WorldWideScience

Sample records for rhoptry protein rop6

  1. ROP6 is involved in root hair deformation induced by Nod factors in Lotus japonicus.

    Science.gov (United States)

    Ke, Danxia; Li, Xiangyong; Han, Yapeng; Cheng, Lin; Yuan, Hongyu; Wang, Lei

    2016-11-01

    Roots of leguminous plants perceive Nod factor signals, and then root hair deformation responses such as swelling and curling are activated. However, very little is known about the molecular mechanisms of such root hair deformation. We have previously shown that LjROP6, a member of the Rho family of small GTPases, was identified as an NFR5 (Nod Factor Receptor 5)-interacting protein and participated in symbiotic nodulation in Lotus japonicus. In this study, we identified ten LjROP GTPases including LjROP6, and they were distributed into groups II, III, IV but not group I by phylogenetic analysis. The expression profiles of ten LjROP genes during nodulation were examined. LjROP6 belonged to group IV and interacted with NFR5 in a GTP-dependent manner. Overexpression of either wild-type ROP6 or a constitutively active mutant (ROP6-CA) generated root hair tip growth depolarization, while overexpression of a dominant negative mutant (ROP6-DN) exhibited normal root hair growth. After inoculating with Mesorhizobium loti or adding Nod factors to hairy roots, overexpression of ROP6 and ROP6-CA exhibited extensive root hair deformation, while overexpression of ROP6-DN inhibited root hair deformation. The infection event and nodule number were increased in ROP6 and ROP6-CA overexpressing transgenic plants; but decreased in ROP6-DN overexpressing transgenic plants. These studies provide strong evidence that ROP6 GTPase, which binds NFR5 in a GTP-dependent manner, is involved in root hair development as well as root hair deformation responses induced by NFs in the early stage of symbiotic interaction in L. japonicus.

  2. Identification, characterization and antigenicity of the Plasmodium vivax rhoptry neck protein 1 (PvRON1

    Directory of Open Access Journals (Sweden)

    Patarroyo Manuel E

    2011-10-01

    Full Text Available Abstract Background Plasmodium vivax malaria remains a major health problem in tropical and sub-tropical regions worldwide. Several rhoptry proteins which are important for interaction with and/or invasion of red blood cells, such as PfRONs, Pf92, Pf38, Pf12 and Pf34, have been described during the last few years and are being considered as potential anti-malarial vaccine candidates. This study describes the identification and characterization of the P. vivax rhoptry neck protein 1 (PvRON1 and examine its antigenicity in natural P. vivax infections. Methods The PvRON1 encoding gene, which is homologous to that encoding the P. falciparum apical sushi protein (ASP according to the plasmoDB database, was selected as our study target. The pvron1 gene transcription was evaluated by RT-PCR using RNA obtained from the P. vivax VCG-1 strain. Two peptides derived from the deduced P. vivax Sal-I PvRON1 sequence were synthesized and inoculated in rabbits for obtaining anti-PvRON1 antibodies which were used to confirm the protein expression in VCG-1 strain schizonts along with its association with detergent-resistant microdomains (DRMs by Western blot, and its localization by immunofluorescence assays. The antigenicity of the PvRON1 protein was assessed using human sera from individuals previously exposed to P. vivax malaria by ELISA. Results In the P. vivax VCG-1 strain, RON1 is a 764 amino acid-long protein. In silico analysis has revealed that PvRON1 shares essential characteristics with different antigens involved in invasion, such as the presence of a secretory signal, a GPI-anchor sequence and a putative sushi domain. The PvRON1 protein is expressed in parasite's schizont stage, localized in rhoptry necks and it is associated with DRMs. Recombinant protein recognition by human sera indicates that this antigen can trigger an immune response during a natural infection with P. vivax. Conclusions This study shows the identification and characterization of

  3. Subcompartmentalisation of proteins in the rhoptries correlates with ordered events of erythrocyte invasion by the blood stage malaria parasite.

    Directory of Open Access Journals (Sweden)

    Elizabeth S Zuccala

    Full Text Available Host cell infection by apicomplexan parasites plays an essential role in lifecycle progression for these obligate intracellular pathogens. For most species, including the etiological agents of malaria and toxoplasmosis, infection requires active host-cell invasion dependent on formation of a tight junction - the organising interface between parasite and host cell during entry. Formation of this structure is not, however, shared across all Apicomplexa or indeed all parasite lifecycle stages. Here, using an in silico integrative genomic search and endogenous gene-tagging strategy, we sought to characterise proteins that function specifically during junction-dependent invasion, a class of proteins we term invasins to distinguish them from adhesins that function in species specific host-cell recognition. High-definition imaging of tagged Plasmodium falciparum invasins localised proteins to multiple cellular compartments of the blood stage merozoite. This includes several that localise to distinct subcompartments within the rhoptries. While originating from the same organelle, however, each has very different dynamics during invasion. Apical Sushi Protein and Rhoptry Neck protein 2 release early, following the junction, whilst a novel rhoptry protein PFF0645c releases only after invasion is complete. This supports the idea that organisation of proteins within a secretory organelle determines the order and destination of protein secretion and provides a localisation-based classification strategy for predicting invasin function during apicomplexan parasite invasion.

  4. Specific T-cell recognition of the merozoite proteins rhoptry-associated protein 1 and erythrocyte-binding antigen 1 of Plasmodium falciparum

    DEFF Research Database (Denmark)

    Jakobsen, P H; Hviid, L; Theander, T G;

    1993-01-01

    The merozoite proteins merozoite surface protein 1 (MSP-1) and rhoptry-associated protein 1 (RAP-1) and synthetic peptides containing sequences of MSP-1, RAP-1, and erythrocyte-binding antigen 1, induced in vitro proliferative responses of lymphocytes collected from Ghanaian blood donors living...

  5. Rhoptry protein 5 (ROP5) Is a Key Virulence Factor in Neospora caninum

    Science.gov (United States)

    Ma, Lei; Liu, Jing; Li, Muzi; Fu, Yong; Zhang, Xiao; Liu, Qun

    2017-01-01

    Neospora caninum, of the Apicomplexa phylum, is a common cause of abortions in cattle and nervous system dysfunction in dogs. Rhoptry proteins of Apicomplexa play an important role in virulence. The objectives of this study were to study functions of NcROP5 in N. caninum by deleting the NcROP5 gene from the wild Nc-1 strain. We selected NcROP5 in ToxoDB and successfully constructed an NcROP5 gene-deleted vector, pTCR-NcROP5-CD KO. Then we screened the NcROP5 knockout strains (ΔNcROP5) at the gene, protein and transcription levels. Plaque assay, host cell invasion assay and intracellular proliferation test showed that the ΔNcROP5 strain had less plaque space, weakened invasion capacity and slower intracellular growth. Animal testing showed significantly lower cerebral load of ΔNcROP5 than the load of the Nc-1 strain, as well as a loss of virulence for the ΔNcROP5 strains. Phenotypic analyses using the label-free LC-MS/MS assay-based proteomic method and KEGG pathway enrichment analysis showed a reduction of NcGRA7 transcription and altered expression of multiple proteins including the apicomplexan family of binding proteins. The present study indicated that ROP5 is a key virulence factor in N. caninum in mice. The proteomic profiling of Nc-1 and ΔNcROP5 provided some data on differential proteins. These data provide a foundation for future research of protein functions in N. caninum. PMID:28326073

  6. Evidence that the Malaria Parasite Plasmodium falciparum Putative Rhoptry Protein 2 Localizes to the Golgi Apparatus throughout the Erythrocytic Cycle.

    Science.gov (United States)

    Hallée, Stéphanie; Richard, Dave

    2015-01-01

    Invasion of a red blood cell by Plasmodium falciparum merozoites is an essential step in the malaria lifecycle. Several of the proteins involved in this process are stored in the apical complex of the merozoite, a structure containing secretory organelles that are released at specific times during invasion. The molecular players involved in erythrocyte invasion thus represent potential key targets for both therapeutic and vaccine-based strategies to block parasite development. In our quest to identify and characterize new effectors of invasion, we investigated the P. falciparum homologue of a P. berghei protein putatively localized to the rhoptries, the Putative rhoptry protein 2 (PbPRP2). We show that in P. falciparum, the protein colocalizes extensively with the Golgi apparatus across the asexual erythrocytic cycle. Furthermore, imaging of merozoites caught at different times during invasion show that PfPRP2 is not secreted during the process instead staying associated with the Golgi apparatus. Our evidence therefore suggests that PfPRP2 is a Golgi protein and that it is likely not a direct effector in the process of merozoite invasion.

  7. The rhoptry proteome of Eimeria tenella sporozoites

    KAUST Repository

    Oakes, Richard D.

    2013-02-01

    Proteins derived from the rhoptry secretory organelles are crucial for the invasion and survival of apicomplexan parasites within host cells. The rhoptries are club-shaped organelles that contain two distinct subpopulations of proteins that localise to separate compartments of the organelle. Proteins from the neck region (rhoptry neck proteins, RON) are secreted early in invasion and a subset of these is critical for the formation and function of the moving junction between parasite and host membranes. Proteins from the bulb compartment (rhoptry protein, ROP) are released later, into the nascent parasitophorous vacuole where they have a role in modifying the vacuolar environment, and into the host cell where they act as key determinants of virulence through their ability to interact with host cell signalling pathways, causing an array of downstream effects. In this paper we present the results of an extensive proteomics analysis of the rhoptry organelles from the coccidian parasite, Eimeria tenella, which is a highly pathogenic parasite of the domestic chicken causing severe caecal coccidiosis. Several different classes of rhoptry protein have been identified. First are the RON proteins that have varying degrees of similarity to proteins of Toxoplasma gondii and Neospora caninum. For some RON families, E. tenella expresses more than one gene product and many of the individual RON proteins are differentially expressed between the sporozoite and merozoite developmental stages. The E. tenella sporozoite rhoptry expresses only a limited repertoire of proteins with homology to known ROP proteins from other coccidia, including just two secreted ROP kinases, both of which appear to be equipped for catalytic activity. Finally, a large number of hitherto undescribed proteins that map to the sporozoite rhoptry are identified, many of which have orthologous proteins encoded within the genomes of T. gondii and N. caninum. © 2012 .

  8. Evidence for negative selection on the gene encoding rhoptry-associated protein 1 (RAP-1) in Plasmodium spp.

    Science.gov (United States)

    Pacheco, M Andreína; Ryan, Elizabeth M; Poe, Amanda C; Basco, Leonardo; Udhayakumar, Venkatachalam; Collins, Williams E; Escalante, Ananias A

    2010-07-01

    Assessing how natural selection, negative or positive, operates on genes with low polymorphism is challenging. We investigated the genetic diversity of orthologous genes encoding the rhoptry-associated protein 1 (RAP-1), a low polymorphic protein of malarial parasites that is involved in erythrocyte invasion. We applied evolutionary genetic methods to study the polymorphism in RAP-1 from Plasmodium falciparum (n=32) and Plasmodium vivax (n=6), the two parasites responsible for most human malaria morbidity and mortality, as well as RAP-1 orthologous in closely related malarial species found in non-human primates (NHPs). Overall, genes encoding RAP-1 are highly conserved in all Plasmodium spp. included in this investigation. We found no evidence for natural selection, positive or negative, acting on the gene encoding RAP-1 in P. falciparum or P. vivax. However, we found evidence that the orthologous genes in non-human primate parasites (Plasmodium cynomolgi, Plasmodium inui, and Plasmodium knowlesi) are under purifying (negative) selection. We discuss the importance of considering negative selection while studying genes encoding proteins with low polymorphism and how selective pressures may differ among orthologous genes in closely related malarial parasites species. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Evaluation of a recombinant rhoptry protein 2 enzyme-linked immunoassay for the diagnosis of toxoplasmosis acquired during pregnancy.

    Science.gov (United States)

    Capobiango, Jaqueline Dario; Pagliari, Sthefany; Pasquali, Aline Kuhn Sbruzzi; Nino, Beatriz; Ferreira, Fernanda Pinto; Monica, Thaís Cabral; Tschurtschenthaler, Nely Norder; Navarro, Italmar Teodorico; Garcia, João Luis; Mitsuka-Breganó, Regina; Reiche, Edna Maria Vissoci

    2015-09-01

    The aim of this study was to evaluate an enzyme-linked immunoassay with recombinant rhoptry protein 2 (ELISA-rROP2) for its ability to detect Toxoplasma gondii ROP2-specific IgG in samples from pregnant women. The study included 236 samples that were divided into groups according to serological screening profiles for toxoplasmosis: unexposed (n = 65), probable acute infection (n = 48), possible acute infection (n = 58) and exposed to the parasite (n = 65). When an indirect immunofluorescence assay forT. gondii-specific IgG was considered as a reference test, the ELISA-rROP2 had a sensitivity of 61.8%, specificity of 62.8%, predictive positive value of 76.6% and predictive negative value of 45.4% (p = 0.0002). The ELISA-rROP2 reacted with 62.5% of the samples from pregnant women with probable acute infection and 40% of the samples from pregnant women with previous exposure (p = 0.0180). Seropositivity was observed in 50/57 (87.7%) pregnant women with possible infection. The results underscored that T. gondii rROP2 is recognised by specific IgG antibodies in both the acute and chronic phases of toxoplasmosis acquired during pregnancy. However, the sensitivity of the ELISA-rROP2 was higher in the pregnant women with probable and possible acute infections and IgM reactivity.

  10. A longitudinal study of human antibody responses to Plasmodium falciparum rhoptry-associated protein 1 in a region of seasonal and unstable malaria transmission

    DEFF Research Database (Denmark)

    Fonjungo, P N; Elhassan, I M; Cavanagh, D R

    1999-01-01

    . falciparum-derived RAP1 were used to analyze antibody responses to RAP1 over a period of 4 years (1991 to 1995) of 53 individuals naturally exposed to P. falciparum malaria. In any 1 year during the study, between 23 and 39% of individuals who had malaria developed immunoglobulin G (IgG) antibodies......Rhoptry-associated protein 1 (RAP1) of Plasmodium falciparum is a nonpolymorphic merozoite antigen that is considered a potential candidate for a malaria vaccine against asexual blood stages. In this longitudinal study, recombinant RAP1 (rRAP1) proteins with antigenicity similar to that of P...

  11. Partial protective effect of intranasal immunization with recombinant Toxoplasma gondii rhoptry protein 17 against toxoplasmosis in mice.

    Directory of Open Access Journals (Sweden)

    Hai-Long Wang

    Full Text Available Toxoplasma gondii (T. gondii is an obligate intracellular protozoan parasite that infects a variety of mammals, including humans. An effective vaccine for this parasite is therefore needed. In this study, RH strain T. gondii rhoptry protein 17 was expressed in bacteria as a fusion with glutathione S-transferase (GST and the recombinant proteins (rTgROP17 were purified via GST-affinity chromatography. BALB/c mice were nasally immunised with rTgROP17, and induction of immune responses and protection against chronic and lethal T. gondii infections were investigated. The results revealed that mice immunised with rTgROP17 produced high levels of specific anti-rTgROP17 IgGs and a mixed IgG1/IgG2a response of IgG2a predominance. The systemic immune response was associated with increased production of Th1 (IFN-γand IL-2 and Th2 (IL-4 cytokines, and enhanced lymphoproliferation (stimulation index, SI in the mice immunised with rTgROP17. Strong mucosal immune responses with increased secretion of TgROP17-specific secretory IgA (SIgA in nasal, vaginal and intestinal washes were also observed in these mice. The vaccinated mice displayed apparent protection against chronic RH strain infection as evidenced by their lower liver and brain parasite burdens (59.17% and 49.08%, respectively than those of the controls. The vaccinated mice also exhibited significant protection against lethal infection of the virulent RH strain (survival increased by 50% compared to the controls. Our data demonstrate that rTgROP17 can trigger strong systemic and mucosal immune responses against T. gondii and that ROP17 is a promising candidate vaccine for toxoplasmosis.

  12. Cloning of 1183 bp Fragment from Rhoptry Protein I (ROPI Gene of Toxoplasma gondii (RH in Expression Prokaryote Plasmid PET32a

    Directory of Open Access Journals (Sweden)

    Zahra Eslamirad

    2013-10-01

    Full Text Available Background: Toxoplasma gondii is an obligatory intracellular protozoan. Considering to high prevalence of this disease the best way to reduce the raised loses is prevention of human and animal infection, rapid diagnosis, differentiation between acute and chronic disease. Rhoptry protein 1 of Toxoplasma gondii is an excretory-secretory antigen that exists in the most stages of life cycle. According to specifications of excretory-secretory antigen that seems this antigen is a suitable candidate to produce recombinant vaccine and diagnostic kit. The main object of the present work was cloning rhoptry protein 1 (ROP1 gene of Toxoplasma gondii (RH in a cloning vector for further production of rhoptry proteins.Materials and Methods: Genomic DNA was extracted by phenol-chloroform method. The ROP1 fragment was amplified by PCR. This product was approved by sequencing and was cloned between the EcoR1 and Sal1 sites of the pTZ57R/T vector. Then transformed into Escherichia coli DH5α strain and screened by IPTG and X-Gal. After isolating of this gene from pTZ57R/T, it was subcloned into pET32a plasmid.Results: The plasmid was purified and approved by electrophoresis, enzyme restriction and PCR. After isolating of this gene from pTZ57R/T, it was subcloned into pET32a plasmid. After enzyme restriction and electrophoresis a fragment about 1183bp was separated from pET32a.Conclusion: Recombinant plasmid of ROP1 gene was constructed and ready for future study. That seems the antigen is a suitable candidate to produce recombinant vaccine and diagnostic kit.

  13. DNA vaccination with a gene encoding Toxoplasma gondii Rhoptry Protein 17 induces partial protective immunity against lethal challenge in mice

    Directory of Open Access Journals (Sweden)

    Wang Hai-Long

    2016-01-01

    Full Text Available Toxoplasma gondii is an obligate intracellular apicomplexan parasite that affects humans and various vertebrate livestock and causes serious economic losses. To develop an effective vaccine against T. gondii infection, we constructed a DNA vaccine encoding the T. gondii rhoptry protein 17 (TgROP17 and evaluated its immune protective efficacy against acute T. gondii infection in mice. The DNA vaccine (p3×Flag-CMV-14-ROP17 was intramuscularly injected to BALB/c mice and the immune responses of the vaccinated mice were determined. Compared to control mice treated with empty vector or PBS, mice immunized with the ROP17 vaccine showed a relatively high level of specific anti-T. gondii antibodies, and a mixed IgG1/IgG2a response with predominance of IgG2a production. The immunized mice also displayed a specific lymphocyte proliferative response, a Th1-type cellular immune response with production of IFN-γ and interleukin-2, and increased number of CD8+ T cells. Immunization with the ROP17 DNA significantly prolonged the survival time (15.6 ± 5.4 days, P < 0.05 of mice after challenge infection with the virulent T. gondii RH strain (Type I, compared with the control groups which died within 8 days. Therefore, our data suggest that DNA vaccination with TgROP17 triggers significant humoral and cellular responses and induces effective protection in mice against acute T. gondii infection, indicating that TgROP17 is a promising vaccine candidate against acute toxoplasmosis.

  14. IgG reactivities against recombinant Rhoptry-Associated Protein-1 (rRAP-1) are associated with mixed Plasmodium infections and protection against disease in Tanzanian children

    DEFF Research Database (Denmark)

    Alifrangis, M; Lemnge, M M; Moon, R;

    1999-01-01

    -Associated Protein-1 (rRAP-1). The data were related to the prevalence of malarial disease and single P. falciparum or mixed Plasmodium infections. Fever (> or = 37.5 degrees C) in combination with parasite densities > 5000/microliter were used to distinguish between children with asymptomatic malaria infections......A cross-sectional sero-epidemiological study was performed in Magoda, Tanzania, an area where malaria is holoendemic. Blood samples were collected from children (1-4 years) and tested for IgG antibody reactivity against 2 recombinant protein fragments of Plasmodium falciparum Rhoptry...... and those with acute clinical disease. Furthermore, C-reactive protein (CRP) was applied as a surrogate marker of malaria morbidity. The prevalence of Plasmodium infections was 96.0%. Eleven children were defined as clinical malaria cases, all with single P. falciparum infections. The density of P...

  15. Antibody responses to Rhoptry-Associated Protein-1 (RAP-1) of Plasmodium falciparum parasites in humans from areas of different malaria endemicity

    DEFF Research Database (Denmark)

    Jakobsen, P H; Kurtzhals, J A; Riley, E M

    1997-01-01

    Plasma IgM and IgG antibody reactivities against the recombinant Plasmodium falciparum protein, Rhoptry Associated Protein-1 (rRAP-1) were measured by ELISA in individuals from Sudan, Indonesia, Kenya and The Gambia living in areas of different malaria endemicity. IgG and IgM reactivities to rRAP-1...... increased with malaria endemicity. IgG reactivities were associated with spleen rates in Indonesia with high malaria endemicity while IgM reactivities were associated with spleen rates in Kenya with low malaria endemicity. IgG and IgM reactivities to rRAP-1 increased during acute episodes of P. falciparum...... malaria in Sudanese adults and IgG reactivities remained high one month after treatment in all adults tested. Antibody reactivities to rRAP-1 in Gambian children in the dry season were higher in children with parasitaemia than in children without detectable parasitaemia. Antibody reactivities were...

  16. Rhoptry-associated protein (rap-1) genes in the sheep pathogen Babesia sp. Xinjiang: Multiple transcribed copies differing by 3' end repeated sequences.

    Science.gov (United States)

    Niu, Qingli; Marchand, Jordan; Yang, Congshan; Bonsergent, Claire; Guan, Guiquan; Yin, Hong; Malandrin, Laurence

    2015-07-30

    Sheep babesiosis occurs mainly in tropical and subtropical areas. The sheep parasite Babesia sp. Xinjiang is widespread in China, and our goal is to characterize rap-1 (rhoptry-associated protein 1) gene diversity and expression as a first step of a long term goal aiming at developing a recombinant subunit vaccine. Seven different rap-1a genes were amplified in Babesia sp. Xinjiang, using degenerate primers designed from conserved motifs. Rap-1b and rap-1c gene types could not be identified. In all seven rap-1a genes, the 5' regions exhibited identical sequences over 936 nt, and the 3' regions differed at 28 positions over 147 nt, defining two types of genes designated α and β. The remaining 3' part varied from 72 to 360 nt in length, depending on the gene. This region consists of a succession of two to ten 36 nt repeats, which explains the size differences. Even if the nucleotide sequences varied, 6 repeats encoded the same stretch of amino acids. Transcription of at least four α and two β genes was demonstrated by standard RT-PCR. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion.

    Directory of Open Access Journals (Sweden)

    Sébastien Besteiro

    2009-02-01

    Full Text Available One of the most conserved features of the invasion process in Apicomplexa parasites is the formation of a moving junction (MJ between the apex of the parasite and the host cell membrane that moves along the parasite and serves as support to propel it inside the host cell. The MJ was, up to a recent period, completely unknown at the molecular level. Recently, proteins originated from two distinct post-Golgi specialised secretory organelles, the micronemes (for AMA1 and the neck of the rhoptries (for RON2/RON4/RON5 proteins, have been shown to form a complex. AMA1 and RON4 in particular, have been localised to the MJ during invasion. Using biochemical approaches, we have identified RON8 as an additional member of the complex. We also demonstrated that all RON proteins are present at the MJ during invasion. Using metabolic labelling and immunoprecipitation, we showed that RON2 and AMA1 were able to interact in the absence of the other members. We also discovered that all MJ proteins are subjected to proteolytic maturation during trafficking to their respective organelles and that they could associate as non-mature forms in vitro. Finally, whereas AMA1 has previously been shown to be inserted into the parasite membrane upon secretion, we demonstrated, using differential permeabilization and loading of RON-specific antibodies into the host cell, that the RON complex is targeted to the host cell membrane, where RON4/5/8 remain associated with the cytoplasmic face. Globally, these results point toward a model of MJ organization where the parasite would be secreting and inserting interacting components on either side of the MJ, both at the host and at its own plasma membranes.

  18. Improving the production of the denatured recombinant N-terminal domain of rhoptry-associated protein 2 from a Plasmodium falciparum target in the pathology of anemia in falciparum malaria

    Directory of Open Access Journals (Sweden)

    Luis Andre Mariuba

    2008-09-01

    Full Text Available Rhoptry-associated protein 2 (RAP2 is known to be discharged from rhoptry onto the membrane surface of infected and uninfected erythrocytes (UEs ex vivo and in vitro and this information provides new insights into the understanding of the pathology of severe anemia in falciparum malaria. In this study, a hexahistidine-tagged recombinant protein corresponding to residues 5-190 of the N-terminal of Plasmodium falciparum RAP2 (rN-RAP2 was produced using a new method of solubilization and purification. Expression was induced with D-lactose, a less expensive alternative inducer to the more common isopropyl-²-D-thio-galactopyranosidase. The recombinant protein was purified using two types of commercially-available affinity columns, iminodiacetic and nitrilotriacetic. rN-RAP2 had immunogenic potential, since it induced high titers of anti-RAP2 antibodies in mice. These antibodies recognized full-length RAP2 prepared from Triton X-100 extracts from two strains of P. falciparum. In fact, the antibody recognized a 29-kDa product of RAP2 cleavage as well as 82 and 70-kDa products of RAP1 cleavage. These results indicate that the two antigens share sequence epitopes. Our expressed protein fragment was shown to contain a functional epitope that is also present in rhoptry-derived ring surface protein 2 which attaches to the surface of both infected and UEs and erythroid precursor cells in the bone marrow of malaria patients. Serum from malaria patients who developed anemia during infection recognized rN-RAP2, suggesting that this protein fragment may be important for epidemiological studies investigating whether immune responses to RAP2 exacerbate hemolysis in falciparum malaria patients.

  19. Strong conservation of rhoptry-associated-protein-1 (RAP-1) locus organization and sequence among Babesia isolates infecting sheep from China (Babesia motasi-like phylogenetic group).

    Science.gov (United States)

    Niu, Qingli; Valentin, Charlotte; Bonsergent, Claire; Malandrin, Laurence

    2014-12-01

    Rhoptry-associated-protein 1 (RAP-1) is considered as a potential vaccine candidate due to its involvement in red blood cell invasion by parasites in the genus Babesia. We examined its value as a vaccine candidate by studying RAP-1 conservation in isolates of Babesia sp. BQ1 Ningxian, Babesia sp. Tianzhu and Babesia sp. Hebei, responsible for ovine babesiosis in different regions of China. The rap-1 locus in these isolates has very similar features to those described for Babesia sp. BQ1 Lintan, another Chinese isolate also in the B. motasi-like phylogenetic group, namely the presence of three types of rap-1 genes (rap-1a, rap-1b and rap-1c), multiple conserved rap-1b copies (5) interspaced with more or less variable rap-1a copies (6), and the 3' localization of one rap-1c. The isolates Babesia sp. Tianzhu, Babesia sp. BQ1 Lintan and Ningxian were almost identical (average nucleotide identity of 99.9%) over a putative locus of about 31 Kb, including the intergenic regions. Babesia sp. Hebei showed a similar locus organization but differed in the rap-1 locus sequence, for each gene and intergenic region, with an average nucleotide identity of 78%. Our results are in agreement with 18S rDNA phylogenetic studies performed on these isolates. However, in extremely closely related isolates the rap-1 locus seems more conserved (99.9%) than the 18S rDNA (98.7%), whereas in still closely related isolates the identities are much lower (78%) compared with the 18S rDNA (97.7%). The particularities of the rap-1 locus in terms of evolution, phylogeny, diagnosis and vaccine development are discussed. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Genetic diversity and natural selection in the rhoptry-associated protein 1 (RAP-1) of recent Plasmodium knowlesi clinical isolates from Malaysia.

    Science.gov (United States)

    Rawa, Mira Syahfriena Amir; Fong, Mun-Yik; Lau, Yee-Ling

    2016-02-05

    The Plasmodium rhoptry-associated protein 1 (RAP-1) plays a role in the formation of the parasitophorous vacuole following the parasite's invasion of red blood cells. Although there is some evidence that the protein is recognized by the host's immune system, study of Plasmodium falciparum RAP-1 (PfRAP-1) suggests that it is not under immune pressure. A previous study on five old (1953-1962) P. knowlesi strains suggested that RAP-1 has limited genetic polymorphism and might be under negative selection. In the present study, 30 recent P. knowlesi isolates were studied to obtain a better insight into the polymorphism and natural selection of PkRAP-1. Blood samples from 30 knowlesi malaria patients were used. These samples were collected between 2010 and 2014. The PkRAP-1 gene, which contains two exons, was amplified by PCR, cloned into Escherichia coli and sequenced. Genetic diversity and phylogenetic analyses were performed using MEGA6 and DnaSP ver. 5.10.00 programs. Thirty PkRAP-1 sequences were obtained. The nucleotide diversity (π) of exons 1, 2 and the total coding region (0.00915, 0.01353 and 0.01298, respectively) were higher than those of the old strains. Further analysis revealed a lower rate of non-synonymous (dN) than synonymous (dS) mutations, suggesting negative (purifying) selection of PkRAP-1. Tajima's D test and Fu and Li's D test values were not significant. At the amino acid level, 22 haplotypes were established with haplotype H7 having the highest frequency (7/34, 20.5 %). In the phylogenetic analysis, two distinct haplotype groups were observed. The first group contained the majority of the haplotypes, whereas the second had fewer haplotypes. The present study found higher genetic polymorphism in the PkRAP-1 gene than the polymorphism level reported in a previous study. This observation may stem from the difference in sample size between the present (n = 30) and the previous (n = 5) study. Synonymous and non-synonymous mutation analysis indicated

  1. The Arabidopsis Rho of Plants GTPase AtROP6 Functions in Developmental and Pathogen Response Pathways1[C][W][OA

    Science.gov (United States)

    Poraty-Gavra, Limor; Zimmermann, Philip; Haigis, Sabine; Bednarek, Paweł; Hazak, Ora; Stelmakh, Oksana Rogovoy; Sadot, Einat; Schulze-Lefert, Paul; Gruissem, Wilhelm; Yalovsky, Shaul

    2013-01-01

    How plants coordinate developmental processes and environmental stress responses is a pressing question. Here, we show that Arabidopsis (Arabidopsis thaliana) Rho of Plants6 (AtROP6) integrates developmental and pathogen response signaling. AtROP6 expression is induced by auxin and detected in the root meristem, lateral root initials, and leaf hydathodes. Plants expressing a dominant negative AtROP6 (rop6DN) under the regulation of its endogenous promoter are small and have multiple inflorescence stems, twisted leaves, deformed leaf epidermis pavement cells, and differentially organized cytoskeleton. Microarray analyses of rop6DN plants revealed that major changes in gene expression are associated with constitutive salicylic acid (SA)-mediated defense responses. In agreement, their free and total SA levels resembled those of wild-type plants inoculated with a virulent powdery mildew pathogen. The constitutive SA-associated response in rop6DN was suppressed in mutant backgrounds defective in SA signaling (nonexpresser of PR genes1 [npr1]) or biosynthesis (salicylic acid induction deficient2 [sid2]). However, the rop6DN npr1 and rop6DN sid2 double mutants retained the aberrant developmental phenotypes, indicating that the constitutive SA response can be uncoupled from ROP function(s) in development. rop6DN plants exhibited enhanced preinvasive defense responses to a host-adapted virulent powdery mildew fungus but were impaired in preinvasive defenses upon inoculation with a nonadapted powdery mildew. The host-adapted powdery mildew had a reduced reproductive fitness on rop6DN plants, which was retained in mutant backgrounds defective in SA biosynthesis or signaling. Our findings indicate that both the morphological aberrations and altered sensitivity to powdery mildews of rop6DN plants result from perturbations that are independent from the SA-associated response. These perturbations uncouple SA-dependent defense signaling from disease resistance execution. PMID

  2. Rhoptry Proteins ROP5 and ROP18 Are Major Murine Virulence Factors in Genetically Divergent South American Strains of Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Michael S Behnke

    2015-08-01

    Full Text Available Toxoplasma gondii has evolved a number of strategies to evade immune responses in its many hosts. Previous genetic mapping of crosses between clonal type 1, 2, and 3 strains of T. gondii, which are prevalent in Europe and North America, identified two rhoptry proteins, ROP5 and ROP18, that function together to block innate immune mechanisms activated by interferon gamma (IFNg in murine hosts. However, the contribution of these and other virulence factors in more genetically divergent South American strains is unknown. Here we utilized a cross between the intermediately virulent North American type 2 ME49 strain and the highly virulent South American type 10 VAND strain to map the genetic basis for differences in virulence in the mouse. Quantitative trait locus (QTL analysis of this new cross identified one peak that spanned the ROP5 locus on chromosome XII. CRISPR-Cas9 mediated deletion of all copies of ROP5 in the VAND strain rendered it avirulent and complementation confirmed that ROP5 is the major virulence factor accounting for differences between type 2 and type 10 strains. To extend these observations to other virulent South American strains representing distinct genetic populations, we knocked out ROP5 in type 8 TgCtBr5 and type 4 TgCtBr18 strains, resulting in complete loss of virulence in both backgrounds. Consistent with this, polymorphisms that show strong signatures of positive selection in ROP5 were shown to correspond to regions known to interface with host immunity factors. Because ROP5 and ROP18 function together to resist innate immune mechanisms, and a significant interaction between them was identified in a two-locus scan, we also assessed the role of ROP18 in the virulence of South American strains. Deletion of ROP18 in South American type 4, 8, and 10 strains resulted in complete attenuation in contrast to a partial loss of virulence seen for ROP18 knockouts in previously described type 1 parasites. These data show that ROP5

  3. Molecular cloning and characterization of NcROP2Fam-1, a member of the ROP2 family of rhoptry proteins in Neospora caninum that is targeted by antibodies neutralizing host cell invasion in vitro.

    Science.gov (United States)

    Alaeddine, Ferial; Hemphill, Andrew; Debache, Karim; Guionaud, Christophe

    2013-07-01

    Recent publications demonstrated that a fragment of a Neospora caninum ROP2 family member antigen represents a promising vaccine candidate. We here report on the cloning of the cDNA encoding this protein, N. caninum ROP2 family member 1 (NcROP2Fam-1), its molecular characterization and localization. The protein possesses the hallmarks of ROP2 family members and is apparently devoid of catalytic activity. NcROP2Fam-1 is synthesized as a pre-pro-protein that is matured to 2 proteins of 49 and 55 kDa that localize to rhoptry bulbs. Upon invasion the protein is associated with the nascent parasitophorous vacuole membrane (PVM), evacuoles surrounding the host cell nucleus and, in some instances, the surface of intracellular parasites. Staining was also observed within the cyst wall of 'cysts' produced in vitro. Interestingly, NcROP2Fam-1 was also detected on the surface of extracellular parasites entering the host cells and antibodies directed against NcROP2Fam-1-specific peptides partially neutralized invasion in vitro. We conclude that, in spite of the general belief that ROP2 family proteins are intracellular antigens, NcROP2Fam-1 can also be considered as an extracellular antigen, a property that should be taken into account in further experiments employing ROP2 family proteins as vaccines.

  4. RAP-1a is the main rhoptry-associated-protein-1 (RAP-1) recognized during infection with Babesia sp. BQ1 (Lintan) (B. motasi-like phylogenetic group), a pathogen of sheep in China.

    Science.gov (United States)

    Niu, Qingli; Bonsergent, Claire; Rogniaux, Hélène; Guan, Guiquan; Malandrin, Laurence; Moreau, Emmanuelle

    2016-12-15

    Babesia sp. BQ1 (Lintan) is one of the parasites isolated from infected sheep in China that belongs to the B. motasi-like phylogenetic group. The rhoptry-associated-protein 1 (rap-1) locus in this group consists of a complex organization of 12 genes of three main types: 6 rap-1a variants intercalated with 5 identical copies of rap-1b and a single 3' ending rap-1c gene. In the present study, transcription analysis performed by standard RT-PCR demonstrated that the three different rap-1 gene types and the four rap-1a variants were transcribed by the parasite cultivated in vitro. Peptides, specific for each rap-1 type gene, were selected in putative linear B-epitopes and used to raise polyclonal rabbit antisera. Using these sera, the same expression pattern of RAP-1 proteins was found in parasites cultivated in vitro or collected from acute infection whereas only RAP-1a67 was detectable in merozoite extracts. However, ELISA performed with recombinant RAP-1a67, RAP-1b or RAP-1c and sera from infected sheep demonstrated that RAP-1a67 is the main RAP-1 recognized during infection, even if some infected sheep also recognized RAP-1b and/or RAP-1c.

  5. ROP18 is a rhoptry kinase controlling the intracellular proliferation of Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Hiba El Hajj

    2007-02-01

    Full Text Available Toxoplasma gondii is an obligate intracellular parasite for which the discharge of apical organelles named rhoptries is a key event in host cell invasion. Among rhoptry proteins, ROP2, which is the prototype of a large protein family, is translocated in the parasitophorous vacuole membrane during invasion. The ROP2 family members are related to protein-kinases, but only some of them are predicted to be catalytically active, and none of the latter has been characterized so far. We show here that ROP18, a member of the ROP2 family, is located in the rhoptries and re-localises at the parasitophorous vacuole membrane during invasion. We demonstrate that a recombinant ROP18 catalytic domain (amino acids 243-539 possesses a protein-kinase activity and phosphorylate parasitic substrates, especially a 70-kDa protein of tachyzoites. Furthermore, we show that overexpression of ROP18 in transgenic parasites causes a dramatic increase in intra-vacuolar parasite multiplication rate, which is correlated with kinase activity. Therefore, we demonstrate, to our knowledge for the first time, that rhoptries can discharge active protein-kinases upon host cell invasion, which can exert a long-lasting effect on intracellular parasite development and virulence.

  6. PvRON2, a new Plasmodium vivax rhoptry neck antigen

    Directory of Open Access Journals (Sweden)

    Curtidor Hernando

    2011-03-01

    Full Text Available Abstract Background Rhoptries are specialized organelles from parasites belonging to the phylum Apicomplexa; they secrete their protein content during invasion of host target cells and are sorted into discrete subcompartments within rhoptry neck or bulb. This distribution is associated with these proteins' role in tight junction (TJ and parasitophorous vacuole (PV formation, respectively. Methods Plasmodium falciparum RON2 amino acid sequence was used as bait for screening the codifying gene for the homologous protein in the Plasmodium vivax genome. Gene synteny, as well as identity and similarity values, were determined for ron2 and its flanking genes among P. falciparum, P. vivax and other malarial parasite genomes available at PlasmoDB and Sanger Institute databases. Pvron2 gene transcription was determined by RT-PCR of cDNA obtained from the P. vivax VCG-1 strain. Protein expression and localization were assessed by Western blot and immunofluorescence using polyclonal anti-PvRON2 antibodies. Co-localization was confirmed using antibodies directed towards specific microneme and rhoptry neck proteins. Results and discussion The first P. vivax rhoptry neck protein (named here PvRON2 has been identified in this study. PvRON2 is a 2,204 residue-long protein encoded by a single 6,615 bp exon containing a hydrophobic signal sequence towards the amino-terminus, a transmembrane domain towards the carboxy-terminus and two coiled coil α-helical motifs; these are characteristic features of several previously described vaccine candidates against malaria. This protein also contains two tandem repeats within the interspecies variable sequence possibly involved in evading a host's immune system. PvRON2 is expressed in late schizonts and localized in rhoptry necks similar to what has been reported for PfRON2, which suggests its participation during target cell invasion. Conclusions The identification and partial characterization of the first P. vivax

  7. Identification of a new rhoptry neck complex RON9/RON10 in the Apicomplexa parasite Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Mauld H Lamarque

    Full Text Available Apicomplexan parasites secrete and inject into the host cell the content of specialized secretory organelles called rhoptries, which take part into critical processes such as host cell invasion and modulation of the host cell immune response. The rhoptries are structurally and functionally divided into two compartments. The apical duct contains rhoptry neck (RON proteins that are conserved in Apicomplexa and are involved in formation of the moving junction (MJ driving parasite invasion. The posterior bulb contains rhoptry proteins (ROPs unique to an individual genus and, once injected in the host cell act as effector proteins to co-opt host processes and modulate parasite growth and virulence. We describe here two new RON proteins of Toxoplasma gondii, RON9 and RON10, which form a high molecular mass complex. In contrast to the other RONs described to date, this complex was not detected at the MJ during invasion and therefore was not associated to the MJ complex RON2/4/5/8. Disruptions of either RON9 or RON10 gene leads to the retention of the partner in the ER followed by subsequent degradation, suggesting that the RON9/RON10 complex formation is required for proper sorting to the rhoptries. Finally, we show that the absence of RON9/RON10 has no significant impact on the morphology of rhoptry, on the invasion and growth in fibroblasts in vitro or on virulence in vivo. The conservation of RON9 and RON10 in Coccidia and Cryptosporidia suggests a specific relation with development in intestinal epithelial cells.

  8. Sequence and organization of the rhoptry-associated-protein-1 (rap-1) locus for the sheep hemoprotozoan Babesia sp. BQ1 Lintan (B. motasi phylogenetic group).

    Science.gov (United States)

    Niu, Qingli; Bonsergent, Claire; Guan, Guiquan; Yin, Hong; Malandrin, Laurence

    2013-11-15

    Babesiosis is a frequent infection of animals worldwide by tick borne pathogen Babesia, and several species are responsible for ovine babesiosis. Recently, several Babesia motasi-like isolates were described in sheep in China. In this study, we sequenced the multigenic rap-1 gene locus of one of these isolates, Babesia sp. BQ1 Lintan. The RAP-1 proteins are involved in the process of red blood cells invasion and thus represent a potential target for vaccine development. A complex composition and organization of the rap-1 locus was discovered with: (1) the presence of 3 different types of rap-1 sequences (rap-1a, rap-1b and rap-1c); (2) the presence of multiple copies of rap-1a and rap-1b; (3) polymorphism among the rap-1a copies, with two classes (named rap-1a61 and rap-1a67) having a similarity of 95.7%, each class represented by two close variants; (4) polymorphism between rap-1a61-1 and rap-1a61-2 limited to three nucleotide positions; (5) a difference of eight nucleotides between rap-1a67-1 and rap-1a67-2 from position 1270 to the putative stop site of rap-1a67-1 which might produce two putative proteins of slightly different sizes; (6) the ratio of rap-1a copies corresponding to one rap-1a67, one rap-1a61-1 and one rap-1a61-2; (7) the presence of three different intergenic regions separating rap-1a, rap-1b and rap-1c; (8) interspacing of the rap-1a copies with rap-1b copies; and (9) the terminal position of rap-1c in the locus. A 31kb locus composed of 6 rap-1a sequences interspaced with 5 rap-1b sequences and with a terminal rap-1c copy was hypothesized. A strikingly similar sequence composition (rap-1a, rap-1b and rap-1c), as well as strong gene identities and similar locus organization with B. bigemina were found and highlight the conservation of synteny at this locus in this phylogenetic clade. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Structural and evolutionary adaptation of rhoptry kinases and pseudokinases, a family of coccidian virulence factors

    Science.gov (United States)

    2013-01-01

    Background The widespread protozoan parasite Toxoplasma gondii interferes with host cell functions by exporting the contents of a unique apical organelle, the rhoptry. Among the mix of secreted proteins are an expanded, lineage-specific family of protein kinases termed rhoptry kinases (ROPKs), several of which have been shown to be key virulence factors, including the pseudokinase ROP5. The extent and details of the diversification of this protein family are poorly understood. Results In this study, we comprehensively catalogued the ROPK family in the genomes of Toxoplasma gondii, Neospora caninum and Eimeria tenella, as well as portions of the unfinished genome of Sarcocystis neurona, and classified the identified genes into 42 distinct subfamilies. We systematically compared the rhoptry kinase protein sequences and structures to each other and to the broader superfamily of eukaryotic protein kinases to study the patterns of diversification and neofunctionalization in the ROPK family and its subfamilies. We identified three ROPK sub-clades of particular interest: those bearing a structurally conserved N-terminal extension to the kinase domain (NTE), an E. tenella-specific expansion, and a basal cluster including ROP35 and BPK1 that we term ROPKL. Structural analysis in light of the solved structures ROP2, ROP5, ROP8 and in comparison to typical eukaryotic protein kinases revealed ROPK-specific conservation patterns in two key regions of the kinase domain, surrounding a ROPK-conserved insert in the kinase hinge region and a disulfide bridge in the kinase substrate-binding lobe. We also examined conservation patterns specific to the NTE-bearing clade. We discuss the possible functional consequences of each. Conclusions Our work sheds light on several important but previously unrecognized features shared among rhoptry kinases, as well as the essential differences between active and degenerate protein kinases. We identify the most distinctive ROPK-specific features

  10. The Toxoplasma gondii Rhoptry Kinome Is Essential for Chronic Infection

    Directory of Open Access Journals (Sweden)

    Barbara A. Fox

    2016-05-01

    Full Text Available Ingestion of the obligate intracellular protozoan parasite Toxoplasma gondii causes an acute infection that leads to chronic infection of the host. To facilitate the acute phase of the infection, T. gondii manipulates the host response by secreting rhoptry organelle proteins (ROPs into host cells during its invasion. A few key ROP proteins with signatures of kinases or pseudokinases (ROPKs act as virulence factors that enhance parasite survival against host gamma interferon-stimulated innate immunity. However, the roles of these and other ROPK proteins in establishing chronic infection have not been tested. Here, we deleted 26 ROPK gene loci encoding 31 unique ROPK proteins of type II T. gondii and show that numerous ROPK proteins influence the development of chronic infection. Cyst burdens were increased in the Δrop16 knockout strain or moderately reduced in 11 ROPK knockout strains. In contrast, deletion of ROP5, ROP17, ROP18, ROP35, or ROP38/29/19 (ROP38, ROP29, and ROP19 severely reduced cyst burdens. Δrop5 and Δrop18 knockout strains were less resistant to host immunity-related GTPases (IRGs and exhibited >100-fold-reduced virulence. ROP18 kinase activity and association with the parasitophorous vacuole membrane were necessary for resistance to host IRGs. The Δrop17 strain exhibited a >12-fold defect in virulence; however, virulence was not affected in the Δrop35 or Δrop38/29/19 strain. Resistance to host IRGs was not affected in the Δrop17, Δrop35, or Δrop38/29/19 strain. Collectively, these findings provide the first definitive evidence that the type II T. gondii ROPK proteome functions as virulence factors and facilitates additional mechanisms of host manipulation that are essential for chronic infection and transmission of T. gondii.

  11. The Rhoptry Pseudokinase ROP54 Modulates Toxoplasma gondii Virulence and Host GBP2 Loading

    Science.gov (United States)

    Kim, Elliot W.; Nadipuram, Santhosh M.; Tetlow, Ashley L.; Barshop, William D.; Liu, Philip T.; Wohlschlegel, James A.

    2016-01-01

    ABSTRACT Toxoplasma gondii uses unique secretory organelles called rhoptries to inject an array of effector proteins into the host cytoplasm that hijack host cell functions. We have discovered a novel rhoptry pseudokinase effector, ROP54, which is injected into the host cell upon invasion and traffics to the cytoplasmic face of the parasitophorous vacuole membrane (PVM). Disruption of ROP54 in a type II strain of T. gondii does not affect growth in vitro but results in a 100-fold decrease in virulence in vivo, suggesting that ROP54 modulates some aspect of the host immune response. We show that parasites lacking ROP54 are more susceptible to macrophage-dependent clearance, further suggesting that ROP54 is involved in evasion of innate immunity. To determine how ROP54 modulates parasite virulence, we examined the loading of two known innate immune effectors, immunity-related GTPase b6 (IRGb6) and guanylate binding protein 2 (GBP2), in wild-type and ∆rop54II mutant parasites. While no difference in IRGb6 loading was seen, we observed a substantial increase in GBP2 loading on the parasitophorous vacuole (PV) of ROP54-disrupted parasites. These results demonstrate that ROP54 is a novel rhoptry effector protein that promotes Toxoplasma infections by modulating GBP2 loading onto parasite-containing vacuoles. IMPORTANCE The interactions between intracellular microbes and their host cells can lead to the discovery of novel drug targets. During Toxoplasma infections, host cells express an array of immunity-related GTPases (IRGs) and guanylate binding proteins (GBPs) that load onto the parasite-containing vacuole to clear the parasite. To counter this mechanism, the parasite secretes effector proteins that traffic to the vacuole to disarm the immunity-related loading proteins and evade the immune response. While the interplay between host IRGs and Toxoplasma effector proteins is well understood, little is known about how Toxoplasma neutralizes the GBP response. We describe

  12. Functional Characterization of Rhoptry Kinome in the Virulent Toxoplasma gondii RH Strain.

    Science.gov (United States)

    Wang, Jin-Lei; Li, Ting-Ting; Elsheikha, Hany M; Chen, Kai; Zhu, Wei-Ning; Yue, Dong-Mei; Zhu, Xing-Quan; Huang, Si-Yang

    2017-01-01

    Toxoplasma gondii is an obligatory intracellular apicomplexan protozoan which can infect any warm-blooded animal and causes severe diseases in immunocompromised individuals or infants infected in utero. The survival and success of this parasite require that it colonizes the host cell, avoids host immune defenses, replicates within an appropriate niche, and exits the infected host cell to spread to neighboring non-infected cells. All of these processes depend on the parasite ability to synthesis and export secreted proteins. Amongst the secreted proteins, rhoptry organelle proteins (ROPs) are essential for the parasite invasion and host cell manipulation. Even though the functions of most ROPs have been elucidated in the less virulent T. gondii (type II), the roles of ROPs in the highly virulent type I strain remain largely un-characterized. Herein, we investigated the contributions of 15 ROPs (ROP10, ROP11, ROP15, ROP20, ROP23, ROP31, ROP32, ROP33, ROP34, ROP35, ROP36, ROP40, ROP41, ROP46, and ROP47) to the infectivity of the high virulent type I T. gondii (RH strain). Using CRISPR-Cas9, these 15 ROPs genes were successfully disrupted and the effects of gene knockout on the parasite's ability to infect cells in vitro and BALB/c mice in vivo were investigated. These results showed that deletions of these ROPs did not interfere with the parasite ability to grow in cultured human foreskin fibroblast cells and did not significantly alter parasite pathogenicity for BALB/c mice. Although these ROPs did not seem to be essential for the acute infectious stage of type I T. gondii in the mouse model, they might have different functions in other intermediate hosts or play different roles in other life cycle forms of this parasite due to the different expression patterns; this warrants further investigations.

