components of peripheral clocks in Atlantic cod. Taken together, our data suggest that the putative clock system in fast skeletal muscle of Atlantic cod has regulatory implications on muscle physiology, particularly in the expression of genes related to myogenesis.

  2. Elimination of bus voltage impact on temperature sensitive electrical parameter during turn-on transition for junction temperature estimation of high-power IGBT modules

    DEFF Research Database (Denmark)

    Luo, Haoze; Iannuzzo, Francesco; Blaabjerg, Frede

    2017-01-01

    Junction temperature is of great importance to safe operating area of IGBT modules. Various information of the IGBT operating state is reflected on electrical characteristics during turn-on transient. A unified extraction method for internal junction temperature via dynamic thermo......-sensitive electrical parameters (DTSEP) during turn-on transient is proposed. Two DTSEP, turn-on delay time (tdon) and the maximum increasing rate of collector current dic/dt(max), are combined to eliminate the bus voltage impact. Using the inherent emitter-auxiliary inductor LeE in high-power modules, the temperature......-dependent DTSEPs can be converted into a low-voltage and measurable signal. Finally, experiment results are exhibited to verify the effectiveness of proposed method....

  3. Sexual arousal and rhythmic synchronization: A possible effect of vasopressin

    DEFF Research Database (Denmark)

    Miani, Alessandro

    2016-01-01

    Music is ubiquitous. Yet, its biological relevance is still an ongoing debate. Supporting the view that music had an ancestral role in courtship displays, a pilot study presented here provides preliminary evidence on the link between music and sexual selection. The underlying hypothesis is based...... by vasopressin and its genes. Hence, to test this hypothesis, a rhythmic synchronization task was employed here on one male subject during sexual arousal. Results revealed a significant effect of sexual arousal on rhythm synchronization. This is the first report that empirically supports the hypothesis...

  4. Distinct Thalamic Reticular Cell Types Differentially Modulate Normal and Pathological Cortical Rhythms

    Directory of Open Access Journals (Sweden)

    Alexandra Clemente-Perez

    2017-06-01

    Full Text Available Integrative brain functions depend on widely distributed, rhythmically coordinated computations. Through its long-ranging connections with cortex and most senses, the thalamus orchestrates the flow of cognitive and sensory information. Essential in this process, the nucleus reticularis thalami (nRT gates different information streams through its extensive inhibition onto other thalamic nuclei, however, we lack an understanding of how different inhibitory neuron subpopulations in nRT function as gatekeepers. We dissociated the connectivity, physiology, and circuit functions of neurons within rodent nRT, based on parvalbumin (PV and somatostatin (SOM expression, and validated the existence of such populations in human nRT. We found that PV, but not SOM, cells are rhythmogenic, and that PV and SOM neurons are connected to and modulate distinct thalamocortical circuits. Notably, PV, but not SOM, neurons modulate somatosensory behavior and disrupt seizures. These results provide a conceptual framework for how nRT may gate incoming information to modulate brain-wide rhythms.

  5. Prenatal complex rhythmic music sound stimulation facilitates postnatal spatial learning but transiently impairs memory in the domestic chick.

    Science.gov (United States)

    Kauser, H; Roy, S; Pal, A; Sreenivas, V; Mathur, R; Wadhwa, S; Jain, S

    2011-01-01

    Early experience has a profound influence on brain development, and the modulation of prenatal perceptual learning by external environmental stimuli has been shown in birds, rodents and mammals. In the present study, the effect of prenatal complex rhythmic music sound stimulation on postnatal spatial learning, memory and isolation stress was observed. Auditory stimulation with either music or species-specific sounds or no stimulation (control) was provided to separate sets of fertilized eggs from day 10 of incubation. Following hatching, the chicks at age 24, 72 and 120 h were tested on a T-maze for spatial learning and the memory of the learnt task was assessed 24 h after training. In the posthatch chicks at all ages, the plasma corticosterone levels were estimated following 10 min of isolation. The chicks of all ages in the three groups took less (p memory after 24 h of training, only the music-stimulated chicks at posthatch age 24 h took a significantly longer (p music sounds facilitates spatial learning, though the music stimulation transiently impairs postnatal memory. 2011 S. Karger AG, Basel.

  6. Locomotor-like leg movements evoked by rhythmic arm movements in humans.

    Directory of Open Access Journals (Sweden)

    Francesca Sylos-Labini

    Full Text Available Motion of the upper limbs is often coupled to that of the lower limbs in human bipedal locomotion. It is unclear, however, whether the functional coupling between upper and lower limbs is bi-directional, i.e. whether arm movements can affect the lumbosacral locomotor circuitry. Here we tested the effects of voluntary rhythmic arm movements on the lower limbs. Participants lay horizontally on their side with each leg suspended in an unloading exoskeleton. They moved their arms on an overhead treadmill as if they walked on their hands. Hand-walking in the antero-posterior direction resulted in significant locomotor-like movements of the legs in 58% of the participants. We further investigated quantitatively the responses in a subset of the responsive subjects. We found that the electromyographic (EMG activity of proximal leg muscles was modulated over each cycle with a timing similar to that of normal locomotion. The frequency of kinematic and EMG oscillations in the legs typically differed from that of arm oscillations. The effect of hand-walking was direction specific since medio-lateral arm movements did not evoke appreciably leg air-stepping. Using externally imposed trunk movements and biomechanical modelling, we ruled out that the leg movements associated with hand-walking were mainly due to the mechanical transmission of trunk oscillations. EMG activity in hamstring muscles associated with hand-walking often continued when the leg movements were transiently blocked by the experimenter or following the termination of arm movements. The present results reinforce the idea that there exists a functional neural coupling between arm and legs.

  7. The relative contribution of physical fitness to the technical execution score in youth rhythmic gymnastics.

    Science.gov (United States)

    Donti, Olyvia; Bogdanis, Gregory C; Kritikou, Maria; Donti, Anastasia; Theodorakou, Kalliopi

    2016-06-01

    This study examined the association between physical fitness and a technical execution score in rhythmic gymnasts varying in the performance level. Forty-six young rhythmic gymnasts (age: 9.9 ±1.3 years) were divided into two groups (qualifiers, n=24 and non-qualifiers, n=22) based on the results of the National Championships. Gymnasts underwent a series of physical fitness tests and technical execution was evaluated in a routine without apparatus. There were significant differences between qualifiers and non-qualifiers in the technical execution score (p=0.01, d=1.0), shoulder flexion (p=0.01, d=0.8), straight leg raise (p=0.004, d=0.9), sideways leg extension (p=0.002, d=0.9) and body fat (p=.021, d=0.7), but no differences were found in muscular endurance and jumping performance. The technical execution score for the non-qualifiers was significantly correlated with shoulder extension (r=0.423, panalysis revealed that sideways leg extension, body fat, and push ups accounted for a large part (62.9%) of the variance in the technical execution score for the non-qualifiers, while for the qualifiers, only 37.3% of the variance in the technical execution score was accounted for by sideways leg extension and spine flexibility. In conclusion, flexibility and body composition can effectively discriminate between qualifiers and non-qualifiers in youth rhythmic gymnastics. At the lower level of performance (non-qualifiers), physical fitness seems to have a greater effect on the technical execution score.

  8. 2015 NREL Photovoltaic Module Reliability Workshops

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-14

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  9. 2016 NREL Photovoltaic Module Reliability Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-07

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology - both critical goals for moving PV technologies deeper into the electricity marketplace.

  10. Champagne experiences various rhythmical bubbling regimes in a flute.

    Science.gov (United States)

    Liger-Belair, Gérard; Tufaile, Alberto; Jeandet, Philippe; Sartorelli, José-Carlos

    2006-09-20

    Bubble trains are seen rising gracefully from a few points on the glass wall (called nucleation sites) whenever champagne is poured into a glass. As time passes during the gas-discharging process, the careful observation of some given bubble columns reveals that the interbubble distance may change suddenly, thus revealing different rhythmical bubbling regimes. Here, it is reported that the transitions between the different bubbling regimes of some nucleation sites during gas discharging is a process which may be ruled by a strong interaction between tiny gas pockets trapped inside the nucleation site and/or also by an interaction between the tiny bubbles just blown from the nucleation site.

  11. Higher-order power harmonics of pulsed electrical stimulation modulates corticospinal contribution of peripheral nerve stimulation.

    Science.gov (United States)

    Chen, Chiun-Fan; Bikson, Marom; Chou, Li-Wei; Shan, Chunlei; Khadka, Niranjan; Chen, Wen-Shiang; Fregni, Felipe

    2017-03-03

    It is well established that electrical-stimulation frequency is crucial to determining the scale of induced neuromodulation, particularly when attempting to modulate corticospinal excitability. However, the modulatory effects of stimulation frequency are not only determined by its absolute value but also by other parameters such as power at harmonics. The stimulus pulse shape further influences parameters such as excitation threshold and fiber selectivity. The explicit role of the power in these harmonics in determining the outcome of stimulation has not previously been analyzed. In this study, we adopted an animal model of peripheral electrical stimulation that includes an amplitude-adapted pulse train which induces force enhancements with a corticospinal contribution. We report that the electrical-stimulation-induced force enhancements were correlated with the amplitude of stimulation power harmonics during the amplitude-adapted pulse train. In an exploratory analysis, different levels of correlation were observed between force enhancement and power harmonics of 20-80 Hz (r = 0.4247, p = 0.0243), 100-180 Hz (r = 0.5894, p = 0.0001), 200-280 Hz (r = 0.7002, p harmonics. This is a pilot, but important first demonstration that power at high order harmonics in the frequency spectrum of electrical stimulation pulses may contribute to neuromodulation, thus warrant explicit attention in therapy design and analysis.

  12. Enabling Junction Temperature Estimation via Collector-Side Thermo-Sensitive Electrical Parameters through Emitter Stray Inductance in High-Power IGBT Modules

    DEFF Research Database (Denmark)

    Luo, Haoze; Li, Wuhua; Iannuzzo, Francesco

    2018-01-01

    This paper proposes the adoption of the inherent emitter stray inductance LeE in high-power insulated gate bipolar transistor (IGBT) modules as a new dynamic thermo-sensitive electrical parameter (d-TSEP). Furthermore, a family of 14 derived dynamic TSEP candidates has been extracted and classified...

  13. First-principles calculations on strain and electric field induced band modulation and phase transition of bilayer WSe2sbnd MoS2 heterostructure

    Science.gov (United States)

    Lei, Xiang; Yu, Ke

    2018-04-01

    A purposeful modulation of physical properties of material via change external conditions has long captured people's interest and can provide many opportunities to improve the specific performance of electronic devices. In this work, a comprehensive first-principles survey was performed to elucidate that the bandgap and electronic properties of WSe2sbnd MoS2 heterostructure exhibited unusual response to exterior strain and electric field in comparison with pristine structures. It demonstrates that the WSe2sbnd MoS2 is a typical type-II heterostructure, and thus the electron-hole pairs can be effectively spatially separated. The external effects can trigger the electronic phase transition from semiconducting to metallic state, which originates from the internal electric evolution induced energy-level shift. Interestingly, the applied strain shows no direction-depended character for the modulation of bandgap of WSe2sbnd MoS2 heterostructure, while it exists in the electric field tuning processes and strongly depends on the direction of the electric field. Our findings elucidate the tunable electronic property of bilayer WSe2sbnd MoS2 heterostructure, and would provide a valuable reference to design the electronic nanodevices.

  14. Muscle Coactivation during Stability Exercises in Rhythmic Gymnastics: A Two-Case Study

    Directory of Open Access Journals (Sweden)

    Alicja Rutkowska-Kucharska

    2018-01-01

    Full Text Available Balance exercises in rhythmic gymnastics are performed on tiptoes, which causes overload of foot joints. This study aimed to evaluate the engagement of muscles stabilizing ankle and knee joints in balance exercises and determine exercises which may lead to ankle and knee joint injuries. It was hypothesized that long-term training has an influence on balance control and efficient use of muscles in their stabilizing function. Two rhythmic gymnasts (8 and 21 years old performed balances on tiptoes (side split with hand support, ring with hand support and on a flat foot (back split without hand support exercise. Surface electromyography, ground reaction forces, and kinematic parameters of movement were measured. The measuring systems applied were synchronized with the BTS SMART system. The results show the necessity to limit balance exercises on tiptoes in children because gastrocnemius medialis (GM and gastrocnemius lateralis (GL activity significantly exceeds their activity. Ankle joint stabilizing activity of GM and GL muscles in the younger gymnast was more important than in the older one. Performing this exercise, the younger gymnast distributed load on the anterior side of the foot while the older one did so on its posterior. Gymnastics coaches should be advised to exclude ring with hand support exercise from the training of young gymnasts.

  15. Subsecond Sensory Modulation of Serotonin Levels in a Primary Sensory Area and Its Relation to Ongoing Communication Behavior in a Weakly Electric Fish.

    Science.gov (United States)

    Fotowat, Haleh; Harvey-Girard, Erik; Cheer, Joseph F; Krahe, Rüdiger; Maler, Leonard

    2016-01-01

    Serotonergic neurons of the raphe nuclei of vertebrates project to most regions of the brain and are known to significantly affect sensory processing. The subsecond dynamics of sensory modulation of serotonin levels and its relation to behavior, however, remain unknown. We used fast-scan cyclic voltammetry to measure serotonin release in the electrosensory system of weakly electric fish, Apteronotus leptorhynchus . These fish use an electric organ to generate a quasi-sinusoidal electric field for communicating with conspecifics. In response to conspecific signals, they frequently produce signal modulations called chirps. We measured changes in serotonin concentration in the hindbrain electrosensory lobe (ELL) with a resolution of 0.1 s concurrently with chirping behavior evoked by mimics of conspecific electric signals. We show that serotonin release can occur phase locked to stimulus onset as well as spontaneously in the ELL region responsible for processing these signals. Intense auditory stimuli, on the other hand, do not modulate serotonin levels in this region, suggesting modality specificity. We found no significant correlation between serotonin release and chirp production on a trial-by-trial basis. However, on average, in the trials where the fish chirped, there was a reduction in serotonin release in response to stimuli mimicking similar-sized same-sex conspecifics. We hypothesize that the serotonergic system is part of an intricate sensory-motor loop: serotonin release in a sensory area is triggered by sensory input, giving rise to motor output, which can in turn affect serotonin release at the timescale of the ongoing sensory experience and in a context-dependent manner.

  16. Apollo Lunar Module Electrical Power System Overview

    Science.gov (United States)

    Interbartolo, Michael

    2009-01-01

    Objectives include: a) Describe LM Electrical System original specifications; b) Describe the decision to change from fuel cells to batteries and other changes; c) Describe the Electrical system; and d) Describe the Apollo 13 failure from the LM perspective.

  17. Synaptic Effects of Electric Fields

    Science.gov (United States)

    Rahman, Asif

    Learning and sensory processing in the brain relies on the effective transmission of information across synapses. The strength and efficacy of synaptic transmission is modifiable through training and can be modulated with noninvasive electrical brain stimulation. Transcranial electrical stimulation (TES), specifically, induces weak intensity and spatially diffuse electric fields in the brain. Despite being weak, electric fields modulate spiking probability and the efficacy of synaptic transmission. These effects critically depend on the direction of the electric field relative to the orientation of the neuron and on the level of endogenous synaptic activity. TES has been used to modulate a wide range of neuropsychiatric indications, for various rehabilitation applications, and cognitive performance in diverse tasks. How can a weak and diffuse electric field, which simultaneously polarizes neurons across the brain, have precise changes in brain function? Designing therapies to maximize desired outcomes and minimize undesired effects presents a challenging problem. A series of experiments and computational models are used to define the anatomical and functional factors leading to specificity of TES. Anatomical specificity derives from guiding current to targeted brain structures and taking advantage of the direction-sensitivity of neurons with respect to the electric field. Functional specificity originates from preferential modulation of neuronal networks that are already active. Diffuse electric fields may recruit connected brain networks involved in a training task and promote plasticity along active synaptic pathways. In vitro, electric fields boost endogenous synaptic plasticity and raise the ceiling for synaptic learning with repeated stimulation sessions. Synapses undergoing strong plasticity are preferentially modulated over weak synapses. Therefore, active circuits that are involved in a task could be more susceptible to stimulation than inactive circuits

  18. Rhythmic Rituals and Emergent Listening: Intra-Activity, Sonic Sounds and Digital Composing with Young Children

    Science.gov (United States)

    Wargo, Jon M.

    2017-01-01

    (Re)Entering data from a networked collaborative project exploring how sound operates as a mechanism for attuning towards cultural difference and community literacies, this article examines one primary grade classroom's participation to investigate the rhythmic rituals of 'emergent listening' in early childhood literacy. Thinking with sound…

  19. Practical photon number detection with electric field-modulated silicon avalanche photodiodes.

    Science.gov (United States)

    Thomas, O; Yuan, Z L; Shields, A J

    2012-01-24

    Low-noise single-photon detection is a prerequisite for quantum information processing using photonic qubits. In particular, detectors that are able to accurately resolve the number of photons in an incident light pulse will find application in functions such as quantum teleportation and linear optics quantum computing. More generally, such a detector will allow the advantages of quantum light detection to be extended to stronger optical signals, permitting optical measurements limited only by fluctuations in the photon number of the source. Here we demonstrate a practical high-speed device, which allows the signals arising from multiple photon-induced avalanches to be precisely discriminated. We use a type of silicon avalanche photodiode in which the lateral electric field profile is strongly modulated in order to realize a spatially multiplexed detector. Clearly discerned multiphoton signals are obtained by applying sub-nanosecond voltage gates in order to restrict the detector current.

  20. Rhythmic and melodic deviations in musical sequences recruit different cortical areas for mismatch detection.

    Science.gov (United States)

    Lappe, Claudia; Steinsträter, Olaf; Pantev, Christo

    2013-01-01

    The mismatch negativity (MMN), an event-related potential (ERP) representing the violation of an acoustic regularity, is considered as a pre-attentive change detection mechanism at the sensory level on the one hand and as a prediction error signal on the other hand, suggesting that bottom-up as well as top-down processes are involved in its generation. Rhythmic and melodic deviations within a musical sequence elicit a MMN in musically trained subjects, indicating that acquired musical expertise leads to better discrimination accuracy of musical material and better predictions about upcoming musical events. Expectation violations to musical material could therefore recruit neural generators that reflect top-down processes that are based on musical knowledge. We describe the neural generators of the musical MMN for rhythmic and melodic material after a short-term sensorimotor-auditory (SA) training. We compare the localization of musical MMN data from two previous MEG studies by applying beamformer analysis. One study focused on the melodic harmonic progression whereas the other study focused on rhythmic progression. The MMN to melodic deviations revealed significant right hemispheric neural activation in the superior temporal gyrus (STG), inferior frontal cortex (IFC), and the superior frontal (SFG) and orbitofrontal (OFG) gyri. IFC and SFG activation was also observed in the left hemisphere. In contrast, beamformer analysis of the data from the rhythm study revealed bilateral activation within the vicinity of auditory cortices and in the inferior parietal lobule (IPL), an area that has recently been implied in temporal processing. We conclude that different cortical networks are activated in the analysis of the temporal and the melodic content of musical material, and discuss these networks in the context of the dual-pathway model of auditory processing.

