WorldWideScience

Sample records for rhodospirillum

  1. Complete genome sequence of Rhodospirillum rubrum type strain (S1).

    Science.gov (United States)

    Munk, A Christine; Copeland, Alex; Lucas, Susan; Lapidus, Alla; Del Rio, Tijana Glavina; Barry, Kerrie; Detter, John C; Hammon, Nancy; Israni, Sanjay; Pitluck, Sam; Brettin, Thomas; Bruce, David; Han, Cliff; Tapia, Roxanne; Gilna, Paul; Schmutz, Jeremy; Larimer, Frank; Land, Miriam; Kyrpides, Nikos C; Mavromatis, Konstantinos; Richardson, Paul; Rohde, Manfred; Göker, Markus; Klenk, Hans-Peter; Zhang, Yaoping; Roberts, Gary P; Reslewic, Susan; Schwartz, David C

    2011-07-01

    Rhodospirillum rubrum (Esmarch 1887) Molisch 1907 is the type species of the genus Rhodospirillum, which is the type genus of the family Rhodospirillaceae in the class Alphaproteobacteria. The species is of special interest because it is an anoxygenic phototroph that produces extracellular elemental sulfur (instead of oxygen) while harvesting light. It contains one of the most simple photosynthetic systems currently known, lacking light harvesting complex 2. Strain S1(T) can grow on carbon monoxide as sole energy source. With currently over 1,750 PubMed entries, R. rubrum is one of the most intensively studied microbial species, in particular for physiological and genetic studies. Next to R. centenum strain SW, the genome sequence of strain S1(T) is only the second genome of a member of the genus Rhodospirillum to be published, but the first type strain genome from the genus. The 4,352,825 bp long chromosome and 53,732 bp plasmid with a total of 3,850 protein-coding and 83 RNA genes were sequenced as part of the DOE Joint Genome Institute Program DOEM 2002.

  2. On the relation between phototaxis and photosynthesis in Rhodospirillum Rubrum

    NARCIS (Netherlands)

    Thomas, J.B.; Nijenhuis, L.E.

    1950-01-01

    The relation between phototaxis and photosynthesis in Rhodospirillum rubrum has been studied. The light intensity at which saturation is reached in photosynthesis proved to coincide with that at which the contrast sensitivity starts to decrease. Potassium cyanide, which preferably inhibits the

  3. Photoresponses of the purple nonsulfur bacteria Rhodospirillum centenum and Rhodobacter sphaeroides.

    OpenAIRE

    Sackett, M J; Armitage, J P; Sherwood, E E; Pitta, T P

    1997-01-01

    We have measured the photoresponse of two purple nonsulfur bacteria, Rhodobacter sphaeroides and Rhodospirillum centenum, under defined conditions in a light beam propagating at 90 degrees to the optical axis of the microscope. This beam presented cells with a steep gradient of intensity perpendicular to the direction of propagation and a shallow gradient in the direction of light propagation. R. centenum, a species that reverses to change direction, accumulated in the light beam, as expected...

  4. Toxicogenomic Response of Rhodospirillum rubrum S1H to the Micropollutant Triclosan▿

    OpenAIRE

    Pycke, Benny F. G.; Vanermen, Guido; Monsieurs, Pieter; De Wever, Heleen; Mergeay, Max; Verstraete, Willy; Leys, Natalie

    2010-01-01

    In the framework of the Micro-Ecological Life Support System Alternative (MELiSSA) project, a pilot study was performed to identify the effects of triclosan on the MELiSSA carbon-mineralizing microorganism Rhodospirillum rubrum S1H. Triclosan is a biocide that is commonly found in human excrement and is considered an emerging pollutant in wastewater and the environment. Chronic exposure to MELiSSA-relevant concentrations (≥25 μg liter−1) of triclosan resulted in a significant extension of the...

  5. Bakteriochlorophyllvorstufen und Pigment-Protein-Komplexe in Rhodospirillum rubrum ST3 und GN11

    OpenAIRE

    Hammel, Jörg U.

    2006-01-01

    In der vorliegenden Arbeit wurden zwei Mutanten des Alpha-Proteobakteriums Rhodospirillum rubrum untersucht, die im Bakteriochlorophyll-Biosyntheseweg unterbrochen sind, um einen Beitrag zum genaueren Verständnis der Biosynthese dieser Moleküle und der einzelnen daran beteiligten Schritte zu liefern. Von den beiden Stämmen ST3 und GN11 wurden die ins Kulturmedium ausgeschiedenen Pigmente aufgereinigt und spektroskopisch analysiert. Ebenfalls wurden sowohl von ST3, als auch von GN11 die in int...

  6. Energy transfer in LH2 of Rhodospirillum Molischianum, studied by subpicosecond spectroscopy and configuration interaction excition calculations.

    NARCIS (Netherlands)

    Ihalainen, J.A.; Linnanto, J.; Myllyperkiö, P.; van Stokkum, I.H.M.; Ücker, B.; Scheer, H.; Korppi-Tommola, J.E.I.

    2001-01-01

    Two color transient absorption measurements were performed on a LH2 complex from Rhodospirillum molischianum by using several excitation wavelengths (790, 800, 810, and 830 nm) and probing in the spectral region from 790 to 870 nm at room temperature. The observed energy transfer time of ∼1.0 ps

  7. Energy transfer in LH2 of Rhodospirillum Molischianum, studied by subpicosecond spectroscopy and configuration interaction exciton calculations.

    NARCIS (Netherlands)

    Ihalainen, J.A.; Linnanto, J.; Myllyperkio, P.; van Stokkum, I.H.M.; Ucker, B.; Scheer, H.; Korppi-Tommola, J.E.I.

    2001-01-01

    Two color transient absorption measurements were performed on a LH2 complex from Rhodospirillum molischianum by using several excitation wavelengths (790, 800, 810, and 830 nm) and probing in the spectral region from 790 to 870 nm at room temperature. The observed energy transfer time of ∼1.0 ps

  8. Spectral dynamics in the B800 band of LH2 from Rhodospirillum molischianum: a single-molecule study

    International Nuclear Information System (INIS)

    Hofmann, Clemens; Aartsma, Thijs J; Michel, Hartmut; Koehler, Juergen

    2004-01-01

    The BChl a absorptions in the B800 spectrum of individual LH2 complexes from Rhodospirillum molischianum show sudden, reversible spectral jumps between a finite number of spectral positions. From our data, we conclude that these fluctuations result from conformational changes of the protein backbone in close vicinity of the chromophores which provides a sensitive tool to monitor local modulations of the pigment-protein interaction

  9. Whole-genome shotgun optical mapping of Rhodospirillum rubrum

    Energy Technology Data Exchange (ETDEWEB)

    Reslewic, S. [Univ. Wisc.-Madison; Zhou, S. [Univ. Wisc.-Madison; Place, M. [Univ. Wisc.-Madison; Zhang, Y. [Univ. Wisc.-Madison; Briska, A. [Univ. Wisc.-Madison; Goldstein, S. [Univ. Wisc.-Madison; Churas, C. [Univ. Wisc.-Madison; Runnheim, R. [Univ. Wisc.-Madison; Forrest, D. [Univ. Wisc.-Madison; Lim, A. [Univ. Wisc.-Madison; Lapidus, A. [Univ. Wisc.-Madison; Han, C. S. [Univ. Wisc.-Madison; Roberts, G. P. [Univ. Wisc.-Madison; Schwartz, D. C. [Univ. Wisc.-Madison

    2005-09-01

    Rhodospirillum rubrum is a phototrophic purple nonsulfur bacterium known for its unique and well-studied nitrogen fixation and carbon monoxide oxidation systems and as a source of hydrogen and biodegradable plastic production. To better understand this organism and to facilitate assembly of its sequence, three whole-genome restriction endonuclease maps (XbaI, NheI, and HindIII) of R. rubrum strain ATCC 11170 were created by optical mapping. Optical mapping is a system for creating whole-genome ordered restriction endonuclease maps from randomly sheared genomic DNA molecules extracted from cells. During the sequence finishing process, all three optical maps confirmed a putative error in sequence assembly, while the HindIII map acted as a scaffold for high-resolution alignment with sequence contigs spanning the whole genome. In addition to highlighting optical mapping's role in the assembly and confirmation of genome sequence, this work underscores the unique niche in resolution occupied by the optical mapping system. With a resolution ranging from 6.5 kb (previously published) to 45 kb (reported here), optical mapping advances a "molecular cytogenetics" approach to solving problems in genomic analysis.

  10. Molecular cloning and sequence of the B880 holochrome gene from Rhodospirillum rubrum

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Restriction fragments of genomic Rhodospirillum rubrum DNA were selected according to size by electrophoresis followed by hybridization with [ 32 P]mRNA encoding the two B880 holochrome polypeptides. The fragments were cloned into Escherchia coli C600 with plasmid pBR327 as a vector. The clones were selected by colony hybridization with 32 P-holochrome-mRNA and counter selected by hybridization with Rs. rubrum ribosomal RNA, a minor contaminant of the mRNA preparation. Chimeric plasmid pRR22 was shown to contain the B880 genes by hybrid selection of B880 holochrome-mRNA. A restriction map of its 2.2-kilobase insert and the sequence of a 430 base pair fragment thereof is reported. Genes α and β are nearly contiguous, indicating that they are transcribed as a single operon. The predicted amino acid sequences coincide with the sequences of the α and β polypeptides established in other laboratories, except for additional C-terminal tails of 10 and 13 amino acid residues, respectively

  11. Melatonin immunoreactivity in the photosynthetic prokaryote Rhodospirillum rubrum: implications for an ancient antioxidant system.

    Science.gov (United States)

    Manchester, L C; Poeggeler, B; Alvares, F L; Ogden, G B; Reiter, R J

    1995-01-01

    Rhodospirillum rubrum is a spiral anoxygenic photosynthetic bacterium that can exist under either aerobic or anaerobic conditions. The organism thrives in the presence of light or complete darkness and represents one of the oldest species of living organisms, possibly 2-3.5 billion years old. The success of this prokaryotic species may be attributed to the evolution of certain indole compounds that offer protection against life-threatening oxygen radicals produced by an evolutionary harsh environment. Melatonin, N-acetyl-5-methoxytryptamine, is an indolic highly conserved molecule that exists in protists, plants, and animals. This study was undertaken to determine the presence of an immunoreactive melatonin in the kingdom Monera and particularly in the photosynthetic bacterium, R. rubrum, under conditions of prolonged darkness or prolonged light. Immunoreactive melatonin was measured during both the extended day and extended night. Significantly more melatonin was observed during the scotophase than the photophase. This study marks the first demonstration of melatonin in a bacterium. The high level of melatonin observed in bacteria may provide on-site protection of bacterial DNA against free radical attack.

  12. Two types of essential carboxyl groups in Rhodospirillum rubrum proton ATPase

    International Nuclear Information System (INIS)

    Ceccarelli, E.; Vallejos, R.H.

    1983-01-01

    Two different types of essential carboxyl groups were detected in the extrinsic component of the proton ATPase of Rhodospirillum rubrum. Chemical modification of R. rubrum chromatophores or its solubilized ATPase by Woodward's reagent K resulted in inactivation of photophosphorylating and ATPase activities. The apparent order of reaction was nearly 1 with respect to reagent concentration and similar K1 were obtained for the soluble and membrane-bound ATPases suggesting that inactivation was associated with modification of one essential carboxyl group located in the soluble component of the proton ATPase. Inactivation was prevented by adenine nucleotides but not by divalent cations. Dicyclohexylcarbodiimide completely inhibited the solubilized ATPase with a K1 of 5.2 mM and a K2 of 0.81 min-1. Mg2+ afforded nearly complete protection with a Kd of 2.8 mM. Two moles of [14C]dicyclohexylcarbodiimide were incorporated per mole of enzyme for complete inactivation but in the presence of 30 mM MgCl2 only one mole was incorporated and there was no inhibition. The labeling was recovered mostly from the beta subunit. The incorporation of the labeled reagent into the ATPase was not prevented by previous modification with Woodward's reagent K. It is concluded that both reagents modified two different essential carboxyl groups in the soluble ATPase from R. rubrum

  13. Polyadenylated mRNA from the photosynthetic procaryote Rhodospirillum rubrum

    International Nuclear Information System (INIS)

    Majumdar, P.K.; McFadden, B.A.