  13. Functional Characterization of Rhoptry Kinome in the Virulent Toxoplasma gondii RH Strain

    Science.gov (United States)

    Wang, Jin-Lei; Li, Ting-Ting; Elsheikha, Hany M.; Chen, Kai; Zhu, Wei-Ning; Yue, Dong-Mei; Zhu, Xing-Quan; Huang, Si-Yang

    2017-01-01

    Toxoplasma gondii is an obligatory intracellular apicomplexan protozoan which can infect any warm-blooded animal and causes severe diseases in immunocompromised individuals or infants infected in utero. The survival and success of this parasite require that it colonizes the host cell, avoids host immune defenses, replicates within an appropriate niche, and exits the infected host cell to spread to neighboring non-infected cells. All of these processes depend on the parasite ability to synthesis and export secreted proteins. Amongst the secreted proteins, rhoptry organelle proteins (ROPs) are essential for the parasite invasion and host cell manipulation. Even though the functions of most ROPs have been elucidated in the less virulent T. gondii (type II), the roles of ROPs in the highly virulent type I strain remain largely un-characterized. Herein, we investigated the contributions of 15 ROPs (ROP10, ROP11, ROP15, ROP20, ROP23, ROP31, ROP32, ROP33, ROP34, ROP35, ROP36, ROP40, ROP41, ROP46, and ROP47) to the infectivity of the high virulent type I T. gondii (RH strain). Using CRISPR-Cas9, these 15 ROPs genes were successfully disrupted and the effects of gene knockout on the parasite’s ability to infect cells in vitro and BALB/c mice in vivo were investigated. These results showed that deletions of these ROPs did not interfere with the parasite ability to grow in cultured human foreskin fibroblast cells and did not significantly alter parasite pathogenicity for BALB/c mice. Although these ROPs did not seem to be essential for the acute infectious stage of type I T. gondii in the mouse model, they might have different functions in other intermediate hosts or play different roles in other life cycle forms of this parasite due to the different expression patterns; this warrants further investigations. PMID:28174572

  14. 弓形虫棒状体蛋白7真核表达载体的构建及其免疫保护作用%Construction of an eukaryotic vector of rhoptry protein 7 from Toxoplasma gondii and its immunoprotective effect

    Institute of Scientific and Technical Information of China (English)

    王琳; 吕刚; 韩亚莉; 郭晶晶; 赵群力; 何深一

    2015-01-01

    目的:构建弓形虫棒状体蛋白7(ROP7)基因的真核重组表达载体,观察其对小鼠的免疫保护作用。方法根据 GenBank 发表的弓形虫 ROP7序列设计合成一对引物,通过 PCR 扩增 ROP7基因,将其插入真核表达载体pEGFP-C1中构建重组质粒 pEGFP-C1/ROP7(pROP7)。用重组质粒转染 HEK293T 细胞并验证其在细胞内的表达。将36只雌性 BALB /c 小鼠随机分为3组:磷酸缓冲盐溶液(PBS)对照组、pEGFP-C1对照组和 pROP7实验组。然后用 PBS、pEGFP-C1和 pROP7分别免疫相应组别的小鼠。采用 ELISA 检测小鼠血清特异 IgG 水平,观察弓形虫感染小鼠后的存活时间并评价其免疫保护力。结果PCR 扩增出1728 bp 的目的基因片段,真核表达载体构建成功,且能在 HEK293T 细胞中表达。目的基因的相应蛋白可被羊抗弓形虫多克隆抗体识别。重组质粒免疫的小鼠产生了较高水平的血清抗体。虫体攻击试验中,pROP7实验组小鼠的生存时间较对照组小鼠延长(P <0.05)。结论本研究构建的真核表达质粒在对抗弓形虫感染时具有一定的免疫保护作用,为弓形虫基因疫苗的研制提供了参考。%Objective To construct the eukaryotic expression vector of rhoptry protein 7 (ROP7)of Toxoplasma gondii and to evaluate the protective effect induced by recombinant plasmid on mice.Methods PCR primers were designed based on the ROP7 sequence of Toxoplasma gondii in Genbank.The ROP7 gene was amplified by PCR and inserted into the eukaryotic vector pEGFP-C1 and the recombinant plasmid pEGFP-C1 /ROP7 (pROP7)was constructed.Then the plasmids were transfected into HEK293T cells to verify the expression in eukaryotic cells.A total of 36 female BALB /c mice were randomly divided into three groups:phosphate buffer saline (PBS)control group,pEGFP-C1 control group and the pROP7 experimental group.Then PBS,pEGFP-C1 and pROP7 were used to immunize the

  15. Cloning and Sequencing cDNA Encoding for Rhoptry-2 Toxoplasma Gondii Tachyzoite Local Isolate

    Directory of Open Access Journals (Sweden)

    Wayan T. Artama

    2015-10-01

    Full Text Available Rhoptry protein belongs to an excretory and secretory antigens (ESAs that play an important role during activepenetration of parasite into the cell target. This protein an able Toxoplasma gondii to actively penetrate targetedcell, meanwhile ESAs protein stimulates intracellular vacuole modification. It is, therefore, after the parasitesuccessfully enter the cell target then Granule (GRA proteins are responsible for the formation of parasitophorusvacuole, which is protect the fusion with other intracellular compartments such as lysosomal vacuole. Consequently,this parasite is being able to survive and multiply at the cell target. The current study was aimed to clone andsequens cDNA encoding for ROP-2 of local isolated T. gondii tachizoite through DNA recombinant technique.Total ribonucleic acid (RNA was isolated from tachyzoites of local isolated T. gondii that were grown up in Balb/c mice. Messenger RNA was isolated from total RNA using PolyAtract mRNA Isolation System. Messenger RNA wasused as a template for synthesis cDNA using Riboclone cDNA Synthesis System AMV-RT. EcoRI adaptor fromRiboclone EcoRI Adaptor Ligation System was added to Complementary DNA and than ligated to pUC19. Recombinantplasmid was transformed into E. coli (XL1-Blue. The transformed E. coli XL-1 Blue were plated on LB agarcontaining X-Gal, IPTG and ampicillin. Recombinant clones (white colony were picked up and grown up in theLB medium at 37oC overnight. Expression of recombinant protein was analysed by immunoblotting in order toidentify cDNA recombinant wich is express ESA of T. gondii local isolate. Recombinant plasmid were isolatedusing alkalilysis method and were elektroforated in 1% agarose gel. The isolated DNA recombinant plasmid wascut using Eco RI and then sequenced through Big Dye Terminator Mix AB1 377A Sequencer using M13 Forward andM13 Reverse primers. The conclusion of this results showed that the recombinant clone was coding for excretoryand secretory

  16. Cloning and Sequencing cDNA Encoding for Rhoptry-2 Toxoplasma Gondii Tachyzoite Local Isolate

    Directory of Open Access Journals (Sweden)

    Murwantoko M

    2015-11-01

    Full Text Available Rhoptry protein belongs to an excretory and secretory antigens (ESAs that play an important role during active penetration of parasite into the cell target. This protein an able Toxoplasma gondii to actively penetrate targeted cell, meanwhile ESAs protein stimulates intracellular vacuole modification. It is, therefore, after the parasite successfully enter the cell target then Granule (GRA proteins are responsible for the formation of parasitophorus vacuole, which is protect the fusion with other intracellular compartments such as lysosomal vacuole. Consequently, this parasite is being able to survive and multiply at the cell target. The current study was aimed to clone and sequens cDNA encoding for ROP-2 of local isolated T. gondii tachizoite through DNA recombinant technique. Total ribonucleic acid (RNA was isolated from tachyzoites of local isolated T. gondii that were grown up in Balb/c mice. Messenger RNA was isolated from total RNA using PolyAtract mRNA Isolation System. Messenger RNA was used as a template for synthesis cDNA using Riboclone cDNA Synthesis System AMV-RT. EcoRI adaptor from Riboclone EcoRI Adaptor Ligation System was added to Complementary DNA and than ligated to pUC19. Recombinant plasmid was transformed into E. coli (XL1-Blue. The transformed E. coli XL-1 Blue were plated on LB agar containing X-Gal, IPTG and ampicillin. Recombinant clones (white colony were picked up and grown up in the LB medium at 37oC overnight. Expression of recombinant protein was analysed by immunoblotting in order to identify cDNA recombinant wich is express ESA of T. gondii local isolate. Recombinant plasmid were isolated using alkalilysis method and were elektroforated in 1% agarose gel. The isolated DNA recombinant plasmid was cut using Eco RI and then sequenced through Big Dye Terminator Mix AB1 377A Sequencer using M13 Forward and M13 Reverse primers. The conclusion of this results showed that the recombinant clone was coding for excretory

  17. Induction of Protective Immunity against Toxoplasmosis in BALB/c Mice Vaccinated with Toxoplasma gondii Rhoptry-1

    Directory of Open Access Journals (Sweden)

    Parthasarathy eSonaimuthu

    2016-05-01

    Full Text Available Toxoplasma gondii is the causative agent for toxoplasmosis. The rhoptry protein 1 (ROP1 is secreted by rhoptry, an apical secretory organelle of the parasite. ROP1 plays an important role in host cell invasion. In this study, the efficacy of ROP1 as a vaccine candidate against toxoplasmosis was evaluated through intramuscular or subcutaneous injection of BALB/c mice followed by immunological characterization (humoral- and cellular-mediated and lethal challenge against virulent T. gondii RH strain in BALB/c mice. Briefly, a recombinant DNA plasmid (pVAX1-GFP-ROP1 was expressed in CHO cells while expression of recombinant ROP1 protein (rROP1 was carried out in Escherichia coli expression system. Immunization study involved injection of the recombinant pVAX1-ROP1 and purified rROP1 into different group of mice. Empty vector and PBS served as two different types of negative controls. Results obtained demonstrated that ROP1 is an immunogenic antigen that induced humoral immune response whereby detection of a protein band with expected size of 43 kDa was observed against vaccinated mice sera through western blot analysis. ROP1 antigen was shown to elicit cellular-mediated immunity as well whereby stimulated splenocytes with total lysate antigen (TLA and rROP1 from pVAX1-ROP1 and rROP1-immunized mice respectively readily proliferated and secreted large amount of IFN-γ (712±28.1 pg/ml and 1457±31.19 pg/ml respectively and relatively low IL-4 level (94±14.5 pg/ml and 186±14.17 pg/ml respectively. These phenomena suggested that Th1-favored immunity was being induced. Vaccination with ROP1 antigen was able to provide partial protection in the vaccinated mice against lethal challenge with virulent RH strain of tachyzoites. These findings proposed that the ROP1 antigen is a potential candidate for the development of vaccine against toxoplasmosis.

  18. Novel structural and regulatory features of rhoptry secretory kinases in Toxoplasma gondii

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Wei; Wernimont, Amy; Tang, Keliang; Taylor, Sonya; Lunin, Vladimir; Schapira, Matthieu; Fentress, Sarah; Hui, Raymond; Sibley, L. David; (Toronto); (WU-MED)

    2009-09-29

    Serine/threonine kinases secreted from rhoptry organelles constitute important virulence factors of Toxoplasma gondii. Rhoptry kinases are highly divergent and their structures and regulatory mechanism are hitherto unknown. Here, we report the X-ray crystal structures of two related pseudokinases named ROP2 and ROP8, which differ primarily in their substrate-binding site. ROP kinases contain a typical bilobate kinase fold and a novel N-terminal extension that both stabilizes the N-lobe and provides a unique means of regulation. Although ROP2 and ROP8 were catalytically inactive, they provided a template for homology modelling of the active kinase ROP18, a major virulence determinant of T. gondii. Autophosphorylation of key residues in the N-terminal extension resulted in ROP18 activation, which in turn phosphorylated ROP2 and ROP8. Mutagenesis and mass spectrometry experiments revealed that ROP18 was maximally activated when this phosphorylated N-terminus relieved autoinhibition resulting from extension of aliphatic side chains into the ATP-binding pocket. This novel means of regulation governs ROP kinases implicated in parasite virulence.

  19. Identification of Novel O-Linked Glycosylated Toxoplasma Proteins by Vicia villosa Lectin Chromatography.

    Science.gov (United States)

    Wang, Kevin; Peng, Eric D; Huang, Amy S; Xia, Dong; Vermont, Sarah J; Lentini, Gaelle; Lebrun, Maryse; Wastling, Jonathan M; Bradley, Peter J

    2016-01-01

    Toxoplasma gondii maintains its intracellular life cycle using an extraordinary arsenal of parasite-specific organelles including the inner membrane complex (IMC), rhoptries, micronemes, and dense granules. While these unique compartments play critical roles in pathogenesis, many of their protein constituents have yet to be identified. We exploited the Vicia villosa lectin (VVL) to identify new glycosylated proteins that are present in these organelles. Purification of VVL-binding proteins by lectin affinity chromatography yielded a number of novel proteins that were subjected to further study, resulting in the identification of proteins from the dense granules, micronemes, rhoptries and IMC. We then chose to focus on three proteins identified by this approach, the SAG1 repeat containing protein SRS44, the rhoptry neck protein RON11 as well as a novel IMC protein we named IMC25. To assess function, we disrupted their genes by homologous recombination or CRISPR/Cas9. The knockouts were all successful, demonstrating that these proteins are not essential for invasion or intracellular survival. We also show that IMC25 undergoes substantial proteolytic processing that separates the C-terminal domain from the predicted glycosylation site. Together, we have demonstrated that lectin affinity chromatography is an efficient method of identifying new glycosylated parasite-specific proteins.

  20. Identification of Novel O-Linked Glycosylated Toxoplasma Proteins by Vicia villosa Lectin Chromatography.

    Directory of Open Access Journals (Sweden)

    Kevin Wang

    Full Text Available Toxoplasma gondii maintains its intracellular life cycle using an extraordinary arsenal of parasite-specific organelles including the inner membrane complex (IMC, rhoptries, micronemes, and dense granules. While these unique compartments play critical roles in pathogenesis, many of their protein constituents have yet to be identified. We exploited the Vicia villosa lectin (VVL to identify new glycosylated proteins that are present in these organelles. Purification of VVL-binding proteins by lectin affinity chromatography yielded a number of novel proteins that were subjected to further study, resulting in the identification of proteins from the dense granules, micronemes, rhoptries and IMC. We then chose to focus on three proteins identified by this approach, the SAG1 repeat containing protein SRS44, the rhoptry neck protein RON11 as well as a novel IMC protein we named IMC25. To assess function, we disrupted their genes by homologous recombination or CRISPR/Cas9. The knockouts were all successful, demonstrating that these proteins are not essential for invasion or intracellular survival. We also show that IMC25 undergoes substantial proteolytic processing that separates the C-terminal domain from the predicted glycosylation site. Together, we have demonstrated that lectin affinity chromatography is an efficient method of identifying new glycosylated parasite-specific proteins.

  1. Immunoglobulin G reactivities to rhoptry-associated protein-1 associated with decreased levels of Plasmodium falciparum parasitemia in Tanzanian children

    DEFF Research Database (Denmark)

    Jakobsen, P H; Lemnge, M M; Abu-Zeid, Y A

    1996-01-01

    with resistance to infection. On the other hand, levels of IgG reactivities to the repeat region of ABRA increased with parasite densities in children 1-4 years of age. Two different profiles of IgG reactivities to rRAP-1 and to ABRA are detectable in young Tanzanian children and the Ig reactivities against r...

  2. Identification and characterization of secreted proteins in Eimeria tenella

    Science.gov (United States)

    Ramlee, Intan Azlinda; Firdaus-Raih, Mohd; Wan, Kiew-Lian

    2015-09-01

    Eimeria tenella is a protozoan parasite that causes coccidiosis, an economically important disease in the poultry industry. The characterization of proteins that are secreted by parasites have been shown to play important roles in parasite invasion and are considered to be potential control agents. In this study, 775 proteins potentially secreted by E. tenella were identified. These proteins were further filtered to remove mitochondrial proteins. Out of 763 putative secreted proteins, 259 proteins possess transmembrane domains while another 150 proteins have GPI (Glycosylphosphatidylinositol) anchors. Homology search revealed that 315 and 448 proteins have matches with known and hypothetical proteins in the database, respectively. Within this data set, previously characterized secretory proteins such as micronemes, rhoptry kinases and dense granules were detected.

  3. Identification and characterization of the RouenBd1987 Babesia divergens Rhopty-Associated Protein 1.

    Directory of Open Access Journals (Sweden)

    Marilis Rodriguez

    Full Text Available Human babesiosis is caused by one of several babesial species transmitted by ixodid ticks that have distinct geographical distributions based on the presence of competent animal hosts. The pathology of babesiosis, like malaria, is a consequence of the parasitaemia which develops through the cyclical replication of Babesia parasites in a patient's red blood cells, though symptoms typically are nonspecific. We have identified the gene encoding Rhoptry-Associated Protein -1 (RAP-1 from a human isolate of B. divergens, Rouen1987 and characterized its protein product at the molecular and cellular level. Consistent with other Babesia RAP-1 homologues, BdRAP-1 is expressed as a 46 kDa protein in the parasite rhoptries, suggesting a possible role in red cell invasion. Native BdRAP-1 binds to an unidentified red cell receptor(s that appears to be non-sialylated and non-proteinacious in nature, but we do not find significant reduction in growth with anti-rRAP1 antibodies in vitro, highlighting the possibility the B. divergens is able to use alternative pathways for invasion, or there is an alternative, complementary, role for BdRAP-1 during the invasion process. As it is the parasite's ability to recognize and then invade host cells which is central to clinical disease, characterising and understanding the role of Babesia-derived proteins involved in these steps are of great interest for the development of an effective prophylaxis.

  4. Evidence for a Golgi-to-endosome protein sorting pathway in Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Priscilla Krai

    Full Text Available During the asexual intraerythrocytic stage, the malaria parasite Plasmodium falciparum must traffic newly-synthesized proteins to a broad array of destinations within and beyond the parasite's plasma membrane. In this study, we have localized two well-conserved protein components of eukaryotic endosomes, the retromer complex and the small GTPase Rab7, to define a previously-undescribed endosomal compartment in P. falciparum. Retromer and Rab7 co-localized to a small number of punctate structures within parasites. These structures, which we refer to as endosomes, lie in close proximity to the Golgi apparatus and, like the Golgi apparatus, are inherited by daughter merozoites. However, the endosome is clearly distinct from the Golgi apparatus as neither retromer nor Rab7 redistributed to the endoplasmic reticulum upon brefeldin A treatment. Nascent rhoptries (specialized secretory organelles required for invasion developed adjacent to endosomes, an observation that suggests a role for the endosome in rhoptry biogenesis. A P. falciparum homolog of the sortilin family of protein sorting receptors (PfSortilin was localized to the Golgi apparatus. Together, these results elaborate a putative Golgi-to-endosome protein sorting pathway in asexual blood stage parasites and suggest that one role of retromer is to mediate the retrograde transport of PfSortilin from the endosome to the Golgi apparatus.

  5. Protein

    Science.gov (United States)

    ... Food Service Resources Additional Resources About FAQ Contact Protein Protein is found throughout the body—in muscle, ... the heart and respiratory system, and death. All Protein Isn’t Alike Protein is built from building ...

  6. A conserved region in the EBL proteins is implicated in microneme targeting of the malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Treeck, Moritz; Struck, Nicole S; Haase, Silvia; Langer, Christine; Herrmann, Susann; Healer, Julie; Cowman, Alan F; Gilberger, Tim W

    2006-10-20

    The proliferation of the malaria parasite Plasmodium falciparum within the human host is dependent upon invasion of erythrocytes. This process is accomplished by the merozoite, a highly specialized form of the parasite. Secretory organelles including micronemes and rhoptries play a pivotal role in the invasion process by storing and releasing parasite proteins. The mechanism of protein sorting to these compartments is unclear. Using a transgenic approach we show that trafficking of the most abundant micronemal proteins (members of the EBL-family: EBA-175, EBA-140/BAEBL, and EBA-181/JSEBL) is independent of their cytoplasmic and transmembrane domains, respectively. To identify the minimal sequence requirements for microneme trafficking, we generated parasites expressing EBA-GFP chimeric proteins and analyzed their distribution within the infected erythrocyte. This revealed that: (i) a conserved cysteine-rich region in the ectodomain is necessary for protein trafficking to the micronemes and (ii) correct sorting is dependent on accurate timing of expression.

  7. Identification of Plasmodium falciparum RhopH3 protein peptides that specifically bind to erythrocytes and inhibit merozoite invasion

    Science.gov (United States)

    Pinzón, Carlos Giovanni; Curtidor, Hernando; Reyes, Claudia; Méndez, David; Patarroyo, Manuel Elkin

    2008-01-01

    The identification of sequences involved in binding to erythrocytes is an important step for understanding the molecular basis of merozoite–erythrocyte interactions that take place during invasion of the Plasmodium falciparum malaria parasite into host cells. Several molecules located in the apical organelles (micronemes, rhoptry, dense granules) of the invasive-stage parasite are essential for erythrocyte recognition, invasion, and establishment of the nascent parasitophorous vacuole. Particularly, it has been demonstrated that rhoptry proteins play an important role in binding to erythrocyte surface receptors, among which is the PfRhopH3 protein, which triggers important immune responses in patients from endemic regions. It has also been reported that anti-RhopH3 antibodies inhibit in vitro invasion of erythrocytes, further supporting its direct involvement in erythrocyte invasion processes. In this study, PfRhopH3 consecutive peptides were synthesized and tested in erythrocyte binding assays for identifying those regions mediating binding to erythrocytes. Fourteen PfRhopH3 peptides presenting high specific binding activity were found, whose bindings were saturable and presented nanomolar dissociation constants. These high-activity binding peptides (HABPs) were characterized by having α-helical structural elements, as determined by circular dichroism, and having receptors of a possible sialic acid-dependent and/or glycoprotein-dependent nature, as evidenced in enzyme-treated erythrocyte binding assays and further corroborated by cross-linking assay results. Furthermore, these HABPs inhibited merozoite in vitro invasion of normal erythrocytes at 200 μM by up to 60% and 90%, suggesting that some RhopH3 protein regions are involved in the P. falciparum erythrocyte invasion. PMID:18593818

  8. Computational and biophysical approaches to protein-protein interaction inhibition of Plasmodium falciparum AMA1/RON2 complex

    Science.gov (United States)

    Pihan, Emilie; Delgadillo, Roberto F.; Tonkin, Michelle L.; Pugnière, Martine; Lebrun, Maryse; Boulanger, Martin J.; Douguet, Dominique

    2015-06-01

    Invasion of the red blood cell by Plasmodium falciparum parasites requires formation of an electron dense circumferential ring called the Moving Junction (MJ). The MJ is anchored by a high affinity complex of two parasite proteins: Apical Membrane Antigen 1 ( PfAMA1) displayed on the surface of the parasite and Rhoptry Neck Protein 2 that is discharged from the parasite and imbedded in the membrane of the host cell. Structural studies of PfAMA1 revealed a conserved hydrophobic groove localized to the apical surface that coordinates RON2 and invasion inhibitory peptides. In the present work, we employed computational and biophysical methods to identify competitive P. falciparum AMA1-RON2 inhibitors with the goal of exploring the `druggability' of this attractive antimalarial target. A virtual screen followed by molecular docking with the PfAMA1 crystal structure was performed using an eight million compound collection that included commercial molecules, the ChEMBL malaria library and approved drugs. The consensus approach resulted in the selection of inhibitor candidates. We also developed a fluorescence anisotropy assay using a modified inhibitory peptide to experimentally validate the ability of the selected compounds to inhibit the AMA1-RON2 interaction. Among those, we identified one compound that displayed significant inhibition. This study offers interesting clues to improve the throughput and reliability of screening for new drug leads.

  9. Identification of novel proteins in Neospora caninum using an organelle purification and monoclonal antibody approach.

    Science.gov (United States)

    Sohn, Catherine S; Cheng, Tim T; Drummond, Michael L; Peng, Eric D; Vermont, Sarah J; Xia, Dong; Cheng, Stephen J; Wastling, Jonathan M; Bradley, Peter J

    2011-04-04

    Neospora caninum is an important veterinary pathogen that causes abortion in cattle and neuromuscular disease in dogs. Neospora has also generated substantial interest because it is an extremely close relative of the human pathogen Toxoplasma gondii, yet does not appear to infect humans. While for Toxoplasma there are a wide array of molecular tools and reagents available for experimental investigation, relatively few reagents exist for Neospora. To investigate the unique biological features of this parasite and exploit the recent sequencing of its genome, we have used an organelle isolation and monoclonal antibody approach to identify novel organellar proteins and develop a wide array of probes for subcellular localization. We raised a panel of forty-six monoclonal antibodies that detect proteins from the rhoptries, micronemes, dense granules, inner membrane complex, apicoplast, mitochondrion and parasite surface. A subset of the proteins was identified by immunoprecipitation and mass spectrometry and reveal that we have identified and localized many of the key proteins involved in invasion and host interaction in Neospora. In addition, we identified novel secretory proteins not previously studied in any apicomplexan parasite. Thus, this organellar monoclonal antibody approach not only greatly enhances the tools available for Neospora cell biology, but also identifies novel components of the unique biological characteristics of this important veterinary pathogen.

  10. Identification of novel proteins in Neospora caninum using an organelle purification and monoclonal antibody approach.

    Directory of Open Access Journals (Sweden)

    Catherine S Sohn

    Full Text Available Neospora caninum is an important veterinary pathogen that causes abortion in cattle and neuromuscular disease in dogs. Neospora has also generated substantial interest because it is an extremely close relative of the human pathogen Toxoplasma gondii, yet does not appear to infect humans. While for Toxoplasma there are a wide array of molecular tools and reagents available for experimental investigation, relatively few reagents exist for Neospora. To investigate the unique biological features of this parasite and exploit the recent sequencing of its genome, we have used an organelle isolation and monoclonal antibody approach to identify novel organellar proteins and develop a wide array of probes for subcellular localization. We raised a panel of forty-six monoclonal antibodies that detect proteins from the rhoptries, micronemes, dense granules, inner membrane complex, apicoplast, mitochondrion and parasite surface. A subset of the proteins was identified by immunoprecipitation and mass spectrometry and reveal that we have identified and localized many of the key proteins involved in invasion and host interaction in Neospora. In addition, we identified novel secretory proteins not previously studied in any apicomplexan parasite. Thus, this organellar monoclonal antibody approach not only greatly enhances the tools available for Neospora cell biology, but also identifies novel components of the unique biological characteristics of this important veterinary pathogen.

  11. Characterization of monoclonal antibodies that recognize the Eimeria tenella microneme protein MIC2.

    Science.gov (United States)

    Sasai, Kazumi; Fetterer, Raymond H; Lillehoj, Hyun; Matusra, Satomi; Constantinoiu, Constantin C; Matsubayashi, Makoto; Tani, Hiroyuki; Baba, Eiichiroh

    2008-12-01

    The apicomplexan pathogens of Eimeria cause coccidiosis, an intestinal disease of chickens, which has a major economic impact on the poultry industry. Members of the Apicomplexa share an assortment of unique secretory organelles (rhoptries, micronemes and dense granules) that mediate invasion of host cells and formation and modification of the parasitophorous vacuole. Among these, microneme protein 2 from Eimeria tenella(EtMIC2) has a putative function in parasite adhesion to the host cell to initiate the invasion process. To investigate the role of EtMIC2 in host parasite interactions, the production and characterization of 12 monoclonal antibodies (mabs) produced against recombinant EtMIC2 proteins is described. All mabs reacted with molecules belonging to the apical complex of sporozoites and merozoites of E. tenella, E. acervulina and E. maxima in an immunofluorescence assay. By Western blot analysis, the mabs identified a developmentally regulated protein of 42 kDa corresponding to EtMIC 2 and cross-reacted with proteins in developmental stages of E. acervulina. Collectively, these mabs are useful tools for the detailed investigation of the characterization of EtMIC2 related proteins in Eimeria species.

  12. In silico identification of specialized secretory-organelle proteins in apicomplexan parasites and in vivo validation in Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Zhongqiang Chen

    Full Text Available Apicomplexan parasites, including the human pathogens Toxoplasma gondii and Plasmodium falciparum, employ specialized secretory organelles (micronemes, rhoptries, dense granules to invade and survive within host cells. Because molecules secreted from these organelles function at the host/parasite interface, their identification is important for understanding invasion mechanisms, and central to the development of therapeutic strategies. Using a computational approach based on predicted functional domains, we have identified more than 600 candidate secretory organelle proteins in twelve apicomplexan parasites. Expression in transgenic T. gondii of eight proteins identified in silico confirms that all enter into the secretory pathway, and seven target to apical organelles associated with invasion. An in silico approach intended to identify possible host interacting proteins yields a dataset enriched in secretory/transmembrane proteins, including most of the antigens known to be engaged by apicomplexan parasites during infection. These domain pattern and projected interactome approaches significantly expand the repertoire of proteins that may be involved in host parasite interactions.

  13. Toxoplasma exports dense granule proteins beyond the vacuole to the host cell nucleus and rewires the host genome expression.

    Science.gov (United States)

    Bougdour, Alexandre; Tardieux, Isabelle; Hakimi, Mohamed-Ali

    2014-03-01

    Toxoplasma gondii is the most widespread apicomplexan parasite and occupies a large spectrum of niches by infecting virtually any warm-blooded animals. As an obligate intracellular parasite, Toxoplasma has evolved a repertoire of strategies to fine-tune the cellular environment in an optimal way to promote growth and persistence in host tissues hence increasing the chance to be transmitted to new hosts. Short and long-term intracellular survival is associated with Toxoplasma ability to both evade the host deleterious immune defences and to stimulate a beneficial immune balance by governing host cell gene expression. It is only recently that parasite proteins responsible for driving these transcriptional changes have been identified. While proteins contained in the apical secretory Rhoptry organelle have already been identified as bona fide secreted effectors that divert host signalling pathways, recent findings revealed that dense granule proteins should be added to the growing list of effectors as they reach the host cell cytoplasm and nucleus and target various host cell pathways in the course of cell infection. Herein, we emphasize on a novel subfamily of dense granule residentproteins, exemplified with the GRA16 and GRA24 members we recently discovered as both are exported beyond the vacuole-containing parasites and reach the host cell nucleus to reshape the host genome expression.

  14. Towards vaccine against toxoplasmosis: evaluation of the immunogenic and protective activity of recombinant ROP5 and ROP18 Toxoplasma gondii proteins.

    Science.gov (United States)

    Grzybowski, Marcin M; Dziadek, Bożena; Gatkowska, Justyna M; Dzitko, Katarzyna; Długońska, Henryka

    2015-12-01

    Toxoplasmosis is one of the most common parasitic infections worldwide. An effective vaccine against human and animal toxoplasmosis is still needed to control this parasitosis. The polymorphic rhoptry proteins, ROP5 and ROP18, secreted by Toxoplasma gondii during the invasion of the host cell have been recently considered as promising vaccine antigens, as they appear to be the major determinants of T. gondii virulence in mice. The goal of this study was to evaluate their immunogenic and immunoprotective activity after their administration (separately or both recombinant proteins together) with the poly I:C as an adjuvant. Immunization of BALB/c and C3H/HeOuJ mice generated both cellular and humoral specific immune responses with some predominance of IgG1 antibodies. The spleen cells derived from vaccinated animals reacted to the parasite's native antigens. Furthermore, the immunization led to a partial protection against acute and chronic toxoplasmosis. These findings confirm the previous assumptions about ROP5 and ROP18 antigens as valuable components of a subunit vaccine against toxoplasmosis.

  15. The phosphomimetic mutation of an evolutionarily conserved serine residue affects the signaling properties of Rho of plants (ROPs).

    Science.gov (United States)

    Fodor-Dunai, Csilla; Fricke, Inka; Potocký, Martin; Dorjgotov, Dulguun; Domoki, Mónika; Jurca, Manuela E; Otvös, Krisztina; Zárský, Viktor; Berken, Antje; Fehér, Attila

    2011-05-01

    Plant ROP (Rho of plants) proteins form a unique subgroup within the family of Rho-type small G-proteins of eukaryotes. In this paper we demonstrate that the phosphomimetic mutation of a serine residue conserved in all Rho proteins affects the signaling properties of plant ROPs. We found that the S74E mutation in Medicago ROP6 and Arabidopsis ROP4 prevented the binding of these proteins to their plant-specific upstream activator the plant-specific ROP nucleotide exchanger (PRONE)-domain-containing RopGEF (guanine nucleotide exchange factor) protein and abolished the PRONE-mediated nucleotide exchange reaction in vitro. Structural modeling supported the hypothesis that potential phosphorylation of the S74 residue interferes with the binding of the PRONE-domain to the adjacent plant-specific R76 residue which plays an important role in functional ROP-PRONE interaction. Moreover, we show that while the binding of constitutively active MsROP6 to the effector protein RIC (ROP-interactive CRIB-motif-containing protein) was not affected by the S74E mutation, the capability of this mutated protein to bind and activate the RRK1 kinase in vitro was reduced. These observations are in agreement with the morphology of tobacco pollen tubes expressing mutant forms of yellow fluorescent protein (YFP):MsROP6. The S74E mutation in MsROP6 had no influence on pollen tube morphology and attenuated the phenotype of a constitutively active form of MsROP6. The presented Medicago and Arabidopsis data support the notion that the phosphorylation of the serine residue in ROPs corresponding to S74 in Medicago ROP6 could be a general principle for regulating ROP activation and signaling in plants. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  16. Activation status coupled transient S-acylation determines membrane partitioning of a plant Rho-related GTPase.

    Science.gov (United States)

    Sorek, Nadav; Poraty, Limor; Sternberg, Hasana; Buriakovsky, Ella; Bar, Einat; Lewinsohn, Efraim; Yalovsky, Shaul

    2017-09-11

    ROPs or RACs are plant Rho-related GTPases implicated in regulation of multitude of signaling pathways that function at the plasma membrane via posttranslational lipid modifications. The relations between ROP activation status and their membrane localization has not been established. Here, we show that endogenous ROPs, as well as a transgenic His6:GFP:AtROP6 fusion protein, were partitioned between Triton X-100 soluble and insoluble membranes. In contrast, the His6:GFP:Atrop6(CA) activated mutant accumulated exclusively in detergent resistant membranes. GDP induced accumulation of ROPs in Triton-soluble membranes, whereas GTPγS induced accumulation of ROPs in detergent-resistant membranes. Recombinant wild type and constitutively active AtROP6 were purified from Arabidopsis plants and in turn their lipids were cleaved and analyzed by gas chromatography coupled mass spectrometry. In Triton-soluble membranes, the wild type AtROP6 was only prenylated, primarily by geranylgeranyl. The activated AtROP6 that accumulated in detergent resistant membranes was modified by prenyl and acyl lipids, identified to be palmitic and stearic acids. Consistently, activated His6:GFP:Atrop6(CA)mS(156), in which C156 was mutated into serine, accumulated in Triton-soluble membranes. These findings show that upon GTP binding and activation, AtROP6 and possibly other ROPs are transiently S-acylated inducing their partitioning into detergent resistant membranes. Copyright © 2017 American Society for Microbiology.

  17. Molecular characterization of a new Babesia bovis thrombospondin-related anonymous protein (BbTRAP2.

    Directory of Open Access Journals (Sweden)

    Mohamad Alaa Terkawi

    Full Text Available A gene encoding a Babesia bovis protein that shares significant degree of similarity to other apicomplexan thrombospondin-related anonymous proteins (TRAPs was found in the genomic database and designated as BbTRAP2. Recombinant protein containing a conserved region of BbTRAP2 was produced in E. coli. A high antigenicity of recombinant BbTRAP2 (rBbTRAP2 was observed with field B. bovis-infected bovine sera collected from geographically different regions of the world. Moreover, antiserum against rBbTRAP2 specifically reacted with the authentic protein by Western blot analysis and an indirect fluorescent antibody test. Three bands corresponding to 104-, 76-, and 44-kDa proteins were identified in the parasite lysates and two bands of 76- and 44-kDa proteins were detected in the supernatant of cultivated parasites, indicating that BbTRAP2 was proteolytically processed and shed into the culture. Apical and surface localizations of BbTRAP2 were observed in the intracellular and extracellular parasites, respectively, by confocal laser microscopic examination. Moreover, native BbTRAP2 was precipitated by bovine erythrocytes, suggesting its role in the attachment to erythrocytes. Furthermore, the specific antibody to rBbTRAP2 inhibited the growth of B. bovis in a concentration-dependent manner. Consistently, pre-incubation of the free merozoites with the antibody to rBbTRAP2 resulted in an inhibition of the parasite invasion into host erythrocytes. Interestingly, the antibody to rBbTRAP2 was the most inhibitive for the parasite's growth as compared to those of a set of antisera produced against different recombinant proteins, including merozoite surface antigen 2c (BbMSA-2c, rhoptry-associated protein 1 C-terminal (BbRAP-1CT, and spherical body protein 1 (BbSBP-1. These results suggest that BbTRAP2 might be a potential candidate for development of a subunit vaccine against B. bovis infection.

  18. Phosphorylation of mouse immunity-related GTPase (IRG resistance proteins is an evasion strategy for virulent Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Tobias Steinfeldt

    Full Text Available Virulence of complex pathogens in mammals is generally determined by multiple components of the pathogen interacting with the functional complexity and multiple layering of the mammalian immune system. It is most unusual for the resistance of a mammalian host to be overcome by the defeat of a single defence mechanism. In this study we uncover and analyse just such a case at the molecular level, involving the widespread intracellular protozoan pathogen Toxoplasma gondii and one of its most important natural hosts, the house mouse (Mus musculus. Natural polymorphism in virulence of Eurasian T. gondii strains for mice has been correlated in genetic screens with the expression of polymorphic rhoptry kinases (ROP kinases secreted into the host cell during infection. We show that the molecular targets of the virulent allelic form of ROP18 kinase are members of a family of cellular GTPases, the interferon-inducible IRG (immunity-related GTPase proteins, known from earlier work to be essential resistance factors in mice against avirulent strains of T. gondii. Virulent T. gondii strain ROP18 kinase phosphorylates several mouse IRG proteins. We show that the parasite kinase phosphorylates host Irga6 at two threonines in the nucleotide-binding domain, biochemically inactivating the GTPase and inhibiting its accumulation and action at the T. gondii parasitophorous vacuole membrane. Our analysis identifies the conformationally active switch I region of the GTP-binding site as an Achilles' heel of the IRG protein pathogen-resistance mechanism. The polymorphism of ROP18 in natural T. gondii populations indicates the existence of a dynamic, rapidly evolving ecological relationship between parasite virulence factors and host resistance factors. This system should be unusually fruitful for analysis at both ecological and molecular levels since both T. gondii and the mouse are widespread and abundant in the wild and are well-established model species with

  19. Protein Foods

    Science.gov (United States)

    ... Text Size: A A A Listen En Español Protein Foods Foods high in protein such as fish, ... for the vegetarian proteins, whether they have carbohydrate. Protein Choices Plant-Based Proteins Plant-based protein foods ...

  20. Toxoplasma gondii-Derived Synthetic Peptides Containing B- and T-Cell Epitopes from GRA2 Protein Are Able to Enhance Mice Survival in a Model of Experimental Toxoplasmosis

    Science.gov (United States)

    Bastos, Luciana M.; Macêdo, Arlindo G.; Silva, Murilo V.; Santiago, Fernanda M.; Ramos, Eliezer L. P.; Santos, Fabiana A. A.; Pirovani, Carlos P.; Goulart, Luiz R.; Mineo, Tiago W. P.; Mineo, José R.

    2016-01-01

    Toxoplasmosis is a zoonosis distributed all over the world, which the etiologic agent is an intracellular protozoan parasite, Toxoplasma gondii. This disease may cause abortions and severe diseases in many warm-blood hosts, including humans, particularly the immunocompromised patients. The parasite specialized secretory organelles, as micronemes, rhoptries and dense granules, are critical for the successful parasitism. The dense granule protein 2 (GRA2) is a parasite immunogenic protein secreted during infections and previous studies have been shown that this parasite component is crucial for the formation of intravacuolar membranous nanotubular network (MNN), as well as for secretion into the vacuole and spatial organization of the parasites within the vacuole. In the present study, we produced a monoclonal antibody to GRA2 (C3C5 mAb, isotype IgG2b), mapped the immunodominant epitope of the protein by phage display and built GRA2 synthetic epitopes to evaluate their ability to protect mice in a model of experimental infection. Our results showed that synthetic peptides for B- and T-cell epitopes are able to improve survival of immunized animals. In contrast with non-immunized animals, the immunized mice with both B- and T-cell epitopes had a better balance of cytokines and demonstrated higher levels of IL-10, IL-4 and IL-17 production, though similar levels of TNF-α and IL-6 were observed. The immunization with both B- and T-cell epitopes resulted in survival rate higher than 85% of the challenged mice. Overall, these results demonstrate that immunization with synthetic epitopes for both B- and T-cells from GRA2 protein can be more effective to protect against infection by T. gondii. PMID:27313992

  1. Serum antibodies from a subset of horses positive for Babesia caballi by competitive enzyme-linked immunosorbent assay demonstrate a protein recognition pattern that is not consistent with infection.

    Science.gov (United States)

    Awinda, Peter O; Mealey, Robert H; Williams, Laura B A; Conrad, Patricia A; Packham, Andrea E; Reif, Kathryn E; Grause, Juanita F; Pelzel-McCluskey, Angela M; Chung, Chungwon; Bastos, Reginaldo G; Kappmeyer, Lowell S; Howe, Daniel K; Ness, SallyAnne L; Knowles, Donald P; Ueti, Massaro W

    2013-11-01

    Tick-borne pathogens that cause persistent infection are of major concern to the livestock industry because of transmission risk from persistently infected animals and the potential economic losses they pose. The recent reemergence of Theileria equi in the United States prompted a widespread national survey resulting in identification of limited distribution of equine piroplasmosis (EP) in the U.S. horse population. This program identified Babesia caballi-seropositive horses using rhoptry-associated protein 1 (RAP-1)-competitive enzyme-linked immunosorbent assay (cELISA), despite B. caballi being considered nonendemic on the U.S. mainland. The purpose of the present study was to evaluate the suitability of RAP-1-cELISA as a single serological test to determine the infection status of B. caballi in U.S. horses. Immunoblotting indicated that sera from U.S. horses reacted with B. caballi lysate and purified B. caballi RAP-1 protein. Antibody reactivity to B. caballi lysate was exclusively directed against a single ∼50-kDa band corresponding to a native B. caballi RAP-1 protein. In contrast, sera from experimentally and naturally infected horses from regions where B. caballi is endemic bound multiple proteins ranging from 30 to 50 kDa. Dilutions of sera from U.S. horses positive by cELISA revealed low levels of antibodies, while sera from horses experimentally infected with B. caballi and from areas where B. caballi is endemic had comparatively high antibody levels. Finally, blood transfer from seropositive U.S. horses into naive horses demonstrated no evidence of B. caballi transmission, confirming that antibody reactivity in cELISA-positive U.S. horses was not consistent with infection. Therefore, we conclude that a combination of cELISA and immunoblotting is required for the accurate serodiagnosis of B. caballi.

  2. Toxoplasma gondii-derived synthetic peptides containing B- and T-cell epitopes from GRA2 protein are able to enhance mice survival in a model of experimental toxoplasmosis

    Directory of Open Access Journals (Sweden)

    Luciana Machado Bastos

    2016-06-01

    Full Text Available Toxoplasmosis is a zoonosis distributed all over the world, which the etiologic agent is an intracellular protozoan parasite, Toxoplasma gondii. This disease may cause abortions and severe diseases in many warm-blood hosts, including humans, particularly the immunocompromised patients. The parasite specialized secretory organelles, as micronemes, rhoptries and dense granules, are critical for the successful parasitism. The dense granule protein 2 (GRA2 is a parasite immunogenic protein secreted during infections and previous studies have been shown that this parasite component is crucial for the formation of intravacuolar membranous nanotubular network (MNN, as well as for secretion into the vacuole and spatial organization of the parasites within the vacuole. In the present study, we produced a monoclonal antibody to GRA2 (C3C5 mAb, isotype IgG2b, mapped the immunodominant epitope of the protein by phage display and built GRA2 synthetic epitopes to evaluate their ability to protect mice in a model of experimental infection. Our results showed that synthetic peptides for B- and T-cell epitopes are able to improve survival of immunized animals. In contrast with non-immunized animals, the immunized mice with both B- and T-cell epitopes had a better balance of cytokines and demonstrated higher levels of IL-10, IL-4 and IL-17 production, though similar levels of TNF-alpha and IL-6 were observed. The immunization with both B- and T-cell epitopes resulted in survival rate higher than 85% of the challenged mice. Overall, these results demonstrate that immunization with synthetic epitopes for both B- and T-cells from GRA2 protein can be more effective to protect against infection by T. gondii.

  3. Protein-protein interactions

    DEFF Research Database (Denmark)

    Byron, Olwyn; Vestergaard, Bente

    2015-01-01

    Responsive formation of protein:protein interaction (PPI) upon diverse stimuli is a fundament of cellular function. As a consequence, PPIs are complex, adaptive entities, and exist in structurally heterogeneous interplays defined by the energetic states of the free and complexed protomers....... The biophysical and structural investigations of PPIs consequently demand hybrid approaches, implementing orthogonal methods and strategies for global data analysis. Currently, impressive developments in hardware and software within several methodologies define a new era for the biostructural community. Data can...

  4. Protein trafficking through the endosomal system prepares intracellular parasites for a home invasion.

    OpenAIRE

    Tomavo, S; Slomianny, C; Meissner, M.; Carruthers, V B

    2013-01-01

    Toxoplasma (toxoplasmosis) and Plasmodium (malaria) use unique secretory organelles for migration, cell invasion, manipulation of host cell functions, and cell egress. In particular, the apical secretory micronemes and rhoptries of apicomplexan parasites are essential for successful host infection. New findings reveal that the contents of these organelles, which are transported through the endoplasmic reticulum (ER) and Golgi, also require the parasite endosome-like system to access their res...

  5. Protein Condensation

    Science.gov (United States)

    Gunton, James D.; Shiryayev, Andrey; Pagan, Daniel L.

    2014-07-01

    Preface; 1. Introduction; 2. Globular protein structure; 3. Experimental methods; 4. Thermodynamics and statistical mechanics; 5. Protein-protein interactions; 6. Theoretical studies of equilibrium; 7. Nucleation theory; 8. Experimental studies of nucleation; 9. Lysozyme; 10. Some other globular proteins; 11. Membrane proteins; 12. Crystallins and cataracts; 13. Sickle hemoglobin and sickle cell anemia; 14, Alzheimer's disease; Index.

  6. Protein C

    Science.gov (United States)

    ... have an unexplained blood clot, or a family history of blood clots. Protein C helps control blood clotting. A lack of this protein or problem with the function of this protein may cause blood clots to ...

  7. Protein S

    Science.gov (United States)

    ... have an unexplained blood clot, or a family history of blood clots. Protein S helps control blood clotting. A lack of this protein or problem with the function of this protein may cause blood clots to ...

  8. Total protein

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003483.htm Total protein To use the sharing features on this page, please enable JavaScript. The total protein test measures the total amount of two classes ...

  9. Protein Structure

    Science.gov (United States)

    Asmus, Elaine Garbarino

    2007-01-01

    Individual students model specific amino acids and then, through dehydration synthesis, a class of students models a protein. The students clearly learn amino acid structure, primary, secondary, tertiary, and quaternary structure in proteins and the nature of the bonds maintaining a protein's shape. This activity is fun, concrete, inexpensive and…

  10. Whey Protein

    Science.gov (United States)

    ... Fraction de Lactosérum, Fraction de Petit-Lait, Goat Milk Whey, Goat Whey, Isolat de Protéine de Lactosérum, Isolat ... Lactosérum de Lait de Chèvre, MBP, Milk Protein, Milk Protein Isolate, Mineral Whey Concentrate, Proteínas del Suero de la Leche, Protéine ...

  11. Tau protein

    DEFF Research Database (Denmark)

    Frederiksen, Jette Lautrup Battistini; Kristensen, Kim; Bahl, Jmc

    2011-01-01

    Background: Tau protein has been proposed as biomarker of axonal damage leading to irreversible neurological impairment in MS. CSF concentrations may be useful when determining risk of progression from ON to MS. Objective: To investigate the association between tau protein concentration and 14......-3-3 protein in the cerebrospinal fluid (CSF) of patients with monosymptomatic optic neuritis (ON) versus patients with monosymptomatic onset who progressed to multiple sclerosis (MS). To evaluate results against data found in a complete literature review. Methods: A total of 66 patients with MS and/or ON from...... the Department of Neurology of Glostrup Hospital, University of Copenhagen, Denmark, were included. CSF samples were analysed for tau protein and 14-3-3 protein, and clinical and paraclinical information was obtained from medical records. Results: The study shows a significantly increased concentration of tau...

  12. Protein-Protein Interaction Databases

    DEFF Research Database (Denmark)

    Szklarczyk, Damian; Jensen, Lars Juhl

    2015-01-01

    of research are explored. Here we present an overview of the most widely used protein-protein interaction databases and the methods they employ to gather, combine, and predict interactions. We also point out the trade-off between comprehensiveness and accuracy and the main pitfall scientists have to be aware......Years of meticulous curation of scientific literature and increasingly reliable computational predictions have resulted in creation of vast databases of protein interaction data. Over the years, these repositories have become a basic framework in which experiments are analyzed and new directions...

  13. Protein trafficking through the endosomal system prepares intracellular parasites for a home invasion.

    Science.gov (United States)

    Tomavo, Stanislas; Slomianny, Christian; Meissner, Markus; Carruthers, Vern B

    2013-10-01

    Toxoplasma (toxoplasmosis) and Plasmodium (malaria) use unique secretory organelles for migration, cell invasion, manipulation of host cell functions, and cell egress. In particular, the apical secretory micronemes and rhoptries of apicomplexan parasites are essential for successful host infection. New findings reveal that the contents of these organelles, which are transported through the endoplasmic reticulum (ER) and Golgi, also require the parasite endosome-like system to access their respective organelles. In this review, we discuss recent findings that demonstrate that these parasites reduced their endosomal system and modified classical regulators of this pathway for the biogenesis of apical organelles.

  14. Protein trafficking through the endosomal system prepares intracellular parasites for a home invasion.

    Directory of Open Access Journals (Sweden)

    Stanislas Tomavo

    2013-10-01

    Full Text Available Toxoplasma (toxoplasmosis and Plasmodium (malaria use unique secretory organelles for migration, cell invasion, manipulation of host cell functions, and cell egress. In particular, the apical secretory micronemes and rhoptries of apicomplexan parasites are essential for successful host infection. New findings reveal that the contents of these organelles, which are transported through the endoplasmic reticulum (ER and Golgi, also require the parasite endosome-like system to access their respective organelles. In this review, we discuss recent findings that demonstrate that these parasites reduced their endosomal system and modified classical regulators of this pathway for the biogenesis of apical organelles.

  15. Protein Crystallization

    Science.gov (United States)

    Chernov, Alexander A.

    2005-01-01

    Nucleation, growth and perfection of protein crystals will be overviewed along with crystal mechanical properties. The knowledge is based on experiments using optical and force crystals behave similar to inorganic crystals, though with a difference in orders of magnitude in growing parameters. For example, the low incorporation rate of large biomolecules requires up to 100 times larger supersaturation to grow protein, rather than inorganic crystals. Nucleation is often poorly reproducible, partly because of turbulence accompanying the mixing of precipitant with protein solution. Light scattering reveals fluctuations of molecular cluster size, its growth, surface energies and increased clustering as protein ages. Growth most often occurs layer-by-layer resulting in faceted crystals. New molecular layer on crystal face is terminated by a step where molecular incorporation occurs. Quantitative data on the incorporation rate will be discussed. Rounded crystals with molecularly disordered interfaces will be explained. Defects in crystals compromise the x-ray diffraction resolution crucially needed to find the 3D atomic structure of biomolecules. The defects are immobile so that birth defects stay forever. All lattice defects known for inorganics are revealed in protein crystals. Contribution of molecular conformations to lattice disorder is important, but not studied. This contribution may be enhanced by stress field from other defects. Homologous impurities (e.g., dimers, acetylated molecules) are trapped more willingly by a growing crystal than foreign protein impurities. The trapped impurities induce internal stress eliminated in crystals exceeding a critical size (part of mni for ferritin, lysozyme). Lesser impurities are trapped from stagnant, as compared to the flowing, solution. Freezing may induce much more defects unless quickly amorphysizing intracrystalline water.