  1. Rhythmic and melodic deviations in musical sequences recruit different cortical areas for mismatch detection

    Directory of Open Access Journals (Sweden)

    Claudia eLappe

    2013-06-01

    Full Text Available The mismatch negativity (MMN, an event-related potential (ERP representing the violation of an acoustic regularity, is considered as a pre-attentive change detection mechanism at the sensory level on the one hand and as a prediction error signal on the other hand, suggesting that bottom-up as well as top-down processes are involved in its generation. Rhythmic and melodic deviations within a musical sequence elicit a mismatch negativity in musically trained subjects, indicating that acquired musical expertise leads to better discrimination accuracy of musical material and better predictions about upcoming musical events. Expectation violations to musical material could therefore recruit neural generators that reflect top-down processes that are based on musical knowledge.We describe the neural generators of the musical MMN for rhythmic and melodic material after a short-term sensorimotor-auditory training. We compare the localization of musical MMN data from two previous MEG studies by applying beamformer analysis. One study focused on the melodic harmonic progression whereas the other study focused on rhythmic progression. The MMN to melodic deviations revealed significant right hemispheric neural activation in the superior temporal gyrus (STG, inferior frontal cortex (IFC, and the superior frontal (SFG and orbitofrontal (OFG gyri. IFC and SFG activation was also observed in the left hemisphere. In contrast, beamformer analysis of the data from the rhythm study revealed bilatral activation within the vicinity of auditory cortices and in the inferior parietal lobule, an area that has recently been implied in temporal processing. We conclude that different cortical networks are activated in the analysis of the temporal and the melodic content of musical material, and discuss these networks in the context of the the dual-pathway model of auditory processing.

  2. Rhythmic changes in synapse numbers in Drosophila melanogaster motor terminals.

    Directory of Open Access Journals (Sweden)

    Santiago Ruiz

    Full Text Available Previous studies have shown that the morphology of the neuromuscular junction of the flight motor neuron MN5 in Drosophila melanogaster undergoes daily rhythmical changes, with smaller synaptic boutons during the night, when the fly is resting, than during the day, when the fly is active. With electron microscopy and laser confocal microscopy, we searched for a rhythmic change in synapse numbers in this neuron, both under light:darkness (LD cycles and constant darkness (DD. We expected the number of synapses to increase during the morning, when the fly has an intense phase of locomotion activity under LD and DD. Surprisingly, only our DD data were consistent with this hypothesis. In LD, we found more synapses at midnight than at midday. We propose that under LD conditions, there is a daily rhythm of formation of new synapses in the dark phase, when the fly is resting, and disassembly over the light phase, when the fly is active. Several parameters appeared to be light dependent, since they were affected differently under LD or DD. The great majority of boutons containing synapses had only one and very few had either two or more, with a 70∶25∶5 ratio (one, two and three or more synapses in LD and 75∶20∶5 in DD. Given the maintenance of this proportion even when both bouton and synapse numbers changed with time, we suggest that there is a homeostatic mechanism regulating synapse distribution among MN5 boutons.

  3. The Relationship between Reduplicated Babble Onset and Laterality Biases in Infant Rhythmic Arm Movements

    Science.gov (United States)

    Iverson, Jana M.; Hall, Amanda J.; Nickel, Lindsay; Wozniak, Robert H.

    2007-01-01

    This study examined changes in rhythmic arm shaking and laterality biases in infants observed longitudinally at three points: just prior to, at, and just following reduplicated babble onset. Infants (ranging in age from 4 to 9 months at babble onset) were videotaped at home as they played with two visually identical audible and silent rattles…

  4. Fundamentals of electrical drives

    CERN Document Server

    Veltman, André; De Doncker, Rik W

    2007-01-01

    Provides a comprehensive introduction to various aspects of electrical drive systems. This volume provides a presentation of dynamic generic models that cover all major electrical machine types and modulation/control components of a drive as well as dynamic and steady state analysis of transformers and electrical machines.

  5. Dopamine Attenuates Ketamine-Induced Neuronal Apoptosis in the Developing Rat Retina Independent of Early Synchronized Spontaneous Network Activity.

    Science.gov (United States)

    Dong, Jing; Gao, Lingqi; Han, Junde; Zhang, Junjie; Zheng, Jijian

    2017-07-01

    Deprivation of spontaneous rhythmic electrical activity in early development by anesthesia administration, among other interventions, induces neuronal apoptosis. However, it is unclear whether enhancement of neuronal electrical activity attenuates neuronal apoptosis in either normal development or after anesthesia exposure. The present study investigated the effects of dopamine, an enhancer of spontaneous rhythmic electrical activity, on ketamine-induced neuronal apoptosis in the developing rat retina. TUNEL and immunohistochemical assays indicated that ketamine time- and dose-dependently aggravated physiological and ketamine-induced apoptosis and inhibited early-synchronized spontaneous network activity. Dopamine administration reversed ketamine-induced neuronal apoptosis, but did not reverse the inhibitory effects of ketamine on early synchronized spontaneous network activity despite enhancing it in controls. Blockade of D1, D2, and A2A receptors and inhibition of cAMP/PKA signaling partially antagonized the protective effect of dopamine against ketamine-induced apoptosis. Together, these data indicate that dopamine attenuates ketamine-induced neuronal apoptosis in the developing rat retina by activating the D1, D2, and A2A receptors, and upregulating cAMP/PKA signaling, rather than through modulation of early synchronized spontaneous network activity.

  6. Electrical characterization of small area devices for manufacturing

    International Nuclear Information System (INIS)

    Enzenroth, R.A.; Davies, A.; Reed, S.

    2011-01-01

    Uniformity of electrical performance is critical for thin film modules. The more uniformly that all areas of the module perform the better the overall efficiency will be. Total module performance tends towards the average of localized performance, skewed slightly lower by the width of localized performance distribution. Measurement of overall module efficiency does not give information about performance uniformity. Use of small area devices (SAD's) defined from the module allow standard electrical measurements including light and dark current-voltage (IV/JV) and quantum efficiency to be performed on a small scale. Data from these measurements allows mapping of electrical performance across the module. The structure of types of SAD's is discussed and some examples of efficiency data from JV measurements as used in the optimization of a thin film module manufacturing line are presented. Also a brief discussion of statistical analysis of the data is included.

  7. The influence of oxytocin on interpersonal rhythmic synchronization and social bonding

    DEFF Research Database (Denmark)

    Gebauer, Line; Witek, Maria; Hansen, Niels Chr.

    oxytocin. In this study we investigated the role of oxytocin on interpersonal rhythmic synchronization, and its relation to pro-social effects, using an interactive finger tapping setup. Pairs of two tapped together, and both participants in each pair received either oxytocin or a non-active placebo...... as nasal spray. Our preliminary analyses showed trends in which intranasally administered oxytocin improved interpersonal synchronization. In this poster we present the full data set and analysis of the effect of oxytocin on interpersonal synchronization and social bonding....

  8. Dynamics and stimulus-dependence of pacemaker control during behavioral modulations in the weakly electric fish, Apteronotus.

    Science.gov (United States)

    Dye, J

    1987-08-01

    1. Weakly electric fish generate around their bodies low-amplitude, AC electric fields which are used both for the detection of objects and intraspecific communication. The types of modulation in this signal of which the high-frequency wave-type gymnotiform, Apteronotus, is capable are relatively few and stereotyped. Chief among these is the chirp, a signal used in courtship and agonistic displays. Chirps are brief and rapid accelerations in the normally highly regular electric organ discharge (EOD) frequency. 2. Chirping can be elicited artificially in these animals by the use of a stimulus regime identical to that typically used to elicit another behavior, the jamming avoidance response (JAR). The neuronal basis for the JAR, a much slower and lesser alteration in EOD frequency, is well understood. Examination of the stimulus features which induce chirping show that, like the JAR, there is a region of frequency differences between the fish's EOD and the interfering signal that maximally elicits the response. Moreover, the response is sex-specific with regard to the sign of the frequency difference, with females chirping preferentially on the positive and most males on the negative Df. These features imply that the sensory mechanisms involved in the triggering of these communicatory behaviors are fundamentally similar to those explicated for the JAR. 3. Additionally, two other modulatory behaviors of unknown significance are described. The first is a non-selective rise in EOD frequency associated with a JAR stimulus, occurring regardless of the sign of the Df. This modulation shares many characteristics with the JAR. The second behavior, which we have termed a 'yodel', is distinct from and kinetically intermediate to chirping and the JAR. Moreover, unlike the other studied electromotor behaviors it is generally produced only after the termination of the eliciting stimulus.

  9. Propulsion Wheel Motor for an Electric Vehicle

    Science.gov (United States)

    Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Waligora, Thomas M. (Inventor); Bluethmann, William J. (Inventor); Farrell, Logan Christopher (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Winn, Ross Briant (Inventor); Eggleston, IV, Raymond Edward (Inventor); Guo, Raymond (Inventor); hide

    2016-01-01

    A wheel assembly for an electric vehicle includes a wheel rim that is concentrically disposed about a central axis. A propulsion-braking module is disposed within an interior region of the wheel rim. The propulsion-braking module rotatably supports the wheel rim for rotation about the central axis. The propulsion-braking module includes a liquid cooled electric motor having a rotor rotatable about the central axis, and a stator disposed radially inside the rotor relative to the central axis. A motor-wheel interface hub is fixedly attached to the wheel rim, and is directly attached to the rotor for rotation with the rotor. The motor-wheel interface hub directly transmits torque from the electric motor to the wheel rim at a 1:1 ratio. The propulsion-braking module includes a drum brake system having an electric motor that rotates a cam device, which actuates the brake shoes.

  10. Ash reduction system using electrically heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  11. Combined electric and pressure cuff pain stimuli for assessing conditioning pain modulation (CPM).

    Science.gov (United States)

    Tsukamoto, M; Petersen, K K; Mørch, C D; Arendt-Nielsen, L

    2017-12-29

    Aims Traditionally, conditioning pain modulation (CPM) can be assessed by applying a test stimulus (TS) before and after application of a conditioning stimulus (CS), which is normally applied extra-segmental. Currently, no studies have attempted to apply the TS and CS to the same site using different stimuli modalities. The aim of this study was to evaluate electrical TS and cuff pressure CS applied to the same experimental site for studying CPM. Methods 20 male volunteers participated in this study, which consisted of stimulations applied by a cuff-algometer (NociTech and Aalborg University, Denmark) and current stimulator (Digitimer DS5, UK), through two Ag/AgCl electrodes (Ambu® Neuroline 700, Denmark). The cuff was wrapped around the lower leg and stimulation electrodes were placed under the cuff and to the same location on the contralateral leg. Electrical TS were applied to the non-dominant leg with or without cuff pressure CS on the dominant (CS1) or the same (non-dominant) leg (CS2, electrode under cuff). The subjects were instructed to rate the electrical evoked pain intensity on a 10-cm continuous visual analog scale (VAS, "0" represented "no pain", and "10" represented "maximal pain"). The pain detection threshold (PDT) was defined as "1" on the VAS scale. Results There was no significant deference in PDT for neither CS1 nor CS2. A median split subanalysis on CPM-responders versus CPM-nonresponders to the TS + CS1 combination. Using this grouping, there was significant increase in PDT when comparing TS to TS + CS1 or TS + CS2 (4.0 mA vs 5.6 mA; P CPM can be evoked in a subgroup of subjects by applying the electrical test stimulus and cuff pressure conditioning stimuli to the same experimental site.

  12. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Fourteen: Parallel AC Resistive-Reactive Circuits. Study Booklet.

    Science.gov (United States)

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on parallel alternating current resistive-reaction circuits is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian…

  13. Rhythmic EEG patterns in extremely preterm infants : Classification and association with brain injury and outcome

    NARCIS (Netherlands)

    Weeke, Lauren C; van Ooijen, Inge M; Groenendaal, Floris; van Huffelen, Alexander C.; van Haastert, Ingrid C; van Stam, Carolien; Benders, Manon J; Toet, Mona C; Hellström-Westas, Lena; de Vries, Linda S

    2017-01-01

    OBJECTIVE: Classify rhythmic EEG patterns in extremely preterm infants and relate these to brain injury and outcome. METHODS: Retrospective analysis of 77 infants born <28 weeks gestational age (GA) who had a 2-channel EEG during the first 72 h after birth. Patterns detected by the BrainZ seizure

  14. Fast Simulation of Mechanical Heterogeneity in the Electrically Asynchronous Heart Using the MultiPatch Module.

    Directory of Open Access Journals (Sweden)

    John Walmsley

    2015-07-01

    Full Text Available Cardiac electrical asynchrony occurs as a result of cardiac pacing or conduction disorders such as left bundle-branch block (LBBB. Electrically asynchronous activation causes myocardial contraction heterogeneity that can be detrimental for cardiac function. Computational models provide a tool for understanding pathological consequences of dyssynchronous contraction. Simulations of mechanical dyssynchrony within the heart are typically performed using the finite element method, whose computational intensity may present an obstacle to clinical deployment of patient-specific models. We present an alternative based on the CircAdapt lumped-parameter model of the heart and circulatory system, called the MultiPatch module. Cardiac walls are subdivided into an arbitrary number of patches of homogeneous tissue. Tissue properties and activation time can differ between patches. All patches within a wall share a common wall tension and curvature. Consequently, spatial location within the wall is not required to calculate deformation in a patch. We test the hypothesis that activation time is more important than tissue location for determining mechanical deformation in asynchronous hearts. We perform simulations representing an experimental study of myocardial deformation induced by ventricular pacing, and a patient with LBBB and heart failure using endocardial recordings of electrical activation, wall volumes, and end-diastolic volumes. Direct comparison between simulated and experimental strain patterns shows both qualitative and quantitative agreement between model fibre strain and experimental circumferential strain in terms of shortening and rebound stretch during ejection. Local myofibre strain in the patient simulation shows qualitative agreement with circumferential strain patterns observed in the patient using tagged MRI. We conclude that the MultiPatch module produces realistic regional deformation patterns in the asynchronous heart and that

  15. A Measurement System of Electric Signals on Standing Trees

    Directory of Open Access Journals (Sweden)

    Hao TIAN

    2014-01-01

    Full Text Available The standing tree electric signal (STES, defined as the electric potential difference between standing trees and the surrounding soil, can be utilized to reflect the biological nature of the trees. This signal should be measured precisely because it can also be collected and used as the electric power energy. In this paper, the automatic measurement system of standing tree biological electric signal based on MSP430 MCU. First of all, the basic structure of the presented system is introduced and it includes three modules: amplification module of the standing tree electric signal, the acquisition and processing of the signal module and the serial communication module. Then, the performances of the built system are respectively validated by the Poplar, Planetree, and Platanus in Beijing Forestry University. The result indicated that the relative error of this system is less than 2 %. The presented system can be considered as the foundation of the subsequent study on the mechanism of the biological electric signal and the application of the biological electric energy on standing trees.

  16. Actuator Module of Robot Manipulator for Nuclear Power Plants Inspection, Maintenance and Decommission

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Uk; Jung, Kyung Min; Seo, Young Chil; Choi, Byung Seon; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    For nuclear facility decommissioning, there are many different electrical manipulators to remotely dismantle a nuclear facility. Various manipulators will be necessary for inspection, maintenance and decommission. Only one manipulator cannot response to many required tasks. Therefore, several manipulators are necessary, depending on the payload capacity, their number of axes and their dexterity. Each manipulator was developed for a specific task. The actuators used at manipulator are varied and many companies sell actuators depending on power, torque and speed. However, the commercial product is not standardized. Therefore, the development of the manipulator is time consuming and expensive. The essential item of the manipulators is the actuator module. If actuator module is standardized, it is easier to develop manipulator. In this paper, we developed two electrical actuator modules to standardize the actuator module and easily develop a manipulator using the proposed actuator modules. The electrical actuator module has a motor, gear and rotary sensor, and is also waterproof. The electrically driven manipulator being used in the proposed actuator modules will be shown. Two modularized electrical actuator modules were developed for inspection, maintenance and decommission. Using the two developed actuator modules, the manipulator inspecting the welding area of reactor vessel is easily developed. Various modularized electrical actuator modules will be developed in terms of size and power.

  17. Effects of rhythmic stimulus presentation on oscillatory brain activity: the physiology of cueing in Parkinson's disease

    NARCIS (Netherlands)

    Woerd, E.S. te; Oostenveld, R.; Bloem, B.R.; Lange, F.P. de; Praamstra, P.

    2015-01-01

    The basal ganglia play an important role in beat perception and patients with Parkinson's disease (PD) are impaired in perception of beat-based rhythms. Rhythmic cues are nonetheless beneficial in gait rehabilitation, raising the question how rhythm improves movement in PD. We addressed this

  18. Rhythmic auditory cueing to improve walking in patients with neurological conditions other than Parkinson's disease--what is the evidence?

    Science.gov (United States)

    Wittwer, Joanne E; Webster, Kate E; Hill, Keith

    2013-01-01

    To investigate whether synchronising over-ground walking to rhythmic auditory cues improves temporal and spatial gait measures in adults with neurological clinical conditions other than Parkinson's disease. A search was performed in June 2011 using the computerised databases AGELINE, AMED, AMI, CINAHL, Current Contents, EMBASE, MEDLINE, PsycINFO and PUBMED, and extended using hand-searching of relevant journals and article reference lists. Methodological quality was independently assessed by two reviewers. A best evidence synthesis was applied to rate levels of evidence. Fourteen studies, four of which were randomized controlled trials (RCTs), met the inclusion criteria. Patient groups included those with stroke (six studies); Huntington's disease and spinal cord injury (two studies each); traumatic brain injury, dementia, multiple sclerosis and normal pressure hydrocephalus (one study each). The best evidence synthesis found moderate evidence of improved velocity and stride length of people with stroke following gait training with rhythmic music. Insufficient evidence was found for other included neurological disorders due to low study numbers and poor methodological quality of some studies. Synchronising walking to rhythmic auditory cues can result in short-term improvement in gait measures of people with stroke. Further high quality studies are needed before recommendations for clinical practice can be made.