    1984-01-01

    Total cellular RNA extracted from Rhodospirillum rubrum cultured in butyrate-containing medium under strict photosynthetic conditions to the stationary phase of growth has been fractionated on an oligodeoxy-thymidylic acid-cellulose column into polyadenylated [poly(A) + ] RNA and poly(A) - RNA fractions. The poly(A) + fraction was 9 to 10% of the total bulk RNA isolated. Analysis of the poly(A) + RNA on a denaturing urea-polyacrylamide gel revealed four sharp bands of RNA distributed in heterodisperse fashion between 16S and 9S. Similar fractionation of the poly(A) - RNA resulted in the separation of 23, 16, and 5S rRNAs and 4S tRNA. Poly(A) + fragments isolated after combined digestion with pancreatic A and T 1 RNases and analysis by denaturing gel electrophoresis demonstrated two major components of 80 and 100 residues. Alkaline hydrolysis of the nuclease-resistant, purified residues showed AMP-rich nucleotides. Through the use of snake venom phosphodiesterase, poly(A) tracts were placed at the 3' end of poly(A) + RNA. Stimulation of [ 3 H]leucine incorporation into hot trichloroacetic acid-precipitable polypeptides in a cell-free system from wheat germ primed by the poly(A) + RNA mixture was found to be 220-fold higher than that for poly(A) - RNAs (on a unit mass basis), a finding which demonstrated that poly(A) + RNAs in R. rubrum are mRNAs. Gel electrophoretic analysis of the translation mixture revealed numerous 3 H-labeled products including a major band (M/sub r/, 52,000). The parent protein was precipitated by antibodies to ribulose bisphosphate carboxylase-oxygenase and comprised 6.5% of the total translation products

  14. ATP-dependent and NAD-dependent modification of glutamine synthetase from Rhodospirillum rubrum in vitro

    International Nuclear Information System (INIS)

    Woehle, D.L.; Lueddecke, B.A.; Ludden, P.W.

    1990-01-01

    Glutamine synthetase from the photosynthetic bacterium Rhodospirillum rubrum is the target of both ATP- and NAD-dependent modification. Incubation of R. rubrum cell supernatant with [α- 32 P]NAD results in the labeling of glutamine synthetase and two other unidentified proteins. Dinitrogenase reductase ADP-ribosyltransferase does not appear to be responsible for the modification of glutamine synthetase or the unidentified proteins. The [α- 32 P]ATP- and [α- 32 P] NAD-dependent modifications of R. rubrum glutamine synthetase appear to be exclusive and the two forms of modified glutamine synthetase are separable on two-dimensional gels. Loss of enzymatic activity by glutamine synthetase did not correlate with [α- 32 P]NAD labeling. This is in contrast to inactivation by nonphysiological ADP-ribosylation of other glutamine synthetases by an NAD:arginine ADP-ribosyltransferase from turkey erythrocytes. A 32 P-labeled protein spot comigrates with the NAD-treated glutamine synthetase spot when glutamine synthetase purified from H 3 32 PO 4 -grown cells is analyzed on two-dimensional gels. The adenylylation site of R. rubrum glutamine synthetase has been determined to be Leu-(Asp)-Tyr-Leu-Pro-Pro-Glu-Glu-Leu-Met; the tyrosine residue is the site of modification

  15. Metabolic flexibility revealed in the genome of the cyst-forming α-1 proteobacterium Rhodospirillum centenum

    Directory of Open Access Journals (Sweden)

    Matthies Heather J

    2010-05-01

    Full Text Available Abstract Background Rhodospirillum centenum is a photosynthetic non-sulfur purple bacterium that favors growth in an anoxygenic, photosynthetic N2-fixing environment. It is emerging as a genetically amenable model organism for molecular genetic analysis of cyst formation, photosynthesis, phototaxis, and cellular development. Here, we present an analysis of the genome of this bacterium. Results R. centenum contains a singular circular chromosome of 4,355,548 base pairs in size harboring 4,105 genes. It has an intact Calvin cycle with two forms of Rubisco, as well as a gene encoding phosphoenolpyruvate carboxylase (PEPC for mixotrophic CO2 fixation. This dual carbon-fixation system may be required for regulating internal carbon flux to facilitate bacterial nitrogen assimilation. Enzymatic reactions associated with arsenate and mercuric detoxification are rare or unique compared to other purple bacteria. Among numerous newly identified signal transduction proteins, of particular interest is a putative bacteriophytochrome that is phylogenetically distinct from a previously characterized R. centenum phytochrome, Ppr. Genes encoding proteins involved in chemotaxis as well as a sophisticated dual flagellar system have also been mapped. Conclusions Remarkable metabolic versatility and a superior capability for photoautotrophic carbon assimilation is evident in R. centenum.

  16. Anaerobic detoxification fermentation by Rhodospirillum rubrum for rice straw as feed with moderate pretreatment.

    Science.gov (United States)

    Zhang, Jian; Yuan, Jie; Zhang, Wen-Xue; Tu, Fang; Jiang, Ya; Sun, Chuan-Ze

    2018-01-02

    A novel and effective process was put forward for converting rice straw into feed by combining diluted acid hydrolysis and ammonization with Rhodospirillum rubrum fermentation. After pretreatment with dilute sulfuric or phosphoric acid (1%, w/w) at 100°C, materials were subjected to fermentation under several gases (N 2 , CO 2 , and air) and different light intensities in a 2-L fermentor. The key indexes of feed for fermented materials were estimated and several toxic substances were investigated during the fermentation. Following sulfuric acid treatment, the true protein of rice straw increased from 29 to 143 g kg -1 and the crude fiber decreased from 359 to 136 g kg -1 after fermentation at 0.3 L min -1  L -1 of N 2 flow and a light intensity of 3400 lux; and following phosphoric acid treatment, the true protein increased by 286% and the crude fiber decreased by 52% after fermentation at 0.4 L min -1  L -1 of N 2 flow and a light intensity of 3000 lux. Other key contents were also improved for use as feed, and some toxic substances (i.e., furfural, hydroxymethylfurfural, acetic acid, phenol, cresol) produced by the pretreatments could be removed at low levels during the fermentations.

  17. Syngas obtained by microwave pyrolysis of household wastes as feedstock for polyhydroxyalkanoate production in Rhodospirillum rubrum.

    Science.gov (United States)

    Revelles, Olga; Beneroso, Daniel; Menéndez, J Angel; Arenillas, Ana; García, J Luis; Prieto, M Auxiliadora

    2017-11-01

    The massive production of urban and agricultural wastes has promoted a clear need for alternative processes of disposal and waste management. The potential use of municipal solid wastes (MSW) as feedstock for the production of polyhydroxyalkanoates (PHA) by a process known as syngas fermentation is considered herein as an attractive bio-economic strategy to reduce these wastes. In this work, we have evaluated the potential of Rhodospirillum rubrum as microbial cell factory for the synthesis of PHA from syngas produced by microwave pyrolysis of the MSW organic fraction from a European city (Seville). Growth rate, uptake rate, biomass yield and PHA production from syngas in R. rubrum have been analysed. The results revealed the strong robustness of this syngas fermentation where the purity of the syngas is not a critical constraint for PHA production. Microwave-induced pyrolysis is a tangible alternative to standard pyrolysis, because it can reduce cost in terms of energy and time as well as increase syngas production, providing a satisfactory PHA yield. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  18. Understanding the physiological roles of polyhydroxybutyrate (PHB) in Rhodospirillum rubrum S1 under aerobic chemoheterotrophic conditions.

    Science.gov (United States)

    Narancic, Tanja; Scollica, Elisa; Kenny, Shane T; Gibbons, Helena; Carr, Eibhlin; Brennan, Lorraine; Cagney, Gerard; Wynne, Kieran; Murphy, Cormac; Raberg, Matthias; Heinrich, Daniel; Steinbüchel, Alexander; O'Connor, Kevin E

    2016-10-01

    Polyhydroxybutyrate (PHB) is an important biopolymer accumulated by bacteria and associated with cell survival and stress response. Here, we make two surprising findings in the PHB-accumulating species Rhodospirillum rubrum S1. We first show that the presence of PHB promotes the increased assimilation of acetate preferentially into biomass rather than PHB. When R. rubrum is supplied with (13)C-acetate as a PHB precursor, 83.5 % of the carbon in PHB comes from acetate. However, only 15 % of the acetate ends up in PHB with the remainder assimilated as bacterial biomass. The PHB-negative mutant of R. rubrum assimilates 2-fold less acetate into biomass compared to the wild-type strain. Acetate assimilation proceeds via the ethylmalonyl-CoA pathway with (R)-3-hydroxybutyrate as a common intermediate with the PHB pathway. Secondly, we show that R. rubrum cells accumulating PHB have reduced ribulose 1,5-bisphosphate carboxylase (RuBisCO) activity. RuBisCO activity reduces 5-fold over a 36-h period after the onset of PHB. In contrast, a PHB-negative mutant maintains the same level of RuBisCO activity over the growth period. Since RuBisCO controls the redox potential in R. rubrum, PHB likely replaces RuBisCO in this role. R. rubrum is the first bacterium found to express RuBisCO under aerobic chemoheterotrophic conditions.

  19. Biochemical characterization of a new type of intracellular PHB depolymerase from Rhodospirillum rubrum with high hydrolytic activity on native PHB granules.

    Science.gov (United States)

    Sznajder, Anna; Jendrossek, Dieter

    2011-03-01

    A Rhodospirillum rubrum gene that is predicted to code for an extracellular poly(3-hydroxybutyrate) (PHB) depolymerase by the recently published polyhydroxyalkanoates (PHA) depolymerase engineering database was cloned. The gene product (PhaZ3( Rru )) was expressed in recombinant E. coli, purified and biochemically characterized. PhaZ3( Rru ) turned out, however, to share characteristics of intracellular PHB depolymerases and revealed a combination of properties that have not yet been described for other PHB depolymerases. A fusion of PhaZ3( Rru )with the enhanced cyan fluorescent protein was able to bind to PHB granules in vivo and supported the function as an intracellular PHB depolymerase. Purified PhaZ3( Rru ) was specific for short-chain-length polyhydroxyalkanoates (PHA(SCL)) and hydrolysed both untreated native PHB granules as well as trypsin-activated native PHB granules to a mixture of mono- and dimeric 3-hydroxybutyrate. Crystalline (denatured) PHB granules were not hydrolysed by PhayZ3( Rru ). Low concentrations of calcium or magnesium ions (1-5 mM) reversibly (EDTA) inhibited the enzyme. Our data suggest that PhaZ3( Rru ) is the representative of a new type of the growing number of intracellular PHB depolymerases.

  20. An aerobic detoxification photofermentation by Rhodospirillum rubrum for converting soy sauce residue into feed with moderate pretreatment.

    Science.gov (United States)

    Zhang, Jian; Yuan, Jie; Zhang, Wen-Xue; Zhu, Wen-You; Tu, Fang; Jiang, Ya; Sun, Chuan-Ze

    2017-09-25

    This paper reports an effective process for converting soy sauce residue into feeds by combining moderate acid hydrolysis and ammonization with Rhodospirillum rubrum fermentation. After pretreatment with dilute sulfuric or phosphoric acid (1%, w/w) at 100 °C, materials were subjected to fermentation under several gases (N 2 , CO 2 , and air) and different light intensities in a 2-L fermentor. Following sulfuric acid treatment, the true protein increased from 188 to 362 g kg -1 and the crude fiber decreased from 226 to 66 g kg -1 after fermentation at 0.5 L min -1  L -1 of air flow and a light intensity of 750 lx and following phosphoric acid treatment, the true protein increased by 90% and the crude fiber decreased by 67% after fermentation at 0.6 L min -1  L -1 of air flow and a light intensity of 600 lx Other contents, including crude fat, crude ash, phosphorus, sulfur, sulfur-containing amino acids, sodium chloride, and calcium, were also improved for use as feed. Meantime, some toxic substances, including furfural, hydroxymethylfurfural (5-HMF), acetic acid, phenol, and cresol, which were produced by the pretreatments, could be removed by 12-32, 5-8, 49-53, 7-8, and 7-8%, respectively; and total sugars, glucose, and xylose could be utilized by 68-69, 71-72, and 63-67% respectively. The quality of soy sauce residue is improved for use as feed and some toxic substances can be decreased via the R. rubrum fermentation.

  1. The fixABCX genes in Rhodospirillum rubrum encode a putative membrane complex participating in electron transfer to nitrogenase.

    Science.gov (United States)

    Edgren, Tomas; Nordlund, Stefan

    2004-04-01

    In our efforts to identify the components participating in electron transport to nitrogenase in Rhodospirillum rubrum, we used mini-Tn5 mutagenesis followed by metronidazole selection. One of the mutants isolated, SNT-1, exhibited a decreased growth rate and about 25% of the in vivo nitrogenase activity compared to the wild-type values. The in vitro nitrogenase activity was essentially wild type, indicating that the mutation affects electron transport to nitrogenase. Sequencing showed that the Tn5 insertion is located in a region with a high level of similarity to fixC, and extended sequencing revealed additional putative fix genes, in the order fixABCX. Complementation of SNT-1 with the whole fix gene cluster in trans restored wild-type nitrogenase activity and growth. Using Western blotting, we demonstrated that expression of fixA and fixB occurs only under conditions under which nitrogenase also is expressed. SNT-1 was further shown to produce larger amounts of both ribulose 1,5-bisphosphate carboxylase/oxygenase and polyhydroxy alkanoates than the wild type, indicating that the redox status is affected in this mutant. Using Western blotting, we found that FixA and FixB are soluble proteins, whereas FixC most likely is a transmembrane protein. We propose that the fixABCX genes encode a membrane protein complex that plays a central role in electron transfer to nitrogenase in R. rubrum. Furthermore, we suggest that FixC is the link between nitrogen fixation and the proton motive force generated in the photosynthetic reactions.