  16. Protein inference: A protein quantification perspective.

    Science.gov (United States)

    He, Zengyou; Huang, Ting; Liu, Xiaoqing; Zhu, Peijun; Teng, Ben; Deng, Shengchun

    2016-08-01

    In mass spectrometry-based shotgun proteomics, protein quantification and protein identification are two major computational problems. To quantify the protein abundance, a list of proteins must be firstly inferred from the raw data. Then the relative or absolute protein abundance is estimated with quantification methods, such as spectral counting. Until now, most researchers have been dealing with these two processes separately. In fact, the protein inference problem can be regarded as a special protein quantification problem in the sense that truly present proteins are those proteins whose abundance values are not zero. Some recent published papers have conceptually discussed this possibility. However, there is still a lack of rigorous experimental studies to test this hypothesis. In this paper, we investigate the feasibility of using protein quantification methods to solve the protein inference problem. Protein inference methods aim to determine whether each candidate protein is present in the sample or not. Protein quantification methods estimate the abundance value of each inferred protein. Naturally, the abundance value of an absent protein should be zero. Thus, we argue that the protein inference problem can be viewed as a special protein quantification problem in which one protein is considered to be present if its abundance is not zero. Based on this idea, our paper tries to use three simple protein quantification methods to solve the protein inference problem effectively. The experimental results on six data sets show that these three methods are competitive with previous protein inference algorithms. This demonstrates that it is plausible to model the protein inference problem as a special protein quantification task, which opens the door of devising more effective protein inference algorithms from a quantification perspective. The source codes of our methods are available at: http://code.google.com/p/protein-inference/.

  17. Protein immobilization strategies for protein biochips

    NARCIS (Netherlands)

    Rusmini, F.; Rusmini, Federica; Zhong, Zhiyuan; Feijen, Jan

    2007-01-01

    In the past few years, protein biochips have emerged as promising proteomic and diagnostic tools for obtaining information about protein functions and interactions. Important technological innovations have been made. However, considerable development is still required, especially regarding protein

  18. Protein immobilization strategies for protein biochips

    NARCIS (Netherlands)

    Rusmini, F.; Rusmini, Federica; Zhong, Zhiyuan; Feijen, Jan

    2007-01-01

    In the past few years, protein biochips have emerged as promising proteomic and diagnostic tools for obtaining information about protein functions and interactions. Important technological innovations have been made. However, considerable development is still required, especially regarding protein i

  19. Grafting of protein-protein binding sites

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A strategy for grafting protein-protein binding sites is described. Firstly, key interaction residues at the interface of ligand protein to be grafted are identified and suitable positions in scaffold protein for grafting these key residues are sought. Secondly, the scaffold proteins are superposed onto the ligand protein based on the corresponding Ca and Cb atoms. The complementarity between the scaffold protein and the receptor protein is evaluated and only matches with high score are accepted. The relative position between scaffold and receptor proteins is adjusted so that the interface has a reasonable packing density. Then the scaffold protein is mutated to corresponding residues in ligand protein at each candidate position. And the residues having bad steric contacts with the receptor proteins, or buried charged residues not involved in the formation of any salt bridge are mutated. Finally, the mutated scaffold protein in complex with receptor protein is co-minimized by Charmm. In addition, we deduce a scoring function to evaluate the affinity between mutated scaffold protein and receptor protein by statistical analysis of rigid binding data sets.

  20. Molecular principles of protein stability and protein-protein interactions

    OpenAIRE

    Lendel, Christofer

    2005-01-01

    Proteins with highly specific binding properties constitute the basis for many important applications in biotechnology and medicine. Immunoglobulins have so far been the obvious choice but recent advances in protein engineering have provided several novel constructs that indeed challenge antibodies. One class of such binding proteins is based on the 58 residues three-helix bundle Z domain from staphylococcal protein A (SPA). These so-called affibodies are selected from libraries containing Z ...

  1. Small heat shock proteins, protein degradation and protein aggregation diseases

    NARCIS (Netherlands)

    Vos, Michel J.; Zijlstra, Marianne P.; Carra, Serena; Sibon, Ody C. M.; Kampinga, Harm H.

    Small heat shock proteins have been characterized in vitro as ATP-independent molecular chaperones that can prevent aggregation of un- or misfolded proteins and assist in their refolding with the help of ATP-dependent chaperone machines (e. g., the Hsp70 proteins). Comparison of the functionality of

  2. EDITORIAL: Precision proteins Precision proteins

    Science.gov (United States)

    Demming, Anna

    2010-06-01

    Since the birth of modern day medicine, during the times of Hippocrates in ancient Greece, the profession has developed from the rudimentary classification of disease into a rigorous science with an inspiring capability to treat and cure. Scientific methodology has distilled clinical diagnostic tools from the early arts of prognosis, which used to rely as much on revelation and prophecy, as intuition and judgement [1]. Over the past decade, research into the interactions between proteins and nanosystems has provided some ingenious and apt techniques for delving into the intricacies of anatomical systems. In vivo biosensing has emerged as a vibrant field of research, as much of medical diagnosis relies on the detection of substances or an imbalance in the chemicals in the body. The inherent properties of nanoscale structures, such as cantilevers, make them well suited to biosensing applications that demand the detection of molecules at very low concentrations. Measurable deflections in cantilevers functionalised with antibodies provide quantitative indicators of the presence of specific antigens when the two react. Such developments have roused mounting interest in the interactions of proteins with nanostructures, such as carbon nanotubes [3], which have demonstrated great potential as generic biomarkers. Plasmonic properties are also being exploited in sensing applications, such as the molecular sentinel recently devised by researchers in the US. The device uses the plasmonic properties of a silver nanoparticle linked to a Raman labelled hairpin DNA probe to signal changes in the probe geometry resulting from interactions with substances in the environment. Success stories so far include the detection of two specific genes associated with breast cancer [4]. A greater understanding of how RNA interference regulates gene expression has highlighted the potential of using this natural process as another agent for combating disease in personalized medicine. However, the

  3. Fusion-protein-assisted protein crystallization.

    Science.gov (United States)

    Kobe, Bostjan; Ve, Thomas; Williams, Simon J

    2015-07-01

    Fusion proteins can be used directly in protein crystallization to assist crystallization in at least two different ways. In one approach, the `heterologous fusion-protein approach', the fusion partner can provide additional surface area to promote crystal contact formation. In another approach, the `fusion of interacting proteins approach', protein assemblies can be stabilized by covalently linking the interacting partners. The linker connecting the proteins plays different roles in the two applications: in the first approach a rigid linker is required to reduce conformational heterogeneity; in the second, conversely, a flexible linker is required that allows the native interaction between the fused proteins. The two approaches can also be combined. The recent applications of fusion-protein technology in protein crystallization from the work of our own and other laboratories are briefly reviewed.

  4. Scaffolds for blocking protein-protein interactions.

    Science.gov (United States)

    Hershberger, Stefan J; Lee, Song-Gil; Chmielewski, Jean

    2007-01-01

    Due to the pivotal roles that protein-protein interactions play in a plethora of biological processes, the design of therapeutic agents targeting these interactions has become an attractive and important area of research. The development of such agents is faced with a variety of challenges. Nevertheless, considerable progress has been made in the design of proteomimetics capable of disrupting protein-protein interactions. Those inhibitors based on molecular scaffold designs hold considerable interest because of the ease of variation in regard to their displayed functionality. In particular, protein surface mimetics, alpha-helical mimetics, beta-sheet/beta-strand mimetics, as well as beta-turn mimetics have successfully modulated protein-protein interactions involved in such diseases as cancer and HIV. In this review, current progress in the development of molecular scaffolds designed for the disruption of protein-protein interactions will be discussed with an emphasis on those active against biological targets.

  5. Protein docking prediction using predicted protein-protein interface

    Directory of Open Access Journals (Sweden)

    Li Bin

    2012-01-01

    Full Text Available Abstract Background Many important cellular processes are carried out by protein complexes. To provide physical pictures of interacting proteins, many computational protein-protein prediction methods have been developed in the past. However, it is still difficult to identify the correct docking complex structure within top ranks among alternative conformations. Results We present a novel protein docking algorithm that utilizes imperfect protein-protein binding interface prediction for guiding protein docking. Since the accuracy of protein binding site prediction varies depending on cases, the challenge is to develop a method which does not deteriorate but improves docking results by using a binding site prediction which may not be 100% accurate. The algorithm, named PI-LZerD (using Predicted Interface with Local 3D Zernike descriptor-based Docking algorithm, is based on a pair wise protein docking prediction algorithm, LZerD, which we have developed earlier. PI-LZerD starts from performing docking prediction using the provided protein-protein binding interface prediction as constraints, which is followed by the second round of docking with updated docking interface information to further improve docking conformation. Benchmark results on bound and unbound cases show that PI-LZerD consistently improves the docking prediction accuracy as compared with docking without using binding site prediction or using the binding site prediction as post-filtering. Conclusion We have developed PI-LZerD, a pairwise docking algorithm, which uses imperfect protein-protein binding interface prediction to improve docking accuracy. PI-LZerD consistently showed better prediction accuracy over alternative methods in the series of benchmark experiments including docking using actual docking interface site predictions as well as unbound docking cases.

  6. Protein Crystal Based Nanomaterials

    Science.gov (United States)

    Bell, Jeffrey A.; VanRoey, Patrick

    2001-01-01

    This is the final report on a NASA Grant. It concerns a description of work done, which includes: (1) Protein crystals cross-linked to form fibers; (2) Engineering of protein to favor crystallization; (3) Better knowledge-based potentials for protein-protein contacts; (4) Simulation of protein crystallization.

  7. Shotgun protein sequencing.

    Energy Technology Data Exchange (ETDEWEB)

    Faulon, Jean-Loup Michel; Heffelfinger, Grant S.

    2009-06-01

    A novel experimental and computational technique based on multiple enzymatic digestion of a protein or protein mixture that reconstructs protein sequences from sequences of overlapping peptides is described in this SAND report. This approach, analogous to shotgun sequencing of DNA, is to be used to sequence alternative spliced proteins, to identify post-translational modifications, and to sequence genetically engineered proteins.

  8. Protein folding, protein homeostasis, and cancer

    Institute of Scientific and Technical Information of China (English)

    John H. Van Drie

    2011-01-01

    Proteins fold into their functional 3-dimensional structures from a linear amino acid sequence. In vitro this process is spontaneous; while in vivo it is orchestrated by a specialized set of proteins, called chaperones. Protein folding is an ongoing cellular process, as cellular proteins constantly undergo synthesis and degradation. Here emerging links between this process and cancer are reviewed. This perspective both yields insights into the current struggle to develop novel cancer chemotherapeutics and has implications for future chemotherapy discovery.

  9. Oligomeric protein structure networks: insights into protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Brinda KV

    2005-12-01

    Full Text Available Abstract Background Protein-protein association is essential for a variety of cellular processes and hence a large number of investigations are being carried out to understand the principles of protein-protein interactions. In this study, oligomeric protein structures are viewed from a network perspective to obtain new insights into protein association. Structure graphs of proteins have been constructed from a non-redundant set of protein oligomer crystal structures by considering amino acid residues as nodes and the edges are based on the strength of the non-covalent interactions between the residues. The analysis of such networks has been carried out in terms of amino acid clusters and hubs (highly connected residues with special emphasis to protein interfaces. Results A variety of interactions such as hydrogen bond, salt bridges, aromatic and hydrophobic interactions, which occur at the interfaces are identified in a consolidated manner as amino acid clusters at the interface, from this study. Moreover, the characterization of the highly connected hub-forming residues at the interfaces and their comparison with the hubs from the non-interface regions and the non-hubs in the interface regions show that there is a predominance of charged interactions at the interfaces. Further, strong and weak interfaces are identified on the basis of the interaction strength between amino acid residues and the sizes of the interface clusters, which also show that many protein interfaces are stronger than their monomeric protein cores. The interface strengths evaluated based on the interface clusters and hubs also correlate well with experimentally determined dissociation constants for known complexes. Finally, the interface hubs identified using the present method correlate very well with experimentally determined hotspots in the interfaces of protein complexes obtained from the Alanine Scanning Energetics database (ASEdb. A few predictions of interface hot

  10. Protein-losing enteropathy

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007338.htm Protein-losing enteropathy To use the sharing features on this page, please enable JavaScript. Protein-losing enteropathy is an abnormal loss of protein ...

  11. Protein and Heart Health

    Science.gov (United States)

    ... It Works Healthy Workplace Food and Beverage Toolkit Protein and Heart Health Updated:May 5,2015 Protein ... said. What’s the harm in getting too much protein? The main problem is that often the extra ...

  12. Conductometric monitoring of protein-protein interactions.

    Science.gov (United States)

    Spera, Rosanna; Festa, Fernanda; Bragazzi, Nicola L; Pechkova, Eugenia; LaBaer, Joshua; Nicolini, Claudio

    2013-12-06

    Conductometric monitoring of protein-protein and protein-sterol interactions is here proved feasible by coupling quartz crystal microbalance with dissipation monitoring (QCM_D) to nucleic acid programmable protein arrays (NAPPA). The conductance curves measured in NAPPA microarrays printed on quartz surface allowed the identification of binding events between the immobilized proteins and the query. NAPPA allows the immobilization on the quartz surface of a wide range of proteins and can be easily adapted to generate innumerous types of biosensors. Indeed multiple proteins on the same quartz crystal have been tested and envisaged proving the possibility of analyzing the same array for several distinct interactions. Two examples of NAPPA-based conductometer applications with clinical relevance are presented herein, the interaction between the transcription factors Jun and ATF2 and the interaction between Cytochrome P540scc and cholesterol.

  13. Protein Structure Prediction by Protein Threading

    Science.gov (United States)

    Xu, Ying; Liu, Zhijie; Cai, Liming; Xu, Dong

    The seminal work of Bowie, Lüthy, and Eisenberg (Bowie et al., 1991) on "the inverse protein folding problem" laid the foundation of protein structure prediction by protein threading. By using simple measures for fitness of different amino acid types to local structural environments defined in terms of solvent accessibility and protein secondary structure, the authors derived a simple and yet profoundly novel approach to assessing if a protein sequence fits well with a given protein structural fold. Their follow-up work (Elofsson et al., 1996; Fischer and Eisenberg, 1996; Fischer et al., 1996a,b) and the work by Jones, Taylor, and Thornton (Jones et al., 1992) on protein fold recognition led to the development of a new brand of powerful tools for protein structure prediction, which we now term "protein threading." These computational tools have played a key role in extending the utility of all the experimentally solved structures by X-ray crystallography and nuclear magnetic resonance (NMR), providing structural models and functional predictions for many of the proteins encoded in the hundreds of genomes that have been sequenced up to now.

  14. Protein sequence comparison and protein evolution

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, W.R. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Biochemistry

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. This tutorial examines how the information conserved during the evolution of a protein molecule can be used to infer reliably homology, and thus a shared proteinfold and possibly a shared active site or function. The authors start by reviewing a geological/evolutionary time scale. Next they look at the evolution of several protein families. During the tutorial, these families will be used to demonstrate that homologous protein ancestry can be inferred with confidence. They also examine different modes of protein evolution and consider some hypotheses that have been presented to explain the very earliest events in protein evolution. The next part of the tutorial will examine the technical aspects of protein sequence comparison. Both optimal and heuristic algorithms and their associated parameters that are used to characterize protein sequence similarities are discussed. Perhaps more importantly, they survey the statistics of local similarity scores, and how these statistics can both be used to improve the selectivity of a search and to evaluate the significance of a match. They them examine distantly related members of three protein families, the serine proteases, the glutathione transferases, and the G-protein-coupled receptors (GCRs). Finally, the discuss how sequence similarity can be used to examine internal repeated or mosaic structures in proteins.

  15. Prediction of Protein-Protein Interactions Using Protein Signature Profiling

    Institute of Scientific and Technical Information of China (English)

    Mahmood A. Mahdavi; Yen-Han Lin

    2007-01-01

    Protein domains are conserved and functionally independent structures that play an important role in interactions among related proteins. Domain-domain inter- actions have been recently used to predict protein-protein interactions (PPI). In general, the interaction probability of a pair of domains is scored using a trained scoring function. Satisfying a threshold, the protein pairs carrying those domains are regarded as "interacting". In this study, the signature contents of proteins were utilized to predict PPI pairs in Saccharomyces cerevisiae, Caenorhabditis ele- gans, and Homo sapiens. Similarity between protein signature patterns was scored and PPI predictions were drawn based on the binary similarity scoring function. Results show that the true positive rate of prediction by the proposed approach is approximately 32% higher than that using the maximum likelihood estimation method when compared with a test set, resulting in 22% increase in the area un- der the receiver operating characteristic (ROC) curve. When proteins containing one or two signatures were removed, the sensitivity of the predicted PPI pairs in- creased significantly. The predicted PPI pairs are on average 11 times more likely to interact than the random selection at a confidence level of 0.95, and on aver- age 4 times better than those predicted by either phylogenetic profiling or gene expression profiling.

  16. Inferring Protein Associations Using Protein Pulldown Assays

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, Julia L.; Anderson, Kevin K.; Daly, Don S.; Auberry, Deanna L.; Borkowski, John J.; Cannon, William R.

    2007-02-01

    Background: One method to infer protein-protein associations is through a “bait-prey pulldown” assay using a protein affinity agent and an LC-MS (liquid chromatography-mass spectrometry)-based protein identification method. False positive and negative protein identifications are not uncommon, however, leading to incorrect inferences. Methods: A pulldown experiment generates a protein association matrix wherein each column represents a sample from one bait protein, each row represents one prey protein and each cell contains a presence/absence association indicator. Our method evaluates the presence/absence pattern across a prey protein (row) with a Likelihood Ratio Test (LRT), computing its p-value with simulated LRT test statistic distributions after a check with simulated binomial random variates disqualified the large sample 2 test. A pulldown experiment often involves hundreds of tests so we apply the false discovery rate method to control the false positive rate. Based on the p-value, each prey protein is assigned a category (specific association, non-specific association, or not associated) and appraised with respect to the pulldown experiment’s goal and design. The method is illustrated using a pulldown experiment investigating the protein complexes of Shewanella oneidensis MR-1. Results: The Monte Carlo simulated LRT p-values objectively reveal specific and ubiquitous prey, as well as potential systematic errors. The example analysis shows the results to be biologically sensible and more realistic than the ad hoc screening methods previously utilized. Conclusions: The method presented appears to be informative for screening for protein-protein associations.

  17. Polymer Directed Protein Assemblies

    NARCIS (Netherlands)

    van Rijn, Patrick

    2013-01-01

    Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e. g., virus particles. Viruses are a multi-protein assembly of which the morphology is

  18. Polymer Directed Protein Assemblies

    NARCIS (Netherlands)

    van Rijn, Patrick

    Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e. g., virus particles. Viruses are a multi-protein assembly of which the morphology is

  19. Protein- protein interaction detection system using fluorescent protein microdomains

    Science.gov (United States)

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  20. Urine Protein and Urine Protein to Creatinine Ratio

    Science.gov (United States)

    ... products and services. Advertising & Sponsorship: Policy | Opportunities Urine Protein and Urine Protein to Creatinine Ratio Share this page: Was this page helpful? Also known as: 24-Hour Urine Protein; Urine Total Protein; Urine Protein to Creatinine Ratio; ...

  1. IGSF9 Family Proteins

    DEFF Research Database (Denmark)

    Hansen, Maria; Walmod, Peter Schledermann

    2013-01-01

    The Drosophila protein Turtle and the vertebrate proteins immunoglobulin superfamily (IgSF), member 9 (IGSF9/Dasm1) and IGSF9B are members of an evolutionarily ancient protein family. A bioinformatics analysis of the protein family revealed that invertebrates contain only a single IGSF9 family gene......, the longest isoforms of the proteins have the same general organization as the neural cell adhesion molecule family of cell adhesion molecule proteins, and like this family of proteins, IGSF9 family members are expressed in the nervous system. A review of the literature revealed that Drosophila Turtle...... facilitates homophilic cell adhesion. Moreover, IGSF9 family proteins have been implicated in the outgrowth and branching of neurites, axon guidance, synapse maturation, self-avoidance, and tiling. However, despite the few published studies on IGSF9 family proteins, reports on the functions of both Turtle...

  2. Physics of protein motility and motor proteins

    Science.gov (United States)

    Kolomeisky, Anatoly B.

    2013-09-01

    Motor proteins are enzymatic molecules that transform chemical energy into mechanical motion and work. They are critically important for supporting various cellular activities and functions. In the last 15 years significant progress in understanding the functioning of motor proteins has been achieved due to revolutionary breakthroughs in single-molecule experimental techniques and strong advances in theoretical modelling. However, microscopic mechanisms of protein motility are still not well explained, and the collective efforts of many scientists are needed in order to solve these complex problems. In this special section the reader will find the latest advances on the difficult road to mapping motor proteins dynamics in various systems. Recent experimental developments have allowed researchers to monitor and to influence the activity of single motor proteins with a high spatial and temporal resolution. It has stimulated significant theoretical efforts to understand the non-equilibrium nature of protein motility phenomena. The latest results from all these advances are presented and discussed in this special section. We would like to thank the scientists from all over the world who have reported their latest research results for this special section. We are also grateful to the staff and editors of Journal of Physics: Condensed Matter for their invaluable help in handling all the administrative and refereeing activities. The field of motor proteins and protein motility is fast moving, and we hope that this collection of articles will be a useful source of information in this highly interdisciplinary area. Physics of protein motility and motor proteins contents Physics of protein motility and motor proteinsAnatoly B Kolomeisky Identification of unique interactions between the flexible linker and the RecA-like domains of DEAD-box helicase Mss116 Yuan Zhang, Mirkó Palla, Andrew Sun and Jung-Chi Liao The load dependence of the physical properties of a molecular motor

  3. Polymer Directed Protein Assemblies

    Directory of Open Access Journals (Sweden)

    Patrick van Rijn

    2013-05-01

    Full Text Available Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e.g., virus particles. Viruses are a multi-protein assembly of which the morphology is dictated by poly-nucleotides namely RNA or DNA. This “biopolymer” directs the proteins and imposes limitations on the structure like the length or diameter of the particle. Not only do these bionanoparticles use polymer-directed self-assembly, also processes like amyloid formation are in a way a result of directed protein assembly by partial unfolded/misfolded biopolymers namely, polypeptides. The combination of proteins and synthetic polymers, inspired by the natural processes, are therefore regarded as a highly promising area of research. Directed protein assembly is versatile with respect to the possible interactions which brings together the protein and polymer, e.g., electrostatic, v.d. Waals forces or covalent conjugation, and possible combinations are numerous due to the large amounts of different polymers and proteins available. The protein-polymer interacting behavior and overall morphology is envisioned to aid in clarifying protein-protein interactions and are thought to entail some interesting new functions and properties which will ultimately lead to novel bio-hybrid materials.

  4. Protein and protein hydrolysates in sports nutrition.

    Science.gov (United States)

    van Loon, Luc J C; Kies, Arie K; Saris, Wim H M

    2007-08-01

    With the increasing knowledge about the role of nutrition in increasing exercise performance, it has become clear over the last 2 decades that amino acids, protein, and protein hydrolysates can play an important role. Most of the attention has been focused on their effects at a muscular level. As these nutrients are ingested, however, it also means that gastrointestinal digestibility and absorption can modulate their efficacy significantly. Therefore, discussing the role of amino acids, protein, and protein hydrolysates in sports nutrition entails holding a discussion on all levels of the metabolic route. On May 28-29, 2007, a small group of researchers active in the field of exercise science and protein metabolism presented an overview of the different aspects of the application of protein and protein hydrolysates in sports nutrition. In addition, they were asked to share their opinions on the future progress in their fields of research. In this overview, an introduction to the workshop and a short summary of its outcome is provided.

  5. Babesia bigemina: identification of B cell epitopes associated with parasitized erythrocytes.

    Science.gov (United States)

    Vidotto, O; McElwain, T F; Machado, R Z; Perryman, L E; Suarez, C E; Palmer, G H

    1995-12-01

    Rhoptries are involved in host cell invasion and rhoptry polypeptides, including the Babesia bigemina rhoptry-associated protein-1 (RAP-1), are targets for protective immune responses. Polyclonal antisera produced against isolated rhoptries is directed predominantly against RAP-1 and reacts with both the merozoite and the membrane of parasitized erythrocytes. To determine whether these B cell epitopes associated with the parasitized erythrocyte are derived from RAP-1 or, alternatively, from previously undetected merozoite polypeptides, monoclonal antibodies (mAbs) were generated from mice immunized with rhoptries isolated from the JG-29 clone of the Mexico strain. The anti-RAP-1 mAbs bound only merozoites in a punctate immunofluorescence pattern. A second group of four mAbs, none of which were reactive with RAP-1, bound the parasitized erythrocyte. Two of these latter mAbs, 64/44.17.3 and 64/05.7.2, reacted only with parasitized erythrocytes that had been permeabilized. MAb 64/44.17.3 bound a 54-kDa merozoite polypeptide while 64/05.7.2 bound a > or = 225-kDa merozoite polypeptide. MAbs 64/32.8.5 and 64/38.5.3 recognized epitopes on 17.5- and 76-kDa polypeptides exposed on the external surface of intact parasitized erythrocytes. The results indicate that the identified RAP-1 epitopes are not associated with the erythrocyte cytoskeleton or membrane and that anti-RAP-1 immunity is most likely generated against the free merozoite. All new mAbs reacted with every B. bigemina strain tested (Mexico, Puerto Rico, St. Croix, Texcoco, Jaboticabal). The conservation of RAP-1 epitopes among these strains supports the continued testing of RAP-1 as a vaccine component. In addition, the identification of epitopes expressed on the surface of erythrocytes infected with all five strains provides new candidate immunogens.

  6. Protein Data Bank (PDB)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Protein Data Bank (PDB) archive is the single worldwide repository of information about the 3D structures of large biological molecules, including proteins and...

  7. Protein electrophoresis - serum

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003540.htm Protein electrophoresis - serum To use the sharing features on ... JavaScript. This lab test measures the types of protein in the fluid (serum) part of a blood ...

  8. Urine protein electrophoresis test

    Science.gov (United States)

    Urine protein electrophoresis; UPEP; Multiple myeloma - UPEP; Waldenström macroglobulinemia - UPEP; Amyloidosis - UPEP ... special paper and apply an electric current. The proteins move and form visible bands. These reveal the ...

  9. Protein in diet

    Science.gov (United States)

    ... building blocks of life. Every cell in the human body contains protein. The basic structure of protein is ... into parts called amino acids during digestion. The human body needs a number of amino acids in large ...

  10. Abnormal protein aggregationand neurodegenerativediseases

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Abnormal protein aggregation or amyloid is the major cause ofmany neurodegenerative disorders. The present review focuses on the correlation between sequence and structure features of proteins related to the diseases and abnormal protein aggregation. Recent progress has improved our knowledge on understand-ing the mechanism of amyloid formation. We suggest a nucleation model for ordered protein aggregation, which can also explain pathogenesis mechanisms of these neurodegenerative diseases in vivo.

  11. Of proteins and processing

    NARCIS (Netherlands)

    Salazar Villanea, Sergio

    2017-01-01

    Hydrothermal processing is a common practice during the manufacture of protein-rich feed ingredients, such as rapeseed meal (RSM), and feeds. This processing step can induce physical and chemical changes to the proteins, thereby reducing the digestibility and utilization of crude protein (CP) and

  12. Protein Frustratometer 2

    DEFF Research Database (Denmark)

    Gonzalo Parra, R.; Schafer, Nicholas P.; Radusky, Leandro G.

    2016-01-01

    The protein frustratometer is an energy landscape theory-inspired algorithm that aims at localizing and quantifying the energetic frustration present in protein molecules. Frustration is a useful concept for analyzing proteins' biological behavior. It compares the energy distributions of the nati...

  13. Destabilized bioluminescent proteins

    Science.gov (United States)

    Allen, Michael S.; Rakesh, Gupta; Gary, Sayler S.

    2007-07-31

    Purified nucleic acids, vectors and cells containing a gene cassette encoding at least one modified bioluminescent protein, wherein the modification includes the addition of a peptide sequence. The duration of bioluminescence emitted by the modified bioluminescent protein is shorter than the duration of bioluminescence emitted by an unmodified form of the bioluminescent protein.

  14. CSF total protein

    Science.gov (United States)

    CSF total protein is a test to determine the amount of protein in your spinal fluid, also called cerebrospinal fluid (CSF). ... The normal protein range varies from lab to lab, but is typically about 15 to 60 milligrams per deciliter (mg/dL) ...

  15. Destabilized bioluminescent proteins

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Michael S. (Knoxville, TN); Rakesh, Gupta (New Delhi, IN); Gary, Sayler S. (Blaine, TN)

    2007-07-31

    Purified nucleic acids, vectors and cells containing a gene cassette encoding at least one modified bioluminescent protein, wherein the modification includes the addition of a peptide sequence. The duration of bioluminescence emitted by the modified bioluminescent protein is shorter than the duration of bioluminescence emitted by an unmodified form of the bioluminescent protein.

  16. Protein domain prediction

    NARCIS (Netherlands)

    Ingolfsson, Helgi; Yona, Golan

    2008-01-01

    Domains are considered to be the building blocks of protein structures. A protein can contain a single domain or multiple domains, each one typically associated with a specific function. The combination of domains determines the function of the protein, its subcellular localization and the interacti

  17. Protopia: a protein-protein interaction tool

    Science.gov (United States)

    Real-Chicharro, Alejandro; Ruiz-Mostazo, Iván; Navas-Delgado, Ismael; Kerzazi, Amine; Chniber, Othmane; Sánchez-Jiménez, Francisca; Medina, Miguel Ángel; Aldana-Montes, José F

    2009-01-01

    Background Protein-protein interactions can be considered the basic skeleton for living organism self-organization and homeostasis. Impressive quantities of experimental data are being obtained and computational tools are essential to integrate and to organize this information. This paper presents Protopia, a biological tool that offers a way of searching for proteins and their interactions in different Protein Interaction Web Databases, as a part of a multidisciplinary initiative of our institution for the integration of biological data . Results The tool accesses the different Databases (at present, the free version of Transfac, DIP, Hprd, Int-Act and iHop), and results are expressed with biological protein names or databases codes and can be depicted as a vector or a matrix. They can be represented and handled interactively as an organic graph. Comparison among databases is carried out using the Uniprot codes annotated for each protein. Conclusion The tool locates and integrates the current information stored in the aforementioned databases, and redundancies among them are detected. Results are compatible with the most important network analysers, so that they can be compared and analysed by other world-wide known tools and platforms. The visualization possibilities help to attain this goal and they are especially interesting for handling multiple-step or complex networks. PMID:19828077

  18. Protein oxidation and peroxidation

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2016-01-01

    and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function....... Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides...

  19. Highly thermostable fluorescent proteins

    Science.gov (United States)

    Bradbury, Andrew M [Santa Fe, NM; Waldo, Geoffrey S [Santa Fe, NM; Kiss, Csaba [Los Alamos, NM

    2012-05-01

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  20. Highly thermostable fluorescent proteins

    Science.gov (United States)

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2011-03-22

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  1. Protein crystallization with paper

    Science.gov (United States)

    Matsuoka, Miki; Kakinouchi, Keisuke; Adachi, Hiroaki; Maruyama, Mihoko; Sugiyama, Shigeru; Sano, Satoshi; Yoshikawa, Hiroshi Y.; Takahashi, Yoshinori; Yoshimura, Masashi; Matsumura, Hiroyoshi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Takano, Kazufumi

    2016-05-01

    We developed a new protein crystallization method that incorporates paper. A small piece of paper, such as facial tissue or KimWipes, was added to a drop of protein solution in the traditional sitting drop vapor diffusion technique, and protein crystals grew by incorporating paper. By this method, we achieved the growth of protein crystals with reducing osmotic shock. Because the technique is very simple and the materials are easy to obtain, this method will come into wide use for protein crystallization. In the future, it could be applied to nanoliter-scale crystallization screening on a paper sheet such as in inkjet printing.

  2. Protein aggregate myopathies

    Directory of Open Access Journals (Sweden)

    Sharma M

    2005-01-01

    Full Text Available Protein aggregate myopathies (PAM are an emerging group of muscle diseases characterized by structural abnormalities. Protein aggregate myopathies are marked by the aggregation of intrinsic proteins within muscle fibers and fall into four major groups or conditions: (1 desmin-related myopathies (DRM that include desminopathies, a-B crystallinopathies, selenoproteinopathies caused by mutations in the, a-B crystallin and selenoprotein N1 genes, (2 hereditary inclusion body myopathies, several of which have been linked to different chromosomal gene loci, but with as yet unidentified protein product, (3 actinopathies marked by mutations in the sarcomeric ACTA1 gene, and (4 myosinopathy marked by a mutation in the MYH-7 gene. While PAM forms 1 and 2 are probably based on impaired extralysosomal protein degradation, resulting in the accumulation of numerous and diverse proteins (in familial types in addition to respective mutant proteins, PAM forms 3 and 4 may represent anabolic or developmental defects because of preservation of sarcomeres outside of the actin and myosin aggregates and dearth or absence of other proteins in these actin or myosin aggregates, respectively. The pathogenetic principles governing protein aggregation within muscle fibers and subsequent structural sarcomeres are still largely unknown in both the putative catabolic and anabolic forms of PAM. Presence of inclusions and their protein composition in other congenital myopathies such as reducing bodies, cylindrical spirals, tubular aggregates and others await clarification. The hitherto described PAMs were first identified by immunohistochemistry of proteins and subsequently by molecular analysis of their genes.

  3. Protein and vegetarian diets.

    Science.gov (United States)

    Marsh, Kate A; Munn, Elizabeth A; Baines, Surinder K

    2013-08-19

    A vegetarian diet can easily meet human dietary protein requirements as long as energy needs are met and a variety of foods are eaten. Vegetarians should obtain protein from a variety of plant sources, including legumes, soy products, grains, nuts and seeds. Eggs and dairy products also provide protein for those following a lacto-ovo-vegetarian diet. There is no need to consciously combine different plant proteins at each meal as long as a variety of foods are eaten from day to day, because the human body maintains a pool of amino acids which can be used to complement dietary protein. The consumption of plant proteins rather than animal proteins by vegetarians may contribute to their reduced risk of chronic diseases such as diabetes and heart disease.

  4. Racemic protein crystallography.

    Science.gov (United States)

    Yeates, Todd O; Kent, Stephen B H

    2012-01-01

    Although natural proteins are chiral and are all of one "handedness," their mirror image forms can be prepared by chemical synthesis. This opens up new opportunities for protein crystallography. A racemic mixture of the enantiomeric forms of a protein molecule can crystallize in ways that natural proteins cannot. Recent experimental data support a theoretical prediction that this should make racemic protein mixtures highly amenable to crystallization. Crystals obtained from racemic mixtures also offer advantages in structure determination strategies. The relevance of these potential advantages is heightened by advances in synthetic methods, which are extending the size limit for proteins that can be prepared by chemical synthesis. Recent ideas and results in the area of racemic protein crystallography are reviewed.

  5. Packing in protein cores

    Science.gov (United States)

    Gaines, J. C.; Clark, A. H.; Regan, L.; O'Hern, C. S.

    2017-07-01

    Proteins are biological polymers that underlie all cellular functions. The first high-resolution protein structures were determined by x-ray crystallography in the 1960s. Since then, there has been continued interest in understanding and predicting protein structure and stability. It is well-established that a large contribution to protein stability originates from the sequestration from solvent of hydrophobic residues in the protein core. How are such hydrophobic residues arranged in the core; how can one best model the packing of these residues, and are residues loosely packed with multiple allowed side chain conformations or densely packed with a single allowed side chain conformation? Here we show that to properly model the packing of residues in protein cores it is essential that amino acids are represented by appropriately calibrated atom sizes, and that hydrogen atoms are explicitly included. We show that protein cores possess a packing fraction of φ ≈ 0.56 , which is significantly less than the typically quoted value of 0.74 obtained using the extended atom representation. We also compare the results for the packing of amino acids in protein cores to results obtained for jammed packings from discrete element simulations of spheres, elongated particles, and composite particles with bumpy surfaces. We show that amino acids in protein cores pack as densely as disordered jammed packings of particles with similar values for the aspect ratio and bumpiness as found for amino acids. Knowing the structural properties of protein cores is of both fundamental and practical importance. Practically, it enables the assessment of changes in the structure and stability of proteins arising from amino acid mutations (such as those identified as a result of the massive human genome sequencing efforts) and the design of new folded, stable proteins and protein-protein interactions with tunable specificity and affinity.

  6. Toxic proteins in plants.

    Science.gov (United States)

    Dang, Liuyi; Van Damme, Els J M

    2015-09-01

    Plants have evolved to synthesize a variety of noxious compounds to cope with unfavorable circumstances, among which a large group of toxic proteins that play a critical role in plant defense against predators and microbes. Up to now, a wide range of harmful proteins have been discovered in different plants, including lectins, ribosome-inactivating proteins, protease inhibitors, ureases, arcelins, antimicrobial peptides and pore-forming toxins. To fulfill their role in plant defense, these proteins exhibit various degrees of toxicity towards animals, insects, bacteria or fungi. Numerous studies have been carried out to investigate the toxic effects and mode of action of these plant proteins in order to explore their possible applications. Indeed, because of their biological activities, toxic plant proteins are also considered as potentially useful tools in crop protection and in biomedical applications, such as cancer treatment. Genes encoding toxic plant proteins have been introduced into crop genomes using genetic engineering technology in order to increase the plant's resistance against pathogens and diseases. Despite the availability of ample information on toxic plant proteins, very few publications have attempted to summarize the research progress made during the last decades. This review focuses on the diversity of toxic plant proteins in view of their toxicity as well as their mode of action. Furthermore, an outlook towards the biological role(s) of these proteins and their potential applications is discussed.

  7. PROTEIN - WHICH IS BEST?

    Directory of Open Access Journals (Sweden)

    Michael J. Falvo

    2004-09-01

    Full Text Available Protein intake that exceeds the recommended daily allowance is widely accepted for both endurance and power athletes. However, considering the variety of proteins that are available much less is known concerning the benefits of consuming one protein versus another. The purpose of this paper is to identify and analyze key factors in order to make responsible recommendations to both the general and athletic populations. Evaluation of a protein is fundamental in determining its appropriateness in the human diet. Proteins that are of inferior content and digestibility are important to recognize and restrict or limit in the diet. Similarly, such knowledge will provide an ability to identify proteins that provide the greatest benefit and should be consumed. The various techniques utilized to rate protein will be discussed. Traditionally, sources of dietary protein are seen as either being of animal or vegetable origin. Animal sources provide a complete source of protein (i.e. containing all essential amino acids, whereas vegetable sources generally lack one or more of the essential amino acids. Animal sources of dietary protein, despite providing a complete protein and numerous vitamins and minerals, have some health professionals concerned about the amount of saturated fat common in these foods compared to vegetable sources. The advent of processing techniques has shifted some of this attention and ignited the sports supplement marketplace with derivative products such as whey, casein and soy. Individually, these products vary in quality and applicability to certain populations. The benefits that these particular proteins possess are discussed. In addition, the impact that elevated protein consumption has on health and safety issues (i.e. bone health, renal function are also reviewed

  8. Protein kinesis: The dynamics of protein trafficking and stability

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The purpose of this conference is to provide a multidisciplinary forum for exchange of state-of-the-art information on protein kinesis. This volume contains abstracts of papers in the following areas: protein folding and modification in the endoplasmic reticulum; protein trafficking; protein translocation and folding; protein degradation; polarity; nuclear trafficking; membrane dynamics; and protein import into organelles.

  9. Protein: FEA4 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FEA4 Proteins in gibberellin signaling GID2 F-box protein GID2 Gibberellin-insensitive dwarf protein 2, Prot...ein GIBBERELLIN INSENSITIVE DWARF2 39947 Oryza sativa subsp. japonica Q7XAK4 ...

  10. Protein Electrophoresis/Immunofixation Electrophoresis

    Science.gov (United States)

    ... be limited. Home Visit Global Sites Search Help? Protein Electrophoresis Immunofixation Electrophoresis Share this page: Was this page helpful? Also known as: Serum Protein Electrophoresis; Protein ELP; SPE; SPEP; Urine Protein Electrophoresis; ...

  11. NMR of unfolded proteins

    Indian Academy of Sciences (India)

    Amarnath Chtterjee; Ashutosh Kumar; Jeetender Chugh; Sudha Srivastava; Neel S Bhavesh; Ramakrishna V Hosur

    2005-01-01

    In the post-genomic era, as more and more genome sequences are becoming known and hectic efforts are underway to decode the information content in them, it is becoming increasingly evident that flexibility in proteins plays a crucial role in many of the biological functions. Many proteins have intrinsic disorder either wholly or in specific regions. It appears that this disorder may be important for regulatory functions of the proteins, on the one hand, and may help in directing the folding process to reach the compact native state, on the other. Nuclear magnetic resonance (NMR) has over the last two decades emerged as the sole, most powerful technique to help characterize these disordered protein systems. In this review, we first discuss the significance of disorder in proteins and then describe the recent developments in NMR methods for their characterization. A brief description of the results obtained on several disordered proteins is presented at the end.

  12. Mayaro virus proteins.

    Science.gov (United States)

    Mezencio, J M; Rebello, M A

    1993-01-01

    Mayaro virus was grown in BHK-21 cells and purified by centrifugation in a potassium-tartrate gradient (5-50%). The electron microscopy analyses of the purified virus showed an homogeneous population of enveloped particles with 69 +/- 2.3 nm in diameter. Three structural virus proteins were identified and designated p1, p2 and p3. Their average molecular weight were p1, 54 KDa; p2, 50 KDa and p3, 34 KDa. In Mayaro virus infected Aedes albopictus cells and in BHK-21 infected cells we detected six viral proteins, in which three of them are the structural virus proteins and the other three were products from processing of precursors of viral proteins, whose molecular weights are 62 KDa, 64 KDa and 110 KDa. The 34 KDa protein was the first viral protein synthesized at 5 hours post-infection in both cell lines studied.

  13. Mayaro virus proteins

    Directory of Open Access Journals (Sweden)

    J. M. S. Mezencio

    1993-06-01

    Full Text Available Mayaro virus was grown in BHK-21 cells and purified by centrifugation in a potassium-tartrate gradient (5-50%. The electron microscopy analyses of the purified virus showed an homogeneous population of enveloped particles with 69 ñ 2.3 nm in diameter. Three structural virus proteins were identified and designated pl, p2 and p3. Their average molecular weight were p1, 54 KDa; p2, 50 KDa and p3, 34 KDa. In Mayaro virus infected. Aedes albopictus cells and in BHK-21 infected cells we detected six viral proteins, in wich three of them are the structural virus proteins and the other three were products from processing of precursors of viral proteins, whose molecular weights are 62 KDa, 64 KDa and 110 KDa. The 34 KDa protein was the first viral protein sinthesized at 5 hours post-infection in both cell lines studied.

  14. Protein Models Comparator

    CERN Document Server

    Widera, Paweł

    2011-01-01

    The process of comparison of computer generated protein structural models is an important element of protein structure prediction. It has many uses including model quality evaluation, selection of the final models from a large set of candidates or optimisation of parameters of energy functions used in template free modelling and refinement. Although many protein comparison methods are available online on numerous web servers, their ability to handle a large scale model comparison is often very limited. Most of the servers offer only a single pairwise structural comparison, and they usually do not provide a model-specific comparison with a fixed alignment between the models. To bridge the gap between the protein and model structure comparison we have developed the Protein Models Comparator (pm-cmp). To be able to deliver the scalability on demand and handle large comparison experiments the pm-cmp was implemented "in the cloud". Protein Models Comparator is a scalable web application for a fast distributed comp...

  15. Supramolecular Chemistry Targeting Proteins.

    Science.gov (United States)

    van Dun, Sam; Ottmann, Christian; Milroy, Lech-Gustav; Brunsveld, Luc

    2017-09-28

    The specific recognition of protein surface elements is a fundamental challenge in the life sciences. New developments in this field will form the basis of advanced therapeutic approaches and lead to applications such as sensors, affinity tags, immobilization techniques, and protein-based materials. Synthetic supramolecular molecules and materials are creating new opportunities for protein recognition that are orthogonal to classical small molecule and protein-based approaches. As outlined here, their unique molecular features enable the recognition of amino acids, peptides, and even whole protein surfaces, which can be applied to the modulation and assembly of proteins. We believe that structural insights into these processes are of great value for the further development of this field and have therefore focused this Perspective on contributions that provide such structural data.

  16. Computational Protein Design

    DEFF Research Database (Denmark)

    Johansson, Kristoffer Enøe

    Proteins are the major functional group of molecules in biology. The impact of protein science on medicine and chemical productions is rapidly increasing. However, the greatest potential remains to be realized. The fi eld of protein design has advanced computational modeling from a tool of support...... to a central method that enables new developments. For example, novel enzymes with functions not found in natural proteins have been de novo designed to give enough activity for experimental optimization. This thesis presents the current state-of-the-art within computational design methods together...... with a novel method based on probability theory. With the aim of assembling a complete pipeline for protein design, this work touches upon several aspects of protein design. The presented work is the computational half of a design project where the other half is dedicated to the experimental part...

  17. Computational Protein Design

    DEFF Research Database (Denmark)

    Johansson, Kristoffer Enøe

    Proteins are the major functional group of molecules in biology. The impact of protein science on medicine and chemical productions is rapidly increasing. However, the greatest potential remains to be realized. The fi eld of protein design has advanced computational modeling from a tool of support...... to a central method that enables new developments. For example, novel enzymes with functions not found in natural proteins have been de novo designed to give enough activity for experimental optimization. This thesis presents the current state-of-the-art within computational design methods together...... with a novel method based on probability theory. With the aim of assembling a complete pipeline for protein design, this work touches upon several aspects of protein design. The presented work is the computational half of a design project where the other half is dedicated to the experimental part...

  18. Protein-protein interactions as drug targets.

    Science.gov (United States)

    Skwarczynska, Malgorzata; Ottmann, Christian

    2015-01-01

    Modulation of protein-protein interactions (PPIs) is becoming increasingly important in drug discovery and chemical biology. While a few years ago this 'target class' was deemed to be largely undruggable an impressing number of publications and success stories now show that targeting PPIs with small, drug-like molecules indeed is a feasible approach. Here, we summarize the current state of small-molecule inhibition and stabilization of PPIs and review the active molecules from a structural and medicinal chemistry angle, especially focusing on the key examples of iNOS, LFA-1 and 14-3-3.

  19. Acanthamoeba castellanii STAT Protein

    OpenAIRE

    Anna Kicinska; Jacek Leluk; Wieslawa Jarmuszkiewicz

    2014-01-01

    STAT (signal transducers and activators of transcription) proteins are one of the important mediators of phosphotyrosine-regulated signaling in metazoan cells. We described the presence of STAT protein in a unicellular, free-living amoebae with a simple life cycle, Acanthamoeba castellanii. A. castellanii is the only, studied to date, Amoebozoan that does not belong to Mycetozoa but possesses STATs. A sequence of the A. castellanii STAT protein includes domains similar to those of the Dictyos...

  20. Proteins: Form and function

    OpenAIRE

    Roy D Sleator

    2012-01-01

    An overwhelming array of structural variants has evolved from a comparatively small number of protein structural domains; which has in turn facilitated an expanse of functional derivatives. Herein, I review the primary mechanisms which have contributed to the vastness of our existing, and expanding, protein repertoires. Protein function prediction strategies, both sequence and structure based, are also discussed and their associated strengths and weaknesses assessed.

  1. Pressure cryocooling protein crystals

    Science.gov (United States)

    Kim, Chae Un; Gruner, Sol M.

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  2. PIC: Protein Interactions Calculator.

    Science.gov (United States)

    Tina, K G; Bhadra, R; Srinivasan, N

    2007-07-01

    Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bonds, interactions between hydrophobic residues, ionic interactions, hydrogen bonds, aromatic-aromatic interactions, aromatic-sulphur interactions and cation-pi interactions within a protein or between proteins in a complex. Interactions are calculated on the basis of standard, published criteria. The identified interactions between residues can be visualized using a RasMol and Jmol interface. The advantage with PIC server is the easy availability of inter-residue interaction calculations in a single site. It also determines the accessible surface area and residue-depth, which is the distance of a residue from the surface of the protein. User can also recognize specific kind of interactions, such as apolar-apolar residue interactions or ionic interactions, that are formed between buried or exposed residues or near the surface or deep inside.

  3. Dietary proteins and angiogenesis.

    Science.gov (United States)

    Medina, Miguel Ángel; Quesada, Ana R

    2014-01-17

    Both defective and persistent angiogenesis are linked to pathological situations in the adult. Compounds able to modulate angiogenesis have a potential value for the treatment of such pathologies. Several small molecules present in the diet have been shown to have modulatory effects on angiogenesis. This review presents the current state of knowledge on the potential modulatory roles of dietary proteins on angiogenesis. There is currently limited available information on the topic. Milk contains at least three proteins for which modulatory effects on angiogenesis have been previously demonstrated. On the other hand, there is some scarce information on the potential of dietary lectins, edible plant proteins and high protein diets to modulate angiogenesis.

  4. [Alternative scaffold proteins].

    Science.gov (United States)

    Petrovskaia, L E; Shingarova, L N; Dolgikh, D A; Kirpichnikov, M P

    2011-01-01

    Review is devoted to the challenging direction in modem molecular biology and bioengineering - the properties of alternative scaffold proteins (ASP) and methods for obtaining ASP binding molecules. ASP molecules incorporate conservative protein core and hypervariable regions, providing for the binding function. Structural classification of ASP includes several types which differ also in their molecular targets and potential applications. Construction of artificial binding proteins on the ASP basis implies a combinatorial library design with subsequent selection of specific binders with the use of phage display or the modem cell-free systems. Alternative binding proteins on non-immunoglobulin scaffolds find broad applications in different fields ofbiotechnology and molecular medicine.

  5. Acanthamoeba castellanii STAT protein.

    Directory of Open Access Journals (Sweden)

    Anna Kicinska

    Full Text Available STAT (signal transducers and activators of transcription proteins are one of the important mediators of phosphotyrosine-regulated signaling in metazoan cells. We described the presence of STAT protein in a unicellular, free-living amoebae with a simple life cycle, Acanthamoeba castellanii. A. castellanii is the only, studied to date, Amoebozoan that does not belong to Mycetozoa but possesses STATs. A sequence of the A. castellanii STAT protein includes domains similar to those of the Dictyostelium STAT proteins: a coiled coil (characteristic for Dictyostelium STAT coiled coil, a STAT DNA-binding domain and a Src-homology domain. The search for protein sequences homologous to A. castellanii STAT revealed 17 additional sequences from lower eukaryotes. Interestingly, all of these sequences come from Amoebozoa organisms that belong to either Mycetozoa (slime molds or Centramoebida. We showed that there are four separated clades within the slime mold STAT proteins. The A. castellanii STAT protein branches next to a group of STATc proteins from Mycetozoa. We also demonstrate that Amoebozoa form a distinct monophyletic lineage within the STAT protein world that is well separated from the other groups.