  19. Periodic modulation of repetitively elicited monosynaptic reflexes of the human lumbosacral spinal cord

    Science.gov (United States)

    Danner, Simon M.; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank; Minassian, Karen

    2015-01-01

    In individuals with motor-complete spinal cord injury, epidural stimulation of the lumbosacral spinal cord at 2 Hz evokes unmodulated reflexes in the lower limbs, while stimulation at 22–60 Hz can generate rhythmic burstlike activity. Here we elaborated on an output pattern emerging at transitional stimulation frequencies with consecutively elicited reflexes alternating between large and small. We analyzed responses concomitantly elicited in thigh and leg muscle groups bilaterally by epidural stimulation in eight motor-complete spinal cord-injured individuals. Periodic amplitude modulation of at least 20 successive responses occurred in 31.4% of all available data sets with stimulation frequency set at 5–26 Hz, with highest prevalence at 16 Hz. It could be evoked in a single muscle group only but was more strongly expressed and consistent when occurring in pairs of antagonists or in the same muscle group bilaterally. Latencies and waveforms of the modulated reflexes corresponded to those of the unmodulated, monosynaptic responses to 2-Hz stimulation. We suggest that the cyclical changes of reflex excitability resulted from the interaction of facilitatory and inhibitory mechanisms emerging after specific delays and with distinct durations, including postactivation depression, recurrent inhibition and facilitation, as well as reafferent feedback activation. The emergence of large responses within the patterns at a rate of 5.5/s or 8/s may further suggest the entrainment of spinal mechanisms as involved in clonus. The study demonstrates that the human lumbosacral spinal cord can organize a simple form of rhythmicity through the repetitive activation of spinal reflex circuits. PMID:25904708

  20. Characterization of a low concentrator photovoltaics module

    Energy Technology Data Exchange (ETDEWEB)

    Butler, B.A. [Department of Physics, Nelson Mandela Metropolitan University, P. O. Box 77000, Port Elizabeth 6031 (South Africa); Dyk, E.E. van, E-mail: ernest.vandyk@nmmu.ac.za [Department of Physics, Nelson Mandela Metropolitan University, P. O. Box 77000, Port Elizabeth 6031 (South Africa); Vorster, F.J.; Okullo, W.; Munji, M.K. [Department of Physics, Nelson Mandela Metropolitan University, P. O. Box 77000, Port Elizabeth 6031 (South Africa); Booysen, P. [Setsolar, P. O. Box 15934, Panorama 7506 (South Africa)

    2012-05-15

    Low concentration photovoltaic (LCPV) systems have the potential to reduce the cost per kWh of electricity compared to conventional flat-plate photovoltaics (PV) by up to 50%. The cost-savings are realised by replacing expensive PV cells with relatively cheaper optical components to concentrate incident solar irradiance onto a receiver and by tracking the sun along either 1 axis or 2 axes. A LCPV module consists of three interrelated subsystems, viz., the optical, electrical and the thermal subsystems, which must be considered for optimal module design and performance. Successful integration of these subsystems requires the balancing of cost, performance and reliability. In this study LCPV experimental prototype modules were designed, built and evaluated with respect to optimisation of the three subsystems and overall performance. This paper reports on the optical and electrical evaluation of a prototype LCPV module.

  1. Characterization of a low concentrator photovoltaics module

    International Nuclear Information System (INIS)

    Butler, B.A.; Dyk, E.E. van; Vorster, F.J.; Okullo, W.; Munji, M.K.; Booysen, P.

    2012-01-01

    Low concentration photovoltaic (LCPV) systems have the potential to reduce the cost per kWh of electricity compared to conventional flat-plate photovoltaics (PV) by up to 50%. The cost-savings are realised by replacing expensive PV cells with relatively cheaper optical components to concentrate incident solar irradiance onto a receiver and by tracking the sun along either 1 axis or 2 axes. A LCPV module consists of three interrelated subsystems, viz., the optical, electrical and the thermal subsystems, which must be considered for optimal module design and performance. Successful integration of these subsystems requires the balancing of cost, performance and reliability. In this study LCPV experimental prototype modules were designed, built and evaluated with respect to optimisation of the three subsystems and overall performance. This paper reports on the optical and electrical evaluation of a prototype LCPV module.

  2. Characterization of a low concentrator photovoltaics module

    Science.gov (United States)

    Butler, B. A.; van Dyk, E. E.; Vorster, F. J.; Okullo, W.; Munji, M. K.; Booysen, P.

    2012-05-01

    Low concentration photovoltaic (LCPV) systems have the potential to reduce the cost per kWh of electricity compared to conventional flat-plate photovoltaics (PV) by up to 50%. The cost-savings are realised by replacing expensive PV cells with relatively cheaper optical components to concentrate incident solar irradiance onto a receiver and by tracking the sun along either 1 axis or 2 axes. A LCPV module consists of three interrelated subsystems, viz., the optical, electrical and the thermal subsystems, which must be considered for optimal module design and performance. Successful integration of these subsystems requires the balancing of cost, performance and reliability. In this study LCPV experimental prototype modules were designed, built and evaluated with respect to optimisation of the three subsystems and overall performance. This paper reports on the optical and electrical evaluation of a prototype LCPV module.

  3. The Development of Rhythm at the Age of 6-11 Years: Non-Pitch Rhythmic Improvisation

    Science.gov (United States)

    Paananen, Pirkko

    2006-01-01

    In the statistical and transcriptional analyses reported in this exploratory study, original rhythms of 6-11-year-old children (N=36) were examined. The hypotheses were based on a new model of musical development, and tested empirically using non-pitch rhythmic improvisation in a MIDI-environment. Several representational types were found in…

  4. Silicon Optical Modulator Simulation

    Directory of Open Access Journals (Sweden)

    Soon Thor LIM

    2015-04-01

    Full Text Available We developed a way of predicting and analyzing high speed optical modulator. Our research adopted a bottom-up approach to consider high-speed optical links using an eye diagram. Our method leverages on modular mapping of electrical characteristics to optical characteristics, while attaining the required accuracy necessary for device footprint approaching sub-micron scales where electrical data distribution varies drastically. We calculate for the bias dependent phase shift (2pi/mm and loss (dB/mm for the optical modulator based on the real and imaginary part of complex effective indices. Subsequently, combine effectively both the electrical and optical profiles to construct the optical eye diagram which is the essential gist of signal integrity of such devices.

  5. Megascale rhythmic shoreline forms on a beach with multiple bars

    Directory of Open Access Journals (Sweden)

    Zbigniew Pruszak

    2008-06-01

    Full Text Available The study, carried out in 2003 and 2006 at the Lubiatowo Coastal ResearchStation (Poland, located on the non-tidal southern Baltic coast(tidal range < 0.06 m, focused on larger rhythmic forms (mega-cusps withwavelengths in the interval 500 m > Lc > 20 m. Statistical analyses of detailed shoreline configurations were performed mostly with the Discrete Wavelet Transformmethod (DWT. The beach is composed of fine sand with grain diameter D50 ≈ 0.22 mm, which produces 4 longshore sandbars and a gently sloping seabed with β = 0.015. The analysis confirms the key role of bars in hydro- and morphodynamic surf zone processes.The hypothesis was therefore set up that, in a surf zone with multiple bars, the bars and mega-scale shoreline rhythmic forms form one integrated physical system; experimental evidence to substantiate this hypothesis was also sought.In such a system not only do self-regulation processes include swash zone phenomena, they also incorporate processes in offshore surf zone locations.The longshore dimensions of large cusps are thus related to the distances between periodically active large bed forms (bars. The spatial dimension of bar system activity (number of active bars depends, at a given time scale, on the associated hydrodynamic conditions. It was assumed that such a time scale could include either the development and duration of a storm, or a period of stable, yet distinct waves, capable of remodelling the beach configuration.The indentation to wavelength ratio of mega-cusps for the studied non-tidal dissipative environment may be one order of magnitude greater than for mesotidal, reflective beaches.

  6. Electric and energy modelling of the super-condenser and method of characterization: application to the cycling of a module of super-condensers low tension in great power; Modelisation electrique et energetique des supercondensateurs et methodes de caracterisation: application au cyclage d'un module de supercondensateurs basse tension en grande puissance

    Energy Technology Data Exchange (ETDEWEB)

    Rizoug, N.

    2006-02-15

    This document presents a study of the electrical and energetic behaviour of super-capacitors under conditions similar to industrial applications' ones. For that, a test bench has been developed in our laboratory in order to characterize a super-capacitors' module (112 F-48 V) composed of 24 elements of 2700 F/2,3 V. The goal of this work was firstly to evaluate the precision of the existing model about the electrical and energetic characteristics and secondly to improve this precision. For that, two models representing the energetic and electrical behaviour of these components are developed. These models are obtained by a simple identification of the data measured during the cycling tests using frequency and temporal approaches. Numerous electrical and thermal data are obtained during the cycling test of the module. These data are used to observe the evolution of the equivalent capacity and resistance of several super-capacitor elements of the tested module according to the temperature. For the first 200.000 cycles, the ageing process of super-capacitors and the variation of the module parameters during all the life of this tested module are presented. This study allowed to obtain information about the degradation (R, rs and C) according to the number of cycles carried out. Finally, the tests of cycling done without balancing device (except the impedance of the measurement system) allow to observe a natural dispersion of the voltage according to the position of the components in the module. (author)

  7. An inherently safe power reactor module

    International Nuclear Information System (INIS)

    Salerno, L.N.

    1985-01-01

    General Electric's long participation in liquid metal reactor technology has led to a Power Reactor Inherently Safe Module (PRISM) concept supported by DOE contract DE-AC06-85NE37937. The reactor module is sized to maximize inherent safety features. The small size allows factory fabrication, reducing field construction and field QA/QC labor, and allows safety to be demonstrated in full scale, to support a pre-licensed standard commercial product. The module is small enough to be placed underground, and can be combined with steam and electrical generating equipment to provide a complete electrical power producing plant in the range of 400-1200 MWe. Initial assessments are that the concept has the potential to be economically competitive with existing methods of power production used by the utility industry

  8. Analysis of rhythmic variance - ANORVA. A new simple method for detecting rhythms in biological time series

    Directory of Open Access Journals (Sweden)

    Peter Celec

    2004-01-01

    Full Text Available Cyclic variations of variables are ubiquitous in biomedical science. A number of methods for detecting rhythms have been developed, but they are often difficult to interpret. A simple procedure for detecting cyclic variations in biological time series and quantification of their probability is presented here. Analysis of rhythmic variance (ANORVA is based on the premise that the variance in groups of data from rhythmic variables is low when a time distance of one period exists between the data entries. A detailed stepwise calculation is presented including data entry and preparation, variance calculating, and difference testing. An example for the application of the procedure is provided, and a real dataset of the number of papers published per day in January 2003 using selected keywords is compared to randomized datasets. Randomized datasets show no cyclic variations. The number of papers published daily, however, shows a clear and significant (p<0.03 circaseptan (period of 7 days rhythm, probably of social origin

  9. Large current modulation and tunneling magnetoresistance change by a side-gate electric field in a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor.

    Science.gov (United States)

    Kanaki, Toshiki; Yamasaki, Hiroki; Koyama, Tomohiro; Chiba, Daichi; Ohya, Shinobu; Tanaka, Masaaki

    2018-05-08

    A vertical spin metal-oxide-semiconductor field-effect transistor (spin MOSFET) is a promising low-power device for the post scaling era. Here, using a ferromagnetic-semiconductor GaMnAs-based vertical spin MOSFET with a GaAs channel layer, we demonstrate a large drain-source current I DS modulation by a gate-source voltage V GS with a modulation ratio up to 130%, which is the largest value that has ever been reported for vertical spin field-effect transistors thus far. We find that the electric field effect on indirect tunneling via defect states in the GaAs channel layer is responsible for the large I DS modulation. This device shows a tunneling magnetoresistance (TMR) ratio up to ~7%, which is larger than that of the planar-type spin MOSFETs, indicating that I DS can be controlled by the magnetization configuration. Furthermore, we find that the TMR ratio can be modulated by V GS . This result mainly originates from the electric field modulation of the magnetic anisotropy of the GaMnAs ferromagnetic electrodes as well as the potential modulation of the nonmagnetic semiconductor GaAs channel layer. Our findings provide important progress towards high-performance vertical spin MOSFETs.

  10. Predictive rhythmic tapping to isochronous and tempo changing metronomes in the nonhuman primate.

    Science.gov (United States)

    Gámez, Jorge; Yc, Karyna; Ayala, Yaneri A; Dotov, Dobromir; Prado, Luis; Merchant, Hugo

    2018-04-30

    Beat entrainment is the ability to entrain one's movements to a perceived periodic stimulus, such as a metronome or a pulse in music. Humans have a capacity to predictively respond to a periodic pulse and to dynamically adjust their movement timing to match the varying music tempos. Previous studies have shown that monkeys share some of the human capabilities for rhythmic entrainment, such as tapping regularly at the period of isochronous stimuli. However, it is still unknown whether monkeys can predictively entrain to dynamic tempo changes like humans. To address this question, we trained monkeys in three tapping tasks and compared their rhythmic entrainment abilities with those of humans. We found that, when immediate feedback about the timing of each movement is provided, monkeys can predictively entrain to an isochronous beat, generating tapping movements in anticipation of the metronome pulse. This ability also generalized to a novel untrained tempo. Notably, macaques can modify their tapping tempo by predicting the beat changes of accelerating and decelerating visual metronomes in a manner similar to humans. Our findings support the notion that nonhuman primates share with humans the ability of temporal anticipation during tapping to isochronous and smoothly changing sequences of stimuli. © 2018 New York Academy of Sciences.

  11. The relative contribution of physical fitness to the technical execution score in youth rhythmic gymnastics

    Directory of Open Access Journals (Sweden)

    Donti Olyvia

    2016-06-01

    Full Text Available This study examined the association between physical fitness and a technical execution score in rhythmic gymnasts varying in the performance level. Forty-six young rhythmic gymnasts (age: 9.9 ±1.3 years were divided into two groups (qualifiers, n=24 and non-qualifiers, n=22 based on the results of the National Championships. Gymnasts underwent a series of physical fitness tests and technical execution was evaluated in a routine without apparatus. There were significant differences between qualifiers and non-qualifiers in the technical execution score (p=0.01, d=1.0, shoulder flexion (p=0.01, d=0.8, straight leg raise (p=0.004, d=0.9, sideways leg extension (p=0.002, d=0.9 and body fat (p=.021, d=0.7, but no differences were found in muscular endurance and jumping performance. The technical execution score for the non-qualifiers was significantly correlated with shoulder extension (r=0.423, p<0.05, sideways leg extension (r=0.687, p<0.01, push ups (r=0.437, p<0.05 and body fat (r=0.642, p<0.01, while there was only one significant correlation with sideways leg extension (r=0.467, p<0.05 for the qualifiers. Multiple regression analysis revealed that sideways leg extension, body fat, and push ups accounted for a large part (62.9% of the variance in the technical execution score for the non-qualifiers, while for the qualifiers, only 37.3% of the variance in the technical execution score was accounted for by sideways leg extension and spine flexibility. In conclusion, flexibility and body composition can effectively discriminate between qualifiers and non-qualifiers in youth rhythmic gymnastics. At the lower level of performance (non-qualifiers, physical fitness seems to have a greater effect on the technical execution score.

  12. Electric field modulation of Schottky barrier height in graphene/MoSe2 van der Waals heterointerface

    OpenAIRE

    Sata, Yohta; Moriya, Rai; Morikawa, Sei; Yabuki, Naoto; Masubuchi, Satoru; Machida, Tomoki

    2015-01-01

    We demonstrate a vertical field-effect transistor based on a graphene/MoSe2 van der Waals (vdW) heterostructure. The vdW interface between the graphene and MoSe2 exhibits a Schottky barrier with an ideality factor of around 1.3, suggesting a high-quality interface. Owing to the low density of states in graphene, the position of the Fermi level in the graphene can be strongly modulated by an external electric field. Therefore, the Schottky barrier height at the graphene/MoSe2 vdW interface is ...

  13. Interactions of Circadian Rhythmicity, Stress and Orexigenic Neuropeptide Systems: Implications for Food Intake Control.

    Science.gov (United States)

    Blasiak, Anna; Gundlach, Andrew L; Hess, Grzegorz; Lewandowski, Marian H

    2017-01-01

    Many physiological processes fluctuate throughout the day/night and daily fluctuations are observed in brain and peripheral levels of several hormones, neuropeptides and transmitters. In turn, mediators under the "control" of the "master biological clock" reciprocally influence its function. Dysregulation in the rhythmicity of hormone release as well as hormone receptor sensitivity and availability in different tissues, is a common risk-factor for multiple clinical conditions, including psychiatric and metabolic disorders. At the same time circadian rhythms remain in a strong, reciprocal interaction with the hypothalamic-pituitary-adrenal (HPA) axis. Recent findings point to a role of circadian disturbances and excessive stress in the development of obesity and related food consumption and metabolism abnormalities, which constitute a major health problem worldwide. Appetite, food intake and energy balance are under the influence of several brain neuropeptides, including the orexigenic agouti-related peptide, neuropeptide Y, orexin, melanin-concentrating hormone and relaxin-3. Importantly, orexigenic neuropeptide neurons remain under the control of the circadian timing system and are highly sensitive to various stressors, therefore the potential neuronal mechanisms through which disturbances in the daily rhythmicity and stress-related mediator levels contribute to food intake abnormalities rely on reciprocal interactions between these elements.

  14. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Five: Relationships of Current, Voltage, and Resistance. Study Booklet.

    Science.gov (United States)

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on the relationships of current, voltage, and resistance is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptaticn to vocational instructional and curriculum development in a civilian setting.…

  15. Electrical distribution system management

    International Nuclear Information System (INIS)

    Hajos, L.; Mortarulo, M.; Chang, K.; Sparks, T.