  2. Pigment exchange in the light collecting complex of Rhodospirillum rubrum purple bacteria and Fourier transform Raman spectroscopy on metallo-bacterio-pheophytins a

    International Nuclear Information System (INIS)

    Naveke, Arne

    1998-03-01

    Light collecting complexes (antennas) in membranes of photosynthetic bacteria and plants capture solar light during photosynthesis and transmit the excitation energy to the reaction centre where it is transformed into energy which can be used by the organism. Antennas and reaction centres are made of polypeptides and pigments (bacterio-chlorophylls) which have a crucial role in solar energy capture, but also in subsequent energy transfers. Whereas three-dimensional structures of some antennas and reaction centres are already known with a high resolution, there is almost no quantitative data on interactions between polypeptides and pigments which however confer their specificity to these complexes. A possibility to obtain such data is to introduce chemically modified pigments within antennas and reaction centres. In this research thesis, some metallo-bacteriopheophytins a have been synthesized and studied by Fourier transform Raman spectroscopy. Vibrations modes have been studied. A process of exchange of the bacterio-chlorophyll a in the LHI antenna of the Rhodospirillum rubrum purple bacteria has been developed to obtain a good efficiency in antennas containing zinc-bacterio-pheophytin a and nickel-bacterio-pheophytin a, as well as bacterio-pheophytin a. Absorption spectra are discussed as well as the occurring relationships between complexes, and the extent of the occurring exchange [fr

  3. High potential oxidation-reduction titration of absorbance changes induced by pulsed laser and continuous light in chromatophores of photosynthesizing bacteria Rhodospirillum rubrum and Ectothiorhodospira shaposhnikovii

    International Nuclear Information System (INIS)

    Remennikov, S.M.; Chamorovsky, S.K.; Kononenko, A.A.; Venediktov, P.S.; Rubin, A.B.

    1975-01-01

    The photoreactions, activated both by pulsed laser and continuous light were studied in the membranes of isolated bacterial chromatophores poised at different oxidation-reduction potentials over a range of +200 mV to +500 mV. In Rhodospirillum rubrum a midpoint potential of oxidation-reduction curves for the laser-induced positive absorbance changes centred around 430 nm and carotenoid red shifts coincides with that for continuous light-induced absorbance changes, bleaching at 865 nm and blue shift at 800 nm, of the photosynthetic reaction centre bacteriochlorophyll. In Ectothiorhodospira shaposhnikovii the photosynthetic reaction centre bacteriochlorophyll, its photooxidation can be seen as light-induced absorbance changes, bleaching at 890 nm, blue shift at 800 nm and broad band appearance near 440 nm, has a midpoint oxidation-reduction potential of +390 mV at pH 7.4. The analysis of the oxidation-reduction titration curves for the high-potential c-type cytochrome absorbance changes induced both by pulsed laser and continuous light allowed to show that at least two haems of this cytochrome with a midpoint potential of +290 mV (pH 7.4), associated with each reaction centre bacteriochlorophyll, can donate electrons to the oxidized pigment directly

  4. Model-based derivation, analysis and control of unstable microaerobic steady-states--considering Rhodospirillum rubrum as an example.

    Science.gov (United States)

    Carius, Lisa; Rumschinski, Philipp; Faulwasser, Timm; Flockerzi, Dietrich; Grammel, Hartmut; Findeisen, Rolf

    2014-04-01

    Microaerobic (oxygen-limited) conditions are critical for inducing many important microbial processes in industrial or environmental applications. At very low oxygen concentrations, however, the process performance often suffers from technical limitations. Available dissolved oxygen measurement techniques are not sensitive enough and thus control techniques, that can reliable handle these conditions, are lacking. Recently, we proposed a microaerobic process control strategy, which overcomes these restrictions and allows to assess different degrees of oxygen limitation in bioreactor batch cultivations. Here, we focus on the design of a control strategy for the automation of oxygen-limited continuous cultures using the microaerobic formation of photosynthetic membranes (PM) in Rhodospirillum rubrum as model phenomenon. We draw upon R. rubrum since the considered phenomenon depends on the optimal availability of mixed-carbon sources, hence on boundary conditions which make the process performance challenging. Empirically assessing these specific microaerobic conditions is scarcely practicable as such a process reacts highly sensitive to changes in the substrate composition and the oxygen availability in the culture broth. Therefore, we propose a model-based process control strategy which allows to stabilize steady-states of cultures grown under these conditions. As designing the appropriate strategy requires a detailed knowledge of the system behavior, we begin by deriving and validating an unstructured process model. This model is used to optimize the experimental conditions, and identify properties of the system which are critical for process performance. The derived model facilitates the good process performance via the proposed optimal control strategy. In summary the presented model-based control strategy allows to access and maintain microaerobic steady-states of interest and to precisely and efficiently transfer the culture from one stable microaerobic steady

  5. Microbial treatment of aqueous wastes

    International Nuclear Information System (INIS)

    Lee, Kang Suk; Chun, Ki Jung; Kim, Kug Chan; Choi, Yong Ho; Kim, Jin Kyu; Kim, In Gyu; Park, Hyo Koo; Lee, Keun Bae

    1992-01-01

    Uranium accumulated extracellularly on the surface of Rhodobacter capsulata and Rhodospirillum rubrum cells. The rate and extent accumulation were subject to environmental parameter such as pH, temperature, carbon source, trace element and interference by certain cations. Uranium accumulation by the cells was rapid and metabolism was not required for uranium uptake by both organism. Cell-bound uranium reached concentration of 22% (Rhodospirillum rubrum) and 24% (Rhdobacter capsulata)of the dry cell weight, but in the cells grown in the presence of inhibitory concentration of CoCl 2 , cell-bound uranium reached concentration of 27% (Rhodospirillum rubrum) and 29% (Rhodobacter capsulata) of dry cell weight. (Author)

  6. Insight into the radiotolerance of the life support bacterium Rhodospirillum rubrum S1H by means of phenotypic and transcriptomic methods

    Science.gov (United States)

    Mastroleo, Felice; Monsieurs, Pieter; Leys, Natalie

    The MELiSSA life support system from the European Space Agency is targeting the produc-tion of oxygen, water and food by recycling organic waste. Among different types of pro-cesses, MELiSSA uses several interconnected bioreactors inhabited by microorganisms and higher plants (Hendrickx et al., 2006; Mergeay et al., 1988). Because this loop is foreseen to be functional in space where it will be exposed to higher doses and different spectra of ionizing radiation, it was decided to screen the radiotolerance of the organisms used. In this study, the radiotolerance (i.e. tolerance to ionizing radiation) of the photosynthetic bacterium Rho-dospirillum rubrum S1H was investigated. In this test, first the effect of low energy Cobalt-60 gamma rays, were tested. To assess the radiotolerance of bacterium S1H, the survival rate after increasing exposure was determined. R. rubrum S1H appeared relatively radiosensitive, as the radiation dose at which 90% of the population was killed (D10 value) was 4 times lower than the model bacterium Escherichia coli. It was demonstrate that the culture medium has an impact on radiation tolerance. This survival curve also permitted to select a number of sub-lethal ionizing radiation doses (¡ D10 ), that were used to analyze the gene expression response of R. rubrum S1H after gamma irradiation. The microarray transcriptome analysis results ob-tained from different doses and different culture medium showed a significant response of the bacterium to sublethal doses. Potential marker genes for ionizing radiation stress in R. rubrum S1H were identified. By quantitative PCR, it was shown that the expression of these marker genes increased with the recovery time after exposure to ionizing radiation. In other words, the radiation tolerance and the response of R. rubrum S1H to low energy Cobalt-60 gamma ionizing radiation was characterized. Therefore to ensure MELiSSA process robustness during extended space exploration mission, it is advised that

  7. Investigation of the effects of different carotenoids on the absorption and CD signals of light harvesting 1 complexes

    NARCIS (Netherlands)

    Georgakopoulou, S.; van der Zwan, G.; Olsen, J.D.; Hunter, C.N.; Niederman, R.A.; van Grondelle, R.

    2006-01-01

    Absorption and circular dichroism (CD) spectra of light-harvesting (LH)1 complexes from the purple bacteria Rhodobacter (Rba.) sphaeroides and Rhodospirillum (Rsp.) rubrum are presented. The complexes exhibit very low intensity, highly nonconservative, near-infrared (NIR) CD spectra. Absorption and

  8. Micropollutants in closed life-support systems: the case of triclosan, a biocide excreted via urine

    Science.gov (United States)

    Mastroleo, Felice; Pycke, Benny; Boon, Nico; de Wever, Heleen; Hendrickx, Larissa; Mastroleo, Felice; Wattiez, Ruddy; Mergeay, Max; Verstraete, Willy

    OBJECTIVES: The impact of triclosan on the growth and physiology of the bacterium Rhodospirillum rubrum was studied in the frame of the regenerative life-support system, Micro- Ecological Life Support System Alternative (MELiSSA). A wide range of compounds, such as steroid hormones, pharmaceuticals and personal care products, might enter the life support system via the excrements that are to be treated and recycled. Triclosan was chosen as the first compound to be tested because MELiSSA is a closed system, which is consequently particularly sensitive to compounds inhibiting the microbial metabolism. Because triclosan is increasingly used as an antimicrobial biocide in hygienic formulations (such as toothpaste, mouthwash, deodorants, etc.) and due to its chemical stability, it is considered an emerging pollutant in terrestrial ecosystems. METHODS: In a first phase, the triclosan concentration expected in the life-support system was estimated, the Minimal Inhibitory Concentration (MIC) was determined via plating, and the effect on growth kinetics was assessed by comparing growth parameters in the Gompertz model. In a second phase, the secondary effects of triclosan on cell physiology and gene expression were studied through flow-cytometry and microarray analyses, respectively. RESULTS: Based on the pharmacokinetic data from literature, the predicted concentration range is estimated to be 6-25µg/L triclosan in the Rhodospirillum rubrum compartment of the MELiSSA. The minimal inhibitory concentration of triclosan was determined to be 71 µg/L after 7 days of exposure on Sistrom medium. Upon exposure to 50-200µg/L triclosan, triclosan-resistant mutants of Rhodospirillum rubrum arose spontaneously at high frequency (3.1 ∗ 10 - 4). Analysis of the growth kinetics of the wild-type revealed that triclosan causes an important elongation of the lag-phase and a decrease in growth rate. At concentrations higher than 75mg/L(LD = 500mg/L), triclosan is bactericidal to wild

  9. AcEST: DK952622 [AcEST

    Lifescience Database Archive (English)

    Full Text Available Q Sbjct: 306 SYAPDGRQITFNSDRGGAQQ 325 >sp|A8F168|TOLB_RICM5 Protein tolB OS=Rickettsia massiliae (strain Mtu...ein tolB OS=Rickettsia massiliae (strai... 37 0.047 sp|Q4UM77|TOLB_RICFE Protein tolB OS=Rickettsia felis GN...0.021 sp|Q2RVF0|TOLB_RHORT Protein tolB OS=Rhodospirillum rubrum (stra... 38 0.036 sp|A8F168|TOLB_RICM5 Prot

  10. Memory effects in single-molecule spectroscopy

    International Nuclear Information System (INIS)

    Schmitt, Daniel T.; Schulz, Michael; Reineker, Peter

    2007-01-01

    From the time series of LH2 optical single-molecule fluorescence excitation spectra of Rhodospirillum molischianum the memory function of the Mori-Zwanzig equation for the optical intensity is derived numerically. We show that the time dependence of the excited states is determined by at least three different non-Markovian stochastic processes with decay constants for the Mori-Zwanzig kernel on the order of 1-5min -1 . We suggest that this decay stems from the conformational motion of the protein scaffold of LH2

  11. Spectral diffusion and electron-phonon coupling of the B800 BChl a molecules in LH2 complexes from three different species of purple bacteria.

    Science.gov (United States)

    Baier, J; Gabrielsen, M; Oellerich, S; Michel, H; van Heel, M; Cogdell, R J; Köhler, J

    2009-11-04

    We have investigated the spectral diffusion and the electron-phonon coupling of B800 bacteriochlorophyll a molecules in the peripheral light-harvesting complex LH2 for three different species of purple bacteria, Rhodobacter sphaeroides, Rhodospirillum molischianum, and Rhodopseudomonas acidophila. We come to the conclusion that B800 binding pockets for Rhodobacter sphaeroides and Rhodopseudomonas acidophila are rather similar with respect to the polarity of the protein environment but that the packaging of the alphabeta-polypeptides seems to be less tight in Rb. sphaeroides with respect to the other two species.