  6. Acanthamoeba castellanii STAT protein.

    Science.gov (United States)

    Kicinska, Anna; Leluk, Jacek; Jarmuszkiewicz, Wieslawa

    2014-01-01

    STAT (signal transducers and activators of transcription) proteins are one of the important mediators of phosphotyrosine-regulated signaling in metazoan cells. We described the presence of STAT protein in a unicellular, free-living amoebae with a simple life cycle, Acanthamoeba castellanii. A. castellanii is the only, studied to date, Amoebozoan that does not belong to Mycetozoa but possesses STATs. A sequence of the A. castellanii STAT protein includes domains similar to those of the Dictyostelium STAT proteins: a coiled coil (characteristic for Dictyostelium STAT coiled coil), a STAT DNA-binding domain and a Src-homology domain. The search for protein sequences homologous to A. castellanii STAT revealed 17 additional sequences from lower eukaryotes. Interestingly, all of these sequences come from Amoebozoa organisms that belong to either Mycetozoa (slime molds) or Centramoebida. We showed that there are four separated clades within the slime mold STAT proteins. The A. castellanii STAT protein branches next to a group of STATc proteins from Mycetozoa. We also demonstrate that Amoebozoa form a distinct monophyletic lineage within the STAT protein world that is well separated from the other groups.

  7. Simulations of Protein Folding

    CERN Document Server

    Cahill, M; Cahill, K E; Cahill, Michael; Fleharty, Mark; Cahill, Kevin

    2000-01-01

    We have developed a simple, phenomenological, Monte-Carlo code that predicts the three-dimensional structure of globular proteins from the DNA sequences that define them. We have applied this code to two small proteins, the villin headpiece (1VII) and cole1 rop (1ROP). Our code folded the 36-residue villin headpiece to a mean rms distance of less than 5 A from its native structure as revealed by NMR; it folded a 56-residue fragment of the protein cole1 rop to within 11 A of its native structure. The denatured starting configurations of these two proteins were, respectively, 29 A and 55 A distant from their native structures.

  8. Moonlighting proteins in cancer.

    Science.gov (United States)

    Min, Kyung-Won; Lee, Seong-Ho; Baek, Seung Joon

    2016-01-01

    Since the 1980s, growing evidence suggested that the cellular localization of proteins determined their activity and biological functions. In a classical view, a protein is characterized by the single cellular compartment where it primarily resides and functions. It is now believed that when proteins appear in different subcellular locations, the cells surpass the expected activity of proteins given the same genomic information to fulfill complex biological behavior. Many proteins are recognized for having the potential to exist in multiple locations in cells. Dysregulation of translocation may cause cancer or contribute to poorer cancer prognosis. Thus, quantitative and comprehensive assessment of dynamic proteins and associated protein movements could be a promising indicator in determining cancer prognosis and efficiency of cancer treatment and therapy. This review will summarize these so-called moonlighting proteins, in terms of a coupled intracellular cancer signaling pathway. Determination of the detailed biological intracellular and extracellular transit and regulatory activity of moonlighting proteins permits a better understanding of cancer and identification of potential means of molecular intervention.

  9. Self assembling proteins

    Science.gov (United States)

    Yeates, Todd O.; Padilla, Jennifer; Colovos, Chris

    2004-06-29

    Novel fusion proteins capable of self-assembling into regular structures, as well as nucleic acids encoding the same, are provided. The subject fusion proteins comprise at least two oligomerization domains rigidly linked together, e.g. through an alpha helical linking group. Also provided are regular structures comprising a plurality of self-assembled fusion proteins of the subject invention, and methods for producing the same. The subject fusion proteins find use in the preparation of a variety of nanostructures, where such structures include: cages, shells, double-layer rings, two-dimensional layers, three-dimensional crystals, filaments, and tubes.

  10. Characterization of Metal Proteins

    Science.gov (United States)

    Unno, Masaki; Ikeda-Saito, Masao

    Some metals are essential for life. Most of these metals are associated with biological macromolecule like DNA (deoxyribonucleic acid), RNA (ribonucleic acid), and more often with proteins: metals bind or interact with them. A number of protein molecules intrinsically contain metals in their structure. Some of these proteins catalyze unique chemical reactions and perform specific physiological functions. In this chapter, we will shed light on the several metalcontaining proteins, termed metalloproteins, and other proteins interacting metals. We will also introduce several key techniques which have been used to characterize these proteins. Characterizing these proteins and to understand the relationships between their structures and functions shall continue to be one of the major avenues to solve the mysteries of life. At first, we introduce what are the protein structures and how these proteins interact with metals. In the next section, we discuss the physiological roles of some representative metals. Next, we show two examples of special metal cofactors those help the biological macromolecules to carry out their functions. Then we describe some functions of metalloproteins. Finally, we introduce some physical methods to characterize metalloproteins.

  11. Ultrafiltration of pegylated proteins

    Science.gov (United States)

    Molek, Jessica R.

    There is considerable clinical interest in the use of "second-generation" therapeutics produced by conjugation of a native protein with various polymers including polyethylene glycol (PEG). PEG--protein conjugates, so-called PEGylated proteins, can exhibit enhanced stability, half-life, and bioavailability. One of the challenges in the commercial production of PEGylated proteins is the purification required to remove unreacted polymer, native protein, and in many cases PEGylated proteins with nonoptimal degrees of conjugation. The overall objective of this thesis was to examine the use of ultrafiltration for the purification of PEGylated proteins. This included: (1) analysis of size-based separation of PEGylated proteins using conventional ultrafiltration membranes, (2) use of electrically-charged membranes to exploit differences in electrostatic interactions, and (3) examination of the effects of PEGylation on protein fouling. The experimental results were analyzed using appropriate theoretical models, with the underlying physical properties of the PEGylated proteins evaluated using size exclusion chromatography, capillary electrophoresis, dynamic light scattering, and reverse phase chromatography. PEGylated proteins were produced by covalent attachment of activated PEG to a protein via primary amines on the lysine residues. A simple model was developed for the reaction kinetics, which was used to explore the effect of reaction conditions and mode of operation on the distribution of PEGylated products. The effective size of the PEGylated proteins was evaluated using size exclusion chromatography, with appropriate correlations developed for the size in terms of the molecular weight of the native protein and attached PEG. The electrophoretic mobility of the PEGylated proteins were evaluated by capillary electrophoresis with the data in good agreement with a simple model accounting for the increase in protein size and the reduction in the number of protonated amine

  12. Protein: FBB5 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available ependent protein kinase activator A PKR-associated protein X, PKR-associating protein X, Protein activator o...f the interferon-induced protein kinase, Protein kinase, interferon-inducible double stranded RNA-dependent activator 9606 Homo sapiens O75569 8575 2DIX 8575 O75569 ...

  13. Protein Attachment on Nanodiamonds.

    Science.gov (United States)

    Lin, Chung-Lun; Lin, Cheng-Huang; Chang, Huan-Cheng; Su, Meng-Chih

    2015-07-16

    A recent advance in nanotechnology is the scale-up production of small and nonaggregated diamond nanoparticles suitable for biological applications. Using detonation nanodiamonds (NDs) with an average diameter of ∼4 nm as the adsorbents, we have studied the static attachment of three proteins (myoglobin, bovine serum albumin, and insulin) onto the nanoparticles by optical spectroscopy, mass spectrometry, and dynamic light scattering, and electrophoretic zeta potential measurements. Results show that the protein surface coverage is predominantly determined by the competition between protein-protein and protein-ND interactions, giving each protein a unique and characteristic structural configuration in its own complex. Specifically, both myoglobin and bovine serum albumin show a Langmuir-type adsorption behavior, forming 1:1 complexes at saturation, whereas insulin folds into a tightly bound multimer before adsorption. The markedly different adsorption patterns appear to be independent of the protein concentration and are closely related to the affinity of the individual proteins for the NDs. The present study provides a fundamental understanding for the use of NDs as a platform for nanomedical drug delivery.

  14. Poxviral Ankyrin Proteins

    Directory of Open Access Journals (Sweden)

    Michael H. Herbert

    2015-02-01

    Full Text Available Multiple repeats of the ankyrin motif (ANK are ubiquitous throughout the kingdoms of life but are absent from most viruses. The main exception to this is the poxvirus family, and specifically the chordopoxviruses, with ANK repeat proteins present in all but three species from separate genera. The poxviral ANK repeat proteins belong to distinct orthologue groups spread over different species, and align well with the phylogeny of their genera. This distribution throughout the chordopoxviruses indicates these proteins were present in an ancestral vertebrate poxvirus, and have since undergone numerous duplication events. Most poxviral ANK repeat proteins contain an unusual topology of multiple ANK motifs starting at the N-terminus with a C-terminal poxviral homologue of the cellular F-box enabling interaction with the cellular SCF ubiquitin ligase complex. The subtle variations between ANK repeat proteins of individual poxviruses suggest an array of different substrates may be bound by these protein-protein interaction domains and, via the F-box, potentially directed to cellular ubiquitination pathways and possible degradation. Known interaction partners of several of these proteins indicate that the NF-κB coordinated anti-viral response is a key target, whilst some poxviral ANK repeat domains also have an F-box independent affect on viral host-range.

  15. Engineered Protein Polymers

    Science.gov (United States)

    2010-05-31

    of each pure polymer, we plan to combine the various polymer solutions in different ratios to tune the composition and physico-chemical properties...protein materials as vehicles for storage and delivery of small molecules. Each protein polymer under concentrations for particle formation ( vida

  16. MODELS OF PROTEIN FOLDING

    Directory of Open Access Journals (Sweden)

    Unnati Ahluwalia

    2012-12-01

    Full Text Available In an attempt to explore the understanding of protein folding mechanism, various models have been proposed in the literature. Advances in recent experimental and computational techniques rationalized our understanding on some of the fundamental features of the protein folding pathways. The goal of this review is to revisit the various models and outline the essential aspects of the folding reaction.

  17. Poxviral Ankyrin Proteins

    Science.gov (United States)

    Herbert, Michael H.; Squire, Christopher J.; Mercer, Andrew A

    2015-01-01

    Multiple repeats of the ankyrin motif (ANK) are ubiquitous throughout the kingdoms of life but are absent from most viruses. The main exception to this is the poxvirus family, and specifically the chordopoxviruses, with ANK repeat proteins present in all but three species from separate genera. The poxviral ANK repeat proteins belong to distinct orthologue groups spread over different species, and align well with the phylogeny of their genera. This distribution throughout the chordopoxviruses indicates these proteins were present in an ancestral vertebrate poxvirus, and have since undergone numerous duplication events. Most poxviral ANK repeat proteins contain an unusual topology of multiple ANK motifs starting at the N-terminus with a C-terminal poxviral homologue of the cellular F-box enabling interaction with the cellular SCF ubiquitin ligase complex. The subtle variations between ANK repeat proteins of individual poxviruses suggest an array of different substrates may be bound by these protein-protein interaction domains and, via the F-box, potentially directed to cellular ubiquitination pathways and possible degradation. Known interaction partners of several of these proteins indicate that the NF-κB coordinated anti-viral response is a key target, whilst some poxviral ANK repeat domains also have an F-box independent affect on viral host-range. PMID:25690795

  18. Advances in Protein Precipitation

    NARCIS (Netherlands)

    Golubovic, M.

    2009-01-01

    Proteins are biological macromolecules, which are among the key components of all living organisms. Proteins are nowadays present in all fields of biotech industry, such as food and feed, synthetic and pharmaceutical industry. They are isolated from their natural sources or produced in different cel

  19. Brushes and proteins

    NARCIS (Netherlands)

    Bosker, W.T.E.

    2011-01-01

      Brushes and Proteins   Wouter T. E. Bosker         Protein adsorption at solid surfaces can be prevented by applying a polymer brush at the surface. A polymer brush consists of polymer chains end-grafted to the surface at such a grafting density that th

  20. Manipulating and Visualizing Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Horst D.

    2003-12-05

    ProteinShop Gives Researchers a Hands-On Tool for Manipulating, Visualizing Protein Structures. The Human Genome Project and other biological research efforts are creating an avalanche of new data about the chemical makeup and genetic codes of living organisms. But in order to make sense of this raw data, researchers need software tools which let them explore and model data in a more intuitive fashion. With this in mind, researchers at Lawrence Berkeley National Laboratory and the University of California, Davis, have developed ProteinShop, a visualization and modeling program which allows researchers to manipulate protein structures with pinpoint control, guided in large part by their own biological and experimental instincts. Biologists have spent the last half century trying to unravel the ''protein folding problem,'' which refers to the way chains of amino acids physically fold themselves into three-dimensional proteins. This final shape, which resembles a crumpled ribbon or piece of origami, is what determines how the protein functions and translates genetic information. Understanding and modeling this geometrically complex formation is no easy matter. ProteinShop takes a given sequence of amino acids and uses visualization guides to help generate predictions about the secondary structures, identifying alpha helices and flat beta strands, and the coil regions that bind them. Once secondary structures are in place, researchers can twist and turn these pre-configurations until they come up with a number of possible tertiary structure conformations. In turn, these are fed into a computationally intensive optimization procedure that tries to find the final, three-dimensional protein structure. Most importantly, ProteinShop allows users to add human knowledge and intuition to the protein structure prediction process, thus bypassing bad configurations that would otherwise be fruitless for optimization. This saves compute cycles and accelerates

  1. Sensitizing properties of proteins

    DEFF Research Database (Denmark)

    Poulsen, Lars K.; Ladics, Gregory S; McClain, Scott

    2014-01-01

    The scope of allergy risk is diverse considering the myriad ways in which protein allergenicity is affected by physiochemical characteristics of proteins. The complexity created by the matrices of foods and the variability of the human immune system add additional challenges to understanding...... the relationship between sensitization potential and allergy disease. To address these and other issues, an April 2012 international symposium was held in Prague, Czech Republic, to review and discuss the state-of-the-science of sensitizing properties of protein allergens. The symposium, organized by the Protein...... Allergenicity Technical Committee of the International Life Sciences Institute's Health and Environmental Sciences Institute, featured presentations on current methods, test systems, research trends, and unanswered questions in the field of protein sensitization. A diverse group of over 70 interdisciplinary...

  2. Unconventional protein secretion.

    Science.gov (United States)

    Ding, Yu; Wang, Juan; Wang, Junqi; Stierhof, York-Dieter; Robinson, David G; Jiang, Liwen

    2012-10-01

    It is generally believed that protein secretion or exocytosis is achieved via a conventional ER (endoplasmic reticulum)-Golgi-TGN (trans-Golgi network)-PM (plasma membrane) pathway in the plant endomembrane system. However, such signal peptide (SP)-dependent protein secretion cannot explain the increasing number of SP-lacking proteins which are found outside of the PM in plant cells. The process by which such leaderless secretory proteins (LSPs) gain access to the cell exterior is termed unconventional protein secretion (UPS) and has been well-studied in animal and yeast cells, but largely ignored by the plant community. Here, we review the evidence for UPS in plants especially in regard to the recently discovered EXPO (exocyst-positive-organelle).

  3. Protein Unfolding and Alzheimer's

    Science.gov (United States)

    Cheng, Kelvin

    2012-10-01

    Early interaction events of beta-amyloid (Aβ) proteins with neurons have been associated with the pathogenesis of Alzheimer's disease. Knowledge pertaining to the role of lipid molecules, particularly cholesterol, in modulating the single Aβ interactions with neurons at the atomic length and picosecond time resolutions, remains unclear. In our research, we have used atomistic molecular dynamics simulations to explore early molecular events including protein insertion kinetics, protein unfolding, and protein-induced membrane disruption of Aβ in lipid domains that mimic the nanoscopic raft and non-raft regions of the neural membrane. In this talk, I will summarize our current work on investigating the role of cholesterol in regulating the Aβ interaction events with membranes at the molecular level. I will also explain how our results will provide new insights into understanding the pathogenesis of Alzheimer's disease associated with the Aβ proteins.

  4. Transdermal delivery of proteins.

    Science.gov (United States)

    Kalluri, Haripriya; Banga, Ajay K

    2011-03-01

    Transdermal delivery of peptides and proteins avoids the disadvantages associated with the invasive parenteral route of administration and other alternative routes such as the pulmonary and nasal routes. Since proteins have a large size and are hydrophilic in nature, they cannot permeate passively across the skin due to the stratum corneum which allows the transport of only small lipophilic drug molecules. Enhancement techniques such as chemical enhancers, iontophoresis, microneedles, electroporation, sonophoresis, thermal ablation, laser ablation, radiofrequency ablation and noninvasive jet injectors aid in the delivery of proteins by overcoming the skin barrier in different ways. In this review, these enhancement techniques that can enable the transdermal delivery of proteins are discussed, including a discussion of mechanisms, sterility requirements, and commercial development of products. Combination of enhancement techniques may result in a synergistic effect allowing increased protein delivery and these are also discussed.

  5. Coarse-grain modelling of protein-protein interactions

    NARCIS (Netherlands)

    Baaden, Marc; Marrink, Siewert J.

    2013-01-01

    Here, we review recent advances towards the modelling of protein-protein interactions (PPI) at the coarse-grained (CG) level, a technique that is now widely used to understand protein affinity, aggregation and self-assembly behaviour. PPI models of soluble proteins and membrane proteins are separate

  6. New Compound Classes: Protein-Protein Interactions.

    Science.gov (United States)

    Ottmann, C

    2016-01-01

    "Protein-protein interactions (PPIs) are one of the most promising new targets in drug discovery. With estimates between 300,000 and 650,000 in human physiology, targeted modulation of PPIs would tremendously extend the "druggable" genome. In fact, in every disease a wealth of potentially addressable PPIs can be found making pharmacological intervention based on PPI modulators in principle a generally applicable technology. An impressing number of success stories in small-molecule PPI inhibition and natural-product PPI stabilization increasingly encourage academia and industry to invest in PPI modulation. In this chapter examples of both inhibition as well as stabilization of PPIs are reviewed including some of the technologies which has been used for their identification."

  7. Anchored design of protein-protein interfaces.

    Directory of Open Access Journals (Sweden)

    Steven M Lewis

    Full Text Available BACKGROUND: Few existing protein-protein interface design methods allow for extensive backbone rearrangements during the design process. There is also a dichotomy between redesign methods, which take advantage of the native interface, and de novo methods, which produce novel binders. METHODOLOGY: Here, we propose a new method for designing novel protein reagents that combines advantages of redesign and de novo methods and allows for extensive backbone motion. This method requires a bound structure of a target and one of its natural binding partners. A key interaction in this interface, the anchor, is computationally grafted out of the partner and into a surface loop on the design scaffold. The design scaffold's surface is then redesigned with backbone flexibility to create a new binding partner for the target. Careful choice of a scaffold will bring experimentally desirable characteristics into the new complex. The use of an anchor both expedites the design process and ensures that binding proceeds against a known location on the target. The use of surface loops on the scaffold allows for flexible-backbone redesign to properly search conformational space. CONCLUSIONS AND SIGNIFICANCE: This protocol was implemented within the Rosetta3 software suite. To demonstrate and evaluate this protocol, we have developed a benchmarking set of structures from the PDB with loop-mediated interfaces. This protocol can recover the correct loop-mediated interface in 15 out of 16 tested structures, using only a single residue as an anchor.

  8. Protein Binding Pocket Dynamics.

    Science.gov (United States)

    Stank, Antonia; Kokh, Daria B; Fuller, Jonathan C; Wade, Rebecca C

    2016-05-17

    The dynamics of protein binding pockets are crucial for their interaction specificity. Structural flexibility allows proteins to adapt to their individual molecular binding partners and facilitates the binding process. This implies the necessity to consider protein internal motion in determining and predicting binding properties and in designing new binders. Although accounting for protein dynamics presents a challenge for computational approaches, it expands the structural and physicochemical space for compound design and thus offers the prospect of improved binding specificity and selectivity. A cavity on the surface or in the interior of a protein that possesses suitable properties for binding a ligand is usually referred to as a binding pocket. The set of amino acid residues around a binding pocket determines its physicochemical characteristics and, together with its shape and location in a protein, defines its functionality. Residues outside the binding site can also have a long-range effect on the properties of the binding pocket. Cavities with similar functionalities are often conserved across protein families. For example, enzyme active sites are usually concave surfaces that present amino acid residues in a suitable configuration for binding low molecular weight compounds. Macromolecular binding pockets, on the other hand, are located on the protein surface and are often shallower. The mobility of proteins allows the opening, closing, and adaptation of binding pockets to regulate binding processes and specific protein functionalities. For example, channels and tunnels can exist permanently or transiently to transport compounds to and from a binding site. The influence of protein flexibility on binding pockets can vary from small changes to an already existent pocket to the formation of a completely new pocket. Here, we review recent developments in computational methods to detect and define binding pockets and to study pocket dynamics. We introduce five

  9. PSC: protein surface classification.

    Science.gov (United States)

    Tseng, Yan Yuan; Li, Wen-Hsiung

    2012-07-01

    We recently proposed to classify proteins by their functional surfaces. Using the structural attributes of functional surfaces, we inferred the pairwise relationships of proteins and constructed an expandable database of protein surface classification (PSC). As the functional surface(s) of a protein is the local region where the protein performs its function, our classification may reflect the functional relationships among proteins. Currently, PSC contains a library of 1974 surface types that include 25,857 functional surfaces identified from 24,170 bound structures. The search tool in PSC empowers users to explore related surfaces that share similar local structures and core functions. Each functional surface is characterized by structural attributes, which are geometric, physicochemical or evolutionary features. The attributes have been normalized as descriptors and integrated to produce a profile for each functional surface in PSC. In addition, binding ligands are recorded for comparisons among homologs. PSC allows users to exploit related binding surfaces to reveal the changes in functionally important residues on homologs that have led to functional divergence during evolution. The substitutions at the key residues of a spatial pattern may determine the functional evolution of a protein. In PSC (http://pocket.uchicago.edu/psc/), a pool of changes in residues on similar functional surfaces is provided.

  10. Protein oxidation in aquatic foods

    DEFF Research Database (Denmark)

    Baron, Caroline P.

    2014-01-01

    The chapter discusses general considerations about protein oxidation and reviews the mechanisms involved in protein oxidation and consequences of protein oxidation on fish proteins. It presents two case studies, the first deals with protein and lipid oxidation in frozen rainbow trout......, and the second with oxidation in salted herring. The mechanisms responsible for initiation of protein oxidation are unclear, but it is generally accepted that free radical species initiating lipid oxidation can also initiate protein oxidation. The chapter focuses on interaction between protein and lipid...... oxidation. The protein carbonyl group measurement is the widely used method for estimating protein oxidation in foods and has been used in fish muscle. The chapter also talks about the impact of protein oxidation on protein functionality, fish muscle texture, and food nutritional value. Protein oxidation...

  11. Bacterial Ice Crystal Controlling Proteins

    Directory of Open Access Journals (Sweden)

    Janet S. H. Lorv

    2014-01-01

    Full Text Available Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions.

  12. Piezoelectric allostery of protein

    Science.gov (United States)

    Ohnuki, Jun; Sato, Takato; Takano, Mitsunori

    2016-07-01

    Allostery is indispensable for a protein to work, where a locally applied stimulus is transmitted to a distant part of the molecule. While the allostery due to chemical stimuli such as ligand binding has long been studied, the growing interest in mechanobiology prompts the study of the mechanically stimulated allostery, the physical mechanism of which has not been established. By molecular dynamics simulation of a motor protein myosin, we found that a locally applied mechanical stimulus induces electrostatic potential change at distant regions, just like the piezoelectricity. This novel allosteric mechanism, "piezoelectric allostery", should be of particularly high value for mechanosensor/transducer proteins.

  13. Alpha Shapes and Proteins

    DEFF Research Database (Denmark)

    Winter, Pawel; Sterner, Henrik; Sterner, Peter

    2009-01-01

    We provide a unified description of (weighted) alpha shapes, beta shapes and the corresponding simplicialcomplexes. We discuss their applicability to various protein-related problems. We also discuss filtrations of alpha shapes and touch upon related persistence issues.We claim that the full...... potential of alpha-shapes and related geometrical constructs in protein-related problems yet remains to be realized and verified. We suggest parallel algorithms for (weighted) alpha shapes, and we argue that future use of filtrations and kinetic variants for larger proteins will need such implementation....

  14. Sound of proteins

    DEFF Research Database (Denmark)

    2007-01-01

    In my group we work with Molecular Dynamics to model several different proteins and protein systems. We submit our modelled molecules to changes in temperature, changes in solvent composition and even external pulling forces. To analyze our simulation results we have so far used visual inspection...... and statistical analysis of the resulting molecular trajectories (as everybody else!). However, recently I started assigning a particular sound frequency to each amino acid in the protein, and by setting the amplitude of each frequency according to the movement amplitude we can "hear" whenever two aminoacids...

  15. Protein oxidation and ageing

    DEFF Research Database (Denmark)

    Linton, S; Davies, Michael Jonathan; Dean, R T

    2001-01-01

    of redox-active metal ions that could catalyse oxidant formation. As a result of this decrease in antioxidant defences, and increased rate of ROS formation, it is possible that the impact of ROS increases with age. ROS are known to oxidise biological macromolecules, with proteins an important target....... If the argument that the impact of ROS increases with age is true, then proteins would be expected to accumulate oxidised materials with age, and the rate of such accumulation should increase with time, reflecting impaired inefficiency of homeostasis. Here we review the evidence for the accumulation of oxidised......, or modified, extra- and intra-cellular proteins in vivo....

  16. Protein crystallography prescreen kit

    Science.gov (United States)

    Segelke, Brent W.; Krupka, Heike I.; Rupp, Bernhard

    2005-07-12

    A kit for prescreening protein concentration for crystallization includes a multiplicity of vials, a multiplicity of pre-selected reagents, and a multiplicity of sample plates. The reagents and a corresponding multiplicity of samples of the protein in solutions of varying concentrations are placed on sample plates. The sample plates containing the reagents and samples are incubated. After incubation the sample plates are examined to determine which of the sample concentrations are too low and which the sample concentrations are too high. The sample concentrations that are optimal for protein crystallization are selected and used.

  17. Protein: MPA6 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available in 30 kDa adipocyte complement-related protein, Adipocyte complement-related 30 kDa protein, Adipocyte, C1q ...and collagen domain-containing protein, Adipose most abundant gene transcript 1 protein, Gelatin-binding protein 9606 Homo sapiens Q15848 9370 9370 Q15848 18054335, 19646806 ...

  18. Protein: FEB6 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FEB6 Photoresponse regulatory proteins HD1 SE1 Zinc finger protein HD1 Protein CONSTANS-like, Prot...ein HEADING DATE 1, Protein PHOTOPERIOD SENSITIVITY 1 39947 Oryza sativa subsp. japonica 4340746 Q9FDX8 21952207, 19246394 #shimamoto ...

  19. New approach for predicting protein-protein interactions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Protein-protein interactions (PPIs) are of vital importance for virtually all processes of a living cell. The study of these associations of protein molecules could improve people's understanding of diseases and provide basis for therapeutic approaches.

  20. Analysis of correlations between protein complex and protein-protein interaction and mRNA expression

    Institute of Scientific and Technical Information of China (English)

    CAI Lun; XUE Hong; LU Hongchao; ZHAO Yi; ZHU Xiaopeng; BU Dongbo; LING Lunjiang; CHEN Runsheng

    2003-01-01

    Protein-protein interaction is a physical interaction of two proteins in living cells. In budding yeast Saccharomyces cerevisiae, large-scale protein-protein interaction data have been obtained through high-throughput yeast two-hybrid systems (Y2H) and protein complex purification techniques based on mass-spectrometry. Here, we collect 11855 interactions between total 2617 proteins. Through seriate genome-wide mRNA expression data, similarity between two genes could be measured. Protein complex data can also be obtained publicly and can be translated to pair relationship that any two proteins can only exist in the same complex or not. Analysis of protein complex data, protein-protein interaction data and mRNA expression data can elucidate correlations between them. The results show that proteins that have interactions or similar expression patterns have a higher possibility to be in the same protein complex than randomized selected proteins, and proteins which have interactions and similar expression patterns are even more possible to exist in the same protein complex. The work indicates that comprehensive integration and analysis of public large-scale bioinformatical data, such as protein complex data, protein-protein interaction data and mRNA expression data, may help to uncover their relationships and common biological information underlying these data. The strategies described here may help to integrate and analyze other functional genomic and proteomic data, such as gene expression profiling, protein-localization mapping and large-scale phenotypic data, both in yeast and in other organisms.

  1. Cathepsin proteases in Toxoplasma gondii

    OpenAIRE

    Dou, Zhicheng; Carruthers, Vern B.

    2011-01-01

    Cysteine proteases are important for the growth and survival of apicomplexan parasites that infect humans. The apicomplexan Toxoplasma gondii expresses five members of the C1 family of cysteine proteases, including one cathepsin L-like (TgCPL), one cathepsin B-like (TgCPB), and three cathepsin C-like (TgCPC1, 2 and 3) proteases. Recent genetic, biochemical and structural studies reveal that cathepsins function in microneme and rhoptry protein maturation, host cell invasion, replication, and n...

  2. Protein Model Database

    Energy Technology Data Exchange (ETDEWEB)

    Fidelis, K; Adzhubej, A; Kryshtafovych, A; Daniluk, P

    2005-02-23

    The phenomenal success of the genome sequencing projects reveals the power of completeness in revolutionizing biological science. Currently it is possible to sequence entire organisms at a time, allowing for a systemic rather than fractional view of their organization and the various genome-encoded functions. There is an international plan to move towards a similar goal in the area of protein structure. This will not be achieved by experiment alone, but rather by a combination of efforts in crystallography, NMR spectroscopy, and computational modeling. Only a small fraction of structures are expected to be identified experimentally, the remainder to be modeled. Presently there is no organized infrastructure to critically evaluate and present these data to the biological community. The goal of the Protein Model Database project is to create such infrastructure, including (1) public database of theoretically derived protein structures; (2) reliable annotation of protein model quality, (3) novel structure analysis tools, and (4) access to the highest quality modeling techniques available.

  3. Protein urine test

    Science.gov (United States)

    ... Urine albumin; Proteinuria; Albuminuria Images White nail syndrome Protein urine test References Gerber GS, Brendler CB. Evaluation of the urologic patient: history, physical examination, and urinalysis. In: Wein AJ, Kavoussi ...

  4. MicroProteins

    DEFF Research Database (Denmark)

    Eguen, Teinai Ebimienere; Straub, Daniel; Graeff, Moritz;

    2015-01-01

    MicroProteins (miPs) are short, usually single-domain proteins that, in analogy to miRNAs, heterodimerize with their targets and exert a dominant-negative effect. Recent bioinformatic attempts to identify miPs have resulted in a list of potential miPs, many of which lack the defining...... characteristics of a miP. In this opinion article, we clearly state the characteristics of a miP as evidenced by known proteins that fit the definition; we explain why modulatory proteins misrepresented as miPs do not qualify as true miPs. We also discuss the evolutionary history of miPs, and how the miP concept...

  5. The Pentapeptide Repeat Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Vetting,M.; Hegde, S.; Fajardo, J.; Fiser, A.; Roderick, S.; Takiff, H.; Blanchard, J.

    2006-01-01

    The Pentapeptide Repeat Protein (PRP) family has over 500 members in the prokaryotic and eukaryotic kingdoms. These proteins are composed of, or contain domains composed of, tandemly repeated amino acid sequences with a consensus sequence of [S, T,A, V][D, N][L, F]-[S, T,R][G]. The biochemical function of the vast majority of PRP family members is unknown. The three-dimensional structure of the first member of the PRP family was determined for the fluoroquinolone resistance protein (MfpA) from Mycobacterium tuberculosis. The structure revealed that the pentapeptide repeats encode the folding of a novel right-handed quadrilateral {beta}-helix. MfpA binds to DNA gyrase and inhibits its activity. The rod-shaped, dimeric protein exhibits remarkable size, shape and electrostatic similarity to DNA.

  6. Interactive protein manipulation

    Energy Technology Data Exchange (ETDEWEB)

    SNCrivelli@lbl.gov

    2003-07-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures.

  7. Protein Polymers and Amyloids

    DEFF Research Database (Denmark)

    Risør, Michael Wulff

    2014-01-01

    Several human disorders are caused by a common general disease mechanism arising from abnormal folding and aggregation of the underlying protein. These include the prevalent dementias like Alzheimer’s and Parkinson’s, where accumulation of protein fibrillar structures, known as amyloid fibrils......, is a general hallmark. They also include the α1-antitrypsin deficiency, where disease-causing mutations in the serine protease inhibitor, α1-antitrypsin (α1AT), leads to accumulation of the aberrant protein in the liver of these patients. The native metastable structure of α1AT constitutes a molecular trap...... that inhibits its target protease through a large conformational change but mutations compromise this function and cause premature structural collapse into hyperstable polymers. Understanding the conformational disorders at a molecular level is not only important for our general knowledge on protein folding...

  8. Markers of protein oxidation

    DEFF Research Database (Denmark)

    Headlam, Henrietta A; Davies, Michael Jonathan

    2004-01-01

    Exposure of proteins to radicals in the presence of O2 gives both side-chain oxidation and backbone fragmentation. These processes can be interrelated, with initial side-chain oxidation giving rise to backbone damage via transfer reactions. We have shown previously that alkoxyl radicals formed...... of this process depends on the extent of oxidation at C-3 compared with other sites. HO*, generated by gamma radiolysis, gave the highest total carbonyl yield, with protein-bound carbonyls predominating over released. In contrast, metal ion/H2O2 systems, gave more released than bound carbonyls, with this ratio...... modulated by EDTA. This is ascribed to metal ion-protein interactions affecting the sites of initial oxidation. Hypochlorous acid gave low concentrations of released carbonyls, but high yields of protein-bound material. The peroxyl radical generator 2,2'-azobis(2-amidinopropane) hydrochloride...

  9. Protein Colloidal Aggregation Project

    Science.gov (United States)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    To investigate the pathways and kinetics of protein aggregation to allow accurate predictive modeling of the process and evaluation of potential inhibitors to prevalent diseases including cataract formation, chronic traumatic encephalopathy, Alzheimer's Disease, Parkinson's Disease and others.

  10. Protein dimerization. Inside job.

    Science.gov (United States)

    Metzger, H

    1994-04-01

    In a sophisticated combination of genetic engineering and organic synthesis, a general method for dimerizing recombinant intracellular proteins has been devised; the usefulness of the method should now be testable.

  11. Plant protein glycosylation

    Science.gov (United States)

    Strasser, Richard

    2016-01-01

    Protein glycosylation is an essential co- and post-translational modification of secretory and membrane proteins in all eukaryotes. The initial steps of N-glycosylation and N-glycan processing are highly conserved between plants, mammals and yeast. In contrast, late N-glycan maturation steps in the Golgi differ significantly in plants giving rise to complex N-glycans with β1,2-linked xylose, core α1,3-linked fucose and Lewis A-type structures. While the essential role of N-glycan modifications on distinct mammalian glycoproteins is already well documented, we have only begun to decipher the biological function of this ubiquitous protein modification in different plant species. In this review, I focus on the biosynthesis and function of different protein N-linked glycans in plants. Special emphasis is given on glycan-mediated quality control processes in the ER and on the biological role of characteristic complex N-glycan structures. PMID:26911286

  12. Protein digestion in ruminants

    African Journals Online (AJOL)

    protein nitrogen (NPN) in the rumen, the effect of digestible energy on the rate and .... Fahey, 1982) and inhibitors of amino acid deamination. (Chalupa & Scott, 1976). ... the omasum, although both urea and ammonia may be absorbed (0,9 gld.

  13. Polymers for Protein Conjugation

    Directory of Open Access Journals (Sweden)

    Gianfranco Pasut

    2014-01-01

    Full Text Available Polyethylene glycol (PEG at the moment is considered the leading polymer for protein conjugation in view of its unique properties, as well as to its low toxicity in humans, qualities which have been confirmed by its extensive use in clinical practice. Other polymers that are safe, biodegradable and custom-designed have, nevertheless, also been investigated as potential candidates for protein conjugation. This review will focus on natural polymers and synthetic linear polymers that have been used for protein delivery and the results associated with their use. Genetic fusion approaches for the preparation of protein-polypeptide conjugates will be also reviewed and compared with the best known chemical conjugation ones.

  14. Electron transfer in proteins

    DEFF Research Database (Denmark)

    Farver, O; Pecht, I

    1991-01-01

    Electron migration between and within proteins is one of the most prevalent forms of biological energy conversion processes. Electron transfer reactions take place between active centers such as transition metal ions or organic cofactors over considerable distances at fast rates and with remarkable...... specificity. The electron transfer is attained through weak electronic interaction between the active sites, so that considerable research efforts are centered on resolving the factors that control the rates of long-distance electron transfer reactions in proteins. These factors include (in addition......-containing proteins. These proteins serve almost exclusively in electron transfer reactions, and as it turns out, their metal coordination sites are endowed with properties uniquely optimized for their function....

  15. Occupational protein contact dermatitis.

    Science.gov (United States)

    Barbaud, Annick; Poreaux, Claire; Penven, Emmanuelle; Waton, Julie

    2015-01-01

    Occupational contact dermatitis is generally caused by haptens but can also be induced by proteins causing mainly immunological contact urticaria (ICU); chronic hand eczema in the context of protein contact dermatitis (PCD). In a monocentric retrospective study, from our database, only 31 (0.41%) of patients with contact dermatitis had positive skin tests with proteins: 22 had occupational PCD, 3 had non-occupational PCD, 5 occupational ICU and 1 cook had a neutrophilic fixed food eruption (NFFE) due to fish. From these results and analysis of literature, the characteristics of PCD can be summarized as follows. It is a chronic eczematous dermatitis, possibly exacerbated by work, suggestive if associated with inflammatory perionyxix and immediate erythema with pruritis, to be investigated when the patient resumes work after a period of interruption. Prick tests with the suspected protein-containing material are essential, as patch tests have negative results. In case of multisensitisation revealed by prick tests, it is advisable to analyse IgE against recombinant allergens. A history of atopy, found in 56 to 68% of the patients, has to be checked for. Most of the cases are observed among food-handlers but PCD can also be due to non-edible plants, latex, hydrolysed proteins or animal proteins. Occupational exposure to proteins can thus lead to the development of ICU. Reflecting hypersensitivity to very low concentrations of allergens, investigating ICU therefore requires caution and prick tests should be performed with a diluted form of the causative protein-containing product. Causes are food, especially fruit peel, non-edible plants, cosmetic products, latex, animals.

  16. Recombinant Collagenlike Proteins

    Science.gov (United States)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  17. Protein tyrosine nitration

    Science.gov (United States)

    Chaki, Mounira; Leterrier, Marina; Barroso, Juan B

    2009-01-01

    Nitric oxide metabolism in plant cells has a relative short history. Nitration is a chemical process which consists of introducing a nitro group (-NO2) into a chemical compound. in biological systems, this process has been found in different molecules such as proteins, lipids and nucleic acids that can affect its function. This mini-review offers an overview of this process with special emphasis on protein tyrosine nitration in plants and its involvement in the process of nitrosative stress. PMID:19826215

  18. Digestibility of sorghum proteins.

    OpenAIRE

    Axtell, J D; Kirleis, A. W.; Hassen, M M; D'Croz Mason, N; Mertz, E T; Munck, L.

    1981-01-01

    Published information indicates that rice, maize, and wheat proteins are much more digestible in children than sorghum proteins are (66-81% compared with 46%). However, this digestibility difference cannot be demonstrated with the weanling rat, which gave digestibility values of 80% for cooked and 85% for uncooked sorghum gruels. Therefore, a search was made for a laboratory system sensitive to the digestibility differences between sorghum and other cereals. We found that porcine pepsin in vi...

  19. Colorimetric protein assay techniques.

    Science.gov (United States)

    Sapan, C V; Lundblad, R L; Price, N C

    1999-04-01

    There has been an increase in the number of colorimetric assay techniques for the determination of protein concentration over the past 20 years. This has resulted in a perceived increase in sensitivity and accuracy with the advent of new techniques. The present review considers these advances with emphasis on the potential use of such technologies in the assay of biopharmaceuticals. The techniques reviewed include Coomassie Blue G-250 dye binding (the Bradford assay), the Lowry assay, the bicinchoninic acid assay and the biuret assay. It is shown that each assay has advantages and disadvantages relative to sensitivity, ease of performance, acceptance in the literature, accuracy and reproducibility/coefficient of variation/laboratory-to-laboratory variation. A comparison of the use of several assays with the same sample population is presented. It is suggested that the most critical issue in the use of a chromogenic protein assay for the characterization of a biopharmaceutical is the selection of a standard for the calibration of the assay; it is crucial that the standard be representative of the sample. If it is not possible to match the standard with the sample from the perspective of protein composition, then it is preferable to use an assay that is not sensitive to the composition of the protein such as a micro-Kjeldahl technique, quantitative amino acid analysis or the biuret assay. In a complex mixture it might be inappropriate to focus on a general method of protein determination and much more informative to use specific methods relating to the protein(s) of particular interest, using either specific assays or antibody-based methods. The key point is that whatever method is adopted as the 'gold standard' for a given protein, this method needs to be used routinely for calibration.

  20. Protein Nitrogen Determination

    Science.gov (United States)

    Nielsen, S. Suzanne

    The protein content of foods can be determined by numerous methods. The Kjeldahl method and the nitrogen combustion (Dumas) method for protein analysis are based on nitrogen determination. Both methods are official for the purposes of nutrition labeling of foods. While the Kjeldahl method has been used widely for over a hundred years, the recent availability of automated instrumentation for the Dumas method in many cases is replacing use of the Kjeldahl method.

  1. Transdermal Delivery of Proteins

    OpenAIRE

    Kalluri, Haripriya; Banga, Ajay K.

    2011-01-01

    Transdermal delivery of peptides and proteins avoids the disadvantages associated with the invasive parenteral route of administration and other alternative routes such as the pulmonary and nasal routes. Since proteins have a large size and are hydrophilic in nature, they cannot permeate passively across the skin due to the stratum corneum which allows the transport of only small lipophilic drug molecules. Enhancement techniques such as chemical enhancers, iontophoresis, microneedles, electro...

  2. Hepatitis C virus proteins

    Institute of Scientific and Technical Information of China (English)

    Jean Dubuisson

    2007-01-01

    Hepatitis C virus (HCV) encodes a single polyprotein,which is processed by cellular and viral proteases to generate 10 polypeptides. The HCV genome also contains an overlapping +1 reading frame that may lead to the synthesis of an additional protein. Until recently,studies of HCV have been hampered by the lack of a productive cell culture system. Since the identification of HCV genome approximately 17 years ago, structural,biochemical and biological information on HCV proteins has mainly been obtained with proteins produced by heterologous expression systems. In addition, some functional studies have also been confirmed with replicon systems or with retroviral particles pseudotyped with HCV envelope glycoproteins. The data that have accumulated on HCV proteins begin to provide a framework for understanding the molecular mechanisms involved in the major steps of HCV life cycle. Moreover,the knowledge accumulated on HCV proteins is also leading to the development of antiviral drugs among which some are showing promising results in early-phase clinical trials. This review summarizes the current knowledge on the functions and biochemical features of HCV proteins.

  3. Cardiolipin Interactions with Proteins.

    Science.gov (United States)

    Planas-Iglesias, Joan; Dwarakanath, Himal; Mohammadyani, Dariush; Yanamala, Naveena; Kagan, Valerian E; Klein-Seetharaman, Judith

    2015-09-15

    Cardiolipins (CL) represent unique phospholipids of bacteria and eukaryotic mitochondria with four acyl chains and two phosphate groups that have been implicated in numerous functions from energy metabolism to apoptosis. Many proteins are known to interact with CL, and several cocrystal structures of protein-CL complexes exist. In this work, we describe the collection of the first systematic and, to the best of our knowledge, the comprehensive gold standard data set of all known CL-binding proteins. There are 62 proteins in this data set, 21 of which have nonredundant crystal structures with bound CL molecules available. Using binding patch analysis of amino acid frequencies, secondary structures and loop supersecondary structures considering phosphate and acyl chain binding regions together and separately, we gained a detailed understanding of the general structural and dynamic features involved in CL binding to proteins. Exhaustive docking of CL to all known structures of proteins experimentally shown to interact with CL demonstrated the validity of the docking approach, and provides a rich source of information for experimentalists who may wish to validate predictions.

  4. Disease specific protein corona

    Science.gov (United States)

    Rahman, M.; Mahmoudi, M.

    2015-03-01

    It is now well accepted that upon their entrance into the biological environments, the surface of nanomaterials would be covered by various biomacromolecules (e.g., proteins and lipids). The absorption of these biomolecules, so called `protein corona', onto the surface of (nano)biomaterials confers them a new `biological identity'. Although the formation of protein coronas on the surface of nanoparticles has been widely investigated, there are few reports on the effect of various diseases on the biological identity of nanoparticles. As the type of diseases may tremendously changes the composition of the protein source (e.g., human plasma/serum), one can expect that amount and composition of associated proteins in the corona composition may be varied, in disease type manner. Here, we show that corona coated silica and polystyrene nanoparticles (after interaction with in the plasma of the healthy individuals) could induce unfolding of fibrinogen, which promotes release of the inflammatory cytokines. However, no considerable releases of inflammatory cytokines were observed for corona coated graphene sheets. In contrast, the obtained corona coated silica and polystyrene nanoparticles from the hypofibrinogenemia patients could not induce inflammatory cytokine release where graphene sheets do. Therefore, one can expect that disease-specific protein coronas can provide a novel approach for applying nanomedicine to personalized medicine, improving diagnosis and treatment of different diseases tailored to the specific conditions and circumstances.

  5. Fast protein folding kinetics

    Science.gov (United States)

    Gelman, Hannah; Gruebele, Martin

    2014-01-01

    Fast folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast folding proteins has provided insight into the mechanisms which allow some proteins to find their native conformation well less than 1 ms and has uncovered examples of theoretically predicted phenomena such as downhill folding. The study of fast folders also informs our understanding of even “slow” folding processes: fast folders are small, relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast folding proteins and provides an overview of the major findings of fast folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general as well as some work that is left to do. PMID:24641816

  6. Fast protein folding kinetics.

    Science.gov (United States)

    Gelman, Hannah; Gruebele, Martin

    2014-05-01

    Fast-folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast-folding proteins has provided insight into the mechanisms, which allow some proteins to find their native conformation well fast folders also informs our understanding of even 'slow' folding processes: fast folders are small; relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast-folding proteins and provides an overview of the major findings of fast-folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general, as well as some work that is left to do.

  7. Recombinant human milk proteins.

    Science.gov (United States)

    Lönnerdal, Bo

    2006-01-01

    Human milk provides proteins that benefit newborn infants. They not only provide amino acids, but also facilitate the absorption of nutrients, stimulate growth and development of the intestine, modulate immune function, and aid in the digestion of other nutrients. Breastfed infants have a lower prevalence of infections than formula-fed infants. Since many women in industrialized countries choose not to breastfeed, and an increasing proportion of women in developing countries are advised not to breastfeed because of the risk of HIV transmission, incorporation of recombinant human milk proteins into infant foods is likely to be beneficial. We are expressing human milk proteins known to have anti-infective activity in rice. Since rice is a normal constituent of the diet of infants and children, limited purification of the proteins is required. Lactoferrin has antimicrobial and iron-binding activities. Lysozyme is an enzyme that is bactericidal and also acts synergistically with lactoferrin. These recombinant proteins have biological activities identical to their native counterparts. They are equally resistant to heat processing, which is necessary for food applications, and to acid and proteolytic enzymes which are needed to maintain their biological activity in the gastrointestinal tract of infants. These recombinant human milk proteins may be incorporated into infant formulas, baby foods and complementary foods, and used with the goal to reduce infectious diseases.

  8. Protein phosphorylation and photorespiration.

    Science.gov (United States)

    Hodges, M; Jossier, M; Boex-Fontvieille, E; Tcherkez, G

    2013-07-01

    Photorespiration allows the recycling of carbon atoms of 2-phosphoglycolate produced by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) oxygenase activity, as well as the removal of potentially toxic metabolites. The photorespiratory pathway takes place in the light, encompasses four cellular compartments and interacts with several other metabolic pathways and functions. Therefore, the regulation of this cycle is probably of paramount importance to plant metabolism, however, our current knowledge is poor. To rapidly respond to changing conditions, proteins undergo a number of different post-translational modifications that include acetylation, methylation and ubiquitylation, but protein phosphorylation is probably the most common. The reversible covalent addition of a phosphate group to a specific amino acid residue allows the modulation of protein function, such as activity, subcellular localisation, capacity to interact with other proteins and stability. Recent data indicate that many photorespiratory enzymes can be phosphorylated, and thus it seems that the photorespiratory cycle is, in part, regulated by protein phosphorylation. In this review, the known phosphorylation sites of each Arabidopsis thaliana photorespiratory enzyme and several photorespiratory-associated proteins are described and discussed. A brief account of phosphoproteomic protocols is also given since the published data compiled in this review are the fruit of this approach.

  9. The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration

    NARCIS (Netherlands)

    Huisman, I.H.; Prádanos, P.; Hernández, A.

    2000-01-01

    It was studied how protein-protein and protein-membrane interactions influence the filtration performance during the ultrafiltration of protein solutions over polymeric membranes. This was done by measuring flux, streaming potential, and protein transmission during filtration of bovine serum albumin

  10. The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration

    NARCIS (Netherlands)

    Huisman, I.H.; Prádanos, P.; Hernández, A.

    2000-01-01

    It was studied how protein-protein and protein-membrane interactions influence the filtration performance during the ultrafiltration of protein solutions over polymeric membranes. This was done by measuring flux, streaming potential, and protein transmission during filtration of bovine serum albumin

  11. Similarity measures for protein ensembles

    DEFF Research Database (Denmark)

    Lindorff-Larsen, Kresten; Ferkinghoff-Borg, Jesper

    2009-01-01

    Analyses of similarities and changes in protein conformation can provide important information regarding protein function and evolution. Many scores, including the commonly used root mean square deviation, have therefore been developed to quantify the similarities of different protein conformatio...

  12. Controllability in protein interaction networks.

    Science.gov (United States)

    Wuchty, Stefan

    2014-05-13

    Recently, the focus of network research shifted to network controllability, prompting us to determine proteins that are important for the control of the underlying interaction webs. In particular, we determined minimum dominating sets of proteins (MDSets) in human and yeast protein interaction networks. Such groups of proteins were defined as optimized subsets where each non-MDSet protein can be reached by an interaction from an MDSet protein. Notably, we found that MDSet proteins were enriched with essential, cancer-related, and virus-targeted genes. Their central position allowed MDSet proteins to connect protein complexes and to have a higher impact on network resilience than hub proteins. As for their involvement in regulatory functions, MDSet proteins were enriched with transcription factors and protein kinases and were significantly involved in bottleneck interactions, regulatory links, phosphorylation events, and genetic interactions.