    1990-01-01

    This paper reports that maintenance of electrical system data is essential to the operation, maintenance, and modification of a nuclear station. Load and equipment changes affect equipment sizing, available short-circuit currents and protection coordination. System parameters must be maintained in a controlled manner to enable evaluation of proposed modifications and provide adequate verification and traceability. For this purpose, Public Service Electric and Gas Company has implemented a Verified and Validated Electric Distribution System Management (EDSM) program at the Hope Creek and Salem Nuclear Power Stations. EDSM program integrates computerized configuration management of electrical systems with calculational software the Technical Standard procedures. The software platform is PC-based. The Database Manager and Calculational programs have been linked together through a user friendly menu system. The database management nodule enable s assembly and maintenance of databases for individual loads, buses, and branches within the electrical systems with system access and approval controlled through electronic security incorporated within the database manger. Reports drawn from the database serve as the as-built and/or as-designed record of the system configurations. This module also creates input data files of network parameters in a format readable by the calculational modules. Calculations modules provide load flow, voltage drop, motor starting, and short-circuit analyses, as well as dynamic analyses of bus transfers

  16. 'Rhythmic Music' in Danish Music Education

    DEFF Research Database (Denmark)

    Pedersen, Peder Kaj

    In Danish state schools from elementary to upper secondary school music is part of curricula at all levels. It is widely accepted that both individuals and culture benefit from art subjects, creative activities etc. This type of motivation was sufficient support for maintaining music as a subject...... and to avoid what was associated with jazz, especially by its opponents. This paper aims at taking stock of the situation in Danish music education during the last decade and at specifying the situation of ‘rhythmic music’ within this context....... at all levels of the educational system from around 1960 to around 2000. This tradition dates back to the 1920s, when the first Social Democratic government in Danish history (1924-26), with Nina Bang as minister of education (probably the first female minister worldwide), in the field of music made...... genre of music, and in Denmark this interest manifested itself in attempts to integrate jazz in the musical education of the youth. A unique genre, the so-called ‘jazz oratorios’, was created by the composer Bernhard Christensen (1906-2004) and the librettist Sven Møller Kristensen (1909- 91...

  17. Performance of electric forklift with low-temperature polymer exchange membrane fuel cell power module and metal hydride hydrogen storage extension tank

    Science.gov (United States)

    Lototskyy, Mykhaylo V.; Tolj, Ivan; Parsons, Adrian; Smith, Fahmida; Sita, Cordellia; Linkov, Vladimir

    2016-06-01

    We present test results of a commercial 3-tonne electric forklift (STILL) equipped with a commercial fuel cell power module (Plug Power) and a MH hydrogen storage tank (HySA Systems and TF Design). The tests included: (i) performance evaluation of "hybrid" hydrogen storage system during refuelling at low (fuel cell power module (alone) - power module with integrated MH tank; and (iii) performance tests of the forklift during its operation under working conditions. It was found that (a) the forklift with power module and MH tank can achieve 83% of maximum hydrogen storage capacity during 6 min refuelling (for full capacity 12-15 min); (b) heavy-duty operation of the forklift is characterised by 25% increase in energy consumption, and during system operation more uniform power distribution occurs when operating in the fuel cell powering mode with MH, in comparison to the battery powering mode; (c) use of the fully refuelled fuel cell power module with the MH extension tank allows for uninterrupted operation for 3 h 6 min and 7 h 15 min, for heavy- and light-duty operation, respectively.

  18. Feasibility of external rhythmic cueing with the Google Glass for improving gait in people with Parkinson's disease

    NARCIS (Netherlands)

    Zhao, Y; Nonnekes, J.H.; Storcken, E.J.; Janssen, S.; Wegen, E. van; Bloem, B.R.; Dorresteijn, L.D.A.; Vugt, J.P.P. van; Heida, T.; Wezel, R.J.A. van

    2016-01-01

    New mobile technologies like smartglasses can deliver external cues that may improve gait in people with Parkinson's disease in their natural environment. However, the potential of these devices must first be assessed in controlled experiments. Therefore, we evaluated rhythmic visual and auditory

  19. Energy metrics analysis of hybrid - photovoltaic (PV) modules

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Arvind [Department of Electronics and Communication, Krishna Institute of Engineering and Technology, 13 k.m. stone, Ghaziabad - Meerut Road, Ghaziabad 201 206, UP (India); Barnwal, P.; Sandhu, G.S.; Sodha, M.S. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016 (India)

    2009-12-15

    In this paper, energy metrics (energy pay back time, electricity production factor and life cycle conversion efficiency) of hybrid photovoltaic (PV) modules have been analyzed and presented for the composite climate of New Delhi, India. For this purpose, it is necessary to calculate (1) the energy consumption in making different components of the PV modules and (2) the annual energy (electrical and thermal) available from the hybrid-PV modules. A set of mathematical relations have been reformulated for computation of the energy metrics. The manufacturing energy, material production energy, energy use and distribution energy of the system have been taken into account, to determine the embodied energy for the hybrid-PV modules. The embodied energy and annual energy outputs have been used for evaluation of the energy metrics. For hybrid PV module, it has been observed that the EPBT gets significantly reduced by taking into account the increase in annual energy availability of the thermal energy in addition to the electrical energy. The values of EPF and LCCE of hybrid PV module become higher as expected. (author)

  20. Anticipation of electric shocks modulates low beta power and event-related fields during memory encoding.

    Science.gov (United States)

    Bauch, Eva M; Bunzeck, Nico

    2015-09-01

    In humans, the temporal and oscillatory dynamics of pain anticipation and its effects on long-term memory are largely unknown. Here, we investigated this open question by using a previously established behavioral paradigm in combination with magnetoencephalography (MEG). Healthy human subjects encoded a series of scene images, which was combined with cues predicting an aversive electric shock with different probabilities (0.2, 0.5 or 0.8). After encoding, memory for the studied images was tested using a remember/know recognition task. Behaviorally, pain anticipation did not modulate recollection-based recognition memory per se, but interacted with the perceived unpleasantness of the electric shock [visual analogue scale rating from 1 (not unpleasant) to 10 (highly unpleasant)]. More precisely, the relationship between pain anticipation and recollection followed an inverted u-shaped function the more unpleasant the shocks were rated by a subject. At the physiological level, this quadratic effect was mimicked in the event-related magnetic fields associated with successful memory formation ('DM-effect') ∼450ms after image onset at left frontal sensors. Importantly, across all subjects, shock anticipation modulated oscillatory power in the low beta frequency range (13-20Hz) in a linear fashion at left temporal sensors. Taken together, our findings indicate that beta oscillations provide a generic mechanism underlying pain anticipation; the effect on subsequent long-term memory, on the other hand, is much more variable and depends on the level of individual pain perception. As such, our findings give new and important insights into how aversive motivational states can drive memory formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Feasibility of external rhythmic cueing with the Google Glass for improving gait in people with Parkinson's disease.

    Science.gov (United States)

    Zhao, Yan; Nonnekes, Jorik; Storcken, Erik J M; Janssen, Sabine; van Wegen, Erwin E H; Bloem, Bastiaan R; Dorresteijn, Lucille D A; van Vugt, Jeroen P P; Heida, Tjitske; van Wezel, Richard J A

    2016-06-01

    New mobile technologies like smartglasses can deliver external cues that may improve gait in people with Parkinson's disease in their natural environment. However, the potential of these devices must first be assessed in controlled experiments. Therefore, we evaluated rhythmic visual and auditory cueing in a laboratory setting with a custom-made application for the Google Glass. Twelve participants (mean age = 66.8; mean disease duration = 13.6 years) were tested at end of dose. We compared several key gait parameters (walking speed, cadence, stride length, and stride length variability) and freezing of gait for three types of external cues (metronome, flashing light, and optic flow) and a control condition (no-cue). For all cueing conditions, the subjects completed several walking tasks of varying complexity. Seven inertial sensors attached to the feet, legs and pelvis captured motion data for gait analysis. Two experienced raters scored the presence and severity of freezing of gait using video recordings. User experience was evaluated through a semi-open interview. During cueing, a more stable gait pattern emerged, particularly on complicated walking courses; however, freezing of gait did not significantly decrease. The metronome was more effective than rhythmic visual cues and most preferred by the participants. Participants were overall positive about the usability of the Google Glass and willing to use it at home. Thus, smartglasses like the Google Glass could be used to provide personalized mobile cueing to support gait; however, in its current form, auditory cues seemed more effective than rhythmic visual cues.

  2. Passive cooling of standalone flat PV module with cotton wick structures

    International Nuclear Information System (INIS)

    Chandrasekar, M.; Suresh, S.; Senthilkumar, T.; Ganesh karthikeyan, M.

    2013-01-01

    Highlights: • A simple passive cooling system is developed for standalone flat PV modules. • 30% Reduction in module temperature is observed with developed cooling system. • 15.61% Increase in output power of PV module is found with developed cooling system. • Module efficiency is increased by 1.4% with cooling arrangement. • Lower thermal degradation due to narrow range of temperature characteristics. - Abstract: In common, PV module converts only 4–17% of the incoming solar radiation into electricity. Thus more than 50% of the incident solar energy is converted as heat and the temperature of PV module is increased. The increase in module temperature in turn decreases the electrical yield and efficiency of the module with a permanent structural damage of the module due to prolonged period of thermal stress (also known as thermal degradation of the module). An effective way of improving efficiency and reducing the rate of thermal degradation of a PV module is to reduce the operating temperature of PV module. This can be achieved by cooling the PV module during operation. Hence in the present work, a simple passive cooling system with cotton wick structures is developed for standalone flat PV modules. The thermal and electrical performance of flat PV module with cooling system consisting of cotton wick structures in combination with water, Al 2 O 3 /water nanofluid and CuO/water nanofluid are investigated experimentally. The experimental results are also compared with the thermal and electrical performance of flat PV module without cooling system

  3. Effects of rhythmic stimulus presentation on oscillatory brain activity: the physiology of cueing in Parkinson’s disease

    NARCIS (Netherlands)

    Woerd, E.S. te; Oostenveld, R.; Bloem, B.R.; Lange, F.P. de; Praamstra, P.

    2015-01-01

    The basal ganglia play an important role in beat perception and patients with Parkinson’s disease (PD) are impaired in perception of beat-based rhythms. Rhythmic cues are nonetheless beneficial in gait rehabilitation, raising the question how rhythm improves movement in PD. We addressed this

  4. Force modulation for improved conductive-mode atomic force microscopy

    NARCIS (Netherlands)

    Koelmans, W.W.; Sebastian, Abu; Despont, Michel; Pozidis, Haris

    We present an improved conductive-mode atomic force microscopy (C-AFM) method by modulating the applied loading force on the tip. Unreliable electrical contact and tip wear are the primary challenges for electrical characterization at the nanometer scale. The experiments show that force modulation

  5. Modulation of local field potentials by high-frequency stimulation of afferent axons in the hippocampal CA1 region.

    Science.gov (United States)

    Yu, Ying; Feng, Zhouyan; Cao, Jiayue; Guo, Zheshan; Wang, Zhaoxiang; Hu, Na; Wei, Xuefeng

    2016-03-01

    Modulation of the rhythmic activity of local field potentials (LFP) in neuronal networks could be a mechanism of deep brain stimulation (DBS). However, exact changes of LFP during the periods of high-frequency stimulation (HFS) of DBS are unclear because of the interference of dense stimulation artifacts with high amplitudes. In the present study, we investigated LFP changes induced by HFS of afferent axons in the hippocampal CA1 region of urethane-anesthetized rats by using a proper algorithm of artifact removal. Afterward, the LFP changes in the frequency bands of [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] rhythms were studied by power spectrum analysis and coherence analysis for the recorded signals collected in the pyramidal layer and in the stratum radiatum of CA1 region before, during and after 1-min long 100 and 200[Formula: see text]Hz HFS. Results showed that the power of LFP rhythms in higher-frequency band ([Formula: see text] rhythm) increased in the pyramidal layer and the power of LFP rhythms in lower-frequency bands ([Formula: see text], [Formula: see text] and [Formula: see text] rhythms) decreased in the stratum radiatum during HFS. The synchronization of [Formula: see text] rhythm decreased and the synchronization of [Formula: see text] rhythm increased during HFS in the stratum radiatum. These results suggest that axonal HFS could modulate LFP rhythms in the downstream brain areas with a plausible underlying mechanism of partial axonal blockage induced by HFS. The study provides new evidence to support the mechanism of DBS modulating rhythmic activity of neuronal populations.

  6. Nitric oxide-mediated intersegmental modulation of cycle frequency in the crayfish swimmeret system.

    Science.gov (United States)

    Yoshida, Misaki; Nagayama, Toshiki; Newland, Philip

    2018-05-21

    Crayfish swimmerets are paired appendages located on the ventral side of each abdominal segment that show rhythmic beating during forward swimming produced by central pattern generators in most abdominal segments. For animals with multiple body segments and limbs, intersegmental coordination of central pattern generators in each segment is crucial for the production of effective movements. Here we develop a novel pharmacological approach to analyse intersegmental modulation of swimmeret rhythm by selectively elevating nitric oxide levels and reducing them with pharmacological agents, in specific ganglia. Bath application of L-arginine, the substrate NO synthesis, increased the cyclical spike responses of the power-stroke motor neurons. By contrast the NOS inhibitor, L-NAME decreased them. To determine the role of the different local centres in producing and controlling the swimmeret rhythm, these two drugs were applied locally to two separate ganglia following bath application of carbachol. Results revealed that there was both ascending and descending intersegmental modulation of cycle frequency of the swimmeret rhythm in the abdominal ganglia and that synchrony of cyclical activity between segments of segments was maintained. We also found that there were gradients in the strength effectiveness in modulation, that ascending modulation of the swimmeret rhythm was stronger than descending modulation. © 2018. Published by The Company of Biologists Ltd.

  7. Automatic Imitation in Rhythmical Actions: Kinematic Fidelity and the Effects of Compatibility, Delay, and Visual Monitoring

    Science.gov (United States)

    Eaves, Daniel L.; Turgeon, Martine; Vogt, Stefan

    2012-01-01

    We demonstrate that observation of everyday rhythmical actions biases subsequent motor execution of the same and of different actions, using a paradigm where the observed actions were irrelevant for action execution. The cycle time of the distractor actions was subtly manipulated across trials, and the cycle time of motor responses served as the main dependent measure. Although distractor frequencies reliably biased response cycle times, this imitation bias was only a small fraction of the modulations in distractor speed, as well as of the modulations produced when participants intentionally imitated the observed rhythms. Importantly, this bias was not only present for compatible actions, but was also found, though numerically reduced, when distractor and executed actions were different (e.g., tooth brushing vs. window wiping), or when the dominant plane of movement was different (horizontal vs. vertical). In addition, these effects were equally pronounced for execution at 0, 4, and 8 s after action observation, a finding that contrasts with the more short-lived effects reported in earlier studies. The imitation bias was also unaffected when vision of the hand was occluded during execution, indicating that this effect most likely resulted from visuomotor interactions during distractor observation, rather than from visual monitoring and guidance during execution. Finally, when the distractor was incompatible in both dimensions (action type and plane) the imitation bias was not reduced further, in an additive way, relative to the single-incompatible conditions. This points to a mechanism whereby the observed action’s impact on motor processing is generally reduced whenever this is not useful for motor planning. We interpret these findings in the framework of biased competition, where intended and distractor actions can be represented as competing and quasi-encapsulated sensorimotor streams. PMID:23071623

  8. Automatic imitation in rhythmical actions: kinematic fidelity and the effects of compatibility, delay, and visual monitoring.

    Directory of Open Access Journals (Sweden)

    Daniel L Eaves

    Full Text Available We demonstrate that observation of everyday rhythmical actions biases subsequent motor execution of the same and of different actions, using a paradigm where the observed actions were irrelevant for action execution. The cycle time of the distractor actions was subtly manipulated across trials, and the cycle time of motor responses served as the main dependent measure. Although distractor frequencies reliably biased response cycle times, this imitation bias was only a small fraction of the modulations in distractor speed, as well as of the modulations produced when participants intentionally imitated the observed rhythms. Importantly, this bias was not only present for compatible actions, but was also found, though numerically reduced, when distractor and executed actions were different (e.g., tooth brushing vs. window wiping, or when the dominant plane of movement was different (horizontal vs. vertical. In addition, these effects were equally pronounced for execution at 0, 4, and 8 s after action observation, a finding that contrasts with the more short-lived effects reported in earlier studies. The imitation bias was also unaffected when vision of the hand was occluded during execution, indicating that this effect most likely resulted from visuomotor interactions during distractor observation, rather than from visual monitoring and guidance during execution. Finally, when the distractor was incompatible in both dimensions (action type and plane the imitation bias was not reduced further, in an additive way, relative to the single-incompatible conditions. This points to a mechanism whereby the observed action's impact on motor processing is generally reduced whenever this is not useful for motor planning. We interpret these findings in the framework of biased competition, where intended and distractor actions can be represented as competing and quasi-encapsulated sensorimotor streams.

  9. Linearized image reconstruction method for ultrasound modulated electrical impedance tomography based on power density distribution

    International Nuclear Information System (INIS)

    Song, Xizi; Xu, Yanbin; Dong, Feng

    2017-01-01

    Electrical resistance tomography (ERT) is a promising measurement technique with important industrial and clinical applications. However, with limited effective measurements, it suffers from poor spatial resolution due to the ill-posedness of the inverse problem. Recently, there has been an increasing research interest in hybrid imaging techniques, utilizing couplings of physical modalities, because these techniques obtain much more effective measurement information and promise high resolution. Ultrasound modulated electrical impedance tomography (UMEIT) is one of the newly developed hybrid imaging techniques, which combines electric and acoustic modalities. A linearized image reconstruction method based on power density is proposed for UMEIT. The interior data, power density distribution, is adopted to reconstruct the conductivity distribution with the proposed image reconstruction method. At the same time, relating the power density change to the change in conductivity, the Jacobian matrix is employed to make the nonlinear problem into a linear one. The analytic formulation of this Jacobian matrix is derived and its effectiveness is also verified. In addition, different excitation patterns are tested and analyzed, and opposite excitation provides the best performance with the proposed method. Also, multiple power density distributions are combined to implement image reconstruction. Finally, image reconstruction is implemented with the linear back-projection (LBP) algorithm. Compared with ERT, with the proposed image reconstruction method, UMEIT can produce reconstructed images with higher quality and better quantitative evaluation results. (paper)

  10. Rhythmic diel pattern of gene expression in juvenile maize leaf.

    Directory of Open Access Journals (Sweden)

    Maciej Jończyk

    Full Text Available BACKGROUND: Numerous biochemical and physiological parameters of living organisms follow a circadian rhythm. Although such rhythmic behavior is particularly pronounced in plants, which are strictly dependent on the daily photoperiod, data on the molecular aspects of the diurnal cycle in plants is scarce and mostly concerns the model species Arabidopsis thaliana. Here we studied the leaf transcriptome in seedlings of maize, an important C4 crop only distantly related to A. thaliana, throughout a cycle of 10 h darkness and 14 h light to look for rhythmic patterns of gene expression. RESULTS: Using DNA microarrays comprising ca. 43,000 maize-specific probes we found that ca. 12% of all genes showed clear-cut diel rhythms of expression. Cluster analysis identified 35 groups containing from four to ca. 1,000 genes, each comprising genes of similar expression patterns. Perhaps unexpectedly, the most pronounced and most common (concerning the highest number of genes expression maxima were observed towards and during the dark phase. Using Gene Ontology classification several meaningful functional associations were found among genes showing similar diel expression patterns, including massive induction of expression of genes related to gene expression, translation, protein modification and folding at dusk and night. Additionally, we found a clear-cut tendency among genes belonging to individual clusters to share defined transcription factor-binding sequences. CONCLUSIONS: Co-expressed genes belonging to individual clusters are likely to be regulated by common mechanisms. The nocturnal phase of the diurnal cycle involves gross induction of fundamental biochemical processes and should be studied more thoroughly than was appreciated in most earlier physiological studies. Although some general mechanisms responsible for the diel regulation of gene expression might be shared among plants, details of the diurnal regulation of gene expression seem to differ

  11. Storminess-related rhythmic ridge patterns on the coasts of Estonia

    Directory of Open Access Journals (Sweden)

    Ülo Suursaar

    2017-11-01

    Full Text Available Buried or elevated coastal ridges may serve as archives of past variations in sea level and climate conditions. Sometimes such ridges or coastal scarps appear in patterns, particularly on uplifting coasts with adequate sediment supply. Along the seacoasts of Estonia, where relative-to-geoid postglacial uplift can vary between 1.7 and 3.4 mm/yr, at least 27 areas with rhythmic geomorphic patterns have been identified from LiDAR images and elevation data. Such patterns were mainly found on faster emerging and well-exposed, tideless coasts. These are mostly located at heights between 1 and 21 m above sea level, the formation of which corresponds to a period of up to 7500 years. Up to approximately 150 individual ridges were counted on some cross-shore sections. Ten of these ridge patterns that formed less than 4500 years ago were chosen for detailed characterization and analysis in search of possible forcing mechanisms. Among these more closely studied cases, the mean ridge spacing varied between 19 and 28 m. Using land uplift rates from the late Holocene period, the timespans of the corresponding cross sections were calculated. The average temporal periodicity of the ridges was between 23 and 39 years with a gross mean value of 31 years. Considering the regular nature of the ridges, they mostly do not reflect single extreme events, but rather a decadal-scale periodicity in storminess in the region of the Baltic Sea. Although a contribution from some kind of self-organization process is possible, the rhythmicity in ancient coastal ridge patterns is likely linked to quasi-periodic 25−40-year variability, which can be traced to Estonian long-term sea level records and wave hindcasts, as well as in regional storminess data and the North Atlantic Oscillation index.

  12. Continuous 24-hour intravenous infusion of recombinant human growth hormone (GH)-releasing hormone-(1-44)-amide augments pulsatile, entropic, and daily rhythmic GH secretion in postmenopausal women equally in the estrogen-withdrawn and estrogen-supplemented states.

    Science.gov (United States)

    Evans, W S; Anderson, S M; Hull, L T; Azimi, P P; Bowers, C Y; Veldhuis, J D

    2001-02-01

    How estrogen amplifies GH secretion in the human is not known. The present study tests the clinical hypothesis that estradiol modulates the stimulatory actions of a primary GH feedforward signal, GHRH. To this end, we investigated the ability of short-term (7- to 12-day) supplementation with oral estradiol vs. placebo to modulate basal, pulsatile, entropic, and 24-h rhythmic GH secretion driven by a continuous iv infusion of recombinant human GHRH-(1--44)-amide vs. saline in nine healthy postmenopausal women. Volunteers underwent concurrent blood sampling every 10 min for 24 h on four occasions in a prospectively randomized, single blind, within-subject cross-over design (placebo/saline, placebo/GHRH, estradiol/saline, estradiol/GHRH). Intensively sampled serum GH concentrations were quantitated by ultrasensitive chemiluminescence assay. Basal, pulsatile, entropic (feedback-sensitive), and 24-h rhythmic modes of GH secretion were appraised by deconvolution analysis, the approximate entropy (ApEn) statistic, and cosine regression, respectively. ANOVA revealed that continuous iv infusion of GHRH in the estrogen-withdrawn (control) milieu 1) amplified individual basal (P = 0.00011) and pulsatile (P < 10(-13)) GH secretion rates by 12- and 11-fold, respectively; 2) augmented GH secretory burst mass and amplitude each by 10-fold (P < 10(-11)), without altering GH secretory burst frequency, duration, or half-life; 3) increased the disorderliness (ApEn) of GH release patterns (P = 0.0000002); 4) elevated the mesor (cosine mean) and amplitude of the 24-h rhythm in serum GH concentrations by nearly 30-fold (both P < 10(-12)); 5) induced a phase advance in the clocktime of the GH zenith (P = 0.021); and 6) evoked a new 24-h rhythm in GH secretory burst mass with a maximum at 0018 h GH (P < 10(-3)), while damping the mesor of the 24-h rhythm in GH interpulse intervals (P < 0.025). Estradiol supplementation alone 1) increased the 24-h mean and integrated serum GH concentration

  13. Context-dependent neural activation: internally and externally guided rhythmic lower limb movement in individuals with and without neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Madeleine Eve Hackney

    2015-12-01

    Full Text Available Parkinson’s Disease (PD is a neurodegenerative disorder that has received considerable attention in allopathic medicine over the past decades. However, it is clear that, to date, pharmacological and surgical interventions do not fully address symptoms of PD and patients’ quality of life. As both an alternative therapy and as an adjuvant to conventional approaches, several types of rhythmic movement (e.g., movement strategies, dance, tandem biking, tai chi have shown improvements to motor symptoms, lower limb control and postural stability in people with PD (Amano, Nocera, Vallabhajosula, Juncos, Gregor, Waddell et al., 2013; Earhart, 2009; M. E. Hackney & Earhart, 2008; Kadivar, Corcos, Foto, & Hondzinski, 2011; Morris, Iansek, & Kirkwood, 2009; Ridgel, Vitek, & Alberts, 2009. However, while these programs are increasing in number, still little is known about the neural mechanisms underlying motor improvements attained with such interventions. Studying limb motor control under task specific contexts can help determine the mechanisms of rehabilitation effectiveness. Both internally guided (IG and externally guided (EG movement strategies have evidence to support their use in rehabilitative programs. However, there appears to be a degree of differentiation in the neural substrates involved in IG versus EG designs. Because of the potential task specific benefits of rhythmic training within a rehabilitative context, this report will consider the use of IG and EG movement strategies, and observations produced by functional magnetic resonance imaging (fMRI and other imaging techniques. This review will present findings from lower limb imaging studies, under IG and EG conditions for populations with and without movement disorders. We will discuss how these studies might inform movement disorders rehabilitation (in the form of rhythmic, music-based movement training and highlight research gaps. We believe better understanding of lower limb neural

  14. Latency modulation of collicular neurons induced by electric stimulation of the auditory cortex in Hipposideros pratti: In vivo intracellular recording.

    Directory of Open Access Journals (Sweden)

    Kang Peng

    Full Text Available In the auditory pathway, the inferior colliculus (IC receives and integrates excitatory and inhibitory inputs from the lower auditory nuclei, contralateral IC, and auditory cortex (AC, and then uploads these inputs to the thalamus and cortex. Meanwhile, the AC modulates the sound signal processing of IC neurons, including their latency (i.e., first-spike latency. Excitatory and inhibitory corticofugal projections to the IC may shorten and prolong the latency of IC neurons, respectively. However, the synaptic mechanisms underlying the corticofugal latency modulation of IC neurons remain unclear. Thus, this study probed these mechanisms via in vivo intracellular recording and acoustic and focal electric stimulation. The AC latency modulation of IC neurons is possibly mediated by pre-spike depolarization duration, pre-spike hyperpolarization duration, and spike onset time. This study suggests an effective strategy for the timing sequence determination of auditory information uploaded to the thalamus and cortex.

  15. Interactions of Circadian Rhythmicity, Stress and Orexigenic Neuropeptide Systems: Implications for Food Intake Control

    OpenAIRE

    Blasiak, Anna; Gundlach, Andrew L.; Hess, Grzegorz; Lewandowski, Marian H.

    2017-01-01

    Many physiological processes fluctuate throughout the day/night and daily fluctuations are observed in brain and peripheral levels of several hormones, neuropeptides and transmitters. In turn, mediators under the “control” of the “master biological clock” reciprocally influence its function. Dysregulation in the rhythmicity of hormone release as well as hormone receptor sensitivity and availability in different tissues, is a common risk-factor for multiple clinical conditions, including psych...

  16. Space Charge Modulated Electrical Breakdown of Oil Impregnated Paper Insulation Subjected to AC-DC Combined Voltages

    Directory of Open Access Journals (Sweden)

    Yuanwei Zhu

    2018-06-01

    Full Text Available Based on the existing acknowledgment that space charge modulates AC and DC breakdown of insulating materials, this investigation promotes the related investigation into the situations of more complex electrical stress, i.e., AC-DC combined voltages. Experimentally, the AC-DC breakdown characteristics of oil impregnated paper insulation were systematically investigated. The effects of pre-applied voltage waveform, AC component ratio, and sample thickness on AC-DC breakdown characteristics were analyzed. After that, based on an improved bipolar charge transport model, the space charge profiles and the space charge induced electric field distortion during AC-DC breakdown were numerically simulated to explain the differences in breakdown characteristics between the pre-applied AC and pre-applied DC methods under AC-DC combined voltages. It is concluded that large amounts of homo-charges are accumulated during AC-DC breakdown, which results in significantly distorted inner electric field, leading to variations of breakdown characteristics of oil impregnated paper insulation. Therefore, space charges under AC-DC combined voltages must be considered in the design of converter transformers. In addition, this investigation could provide supporting breakdown data for insulation design of converter transformers and could promote better understanding on the breakdown mechanism of insulating materials subjected to AC-DC combined voltages.

  17. Musical Meter Modulates the Allocation of Attention across Time.

    Science.gov (United States)

    Fitzroy, Ahren B; Sanders, Lisa D

    2015-12-01

    Dynamic attending theory predicts that attention is allocated hierarchically across time during processing of hierarchical rhythmic structures such as musical meter. ERP research demonstrates that attention to a moment in time modulates early auditory processing as evidenced by the amplitude of the first negative peak (N1) approximately 100 msec after sound onset. ERPs elicited by tones presented at times of high and low metric strength in short melodies were compared to test the hypothesis that hierarchically structured rhythms direct attention in a manner that modulates early perceptual processing. A more negative N1 was observed for metrically strong beats compared with metrically weak beats; this result provides electrophysiological evidence that hierarchical rhythms direct attention to metrically strong times during engaged listening. The N1 effect was observed only on fast tempo trials, suggesting that listeners more consistently invoke selective processing based on hierarchical rhythms when sounds are presented rapidly. The N1 effect was not modulated by musical expertise, indicating that the allocation of attention to metrically strong times is not dependent on extensive training. Additionally, changes in P2 amplitude and a late negativity were associated with metric strength under some conditions, indicating that multiple cognitive processes are associated with metric perception.

  18. Rehabilitation of Aphasia: application of the Melodic-Rhythmic Therapy to the Italian Language

    Directory of Open Access Journals (Sweden)

    Maria Daniela eCortese

    2015-09-01

    Full Text Available Aphasia is a complex disorder, frequent after stroke (~38%, with a detailed pathophysiological characterization. Proper approaches are mandatory to devise an efficient rehabilitative strategy, in order to address the everyday life and professional disability. Several rehabilitative procedures are based on psycholinguistic, cognitive, psychosocial or pragmatic approaches, among these with neurobehavioral ratio, the Melodic Intonation Therapy (MIT .Van Eeckhout’s adaptation to the French language (Melodic-Rhythmic Therapy: MRT has implemented the training strategy by adding a rhythmic structure reproducing the French prosody.Purposes of this study were to adapt the MRT rehabilitation procedures to the Italian language and to verify its efficacy in a group of 6 chronic patients (5 males with severe non-fluent aphasia and without specific aphasic treatments at least from 9 months. The patients were treated 4 days a week for 16 weeks, with sessions of 30-40 min. They were assessed 6 months after the end of the treatment (follow-up. The patients showed a significant improvement at the Aachener Aphasie Test in different fields of spontaneous speech, with superimposable results at the follow-up. Albeit preliminary, these findings support the use of MRT in the rehabilitation after stroke. Specifically, MRT seems to benefit from its stronger structure than the available stimulation-facilitation procedures and allows a better quantification of the rehabilitation efficacy.

  19. Electrical power systems for Mars

    Science.gov (United States)

    Giudici, Robert J.

    1986-01-01

    Electrical power system options for Mars Manned Modules and Mars Surface Bases were evaluated for both near-term and advanced performance potential. The power system options investigated for the Mission Modules include photovoltaics, solar thermal, nuclear reactor, and isotope power systems. Options discussed for Mars Bases include the above options with the addition of a brief discussion of open loop energy conversion of Mars resources, including utilization of wind, subsurface thermal gradients, and super oxides. Electrical power requirements for Mission Modules were estimated for three basic approaches: as a function of crew size; as a function of electric propulsion; and as a function of transmission of power from an orbiter to the surface of Mars via laser or radio frequency. Mars Base power requirements were assumed to be determined by production facilities that make resources available for follow-on missions leading to the establishment of a permanently manned Base. Requirements include the production of buffer gas and propellant production plants.

  20. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-01-01

    Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD......) cycle. The neuropeptide vasoactive intestinal polypetide (VIP) and its receptor (VPAC2) are highly expressed in the SCN. Recent studies indicate that VIPergic signaling plays an essential role in the maintenance of ongoing circadian rhythmicity by synchronizing SCN cells and by maintaining rhythmicity...... within individual neurons. To further increase the understanding of the role of VPAC2 signaling in circadian regulation, we implanted telemetric devices and simultaneously measured core body temperature, spontaneous activity, and heart rate in a strain of VPAC2-deficient mice and compared...

  1. AutoCAD electrical 2013 for electrical control designers

    CERN Document Server

    Tickoo, Sham; CADCIM Technologies

    2013-01-01

    The AutoCAD Electrical 2013 for Electrical Control Designers textbook has been written to assist the engineering students and the practicing designers learn the application of various AutoCAD Electrical tools and options for creating electrical control designs. After reading this textbook, the users will be able to create professional electrical-control drawings easily and effectively. Moreover, the users will be able to automate various control engineering tasks such as building circuits, numbering wires, creating bills of materials, and many more. The textbook takes the users across a wide spectrum of electrical control drawings through progressive examples and numerous illustrations and exercises, thereby making it an ideal guide for both the novice and the advanced users. Salient Features of the Textbook Consists of 14 chapters that are organized in a pedagogical sequence covering various tools and features of AutoCAD Electrical such as schematic drawings, parametric and non-parametric PLC modules, Circu...

  2. Electrical noise modulates perception of electrical pulses in humans: sensation enhancement via stochastic resonance.

    Science.gov (United States)

    Iliopoulos, Fivos; Nierhaus, Till; Villringer, Arno

    2014-03-01

    Although noise is usually considered to be harmful for signal detection and information transmission, stochastic resonance (SR) describes the counterintuitive phenomenon of noise enhancing the detection and transmission of weak input signals. In mammalian sensory systems, SR-related phenomena may arise both in the peripheral and the central nervous system. Here, we investigate behavioral SR effects of subliminal electrical noise stimulation on the perception of somatosensory stimuli in humans. We compare the likelihood to detect near-threshold pulses of different intensities applied on the left index finger during presence vs. absence of subliminal noise on the same or an adjacent finger. We show that (low-pass) noise can enhance signal detection when applied on the same finger. This enhancement is strong for near-threshold pulses below the 50% detection threshold and becomes stronger when near-threshold pulses are applied as brief trains. The effect reverses at pulse intensities above threshold, especially when noise is replaced by subliminal sinusoidal stimulation, arguing for a peripheral direct current addition. Unfiltered noise applied on longer pulses enhances detection of all pulse intensities. Noise applied to an adjacent finger has two opposing effects: an inhibiting effect (presumably due to lateral inhibition) and an enhancing effect (most likely due to SR in the central nervous system). In summary, we demonstrate that subliminal noise can significantly modulate detection performance of near-threshold stimuli. Our results indicate SR effects in the peripheral and central nervous system.

  3. Online forecasting of electrical load for distributed management of plug-in electric vehicles

    OpenAIRE

    Basu , Kaustav; Ovalle , Andres; Guo , Baoling; Hably , Ahmad; Bacha , Seddik; Hajar , Khaled

    2016-01-01

    International audience; The paper aims at making online forecast of electrical load at the MV-LV transformer level. Optimal management of the Plug-in Electric Vehicles (PEV) charging requires the forecast of the electrical load for future hours. The forecasting module needs to be online (i.e update and make forecast for the future hours, every hour). The inputs to the predictor are historical electrical and weather data. Various data driven machine learning algorithms are compared to derive t...

  4. AN INVESTIGATION INTO THE EFFECT OF PHOTOVOLTAIC MODULE ELECTRIC PROPERTIES ON MAXIMUM POWER POINT TRAJECTORY WITH THE AIM OF ITS ALIGNMENT WITH ELECTROLYZER U-I CHARACTERISTIC

    Directory of Open Access Journals (Sweden)

    Mihajlo Firak

    2010-01-01

    Full Text Available In order to combine a photovoltaic module and an electrolyzer to produce hydrogen from water, an intermediate DC/DC converter can be used to adapt output power features of the module to input power features of the electrolyzer. This can also be done without using electronics, which results in saving as much as 700 USD/kW, as previous investigation has shown. A more sophisticated investigation should be carried out with the aim of improving high system efficiency, resulting in matching the photovoltaic module maximum power point trajectory (the maximum power point path in the U-I plane as a result of solar irradiance change to the operating characteristic of the electrolyzer. This paper presents an analysis of the influences of photovoltaic module electric properties, such as series and parallel resistance and non-ideality factor, on the maximum power point trajectory at different levels of solar irradiance. The possibility of various inclinations (right - vertical - left in relation to an arbitrary chosen operating characteristic of the electrolyzer is also demonstrated. Simulated results are obtained by using Matlab/Simulink simulations of the well known one-diode model. Simulations have been confirmed with experiments on a real photovoltaic module where solar irradiance, solar cell temperature, electric current, and voltage in the circuit with variable ohmic resistance have been measured.

  5. Model documentation: Electricity market module, electricity finance and pricing submodule

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-07

    The purpose of this report is to define the objectives of the model, describe its basic approach, and provide detail on how it works. The EFP is a regulatory accounting model that projects electricity prices. The model first solves for revenue requirements by building up a rate base, calculating a return on rate base, and adding the allowed expenses. Average revenues (prices) are calculated based on assumptions regarding regulator lag and customer cost allocation methods. The model then solves for the internal cash flow and analyzes the need for external financing to meet necessary capital expenditures. Finally, the EFP builds up the financial statements. The EFP is used in conjunction with the National Energy Modeling System (NEMS). Inputs to the EFP include the forecast generating capacity expansion plans, operating costs, regulator environment, and financial data. The outputs include forecasts of income statements, balance sheets, revenue requirements, and electricity prices.

  6. Effect of rhythmic auditory cueing on parkinsonian gait: A systematic review and meta-analysis.

    Science.gov (United States)

    Ghai, Shashank; Ghai, Ishan; Schmitz, Gerd; Effenberg, Alfred O

    2018-01-11

    The use of rhythmic auditory cueing to enhance gait performance in parkinsonian patients' is an emerging area of interest. Different theories and underlying neurophysiological mechanisms have been suggested for ascertaining the enhancement in motor performance. However, a consensus as to its effects based on characteristics of effective stimuli, and training dosage is still not reached. A systematic review and meta-analysis was carried out to analyze the effects of different auditory feedbacks on gait and postural performance in patients affected by Parkinson's disease. Systematic identification of published literature was performed adhering to PRISMA guidelines, from inception until May 2017, on online databases; Web of science, PEDro, EBSCO, MEDLINE, Cochrane, EMBASE and PROQUEST. Of 4204 records, 50 studies, involving 1892 participants met our inclusion criteria. The analysis revealed an overall positive effect on gait velocity, stride length, and a negative effect on cadence with application of auditory cueing. Neurophysiological mechanisms, training dosage, effects of higher information processing constraints, and use of cueing as an adjunct with medications are thoroughly discussed. This present review bridges the gaps in literature by suggesting application of rhythmic auditory cueing in conventional rehabilitation approaches to enhance motor performance and quality of life in the parkinsonian community.

  7. Activity of Renshaw cells during locomotor-like rhythmic activity in the isolated spinal cord of neonatal mice

    DEFF Research Database (Denmark)

    Nishimaru, Hiroshi; Restrepo, Carlos E.; Kiehn, Ole

    2006-01-01

    % of the recorded RCs fired in-phase with the ipsilateral L2 flexor-related rhythm, whereas the rest fired in the extensor phase. Each population of RCs fired throughout the corresponding locomotor phase. All RCs received both excitatory and inhibitory synaptic inputs during the locomotor-like rhythmic activity...

  8. Feasibility of external rhythmic cueing with the Google Glass for improving gait in people with Parkinson’s disease

    NARCIS (Netherlands)

    Zhao, Yan; Nonnekes, Johan Hendrik; Storcken, Erik J.M.; Janssen, Sabine; van Wegen, Erwin E.H.; Bloem, Bastiaan R.; Dorresteijn, Lucille D.A.; van Vugt, Jeroen P.P.; Heida, Tjitske; van Wezel, Richard Jack Anton

    New mobile technologies like smartglasses can deliver external cues that may improve gait in people with Parkinson’s disease in their natural environment. However, the potential of these devices must first be assessed in controlled experiments. Therefore, we evaluated rhythmic visual and auditory

  9. Feasibility of external rhythmic cueing with the Google Glass for improving gait in people with Parkinson’s disease

    NARCIS (Netherlands)

    Zhao, Yan; Nonnekes, Jorik; Storcken, Erik J M; Janssen, Sabine; van Wegen, Erwin E H; Bloem, Bastiaan R.; Dorresteijn, Lucille D A; van Vugt, Jeroen P P; Heida, Tjitske; van Wezel, Richard J A

    2016-01-01

    New mobile technologies like smartglasses can deliver external cues that may improve gait in people with Parkinson’s disease in their natural environment. However, the potential of these devices must first be assessed in controlled experiments. Therefore, we evaluated rhythmic visual and auditory

  10. Design Elements and Electrical Performance of a Bifacial BIPV Module

    Directory of Open Access Journals (Sweden)

    Jun-Gu Kang

    2016-01-01

    Full Text Available Bifacial BIPV systems have great potential when applied to buildings given their use of a glass-to-glass structure. However, the performance of bifacial solar cells depends on a variety of design factors. Therefore, in order to apply bifacial solar cells to buildings, a bifacial PV module performance analysis should be carried out, including consideration of the various design elements and reflecting a wide range of installation conditions. This study focuses on the performance of a bifacial BIPV module applied to a building envelope. The results here show that the design elements of reflectivity and the transparent space ratio have the greatest impact on performance levels. The distance between the module and the wall had less of an impact on performance. The bifacial BIPV module produced output up to 30% greater than the output of monofacial PV modules, depending on the design elements. Bifacial BIPV modules themselves should have transparent space ratios of at least 30%. When a dark color is used on the external wall with reflectivity of 50% or less, bifacial BIPV modules with transparent space ratios of 40% and above should be used. In order to achieve higher performance through the installation of bifacial BIPV modules, design conditions which facilitate reflectivity exceeding 50% and a transparent space ratio which exceeds 30% must be met.

  11. Construction and performance of the ATLAS silicon microstrip barrel modules

    International Nuclear Information System (INIS)

    Kondo, T.; Apsimon, R.; Beck, G.A.; Bell, P.; Brenner, R.; Bruckman de Renstrom, P.; Carter, A.A.; Carter, J.R.; Charlton, D.; Dabrowski, W.; Dorholt, O.; Ekelof, T.; Eklund, L.; Gibson, M.; Gadomski, S.; Grillo, A.; Grosse-Knetter, J.; Haber, C.; Hara, K.; Hill, J.C.; Ikegami, Y.; Iwata, Y.; Johansen, L.G.; Kohriki, T.; Macpherson, A.; McMahon, S.; Moorhead, G.; Morin, J.; Morris, J.; Morrissey, M.; Nagai, K.; Nakano, I.; Pater, J.; Pernegger, H.; Perrin, E.; Phillips, P.; Robinson, D.; Skubic, B.; Spencer, N.; Stapnes, S.; Stugu, B.; Takashima, R.; Terada, S.; Tyndel, M.; Ujiie, N.; Unno, Y.; Vos, M.

    2002-01-01

    The ATLAS Semiconductor Tracker (SCT) consists of four barrel cylinders and 18 end-cap disks. This paper describes the SCT modules of the barrel region, of which more than 2000 are about to be constructed. The module design is fixed. Its design concept is given together with the electrical, thermal and mechanical specifications. The pre-series production of the barrel modules is underway using mass-production procedures and jigs. The pre-series modules have given satisfactory performances on noise, noise occupancy, electrical as well as mechanical and thermal properties. In addition, irradiated modules were demonstrated to work successfully. Also first results from a 10-module system test are given

  12. Quantitative Prediction of Power Loss for Damaged Photovoltaic Modules Using Electroluminescence

    Directory of Open Access Journals (Sweden)

    Timo Kropp

    2018-05-01

    Full Text Available Electroluminescence (EL is a powerful tool for the qualitative mapping of the electronic properties of solar modules, where electronic and electrical defects are easily detected. However, a direct quantitative prediction of electrical module performance purely based on electroluminescence images has yet to be accomplished. Our novel approach, called “EL power prediction of modules” (ELMO as presented here, used just two electroluminescence images to predict the electrical loss of mechanically damaged modules when compared to their original (data sheet power. First, using this method, two EL images taken at different excitation currents were converted into locally resolved (relative series resistance images. From the known, total applied voltage to the module, we were then able to calculate absolute series resistance values and the real distribution of voltages and currents. Then, we reconstructed the complete current/voltage curve of the damaged module. We experimentally validated and confirmed the simulation model via the characterization of a commercially available photovoltaic module containing 60 multicrystalline silicon cells, which were mechanically damaged by hail. Deviation between the directly measured and predicted current/voltage curve was less than 4.3% at the maximum power point. For multiple modules of the same type, the level of error dropped below 1% by calibrating the simulation. We approximated the ideality factor from a module with a known current/voltage curve and then expand the application to modules of the same type. In addition to yielding series resistance mapping, our new ELMO method was also capable of yielding parallel resistance mapping. We analyzed the electrical properties of a commercially available module, containing 72 monocrystalline high-efficiency back contact solar cells, which suffered from potential induced degradation. For this module, we predicted electrical performance with an accuracy of better

  13. Measuring modules for the research of compensators of reactive power with voltage stabilization in MATLAB

    Science.gov (United States)

    Vlasayevsky, Stanislav; Klimash, Stepan; Klimash, Vladimir

    2017-10-01

    A set of mathematical modules was developed for evaluation the energy performance in the research of electrical systems and complexes in the MatLab. In the electrotechnical library SimPowerSystems of the MatLab software, there are no measuring modules of energy coefficients characterizing the quality of electricity and the energy efficiency of electrical apparatus. Modules are designed to calculate energy coefficients characterizing the quality of electricity (current distortion and voltage distortion) and energy efficiency indicators (power factor and efficiency) are presented. There are described the methods and principles of building the modules. The detailed schemes of modules built on the elements of the Simulink Library are presented, in this connection, these modules are compatible with mathematical models of electrical systems and complexes in the MatLab. Also there are presented the results of the testing of the developed modules and the results of their verification on the schemes that have analytical expressions of energy indicators.

  14. Overload and neovascularization of Achilles tendons in young artistic and rhythmic gymnasts compared with controls: an observational study.

    Science.gov (United States)

    Notarnicola, A; Maccagnano, G; Di Leo, M; Tafuri, S; Moretti, B

    2014-08-01

    The incidence of Achilles tendinopathy is very high in young female gymnasts (17.5 %). According to literature, ecography screenings show the tendons thickening, but at the same time it does not reveal a direct link to the clinical picture. The neovessels are involved in the pathophysiological process of Achilles tendinopathy. For this reason, we wanted to verify there between perfusion tendon values and the type of sport activity. We performed a clinical observational study monitoring the oximetry of the Achilles tendon and the epidemiological data of 52 elite female (artistic and rhythmic) gymnasts versus 21 age-matched controls. Analyzing the main limb, we revealed statistically higher oximetry values in the artistic gymnasts group (69.5 %) compared to the rhythmic gymnasts group (67.1 %) (t = 2.13; p = 0.01) and the sedentary group (66.2 %) (t = 2.70; p = 0.004), but we did not find any differences between rhythmic gymnasts group and the sedentary group (t = 0.68; p = 0.24). The multiple logistic regression model highlighted that the oximetry value of the main limb is not influenced by age, knowledge of the main limb, years of general and gymnastic sports activity (p > 0.05). We discovered an increase of Achilles tendon perfusion in the main limb in the artistic gymnast group. We hypothesize that specific figures of artistic sports activity are responsible for muscle overload and gastrocnemius-soleus group and, at the same time, these figures cause hyperperfusion of the tendon. Prospective longitudinal studies could explain if this could become a predictive sign of the next Achilles tendinopathy onset.

  15. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs.

    Science.gov (United States)

    Ponnath, Abhilash; Farris, Hamilton E

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.

  16. Photovoltaic Module Reliability Workshop 2010: February 18-19, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, J.

    2013-11-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  17. Photovoltaic Module Reliability Workshop 2011: February 16-17, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, S.

    2013-11-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  18. Photovoltaic Module Reliability Workshop 2013: February 26-27, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, S.

    2013-10-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  19. Photovoltaic Module Reliability Workshop 2014: February 25-26, 2014

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, S.

    2014-02-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  20. I-V Curves from Photovoltaic Modules Deployed in Tucson

    Science.gov (United States)

    Kopp, Emily; Brooks, Adria; Lonij, Vincent; Cronin, Alex

    2011-10-01

    More than 30 Mega Watts of photo-voltaic (PV) modules are connected to the electric power grid in Tucson, AZ. However, predictions of PV system electrical yields are uncertain, in part because PV modules degrade at various rates (observed typically in the range 0% to 3 %/yr). We present I-V curves (PV output current as a function of PV output voltage) as a means to study PV module efficiency, de-ratings, and degradation. A student-made I-V curve tracer for 100-Watt modules will be described. We present I-V curves for several different PV technologies operated at an outdoor test yard, and we compare new modules to modules that have been operated in the field for 10 years.

  1. Source localization of rhythmic ictal EEG activity: a study of diagnostic accuracy following STARD criteria.

    Science.gov (United States)

    Beniczky, Sándor; Lantz, Göran; Rosenzweig, Ivana; Åkeson, Per; Pedersen, Birthe; Pinborg, Lars H; Ziebell, Morten; Jespersen, Bo; Fuglsang-Frederiksen, Anders

    2013-10-01

    Although precise identification of the seizure-onset zone is an essential element of presurgical evaluation, source localization of ictal electroencephalography (EEG) signals has received little attention. The aim of our study was to estimate the accuracy of source localization of rhythmic ictal EEG activity using a distributed source model. Source localization of rhythmic ictal scalp EEG activity was performed in 42 consecutive cases fulfilling inclusion criteria. The study was designed according to recommendations for studies on diagnostic accuracy (STARD). The initial ictal EEG signals were selected using a standardized method, based on frequency analysis and voltage distribution of the ictal activity. A distributed source model-local autoregressive average (LAURA)-was used for the source localization. Sensitivity, specificity, and measurement of agreement (kappa) were determined based on the reference standard-the consensus conclusion of the multidisciplinary epilepsy surgery team. Predictive values were calculated from the surgical outcome of the operated patients. To estimate the clinical value of the ictal source analysis, we compared the likelihood ratios of concordant and discordant results. Source localization was performed blinded to the clinical data, and before the surgical decision. Reference standard was available for 33 patients. The ictal source localization had a sensitivity of 70% and a specificity of 76%. The mean measurement of agreement (kappa) was 0.61, corresponding to substantial agreement (95% confidence interval (CI) 0.38-0.84). Twenty patients underwent resective surgery. The positive predictive value (PPV) for seizure freedom was 92% and the negative predictive value (NPV) was 43%. The likelihood ratio was nine times higher for the concordant results, as compared with the discordant ones. Source localization of rhythmic ictal activity using a distributed source model (LAURA) for the ictal EEG signals selected with a standardized method

  2. AutoCAD electrical 2016 for electrical control designers

    CERN Document Server

    Tickoo, Sham

    2016-01-01

    The AutoCAD Electrical 2016 for Electrical Control Designers textbook has been written to assist the engineering students and the practicing designers who are new to AutoCAD Electrical. Using this textbook, the readers can learn the application of basic tools required for creating professional electrical control drawings with the help of AutoCAD Electrical. Keeping in view the varied requirements of the users, this textbook covers a wide range of tools and features such as schematic drawings, Circuit Builder, panel drawings, parametric and nonparametric PLC modules, stand-alone PLC I/O points, ladder diagrams, point-to-point wiring diagrams, report generation, creation of symbols, and so on. This will help the readers to create electrical drawings easily and effectively. Special emphasis has been laid on the introduction of concepts, which have been explained using text and supported with graphical examples. The examples and tutorials used in this book ensure that the users can relate the information provided...

  3. The modulative effects of microcurrent electrical nerve stimulation on diabetic mice.

    Science.gov (United States)

    Huang, Wen-Ching; Chang, Wen-Chieh; Hsu, Yi-Ju; Huang, Chun-Feng; Huang, Chi-Chang; Kao, Cheng-Yan; Lin, Che-Li

    2017-02-28

    Diabetes (one of non-communicable diseases) is serious due to its complications, such like, cardiovascular ailments, neuropathy, nephropathy, retinopathy, wound gangrene and sexual impotence. Diabetes and associated chronic conditions are rapidly emerging as major health problems. In clinical, there were different drugs for diabetes treatment on different mechanisms. However, there were limited studies on the efficacy of electric stimulations on diabetes therapeutic application. In current study, we try to evaluate the effect of microcurrent electrical nerve stimulator (MENS) on diabetes modulation as an alternative medicine. A total of 36 male ICR mice of 6 weeks old were randomly divided into 4 groups [1] Control, [2] MENS only, [3] DM, [4] DM with MENS. During 8 weeks treatments, the diabetes-associated assessments included body weight, diet utilization, blood glucose measurement, other biochemistries and histopathological observations. The diabetes animal model induced by STZ had 180 mg/dl fasting blood glucose (GLU-AC) before MENS intervention. After 3 and 6 weeks administration, the GLU-AC of DM+MENS group significantly decreased 31.97% and 50.82% (P < 0.0001), respectively, as compared to DM group and the OGTT also demonstrated the similar significant results. The diabetic syndromes of polydipsia and polyphagia were also significantly ameliorated by MENS intervention. In other biochemical indexes, the glycated hemoglobin (HbA1c), hyperinsulinemia, liver functions (AST & ALT) and kidneys function (BUN & Creatinine) were also significantly mitigated by MENS under diabetes model. The histological observation also showed the MENS administration improved the diabetes-related pathological characteristics in liver, kidney and pancreas tissues. Our results suggest that administration of MENS could significantly improve diabetes animal model on blood sugar homeostasis, diabetic polydipsia, biochemistries, and tissue damage. In the health conditions, the MENS didn

  4. Electrical control of superparamagnetism

    Science.gov (United States)

    Yamada, Kihiro T.; Koyama, Tomohiro; Kakizakai, Haruka; Miwa, Kazumoto; Ando, Fuyuki; Ishibashi, Mio; Kim, Kab-Jin; Moriyama, Takahiro; Ono, Shimpei; Chiba, Daichi; Ono, Teruo

    2017-01-01

    The electric field control of superparamagnetism is realized using a Cu/Ni system, in which the deposited Ni shows superparamagnetic behavior above the blocking temperature. An electric double-layer capacitor (EDLC) with the Cu/Ni electrode and a nonmagnetic counter electrode is fabricated to examine the electric field effect on magnetism in the magnetic electrode. By changing the voltage applied to the EDLC, the blocking temperature of the system is clearly modulated.

  5. Indoor unit for electric heat pump

    Science.gov (United States)

    Draper, R.; Lackey, R.S.; Fagan, T.J. Jr.; Veyo, S.E.; Humphrey, J.R.

    1984-05-22

    An indoor unit for an electric heat pump is provided in modular form including a refrigeration module, an air mover module, and a resistance heat package module, the refrigeration module including all of the indoor refrigerant circuit components including the compressor in a space adjacent the heat exchanger, the modules being adapted to be connected to air flow communication in several different ways as shown to accommodate placement of the unit in various orientations. 9 figs.

  6. Electrical tests of silicon detector modules for the ATLAS experiment and a study of the discovery potential of the $t\\overline{t}H, H \\to W^{+}W^{-}$ process

    CERN Document Server

    Ludwig, Inga

    2011-01-01

    The first part of this thesis was a contribution to the construction of the ATLAS Semiconductor Tracking detector (SCT). About 200 SCT endcap modules were assembled at the University of Freiburg. Before installation in the experiment, each module was subject to thorough testing in order to ensure their functionality within the ATLAS specifications. A large part of these tests concerned the electrical functionality of the readout electronics and the bias current behaviour of the sensors. The responsibility for the electrical characterization of the Freiburg modules was part of this thesis. To be suited for the analysis of physics processes, the signals measured in the detector need to be transferred into particle four-momenta, requiring the reconstruction and identification of different particle types. This thesis contributes to the physics object identification by a study of methods to separate isolated electrons from real electron background produced in the decays of heavy quarks. A standard set of four disc...

  7. An investigation into the effects of frequency-modulated transcutaneous electrical nerve stimulation (TENS) on experimentally-induced pressure pain in healthy human participants.

    Science.gov (United States)

    Chen, Chih-Chung; Johnson, Mark I

    2009-10-01

    Frequency-modulated transcutaneous electrical nerve stimulation (TENS) delivers currents that fluctuate between preset boundaries over a fixed period of time. This study compared the effects of constant-frequency TENS and frequency-modulated TENS on blunt pressure pain in healthy human volunteers. Thirty-six participants received constant-frequency TENS (80 pps), frequency-modulated TENS (20 to 100 pps), and placebo (no current) TENS at a strong nonpainful intensity in a randomized cross-over manner. Pain threshold was taken from the forearm using pressure algometry. There were no statistical differences between constant-frequency TENS and frequency-modulated TENS after 20 minutes (OR = 1.54; CI, 0.29, 8.23, P = 1.0). Both constant-frequency TENS and frequency-modulated TENS were superior to placebo TENS (OR = 59.5, P TENS does not influence hypoalgesia to any greater extent than constant-frequency TENS when currents generate a strong nonpainful paraesthesia at the site of pain. The finding that frequency-modulated TENS and constant-frequency TENS were superior to placebo TENS provides further evidence that a strong yet nonpainful TENS intensity is a prerequisite for hypoalgesia. This study provides evidence that TENS, delivered at a strong nonpainful intensity, increases pain threshold to pressure algometry in healthy participants over and above that seen with placebo (no current) TENS. Frequency-modulated TENS does not increase hypoalgesia to any appreciable extent to that seen with constant-frequency TENS.

  8. Scaling vectors of attoJoule per bit modulators

    Science.gov (United States)

    Sorger, Volker J.; Amin, Rubab; Khurgin, Jacob B.; Ma, Zhizhen; Dalir, Hamed; Khan, Sikandar

    2018-01-01

    Electro-optic modulation performs the conversion between the electrical and optical domain with applications in data communication for optical interconnects, but also for novel optical computing algorithms such as providing nonlinearity at the output stage of optical perceptrons in neuromorphic analog optical computing. While resembling an optical transistor, the weak light-matter-interaction makes modulators 105 times larger compared to their electronic counterparts. Since the clock frequency for photonics on-chip has a power-overhead sweet-spot around tens of GHz, ultrafast modulation may only be required in long-distance communication, not for short on-chip links. Hence, the search is open for power-efficient on-chip modulators beyond the solutions offered by foundries to date. Here, we show scaling vectors towards atto-Joule per bit efficient modulators on-chip as well as some experimental demonstrations of novel plasmonic modulators with sub-fJ/bit efficiencies. Our parametric study of placing different actively modulated materials into plasmonic versus photonic optical modes shows that 2D materials overcompensate their miniscule modal overlap by their unity-high index change. Furthermore, we reveal that the metal used in plasmonic-based modulators not only serves as an electrical contact, but also enables low electrical series resistances leading to near-ideal capacitors. We then discuss the first experimental demonstration of a photon-plasmon-hybrid graphene-based electro-absorption modulator on silicon. The device shows a sub-1 V steep switching enabled by near-ideal electrostatics delivering a high 0.05 dB V-1 μm-1 performance requiring only 110 aJ/bit. Improving on this demonstration, we discuss a plasmonic slot-based graphene modulator design, where the polarization of the plasmonic mode aligns with graphene’s in-plane dimension; where a push-pull dual-gating scheme enables 2 dB V-1 μm-1 efficient modulation allowing the device to be just 770 nm

  9. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates

    DEFF Research Database (Denmark)

    Opitz, Alexander; Falchier, Arnaud; Yan, Chao-Gan

    2016-01-01

    Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually reac...

  10. Multilayer Graphene for Waveguide Terahertz Modulator

    DEFF Research Database (Denmark)

    Khromova, I.; Andryieuski, Andrei; Lavrinenko, Andrei

    2014-01-01

    We study terahertz to infrared electromagnetic properties of multilayer graphene/dielectric artificial medium and present a novel concept of terahertz modulation at midinfrared wavelengths. This approach allows the realization of high-speed electrically controllable terahertz modulators based...... on hollow waveguide sections filled with multilayer graphene....

  11. [Multi-channel in vivo recording techniques: analysis of phase coupling between spikes and rhythmic oscillations of local field potentials].

    Science.gov (United States)

    Wang, Ce-Qun; Chen, Qiang; Zhang, Lu; Xu, Jia-Min; Lin, Long-Nian

    2014-12-25

    The purpose of this article is to introduce the measurements of phase coupling between spikes and rhythmic oscillations of local field potentials (LFPs). Multi-channel in vivo recording techniques allow us to record ensemble neuronal activity and LFPs simultaneously from the same sites in the brain. Neuronal activity is generally characterized by temporal spike sequences, while LFPs contain oscillatory rhythms in different frequency ranges. Phase coupling analysis can reveal the temporal relationships between neuronal firing and LFP rhythms. As the first step, the instantaneous phase of LFP rhythms can be calculated using Hilbert transform, and then for each time-stamped spike occurred during an oscillatory epoch, we marked instantaneous phase of the LFP at that time stamp. Finally, the phase relationships between the neuronal firing and LFP rhythms were determined by examining the distribution of the firing phase. Phase-locked spikes are revealed by the non-random distribution of spike phase. Theta phase precession is a unique phase relationship between neuronal firing and LFPs, which is one of the basic features of hippocampal place cells. Place cells show rhythmic burst firing following theta oscillation within a place field. And phase precession refers to that rhythmic burst firing shifted in a systematic way during traversal of the field, moving progressively forward on each theta cycle. This relation between phase and position can be described by a linear model, and phase precession is commonly quantified with a circular-linear coefficient. Phase coupling analysis helps us to better understand the temporal information coding between neuronal firing and LFPs.

  12. Role of secretory phospholipase A(2) in rhythmic contraction of pulmonary arteries of rats with monocrotaline-induced pulmonary arterial hypertension.

    Science.gov (United States)

    Tanabe, Yoshiyuki; Saito-Tanji, Maki; Morikawa, Yuki; Kamataki, Akihisa; Sawai, Takashi; Nakayama, Koichi

    2012-01-01

    Excessive stretching of the vascular wall in accordance with pulmonary arterial hypertension (PAH) induces a variety of pathogenic cellular events in the pulmonary arteries. We previously reported that indoxam, a selective inhibitor for secretory phospholipase A(2) (sPLA(2)), blocked the stretch-induced contraction of rabbit pulmonary arteries by inhibition of untransformed prostaglandin H(2) (PGH(2)) production. The present study was undertaken to investigate involvement of sPLA(2) and untransformed PGH(2) in the enhanced contractility of pulmonary arteries of experimental PAH in rats. Among all the known isoforms of sPLA(2), sPLA(2)-X transcript was most significantly augmented in the pulmonary arteries of rats with monocrotaline-induced pulmonary hypertension (MCT-PHR). The pulmonary arteries of MCT-PHR frequently showed two types of spontaneous contraction in response to stretch; 27% showed rhythmic contraction, which was sensitive to indoxam and SC-560 (selective COX-1 inhibitor), but less sensitive to NS-398 (selective COX-2 inhibitor); and 47% showed sustained incremental tension (tonic contraction), which was insensitive to indoxam and SC-560, but sensitive to NS-398 and was attenuated to 45% of the control. Only the rhythmically contracting pulmonary arteries of MCT-PHR produced a substantial amount of untransformed PGH(2), which was abolished by indoxam. These results suggest that sPLA(2)-mediated PGH(2) synthesis plays an important role in the rhythmic contraction of pulmonary arteries of MCT-PHR.

  13. Photovoltaic Module Reliability Workshop 2012: February 28 - March 1, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, S.

    2013-11-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  14. 100 kV, 80 kJ low-induction capacitor module

    International Nuclear Information System (INIS)

    Andrezen, A.B.; Burtsev, V.A.; Vodovozov, V.M.; Drozdov, A.A.; Makeev, G.M.

    1980-01-01

    A low induction capacitor module has been developed to investigate THETA- and Z-pinch plasma. Energy output time of the module lays in the microsecond range. The 100 kV, 80 kJ module is based on low-induction castor capasitors. The module is equipped with two solid dielectric dischargers, the system of discharger ignition protection system and automatic system for charging of capacitors. The module discharge period T 0 =5.6 μs. The capacitor module has been used in investigations of electric explosions of Al plane foils in the pulverized quartz. The overvoltage Usub(max)/Usub(o) approximately equal to 10 has been received at the maximum intensity of the electric field Esub(max) approximately equal to 12 kV/sm [ru

  15. Characterisation of PV CIS module by artificial neural networks. A comparative study with other methods

    International Nuclear Information System (INIS)

    Almonacid, F.; Rus, C.; Hontoria, L.; Munoz, F.J.

    2010-01-01

    The presence of PV modules made with new technologies and materials is increasing in PV market, in special Thin Film Solar Modules (TFSM). They are ready to make a substantial contribution to the world's electricity generation. Although Si wafer-based cells account for the most of increase, technologies of thin film have been those of the major growth in last three years. During 2007 they grew 133%. On the other hand, manufacturers provide ratings for PV modules for conditions referred to as Standard Test Conditions (STC). However, these conditions rarely occur outdoors, so the usefulness and applicability of the indoors characterisation in standard test conditions of PV modules is a controversial issue. Therefore, to carry out a correct photovoltaic engineering, a suitable characterisation of PV module electrical behaviour is necessary. The IDEA Research Group from Jaen University has developed a method based on artificial neural networks (ANNs) to electrical characterisation of PV modules. An ANN was able to generate V-I curves of si-crystalline PV modules for any irradiance and module cell temperature. The results show that the proposed ANN introduces a good accurate prediction for si-crystalline PV modules performance when compared with the measured values. Now, this method is going to be applied for electrical characterisation of PV CIS modules. Finally, a comparative study with other methods, of electrical characterisation, is done. (author)

  16. Rhythmic expression of Nocturnin mRNA in multiple tissues of the mouse

    Directory of Open Access Journals (Sweden)

    Green Carla B

    2001-05-01

    Full Text Available Abstract Background Nocturnin was originally identified by differential display as a circadian clock regulated gene with high expression at night in photoreceptors of the African clawed frog, Xenopus laevis. Although encoding a novel protein, the nocturnin cDNA had strong sequence similarity with a C-terminal domain of the yeast transcription factor CCR4, and with mouse and human ESTs. Since its original identification others have cloned mouse and human homologues of nocturnin/CCR4, and we have cloned a full-length cDNA from mouse retina, along with partial cDNAs from human, cow and chicken. The goal of this study was to determine the temporal pattern of nocturnin mRNA expression in multiple tissues of the mouse. Results cDNA sequence analysis revealed a high degree of conservation among vertebrate nocturnin/CCR4 homologues along with a possible homologue in Drosophila. Northern analysis of mRNA in C3H/He and C57/Bl6 mice revealed that the mNoc gene is expressed in a broad range of tissues, with greatest abundance in liver, kidney and testis. mNoc is also expressed in multiple brain regions including suprachiasmatic nucleus and pineal gland. Furthermore, mNoc exhibits circadian rhythmicity of mRNA abundance with peak levels at the time of light offset in the retina, spleen, heart, kidney and liver. Conclusion The widespread expression and rhythmicity of mNoc mRNA parallels the widespread expression of other circadian clock genes in mammalian tissues, and suggests that nocturnin plays an important role in clock function or as a circadian clock effector.

  17. Rhythmic expression of miR-27b-3p targets the clock gene Bmal1 at the posttranscriptional level in the mouse liver.

    Science.gov (United States)

    Zhang, Wenxiang; Wang, Peng; Chen, Siyu; Zhang, Zhao; Liang, Tingming; Liu, Chang

    2016-06-01

    Circadian clocks orchestrate daily oscillations in mammalian behaviors, physiology, and gene expression. MicroRNAs (miRNAs) play a crucial role in fine-tuning of the circadian system. However, little is known about the direct regulation of the clock genes by specific miRNAs. In this study, we found that miR-27b-3p exhibits rhythmic expression in the metabolic tissues of the mice subjected to constant darkness. MiR-27b-3p's expression is induced in livers of unfed and ob/ob mice. In addition, the oscillation phases of miR-27b-3p can be reversed by restricted feeding, suggesting a role of peripheral clock in regulating its rhythmicity. Bioinformatics analysis indicated that aryl hydrocarbon receptor nuclear translocator-like (also known as Bmal1) may be a direct target of miR-27b-3p. Luciferase reporter assay showed that miR-27b-3p suppressed Bmal1 3' UTR activity in a dose-dependent manner, and mutagenesis of their binding site abolished this suppression. Furthermore, overexpression of miR-27b-3p dose-dependently reduced the protein expression levels of BMAL1 and impaired the endogenous BMAL1 and gluconeogenic protein rhythmicity. Collectively, our results suggest that miR-27b-3p plays an important role in the posttranscriptional regulation of BMAL1 protein in the liver. MiR-27b-3p may serve as a novel node to integrate the circadian clock and energy metabolism.-Zhang, W., Wang, P., Chen, S., Zhang, Z., Liang, T., Liu, C. Rhythmic expression of miR-27b-3p targets the clock gene Bmal1 at the posttranscriptional level in the mouse liver. © FASEB.

  18. Receiver bandwidth effects on complex modulation and detection using directly modulated lasers.

    Science.gov (United States)

    Yuan, Feng; Che, Di; Shieh, William

    2016-05-01

    Directly modulated lasers (DMLs) have long been employed for short- and medium-reach optical communications due to their low cost. Recently, a new modulation scheme called complex modulated DMLs has been demonstrated showing a significant optical signal to noise ratio sensitivity enhancement compared with the traditional intensity-only detection scheme. However, chirp-induced optical spectrum broadening is inevitable in complex modulated systems, which may imply a need for high-bandwidth receivers. In this Letter, we study the impact of receiver bandwidth effects on the performance of complex modulation and coherent detection systems based on DMLs. We experimentally demonstrate that such systems exhibit a reasonable tolerance for the reduced receiver bandwidth. For 10 Gbaud 4-level pulse amplitude modulation signals, the required electrical bandwidth is as low as 8.5 and 7.5 GHz for 7% and 20% forward error correction, respectively. Therefore, it is feasible to realize DML-based complex modulated systems using cost-effective receivers with narrow bandwidth.

  19. Neural entrainment to the rhythmic structure of music.

    Science.gov (United States)

    Tierney, Adam; Kraus, Nina

    2015-02-01

    The neural resonance theory of musical meter explains musical beat tracking as the result of entrainment of neural oscillations to the beat frequency and its higher harmonics. This theory has gained empirical support from experiments using simple, abstract stimuli. However, to date there has been no empirical evidence for a role of neural entrainment in the perception of the beat of ecologically valid music. Here we presented participants with a single pop song with a superimposed bassoon sound. This stimulus was either lined up with the beat of the music or shifted away from the beat by 25% of the average interbeat interval. Both conditions elicited a neural response at the beat frequency. However, although the on-the-beat condition elicited a clear response at the first harmonic of the beat, this frequency was absent in the neural response to the off-the-beat condition. These results support a role for neural entrainment in tracking the metrical structure of real music and show that neural meter tracking can be disrupted by the presentation of contradictory rhythmic cues.

  20. Synchronization modulation of Na/K pumps on Xenopus oocytes

    Science.gov (United States)

    Liang, Pengfei; Mast, Jason; Chen, Wei

    We developed a new technique named synchronization modulation to electrically synchronize and modulate the Na/K pump molecules by a specially designed oscillating electric field. This technique is based on the theory of energy-trap in quantum physics as well as the concept of electronic synchrotron accelerator. As a result, the Na-transports are all entrapped into the positive half-cycle of the applied electric field and consequently, all of the K-transports are entrapped into the negative half cycle of the field. To demonstrate the process of the pump synchronization and modulation, we use Xenopus oocytes as a platform and introduce two-electrode whole-cell voltage clamp in measurement of pump current. Practically, we first synchronize the pump molecules running at the same pace (rate and phase) by a specially designed oscillation electric field. Then, we carefully maintain the pump synchronization status and gradually change the field frequency (decrease and increase) to modulate the pump molecules to newer pumping rate. The result shows a separation of the inward K current from the outward Na current, and about 10 time increase of the total (inward plus outward) pump current from the net outward current from the random paced pump molecules. Also, the ratio of the modulated total pump current with synchronized total pump current is consistent with the ratio of their field frequencies.

  1. Predicting the costs of photovoltaic solar modules in 2020 using experience curve models

    International Nuclear Information System (INIS)

    La Tour, Arnaud de; Glachant, Matthieu; Ménière, Yann

    2013-01-01

    Except in few locations, photovoltaic generated electricity remains considerably more expensive than conventional sources. It is however expected that innovation and learning-by-doing will lead to drastic cuts in production cost in the near future. The goal of this paper is to predict the cost of PV modules out to 2020 using experience curve models, and to draw implications about the cost of PV electricity. Using annual data on photovoltaic module prices, cumulative production, R and D knowledge stock and input prices for silicon and silver over the period 1990–2011, we identify a experience curve model which minimizes the difference between predicted and actual module prices. This model predicts a 67% decrease of module price from 2011 to 2020. This rate implies that the cost of PV generated electricity will reach that of conventional electricity by 2020 in the sunniest countries with annual solar irradiation of 2000 kWh/year or more, such as California, Italy, and Spain. - Highlights: • We predict the cost of PV modules out to 2020 using experience curve models. • The model predicts a 67% decrease of module price from 2011 to 2020. • We draw implications about the cost of PV electricity

  2. Discharging a DC bus capacitor of an electrical converter system

    Science.gov (United States)

    Kajouke, Lateef A; Perisic, Milun; Ransom, Ray M

    2014-10-14

    A system and method of discharging a bus capacitor of a bidirectional matrix converter of a vehicle are presented here. The method begins by electrically shorting the AC interface of the converter after an AC energy source is disconnected from the AC interface. The method continues by arranging a plurality of switching elements of a second energy conversion module into a discharge configuration to establish an electrical current path from a first terminal of an isolation module, through an inductive element, and to a second terminal of the isolation module. The method also modulates a plurality of switching elements of a first energy conversion module, while maintaining the discharge configuration of the second energy conversion module, to at least partially discharge a DC bus capacitor.

  3. Design of Electrically Conductive Structural Composites by Modulating Aligned CVD-Grown Carbon Nanotube Length on Glass Fibers.

    Science.gov (United States)

    He, Delong; Fan, Benhui; Zhao, Hang; Lu, Xiaoxin; Yang, Minhao; Liu, Yu; Bai, Jinbo

    2017-01-25

    Function-integration in glass fiber (GF) reinforced polymer composites is highly desired for developing lightweight structures and devices with improved performance and structural health monitoring. In this study, homogeneously aligned carbon nanotube (CNT) shell was in situ grafted on GF by chemical vapor deposition (CVD). It was demonstrated that the CNT shell thickness and weight fraction can be modulated by controlling the CVD conditions. The obtained hierarchical CNTs-GF/epoxy composites show highly improved electrical conductivity and thermo-mechanical and flexural properties. The composite through-plane and in-plane electrical conductivities increase from a quasi-isolator value to ∼3.5 and 100 S/m, respectively, when the weight fraction of CNTs grafted on GF fabric varies from 0% to 7%, respectively. Meanwhile, the composite storage modulus and flexural modulus and strength improve as high as 12%, 21%, and 26%, respectively, with 100% retention of the glass transition temperature. The reinforcing mechanisms are investigated by analyzing the composite microstructure and the interfacial adhesion and wetting properties of CNTs-GF hybrids. Moreover, the specific damage-related resistance variation characteristics could be employed to in situ monitor the structural health state of the composites. The outstanding electrical and structural properties of the CNTs-GF composites were due to the specific interfacial and interphase structures created by homogeneously grafting aligned CNTs on each GF of the fabric.

  4. Optimization of the Mechanical and Electrical Performance of a Thermoelectric Module

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Bjørk, Rasmus; Pryds, Nini

    2015-01-01

    Finite element (FE) simulation of a thermoelectric (TE) module was conducted to optimize its geometrical dimensions in terms of mechanical reliability and performance. The TE module consisted of bismuth telluride, nand p-type legs. The geometrical dimensions of the module, i.e. leg length and leg...

  5. Sol-Gel Material-Enabled Electro-Optic Polymer Modulators

    Science.gov (United States)

    Himmelhuber, Roland; Norwood, Robert A.; Enami, Yasufumi; Peyghambarian, Nasser

    2015-01-01

    Sol-gels are an important material class, as they provide easy modification of material properties, good processability and are easy to synthesize. In general, an electro-optic (EO) modulator transforms an electrical signal into an optical signal. The incoming electrical signal is most commonly information encoded in a voltage change. This voltage change is then transformed into either a phase change or an intensity change in the light signal. The less voltage needed to drive the modulator and the lower the optical loss, the higher the link gain and, therefore, the better the performance of the modulator. In this review, we will show how sol-gels can be used to enhance the performance of electro-optic modulators by allowing for designs with low optical loss, increased poling efficiency and manipulation of the electric field used for driving the modulator. The optical loss is influenced by the propagation loss in the device, as well as the losses occurring during fiber coupling in and out of the device. In both cases, the use of sol-gel materials can be beneficial due to the wide range of available refractive indices and low optical attenuation. The influence of material properties and synthesis conditions on the device performance will be discussed. PMID:26225971

  6. RESEARCH INTO PHOTOVOLTAIC MODULES EFFICIENCY IN THE ŻYWIEC BESKIDS ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Danuta Hilse

    2014-10-01

    Full Text Available Research into photovoltaic modules in the highlands, based on the example of the Żywiec Beskids, was conducted in 2009 in the town of Stryszawa on the border between the regions of Lesser Poland and Silesia. It involved measurements of the quantity of the produced electric power in three different systems of diverse power (570 Wp, 360 Wp oraz 200 Wp and different technical solutions (rotary modules tracing the Sun rotation and stationary modules. Efficiency of the photovoltaic modules was compared to the intensity of the solar radiation in the city of Żywiec. This way the efficiency of the solar energy processing was determined. The conducted research indicates that with the intensity of the solar radiation amounting to 890 kWh/ m2·year it is possible to produce electric power in the quantity of over 150 kWh/m2·year (rotary modules or about 110 kWh/ m2·year (stationary modules. The highest efficiency of the solar energy processing into the electric energy has been observed in the winter season (ca. 26%.

  7. Rhythmic Degradation Explains and Unifies Circadian Transcriptome and Proteome Data

    Directory of Open Access Journals (Sweden)

    Sarah Lück

    2014-10-01

    Full Text Available The rich mammalian cellular circadian output affects thousands of genes in many cell types and has been the subject of genome-wide transcriptome and proteome studies. The results have been enigmatic because transcript peak abundances do not always follow the peaks of gene-expression activity in time. We posited that circadian degradation of mRNAs and proteins plays a pivotal role in setting their peak times. To establish guiding principles, we derived a theoretical framework that fully describes the amplitudes and phases of biomolecules with circadian half-lives. We were able to explain the circadian transcriptome and proteome studies with the same unifying theory, including cases in which transcripts or proteins appeared before the onset of increased production rates. Furthermore, we estimate that 30% of the circadian transcripts in mouse liver and Drosophila heads are affected by rhythmic posttranscriptional regulation.

  8. Module-level DC/DC conversion for photovoltaic systems

    NARCIS (Netherlands)

    Bergveld, H.J.; Büthker, D.; Castello, C.; Doorn, T.S.; Jong, de A.; van Otten, R.; Waal, de K.

    2011-01-01

    Photovoltaic (PV) systems are increasingly used to generate electrical energy from solar irradiance incident on PV modules. Each PV module is formed by placing a large amount of PV cells, typically 60, in series. The PV system is then formed by placing a number, typically 10–12, of PV modules in

  9. Frequency modulation of neural oscillations according to visual task demands.

    Science.gov (United States)

    Wutz, Andreas; Melcher, David; Samaha, Jason

    2018-02-06

    Temporal integration in visual perception is thought to occur within cycles of occipital alpha-band (8-12 Hz) oscillations. Successive stimuli may be integrated when they fall within the same alpha cycle and segregated for different alpha cycles. Consequently, the speed of alpha oscillations correlates with the temporal resolution of perception, such that lower alpha frequencies provide longer time windows for perceptual integration and higher alpha frequencies correspond to faster sampling and segregation. Can the brain's rhythmic activity be dynamically controlled to adjust its processing speed according to different visual task demands? We recorded magnetoencephalography (MEG) while participants switched between task instructions for temporal integration and segregation, holding stimuli and task difficulty constant. We found that the peak frequency of alpha oscillations decreased when visual task demands required temporal integration compared with segregation. Alpha frequency was strategically modulated immediately before and during stimulus processing, suggesting a preparatory top-down source of modulation. Its neural generators were located in occipital and inferotemporal cortex. The frequency modulation was specific to alpha oscillations and did not occur in the delta (1-3 Hz), theta (3-7 Hz), beta (15-30 Hz), or gamma (30-50 Hz) frequency range. These results show that alpha frequency is under top-down control to increase or decrease the temporal resolution of visual perception.

  10. Changes in gait patterns induced by rhythmic auditory stimulation for adolescents with acquired brain injury.

    Science.gov (United States)

    Kim, Soo Ji; Shin, Yoon-Kyum; Yoo, Ga Eul; Chong, Hyun Ju; Cho, Sung-Rae

    2016-12-01

    The effects of rhythmic auditory stimulation (RAS) on gait in adolescents with acquired brain injury (ABI) were investigated. A total of 14 adolescents with ABI were initially recruited, and 12 were included in the final analysis (n = 6 each). They were randomly assigned to the experimental (RAS) or the control (conventional gait training) groups. The experimental group received gait training with RAS three times a week for 4 weeks. For both groups, spatiotemporal parameters and kinematic data, such as dynamic motions of joints on three-dimensional planes during a gait cycle and the range of motion in each joint, were collected. Significant group differences in pre-post changes were observed in cadence, walking velocity, and step time, indicating that there were greater improvements in those parameters in the RAS group compared with the control group. Significant increases in hip and knee motions in the sagittal plane were also observed in the RAS group. The changes in kinematic data significantly differed between groups, particularly from terminal stance to mid-swing phase. An increase of both spatiotemporal parameters and corresponding kinematic changes of hip and knee joints after RAS protocol indicates that the use of rhythmic cueing may change gait patterns in adolescents with ABI. © 2016 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

  11. Synchronisation hubs in the visual cortex may arise from strong rhythmic inhibition during gamma oscillations.

    Science.gov (United States)

    Folias, Stefanos E; Yu, Shan; Snyder, Abigail; Nikolić, Danko; Rubin, Jonathan E

    2013-09-01

    Neurons in the visual cortex exhibit heterogeneity in feature selectivity and the tendency to generate action potentials synchronously with other nearby neurons. By examining visual responses from cat area 17 we found that, during gamma oscillations, there was a positive correlation between each unit's sharpness of orientation tuning, strength of oscillations, and propensity towards synchronisation with other units. Using a computational model, we demonstrated that heterogeneity in the strength of rhythmic inhibitory inputs can account for the correlations between these three properties. Neurons subject to strong inhibition tend to oscillate strongly in response to both optimal and suboptimal stimuli and synchronise promiscuously with other neurons, even if they have different orientation preferences. Moreover, these strongly inhibited neurons can exhibit sharp orientation selectivity provided that the inhibition they receive is broadly tuned relative to their excitatory inputs. These results predict that the strength and orientation tuning of synaptic inhibition are heterogeneous across area 17 neurons, which could have important implications for these neurons' sensory processing capabilities. Furthermore, although our experimental recordings were conducted in the visual cortex, our model and simulation results can apply more generally to any brain region with analogous neuron types in which heterogeneity in the strength of rhythmic inhibition can arise during gamma oscillations. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. VFDs: Are They Electrical Parasites?

    Science.gov (United States)

    Frank, Ned

    2013-01-01

    Variable Frequency Drives (VFDs) are electronic speed controllers used mainly to modulate and reduce the overall speed and power consumption of an electrical motor. They can be used as soft starters for equipment that has a large rotational mass, thus reducing belt ware and large electrical peaks when starting large pieces of equipment. VFDs have…

  13. Quantification of Shading Tolerability for Photovoltaic Modules

    NARCIS (Netherlands)

    Ziar, H.; Asaei, Behzad; Farhangi, Shahrokh; Isabella, O.; Korevaar, M.A.N.; Zeman, M.

    2017-01-01

    Despite several decades of research in the field of photovoltaic (PV) systems, shading tolerance has still not been properly addressed. PV modules are influenced by shading concerning many factors, such as number and configuration of cells in the module, electrical and thermal characteristics of

  14. Advantages of melodic over rhythmic movement sonification in bimanual motor skill learning.

    Science.gov (United States)

    Dyer, J F; Stapleton, P; Rodger, M W M

    2017-10-01

    An important question for skill acquisition is whether and how augmented feedback can be designed to improve the learning of complex skills. Auditory information triggered by learners' actions, movement sonification, can enhance learning of a complex bimanual coordination skill, specifically polyrhythmic bimanual shape tracing. However, it is not clear whether the coordination of polyrhythmic sequenced movements is enhanced by auditory-specified timing information alone or whether more complex sound mappings, such as melodic sonification, are necessary. Furthermore, while short-term retention of bimanual coordination performance has been shown with movement sonification training, longer term retention has yet to be demonstrated. In the present experiment, participants learned to trace a diamond shape with one hand while simultaneously tracing a triangle with the other to produce a sequenced 4:3 polyrhythmic timing pattern. Two groups of participants received real-time auditory feedback during training: melodic sonification (individual movements triggered a separate note of a melody) and rhythmic sonification (each movement triggered a percussive sound), while a third control group received no augmented feedback. Task acquisition and performance in immediate retention were superior in the melodic sonification group as compared to the rhythmic sonification and control group. In a 24-h retention phase, a decline in performance in the melodic sonification group was reversed by brief playback of the target pattern melody. These results show that melodic sonification of movement can provide advantages over augmented feedback which only provides timing information by better structuring the sequencing of timed actions, and also allow recovery of complex target patterns of movement after training. These findings have important implications for understanding the role of augmented perceptual information in skill learning, as well as its application to real-world training or

  15. Thermal and optical performance of encapsulation systems for flat-plate photovoltaic modules

    Science.gov (United States)

    Minning, C. P.; Coakley, J. F.; Perrygo, C. M.; Garcia, A., III; Cuddihy, E. F.

    1981-01-01

    The electrical power output from a photovoltaic module is strongly influenced by the thermal and optical characteristics of the module encapsulation system. Described are the methodology and computer model for performing fast and accurate thermal and optical evaluations of different encapsulation systems. The computer model is used to evaluate cell temperature, solar energy transmittance through the encapsulation system, and electric power output for operation in a terrestrial environment. Extensive results are presented for both superstrate-module and substrate-module design schemes which include different types of silicon cell materials, pottants, and antireflection coatings.

  16. Evaluation of the noradrenergic pathway and alpha-2 and beta-receptors in the modulation of the analgesia induced by transcutaneous electric nerve stimulation of high and low frequencies

    OpenAIRE

    Vasconcellos, Thiago Henrique Ferreira; Pantaleão, Patricia de Fátima; Teixeira, Dulcinéa Gonçalves; Santos, Ana Paula; Ferreira, Célio Marcos dos Reis

    2014-01-01

    Transcutaneous electric nerve stimulation is a noninvasive method used in clinical Physiotherapy to control acute or chronic pain. Different theories have been proposed to explain the mechanism of the analgesic action of transcutaneous electric nerve stimulation, as the participation of central and peripheral neurotransmitters. The aim of this study was to evaluate the involvement of noradrenergic pathway and of the receptors alfa-2 and beta in the modulation of analgesia produced by transcut...

  17. Electric scooter pilot project

    Science.gov (United States)

    Slanina, Zdenek; Dedek, Jan; Golembiovsky, Matej

    2016-09-01

    This article describes the issue of electric scooter development for educational and demonstration purposes on the Technical University of Ostrava. Electric scooter is equipped with a brushless motor with permanent magnets and engine controller, measuring and monitoring system for speed regulation, energy flow control and both online and off-line data analysis, visualization system for real-time diagnostics and battery management with balancing modules system. Implemented device brings a wide area for the following scientific research. This article also includes some initial test results and electric vehicles experiences.

  18. Pulsed electric field sensor based on original waveform measurement

    International Nuclear Information System (INIS)

    Ma Liang; Wu Wei; Cheng Yinhui; Zhou Hui; Li Baozhong; Li Jinxi; Zhu Meng

    2010-01-01

    The paper introduces the differential and original waveform measurement principles for pulsed E-field, and develops an pulsed E-field sensor based on original waveform measurement along with its theoretical correction model. The sensor consists of antenna, integrator, amplifier and driver, optic-electric/electric-optic conversion module and transmission module. The time-domain calibration in TEM cell indicates that, its risetime response is shorter than 1.0 ns, and the output pulse width at 90% of the maximum amplitude is wider than 10.0 μs. The output amplitude of the sensor is linear to the electric field intensity in a dynamic range of 20 dB. The measurement capability can be extended to 10 V/m or 50 kV/m by changing the system's antenna and other relative modules. (authors)

  19. Paired Synchronous Rhythmic Finger Tapping without an External Timing Cue Shows Greater Speed Increases Relative to Those for Solo Tapping.

    Science.gov (United States)

    Okano, Masahiro; Shinya, Masahiro; Kudo, Kazutoshi

    2017-03-09

    In solo synchronization-continuation (SC) tasks, intertap intervals (ITI) are known to drift from the initial tempo. It has been demonstrated that people in paired and group contexts modulate their action timing unconsciously in various situations such as choice reaction tasks, rhythmic body sway, and hand clapping in concerts, which suggests the possibility that ITI drift is also affected by paired context. We conducted solo and paired SC tapping experiments with three tempos (75, 120, and 200 bpm) and examined whether tempo-keeping performance changed according to tempo and/or the number of players. Results indicated that those tapping in the paired conditions were faster, relative to those observed in the solo conditions, for all tempos. For the faster participants, the degree of ITI drift in the solo conditions was strongly correlated with that in the paired conditions. Regression analyses suggested that both faster and slower participants adapted their tap timing to that of their partners. A possible explanation for these results is that the participants reset the phase of their internal clocks according to the faster beat between their own tap and the partners' tap. Our results indicated that paired context could bias the direction of ITI drift toward decreasing.

  20. Persistence of a circadian rhythmicity for thyroid hormones in plasma and thyroid of hibernating male Rana ridibunda.

    Science.gov (United States)

    Kühn, E R; Delmotte, N M; Darras, V M

    1983-06-01

    The presence and circadian rhythmicity of thyroid hormones was studied in plasma and the thyroid gland of male Rana ridibunda before and during hibernation. Hibernating January frogs do have a lower T3 and T4 content of their thyroid gland whereas plasma levels of T3 are maintained and of T4 increased compared to fed September or October frogs. It seems likely that the increased photoperiod in January will be responsible for this increased T4 secretion, since controlled laboratory experiments performed in December did not reveal any influence of low temperature on circulating T3 or T4 levels. Also feeding does not influence circulating levels and thyroid content of thyroid hormones in frogs kept at room temperature during the month of January. A circadian rhythmicity of T3 and T4 in the thyroid gland is present in fed October frogs and in non fed December frogs acclimated at 5 degrees C for 12 days with an acrophase for T3 at approximately 1500 h and for T4 at around 1900 h, whereas in plasma only T3 does have circadian variations (acrophase about midnight) but not T4. When December frogs are acclimated to room temperature for 12 days, frogs are active again, but do not eat and have a lower body weight than frogs hibernating at 5 degrees C. Their T3 content of the thyroid gland has disappeared, but T4 thyroid content and plasma levels of T3 and T4 are maintained. As in hibernating frogs, no circadian variations in T4 plasma concentrations are present whereas the circadian thyroid T4 rhythm disappears. At the same time a dampening in rhythmicity for plasma T3 as judged by the significantly lower amplitude occurs. It is concluded that the persistence of circulating levels of thyroid hormones and of a circadian cyclicity for T3 in plasma in non feeding hibernating frogs may reflect the special metabolic state e.g. availability of food reserves in these animals.