  12. BASE-A space experiment with Rhodospirillum rubrum S1H

    Data.gov (United States)

    National Aeronautics and Space Administration — R. rubrum S1H inoculated on solid minimal media was sent to the ISS in September 2006 (BASE-A experiment). After 10 days flight R. rubrum cultures returned back to...

  13. MESSAGE 2 space experiment with Rhodospirillum rubrum S1H

    Data.gov (United States)

    National Aeronautics and Space Administration — R. rubrum S1H inoculated on solid agar rich media was sent to the ISS in October 2003 (MESSAGE-part 2 experiment). After 10 days flight R. rubrum cultures returned...

  14. METHANE INCORPORATION BY PROCARYOTIC PHOTOSYNTHETICMICROORGANISMS

    Energy Technology Data Exchange (ETDEWEB)

    Norton, Charles J.; Kirk, Martha; Calvin, Melvin

    1970-08-01

    The procaryotic photosynthetic microorganisms Anacystis nidulans, Nostoc and Rhodospirillum rubrum have cell walls and membranes that are resistant to the solution of methane in their lipid components and intracellular fluids. But Anacystis nidulans, possesses a limited bioxidant system, a portion of which may be extracellularly secreted, which rapidly oxidizes methane to carbon dioxide. Small C{sup 14} activities derived from CH{sub 4} in excess of experimental error are detected in all the major biochemical fractions of Anacystis nidulans and Nostoc. This limited capacity to metabolize methane appears to be a vestigial potentiality that originated over two billion years ago in the early evolution of photosynthetic bacteria and blue-green algae.

  15. Microbial treatment of aqueous wastes

    International Nuclear Information System (INIS)

    Kim, Kug Chan; Lee, Kang Suk; Chun, Ki Jung; Kim, Jin Kyu; Kim, Sang Bok; Kim, In Gyu; Park, Hyo Kook

    1992-12-01

    1) General binding efficiencies by immobilized cells decrease in the order U > Pb > Cu > Cd. The metal binding immobilized Rhodospirillum rubrum exceeded that found for Rhodobacter capsulata. 2) The binding efficiencies for U, Pb, Cu and Cd were greatest at pH 4.5, 5.0, 5.0 and 7.0 respectively. Immobilized cells showed an increased metal-binding capacity over a wide pH range as compared those free cells. 3) The binding efficiency decreased with increasing the initial metal concentrations. 4) Uranium can easily be stripped from the immobilized cells over several binding-stripping cycles and the adsorptive capacity of the immobilized cells appeared to increase after the first few cycles. It is therefore possible to use the immobilized cells repeatedly with regeneration. (Author)

  16. Fluorescence biosensor based on CdTe quantum dots for specific detection of H5N1 avian influenza virus

    Science.gov (United States)

    Hoa Nguyen, Thi; Dieu Thuy Ung, Thi; Hien Vu, Thi; Tran, Thi Kim Chi; Quyen Dong, Van; Khang Dinh, Duy; Liem Nguyen, Quang

    2012-09-01

    This report highlights the fabrication of fluorescence biosensors based on CdTe quantum dots (QDs) for specific detection of H5N1 avian influenza virus. The core biosensor was composed of (i) the highly luminescent CdTe/CdS QDs, (ii) chromatophores extracted from bacteria Rhodospirillum rubrum, and (iii) the antibody of β-subunit. This core part was linked to the peripheral part of the biosensor via a biotin-streptavidin-biotin bridge and finally connected to the H5N1 antibody to make it ready for detecting H5N1 avian influenza virus. Detailed studies of each constituent were performed showing the image of QDs-labeled chromatophores under optical microscope, proper photoluminescence (PL) spectra of CdTe/CdS QDs, chromatophores and the H5N1 avian influenza viruses.

  17. Three novel proteins co-localise with polyhydroxybutyrate (PHB) granules in Rhodospirillum rubrum S1.

    Science.gov (United States)

    Narancic, Tanja; Scollica, Elisa; Cagney, Gerard; O'Connor, Kevin E

    2018-04-01

    Polyhydroxybutyrate (PHB), a biodegradable polymer accumulated by bacteria is deposited intracellularly in the form of inclusion bodies often called granules. The granules are supramolecular complexes harbouring a varied number of proteins on their surface, which have specific but incompletely characterised functions. By comparison with other organisms that produce biodegradable polymers, only two phasins have been described to date for Rhodosprillum rubrum, raising the possibility that more await discovery. Using a comparative proteomics strategy to compare the granules of wild-type R. rubrum with a PHB-negative mutant housing artificial PHB granules, we identified four potential PHB granules' associated proteins. These were: Q2RSI4, an uncharacterised protein; Q2RWU9, annotated as an extracellular solute-binding protein; Q2RQL4, annotated as basic membrane lipoprotein; and Q2RQ51, annotated as glucose-6-phosphate isomerase. In silico analysis revealed that Q2RSI4 harbours a Phasin_2 family domain and shares low identity with a single-strand DNA-binding protein from Sphaerochaeta coccoides. Fluorescence microscopy found that three proteins Q2RSI4, Q2EWU9 and Q2RQL4 co-localised with PHB granules. This work adds three potential new granule associated proteins to the repertoire of factors involved in bacterial storage granule formation, and confirms that proteomics screens are an effective strategy for discovery of novel granule associated proteins.

  18. PIXE analysis of Zn enzymes

    International Nuclear Information System (INIS)

    Solis, C.; Oliver, A.; Andrade, E.; Ruvalcaba-Sil, J.L.; Romero, I.; Celis, H.

    1999-01-01

    Zinc is a necessary component in the action and structural stability of many enzymes. Some of them are well characterized, but in others, Zn stoichiometry and its association is not known. PIXE has been proven to be a suitable technique for analyzing metallic proteins embedded in electrophoresis gels. In this study, PIXE has been used to investigate the Zn content of enzymes that are known to carry Zn atoms. These include the carbonic anhydrase, an enzyme well characterized by other methods and the cytoplasmic pyrophosphatase of Rhodospirillum rubrum that is known to require Zn to be stable but not how many metal ions are involved or how they are bound to the enzyme. Native proteins have been purified by polyacrylamide gel electrophoresis and direct identification and quantification of Zn in the gel bands was performed with an external proton beam of 3.7 MeV energy

  19. A techno-economic analysis of polyhydroxyalkanoate and hydrogen production from syngas fermentation of gasified biomass.

    Science.gov (United States)

    Choi, DongWon; Chipman, David C; Bents, Scott C; Brown, Robert C

    2010-02-01

    A techno-economic analysis was conducted to investigate the feasibility of a gasification-based hybrid biorefinery producing both hydrogen gas and polyhydroxyalkanoates (PHA), biodegradable polymer materials that can be an attractive substitute for conventional petrochemical plastics. The biorefinery considered used switchgrass as a feedstock and converted that raw material through thermochemical methods into syngas, a gaseous mixture composed mainly of hydrogen and carbon monoxide. The syngas was then fermented using Rhodospirillum rubrum, a purple non-sulfur bacterium, to produce PHA and to enrich hydrogen in the syngas. Total daily production of the biorefinery was assumed to be 12 Mg of PHA and 50 Mg of hydrogen gas. Grassroots capital for the biorefinery was estimated to be $55 million, with annual operating costs at $6.7 million. With a market value of $2.00/kg assumed for the hydrogen, the cost of producing PHA was determined to be $1.65/kg.

  20. CdTe quantum dots for an application in the life sciences

    International Nuclear Information System (INIS)

    Thuy, Ung Thi Dieu; Toan, Pham Song; Chi, Tran Thi Kim; Liem, Nguyen Quang; Khang, Dinh Duy

    2010-01-01

    This report highlights the results of the preparation of semiconductor CdTe quantum dots (QDs) in the aqueous phase. The small size of a few nm and a very high luminescence quantum yield exceeding 60% of these materials make them promisingly applicable to bio-medicine labeling. Their strong, two-photon excitation luminescence is also a good characteristic for biolabeling without interference with the cell fluorescence. The primary results for the pH-sensitive CdTe QDs are presented in that fluorescence of CdTe QDs was used as a proton sensor to detect proton flux driven by adenosine triphosphate (ATP) synthesis in chromatophores. In other words, these QDs could work as pH-sensitive detectors. Therefore, the system of CdTe QDs on chromatophores prepared from the cells of Rhodospirillum rubrum and the antibodies against the beta-subunit of F0F1–ATPase could be a sensitive detector for the avian influenza virus subtype A/H5N1

  1. Identification of chromatophore membrane protein complexes formed under different nitrogen availability conditions in Rhodospirillum rubrum

    DEFF Research Database (Denmark)

    Selao, Tiago Toscano; Branca, Rui; Chae, Pil Seok

    2011-01-01

    of two-dimensional Blue Native/SDS-PAGE and NSI-LC-LTQ-Orbitrap mass spectrometry. We have identified several membrane protein complexes, including components of the ATP synthase, reaction center, light harvesting, and NADH dehydrogenase complexes. Additionally, we have identified differentially...

  2. Strategies to enhance the excitation energy-transfer efficiency in a light-harvesting system using the intra-molecular charge transfer character of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Yukihira, Nao [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Sugai, Yuko [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Fujiwara, Masazumi [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Kosumi, Daisuke [Institute of Pulsed Power Science; Kumamoto University; Kumamoto; Japan; Iha, Masahiko [South Product Co. Ltd.; Uruma-shi; Japan; Sakaguchi, Kazuhiko [Department of Chemistry; Graduate School of Science; Osaka City University; Osaka 558-8585; Japan; Katsumura, Shigeo [Department of Chemistry; Graduate School of Science; Osaka City University; Osaka 558-8585; Japan; Gardiner, Alastair T. [Glasgow Biomedical Research Centre; University of Glasgow; 126 University Place; Glasgow, G12 8QQ; UK; Cogdell, Richard J. [Glasgow Biomedical Research Centre; University of Glasgow; 126 University Place; Glasgow, G12 8QQ; UK; Hashimoto, Hideki [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan

    2017-01-01

    Fucoxanthin is a carotenoid that is mainly found in light-harvesting complexes from brown algae and diatoms. Due to the presence of a carbonyl group attached to polyene chains in polar environments, excitation produces an excited intra-molecular charge transfer. This intra-molecular charge transfer state plays a key role in the highly efficient (~95%) energy-transfer from fucoxanthin to chlorophyllain the light-harvesting complexes from brown algae. In purple bacterial light-harvesting systems the efficiency of excitation energy-transfer from carotenoids to bacteriochlorophylls depends on the extent of conjugation of the carotenoids. In this study we were successful, for the first time, in incorporating fucoxanthin into a light-harvesting complex 1 from the purple photosynthetic bacterium,Rhodospirillum rubrumG9+ (a carotenoidless strain). Femtosecond pump-probe spectroscopy was applied to this reconstituted light-harvesting complex in order to determine the efficiency of excitation energy-transfer from fucoxanthin to bacteriochlorophyllawhen they are bound to the light-harvesting 1 apo-proteins.

  3. Whole-genome shotgun optical mapping of rhodospirillumrubrum

    Energy Technology Data Exchange (ETDEWEB)

    Reslewic, Susan; Zhou, Shiguo; Place, Mike; Zhang, Yaoping; Briska, Adam; Goldstein, Steve; Churas, Chris; Runnheim, Rod; Forrest,Dan; Lim, Alex; Lapidus, Alla; Han, Cliff S.; Roberts, Gary P.; Schwartz,David C.

    2004-07-01

    Rhodospirillum rubrum is a phototrophic purple non-sulfur bacterium known for its unique and well-studied nitrogen fixation and carbon monoxide oxidation systems, and as a source of hydrogen and biodegradable plastics production. To better understand this organism and to facilitate assembly of its sequence, three whole-genome restriction maps (Xba I, Nhe I, and Hind III) of R. rubrum strain ATCC 11170 were created by optical mapping. Optical mapping is a system for creating whole-genome ordered restriction maps from randomly sheared genomic DNA molecules extracted directly from cells. During the sequence finishing process, all three optical maps confirmed a putative error in sequence assembly, while the Hind III map acted as a scaffold for high resolution alignment with sequence contigs spanning the whole genome. In addition to highlighting optical mapping's role in the assembly and validation of genome sequence, our work underscores the unique niche in resolution occupied by the optical mapping system. With a resolution ranging from 6.5 kb (previously published) to 45 kb (reported here), optical mapping advances a ''molecular cytogenetics'' approach to solving problems in genomic analysis.

  4. Triplet states of carotenoids from photosynthetic bacteria studied by nanosecond ultraviolet and electron pulse irradiation

    International Nuclear Information System (INIS)

    Bensasson, R.; Land, E.J.; Maudinas, B.