  13. Protein hydrolysates in sports nutrition

    Directory of Open Access Journals (Sweden)

    Manninen Anssi H

    2009-09-01

    Full Text Available Abstract It has been suggested that protein hydrolysates providing mainly di- and tripeptides are superior to intact (whole proteins and free amino acids in terms of skeletal muscle protein anabolism. This review provides a critical examination of protein hydrolysate studies conducted in healthy humans with special reference to sports nutrition. The effects of protein hydrolysate ingestion on blood amino acid levels, muscle protein anabolism, body composition, exercise performance and muscle glycogen resynthesis are discussed.

  14. Protein Functionality in Food Systems

    Institute of Scientific and Technical Information of China (English)

    WANG Panpan

    2010-01-01

    The structure,shape,color,smell and taste of food were decided by protein functionality.The utilization of protein will improve by changing the protein functionality.Protein functionality is also advantage to maintain and utilize the nutrition of food.This paper summarized the nature,classification,factors and prospect of protein functionality.It ccn provide a theoretical basis for application of protein in food industry.

  15. Modeling Mercury in Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeremy C [ORNL; Parks, Jerry M [ORNL

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively non-toxic, other forms such as Hg2+ and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg2+ can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg2+ to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed picture and circumvent issues associated with toxicity. Here we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intra-protein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confers mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multi-scale model of environmental mercury cycling.

  16. PROTEIN SYNTHESIS GAME

    Directory of Open Access Journals (Sweden)

    J.C.Q. Carvalho

    2004-05-01

    Full Text Available The theoretical explanation of biological concepts, associated with the use of teaching games andmodels, intensify the comprehension and increase students interest, stimulating them to participateactively on the teaching-learning process. The sta of dissemination from Centro de BiotecnologiaMolecular Estrutural (CBME, in partnership with the Centro de Divulgac~ao Cientca e Cultural(CDCC, presents, in this work, a new educational resource denoted: Protein Synthesis Game. Theapproach of the game involves the cytological aspects of protein synthesis, directed to high schoolstudents. Students are presented to day-by-day facts related to the function of a given protein in thehuman body. Such task leads players to the goal of solving out a problem through synthesizing aspecied protein. The game comprises: (1 a board illustrated with the transversal section of animalcell, with its main structures and organelles and sequences of hypothetical genes; (2 cards with thedescription of steps and other structures required for protein synthesis in eukaryotic cells; (3 piecesrepresenting nucleotides, polynucleotides, ribosome, amino acids, and polypeptide chains. In order toplay the game, students take cards that sequentially permit them to acquire the necessary pieces forproduction of the protein described in each objective. Players must move the pieces on the board andsimulate the steps of protein synthesis. The dynamic of the game allows students to easily comprehendprocesses of transcription and translation. This game was presented to dierent groups of high schoolteachers and students. Their judgments have been heard and indicated points to be improved, whichhelped us with the game development. Furthermore, the opinions colleted were always favorable forthe application of this game as a teaching resource in classrooms.

  17. Bioinformatics and moonlighting proteins

    Directory of Open Access Journals (Sweden)

    Sergio eHernández

    2015-06-01

    Full Text Available Multitasking or moonlighting is the capability of some proteins to execute two or more biochemical functions. Usually, moonlighting proteins are experimentally revealed by serendipity. For this reason, it would be helpful that Bioinformatics could predict this multifunctionality, especially because of the large amounts of sequences from genome projects. In the present work, we analyse and describe several approaches that use sequences, structures, interactomics and current bioinformatics algorithms and programs to try to overcome this problem. Among these approaches are: a remote homology searches using Psi-Blast, b detection of functional motifs and domains, c analysis of data from protein-protein interaction databases (PPIs, d match the query protein sequence to 3D databases (i.e., algorithms as PISITE, e mutation correlation analysis between amino acids by algorithms as MISTIC. Programs designed to identify functional motif/domains detect mainly the canonical function but usually fail in the detection of the moonlighting one, Pfam and ProDom being the best methods. Remote homology search by Psi-Blast combined with data from interactomics databases (PPIs have the best performance. Structural information and mutation correlation analysis can help us to map the functional sites. Mutation correlation analysis can only be used in very specific situations –it requires the existence of multialigned family protein sequences - but can suggest how the evolutionary process of second function acquisition took place. The multitasking protein database MultitaskProtDB (http://wallace.uab.es/multitask/, previously published by our group, has been used as a benchmark for the all of the analyses.

  18. The cullin protein family.

    Science.gov (United States)

    Sarikas, Antonio; Hartmann, Thomas; Pan, Zhen-Qiang

    2011-01-01

    Cullin proteins are molecular scaffolds that have crucial roles in the post-translational modification of cellular proteins involving ubiquitin. The mammalian cullin protein family comprises eight members (CUL1 to CUL7 and PARC), which are characterized by a cullin homology domain. CUL1 to CUL7 assemble multi-subunit Cullin-RING E3 ubiquitin ligase (CRL) complexes, the largest family of E3 ligases with more than 200 members. Although CUL7 and PARC are present only in chordates, other members of the cullin protein family are found in Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana and yeast. A cullin protein tethers both a substrate-targeting unit, often through an adaptor protein, and the RING finger component in a CRL. The cullin-organized CRL thus positions a substrate close to the RING-bound E2 ubiquitin-conjugating enzyme, which catalyzes the transfer of ubiquitin to the substrate. In addition, conjugation of cullins with the ubiquitin-like molecule Nedd8 modulates activation of the corresponding CRL complex, probably through conformational regulation of the interactions between cullin's carboxy-terminal tail and CRL's RING subunit. Genetic studies in several model organisms have helped to unravel a multitude of physiological functions associated with cullin proteins and their respective CRLs. CRLs target numerous substrates and thus have an impact on a range of biological processes, including cell growth, development, signal transduction, transcriptional control, genomic integrity and tumor suppression. Moreover, mutations in CUL7 and CUL4B genes have been linked to hereditary human diseases.

  19. Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners

    National Research Council Canada - National Science Library

    Shoemaker, Benjamin A; Panchenko, Anna R

    2007-01-01

    .... In this review we describe different approaches to predict protein interaction partners as well as highlight recent achievements in the prediction of specific domains mediating protein-protein interactions...

  20. Direct protein-protein conjugation by genetically introducing bioorthogonal functional groups into proteins.

    Science.gov (United States)

    Kim, Sanggil; Ko, Wooseok; Sung, Bong Hyun; Kim, Sun Chang; Lee, Hyun Soo

    2016-11-15

    Proteins often function as complex structures in conjunction with other proteins. Because these complex structures are essential for sophisticated functions, developing protein-protein conjugates has gained research interest. In this study, site-specific protein-protein conjugation was performed by genetically incorporating an azide-containing amino acid into one protein and a bicyclononyne (BCN)-containing amino acid into the other. Three to four sites in each of the proteins were tested for conjugation efficiency, and three combinations showed excellent conjugation efficiency. The genetic incorporation of unnatural amino acids (UAAs) is technically simple and produces the mutant protein in high yield. In addition, the conjugation reaction can be conducted by simple mixing, and does not require additional reagents or linker molecules. Therefore, this method may prove very useful for generating protein-protein conjugates and protein complexes of biochemical significance. Copyright © 2016. Published by Elsevier Ltd.

  1. Benchtop Detection of Proteins

    Science.gov (United States)

    Scardelletti, Maximilian C.; Varaljay, Vanessa

    2007-01-01

    A process, and a benchtop-scale apparatus for implementing the process, have been developed to detect proteins associated with specific microbes in water. The process and apparatus may also be useful for detection of proteins in other, more complex liquids. There may be numerous potential applications, including monitoring lakes and streams for contamination, testing of blood and other bodily fluids in medical laboratories, and testing for microbial contamination of liquids in restaurants and industrial food-processing facilities. A sample can be prepared and analyzed by use of this process and apparatus within minutes, whereas an equivalent analysis performed by use of other processes and equipment can often take hours to days. The process begins with the conjugation of near-infrared-fluorescent dyes to antibodies that are specific to a particular protein. Initially, the research has focused on using near-infrared dyes to detect antigens or associated proteins in solution, which has proven successful vs. microbial cells, and streamlining the technique in use for surface protein detection on microbes would theoretically render similar results. However, it is noted that additional work is needed to transition protein-based techniques to microbial cell detection. Consequently, multiple such dye/antibody pairs could be prepared to enable detection of multiple selected microbial species, using a different dye for each species. When excited by near-infrared light of a suitable wavelength, each dye fluoresces at a unique longer wavelength that differs from those of the other dyes, enabling discrimination among the various species. In initial tests, the dye/antibody pairs are mixed into a solution suspected of containing the selected proteins, causing the binding of the dye/antibody pairs to such suspect proteins that may be present. The solution is then run through a microcentrifuge that includes a membrane that acts as a filter in that it retains the dye/antibody/protein

  2. A Novel Approach for Protein-Named Entity Recognition and Protein-Protein Interaction Extraction

    OpenAIRE

    Meijing Li; Tsendsuren Munkhdalai; Xiuming Yu; Keun Ho Ryu

    2015-01-01

    Many researchers focus on developing protein-named entity recognition (Protein-NER) or PPI extraction systems. However, the studies about these two topics cannot be merged well; then existing PPI extraction systems’ Protein-NER still needs to improve. In this paper, we developed the protein-protein interaction extraction system named PPIMiner based on Support Vector Machine (SVM) and parsing tree. PPIMiner consists of three main models: natural language processing (NLP) model, Protein-NER mod...

  3. ADSORPTION OF PROTEIN ON NANOPARTICLES

    Institute of Scientific and Technical Information of China (English)

    WU Qi

    1994-01-01

    The adsorption of protein on nanoparticles was studied by using dynamic light scattering to measure the hydrodynamic size of both pure protein and nanoparticles adsorbed with different amounts of protein. The thickness of the adsorbed protein layer increases as protein concentration, but decreases as the initial size of nanoparticles. After properly scaling the thickness with the initial diameter, we are able to fit all experimental data with a single master curve. Our experimental results suggest that the adsorbed proteins form a monolayeron the nanoparticle surface and the adsorbed protein molecules are attached to the particle surface at many points through a possible hydrogen-bonding. Our results also indicate that as protein concentration increases, the overall shape of the adsorbed protein molecule continuously changes from a flat layer on the particle surface to a stretched coil extended into water. During the change, the hydrodynamic volume of the adsorbed protein increases linearly with protein concentration.

  4. Protein Dynamics in Enzymology

    Science.gov (United States)

    Brooks, , III

    2001-03-01

    Enzymes carry-out the chemical activity essential for living processes by providing particular structural arrangements of chemically functional moieties through the structure of their constituent proteins. They are suggested to be optimized through evolution to specifically bind the transition state for the chemical processes they participate in, thereby enhancing the rate of these chemical events by 6-12 orders of magnitude. However, proteins are malleable and fluctuating many-body systems and may also utilize coupling between motional processes with catalysis to regulate or promote these processes. Our studies are aimed at exploring the hypothesis that motions of the protein couple distant regions of the molecule to assist catalytic processes. We demonstrate, through the use of molecular simulations, that strongly coupled motions occur in regions of protein molecules distant in sequence and space from each other, and the enzyme’s active site, when the protein is in a reactant state. Further, we find that the presence of this coupling disappears in complexes no longer reactive-competent, i.e., for product configurations and mutant sequences. The implications of these findings and aspects of evolutionary relationships and mutational studies which support the coupling hypothesis will be discussed in the context of our work on dihydrofolate reductase.

  5. Electrochemical nanomoulding through proteins

    Science.gov (United States)

    Allred, Daniel B.

    The continued improvements in performance of modern electronic devices are directly related to the manufacturing of smaller, denser features on surfaces. Electrochemical fabrication has played a large role in continuing this trend due to its low cost and ease of scaleability toward ever smaller dimensions. This work introduces the concept of using proteins, essentially monodisperse complex polymers whose three-dimensional structures are fixed by their encoded amino acid sequences, as "moulds" around which nanostructures can be built by electrochemical fabrication. Bacterial cell-surface layer proteins, or "S-layer" proteins, from two organisms---Deinococcus radiodurans and Sporosarcina ureae---were used as the "moulds" for electrochemical fabrication. The proteins are easily purified as micron-sized sheets of periodic molecular complexes with 18-nm hexagonal and 13-nm square unit cell lattices, respectively. Direct imaging by transmission electron microscopy on ultrathin noble metal films without sample preparation eliminates potential artifacts to the high surface energy substrates necessary for high nucleation densities. Characterization involved imaging, electron diffraction, spectroscopy, and three-dimensional reconstruction. The S-layer protein of D. radiodurans was further subjected to an atomic force microscope based assay to determine the integrity of its structure and long-range order and was found to be useful for fabrication from around pH 3 to 12.

  6. Heat Capacity in Proteins

    Science.gov (United States)

    Prabhu, Ninad V.; Sharp, Kim A.

    2005-05-01

    Heat capacity (Cp) is one of several major thermodynamic quantities commonly measured in proteins. With more than half a dozen definitions, it is the hardest of these quantities to understand in physical terms, but the richest in insight. There are many ramifications of observed Cp changes: The sign distinguishes apolar from polar solvation. It imparts a temperature (T) dependence to entropy and enthalpy that may change their signs and which of them dominate. Protein unfolding usually has a positive ΔCp, producing a maximum in stability and sometimes cold denaturation. There are two heat capacity contributions, from hydration and protein-protein interactions; which dominates in folding and binding is an open question. Theoretical work to date has dealt mostly with the hydration term and can account, at least semiquantitatively, for the major Cp-related features: the positive and negative Cp of hydration for apolar and polar groups, respectively; the convergence of apolar group hydration entropy at T ≈ 112°C; the decrease in apolar hydration Cp with increasing T; and the T-maximum in protein stability and cold denaturation.

  7. Integral UBL domain proteins: a family of proteasome interacting proteins

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Gordon, Colin

    2004-01-01

    The family of ubiquitin-like (UBL) domain proteins (UDPs) comprises a conserved group of proteins involved in a multitude of different cellular activities. However, recent studies on UBL-domain proteins indicate that these proteins appear to share a common property in their ability to interact wi...

  8. Purine inhibitors of protein kinases, G proteins and polymerases

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Nathanael S. (Berkeley, CA); Schultz, Peter (Oakland, CA); Kim, Sung-Hou (Moraga, CA); Meijer, Laurent (Roscoff, FR)

    2001-07-03

    The present invention relates to purine analogs that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such purine analogs to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  9. Accessory Proteins at ERES

    DEFF Research Database (Denmark)

    Klinkenberg, Rafael David

    proteins. Together these components co‐operate in cargo‐selection as well as forming, loading and releasing budding vesicles from specific regions on the membrane surface of the ER. Coat components furthermore convey vesicle targeting towards the Golgi. However, not much is known about the mechanisms...... that regulate the COPII assembly at the vesicle bud site. This thesis provides the first regulatory mechanism of COPII assembly in relation to ER‐membrane lipid‐signal recognition by the accessory protein p125A (Sec23IP). The aim of the project was to characterize p125A function by dissecting two main domains...... in the protein; a putative lipid‐associating domain termed the DDHD domain that is defined by the four amino acid motif that gives the domain its name; and a ubiquitously found domain termed Sterile α‐motif (SAM), which is mostly associated with oligomerization and polymerization. We first show, that the DDHD...

  10. Polarizable protein packing.

    Science.gov (United States)

    Ng, Albert H; Snow, Christopher D

    2011-05-01

    To incorporate protein polarization effects within a protein combinatorial optimization framework, we decompose the polarizable force field AMOEBA into low order terms. Including terms up to the third-order provides a fair approximation to the full energy while maintaining tractability. We represent the polarizable packing problem for protein G as a hypergraph and solve for optimal rotamers with the FASTER combinatorial optimization algorithm. These approximate energy models can be improved to high accuracy [root mean square deviation (rmsd) < 1 kJ mol(-1)] via ridge regression. The resulting trained approximations are used to efficiently identify new, low-energy solutions. The approach is general and should allow combinatorial optimization of other many-body problems. Copyright © 2011 Wiley Periodicals, Inc.

  11. Protein Crystal Serum Albumin

    Science.gov (United States)

    1998-01-01

    As the most abundant protein in the circulatory system albumin contributes 80% to colloid osmotic blood pressure. Albumin is also chiefly responsible for the maintenance of blood pH. It is located in every tissue and bodily secretion, with extracellular protein comprising 60% of total albumin. Perhaps the most outstanding property of albumin is its ability to bind reversibly to an incredible variety of ligands. It is widely accepted in the pharmaceutical industry that the overall distribution, metabolism, and efficiency of many drugs are rendered ineffective because of their unusually high affinity for this abundant protein. An understanding of the chemistry of the various classes of pharmaceutical interactions with albumin can suggest new approaches to drug therapy and design. Principal Investigator: Dan Carter/New Century Pharmaceuticals

  12. Polarizable protein packing

    KAUST Repository

    Ng, Albert H.

    2011-01-24

    To incorporate protein polarization effects within a protein combinatorial optimization framework, we decompose the polarizable force field AMOEBA into low order terms. Including terms up to the third-order provides a fair approximation to the full energy while maintaining tractability. We represent the polarizable packing problem for protein G as a hypergraph and solve for optimal rotamers with the FASTER combinatorial optimization algorithm. These approximate energy models can be improved to high accuracy [root mean square deviation (rmsd) < 1 kJ mol -1] via ridge regression. The resulting trained approximations are used to efficiently identify new, low-energy solutions. The approach is general and should allow combinatorial optimization of other many-body problems. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011 Copyright © 2011 Wiley Periodicals, Inc.

  13. Protein-protein interaction assays: eliminating false positive interactions

    OpenAIRE

    Nguyen, Tuan N.; Goodrich, James A.

    2006-01-01

    Many methods commonly used to identify and characterize interactions between two or more proteins are variations of the immobilized protein-protein interaction assay (for example, glutathione S-transferase (GST) pulldown and coimmunoprecipitation). A potential, and often overlooked, problem with these assays is the possibility that an observed interaction is mediated not by direct contact between proteins, but instead by nucleic acid contaminating the protein preparations. As a negatively cha...

  14. Amyloidogenesis of Tau protein.

    Science.gov (United States)

    Nizynski, Bartosz; Dzwolak, Wojciech; Nieznanski, Krzysztof

    2017-08-17

    The role of microtubule-associated protein Tau in neurodegeneration has been extensively investigated since the discovery of Tau amyloid aggregates in the brains of patients with Alzheimer's disease (AD). The process of formation of amyloid fibrils is known as amyloidogenesis and attracts much attention as a potential target in the prevention and treatment of neurodegenerative conditions linked to protein aggregation. Cerebral deposition of amyloid aggregates of Tau is observed not only in AD but also in numerous other tauopathies and prion diseases. Amyloidogenesis of intrinsically unstructured monomers of Tau can be triggered by mutations in the Tau gene, post-translational modifications, or interactions with polyanionic molecules and aggregation-prone proteins/peptides. The self-assembly of amyloid fibrils of Tau shares a number of characteristic features with amyloidogenesis of other proteins involved in neurodegenerative diseases. For example, in vitro experiments have demonstrated that the nucleation phase, which is the rate-limiting stage of Tau amyloidogenesis, is shortened in the presence of fragmented preformed Tau fibrils acting as aggregation templates ("seeds"). Accordingly, Tau aggregates released by tauopathy-affected neurons can spread the neurodegenerative process in the brain through a prion-like mechanism, originally described for the pathogenic form of prion protein. Moreover, Tau has been shown to form amyloid strains-structurally diverse self-propagating aggregates of potentially various pathological effects, resembling in this respect prion strains. Here, we review the current literature on Tau aggregation and discuss mechanisms of propagation of Tau amyloid in the light of the prion-like paradigm. © 2017 The Protein Society.

  15. Discovery of binding proteins for a protein target using protein-protein docking-based virtual screening.

    Science.gov (United States)

    Zhang, Changsheng; Tang, Bo; Wang, Qian; Lai, Luhua

    2014-10-01

    Target structure-based virtual screening, which employs protein-small molecule docking to identify potential ligands, has been widely used in small-molecule drug discovery. In the present study, we used a protein-protein docking program to identify proteins that bind to a specific target protein. In the testing phase, an all-to-all protein-protein docking run on a large dataset was performed. The three-dimensional rigid docking program SDOCK was used to examine protein-protein docking on all protein pairs in the dataset. Both the binding affinity and features of the binding energy landscape were considered in the scoring function in order to distinguish positive binding pairs from negative binding pairs. Thus, the lowest docking score, the average Z-score, and convergency of the low-score solutions were incorporated in the analysis. The hybrid scoring function was optimized in the all-to-all docking test. The docking method and the hybrid scoring function were then used to screen for proteins that bind to tumor necrosis factor-α (TNFα), which is a well-known therapeutic target for rheumatoid arthritis and other autoimmune diseases. A protein library containing 677 proteins was used for the screen. Proteins with scores among the top 20% were further examined. Sixteen proteins from the top-ranking 67 proteins were selected for experimental study. Two of these proteins showed significant binding to TNFα in an in vitro binding study. The results of the present study demonstrate the power and potential application of protein-protein docking for the discovery of novel binding proteins for specific protein targets.

  16. The representation of protein complexes in the Protein Ontology (PRO

    Directory of Open Access Journals (Sweden)

    Smith Barry

    2011-09-01

    Full Text Available Abstract Background Representing species-specific proteins and protein complexes in ontologies that are both human- and machine-readable facilitates the retrieval, analysis, and interpretation of genome-scale data sets. Although existing protin-centric informatics resources provide the biomedical research community with well-curated compendia of protein sequence and structure, these resources lack formal ontological representations of the relationships among the proteins themselves. The Protein Ontology (PRO Consortium is filling this informatics resource gap by developing ontological representations and relationships among proteins and their variants and modified forms. Because proteins are often functional only as members of stable protein complexes, the PRO Consortium, in collaboration with existing protein and pathway databases, has launched a new initiative to implement logical and consistent representation of protein complexes. Description We describe here how the PRO Consortium is meeting the challenge of representing species-specific protein complexes, how protein complex representation in PRO supports annotation of protein complexes and comparative biology, and how PRO is being integrated into existing community bioinformatics resources. The PRO resource is accessible at http://pir.georgetown.edu/pro/. Conclusion PRO is a unique database resource for species-specific protein complexes. PRO facilitates robust annotation of variations in composition and function contexts for protein complexes within and between species.

  17. The Formation of Protein Structure

    DEFF Research Database (Denmark)

    Bohr, Jakob; Bohr, Henrik; Brunak, Søren

    1996-01-01

    Dynamically induced curvature owing to long-range excitations along the backbones of protein molecules with non-linear elastic properties may control the folding of proteins.......Dynamically induced curvature owing to long-range excitations along the backbones of protein molecules with non-linear elastic properties may control the folding of proteins....

  18. Protein: FBB5 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBB5 RNA silencing TNRC6A CAGH26, KIAA1460, TNRC6 TNRC6A Trinucleotide repeat-containing gene 6A protein... CAG repeat protein 26, EMSY interactor protein, GW182 autoantigen, Glycine-tryptophan protein of 182 kDa 9606 Homo sapiens Q8NDV7 27327 27327 19398495 ...

  19. Cold gelation of globular proteins

    NARCIS (Netherlands)

    Alting, A.C.

    2003-01-01

    Keywords : globular proteins, whey protein, ovalbumin, cold gelation, disulfide bonds, texture, gel hardnessProtein gelation in food products is important to obtain desirable sensory and textural properties. Cold gelation is a novel method to produce protein-based gels. It is a two step process in w

  20. Cold gelation of globular proteins

    NARCIS (Netherlands)

    Alting, A.C.

    2003-01-01

    Keywords : globular proteins, whey protein, ovalbumin, cold gelation, disulfide bonds, texture, gel hardnessProtein gelation in food products is important to obtain desirable sensory and textural properties. Cold gelation is a novel method to produce protein-based gels. It is a two step process in w

  1. Stress proteins in CNS inflammation

    NARCIS (Netherlands)

    Noort, J.M. van

    2008-01-01

    Stress proteins or heat shock proteins (HSPs) are ubiquitous cellular components that have long been known to act as molecular chaperones. By assisting proper folding and transport of proteins, and by assisting in the degradation of aberrant proteins, they play key roles in cellular metabolism. The

  2. Protein: FBA3 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA3 Atg1 kinase complex ATG1 APG1, AUT3, CVT10 Serine/threonine-protein kinase ATG1 Autophagy prot...ein 3, Autophagy-related protein 1, Cytoplasm to vacuole targeting protein 10 559292 Sacchar

  3. Protein: FEA3 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FEA3 AREB pathway: Signaling proteins SRK2E OST1, SNRK2.6 Serine/threonine-protein kinase SRK2E Prot...ein OPEN STOMATA 1, SNF1-related kinase 2.6, Serine/threonine-protein kinase OST1 3702 Arabidopsis thaliana 829541 Q940H6 3UC4, 3ZUT, 3ZUU, 3UDB 19805022 ...

  4. Protein: FEA3 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FEA3 AREB pathway: Signaling proteins AZF1 OZAKGYO, ZF1 At5g67450, Cys2/His2-type zinc finger prot...ein 1, Zinc finger protein OZAKGYO, Zinc-finger protein 1 3702 Arabidopsis thaliana 836881 Q9SSW1 21852415 ...

  5. Protein: MPA6 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available ocyte complement-related protein, Adipocyte complement-related 30 kDa protein, Adipocyte, C1q and collagen d...omain-containing protein, Adipocyte-specific protein AdipoQ 10090 Mus musculus 11450 Q60994 1C28, 1C3H Q60994 18446001, 19788607 ...

  6. Protein: FBA7 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA7 claudin-zona occluden TJP3 ZO3 TJP3 Tight junction protein ZO-3 Tight junction protein 3, Zona occlude...ns protein 3, Zonula occludens protein 3 9606 Homo sapiens O95049 27134 3KFV 27134 O95049 ...

  7. Protein: FBA7 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA7 claudin-zona occluden TJP2 X104, ZO2 TJP2 Tight junction protein ZO-2 Tight ju...nction protein 2, Zona occludens protein 2, Zonula occludens protein 2 9606 Homo sapiens Q9UDY2 9414 3E17, 2OSG 9414 ...

  8. Protein: FBA7 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA7 claudin-zona occluden Tjp1 Zo1 Tight junction protein ZO-1 Tight junction protein 1, Zona occlude...ns protein 1, Zonula occludens protein 1 10090 Mus musculus 21872 P39447 2RRM P39447 21431884 ...

  9. A simple dependence between protein evolution rate and the number of protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Hirsh Aaron E

    2003-05-01

    Full Text Available Abstract Background It has been shown for an evolutionarily distant genomic comparison that the number of protein-protein interactions a protein has correlates negatively with their rates of evolution. However, the generality of this observation has recently been challenged. Here we examine the problem using protein-protein interaction data from the yeast Saccharomyces cerevisiae and genome sequences from two other yeast species. Results In contrast to a previous study that used an incomplete set of protein-protein interactions, we observed a highly significant correlation between number of interactions and evolutionary distance to either Candida albicans or Schizosaccharomyces pombe. This study differs from the previous one in that it includes all known protein interactions from S. cerevisiae, and a larger set of protein evolutionary rates. In both evolutionary comparisons, a simple monotonic relationship was found across the entire range of the number of protein-protein interactions. In agreement with our earlier findings, this relationship cannot be explained by the fact that proteins with many interactions tend to be important to yeast. The generality of these correlations in other kingdoms of life unfortunately cannot be addressed at this time, due to the incompleteness of protein-protein interaction data from organisms other than S. cerevisiae. Conclusions Protein-protein interactions tend to slow the rate at which proteins evolve. This may be due to structural constraints that must be met to maintain interactions, but more work is needed to definitively establish the mechanism(s behind the correlations we have observed.

  10. Ubiquitin domain proteins in disease

    DEFF Research Database (Denmark)

    Klausen, Louise Kjær; Schulze, Andrea; Seeger, Michael

    2007-01-01

    The human genome encodes several ubiquitin-like (UBL) domain proteins (UDPs). Members of this protein family are involved in a variety of cellular functions and many are connected to the ubiquitin proteasome system, an essential pathway for protein degradation in eukaryotic cells. Despite their s...... and cancer. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com).......The human genome encodes several ubiquitin-like (UBL) domain proteins (UDPs). Members of this protein family are involved in a variety of cellular functions and many are connected to the ubiquitin proteasome system, an essential pathway for protein degradation in eukaryotic cells. Despite...

  11. Modelling of proteins in membranes

    DEFF Research Database (Denmark)

    Sperotto, Maria Maddalena; May, S.; Baumgaertner, A.

    2006-01-01

    This review describes some recent theories and simulations of mesoscopic and microscopic models of lipid membranes with embedded or attached proteins. We summarize results supporting our understanding of phenomena for which the activities of proteins in membranes are expected to be significantly...... affected by the lipid environment. Theoretical predictions are pointed out, and compared to experimental findings, if available. Among others, the following phenomena are discussed: interactions of interfacially adsorbed peptides, pore-forming amphipathic peptides, adsorption of charged proteins onto...... oppositely charged lipid membranes, lipid-induced tilting of proteins embedded in lipid bilayers, protein-induced bilayer deformations, protein insertion and assembly, and lipid-controlled functioning of membrane proteins....

  12. Truly Absorbed Microbial Protein Synthesis, Rumen Bypass Protein, Endogenous Protein, and Total Metabolizable Protein from Starchy and Protein-Rich Raw Materials

    NARCIS (Netherlands)

    Parand, Ehsan; Vakili, Alireza; Mesgaran, Mohsen Danesh; Duinkerken, Van Gert; Yu, Peiqiang

    2015-01-01

    This study was carried out to measure truly absorbed microbial protein synthesis, rumen bypass protein, and endogenous protein loss, as well as total metabolizable protein, from starchy and protein-rich raw feed materials with model comparisons. Predictions by the DVE2010 system as a more

  13. The Development and Characterization of Protein-Based Stationary Phases for Studying Drug-Protein and Protein-Protein Interactions

    OpenAIRE

    Sanghvi, Mitesh; Moaddel, Ruin; Wainer, Irving W.

    2011-01-01

    Protein-based liquid chromatography stationary phases are used in bioaffinity chromatography for studying drug-protein interactions, the determination of binding affinities, competitive and allosteric interactions, as well as for studying protein-protein interactions. This review addresses the development and characterization of protein-based stationary phase, and the application of these phases using frontal and zonal chromatography techniques. The approach will be illustrated using immobili...

  14. Protein oxidation in aquatic foods

    DEFF Research Database (Denmark)

    Baron, Caroline P.

    2014-01-01

    oxidation. The protein carbonyl group measurement is the widely used method for estimating protein oxidation in foods and has been used in fish muscle. The chapter also talks about the impact of protein oxidation on protein functionality, fish muscle texture, and food nutritional value. Protein oxidation...... may not only induce quality losses but may be desirable in some type of foods, such as salted herring....

  15. Protein oxidation and peroxidation

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2016-01-01

    to the residues targeted and their spatial location. Modification can result in increased side-chain hydrophilicity, side-chain and backbone fragmentation, aggregation via covalent cross-linking or hydrophobic interactions, protein unfolding and altered conformation, altered interactions with biological partners...

  16. Cellulose binding domain proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  17. Protein Sorting Prediction

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2017-01-01

    Many computational methods are available for predicting protein sorting in bacteria. When comparing them, it is important to know that they can be grouped into three fundamentally different approaches: signal-based, global-property-based and homology-based prediction. In this chapter, the strengths...

  18. Protein Requirements during Aging

    Directory of Open Access Journals (Sweden)

    Glenda Courtney-Martin

    2016-08-01

    Full Text Available Protein recommendations for elderly, both men and women, are based on nitrogen balance studies. They are set at 0.66 and 0.8 g/kg/day as the estimated average requirement (EAR and recommended dietary allowance (RDA, respectively, similar to young adults. This recommendation is based on single linear regression of available nitrogen balance data obtained at test protein intakes close to or below zero balance. Using the indicator amino acid oxidation (IAAO method, we estimated the protein requirement in young adults and in both elderly men and women to be 0.9 and 1.2 g/kg/day as the EAR and RDA, respectively. This suggests that there is no difference in requirement on a gender basis or on a per kg body weight basis between younger and older adults. The requirement estimates however are ~40% higher than the current protein recommendations on a body weight basis. They are also 40% higher than our estimates in young men when calculated on the basis of fat free mass. Thus, current recommendations may need to be re-assessed. Potential rationale for this difference includes a decreased sensitivity to dietary amino acids and increased insulin resistance in the elderly compared with younger individuals.

  19. Tuber storage proteins.

    Science.gov (United States)

    Shewry, Peter R

    2003-06-01

    A wide range of plants are grown for their edible tubers, but five species together account for almost 90 % of the total world production. These are potato (Solanum tuberosum), cassava (Manihot esculenta), sweet potato (Ipomoea batatus), yams (Dioscorea spp.) and taro (Colocasia, Cyrtosperma and Xanthosoma spp.). All of these, except cassava, contain groups of storage proteins, but these differ in the biological properties and evolutionary relationships. Thus, patatin from potato exhibits activity as an acylhydrolase and esterase, sporamin from sweet potato is an inhibitor of trypsin, and dioscorin from yam is a carbonic anhydrase. Both sporamin and dioscorin also exhibit antioxidant and radical scavenging activity. Taro differs from the other three crops in that it contains two major types of storage protein: a trypsin inhibitor related to sporamin and a mannose-binding lectin. These characteristics indicate that tuber storage proteins have evolved independently in different species, which contrasts with the highly conserved families of storage proteins present in seeds. Furthermore, all exhibit biological activities which could contribute to resistance to pests, pathogens or abiotic stresses, indicating that they may have dual roles in the tubers.

  20. Interaction between plate make and protein in protein crystallisation screening.

    Directory of Open Access Journals (Sweden)

    Gordon J King

    Full Text Available BACKGROUND: Protein crystallisation screening involves the parallel testing of large numbers of candidate conditions with the aim of identifying conditions suitable as a starting point for the production of diffraction quality crystals. Generally, condition screening is performed in 96-well plates. While previous studies have examined the effects of protein construct, protein purity, or crystallisation condition ingredients on protein crystallisation, few have examined the effect of the crystallisation plate. METHODOLOGY/PRINCIPAL FINDINGS: We performed a statistically rigorous examination of protein crystallisation, and evaluated interactions between crystallisation success and plate row/column, different plates of same make, different plate makes and different proteins. From our analysis of protein crystallisation, we found a significant interaction between plate make and the specific protein being crystallised. CONCLUSIONS/SIGNIFICANCE: Protein crystal structure determination is the principal method for determining protein structure but is limited by the need to produce crystals of the protein under study. Many important proteins are difficult to crystallize, so that identification of factors that assist crystallisation could open up the structure determination of these more challenging targets. Our findings suggest that protein crystallisation success may be improved by matching a protein with its optimal plate make.

  1. Predicting where small molecules bind at protein-protein interfaces.

    Directory of Open Access Journals (Sweden)

    Peter Walter

    Full Text Available Small molecules that bind at protein-protein interfaces may either block or stabilize protein-protein interactions in cells. Thus, some of these binding interfaces may turn into prospective targets for drug design. Here, we collected 175 pairs of protein-protein (PP complexes and protein-ligand (PL complexes with known three-dimensional structures for which (1 one protein from the PP complex shares at least 40% sequence identity with the protein from the PL complex, and (2 the interface regions of these proteins overlap at least partially with each other. We found that those residues of the interfaces that may bind the other protein as well as the small molecule are evolutionary more conserved on average, have a higher tendency of being located in pockets and expose a smaller fraction of their surface area to the solvent than the remaining protein-protein interface region. Based on these findings we derived a statistical classifier that predicts patches at binding interfaces that have a higher tendency to bind small molecules. We applied this new prediction method to more than 10,000 interfaces from the protein data bank. For several complexes related to apoptosis the predicted binding patches were in direct contact to co-crystallized small molecules.

  2. An evaluation of in vitro protein-protein interaction techniques: assessing contaminating background proteins.

    Science.gov (United States)

    Howell, Jenika M; Winstone, Tara L; Coorssen, Jens R; Turner, Raymond J

    2006-04-01

    Determination of protein-protein interactions is an important component in assigning function and discerning the biological relevance of proteins within a broader cellular context. In vitro protein-protein interaction methodologies, including affinity chromatography, coimmunoprecipitation, and newer approaches such as protein chip arrays, hold much promise in the detection of protein interactions, particularly in well-characterized organisms with sequenced genomes. However, each of these approaches attracts certain background proteins that can thwart detection and identification of true interactors. In addition, recombinant proteins expressed in Escherichia coli are also extensively used to assess protein-protein interactions, and background proteins in these isolates can thus contaminate interaction studies. Rigorous validation of a true interaction thus requires not only that an interaction be found by alternate techniques, but more importantly that researchers be aware of and control for matrix/support dependence. Here, we evaluate these methods for proteins interacting with DmsD (an E. coli redox enzyme maturation protein chaperone), in vitro, using E. coli subcellular fractions as prey sources. We compare and contrast the various in vitro interaction methods to identify some of the background proteins and protein profiles that are inherent to each of the methods in an E. coli system.

  3. Exploring NMR ensembles of calcium binding proteins: Perspectives to design inhibitors of protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Craescu Constantin T

    2011-05-01

    Full Text Available Abstract Background Disrupting protein-protein interactions by small organic molecules is nowadays a promising strategy employed to block protein targets involved in different pathologies. However, structural changes occurring at the binding interfaces make difficult drug discovery processes using structure-based drug design/virtual screening approaches. Here we focused on two homologous calcium binding proteins, calmodulin and human centrin 2, involved in different cellular functions via protein-protein interactions, and known to undergo important conformational changes upon ligand binding. Results In order to find suitable protein conformations of calmodulin and centrin for further structure-based drug design/virtual screening, we performed in silico structural/energetic analysis and molecular docking of terphenyl (a mimicking alpha-helical molecule known to inhibit protein-protein interactions of calmodulin into X-ray and NMR ensembles of calmodulin and centrin. We employed several scoring methods in order to find the best protein conformations. Our results show that docking on NMR structures of calmodulin and centrin can be very helpful to take into account conformational changes occurring at protein-protein interfaces. Conclusions NMR structures of protein-protein complexes nowadays available could efficiently be exploited for further structure-based drug design/virtual screening processes employed to design small molecule inhibitors of protein-protein interactions.

  4. High quality protein microarray using in situ protein purification

    Directory of Open Access Journals (Sweden)

    Fleischmann Robert D

    2009-08-01

    Full Text Available Abstract Background In the postgenomic era, high throughput protein expression and protein microarray technologies have progressed markedly permitting screening of therapeutic reagents and discovery of novel protein functions. Hexa-histidine is one of the most commonly used fusion tags for protein expression due to its small size and convenient purification via immobilized metal ion affinity chromatography (IMAC. This purification process has been adapted to the protein microarray format, but the quality of in situ His-tagged protein purification on slides has not been systematically evaluated. We established methods to determine the level of purification of such proteins on metal chelate-modified slide surfaces. Optimized in situ purification of His-tagged recombinant proteins has the potential to become the new gold standard for cost-effective generation of high-quality and high-density protein microarrays. Results Two slide surfaces were examined, chelated Cu2+ slides suspended on a polyethylene glycol (PEG coating and chelated Ni2+ slides immobilized on a support without PEG coating. Using PEG-coated chelated Cu2+ slides, consistently higher purities of recombinant proteins were measured. An optimized wash buffer (PBST composed of 10 mM phosphate buffer, 2.7 mM KCl, 140 mM NaCl and 0.05% Tween 20, pH 7.4, further improved protein purity levels. Using Escherichia coli cell lysates expressing 90 recombinant Streptococcus pneumoniae proteins, 73 proteins were successfully immobilized, and 66 proteins were in situ purified with greater than 90% purity. We identified several antigens among the in situ-purified proteins via assays with anti-S. pneumoniae rabbit antibodies and a human patient antiserum, as a demonstration project of large scale microarray-based immunoproteomics profiling. The methodology is compatible with higher throughput formats of in vivo protein expression, eliminates the need for resin-based purification and circumvents

  5. Metabolism of minor isoforms of prion proteins: Cytosolic prion protein and transmembrane prion protein

    OpenAIRE

    Song, Zhiqi; Zhao, Deming; Yang, Lifeng

    2013-01-01

    Transmissible spongiform encephalopathy or prion disease is triggered by the conversion from cellular prion protein to pathogenic prion protein. Growing evidence has concentrated on prion protein configuration changes and their correlation with prion disease transmissibility and pathogenicity. In vivo and in vitro studies have shown that several cytosolic forms of prion protein with specific topological structure can destroy intracellular stability and contribute to prion protein pathogenicit...

  6. Dairy Proteins and Energy Balance

    DEFF Research Database (Denmark)

    Bendtsen, Line Quist

    High protein diets affect energy balance beneficially through decreased hunger, enhanced satiety and increased energy expenditure. Dairy products are a major source of protein. Dairy proteins are comprised of two classes, casein (80%) and whey proteins (20%), which are both of high quality......, but casein is absorbed slowly and whey is absorbed rapidly. The present PhD study investigated the effects of total dairy proteins, whey, and casein, on energy balance and the mechanisms behind any differences in the effects of the specific proteins. The results do not support the hypothesis that dairy...... proteins, whey or casein are more beneficial than other protein sources in the regulation of energy balance, and suggest that dairy proteins, whey or casein seem to play only a minor role, if any, in the prevention and treatment of obesity....

  7. Dairy Proteins and Energy Balance

    DEFF Research Database (Denmark)

    Bendtsen, Line Quist

    High protein diets affect energy balance beneficially through decreased hunger, enhanced satiety and increased energy expenditure. Dairy products are a major source of protein. Dairy proteins are comprised of two classes, casein (80%) and whey proteins (20%), which are both of high quality......, but casein is absorbed slowly and whey is absorbed rapidly. The present PhD study investigated the effects of total dairy proteins, whey, and casein, on energy balance and the mechanisms behind any differences in the effects of the specific proteins. The results do not support the hypothesis that dairy...... proteins, whey or casein are more beneficial than other protein sources in the regulation of energy balance, and suggest that dairy proteins, whey or casein seem to play only a minor role, if any, in the prevention and treatment of obesity....

  8. The quality of microparticulated protein.

    Science.gov (United States)

    Erdman, J W

    1990-08-01

    The purpose of this paper is to describe the effects of microparticulation upon the quality of microparticulated protein products and to confirm that microparticulation does not result in changes in protein structure or quality different from those that occur with cooking. Two products were tested: microparticulated egg white and skim milk proteins and microparticulated whey protein concentrate. Three approaches were used to monitor for changes in amino acid and protein value: amino acid analysis, protein efficiency ratio (PER) bioassay, and both one- and two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis. Evaluation of the results of these tests indicates that no significant differences were found when comparing the premix before and after microparticulation. Significant differences also did not occur when the premix was cooked using conventional methods. Collectively, the data provide strong evidence that the protein microparticulation process used to prepare microparticulated protein products (e.g., Simplesse) does not alter the quality or nutritional value of protein in the final products.

  9. Protein-protein interaction network of celiac disease.

    Science.gov (United States)

    Zamanian Azodi, Mona; Peyvandi, Hassan; Rostami-Nejad, Mohammad; Safaei, Akram; Rostami, Kamran; Vafaee, Reza; Heidari, Mohammadhossein; Hosseini, Mostafa; Zali, Mohammad Reza

    2016-01-01

    The aim of this study is to investigate the Protein-Protein Interaction Network of Celiac Disease. Celiac disease (CD) is an autoimmune disease with susceptibility of individuals to gluten of wheat, rye and barley. Understanding the molecular mechanisms and involved pathway may lead to the development of drug target discovery. The protein interaction network is one of the supportive fields to discover the pathogenesis biomarkers for celiac disease. In the present study, we collected the articles that focused on the proteomic data in celiac disease. According to the gene expression investigations of these articles, 31 candidate proteins were selected for this study. The networks of related differentially expressed protein were explored using Cytoscape 3.3 and the PPI analysis methods such as MCODE and ClueGO. According to the network analysis Ubiquitin C, Heat shock protein 90kDa alpha (cytosolic and Grp94); class A, B and 1 member, Heat shock 70kDa protein, and protein 5 (glucose-regulated protein, 78kDa), T-complex, Chaperon in containing TCP1; subunit 7 (beta) and subunit 4 (delta) and subunit 2 (beta), have been introduced as hub-bottlnecks proteins. HSP90AA1, MKKS, EZR, HSPA14, APOB and CAD have been determined as seed proteins. Chaperons have a bold presentation in curtail area in network therefore these key proteins beside the other hub-bottlneck proteins may be a suitable candidates biomarker panel for diagnosis, prognosis and treatment processes in celiac disease.

  10. Coverage of protein domain families with structural protein-protein interactions: current progress and future trends.

    Science.gov (United States)

    Goncearenco, Alexander; Shoemaker, Benjamin A; Zhang, Dachuan; Sarychev, Alexey; Panchenko, Anna R

    2014-01-01

    Protein interactions have evolved into highly precise and regulated networks adding an immense layer of complexity to cellular systems. The most accurate atomistic description of protein binding sites can be obtained directly from structures of protein complexes. The availability of structurally characterized protein interfaces significantly improves our understanding of interactomes, and the progress in structural characterization of protein-protein interactions (PPIs) can be measured by calculating the structural coverage of protein domain families. We analyze the coverage of protein domain families (defined according to CDD and Pfam databases) by structures, structural protein-protein complexes and unique protein binding sites. Structural PPI coverage of currently available protein families is about 30% without any signs of saturation in coverage growth dynamics. Given the current growth rates of domain databases and structural PPI deposition, complete domain coverage with PPIs is not expected in the near future. As a result of this study we identify families without any protein-protein interaction evidence (listed on a supporting website http://www.ncbi.nlm.nih.gov/Structure/ibis/coverage/) and propose them as potential targets for structural studies with a focus on protein interactions. Published by Elsevier Ltd.

  11. Coevolution study of mitochondria respiratory chain proteins:Toward the understanding of protein-protein interaction

    Institute of Scientific and Technical Information of China (English)

    Ming Yang; Yan Ge; Jiayan Wu; Jingfa Xiao; Jun Yu

    2011-01-01

    Coevolution can be seen as the interdependency between evolutionary histories. In the context of protein evolution, functional correlation proteins are ever-present coordinated evolutionary characters without disruption of organismal integrity. As to complex system, there are two forms of protein-protein interactions in vivo, which refer to inter-complex interaction and intra-complex interaction. In this paper, we studied the difference of coevolution characters between inter-complex interaction and intra-complex interaction using "Mirror tree" method on the respiratory chain (RC) proteins. We divided the correlation coefficients of every pairwise RC proteins into two groups corresponding to the binary protein-protein interaction in intra-complex and the binary protein-protein interaction in inter-complex, respectively. A dramatical discrepancy is detected between the coevolution characters of the two sets of protein interactions (Wilcoxon test, p-value = 4.4 x 10-6). Our finding reveals some critical information on coevolutionary study and assists the mechanical investigation of protein-protein interaction.Furthermore, the results also provide some unique clue for supramolecular organization of protein complexes in the mitochondrial inner membrane. More detailed binding sites map and genome information of nuclear encoded RC proteins will be extraordinary valuable for the further mitochondria dynamics study.

  12. Mapping the human protein interactome

    Institute of Scientific and Technical Information of China (English)

    Daniel Figeys

    2008-01-01

    Interactions are the essence of all biomolecules because they cannot fulfill their roles without interacting with other molecules. Hence, mapping the interactions of biomolecules can be useful for understanding their roles and functions. Furthermore, the development of molecular based systems biology requires an understanding of the biomolecular interactions. In recent years, the mapping of protein-protein interactions in different species has been reported, but few reports have focused on the large-scale mapping of protein-protein interactions in human. Here, we review the developments in protein interaction mapping and we discuss issues and strategies for the mapping of the human protein interactome.

  13. Hydrogels Constructed from Engineered Proteins.

    Science.gov (United States)

    Li, Hongbin; Kong, Na; Laver, Bryce; Liu, Junqiu

    2016-02-24

    Due to their various potential biomedical applications, hydrogels based on engineered proteins have attracted considerable interest. Benefitting from significant progress in recombinant DNA technology and protein engineering/design techniques, the field of protein hydrogels has made amazing progress. The latest progress of hydrogels constructed from engineered recombinant proteins are presented, mainly focused on biorecognition-driven physical hydrogels as well as chemically crosslinked hydrogels. The various bio-recognition based physical crosslinking strategies are discussed, as well as chemical crosslinking chemistries used to engineer protein hydrogels, and protein hydrogels' various biomedical applications. The future perspectives of this fast evolving field of biomaterials are also discussed.

  14. Cow's Milk Protein Allergy.

    Science.gov (United States)

    Mousan, Grace; Kamat, Deepak

    2016-10-01

    Cow's milk protein allergy (CMPA) is a common condition encountered in children with incidence estimated as 2% to 7.5% in the first year of life. Formula and breast-fed babies can present with symptoms of CMPA. It is important to accurately diagnose CMPA to avoid the consequences of either under- or overdiagnosis. CMPA is classically categorized into immunoglobulin E (IgE)- or non-IgE-mediated reaction that vary in clinical manifestations, diagnostic evaluation, and prognosis. The most commonly involved systems in patients with CMPA are gastrointestinal, skin, and respiratory. Evaluation of CMPA starts with good data gathering followed by testing if indicated. Treatment is simply by avoidance of cow's milk protein (CMP) in the child's or mother's diet, if exclusively breast-feeding. This article reviews the definition, epidemiology, risk factors, pathogenesis, clinical presentation, evaluation, management, and prognosis of CMPA and provides an overview of different options for formulas and their indication in the treatment of CMPA.

  15. Protein Functionalized Nanodiamond Arrays

    Directory of Open Access Journals (Sweden)

    Liu YL

    2010-01-01

    Full Text Available Abstract Various nanoscale elements are currently being explored for bio-applications, such as in bio-images, bio-detection, and bio-sensors. Among them, nanodiamonds possess remarkable features such as low bio-cytotoxicity, good optical property in fluorescent and Raman spectra, and good photostability for bio-applications. In this work, we devise techniques to position functionalized nanodiamonds on self-assembled monolayer (SAMs arrays adsorbed on silicon and ITO substrates surface using electron beam lithography techniques. The nanodiamond arrays were functionalized with lysozyme to target a certain biomolecule or protein specifically. The optical properties of the nanodiamond-protein complex arrays were characterized by a high throughput confocal microscope. The synthesized nanodiamond-lysozyme complex arrays were found to still retain their functionality in interacting with E. coli.

  16. Inferring protein-protein interaction complexes from immunoprecipitation data

    NARCIS (Netherlands)

    Kutzera, J.; Hoefsloot, H.C.J.; Malovannaya, A.; Smit, A.B.; Van Mechelen, I.; Smilde, A.K.

    2013-01-01

    BACKGROUND: Protein inverted question markprotein interactions in cells are widely explored using small inverted question markscale experiments. However, the search for protein complexes and their interactions in data from high throughput experiments such as immunoprecipitation is still a challenge.

  17. Competitive Protein Adsorption - Multilayer Adsorption and Surface Induced Protein Aggregation

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2009-01-01

    In this study, competitive adsorption of albumin and IgG (immunoglobulin G) from human serum solutions and protein mixtures onto polymer surfaces is studied by means of radioactive labeling. By using two different radiolabels (125I and 131I), albumin and IgG adsorption to polymer surfaces...... is monitored simultaneously and the influence from the presence of other human serum proteins on albumin and IgG adsorption, as well as their mutual influence during adsorption processes, is investigated. Exploring protein adsorption by combining analysis of competitive adsorption from complex solutions...... of high concentration with investigation of single protein adsorption and interdependent adsorption between two specific proteins enables us to map protein adsorption sequences during competitive protein adsorption. Our study shows that proteins can adsorb in a multilayer fashion onto the polymer surfaces...

  18. Inferring protein-protein interaction complexes from immunoprecipitation data

    NARCIS (Netherlands)

    Kutzera, J.; Hoefsloot, H.C.J.; Malovannaya, A.; Smit, A.B.; Van Mechelen, I.; Smilde, A.K.

    2013-01-01

    BACKGROUND: Protein inverted question markprotein interactions in cells are widely explored using small inverted question markscale experiments. However, the search for protein complexes and their interactions in data from high throughput experiments such as immunoprecipitation is still a challenge.

  19. Autotransporter protein secretion.

    Science.gov (United States)

    Tame, Jeremy R H

    2011-12-01

    Autotransporter proteins are a large family of virulence factors secreted from Gram-negative bacteria by a unique mechanism. First described in the 1980s, these proteins have a C-terminal region that folds into a β-barrel in the bacterial outer membrane. The so-called passenger domain attached to this barrel projects away from the cell surface and may be liberated from the cell by self-cleavage or surface proteases. Although the majority of passenger domains have a similar β-helical structure, they carry a variety of sub-domains, allowing them to carry out widely differing functions related to pathogenesis. Considerable biochemical and structural characterisation of the barrel domain has shown that 'autotransporters' in fact require a conserved and essential protein complex in the outer membrane for correct folding. Although the globular domains of this complex projecting into the periplasmic space have also been structurally characterised, the overall secretion pathway of the autotransporters remains highly puzzling. It was presumed for many years that the passenger domain passed through the centre of the barrel domain to reach the cell surface, driven at least in part by folding. This picture is complicated by conflicting data, and there is currently little hard information on the true nature of the secretion intermediates. As well as their medical importance therefore, autotransporters are proving to be an excellent system to study the folding and membrane insertion of outer membrane proteins in general. This review focuses on structural aspects of autotransporters; their many functions in pathogenesis are beyond its scope.

  20. Plant nuclear envelope proteins.

    Science.gov (United States)

    Rose, Annkatrin; Patel, Shalaka; Meier, Iris

    2004-01-01

    Compared to research in the animal field, the plant NE has been clearly under-investigated. The available data so far indicate similarities as well as striking differences that raise interesting questions about the function and evolution of the NE in different kingdoms. Despite a seemingly similar structure and organization of the NE, many of the proteins that are integral components of the animal NE appear to lack homologues in plant cells. The sequencing of the Arabidopsis genome has not led to the identification of homologues of animal NE components, but has indicated that the plant NE must have a distinct protein composition different from that found in metazoan cells. Besides providing a selective barrier between the nucleoplasm and the cytoplasm, the plant NE functions as a scaffold for chromatin but the scaffolding components are not identical to those found in animal cells. The NE comprises an MTOC in higher plant cells, a striking difference to the organization of microtubule nucleation in other eukaryotic cells. Nuclear pores are present in the plant NE, but identifiable orthologues of most animal and yeast nucleoporins are presently lacking. The transport pathway through the nuclear pores via the action of karyopherins and the Ran cycle is conserved in plant cells. Interestingly, RanGAP is sequestered to the NE in plant cells and animal cells, yet the targeting domains and mechanisms of attachment are different between the two kingdoms. At present, only a few proteins localized at the plant NE have been identified molecularly. Future research will have to expand the list of known protein components involved in building a functional plant NE.

  1. Process for protein PEGylation.

    Science.gov (United States)

    Pfister, David; Morbidelli, Massimo

    2014-04-28

    PEGylation is a versatile drug delivery technique that presents a particularly wide range of conjugation chemistry and polymer structure. The conjugated protein can be tuned to specifically meet the needs of the desired application. In the area of drug delivery this typically means to increase the persistency in the human body without affecting the activity profile of the original protein. On the other hand, because of the high costs associated with the production of therapeutic proteins, subsequent operations imposed by PEGylation must be optimized to minimize the costs inherent to the additional steps. The closest attention has to be given to the PEGylation reaction engineering and to the subsequent purification processes. This review article focuses on these two aspects and critically reviews the current state of the art with a clear focus on the development of industrial scale processes which can meet the market requirements in terms of quality and costs. The possibility of using continuous processes, with integration between the reaction and the separation steps is also illustrated.

  2. Hydrolyzed Proteins in Allergy.

    Science.gov (United States)

    Salvatore, Silvia; Vandenplas, Yvan

    2016-01-01

    Hydrolyzed proteins are used worldwide in the therapeutic management of infants with allergic manifestations and have long been proposed as a dietetic measure to prevent allergy in at risk infants. The degree and method of hydrolysis, protein source and non-nitrogen components characterize different hydrolyzed formulas (HFs) and may determine clinical efficacy, tolerance and nutritional effects. Cow's milk (CM)-based HFs are classified as extensively (eHF) or partially HF (pHF) based on the percentage of small peptides. One whey pHF has been shown to reduce atopic dermatitis in high-risk infants who are not exclusively breastfed. More studies are needed to determine the benefit of these formulas in the prevention of CM allergy (CMA) and in the general population. eHFs represent up to now the treatment of choice for most infants with CMA. However, new developments, such as an extensively hydrolyzed rice protein-based formula, could become alternative options if safety and nutritional and therapeutic efficacy are confirmed as this type of formula is less expensive. In some countries, an extensive soy hydrolysate is available.

  3. Quality protein maize: QPM

    Directory of Open Access Journals (Sweden)

    Ignjatović-Micić Dragana

    2008-01-01

    Full Text Available Quality protein maize (QPM contains the opaque-2 gene along with numerous modifiers for kernel hardness. Therefore, QPM is maize with high nutritive value of endosperm protein, with substantially higher content of two essential amino acids - lysine and tryptophan, and with good agronomical performances. Although QPM was developed primarily for utilization in the regions where, because of poverty, maize is the main staple food, it has many advantages for production and consumption in other parts of the world, too. QPM can be used for production of conventional and new animal feed, as well as for human nurture. As the rate of animal weight gain is doubled with QPM and portion viability is better, a part of normal maize production could be available for other purposes, such as, for example, ethanol production. Thus, breeding QPM is set as a challenge to produce high quality protein maize with high yield and other important agronomical traits, especially with today's food and feed demands and significance of energy crisis.

  4. Extracellular Matrix Proteins

    Directory of Open Access Journals (Sweden)

    Linda Christian Carrijo-Carvalho

    2012-01-01

    Full Text Available Lipocalin family members have been implicated in development, regeneration, and pathological processes, but their roles are unclear. Interestingly, these proteins are found abundant in the venom of the Lonomia obliqua caterpillar. Lipocalins are β-barrel proteins, which have three conserved motifs in their amino acid sequence. One of these motifs was shown to be a sequence signature involved in cell modulation. The aim of this study is to investigate the effects of a synthetic peptide comprising the lipocalin sequence motif in fibroblasts. This peptide suppressed caspase 3 activity and upregulated Bcl-2 and Ki-67, but did not interfere with GPCR calcium mobilization. Fibroblast responses also involved increased expression of proinflammatory mediators. Increase of extracellular matrix proteins, such as collagen, fibronectin, and tenascin, was observed. Increase in collagen content was also observed in vivo. Results indicate that modulation effects displayed by lipocalins through this sequence motif involve cell survival, extracellular matrix remodeling, and cytokine signaling. Such effects can be related to the lipocalin roles in disease, development, and tissue repair.

  5. Neutron protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    X-ray diffraction of single crystal has enriched the knowledge of various biological molecules such as proteins, DNA, t-RNA, viruses, etc. It is difficult to make structural analysis of hydrogen atoms in a protein using X-ray crystallography, whereas neutron diffraction seems usable to directly determine the location of those hydrogen atoms. Here, neutron diffraction method was applied to structural analysis of hen egg-white lysozyme. Since the crystal size of a protein to analyze is generally small (5 mm{sup 3} at most), the neutron beam at the sample position in monochromator system was set to less than 5 x 5 mm{sup 2} and beam divergence to 0.4 degree or less. Neutron imaging plate with {sup 6}Li or Gd mixed with photostimulated luminescence material was used and about 2500 Bragg reflections were recorded in one crystal setting. A total of 38278 reflections for 2.0 A resolution were collected in less than 10 days. Thus, stereo views of Trp-111 omit map around the indol ring of Trp-111 was presented and the three-dimensional arrangement of 696H and 264D atoms in the lysozyme molecules was determined using the omit map. (M.N.)

  6. Purine inhibitors of protein kinases, G proteins and polymerases

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2004-10-12

    The present invention relates to 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  7. Neurocognitive derivation of protein surface property from protein aggregate parameters

    OpenAIRE

    Mishra, Hrishikesh; Lahiri, Tapobrata

    2011-01-01

    Current work targeted to predicate parametric relationship between aggregate and individual property of a protein. In this approach, we considered individual property of a protein as its Surface Roughness Index (SRI) which was shown to have potential to classify SCOP protein families. The bulk property was however considered as Intensity Level based Multi-fractal Dimension (ILMFD) of ordinary microscopic images of heat denatured protein aggregates which was known to have potential to serve as...

  8. Protein-protein fusion catalyzed by sortase A.

    Science.gov (United States)

    Levary, David A; Parthasarathy, Ranganath; Boder, Eric T; Ackerman, Margaret E

    2011-04-06

    Chimeric proteins boast widespread use in areas ranging from cell biology to drug delivery. Post-translational protein fusion using the bacterial transpeptidase sortase A provides an attractive alternative when traditional gene fusion fails. We describe use of this enzyme for in vitro protein ligation and report the successful fusion of 10 pairs of protein domains with preserved functionality--demonstrating the robust and facile nature of this reaction.

  9. Protein-protein fusion catalyzed by sortase A.

    Directory of Open Access Journals (Sweden)

    David A Levary

    Full Text Available Chimeric proteins boast widespread use in areas ranging from cell biology to drug delivery. Post-translational protein fusion using the bacterial transpeptidase sortase A provides an attractive alternative when traditional gene fusion fails. We describe use of this enzyme for in vitro protein ligation and report the successful fusion of 10 pairs of protein domains with preserved functionality--demonstrating the robust and facile nature of this reaction.

  10. Predicting disease-related proteins based on clique backbone in protein-protein interaction network.

    Science.gov (United States)

    Yang, Lei; Zhao, Xudong; Tang, Xianglong

    2014-01-01

    Network biology integrates different kinds of data, including physical or functional networks and disease gene sets, to interpret human disease. A clique (maximal complete subgraph) in a protein-protein interaction network is a topological module and possesses inherently biological significance. A disease-related clique possibly associates with complex diseases. Fully identifying disease components in a clique is conductive to uncovering disease mechanisms. This paper proposes an approach of predicting disease proteins based on cliques in a protein-protein interaction network. To tolerate false positive and negative interactions in protein networks, extending cliques and scoring predicted disease proteins with gene ontology terms are introduced to the clique-based method. Precisions of predicted disease proteins are verified by disease phenotypes and steadily keep to more than 95%. The predicted disease proteins associated with cliques can partly complement mapping between genotype and phenotype, and provide clues for understanding the pathogenesis of serious diseases.

  11. Metabolism of minor isoforms of prion proteins Cytosolic prion protein and transmembrane prion protein*

    Institute of Scientific and Technical Information of China (English)

    Zhiqi Song; Deming Zhao; Lifeng Yang

    2013-01-01

    Transmissible spongiform encephalopathy or prion disease is triggered by the conversion from cellular prion protein to pathogenic prion protein. Growing evidence has concentrated on prion protein configuration changes and their correlation with prion disease transmissibility and pathoge-nicity. In vivo and in vitro studies have shown that several cytosolic forms of prion protein with spe-cific topological structure can destroy intracellular stability and contribute to prion protein pathoge-nicity. In this study, the latest molecular chaperone system associated with endoplasmic reticu-lum-associated protein degradation, the endoplasmic reticulum resident protein quality-control system and the ubiquitination proteasome system, is outlined. The molecular chaperone system directly correlates with the prion protein degradation pathway. Understanding the molecular me-chanisms wil help provide a fascinating avenue for further investigations on prion disease treatment and prion protein-induced neurodegenerative diseases.

  12. A Bayesian Framework for Combining Protein and Network Topology Information for Predicting Protein-Protein Interactions.

    Science.gov (United States)

    Birlutiu, Adriana; d'Alché-Buc, Florence; Heskes, Tom

    2015-01-01

    Computational methods for predicting protein-protein interactions are important tools that can complement high-throughput technologies and guide biologists in designing new laboratory experiments. The proteins and the interactions between them can be described by a network which is characterized by several topological properties. Information about proteins and interactions between them, in combination with knowledge about topological properties of the network, can be used for developing computational methods that can accurately predict unknown protein-protein interactions. This paper presents a supervised learning framework based on Bayesian inference for combining two types of information: i) network topology information, and ii) information related to proteins and the interactions between them. The motivation of our model is that by combining these two types of information one can achieve a better accuracy in predicting protein-protein interactions, than by using models constructed from these two types of information independently.

  13. Understanding Protein Non-Folding

    Science.gov (United States)

    Uversky, Vladimir N.; Dunker, A. Keith

    2010-01-01

    This review describes the family of intrinsically disordered proteins, members of which fail to form rigid 3-D structures under physiological conditions, either along their entire lengths or only in localized regions. Instead, these intriguing proteins/regions exist as dynamic ensembles within which atom positions and backbone Ramachandran angles exhibit extreme temporal fluctuations without specific equilibrium values. Many of these intrinsically disordered proteins are known to carry out important biological functions which, in fact, depend on the absence of specific 3-D structure. The existence of such proteins does not fit the prevailing structure-function paradigm, which states that unique 3-D structure is a prerequisite to function. Thus, the protein structure-function paradigm has to be expanded to include intrinsically disordered proteins and alternative relationships among protein sequence, structure, and function. This shift in the paradigm represents a major breakthrough for biochemistry, biophysics and molecular biology, as it opens new levels of understanding with regard to the complex life of proteins. This review will try to answer the following questions: How were intrinsically disordered proteins discovered? Why don't these proteins fold? What is so special about intrinsic disorder? What are the functional advantages of disordered proteins/regions? What is the functional repertoire of these proteins? What are the relationships between intrinsically disordered proteins and human diseases? PMID:20117254

  14. Digestion of protein and protein gels in simulated gastric environment

    NARCIS (Netherlands)

    Luo, Q.; Boom, R.M.; Janssen, A.E.M.

    2015-01-01

    Despite the increasing attention to food digestion research, food scientists still need to better understand the underlying mechanisms of digestion. Most in vitro studies on protein digestion are based on experiments with protein solutions. In this study, the digestion of egg white protein and whey

  15. High throughput recombinant protein production of fungal secreted proteins

    DEFF Research Database (Denmark)

    Vala, Andrea Lages Lino; Roth, Doris; Grell, Morten Nedergaard

    2011-01-01

    Secreted proteins are important for both symbiotic and pathogenic interactions between fungi and their hosts. Our research group uses screens and genomic mining to discover novel proteins involved in these processes. To efficiently study the large number of candidate proteins, we are establishing...

  16. Protein engineering techniques gateways to synthetic protein universe

    CERN Document Server

    Poluri, Krishna Mohan

    2017-01-01

    This brief provides a broad overview of protein-engineering research, offering a glimpse of the most common experimental methods. It also presents various computational programs with applications that are widely used in directed evolution, computational and de novo protein design. Further, it sheds light on the advantages and pitfalls of existing methodologies and future perspectives of protein engineering techniques.

  17. Ontology integration to identify protein complex in protein interaction networks

    Directory of Open Access Journals (Sweden)

    Yang Zhihao

    2011-10-01

    Full Text Available Abstract Background Protein complexes can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of protein complexes detection algorithms. Methods We have developed novel semantic similarity method, which use Gene Ontology (GO annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. Following the approach of that of the previously proposed clustering algorithm IPCA which expands clusters starting from seeded vertices, we present a clustering algorithm OIIP based on the new weighted Protein-Protein interaction networks for identifying protein complexes. Results The algorithm OIIP is applied to the protein interaction network of Sacchromyces cerevisiae and identifies many well known complexes. Experimental results show that the algorithm OIIP has higher F-measure and accuracy compared to other competing approaches.

  18. Multiscale modeling of proteins.

    Science.gov (United States)

    Tozzini, Valentina

    2010-02-16

    The activity within a living cell is based on a complex network of interactions among biomolecules, exchanging information and energy through biochemical processes. These events occur on different scales, from the nano- to the macroscale, spanning about 10 orders of magnitude in the space domain and 15 orders of magnitude in the time domain. Consequently, many different modeling techniques, each proper for a particular time or space scale, are commonly used. In addition, a single process often spans more than a single time or space scale. Thus, the necessity arises for combining the modeling techniques in multiscale approaches. In this Account, I first review the different modeling methods for bio-systems, from quantum mechanics to the coarse-grained and continuum-like descriptions, passing through the atomistic force field simulations. Special attention is devoted to their combination in different possible multiscale approaches and to the questions and problems related to their coherent matching in the space and time domains. These aspects are often considered secondary, but in fact, they have primary relevance when the aim is the coherent and complete description of bioprocesses. Subsequently, applications are illustrated by means of two paradigmatic examples: (i) the green fluorescent protein (GFP) family and (ii) the proteins involved in the human immunodeficiency virus (HIV) replication cycle. The GFPs are currently one of the most frequently used markers for monitoring protein trafficking within living cells; nanobiotechnology and cell biology strongly rely on their use in fluorescence microscopy techniques. A detailed knowledge of the actions of the virus-specific enzymes of HIV (specifically HIV protease and integrase) is necessary to study novel therapeutic strategies against this disease. Thus, the insight accumulated over years of intense study is an excellent framework for this Account. The foremost relevance of these two biomolecular systems was

  19. Protein: FBA6 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA6 transport vesicle formation SEC12 SED2 Guanine nucleotide-exchange factor SEC12 Protein... transport protein SEC12 559292 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) 855760 P11655 ...

  20. Microtubules, Tubulins and Associated Proteins.

    Science.gov (United States)

    Raxworthy, Michael J.

    1988-01-01

    Reviews much of what is known about microtubules, which are biopolymers consisting predominantly of subunits of the globular protein, tubulin. Describes the functions of microtubules, their structure and assembly, microtube associated proteins, and microtubule-disrupting agents. (TW)

  1. Protein: MPA1 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPA1 TLR signaling molecules MAVS IPS1, KIAA1271, VISA VISA_(gene) Mitochondrial an...tiviral-signaling protein CARD adapter inducing interferon beta, Interferon beta promoter stimulator protein 1, Putative NF-kappa

  2. Protein Misfolding and Human Disease

    DEFF Research Database (Denmark)

    Gregersen, Niels; Bross, Peter Gerd; Vang, Søren

    2006-01-01

    phenylketonuria, Parkinson's disease, α-1-antitrypsin deficiency, familial neurohypophyseal diabetes insipidus, and short-chain acyl-CoA dehydrogenase deficiency. Despite the differences, an emerging paradigm suggests that the cellular effects of protein misfolding provide a common framework that may contribute......Protein misfolding is a common event in living cells. In young and healthy cells, the misfolded protein load is disposed of by protein quality control (PQC) systems. In aging cells and in cells from certain individuals with genetic diseases, the load may overwhelm the PQC capacity, resulting...... in accumulation of misfolded proteins. Dependent on the properties of the protein and the efficiency of the PQC systems, the accumulated protein may be degraded or assembled into toxic oligomers and aggregates. To illustrate this concept, we discuss a number of very different protein misfolding diseases including...

  3. Protein: FBA3 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA3 Atg1 kinase complex TOR1 DRR1 Serine/threonine-protein kinase TOR1 Dominant rapamycin... resistance protein 1, Phosphatidylinositol kinase homolog TOR1, Target of rapamycin kinase 1 559292

  4. Protein: FBA4 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA4 peptidyl arginine deiminase, type IV PADI4 PADI5, PDI5 PADI4 Protein-arginine ...deiminase type-4 HL-60 PAD, Peptidylarginine deiminase IV, Protein-arginine deiminase type IV 9606 Homo sapi

  5. Controlling allosteric networks in proteins

    Science.gov (United States)

    Dokholyan, Nikolay

    2013-03-01

    We present a novel methodology based on graph theory and discrete molecular dynamics simulations for delineating allosteric pathways in proteins. We use this methodology to uncover the structural mechanisms responsible for coupling of distal sites on proteins and utilize it for allosteric modulation of proteins. We will present examples where inference of allosteric networks and its rewiring allows us to ``rescue'' cystic fibrosis transmembrane conductance regulator (CFTR), a protein associated with fatal genetic disease cystic fibrosis. We also use our methodology to control protein function allosterically. We design a novel protein domain that can be inserted into identified allosteric site of target protein. Using a drug that binds to our domain, we alter the function of the target protein. We successfully tested this methodology in vitro, in living cells and in zebrafish. We further demonstrate transferability of our allosteric modulation methodology to other systems and extend it to become ligh-activatable.

  6. Protein: MPA1 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available feron stimulator, Mediator of IRF3 activation, Stimulator of interferon genes protein 9606 Homo sapiens Q86WV6 340061 ... ...MPA1 TLR signaling molecules TMEM173 ERIS, MITA, STING Transmembrane protein 173 Endoplasmic reticulum inter

  7. Chemical Protein Modification through Cysteine.

    Science.gov (United States)

    Gunnoo, Smita B; Madder, Annemieke

    2016-04-01

    The modification of proteins with non-protein entities is important for a wealth of applications, and methods for chemically modifying proteins attract considerable attention. Generally, modification is desired at a single site to maintain homogeneity and to minimise loss of function. Though protein modification can be achieved by targeting some natural amino acid side chains, this often leads to ill-defined and randomly modified proteins. Amongst the natural amino acids, cysteine combines advantageous properties contributing to its suitability for site-selective modification, including a unique nucleophilicity, and a low natural abundance--both allowing chemo- and regioselectivity. Native cysteine residues can be targeted, or Cys can be introduced at a desired site in a protein by means of reliable genetic engineering techniques. This review on chemical protein modification through cysteine should appeal to those interested in modifying proteins for a range of applications.

  8. Protein Linked to Atopic Dermatitis

    Science.gov (United States)

    ... Research Matters NIH Research Matters January 14, 2013 Protein Linked to Atopic Dermatitis Normal skin from a ... in mice suggests that lack of a certain protein may trigger atopic dermatitis, the most common type ...

  9. Functional aspects of protein flexibility

    DEFF Research Database (Denmark)

    Teilum, Kaare; Olsen, Johan G; Kragelund, Birthe B

    2009-01-01

    Proteins are dynamic entities, and they possess an inherent flexibility that allows them to function through molecular interactions within the cell, among cells and even between organisms. Appreciation of the non-static nature of proteins is emerging, but to describe and incorporate...... this into an intuitive perception of protein function is challenging. Flexibility is of overwhelming importance for protein function, and the changes in protein structure during interactions with binding partners can be dramatic. The present review addresses protein flexibility, focusing on protein-ligand interactions....... The thermodynamics involved are reviewed, and examples of structure-function studies involving experimentally determined flexibility descriptions are presented. While much remains to be understood about protein flexibility, it is clear that it is encoded within their amino acid sequence and should be viewed...

  10. Protein folding and wring resonances

    DEFF Research Database (Denmark)

    Bohr, Jakob; Bohr, Henrik; Brunak, Søren

    1997-01-01

    The polypeptide chain of a protein is shown to obey topological contraints which enable long range excitations in the form of wring modes of the protein backbone. Wring modes of proteins of specific lengths can therefore resonate with molecular modes present in the cell. It is suggested that prot......The polypeptide chain of a protein is shown to obey topological contraints which enable long range excitations in the form of wring modes of the protein backbone. Wring modes of proteins of specific lengths can therefore resonate with molecular modes present in the cell. It is suggested...... that protein folding takes place when the amplitude of a wring excitation becomes so large that it is energetically favorable to bend the protein backbone. The condition under which such structural transformations can occur is found, and it is shown that both cold and hot denaturation (the unfolding...

  11. Yeast Interacting Proteins Database: YJL199C, YJL199C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available d in closely related Saccharomyces species; protein detected in large-scale protein-protein interaction studies...cies; protein detected in large-scale protein-protein interaction studies Rows with this prey as prey (4) Ro...n; not conserved in closely related Saccharomyces species; protein detected in large-scale protein-protein interaction studies... species; protein detected in large-scale protein-protein interaction studies Rows with this prey as prey Ro

  12. Protein loss during nuclear isolation

    OpenAIRE

    1983-01-01

    Cryomicrodissection makes possible the measurement of the entire in vivo protein content of the amphibian oocyte nucleus and provides a heretofore missing baseline for estimating protein loss during nuclear isolation by other methods. When oocyte nuclei are isolated into an aqueous medium, they lose 95% of their protein with a half-time of 250 s. This result implies an even more rapid loss of protein from aqueously isolated nuclei of ordinary-size cells.

  13. Purification of Tetrahymena cytoskeletal proteins.

    Science.gov (United States)

    Honts, Jerry E

    2012-01-01

    Like all eukaryotic cells, Tetrahymena thermophila contains a rich array of cytoskeletal proteins, some familiar and some novel. A detailed analysis of the structure, function, and interactions of these proteins requires procedures for purifying the individual protein components. Procedures for the purification of actin and tubulin from Tetrahymena are reviewed, followed by a description of a procedure that yields proteins from the epiplasmic layer and associated structures, including the tetrins. Finally, the challenges and opportunities for future advances are assessed.

  14. Similarity measures for protein ensembles

    DEFF Research Database (Denmark)

    Lindorff-Larsen, Kresten; Ferkinghoff-Borg, Jesper

    2009-01-01

    Analyses of similarities and changes in protein conformation can provide important information regarding protein function and evolution. Many scores, including the commonly used root mean square deviation, have therefore been developed to quantify the similarities of different protein conformations...... a synthetic example from molecular dynamics simulations. We then apply the algorithms to revisit the problem of ensemble averaging during structure determination of proteins, and find that an ensemble refinement method is able to recover the correct distribution of conformations better than standard single...

  15. Understanding Protein-Protein Interactions Using Local Structural Features

    DEFF Research Database (Denmark)

    Planas-Iglesias, Joan; Bonet, Jaume; García-García, Javier;

    2013-01-01

    Protein-protein interactions (PPIs) play a relevant role among the different functions of a cell. Identifying the PPI network of a given organism (interactome) is useful to shed light on the key molecular mechanisms within a biological system. In this work, we show the role of structural features...... (loops and domains) to comprehend the molecular mechanisms of PPIs. A paradox in protein-protein binding is to explain how the unbound proteins of a binary complex recognize each other among a large population within a cell and how they find their best docking interface in a short timescale. We use...

  16. Structuring high-protein foods

    NARCIS (Netherlands)

    Purwanti, N.

    2012-01-01

    Increased protein consumption gives rise to various health benefits. High-protein intake can lead to muscle development, body weight control and suppression of sarcopenia progression. However, increasing the protein content in food products leads to textural changes over time. These changes result i

  17. Protein: FEA3 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FEA3 AREB pathway: Signaling proteins ABI5 BZIP39, DPBF1, GIA1, NEM1 Protein ABSCIS...IC ACID-INSENSITIVE 5 Dc3 promoter-binding factor 1, Protein GROWTH-INSENSITIVITY TO ABA 1, bZIP transcription factor 39 3702 Arabidopsis thaliana 818199 Q9SJN0 ...

  18. Modeling complexes of modeled proteins.

    Science.gov (United States)

    Anishchenko, Ivan; Kundrotas, Petras J; Vakser, Ilya A

    2017-03-01

    Structural characterization of proteins is essential for understanding life processes at the molecular level. However, only a fraction of known proteins have experimentally determined structures. This fraction is even smaller for protein-protein complexes. Thus, structural modeling of protein-protein interactions (docking) primarily has to rely on modeled structures of the individual proteins, which typically are less accurate than the experimentally determined ones. Such "double" modeling is the Grand Challenge of structural reconstruction of the interactome. Yet it remains so far largely untested in a systematic way. We present a comprehensive validation of template-based and free docking on a set of 165 complexes, where each protein model has six levels of structural accuracy, from 1 to 6 Å C(α) RMSD. Many template-based docking predictions fall into acceptable quality category, according to the CAPRI criteria, even for highly inaccurate proteins (5-6 Å RMSD), although the number of such models (and, consequently, the docking success rate) drops significantly for models with RMSD > 4 Å. The results show that the existing docking methodologies can be successfully applied to protein models with a broad range of structural accuracy, and the template-based docking is much less sensitive to inaccuracies of protein models than the free docking. Proteins 2017; 85:470-478. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Hydrophobic patches on protein surfaces

    NARCIS (Netherlands)

    Lijnzaad, P.

    2007-01-01

    Hydrophobicity is a prime determinant of the structure and function of proteins. It is the driving force behind the folding of soluble proteins, and when exposed on the surface, it is frequently involved in recognition and binding of ligands and other proteins. The energetic cost of exposing hydroph

  20. Validation of protein carbonyl measurement

    DEFF Research Database (Denmark)

    Augustyniak, Edyta; Adam, Aisha; Wojdyla, Katarzyna;

    2015-01-01

    Protein carbonyls are widely analysed as a measure of protein oxidation. Several different methods exist for their determination. A previous study had described orders of magnitude variance that existed when protein carbonyls were analysed in a single laboratory by ELISA using different commercial...

  1. Proteins: Chemistry, Characterization, and Quality

    NARCIS (Netherlands)

    Sforza, S.; Tedeschi, T.; Wierenga, P.A.

    2016-01-01

    Proteins are one of the major macronutrients in food, and several traditional food commodities are good sources of proteins (meat, egg, milk and dairy products, fish, and soya). Proteins are polymers made by 20 different amino acids. They might undergo desired or undesired chemical or enzymatic

  2. Photoreceptor proteins from purple bacteria

    NARCIS (Netherlands)

    Hendriks, J.; van der Horst, M.A.; Chua, T.K.; Ávila Pérez, M.; van Wilderen, L.J.; Alexandre, M.T.A.; Groot, M.-L.; Kennis, J.T.M.; Hellingwerf, K.J.; Hunter, C.N.; Daldal, F.; Thurnauer, M.C.; Beatty, J.T.

    2009-01-01

    Purple bacteria contain representatives of four of the six main families of photoreceptor proteins: phytochromes, BLUF domain containing proteins, xanthopsins (i.e., photoactive yellow proteins), and phototropins (containing one or more light, oxygen, or voltage (LOV) domains). Most of them have a

  3. Protein: FBA4 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available tion factor complex helicase XPB subunit Basic transcription factor 2 89 kDa subunit, DNA excision repair prot...ein ERCC-3, DNA repair protein complementing XP-B cells, TFIIH basal transcription factor complex 89 kDa s...ubunit, Xeroderma pigmentosum group B-complementing protein 9606 Homo sapiens P19447 2071 2071 P19447 ...

  4. Protein: FBA4 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA4 REST-TBP TBP GTF2D1, TF2D, TFIID TATA_binding_protein TATA-box-binding protein... TATA sequence-binding protein, TATA-binding factor, TATA-box factor, Transcription initiation factor TFIID

  5. Biophysics of protein evolution and evolutionary protein biophysics

    Science.gov (United States)

    Sikosek, Tobias; Chan, Hue Sun

    2014-01-01

    The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution. PMID:25165599

  6. The Proteins API: accessing key integrated protein and genome information.

    Science.gov (United States)

    Nightingale, Andrew; Antunes, Ricardo; Alpi, Emanuele; Bursteinas, Borisas; Gonzales, Leonardo; Liu, Wudong; Luo, Jie; Qi, Guoying; Turner, Edd; Martin, Maria

    2017-04-05

    The Proteins API provides searching and programmatic access to protein and associated genomics data such as curated protein sequence positional annotations from UniProtKB, as well as mapped variation and proteomics data from large scale data sources (LSS). Using the coordinates service, researchers are able to retrieve the genomic sequence coordinates for proteins in UniProtKB. This, the LSS genomics and proteomics data for UniProt proteins is programmatically only available through this service. A Swagger UI has been implemented to provide documentation, an interface for users, with little or no programming experience, to 'talk' to the services to quickly and easily formulate queries with the services and obtain dynamically generated source code for popular programming languages, such as Java, Perl, Python and Ruby. Search results are returned as standard JSON, XML or GFF data objects. The Proteins API is a scalable, reliable, fast, easy to use RESTful services that provides a broad protein information resource for users to ask questions based upon their field of expertise and allowing them to gain an integrated overview of protein annotations available to aid their knowledge gain on proteins in biological processes. The Proteins API is available at (http://www.ebi.ac.uk/proteins/api/doc).

  7. Protein stress and stress proteins: implications in aging and disease

    Indian Academy of Sciences (India)

    C Sőti; Péter Csermely

    2007-04-01

    Environmantal stress induces damage that activates an adaptive response in any organism. The cellular stress response is based on the induction of cytoprotective proteins, the so called stress or heat shock proteins. The stress response as well as stress proteins are ubiquitous, highly conserved mechanism, and genes, respectively, already present in prokaryotes. Chaperones protect the proteome against conformational damage, promoting the function of protein networks. Protein damage takes place during aging and in several degenerative diseases, and presents a threat to overload the cellular defense mechanisms. The preservation of a robust stress response and protein disposal is indispensable for health and longevity. This review summarizes the present knowledge of protein damage, turnover, and the stress response in aging and degenerative diseases.

  8. Protein subcellular localization assays using split fluorescent proteins

    Science.gov (United States)

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2009-09-08

    The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).

  9. Flowering Buds of Globular Proteins: Transpiring Simplicity of Protein Organization

    Science.gov (United States)

    Berezovsky, Igor N.

    2002-01-01

    Structural and functional complexity of proteins is dramatically reduced to a simple linear picture when the laws of polymer physics are considered. A basic unit of the protein structure is a nearly standard closed loop of 25–35 amino acid residues, and every globular protein is built of consecutively connected closed loops. The physical necessity of the closed loops had been apparently imposed on the early stages of protein evolution. Indeed, the most frequent prototype sequence motifs in prokaryotic proteins have the same sequence size, and their high match representatives are found as closed loops in crystallized proteins. Thus, the linear organization of the closed loop elements is a quintessence of protein evolution, structure and folding. PMID:18629251

  10. Protein Adsorption in Three Dimensions

    Science.gov (United States)

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and

  11. Protein enriched pasta: structure and digestibility of its protein network.

    Science.gov (United States)

    Laleg, Karima; Barron, Cécile; Santé-Lhoutellier, Véronique; Walrand, Stéphane; Micard, Valérie

    2016-02-01

    Wheat (W) pasta was enriched in 6% gluten (G), 35% faba (F) or 5% egg (E) to increase its protein content (13% to 17%). The impact of the enrichment on the multiscale structure of the pasta and on in vitro protein digestibility was studied. Increasing the protein content (W- vs. G-pasta) strengthened pasta structure at molecular and macroscopic scales but reduced its protein digestibility by 3% by forming a higher covalently linked protein network. Greater changes in the macroscopic and molecular structure of the pasta were obtained by varying the nature of protein used for enrichment. Proteins in G- and E-pasta were highly covalently linked (28-32%) resulting in a strong pasta structure. Conversely, F-protein (98% SDS-soluble) altered the pasta structure by diluting gluten and formed a weak protein network (18% covalent link). As a result, protein digestibility in F-pasta was significantly higher (46%) than in E- (44%) and G-pasta (39%). The effect of low (55 °C, LT) vs. very high temperature (90 °C, VHT) drying on the protein network structure and digestibility was shown to cause greater molecular changes than pasta formulation. Whatever the pasta, a general strengthening of its structure, a 33% to 47% increase in covalently linked proteins and a higher β-sheet structure were observed. However, these structural differences were evened out after the pasta was cooked, resulting in identical protein digestibility in LT and VHT pasta. Even after VHT drying, F-pasta had the best amino acid profile with the highest protein digestibility, proof of its nutritional interest.

  12. CPL:Detecting Protein Complexes by Propagating Labels on Protein-Protein Interaction Network

    Institute of Scientific and Technical Information of China (English)

    代启国; 郭茂祖; 刘晓燕; 滕志霞; 王春宇

    2014-01-01

    Proteins usually bind together to form complexes, which play an important role in cellular activities. Many graph clustering methods have been proposed to identify protein complexes by finding dense regions in protein-protein interaction networks. We present a novel framework (CPL) that detects protein complexes by propagating labels through interactions in a network, in which labels denote complex identifiers. With proper propagation in CPL, proteins in the same complex will be assigned with the same labels. CPL does not make any strong assumptions about the topological structures of the complexes, as in previous methods. The CPL algorithm is tested on several publicly available yeast protein-protein interaction networks and compared with several state-of-the-art methods. The results suggest that CPL performs better than the existing methods. An analysis of the functional homogeneity based on a gene ontology analysis shows that the detected complexes of CPL are highly biologically relevant.

  13. Protein: FBA3 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA3 Atg8 conjugation sysytem Map1lc3b Map1alc3, Map1lc3 MAP1LC3B Microtubule-associated protein...s 1A/1B light chain 3B Autophagy-related protein LC3 B, Autophagy-related ubiquitin-like modifi...er LC3 B, MAP1 light chain 3-like protein 2, MAP1A/MAP1B light chain 3 B, Microtubule-associated protein 1 l

  14. Protein nanotechnology: what is it?

    Science.gov (United States)

    Gerrard, Juliet A

    2013-01-01

    Protein nanotechnology is an emerging field that is still defining itself. It embraces the intersection of protein science, which exists naturally at the nanoscale, and the burgeoning field of nanotechnology. In this opening chapter, a select review is given of some of the exciting nanostructures that have already been created using proteins, and the sorts of applications that protein engineers are reaching towards in the nanotechnology space. This provides an introduction to the rest of the volume, which provides inspirational case studies, along with tips and tools to manipulate proteins into new forms and architectures, beyond Nature's original intentions.

  15. [Protein phosphatases: structure and function].

    Science.gov (United States)

    Bulanova, E G; Budagian, V M

    1994-01-01

    The process of protein and enzyme systems phosphorylation is necessary for cell growth, differentiation and preparation for division and mitosis. The conformation changes of protein as a result of phosphorylation lead to increased enzyme activity and enhanced affinity to substrates. A large group of enzymes--protein kinases--is responsible for phosphorylation process in cell, which are divided into tyrosine- and serine-threonine-kinases depending on their ability to phosphorylate appropriate amino acid residues. In this review has been considered the functional importance and structure of protein phosphatases--enzymes, which are functional antagonists of protein kinases.

  16. ING proteins in cellular senescence.

    Science.gov (United States)

    Menéndez, Camino; Abad, María; Gómez-Cabello, Daniel; Moreno, Alberto; Palmero, Ignacio

    2009-05-01

    Cellular senescence is an effective anti-tumor barrier that acts by restraining the uncontrolled proliferation of cells carrying potentially oncogenic alterations. ING proteins are putative tumor suppressor proteins functionally linked to the p53 pathway and to chromatin regulation. ING proteins exert their tumor-protective action through different types of responses. Here, we review the evidence on the participation of ING proteins, mainly ING1 and ING2, in the implementation of the senescent response. The currently available data support an important role of ING proteins as regulators of senescence, in connection with the p53 pathway and chromatin organization.

  17. [Protein nutrition and physical activity].

    Science.gov (United States)

    Navarro, M P

    1992-09-01

    The relationship between physical exercise and diet in order to optimize performance is getting growing interest. This review examines protein needs and protein intakes as well as the role of protein in the body and the metabolic changes occurring at the synthesis and catabolic levels during exercise. Protein synthesis in muscle or liver, amino acids oxidation, glucose production via gluconeogenesis from amino acids, etc., are modified, and consequently plasma and urinary nitrogen metabolites are affected. A brief comment on the advantages, disadvantages and forms of different protein supplements for sportsmen is given.

  18. High throughput protein-protein interaction data: clues for the architecture of protein complexes

    Directory of Open Access Journals (Sweden)

    Pang Chi

    2008-11-01

    Full Text Available Abstract Background High-throughput techniques are becoming widely used to study protein-protein interactions and protein complexes on a proteome-wide scale. Here we have explored the potential of these techniques to accurately determine the constituent proteins of complexes and their architecture within the complex. Results Two-dimensional representations of the 19S and 20S proteasome, mediator, and SAGA complexes were generated and overlaid with high quality pairwise interaction data, core-module-attachment classifications from affinity purifications of complexes and predicted domain-domain interactions. Pairwise interaction data could accurately determine the members of each complex, but was unexpectedly poor at deciphering the topology of proteins in complexes. Core and module data from affinity purification studies were less useful for accurately defining the member proteins of these complexes. However, these data gave strong information on the spatial proximity of many proteins. Predicted domain-domain interactions provided some insight into the topology of proteins within complexes, but was affected by a lack of available structural data for the co-activator complexes and the presence of shared domains in paralogous proteins. Conclusion The constituent proteins of complexes are likely to be determined with accuracy by combining data from high-throughput techniques. The topology of some proteins in the complexes will be able to be clearly inferred. We finally suggest strategies that can be employed to use high throughput interaction data to define the membership and understand the architecture of proteins in novel complexes.

  19. Protein-protein interaction network-based detection of functionally similar proteins within species.

    Science.gov (United States)

    Song, Baoxing; Wang, Fen; Guo, Yang; Sang, Qing; Liu, Min; Li, Dengyun; Fang, Wei; Zhang, Deli

    2012-07-01

    Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent. Copyright © 2012 Wiley Periodicals, Inc.

  20. Water-transporting proteins.

    Science.gov (United States)

    Zeuthen, Thomas

    2010-04-01

    Transport through lipids and aquaporins is osmotic and entirely driven by the difference in osmotic pressure. Water transport in cotransporters and uniporters is different: Water can be cotransported, energized by coupling to the substrate flux by a mechanism closely associated with protein. In the K(+)/Cl(-) and the Na(+)/K(+)/2Cl(-) cotransporters, water is entirely cotransported, while water transport in glucose uniporters and Na(+)-coupled transporters of nutrients and neurotransmitters takes place by both osmosis and cotransport. The molecular mechanism behind cotransport of water is not clear. It is associated with the substrate movements in aqueous pathways within the protein; a conventional unstirred layer mechanism can be ruled out, due to high rates of diffusion in the cytoplasm. The physiological roles of the various modes of water transport are reviewed in relation to epithelial transport. Epithelial water transport is energized by the movements of ions, but how the coupling takes place is uncertain. All epithelia can transport water uphill against an osmotic gradient, which is hard to explain by simple osmosis. Furthermore, genetic removal of aquaporins has not given support to osmosis as the exclusive mode of transport. Water cotransport can explain the coupling between ion and water transport, a major fraction of transepithelial water transport and uphill water transport. Aquaporins enhance water transport by utilizing osmotic gradients and cause the osmolarity of the transportate to approach isotonicity.

  1. Protein Chemical Shift Prediction

    CERN Document Server

    Larsen, Anders S

    2014-01-01

    The protein chemical shifts holds a large amount of information about the 3-dimensional structure of the protein. A number of chemical shift predictors based on the relationship between structures resolved with X-ray crystallography and the corresponding experimental chemical shifts have been developed. These empirical predictors are very accurate on X-ray structures but tends to be insensitive to small structural changes. To overcome this limitation it has been suggested to make chemical shift predictors based on quantum mechanical(QM) calculations. In this thesis the development of the QM derived chemical shift predictor Procs14 is presented. Procs14 is based on 2.35 million density functional theory(DFT) calculations on tripeptides and contains corrections for hydrogen bonding, ring current and the effect of the previous and following residue. Procs14 is capable at performing predictions for the 13CA, 13CB, 13CO, 15NH, 1HN and 1HA backbone atoms. In order to benchmark Procs14, a number of QM NMR calculatio...

  2. An intravascular protein osmometer.

    Science.gov (United States)

    Henson, J W; Brace, R A

    1983-05-01

    Our purpose was to develop an intravascular osmometer for measuring the colloid (i.e., protein) osmotic pressure (COP) of circulating blood. A semipermeable hollow fiber from a Cordis Dow artificial kidney (C-DAK 4000) was attached to polyethylene tubing on one end, filled with saline, and sealed at the other end. This was small enough to be inserted into the vasculature of research animals. Protein osmotic pressure plus hydrostatic pressure was measured by a Statham pressure transducer attached to the hollow fiber. Simultaneously, a second catheter and transducer was used to measure hydrostatic pressure, which was subtracted from the pressure measured from the fiber with an on-line computer. The system was documented by a variety of tests. The colloid osmotic pressure vs. albumin concentration curve determined with the fiber is identical to the curve determined by standard membrane osmometry. The time constant for 2- and 8-cm fibers was 2.6 +/- 0.6 and 1.5 +/- 0.5 (+/- SD) min, respectively. The reflection coefficient (+/- SD) of the fiber for NaCl is 0.042 +/- 0.019 (n = 38); COP measured at varying temperatures (absolute scale) changed linearly as expected from COP = nCRT (i.e., van't Hoff's law). Finally, hollow-fiber osmometers were inserted into femoral veins of dogs and sheep, and blood COP was continuously recorded during osmotic manipulations. In conclusion, we attempted to develop and document a simple method for continuous measurement of intravascular colloid osmotic pressure.

  3. Prion protein in milk.

    Directory of Open Access Journals (Sweden)

    Nicola Franscini

    Full Text Available BACKGROUND: Prions are known to cause transmissible spongiform encephalopathies (TSE after accumulation in the central nervous system. There is increasing evidence that prions are also present in body fluids and that prion infection by blood transmission is possible. The low concentration of the proteinaceous agent in body fluids and its long incubation time complicate epidemiologic analysis and estimation of spreading and thus the risk of human infection. This situation is particularly unsatisfactory for food and pharmaceutical industries, given the lack of sensitive tools for monitoring the infectious agent. METHODOLOGY/PRINCIPAL FINDINGS: We have developed an adsorption matrix, Alicon PrioTrap, which binds with high affinity and specificity to prion proteins. Thus we were able to identify prion protein (PrP(C--the precursor of prions (PrP(Sc--in milk from humans, cows, sheep, and goats. The absolute amount of PrP(C differs between the species (from microg/l range in sheep to ng/l range in human milk. PrP(C is also found in homogenised and pasteurised off-the-shelf milk, and even ultrahigh temperature treatment only partially diminishes endogenous PrP(C concentration. CONCLUSIONS/SIGNIFICANCE: In view of a recent study showing evidence of prion replication occurring in the mammary gland of scrapie infected sheep suffering from mastitis, the appearance of PrP(C in milk implies the possibility that milk of TSE-infected animals serves as source for PrP(Sc.

  4. Peptides and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bachovchin, W.W.; Unkefer, C.J.

    1994-12-01

    Advances in magnetic resonance and vibrational spectroscopy make it possible to derive detailed structural information about biomolecular structures in solution. These techniques are critically dependent on the availability of labeled compounds. For example, NMR techniques used today to derive peptide and protein structures require uniformity {sup 13}C-and {sup 15}N-labeled samples that are derived biosynthetically from (U-6-{sup 13}C) glucose. These experiments are possible now because, during the 1970s, the National Stable Isotope Resource developed algal methods for producing (U-6-{sup 13}C) glucose. If NMR techniques are to be used to study larger proteins, we will need sophisticated labelling patterns in amino acids that employ a combination of {sup 2}H, {sup 13}C, and {sup 15}N labeling. The availability of these specifically labeled amino acids requires a renewed investment in new methods for chemical synthesis of labeled amino acids. The development of new magnetic resonance or vibrational techniques to elucidate biomolecular structure will be seriously impeded if we do not see rapid progress in labeling technology. Investment in labeling chemistry is as important as investment in the development of advanced spectroscopic tools.

  5. Bioactive proteins from pipefishes

    Institute of Scientific and Technical Information of China (English)

    E. Rethna Priya; S. Ravichandran; R. Ezhilmathi

    2013-01-01

    Objective: To screen antimicrobial potence of some pipefish species collected from Tuticorin coastal environment.Methods:Antimicrobial activity of pipefishes in methanol extract was investigated against 10 bacterial and 10 fungal human pathogenic strains.Results:Among the tested strains, in Centriscus scutatus, pipefish showed maximum zone of inhibition against Vibrio cholerae (8 mm) and minimum in the sample of Hippichthys cyanospilos against Klebseilla pneumoniae (2 mm). In positive control, maximum zone of inhibition was recorded in Vibrio cholerae (9 mm) and minimum in Klebseilla pneumoniae, and Salmonella paratyphi (5 mm). Chemical investigation indicated the presence of peptides as evidenced by ninhydrin positive spots on thin layer chromatography and presence of peptide. In SDS PAGE, in Centriscus scutatus, four bands were detected in the gel that represented the presence of proteins in the range nearly 25.8-75 kDa. In Hippichthys cyanospilos, five bands were detected in the gel that represented the presence of proteins in the range nearly 20.5-78 kDa. The result of FT-IR spectrum revealed that the pipe fishes extracts compriseed to have peptide derivatives as their predominant chemical groups.Conclusions:It can be conclude that this present investigation suggests the tested pipe fishes will be a potential source of natural bioactive compounds.

  6. Rat myocardial protein degradation.

    Science.gov (United States)

    Steer, J H; Hopkins, B E

    1981-07-01

    1. Myocardial protein degradation rates were determined by following tyrosine release from rat isolated left hemi-atria in vitro. 2. After two 20 min preincubations the rate of tyrosine release from hemi-atria was constant for 4 h. 3. Skeletal muscle protein degradation was determined by following tyrosine release from rat isolated hemi-diaphragm (Fulks, Li & Goldberg, 1975). 4. Insulin (10(-7) M) inhibited tyrosine release from hemi-atria and hemi-diaphragm to a similar extent. A 48 h fast increased tyrosine release rate from hemi-diaphragm and decreased tyrosine release rate from hemi-atria. Hemi-diaphragm tyrosine release was inhibited by 15 mmol/l D-glucose but a variety of concentrations of D-glucose (0, 5, 15 mmol/l) had no effect on tyrosine release from hemi-atria. Five times the normal plasma levels of the branched-chain amino acids leucine, isoleucine and valine had no effect on tyrosine release from either hemi-atria or hemi-diaphragm.

  7. Introduction to protein crystallization.

    Science.gov (United States)

    McPherson, Alexander; Gavira, Jose A

    2014-01-01

    Protein crystallization was discovered by chance about 150 years ago and was developed in the late 19th century as a powerful purification tool and as a demonstration of chemical purity. The crystallization of proteins, nucleic acids and large biological complexes, such as viruses, depends on the creation of a solution that is supersaturated in the macromolecule but exhibits conditions that do not significantly perturb its natural state. Supersaturation is produced through the addition of mild precipitating agents such as neutral salts or polymers, and by the manipulation of various parameters that include temperature, ionic strength and pH. Also important in the crystallization process are factors that can affect the structural state of the macromolecule, such as metal ions, inhibitors, cofactors or other conventional small molecules. A variety of approaches have been developed that combine the spectrum of factors that effect and promote crystallization, and among the most widely used are vapor diffusion, dialysis, batch and liquid-liquid diffusion. Successes in macromolecular crystallization have multiplied rapidly in recent years owing to the advent of practical, easy-to-use screening kits and the application of laboratory robotics. A brief review will be given here of the most popular methods, some guiding principles and an overview of current technologies.