    1976-01-01

    Absorptions of the triplet excited states of five carotenoids (15,15'-cis phytoene, all-trans phytoene, zeta-carotene, spheroidene and spirillox-anthin), extracted from the photosynthetic bacteria Rhodopseudomonas spheroides and Rhodospirillum rubrum, have been detected in solution using pulse radiolysis and laser flash photolysis. Triplet lifetimes, extinction coefficients, lowest energy levels and quantum efficiencies of formation have been determined. Comparison of the carotenoid triplet energy levels with that of O 2 ('Δsub(g)) suggests that spirilloxanthin, spheroidene and possibly also zeta-carotene, would be expected to protect against photodynamic action caused by O 2 ('Δsub(g)), but not cis or trans phytoene. The S → T intersystem crossing efficiencies of all five polyenes were found to be low, being a few per cent or less. In their protective role these triplet states can only therefore be effectively reached via energy transfer from another triplet, except in the case of O 2 (Δsub(g)). The low crossover efficiencies also mean that light absorbed in such carotenoids in their possible role as accessory pigments would not be wasted in crossing over to the triplet state. (author)

  5. A rapid method for the extraction and analysis of carotenoids and other hydrophobic substances suitable for systems biology studies with photosynthetic bacteria.

    Science.gov (United States)

    Bóna-Lovász, Judit; Bóna, Aron; Ederer, Michael; Sawodny, Oliver; Ghosh, Robin

    2013-10-11

    A simple, rapid, and inexpensive extraction method for carotenoids and other non-polar compounds present in phototrophic bacteria has been developed. The method, which has been extensively tested on the phototrophic purple non-sulphur bacterium Rhodospirillum rubrum, is suitable for extracting large numbers of samples, which is common in systems biology studies, and yields material suitable for subsequent analysis using HPLC and mass spectroscopy. The procedure is particularly suitable for carotenoids and other terpenoids, including quinones, bacteriochlorophyll a and bacteriopheophytin a, and is also useful for the analysis of polar phospholipids. The extraction procedure requires only a single step extraction with a hexane/methanol/water mixture, followed by HPLC using a Spherisorb C18 column, with a mobile phase consisting of acetone-water and a non-linear gradient of 50%-100% acetone. The method was employed for examining the carotenoid composition observed during microaerophilic growth of R. rubrum strains, and was able to determine 18 carotenoids, 4 isoprenoid-quinones, bacteriochlorophyll a and bacteriopheophytin a as well as four different phosphatidylglycerol species of different acyl chain compositions. The analytical procedure was used to examine the dynamics of carotenoid biosynthesis in the major and minor pathways operating simultaneously in a carotenoid biosynthesis mutant of R. rubrum.

  6. A Rapid Method for the Extraction and Analysis of Carotenoids and Other Hydrophobic Substances Suitable for Systems Biology Studies with Photosynthetic Bacteria

    Directory of Open Access Journals (Sweden)

    Oliver Sawodny

    2013-10-01

    Full Text Available A simple, rapid, and inexpensive extraction method for carotenoids and other non-polar compounds present in phototrophic bacteria has been developed. The method, which has been extensively tested on the phototrophic purple non-sulphur bacterium Rhodospirillum rubrum, is suitable for extracting large numbers of samples, which is common in systems biology studies, and yields material suitable for subsequent analysis using HPLC and mass spectroscopy. The procedure is particularly suitable for carotenoids and other terpenoids, including quinones, bacteriochlorophyll a and bacteriopheophytin a, and is also useful for the analysis of polar phospholipids. The extraction procedure requires only a single step extraction with a hexane/methanol/water mixture, followed by HPLC using a Spherisorb C18 column, with a mobile phase consisting of acetone-water and a non-linear gradient of 50%–100% acetone. The method was employed for examining the carotenoid composition observed during microaerophilic growth of R. rubrum strains, and was able to determine 18 carotenoids, 4 isoprenoid-quinones, bacteriochlorophyll a and bacteriopheophytin a as well as four different phosphatidylglycerol species of different acyl chain compositions. The analytical procedure was used to examine the dynamics of carotenoid biosynthesis in the major and minor pathways operating simultaneously in a carotenoid biosynthesis mutant of R. rubrum.

  7. Ultra-broadband 2D electronic spectroscopy of carotenoid-bacteriochlorophyll interactions in the LH1 complex of a purple bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Maiuri, Margherita [CNR-IFN, Dipartimento di Fisica, Politecnico di Milano, P.zza L. da Vinci 32, Milano 20133 (Italy); Department of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08544 (United States); Réhault, Julien; Polli, Dario; Cerullo, Giulio, E-mail: giulio.cerullo@polimi.it [CNR-IFN, Dipartimento di Fisica, Politecnico di Milano, P.zza L. da Vinci 32, Milano 20133 (Italy); Carey, Anne-Marie; Hacking, Kirsty; Cogdell, Richard J. [Glasgow Biomedical Research Centre, IBLS, University of Glasgow, 126 Place, Glasgow G12 8TA, Scotland (United Kingdom); Garavelli, Marco [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, Université de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France); Lüer, Larry [Madrid Institute for Advanced Studies, IMDEA Nanociencia, Madrid (Spain)

    2015-06-07

    We investigate the excitation energy transfer (EET) pathways in the photosynthetic light harvesting 1 (LH1) complex of purple bacterium Rhodospirillum rubrum with ultra-broadband two-dimensional electronic spectroscopy (2DES). We employ a 2DES apparatus in the partially collinear geometry, using a passive birefringent interferometer to generate the phase-locked pump pulse pair. This scheme easily lends itself to two-color operation, by coupling a sub-10 fs visible pulse with a sub-15-fs near-infrared pulse. This unique pulse combination allows us to simultaneously track with extremely high temporal resolution both the dynamics of the photoexcited carotenoid spirilloxanthin (Spx) in the visible range and the EET between the Spx and the B890 bacterio-chlorophyll (BChl), whose Q{sub x} and Q{sub y} transitions peak at 585 and 881 nm, respectively, in the near-infrared. Global analysis of the one-color and two-color 2DES maps unravels different relaxation mechanisms in the LH1 complex: (i) the initial events of the internal conversion process within the Spx, (ii) the parallel EET from the first bright state S{sub 2} of the Spx towards the Q{sub x} state of the B890, and (iii) the internal conversion from Q{sub x} to Q{sub y} within the B890.

  8. Energy transfer in light-adapted photosynthetic membranes: from active to saturated photosynthesis.

    Science.gov (United States)

    Fassioli, Francesca; Olaya-Castro, Alexandra; Scheuring, Simon; Sturgis, James N; Johnson, Neil F

    2009-11-04

    In bacterial photosynthesis light-harvesting complexes, LH2 and LH1 absorb sunlight energy and deliver it to reaction centers (RCs) with extraordinarily high efficiency. Submolecular resolution images have revealed that both the LH2:LH1 ratio, and the architecture of the photosynthetic membrane itself, adapt to light intensity. We investigate the functional implications of structural adaptations in the energy transfer performance in natural in vivo low- and high-light-adapted membrane architectures of Rhodospirillum photometricum. A model is presented to describe excitation migration across the full range of light intensities that cover states from active photosynthesis, where all RCs are available for charge separation, to saturated photosynthesis where all RCs are unavailable. Our study outlines three key findings. First, there is a critical light-energy density, below which the low-light adapted membrane is more efficient at absorbing photons and generating a charge separation at RCs, than the high-light-adapted membrane. Second, connectivity of core complexes is similar in both membranes, suggesting that, despite different growth conditions, a preferred transfer pathway is through core-core contacts. Third, there may be minimal subareas on the membrane which, containing the same LH2:LH1 ratio, behave as minimal functional units as far as excitation transfer efficiency is concerned.

  9. Low Earth orbit journey and ground simulations studies point out metabolic changes in the ESA life support organism Rhodospirillum rubrum

    Science.gov (United States)

    Mastroleo, Felice; Leys, Natalie; Benotmane, Rafi; Vanhavere, Filip; Janssen, Ann; Hendrickx, Larissa; Wattiez, Ruddy; Mergeay, Max

    MELiSSA (Micro-Ecological Life Support System Alternative) is a project of closed regenerative life support system for future space flights developed by the European Space Agency. It consists of interconnected processes (i.e. bioreactors, higher plant compartments, filtration units,..) targeting the total recycling of organic waste into oxygen, water and food. Within the MELiSSA loop, the purple non-sulfur alpha-proteobacterium R. rubrum ATCC25903 is used to convert fatty acids released from the upstream raw waste digesting reactor to CO2 and biomass, and to complete the mineralization of aminoacids into NH4+ that will be forwarded to the nitrifying compartment. Among the numerous challenges of the project, the functional stability of the bioreactors in long term and under space flight conditions is of paramount importance for the efficiency of the life support system and consequently the crew safety. Therefore, the physiological and metabolic changes induced by space flight were investigated for R. rubrum. The bacterium grown on solid medium during 2 different 10-day space flights to the ISS (MES- SAGE2, BASE-A experiments) were compared to cells grown on Earth 1 g gravity or modeled microgravity and normal Earth radiation or simulated space flight radiation conditions in order to relate each single stress to its respective cellular response. For simulating the radiation environment, pure gamma and neutron sources were combined, while simulation of changes in gravity where performed using the Random Positioning Machine technology. Transcriptome analysis using R. rubrum total genome DNA-chip showed up-regulation of genes involved in oxidative stress response after a 10-day mission inside the ISS, without loss of viability. As an example, alkyl hydroperoxide reductase, thioredoxin reductase and bacterioferritin genes are least 2 fold induced although the radiation dose experienced by the bacterium (4 mSv) is very low compared to its radiotolerance (D10 = 100 Sv). Other differential expression was observed for genes involved in chemotaxis, flagellum formation and nitrogen metabolism. Except genes related to oxidoreduction system, the same group of genes were found in the simulated microgravity study. Transcriptomic data were combined to LC-MS/MS proteomic data collected from the same R. rubrum samples since parallel profiling of mRNA and protein on a global scale could provide insight into metabolic mechanisms underlying complex biological systems. These results indicate that low doses of ionising radiation and changes in gravity on life-support microorganisms have observable effects and deserve specific attention in the perspective of long term space missions. The presented project was financially supported by the European Space Agency (ESA-PRODEX) and the Belgian Science Policy (Belspo) (PRODEX agreements No C90247 and No 90094). We are grateful to C. Lasseur and C. Pailĺ, both from ESTEC/ESA, e for their constant support and advice.

  10. Reactivation of the chloroplast CF1-ATPase beta subunit by trace amounts of the CF1 alpha subunit suggests a chaperonin-like activity for CF1 alpha.

    Science.gov (United States)

    Avni, A; Avital, S; Gromet-Elhanan, Z

    1991-04-25

    Incubation of tobacco and lettuce thylakoids with 2 M LiCl in the presence of MgATP removes the beta subunit from their CF1-ATPase (CF1 beta) together with varying amounts of the CF1 alpha subunit (CF1 alpha). These 2 M LiCl extracts, as with the one obtained from spinach thylakoids (Avital, S., and Gromet-Elhanan, Z. (1991) J. Biol. Chem. 266, 7067-7072), could form active hybrid ATPases when reconstituted into inactive beta-less Rhodospirillum rubrum chromatophores. Pure CF1 beta fractions that have been isolated from these extracts could not form such active hybrids by themselves, but could do so when supplemented with trace amounts (less than 5%) of CF1 alpha. A mitochondrial F1-ATPase alpha subunit was recently reported to be a heat-shock protein, having two amino acid sequences that show a highly conserved identity with sequences found in molecular chaperones (Luis, A. M., Alconada, A., and Cuezva, J. M. (1990) J. Biol. Chem. 265, 7713-7716). These sequences are also conserved in CF1 alpha isolated from various plants, but not in F1 beta subunits. The above described reactivation of CF1 beta by trace amounts of CF1 alpha could thus be due to a chaperonin-like function of CF1 alpha, which involves the correct, active folding of isolated pure CF1 beta.

  11. Distribution of δ-aminolevulinic acid biosynthetic pathways among phototrophic and related bacteria

    International Nuclear Information System (INIS)

    Avissar, Y.J.; Beale, S.I.; Ormerod, J.G.

    1989-01-01

    Two biosynthetic pathways are known for the universal tetrapyrrole precursor, δ-aminolevulinic acid (ALA): condensation of glycine and succinyl-CoA to form ALA with the loss of C-1 of glycine as CO 2 , and conversion of the intact carbon skeleton of glutamate to ALA in a process requiring tRNA Glu , ATP, Mg 2+ , NADPH, and pyridoxal phosphate. The distribution of the two ALA biosynthetic pathways among various bacterial genera was determined, using cell-free extracts obtained from representative organisms. Evidence for the operation of the glutamate pathway was obtained by the measurement of RNase-sensitive label incorporation from glutamate into ALA using 3,4-[ 3 H]glutamate and 1-[ 14 C]glutamate as substrate. The glycine pathway was indicated by RNase-insensitive incorporation of level from 2-[ 14 C]glycine into ALA. The distribution of the two pathways among the bacteria tested was in general agreement with their previously phylogenetic relationships and clearly indicates that the glutamate pathway is the more ancient process, whereas the glycine pathway probably evolved much later. The glutamate pathway is the more widely utilized one among bacteria, while the glycine pathway is apparently limited to the α subgroup of purple bacteria (including Rhodobacter, Rhodospirillum, and Rhizobium). E. coli was found ALA via the glutamate pathway. The ALA-requiring hemA mutant of E. coli was determined to lack the dehydrogenase activity that utilizes glutamyl-tRNA as a substrate

  12. Diversity of purple nonsulfur bacteria in shrimp ponds with varying mercury levels

    Directory of Open Access Journals (Sweden)

    Kanokwan Mukkata

    2016-07-01

    Full Text Available This research aimed to study the diversity of purple nonsulfur bacteria (PNSB and to investigate the effect of Hg concentrations in shrimp ponds on PNSB diversity. Amplification of the pufM gene was detected in 13 and 10 samples of water and sediment collected from 16 shrimp ponds in Southern Thailand. In addition to PNSB, other anoxygenic phototrophic bacteria (APB were also observed; purple sulfur bacteria (PSB and aerobic anoxygenic phototrophic bacteria (AAPB although most of them could not be identified. Among identified groups; AAPB, PSB and PNSB in the samples of water and sediment were 25.71, 11.43 and 8.57%; and 27.78, 11.11 and 22.22%, respectively. In both sample types, Roseobacter denitrificans (AAPB was the most dominant species followed by Halorhodospira halophila (PSB. In addition two genera, observed most frequently in the sediment samples were a group of PNSB (Rhodovulum kholense, Rhodospirillum centenum and Rhodobium marinum. The UPGMA dendrograms showed 7 and 6 clustered groups in the water and sediment samples, respectively. There was no relationship between the clustered groups and the total Hg (HgT concentrations in the water and sediment samples used (<0.002–0.03 μg/L and 35.40–391.60 μg/kg dry weight for studying the biodiversity. It can be concluded that there was no effect of the various Hg levels on the diversity of detected APB species; particularly the PNSB in the shrimp ponds.

  13. Exploiting transplastomically modified Rubisco to rapidly measure natural diversity in its carbon isotope discrimination using tuneable diode laser spectroscopy.

    Science.gov (United States)

    von Caemmerer, Susanne; Tazoe, Youshi; Evans, John R; Whitney, Spencer M

    2014-07-01

    Carbon isotope discrimination (Δ) during C3 photosynthesis is dominated by the fractionation occurring during CO2-fixation by the enzyme Rubisco. While knowing the fractionation by enzymes is pivotal to fully understanding plant carbon metabolism, little is known about variation in the discrimination factor of Rubisco (b) as it is difficult to measure using existing in vitro methodologies. Tuneable diode laser absorption spectroscopy has improved the ability to make rapid measurements of Δ concurrently with photosynthetic gas exchange. This study used this technique to estimate b in vivo in five tobacco (Nicotiana tabacum L. cv Petit Havana [N,N]) genotypes expressing alternative Rubisco isoforms. For transplastomic tobacco producing Rhodospirillum rubrum Rubisco b was 23.8±0.7‰, while Rubisco containing the large subunit Leu-335-Val mutation had a b-value of 13.9±0.7‰. These values were significantly less than that for Rubisco from wild-type tobacco (b=29‰), a C3 species. Transplastomic tobacco producing chimeric Rubisco comprising tobacco Rubisco small subunits and the catalytic large subunits from either the C4 species Flaveria bidentis or the C3-C4 species Flaveria floridana had b-values of 27.8±0.8 and 28.6±0.6‰, respectively. These values were not significantly different from tobacco Rubisco. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway.

    Science.gov (United States)

    Dilbeck, Preston L; Tang, Qun; Mothersole, David J; Martin, Elizabeth C; Hunter, C Neil; Bocian, David F; Holten, Dewey; Niedzwiedzki, Dariusz M

    2016-06-23

    Six light-harvesting-2 complexes (LH2) from genetically modified strains of the purple photosynthetic bacterium Rhodobacter (Rb.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. These strains were engineered to incorporate carotenoids for which the number of conjugated groups (N = NC═C + NC═O) varies from 9 to 15. The Rb. sphaeroides strains incorporate their native carotenoids spheroidene (N = 10) and spheroidenone (N = 11), as well as longer-chain analogues including spirilloxanthin (N = 13) and diketospirilloxantion (N = 15) normally found in Rhodospirillum rubrum. Measurements of the properties of the carotenoid first singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to those in LH2 complexes from various other bacterial species and thus are not significantly impacted by differences in polypeptide composition. Instead, variations in carotenoid-to-BChl a energy transfer are primarily regulated by the N-determined energy of the carotenoid S1 excited state, which for long-chain (N ≥ 13) carotenoids is not involved in energy transfer. Furthermore, the role of the long-chain carotenoids switches from a light-harvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S1 excited state B850*. This quenching is manifested as a substantial (∼2-fold) reduction of the B850* lifetime and the B850* fluorescence quantum yield for LH2 housing the longest carotenoids.

  15. BIO-ORGANIC CHEMISTRY QUARTERLY REPORT. June through August1963

    Energy Technology Data Exchange (ETDEWEB)

    Various

    1963-10-02

    This report covers the following titles: (1) The Effects of 8-Methyl Lipoic Acid on the Evolution of Oxygen and Reduction of Carbon Dioxide during Photosynthesis; (2) Further {sup 14}C and {sup 15}N Tracer Studies of Amino Acid Synthesis during Photosynthesis by Chlorella Pyrenoidosa; (3) Two-Dimensional High Voltage, Low-Temperature Paper Electrophoresis of {sup 14}C-Labeled Products of Photosynthesis with {sup 14}CO{sub 2}; (4) A Search for Enzymic and Nonenzymic Reactions Between Thiamine Derivatives and Sugar Phosphates; (5) The Cytochrome Content of Purified Spinach Chloroplast Lamellae; (6) The Osmium Tetroxide Fixation of Chloroplast Lamellae; (7) Kinetics of Exoenzymes and Applications to the Determination of the Sequence of Nucleic Acids; (8) Brain Biochemistry and Behavior in Rats; (9) Experiments on Classical Conditioning and Light Habituation in Planarians; (10) Operant Conditioning in Planarians; (11) Manganese Porphyrin Complexes; (12) EPR Studies of Some Complex Organic Solutions; (13) Transient Response of Light-induced Photosynthetic Electron Paramagnetic Resonance Signals: Rhodospirillum rubrum Chromatophores; (14) Studies of the Tautomerism of Amides; (15) Structure and Mechanism of Hydrolysis of the Product of Reaction of PZ05 and Ethyl Ether; (16) A Study of the Irradiation Products of Several Nitrones; (17) Biosynthesis of the Opium Alkaloids; (18) Synthesis of methyl-{beta}-D-thiogalactoside-{sup 35}S; (19) Effect of Acridine Orange and Visible Light on Thymine Dimer Formation and Disruption; (20) Some Aspects of the Radiation Chemistry of DNA; (21) Nuclear Magnetic Resonance; and (22) Studies on the Inhibition of the Photoreduction of FMN.

  16. The origin of the split B800 absorption peak in the LH2 complexes from Allochromatium vinosum.

    Science.gov (United States)

    Löhner, Alexander; Carey, Anne-Marie; Hacking, Kirsty; Picken, Nichola; Kelly, Sharon; Cogdell, Richard; Köhler, Jürgen

    2015-01-01

    The absorption spectrum of the high-light peripheral light-harvesting (LH) complex from the photosynthetic purple bacterium Allochromatium vinosum features two strong absorptions around 800 and 850 nm. For the LH2 complexes from the species Rhodopseudomonas acidophila and Rhodospirillum molischianum, where high-resolution X-ray structures are available, similar bands have been observed and were assigned to two pigment pools of BChl a molecules that are arranged in two concentric rings (B800 and B850) with nine (acidophila) or eight (molischianum) repeat units, respectively. However, for the high-light peripheral LH complex from Alc. vinosum, the intruiging feature is that the B800 band is split into two components. We have studied this pigment-protein complex by ensemble CD spectroscopy and polarisation-resolved single-molecule spectroscopy. Assuming that the high-light peripheral LH complex in Alc. vinosum is constructed on the same modular principle as described for LH2 from Rps. acidophila and Rsp. molischianum, we used those repeat units as a starting point for simulating the spectra. We find the best agreement between simulation and experiment for a ring-like oligomer of 12 repeat units, where the mutual arrangement of the B800 and B850 rings resembles those from Rsp. molischianum. The splitting of the B800 band can be reproduced if both an excitonic coupling between dimers of B800 molecules and their interaction with the B850 manifold are taken into account. Such dimers predict an interesting apoprotein organisation as discussed below.

  17. [Regulation of alternative CO{sub 2} fixation pathways in procaryotic and eucaryotic photosynthetic organisms]. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    The major goal of this project is to determine how microorganisms regulate the assimilation of CO{sup 2} via pathways alternative to the usual Calvin reductive pentose phosphate scheme. In particular, we are interest in the molecular basis for switches in CO{sub 2} metabolic paths. Several earlier studies had indicated that purple nonsulfur photosynthetic bacteria assimilate significant amounts of CO{sub 2} via alternative non-Calvin routes. We have deleted the gene that encodes. RubisCo (ribulose bisphosphate carboxylase/oxygenase) in both the Rhodobacter sphaeroids and Rhodospirillum rubrum. The R. sphaeroides RubisCO deletion strain (strain 16) could not grow under photoheterotrophic conditions with malate as electron donor and CO{sub 2} as the electron acceptor; however the R. rub RubisCO deletion strain (strain I-19) could. Over the past year we have sought to physiologically characterize strain 16PHC. We found that, 16PHC exhibited rates of whole-cell CO{sub 2} fixation which were significantly higher than strain 16. Strain 16PHC could not grow photolithoautotrophically in a CO{sub 2} atmosphere; however, CO{sub 2} fixation catalyzed by photoheterotrophically grown 16PHC was repressed by the addition of DMSO. Likewise, we found that cells initially grown in the presence of DMSO could induce the CO{sub 2} fixation system when DMSO was removed. Thus, these results suggested that both PHC and I-19 could be used to study alternative CO{sub 2} fixation reactions and their significance in R. sphaexoides and R. rubrum.

  18. [Regulation of alternative CO[sub 2] fixation pathways in procaryotic and eucaryotic photosynthetic organisms

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The major goal of this project is to determine how microorganisms regulate the assimilation of CO[sup 2] via pathways alternative to the usual Calvin reductive pentose phosphate scheme. In particular, we are interest in the molecular basis for switches in CO[sub 2] metabolic paths. Several earlier studies had indicated that purple nonsulfur photosynthetic bacteria assimilate significant amounts of CO[sub 2] via alternative non-Calvin routes. We have deleted the gene that encodes. RubisCo (ribulose bisphosphate carboxylase/oxygenase) in both the Rhodobacter sphaeroids and Rhodospirillum rubrum. The R. sphaeroides RubisCO deletion strain (strain 16) could not grow under photoheterotrophic conditions with malate as electron donor and CO[sub 2] as the electron acceptor; however the R. rub RubisCO deletion strain (strain I-19) could. Over the past year we have sought to physiologically characterize strain 16PHC. We found that, 16PHC exhibited rates of whole-cell CO[sub 2] fixation which were significantly higher than strain 16. Strain 16PHC could not grow photolithoautotrophically in a CO[sub 2] atmosphere; however, CO[sub 2] fixation catalyzed by photoheterotrophically grown 16PHC was repressed by the addition of DMSO. Likewise, we found that cells initially grown in the presence of DMSO could induce the CO[sub 2] fixation system when DMSO was removed. Thus, these results suggested that both PHC and I-19 could be used to study alternative CO[sub 2] fixation reactions and their significance in R. sphaexoides and R. rubrum.