  8. Pentatricopeptide repeat proteins in plants.

    Science.gov (United States)

    Barkan, Alice; Small, Ian

    2014-01-01

    Pentatricopeptide repeat (PPR) proteins constitute one of the largest protein families in land plants, with more than 400 members in most species. Over the past decade, much has been learned about the molecular functions of these proteins, where they act in the cell, and what physiological roles they play during plant growth and development. A typical PPR protein is targeted to mitochondria or chloroplasts, binds one or several organellar transcripts, and influences their expression by altering RNA sequence, turnover, processing, or translation. Their combined action has profound effects on organelle biogenesis and function and, consequently, on photosynthesis, respiration, plant development, and environmental responses. Recent breakthroughs in understanding how PPR proteins recognize RNA sequences through modular base-specific contacts will help match proteins to potential binding sites and provide a pathway toward designing synthetic RNA-binding proteins aimed at desired targets.

  9. Metagenomics and the protein universe

    Science.gov (United States)

    Godzik, Adam

    2011-01-01

    Metagenomics sequencing projects have dramatically increased our knowledge of the protein universe and provided over one-half of currently known protein sequences; they have also introduced a much broader phylogenetic diversity into the protein databases. The full analysis of metagenomic datasets is only beginning, but it has already led to the discovery of thousands of new protein families, likely representing novel functions specific to given environments. At the same time, a deeper analysis of such novel families, including experimental structure determination of some representatives, suggests that most of them represent distant homologs of already characterized protein families, and thus most of the protein diversity present in the new environments are due to functional divergence of the known protein families rather than the emergence of new ones. PMID:21497084

  10. Mathematical methods for protein science

    Energy Technology Data Exchange (ETDEWEB)

    Hart, W.; Istrail, S.; Atkins, J. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31

    Understanding the structure and function of proteins is a fundamental endeavor in molecular biology. Currently, over 100,000 protein sequences have been determined by experimental methods. The three dimensional structure of the protein determines its function, but there are currently less than 4,000 structures known to atomic resolution. Accordingly, techniques to predict protein structure from sequence have an important role in aiding the understanding of the Genome and the effects of mutations in genetic disease. The authors describe current efforts at Sandia to better understand the structure of proteins through rigorous mathematical analyses of simple lattice models. The efforts have focused on two aspects of protein science: mathematical structure prediction, and inverse protein folding.

  11. Protein-protein interaction based on pairwise similarity

    Directory of Open Access Journals (Sweden)

    Zaki Nazar

    2009-05-01

    Full Text Available Abstract Background Protein-protein interaction (PPI is essential to most biological processes. Abnormal interactions may have implications in a number of neurological syndromes. Given that the association and dissociation of protein molecules is crucial, computational tools capable of effectively identifying PPI are desirable. In this paper, we propose a simple yet effective method to detect PPI based on pairwise similarity and using only the primary structure of the protein. The PPI based on Pairwise Similarity (PPI-PS method consists of a representation of each protein sequence by a vector of pairwise similarities against large subsequences of amino acids created by a shifting window which passes over concatenated protein training sequences. Each coordinate of this vector is typically the E-value of the Smith-Waterman score. These vectors are then used to compute the kernel matrix which will be exploited in conjunction with support vector machines. Results To assess the ability of the proposed method to recognize the difference between "interacted" and "non-interacted" proteins pairs, we applied it on different datasets from the available yeast saccharomyces cerevisiae protein interaction. The proposed method achieved reasonable improvement over the existing state-of-the-art methods for PPI prediction. Conclusion Pairwise similarity score provides a relevant measure of similarity between protein sequences. This similarity incorporates biological knowledge about proteins and it is extremely powerful when combined with support vector machine to predict PPI.

  12. General introduction: recombinant protein production and purification of insoluble proteins.

    Science.gov (United States)

    Ferrer-Miralles, Neus; Saccardo, Paolo; Corchero, José Luis; Xu, Zhikun; García-Fruitós, Elena

    2015-01-01

    Proteins are synthesized in heterologous systems because of the impossibility to obtain satisfactory yields from natural sources. The production of soluble and functional recombinant proteins is among the main goals in the biotechnological field. In this context, it is important to point out that under stress conditions, protein folding machinery is saturated and this promotes protein misfolding and, consequently, protein aggregation. Thus, the selection of the optimal expression organism and the most appropriate growth conditions to minimize the formation of insoluble proteins should be done according to the protein characteristics and downstream requirements. Escherichia coli is the most popular recombinant protein expression system despite the great development achieved so far by eukaryotic expression systems. Besides, other prokaryotic expression systems, such as lactic acid bacteria and psychrophilic bacteria, are gaining interest in this field. However, it is worth mentioning that prokaryotic expression system poses, in many cases, severe restrictions for a successful heterologous protein production. Thus, eukaryotic systems such as mammalian cells, insect cells, yeast, filamentous fungus, and microalgae are an interesting alternative for the production of these difficult-to-express proteins.

  13. Bioinformatic Prediction of WSSV-Host Protein-Protein Interaction

    Directory of Open Access Journals (Sweden)

    Zheng Sun

    2014-01-01

    Full Text Available WSSV is one of the most dangerous pathogens in shrimp aquaculture. However, the molecular mechanism of how WSSV interacts with shrimp is still not very clear. In the present study, bioinformatic approaches were used to predict interactions between proteins from WSSV and shrimp. The genome data of WSSV (NC_003225.1 and the constructed transcriptome data of F. chinensis were used to screen potentially interacting proteins by searching in protein interaction databases, including STRING, Reactome, and DIP. Forty-four pairs of proteins were suggested to have interactions between WSSV and the shrimp. Gene ontology analysis revealed that 6 pairs of these interacting proteins were classified into “extracellular region” or “receptor complex” GO-terms. KEGG pathway analysis showed that they were involved in the “ECM-receptor interaction pathway.” In the 6 pairs of interacting proteins, an envelope protein called “collagen-like protein” (WSSV-CLP encoded by an early virus gene “wsv001” in WSSV interacted with 6 deduced proteins from the shrimp, including three integrin alpha (ITGA, two integrin beta (ITGB, and one syndecan (SDC. Sequence analysis on WSSV-CLP, ITGA, ITGB, and SDC revealed that they possessed the sequence features for protein-protein interactions. This study might provide new insights into the interaction mechanisms between WSSV and shrimp.

  14. Protein-protein interaction network analysis of cirrhosis liver disease.

    Science.gov (United States)

    Safaei, Akram; Rezaei Tavirani, Mostafa; Arefi Oskouei, Afsaneh; Zamanian Azodi, Mona; Mohebbi, Seyed Reza; Nikzamir, Abdol Rahim

    2016-01-01

    Evaluation of biological characteristics of 13 identified proteins of patients with cirrhotic liver disease is the main aim of this research. In clinical usage, liver biopsy remains the gold standard for diagnosis of hepatic fibrosis. Evaluation and confirmation of liver fibrosis stages and severity of chronic diseases require a precise and noninvasive biomarkers. Since the early detection of cirrhosis is a clinical problem, achieving a sensitive, specific and predictive novel method based on biomarkers is an important task. Essential analysis, such as gene ontology (GO) enrichment and protein-protein interactions (PPI) was undergone EXPASy, STRING Database and DAVID Bioinformatics Resources query. Based on GO analysis, most of proteins are located in the endoplasmic reticulum lumen, intracellular organelle lumen, membrane-enclosed lumen, and extracellular region. The relevant molecular functions are actin binding, metal ion binding, cation binding and ion binding. Cell adhesion, biological adhesion, cellular amino acid derivative, metabolic process and homeostatic process are the related processes. Protein-protein interaction network analysis introduced five proteins (fibroblast growth factor receptor 4, tropomyosin 4, tropomyosin 2 (beta), lectin, Lectin galactoside-binding soluble 3 binding protein and apolipoprotein A-I) as hub and bottleneck proteins. Our result indicates that regulation of lipid metabolism and cell survival are important biological processes involved in cirrhosis disease. More investigation of above mentioned proteins will provide a better understanding of cirrhosis disease.

  15. Protein-protein interaction network of celiac disease

    Science.gov (United States)

    Zamanian Azodi, Mona; Peyvandi, Hassan; Rostami-Nejad, Mohammad; Safaei, Akram; Rostami, Kamran; Vafaee, Reza; Heidari, Mohammadhossein; Hosseini, Mostafa; Zali, Mohammad Reza

    2016-01-01

    Aim: The aim of this study is to investigate the Protein-Protein Interaction Network of Celiac Disease. Background: Celiac disease (CD) is an autoimmune disease with susceptibility of individuals to gluten of wheat, rye and barley. Understanding the molecular mechanisms and involved pathway may lead to the development of drug target discovery. The protein interaction network is one of the supportive fields to discover the pathogenesis biomarkers for celiac disease. Material and methods: In the present study, we collected the articles that focused on the proteomic data in celiac disease. According to the gene expression investigations of these articles, 31 candidate proteins were selected for this study. The networks of related differentially expressed protein were explored using Cytoscape 3.3 and the PPI analysis methods such as MCODE and ClueGO. Results: According to the network analysis Ubiquitin C, Heat shock protein 90kDa alpha (cytosolic and Grp94); class A, B and 1 member, Heat shock 70kDa protein, and protein 5 (glucose-regulated protein, 78kDa), T-complex, Chaperon in containing TCP1; subunit 7 (beta) and subunit 4 (delta) and subunit 2 (beta), have been introduced as hub-bottlnecks proteins. HSP90AA1, MKKS, EZR, HSPA14, APOB and CAD have been determined as seed proteins. Conclusion: Chaperons have a bold presentation in curtail area in network therefore these key proteins beside the other hub-bottlneck proteins may be a suitable candidates biomarker panel for diagnosis, prognosis and treatment processes in celiac disease. PMID:27895852

  16. THE CLINICAL EXPRESSION OF HEREDITARY PROTEIN-C AND PROTEIN-S DEFICIENCY - A RELATION TO CLINICAL THROMBOTIC RISK-FACTORS AND TO LEVELS OF PROTEIN-C AND PROTEIN-S

    NARCIS (Netherlands)

    HENKENS, CMA; VANDERMEER, J; HILLEGE, JL; BOM, VJJ; HALIE, MR; van der Schaaf, W

    1993-01-01

    We investigated 103 first-degree relatives of 13 unrelated protein C or protein S deficient patients to assess the role of additional thrombotic risk factors and of protein C and protein S levels in the clinical expression of hereditary protein C and protein S deficiency. Fifty-seven relatives were

  17. Protein-Protein Interactions in Virus-Host Systems.

    Science.gov (United States)

    Brito, Anderson F; Pinney, John W

    2017-01-01

    To study virus-host protein interactions, knowledge about viral and host protein architectures and repertoires, their particular evolutionary mechanisms, and information on relevant sources of biological data is essential. The purpose of this review article is to provide a thorough overview about these aspects. Protein domains are basic units defining protein interactions, and the uniqueness of viral domain repertoires, their mode of evolution, and their roles during viral infection make viruses interesting models of study. Mutations at protein interfaces can reduce or increase their binding affinities by changing protein electrostatics and structural properties. During the course of a viral infection, both pathogen and cellular proteins are constantly competing for binding partners. Endogenous interfaces mediating intraspecific interactions-viral-viral or host-host interactions-are constantly targeted and inhibited by exogenous interfaces mediating viral-host interactions. From a biomedical perspective, blocking such interactions is the main mechanism underlying antiviral therapies. Some proteins are able to bind multiple partners, and their modes of interaction define how fast these "hub proteins" evolve. "Party hubs" have multiple interfaces; they establish simultaneous/stable (domain-domain) interactions, and tend to evolve slowly. On the other hand, "date hubs" have few interfaces; they establish transient/weak (domain-motif) interactions by means of short linear peptides (15 or fewer residues), and can evolve faster. Viral infections are mediated by several protein-protein interactions (PPIs), which can be represented as networks (protein interaction networks, PINs), with proteins being depicted as nodes, and their interactions as edges. It has been suggested that viral proteins tend to establish interactions with more central and highly connected host proteins. In an evolutionary arms race, viral and host proteins are constantly changing their interface

  18. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    Science.gov (United States)

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  19. Neurocognitive derivation of protein surface property from protein aggregate parameters

    Science.gov (United States)

    Mishra, Hrishikesh; Lahiri, Tapobrata

    2011-01-01

    Current work targeted to predicate parametric relationship between aggregate and individual property of a protein. In this approach, we considered individual property of a protein as its Surface Roughness Index (SRI) which was shown to have potential to classify SCOP protein families. The bulk property was however considered as Intensity Level based Multi-fractal Dimension (ILMFD) of ordinary microscopic images of heat denatured protein aggregates which was known to have potential to serve as protein marker. The protocol used multiple ILMFD inputs obtained for a protein to produce a set of mapped outputs as possible SRI candidates. The outputs were further clustered and largest cluster centre after normalization was found to be a close approximation of expected SRI that was calculated from known PDB structure. The outcome showed that faster derivation of individual protein’s surface property might be possible using its bulk form, heat denatured aggregates. PMID:21572883

  20. Protein-water dynamics in antifreeze protein III activity

    Science.gov (United States)

    Xu, Yao; Bäumer, Alexander; Meister, Konrad; Bischak, Connor G.; DeVries, Arthur L.; Leitner, David M.; Havenith, Martina

    2016-03-01

    We combine Terahertz absorption spectroscopy (THz) and molecular dynamics (MD) simulations to investigate the underlying molecular mechanism for the antifreeze activity of one class of antifreeze protein, antifreeze protein type III (AFP-III) with a focus on the collective water hydrogen bond dynamics near the protein. After summarizing our previous work on AFPs, we present a new investigation of the effects of cosolutes on protein antifreeze activity by adding sodium citrate to the protein solution of AFP-III. Our results reveal that for AFP-III, unlike some other AFPs, the addition of the osmolyte sodium citrate does not affect the hydrogen bond dynamics at the protein surface significantly, as indicated by concentration dependent THz measurements. The present data, in combination with our previous THz measurements and molecular simulations, confirm that while long-range solvent perturbation is a necessary condition for the antifreeze activity of AFP-III, the local binding affinity determines the size of the hysteresis.

  1. Expanding coordination chemistry from protein to protein assembly.

    Science.gov (United States)

    Sanghamitra, Nusrat J M; Ueno, Takafumi

    2013-05-14

    Bioinorganic chemistry is of growing importance in the fields of nanomaterial science and biotechnology. Coordination of metals by biological systems is a crucial step in intricate enzymatic reactions such as photosynthesis, nitrogen fixation and biomineralization. Although such systems employ protein assemblies as molecular scaffolds, the important roles of protein assemblies in coordination chemistry have not been systematically investigated and characterized. Many researchers are joining the field of bioinorganic chemistry to investigate the inorganic chemistry of protein assemblies. This area is emerging as an important next-generation research field in bioinorganic chemistry. This article reviews recent progress in rational design of protein assemblies in coordination chemistry for integration of catalytic reactions using metal complexes, preparation of mineral biomimetics, and mechanistic investigations of biomineralization processes with protein assemblies. The unique chemical properties of protein assemblies in the form of cages, tubes, and crystals are described in this review.

  2. Enhanced protein production by engineered zinc finger proteins.

    Science.gov (United States)

    Reik, Andreas; Zhou, Yuanyue; Collingwood, Trevor N; Warfe, Lyndon; Bartsevich, Victor; Kong, Yanhong; Henning, Karla A; Fallentine, Barrett K; Zhang, Lei; Zhong, Xiaohong; Jouvenot, Yann; Jamieson, Andrew C; Rebar, Edward J; Case, Casey C; Korman, Alan; Li, Xiao-Yong; Black, Amelia; King, David J; Gregory, Philip D

    2007-08-01

    Increasing the yield of therapeutic proteins from mammalian production cell lines reduces costs and decreases the time to market. To this end, we engineered a zinc finger protein transcription factor (ZFP TF) that binds a DNA sequence within the promoter driving transgene expression. This ZFP TF enabled >100% increase in protein yield from CHO cells in transient, stable, and fermentor production run settings. Expression vectors engineered to carry up to 10 ZFP binding sites further enhanced ZFP-mediated increases in protein production up to approximately 500%. The multimerized ZFP binding sites function independently of the promoter, and therefore across vector platforms. CHO cell lines stably expressing ZFP TFs demonstrated growth characteristics similar to parental cell lines. ZFP TF expression and gains in protein production were stable over >30 generations in the absence of antibiotic selection. Our results demonstrate that ZFP TFs can rapidly and stably increase protein production in mammalian cells.

  3. Toxoplasma gondii rhoptry kinase ROP16 activates STAT3 and STAT6 resulting in cytokine inhibition and arginase-1-dependent growth control.

    Directory of Open Access Journals (Sweden)

    Barbara A Butcher

    2011-09-01

    Full Text Available The ROP16 kinase of Toxoplasma gondii is injected into the host cell cytosol where it activates signal transducer and activator of transcription (STAT-3 and STAT6. Here, we generated a ROP16 deletion mutant on a Type I parasite strain background, as well as a control complementation mutant with restored ROP16 expression. We investigated the biological role of the ROP16 molecule during T. gondii infection. Infection of mouse bone marrow-derived macrophages with rop16-deleted (ΔROP16 parasites resulted in increased amounts of IL-12p40 production relative to the ROP16-positive RH parental strain. High level IL-12p40 production in ΔROP16 infection was dependent on the host cell adaptor molecule MyD88, but surprisingly was independent of any previously recognized T. gondii triggered pathway linking to MyD88 (TLR2, TLR4, TLR9, TLR11, IL-1ß and IL-18. In addition, ROP16 was found to mediate the suppressive effects of Toxoplasma on LPS-induced cytokine synthesis in macrophages and on IFN-γ-induced nitric oxide production by astrocytes and microglial cells. Furthermore, ROP16 triggered synthesis of host cell arginase-1 in a STAT6-dependent manner. In fibroblasts and macrophages, failure to induce arginase-1 by ΔROP16 tachyzoites resulted in resistance to starvation conditions of limiting arginine, an essential amino acid for replication and virulence of this parasite. ΔROP16 tachyzoites that failed to induce host cell arginase-1 displayed increased replication and dissemination during in vivo infection. We conclude that encounter between Toxoplasma ROP16 and the host cell STAT signaling cascade has pleiotropic downstream effects that act in multiple and complex ways to direct the course of infection.

  4. Information assessment on predicting protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Gerstein Mark

    2004-10-01

    Full Text Available Abstract Background Identifying protein-protein interactions is fundamental for understanding the molecular machinery of the cell. Proteome-wide studies of protein-protein interactions are of significant value, but the high-throughput experimental technologies suffer from high rates of both false positive and false negative predictions. In addition to high-throughput experimental data, many diverse types of genomic data can help predict protein-protein interactions, such as mRNA expression, localization, essentiality, and functional annotation. Evaluations of the information contributions from different evidences help to establish more parsimonious models with comparable or better prediction accuracy, and to obtain biological insights of the relationships between protein-protein interactions and other genomic information. Results Our assessment is based on the genomic features used in a Bayesian network approach to predict protein-protein interactions genome-wide in yeast. In the special case, when one does not have any missing information about any of the features, our analysis shows that there is a larger information contribution from the functional-classification than from expression correlations or essentiality. We also show that in this case alternative models, such as logistic regression and random forest, may be more effective than Bayesian networks for predicting interactions. Conclusions In the restricted problem posed by the complete-information subset, we identified that the MIPS and Gene Ontology (GO functional similarity datasets as the dominating information contributors for predicting the protein-protein interactions under the framework proposed by Jansen et al. Random forests based on the MIPS and GO information alone can give highly accurate classifications. In this particular subset of complete information, adding other genomic data does little for improving predictions. We also found that the data discretizations used in the

  5. Proteins, exons and molecular evolution.

    Science.gov (United States)

    Holland, S K; Blake, C C

    1987-01-01

    The discovery of the eukaryotic gene structure has prompted research into the potential relationship between protein structure and function and the corresponding exon/intron patterns. The exon shuffling hypothesis put forward by Gilbert and Blake suggests the encodement of structural and functional protein elements by exons which can recombine to create novel proteins. This provides an explanation for the relatively rapid evolution of proteins from a few primordial molecules. As the number of gene and protein structures increases, evidence of exon shuffling is becoming more apparent and examples are presented both from modern multi-domain proteins and ancient proteins. Recent work into the chemical properties and catalytic functions of RNA have led to hypotheses based upon the early existence of RNA. These theories suggest that the split gene structure originated in the primordial soup as a result of random RNA synthesis. Stable regions of RNA, or exons, were utilised as primitive enzymes. In response to selective pressures for information storage, the activity was directly transferred from the RNA enzymes or ribozymes, to proteins. These short polypeptides fused together to create larger proteins with a wide range of functions. Recent research into RNA processing and exon size, discussed in this review, provides a clearer insight into the evolutionary development of the gene and protein structure.

  6. Proteins aggregation and human diseases

    Science.gov (United States)

    Hu, Chin-Kun

    2015-04-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease.

  7. Protein Adaptations in Archaeal Extremophiles

    Directory of Open Access Journals (Sweden)

    Christopher J. Reed

    2013-01-01

    Full Text Available Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity.

  8. Protein stability, flexibility and function

    DEFF Research Database (Denmark)

    Teilum, Kaare; Olsen, Johan G; Kragelund, Birthe B

    2011-01-01

    Proteins rely on flexibility to respond to environmental changes, ligand binding and chemical modifications. Potentially, a perturbation that changes the flexibility of a protein may interfere with its function. Millions of mutations have been performed on thousands of proteins in quests for a de......Proteins rely on flexibility to respond to environmental changes, ligand binding and chemical modifications. Potentially, a perturbation that changes the flexibility of a protein may interfere with its function. Millions of mutations have been performed on thousands of proteins in quests...... for a delineation of the molecular details of their function. Several of these mutations interfered with the binding of a specific ligand with a concomitant effect on the stability of the protein scaffold. It has been ambiguous and not straightforward to recognize if any relationships exist between the stability...... of a protein and the affinity for its ligand. In this review, we present examples of proteins where changes in stability results in changes in affinity and of proteins where stability and affinity are uncorrelated. We discuss the possibility for a relationship between stability and binding. From the data...

  9. Protein- mediated enamel mineralization

    Science.gov (United States)

    Moradian-Oldak, Janet

    2012-01-01

    Enamel is a hard nanocomposite bioceramic with significant resilience that protects the mammalian tooth from external physical and chemical damages. The remarkable mechanical properties of enamel are associated with its hierarchical structural organization and its thorough connection with underlying dentin. This dynamic mineralizing system offers scientists a wealth of information that allows the study of basic principals of organic matrix-mediated biomineralization and can potentially be utilized in the fields of material science and engineering for development and design of biomimetic materials. This chapter will provide a brief overview of enamel hierarchical structure and properties as well as the process and stages of amelogenesis. Particular emphasis is given to current knowledge of extracellular matrix protein and proteinases, and the structural chemistry of the matrix components and their putative functions. The chapter will conclude by discussing the potential of enamel for regrowth. PMID:22652761

  10. Protein Polymers and Amyloids

    DEFF Research Database (Denmark)

    Risør, Michael Wulff

    2014-01-01

    , underlining the importance of understanding this relationship. The monomeric C-36 peptide was investigated by liquid-state NMR spectroscopy and found to be intrinsically disordered with minor propensities towards β-sheet structure. The plasticity of such a peptide makes it suitable for a whole range......, is a general hallmark. They also include the α1-antitrypsin deficiency, where disease-causing mutations in the serine protease inhibitor, α1-antitrypsin (α1AT), leads to accumulation of the aberrant protein in the liver of these patients. The native metastable structure of α1AT constitutes a molecular trap...... of this mechanism were investigated through a series of interaction experiments. Despite a very buried location in the native structure, evidence here suggest that the C-terminal tail is labile under slightly destabilizing conditions, providing new detail to this matter. A small infectious polymer unit was also...

  11. Designed Spiroketal Protein Modulation.

    Science.gov (United States)

    Scheepstra, Marcel; Andrei, Sebastian A; Unver, M Yagiz; Hirsch, Anna K H; Leysen, Seppe; Ottmann, Christian; Brunsveld, Luc; Milroy, Lech-Gustav

    2017-05-08

    Spiroketals are structural motifs found in many biologically active natural products, which has stimulated considerable efforts toward their synthesis and interest in their use as drug lead compounds. Despite this, the use of spiroketals, and especially bisbenzanulated spiroketals, in a structure-based drug discovery setting has not been convincingly demonstrated. Herein, we report the rational design of a bisbenzannulated spiroketal that potently binds to the retinoid X receptor (RXR) thereby inducing partial co-activator recruitment. We solved the crystal structure of the spiroketal-hRXRα-TIF2 ternary complex, and identified a canonical allosteric mechanism as a possible explanation for the partial agonist behavior of our spiroketal. Our co-crystal structure, the first of a designed spiroketal-protein complex, suggests that spiroketals can be designed to selectively target other nuclear receptor subtypes. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  12. Water-transporting proteins

    DEFF Research Database (Denmark)

    Zeuthen, Thomas

    2010-01-01

    Transport through lipids and aquaporins is osmotic and entirely driven by the difference in osmotic pressure. Water transport in cotransporters and uniporters is different: Water can be cotransported, energized by coupling to the substrate flux by a mechanism closely associated with protein...... transport. Epithelial water transport is energized by the movements of ions, but how the coupling takes place is uncertain. All epithelia can transport water uphill against an osmotic gradient, which is hard to explain by simple osmosis. Furthermore, genetic removal of aquaporins has not given support...... to osmosis as the exclusive mode of transport. Water cotransport can explain the coupling between ion and water transport, a major fraction of transepithelial water transport and uphill water transport. Aquaporins enhance water transport by utilizing osmotic gradients and cause the osmolarity...

  13. Protein Hormones and Immunity‡

    Science.gov (United States)

    Kelley, Keith W.; Weigent, Douglas A.; Kooijman, Ron

    2007-01-01

    A number of observations and discoveries over the past 20 years support the concept of important physiological interactions between the endocrine and immune systems. The best known pathway for transmission of information from the immune system to the neuroendocrine system is humoral in the form of cytokines, although neural transmission via the afferent vagus is well documented also. In the other direction, efferent signals from the nervous system to the immune system are conveyed by both the neuroendocrine and autonomic nervous systems. Communication is possible because the nervous and immune systems share a common biochemical language involving shared ligands and receptors, including neurotransmitters, neuropeptides, growth factors, neuroendocrine hormones and cytokines. This means that the brain functions as an immune-regulating organ participating in immune responses. A great deal of evidence has accumulated and confirmed that hormones secreted by the neuroendocrine system play an important role in communication and regulation of the cells of the immune system. Among protein hormones, this has been most clearly documented for prolactin (PRL), growth hormone (GH), and insulin-like growth factor-1 (IGF-I), but significant influences on immunity by thyroid stimulating hormone (TSH) have also been demonstrated. Here we review evidence obtained during the past 20 years to clearly demonstrate that neuroendocrine protein hormones influence immunity and that immune processes affect the neuroendocrine system. New findings highlight a previously undiscovered route of communication between the immune and endocrine systems that is now known to occur at the cellular level. This communication system is activated when inflammatory processes induced by proinflammatory cytokines antagonize the function of a variety of hormones, which then causes endocrine resistance in both the periphery and brain. Homeostasis during inflammation is achieved by a balance between cytokines and

  14. Laplacian Spectrum and Protein-Protein Interaction Networks

    CERN Document Server

    Banerjee, Anirban

    2007-01-01

    From the spectral plot of the (normalized) graph Laplacian, the essential qualitative properties of a network can be simultaneously deduced. Given a class of empirical networks, reconstruction schemes for elucidating the evolutionary dynamics leading to those particular data can then be developed. This method is exemplified for protein-protein interaction networks. Traces of their evolutionary history of duplication and divergence processes are identified. In particular, we can identify typical specific features that robustly distinguish protein-protein interaction networks from other classes of networks, in spite of possible statistical fluctuations of the underlying data.

  15. Noninvasive imaging of protein-protein interactions in living animals

    Science.gov (United States)

    Luker, Gary D.; Sharma, Vijay; Pica, Christina M.; Dahlheimer, Julie L.; Li, Wei; Ochesky, Joseph; Ryan, Christine E.; Piwnica-Worms, Helen; Piwnica-Worms, David

    2002-05-01

    Protein-protein interactions control transcription, cell division, and cell proliferation as well as mediate signal transduction, oncogenic transformation, and regulation of cell death. Although a variety of methods have been used to investigate protein interactions in vitro and in cultured cells, none can analyze these interactions in intact, living animals. To enable noninvasive molecular imaging of protein-protein interactions in vivo by positron-emission tomography and fluorescence imaging, we engineered a fusion reporter gene comprising a mutant herpes simplex virus 1 thymidine kinase and green fluorescent protein for readout of a tetracycline-inducible, two-hybrid system in vivo. By using micro-positron-emission tomography, interactions between p53 tumor suppressor and the large T antigen of simian virus 40 were visualized in tumor xenografts of HeLa cells stably transfected with the imaging constructs. Imaging protein-binding partners in vivo will enable functional proteomics in whole animals and provide a tool for screening compounds targeted to specific protein-protein interactions in living animals.

  16. Hydration of proteins: excess partial volumes of water and proteins.

    Science.gov (United States)

    Sirotkin, Vladimir A; Komissarov, Igor A; Khadiullina, Aigul V

    2012-04-05

    High precision densitometry was applied to study the hydration of proteins. The hydration process was analyzed by the simultaneous monitoring of the excess partial volumes of water and the proteins in the entire range of water content. Five unrelated proteins (lysozyme, chymotrypsinogen A, ovalbumin, human serum albumin, and β-lactoglobulin) were used as models. The obtained data were compared with the excess partial enthalpies of water and the proteins. It was shown that the excess partial quantities are very sensitive to the changes in the state of water and proteins. At the lowest water weight fractions (w(1)), the changes of the excess functions can mainly be attributed to water addition. A transition from the glassy to the flexible state of the proteins is accompanied by significant changes in the excess partial quantities of water and the proteins. This transition appears at a water weight fraction of 0.06 when charged groups of proteins are covered. Excess partial quantities reach their fully hydrated values at w(1) > 0.5 when coverage of both polar and weakly interacting surface elements is complete. At the highest water contents, water addition has no significant effect on the excess quantities. At w(1) > 0.5, changes in the excess functions can solely be attributed to changes in the state of the proteins.

  17. Versatile protein tagging in cells with split fluorescent protein

    OpenAIRE

    Kamiyama, Daichi; Sekine, Sayaka; Barsi-Rhyne, Benjamin; Hu, Jeffrey; Chen, Baohui; Gilbert, Luke A.; Ishikawa, Hiroaki; Leonetti, Manuel D.; Marshall, Wallace F.; Weissman, Jonathan S.; Huang, Bo

    2016-01-01

    In addition to the popular method of fluorescent protein fusion, live cell protein imaging has now seen more and more application of epitope tags. The small size of these tags may reduce functional perturbation and enable signal amplification. To address their background issue, we adapt self-complementing split fluorescent proteins as epitope tags for live cell protein labelling. The two tags, GFP11 and sfCherry11 are derived from the eleventh β-strand of super-folder GFP and sfCherry, respec...

  18. Protein complexes predictions within protein interaction networks using genetic algorithms.

    Science.gov (United States)

    Ramadan, Emad; Naef, Ahmed; Ahmed, Moataz

    2016-07-25

    Protein-protein interaction networks are receiving increased attention due to their importance in understanding life at the cellular level. A major challenge in systems biology is to understand the modular structure of such biological networks. Although clustering techniques have been proposed for clustering protein-protein interaction networks, those techniques suffer from some drawbacks. The application of earlier clustering techniques to protein-protein interaction networks in order to predict protein complexes within the networks does not yield good results due to the small-world and power-law properties of these networks. In this paper, we construct a new clustering algorithm for predicting protein complexes through the use of genetic algorithms. We design an objective function for exclusive clustering and overlapping clustering. We assess the quality of our proposed clustering algorithm using two gold-standard data sets. Our algorithm can identify protein complexes that are significantly enriched in the gold-standard data sets. Furthermore, our method surpasses three competing methods: MCL, ClusterOne, and MCODE in terms of the quality of the predicted complexes. The source code and accompanying examples are freely available at http://faculty.kfupm.edu.sa/ics/eramadan/GACluster.zip .

  19. Exploring the repeat protein universe through computational protein design.

    Science.gov (United States)

    Brunette, T J; Parmeggiani, Fabio; Huang, Po-Ssu; Bhabha, Gira; Ekiert, Damian C; Tsutakawa, Susan E; Hura, Greg L; Tainer, John A; Baker, David

    2015-12-24

    A central question in protein evolution is the extent to which naturally occurring proteins sample the space of folded structures accessible to the polypeptide chain. Repeat proteins composed of multiple tandem copies of a modular structure unit are widespread in nature and have critical roles in molecular recognition, signalling, and other essential biological processes. Naturally occurring repeat proteins have been re-engineered for molecular recognition and modular scaffolding applications. Here we use computational protein design to investigate the space of folded structures that can be generated by tandem repeating a simple helix-loop-helix-loop structural motif. Eighty-three designs with sequences unrelated to known repeat proteins were experimentally characterized. Of these, 53 are monomeric and stable at 95 °C, and 43 have solution X-ray scattering spectra consistent with the design models. Crystal structures of 15 designs spanning a broad range of curvatures are in close agreement with the design models with root mean square deviations ranging from 0.7 to 2.5 Å. Our results show that existing repeat proteins occupy only a small fraction of the possible repeat protein sequence and structure space and that it is possible to design novel repeat proteins with precisely specified geometries, opening up a wide array of new possibilities for biomolecular engineering.

  20. High throughput recombinant protein production of fungal secreted proteins

    DEFF Research Database (Denmark)

    Vala, Andrea Lages Lino; Roth, Doris; Grell, Morten Nedergaard

    2011-01-01

    a high-throughput protein production system with a special focus on fungal secreted proteins. We use a ligation independent cloning to clone target genes into expression vectors for E. coli and P. pastoris and a small scale test expression to identify constructs producing soluble protein. Expressed...... interaction), between fungi of the order Entomophthorales and aphids (pathogenic interaction), and in the mycoparasitic interaction between the oomycetes Pythium oligandrum and P. ultimum. In general, the high-throughput protein production system can lead to a better understanding of fungal/host interactions...

  1. Protein (Viridiplantae): 159468866 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available predicted protein Chlamydomonas reinhardtii MVVSAAWRRPTGGGRCRLLAAVLLGAVVVMAAHGGPLGASAQEEKLGGTDAAVQFGAAPPSPAPPSPSYPPSPAPPSPSYPPSPAPPS...PSYPPSPAPPSPSYPPSPAPPSPSYPPSPAPPSPAAHRPGAAHLLPVSAERKPCFKVFAWRKTLLYVQSEDRFTYNEAQEFCSD

  2. Protein (Cyanobacteria): 499683197 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available othetical protein Synechococcus sp. CC9605 MSNHKINRYDAMPPHIIKALTLCANGSTWVDAAAAVGIKAPCLRKWYRDRRAEEFIESLVRENLNVANNLLTSAAPRLADELIQIALDPNVKAYARTQAISESFKILRENVLEAEQRRQLQEIRQTLQSLEDSKTVTV

  3. Protein (Cyanobacteria): 499682832 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available othetical protein Synechococcus sp. CC9605 MSENQLVNRFDAIPPHIIKALTLCANGSTWADAAAAVGIKAPCLRKWYRDRRAEEFIETLVRENLNVANNLLTSAAPRLADELIQIALDPNVKAYARTQAISESFKILRENVLEAEQRRQLQEIRQTLQSLEDSKTVTV

  4. Protein (Cyanobacteria): 499440544 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available othetical protein Synechococcus sp. WH 8102 MSYTEINRYDSIPPHIIKGLTLCANGSTWADAAAAVGVKAPCLRKWYRDSRAEEFIESLVRENINVANNLLTSAAPRLADELIKIALDPKVKAYARTQAISESFKILRENVLEAEQRKQLQEIRRTLQAIEDGKAVDV

  5. Protein (Viridiplantae): 159465487 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 84 predicted protein Chlamydomonas reinhardtii MPPIHLLRLLFASALLFATWHVSRADDIASQASITTSDNIPQMKYFFLNEVTGATQLTDPGNTPYEDEQTGELYWLAEDGVTRLAQDPNRLRFAWIETYSPEAKRSFYFNQVTRESTWERPADLAWRRLRAEE ...

  6. Protein (Viridiplantae): 255083394 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available predicted protein Micromonas sp. RCC299 MKVLRKVKGKSRILIFVAVVALLSLALRKLKQDTKKHREILPWHQGGYEDHHGDLDGGFVPDRGVLGAVGAMRGGGGRDVGGESTSTSKVLDDGGVRDAPGGNRNIDDISHLVDDDDEDVLGVKDEAFAGMRDSREKASR ...

  7. Protein (Cyanobacteria): 118077 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ical protein Microcystis aeruginosa PCC 9432 MNPNRVVIDTNVFISALLNPLGTPKKVINITVSQFTILQSEATYQELATRISKKKFDKYLEKDDRLDFLSSLRNRSLFVDISHETRVCSDLDDNKFLELAVSGMAQYIITGDNALLILNTYQGIPIITPAEFLVIF ...

  8. Protein (Cyanobacteria): 118035 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ical protein Microcystis aeruginosa PCC 7941 MNPNRVVIDTNVFISALLNPLGTPKKVINITVSQFTILQSEATYQELATRISKKKFDKYLEKDDRLDFLSSLRNRSLFVDISHETRVCSDLDDNKFLELAVSGMAQYIITGDKDLLILNTYQGIPIITPAEFLVIF ...

  9. Protein (Cyanobacteria): 118042 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available tical protein Microcystis aeruginosa PCC 9809 MNPNRVVIDTNVFISALLNPLGTPKKVINIAVSQFTILQSEATYQELATRISKKKFDKYLEKDDRLDFLSSLRNRSLFVDISHETRVCSDLDDNKFLELAVSGMAQYIITGDKDLLILNTYQGIPIITPAEFLAIF ...

  10. Protein (Cyanobacteria): 403003 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available hetical protein Microcystis aeruginosa PCC 9717 MGIKEETFYEGGPHIGDLIINILLGFTVICLPLTVGAVVRAIWLRYKITDRRISITGGWMGRDRTDIIYSEVAKVAKMPRGIGIWGDIVVTLKDRSRLEMRAMPKFREIHDYIAERVADKTGRPLESIISQ ...

  11. Protein (Cyanobacteria): 403000 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available etical protein Microcystis aeruginosa PCC 7941 MGIKEETFYEGGPHIGDLIINILLGFTVICLPLTVGAVVRAIWLRYKITDRRISITGGWMGRDRTDIIYSEVAKVAKMPRGIGLWGDIVVTLKDRSRLEMRAMPKFREIHDYIAERVADKTGRPLESIISQ ...

  12. Protein (Cyanobacteria): 402998 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available hetical protein Microcystis aeruginosa PCC 9807 MGIKEETFYEGGPHIGDLIINILLGFTVICLPLTVGAVVRAIWLRYKITDRRISITGGWMGRDRTDIIYSEVAKVAKMPRGIGLWGDIVVTLKDRSRLEMRAMPKFREIHDYIAERVADKTGRPLESIISQ ...

  13. Protein (Cyanobacteria): 402999 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available etical protein Microcystis aeruginosa PCC 9808 MGIKEETFYEGGPHIGDLIINILLGFTVICLPLTVGAVVRAIWLRYKITDRRISITGGWMGRDRTDIIYSEVAKVAKMPRGIGLWGDIVVTLKDRSRLEMRAMPKFREIHDYIAERVADKTGRPLESIISQ ...

  14. Protein (Cyanobacteria): 402996 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available hetical protein Microcystis aeruginosa PCC 9432 MGIKEETFYEGGPHIGDLIINILLGFTVICLPLTVGAVVRAIWLRYKITDRRISITGGWMGRDRTDIIYSEVAKVAKMPRGIGLWGDIVVTLKDRSRLEMRAMPKFREIHDYIAERVADKTGRPLESIISQ ...

  15. Protein (Cyanobacteria): 403004 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available tical protein Microcystis aeruginosa PCC 9701 MGIKEETFYEGGPHIGDLIINILLGFTVICLPLTVGAVVRAIWLRYKITDRRISITGGWMGRDRTDIIYSEVAKVAKMPRGIGVWGDIVVTLKDRSRLEMRAMPKFREIHDYIAERVADKTGRPLESIISQ ...

  16. Protein (Cyanobacteria): 403005 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available hetical protein Microcystis aeruginosa PCC 9806 MGIKEETFYEGGPHIGDLIINILLGFTVICLPLTVGAVVRAIWLRYKITDRRISITGGWMGRDRTDIIYSEVAKVAKMPRGIGVWGDIVVTLKDRSRLEMRAMPKFREIHDYIAERVADKTGRPLESIISQ ...

  17. Protein (Cyanobacteria): 402997 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available hetical protein Microcystis aeruginosa PCC 9443 MGIKEETFYEGGPHIGDLIINILLGFTVICLPLTVGAVVRAIWLRYKITDRRISITGGWMGRDRTDIIYSEVAKVAKMPRGIGLWGDIVVTLKDRSRLEMRAMPKFREIHDYIAERVADKTGRPLESIISQ ...

  18. Protein (Cyanobacteria): 210308 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ike protein Stanieria cyanosphaera PCC 7437 MSEPKAEAKRILETKDNLANVLPTAPEQQKPVSSAQALKERLDWGEPAFTIADARDRDSFNTERILGAVPIDSEETLGRLMNSLSTRRELYIYGDNDEQAQSAVEQFVSAGFENVSRLQGGLAGWKAISGPTEGRVA ...

  19. Protein (Cyanobacteria): 60937 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available cal protein Microcystis aeruginosa PCC 9443 MSNETVTYSLEAVLTRIEGKIDSLEKRLDEKIDSLEKRIDEKIDSLEKRIDEKIDSLEKRIDERFDKIEDRLTKVEIGQAELKGEIKALDERVSTKIEGLTARVAYQEFTNRGILIALVVAILGGAAKLFGFFPNP ...

  20. Protein (Cyanobacteria): 60897 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available cal protein Microcystis aeruginosa PCC 9717 MSNETVTYSLEAVLTRIEGKIDSLEKRLDEKIDSLEKRIDEKIDSLEKRIDEKIDSLEKRIDERFDKIEDRLTKVEIGQAELKGEIKALDERVSTKIEGLTARVAYQEFTNRGILIALVVAILGGAAKLFGFFPNP ...

  1. Protein (Cyanobacteria): 60829 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available cal protein Microcystis aeruginosa PCC 9806 MSNETVTYSLEAVLTRIEGKIDSLEKRIDEKIDSLEKRIDEKIDSLEKRIDEKIDSLENRIDERFDKVEDRLTKVEIGQAELKGDIKALDEKINGLTARVAYQEFTNRGILIALVVAILGGAAKLFGFFPNP ...

  2. Protein (Cyanobacteria): 504949647 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available cal protein Nostoc sp. PCC 7524 MRHHLPDTKIPAPCIVNTGIIVNKLDMKRLLADVGRVHYIYTQEGKLLSEGDGDVMEVFANPQRSTLVANSALYLNVDSFDYLELKQSPENATYFDLIQESMCLRLIPLSTPLQERQERQWNVSAIEAMMDEVLAARWDAEIDDDCSDTF

  3. Protein (Cyanobacteria): 301492 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available g protein Thermosynechococcus elongatus BP-1 MPTPTYPKASLIIRERGLPKREVLLSPDRQWTIGRQLDCSIRLTDAYVSRLHAVINAFLFRGQPLYFIRDAHSRNGTFLNGFPLQHSTLLHHEDVIGVGTTLLVFYYPDMFREISLDECPELTKGSTDSLPWRS ...

  4. Protein (Viridiplantae): 15238919 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ve protein Arabidopsis thaliana MAGGIGKCSKIRHIVKLRQMLRQWRNKARMSSVRRSVPSDVPSGHVAVYVGRSCRRFVVLATYLNHPILMNLLVKAEEEFGFANQGPLVIPCEESVFEESIRFITRSSRFTCTDDLKKNRHGGIRSKLDLLMESRPLLHGVSEKAIIW ...

  5. Protein (Viridiplantae): 224129758 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available predicted protein Populus trichocarpa MAKEMPAMKRALCEWMIVEEFPSWFKADNEWKAELCRLCNLESTEDLELGWRDMVNKFELVWKGEPRKKYKKPRPKVRVGLPKKICQYFDDRIGREENEVIVVLGSRGDSFCLALRFLNSNWVQKPGKHNQGQQQKLK ...

  6. Protein (Viridiplantae): 255079296 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available predicted protein Micromonas sp. RCC299 MSAANAFEAPKQPELSKDQAKDALTQTIELMKQPENMAKMEAAKAAMAAQPDNIMMLMMMVMPVATQVCMPVLQKFGFTADQGGLMAYVAATMKHKDDAEIAALGKEMRSTFVPEALEGVIGMMLAGPAGGGVPAF ...

  7. Protein (Cyanobacteria): 550277405 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available lymer transport protein Rubidibacter lacunae MRLPAESDPPFGINLVPTIDVIFSILAFFIISTLYLTRAEGLSVNLPQAGTAKSQPAPELTVTIASNGAIAINETPVSLADLTARVSVLLVPDADTLIVINADEAVPHGRVVSVMDRLRELDRVQLAIATKPPDDSR

  8. Protein (Cyanobacteria): 504938401 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available pothetical protein Synechococcus sp. PCC 6312 MLIFVGIDQKTKVRIRTIHQGIMEKLKRQFSAKIIAMITEKPITVKYNTRLKTTAGRASKDKIELNLPLLSENPSELPQVYAHELAHTICCRLWPKKRIGHDRNWKLIMTKMGFQPRSHGHKAHSQKNPERRYQIPL

  9. Protein (Cyanobacteria): 129527 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ing protein Oscillatoriales cyanobacterium JSC-12 MLLIDTSVWISVFRDRTGQVRQKLETLIDARDIFLTRFTQLKLLQGSLNEKEWTLLSTYLETQDYVEPVGNSWRAAARIYYDLRRRGLTVRSPIDCCIAQAALENDLLLIHNDRDFETIAQVRSLQHFRFQP ...

  10. Protein (Cyanobacteria): 518319094 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available hypothetical protein Calothrix sp. PCC 7103 MKSGYPKNNNAYIELLKGFPPRPITSHEEFVATQKVIDSLIDKKGQLTRDEQDYLNILGTIVYEYEEKQVKIPDIYGIDLLKALLSELNLSTKDLIPIFKTESHVSNVLNGKIDLTVEDISKLANFFKISPAAFVKK

  11. Protein (Cyanobacteria): 275979 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available r protein Geitlerinema sp. PCC 7407 MYLDLPNDEAWEQDFSQPLILSVDDDEDNLILASCALELFGYRVISAADGETALALIDRYPPSLILLDIVMPVLDGEALLDILKKHPKTAKIPIIAVTALASPDDREKLIQLGCDDYLSKPYLLEDLDLTVRRHLRLHQVSNR ...

  12. Protein (Cyanobacteria): 504994187 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available hypothetical protein Microcoleus sp. PCC 7113 MLAISNELLSTALNSMKLSSPLKAQNQWPTFEDILQNLHAQGIYIHSEQLAEFMLGHGLPVHLRYVPAHLRSKAMEVNQNYQGDMVLEVEESNSPCWDFSWMENIQKPFIHDSLGDRTDWIEDIEQPSWDYSWMK

  13. Protein (Cyanobacteria): 12321 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available protein Synechococcus sp. RCC307 MQGRSPAIGATTGLDEAYRLCRQQGLRLSRQRRLVLEILWRSGEHLSARDIFDRLNADGRRIGHTSVYQNLESLHSNGVIECLEKAQGRLYGHRADPHSHLTCLESGRISDLDIELPADLVEAIEQRTGFSIESYSLNLQGRPLP ...

  14. Protein (Cyanobacteria): 16889 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available mily protein Acaryochloris marina MBIC11017 MVDGQAAHLGTGWTFPIGVNTQGNLRFSAHAIRNIEESIAIVLGTKLGERVYRPEFGSRLSELTFAPMNTQTLLLIRLYVTEALQRWEPRIVLDGVYTEPDPIEGRVDITLEYHPKQTHDYRSLVYPFYLTPIT ...

  15. Protein (Viridiplantae): 255073899 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available cted protein Micromonas sp. RCC299 MTQGSRVIFCDREPLAIHCALSSAQLNGLEVHSVEDISKSSQGVAGAVLDWASPLHTLAQSADVVLGADCLYDPATAAMLAKTCKHVLGEDGVVVICEPELERAKGTYSKFLEAAKMLGAASAEILPHPDSDEPRSILLRVSWKSL ...

  16. Protein (Cyanobacteria): 24305 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ing protein Anabaena sp. 90 MNKLIFLDTNILGMVTNPKSSNSNCQECKEWLDELPLKSYQIILPEIADYEVRRELLRAGKTKGIKRLDQLKQAITYLPITTATMLLAAQFWAEIRNTGKPTADPKSLDGDVILAAQAKIEELNGDQVIVATTNVKHLSLFVDAREWQMIN ...

  17. Protein (Cyanobacteria): 655829624 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ... hypothetical protein Synechococcus sp. CC9616 MGETGGHCGSKPKRIAIGVAPLATISIGIVPMGVICIGVVPMGVVSIGVVAMGVINIAIVGMGLLAVGVNTMGVITAGPMSMGLIQIRSTTNPRYLAYPSKEQAEEQAEKIGCSGVHRMGDVYWMPCAEHPQ

  18. Protein (Cyanobacteria): 652400722 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available pothetical protein Planktothrix prolifica MSEWMPLPFPKCPRCHDSWVKSYHDCFSNGEVLVEPYQRQAKCCGCSKQWDLLNSNFNCSCGYTFSASEVENALSTTQLLKQRLIQKLNEMDSFERSITTKSQSSFKQWIGSISYEIGKLLGTTASQAKQLIDNFFEKWSS

  19. Protein (Cyanobacteria): 515863728 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available hypothetical protein Geminocystis herdmanii MNRINKLVSITSAIICSGITTITSQLPAVAGDVSPLCENLNMGTQILISTKEFNAAICDKYYIEPQSGCPMPLEYFYVGQSRKTGESIVLPASDVSTSNPFMRIYKAQNGNYTYQIASSGAYGGNSWTSLSVFNKGY

  20. Protein (Viridiplantae): 15227263 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 93 putative protein kinase Arabidopsis thaliana MKLVLEGVDSFETLRVVGTFNCIDPDYVGSKRVTKKADVYAFEVILMELITGRKANYETLSVDEQNLVMWLRPKIKISTFLNLVDGTIATDKETIKRIKKIAKLAEYCTSQEVESRPLRASRTKSGNEVTSED ...