  19. Ammonium inhibition of nitrogenase activity in Herbaspirillum seropedicae

    Energy Technology Data Exchange (ETDEWEB)

    Fu, H.; Burris, R.H. (Univ. of Wisconsin, Madison (USA))

    1989-06-01

    The effect of oxygen, ammonium ion, and amino acids on nitrogenase activity in the root-associated N{sub 2}-fixing bacterium Herbaspirillum seropedicae was investigated in comparison with Azospirillum spp. and Rhodospirillum rubrum. H. seropedicae is microaerophilic, and its optimal dissolved oxygen level is from 0.04 to 0.2 kPa for dinitrogen fixation but higher when it is supplied with fixed nitrogen. No nitrogenase activity was detected when the dissolved O{sub 2} level corresponded to 4.0 kPa. Ammonium, a product of the nitrogenase reaction, reversible inhibited nitrogenase activity when added to derepressed cell cultures. However, the inhibition of nitrogenase activity was only partial even with concentrations of ammonium chloride as high as 20 mM. Amides such as glutamine and asparagine partially inhibited nitrogenase activity, but glutamate did not. Nitrogenase in crude extracts prepared from ammonium-inhibited cells showed activity as high as in extracts from N{sub 2}-fixing cells. The pattern of the dinitrogenase and the dinitrogenase reductase revealed by the immunoblotting technique did not change upon ammonium chloride treatment of cells in vivo. No homologous sequences were detected with the draT-draG probe from Azospirillum lipoferum. There is no clear evidence that ADP-ribosylation of the dinitrogenase reductase is involved in the ammonium inhibition of H. seropedicae. The uncoupler carbonyl cyanide m-chlorophenylhydrazone decreased the intracellular ATP concentration and inhibited the nitrogenase activity of whole cells. The ATP pool was significantly disturbed when cultures were treated with ammonium in vivo.

  20. Cancer and Toxicology Section

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The Cancer and Toxicology Section is concerned with the investigation of the mechanisms by which chemicals, radiation, and viruses cause the changes broadly identified as cancer. In addition, the study of mechanisms has been extended to include the nontumorigenic effects of various agents associated with fossil energy and fuels. Research in molecular genetics of carcinogenesis focuses largely on the transposon properties of the genomes of retroviruses. The transposon structure of the DNA genomes of endogenous murine N-tropic and B-tropic type C retroviruses is being elucidated, and their chromosomal location mapped in hamster-mouse cell hybrids. A model of the mechanism of retrovirus induction by radiation and chemicals is being developed, and experiments have established that compounds such as hydroxyurea act as inducer. There is the possibility that transposition of sequences of this endogenous virus may be linked to leukemogenesis. Research in regulation of gene expression aims at defining in molecular terms the mechanisms determining expression of specific genes, how these are regulated by hormones, and the events responsible for dysfunction of gene expression in cancer. In corollary work, a library of cloned cDNAs specific for products of genes of special interest to regulation is being developed. Improvement of reversed-phase chromatography as a means of isolating bacterial plasmids and restriction fragments of DNA is underway. Newly developed techniques permit the isolation of supercoiled plasmid DNA directly from bacterial extracts. The technology has been developed recently for the photosynthetic growth of the chemo-autotrophic organism Rhodospirillum rubrum and the enzyme ribulosebisphosphate carboxylase has been produced in quantity

  1. Effect of Sodium Sulfide on Ni-Containing Carbon Monoxide Dehydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Jian Feng; Paul A. Lindahl

    2004-07-28

    OAK-B135 The structure of the active-site C-cluster in CO dehydrogenase from Carboxythermus hydrogenoformans includes a {mu}{sup 2}-sulfide ion bridged to the Ni and unique Fe, while the same cluster in enzymes from Rhodospirillum rubrum (CODH{sub Rr}) and Moorella thermoacetica (CODH{sub Mt}) lack this ion. This difference was investigated by exploring the effects of sodium sulfide on activity and spectral properties. Sulfide partially inhibited the CO oxidation activity of CODH{sub Rr} and generated a lag prior to steady-state. CODH{sub Mt} was inhibited similarly but without a lag. Adding sulfide to CODH{sub Mt} in the C{sub red1} state caused the g{sub av} = 1.82 EPR signal to decline and new features to appear, including one with g = 1.95, 1.85 and (1.70 or 1.62). Removing sulfide caused the g{sub av} = 1.82 signal to reappear and activity to recover. Sulfide did not affect the g{sub av} = 1.86 signal from the C{sub red2} state. A model was developed in which sulfide binds reversibly to C{sub red1}, inhibiting catalysis. Reducing this adduct causes sulfide to dissociate, C{sub red2} to develop, and activity to recover. Using this model, apparent K{sub I} values are 40 {+-} 10 nM for CODH{sub Rr} and 60 {+-} 30 {micro}M for CODH{sub Mt}. Effects of sulfide are analogous to those of other anions, including the substrate hydroxyl group, suggesting that these ions also bridge the Ni and unique Fe. This proposed arrangement raises the possibility that CO binding labilizes the bridging hydroxyl and increases its nucleophilic tendency towards attacking Ni-bound carbonyl.

  2. The evolution of glutathione metabolism in phototrophic microorganisms

    Science.gov (United States)

    Fahey, R. C.; Buschbacher, R. M.; Newton, G. L.

    1987-01-01

    Of the many roles ascribed to glutathione (GSH) the one most clearly established is its role in the protection of higher eucaryotes against oxygen toxicity through destruction of thiol-reactive oxygen byproducts. If this is the primary function of GSH then GSH metabolism should have evolved during or after the evolution of oxygenic photosynthesis. That many bacteria do not produce GSH is consistent with this view. In the present study we have examined the low-molecular-weight thiol composition of a variety of phototrophic microorganisms to ascertain how evolution of GSH production is related to evolution of oxygenic photosynthesis. Cells were extracted in the presence of monobromobimane (mBBr) to convert thiols to fluorescent derivatives, which were analyzed by high-pressure liquid chromatography. Significant levels of GSH were not found in the green bacteria (Chlorobium thiosulfatophilum and Chloroflexus aurantiacus). Substantial levels of GSH were present in the purple bacteria (Chromatium vinosum, Rhodospirillum rubrum, Rhodobacter sphaeroides, and Rhodocyclus gelatinosa), the cyanobacteria [Anacystis nidulans, Microcoleus chthonoplastes S.G., Nostoc muscorum, Oscillatoria amphigranulata, Oscillatoria limnetica, Oscillatoria sp. (Stinky Spring, Utah), Oscillatoria terebriformis, Plectonema boryanum, and Synechococcus lividus], and eucaryotic algae (Chlorella pyrenoidsa, Chlorella vulgaris, Euglena gracilis, Scenedesmus obliquus, and Chlamydomonas reinhardtii). Other thiols measured included cysteine, gamma-glutamylcysteine, thiosulfate, coenzyme A, and sulfide; several unidentified thiols were also detected. Many of the organisms examined also exhibited a marked ability to reduce mBBr to syn-(methyl,methyl)bimane, an ability that was quenched by treatment with 2-pyridyl disulfide or 5,5'-bisdithio-(2-nitrobenzoic acid) prior to reaction with mBBr. These observations indicate the presence of a reducing system capable of electron transfer to mBBr and reduction of

  3. Prokaryotic Diversity in the Rhizosphere of Organic, Intensive, and Transitional Coffee Farms in Brazil.

    Science.gov (United States)

    Caldwell, Adam Collins; Silva, Lívia Carneiro Fidéles; da Silva, Cynthia Canêdo; Ouverney, Cleber Costa

    2015-01-01

    Despite a continuous rise in consumption of coffee over the past 60 years and recent studies showing positive benefits linked to human health, intensive coffee farming practices have been associated with environmental damage, risks to human health, and reductions in biodiversity. In contrast, organic farming has become an increasingly popular alternative, with both environmental and health benefits. This study aimed to characterize and determine the differences in the prokaryotic soil microbiology of three Brazilian coffee farms: one practicing intensive farming, one practicing organic farming, and one undergoing a transition from intensive to organic practices. Soil samples were collected from 20 coffee plant rhizospheres (soil directly influenced by the plant root exudates) and 10 control sites (soil 5 m away from the coffee plantation) at each of the three farms for a total of 90 samples. Profiling of 16S rRNA gene V4 regions revealed high levels of prokaryotic diversity in all three farms, with thousands of species level operational taxonomic units identified in each farm. Additionally, a statistically significant difference was found between each farm's coffee rhizosphere microbiome, as well as between coffee rhizosphere soils and control soils. Two groups of prokaryotes associated with the nitrogen cycle, the archaeal genus Candidatus Nitrososphaera and the bacterial order Rhizobiales were found to be abundant and statistically different in composition between the three farms and in inverse relationship to each other. Many of the nitrogen-fixing genera known to enhance plant growth were found in low numbers (e.g. Rhizobium, Agrobacter, Acetobacter, Rhodospirillum, Azospirillum), but the families in which they belong had some of the highest relative abundance in the dataset, suggesting many new groups may exist in these samples that can be further studied as potential plant growth-promoting bacteria to improve coffee production while diminishing negative

  4. Two Distinct Aerobic Methionine Salvage Pathways Generate Volatile Methanethiol in Rhodopseudomonas palustris

    Science.gov (United States)

    Miller, Anthony R.; North, Justin A.; Wildenthal, John A.

    2018-01-01

    ABSTRACT 5′-Methyl-thioadenosine (MTA) is a dead-end, sulfur-containing metabolite and cellular inhibitor that arises from S-adenosyl-l-methionine-dependent reactions. Recent studies have indicated that there are diverse bacterial methionine salvage pathways (MSPs) for MTA detoxification and sulfur salvage. Here, via a combination of gene deletions and directed metabolite detection studies, we report that under aerobic conditions the facultatively anaerobic bacterium Rhodopseudomonas palustris employs both an MTA-isoprenoid shunt identical to that previously described in Rhodospirillum rubrum and a second novel MSP, both of which generate a methanethiol intermediate. The additional R. palustris aerobic MSP, a dihydroxyacetone phosphate (DHAP)-methanethiol shunt, initially converts MTA to 2-(methylthio)ethanol and DHAP. This is identical to the initial steps of the recently reported anaerobic ethylene-forming MSP, the DHAP-ethylene shunt. The aerobic DHAP-methanethiol shunt then further metabolizes 2-(methylthio)ethanol to methanethiol, which can be directly utilized by O-acetyl-l-homoserine sulfhydrylase to regenerate methionine. This is in contrast to the anaerobic DHAP-ethylene shunt, which metabolizes 2-(methylthio)ethanol to ethylene and an unknown organo-sulfur intermediate, revealing functional diversity in MSPs utilizing a 2-(methylthio)ethanol intermediate. When MTA was fed to aerobically growing cells, the rate of volatile methanethiol release was constant irrespective of the presence of sulfate, suggesting a general housekeeping function for these MSPs up through the methanethiol production step. Methanethiol and dimethyl sulfide (DMS), two of the most important compounds of the global sulfur cycle, appear to arise not only from marine ecosystems but from terrestrial ones as well. These results reveal a possible route by which methanethiol might be biologically produced in soil and freshwater environments. PMID:29636438

  5. Unique double concentric ring organization of light harvesting complexes in Gemmatimonas phototrophica.

    Directory of Open Access Journals (Sweden)

    Marko Dachev

    2017-12-01

    Full Text Available The majority of life on Earth depends directly or indirectly on the sun as a source of energy. The initial step of photosynthesis is facilitated by light-harvesting complexes, which capture and transfer light energy into the reaction centers (RCs. Here, we analyzed the organization of photosynthetic (PS complexes in the bacterium G. phototrophica, which so far is the only phototrophic representative of the bacterial phylum Gemmatimonadetes. The isolated complex has a molecular weight of about 800 ± 100 kDa, which is approximately 2 times larger than the core complex of Rhodospirillum rubrum. The complex contains 62.4 ± 4.7 bacteriochlorophyll (BChl a molecules absorbing in 2 distinct infrared absorption bands with maxima at 816 and 868 nm. Using femtosecond transient absorption spectroscopy, we determined the energy transfer time between these spectral bands as 2 ps. Single particle analyses of the purified complexes showed that they were circular structures with an outer diameter of approximately 18 nm and a thickness of 7 nm. Based on the obtained, we propose that the light-harvesting complexes in G. phototrophica form 2 concentric rings surrounding the type 2 RC. The inner ring (corresponding to the B868 absorption band is composed of 15 subunits and is analogous to the inner light-harvesting complex 1 (LH1 in purple bacteria. The outer ring is composed of 15 more distant BChl dimers with no or slow energy transfer between them, resulting in the B816 absorption band. This completely unique and elegant organization offers good structural stability, as well as high efficiency of light harvesting. Our results reveal that while the PS apparatus of Gemmatimonadetes was acquired via horizontal gene transfer from purple bacteria, it later evolved along its own pathway, devising a new arrangement of its light harvesting complexes.

  6. Electron paramagnetic resonance detection of carotenoid triplet states

    International Nuclear Information System (INIS)

    Frank, H.A.; Bolt, J.D.; deCosta, S.M.; Sauer, K.

    1980-01-01

    Triplet states of carotenoids have been detected by X-band electron paramagnetic resonance (EPR) and are reported here for the first time. The systems in which carotenoid triplets are observed include cells of photosynthetic bacteria, isolated bacteriochlorophyll-protein complexes, and detergent micelles which contain β-carotene. It is well known that if electron transfer is blocked following the initial acceptor in the bacterial photochemical reaction center, back reaction of the primary radical pair produces a bacteriochlorophyll dimer triplet. Previous optical studies have shown that in reaction centers containing carotenoids the bacteriochlorophyll dimer triplet sensitizes the carotenoid triplet. We have observed this carotenoid triplet state by EPR in reaction centers of Rhodopseudomonas sphaeroides, strain 2.4.1 (wild type), which contain the carotenoid spheroidene. The zero-field splitting parameters of the triplet spectrum are /D/ = 0.0290 +- 0.0005 cm -1 and /E/ = 0.0044 +-0.0006 cm -1 , in contrast with the parameters of the bacteriochlorophyll dimer triplet, which are /D/ = 0.0189 +- 0.0004 cm -1 and /E/ = 0.0032 +- 0.004 cm -1 . Bacteriochlorophyll in a light harvesting protein complex from Rps. sphaeroides, wild type, also sensitizes carotenoid triplet formation. In whole cells the EPR spectra vary with temperature between 100 and 10 K. Carotenoid triplets also have been observed by EPR in whole cells of Rps. sphaeroides and cells of Rhodospirillum rubrum which contain the carotenoid spirilloxanthin. Attempts to observe the triplet state EPR spectrum of β-carotene in numerous organic solvents failed. However, in nonionic detergent micelles and in phospholipid bilayer vesicles β-carotene gives a triplet state spectrum with /D/ = 0.0333 +- 0.0010 cm -1 and /E/ = 0.0037 +- 0.0010 cm -1 . 6 figures, 1 table

  7. The influence of quorum sensing in compartment II of the MELiSSA loop

    Science.gov (United States)

    Condori, Sandra; Mastroleo, Felice; Wattiez, Ruddy; Leys, Natalie

    MELiSSA (Micro-Ecological Life Support System Alternative) has been conceived as a 5 compartments microorganisms and higher plants recycling system for long haul space flights. Rhodospirillum rubrum S1H colonizes compartment II. Previous work reported that continuous culture of the bacterium in a photobioreactor could lead to thick biofilm formation, leading to bioreactor arrest. Our aim is to investigate the unknown quorum sensing (QS) system of R. rubrum S1H, specifically under MELiSSA relevant culture conditions meaning light anaerobic (LAN) and using acetate as carbon source. In that purpose an autoinducer synthase gene (Rru_A3396) knockout mutant was constructed by allelic exchange generating strain M68. In addition phenotypic comparison between wild type (WT) and M68 was performed. Results of thin layer chromatography assay where Agrobacterium tumefaciens NT1 have been used as reporter strain showed that WT produces acyl-homoserine lactones (AHLs) from C4 to C12 acyl carbon chain length; however, in M68 no AHLs were detected confirming that gene Rru_A3396 (named rruI) encodes an autoinducer synthase. Interestingly under a low shear or static environment M68 showed cell aggregation similar as reported in a closely related bacterium Rhodobacter sphaeroides (cerI mutant). In contrast to WT, M68 did not form biofilm and exhibited a decreased motility and pigment content. M68 vs wild type transcriptomics results showed that 326 genes were statistically significant differentially expressed. Downregulation of genes related to photosynthesis e.g., reaction center subunits, light harvesting complex and photosynthetic assembly proteins was observed. Similar results were obtained for preliminary proteomic analysis. Results obtained showed that in R. rubrum S1H the AHL-based QS system regulates almost 8% of the genome which is linked to biofilm formation among other biological processes described above. Since strain M68 could not be used in compartment II due to its less

  8. Calculation of the radiative properties of photosynthetic microorganisms

    International Nuclear Information System (INIS)

    Dauchet, Jérémi; Blanco, Stéphane; Cornet, Jean-François; Fournier, Richard

    2015-01-01

    A generic methodological chain for the predictive calculation of the light-scattering and absorption properties of photosynthetic microorganisms within the visible spectrum is presented here. This methodology has been developed in order to provide the radiative properties needed for the analysis of radiative transfer within photobioreactor processes, with a view to enable their optimization for large-scale sustainable production of chemicals for energy and chemistry. It gathers an electromagnetic model of light-particle interaction along with detailed and validated protocols for the determination of input parameters: morphological and structural characteristics of the studied microorganisms as well as their photosynthetic-pigment content. The microorganisms are described as homogeneous equivalent-particles whose shape and size distribution is characterized by image analysis. The imaginary part of their refractive index is obtained thanks to a new and quite extended database of the in vivo absorption spectra of photosynthetic pigments (that is made available to the reader). The real part of the refractive index is then calculated by using the singly subtractive Kramers–Krönig approximation, for which the anchor point is determined with the Bruggeman mixing rule, based on the volume fraction of the microorganism internal-structures and their refractive indices (extracted from a database). Afterwards, the radiative properties are estimated using the Schiff approximation for spheroidal or cylindrical particles, as a first step toward the description of the complexity and diversity of the shapes encountered within the microbial world. Finally, these predictive results are confronted to experimental normal-hemispherical transmittance spectra for validation. This entire procedure is implemented for Rhodospirillum rubrum, Arthrospira platensis and Chlamydomonas reinhardtii, each representative of the main three kinds of photosynthetic microorganisms, i.e. respectively

  9. Calculation of the radiative properties of photosynthetic microorganisms

    Science.gov (United States)

    Dauchet, Jérémi; Blanco, Stéphane; Cornet, Jean-François; Fournier, Richard

    2015-08-01

    A generic methodological chain for the predictive calculation of the light-scattering and absorption properties of photosynthetic microorganisms within the visible spectrum is presented here. This methodology has been developed in order to provide the radiative properties needed for the analysis of radiative transfer within photobioreactor processes, with a view to enable their optimization for large-scale sustainable production of chemicals for energy and chemistry. It gathers an electromagnetic model of light-particle interaction along with detailed and validated protocols for the determination of input parameters: morphological and structural characteristics of the studied microorganisms as well as their photosynthetic-pigment content. The microorganisms are described as homogeneous equivalent-particles whose shape and size distribution is characterized by image analysis. The imaginary part of their refractive index is obtained thanks to a new and quite extended database of the in vivo absorption spectra of photosynthetic pigments (that is made available to the reader). The real part of the refractive index is then calculated by using the singly subtractive Kramers-Krönig approximation, for which the anchor point is determined with the Bruggeman mixing rule, based on the volume fraction of the microorganism internal-structures and their refractive indices (extracted from a database). Afterwards, the radiative properties are estimated using the Schiff approximation for spheroidal or cylindrical particles, as a first step toward the description of the complexity and diversity of the shapes encountered within the microbial world. Finally, these predictive results are confronted to experimental normal-hemispherical transmittance spectra for validation. This entire procedure is implemented for Rhodospirillum rubrum, Arthrospira platensis and Chlamydomonas reinhardtii, each representative of the main three kinds of photosynthetic microorganisms, i.e. respectively

  10. CdTe and CdSe quantum dots: synthesis, characterizations and applications in agriculture

    International Nuclear Information System (INIS)

    Ung, Thi Dieu Thuy; Tran, Thi Kim Chi; Pham, Thu Nga; Nguyen, Quang Liem; Nguyen, Duc Nghia; Dinh, Duy Khang

    2012-01-01

    This paper highlights the results of the whole work including the synthesis of highly luminescent quantum dots (QDs), characterizations and testing applications of them in different kinds of sensors. Concretely, it presents: (i) the successful synthesis of colloidal CdTe and CdSe QDs, their core/shell structures with single- and/or double-shell made by CdS, ZnS or ZnSe/ZnS; (ii) morphology, structural and optical characterizations of the synthesized QDs; and (iii) testing examples of QDs as the fluorescence labels for agricultural-bio-medical objects (for tracing residual pesticide in agricultural products, residual clenbuterol in meat/milk and for detection of H5N1 avian influenza virus in breeding farms). Overall, the results show that the synthesized QDs have very good crystallinity, spherical shape and strongly emit at the desired wavelengths between ∼500 and 700 nm with the luminescence quantum yield (LQY) of 30–85%. These synthesized QDs were used in fabrication of the three testing fluorescence QD-based sensors for the detection of residual pesticides, clenbuterol and H5N1 avian influenza virus. The specific detection of parathion methyl (PM) pesticide at a content as low as 0.05 ppm has been realized with the biosensors made from CdTe/CdS and CdSe/ZnSe/ZnS QDs and the acetylcholinesterase (AChE) enzymes. Fluorescence resonance energy transfer (FRET)-based nanosensors using CdTe/CdS QDs conjugated with 2-amino-8-naphthol-6-sulfonic acid were fabricated that enable detection of diazotized clenbuterol at a content as low as 10 pg ml −1 . For detection of H5N1 avian influenza virus, fluorescence biosensors using CdTe/CdS QDs bound on the surface of chromatophores extracted and purified from bacteria Rhodospirillum rubrum were prepared and characterized. The specific detection of H5N1 avian influenza virus in the range of 3–50 ng μl −1 with a detection limit of 3 ng μL −1 has been performed based on the antibody-antigen recognition. (review)

  11. Atomic force microscopy studies of native photosynthetic membranes.

    Science.gov (United States)

    Sturgis, James N; Tucker, Jaimey D; Olsen, John D; Hunter, C Neil; Niederman, Robert A

    2009-05-05

    In addition to providing the earliest surface images of a native photosynthetic membrane at submolecular resolution, examination of the intracytoplasmic membrane (ICM) of purple bacteria by atomic force microscopy (AFM) has revealed a wide diversity of species-dependent arrangements of closely packed light-harvesting (LH) antennae, capable of fulfilling the basic requirements for efficient collection, transmission, and trapping of radiant energy. A highly organized architecture was observed with fused preparations of the pseudocrystalline ICM of Blastochloris viridis, consiting of hexagonally packed monomeric reaction center light-harvesting 1 (RC-LH1) core complexes. Among strains which also form a peripheral LH2 antenna, images of ICM patches from Rhodobacter sphaeroides exhibited well-ordered, interconnected networks of dimeric RC-LH1 core complexes intercalated by rows of LH2, coexisting with LH2-only domains. Other peripheral antenna-containing species, notably Rhodospirillum photometricum and Rhodopseudomonas palustris, showed a less regular organization, with mixed regions of LH2 and RC-LH1 cores, intermingled with large, paracrystalline domains. The ATP synthase and cytochrome bc(1) complex were not observed in any of these topographs and are thought to be localized in the adjacent cytoplasmic membrane or in inaccessible ICM regions separated from the flat regions imaged by AFM. The AFM images have served as a basis for atomic-resolution modeling of the ICM vesicle surface, as well as forces driving segregation of photosynthetic complexes into distinct domains. Docking of atomic-resolution molecular structures into AFM topographs of Rsp. photometricum membranes generated precise in situ structural models of the core complex surrounded by LH2 rings and a region of tightly packed LH2 complexes. A similar approach has generated a model of the highly curved LH2-only membranes of Rba. sphaeroides which predicts that sufficient space exists between LH2 complexes

  12. Evolution of vacuolar proton pyrophosphatase domains and volutin granules: clues into the early evolutionary origin of the acidocalcisome

    Directory of Open Access Journals (Sweden)

    Valerio Alejandro

    2011-10-01

    Full Text Available Abstract Background Volutin granules appear to be universally distributed and are morphologically and chemically identical to acidocalcisomes, which are electron-dense granular organelles rich in calcium and phosphate, whose functions include storage of phosphorus and various metal ions, metabolism of polyphosphate, maintenance of intracellular pH, osmoregulation and calcium homeostasis. Prokaryotes are thought to differ from eukaryotes in that they lack membrane-bounded organelles. However, it has been demonstrated that as in acidocalcisomes, the calcium and polyphosphate-rich intracellular "volutin granules (polyphosphate bodies" in two bacterial species, Agrobacterium tumefaciens, and Rhodospirillum rubrum, are membrane bound and that the vacuolar proton-translocating pyrophosphatases (V-H+PPases are present in their surrounding membranes. Volutin granules and acidocalcisomes have been found in organisms as diverse as bacteria and humans. Results Here, we show volutin granules also occur in Archaea and are, therefore, present in the three superkingdoms of life (Archaea, Bacteria and Eukarya. Molecular analyses of V-H+PPase pumps, which acidify the acidocalcisome lumen and are diagnostic proteins of the organelle, also reveal the presence of this enzyme in all three superkingdoms suggesting it is ancient and universal. Since V-H+PPase sequences contained limited phylogenetic signal to fully resolve the ancestral nodes of the tree, we investigated the divergence of protein domains in the V-H+PPase molecules. Using Protein family (Pfam database, we found a domain in the protein, PF03030. The domain is shared by 31 species in Eukarya, 231 in Bacteria, and 17 in Archaea. The universal distribution of the V-H+PPase PF03030 domain, which is associated with the V-H+PPase function, suggests the domain and the enzyme were already present in the Last Universal Common Ancestor (LUCA. Conclusion The importance of the V-H+PPase function and the