  1. Protein (Viridiplantae): 159485290 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available predicted protein Chlamydomonas reinhardtii MADAGPASGAMAAGVAAAPAVAGETVVGARAGPSGSGGVAGVDMADAGPASGAMAAGVAAAAAV...AGETVVGARAGPSGSGGVAGVDMADAGPASGAMAAGVAAAAAVAGETVVGARAGPSGSGGVAGVDMADAGPAGGAMAAATVAMLGAAAVASAWLLTACSPEGSGPGPS

  2. Protein (Viridiplantae): 159474930 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 5155 predicted protein Chlamydomonas reinhardtii MGYVCSSVRFGGLLCNTKCGSRIPATSAPCKGAWCQPPVHTATARWTVATIHMMIPVAMHEAWAVTASLTTERYHQPPVDANGSQGNATKLQRPKLDVVPRLTRYTLSPQEWPPLCGPVKASGSSQVPLPFHN ...

  3. Protein (Viridiplantae): 159472102 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 4474 predicted protein, partial Chlamydomonas reinhardtii PPSPAPPSPEPGSPPPSPAPPSPQPPSPAPPSPEPGSPPPSPAPPSPKPPSPAPPSPEQPGSPPPSPPPPRPQPPSPAPPSPEPGSPPPSPAPPSPQPPSPAPPSPEPGSPPPSPAPTQP ...

  4. Protein (Viridiplantae): 308804025 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available unnamed protein product Ostreococcus tauri MACAGRGVLRLGALEGGSDVVFAATVRRDLNGTLAPLRGQREDVAIVVGDDAARLETNAARVTQSLRTRRAHAHVTPASGLGESSSSSSSTDFRTPSPRGPPPSCVVWSLSTLPCRSFRRDTCACASACASASA ...

  5. Protein (Cyanobacteria): 176329 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available etical protein Microcystis aeruginosa PCC 9432 MNNQVIRTDKAPAPVGPYNQAIAAPGPFLFVAGQIPLDPVTGEIVSGEISAQTEQVMANLEGILTAAGANWSNVVKTTVFLSDLANFGAMNQVYARYFPPETAPARACVEVARLPKDVLVEIECIAALA ...

  6. Protein (Viridiplantae): 889320 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available protein 3 Malus domestica MGYPYYSPPPPSPPLPCPPPPPPPPPPVHPSKPYPPKASPPKPYPPKASPAKPSQPPGHPPKPYPPKASPPKPYPPKAS...PAKPSQPPGHPPKPYPPKAYPPKASPPKTSSQPPVVQTPKPYPPKSSPPKGSHPPKPAYPPKPPKGTTPPAFPPGYYATPTYY

  7. Protein (Viridiplantae): 159483143 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 7054 predicted protein, partial Chlamydomonas reinhardtii MEITMKIAVVFGVQHTPPTSSSCRCSNTMPVQMPPAATNAQAITKLYALKPSVPAASAFRAVSWRMLHCFCYMASKAGHTDKQCYPLQPNWKFHGQVGQMQQILHFGHLRGHQLRNSLTL ...

  8. Protein (Cyanobacteria): 654621072 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available thetical protein Dolichospermum circinale MSLSQLPVPAIFLSSIVVAAILIYVPYLLVAFARVQIGYDLSAPRAMFDKLPPYAQRATWSHENSFEGFMVFAAAALMAYVTGVHSPLGGNAAIIFIIARLLYSIFYIANIPLLRSLMFGIASFSSGTLFYLSLMQIK

  9. Protein (Cyanobacteria): 654624736 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available thetical protein Dolichospermum circinale MSLSQLPVPAIFLSSIVVAAILIYVPYLLVAFARVQIGYDLSAPRAMFDKLPPYAQRATWAHENSFEGFMVFAAAALMAYVTGVNSPQGGNAAIMFIIARLLYSIFYIANIPLLRSLMFGVASFSSATLFYLSLMQIK

  10. Protein (Cyanobacteria): 265485 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available protein Microcystis aeruginosa PCC 7941 MKFALLFSIAVLSCVSLASPSRAENPDHVKKLKQTKQCPGCDLSGADLSGLNLRQANLQGADLSGSNLSRSDLTKANLSNAILTGSGLYASKLALPALVGKMYLRYISQERGGGTNHKDTKDTKIDRSYCQLNLSHRT ...

  11. Protein (Viridiplantae): 226491436 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available rized protein LOC100275991 Zea mays MSATLCFMGVARESLSLDAPVAAPKLGRERRSALASANSGPQCWRWRRGLAMRCQTGSTAAPFLRTEEAPAAASGARNAQAGFTIVMKFDGSSLASVERMREVAGLILSAGERTRLPLDRTEGKIHTTADRVRRKMAITEPI ...

  12. Protein (Viridiplantae): 159470013 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available KHMSEHGVLTEPYVVTFEASKDDCCLIMASDGVWDVMDGQEAVNRVMEVASEGKTAAQAAKMLVEEAVELGVKSPCGEADNTSAIVVFFA ... ...66 predicted protein Chlamydomonas reinhardtii MPHGARSAAGLAHAVCRLPQPQEGFSGTVNLKDAAHEDGYLQVVTGPWQGYELSVTRALGH

  13. Protein (Cyanobacteria): 77417 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ntaining protein Acaryochloris marina MBIC11017 MRALLDTHTFLWWNTNDAQLSAAARQFIENSDHILLLSVVSVWEIVIKYKLGKLPLPESPEIYIPKRLEYYQFQILPVHLPHVLRIAHLAPHHNDSFDRLLIAQSQMEKLAIITVDKKIQQYSVEIIW ...

  14. Protein (Cyanobacteria): 515868907 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available hypothetical protein Nodosilinea nodulosa MRDIVSLIYTGFPAGVVGIVLLLFRVGIGVLFMRHGYPKLTHLKTWANSLNMPIFLCFLSALSMFAGGACLIL...GFLTPLASVAILGSMVVAVGQHIAQGKPFMARDPYLIPDGQYEGPSGKGEPPSWEKAFMYCLILMVLAVLGPGFASLDAVLFAP

  15. Protein (Cyanobacteria): 518333088 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available othetical protein Pleurocapsa sp. PCC 7319 MEMSDRMKGMKLGNFSGIKKTQPEPSKPPEQTPEPKTEPEVKKTKAKPAKTTKSKAKVVKKTKAKEQLVTVNIKIRKDQKAWLTDTASTVRNNNSDPVPPSERVYPQHLIGVAIDLLQNMDVDWDEVKNVEELRELLKI

  16. Protein (Viridiplantae): 308812394 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available unnamed protein product Ostreococcus tauri MGRHHTEYERAPPTRRVNARTWDDITQSTTPGCPAPRNIPRRPHPRASVTPPSHVDASTPRPNARTSARARGRERERERERASARSGGRSRAWRCKRGRGRGGGDRDRAHLFHRRRRRANERAIEANVEARCRC ...

  17. Protein (Viridiplantae): 255083122 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available predicted protein Micromonas sp. RCC299 MYASPALHRAVAFPKATKPAEASKAGRVATRAAAPEDKPAAAARPTGRRSFSVATLAAVVAAASAPDAALAFGSGIPGYDINEKARDAQRKAINDELAEQRELARKEKERRRLLKEAEEAEECARNPESCPAPAES ...

  18. Protein (Cyanobacteria): 187027 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available domain protein Stanieria cyanosphaera PCC 7437 MRSQFITSIVFISAFIVLTLAGVKPVKTQLKQNSLQGCTTVYSFPVGGNLISKESESQINVREEPTVSAKVSDFGNQGEPIYVTQVFENNADGYCWYKVSFQSGAKGWVRGDFVSIFLASLAEAPLCSL ...

  19. Protein (Cyanobacteria): 497073171 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available pothetical protein Fischerella sp. JSC-11 MHYYVHPFQLELHKLENMIVHVQHVNNQEVKQIADSRLFTSQAIGEEGGDTVTTKAIGEEGGDTVTTQAIGEEGGDTVTTKAIGEEGGDTVTTQAIGEEGGDTVTTQAIGEEGGDTVTTKAIGEEGGDTVTTLAFGEEGGF

  20. Protein (Cyanobacteria): 518320325 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ... hypothetical protein Calothrix sp. PCC 7103 MDYVHPFQMELHKLESMIVHVQYADIKEVDKTLASNDAVSTQAVGEEGGTKVSTRALGEEGGNILTTYAVGEEGGNILTTYAVGEEGGDKVTTQAVGEEGGTRVTTYAVGEEGGGRVTTKAVGEEGGSIIRR

  1. Protein (Cyanobacteria): 426260 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available aining protein Nostoc sp. PCC 7524 MKAAEYLSSAAKSVNEIPGITEATILEYFATLNAGEFLATAALFAEDGVMYPPFESGIVGPDAIANYLQQEAQDIKADTHQGIVEPLDNQHIQVQVTGKAQTSWCSVNVLWIFILNQHKEIIDAKIKLLASPQELLALRRE ...

  2. Protein (Cyanobacteria): 409390 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available protein Oscillatoria sp. PCC 6506 MESLNGFIALIGGILIGLSATLLLAFNGRIAGISGIVNGAIAFSKQEVWRWIFIVGMLLGGVIYEYGLAPQPTPTPALTPWAMTIGGFLVGFGTRMGGGCTSGHGVCGLGRLSMRSLVAVLTFMITAILTVFVVRHVLQLSI ...

  3. Protein (Cyanobacteria): 426188 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available protein Microcoleus sp. PCC 7113 MTIAEDKSTTTPSATGVDWTIEGIDESVVWRYFQTMNAADYEGTAALFAPTGALHPPFEEPIEGKEAIATYLKAEAKGMQLFPREGIAEALEEDQIQIQVKGKVQTSLFGVNVAWIFILNPEREILYAQIKLLASPQELLNLRR ...

  4. Protein (Cyanobacteria): 500464022 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available thetical protein Synechococcus sp. WH 7803 MSRQRFRGLYLQNTGHPLCFSFVTYTPQTREQMVACGDLRADEEYFSPVLFDFLLFVSEGILGASPGVAFPFGYDDLAIVASRIRGTGVQHEYLIAINASAWNESKQAVLQQLRDILSRDLWDGARLRRGNDHPSPSE

  5. Protein (Cyanobacteria): 499305066 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ical protein Nostoc sp. PCC 7120 MFKILFDSDLILDAVMNRTELAEDVRTLLENLHPSIRLYLTDVGLQKVSTYTYCLKNSQIPEIIVDWLQEQIQICPIDQGLLQKARYSPLRDFESAVELACINHYQLNAIVTNKPEDFIVTAHPLCVWSFADLWLRVNLESQLQATIHS

  6. Protein (Cyanobacteria): 500469187 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available pothetical protein Synechococcus sp. RCC307 MKILLSLLLLLAPTAALAQEQKKPQSMRDAADSFRICRTIPEERRDESAGRRVAQAWIDSAPSGAEERLPRRELMEAMVKAYAAYMGERKAYGAIGCSEGILDRVENQNWSSFHQGIREVLMKQGMGDLMTPGTPPGQ

  7. Protein (Cyanobacteria): 444805 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available pothetical protein Arthrospira maxima CS-328 MNSNHKILAVTRPNKPPEPSSESPTTNTQEHSRSTGTVKHIPSRTVKPSKPIKHKPKVAVKLPQADNSEGEVFVVGDHILVRAPWGLWARAEIKTFYQSSPDTVMAHFIPKEERTNWTWMGGLIRSDLLKRANPDS ...

  8. Protein (Viridiplantae): 255085508 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available predicted protein Micromonas sp. RCC299 MDPTAPSITFFDKDTGKGRATYIGSLQPARMFPPTVGIWFTNQGDEVCARIDPRRSRDTPRPRPIRCPRICPEICFPTHPHSRRQVFKKLKAYYEEEPYPTQERMEELAEEFGAPDWTKIENFFKNMQLKHQEQFQ ...

  9. Protein (Cyanobacteria): 448175 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ining protein Cyanothece sp. PCC 7424 MKKAQLVLTFFFSFLLAVFVSFNLVVDSAMAFSGPVSESCIDLELSGSILSANCETANGYYEKASINLDEVIGNLDGMLSWDSQNFSQTCEDISLEKRYSITFPILMATCQEAIGGENYMATEVYLDDHIFNVNGTLFYN ...

  10. Protein (Viridiplantae): 224138986 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available icted protein Populus trichocarpa MALDIKTFETIIPSCFLSFTIPNPVLPTHLLRVAVLDSSIQFTESPQIATLLVSQTREPDWIFSTESGHLQLLLSSPEISQLILIGNNRINGSDSSLLTYHKRDNTQYVKSLENSLKPLFFALSPKVSVKDGIFDCSVLDDALIHLH ...

  11. Evolutionary origins of membrane proteins

    Science.gov (United States)

    Mulkidjanian, Armen Y.; Galperin, Michael Y.

    Although the genes that encode membrane proteins make about 30% of the sequenced genomes, the evolution of membrane proteins and their origins are still poorly understood. Here we address this topic by taking a closer look at those membrane proteins the ancestors of which were present in the Last Universal Common Ancestor, and in particular, the F/V-type rotating ATPases. Reconstruction of their evolutionary history provides hints for understanding not only the origin of membrane proteins, but also of membranes themselves. We argue that the evolution of biological membranes could occur as a process of coevolution of lipid bilayers and membrane proteins, where the increase in the ion-tightness of the membrane bilayer may have been accompanied by a transition from amphiphilic, pore-forming membrane proteins to highly hydrophobic integral membrane complexes.

  12. Monitoring protein stability in vivo

    Directory of Open Access Journals (Sweden)

    Ignatova Zoya

    2005-08-01

    Full Text Available Abstract Reduced protein stability in vivo is a prerequisite to aggregation. While this is merely a nuisance factor in recombinant protein production, it holds a serious impact for man. This review focuses on specific approaches to selectively determine the solubility and/or stability of a target protein within the complex cellular environment using different detection techniques. Noninvasive techniques mapping folding/misfolding events on a fast time scale can be used to unravel the complexity and dynamics of the protein aggregation process and factors altering protein solubility in vivo. The development of approaches to screen for folding and solubility in vivo should facilitate the identification of potential components that improve protein solubility and/or modulate misfolding and aggregation and may provide a therapeutic benefit.

  13. Monitoring protein stability in vivo.

    Science.gov (United States)

    Ignatova, Zoya

    2005-08-24

    Reduced protein stability in vivo is a prerequisite to aggregation. While this is merely a nuisance factor in recombinant protein production, it holds a serious impact for man. This review focuses on specific approaches to selectively determine the solubility and/or stability of a target protein within the complex cellular environment using different detection techniques. Noninvasive techniques mapping folding/misfolding events on a fast time scale can be used to unravel the complexity and dynamics of the protein aggregation process and factors altering protein solubility in vivo. The development of approaches to screen for folding and solubility in vivo should facilitate the identification of potential components that improve protein solubility and/or modulate misfolding and aggregation and may provide a therapeutic benefit.

  14. Protein microarrays for systems biology

    Institute of Scientific and Technical Information of China (English)

    Lina Yang; Shujuan Guo; Yang Li; Shumin Zhou; Shengce Tao

    2011-01-01

    Systems biology holds the key for understanding biological systems on a system level. It eventually holds the key for the treatment and cure of complex diseases such as cancer,diabetes, obesity, mental disorders, and many others. The '-omics' technologies, such as genomics, transcriptomics,proteomics, and metabonomics, are among the major driving forces of systems biology. Featured as highthroughput, miniaturized, and capable of parallel analysis,protein microarrays have already become an important technology platform for systems biology, In this review, we will focus on the system level or global analysis of biological systems using protein microarrays. Four major types of protein microarrays will be discussed: proteome microarrays, antibody microarrays, reverse-phase protein arrays,and lectin microarrays. We will also discuss the challenges and future directions of protein microarray technologies and their applications for systems biology. We strongly believe that protein microarrays will soon become an indispensable and invaluable tool for systems biology.

  15. Phase retrieval in protein crystallography.

    Science.gov (United States)

    Liu, Zhong Chuan; Xu, Rui; Dong, Yu Hui

    2012-03-01

    Solution of the phase problem is central to crystallographic structure determination. An oversampling method is proposed, based on the hybrid input-output algorithm (HIO) [Fienup (1982). Appl. Opt. 21, 2758-2769], to retrieve the phases of reflections in crystallography. This method can extend low-resolution structures to higher resolution for structure determination of proteins without additional sample preparation. The method requires an envelope of the protein which divides a unit cell into the density region where the proteins are located and the non-density region occupied by solvents. After a few hundred to a few thousand iterations, the correct phases and density maps are recovered. The method has been used successfully in several cases to retrieve the phases from the experimental X-ray diffraction data and the envelopes of proteins constructed from structure files downloaded from the Protein Data Bank. It is hoped that this method will greatly facilitate the ab initio structure determination of proteins.

  16. Validation of protein carbonyl measurement

    DEFF Research Database (Denmark)

    Augustyniak, Edyta; Adam, Aisha; Wojdyla, Katarzyna

    2015-01-01

    Protein carbonyls are widely analysed as a measure of protein oxidation. Several different methods exist for their determination. A previous study had described orders of magnitude variance that existed when protein carbonyls were analysed in a single laboratory by ELISA using different commercial...... kits. We have further explored the potential causes of variance in carbonyl analysis in a ring study. A soluble protein fraction was prepared from rat liver and exposed to 0, 5 and 15min of UV irradiation. Lyophilised preparations were distributed to six different laboratories that routinely undertook...... protein carbonyl analysis across Europe. ELISA and Western blotting techniques detected an increase in protein carbonyl formation between 0 and 5min of UV irradiation irrespective of method used. After irradiation for 15min, less oxidation was detected by half of the laboratories than after 5min...

  17. Posttranslational protein modification in Archaea.

    Science.gov (United States)

    Eichler, Jerry; Adams, Michael W W

    2005-09-01

    One of the first hurdles to be negotiated in the postgenomic era involves the description of the entire protein content of the cell, the proteome. Such efforts are presently complicated by the various posttranslational modifications that proteins can experience, including glycosylation, lipid attachment, phosphorylation, methylation, disulfide bond formation, and proteolytic cleavage. Whereas these and other posttranslational protein modifications have been well characterized in Eucarya and Bacteria, posttranslational modification in Archaea has received far less attention. Although archaeal proteins can undergo posttranslational modifications reminiscent of what their eucaryal and bacterial counterparts experience, examination of archaeal posttranslational modification often reveals aspects not previously observed in the other two domains of life. In some cases, posttranslational modification allows a protein to survive the extreme conditions often encountered by Archaea. The various posttranslational modifications experienced by archaeal proteins, the molecular steps leading to these modifications, and the role played by posttranslational modification in Archaea form the focus of this review.

  18. Non-Arrhenius protein aggregation.

    Science.gov (United States)

    Wang, Wei; Roberts, Christopher J

    2013-07-01

    Protein aggregation presents one of the key challenges in the development of protein biotherapeutics. It affects not only product quality but also potentially impacts safety, as protein aggregates have been shown to be linked with cytotoxicity and patient immunogenicity. Therefore, investigations of protein aggregation remain a major focus in pharmaceutical companies and academic institutions. Due to the complexity of the aggregation process and temperature-dependent conformational stability, temperature-induced protein aggregation is often non-Arrhenius over even relatively small temperature windows relevant for product development, and this makes low-temperature extrapolation difficult based simply on accelerated stability studies at high temperatures. This review discusses the non-Arrhenius nature of the temperature dependence of protein aggregation, explores possible causes, and considers inherent hurdles for accurately extrapolating aggregation rates from conventional industrial approaches for selecting accelerated conditions and from conventional or more advanced methods of analyzing the resulting rate data.

  19. Theoretical studies of protein-protein and protein-DNA binding rates

    Science.gov (United States)

    Alsallaq, Ramzi A.

    Proteins are folded chains of amino acids. Some of the amino acids (e.g. Lys, Arg, His, Asp, and Glu) carry charges under physiological conditions. Proteins almost always function through binding to other proteins or ligands, for example barnase is a ribonuclease protein, found in the bacterium Bacillus amyloliquefaceus. Barnase degrades RNA by hydrolysis. For the bacterium to inhibit the potentially lethal action of Barnase within its own cell it co-produces another protein called barstar which binds quickly, and tightly, to barnase. The biological function of this binding is to block the active site of barnase. The speeds (rates) at which proteins associate are vital to many biological processes. They span a wide range (from less than 103 to 108 M-1s-1 ). Rates greater than ˜ 106 M -1s-1 are typically found to be manifestations of enhancements by long-range electrostatic interactions between the associating proteins. A different paradigm appears in the case of protein binding to DNA. The rate in this case is enhanced through attractive surface potential that effectively reduces the dimensionality of the available search space for the diffusing protein. This thesis presents computational and theoretical models on the rate of association of ligands/proteins to other proteins or DNA. For protein-protein association we present a general strategy for computing protein-protein rates of association. The main achievements of this strategy is the ability to obtain a stringent reaction criteria based on the landscape of short-range interactions between the associating proteins, and the ability to compute the effect of the electrostatic interactions on the rates of association accurately using the best known solvers for Poisson-Boltzmann equation presently available. For protein-DNA association we present a mathematical model for proteins targeting specific sites on a circular DNA topology. The main achievements are the realization that a linear DNA with reflecting ends

  20. Evolution studied through protein structural domains

    OpenAIRE

    YANG, SONG

    2007-01-01

    A protein structural domain is defined as a compact, spatially distinct part of a protein that can fold independently of neighboring sequences. Since the number of protein domains is limited, and protein domains are evolutionarily more conserved than protein sequences, protein domains play an important role in our understanding of the structure, function and evolution of proteins. As fundamental evolutionary units, protein domains are associated with a variety of evolutionary processes such a...

  1. Protein (Cyanobacteria): 427717333 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available oligosaccharide biosynthesis protein Alg14-like protein Calothrix sp. PCC 7507 MKLMLVCTSGGHFATMKSLKSFWSLHDR...VWVSDRKKDTASLEQGEKVHWLPYQAPRDILALLLNIPETFRILVREKPDVVISTGASLAINFAFIGKLLGIKFVFIESISRSQELSVSGKLVYLIADEFYVQWPELCEKYDKVVFRGYVS

  2. Protein (Cyanobacteria): 428205798 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 34 ... oligosaccharide biosynthesis protein Alg14-like protein Chroococcidiopsis thermalis PCC 7203 MKLLLVCNPG...GHFSTMMGLKSFWSTYEREWVTYRHYDTQKLSEKERVYWVAMQEARMLVRAFINFFKALVVLRQSKPDLVLSTGASIAVPFIIASKLYGIKTVFIESISRSGNLSLTGRIVYHLVDEFYVQWPECVERYPKAQYKGVVV

  3. Protein (Cyanobacteria): 220910524 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 076 ... oligosaccharide biosynthesis protein Alg14-like protein Cyanothece sp. PCC 7425 MKLLLVCNPGGHFATMYALKK...FWSQHSRTWVTYRHFDTLELENQGEVVCWVLKQEAREGLRALINFVQAIGIIWRKRPELVISTGAGLAVPFIAAAKLLGVRTVFIESISRTRELSLSGKLVYPLVDELYVQWPECRKRYPRSQYRGVVL

  4. Role of Dietary Soy Protein in Obesity

    OpenAIRE

    Manuel T. Velasquez, Sam J. Bhathena

    2007-01-01

    Soy protein is an important component of soybeans and provides an abundant source of dietary protein. Among the dietary proteins, soy protein is considered a complete protein in that it contains ample amounts of all the essential amino acids plus several other macronutrients with a nutritional value roughly equivalent to that of animal protein of high biological value. Soy protein is unique among the plant-based proteins because it is associated with isoflavones, a group of compounds with a v...

  5. Vegetable proteins and milk puddings

    OpenAIRE

    2003-01-01

    In recent years, interest in animal free foods has increased tremendously due to factors like BSE crisis, rise of nutritionally dependent illnesses, like diabetes type II, cardiovascular and digestive diseases, along with ethic orientations of denying animal intakes of any kind. The use of proteins from leguminous seeds as an alternative to the animal proteins in dairy desserts was studied. Lupin, pea and soya protein isolates were used in combination with k- carrageenan, gellan a...

  6. HYPOMAGNESAEMIA IN PROTEIN ENERGY MALNUTRITION

    OpenAIRE

    Nagaraj Javali; Shashikala; Nasima Banu; Ramya

    2015-01-01

    INTRODUCTION: Protein energy malnutrition is one of the leading causes of childhood mortality a nd morbidity in developing countries . (1) It is a global health problem which starts in womb and ends in tomb. Protein energy malnutrition is a disease of multi - deprivation and poverty affecting nearly 150 million children under the age of 5 years in the world. Out of the 120 million children in India, 75 million are estimated to suffer from visible protein en...

  7. Epicutaneous sensitization with protein antigen

    Directory of Open Access Journals (Sweden)

    I-Lin Liu

    2012-12-01

    Full Text Available In the past few decades there has been a progressive understanding that epicutaneous sensitization with protein antigen is an important sensitization route in patients with atopic dermatitis. A murine protein-patch model has been established, and an abundance of data has been obtained from experiments using this model. This review discusses the characteristics of epicutaneous sensitization with protein antigen, the induced immune responses, the underlying mechanisms, and the therapeutic potential.

  8. Protein mixtures: interactions and gelation

    OpenAIRE

    Ersch, C.

    2015-01-01

    Gelation is a ubiquitous process in the preparation of foods. As most foods are multi constituent mixtures, understanding gelation in mixtures is an important goal in food science. Here we presented a systematic investigation on the influence of molecular interactions on the gelation in protein mixtures. Gelatin gels with added globular protein and globular protein gels with added gelatin were analyzed for their gel microstructure and rheological properties. Mixed gels with altered microstruc...

  9. Protein Adaptations in Archaeal Extremophiles

    OpenAIRE

    Reed, Christopher J; Hunter Lewis; Eric Trejo; Vern Winston; Caryn Evilia

    2013-01-01

    Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophil...

  10. FLUORESCENCE LIFETIME DISTRIBUTIONS IN PROTEINS

    OpenAIRE

    ALCALA, JR; Gratton, E; PRENDERGAST, FG

    1987-01-01

    The fluorescence lifetime value of tryptophan residues varies by more than a factor of 100 in different proteins and is determined by several factors, which include solvent exposure and interactions with other elements of the protein matrix. Because of the variety of different elements that can alter the lifetime value and the sensitivity to the particular environment of the tryptophan residue, it is likely that non-unique lifetime values result in protein systems. The emission decay of most ...

  11. Posttranslational Protein Modification in Archaea

    OpenAIRE

    Eichler, Jerry; Adams, Michael W. W.

    2005-01-01

    One of the first hurdles to be negotiated in the postgenomic era involves the description of the entire protein content of the cell, the proteome. Such efforts are presently complicated by the various posttranslational modifications that proteins can experience, including glycosylation, lipid attachment, phosphorylation, methylation, disulfide bond formation, and proteolytic cleavage. Whereas these and other posttranslational protein modifications have been well characterized in Eucarya and B...

  12. Protein function prediction using neighbor relativity in protein-protein interaction network.

    Science.gov (United States)

    Moosavi, Sobhan; Rahgozar, Masoud; Rahimi, Amir

    2013-04-01

    There is a large gap between the number of discovered proteins and the number of functionally annotated ones. Due to the high cost of determining protein function by wet-lab research, function prediction has become a major task for computational biology and bioinformatics. Some researches utilize the proteins interaction information to predict function for un-annotated proteins. In this paper, we propose a novel approach called "Neighbor Relativity Coefficient" (NRC) based on interaction network topology which estimates the functional similarity between two proteins. NRC is calculated for each pair of proteins based on their graph-based features including distance, common neighbors and the number of paths between them. In order to ascribe function to an un-annotated protein, NRC estimates a weight for each neighbor to transfer its annotation to the unknown protein. Finally, the unknown protein will be annotated by the top score transferred functions. We also investigate the effect of using different coefficients for various types of functions. The proposed method has been evaluated on Saccharomyces cerevisiae and Homo sapiens interaction networks. The performance analysis demonstrates that NRC yields better results in comparison with previous protein function prediction approaches that utilize interaction network. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Developing algorithms for predicting protein-protein interactions of homology modeled proteins.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Shawn Bryan; Sale, Kenneth L.; Faulon, Jean-Loup Michel; Roe, Diana C.

    2006-01-01

    The goal of this project was to examine the protein-protein docking problem, especially as it relates to homology-based structures, identify the key bottlenecks in current software tools, and evaluate and prototype new algorithms that may be developed to improve these bottlenecks. This report describes the current challenges in the protein-protein docking problem: correctly predicting the binding site for the protein-protein interaction and correctly placing the sidechains. Two different and complementary approaches are taken that can help with the protein-protein docking problem. The first approach is to predict interaction sites prior to docking, and uses bioinformatics studies of protein-protein interactions to predict theses interaction site. The second approach is to improve validation of predicted complexes after docking, and uses an improved scoring function for evaluating proposed docked poses, incorporating a solvation term. This scoring function demonstrates significant improvement over current state-of-the art functions. Initial studies on both these approaches are promising, and argue for full development of these algorithms.

  14. Novel protein-protein interaction family proteins involved in chloroplast movement response.

    Science.gov (United States)

    Kodama, Yutaka; Suetsugu, Noriyuki; Wada, Masamitsu

    2011-04-01

    To optimize photosynthetic activity, chloroplasts change their intracellular location in response to ambient light conditions; chloroplasts move toward low intensity light to maximize light capture, and away from high intensity light to avoid photodamage. Although several proteins have been reported to be involved in the chloroplast photorelocation movement response, any physical interaction among them was not found so far. We recently found a physical interaction between two plant-specific coiled-coil proteins, WEB1 (Weak Chloroplast Movement under Blue Light 1) and PMI2 (Plastid Movement Impaired 2), that were identified to regulate chloroplast movement velocity. Since the both coiled-coil regions of WEB1 and PMI2 were classified into an uncharacterized protein family having DUF827 (DUF: Domain of Unknown Function) domain, it was the first report that DUF827 proteins could mediate protein-protein interaction. In this mini-review article, we discuss regarding molecular function of WEB1 and PMI2, and also define a novel protein family composed of WEB1, PMI2 and WEB1/PMI2-like proteins for protein-protein interaction in land plants.

  15. Molecular dynamics of membrane proteins.

    Energy Technology Data Exchange (ETDEWEB)

    Woolf, Thomas B. (Johns Hopkins University School of Medicine, Baltimore, MD); Crozier, Paul Stewart; Stevens, Mark Jackson

    2004-10-01

    Understanding the dynamics of the membrane protein rhodopsin will have broad implications for other membrane proteins and cellular signaling processes. Rhodopsin (Rho) is a light activated G-protein coupled receptor (GPCR). When activated by ligands, GPCRs bind and activate G-proteins residing within the cell and begin a signaling cascade that results in the cell's response to external stimuli. More than 50% of all current drugs are targeted toward G-proteins. Rho is the prototypical member of the class A GPCR superfamily. Understanding the activation of Rho and its interaction with its Gprotein can therefore lead to a wider understanding of the mechanisms of GPCR activation and G-protein activation. Understanding the dark to light transition of Rho is fully analogous to the general ligand binding and activation problem for GPCRs. This transition is dependent on the lipid environment. The effect of lipids on membrane protein activity in general has had little attention, but evidence is beginning to show a significant role for lipids in membrane protein activity. Using the LAMMPS program and simulation methods benchmarked under the IBIG program, we perform a variety of allatom molecular dynamics simulations of membrane proteins.

  16. Tutorial on Protein Ontology Resources.

    Science.gov (United States)

    Arighi, Cecilia N; Drabkin, Harold; Christie, Karen R; Ross, Karen E; Natale, Darren A

    2017-01-01

    The Protein Ontology (PRO) is the reference ontology for proteins in the Open Biomedical Ontologies (OBO) foundry and consists of three sub-ontologies representing protein classes of homologous genes, proteoforms (e.g., splice isoforms, sequence variants, and post-translationally modified forms), and protein complexes. PRO defines classes of proteins and protein complexes, both species-specific and species nonspecific, and indicates their relationships in a hierarchical framework, supporting accurate protein annotation at the appropriate level of granularity, analyses of protein conservation across species, and semantic reasoning. In the first section of this chapter, we describe the PRO framework including categories of PRO terms and the relationship of PRO to other ontologies and protein resources. Next, we provide a tutorial about the PRO website ( proconsortium.org ) where users can browse and search the PRO hierarchy, view reports on individual PRO terms, and visualize relationships among PRO terms in a hierarchical table view, a multiple sequence alignment view, and a Cytoscape network view. Finally, we describe several examples illustrating the unique and rich information available in PRO.

  17. [Protein toxins of Staphylococcus aureus].

    Science.gov (United States)

    Shamsutdinov, A F; Tiurin, Iu A

    2014-01-01

    Main scientific-research studies regarding protein bacterial toxins of the most widespread bacteria that belong to Staphylococcus spp. genus and in particular the most pathogenic species for humans--Staphylococcus aureus, are analyzed. Structural and biological properties of protein toxins that have received the name of staphylococcus pyrogenic toxins (PTSAg) are presented. Data regarding genetic regulation of secretion and synthesis of these toxins and 3 main regulatory genetic systems (agr--accessory gene regulator, xpr--extracellular protein regulator, sar--staphylococcal accessory regulator) that coordinate synthesis of the most important protein toxins and enzymes for virulence of S. aureus, are presented.

  18. Protein leverage and energy intake.

    Science.gov (United States)

    Gosby, A K; Conigrave, A D; Raubenheimer, D; Simpson, S J

    2014-03-01

    Increased energy intakes are contributing to overweight and obesity. Growing evidence supports the role of protein appetite in driving excess intake when dietary protein is diluted (the protein leverage hypothesis). Understanding the interactions between dietary macronutrient balance and nutrient-specific appetite systems will be required for designing dietary interventions that work with, rather than against, basic regulatory physiology. Data were collected from 38 published experimental trials measuring ad libitum intake in subjects confined to menus differing in macronutrient composition. Collectively, these trials encompassed considerable variation in percent protein (spanning 8-54% of total energy), carbohydrate (1.6-72%) and fat (11-66%). The data provide an opportunity to describe the individual and interactive effects of dietary protein, carbohydrate and fat on the control of total energy intake. Percent dietary protein was negatively associated with total energy intake (F = 6.9, P protein. The analysis strongly supports a role for protein leverage in lean, overweight and obese humans. A better appreciation of the targets and regulatory priorities for protein, carbohydrate and fat intake will inform the design of effective and health-promoting weight loss diets, food labelling policies, food production systems and regulatory frameworks.

  19. Computational protein design: a review

    Science.gov (United States)

    Coluzza, Ivan

    2017-04-01

    Proteins are one of the most versatile modular assembling systems in nature. Experimentally, more than 110 000 protein structures have been identified and more are deposited every day in the Protein Data Bank. Such an enormous structural variety is to a first approximation controlled by the sequence of amino acids along the peptide chain of each protein. Understanding how the structural and functional properties of the target can be encoded in this sequence is the main objective of protein design. Unfortunately, rational protein design remains one of the major challenges across the disciplines of biology, physics and chemistry. The implications of solving this problem are enormous and branch into materials science, drug design, evolution and even cryptography. For instance, in the field of drug design an effective computational method to design protein-based ligands for biological targets such as viruses, bacteria or tumour cells, could give a significant boost to the development of new therapies with reduced side effects. In materials science, self-assembly is a highly desired property and soon artificial proteins could represent a new class of designable self-assembling materials. The scope of this review is to describe the state of the art in computational protein design methods and give the reader an outline of what developments could be expected in the near future.

  20. Recombinant protein expression in Nicotiana.

    Science.gov (United States)

    Matoba, Nobuyuki; Davis, Keith R; Palmer, Kenneth E

    2011-01-01

    Recombinant protein pharmaceuticals are now widely used in treatment of chronic diseases, and several recombinant protein subunit vaccines are approved for human and veterinary use. With growing demand for complex protein pharmaceuticals, such as monoclonal antibodies, manufacturing capacity is becoming limited. There is increasing need for safe, scalable, and economical alternatives to mammalian cell culture-based manufacturing systems, which require substantial capital investment for new manufacturing facilities. Since a seminal paper reporting immunoglobulin expression in transgenic plants was published in 1989, there have been many technological advances in plant expression systems to the present time where production of proteins in leaf tissues of nonfood crops such as Nicotiana species is considered a viable alternative. In particular, transient expression systems derived from recombinant plant viral vectors offer opportunities for rapid expression screening, construct optimization, and expression scale-up. Extraction of recombinant proteins from Nicotiana leaf tissues can be achieved by collection of secreted protein fractions, or from a total protein extract after grinding the leaves with buffer. After separation from solids, the major purification challenge is contamination with elements of the photosynthetic complex, which can be solved by application of a variety of facile and proven strategies. In conclusion, the technologies required for safe, efficient, scalable manufacture of recombinant proteins in Nicotiana leaf tissues have matured to the point where several products have already been tested in phase I clinical trials and will soon be followed by a rich pipeline of recombinant vaccines, microbicides, and therapeutic proteins.

  1. Protein-stabilized magnetic fluids

    Science.gov (United States)

    Soenen, S. J. H.; Hodenius, M.; Schmitz-Rode, T.; De Cuyper, M.

    The adsorption of bovine serum albumin (BSA) and egg yolk phosvitin on magnetic fluid particles was investigated. Incubation mixtures were prepared by mixing an alkaline suspension of tetramethylammonium-coated magnetite cores with protein solutions at various protein/Fe 3O 4 ratios, followed by dialysis against a 5 mM TES buffer (pH 7.0), after which separation of bound and non-bound protein by high-gradient magnetophoresis was executed. Both the kinetic profiles as well as the isotherms of adsorption strongly differed for both proteins. In case of the spherical BSA, initially, abundant adsorption occurred, then it decreased and—at high protein concentrations—it slowly raised again. In contrast, with the highly phosphorylated phosvitin, binding slowly started and the extent of protein adsorption remained unchanged both as a function of time and phosvitin concentration. Competition binding studies, using binary protein mixtures composed of equal weight amounts of BSA and phosvitin, showed that binding of the latter protein is 'unrealistically' high. Based on the geometry of the two proteins, putative pictures on their orientation on the particle's surface in the various experimental conditions were deduced.

  2. Recovery of protein from green leaves

    NARCIS (Netherlands)

    Tamayo Tenorio, Angelica; Gieteling, Jarno; Jong, De Govardus A.H.; Boom, Remko M.; Goot, Van Der Atze J.

    2016-01-01

    Plant leaves are a major potential source of novel food proteins. Till now, leaf protein extraction methods mainly focus on the extraction of soluble proteins, like rubisco protein, leaving more than half of all protein unextracted. Here, we report on the total protein extraction from sugar beet

  3. The clinical expression of hereditary protein C and protein S deficiency: : a relation to clinical thrombotic risk-factors and to levels of protein C and protein S

    NARCIS (Netherlands)

    Henkens, C. M. A.; van der Meer, J.; Hillege, J. L.; Bom, V. J. J.; Halie, M. R.; van der Schaaf, W.

    We investigated 103 first-degree relatives of 13 unrelated protein C or protein S deficient patients to assess the role of additional thrombotic risk factors and of protein C and protein S levels in the clinical expression of hereditary protein C and protein S deficiency. Fifty-seven relatives were

  4. Protein linguistics - a grammar for modular protein assembly?

    Science.gov (United States)

    Gimona, Mario

    2006-01-01

    The correspondence between biology and linguistics at the level of sequence and lexical inventories, and of structure and syntax, has fuelled attempts to describe genome structure by the rules of formal linguistics. But how can we define protein linguistic rules? And how could compositional semantics improve our understanding of protein organization and functional plasticity?

  5. Website on Protein Interaction and Protein Structure Related Work

    Science.gov (United States)

    Samanta, Manoj; Liang, Shoudan; Biegel, Bryan (Technical Monitor)

    2003-01-01

    In today's world, three seemingly diverse fields - computer information technology, nanotechnology and biotechnology are joining forces to enlarge our scientific knowledge and solve complex technological problems. Our group is dedicated to conduct theoretical research exploring the challenges in this area. The major areas of research include: 1) Yeast Protein Interactions; 2) Protein Structures; and 3) Current Transport through Small Molecules.

  6. Protein-Protein Interaction Reagents | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at Emory University has a library of genes used to study protein-protein interactions in mammalian cells. These genes are cloned in different mammalian expression vectors. A list of available cancer-associated genes can be accessed below. Emory_CTD^2_PPI_Reagents.xlsx Contact: Haian Fu

  7. Protein-Protein Interactions (PPI) reagents: | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at Emory University has a library of genes used to study protein-protein interactions in mammalian cells. These genes are cloned in different mammalian expression vectors. A list of available cancer-associated genes can be accessed below.

  8. Pathogen mimicry of host protein-protein interfaces modulates immunity.

    Science.gov (United States)

    Guven-Maiorov, Emine; Tsai, Chung-Jung; Nussinov, Ruth

    2016-10-01

    Signaling pathways shape and transmit the cell's reaction to its changing environment; however, pathogens can circumvent this response by manipulating host signaling. To subvert host defense, they beat it at its own game: they hijack host pathways by mimicking the binding surfaces of host-encoded proteins. For this, it is not necessary to achieve global protein homology; imitating merely the interaction surface is sufficient. Different protein folds often interact via similar protein-protein interface architectures. This similarity in binding surfaces permits the pathogenic protein to compete with a host target protein. Thus, rather than binding a host-encoded partner, the host protein hub binds the pathogenic surrogate. The outcome can be dire: rewiring or repurposing the host pathways, shifting the cell signaling landscape and consequently the immune response. They can also cause persistent infections as well as cancer by modulating key signaling pathways, such as those involving Ras. Mapping the rewired host-pathogen 'superorganism' interaction network - along with its structural details - is critical for in-depth understanding of pathogenic mechanisms and developing efficient therapeutics. Here, we overview the role of molecular mimicry in pathogen host evasion as well as types of molecular mimicry mechanisms that emerged during evolution.

  9. Hydration of proteins: excess partial enthalpies of water and proteins.

    Science.gov (United States)

    Sirotkin, Vladimir A; Khadiullina, Aigul V

    2011-12-22

    Isothermal batch calorimetry was applied to study the hydration of proteins. The hydration process was analyzed by the simultaneous monitoring of the excess partial enthalpies of water and the proteins in the entire range of water content. Four unrelated proteins (lysozyme, chymotrypsinogen A, human serum albumin, and β-lactoglobulin) were used as models. The excess partial quantities are very sensitive to the changes in the state of water and proteins. At the lowest water weight fractions (w(1)), the changes of the excess thermochemical functions can mainly be attributed to water addition. A transition from the glassy to the flexible state of the proteins is accompanied by significant changes in the excess partial quantities of water and the proteins. This transition appears at a water weight fraction of 0.06 when charged groups of proteins are covered. Excess partial quantities reach their fully hydrated values at w(1) > 0.5 when coverage of both polar and weakly interacting surface elements is complete. At the highest water contents, water addition has no significant effect on the excess thermochemical quantities. At w(1) > 0.5, changes in the excess functions can solely be attributed to changes in the state of the proteins.

  10. Characterization of protein-protein interactions by isothermal titration calorimetry.

    Science.gov (United States)

    Velazquez-Campoy, Adrian; Leavitt, Stephanie A; Freire, Ernesto

    2015-01-01

    The analysis of protein-protein interactions has attracted the attention of many researchers from both a fundamental point of view and a practical point of view. From a fundamental point of view, the development of an understanding of the signaling events triggered by the interaction of two or more proteins provides key information to elucidate the functioning of many cell processes. From a practical point of view, understanding protein-protein interactions at a quantitative level provides the foundation for the development of antagonists or agonists of those interactions. Isothermal Titration Calorimetry (ITC) is the only technique with the capability of measuring not only binding affinity but the enthalpic and entropic components that define affinity. Over the years, isothermal titration calorimeters have evolved in sensitivity and accuracy. Today, TA Instruments and MicroCal market instruments with the performance required to evaluate protein-protein interactions. In this methods paper, we describe general procedures to analyze heterodimeric (porcine pancreatic trypsin binding to soybean trypsin inhibitor) and homodimeric (bovine pancreatic α-chymotrypsin) protein associations by ITC.

  11. Protein-Protein Interactions (PPI) reagents: | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at Emory University has a library of genes used to study protein-protein interactions in mammalian cells. These genes are cloned in different mammalian expression vectors. A list of available cancer-associated genes can be accessed below.

  12. Protein-protein interaction networks in the spinocerebellar ataxias

    OpenAIRE

    David C Rubinsztein

    2006-01-01

    A large yeast two-hybrid study investigating whether the proteins mutated in different forms of spinocerebellar ataxia have interacting protein partners in common suggests that some forms do share common pathways, and will provide a valuable resource for future work on these diseases.

  13. Mapping Protein-Protein Interactions by Quantitative Proteomics

    DEFF Research Database (Denmark)

    Dengjel, Joern; Kratchmarova, Irina; Blagoev, Blagoy

    2010-01-01

    spectrometry (MS)-based proteomics in combination with affinity purification protocols has become the method of choice to map and track the dynamic changes in protein-protein interactions, including the ones occurring during cellular signaling events. Different quantitative MS strategies have been used...

  14. Protein stability: a crystallographer’s perspective

    Energy Technology Data Exchange (ETDEWEB)

    Deller, Marc C., E-mail: mdeller@stanford.edu [Stanford University, Shriram Center, 443 Via Ortega, Room 097, MC5082, Stanford, CA 94305-4125 (United States); Kong, Leopold [National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Building 8, Room 1A03, 8 Center Drive, Bethesda, MD 20814 (United States); Rupp, Bernhard [k.-k. Hofkristallamt, 91 Audrey Place, Vista, CA 92084 (United States); Medical University of Innsbruck, Schöpfstrasse 41, A-6020 Innsbruck (Austria)

    2016-01-26

    An understanding of protein stability is essential for optimizing the expression, purification and crystallization of proteins. In this review, discussion will focus on factors affecting protein stability on a somewhat practical level, particularly from the view of a protein crystallographer. Protein stability is a topic of major interest for the biotechnology, pharmaceutical and food industries, in addition to being a daily consideration for academic researchers studying proteins. An understanding of protein stability is essential for optimizing the expression, purification, formulation, storage and structural studies of proteins. In this review, discussion will focus on factors affecting protein stability, on a somewhat practical level, particularly from the view of a protein crystallographer. The differences between protein conformational stability and protein compositional stability will be discussed, along with a brief introduction to key methods useful for analyzing protein stability. Finally, tactics for addressing protein-stability issues during protein expression, purification and crystallization will be discussed.

  15. Information-driven structural modelling of protein-protein interactions.

    Science.gov (United States)

    Rodrigues, João P G L M; Karaca, Ezgi; Bonvin, Alexandre M J J

    2015-01-01

    Protein-protein docking aims at predicting the three-dimensional structure of a protein complex starting from the free forms of the individual partners. As assessed in the CAPRI community-wide experiment, the most successful docking algorithms combine pure laws of physics with information derived from various experimental or bioinformatics sources. Of these so-called "information-driven" approaches, HADDOCK stands out as one of the most successful representatives. In this chapter, we briefly summarize which experimental information can be used to drive the docking prediction in HADDOCK, and then focus on the docking protocol itself. We discuss and illustrate with a tutorial example a "classical" protein-protein docking prediction, as well as more recent developments for modelling multi-body systems and large conformational changes.

  16. Understanding protein evolution: from protein physics to Darwinian selection.

    Science.gov (United States)

    Zeldovich, Konstantin B; Shakhnovich, Eugene I

    2008-01-01

    Efforts in whole-genome sequencing and structural proteomics start to provide a global view of the protein universe, the set of existing protein structures and sequences. However, approaches based on the selection of individual sequences have not been entirely successful at the quantitative description of the distribution of structures and sequences in the protein universe because evolutionary pressure acts on the entire organism, rather than on a particular molecule. In parallel to this line of study, studies in population genetics and phenomenological molecular evolution established a mathematical framework to describe the changes in genome sequences in populations of organisms over time. Here, we review both microscopic (physics-based) and macroscopic (organism-level) models of protein-sequence evolution and demonstrate that bridging the two scales provides the most complete description of the protein universe starting from clearly defined, testable, and physiologically relevant assumptions.

  17. Protein-protein interaction predictions using text mining methods.

    Science.gov (United States)

    Papanikolaou, Nikolas; Pavlopoulos, Georgios A; Theodosiou, Theodosios; Iliopoulos, Ioannis

    2015-03-01

    It is beyond any doubt that proteins and their interactions play an essential role in most complex biological processes. The understanding of their function individually, but also in the form of protein complexes is of a great importance. Nowadays, despite the plethora of various high-throughput experimental approaches for detecting protein-protein interactions, many computational methods aiming to predict new interactions have appeared and gained interest. In this review, we focus on text-mining based computational methodologies, aiming to extract information for proteins and their interactions from public repositories such as literature and various biological databases. We discuss their strengths, their weaknesses and how they complement existing experimental techniques by simultaneously commenting on the biological databases which hold such information and the benchmark datasets that can be used for evaluating new tools.

  18. Composition of Overlapping Protein-Protein and Protein-Ligand Interfaces.

    Directory of Open Access Journals (Sweden)

    Ruzianisra Mohamed

    Full Text Available Protein-protein interactions (PPIs play a major role in many biological processes and they represent an important class of targets for therapeutic intervention. However, targeting PPIs is challenging because often no convenient natural substrates are available as starting point for small-molecule design. Here, we explored the characteristics of protein interfaces in five non-redundant datasets of 174 protein-protein (PP complexes, and 161 protein-ligand (PL complexes from the ABC database, 436 PP complexes, and 196 PL complexes from the PIBASE database and a dataset of 89 PL complexes from the Timbal database. In all cases, the small molecule ligands must bind at the respective PP interface. We observed similar amino acid frequencies in all three datasets. Remarkably, also the characteristics of PP contacts and overlapping PL contacts are highly similar.

  19. Medicago truncatula Rop GTPases expression in young nodules

    Directory of Open Access Journals (Sweden)

    Lucia Kusu

    2012-02-01

    Full Text Available Small GTPases are monomeric guanine nucleotide binding proteins with molecular weight of 21 to 30 kD. Plants have plantspecific small GTPases, termed Rop (Rho GTPases from plants which serve as signaling proteins in plant signal transduction. To have better understanding on nodulation process in legume, which Rop proteins that play a dominant role in nodule formation would be determined. Therefore, the expression of five Medicago truncatula Rop GTPase genes (MtRops in young nodules were studied in this experiment. RT-PCR method was used to examine the expression of MtRops. The MtRops expression in inoculated M. truncatula plants were compared with those in uninoculated plants. Results of this studies showed that the expression of MtRop5 and MtRop6 were significantly induced in young nodules, it was suggesting that these Rops may have important role during nodule formation.

  20. Porcine prion protein amyloid.

    Science.gov (United States)

    Hammarström, Per; Nyström, Sofie

    2015-01-01

    Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions.