WorldWideScience

Sample records for rhodococcus erythropolis upv-1

  1. Rhodococcus erythropolis MTHt3 biotransforms ergopeptines to lysergic acid

    OpenAIRE

    Thamhesl, Michaela; Apfelthaler, Elisabeth; Schwartz-Zimmermann, Heidi Elisabeth; Kunz-Vekiru, Elisavet; Krska, Rudolf; Kneifel, Wolfgang; Schatzmayr, Gerd; Moll, Wulf-Dieter

    2015-01-01

    Background Ergopeptines are a predominant class of ergot alkaloids produced by tall fescue grass endophyte Neotyphodium coenophialum or cereal pathogen Claviceps purpurea. The vasoconstrictive activity of ergopeptines makes them toxic for mammals, and they can be a problem in animal husbandry. Results We isolated an ergopeptine degrading bacterial strain, MTHt3, and classified it, based on its 16S rDNA sequence, as a strain of Rhodococcus erythropolis (Nocardiaceae, Actinobacteria). For strai...

  2. Rhodococcus erythropolis MTHt3 biotransforms ergopeptines to lysergic acid.

    Science.gov (United States)

    Thamhesl, Michaela; Apfelthaler, Elisabeth; Schwartz-Zimmermann, Heidi Elisabeth; Kunz-Vekiru, Elisavet; Krska, Rudolf; Kneifel, Wolfgang; Schatzmayr, Gerd; Moll, Wulf-Dieter

    2015-03-28

    Ergopeptines are a predominant class of ergot alkaloids produced by tall fescue grass endophyte Neotyphodium coenophialum or cereal pathogen Claviceps purpurea. The vasoconstrictive activity of ergopeptines makes them toxic for mammals, and they can be a problem in animal husbandry. We isolated an ergopeptine degrading bacterial strain, MTHt3, and classified it, based on its 16S rDNA sequence, as a strain of Rhodococcus erythropolis (Nocardiaceae, Actinobacteria). For strain isolation, mixed microbial cultures were obtained from artificially ergot alkaloid-enriched soil, and provided with the ergopeptine ergotamine in mineral medium for enrichment. Individual colonies derived from such mixed cultures were screened for ergotamine degradation by high performance liquid chromatography and fluorescence detection. R. erythropolis MTHt3 converted ergotamine to ergine (lysergic acid amide) and further to lysergic acid, which accumulated as an end product. No other tested R. erythropolis strain degraded ergotamine. R. erythropolis MTHt3 degraded all ergopeptines found in an ergot extract, namely ergotamine, ergovaline, ergocristine, ergocryptine, ergocornine, and ergosine, but the simpler lysergic acid derivatives agroclavine, chanoclavine, and ergometrine were not degraded. Temperature and pH dependence of ergotamine and ergine bioconversion activity was different for the two reactions. Degradation of ergopeptines to ergine is a previously unknown microbial reaction. The reaction end product, lysergic acid, has no or much lower vasoconstrictive activity than ergopeptines. If the genes encoding enzymes for ergopeptine catabolism can be cloned and expressed in recombinant hosts, application of ergopeptine and ergine degrading enzymes for reduction of toxicity of ergot alkaloid-contaminated animal feed may be feasible.

  3. Bio desulfurization of a system containing synthetic fuel by rhodococcus erythropolis ATCC 4277; Remocao de compostos sulfurosos de sitema bifasico contendo combustivel sintetico por Rhodococcus erythropolis ATCC 4277

    Energy Technology Data Exchange (ETDEWEB)

    Maass, Danielle; Souza, Antonio Augusto Ulson de; Souza, Selene Maria de Arruda Guelli Ulson de [Universidade Federal de Santa Catarina (UFSC), SC (Brazil)

    2012-07-01

    For decades the burning of fossil fuels released a lot of pollutants in the atmosphere. Among the most harmful is sulfur dioxide (SO{sub 2}), which reacts with the moisture in the air and turns into sulfuric acid, being the main cause of acid rain. Acid rain is very harmful to animal and plant kingdoms; accelerates the corrosion's processes of buildings and monuments, and causes serious health problems for humans. As a result, many countries have reformed their legislation to require the sale of fuels with very low sulfur content. The existing processes of desulfurization are not capable of removing sulfur so low. Therefore, there has developed a new process called bio desulfurization. In this process, the degradation of sulfur occurs through the action of microorganisms that act as catalysts. The bacterium Rhodococcus erythropolis has emerged as one of the most promising for bio desulfurization because it removes the sulfur without breaking the benzene rings, thereby maintaining the potential energy of the same. Using dibenzothiophene as a model of sulfur compounds, the products of the bio desulfurization process are 2- hydroxybiphenyl and sulfate. In this study we sought to examine the desulfurizing capacity of national Rhodococcus erythropolis strain ATCC4277 in a batch reactor using concentrations of organic phase (n-dodecane) of 20 and 80% (v/v). Rhodococcus erythropolis ATCC4277 was capable of degrading DBT in 93.3 and 98.0% in the presence of 20 and 80% (v/v) of synthetic fuel, respectively. (author)

  4. Analysis of catRABC operon for catechol degradation from phenol-degrading Rhodococcus erythropolis

    Czech Academy of Sciences Publication Activity Database

    Veselý, Martin; Knoppová, Monika; Nešvera, Jan; Pátek, Miroslav

    2007-01-01

    Roč. 76, - (2007), s. 159-168 ISSN 0175-7598 R&D Projects: GA ČR GA526/04/0542 Institutional research plan: CEZ:AV0Z50200510 Keywords : rhodococcus erythropolis * catrabc operon * catechol degradation Subject RIV: EE - Microbiology, Virology Impact factor: 2.475, year: 2007

  5. Biodegradation of phenol using recombinant plasmid-carrying Rhodococcus erythropolis strains

    Czech Academy of Sciences Publication Activity Database

    Zídková, L.; Szököl, Juraj; Rucká, Lenka; Pátek, Miroslav; Nešvera, Jan

    2013-01-01

    Roč. 84, OCT 2013 (2013), s. 179-184 ISSN 0964-8305 R&D Projects: GA MŠk 2B08062 Institutional research plan: CEZ:AV0Z50200510 Keywords : Rhodococcus erythropolis * Phenol degradation * Wastewater Subject RIV: EE - Microbiology, Virology Impact factor: 2.235, year: 2013

  6. Genome Sequence of Rhodococcus erythropolis Strain CCM2595, a Phenol Derivative-Degrading Bacterium

    Czech Academy of Sciences Publication Activity Database

    Strnad, Hynek; Pátek, Miroslav; Fousek, Jan; Szököl, Juraj; Ulbrich, P.; Nešvera, Jan; Pačes, Václav; Vlček, Čestmír

    2014-01-01

    Roč. 2, č. 2 (2014) ISSN 2169-8287 R&D Projects: GA ČR GA13-28283S; GA MŠk 2B08062 Institutional support: RVO:68378050 ; RVO:61388971 Keywords : Rhodococcus erythropolis * genome sequence Subject RIV: EB - Genetics ; Molecular Biology

  7. Rhodococcus erythropolis DCL14 Contains a Novel Degradation Pathway for Limonene

    OpenAIRE

    van der Werf, Mariët J.; Swarts, Henk J.; de Bont, Jan A. M.

    1999-01-01

    Strain DCL14, which is able to grow on limonene as a sole source of carbon and energy, was isolated from a freshwater sediment sample. This organism was identified as a strain of Rhodococcus erythropolis by chemotaxonomic and genetic studies. R. erythropolis DCL14 also assimilated the terpenes limonene-1,2-epoxide, limonene-1,2-diol, carveol, carvone, and (−)-menthol, while perillyl alcohol was not utilized as a carbon and energy source. Induction tests with cells grown on limonene revealed t...

  8. Biosurfactant Production by Rhodococcus Erythropolis and its Application to Oil Removal

    OpenAIRE

    Pacheco, Graziela Jardim; Ciapina, Elisa Mara Prioli; Gomes, Edelvio de Barros; Junior, Nei Pereira

    2010-01-01

    The influence of different nutrients on biosurfactant production by Rhodococcus erythropolis was investigated. Increasing the concentration of phosphate buffer from 30 up through 150 mmol/L stimulated an increase in biosurfactant production, which reached a maximum concentration of 285 mg/L in shaken flasks. Statistical analysis showed that glycerol, NaNO3, MgSO4 and yeast extract had significant effects on production. The results were confirmed in a batchwise bioreactor, and semi-growth-asso...

  9. Biodegradation waste of the stations service by Rhodococcus erythropolis ohp-al-gp

    International Nuclear Information System (INIS)

    Pucci, Oscar Hector; Acuna, Adrian Javier; Pucci, Graciela Natalia

    2013-01-01

    The strain Rhodococcus erythropolis ohp-al-gp was isolated from turbine oil contaminated soil from northern Santa Cruz province, Argentina. Because of its potential in bioremediation, the aim was to know the abilities for degradation of pure compounds and mixtures of hydrocarbons, as well as degradation in the presence and absence of diesel nitrogen measured by gas chromatography. The strain possesses the ability to use diesel, kerosene, lubricating oil, pristane, hexane, heptane, octane, pentadecane and hexadecane. R. erythropolis ohp-al-gp has excellent potential for bioremediation of hydrocarbons, which are conflictive as lubricating oils, their potential use in removing mud from washing engines or gas stations would be its most important application. The degradation rate in optimal culture conditions, gives it an additional advantage. It also has a low degradation in the absence of nitrogen, a frequent limiting factor in Patagonian soils.

  10. Biotransformation of nitriles to amides using soluble and immobilized nitrile hydratase from Rhodococcus erythropolis A4

    Czech Academy of Sciences Publication Activity Database

    Kubáč, David; Kaplan, Ondřej; Elišáková, Veronika; Pátek, Miroslav; Vejvoda, Vojtěch; Slámová, Kristýna; Tóthová, A.; Lemaire, M.; Gallienne, E.; Lutz-Wahl, S.; Fischer, L.; Kuzma, Marek; Pelantová, Helena; van Pelt, S.; Bolte, J.; Křen, Vladimír; Martínková, Ludmila

    2008-01-01

    Roč. 50, 2-4 (2008), s. 107-113 ISSN 1381-1177 R&D Projects: GA ČR GA203/05/2267; GA MŠk(CZ) LC06010; GA MŠk OC 171 Grant - others:XE(XE) ESF COST D25/0002/02; CZ(CZ) D10-CZ25/06-07; CZ(CZ) D-25 Institutional research plan: CEZ:AV0Z50200510 Keywords : rhodococcus erythropolis * nitrile hydratase * amidase Subject RIV: EE - Microbiology, Virology Impact factor: 2.015, year: 2008

  11. Mathematic Modeling for Optimum Conditions on Aflatoxin B1 Degradation by the Aerobic Bacterium Rhodococcus erythropolis

    Directory of Open Access Journals (Sweden)

    Jiujiang Yu

    2012-11-01

    Full Text Available Response surface methodology was employed to optimize the degradation conditions of AFB1 by Rhodococcus erythropolis in liquid culture. The most important factors that influence the degradation, as identified by a two-level Plackett-Burman design with six variables, were temperature, pH, liquid volume, inoculum size, agitation speed and incubation time. Central composite design (CCD and response surface analysis were used to further investigate the interactions between these variables and to optimize the degradation efficiency of R. erythropolis based on a second-order model. The results demonstrated that the optimal parameters were: temperature, 23.2 °C; pH, 7.17; liquid volume, 24.6 mL in 100-mL flask; inoculum size, 10%; agitation speed, 180 rpm; and incubation time, 81.9 h. Under these conditions, the degradation efficiency of R. erythropolis could reach 95.8% in liquid culture, which was increased by about three times as compared to non-optimized conditions. The result by mathematic modeling has great potential for aflatoxin removal in industrial fermentation such as in food processing and ethanol production.

  12. RP-HPLC/MS-APCI Analysis of Branched Chain TAG Prepared by Precursor-Directed Biosynthesis with Rhodococcus erythropolis

    Czech Academy of Sciences Publication Activity Database

    Schreiberová, O.; Krulikovská, T.; Sigler, Karel; Čejková, A.; Řezanka, Tomáš

    2010-01-01

    Roč. 45, č. 8 (2010), s. 743-756 ISSN 0024-4201 R&D Projects: GA MŠk 2B08062 Institutional research plan: CEZ:AV0Z50200510 Keywords : Rhodococcus erythropolis * RP-HPLC/MS-APCI * Branched chain triacylglycerols Subject RIV: EE - Microbiology, Virology Impact factor: 2.151, year: 2010

  13. Genetic and biochemical characterization of a novel monoterpene epsilon-lactone hydrolase from Rhodococcus erythropolis DCL14

    NARCIS (Netherlands)

    Vlugt-Bergmans, van der C.J.B.; Werf, van der M.J.

    2001-01-01

    A monoterpene ε-lactone hydrolase (MLH) from Rhodococcus erythropolis DCL14, catalyzing the ring opening of lactones which are formed during degradation of several monocyclic monoterpenes, including carvone and menthol, was purified to apparent homogeneity. It is a monomeric enzyme of 31 kDa that is

  14. Genetic and biochemical characterization of a novel monoterpene e-lactone hydrolase from Rhodococcus erythropolis DCL14

    NARCIS (Netherlands)

    Vlugt-Bergmans, C.J.B. van der; Werf, M.J. van der

    2001-01-01

    A monoterpene ε-lactone hydrolase (MLH) from Rhodococcus erythropolis DCL14, catalyzing the ring opening of lactones which are formed during degradation of several monocyclic monoterpenes, including carvone and menthol, was purified to apparent homogeneity. It is a monomeric enzyme of 31 kDa that is

  15. Expression control of nitrile hydratase and amidase genes in Rhodococcus erythropolis and substrate specificities of the enzymes

    Czech Academy of Sciences Publication Activity Database

    Rucká, Lenka; Volkova, Olga; Pavlík, Adam; Kaplan, Ondřej; Kracík, M.; Nešvera, Jan; Martínková, Ludmila; Pátek, Miroslav

    2014-01-01

    Roč. 105, č. 6 (2014), s. 1179-1190 ISSN 0003-6072 R&D Projects: GA MŠk(CZ) LC06010; GA ČR(CZ) GAP504/11/0394 Institutional support: RVO:61388971 Keywords : Rhodococcus erythropolis * Amidase * Nitrile hydratase Subject RIV: EE - Microbiology, Virology Impact factor: 1.806, year: 2014

  16. Biosurfactant production by Rhodococcus erythropolis and its application to oil removal

    Directory of Open Access Journals (Sweden)

    Graziela Jardim Pacheco

    2010-10-01

    Full Text Available The influence of different nutrients on biosurfactant production by Rhodococcus erythropolis was investigated. Increasing the concentration of phosphate buffer from 30 up through 150 mmol/L stimulated an increase in biosurfactant production, which reached a maximum concentration of 285 mg/L in shaken flasks. Statistical analysis showed that glycerol, NaNO3,MgSO4 and yeast extract had significant effects on production. The results were confirmed in a batchwise bioreactor, and semi-growth-associated production was detected. Reduction in the surface tension, which indicates the presence of biosurfactant, reached a value of 38 mN/m at the end of 35 hours. Use of the produced biosurfactant for washing crude oil-contaminated soil showed that 2 and 4 times the critical micellar concentration (CMC were able to remove 97 and 99% of the oil, respectively, after 1 month of impregnation.

  17. Characterization of biosurfactants produced by the oil-degrading bacterium Rhodococcus erythropolis S67 at low temperature.

    Science.gov (United States)

    Luong, T M; Ponamoreva, O N; Nechaeva, I A; Petrikov, K V; Delegan, Ya A; Surin, A K; Linklater, D; Filonov, A E

    2018-01-04

    Production of trehalolipid biosurfactants by Rhodococcus erythropolis S67 depending on the growth temperature was studied. R. erythropolis S67 produced glycolipid biosurfactants such as 2,3,4-succinoyl-octanoyl-decanoyl-2'-decanoyl trehalose and 2,3,4-succinoyl-dioctanoyl-2'-decanoyl trehalose during the growth in n-hexadecane medium at 26 and 10 °C, despite the different aggregate state of the hydrophobic substrate at low temperature. The surface tension of culture medium was found being reduced from 72 to 27 and 45 mN m -1 , respectively. Production of trehalolipid biosurfactants by R. erythropolis S67 at low temperature could be useful for the biodegradation of petroleum hydrocarbons at low temperatures by enhancing the bioremediation performance in cold regions.

  18. Rhodococcus erythropolis DCL14 Contains a Novel Degradation Pathway for Limonene

    Science.gov (United States)

    van der Werf, Mariët J.; Swarts, Henk J.; de Bont, Jan A. M.

    1999-01-01

    Strain DCL14, which is able to grow on limonene as a sole source of carbon and energy, was isolated from a freshwater sediment sample. This organism was identified as a strain of Rhodococcus erythropolis by chemotaxonomic and genetic studies. R. erythropolis DCL14 also assimilated the terpenes limonene-1,2-epoxide, limonene-1,2-diol, carveol, carvone, and (−)-menthol, while perillyl alcohol was not utilized as a carbon and energy source. Induction tests with cells grown on limonene revealed that the oxygen consumption rates with limonene-1,2-epoxide, limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and carveol were high. Limonene-induced cells of R. erythropolis DCL14 contained the following four novel enzymatic activities involved in the limonene degradation pathway of this microorganism: a flavin adenine dinucleotide- and NADH-dependent limonene 1,2-monooxygenase activity, a cofactor-independent limonene-1,2-epoxide hydrolase activity, a dichlorophenolindophenol-dependent limonene-1,2-diol dehydrogenase activity, and an NADPH-dependent 1-hydroxy-2-oxolimonene 1,2-monooxygenase activity. Product accumulation studies showed that (1S,2S,4R)-limonene-1,2-diol, (1S,4R)-1-hydroxy-2-oxolimonene, and (3R)-3-isopropenyl-6-oxoheptanoate were intermediates in the (4R)-limonene degradation pathway. The opposite enantiomers [(1R,2R,4S)-limonene-1,2-diol, (1R,4S)-1-hydroxy-2-oxolimonene, and (3S)-3-isopropenyl-6-oxoheptanoate] were found in the (4S)-limonene degradation pathway, while accumulation of (1R,2S,4S)-limonene-1,2-diol from (4S)-limonene was also observed. These results show that R. erythropolis DCL14 metabolizes both enantiomers of limonene via a novel degradation pathway that starts with epoxidation at the 1,2 double bond forming limonene-1,2-epoxide. This epoxide is subsequently converted to limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and 7-hydroxy-4-isopropenyl-7-methyl-2-oxo-oxepanone. This lactone spontaneously rearranges to form 3-isopropenyl-6-oxoheptanoate. In

  19. Expression control of nitrile hydratase and amidase genes in Rhodococcus erythropolis and substrate specificities of the enzymes.

    Science.gov (United States)

    Rucká, Lenka; Volkova, Olga; Pavlík, Adam; Kaplan, Ondřej; Kracík, Martin; Nešvera, Jan; Martínková, Ludmila; Pátek, Miroslav

    2014-06-01

    Bacterial amidases and nitrile hydratases can be used for the synthesis of various intermediates and products in the chemical and pharmaceutical industries and for the bioremediation of toxic pollutants. The aim of this study was to analyze the expression of the amidase and nitrile hydratase genes of Rhodococcus erythropolis and test the stereospecific nitrile hydratase and amidase activities on chiral cyanohydrins. The nucleotide sequences of the gene clusters containing the oxd (aldoxime dehydratase), ami (amidase), nha1, nha2 (subunits of the nitrile hydratase), nhr1, nhr2, nhr3 and nhr4 (putative regulatory proteins) genes of two R. erythropolis strains, A4 and CCM2595, were determined. All genes of both of the clusters are transcribed in the same direction. RT-PCR analysis, primer extension and promoter fusions with the gfp reporter gene showed that the ami, nha1 and nha2 genes of R. erythropolis A4 form an operon transcribed from the Pami promoter and an internal Pnha promoter. The activity of Pami was found to be weakly induced when the cells grew in the presence of acetonitrile, whereas the Pnha promoter was moderately induced by both the acetonitrile or acetamide used instead of the inorganic nitrogen source. However, R. erythropolis A4 cells showed no increase in amidase and nitrile hydratase activities in the presence of acetamide or acetonitrile in the medium. R. erythropolis A4 nitrile hydratase and amidase were found to be effective at hydrolysing cyanohydrins and 2-hydroxyamides, respectively.

  20. Improvement of Biodesulfurization Rate of Alginate Immobilized Rhodococcus erythropolis R1.

    Science.gov (United States)

    Derikvand, Peyman; Etemadifar, Zahra

    2014-03-01

    Sulfur oxides released from the burning of oil causes severe environmental pollution. The sulfur can be removed via the 4S pathway in biodesulfurization (BDS). Immobilization approaches have been developed to prevent cell contamination of oil during the BDS process. The encapsulation of Rhodococcus erythropolis R1 in calcium alginate beads was studied in order to enhance conversion of dibenzothiophene (DBT) to 2-hydroxy biphenyl (2-HBP) as the final product. Also the effect of different factors on the BDS process was investigated. Calcium alginate capsules were prepared using peristaltic pumps with different needle sizes to control the beads sizes. Scanning electron microscopy and flow cytometry methods were used to study the distribution and viability of encapsulated cells, respectively. Two non-ionic surfactants and also nano Ƴ-Al2O3were used with the ratio of 0.5% (v/v) and 1:5 (v/v) respectively to investigate their BDS efficiency. In addition, the effect of different bead sizes and different concentrations of sodium alginate in BDS activity was studied. The 2% (w/v) sodium alginate beads with 1.5mm size were found to be the optimum for beads stability and efficient 2-HBP production. The viability of encapsulated cells decreased by 12% after 20 h of desulfurization, compared to free cells. Adding the non-ionic surfactants markedly enhanced the rate of BDS, because of increasing mass transfer of DBT to the gel matrix. In addition, Span 80 was more effective than Tween 80. The nanoƳ-Al2O3 particles could increase BDS rate by up to two-folds greater than that of the control beads. The nano Ƴ-Al2O3 can improve the immobilized biocatalyst for excellent efficiency of DBT desulfurization. Also the BDS activity can be enhanced by setting the other explained factors at optimum levels.

  1. Improvement of Biodesulfurization Rate of Alginate Immobilized Rhodococcus erythropolis R1

    Science.gov (United States)

    Derikvand, Peyman; Etemadifar, Zahra

    2014-01-01

    Background: Sulfur oxides released from the burning of oil causes severe environmental pollution. The sulfur can be removed via the 4S pathway in biodesulfurization (BDS). Immobilization approaches have been developed to prevent cell contamination of oil during the BDS process. Objectives: The encapsulation of Rhodococcus erythropolis R1 in calcium alginate beads was studied in order to enhance conversion of dibenzothiophene (DBT) to 2-hydroxy biphenyl (2-HBP) as the final product. Also the effect of different factors on the BDS process was investigated. Materials and Methods: Calcium alginate capsules were prepared using peristaltic pumps with different needle sizes to control the beads sizes. Scanning electron microscopy and flow cytometry methods were used to study the distribution and viability of encapsulated cells, respectively. Two non-ionic surfactants and also nano Ƴ-Al2O3were used with the ratio of 0.5% (v/v) and 1:5 (v/v) respectively to investigate their BDS efficiency. In addition, the effect of different bead sizes and different concentrations of sodium alginate in BDS activity was studied. Results: The 2% (w/v) sodium alginate beads with 1.5mm size were found to be the optimum for beads stability and efficient 2-HBP production. The viability of encapsulated cells decreased by 12% after 20 h of desulfurization, compared to free cells. Adding the non-ionic surfactants markedly enhanced the rate of BDS, because of increasing mass transfer of DBT to the gel matrix. In addition, Span 80 was more effective than Tween 80. The nanoƳ-Al2O3 particles could increase BDS rate by up to two-folds greater than that of the control beads. Conclusions: The nano Ƴ-Al2O3 can improve the immobilized biocatalyst for excellent efficiency of DBT desulfurization. Also the BDS activity can be enhanced by setting the other explained factors at optimum levels. PMID:25147685

  2. Rhodococcus erythropolis and Its γ-Lactone Catabolic Pathway: An Unusual Biocontrol System That Disrupts Pathogen Quorum Sensing Communication

    Directory of Open Access Journals (Sweden)

    Xavier Latour

    2013-12-01

    Full Text Available Rhodococcus erythropolis is an environmental Gram-positive Actinobacterium with a versatile metabolism involved in various bioconversions and degradations. Rhodococci are best known for their great potential in numerous decontamination and industrial processes. However, they can also prevent plant disease by disrupting quorum sensing-based communication of Gram-negative soft-rot bacteria, by degrading N-acyl-homoserine lactone signaling molecules. Such biocontrol activity results partly from the action of the γ-lactone catabolic pathway. This pathway is responsible for cleaving the lactone bond of a wide range of compounds comprising a γ-butyrolactone ring coupled to an alkyl or acyl chain. The aliphatic products of this hydrolysis are then activated and enter fatty acid metabolism. This short pathway is controlled by the presence of the γ-lactone, presumably sensed by a TetR-like transcriptional regulator, rather than the presence of the pathogen or the plant-host in the environment of the Rhodococci. Both the density and biocontrol activity of R. erythropolis may be boosted in crop systems. Treatment with a cheap γ-lactone stimulator, for example, the food flavoring γ-caprolactone, induces the activity in the biocontrol agent, R. erythropolis, of the pathway degrading signaling molecules; such treatments thus promote plant protection.

  3. In Planta Biocontrol of Pectobacterium atrosepticum by Rhodococcus erythropolis Involves Silencing of Pathogen Communication by the Rhodococcal Gamma-Lactone Catabolic Pathway.

    Directory of Open Access Journals (Sweden)

    Corinne Barbey

    Full Text Available The virulence of numerous Gram-negative bacteria is under the control of a quorum sensing process based on synthesis and perception of N-acyl homoserine lactones. Rhodococcus erythropolis, a Gram-positive bacterium, has recently been proposed as a biocontrol agent for plant protection against soft-rot bacteria, including Pectobacterium. Here, we show that the γ-lactone catabolic pathway of R. erythropolis disrupts Pectobacterium communication and prevents plant soft-rot. We report the first characterization and demonstration of N-acyl homoserine lactone quenching in planta. In particular, we describe the transcription of the R. erythropolis lactonase gene, encoding the key enzyme of this pathway, and the subsequent lactone breakdown. The role of this catabolic pathway in biocontrol activity was confirmed by deletion of the lactonase gene from R. erythropolis and also its heterologous expression in Escherichia coli. The γ-lactone catabolic pathway is induced by pathogen communication rather than by pathogen invasion. This is thus a novel and unusual biocontrol pathway, differing from those previously described as protecting plants from phytopathogens. These findings also suggest the existence of an additional pathway contributing to plant protection.

  4. Electrical resistivity tomography to monitor enhanced biodegradation of hydrocarbons with Rhodococcus erythropolis T902.1 at a pilot scale

    Science.gov (United States)

    Masy, Thibaut; Caterina, David; Tromme, Olivier; Lavigne, Benoît; Thonart, Philippe; Hiligsmann, Serge; Nguyen, Frédéric

    2016-01-01

    Petroleum hydrocarbons (HC) represent the most widespread contaminants and in-situ bioremediation remains a competitive treatment in terms of cost and environmental concerns. However, the efficiency of such a technique (by biostimulation or bioaugmentation) strongly depends on the environment affected and is still difficult to predict a priori. In order to overcome these uncertainties, Electrical Resistivity Tomography (ERT) appears as a valuable non-invasive tool to detect soil heterogeneities and to monitor biodegradation. The main objective of this study was to isolate an electrical signal linked to an enhanced bacterial activity with ERT, in an aged HC-contaminated clay loam soil. To achieve this, a pilot tank was built to mimic field conditions. Compared to a first insufficient biostimulation phase, bioaugmentation with Rhodococcus erythropolis T902.1 led to a HC depletion of almost 80% (6900 to 1600 ppm) in 3 months in the center of the contaminated zone, where pollutants were less bioavailable. In the meantime, lithological heterogeneities and microbial activities (growth and biosurfactant production) were successively discriminated by ERT images. In the future, this cost-effective technique should be more and more transferred to the field in order to monitor biodegradation processes and assist in selecting the most appropriate remediation technique.

  5. Improvement of phytoremediation of an aged petroleum hydrocarbon-contaminated soil by Rhodococcus erythropolis CD 106 strain.

    Science.gov (United States)

    Płociniczak, Tomasz; Fic, Ewa; Pacwa-Płociniczak, Magdalena; Pawlik, Małgorzata; Piotrowska-Seget, Zofia

    2017-07-03

    The aim of this study was to assess the impact of soil inoculation with the Rhodococcus erythropolis CD 106 strain on the effectiveness of the phytoremediation of an aged hydrocarbon-contaminated [approx. 1% total petroleum hydrocarbon (TPH)] soil using ryegrass (Lolium perenne). The introduction of CD 106 into the soil significantly increased the biomass of ryegrass and the removal of hydrocarbons in planted soil. The fresh weight of the shoots and roots of plants inoculated with CD 106 increased by 49% and 30%, respectively. After 210 days of the experiment, the concentration of TPH was reduced by 31.2%, whereas in the planted, non-inoculated soil, it was reduced by 16.8%. By contrast, the concentration of petroleum hydrocarbon decreased by 18.7% in non-planted soil bioaugmented with the CD 106 strain. The rifampicin-resistant CD 106 strain survived after inoculation into soil and was detected in the soil during the entire experimental period, but the number of CD 106 cells decreased constantly during the enhanced phytoremediation and bioaugmentation experiments. The plant growth-promoting and hydrocarbon-degrading properties of CD 106, which are connected with its long-term survival and limited impact on autochthonous microflora, make this strain a good candidate for improving the phytoremediation efficiency of soil contaminated with hydrocarbons.

  6. Electrical resistivity tomography to monitor enhanced biodegradation of hydrocarbons with Rhodococcus erythropolis T902.1 at a pilot scale.

    Science.gov (United States)

    Masy, Thibaut; Caterina, David; Tromme, Olivier; Lavigne, Benoît; Thonart, Philippe; Hiligsmann, Serge; Nguyen, Frédéric

    2016-01-01

    Petroleum hydrocarbons (HC) represent the most widespread contaminants and in-situ bioremediation remains a competitive treatment in terms of cost and environmental concerns. However, the efficiency of such a technique (by biostimulation or bioaugmentation) strongly depends on the environment affected and is still difficult to predict a priori. In order to overcome these uncertainties, Electrical Resistivity Tomography (ERT) appears as a valuable non-invasive tool to detect soil heterogeneities and to monitor biodegradation. The main objective of this study was to isolate an electrical signal linked to an enhanced bacterial activity with ERT, in an aged HC-contaminated clay loam soil. To achieve this, a pilot tank was built to mimic field conditions. Compared to a first insufficient biostimulation phase, bioaugmentation with Rhodococcus erythropolis T902.1 led to a HC depletion of almost 80% (6900 to 1600ppm) in 3months in the center of the contaminated zone, where pollutants were less bioavailable. In the meantime, lithological heterogeneities and microbial activities (growth and biosurfactant production) were successively discriminated by ERT images. In the future, this cost-effective technique should be more and more transferred to the field in order to monitor biodegradation processes and assist in selecting the most appropriate remediation technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Genome and Proteome Analysis of Rhodococcus erythropolis MI2: Elucidation of the 4,4´-Dithiodibutyric Acid Catabolism

    Science.gov (United States)

    Khairy, Heba; Meinert, Christina; Wübbeler, Jan Hendrik; Poehlein, Anja; Daniel, Rolf; Voigt, Birgit; Riedel, Katharina; Steinbüchel, Alexander

    2016-01-01

    Rhodococcus erythropolis MI2 has the extraordinary ability to utilize the xenobiotic 4,4´-dithiodibutyric acid (DTDB). Cleavage of DTDB by the disulfide-reductase Nox, which is the only verified enzyme involved in DTDB-degradation, raised 4-mercaptobutyric acid (4MB). 4MB could act as building block of a novel polythioester with unknown properties. To completely unravel the catabolism of DTDB, the genome of R. erythropolis MI2 was sequenced, and subsequently the proteome was analyzed. The draft genome sequence consists of approximately 7.2 Mbp with an overall G+C content of 62.25% and 6,859 predicted protein-encoding genes. The genome of strain MI2 is composed of three replicons: one chromosome and two megaplasmids with sizes of 6.45, 0.4 and 0.35 Mbp, respectively. When cells of strain MI2 were cultivated with DTDB as sole carbon source and compared to cells grown with succinate, several interesting proteins with significantly higher expression levels were identified using 2D-PAGE and MALDI-TOF mass spectrometry. A putative luciferase-like monooxygenase-class F420-dependent oxidoreductase (RERY_05640), which is encoded by one of the 126 monooxygenase-encoding genes of the MI2-genome, showed a 3-fold increased expression level. This monooxygenase could oxidize the intermediate 4MB into 4-oxo-4-sulfanylbutyric acid. Next, a desulfurization step, which forms succinic acid and volatile hydrogen sulfide, is proposed. One gene coding for a putative desulfhydrase (RERY_06500) was identified in the genome of strain MI2. However, the gene product was not recognized in the proteome analyses. But, a significant expression level with a ratio of up to 7.3 was determined for a putative sulfide:quinone oxidoreductase (RERY_02710), which could also be involved in the abstraction of the sulfur group. As response to the toxicity of the intermediates, several stress response proteins were strongly expressed, including a superoxide dismutase (RERY_05600) and an osmotically induced

  8. Genome and Proteome Analysis of Rhodococcus erythropolis MI2: Elucidation of the 4,4´-Dithiodibutyric Acid Catabolism.

    Directory of Open Access Journals (Sweden)

    Heba Khairy

    Full Text Available Rhodococcus erythropolis MI2 has the extraordinary ability to utilize the xenobiotic 4,4´-dithiodibutyric acid (DTDB. Cleavage of DTDB by the disulfide-reductase Nox, which is the only verified enzyme involved in DTDB-degradation, raised 4-mercaptobutyric acid (4MB. 4MB could act as building block of a novel polythioester with unknown properties. To completely unravel the catabolism of DTDB, the genome of R. erythropolis MI2 was sequenced, and subsequently the proteome was analyzed. The draft genome sequence consists of approximately 7.2 Mbp with an overall G+C content of 62.25% and 6,859 predicted protein-encoding genes. The genome of strain MI2 is composed of three replicons: one chromosome and two megaplasmids with sizes of 6.45, 0.4 and 0.35 Mbp, respectively. When cells of strain MI2 were cultivated with DTDB as sole carbon source and compared to cells grown with succinate, several interesting proteins with significantly higher expression levels were identified using 2D-PAGE and MALDI-TOF mass spectrometry. A putative luciferase-like monooxygenase-class F420-dependent oxidoreductase (RERY_05640, which is encoded by one of the 126 monooxygenase-encoding genes of the MI2-genome, showed a 3-fold increased expression level. This monooxygenase could oxidize the intermediate 4MB into 4-oxo-4-sulfanylbutyric acid. Next, a desulfurization step, which forms succinic acid and volatile hydrogen sulfide, is proposed. One gene coding for a putative desulfhydrase (RERY_06500 was identified in the genome of strain MI2. However, the gene product was not recognized in the proteome analyses. But, a significant expression level with a ratio of up to 7.3 was determined for a putative sulfide:quinone oxidoreductase (RERY_02710, which could also be involved in the abstraction of the sulfur group. As response to the toxicity of the intermediates, several stress response proteins were strongly expressed, including a superoxide dismutase (RERY_05600 and an

  9. Biodegradation of benzo[α]pyrene, toluene, and formaldehyde from the gas phase by a consortium of Rhodococcus erythropolis and Fusarium solani.

    Science.gov (United States)

    Morales, Paulina; Cáceres, Manuel; Scott, Felipe; Díaz-Robles, Luis; Aroca, Germán; Vergara-Fernández, Alberto

    2017-09-01

    Polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) are important indoor contaminants. Their hydrophobic nature hinders the possibility of biological abatement using biofiltration. Our aim was to establish whether the use of a consortium of Fusarium solani and Rhodococcus erythropolis shows an improved performance (in terms of mineralization rate and extent) towards the degradation of formaldehyde, as a slightly polar VOC; toluene, as hydrophobic VOC; and benzo[α]pyrene (BaP) as PAH at low concentrations compared to a single-species biofilm in serum bottles with vermiculite as solid support to mimic a biofilter and to relate the possible improvements with the surface hydrophobicity and partition coefficient of the biomass at three different temperatures. Results showed that the hydrophobicity of the surface of the biofilms was affected by the hydrophobicity of the carbon source in F. solani but it did not change in R. erythropolis. Similarly, the partition coefficients of toluene and BaP in F. solani biomass (both as pure culture and consortium) show a reduction of up to 38 times compared to its value in water, whereas this reduction was only 1.5 times in presence of R. erythropolis. Despite that increments in the accumulated CO 2 and its production rate were found when F. solani or the consortium was used, the mineralization extent of toluene was below 25%. Regarding BaP degradation, the higher CO 2 production rates and percent yields were obtained when a consortium of F. solani and R. erythropolis was used, despite a pure culture of R. erythropolis exhibits poor mineralization of BaP.

  10. Localization of Low Copy Number Plasmid pRC4 in Replicating Rod and Non-Replicating Cocci Cells of Rhodococcus erythropolis PR4.

    Directory of Open Access Journals (Sweden)

    Divya Singhi

    Full Text Available Rhodococcus are gram-positive bacteria, which can exist in two different shapes rod and cocci. A number of studies have been done in the past on replication and stability of small plasmids in this bacterium; however, there are no reports on spatial localization and segregation of these plasmids. In the present study, a low copy number plasmid pDS3 containing pRC4 replicon was visualized in growing cells of Rhodococcus erythropolis PR4 (NBRC100887 using P1 parS-ParB-GFP system. Cells were initially cocci and then became rod shaped in exponential phase. Cocci cells were found to be non-replicating as evident by the presence of single fluorescence focus corresponding to the plasmid and diffuse fluorescence of DnaB-GFP. Rod shaped cells contained plasmid either present as one fluorescent focus observed at the cell center or two foci localized at quarter positions. The results suggest that the plasmid is replicated at the cell center and then it goes to quarter position. In order to observe the localization of plasmid with respect to nucleoid, plasmid segregation was also studied in filaments where it was found to be replicated at the cell center in a nucleoid free region. To the best of our knowledge, this is the first report on segregation of small plasmids in R. erythropolis.

  11. Growth Kinetics of Rhodococcus Erythropolis IGTS8 on Thiophene and Dimethylsulphoxide

    International Nuclear Information System (INIS)

    El-Temtamy, S.A.; Farahat, L.A.; Al-Shatnawi, D.F.; AI-Sayed, S.

    2004-01-01

    Sulfur oxides emissions through fossil fuel combustion posse environmental problems because these oxides are major cause of acid rain, which dissolve buildings, kills forests and poisons lakes. That is why world environmental regulations are becoming harder with respect to sulfur content in fossil fuels. The demand for new low-cost desulfurization technologies has led to renewed interest in bio desulfurization. In this work the growth kinetics of Rhodococcus Erythopolis IGTS8 have been studied on two model sulfur compounds that are found among other sulfur compounds in petroleum fractions. These are namely thiophene and dimethyl sulfoxide, DEMSO. Batch reactor and different substrate concentrations ranging between 1 and 8 gl -1 were used to study the growth kinetics. Growth on thiophene was shown to follow Monode kinetics with μ m ax =0.064 h -1 and K s = 2.8 gl -1 , on the other hand, growth on DEMSO was found to be substrate inhibited

  12. Optimizing Polychlorinated Biphenyl Degradation by Flavonoid-Induced Cells of the Rhizobacterium Rhodococcus erythropolis U23A.

    Directory of Open Access Journals (Sweden)

    Thi Thanh My Pham

    Full Text Available There is evidence that many plant secondary metabolites may act as signal molecules to trigger the bacterial ability to metabolize polychlorinated biphenyls (PCBs during the rhizoremediation process. However, the bases for the PCB rhizoremediation process are still largely unknown. The rhizobacterium Rhodococcus erythropolis U23A is unable to use flavanone as a growth substrate. However, on the basis of an assay that monitors the amount of 4-chlorobenzoate produced from 4-chlorobiphenyl by cells grown co-metabolically on flavanone plus sodium acetate, this flavonoid was previously found to be a potential inducer of the U23A biphenyl catabolic pathway. In this work, and using the same assay, we identified ten other flavonoids that did not support growth, but that acted as inducers of the U23A biphenyl pathway, and we confirmed flavonoid induction of the biphenyl catabolic pathway using quantitative real-time polymerase chain reaction (RT-qPCR on the bphA gene. We also examined the effect of the growth co-substrate on flavonoid induction. Sodium acetate was replaced by glucose, mannose, sucrose, or mannitol, which are sugars found in plant root exudates. The data showed that the level of induction of strain U23A biphenyl-degrading enzymes was significantly influenced by the nature and concentration of the flavonoid in the growth medium, as well as by the substrate used for growth. Sucrose allowed for an optimal induction response for most flavonoids. Some flavonoids, such as flavone and isoflavone, were better inducers of the biphenyl catabolic enzymes than biphenyl itself. We also found that all flavonoids tested in this work were metabolized by strain U23A during co-metabolic growth, but that the metabolite profiles, as well as the level of efficiency of degradation, differed for each flavonoid. To obtain insight into how flavonoids interact with strain U23A to promote polychlorinated biphenyl (PCB degradation, we determined the concentration of

  13. INDUSTRIAL WASTE BIOCONVERSION INTO SURFACTANTS BY Rhodococcus erythropolis ІMV Ас-5017, Acinetobacter calcoaceticus ІMV В-7241 and Nocardia vaccinii ІMV В-7405

    Directory of Open Access Journals (Sweden)

    T. P. Pirog

    2017-04-01

    Full Text Available The aim of the work is to realize an alternative processing of toxic industrial waste into surfactants by strains Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241 and Nocardia vaccinii IMV B-7405 for remediation of environment. The studied strains were grown in liquid media containing such sources of carbon as waste (fried sunflower oil, technical glycerol (by-product of biodiesel production, and aromatic compounds. The synthesis of surfactants was evaluated by emulsification index, conditional concentration of surfactants and concentration of extracellular surfactants, which was determined gravimetrically after their extraction from supernatant by the mixture of methanol and chloroform. The concentration of oil in water and soil was analyzed by gravimetric method after extraction with hexane. It was shown that with increasing concentration of the inoculum up to 10−15% and two times increase of nitrogen source content in medium containing 7−8% (v/v of crude glycerol, concentration of surfactants synthesized by R. erythropolis IMV Ac-5017, A. calcoaceticus IMV B 7241 and N. vaccinii IMV B-7405 was 3.4; 5.0 and 5.3 g/l, respectively, that is 1.6−1.7 times higher as compared with values on basal medium with the same content of substrate. The maximum concentration (3.9−4.3 g/l of surfactants synthesized by A. calcoaceticus IMV B-7241 on fried sunflower oil (4% was achieved by using the inoculum grown on refined oil. The ability of R. erythropolis IMV Ac-5017, A. calcoaceticus IMV B-7241 and N. vaccinii IMV B-7405 to decompose aromatic compounds (phenol, naphthalene, toluene, hexachlorobenzene, benzoic and N-phenylanthranilic acid with simultaneous synthesis of extracellular metabolites with surface-active and emulsifying properties was established. In the presence of surfactants in the form of culture liquid (5−10%, the degree of degradation of complex oil with heavy metal (Cu2+, Cd2+, Pb2+, 0.01−0.5 mmol

  14. Biotransformation of heterocyclic dinitriles by Rhodococcus erythropolis and fungal nitrilases

    Czech Academy of Sciences Publication Activity Database

    Vejvoda, Vojtěch; Šveda, Ondřej; Kaplan, Ondřej; Přikrylová, Věra; Elišáková, Veronika; Himl, Michal; Kubáč, David; Pelantová, Helena; Kuzma, Marek; Křen, Vladimír; Martínková, Ludmila

    2007-01-01

    Roč. 29, č. 7 (2007), s. 1119-1124 ISSN 0141-5492 R&D Projects: GA AV ČR IAA500200708; GA MŠk LC06010; GA MŠk OC D25.001 Institutional research plan: CEZ:AV0Z50200510 Keywords : amidase * arpegillus nniger * heterocyclic Subject RIV: EE - Microbiology, Virology Impact factor: 1.222, year: 2007

  15. Growth and Desulfurization Kinetics of Rhodcoccus Erythropolis IGTS8 on Dibenzothiophen and Petroleum Fraction

    International Nuclear Information System (INIS)

    El-Temtamy, S.A.; Farahat, L.A.; Mostafa, Y.M.; Al-Shatnawi, D.F.; AI-Sayed, S.

    2004-01-01

    The growth Kinetics of Rhodococcus erythropolis IGTS8 on dibenzo-thiophene. DBT, of different initial concentrations as well as on two petroleum fractions namely untreated and hydrodesulfurized gasoline and gas oil have been investigated in batch cultures. Using dibenzothiophene as a substrate, the specific growth rates were found to decrease with increasing initial substrate concentration. The removal of dibenzothiophene from culture media was found to follow first order kinetics. The reaction rate constant., k, decreased with increasing substrate concentration. The decrease of both specific growth rate and reaction rate constant with increasing substrate concentration suggested substrate inhibition. The growth rate on untreated gasoline as well as on hydrodesulfurized gasoline gave nearly the same specific growth rates of 0.067 h-I while growth on gas oil gave a higher specific growth rate of 0.1h -1

  16. Synthesis of novel cyano-cyclitols and their stereoselective biotransformation catalyzed by Rhodococcus erythropolis A4

    Czech Academy of Sciences Publication Activity Database

    D’Antona, N.; Nicolosi, G.; Morrone, R.; Kubáč, David; Kaplan, Ondřej; Martínková, Ludmila

    2010-01-01

    Roč. 21, č. 6 (2010), s. 695-702 ISSN 0957-4166 R&D Projects: GA MŠk OC09046 Institutional research plan: CEZ:AV0Z50200510 Keywords : ALICYCLIC NITRILES * ASYMMETRIZATION * HYDROLYSIS Subject RIV: CC - Organic Chemistry Impact factor: 2.484, year: 2010

  17. Plasmid Vectors for Testing In Vivo Promoter Activities in Corynebacterium glutamicum and Rhodococcus erythropolis

    Czech Academy of Sciences Publication Activity Database

    Knoppová, Monika; Phensaijai, M.; Veselý, Martin; Zemanová, Martina; Nešvera, Jan; Pátek, Miroslav

    2007-01-01

    Roč. 55, - (2007), s. 234-239 ISSN 0343-8651 R&D Projects: GA ČR GA526/04/0542; GA ČR GA204/06/0330 Institutional research plan: CEZ:AV0Z50200510 Keywords : corynebacterium * rhodoccoccus * promoter-probe vectors Subject RIV: EE - Microbiology , Virology Impact factor: 1.167, year: 2007

  18. Biofouling inhibition in MBR by Rhodococcus sp. BH4 isolated from real MBR plant.

    Science.gov (United States)

    Oh, Hyun-Suk; Kim, Sang-Ryoung; Cheong, Won-Suk; Lee, Chung-Hak; Lee, Jung-Kee

    2013-12-01

    It has been reported that an indigenous quorum quenching bacterium, Rhodococcus sp. BH4, which was isolated from a real plant of membrane bioreactor (MBR) has promising potential to control biofouling in MBR. However, little is known about quorum quenching mechanisms by the strain BH4. In this study, various characteristics of strain BH4 were investigated to elucidate its behavior in more detail in the mixed liquor of MBR. The N-acyl homoserine lactone hydrolase (AHL-lactonase) gene of strain BH4 showed a high degree of identity to qsdA in Rhodococcus erythropolis W2. The LC-ESI-MS analysis of the degradation product by strain BH4 confirmed that it inactivated AHL activity by hydrolyzing the lactone bond of AHL. It degraded a wide range of N-acyl homoserine lactones (AHLs), but there was a large difference in the degradation rate of each AHL compared to other reported AHL-lactonase-producing strains belonging to Rhodococcus genus. Its quorum quenching activity was confirmed not only in the Luria-Bertani medium, but also in the synthetic wastewater. Furthermore, the amount of strain BH4 encapsulated in the vessel as well as the material of the vessel substantially affected the quorum quenching activity of strain BH4, which provides useful information, particularly for the biofouling control in a real MBR plant from an engineering point of view.

  19. Nitrile hydratase of Rhodococcus erythropolis: characterization of the enzyme and the use of whole cells for biotransformation of nitriles.

    Science.gov (United States)

    Kamble, Ashwini L; Banoth, Linga; Meena, Vachan Singh; Singh, Amit; Chisti, Yusuf; Banerjee, U C

    2013-08-01

    The intracellular cobalt-type nitrile hydratase was purified from the bacterium Rhodococcuserythropolis. The pure enzyme consisted of two subunits of 29 and 30 kDa. The molecular weight of the native enzyme was estimated to be 65 kDa. At 25 °C the enzyme had a half-life of 25 h. The Michaelis-Menten constants K m and v max for the enzyme were 0.624 mM and 5.12 μmol/min/mg, respectively, using 3-cyanopyridine as the substrate. The enzyme-containing freely-suspended bacterial cells and the cells immobilized within alginate beads were evaluated for converting the various nitriles to amides. In a packed bed reactor, alginate beads (2 % alginate; 3 mm bead diameter) containing 200 mg/mL of cells, achieved a conversion of >90 % for benzonitrile and 4-cyanopyridine in 38 h (25 °C, pH 7.0) at a feed substrate concentration of 100 mM. The beads could be reused for up to six reaction cycles.

  20. Cloning systems for Rhodococcus and related bacteria

    Science.gov (United States)

    Finnerty, W.R.; Singer, M.E.

    1990-08-28

    A plasmid transformation system for Rhodococcus was developed using an Escherichia coli-Rhodococcus shuttle plasmid. Rhodococcus sp. H13-A contains three cryptic indigenous plasmids, designated pMVS100, pMVS200 and pMVS300, of 75, 19.5 and 13.4 kilobases (Kb), respectively. A 3.8 Kb restriction fragment of pMVS300 was cloned into pIJ30, a 6.3 Kb pBR322 derivative, containing the E. coli origin of replication (ori) and ampicillin resistance determinant (bla) as well as a Streptomyces gene for thiostrepton resistance, tsr. The resulting 10.1 Kb recombinant plasmid, designated pMVS301, was isolated from E. coli DH1 (pMVS301) and transformed into Rhodococcus sp. AS-50, a derivative of strain H13-A, by polyethylene glycol-assisted transformation of Rhodococcus protoplasts and selection for thiostrepton-resistant transformants. This strain was deposited with the ATCC on Feb. 1, 1988 and assigned ATCC 53719. The plasmid contains the Rhodococcus origin of replication. The plasmid and derivatives thereof can therefore be used to introduce nucleic acid sequences to and from Rhodococcus for subsequent expression and translation into protein. The isolated origin of replication can also be used in the construction of new vectors. 2 figs.

  1. Bio-surfactants production from low cost substrate and degradation of diesel oil by a Rhodococcus strain; Production de biosurfactants sur un substrat economique et degradation du gasoil par une souche du genre Rhodococcus

    Energy Technology Data Exchange (ETDEWEB)

    Sadouk, Z.; Tazerouti, A. [Universite des Sciences et de la Technologie H. Boumediene (USTHB), Lab. de Synthese Organique, Faculte de Chimie, Algiers (Algeria); Sadouk, Z.; Hacene, H. [Universite des Sciences et de la Technologie H. Boumediene (USTHB), Lab. de Microbiologie, Faculte des Sciences Biologiques, Algiers (Algeria)

    2008-07-01

    The ability of a Rhodococcus strain to produce surface-active agents from residual sunflower frying oil (RSFO) has been screened in batch cultures. During cultivation with RSFO at the concentration 3% (vol/vol), the strain has synthesized extra-cellular compounds which increase the E{sub 24} emulsion index of the culture medium up to 63%. In their crude form, these substances lower the surface tension of water until 31.9 mN m{sup -1}. The exponential growth with RSFO as the sole carbon source has developed at a specific growth rate {mu} = 0.55 d{sup -1}. The critical micelle concentration of the crude product reached the value 287 mg L{sup -1} ({gamma}CMC = 31.9 mN m{sup -1}). After methyl-esterification, the lipid fraction of bio-surfactants has been analyzed by GC-MS in EI, which reveals the presence of fatty acid methyl esters. The microorganism was also cultivated with the diesel oil as the sole carbon source at the concentration 1% (vol/vol): the active growth phase has developed at rate = 0.02 d{sup -1}, without production of emulsifying substance: the microorganism seems to develop different modes of substrate uptake, according to the nature of the carbon source. The potential use of surface-active agents synthesized on RSFO by Rhodococcus erythropolis 16 LM.USTHB is in the oil industry with minimum purity specification, so that crude preparation could be used, at low cost, in clean-up of hydrocarbons contaminated sites and for enhanced oil recovery. (authors)

  2. Bio-surfactants production from low cost substrate and degradation of diesel oil by a Rhodococcus strain

    International Nuclear Information System (INIS)

    Sadouk, Z.; Tazerouti, A.; Sadouk, Z.; Hacene, H.

    2008-01-01

    The ability of a Rhodococcus strain to produce surface-active agents from residual sunflower frying oil (RSFO) has been screened in batch cultures. During cultivation with RSFO at the concentration 3% (vol/vol), the strain has synthesized extra-cellular compounds which increase the E 24 emulsion index of the culture medium up to 63%. In their crude form, these substances lower the surface tension of water until 31.9 mN m -1 . The exponential growth with RSFO as the sole carbon source has developed at a specific growth rate μ = 0.55 d -1 . The critical micelle concentration of the crude product reached the value 287 mg L -1 (γCMC = 31.9 mN m -1 ). After methyl-esterification, the lipid fraction of bio-surfactants has been analyzed by GC-MS in EI, which reveals the presence of fatty acid methyl esters. The microorganism was also cultivated with the diesel oil as the sole carbon source at the concentration 1% (vol/vol): the active growth phase has developed at rate = 0.02 d -1 , without production of emulsifying substance: the microorganism seems to develop different modes of substrate uptake, according to the nature of the carbon source. The potential use of surface-active agents synthesized on RSFO by Rhodococcus erythropolis 16 LM.USTHB is in the oil industry with minimum purity specification, so that crude preparation could be used, at low cost, in clean-up of hydrocarbons contaminated sites and for enhanced oil recovery. (authors)

  3. Vanillin Catabolism in Rhodococcus jostii RHA1

    Science.gov (United States)

    Chen, Hao-Ping; Chow, Mindy; Liu, Chi-Chun; Lau, Alice; Liu, Jie

    2012-01-01

    Genes encoding vanillin dehydrogenase (vdh) and vanillate O-demethylase (vanAB) were identified in Rhodococcus jostii RHA1 using gene disruption and enzyme activities. During growth on vanillin or vanillate, vanA was highly upregulated while vdh was not. This study contributes to our understanding of lignin degradation by RHA1 and other actinomycetes. PMID:22057861

  4. Biodegradation potential of the genus Rhodococcus

    Czech Academy of Sciences Publication Activity Database

    Martínková, Ludmila; Uhnáková, Bronislava; Pátek, Miroslav; Nešvera, Jan; Křen, Vladimír

    2009-01-01

    Roč. 35, č. 1 (2009), s. 162-177 ISSN 0160-4120 R&D Projects: GA MŠk(CZ) LC06010; GA MŠk 2B06151 Institutional research plan: CEZ:AV0Z50200510 Keywords : rhodococcus * aromatics * nitriles Subject RIV: EE - Microbiology, Virology Impact factor: 4.786, year: 2009

  5. Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities.

    Science.gov (United States)

    Kuyukina, Maria S; Ivshina, Irena B; Baeva, Tatiana A; Kochina, Olesia A; Gein, Sergey V; Chereshnev, Valery A

    2015-12-25

    Actinobacteria of the genus Rhodococcus produce trehalolipid biosurfactants with versatile biochemical properties and low toxicity. In recent years, these biosurfactants are increasingly studied as possible biomedical agents with expressed immunological activities. Applications of trehalolipids from Rhodococcus, predominantly cell-bound, in biomedicine are also attractive because their cost drawback could be less significant for high-value products. The review summarizes recent findings in immunomodulatory activities of trehalolipid biosurfactants from nonpathogenic Rhodococcus and related actinobacteria and compares their biomedical potential with well-known immunomodifying properties of trehalose dimycolates from Mycobacterium tuberculosis. Molecular mechanisms of trehalolipid interactions with immunocompetent cells are also discussed. Copyright © 2015. Published by Elsevier B.V.

  6. Molecular characterization of three 3-ketosteroid-Δ(1)-dehydrogenase isoenzymes of Rhodococcus ruber strain Chol-4.

    Science.gov (United States)

    Fernández de las Heras, Laura; van der Geize, Robert; Drzyzga, Oliver; Perera, Julián; María Navarro Llorens, Juana

    2012-11-01

    Rhodococcus ruber strain Chol-4 isolated from a sewage sludge sample is able to grow on minimal medium supplemented with steroids, showing a broad catabolic capacity. This paper reports the characterization of three different 3-ketosteroid-Δ(1)-dehydrogenases (KstDs) in the genome of R. ruber strain Chol-4. The genome of this strain does not contain any homologues of a 3-keto-5α-steroid-Δ(4)-dehydrogenase (Kst4d or TesI) that appears in the genomes of Rhodococcus erythropolis SQ1 or Comamonas testosteroni. Growth experiments with kstD2 mutants, either a kstD2 single mutant, kstD2 double mutants in combination with kstD1 or kstD3, or the triple kstD1,2,3 mutant, proved that KstD2 is involved in the transformation of 4-androstene-3,17-dione (AD) to 1,4-androstadiene-3,17-dione (ADD) and in the conversion of 9α-hydroxy-4-androstene-3,17-dione (9OHAD) to 9α-hydroxy-1,4-androstadiene-3,17-dione (9OHADD). kstD2,3 and kstD1,2,3 R. ruber mutants (both lacking KstD2 and KstD3) did not grow in minimal medium with cholesterol as the only carbon source, thus demonstrating the involvement of KstD2 and KstD3 in cholesterol degradation. In contrast, mutation of kstD1 does not alter the bacterial growth on the steroids tested in this study and therefore, the role of this protein still remains unclear. The absence of a functional KstD2 in R. ruber mutants provoked in all cases an accumulation of 9OHAD, as a branch product probably formed by the action of a 3-ketosteroid-9α-hydroxylase (KshAB) on the AD molecule. Therefore, KstD2 is a key enzyme in the AD catabolism pathway of R. ruber strain Chol-4 while KstD3 is involved in cholesterol catabolism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management.

    Science.gov (United States)

    Savory, Elizabeth A; Fuller, Skylar L; Weisberg, Alexandra J; Thomas, William J; Gordon, Michael I; Stevens, Danielle M; Creason, Allison L; Belcher, Michael S; Serdani, Maryna; Wiseman, Michele S; Grünwald, Niklaus J; Putnam, Melodie L; Chang, Jeff H

    2017-12-12

    Understanding how bacteria affect plant health is crucial for developing sustainable crop production systems. We coupled ecological sampling and genome sequencing to characterize the population genetic history of Rhodococcus and the distribution patterns of virulence plasmids in isolates from nurseries. Analysis of chromosome sequences shows that plants host multiple lineages of Rhodococcus , and suggested that these bacteria are transmitted due to independent introductions, reservoir populations, and point source outbreaks. We demonstrate that isolates lacking virulence genes promote beneficial plant growth, and that the acquisition of a virulence plasmid is sufficient to transition beneficial symbionts to phytopathogens. This evolutionary transition, along with the distribution patterns of plasmids, reveals the impact of horizontal gene transfer in rapidly generating new pathogenic lineages and provides an alternative explanation for pathogen transmission patterns. Results also uncovered a misdiagnosed epidemic that implicated beneficial Rhodococcus bacteria as pathogens of pistachio. The misdiagnosis perpetuated the unnecessary removal of trees and exacerbated economic losses.

  8. Rhodococcus bacteremia in cancer patients is mostly catheter related and associated with biofilm formation.

    Directory of Open Access Journals (Sweden)

    Fadi Al Akhrass

    Full Text Available Rhodococcus is an emerging cause of opportunistic infection in immunocompromised patients, most commonly causing cavitary pneumonia. It has rarely been reported as a cause of isolated bacteremia. However, the relationship between bacteremia and central venous catheter is unknown. Between 2002 and 2010, the characteristics and outcomes of seventeen cancer patients with Rhodococcus bacteremia and indwelling central venous catheters were evaluated. Rhodococcus bacteremias were for the most part (94% central line-associated bloodstream infection (CLABSI. Most of the bacteremia isolates were Rhodococcus equi (82%. Rhodococcus isolates formed heavy microbial biofilm on the surface of polyurethane catheters, which was reduced completely or partially by antimicrobial lock solution. All CLABSI patients had successful response to catheter removal and antimicrobial therapy. Rhodococcus species should be added to the list of biofilm forming organisms in immunocompromised hosts and most of the Rhodococcus bacteremias in cancer patients are central line associated.

  9. Management of Rhodococcus equi pneumonia in foals

    Directory of Open Access Journals (Sweden)

    Johns I

    2013-11-01

    Full Text Available Imogen Johns Department of Clinical Sciences and Services, Royal Veterinary College, North Mymms, UK Abstract: Rhodococcus equi, a gram-positive facultative intracellular bacterial pathogen, is the most important cause of pneumonia in foals aged 3 weeks to 5 months. The disease occurs worldwide, resulting in significant morbidity and mortality on endemically affected farms. Foals appear to become infected early in life, but clinical signs are typically delayed until 1–3 months of age because of the insidious nature of the disease. Although pneumonia is the most common clinical manifestation, up to 74% of foals may concurrently have extrapulmonary disorders, including both extrapulmonary infections (abdominal abscessation, colitis, osteomyelitis and immune-mediated disorders (nonseptic synovitis, uveitis. Diagnosis is based on the combination of clinical signs and abnormalities on hematologic screening and thoracic imaging in an appropriately aged foal and is confirmed by bacteriologic culture of the organism. Management of R. equi infections, in particular on farms with endemic disease, combines appropriate treatment of affected foals with preventative measures targeted at preventing infection and identifying foals before the development of severe disease. The combination of rifampin and a macrolide antimicrobial is recommended for treatment, as the combination is synergistic, reaches high intracellular concentrations, and should minimize the development of antimicrobial resistance. The prognosis for survival for foals with R. equi pneumonia is good, especially in foals mildly or subclinically affected, as is the prognosis for future athletic performance. Screening for early identification before the development of clinical signs has been advocated on endemically affected farms, although the most appropriate method, the timing of screening, and the selection of foals requiring treatment have yet to be determined. Recent evidence suggests that

  10. Rhodococcus equi Parte 2: imunologia e profilaxia Rhodococcus equi Part 2: immunology and profilaxy

    Directory of Open Access Journals (Sweden)

    Ana Carolina Rusca Correa Porto

    2011-12-01

    Full Text Available Rhodococcus equi é um patógeno ubíquo e habitante da flora intestinal dos equinos de importância na neonatologia equina. Todos os potros são expostos à doença ao nascimento, porém alguns a desenvolvem e outros não. Este artigo revisa características da resposta imune, tanto em adultos competentes quanto em potros suscetíveis ao patógeno. A resposta imune humoral é abordada, incluindo uma discussão sobre o uso do plasma hiperimune como ferramenta profilática. O papel dos mecanismos de imunidade inata na suscetibilidade de alguns potros ao R. equi é também abordado. Da mesma maneira, os componentes envolvidos na resposta cito-mediada são revisados, com atenção particular às pesquisas direcionadas ao desenvolvimento de uma vacina efetiva para ser utilizada em potros.Rhodococcus equi is an important pathogen in equine neonatology that is ubiquitous and a normal intestinal inhabitant of equines. All foals are exposed at birth, however, some foals develop disease and others do not. This article reviews concepts of the equine immune response, both in the immune adult and susceptible neonate, with respect to this pathogen. Humoral immune responses are addressed, with a discussion on the use of hyperimmune plasma as a prophylactic tool. The role that innate immune mechanisms play in the susceptibility of some foals to R. equi infection is also highlighted. Likewise, cell-mediated immune components are reviewed, with particular attention directed towards research to develop an effective vaccine for foals.

  11. Fluorene transformation by bacteria of the genus Rhodococcus

    NARCIS (Netherlands)

    Finkelstein, Z.I.; Baskunov, B.P.; Golovlev, E.L.; Vervoort, J.J.M.; Rietjens, I.M.C.M.; Baboshin, M.A.; Golovleva, L.A.

    2003-01-01

    Of the four investigated Rhodococcus strains (R. rhodochrous172, R. opacus 4a and 557, and R. rhodnii 135), the first three strains were found to be able to completely transform fluorene when it was present in the medium as the sole source of carbon at a concentration of 12¿25 mg/l. At a fluorene

  12. Severe Rhodococcus equi pneumonia: case report and literature review

    DEFF Research Database (Denmark)

    Vestbo, Jørgen; Lundgren, Jens Dilling; Gaub, J

    1991-01-01

    or sputum on standard media, but is frequently regarded as a contaminant. Mortality from Rhodococcus equi pneumonia is high (25%) and early surgical intervention has been recommended. Based on this review, the benefit of surgery seems dubious, whereas good results have been obtained using long......-term antibiotic treatment with erythromycin plus rifampicin, or vancomycin in combination with either of these antibiotics....

  13. Isolation and characterization of Rhodococcus ruber CGMCC3090 ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... Available online at http://www.academicjournals.org/AJB. ISSN 1684–5315 .... the soil samples by an enrichment culture method in basal medium containing 0.5 ..... The phylogeny of the genus Rhodococcus currently remains ...

  14. Effect of Rhodococcus sp. on desulfurization, swelling and extraction of coal

    Energy Technology Data Exchange (ETDEWEB)

    Wang De-qiang; Shui Heng-fu [University of Technology of Anhui, Maanshang (China). School of Chemical Engineering

    2006-08-15

    Bio-desulfurization of coal by rhodococcus sp. was studied. Some kinds of coal were swelled with different organic solvents, and then the swelled coals were treated by rhodococcus sp. The results show that the ratios of desulfurization of coals increase after they are swelled, especially swelled with NMP, the ratio is more than 80%. The swelling and extraction of coal were also studied after the coal had been treated by rhodococcus sp. The results show that the ratios of swelling increase more than 65%, but the extraction yield decreases for the coal treated by rhodococcus sp. 11 refs., 5 tabs.

  15. Molecular biological enhancement of coal biodesulfurization. [Rhodococcus rhodochrous

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J.; Bielaga, B.A.

    1990-07-01

    The overall objective of this project is to sue molecular genetics to develop strains of bacteria with enhanced ability to remove sulfur from coal and to obtain data that will allow the performance and economics of a coal biodesulfurization process to be predicted. The work planned for the current quarter (May 1990 to July 1990) includes the following activities: (1) Construct a cloning vector that can be used in Rhodococcus rhodochrous IGTS8 from the small cryptic plasmid found in Rhodococcus rhodochrous ATCC 190607; (2) Develop techniques for the genetic analysis of IGTS8; (3) Continue biochemical experiments, particularly those that may allow the identification of desulfurization-related enzymes; (4) Continue experiments with coal to determine the kinetics of organic sulfur removal.

  16. Bacteremia due to Rhodococcus equi in an immunocompetent infant

    OpenAIRE

    P Devi; S Malhotra; A Chadha

    2011-01-01

    Rhodococcus equi , previously known as Corynebacterium equi, is one of the most important causes of zoonotic infection in grazing animals. Increased cases of human infection with R. equi have been reported especially in immunocompromised patients. Infection in immunocompetent patients is extremely rare. We report a case of R. equi bacteremia in a 26-day-old immunocompetent infant with recurrent swellings on different parts of the body. To the best of our knowledge, this is the first ever repo...

  17. Virulence of Rhodococcus equi Isolated from Cats and Dogs

    OpenAIRE

    Takai, Shinji; Martens, Ronald J.; Julian, Alan; Garcia Ribeiro, Márcio; Rodrigues de Farias, Marconi; Sasaki, Yukako; Inuzuka, Kazuho; Kakuda, Tsutomu; Tsubaki, Shiro; Prescott, John F.

    2003-01-01

    Nine cat isolates and nine dog isolates of Rhodococcus equi from clinical material were investigated for the presence of the virulence-associated antigens (VapA and VapB) and virulence plasmids. Five of the cat isolates and one dog isolate were VapA positive and contained an 85-kb type I or an 87-kb type I plasmid. The remaining 12 isolates were avirulent R. equi strains and contained no virulence plasmids.

  18. Seroprevalence of Rhodococcus equi in horses in Israel

    Directory of Open Access Journals (Sweden)

    Sharon Tirosh-Levy

    2017-06-01

    Full Text Available Rhodococcus equi is a common cause of pneumonia in foals and has extensive clinical, economic and possibly zoonotic consequences. This bacterium survives well in the environment and may be considered as normal flora of adult horses. Certain strains of this bacterium are extremely virulent in foals, and early identification and intervention is crucial for prognosis. Rhodococcus equi is endemic in many parts of the world and occasionally isolated in Israel. This study was designed to evaluate R. equi seroprevalence in adult horses in Israel to indirectly indicate the potential level of exposure of susceptible foals. Sera were collected from 144 horses during spring 2011 and from 293 horses during fall 2014, and the presence of antibodies against virulent R. equi was detected by enzyme-linked immunosorbent assay. Equine seroprevalence of R. equi was found to be 7.6% in 2011 and 5.1% in 2014. Only one farm had seropositive horses in 2011, whereas several farms had seropositive horses in 2014. No significant risk factors for seropositivity were found. Rhodococcus equi appears to be endemic in Israel. This is the first survey of R. equi in Israel that provides information on the epidemiology of this important bacterium.

  19. Seroprevalence of Rhodococcus equi in horses in Israel.

    Science.gov (United States)

    Tirosh-Levy, Sharon; Gürbilek, Sevil E; Tel, Osman Y; Keskin, Oktay; Steinman, Amir

    2017-06-26

    Rhodococcus equi is a common cause of pneumonia in foals and has extensive clinical, economic and possibly zoonotic consequences. This bacterium survives well in the environment and may be considered as normal flora of adult horses. Certain strains of this bacterium are extremely virulent in foals, and early identification and intervention is crucial for prognosis. Rhodococcus equi is endemic in many parts of the world and occasionally isolated in Israel. This study was designed to evaluate R. equi seroprevalence in adult horses in Israel to indirectly indicate the potential level of exposure of susceptible foals. Sera were collected from 144 horses during spring 2011 and from 293 horses during fall 2014, and the presence of antibodies against virulent R. equi was detected by enzyme-linked immunosorbent assay. Equine seroprevalence of R. equi was found to be 7.6% in 2011 and 5.1% in 2014. Only one farm had seropositive horses in 2011, whereas several farms had seropositive horses in 2014. No significant risk factors for seropositivity were found. Rhodococcus equi appears to be endemic in Israel. This is the first survey of R. equi in Israel that provides information on the epidemiology of this important bacterium.

  20. Complete Genome Sequence of a Rhodococcus Species Isolated from the Winter Skate Leucoraja ocellata.

    Science.gov (United States)

    Wiens, Julia; Ho, Ryan; Fernando, Dinesh; Kumar, Ayush; Loewen, Peter C; Brassinga, Ann Karen C; Anderson, W Gary

    2016-09-01

    We report here a genome sequence for Rhodococcus sp. isolate UM008 isolated from the renal/interrenal tissue of the winter skate Leucoraja ocellata Genome sequence analysis suggests that Rhodococcus bacteria may act in a novel mutualistic relationship with their elasmobranch host, serving as biocatalysts in the steroidogenic pathway of 1α-hydroxycorticosterone. Copyright © 2016 Wiens et al.

  1. Bacteremia due to Rhodococcus equi in an immunocompetent infant

    Directory of Open Access Journals (Sweden)

    P Devi

    2011-01-01

    Full Text Available Rhodococcus equi , previously known as Corynebacterium equi, is one of the most important causes of zoonotic infection in grazing animals. Increased cases of human infection with R. equi have been reported especially in immunocompromised patients. Infection in immunocompetent patients is extremely rare. We report a case of R. equi bacteremia in a 26-day-old immunocompetent infant with recurrent swellings on different parts of the body. To the best of our knowledge, this is the first ever report of R. equi bacteremia from an immunocompetent patient from Northern India.

  2. Radiological findings in three acquired immunodeficiency syndrome patients with Rhodococcus equi pneumonia

    International Nuclear Information System (INIS)

    Liu Jinxin; Tang Xiaoping; Zhang Lieguang

    2011-01-01

    Objective: To study the imaging appearances of Rhodococcus equi pneumonia in three patients with acquired immunodeficiency syndrome ( AIDS). Methods: Thoracic imaging appearances of' Rhodococcus equi pneumonia in three patients with AIDS were retrospectively analyzed. Results: The chest radiograph showed patchy consolidations and small nodules (n=3), large consolidations with multiple cavitations (n=2). CT showed large lobar or segmental consolidations with multiple cavitations (n=2), patchy consolidations (n=2), bronchiectasis (n=1), multiple small centrilobular nodules (n=2) and tree-in-bud patterns (n=2). Conclusion: The most common radiological findings in AIDS patients with Rhodococcus equi pulmonary infection are large consolidations with multiple cavitations and multiple centrilobular nodules. (authors)

  3. Successful treatment of Rhodococcus equi pulmonary infection in a renal transplant recipient.

    OpenAIRE

    Marsh, H. P.; Bowler, I. C.; Watson, C. J.

    2000-01-01

    The rhodococcus is a mycobacterium-like organism which is normally a pathogen in foals. It usually spreads by direct contact or by aerosol from horse faeces and causes pyogranulomatous pulmonary infections. Occasionally, it acts opportunistically to infect immuno-compromised human hosts, most commonly those with the acquired immune deficiency syndrome (AIDS). Here we report a pulmonary infection by Rhodococcus equi in a renal transplant recipient who was successfully treated. The literature o...

  4. Bacteremia por Rhodococcus equi em paciente com síndrome da imunodeficiência adquirida: relato de caso Bacteremia due to Rhodococcus equi in a patient with acquired immunodeficiency syndrome: case report

    Directory of Open Access Journals (Sweden)

    Carina Secchi

    2006-12-01

    Full Text Available Rhodococcus equi é um importante agente de infecções zoonóticas, podendo causar sérias infecções em humanos, principalmente em pacientes imunocomprometidos. Neste estudo, nós relatamos o caso de uma bacteremia fatal devido a Rhodococcus equi em paciente com síndrome da imunodeficiência adquirida (HIV positivo.Rhodococcus equi is an important agent for zoonotic infections, and may cause serious infections in humans, especially immunocompromised patients. In this study, a case of fatal bacteremia due to Rhodococcus equi in a patient with acquired immunodeficiency syndrome (HIV positive is reported.

  5. Rhodococcus antrifimi sp. nov., isolated from dried bat dung of a cave.

    Science.gov (United States)

    Ko, Kwan Su; Kim, Youngju; Seong, Chi Nam; Lee, Soon Dong

    2015-11-01

    A Gram-reaction-positive, high DNA G+C content, non-motile actinobacterium, strain D7-21T, was isolated from dried bat dung inside a natural cave and its taxonomic status was examined by using a polyphasic approach. The 16S rRNA gene sequence study showed that the isolate belonged to the genus Rhodococcus and formed a cluster with Rhodococcus defluvii (98.98 % gene similarity), Rhodococcus equi (98.62 %) and Rhodococcus kunmingensis (97.66 %). Whole-cell hydrolysates contained meso-diaminopimelic acid, arabinose and galactose as the diagnostic diamino acid and sugars. MK-8(H2) was the predominant menaquinone. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, an unknown phosphoglycolipid and an unknown glycolipid. Mycolic acids were present. The major fatty acids were C16 : 0, C18 : 1ω9c and 10-methyl C18 : 0. The DNA G+C content was 70.1 mol%. A battery of phenotypic features and DNA-DNA relatedness data support that strain D7-21T ( = KCTC 29469T = DSM 46727T) represents a novel species of the genus Rhodococcus, for which Rhodococcus antrifimi sp. nov. is proposed.

  6. Coaggregation between Rhodococcus and Acinetobacter strains isolated from the food industry.

    Science.gov (United States)

    Møretrø, Trond; Sharifzadeh, Shahab; Langsrud, Solveig; Heir, Even; Rickard, Alexander H

    2015-07-01

    In this study, coaggregation interactions between Rhodococcus and Acinetobacter strains isolated from food-processing surfaces were characterized. Rhodococcus sp. strain MF3727 formed intrageneric coaggregates with Rhodococcus sp. strain MF3803 and intergeneric coaggregates with 2 strains of Acinetobacter calcoaceticus (MF3293, MF3627). Stronger coaggregation between A. calcoaceticus MF3727 and Rhodococcus sp. MF3293 was observed after growth in batch culture at 30 °C than at 20 °C, after growth in tryptic soy broth than in liquid R2A medium, and between cells in exponential and early stationary phases than cells in late stationary phase. The coaggregation ability of Rhodococcus sp. MF3727 was maintained even after heat and Proteinase K treatment, suggesting its ability to coaggregate was protein independent whereas the coaggregation determinants of the other strains involved proteinaceous cell-surface-associated polymers. Coaggregation was stable at pH 5-9. The mechanisms of coaggregation among Acinetobacter and Rhodococcus strains bare similarity to those displayed by coaggregating bacteria of oral and freshwater origin, with respect to binding between proteinaceous and nonproteinaceous determinants and the effect of environmental factors on coaggregation. Coaggregation may contribute to biofilm formation on industrial food surfaces, protecting bacteria against cleaning and disinfection.

  7. An Adenoviral Vector Based Vaccine for Rhodococcus equi.

    Directory of Open Access Journals (Sweden)

    Carla Giles

    Full Text Available Rhodococcus equi is a respiratory pathogen which primarily infects foals and is endemic on farms around the world with 50% mortality and 80% morbidity in affected foals. Unless detected early and treated appropriately the disease can be fatal. Currently, there is no vaccine available to prevent this disease. For decades researchers have endeavoured to develop an effective vaccine to no avail. In this study a novel human adenoviral vector vaccine for R. equi was developed and tested in the mouse model. This vaccine generated a strong antibody and cytokine response and clearance of R. equi was demonstrated following challenge. These results show that this vaccine could potentially be developed further for use as a vaccine to prevent R. equi disease in foals.

  8. Serological survey of Rhodococcus equi infection in horses in Hokkaido.

    Science.gov (United States)

    Sanada, Y; Noda, H; Nagahata, H

    1992-08-01

    Serological survey of Rhodococcus equi infection in horses in Hokkaido was performed using ELISA. Of 2,879 horse sera, 318 (11.0%) gave antibody-positive (OD greater than or equal to 0.3) reactions. The antibody-positive rate of female was significantly higher (p less than 0.01) than that of male, and no statistical difference between Anglo-Arab and thoroughbred was detected in the antibody-positive rate. The maximum antibody-positive rate (27.1%) was shown at 14 years of age. The antibody-positive rates on the 160 farms were found to vary widely from 0 to 78.9%. A significant difference (p less than 0.01) in the antibody-positive rate was detected among horse farms. It was elucidated that 100 (62.5%) out of 160 horse farms had an antibody-positive horse. These results indicate that R. equi was widespread on horse farms, and the level of environmental contamination with R. equi differed among horse farms.

  9. Rhodococcus equi: the many facets of a pathogenic actinomycete.

    Science.gov (United States)

    Vázquez-Boland, José A; Giguère, Steeve; Hapeshi, Alexia; MacArthur, Iain; Anastasi, Elisa; Valero-Rello, Ana

    2013-11-29

    Rhodococcus equi is a soil-dwelling pathogenic actinomycete that causes pulmonary and extrapulmonary pyogranulomatous infections in a variety of animal species and people. Young foals are particularly susceptible and develop a life-threatening pneumonic disease that is endemic at many horse-breeding farms worldwide. R. equi is a facultative intracellular parasite of macrophages that replicates within a modified phagocytic vacuole. Its pathogenicity depends on a virulence plasmid that promotes intracellular survival by preventing phagosome-lysosome fusion. Species-specific tropism of R. equi for horses, pigs and cattle appears to be determined by host-adapted virulence plasmid types. Molecular epidemiological studies of these plasmids suggest that human R. equi infection is zoonotic. Analysis of the recently determined R. equi genome sequence has identified additional virulence determinants on the bacterial chromosome. This review summarizes our current understanding of the clinical aspects, biology, pathogenesis and immunity of this fascinating microbe with plasmid-governed infectivity. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. NCBI nr-aa BLAST: CBRC-LAFR-01-0178 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-LAFR-01-0178 ref|YP_345668.1| putative disulfide bond formation protein [Rhodo...coccus erythropolis PR4] dbj|BAE46176.1| putative disulfide bond formation protein [Rhodococcus erythropolis PR4] YP_345668.1 1.3 28% ...

  11. Restriction Fragment Length Polymorphisms of Virulence Plasmids in Rhodococcus equi

    Science.gov (United States)

    Takai, Shinji; Shoda, Masato; Sasaki, Yukako; Tsubaki, Shiro; Fortier, Guillaume; Pronost, Stephane; Rahal, Karim; Becu, Teotimo; Begg, Angela; Browning, Glenn; Nicholson, Vivian M.; Prescott, John F.

    1999-01-01

    Virulent Rhodococcus equi, which is a well-known cause of pyogranulomatous pneumonia in foals, possesses a large plasmid encoding virulence-associated 15- to 17-kDa antigens. Foal and soil isolates from five countries—Argentina, Australia, Canada, France, and Japan—were investigated for the presence of 15- to 17-kDa antigens by colony blotting, using the monoclonal antibody 10G5, and the gene coding for 15- to 17-kDa antigens by PCR. Plasmid DNAs extracted from positive isolates were digested with restriction endonucleases BamHI, EcoRI, EcoT22I, and HindIII, and the digestion patterns that resulted divided the plasmids of virulent isolates into five closely related types. Three of the five types had already been reported in Canadian and Japanese isolates, and the two new types had been found in French and Japanese isolates. Therefore, we tentatively designated these five types 85-kb type I (pREAT701), 85-kb type II (a new type), 87-kb type I (EcoRI and BamHI type 2 [V. M. Nicholson and J. F. Prescott, J. Clin. Microbiol. 35:738–740, 1997]), 87-kb type II (a new type), and 90-kb (pREL1) plasmids. The 85-kb type I plasmid was found in isolates from Argentina, Australia, Canada, and France. Plasmid 87-kb type I was isolated in specimens from Argentina, Canada, and France. The 85-kb type II plasmid appeared in isolates from France. On the other hand, plasmids 87-kb type II and 90-kb were found only in isolates from Japan. These results revealed geographic differences in the distribution of the virulence plasmids found in the five countries and suggested that the restriction fragment length polymorphism of virulence plasmids might be useful to elucidate the molecular epidemiology of virulent R. equi in the world. PMID:10488224

  12. Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus

    NARCIS (Netherlands)

    Ceniceros, Ana; Dijkhuizen, Lubbert; Petrusma, Mirjan; Medema, M.H.

    2017-01-01

    Background Bacteria of the genus Rhodococcus are well known for their ability to degrade a large range of organic compounds. Some rhodococci are free-living, saprophytic bacteria; others are animal and plant pathogens. Recently, several studies have shown that their genomes encode putative pathways

  13. Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus

    NARCIS (Netherlands)

    Ceniceros, Ana; Dijkhuizen, Lubbert; Petrusma, Mirjan; Medema, Marnix H.

    2017-01-01

    Background: Bacteria of the genus Rhodococcus are well known for their ability to degrade a large range of organic compounds. Some rhodococci are free-living, saprophytic bacteria; others are animal and plant pathogens. Recently, several studies have shown that their genomes encode putative pathways

  14. Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus

    NARCIS (Netherlands)

    Ceniceros, Ana; Dijkhuizen, Lubbert; Petrusma, Mirjan; Medema, Marnix H

    2017-01-01

    BACKGROUND: Bacteria of the genus Rhodococcus are well known for their ability to degrade a large range of organic compounds. Some rhodococci are free-living, saprophytic bacteria; others are animal and plant pathogens. Recently, several studies have shown that their genomes encode putative pathways

  15. Complete Genome Sequence of Rhodococcus sp. Strain WMMA185, a Marine Sponge-Associated Bacterium

    OpenAIRE

    Adnani, Navid; Braun, Doug R.; McDonald, Bradon R.; Chevrette, Marc G.; Currie, Cameron R.; Bugni, Tim S.

    2016-01-01

    The Rhodococcus strain WMMA185 was isolated from the marine sponge Chondrilla nucula as part of ongoing drug discovery efforts. Analysis of the 4.44-Mb genome provides information regarding interspecies interactions as pertains to regulation of secondary metabolism and natural product biosynthetic potentials.

  16. Disseminated Rhodococcus equi infection in a kidney transplant patient without initial pulmonary involvement

    NARCIS (Netherlands)

    Rahamat-Langendoen, Janette C.; van Meurs, Matijs; Zijlstra, Jan G.; Lo-Ten-Foe, Jerome R.

    2009-01-01

    Rhodococcus equi is increasingly recognized as an opportunistic pathogen in solid organ transplant recipients. Primary pulmonary involvement is the most common finding. We report a case of a 42-year-old female kidney transplant recipient who developed multiple disseminated abscesses caused by R.

  17. MICs of Oxazolidinones for Rhodococcus equi Strains Isolated from Humans and Animals

    OpenAIRE

    Bowersock, Terry L.; Salmon, Sarah A.; Portis, Ellen S.; Prescott, John F.; Robison, Denise A.; Ford, Charles W.; Watts, Jeffrey L.

    2000-01-01

    Eperezolid and linezolid are representatives of a new class of orally active, synthetic antimicrobial agents. The in vitro activity values (MICs) of linezolid, eperezolid, and comparator antibiotics against 102 strains of Rhodococcus equi isolated from humans and animals were determined. Linezolid was more active than eperezolid against the strains tested; premafloxacin was the most active comparator antibiotic.

  18. Cloning, expression, and enzymatic activity evaluation of cholesterol oxidase gene isolated from a native Rhodococcus sp.

    Directory of Open Access Journals (Sweden)

    Hamed Esmaeil Lashgarian

    2016-10-01

    Full Text Available Cholesterol oxidase (CHO is one of the valuable enzymes that play an important role in: measurement of serum cholesterol, food industry as a biocatalyst and agriculture as a biological larvicide. This enzyme was produced by several bacterial strains. Wild type enzyme produced by Rhodococcus sp. secret two forms of CHO enzyme: extra cellular and membrane bound type which its amount is low and unstable. The goal of the study was cloning, expression, and enzymatic activity evaluation of cholesterol oxidase gene isolated from a native Rhodococcus sp. CHO gene was isolated from native bacteria and cloned into pET23a. In the next step, the construct was expressed in E.coli BL21 and induced by different concentration of IPTG ranges from 0.1 - 0.9 mM. This gene contains 1642 bp and encodes a protein consists of 533 amino acids. It has about 96 % homology with CHO gene isolated from Rhodococcus equi. The high expression was obtained in 0.5 mM concentration of IPTG after 4 hour induction. This recombinant enzyme had a molecular weight of 55 kDa, that secretion of intra cellular type is much more than extracellular form. The optimum pH and temperature conditions for the recombinant enzyme were 7.5 and 45°C, respectively. CHO enzyme obtained from Rhodococcus sp. is a cheap enzyme with medical and industrial applications that can be produced easily and purified in large scale with simple methods.

  19. Rhodococcus equi infection after alemtuzumab therapy for T-cell prolymphocytic leukemia

    NARCIS (Netherlands)

    Meeuse, Jan J.; Sprenger, Herman G.; Van Assen, Sander; Leduc, Dominique; Daenen, Simon M.G.J.; Arends, Jan P.; van der Werf, Tjipke

    2007-01-01

    Rhodococcus equi, mainly known from veterinary medicine as a pathogen in domestic animals, can also cause infections in immunocompromised humans, especially in those with defects in cellular immunity. Alemtuzumab, an anti-CD52 monoclonal antibody, causes lymphocytopenia by eliminating CD52-positive

  20. Analysis of genome sequences from plant pathogenic Rhodococcus reveals genetic novelties in virulence loci

    Science.gov (United States)

    Members of Gram-positive Actinobacteria cause economically important diseases to plants. Within the Rhodococcus genus, some members can cause growth deformities and persist as pathogens on a wide range of host plants. The current model predicts that phytopathogenic isolates require a cluster of thre...

  1. Effect of Tween 80 on 9a-steroid hydroxylating activity and ultrastructural characteristics of Rhodococcus sp. cells

    OpenAIRE

    Avramova , Tatyana; Spassova , Dimitrina; Mutafov , Sava; Momchilova , Svetlana; Boyadjieva , Lilyana; Damyanova , Boryana; Angelova , Blaga

    2010-01-01

    International audience; Studied is the effect of the non-ionic surfactant Tween 80 on the microbial transformation of 4-androstene- 3,17-dione into its 9a-hydroxy-derivative by resting Rhodococcus sp. cells. The surfactant was applied in the cultivation medium as an additional source of carbon, in the transformation reaction medium as a mediator of the steroid substrate solubility or was used for permeabilization of the glucose grown Rhodococcus sp. cells. Special attention is paid to the fac...

  2. Improved Method for the Isolation of Biosurfactant Glycolipids from Rhodococcus sp. Strain H13A

    OpenAIRE

    Bryant, Frank O.

    1990-01-01

    An improved method for the isolation of the biosurfactant glycolipids from Rhodococcus sp. strain H13A by using XM 50 diafiltration and isopropanol precipitation was devised. This procedure was advantageous since it removes protein coisolated when the glycolipids are obtained by organic extraction and silicic acid chromatography. The protein apparently does not contribute any biosurfactant characteristics to the glycolipids. The deacylated glycolipid backbone included only a disaccharide.

  3. Infection by rhodococcus fascians maintains cotyledons as a sink tissue for the pathogen

    Czech Academy of Sciences Publication Activity Database

    Dhandapani, P.; Song, J.; Novák, Ondřej; Jameson, P. E.

    2017-01-01

    Roč. 119, č. 5 (2017), s. 841-852 ISSN 0305-7364 R&D Projects: GA MŠk(CZ) LO1204; GA MŠk LK21306 Institutional support: RVO:61389030 Keywords : Amino acid transporter * Apical dominance * Cell wall invertase * Cytokinin * Cytokinin oxidase/dehydro-genase * Pea * Pisum sativum L. * Rhodococcus fascians * Seed * Sink and source * Sucrose transporter * sweet Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 4.041, year: 2016

  4. Aerobic degradation of buprofezin via novel degradation intermediates by Rhodococcus sp. strain RX-3

    OpenAIRE

    Ruixue Li; Chun Dai; Guangli Wang; Shaoxian Wu; Yubao Gong; Yuanyuan Jiang; Zhijia Wang; Naiyue Sun

    2016-01-01

    Buprofezin is a commonly used chemical with satisfactory efficacy against sucking insect pests, but its disposal causes serious environmental problems. In this study, a bacterial strain RX-3 isolated by continuous enrichment from buprofezin-treated soil was tested for biodegradation of buprofezin. The bacteria were most similar to Rhodococcus sp. based on their morphological, physiological and biochemical characteristics, as well as phylogenetic placement inferred from 16S rRNA gene sequence....

  5. Evidence for an Inducible Nucleotide-Dependent Acetone Carboxylase in Rhodococcus rhodochrous B276

    OpenAIRE

    Clark, Daniel D.; Ensign, Scott A.

    1999-01-01

    The metabolism of acetone was investigated in the actinomycete Rhodococcus rhodochrous (formerly Nocardia corallina) B276. Suspensions of acetone- and isopropanol-grown R. rhodochrous readily metabolized acetone. In contrast, R. rhodochrous cells cultured with glucose as the carbon source lacked the ability to metabolize acetone at the onset of the assay but gained the ability to do so in a time-dependent fashion. Chloramphenicol and rifampin prevented the time-dependent increase in this acti...

  6. Benzoate Catabolite Repression of the Phthalate Degradation Pathway in Rhodococcus sp. Strain DK17▿

    OpenAIRE

    Choi, Ki Young; Zylstra, Gerben J.; Kim, Eungbin

    2006-01-01

    Rhodococcus sp. strain DK17 exhibits a catabolite repression-like response when provided simultaneously with benzoate and phthalate as carbon and energy sources. Benzoate in the medium is depleted to detection limits before the utilization of phthalate begins. The transcription of the genes encoding benzoate and phthalate dioxygenase paralleled the substrate utilization profile. Two mutant strains with defective benzoate dioxygenases were unable to utilize phthalate in the presence of benzoat...

  7. Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol.

    Science.gov (United States)

    Plaggenborg, Rainer; Overhage, Jörg; Loos, Andrea; Archer, John A C; Lessard, Philip; Sinskey, Anthony J; Steinbüchel, Alexander; Priefert, Horst

    2006-10-01

    The potential of two Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol was investigated. Genome sequence data of Rhodococcus sp. I24 suggested a coenzyme A-dependent, non-beta-oxidative pathway for ferulic acid bioconversion, which involves feruloyl-CoA synthetase (Fcs), enoyl-CoA hydratase/aldolase (Ech), and vanillin dehydrogenase (Vdh). This pathway was proven for Rhodococcus opacus PD630 by physiological characterization of knockout mutants. However, expression and functional characterization of corresponding structural genes from I24 suggested that degradation of ferulic acid in this strain proceeds via a beta-oxidative pathway. The vanillin precursor eugenol facilitated growth of I24 but not of PD630. Coniferyl aldehyde was an intermediate of eugenol degradation by I24. Since the genome sequence of I24 is devoid of eugenol hydroxylase homologous genes (ehyAB), eugenol bioconversion is most probably initiated by a new step in this bacterium. To establish eugenol bioconversion in PD630, the vanillyl alcohol oxidase gene (vaoA) from Penicillium simplicissimum CBS 170.90 was expressed in PD630 together with coniferyl alcohol dehydrogenase (calA) and coniferyl aldehyde dehydrogenase (calB) genes from Pseudomonas sp. HR199. The recombinant strain converted eugenol to ferulic acid. The obtained data suggest that genetically engineered strains of I24 and PD630 are suitable candidates for vanillin production from eugenol.

  8. Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01.

    Science.gov (United States)

    Bhatia, Shashi Kant; Kim, Junyoung; Song, Hun-Seok; Kim, Hyun Joong; Jeon, Jong-Min; Sathiyanarayanan, Ganesan; Yoon, Jeong-Jun; Park, Kyungmoon; Kim, Yun-Gon; Yang, Yung-Hun

    2017-06-01

    The effect of various biomass derived inhibitors (i.e. furfural, hydroxymethylfurfural (HMF), vanillin, 4-hydroxy benzaldehyde (4-HB) and acetate) was investigated for fatty acid accumulation in Rhodococcus sp. YHY 01. Rhodococcus sp. YHY01 was able to utilize acetate, vanillin, and 4-HB for biomass production and fatty acid accumulation. The IC 50 value for furfural (3.1mM), HMF (3.2mM), vanillin (2.0mM), 4-HB (2.7mM) and acetate (3.7mM) was calculated. HMF and vanillin affect fatty acid composition and increase saturated fatty acid content. Rhodococcus sp. YHY 01 cultured with empty fruit bunch hydrolysate (EFBH) as the main carbon source resulted in enhanced biomass (20%) and fatty acid productivity (37%), in compression to glucose as a carbon source. Overall, this study showed the beneficial effects of inhibitory molecules on growth and fatty acid production, and support the idea of biomass hydrolysate utilization for biodiesel production by avoiding complex efforts to remove inhibitory compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The detection and phylogenetic analysis of the alkane 1-monooxygenase gene of members of the genus Rhodococcus.

    Science.gov (United States)

    Táncsics, András; Benedek, Tibor; Szoboszlay, Sándor; Veres, Péter G; Farkas, Milán; Máthé, István; Márialigeti, Károly; Kukolya, József; Lányi, Szabolcs; Kriszt, Balázs

    2015-02-01

    Naturally occurring and anthropogenic petroleum hydrocarbons are potential carbon sources for many bacteria. The AlkB-related alkane hydroxylases, which are integral membrane non-heme iron enzymes, play a key role in the microbial degradation of many of these hydrocarbons. Several members of the genus Rhodococcus are well-known alkane degraders and are known to harbor multiple alkB genes encoding for different alkane 1-monooxygenases. In the present study, 48 Rhodococcus strains, representing 35 species of the genus, were investigated to find out whether there was a dominant type of alkB gene widespread among species of the genus that could be used as a phylogenetic marker. Phylogenetic analysis of rhodococcal alkB gene sequences indicated that a certain type of alkB gene was present in almost every member of the genus Rhodococcus. These alkB genes were common in a unique nucleotide sequence stretch absent from other types of rhodococcal alkB genes that encoded a conserved amino acid motif: WLG(I/V/L)D(G/D)GL. The sequence identity of the targeted alkB gene in Rhodococcus ranged from 78.5 to 99.2% and showed higher nucleotide sequence variation at the inter-species level compared to the 16S rRNA gene (93.9-99.8%). The results indicated that the alkB gene type investigated might be applicable for: (i) differentiating closely related Rhodococcus species, (ii) properly assigning environmental isolates to existing Rhodococcus species, and finally (iii) assessing whether a new Rhodococcus isolate represents a novel species of the genus. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Infecção pulmonar por "Rhodococcus equi": relato dos dois primeiros casos brasileiros Pulmonary Rhodococcus equi infection: report of the first two Brazilian cases

    Directory of Open Access Journals (Sweden)

    LUIZ CARLOS SEVERO

    2001-05-01

    Full Text Available O Rhodococcus equi, principal agente da rodococose, é um cocobacilo pleomórfico, gram-positivo e aeróbio, que infecta humanos por via inalatória ou transcutânea e se manifesta clinicamente como abscesso pulmonar. Relatam-se os dois primeiros casos brasileiros da doença. Ambos os pacientes eram imunocomprometidos e apresentavam quadro infeccioso pulmonar. O primeiro tinha AIDS e apresentava pneumonia cavitada em lobo superior esquerdo, que teve evolução fatal. O segundo tinha doença de Goodpasture, insuficiência renal crônica e fazia uso de corticosteróides. Apresentava uma lesão pulmonar escavada no lobo superior direito, que foi tratada com sulfametoxazol-trimetoprim, com resolução do processo.Rhodococcus equi, the principal agent of rhodococcosis, is a pleomorphic, gram-positive, aerobic coccus bacillus that infects humans by inhalation or through a transcutaneous route. It is clinically manifested as a pulmonary abscess. The first two Brazilian cases of rhodococcosis are reported on. Both patients were immunocompromised and showed pulmonary infection. The first patient had AIDS and cavitating pneumonia in the left upper lobe, that was fatal. The second case presented Goodpasture syndrome and was under chronic corticotherapy. He displayed a cavitating nodular lesion in the right upper lobe, that was successfully treated with sulfametoxazol-trimethoprim.

  11. Biodegradation of cyanide by acetonitrile-induced cells of Rhodococcus sp. UKMP-5M.

    Science.gov (United States)

    Nallapan Maniyam, Maegala; Sjahrir, Fridelina; Ibrahim, Abdul Latif; Cass, Anthony E G

    2013-01-01

    A Rhodococcus sp. UKMP-5M isolate was shown to detoxify cyanide successfully, suggesting the presence of an intrinsic property in the bacterium which required no prior cyanide exposure for induction of this property. However, in order to promote growth, Rhodococcus sp. UKMP-5M was fully acclimatized to cyanide after 7 successive subcultures in 0.1 mM KCN for 30 days. To further shorten the lag phase and simultaneously increase the tolerance towards higher cyanide concentrations, the bacterium was induced with various nitrile compounds sharing a similar degradatory pathway to cyanide. Acetonitrile emerged as the most favored inducer and the induced cells were able to degrade 0.1 mM KCN almost completely within 18 h. With the addition of subsequent aliquots of 0.1 mM KCN a shorter period for complete removal of cyanide was required, which proved to be advantageous economically. Both resting cells and crude enzyme of Rhodococcus sp. UKMP-5M were able to biodegrade cyanide to ammonia and formate without the formation of formamide, implying the identification of a simple hydrolytic cyanide degradation pathway involving the enzyme cyanidase. Further verification with SDS-PAGE revealed that the molecular weight of the active enzyme was estimated to be 38 kDa, which is consistent with previously reported cyanidases. Since the recent advancement in the application of biological methods in treating cyanide-bearing wastewater has been promising, the discovery of this new bacterium will add value by diversifying the existing microbial populations capable of cyanide detoxification.

  12. Genetically engineered micro-organisms: Aromatic hydrocarbon biodegradation genes from Rhodococcus

    International Nuclear Information System (INIS)

    Kendall, K.

    1993-01-01

    DNA known to encode toluene biodegradation genes in Pseudomonas putida was used in Southern Blots to identify homologous DNA in the unrelated toluene degrading Actinomycete, Rhodococcus sp. ATCC 19070. Two strongly hybridizing EcoRI fragments of 2.3 kb and 2.7 kb respectively were cloned into E. coli. Sequence analysis of a 400 bp section of the 2.3 kb fragment demonstrated that it encodes proteins with similar amino acid sequences to the xylX and xylY genes of P. putida. These proteins are components of toluate oxygenase, the enzyme catalyzing the first step in the metabolism of benzoic acid

  13. Pulmonary Rhodococcus equi infection: report of the first two Brazilian cases

    OpenAIRE

    SEVERO, LUIZ CARLOS; RITTER, PATRICIA; PETRILLO, VICTOR FLÁVIO; DIAS, CÍCERO ARMÍDIO GOMES; PORTO, NELSON DA SILVA

    2001-01-01

    O Rhodococcus equi, principal agente da rodococose, é um cocobacilo pleomórfico, gram-positivo e aeróbio, que infecta humanos por via inalatória ou transcutânea e se manifesta clinicamente como abscesso pulmonar. Relatam-se os dois primeiros casos brasileiros da doença. Ambos os pacientes eram imunocomprometidos e apresentavam quadro infeccioso pulmonar. O primeiro tinha AIDS e apresentava pneumonia cavitada em lobo superior esquerdo, que teve evolução fatal. O segundo tinha doença de Goodpas...

  14. Pneumonia due to Rhodococcus equi in a non-Hodgkin's lymphoma patient: case report

    Directory of Open Access Journals (Sweden)

    Iuri de França Bonilha

    Full Text Available The authors reported a lung infection by Rhodococcus equi in a 25 years-old male patient admitted to hospital with cough, dyspnea, fever, and previous diagnosis of pleural effusion. R. equi was isolated from pleural fluid and the patient acquired nosocomial infection by Acinetobacter baumannii, isolated from chest drain. The patient was treated with antibiotics. During hospitalization, he was diagnosed with non-Hodgkin lymphoma of precursor T-cell lymphoblastic lymphoma subtype in biopsy of pleura. After undergoing surgery for pulmonary decortication for drain empyema, the patient died due to septicemia.

  15. A new zearalenone biodegradation strategy using non-pathogenic Rhodococcus pyridinivorans K408 strain.

    Science.gov (United States)

    Kriszt, Rókus; Krifaton, Csilla; Szoboszlay, Sándor; Cserháti, Mátyás; Kriszt, Balázs; Kukolya, József; Czéh, Arpád; Fehér-Tóth, Szilvia; Török, Lívia; Szőke, Zsuzsanna; Kovács, Krisztina J; Barna, Teréz; Ferenczi, Szilamér

    2012-01-01

    Zearalenone (hereafter referred to as ZEA) is a nonsteroidal estrogenic mycotoxin produced by several Fusarium spp. on cereal grains. ZEA is one of the most hazardous natural endocrine disrupting chemicals (EDC) which induces hyper estrogenic responses in mammals. This can result in reproductive disorders in farm animals as well as in humans. Consequently, detoxification strategies for contaminated crops are crucial for food safety. In this study we have developed a bacterial based detoxification system using a non-pathogen Rhodococcus pyridinivorans K408 strain. Following 5 days treatment of ZEA with R. pyridinivorans K408 strain HPLC analyses showed an 87.21% ZEA-degradation efficiency of the bacterial enzyme systems. In another approach, the strain biotransformation ability has also been confirmed by a bioluminescent version of the yeast estrogen screening system (BLYES), which detected an 81.75% of biodegradability of ZEA, in a good agreement with the chemical analyses. Furthermore, the capacity of R. pyridinivorans to eliminate the estrogenic effects of ZEA was tested by using an immature uterotrophic assay. Prepubertal female rats were treated with vehicle (olive oil), 17β-estradiol, ZEA (0.1-1-5-10 mg/kg body weight) and LB broth containing 500 mg/l ZEA that has already been incubated with or without Rhodococcus pyridinivorans K408 strain. Uterine weights were measured and the mRNA level changes relating to apelin, aquaporin 5, complement component 2, and calbindin-3 genes were measured by qRT-PCR. These genes represent the major pathways that are affected by estromimetic compounds. Zearalenone feeding significantly increased the uterus weight in a dose dependent manner and at the same time upregulated complement component 2 and calbindin-3 expression as well as decreased apelin and aquaporin 5 mRNA levels comparable to that seen in 17β-estradiol exposed rats. In contrast, LB broth in which ZEA was incubated with Rhodococcus pyridinivorans K408 prior to

  16. A new zearalenone biodegradation strategy using non-pathogenic Rhodococcus pyridinivorans K408 strain.

    Directory of Open Access Journals (Sweden)

    Rókus Kriszt

    Full Text Available Zearalenone (hereafter referred to as ZEA is a nonsteroidal estrogenic mycotoxin produced by several Fusarium spp. on cereal grains. ZEA is one of the most hazardous natural endocrine disrupting chemicals (EDC which induces hyper estrogenic responses in mammals. This can result in reproductive disorders in farm animals as well as in humans. Consequently, detoxification strategies for contaminated crops are crucial for food safety. In this study we have developed a bacterial based detoxification system using a non-pathogen Rhodococcus pyridinivorans K408 strain. Following 5 days treatment of ZEA with R. pyridinivorans K408 strain HPLC analyses showed an 87.21% ZEA-degradation efficiency of the bacterial enzyme systems. In another approach, the strain biotransformation ability has also been confirmed by a bioluminescent version of the yeast estrogen screening system (BLYES, which detected an 81.75% of biodegradability of ZEA, in a good agreement with the chemical analyses. Furthermore, the capacity of R. pyridinivorans to eliminate the estrogenic effects of ZEA was tested by using an immature uterotrophic assay. Prepubertal female rats were treated with vehicle (olive oil, 17β-estradiol, ZEA (0.1-1-5-10 mg/kg body weight and LB broth containing 500 mg/l ZEA that has already been incubated with or without Rhodococcus pyridinivorans K408 strain. Uterine weights were measured and the mRNA level changes relating to apelin, aquaporin 5, complement component 2, and calbindin-3 genes were measured by qRT-PCR. These genes represent the major pathways that are affected by estromimetic compounds. Zearalenone feeding significantly increased the uterus weight in a dose dependent manner and at the same time upregulated complement component 2 and calbindin-3 expression as well as decreased apelin and aquaporin 5 mRNA levels comparable to that seen in 17β-estradiol exposed rats. In contrast, LB broth in which ZEA was incubated with Rhodococcus pyridinivorans K

  17. El género Rhodococcus. Una revisión didáctica

    OpenAIRE

    Sánchez, N; Sandoval, AH; Díaz-Corrales, F; Serrano, JA

    2004-01-01

    Los autores presentan una extensa revisión sobre el género Rhodococcus, grupo de microorganismos pertenecientes a la familia de los Actinomicetales. Se revisan aspectos relativos a la microbiología, taxonomía, citoquímica, patología, clínica y terapéutica de las afecciones que, como agentes patógenos, producen estos microorganismos, en especial en su papel de agentes productores de infecciones nosocomiales y oportunistas. Así mismo se revisan aspectos relativos a la importancia de estos micro...

  18. Biosurfactant production by halotolerant Rhodococcus fascians from Casey Station, Wilkes Land, Antarctica.

    Science.gov (United States)

    Gesheva, Victoria; Stackebrandt, Erko; Vasileva-Tonkova, Evgenia

    2010-08-01

    Isolate A-3 from Antarctic soil in Casey Station, Wilkes Land, was characterized for growth on hydrocarbons. Use of glucose or kerosene as a sole carbon source in the culture medium favoured biosynthesis of surfactant which, by thin-layer chromatography, indicated the formation of a rhamnose-containing glycolipid. This compound lowered the surface tension at the air/water interface to 27 mN/m as well as inhibited the growth of B. subtilis ATCC 6633 and exhibited hemolytic activity. A highly hydrophobic surface of the cells suggests that uptake occurs via a direct cell-hydrocarbon substrate contact. Strain A-3 is Gram-positive, halotolerant, catalase positive, urease negative and has rod-coccus shape. Its cell walls contained meso-diaminopimelic acid. Phylogenetic analysis based on comparative analysis of 16S rRNA gene sequences revealed that strain A-3 is closely related to Rhodococcus fascians with which it shares 100% sequence similarity. This is the first report on rhamnose-containing biosurfactant production by Rhodococcus fascians isolated from Antarctic soil.

  19. [Respiratory infections caused by slow-growing bacteria: Nocardia, Actinomyces, Rhodococcus].

    Science.gov (United States)

    Eschapasse, E; Hussenet, C; Bergeron, A; Lebeaux, D

    2017-06-01

    Pneumonia caused by slow-growing bacteria is rare but sometimes severe. These infections share many similarities such as several differential diagnoses, difficulties to identify the pathogen, the importance of involving the microbiologist in the diagnostic investigation and the need for prolonged antibiotic treatment. However, major differences distinguish them: Nocardia and Rhodococcus infect mainly immunocompromised patients while actinomycosis also concerns immunocompetent patients; the severity of nocardioses is related to their hematogenous spread while locoregional extension by contiguity makes the gravity of actinomycosis. For these diseases, molecular diagnostic tools are essential, either to obtain a species identification and guide treatment in the case of nocardiosis or to confirm the diagnosis from a biological sample. Treatment of these infections is complex due to: (1) the limited data in the literature; (2) the need for prolonged treatment of several months; (3) the management of toxicities and drug interactions for the treatment of Nocardia and Rhodococcus. Close cooperation between pneumonologists, infectious disease specialists and microbiologists is essential for the management of these patients. Copyright © 2017 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  20. Haloalkane-utilizing Rhodococcus strains isolated from geographically distinct locations possess a highly conserved gene cluster encoding haloalkane catabolism

    NARCIS (Netherlands)

    Poelarends, GJ; Bosma, T; Kulakov, LA; Larkin, MJ; Marchesi, [No Value; Weightman, AJ; Janssen, DB; Kulakov, Leonid A.; Larkin, Michael J.; Marchesi, Julian R.; Weightman, Andrew J.

    The sequences of the 16S rRNA and haloalkane dehalogenase (dhaA) genes of five gram-positive haloalkane-utilizing bacteria isolated from contaminated sites in Europe, Japan, and the United States and of the archetypal haloalkane-degrading bacterium Rhodococcus sp. strain NCIMB13064 were compared.

  1. Failure of pulmonary clearance of Rhodococcus equi infection in CD4+ T-lymphocyte-deficient transgenic mice.

    OpenAIRE

    Kanaly, S T; Hines, S A; Palmer, G H

    1993-01-01

    Pulmonary clearance of Rhodococcus equi requires functional T lymphocytes. In this study, CD8+ T-lymphocyte-deficient transgenic mice cleared virulent R. equi from the lungs while infection in CD4+ T-lymphocyte-deficient transgenic mice persisted. Although both CD4+ and CD8+ T cells function early in pulmonary defense against R. equi, clearance is dependent on CD4+ T lymphocytes.

  2. Steady-state and pre-steady-state kinetic analysis of halopropane conversion by a Rhodococcus haloalkane dehalogenase

    NARCIS (Netherlands)

    Bosma, T; Pikkemaat, MG; Kingma, Jacob; Dijk, J; Janssen, DB

    2003-01-01

    Haloalkane dehalogenase from Rhodococcus rhodochrous NCIMB 13064 (DhaA) catalyzes the hydrolysis of carbon-halogen bonds in a wide range of haloalkanes. We examined the steady-state and pre-steady-state kinetics of halopropane conversion by DhaA to illuminate mechanistic details of the

  3. Molecular characterization of three 3-ketosteroid-Delta(1)-dehydrogenase isoenzynnes of Rhodococcus ruber strain Chol-4

    NARCIS (Netherlands)

    Fernandez de las Heras, Laura; van der Geize, Robert; Drzyzga, Oliver; Perera, Julian; Navarro Llorens, Juana Maria

    2012-01-01

    Rhodococcus ruber strain Chol-4 isolated from a sewage sludge sample is able to grow on minimal medium supplemented with steroids, showing a broad catabolic capacity. This paper reports the characterization of three different 3-ketosteroid-Delta(1)-dehydrogenases (KstDs) in the genome of R. ruber

  4. Biocatalytic properties and structural analysis of eugenol oxidase from Rhodococcus jostii RHA1 : a versatile oxidative biocatalyst

    NARCIS (Netherlands)

    Nguyen, Quoc-Thai; De Gonzalo, Gonzalo; Binda, Claudia; Rioz, Ana; Mattevi, Andrea; Fraaije, Marco

    2016-01-01

    Eugenol oxidase (EUGO) from Rhodococcus jostii RHA1 was previously shown to convert only a limited set of phenolic compounds. In this study, we have explored the biocatalytic potential of this flavoprotein oxidase resulting in a broadened substrate scope and a deeper insight into its structural

  5. Cloning, overexpression, purification, crystallization and preliminary X-ray analysis of 3-ketosteroid Delta(4)-(5 alpha)-dehydrogenase from Rhodococcus jostii RHA1

    NARCIS (Netherlands)

    van Oosterwijk, Niels; Knol, Jan; Dijkhuizen, Lubbert; van der Geize, Robert; Dijkstra, Bauke

    2011-01-01

    3-Ketosteroid dehydrogenases are flavoproteins which play key roles in steroid ring degradation. The enzymes are abundantly present in actinobacteria, including the catabolic powerhouse Rhodococcus jostii and the pathogenic species R. equi and Mycobacterium tuberculosis. The gene for 3-ketosteroid

  6. Lag phase and biomass determination of Rhodococcus pyridinivorans GM3 for degradation of phenol

    Science.gov (United States)

    Al-Defiery, M. E. J.; Reddy, G.

    2018-05-01

    Among various techniques available for removal of phenol, biodegradation is an eco-friendly and cost effective method. Thus, it is required to understand the process of biodegradation of phenol, such as investigate on lag phase and biomass concentration. Phenol degrading bacteria were isolated from soil samples of industrial sites in enriched mineral salts medium (MSM) with phenol as a sole source of energy and carbon. One isolate of potential phenol degradation from consortium for phenol degrading studies was identified as Rhodococcus pyridinivorans GM3. Lag phase and biomass determination of R. pyridinivorans GM3 was studied with different phenol concentrations under pH 8.5 at temperature 32 Co and 200 rpm. Microbial biomass was directly proportional to increasing phenol concentration between 1.0 to 2.0 g/L with a maximum dry biomass of 1.745 g/L was noted after complete degradation of 2.0 g/L phenol in 48 hours.

  7. Identification and analysis of novel virulence-defective Rhodococcus fascians mutants

    OpenAIRE

    Cabecinhas, Adriana Sofia Silva

    2014-01-01

    Rhodococcus fascians é uma actinomiceta fitopatogénica que induz uma doença, conhecida como irritação frondosa, caracterizada pela indução de múltiplos rebentos, numa vasta gama de plantas herbáceas dicotiledóneas. O principal factor de patogenicidade da bactéria é a produção de uma mistura de 6 citoquininas codificadas pelos genes do operão fas que está localizado num plasmídeo linear associado à virulência, pFiD188. Este trabalho teve como objectivo a análise de dois novos loci deste plasmí...

  8. Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus.

    Science.gov (United States)

    Ceniceros, Ana; Dijkhuizen, Lubbert; Petrusma, Mirjan; Medema, Marnix H

    2017-08-09

    Bacteria of the genus Rhodococcus are well known for their ability to degrade a large range of organic compounds. Some rhodococci are free-living, saprophytic bacteria; others are animal and plant pathogens. Recently, several studies have shown that their genomes encode putative pathways for the synthesis of a large number of specialized metabolites that are likely to be involved in microbe-microbe and host-microbe interactions. To systematically explore the specialized metabolic potential of this genus, we here performed a comprehensive analysis of the biosynthetic coding capacity across publicly available rhododoccal genomes, and compared these with those of several Mycobacterium strains as well as that of their mutual close relative Amycolicicoccus subflavus. Comparative genomic analysis shows that most predicted biosynthetic gene cluster families in these strains are clade-specific and lack any homology with gene clusters encoding the production of known natural products. Interestingly, many of these clusters appear to encode the biosynthesis of lipopeptides, which may play key roles in the diverse environments were rhodococci thrive, by acting as biosurfactants, pathogenicity factors or antimicrobials. We also identified several gene cluster families that are universally shared among all three genera, which therefore may have a more 'primary' role in their physiology. Inactivation of these clusters by mutagenesis might help to generate weaker strains that can be used as live vaccines. The genus Rhodococcus thus provides an interesting target for natural product discovery, in view of its large and mostly uncharacterized biosynthetic repertoire, its relatively fast growth and the availability of effective genetic tools for its genomic modification.

  9. Structure of the virulence-associated protein VapD from the intracellular pathogen Rhodococcus equi

    International Nuclear Information System (INIS)

    Whittingham, Jean L.; Blagova, Elena V.; Finn, Ciaran E.; Luo, Haixia; Miranda-CasoLuengo, Raúl; Turkenburg, Johan P.; Leech, Andrew P.; Walton, Paul H.; Murzin, Alexey G.; Meijer, Wim G.; Wilkinson, Anthony J.

    2014-01-01

    VapD is one of a set of highly homologous virulence-associated proteins from the multi-host pathogen Rhodococcus equi. The crystal structure reveals an eight-stranded β-barrel with a novel fold and a glycine rich ‘bald’ surface. Rhodococcus equi is a multi-host pathogen that infects a range of animals as well as immune-compromised humans. Equine and porcine isolates harbour a virulence plasmid encoding a homologous family of virulence-associated proteins associated with the capacity of R. equi to divert the normal processes of endosomal maturation, enabling bacterial survival and proliferation in alveolar macrophages. To provide a basis for probing the function of the Vap proteins in virulence, the crystal structure of VapD was determined. VapD is a monomer as determined by multi-angle laser light scattering. The structure reveals an elliptical, compact eight-stranded β-barrel with a novel strand topology and pseudo-twofold symmetry, suggesting evolution from an ancestral dimer. Surface-associated octyl-β-d-glucoside molecules may provide clues to function. Circular-dichroism spectroscopic analysis suggests that the β-barrel structure is preceded by a natively disordered region at the N-terminus. Sequence comparisons indicate that the core folds of the other plasmid-encoded virulence-associated proteins from R. equi strains are similar to that of VapD. It is further shown that sequences encoding putative R. equi Vap-like proteins occur in diverse bacterial species. Finally, the functional implications of the structure are discussed in the light of the unique structural features of VapD and its partial structural similarity to other β-barrel proteins

  10. Structure of the virulence-associated protein VapD from the intracellular pathogen Rhodococcus equi

    Energy Technology Data Exchange (ETDEWEB)

    Whittingham, Jean L.; Blagova, Elena V. [University of York, Heslington, York YO10 5DD (United Kingdom); Finn, Ciaran E.; Luo, Haixia; Miranda-CasoLuengo, Raúl [University College Dublin, Dublin (Ireland); Turkenburg, Johan P.; Leech, Andrew P.; Walton, Paul H. [University of York, Heslington, York YO10 5DD (United Kingdom); Murzin, Alexey G. [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH (United Kingdom); Meijer, Wim G. [University College Dublin, Dublin (Ireland); Wilkinson, Anthony J., E-mail: tony.wilkinson@york.ac.uk [University of York, Heslington, York YO10 5DD (United Kingdom)

    2014-08-01

    VapD is one of a set of highly homologous virulence-associated proteins from the multi-host pathogen Rhodococcus equi. The crystal structure reveals an eight-stranded β-barrel with a novel fold and a glycine rich ‘bald’ surface. Rhodococcus equi is a multi-host pathogen that infects a range of animals as well as immune-compromised humans. Equine and porcine isolates harbour a virulence plasmid encoding a homologous family of virulence-associated proteins associated with the capacity of R. equi to divert the normal processes of endosomal maturation, enabling bacterial survival and proliferation in alveolar macrophages. To provide a basis for probing the function of the Vap proteins in virulence, the crystal structure of VapD was determined. VapD is a monomer as determined by multi-angle laser light scattering. The structure reveals an elliptical, compact eight-stranded β-barrel with a novel strand topology and pseudo-twofold symmetry, suggesting evolution from an ancestral dimer. Surface-associated octyl-β-d-glucoside molecules may provide clues to function. Circular-dichroism spectroscopic analysis suggests that the β-barrel structure is preceded by a natively disordered region at the N-terminus. Sequence comparisons indicate that the core folds of the other plasmid-encoded virulence-associated proteins from R. equi strains are similar to that of VapD. It is further shown that sequences encoding putative R. equi Vap-like proteins occur in diverse bacterial species. Finally, the functional implications of the structure are discussed in the light of the unique structural features of VapD and its partial structural similarity to other β-barrel proteins.

  11. Induction of leafy galls in Acacia mearnsii De Wild seedlings infected by Rhodococcus fascians

    Directory of Open Access Journals (Sweden)

    Marguerite Quoirin

    2004-07-01

    Full Text Available Plantlets of blackwattle (Acacia mearnsii De Wild were inoculated with the bacterium Rhodococcus fascians and cultured in vitro. Leafy galls appeared at the cotyledonary nodes in 75% of the infected plants. The galls were separated from the plants and cultured on a medium containing three-quarters-strength MS salts (Murashige and Skoog, 1962, MS vitamins, 2% sucrose and an antibiotic (cephalothin, supplemented with or without 0.2% activated charcoal. Histological studies conducted from the sixth to the twenty-second day after plant infection revealed the presence of newly formed meristematic centers, first in the axillary region, then on the petioles and lamina of the leaflets around the apical meristem. Approximately 37% of the galls developed one shoot with both concentrations of cephalothin.Plantas recém germinadas de acácia negra (Acacia mearnsii De Wild. foram inoculadas com a bactéria Rhodococcus fascians e cultivadas in vitro. Galhas cobertas por folhas apareceram na altura do nó cotiledonar em 75% das plantas infectadas. As galhas foram separadas das plantas e cultivadas num meio de cultura contendo os sais do meio MS (Murashige e Skoog, 1962 reduzidos a 3/4, as vitaminas do mesmo meio, 2% de sacarose e um antibiótico (cefalotina, adicionado ou não de 0,2% de carvão ativo. Estudos histológicos realizados entre o sexto e o vigésimo segundo dia depois da inoculação, revelaram a presença de centros meristemáticos novos, primeiro nas regiões axilares, em seguida nos pecíolos e limbos dos folíolos ao redor do meristema apical. Aproximadamente 37% das galhas desenvolveram um broto na presença de cefalotina.

  12. Successful bioaugmentation of an activated sludge reactor with Rhodococcus sp. YYL for efficient tetrahydrofuran degradation

    International Nuclear Information System (INIS)

    Yao, Yanlai; Lu, Zhenmei; Zhu, Fengxiang; Min, Hang; Bian, Caimiao

    2013-01-01

    Highlights: • Rhodococcus sp. YYL is an efficient tetrahydrofuran-degrading strain. • Strain YYL was used to augment an activated sludge system for THF degradation. • Successful bioaugmentation was achieved only by coinoculation of strain YYL and the two bacilli. • Successful bioaugmentation of the system resulted in efficient THF degradation. -- Abstract: The exchange of tetrahydrofuran (THF)-containing wastewater should significantly affect the performance of an activated sludge system. In this study, the feasibility of using THF-degrading Rhodococcus sp. strain YYL to bioaugment an activated sludge system treating THF wastewater was explored. As indicated by a DGGE analysis, strain YYL alone could not dominate the system, with the concentration of mixed liquor suspended solids (MLSS) decreasing to nearly half of the initial concentration after 45 d, and the microbial diversity was found to be significantly reduced. However, after the reactor was augmented with the mixed culture of strain YYL and two bacilli initially coexisting in the enriched isolation source, strain YYL quickly became dominant in the system and was incorporated into the activated sludge. The concentration of MLSS increased from 2.1 g/L to 7.3 g/L in 20 d, and the efficiency of THF removal from the system was remarkably improved. After the successful bioaugmentation, more than 95% of THF was completely removed from the wastewater when 20 mM THF was continuously loaded into the system. In conclusion, our research first demonstrates that bioaugmentation of activated sludge system for THF degradation is feasible but that successful bioaugmentation should utilize a THF-degrading mixed culture as the inoculum, in which the two bacilli might help strain YYL colonize in activated sludge by co-aggregation

  13. Enzymatic cyanide degradation by cell-free extract of Rhodococcus UKMP-5M.

    Science.gov (United States)

    Nallapan Maniyam, Maegala; Sjahrir, Fridelina; Latif Ibrahim, Abdul; Cass, Anthony E G

    2015-01-01

    The cell-free extract of locally isolated Rhodococcus UKMP-5M strain was used as an alternative to develop greener and cost effective cyanide removal technology. The present study aims to assess the viability of the cell-free extract to detoxify high concentrations of cyanide which is measured through the monitoring of protein concentration and specific cyanide-degrading activity. When cyanide-grown cells were subjected to grinding in liquid nitrogen which is relatively an inexpressive and fast cell disruption method, highest cyanide-degrading activity of 0.63 mM min(-1) mg(-1) protein was obtained in comparison to enzymatic lysis and agitation with fine glass beads. The cell-free extracts managed to degrade 80% of 20 mM KCN within 80 min and the rate of cyanide consumption increased linearly as the concentration of protein was raised. In both cases, the addition of co-factor was not required which proved to be advantageous economically. The successful formation of ammonia and formate as endproducts indicated that the degradation of cyanide by Rhodococcus UKMP-5M proceeded via the activity of cyanidase and the resulting non-toxic products are safe for disposal into the environment. Further verification with SDS-PAGE revealed that the molecular weight of the active enzyme was estimated to be 38 kDa, which is consistent with previously reported cyanidases. Thus, the utilization of cell-free extracts as an alternative to live microbial in cyanide degradation offers numerous advantageous such as the potential to tolerate and degrade higher concentration of cyanide and total reduction in the overall cost of operation since the requirement for nutrient support is irrelevant.

  14. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment.

    Science.gov (United States)

    Auta, H S; Emenike, C U; Jayanthi, B; Fauziah, S H

    2018-02-01

    Interest in the biodegradation of microplastics is due to their ubiquitous distribution, availability, high persistence in the environment and deleterious impact on marine biota. The present study evaluates the growth response and mechanism of polypropylene (PP) degradation by Bacillus sp. strain 27 and Rhodococcus sp. strain 36 isolated from mangrove sediments upon exposure to PP microplastics. Both bacteria strains were able to utilise PP microplastic for growth as confirmed by the reduction of the polymer mass. The weight loss was 6.4% by Rhodococcus sp. strain 36 and 4.0% by Bacillus sp. strain 27 after 40days of incubation. PP biodegradation was further confirmed using Fourier-transform infrared spectroscopy and scanning electron microscopy analyses, which revealed structural and morphological changes in the PP microplastics with microbial treatment. These analyses showed that the isolates can colonise, modify and utilise PP microplastics as carbon source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. [Effects of nitriles and amides on the growth and the nitrile hydratase activity of the Rhodococcus sp. strain gt1].

    Science.gov (United States)

    Maksimov, A Iu; Kuznetsova, M V; Ovechkina, G V; Kozlov, S V; Maksimova, Iu G; Demakov, V A

    2003-01-01

    Effects of some nitriles and amides, as well as glucose and ammonium, on the growth and the nitrile hydratase (EC 4.2.1.84) activity of the Rhodococcus sp. strain gt1 isolated from soil were studied. The activity of nitrile hydratase mainly depended on carbon and nitrogen supply to cells. The activity of nitrile hydratase was high in the presence of glucose and ammonium at medium concentrations and decreased at concentrations of glucose more than 0.3%. Saturated unsubstituted aliphatic nitriles and amides were found to be a good source of nitrogen and carbon. However, the presence of nitriles and amides in the medium was not absolutely necessary for the expression of the activity of nitrile hydratase isolated from the Rhodococcus sp. strain gt1.

  16. Identificação diferencial de Rhodococcus equi e Dietzia maris em bubalinos Differential identification of Rhodococcus equi and Dietzia maris in buffaloes

    Directory of Open Access Journals (Sweden)

    L.R. Viana

    2009-08-01

    Full Text Available Foram analisados 24 isolados bacterianos oriundos de leite e pele de búfalas (Bubalus bubalis, os quais foram previamente identificados como Rhodococcus equi com o auxílio de fenotipia concisa. Testes fenotípicos complementares e ferramentas moleculares foram utilizados com o objetivo de caracterizar esses isolados, bem como diferenciá-los de outros microrganismos intimamente relacionados. Observaram-se três fenótipos distintos, porém a identificação dos isolados foi inconclusiva. Apenas um dos isolados foi comprovado como sendo R. equi com a realização da PCR espécie-específica, sequenciamento e análise dos fragmentos de DNA. Os demais isolados só foram identificados pelo sequenciamento de fragmento do gene que codifica a região 16S do rRNA universal de bactérias, indicando tratar-se de Dietzia maris. O perfil de susceptibilidade aos antimicrobianos revelou maior resistência dos isolados de D. maris para oxacilina (96% e rifampicina (87%. O isolado de R. equi apresentou resistência à amicacina, oxacilina, penicilina, rifampicina e tetraciclina. Alerta-se para o risco da incorreta identificação dos isolados baseados em testes fenotípicos concisos e para a necessidade de utilização de testes complementares para diferenciação entre R. equi e D. maris.Twenty-four bacterial isolates from milk and skin of buffalo females (Bubalus bubalis, which previously had been identified as Rhodococcus equi by using a restricted number of phenotypical tests for bacterial characterization, were analyzed. The goal of this study was to perform the characterization of these isolates, as well as the differentiation of other microorganisms closely related by using additional phenotypical tests and molecular tools. Based on the phenotypical results, three different biotypes were obtained. However, the identification of the isolates was inconclusive. Only one of the isolates was confirmed as R. equi by the PCR specifically for this species, as

  17. Biocatalytic Properties and Structural Analysis of Eugenol Oxidase from Rhodococcus jostii RHA1: A Versatile Oxidative Biocatalyst

    OpenAIRE

    Nguyen, Quoc-Thai; de Gonzalo, Gonzalo; Binda, Claudia; Rioz-Martínez, Ana; Mattevi, Andrea; Fraaije, Marco W.

    2016-01-01

    Abstract Eugenol oxidase (EUGO) from Rhodococcus jostii RHA1 had previously been shown to convert only a limited set of phenolic compounds. In this study, we have explored the biocatalytic potential of this flavoprotein oxidase, resulting in a broadened substrate scope and a deeper insight into its structural properties. In addition to the oxidation of vanillyl alcohol and the hydroxylation of eugenol, EUGO can efficiently catalyze the dehydrogenation of various phenolic ketones and the selec...

  18. Infecção por Rhodococcus em doente imunocompetente - a propósito de um caso

    Directory of Open Access Journals (Sweden)

    Susana Barbosa

    2015-12-01

    Full Text Available Resumo: O Rhodococcus equi raramente causa infecção no humano, sendo que a maioria dos casos descritos estão associados a doentes imunodeprimidos. Os autores apresentam o caso de um homem de 65 anos que foi admitido no serviço de urgência por agravamento da dispneia habitual, tosse e febre. Foi internado com o diagnóstico de sépsis com ponto de partida respiratório em pneumonia de focos múltiplos e peritonite. Medicado empiricamente com ceftriaxone, com melhoria clínica. Isolamento no líquido ascítico de Rhodococcus spp. Cumpriu 2 meses de antibioterapia com doxiciclina, com boa evolução clínica, analítica e radiológica. Os autores apresentam este caso dada a raridade da situação e pretendem realçar a necessidade de um elevado índice de suspeição para o diagnóstico da infecção por este agente em doentes imunocompetentes. Abstract: Rhodococcus equi rarely causes human infection, and most of the described cases are associated with immunosuppressed patients. The authors present a 65-year-old man who was admitted to the emergency department with worsening of dyspnoea, cough and fever. He was admitted with a diagnosis of sepsis with respiratory starting point in multiple foci pneumonia and peritonitis. He was medicated empirically with ceftriaxone, with clinical improvement. Isolation in the ascites fluid of Rhodococcus spp. He completed two months of antibiotic treatment with doxycycline, with clinical, analytical and radiological improvement. The authors present this case due to the rarity of the situation and highlight the need for a high index of suspicion for the infection diagnosis by this agent in immunocompetent patients.

  19. Both epiphytic and endophytic strains of Rhodococcus fascians influence transporter gene expression and cytokinins in infected Pisum sativum L. seedlings

    Czech Academy of Sciences Publication Activity Database

    Dhandapani, P.; Song, J.; Novák, Ondřej; Jameson, P. E.

    2018-01-01

    Roč. 85, č. 2 (2018), s. 231-242 ISSN 0167-6903 R&D Projects: GA ČR(CZ) GA17-06613S Institutional support: RVO:61389030 Keywords : Amino acid transporter * Cell wall invertase * Cytokinin * Pea * Rhodococcus fascians * Sucrose transporter * Sugar Will Eventually be Exported Transporter (SWEET) Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 2.646, year: 2016

  20. Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil.

    Science.gov (United States)

    Röttig, Annika; Hauschild, Philippa; Madkour, Mohamed H; Al-Ansari, Ahmed M; Almakishah, Naief H; Steinbüchel, Alexander

    2016-05-10

    As oleaginous microorganisms represent an upcoming novel feedstock for the biotechnological production of lipids or lipid-derived biofuels, we searched for novel, lipid-producing strains in desert soil. This was encouraged by the hypothesis that neutral lipids represent an ideal storage compound, especially under arid conditions, as several animals are known to outlast long periods in absence of drinking water by metabolizing their body fat. Ten lipid-accumulating bacterial strains, affiliated to the genera Bacillus, Cupriavidus, Nocardia, Rhodococcus and Streptomyces, were isolated from arid desert soil due to their ability to synthesize poly(β-hydroxybutyrate), triacylglycerols or wax esters. Particularly two Streptomyces sp. strains and one Rhodococcus sp. strain accumulate significant amounts of TAG under storage conditions under optimized cultivation conditions. Rhodococcus sp. A27 and Streptomyces sp. G49 synthesized approx. 30% (w/w) fatty acids from fructose or cellobiose, respectively, while Streptomyces isolate G25 reached a cellular fatty acid content of nearly 50% (w/w) when cultivated with cellobiose. The stored triacylglycerols were composed of 30-40% branched fatty acids, such as anteiso-pentadecanoic or iso-hexadecanoic acid. To date, this represents by far the highest lipid content described for streptomycetes. A biotechnological production of such lipids using (hemi)cellulose-derived raw material could be used to obtain sustainable biodiesel with a high proportion of branched-chain fatty acids to improve its cold-flow properties and oxidative stability. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Development of Chemical and Metabolite Sensors for Rhodococcus opacus PD630.

    Science.gov (United States)

    DeLorenzo, Drew M; Henson, William R; Moon, Tae Seok

    2017-10-20

    Rhodococcus opacus PD630 is a nonmodel, Gram-positive bacterium that possesses desirable traits for biomass conversion, including consumption capabilities for lignocellulose-based sugars and toxic lignin-derived aromatic compounds, significant triacylglycerol accumulation, relatively rapid growth rate, and genetic tractability. However, few genetic elements have been directly characterized in R. opacus, limiting its application for lignocellulose bioconversion. Here, we report the characterization and development of genetic tools for tunable gene expression in R. opacus, including: (1) six fluorescent reporters for quantifying promoter output, (2) three chemically inducible promoters for variable gene expression, and (3) two classes of metabolite sensors derived from native R. opacus promoters that detect nitrogen levels or aromatic compounds. Using these tools, we also provide insights into native aromatic consumption pathways in R. opacus. Overall, this work expands the ability to control and characterize gene expression in R. opacus for future lignocellulose-based fuel and chemical production.

  2. Emulsification of crude oil by an alkane-oxidizing Rhodococcus species isolated from seawater

    Energy Technology Data Exchange (ETDEWEB)

    Bredholt, H.; Bruheim, P.; Eimhjellen, K. [Norwegian Univ. of Scince and Technology, Trondheim (Norway); Josefsen, K.; Vatland, A. [SINTEF SI, Oslo (Norway). Industrial Chemistry Div.

    1998-04-01

    A Rhodococcus species, which has proven to be the best of 99 oil-emulsifying bacteria isolated from seawater, was characterized. This bacterium produced very stable oil-in-water emulsions from different crude oils with various content of aliphatic and aromatic compounds, by utilizing C{sub 1}1 and C{sub 3}3 n-alkanes as carbon and energy sources. Bacteria that produce stable emulsions are often able to adhere strongly to hydrocarbons or hydrophobic surfaces. It was at these surfaces that extensive emulsification of the residual oil and accumulation of acidic oxidation products occurred. The acidic products were consumed in a second step. This step was characterized by linear growth and an increasing number of cells growing in the water phase. The most extensive emulsification occurred at the end of the exponential phase. There was no evidence of surfactants at the end of the exponential phase, however, a polymeric compound with emulsifying activity, tightly bound to the oil droplets, was isolated, suggesting that the emulsification resulted from the release of the hydrophobic cell surface discarded during growth limitations. 38 refs., 7 figs.

  3. Calcium carbonate formation on mica supported extracellular polymeric substance produced by Rhodococcus opacus

    Energy Technology Data Exchange (ETDEWEB)

    Szcześ, Aleksandra, E-mail: aszczes@poczta.umcs.lublin.pl [Department of Physical Chemistry – Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin 20-031 (Poland); Czemierska, Magdalena; Jarosz-Wilkołazka, Anna [Department of Biochemistry, Maria Curie-Skłodowska University, Lublin 20-031 (Poland)

    2016-10-15

    Extracellular polymeric substance (EPS) extracted from Rhodococcus opacus bacterial strain was used as a matrix for calcium carbonate precipitation using the vapour diffusion method. The total exopolymer and water-soluble exopolymer fraction of different concentrations were spread on the mica surface by the spin-coating method. The obtained layers were characterized using the atomic force microscopy measurement and XPS analysis. The effects of polymer concentration, initial pH of calcium chloride solution and precipitation time on the obtained crystals properties were investigated. Raman spectroscopy and scanning electron microscopy were used to characterize the precipitated minerals. It was found that the type of precipitated CaCO{sub 3} polymorph and the crystal size depend on the kind of EPS fraction. The obtained results indicates that the water soluble fraction favours vaterite dissolution and calcite growth, whereas the total EPS stabilizes vaterite and this effect is stronger at basic pH. It seems to be due to different contents of the functional group of EPS fractions. - Highlights: • CaCO{sub 3} crystal size and polymorph can be controlled by EPS substance obtained from R. opacus. • The water soluble fraction favours vaterite dissolution and calcite growth. • The total EPS stabilizes vaterite. • This effect is stronger at basic pH.

  4. Transcriptional Response of Rhodococcus aetherivorans I24 to Polychlorinated Biphenyl-Contaminated Sediments

    KAUST Repository

    Puglisi, Edoardo

    2010-04-06

    We used a microarray targeting 3,524 genes to assess the transcriptional response of the actinomycete Rhodococcus aetherivorans I24 in minimal medium supplemented with various substrates (e. g., PCBs) and in both PCB-contaminated and non-contaminated sediment slurries. Relative to the reference condition (minimal medium supplemented with glucose), 408 genes were upregulated in the various treatments. In medium and in sediment, PCBs elicited the upregulation of a common set of 100 genes, including gene-encoding chaperones (groEL), a superoxide dismutase (sodA), alkyl hydroperoxide reductase protein C (ahpC), and a catalase/peroxidase (katG). Analysis of the R. aetherivorans I24 genome sequence identified orthologs of many of the genes in the canonical biphenyl pathway, but very few of these genes were upregulated in response to PCBs or biphenyl. This study is one of the first to use microarrays to assess the transcriptional response of a soil bacterium to a pollutant under conditions that more closely resemble the natural environment. Our results indicate that the transcriptional response of R. aetherivorans I24 to PCBs, in both medium and sediment, is primarily directed towards reducing oxidative stress, rather than catabolism. © 2010 Springer Science+Business Media, LLC.

  5. Aerobic Biodegradation of N-Nitrosodimethylamine by the Propanotroph Rhodococcus ruber ENV425▿

    Science.gov (United States)

    Fournier, Diane; Hawari, Jalal; Halasz, Annamaria; Streger, Sheryl H.; McClay, Kevin R.; Masuda, Hisako; Hatzinger, Paul B.

    2009-01-01

    The propanotroph Rhodococcus ruber ENV425 was observed to rapidly biodegrade N-nitrosodimethylamine (NDMA) after growth on propane, tryptic soy broth, or glucose. The key degradation intermediates were methylamine, nitric oxide, nitrite, nitrate, and formate. Small quantities of formaldehyde and dimethylamine were also detected. A denitrosation reaction, initiated by hydrogen atom abstraction from one of the two methyl groups, is hypothesized to result in the formation of n-methylformaldimine and nitric oxide, the former of which decomposes in water to methylamine and formaldehyde and the latter of which is then oxidized further to nitrite and then nitrate. Although the strain mineralized more than 60% of the carbon in [14C]NDMA to 14CO2, growth of strain ENV425 on NDMA as a sole carbon and energy source could not be confirmed. The bacterium was capable of utilizing NDMA, as well as the degradation intermediates methylamine and nitrate, as sources of nitrogen during growth on propane. In addition, ENV425 reduced environmentally relevant microgram/liter concentrations of NDMA to <2 ng/liter in batch cultures, suggesting that the bacterium may have applications for groundwater remediation. PMID:19542346

  6. Humoral immune responses of pregnant Guinea pigs Immunized with live attenuated Rhodococcus equi

    Directory of Open Access Journals (Sweden)

    Mawlood Abass Ali Al- Graibawi

    2018-02-01

    Full Text Available The potential to increase passive transfer of specific Rhodococcus equi (R.equi humoral immunity to newborn by preparturient vaccination of their dams was investigated in Pregnant Guinea pigs as a pilot study. Attenuated autogenous vaccine was prepared from a Congo red negative (CR- R.equi local isolate mixed with adjuvant (potassium alum sulphate, tested for sterility, safety and potency prior to vaccination .Two groups of pregnant G. pigs were used, the first group was vaccinated twice subcutaneously (S.C with the prepared vaccine at five and three weeks prior parturition, the second group was inoculated with adjuvant plus phosphate buffer saline (PBS twice s.c and kept as control. Offspring from the vaccinated dams had revealed high titers of specific R. equi antibody as detected by tube agglutination (TA and passive haemagglutination (PH test and showed protection against challenge dose. The results revealed that vaccination of pregnant G. pigs with the prepared attenuated vaccine was safe and efficient method to protect their offspring against experimental challenge with virulent R.equi. Vaccination was associated with increased humoral immune response in vaccinated group.

  7. Enzymatic degradation of aliphatic nitriles by Rhodococcus rhodochrous BX2, a versatile nitrile-degrading bacterium.

    Science.gov (United States)

    Fang, Shumei; An, Xuejiao; Liu, Hongyuan; Cheng, Yi; Hou, Ning; Feng, Lu; Huang, Xinning; Li, Chunyan

    2015-06-01

    Nitriles are common environmental pollutants, and their removal has attracted increasing attention. Microbial degradation is considered to be the most acceptable method for removal. In this work, we investigated the biodegradation of three aliphatic nitriles (acetonitrile, acrylonitrile and crotononitrile) by Rhodococcus rhodochrous BX2 and the expression of their corresponding metabolic enzymes. This organism can utilize all three aliphatic nitriles as sole carbon and nitrogen sources, resulting in the complete degradation of these compounds. The degradation kinetics were described using a first-order model. The degradation efficiency was ranked according to t1/2 as follows: acetonitrile>trans-crotononitrile>acrylonitrile>cis-crotononitrile. Only ammonia accumulated following the three nitriles degradation, while amides and carboxylic acids were transient and disappeared by the end of the assay. mRNA expression and enzyme activity indicated that the tested aliphatic nitriles were degraded via both the inducible NHase/amidase and the constitutive nitrilase pathways, with the former most likely preferred. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Immunogenicity of an electron beam inactivated Rhodococcus equi vaccine in neonatal foals.

    Directory of Open Access Journals (Sweden)

    Angela I Bordin

    Full Text Available Rhodococcus equi is an important pathogen of foals that causes severe pneumonia. To date, there is no licensed vaccine effective against R. equi pneumonia of foals. The objectives of our study were to develop an electron beam (eBeam inactivated vaccine against R. equi and evaluate its immunogenicity. A dose of eBeam irradiation that inactivated replication of R. equi while maintaining outer cell wall integrity was identified. Enteral administration of eBeam inactivated R. equi increased interferon-γ production by peripheral blood mononuclear cells in response to stimulation with virulent R. equi and generated naso-pharyngeal R. equi-specific IgA in newborn foals. Our results indicate that eBeam irradiated R. equi administered enterally produce cell-mediated and upper respiratory mucosal immune responses, in the face of passively transferred maternal antibodies, similar to those produced in response to enteral administration of live organisms (a strategy which previously has been documented to protect foals against intrabronchial infection with virulent R. equi. No evidence of adverse effects was noted among vaccinated foals.

  9. In vitro and intra-macrophage gene expression by Rhodococcus equi strain 103.

    Science.gov (United States)

    Rahman, Md Tanvir; Parreira, Valeria; Prescott, John F

    2005-09-30

    Rhodococcus equi is a facultative intracellular respiratory pathogen of foals that persists and multiplies within macrophages. In foals, virulence is associated with 80-90 kb plasmids, which include a pathogenicity island (PI) containing the virulence-associated protein (vap) gene family, but detailed understanding of the basis of virulence is still poor. A 60 spot-based DNA microarray was developed containing eight PI genes and 42 chromosomal putative virulence or virulence-associated genes selected from a recent partial genome sequence in order to study transcription of these genes by R. equi grown inside macrophages and under in vitro conditions thought to simulate those of macrophages. In addition to seven PI genes, nine chromosomal genes involved in fatty acid and lipid metabolism (choD, fadD13, fbpB), heme biosynthesis (hemE), iron utilization (mbtF), heat shock resistance and genes encoding chaperones (clpB, groEL), a sigma factor (sigK), and a transcriptional regulator (moxR) were significantly induced in R. equi growing inside macrophages. The pattern of R. equi chromosomal genes significantly transcribed inside macrophages largely differed from those transcribed under in vitro conditions (37 degrees C, pH 5.0 or 50mM H2O2 for 30 min). This study has identified genes, other than those of the virulence plasmid, the transcription of which is enhanced within equine macrophages. These genes should be investigated further to improve understanding of how this organism survives intracellularly.

  10. Diversion of phagosome trafficking by pathogenic Rhodococcus equi depends on mycolic acid chain length.

    Science.gov (United States)

    Sydor, Tobias; von Bargen, Kristine; Hsu, Fong-Fu; Huth, Gitta; Holst, Otto; Wohlmann, Jens; Becken, Ulrike; Dykstra, Tobias; Söhl, Kristina; Lindner, Buko; Prescott, John F; Schaible, Ulrich E; Utermöhlen, Olaf; Haas, Albert

    2013-03-01

    Rhodococcus equi is a close relative of Mycobacterium spp. and a facultative intracellular pathogen which arrests phagosome maturation in macrophages before the late endocytic stage. We have screened a transposon mutant library of R. equi for mutants with decreased capability to prevent phagolysosome formation. This screen yielded a mutant in the gene for β-ketoacyl-(acyl carrier protein)-synthase A (KasA), a key enzyme of the long-chain mycolic acid synthesizing FAS-II system. The longest kasA mutant mycolic acid chains were 10 carbon units shorter than those of wild-type bacteria. Coating of non-pathogenic E. coli with purified wild-type trehalose dimycolate reduced phagolysosome formation substantially which was not the case with shorter kasA mutant-derived trehalose dimycolate. The mutant was moderately attenuated in macrophages and in a mouse infection model, but was fully cytotoxic.Whereas loss of KasA is lethal in mycobacteria, R. equi kasA mutant multiplication in broth was normal proving that long-chain mycolic acid compounds are not necessarily required for cellular integrity and viability of the bacteria that typically produce them. This study demonstrates a central role of mycolic acid chain length in diversion of trafficking by R. equi. © 2012 Blackwell Publishing Ltd.

  11. Cholesterol oxidase (ChoE) is not important in the virulence of Rhodococcus equi.

    Science.gov (United States)

    Pei, Yanlong; Dupont, Chris; Sydor, Tobias; Haas, Albert; Prescott, John F

    2006-12-20

    To analyze further the role in virulence of the prominent cholesterol oxidase (ChoE) of Rhodococcus equi, an allelic exchange choE mutant from strain 103+ was constructed and assessed for virulence in macrophages, in mice, and in foals. There was no difference between the mutant and parent strain in cytotoxic activity for macrophages or in intra-macrophage multiplication. No evidence of attenuation was obtained in macrophages and in mice, but there was slight attenuation apparent in four intra-bronchially infected foals compared to infection of four foals with the virulent parent strain, based on a delayed rise in temperature of the choE-mutant infected foals. However, bacterial colony counts in the lung 2 weeks after infection were not significantly different, although there was a slight but non-significant (P=0.12) difference in lung:body weight ratio of the choE mutant versus virulent parent infected foals (mean 2.67+/-0.25% compared to 4.58+/-0.96%). We conclude that the cholesterol oxidase is not important for the virulence of R. equi.

  12. The sensor kinase MprB is required for Rhodococcus equi virulence.

    Science.gov (United States)

    MacArthur, Iain; Parreira, Valeria R; Lepp, Dion; Mutharia, Lucy M; Vazquez-Boland, José A; Prescott, John F

    2011-01-10

    Rhodococcus equi is a soil bacterium and, like Mycobacterium tuberculosis, a member of the mycolata. Through possession of a virulence plasmid, it has the ability to infect the alveolar macrophages of foals, resulting in pyogranulomatous bronchopneumonia. The virulence plasmid has an orphan two-component system (TCS) regulatory gene, orf8, mutation of which completely attenuates virulence. This study attempted to find the cognate sensor kinase (SK) of orf8. Annotation of the R. equi strain 103 genome identified 23 TCSs encoded on the chromosome, which were used in a DNA microarray to compare TCS gene transcription in murine macrophage-like cells to growth in vitro. This identified six SKs as significantly up-regulated during growth in macrophages. Mutants of these SKs were constructed and their ability to persist in macrophages was determined with one SK, MprB, found to be required for intracellular survival. The attenuation of the mprB- mutant, and its complementation, was confirmed in a mouse virulence assay. In silico analysis of the R. equi genome sequence identified an MprA binding box motif homologous to that of M. tuberculosis, on mprA, pepD, sigB and sigE. The results of this study also show that R. equi responds to the macrophage environment differently from M. tuberculosis. MprB is the first SK identified as required for R. equi virulence and intracellular survival. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Recovery and subsequent characterization of polyhydroxybutyrate from Rhodococcus equi cells grown on crude palm kernel oil

    Directory of Open Access Journals (Sweden)

    Nadia Altaee

    2016-07-01

    Full Text Available The gram-positive bacterium Rhodococcus equi was isolated from fertile soil, and mineral salt media (MM and trace elements were used to provide the necessary elements for its growth and PHB production in addition to using crude palm kernel oil (CPKO 1% as the carbon source. Gas chromatography (GC demonstrated that the composition of the recovered biopolymer was homopolymer polyhydroxybutyrate (PHB. The strain of the present study has a dry biomass of 1.43 (g/l with 38% PHB, as determined by GC. The recovered PHB was characterized by NMR to study the chemical structure. In addition, DSC and TGA were used to study the thermal properties of the recovered polymer, where the melting temperature (Tm was 173 °C, the glass transition temperature (Tg was 2.79 °C, and the decomposition temperature (Td was 276 °C. Gel permeation chromatography (GPC was used to study the molecular mass of the recovered PHB in addition to comparing the results with other studies using different bacteria and substrates, where the molecular weight was 642 kDa, to enable its usage in many applications. The present study demonstrated the use of an inexpensive substrate for PHB production, i.e., using gram-positive bacteria to produce PHB polymer with characterization.

  14. Biodegradation of buprofezin by Rhodococcus sp. strain YL-1 isolated from rice field soil.

    Science.gov (United States)

    Li, Chao; Zhang, Ji; Wu, Zhi-Guo; Cao, Li; Yan, Xin; Li, Shun-Peng

    2012-03-14

    A buprofezin-degrading bacterium, YL-1, was isolated from rice field soil. YL-1 was identified as Rhodococcus sp. on the basis of the comparative analysis of 16S rDNA sequences. The strain could use buprofezin as the sole source of carbon and nitrogen for growth and was able to degrade 92.4% of 50 mg L(-1) buprofezin within 48 h in liquid culture. During the degradation of buprofezin, four possible metabolites, 2-tert-butylimino-3-isopropyl-1,3,5-thiadiazinan-4-one, N-tert-butyl-thioformimidic acid formylaminomethyl ester, 2-isothiocyanato-2-methyl-propane, and 2-isothiocyanato-propane, were identified using gas chromatography-mass spectrometry (GC-MS) analysis. The catechol 2,3-dioxygenase activity was strongly induced during the degradation of buprofezin. A novel microbial biodegradation pathway for buprofezin was proposed on the basis of these metabolites. The inoculation of soils treated with buprofezin with strain YL-1 resulted in a higher degradation rate than that observed in noninoculated soils, indicating that strain YL-1 has the potential to be used in the bioremediation of buprofezin-contaminated environments.

  15. Rhodococcus equi venous catheter infection: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Nahleh Zeina

    2011-08-01

    Full Text Available Abstract Introduction Rhodococcus equi is an animal pathogen that was initially isolated from horses and is being increasingly reported as a cause of infection in humans with impaired cellular immunity. However, this pathogen is underestimated as a challenging antagonist and is frequently considered to be a mere contaminant despite the potential for life-threatening infections. Most case reports have occurred in immunocompromised patients who have received organ transplants (for example kidney, heart, bone marrow or those with human immunodeficiency virus infection. Infections often manifest as pulmonary involvement or soft tissue abscesses. Bacteremia related to R. equi infections of tunneled central venous catheters has rarely been described. Case presentation We report the case of a 63-year-old non-transplant recipient, non-HIV infected Caucasian woman with endometrial carcinoma who developed recurrent bloodstream infections and septic shock due to R. equi and ultimately required the removal of her port catheter, a subcutaneous implantable central venous catheter. We also review the medical literature related to human infections with R. equi. Conclusion R. equi should be considered a serious pathogen, not a contaminant, particularly in an immunocompromised patient who presents with a central venous catheter-related bloodstream infection. Counseling patients with central venous catheters who participate in activities involving exposure to domesticated animals is recommended.

  16. Bioremediation of soil contaminated by dichlorodiphenyltrichloroethane with the use of aerobic strain Rhodococcus wratislaviensis Ch628

    Science.gov (United States)

    Egorova, D. O.; Farafonova, V. V.; Shestakova, E. A.; Andreyev, D. N.; Maksimov, A. S.; Vasyanin, A. N.; Buzmakov, S. A.; Plotnikova, E. G.

    2017-10-01

    The concentration of dichlorodiphenyltrichloroethane (DDT) was determined in a sandy soil of specially Protected Natural Area Osinskaya Lesnaya Dacha (Perm region) 45 years after the last application of the insecticide in this area. The concentration of DDT in the soil exceeded the maximum permissible concentration by 250 times and reached 25.05 mg/kg of soil. Under the conditions of model experiment, efficient decontamination of the soil was recorded in the system with the introduced strain Rhodococcus wratislaviensis Ch628; the DDT concentration decreased by 99.7% and equaled 0.07 mg/kg. The process of DDT degradation proceeded slower in the model soil system with autochthonous microbial complex. In this case, 58.2% DDT degraded in 70 days, and the final concentration was 10.47 mg/kg. The soil lost its toxicity for animal and plant test objects by the end of the experiment only in the model system containing the R. wratislaviensis Ch628 strain.

  17. Styrene Oxide Isomerase of Rhodococcus opacus 1CP, a Highly Stable and Considerably Active Enzyme

    Science.gov (United States)

    Gröning, Janosch A. D.; Tischler, Dirk; Kaschabek, Stefan R.; Schlömann, Michael

    2012-01-01

    Styrene oxide isomerase (SOI) is involved in peripheral styrene catabolism of bacteria and converts styrene oxide to phenylacetaldehyde. Here, we report on the identification, enrichment, and biochemical characterization of a novel representative from the actinobacterium Rhodococcus opacus 1CP. The enzyme, which is strongly induced during growth on styrene, was shown to be membrane integrated, and a convenient procedure was developed to highly enrich the protein in active form from the wild-type host. A specific activity of about 370 U mg−1 represents the highest activity reported for this enzyme class so far. This, in combination with a wide pH and temperature tolerance, the independence from cofactors, and the ability to convert a spectrum of substituted styrene oxides, makes a biocatalytic application imaginable. First, semipreparative conversions were performed from which up to 760 μmol of the pure phenylacetaldehyde could be obtained from 130 U of enriched SOI. Product concentrations of up to 76 mM were achieved. However, due to the high chemical reactivity of the aldehyde function, SOI was shown to be the subject of an irreversible product inhibition. A half-life of 15 min was determined at a phenylacetaldehyde concentration of about 55 mM, indicating substantial limitations of applicability and the need to modify the process. PMID:22504818

  18. Calcium carbonate formation on mica supported extracellular polymeric substance produced by Rhodococcus opacus

    International Nuclear Information System (INIS)

    Szcześ, Aleksandra; Czemierska, Magdalena; Jarosz-Wilkołazka, Anna

    2016-01-01

    Extracellular polymeric substance (EPS) extracted from Rhodococcus opacus bacterial strain was used as a matrix for calcium carbonate precipitation using the vapour diffusion method. The total exopolymer and water-soluble exopolymer fraction of different concentrations were spread on the mica surface by the spin-coating method. The obtained layers were characterized using the atomic force microscopy measurement and XPS analysis. The effects of polymer concentration, initial pH of calcium chloride solution and precipitation time on the obtained crystals properties were investigated. Raman spectroscopy and scanning electron microscopy were used to characterize the precipitated minerals. It was found that the type of precipitated CaCO 3 polymorph and the crystal size depend on the kind of EPS fraction. The obtained results indicates that the water soluble fraction favours vaterite dissolution and calcite growth, whereas the total EPS stabilizes vaterite and this effect is stronger at basic pH. It seems to be due to different contents of the functional group of EPS fractions. - Highlights: • CaCO 3 crystal size and polymorph can be controlled by EPS substance obtained from R. opacus. • The water soluble fraction favours vaterite dissolution and calcite growth. • The total EPS stabilizes vaterite. • This effect is stronger at basic pH.

  19. Nutrient starvation leading to triglyceride accumulation activates the Entner Doudoroff pathway in Rhodococcus jostii RHA1.

    Science.gov (United States)

    Juarez, Antonio; Villa, Juan A; Lanza, Val F; Lázaro, Beatriz; de la Cruz, Fernando; Alvarez, Héctor M; Moncalián, Gabriel

    2017-02-27

    Rhodococcus jostii RHA1 and other actinobacteria accumulate triglycerides (TAG) under nutrient starvation. This property has an important biotechnological potential in the production of sustainable oils. To gain insight into the metabolic pathways involved in TAG accumulation, we analysed the transcriptome of R jostii RHA1 under nutrient-limiting conditions. We correlate these physiological conditions with significant changes in cell physiology. The main consequence was a global switch from catabolic to anabolic pathways. Interestingly, the Entner-Doudoroff (ED) pathway was upregulated in detriment of the glycolysis or pentose phosphate pathways. ED induction was independent of the carbon source (either gluconate or glucose). Some of the diacylglycerol acyltransferase genes involved in the last step of the Kennedy pathway were also upregulated. A common feature of the promoter region of most upregulated genes was the presence of a consensus binding sequence for the cAMP-dependent CRP regulator. This is the first experimental observation of an ED shift under nutrient starvation conditions. Knowledge of this switch could help in the design of metabolomic approaches to optimize carbon derivation for single cell oil production.

  20. vanO, a new glycopeptide resistance operon in environmental Rhodococcus equi isolates

    DEFF Research Database (Denmark)

    Gudeta, Dereje Dadi; Moodley, Arshnee; Bortolaia, Valeria

    2014-01-01

    We describe sequence and gene organization of a new glycopeptide resistance operon (vanO) in Rhodococcus equi from soil. The vanO operon has low homology to enterococccal van operons and harbors a vanHOX cluster transcribed in opposite direction to the vanS-vanR regulatory system and comprised be...... between three open reading frames with unknown function. This finding has clinical interest since glycopeptides are used to treat R. equi infections and resistance has been reported in clinical isolates....

  1. Characterization of Virulence Plasmids and Serotyping of Rhodococcus equi Isolates from Submaxillary Lymph Nodes of Pigs in Hungary

    OpenAIRE

    Makrai, László; Takayama, Saki; Dénes, Béla; Hajtós, István; Sasaki, Yukako; Kakuda, Tsutomu; Tsubaki, Shiro; Major, Andrea; Fodor, László; Varga, János; Takai, Shinji

    2005-01-01

    The plasmid types and serotypes of 164 Rhodococcus equi strains obtained from submaxillary lymph nodes of swine from different piggeries in 28 villages and towns located throughout the country were examined. The strains were tested by PCR for the presence of 15- to 17-kDa virulence-associated protein antigen (VapA) and 20-kDa virulence-associated protein antigen (VapB) genes. Plasmid DNAs were isolated and analyzed by digestion with restriction endonucleases to estimate size and compare their...

  2. Biodegradation of Di-(2-ethylhexyl) Phthalate by Rhodococcus ruber YC-YT1 in Contaminated Water and Soil

    OpenAIRE

    Ting Yang; Lei Ren; Yang Jia; Shuanghu Fan; Junhuan Wang; Jiayi Wang; Ruth Nahurira; Haisheng Wang; Yanchun Yan

    2018-01-01

    Di-(2-ethylehxyl) phthalate (DEHP) is one of the most broadly representative phthalic acid esters (PAEs) used as a plasticizer in polyvinyl chloride (PVC) production, and is considered to be an endocrine-disrupting chemical. DEHP and its monoester metabolites are responsible for adverse effects on human health. An efficient DEHP-degrading bacterial strain Rhodococcus ruber YC-YT1, with super salt tolerance (0–12% NaCl), is the first DEHP-degrader isolated from marine plastic debris found in c...

  3. Identification of genomic loci associated with Rhodococcus equi susceptibility in foals.

    Directory of Open Access Journals (Sweden)

    Cole M McQueen

    Full Text Available Pneumonia caused by Rhodococcus equi is a common cause of disease and death in foals. Although agent and environmental factors contribute to the incidence of this disease, the genetic factors influencing the clinical outcomes of R. equi pneumonia are ill-defined. Here, we performed independent single nucleotide polymorphism (SNP- and copy number variant (CNV-based genome-wide association studies to identify genomic loci associated with R. equi pneumonia in foals. Foals at a large Quarter Horse breeding farm were categorized into 3 groups: 1 foals with R. equi pneumonia (clinical group [N = 43]; 2 foals with ultrasonographic evidence of pulmonary lesions that never developed clinical signs of pneumonia (subclinical group [N = 156]; and, 3 foals without clinical signs or ultrasonographic evidence of pneumonia (unaffected group [N = 49]. From each group, 24 foals were randomly selected and used for independent SNP- and CNV-based genome-wide association studies (GWAS. The SNP-based GWAS identified a region on chromosome 26 that had moderate evidence of association with R. equi pneumonia when comparing clinical and subclinical foals. A joint analysis including all study foals revealed a 3- to 4-fold increase in odds of disease for a homozygous SNP within the associated region when comparing the clinical group with either of the other 2 groups of foals or their combination. The region contains the transient receptor potential cation channel, subfamily M, member 2 (TRPM2 gene, which is involved in neutrophil function. No associations were identified in the CNV-based GWAS. Collectively, these data identify a region on chromosome 26 associated with R. equi pneumonia in foals, providing evidence that genetic factors may indeed contribute to this important disease of foals.

  4. Disseminated Rhodococcus equi infection in a patient with Hodgkin’s lymphoma

    Directory of Open Access Journals (Sweden)

    Mikić Dragan

    2014-01-01

    Full Text Available Introduction. Rhodococcus (R equi is an opportunistic, uncommon human pathogen that causes mainly infection in immunocompromised hosts. The disease is usually presented as subacute pneumonia that is mostly cavitary and sometimes bacteremic. Case report. We reported the extremly rare case of a 43-year-old woman with Hodgkin's lymphoma, who developed R. equi pulmonary infection after recieving multiple courses of chemotherapy. Secondary, the patient developed bacteremia, leading to sepsis and dissemination of R. equi infection in many extrapulmonary sites. At addmission the patient was febrile, tachypnoic, tachycardic, hypotensive, with facial edema, splenomegaly, positive meningeal signs, left hemiparesis and paraparesis. Laboratory data included erythrocyte sedimentation rate (ESR > 140 mm/h, C-reactive protein (CRP 143.0 mg/L, red blood cells (RBC 2.14 × 1012/L, whyite blood cells (WBC 2.8 × 109/L, lactate dehydrogenase (LDH 706 U/L, serum albumin 26 g/L, sodium 127 mmol/L and potassium 2.7 mmol/L. Blood culture and culture of sputum and empyema were positive for R. equi. Imaging studies demonstrated a large right cavitary pneumonia and abscess, empyema, pericarditis, mediastinal and intra-abdominal lymphadenopathy, brain and psoas abscesses, osteomyelitis and spondylodiscitis. The patient recovered completely after a 12-month treatment with combinations of parenteral and oral antibiotics (meropenem, vancomycin, teicoplanin, ciprofloxacin, rifampicin, macrolides etc, including drainage of abscesses and empyema. Eight years after completition of the treatment the patient was without recurrence of R. equi infection and lymphoma. Conclusion. Since the eradication od R. equi is very difficult, it is very important to make the diagnosis and initiate appropriate antibiotic therapy as soon as possible.

  5. Seroepidemiological survey of Rhodococcus equi infection in asymptomatic horses and donkeys from southeast Turkey.

    Science.gov (United States)

    Tel, O Y; Arserim, N B; Keskin, O

    2011-12-01

    In order to assess the level of Rhodococcus equi infection in southeast Turkey, 679 sera from healthy foals and adult horses and 78 sera from donkeys were tested by indirect ELISA using a R. equi reference strain (ATCC 33701) as antigen. Eighty (11.7%) sera from horses and 9 (11.5%) sera from donkeys with titres >0.85 were positive. The prevalence of seropositive horses in Sanliurfa Province was higher than in Diyarbakir Province; 56 (13.9%) horses in Sanliurfa Province and 24 (8.7%) horses in Diyarbakir Province were defined as seropositive. In Sanliurfa Province 14.5% of female (n=343) and 10.1% of male (n = 59) horses tested were defined as seropositive, while in Diyarbakir Province more males (11.4%, n=114) were seropositive than females (6.7%, n=163). Horses 1 to 5 years of age were found to have the highest seropositivity rate in both provinces. A total of 78 sera from donkeys were investigated in Sanliurfa Province, of which 9 (11.5%) were positive by ELISA. Among the 9 positive sera, 6 (12.8%) were from donkeys 1-5 years old and 3 (13.6%) were from donkeys >5 years of age. No positive sera were found in donkeys less than 1 year old. Five (12.5%) sera of females and 4 (10.5%) sera of males tested were positive. These results indicate the existence of R. equi in the horse populations in Sanliurfa and Diyarbakir Provinces. Similar infection rates were found for donkeys in Sanliurfa. This suggests the importance of serological surveys to diagnose R. equi infection in the region and to prevent the zoonotic risk.

  6. Seroepidemiological survey of Rhodococcus equi infection in asymptomatic horses and donkeys from southeast Turkey

    Directory of Open Access Journals (Sweden)

    O. Y. Tel

    2011-05-01

    Full Text Available n order to assess the level of Rhodococcus equi infection in southeast Turkey, 679 sera from healthy foals and adult horses and 78 sera from donkeys were tested by indirect ELISA using a R. equi reference strain (ATCC 33701 as antigen. Eighty (11.7 % sera from horses and 9 (11.5 % sera from donkeys with titres >0.85 were positive. The prevalence of seropositive horses in Sanliurfa Province was higher than in Diyarbakir Province; 56 (13.9 % horses in Sanliurfa Province and 24 (8.7 % horses in Diyarbakir Province were defined as seropositive. In Sanliurfa Province 14.5 % of female (n = 343 and 10.1 % of male (n = 59 horses tested were defined as seropositive, while in Diyarbakir Province more males (11.4 %, n = 114 were seropositive than females (6.7 %, n = 163. Horses 1 to 5 years of age were found to have the highest seropositivity rate in both provinces. A total of 78 sera from donkeys were investigated in Sanliurfa Province, of which 9 (11.5 % were positive by ELISA. Among the 9 positive sera, 6 (12.8 % were from donkeys 1-5 years old and 3 (13.6 % were from donkeys >5years of age. Nopositive sera were found in donkeys less than 1 year old. Five(12.5 % sera of females and 4(10.5 % sera of males tested were positive. These results indicate the existence of R. equi in the horse populations in Sanliurfa and Diyarbakir Provinces. Similar infection rates were found for donkeys in Sanliurfa. This suggests the importance of serological surveys to diagnose R. equi infection in the region and to prevent the zoonotic risk.

  7. Enhanced biodegradation of diesel oil by a newly identified Rhodococcus baikonurensis EN3 in the presence of mycolic acid.

    Science.gov (United States)

    Lee, M; Kim, M K; Singleton, I; Goodfellow, M; Lee, S-T

    2006-02-01

    The aim of the present study was to isolate and characterize a bacterium, strain EN3, capable of using diesel oil as a major carbon and energy source, and to analyse the enhancement of diesel oil degradation by this organism using synthetic mycolic acid (2-hexyl-3-hydroxyldecanoic acid). An actinomycete with the ability to degrade diesel oil was isolated from oil contaminated soil and characterized. The strain had phenotypic properties consistent with its classification in the genus Rhodococcus showing a 16S rRNA gene similarity of 99.7% with Rhodococcus baikonurensis DSM 44587(T). The ability of the characterized strain to degrade diesel oil at various concentrations (1000, 5000, 10 000 and 20 000 mg l(-1)) was determined. The effect of synthetic mycolic acid on the biodegradation of diesel oil was investigated at the 20 000 mg l(-1) concentration; the surfactant was added to the flask cultures at three different concentrations (10, 50 and 100 mg l(-1)) and degradation followed over 7 days. Enhanced degradation was found at all three concentrations of the surfactant. In addition, the enhancement of diesel oil degradation by other surfactants was observed. The synthetic mycolic acid has potential for the remediation of petroleum-contaminated sites from both an economic and applied perspective as it can stimulate biodegradation at low concentrations. This study showed that the synthesized mycolic acid can be used for potential applications in the bioremediation industries, for example, in oil spill clean-up, diesel fuel remediation and biostimulation.

  8. Individual or synchronous biodegradation of di-n-butyl phthalate and phenol by Rhodococcus ruber strain DP-2

    Energy Technology Data Exchange (ETDEWEB)

    He, Zhixing; Niu, Chengzhen; Lu, Zhenmei, E-mail: lzhenmei@zju.edu.cn

    2014-05-01

    Highlights: • A Rhodococcus ruber strain degraded DBP and phenol. • Degradation kinetics of DBP or phenol fit modified first-order models. • Degradation interaction between DBP and phenol was studied by strain DP-2. • The degradation genes transcriptional were quantified by RT-qPCR. - Abstract: The bacterial strain DP-2, identified as Rhodococcus ruber, is able to effectively degrade di-n-butyl phthalate (DBP) and phenol. Degradation kinetics of DBP and phenol at different initial concentrations revealed DBP and phenol degradation to fit modified first-order models. The half-life of DBP degradation ranged from 15.81 to 27.75 h and phenol degradation from 14.52 to 45.52 h under the initial concentrations of 600–1200 mg/L. When strain DP-2 was cultured with a mixture of DBP (800 mg/L) and phenol (700 mg/L), DBP degradation rate was found to be only slightly influenced; however, phthalic acid (PA) accumulated, and phenol degradation was clearly inhibited during synchronous degradation. Transcriptional levels of degradation genes, phenol hydroxylase (pheu) and phthalate 3,4-dioxygenase (pht), decreased significantly more during synchronous degradation than during individual degradation. Quantitative estimation of individual or synchronous degradation kinetics is essential to manage mixed hazardous compounds through biodegradation in industrial waste disposal.

  9. Biotransformation of d-Limonene to (+) trans-Carveol by Toluene-Grown Rhodococcus opacus PWD4 Cells

    Science.gov (United States)

    Duetz, Wouter A.; Fjällman, Ann H. M.; Ren, Shuyu; Jourdat, Catherine; Witholt, Bernard

    2001-01-01

    The toluene-degrading strain Rhodococcus opacus PWD4 was found to hydroxylate d-limonene exclusively in the 6-position, yielding enantiomerically pure (+) trans-carveol and traces of (+) carvone. This biotransformation was studied using cells cultivated in chemostat culture with toluene as a carbon and energy source. The maximal specific activity of (+) trans-carveol formation was 14.7 U (g of cells [dry weight])−1, and the final yield was 94 to 97%. Toluene was found to be a strong competitive inhibitor of the d-limonene conversion. Glucose-grown cells did not form any trans-carveol from d-limonene. These results suggest that one of the enzymes involved in toluene degradation is responsible for this allylic monohydroxylation. Another toluene degrader (Rhodococcus globerulus PWD8) had a lower specific activity but was found to oxidize most of the formed trans-carveol to (+) carvone, allowing for the biocatalytic production of this flavor compound. PMID:11375201

  10. Isolation and characterization of styrene metabolism genes from styrene-assimilating soil bacteria Rhodococcus sp. ST-5 and ST-10.

    Science.gov (United States)

    Toda, Hiroshi; Itoh, Nobuya

    2012-01-01

    Styrene metabolism genes were isolated from styrene-assimilating bacteria Rhodococcus sp. ST-5 and ST-10. Strain ST-5 had a gene cluster containing four open reading frames which encoded styrene degradation enzymes. The genes showed high similarity to styABCD of Pseudomonas sp. Y2. On the other hand, strain ST-10 had only two genes which encoded styrene monooxygenase and flavin oxidoreductase (styAB). Escherichia coli transformants possessing the sty genes of strains ST-5 and ST-10 produced (S)-styrene oxide from styrene, indicating that these genes function as styrene degradation enzymes. Metabolite analysis by resting-cell reaction with gas chromatography-mass spectrometry revealed that strain ST-5 converts styrene to phenylacetaldehyde via styrene oxide by styrene oxide isomerase (styC) reaction. On the other hand, strain ST-10 lacked this enzyme, and thus accumulated styrene oxide as an intermediate. HPLC analysis showed that styrene oxide was spontaneously isomerized to phenylacetaldehyde by chemical reaction. The produced phenylacetaldehyde was converted to phenylacetic acid (PAA) in strain ST-10 as well as in strain ST-5. Furthermore, phenylacetic acid was converted to phenylacetyl-CoA by the catalysis of phenylacetate-CoA ligase in strains ST-5 and ST-10. This study proposes possible styrene metabolism pathways in Rhodococcus sp. strains ST-5 and ST-10. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Cold adaptive traits revealed by comparative genomic analysis of the eurypsychrophile Rhodococcus sp. JG3 isolated from high elevation McMurdo Dry Valley permafrost, Antarctica.

    Science.gov (United States)

    Goordial, Jacqueline; Raymond-Bouchard, Isabelle; Zolotarov, Yevgen; de Bethencourt, Luis; Ronholm, Jennifer; Shapiro, Nicole; Woyke, Tanja; Stromvik, Martina; Greer, Charles W; Bakermans, Corien; Whyte, Lyle

    2016-02-01

    The permafrost soils of the high elevation McMurdo Dry Valleys are the most cold, desiccating and oligotrophic on Earth. Rhodococcus sp. JG3 is one of very few bacterial isolates from Antarctic Dry Valley permafrost, and displays subzero growth down to -5°C. To understand how Rhodococcus sp. JG3 is able to survive extreme permafrost conditions and be metabolically active at subzero temperatures, we sequenced its genome and compared it to the genomes of 14 mesophilic rhodococci. Rhodococcus sp. JG3 possessed a higher copy number of genes for general stress response, UV protection and protection from cold shock, osmotic stress and oxidative stress. We characterized genome wide molecular adaptations to cold, and identified genes that had amino acid compositions favourable for increased flexibility and functionality at low temperatures. Rhodococcus sp. JG3 possesses multiple complimentary strategies which may enable its survival in some of the harshest permafrost on Earth. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Biodegradation of dimethyl phthalate, diethyl phthalate and di-n-butyl phthalate by Rhodococcus sp. L4 isolated from activated sludge.

    Science.gov (United States)

    Lu, Yi; Tang, Fei; Wang, Ying; Zhao, Jinhui; Zeng, Xin; Luo, Qifang; Wang, Lin

    2009-09-15

    In this study, an aerobic bacterial strain capable of utilizing dimethyl phthalate (DMP), diethyl phthalate (DEP) and di-n-butyl phthalate (DBP) as sole carbon source and energy was isolated from activated sludge collected from a dyeing plant. According to its morphology, physiochemical characteristics and 16S rDNA sequence, the strain was identified as Rhodococcus ruber. The biodegradation batch tests of DMP, DEP and DBP by the Rhodococcus sp. L4 showed the optimal pH value, temperature and substrate concentration: pH 7.0-8.0, 30-37 degrees C and PAEs concentration Kinetics of degradation have also been performed at different initial concentrations. The results show that the degradation can be described with exponential model. The half-life of degradation was about 1.30 days when the concentration of PAEs mixture was lower than 300 mg/L. PAEs contaminated water samples (300 mg/L) with non-emulsification and completed emulsification were prepared to investigate the effect on PAEs degradation rate. Little difference between the above two sample preparations was observed in terms of ultimate degradation rate. Rhodococcus sp. L4 can also grow on phenol, sodium benzoate or naphthalene solution as sole carbon source and energy which suggests its ability in resisting environmental toxicants. This work provides some new evidence for the possibility of applying Rhodococcus for contaminated water remediation in the area of industry.

  13. Members of the genera Paenibacillus and Rhodococcus harbor genes homologous to enterococcal glycopeptide resistance genes vanA and vanB

    DEFF Research Database (Denmark)

    Guardabassi, L.; Christensen, H.; Hasman, Henrik

    2004-01-01

    Genes homologous to enterococcal glycopeptide resistance genes vanA and vanB were found in glycopeptide-resistant Paenibacillus and Rhodococcus strains from soil. The putative D-Ala:D-Lac ligase genes in Paenibacillus thiaminolyticus PT-2B1 and Paenibacillus apiarius PA-B2B were closely related...

  14. Rhodococcus rhodochrous DSM 43269 3-Ketosteroid 9 alpha-Hydroxylase, a Two-Component Iron-Sulfur-Containing Monooxygenase with Subtle Steroid Substrate Specificity

    NARCIS (Netherlands)

    Petrusma, M.; Dijkhuizen, L.; van der Geize, R.

    2009-01-01

    This paper reports the biochemical characterization of a purified and reconstituted two-component 3-ketosteroid 9 alpha-hydroxylase (KSH). KSH of Rhodococcus rhodochrous DSM 43269, consisting of a ferredoxin reductase (KshB) and a terminal oxygenase (KshA), was heterologously expressed in

  15. The effect of mutation on Rhodococcus equi virulence plasmid gene expression and mouse virulence.

    Science.gov (United States)

    Ren, Jun; Prescott, John F

    2004-11-15

    An 81 kb virulence plasmid containing a pathogenicity island (PI) plays a crucial role in the pathogenesis of Rhodococcus equi pneumonia in foals but its specific function in virulence and regulation of plasmid-encoded virulence genes is unclear. Using a LacZ selection marker developed for R. equi in this study, in combination with an apramycin resistance gene, an efficient two-stage homologous recombination targeted gene mutation procedure was used to mutate three virulence plasmid genes, a LysR regulatory gene homologue (ORF4), a ResD-like two-component response regulator homologue (ORF8), and a gene (ORF10) of unknown function that is highly expressed by R. equi inside macrophages, as well as the chromosomal gene operon, phoPR. Virulence testing by liver clearance after intravenous injection in mice showed that the ORF4 and ORF8 mutants were fully attenuated, that the phoPR mutant was hypervirulent, and that virulence of the ORF10 mutant remained unchanged. A virulence plasmid DNA microarray was used to compare the plasmid gene expression profile of each of the four gene-targeted mutants against the parental R. equi strain. Changes were limited to PI genes and gene induction was observed for all mutants, suggesting that expression of virulence plasmid genes is dominated by a negative regulatory network. The finding of attenuation of ORF4 and ORF8 mutants despite enhanced transcription of vapA suggests that factors other than VapA are important for full expression of virulence. ORF1, a putative Lsr antigen gene, was strongly and similarly induced in all mutants, implying a common regulatory pathway affecting this gene for all four mutated genes. ORF8 is apparently the centre of this common pathway. Two distinct highly correlated gene induction patterns were observed, that of the ORF4 and ORF8 mutants, and that of the ORF10 and phoPR mutants. The gene induction pattern distinguishing these two groups paralleled their virulence in mice.

  16. Functional characterization of 3-ketosteroid 9α-hydroxylases in Rhodococcus ruber strain chol-4.

    Science.gov (United States)

    Guevara, Govinda; Heras, Laura Fernández de Las; Perera, Julián; Llorens, Juana María Navarro

    2017-09-01

    The 3-Ketosteroid-9α-Hydroxylase, also known as KshAB [androsta-1,4-diene-3,17-dione, NADH:oxygen oxidoreductase (9α-hydroxylating); EC 1.14.13.142)], is a key enzyme in the general scheme of the bacterial steroid catabolism in combination with a 3-ketosteroid-Δ 1 -dehydrogenase activity (KstD), being both responsible of the steroid nucleus (rings A/B) breakage. KshAB initiates the opening of the steroid ring by the 9α-hydroxylation of the C9 carbon of 4-ene-3-oxosteroids (e.g. AD) or 1,4-diene-3-oxosteroids (e.g. ADD), transforming them into 9α-hydroxy-4-androsten-3,17-dione (9OHAD) or 9α-hydroxy-1,4-androstadiene-3,17-dione (9OHADD), respectively. The redundancy of these enzymes in the actinobacterial genomes results in a serious difficulty for metabolic engineering this catabolic pathway to obtain intermediates of industrial interest. In this work, we have identified three homologous kshA genes and one kshB gen in different genomic regions of R. ruber strain Chol-4. We present a set of data that helps to understand their specific roles in this strain, including: i) description of the KshAB enzymes ii) construction and characterization of ΔkshB and single, double and triple ΔkshA mutants in R. ruber iii) growth studies of the above strains on different substrates and iv) genetic complementation and biotransformation assays with those strains. Our results show that KshA2 isoform is needed for the degradation of steroid substrates with short side chain, while KshA3 works on those molecules with longer side chains. KshA1 is a more versatile enzyme related to the cholic acid catabolism, although it also collaborates with KshA2 or KshA3 activities in the catabolism of steroids. Accordingly to what it is described for other Rhodococcus strains, our results also suggest that the side chain degradation is KshAB-independent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Accumulation of a poly(hydroxyalkanoate) copolymer containing primarily 3-hydroxyvalerate from simple carbohydrate substrates by Rhodococcus sp. NCIMB 40126.

    Science.gov (United States)

    Haywood, G W; Anderson, A J; Williams, D R; Dawes, E A; Ewing, D F

    1991-04-01

    A number of taxonomically-related bacteria have been identified which accumulate poly(hydroxyalkanoate) (PHA) copolymers containing primarily 3-hydroxyvalerate (3HV) monomer units from a range of unrelated single carbon sources. One of these, Rhodococcus sp. NCIMB 40126, was further investigated and shown to produce a copolymer containing 75 mol% 3HV and 25 mol% 3-hydroxybutyrate (3HB) from glucose as sole carbon source. Polyesters containing both 3HV and 3HB monomer units, together with 4-hydroxybutyrate (4HB), 5-hydroxyvalerate (5HV) or 3-hydroxyhexanoate (3HHx), were also produced by this organism from certain accumulation substrates. With valeric acid as substrate, almost pure (99 mol% 3HV) poly(3-hydroxyvalerate) was produced. N.m.r. analysis confirmed the composition of these polyesters. The thermal properties and molecular weight of the copolymer produced from glucose were comparable to those of PHB produced by Alcaligenes eutrophus.

  18. Pneumonia por Rhodococcus equi em doente VIH (+: A propósito de uma associação rara

    Directory of Open Access Journals (Sweden)

    Paula Esteves

    2007-09-01

    Full Text Available Resumo: A infecção humana por Rhodococcus equi, mesmo no contexto da infecção pelo VIH, é relativamente rara. Os autores apresentam o caso clínico de um indivíduo, infectado pelo VIH, que apresentava um quadro clínico e imagiológico compatível com pneumonia, cujos exames iniciais revelaram a presença de Pneumocystis jiroveci. Após realização de terapêutica específica, perante a manutenção do quadro clínico-imagiológico, procedeu-se à realização de novos exames complementares, tendo sido identificado a presença de Rhodococcus equi no lavado broncoalveolar. Com instituição de terapêutica dirigida a este agente, verificou--se progressiva melhoria clínica e imagiológica. Os autores efectuam uma revisão bibliográfica da pneumonia por Rhodococcus equi, salientando a raridade desta associação e a elevada sobrevida observada. Abstract: The human infection by Rhodococcus equi, even in the presence of HIV infection, remains a rare disease. The authors present a case report of pneumonia, occurring in a HIV (+ man. After identifying Pneumocystis jiroveci in the BAL, despite proper medication, the patient didn’t improve. Another BAL was performed and a Rhodoccus equi isolated. The therapeutic regimen was changed according to this finding and the patient improved. The authors make a review of the literature, focusing on the rarity of this association and the high survival observed. Palavras-chave: Rhodococcus equi, Pneumocystis jiroveci, VIH, Key-words: Rhodococcus equi, Pneumocystis jiroveci, HIV

  19. Aerobic degradation of 4-nitroaniline (4-NA) via novel degradation intermediates by Rhodococcus sp. strain FK48

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Fazlurrahman; Pandey, Janmejay; Vikram, Surendra; Pal, Deepika; Cameotra, Swaranjit Singh, E-mail: ssc@imtech.res.in

    2013-06-15

    Highlights: • This study reports isolation of a novel bacterium capable of mineralizing 4-nitroaniline (4-NA). • This bacterium has been identified as Rhodococcus sp. strain FK48. • Strain FK48 degrades 4-NA via a novel aerobic degradation pathway that involves 4-AP and 1,2,4-BT. • Subsequent degradation proceeds via ring fission and formation of maleylacetate. • This is the first report showing elucidation of catabolic pathway for microbial degradation 4-NA. -- Abstract: An aerobic strain, Rhodococcus sp. strain FK48, capable of growing on 4-nitroaniline (4-NA) as the sole source of carbon, nitrogen, and energy has been isolated from enrichment cultures originating from contaminated soil samples. During growth studies with non- induced cells of FK48 catalyzed sequential denitrification (release of NO{sub 2} substituent) and deamination (release of NH{sub 2} substituent) of 4-NA. However, none of the degradation intermediates could be identified with growth studies. During resting cell studies, 4-NA-induced cells of strain FK48 transformed 4-NA via a previously unknown pathway which involved oxidative hydroxylation leading to formation of 4-aminophenol (4-AP). Subsequent degradation involved oxidated deamination of 4-AP and formation of 1,2,4-benzenetriol (BT) as the major identified terminal aromatic intermediate. Identification of these intermediates was ascertained by HPLC, and GC–MS analyses of the culture supernatants. 4-NA-induced cells of strain FK48 showed positive activity for 1,2,4-benzenetriol dioxygenase in spectrophotometric assay. This is the first conclusive study on aerobic microbial degradation of 4-NA and elucidation of corresponding metabolic pathway.

  20. Aerobic degradation of 4-nitroaniline (4-NA) via novel degradation intermediates by Rhodococcus sp. strain FK48

    International Nuclear Information System (INIS)

    Khan, Fazlurrahman; Pandey, Janmejay; Vikram, Surendra; Pal, Deepika; Cameotra, Swaranjit Singh

    2013-01-01

    Highlights: • This study reports isolation of a novel bacterium capable of mineralizing 4-nitroaniline (4-NA). • This bacterium has been identified as Rhodococcus sp. strain FK48. • Strain FK48 degrades 4-NA via a novel aerobic degradation pathway that involves 4-AP and 1,2,4-BT. • Subsequent degradation proceeds via ring fission and formation of maleylacetate. • This is the first report showing elucidation of catabolic pathway for microbial degradation 4-NA. -- Abstract: An aerobic strain, Rhodococcus sp. strain FK48, capable of growing on 4-nitroaniline (4-NA) as the sole source of carbon, nitrogen, and energy has been isolated from enrichment cultures originating from contaminated soil samples. During growth studies with non- induced cells of FK48 catalyzed sequential denitrification (release of NO 2 substituent) and deamination (release of NH 2 substituent) of 4-NA. However, none of the degradation intermediates could be identified with growth studies. During resting cell studies, 4-NA-induced cells of strain FK48 transformed 4-NA via a previously unknown pathway which involved oxidative hydroxylation leading to formation of 4-aminophenol (4-AP). Subsequent degradation involved oxidated deamination of 4-AP and formation of 1,2,4-benzenetriol (BT) as the major identified terminal aromatic intermediate. Identification of these intermediates was ascertained by HPLC, and GC–MS analyses of the culture supernatants. 4-NA-induced cells of strain FK48 showed positive activity for 1,2,4-benzenetriol dioxygenase in spectrophotometric assay. This is the first conclusive study on aerobic microbial degradation of 4-NA and elucidation of corresponding metabolic pathway

  1. Comparative Genomics of Rhodococcus equi Virulence Plasmids Indicates Host-Driven Evolution of the vap Pathogenicity Island.

    Science.gov (United States)

    MacArthur, Iain; Anastasi, Elisa; Alvarez, Sonsiray; Scortti, Mariela; Vázquez-Boland, José A

    2017-05-01

    The conjugative virulence plasmid is a key component of the Rhodococcus equi accessory genome essential for pathogenesis. Three host-associated virulence plasmid types have been identified the equine pVAPA and porcine pVAPB circular variants, and the linear pVAPN found in bovine (ruminant) isolates. We recently characterized the R. equi pangenome (Anastasi E, et al. 2016. Pangenome and phylogenomic analysis of the pathogenic actinobacterium Rhodococcus equi. Genome Biol Evol. 8:3140-3148.) and we report here the comparative analysis of the virulence plasmid genomes. Plasmids within each host-associated type were highly similar despite their diverse origins. Variation was accounted for by scattered single nucleotide polymorphisms and short nucleotide indels, while larger indels-mostly in the plasticity region near the vap pathogencity island (PAI)-defined plasmid genomic subtypes. Only one of the plasmids analyzed, of pVAPN type, was exceptionally divergent due to accumulation of indels in the housekeeping backbone. Each host-associated plasmid type carried a unique PAI differing in vap gene complement, suggesting animal host-specific evolution of the vap multigene family. Complete conservation of the vap PAI was observed within each host-associated plasmid type. Both diversity of host-associated plasmid types and clonality of specific chromosomal-plasmid genomic type combinations were observed within the same R. equi phylogenomic subclade. Our data indicate that the overall strong conservation of the R. equi host-associated virulence plasmids is the combined result of host-driven selection, lateral transfer between strains, and geographical spread due to international livestock exchanges. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Crystallization and crystallographic analysis of the Rhodococcus rhodochrous NCIMB 13064 DhaA mutant DhaA31 and its complex with 1,2,3-trichloropropane

    Czech Academy of Sciences Publication Activity Database

    Lahoda, M.; Chaloupková, R.; Stsiapanava, A.; Damborský, J.; Kutá-Smatanová, Ivana

    2011-01-01

    Roč. 67, Part 3 (2011), s. 397-400 ISSN 1744-3091 R&D Projects: GA MŠk(CZ) LC06010; GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60870520 Keywords : haloalkane dehalogenases * DhaA * Rhodococcus rhodochrous Subject RIV: CE - Biochemistry Impact factor: 0.506, year: 2011

  3. Differences in Rhodococcus equi Infections Based on Immune Status and Antibiotic Susceptibility of Clinical Isolates in a Case Series of 12 Patients and Cases in the Literature

    Science.gov (United States)

    Suzuki, Yasuhiro; Ribes, Julie A.; Thornton, Alice

    2016-01-01

    Rhodococcus equi is an unusual zoonotic pathogen that can cause life-threatening diseases in susceptible hosts. Twelve patients with R. equi infection in Kentucky were compared to 137 cases reported in the literature. Although lungs were the primary sites of infection in immunocompromised patients, extrapulmonary involvement only was more common in immunocompetent patients (P antibiotics, preferably selected from vancomycin, imipenem, clarithromycin/azithromycin, ciprofloxacin, rifampin, or cotrimoxazole. Local antibiograms should be checked prior to using cotrimoxazole due to developing resistance. PMID:27631004

  4. Identification of microbial carotenoids and isoprenoid quinones from Rhodococcus sp. B7740 and its stability in the presence of iron in model gastric conditions.

    Science.gov (United States)

    Chen, Yashu; Xie, Bijun; Yang, Jifang; Chen, Jigang; Sun, Zhida

    2018-02-01

    Rhodococcus sp. B7740 is a newfound bacterium which was isolated from 25m deep seawater in the arctic. In this paper, Rhodococcus sp. B7740 was firstly discovered to produce abundant natural isoprenoids, including ubiquinone-4(UQ-4), 13 kinds of menaquinones, three rare aromatic carotenoids and more than one common carotenoid. These compounds were identified by UV-Visible, HPLC-APCI-MS/MS and HRMS spectra. Results demonstrated that Rhodococcus sp. B7740 might be a worthy source of natural isoprenoids especially for scarce aromatic carotenoids. Among them, isorenieratene with 528.3762Da (calculated for 528.3756Da, error: 1.1ppm), a carotenoid with aromatic ring, was purified by HSCCC. The stability of isorenieratene under the mimical gastric conditions was measured compared with common dietary carotenoids, β-carotene and lutein. Unlike β-carotene and lutein, isorenieratene exhibited rather stable in the presence of free iron or heme iron. Its high retention rate in gastrointestinal tract after ingestion indicates the benefits for health. Copyright © 2017. Published by Elsevier Ltd.

  5. Effect of growth media on cell envelope composition and nitrile hydratase stability in Rhodococcus rhodochrous strain DAP 96253.

    Science.gov (United States)

    Tucker, Trudy-Ann; Crow, Sidney A; Pierce, George E

    2012-11-01

    Rhodococcus is an important industrial microorganism that possesses diverse metabolic capabilities; it also has a cell envelope, composed of an outer layer of mycolic acids and glycolipids. Selected Rhodococcus species when induced are capable of transforming nitriles to the corresponding amide by the enzyme nitrile hydratase (NHase), and subsequently to the corresponding acid via an amidase. This nitrile biochemistry has generated interest in using the rhodococci as biocatalysts. It was hypothesized that altering sugars in the growth medium might impact cell envelope components and have effects on NHase. When the primary carbon source in growth media was changed from glucose to fructose, maltose, or maltodextrin, the NHase activity increased. Cells grown in the presence of maltose and maltodextrin showed the highest activities against propionitrile, 197 and 202 units/mg cdw, respectively. Stability of NHase was also affected as cells grown in the presence of maltose and maltodextrin retained more NHase activity at 55 °C (45 and 23 %, respectively) than cells grown in the presence of glucose or fructose (19 and 10 %, respectively). Supplementation of trehalose in the growth media resulted in increased NHase stability at 55 °C, as cells grown in the presence of glucose retained 40 % NHase activity as opposed to 19 % without the presence of trehalose. Changes in cell envelope components, such mycolic acids and glycolipids, were evaluated by high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC), respectively. Changing sugars and the addition of inducing components for NHase, such as cobalt and urea in growth media, resulted in changes in mycolic acid profiles. Mycolic acid content increased 5 times when cobalt and urea were added to media with glucose. Glycolipids levels were also affected by the changes in sugars and addition of inducing components. This research demonstrates that carbohydrate selection impacts NHase activity and

  6. Crystals of DhaA mutants from Rhodococcus rhodochrous NCIMB 13064 diffracted to ultrahigh resolution: crystallization and preliminary diffraction analysis

    International Nuclear Information System (INIS)

    Stsiapanava, Alena; Koudelakova, Tana; Lapkouski, Mikalai; Pavlova, Martina; Damborsky, Jiri; Kuta Smatanova, Ivana

    2008-01-01

    Three mutants of the haloalkane dehalogenase DhaA derived from R. rhodochrous NCIMB 13064 were crystallized and diffracted to ultrahigh resolution. The enzyme DhaA from Rhodococcus rhodochrous NCIMB 13064 belongs to the haloalkane dehalogenases, which catalyze the hydrolysis of haloalkanes to the corresponding alcohols. The haloalkane dehalogenase DhaA and its variants can be used to detoxify the industrial pollutant 1,2,3-trichloropropane (TCP). Three mutants named DhaA04, DhaA14 and DhaA15 were constructed in order to study the importance of tunnels connecting the buried active site with the surrounding solvent to the enzymatic activity. All protein mutants were crystallized using the sitting-drop vapour-diffusion method. The crystals of DhaA04 belonged to the orthorhombic space group P2 1 2 1 2 1 , while the crystals of the other two mutants DhaA14 and DhaA15 belonged to the triclinic space group P1. Native data sets were collected for the DhaA04, DhaA14 and DhaA15 mutants at beamline X11 of EMBL, DESY, Hamburg to the high resolutions of 1.30, 0.95 and 1.15 Å, respectively

  7. Crystals of DhaA mutants from Rhodococcus rhodochrous NCIMB 13064 diffracted to ultrahigh resolution: crystallization and preliminary diffraction analysis.

    Science.gov (United States)

    Stsiapanava, Alena; Koudelakova, Tana; Lapkouski, Mikalai; Pavlova, Martina; Damborsky, Jiri; Smatanova, Ivana Kuta

    2008-02-01

    The enzyme DhaA from Rhodococcus rhodochrous NCIMB 13064 belongs to the haloalkane dehalogenases, which catalyze the hydrolysis of haloalkanes to the corresponding alcohols. The haloalkane dehalogenase DhaA and its variants can be used to detoxify the industrial pollutant 1,2,3-trichloropropane (TCP). Three mutants named DhaA04, DhaA14 and DhaA15 were constructed in order to study the importance of tunnels connecting the buried active site with the surrounding solvent to the enzymatic activity. All protein mutants were crystallized using the sitting-drop vapour-diffusion method. The crystals of DhaA04 belonged to the orthorhombic space group P2(1)2(1)2(1), while the crystals of the other two mutants DhaA14 and DhaA15 belonged to the triclinic space group P1. Native data sets were collected for the DhaA04, DhaA14 and DhaA15 mutants at beamline X11 of EMBL, DESY, Hamburg to the high resolutions of 1.30, 0.95 and 1.15 A, respectively.

  8. Evaluation of biosurfactants grown in corn oil by Rhodococcus rhodochrous on removing of heavy metal ion from aqueous solution

    International Nuclear Information System (INIS)

    Suryanti, Venty; Hastuti, Sri; Pujiastuti, Dwi

    2016-01-01

    The potential application of biosurfactants to remove heavy metal ion from aqueous solution by batch technique was examined. The glycolipids type biosurfactants were grown in a media containing of 20% v/v corn oil with 7 days of fermentation by Rhodococcus rhodochrous. The biosurfactants reduced the surface tension of water of about 51% from 62 mN/m to 30 mN/m. The biosurfactant increased the E24 of water-palm oil emulsion of about 55% from 43% to 97% and could maintain this E24 value of above 50% for up to 9 days. Heavy metal ion removal, in this case cadmium ion, by crude and patially purified biosurfactants has been investigated from aqueous solution at pH 6. Adsorption capacity of Cd(II) ion by crude biosurfactant with 5 and 10 minutes of contact times were 1.74 and 1.82 mg/g, respectively. Additionally, the adsorption capacity of Cd(II) ion by partially purified biosurfactant with 5 and 10 minutes of contact times were 0.79 and 1.34 mg/g, respectively. The results demonstrated that the adsorption capacity of Cd(II) ion by crude biosurfactant was higher than that of by partially purified biosurfactant. The results suggested that the biosurfactant could be used in the removal of heavy metal ions from aqueous solution

  9. Characterization of the Rhodococcus sp. MK1 strain and its pilot application for bioremediation of diesel oil-contaminated soil.

    Science.gov (United States)

    Kis, Ágnes Erdeiné; Laczi, Krisztián; Zsíros, Szilvia; Kós, Péter; Tengölics, Roland; Bounedjoum, Naila; Kovács, Tamás; Rákhely, Gábor; Perei, Katalin

    2017-12-01

    Petroleum hydrocarbons and derivatives are widespread contaminants in both aquifers and soil, their elimination is in the primary focus of environmental studies. Microorganisms are key components in biological removal of pollutants. Strains capable to utilize hydrocarbons usually appear at the contaminated sites, but their metabolic activities are often restricted by the lack of nutrients and/or they can only utilize one or two components of a mixture. We isolated a novel Rhodococcus sp. MK1 strain capable to degrade the components of diesel oil simultaneously. The draft genome of the strain was determined and besides the chromosome, the presence of one plasmid could be revealed. Numerous routes for oxidation of aliphatic and aromatic compounds were identified. The strain was tested in ex situ applications aiming to compare alternative solutions for microbial degradation of hydrocarbons. The results of bioaugmentation and biostimulation experiments clearly demonstrated that - in certain cases - the indigenous microbial community could be exploited for bioremediation of oil-contaminated soils. Biostimulation seems to be efficient for removal of aged contaminations at lower concentration range, whereas bioaugmentation is necessary for the treatment of freshly and highly polluted sites.

  10. Evaluation of biosurfactants grown in corn oil by Rhodococcus rhodochrous on removing of heavy metal ion from aqueous solution

    Science.gov (United States)

    Suryanti, Venty; Hastuti, Sri; Pujiastuti, Dwi

    2016-02-01

    The potential application of biosurfactants to remove heavy metal ion from aqueous solution by batch technique was examined. The glycolipids type biosurfactants were grown in a media containing of 20% v/v corn oil with 7 days of fermentation by Rhodococcus rhodochrous. The biosurfactants reduced the surface tension of water of about 51% from 62 mN/m to 30 mN/m. The biosurfactant increased the E24 of water-palm oil emulsion of about 55% from 43% to 97% and could maintain this E24 value of above 50% for up to 9 days. Heavy metal ion removal, in this case cadmium ion, by crude and patially purified biosurfactants has been investigated from aqueous solution at pH 6. Adsorption capacity of Cd(II) ion by crude biosurfactant with 5 and 10 minutes of contact times were 1.74 and 1.82 mg/g, respectively. Additionally, the adsorption capacity of Cd(II) ion by partially purified biosurfactant with 5 and 10 minutes of contact times were 0.79 and 1.34 mg/g, respectively. The results demonstrated that the adsorption capacity of Cd(II) ion by crude biosurfactant was higher than that of by partially purified biosurfactant. The results suggested that the biosurfactant could be used in the removal of heavy metal ions from aqueous solution.

  11. Evaluation of biosurfactants grown in corn oil by Rhodococcus rhodochrous on removing of heavy metal ion from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Suryanti, Venty, E-mail: venty@mipa.uns.ac.id; Hastuti, Sri; Pujiastuti, Dwi [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University Jl. Ir. Sutami 36A, Surakarta, Central Java 57126 (Indonesia)

    2016-02-08

    The potential application of biosurfactants to remove heavy metal ion from aqueous solution by batch technique was examined. The glycolipids type biosurfactants were grown in a media containing of 20% v/v corn oil with 7 days of fermentation by Rhodococcus rhodochrous. The biosurfactants reduced the surface tension of water of about 51% from 62 mN/m to 30 mN/m. The biosurfactant increased the E24 of water-palm oil emulsion of about 55% from 43% to 97% and could maintain this E24 value of above 50% for up to 9 days. Heavy metal ion removal, in this case cadmium ion, by crude and patially purified biosurfactants has been investigated from aqueous solution at pH 6. Adsorption capacity of Cd(II) ion by crude biosurfactant with 5 and 10 minutes of contact times were 1.74 and 1.82 mg/g, respectively. Additionally, the adsorption capacity of Cd(II) ion by partially purified biosurfactant with 5 and 10 minutes of contact times were 0.79 and 1.34 mg/g, respectively. The results demonstrated that the adsorption capacity of Cd(II) ion by crude biosurfactant was higher than that of by partially purified biosurfactant. The results suggested that the biosurfactant could be used in the removal of heavy metal ions from aqueous solution.

  12. The Equine Antimicrobial Peptide eCATH1 Is Effective against the Facultative Intracellular Pathogen Rhodococcus equi in Mice

    Science.gov (United States)

    Schlusselhuber, Margot; Torelli, Riccardo; Martini, Cecilia; Leippe, Matthias; Cattoir, Vincent; Leclercq, Roland; Laugier, Claire; Grötzinger, Joachim; Sanguinetti, Maurizio

    2013-01-01

    Rhodococcus equi, the causal agent of rhodococcosis, is a major pathogen of foals and is also responsible for severe infections in immunocompromised humans. Of great concern, strains resistant to currently used antibiotics have emerged. As the number of drugs that are efficient in vivo is limited because of the intracellular localization of the bacterium inside macrophages, new active but cell-permeant drugs will be needed in the near future. In the present study, we evaluated, by in vitro and ex vivo experiments, the ability of the alpha-helical equine antimicrobial peptide eCATH1 to kill intracellular bacterial cells. Moreover, the therapeutic potential of the peptide was assessed in experimental rhodococcosis induced in mice, while the in vivo toxicity was evaluated by behavioral and histopathological analysis. The study revealed that eCATH1 significantly reduced the number of bacteria inside macrophages. Furthermore, the bactericidal potential of the peptide was maintained in vivo at doses that appeared to have no visible deleterious effects for the mice even after 7 days of treatment. Indeed, daily subcutaneous injections of 1 mg/kg body weight of eCATH1 led to a significant reduction of the bacterial load in organs comparable to that obtained after treatment with 10 mg/kg body weight of rifampin. Interestingly, the combination of the peptide with rifampin showed a synergistic interaction in both ex vivo and in vivo experiments. These results emphasize the therapeutic potential that eCATH1 represents in the treatment of rhodococcosis. PMID:23817377

  13. Functional characterization and stability improvement of a ‘thermophilic-like’ ene-reductase from Rhodococcus opacus 1CP

    Directory of Open Access Journals (Sweden)

    Anika eRiedel

    2015-10-01

    Full Text Available Ene-reductases are widely applied for the asymmetric synthesis of relevant industrial chemicals. A novel ene-reductase OYERo2 was found within a set of 14 putative Old Yellow Enzymes (OYEs obtained by genome mining of the actinobacterium Rhodococcus opacus 1CP. Multiple sequence alignment suggested that the enzyme belongs to the group of ‘thermophilic-like’ OYEs. OYERo2 was produced in Escherichia coli and biochemically characterized. The enzyme is strongly NADPH dependent and uses non-covalently bound FMNH2 for the reduction of activated α,β-unsaturated alkenes. In the active form OYERo2 is a dimer. Optimal catalysis occurs at pH 7.3 and 37 °C. OYERo2 showed highest specific activities (4550 U mg-1 on maleimides, which are efficiently converted to the corresponding succinimides. The OYERo2-mediated reduction of prochiral alkenes afforded the (R-products with excellent optical purity (ee > 99%. OYERo2 is not as thermo-resistant as related OYEs. Introduction of a characteristic intermolecular salt bridge by site-specific mutagenesis raised the half-life of enzyme inactivation at 32 °C from 28 min to 87 min and improved the tolerance towards organic co-solvents. The suitability of OYERo2 for application in industrial biocatalysis is discussed.

  14. Optimization of biosurfactant production in soybean oil by rhodococcus rhodochrous and its utilization in remediation of cadmium-contaminated solution

    Science.gov (United States)

    Suryanti, Venty; Hastuti, Sri; Andriani, Dewi

    2016-02-01

    Biosurfactant production by Rhodococcus rhodochrous in soybean oil was developed, where the effect of medium composition and fermentation time were evaluated. The optimum condition for biosurfactant production was achieved when a medium containing 30 g/L TSB (tryptic soy broth) and 20% v/v soybean oil was used as media with 7 days of fermentation. Biosurfactant was identified as glycolipids type biosurfactant which had critical micelle concentration (CMC) value of 896 mg/L. The biosurfactant had oil in water emulsion type and was able to reduce the surface tension of palm oil about 52% which could stabilize the emulsion up to 12 days. The batch removal of cadmium metal ion by crude and partially purified biosurfactants have been examined from synthetic aqueous solution at pH 6. The results exhibited that the crude biosurfactant had a much better adsorption ability of Cd(II) than that of partially purified biosurfactant. However, it was found that there was no significant difference in the adsorption of Cd(II) with 5 and 10 minutes of contact time. The results indicated that the biosurfactant could be used in remediation of heavy metals from contaminated aqueous solution.

  15. Production of carotenoids and lipids by Rhodococcus opacus PD630 in batch and fed-batch culture.

    Science.gov (United States)

    Thanapimmetha, Anusith; Suwaleerat, Tharatron; Saisriyoot, Maythee; Chisti, Yusuf; Srinophakun, Penjit

    2017-01-01

    Production of carotenoids by Rhodococcus opacus PD630 is reported. A modified mineral salt medium formulated with glycerol as an inexpensive carbon source was used for the fermentation. Ammonium acetate was the nitrogen source. A dry cell mass concentration of nearly 5.4 g/L could be produced in shake flasks with a carotenoid concentration of 0.54 mg/L. In batch culture in a 5 L bioreactor, without pH control, the maximum dry biomass concentration was ~30 % lower than in shake flasks and the carotenoids concentration was 0.09 mg/L. Both the biomass concentration and the carotenoids concentration could be raised using a fed-batch operation with a feed mixture of ammonium acetate and acetic acid. With this strategy, the final biomass concentration was 8.2 g/L and the carotenoids concentration was 0.20 mg/L in a 10-day fermentation. A control of pH proved to be unnecessary for maximizing the production of carotenoids in this fermentation.

  16. [Cloning and expression of Micrococcus luteus IAM 14879 Rpf and its role in the recovery of the VBNC state in Rhodococcus sp. DS471].

    Science.gov (United States)

    Ding, Linxian; Zhang, Pinghua; Hong, Huachang; Lin, Hongjun; Yokota, Akira

    2012-01-01

    The purpose of the present study was to produce the Rpf (resuscitation promoting factor) protein by cloning and expressing the rpf gene, secreted by Micrococcus luteus IAM 14879, in Escherichia coli and to evaluate its role in the recovery of the VBNC (viable but non-culturable) state in high-GC Gram-positive bacteria. Genomic DNA was extracted from Micrococcus luteus IAM 14879 and the rpf gene was amplified by PCR using specific primers. The PCR products was purified, cloned into a pET15b expression vector, and transformed into Escherichia coli BL21 (DE3). Then the pET15b plasmid expression vector was used to confirm the purification of the recombinant proteins via SDS-PAGE. The VBNC state cells from the high-GC Gram-positive bacteria, Rhodococcus sp. DS471, were used to confirm the promotion and recovery of growth capacity. Rhodococcus sp. DS471 were isolated from soil and closely related to Micrococcus luteus IAM 14879. The gene sequences confirmed that the rpf gene from Micrococcus luteus IAM 14879 that was expressed in Escherichia coli, was 672 bp. SDS-PAGE analysis showed that the recombinant Rpf protein was obtained successfully, and further studies showed it capable of promoting the recovery of the VBNC state by about 100-fold relative to the control. Rpf of Micrococus luteus IAM 14879 can be successfully cloned and expressed in Escherichia coli and shows a strong ability to promote the recovery of the VBNC state of cells of Rhodococcus sp. DS471.

  17. Characterization of the expression of the thcB gene, coding for a pesticide-degrading cytochrome P-450 in Rhodococcus strains.

    OpenAIRE

    Shao, Z Q; Behki, R

    1996-01-01

    A cytochrome P-450 system in Rhodococcus strains, encoded by thcB, thcC, and thcD, participates in the degradation of thiocarbamates and several other pesticides. The regulation of the system was investigated by fusing a truncated lacZ in frame to thcB, the structural gene for the cytochrome P-450 monooxygenase. Analysis of the thcB-lacZ fusion showed that the expression of thcB was 10-fold higher in the presence of the herbicide EPTC (s-ethyl dipropylthiocarbamate). Similar enhancement of th...

  18. Dimetilsulfóxido - DMSO no teste de sensibilidade microbiana in vitro em cepas de Rhodococcus equi isoladas de afecções pulmonares em potros

    Directory of Open Access Journals (Sweden)

    Ribeiro Márcio Garcia

    2001-01-01

    Full Text Available Comparou-se a sensibilidade microbiana in vitro de isolados de Rhodococcus equi pelo teste padrão de difusão com discos, com o modificado, pela adição de 5% de dimetilsulfóxido-DMSO. Observou-se aumento da sensibilidade do R. equi no teste com DMSO, frente a aminoglicosídeos (canamicina, amicacina, estreptomicina e ao cloranfenicol, enquanto para a eritromicina e derivados ß-lactâmicos (penicilina G, cefalosporinas, amoxicilina, oxacilina, constatou-se redução da sensibilidade do agente.

  19. Multiplicity of 3-Ketosteroid-9 alpha-Hydroxylase Enzymes in Rhodococcus rhodochrous DSM43269 for Specific Degradation of Different Classes of Steroids

    OpenAIRE

    Petrusma, Mirjan; Hessels, Gerda; Dijkhuizen, Lubbert; van der Geize, Robert

    2011-01-01

    The well-known large catabolic potential of rhodococci is greatly facilitated by an impressive gene multiplicity. This study reports on the multiplicity of kshA, encoding the oxygenase component of 3-ketosteroid 9 alpha-hydroxylase, a key enzyme in steroid catabolism. Five kshA homologues (kshA1 to kshA5) were previously identified in Rhodococcus rhodochrous DSM43269. These KshA(DSM43269) homologues are distributed over several phylogenetic groups. The involvement of these KshA homologues in ...

  20. Potent antiproliferative cembrenoids accumulate in tobacco upon infection with Rhodococcus fascians and trigger unusual microtubule dynamics in human glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Aminata P Nacoulma

    Full Text Available AIMS: Though plant metabolic changes are known to occur during interactions with bacteria, these were rarely challenged for pharmacologically active compounds suitable for further drug development. Here, the occurrence of specific chemicals with antiproliferative activity against human cancer cell lines was evidenced in hyperplasia (leafy galls induced when plants interact with particular phytopathogens, such as the Actinomycete Rhodococcus fascians. METHODS: We examined leafy galls fraction F3.1.1 on cell proliferation, cell division and cytoskeletal disorganization of human cancer cell lines using time-lapse videomicroscopy imaging, combined with flow cytometry and immunofluorescence analysis. We determined the F3.1.1-fraction composition by gas chromatography coupled to mass spectrometry. RESULTS: The leafy galls induced on tobacco by R. fascians yielded fraction F3.1.1 which inhibited proliferation of glioblastoma U373 cells with an IC50 of 4.5 µg/mL, F.3.1.1 was shown to increase cell division duration, cause nuclear morphological deformations and cell enlargement, and, at higher concentrations, karyokinesis defects leading to polyploidization and apoptosis. F3.1.1 consisted of a mixture of isomers belonging to the cembrenoids. The cellular defects induced by F3.1.1 were caused by a peculiar cytoskeletal disorganization, with the occurrence of fragmented tubulin and strongly organized microtubule aggregates within the same cell. Colchicine, paclitaxel, and cembrene also affected U373 cell proliferation and karyokinesis, but the induced microtubule rearrangement was very different from that provoked by F3.1.1. Altogether our data indicate that the cembrenoid isomers in F3.1.1 have a unique mode of action and are able to simultaneously modulate microtubule polymerization and stability.

  1. A preliminary report on the contact-independent antagonism of Pseudogymnoascus destructans by Rhodococcus rhodochrous strain DAP96253.

    Science.gov (United States)

    Cornelison, Christopher T; Keel, M Kevin; Gabriel, Kyle T; Barlament, Courtney K; Tucker, Trudy A; Pierce, George E; Crow, Sidney A

    2014-09-26

    The recently-identified causative agent of White-Nose Syndrome (WNS), Pseudogymnoascus destructans, has been responsible for the mortality of an estimated 5.5 million North American bats since its emergence in 2006. A primary focus of the National Response Plan, established by multiple state, federal and tribal agencies in 2011, was the identification of biological control options for WNS. In an effort to identify potential biological control options for WNS, multiply induced cells of Rhodococcus rhodochrous strain DAP96253 was screened for anti-P. destructans activity. Conidia and mycelial plugs of P. destructans were exposed to induced R. rhodochrous in a closed air-space at 15°C, 7°C and 4°C and were evaluated for contact-independent inhibition of conidia germination and mycelial extension with positive results. Additionally, in situ application methods for induced R. rhodochrous, such as fixed-cell catalyst and fermentation cell-paste in non-growth conditions, were screened with positive results. R. rhodochrous was assayed for ex vivo activity via exposure to bat tissue explants inoculated with P. destructans conidia. Induced R. rhodochrous completely inhibited growth from conidia at 15°C and had a strong fungistatic effect at 4°C. Induced R. rhodochrous inhibited P. destructans growth from conidia when cultured in a shared air-space with bat tissue explants inoculated with P. destructans conidia. The identification of inducible biological agents with contact-independent anti- P. destructans activity is a major milestone in the development of viable biological control options for in situ application and provides the first example of contact-independent antagonism of this devastating wildlife pathogen.

  2. Distribution of a Nocardia brasiliensis Catalase Gene Fragment in Members of the Genera Nocardia, Gordona, and Rhodococcus

    Science.gov (United States)

    Vera-Cabrera, Lucio; Johnson, Wendy M.; Welsh, Oliverio; Resendiz-Uresti, Francisco L.; Salinas-Carmona, Mario C.

    1999-01-01

    An immunodominant protein from Nocardia brasiliensis, P61, was subjected to amino-terminal and internal sequence analysis. Three sequences of 22, 17, and 38 residues, respectively, were obtained and compared with the protein database from GenBank by using the BLAST system. The sequences showed homology to some eukaryotic catalases and to a bromoperoxidase-catalase from Streptomyces violaceus. Its identity as a catalase was confirmed by analysis of its enzymatic activity on H2O2 and by a double-staining method on a nondenaturing polyacrylamide gel with 3,3′-diaminobenzidine and ferricyanide; the result showed only catalase activity, but no peroxidase. By using one of the internal amino acid sequences and a consensus catalase motif (VGNNTP), we were able to design a PCR assay that generated a 500-bp PCR product. The amplicon was analyzed, and the nucleotide sequence was compared to the GenBank database with the observation of high homology to other bacterial and eukaryotic catalases. A PCR assay based on this target sequence was performed with primers NB10 and NB11 to confirm the presence of the NB10-NB11 gene fragment in several N. brasiliensis strains isolated from mycetoma. The same assay was used to determine whether there were homologous sequences in several type strains from the genera Nocardia, Rhodococcus, Gordona, and Streptomyces. All of the N. brasiliensis strains presented a positive result but only some of the actinomycetes species tested were positive in the PCR assay. In order to confirm these findings, genomic DNA was subjected to Southern blot analysis. A 1.7-kbp band was observed in the N. brasiliensis strains, and bands of different molecular weight were observed in cross-reacting actinomycetes. Sequence analysis of the amplicons of selected actinomycetes showed high homology in this catalase fragment, thus demonstrating that this protein is highly conserved in this group of bacteria. PMID:10325357

  3. Biodegradation of Di-(2-ethylhexyl Phthalate by Rhodococcus ruber YC-YT1 in Contaminated Water and Soil

    Directory of Open Access Journals (Sweden)

    Ting Yang

    2018-05-01

    Full Text Available Di-(2-ethylehxyl phthalate (DEHP is one of the most broadly representative phthalic acid esters (PAEs used as a plasticizer in polyvinyl chloride (PVC production, and is considered to be an endocrine-disrupting chemical. DEHP and its monoester metabolites are responsible for adverse effects on human health. An efficient DEHP-degrading bacterial strain Rhodococcus ruber YC-YT1, with super salt tolerance (0–12% NaCl, is the first DEHP-degrader isolated from marine plastic debris found in coastal saline seawater. Strain YC-YT1 completely degraded 100 mg/L DEHP within three days (pH 7.0, 30 °C. According to high-performance liquid chromatography–mass spectrometry (HPLC-MS analysis, DEHP was transformed by strain YC-YT1 into phthalate (PA via mono (2-ethylehxyl phthalate (MEHP, then PA was used for cell growth. Furthermore, YC-YT1 metabolized initial concentrations of DEHP ranging from 0.5 to 1000 mg/L. Especially, YC-YT1 degraded up to 60% of the 0.5 mg/L initial DEHP concentration. Moreover, compared with previous reports, strain YC-YT1 had the largest substrate spectrum, degrading up to 13 kinds of PAEs as well as diphenyl, p-nitrophenol, PA, benzoic acid, phenol, protocatechuic acid, salicylic acid, catechol, and 1,2,3,3-tetrachlorobenzene. The excellent environmental adaptability of strain YC-YT1 contributed to its ability to adjust its cell surface hydrophobicity (CSH so that 79.7–95.9% of DEHP-contaminated agricultural soil, river water, coastal sediment, and coastal seawater were remedied. These results demonstrate that R. ruber YC-YT1 has vast potential to bioremediate various DEHP-contaminated environments, especially in saline environments.

  4. Endosulfan induced alteration in bacterial protein profile and RNA yield of Klebsiella sp. M3, Achromobacter sp. M6, and Rhodococcus sp. M2.

    Science.gov (United States)

    Singh, Madhu; Singh, Dileep Kumar

    2014-01-30

    Three bacterial strains identified as Klebsiella sp. M3, Achromobacter sp. M6 and Rhodococcus sp. M2 were isolated by soil enrichment with endosulfan followed by shake flask enrichment technique. They were efficiently degrading endosulfan in the NSM (non sulfur medium) broth. Degradation of endosulfan was faster with the cell free extract of bacterial cells grown in the sulfur deficient medium (NSM) supplemented with endosulfan than that of nutrient rich medium (Luria Bertani). In the cell free extract of NSM supplemented with endosulfan as sole sulfur source, a unique band was visualized on SDS-PAGE but not with magnesium sulfate as the sole sulfur source in NSM and LB with endosulfan. Expression of a unique polypeptide band was speculated to be induced by endosulfan under sulfur starved condition. These unique polypeptide bands were identified as OmpK35 protein, sulfate binding protein and outer membrane porin protein, respectively, in Klebsiella sp. M3, Achromobacter sp. M6 and Rhodococcus sp. M2. Endosulfan showed dose dependent negative effect on total RNA yield of bacterial strains in nutrient rich medium. Absence of plasmid DNA indicated the presence of endosulfan metabolizing gene on genomic DNA. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Biotechnological methods for chalcone reduction using whole cells of Lactobacillus, Rhodococcus and Rhodotorula strains as a way to produce new derivatives.

    Science.gov (United States)

    Stompor, Monika; Kałużny, Mateusz; Żarowska, Barbara

    2016-10-01

    Microbial strains of the genera Dietzia, Micrococcus, Pseudomonas, Rhodococcus, Gordonia, Streptomyces, Pseudomonas, Bacillus, Penicillium, Rhodotorula and Lactobacillus were screened for the ability to convert chalcones. Synthesis of chalcones was performed by the Claisen-Schmidt reaction. There were three groups of chalcones obtained as the products, which included the derivatives containing 4-substituted chalcone, 2'-hydroxychalcone and 4'-methoxychalcone. The B ring of the chalcones was substituted in the para position with different groups, such as halide, hydroxyl, nitro, methyl, ethyl and ethoxy one. The structure-activity relationship of the tested chalcones in biotransformation processes was studied. It has been proven that Gram-positive bacterial strains Rhodococcus and Lactobacillus catalyzed reduction of C=C bond in the chalcones to give respective dihydrochalcones. The strain Rhodotorula rubra AM 82 transformed chalcones into dihydrochalcones and respective secondary alcohols. These results suggest that the probiotic strain of Lactobacillus can be used for biotransformations of chalcones, which has not been described before. The structure of new metabolites 14a and 15b were established as 4-ethoxy-4'-methoxydihydrochalcone and 3-(4-bromophenyl)-1-(4'-O-methylphenyl)-2-propan-1-ol, respectively, which was confirmed by (1)H NMR and (13)C NMR analysis.

  6. Diastereoselective reduction of 1-(4-fluorophenyl)-3(R)-[3-oxo-3-(4-fluorophenyl) -propyl]-4 (S)-(4-hydroxyphenyl)azetidin-2-one to Ezetimibe by the whole cell catalyst Rhodococcus fascians MO22

    Czech Academy of Sciences Publication Activity Database

    Kyslíková, Eva; Babiak, P.; Marešová, Helena; Palyzová, Andrea; Hajíček, J.; Kyslík, Pavel

    2010-01-01

    Roč. 67, 3-4 (2010), s. 266-270 ISSN 1381-1177 R&D Projects: GA MŠk 2B08064 Institutional research plan: CEZ:AV0Z50200510 Keywords : Biotransformation * Rhodococcus fascians MO22 * Ezetimibe Subject RIV: CE - Biochemistry Impact factor: 2.330, year: 2010

  7. Rational evolution of the unusual Y-type oxyanion hole of Rhodococcus sp. CR53 lipase LipR.

    Science.gov (United States)

    Infanzón, Belén; Sotelo, Pablo H; Martínez, Josefina; Diaz, Pilar

    2018-01-01

    Rhodococcus sp CR-53 lipase LipR was the first characterized member of bacterial lipase family X. Interestingly, LipR displays some similarity with α/β-hydrolases of the C. antartica lipase A (CAL-A)-like superfamily (abH38), bearing a Y-type oxyanion hole, never found before among bacterial lipases. In order to explore this unusual Y-type oxyanion hole, and to improve LipR performance, two modification strategies based on site directed or saturation mutagenesis were addressed. Initially, a small library of mutants was designed to convert LipR Y-type oxyanion hole (YDS) into one closer to those most frequently found in bacteria (GGG(X)). However, activity was completely lost in all mutants obtained, indicating that the Y-type oxyanion hole of LipR is required for activity. A second approach was addressed to modify the two main oxyanion hole residues Tyr 110 and Asp 111 , previously described for CAL-A as the most relevant amino acids involved in stabilization of the enzyme-substrate complex. A saturation mutagenesis library was prepared for each residue (Tyr 110 and Asp 111 ), and activity of the resulting variants was assayed on different chain length substrates. No functional LipR variants could be obtained when Tyr 110 was replaced by any other amino acids, indicating that this is a crucial residue for catalysis. However, among the Asp 111 variants obtained, LipR D111G produced a functional enzyme. Interestingly, this LipR-YGS variant showed less activity than wild type LipR on short- or mid- chain substrates but displayed a 5.6-fold increased activity on long chain length substrates. Analysis of the 3D model and in silico docking studies of this enzyme variant suggest that substitution of Asp by Gly produces a wider entrance tunnel that would allow for a better and tight accommodation of larger substrates, thus justifying the experimental results obtained. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The steroid catabolic pathway of the intracellular pathogen Rhodococcus equi is important for pathogenesis and a target for vaccine development.

    Directory of Open Access Journals (Sweden)

    R van der Geize

    2011-08-01

    Full Text Available Rhodococcus equi causes fatal pyogranulomatous pneumonia in foals and immunocompromised animals and humans. Despite its importance, there is currently no effective vaccine against the disease. The actinobacteria R. equi and the human pathogen Mycobacterium tuberculosis are related, and both cause pulmonary diseases. Recently, we have shown that essential steps in the cholesterol catabolic pathway are involved in the pathogenicity of M. tuberculosis. Bioinformatic analysis revealed the presence of a similar cholesterol catabolic gene cluster in R. equi. Orthologs of predicted M. tuberculosis virulence genes located within this cluster, i.e. ipdA (rv3551, ipdB (rv3552, fadA6 and fadE30, were identified in R. equi RE1 and inactivated. The ipdA and ipdB genes of R. equi RE1 appear to constitute the α-subunit and β-subunit, respectively, of a heterodimeric coenzyme A transferase. Mutant strains RE1ΔipdAB and RE1ΔfadE30, but not RE1ΔfadA6, were impaired in growth on the steroid catabolic pathway intermediates 4-androstene-3,17-dione (AD and 3aα-H-4α(3'-propionic acid-5α-hydroxy-7aβ-methylhexahydro-1-indanone (5α-hydroxy-methylhexahydro-1-indanone propionate; 5OH-HIP. Interestingly, RE1ΔipdAB and RE1ΔfadE30, but not RE1ΔfadA6, also displayed an attenuated phenotype in a macrophage infection assay. Gene products important for growth on 5OH-HIP, as part of the steroid catabolic pathway, thus appear to act as factors involved in the pathogenicity of R. equi. Challenge experiments showed that RE1ΔipdAB could be safely administered intratracheally to 2 to 5 week-old foals and oral immunization of foals even elicited a substantial protective immunity against a virulent R. equi strain. Our data show that genes involved in steroid catabolism are promising targets for the development of a live-attenuated vaccine against R. equi infections.

  9. GenBank blastx search result: AK062096 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK062096 001-044-H12 U17130.1 Rhodococcus erythropolis ORF6' gene, partial cds, regulatory protein ThcR (thc...R), cytochrome P-450 (thcB), ORF4, rhodocoxin (thcC), rhodocoxin reductase (thcD) and ORF5 genes, complete cds.|BCT BCT 3e-18 +3 ...

  10. Biotransformation of nitriles to hydroxamic acids via a nitrile hydratase–amidase cascade reaction

    Czech Academy of Sciences Publication Activity Database

    Vejvoda, Vojtěch; Martínková, Ludmila; Veselá, Alicja Barbara; Kaplan, Ondřej; Lutz-Wahl, S.; Fischer, L.; Uhnáková, Bronislava

    2011-01-01

    Roč. 71, 1-2 (2011), s. 51-55 ISSN 1381-1177 R&D Projects: GA MŠk(CZ) LC06010; GA MŠk OC09046 Institutional research plan: CEZ:AV0Z50200510 Keywords : Nitrile hydratase * Rhodococcus erythropolis * Amidase Subject RIV: EE - Microbiology, Virology Impact factor: 2.735, year: 2011

  11. Aromatic-aliphatic copolyesters based on waste poly(ethylene terephthalate) and their biodegradability

    Czech Academy of Sciences Publication Activity Database

    Prokopová, I.; Vlčková, E.; Šašek, Václav; Náhlík, J.; Soukupová-Chaloupková, V.; Skolil, J.

    -, 052 (2008), s. 1-9 ISSN 1618-7229 R&D Projects: GA ČR GA203/03/0508; GA ČR GA203/06/0528 Institutional research plan: CEZ:AV0Z50200510 Keywords : aromatic-aliphatic colpolyesters * rhodococcus erythropolis * biodegradability Subject RIV: EE - Microbiology, Virology Impact factor: 0.661, year: 2008

  12. Variación de la composición de ácidos grasos de membrana celular de Rhodococcus rodochrous GNP-OHP-38r en respuesta a la temperatura y salinidad Variation in the composition of Rhodococcus rodochrous GNP-OHP-38r cell membrane fatty acids in response to temperature and salinity

    Directory of Open Access Journals (Sweden)

    G.N. Pucci

    2004-06-01

    Full Text Available Los integrantes del género Rhodococcus son habitantes frecuentes y abundantes de áreas contaminadas con hidrocarburos y resisten la creciente salinidad que se presenta en la Patagonia central. Este género tiene buena capacidad de eliminar contaminantes hidrocarburos que constituyen el mayor contaminante de la región. En el presente trabajo se estudió la respuesta en la composición de sus ácidos grasos de una cepa aislada de un sistema de landfarming, ante la acción combinada de diferentes temperaturas y concentraciones salinas. La estrategia de la cepa Rhodococcus rodochrous GNP-OHP-38r frente al incremento de temperatura, es el aumento del porcentaje de los ácidos grasos saturados totales (n:0; ácidos grasos ramificados en el carbono terminal con grupos oxidrilo en posición 2 (n:0 iso 2 OH y saturados con grupo metilo en carbono 10 (n:0 10 metil, a expensas de la disminución del porcentaje de los n:1 cis.The members of the genus Rhodococcus are frequent and abundant inhabitants of polluted areas with hydrocarbons and they resist the salinity present in the central Patagonia. This genus has good capacity to eliminate pollution produced by hydrocarbons that constitutes the biggest pollutant agent in the region. The present work studies the answer in the composition of its fatty acids under the combined action of the temperature and saline concentration of an isolated stump of a landfarming system. The strategy of Rhodococcus rodochrous strain GNP-OHP-38r in front of the thermal-osmotic stress is the increase of the percentage of the total saturated fatty acids (n:0; fatty acids branched in the terminal carbon with hidroxyl group in position 2 (n:0 iso 2 OH and saturated with group methyl in carbon 10 (n:0 10 metil when the temperature is increased. These acids increase while the percentage of n:1 cis decrease.

  13. Pathogenicity of Rhodococcus equi in mice, isolated from environment, human and horse clinical samples Patogenicidade atogenicidade em camundongos de isolados clí- clínicos, nicos, ambientais e humanos de Rhodococcus equi

    Directory of Open Access Journals (Sweden)

    Mateus M. Costa

    2006-09-01

    Full Text Available Rhodococcus equi is a facultative intracellular pathogen associated with bronchopneumonia, mesenteric lymphadenitis and enterocolitis in foals. Although R. equi is likely to be found in every horse-breeding farm, the clinical disease is unrecognized in most of them. Capsule components, equi factor, micolic acid and some products encoded by the large 85-90Kb plasmid were described as virulence factors. However, the pathogenesis of R. equi infections and the sensibility of foals are not completely understood. The aim of this study was evaluate the virulence of R. equi isolated from human, horses and environment for mices. Nine strains carrying the 85-90Kb plasmid isolated from foal clinical specimens, one from immunodeficient human patient and six plasmidless strains (four isolated from feces, one from pasture and one from immunodeficient human patient were inoculated in cyclophosphamide immunossuppressed mice. The pathological changes and viability of R. equi cells in the liver of mice was verified after the 3rd, 6th an 10th day after inoculation for horse and environmental isolates and for R. equi isolates from human patients on the 1st, 3rd and 6th day. During the necropsy procedures, infiltrate of macrophages and pyogranulomatous lesions were detected after the sixth pos-inoculation day in the liver and spleen. In horse isolates, only plasmid positive strains were virulent, but in human isolates both strains (plasmid positive e plasmid negative were virulent. Both groups of the immunossupressed mice inoculated with R. equi isolated from environment showed pathological changes. All R. equi strains were unable to kill non imunossuppressed mice.Rhodococ-cus equi é um patógeno intracelular facultativo associado com broncopneumonia, linfadenite mesentérica e enterocolite em potros. Apesar do patógeno ser amplamente distribuído no ambiente equino, a doença não é encontrada em todos os criatórios. Componentes capsulares, "fator equi",

  14. Dual Two-Component Regulatory Systems Are Involved in Aromatic Compound Degradation in a Polychlorinated-Biphenyl Degrader, Rhodococcus jostii RHA1 ▿ †

    OpenAIRE

    Takeda, Hisashi; Shimodaira, Jun; Yukawa, Kiyoshi; Hara, Naho; Kasai, Daisuke; Miyauchi, Keisuke; Masai, Eiji; Fukuda, Masao

    2010-01-01

    A Gram-positive polychlorinated-biphenyl (PCB) degrader, Rhodococcus jostii RHA1, degrades PCBs by cometabolism with biphenyl. A two-component BphS1T1 system encoded by bphS1 and bphT1 (formerly bphS and bphT) is responsible for the transcription induction of the five gene clusters, bphAaAbAcAdC1B1, etbAa1Ab1CbphD1, etbAa2Ab2AcD2, etbAdbphB2, and etbD1, which constitute multiple enzyme systems for biphenyl/PCB degradation. The bphS2 and bphT2 genes, which encode BphS2 and BphT2, virtually ide...

  15. Biodesulfurization of Naphthothiophene and Benzothiophene through Selective Cleavage of Carbon-Sulfur Bonds by Rhodococcus sp. Strain WU-K2R

    Science.gov (United States)

    Kirimura, Kohtaro; Furuya, Toshiki; Sato, Rika; Ishii, Yoshitaka; Kino, Kuniki; Usami, Shoji

    2002-01-01

    Naphtho[2,1-b]thiophene (NTH) is an asymmetric structural isomer of dibenzothiophene (DBT), and in addition to DBT derivatives, NTH derivatives can also be detected in diesel oil following hydrodesulfurization treatment. Rhodococcus sp. strain WU-K2R was newly isolated from soil for its ability to grow in a medium with NTH as the sole source of sulfur, and growing cells of WU-K2R degraded 0.27 mM NTH within 7 days. WU-K2R could also grow in the medium with NTH sulfone, benzothiophene (BTH), 3-methyl-BTH, or 5-methyl-BTH as the sole source of sulfur but could not utilize DBT, DBT sulfone, or 4,6-dimethyl-DBT. On the other hand, WU-K2R did not utilize NTH or BTH as the sole source of carbon. By gas chromatography-mass spectrometry analysis, desulfurized NTH metabolites were identified as NTH sulfone, 2′-hydroxynaphthylethene, and naphtho[2,1-b]furan. Moreover, since desulfurized BTH metabolites were identified as BTH sulfone, benzo[c][1,2]oxathiin S-oxide, benzo[c][1,2]oxathiin S,S-dioxide, o-hydroxystyrene, 2-(2′-hydroxyphenyl)ethan-1-al, and benzofuran, it was concluded that WU-K2R desulfurized NTH and BTH through the sulfur-specific degradation pathways with the selective cleavage of carbon-sulfur bonds. Therefore, Rhodococcus sp. strain WU-K2R, which could preferentially desulfurize asymmetric heterocyclic sulfur compounds such as NTH and BTH through the sulfur-specific degradation pathways, is a unique desulfurizing biocatalyst showing properties different from those of DBT-desulfurizing bacteria. PMID:12147483

  16. Molecular characterization of Rhodococcus equi isolates from horses in Poland: pVapA characteristics and plasmid new variant, 85-kb type V.

    Science.gov (United States)

    Witkowski, Lucjan; Rzewuska, Magdalena; Takai, Shinji; Chrobak-Chmiel, Dorota; Kizerwetter-Świda, Magdalena; Feret, Małgorzata; Gawryś, Marta; Witkowski, Maciej; Kita, Jerzy

    2017-01-26

    Rhodococcus equi is one of the most significant bacterial pathogens affecting foals up to 6 months of age worldwide. Rhodococcosis is present in Poland however information about molecular characterization of R. equi isolates is scarce. This study describes molecular characterization of Rhodococcus equi infection on 13 horse breeding farms in Poland between 2001 and 2012. Samples were collected by tracheobronchial aspiration from pneumonic foals or during necropsy. The R. equi isolates were genotyped by plasmid profiling and pulsed-field gel electrophoresis. Totally, 58 R. equi isolates were investigated. One isolate lost its plasmid. Among the 57 VapA-positive isolates, 48 contained 85-kb type I plasmid (82.8%), 8 contained 87-kb type I plasmid (13.8%). One isolate (1.7%) had a unique restriction cleavage pattern and the 2nd fragment of EcoRI digests of this plasmid DNA was about 2600 bases smaller than that of the 85 kb type I. This new plasmid variant was designated as the "85-kb type V". Among the 58 isolates typeable with VspI-PFGE, ten PFGE clusters were detected. The majority of foals were infected mostly with isolates of low genetic diversity. Most of clinical isolates of R. equi from foals in Poland contain pVapA 85-kb type I and 87-kb type I similarly to the other European countries and the United States. However, the new variant of pVapA 85-kb type V was identified. The chromosomal variability was detected among some of the investigated isolates and the presence of farm-specific isolates might be possible.

  17. APPLICATION OF PSEUDOMONAS PUTIDA AND RHODOCOCCUS SP. BY BIODEGRADATION OF PAH(S, PCB(S AND NEL SOIL SAMPLES FROM THE HAZARDOUS WASTE DUMP IN POZĎÁTKY (CZECH REPUBLIC

    Directory of Open Access Journals (Sweden)

    Radmila Kucerova

    2006-12-01

    Full Text Available The objective of the project was a laboratory check of biodegradation of soil samples contaminated by PAH(s, PCB(s and NEL from the hazardous waste dump in the Pozďátky locality. For the laboratory check, pure bacterial cultures of Rhodococcus sp. and Pseudomonas putida have been used. It is apparent from the laboratory experiments results that after one-month bacterial leaching, applying the bacterium of Rhodococcus sp. there is a 83 % removal of NEL, a 79 % removal of PAH(s and a 14 % removal of PCB(s. Applying a pure culture of Pseudomonas putida there is a 87 % removal of NEL, a 81 % removal of PAH(s and a 14 % removal of PCB(s.

  18. Bruker Biotyper Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Nocardia, Rhodococcus, Kocuria, Gordonia, Tsukamurella, and Listeria Species

    Science.gov (United States)

    Lee, Tai-Fen; Du, Shin-Hei; Teng, Shih-Hua; Liao, Chun-Hsing; Sheng, Wang-Hui; Teng, Lee-Jene

    2014-01-01

    We evaluated whether the Bruker Biotyper matrix-associated laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) system provides accurate species-level identifications of 147 isolates of aerobically growing Gram-positive rods (GPRs). The bacterial isolates included Nocardia (n = 74), Listeria (n = 39), Kocuria (n = 15), Rhodococcus (n = 10), Gordonia (n = 7), and Tsukamurella (n = 2) species, which had all been identified by conventional methods, molecular methods, or both. In total, 89.7% of Listeria monocytogenes, 80% of Rhodococcus species, 26.7% of Kocuria species, and 14.9% of Nocardia species (n = 11, all N. nova and N. otitidiscaviarum) were correctly identified to the species level (score values, ≥2.0). A clustering analysis of spectra generated by the Bruker Biotyper identified six clusters of Nocardia species, i.e., cluster 1 (N. cyriacigeorgica), cluster 2 (N. brasiliensis), cluster 3 (N. farcinica), cluster 4 (N. puris), cluster 5 (N. asiatica), and cluster 6 (N. beijingensis), based on the six peaks generated by ClinProTools with the genetic algorithm, i.e., m/z 2,774.477 (cluster 1), m/z 5,389.792 (cluster 2), m/z 6,505.720 (cluster 3), m/z 5,428.795 (cluster 4), m/z 6,525.326 (cluster 5), and m/z 16,085.216 (cluster 6). Two clusters of L. monocytogenes spectra were also found according to the five peaks, i.e., m/z 5,594.85, m/z 6,184.39, and m/z 11,187.31, for cluster 1 (serotype 1/2a) and m/z 5,601.21 and m/z 11,199.33 for cluster 2 (serotypes 1/2b and 4b). The Bruker Biotyper system was unable to accurately identify Nocardia (except for N. nova and N. otitidiscaviarum), Tsukamurella, or Gordonia species. Continuous expansion of the MALDI-TOF MS databases to include more GPRs is necessary. PMID:24759706

  19. Removal of polycyclic aromatic hydrocarbons in soil spiked with model mixtures of petroleum hydrocarbons and heterocycles using biosurfactants from Rhodococcus ruber IEGM 231.

    Science.gov (United States)

    Ivshina, Irina; Kostina, Ludmila; Krivoruchko, Anastasiya; Kuyukina, Maria; Peshkur, Tatyana; Anderson, Peter; Cunningham, Colin

    2016-07-15

    Removal of polycyclic aromatic hydrocarbons (PAHs) in soil using biosurfactants (BS) produced by Rhodococcus ruber IEGM 231 was studied in soil columns spiked with model mixtures of major petroleum constituents. A crystalline mixture of single PAHs (0.63g/kg), a crystalline mixture of PAHs (0.63g/kg) and polycyclic aromatic sulfur heterocycles (PASHs), and an artificially synthesized non-aqueous phase liquid (NAPL) containing PAHs (3.00g/kg) dissolved in alkanes C10-C19 were used for spiking. Percentage of PAH removal with BS varied from 16 to 69%. Washing activities of BS were 2.5 times greater than those of synthetic surfactant Tween 60 in NAPL-spiked soil and similar to Tween 60 in crystalline-spiked soil. At the same time, amounts of removed PAHs were equal and consisted of 0.3-0.5g/kg dry soil regardless the chemical pattern of a model mixture of petroleum hydrocarbons and heterocycles used for spiking. UV spectra for soil before and after BS treatment were obtained and their applicability for differentiated analysis of PAH and PASH concentration changes in remediated soil was shown. The ratios A254nm/A288nm revealed that BS increased biotreatability of PAH-contaminated soils. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Associations between physical examination, laboratory, and radiographic findings and outcome and subsequent racing performance of foals with Rhodococcus equi infection: 115 cases (1984-1992)

    International Nuclear Information System (INIS)

    Ainsworth, D.M.; Eicker, S.W.; Yeager, A.E.; Sweeney, C.R.; Viel, L.; Tesarowski, D.; Lavoie, J.P.; Hoffman, A.; Paradis, M.R.; Reed, S.M.

    1998-01-01

    Objective-To determine whether physical examination, laboratory, or radiographic abnormalities in foals with Rhodococcus equi infection were associated with survival, ability to race at least once after recovery, or, for foals that survived and went on to race, subsequent Facing performance. Design-Retrospective study. Animals-49 Thoroughbreds and 66 Standardbreds admitted to 1 of 6 veterinary teaching hospitals between 1984 and 1992 in which R equi infection was positively diagnosed. Procedure-Results of physical examination, laboratory testing, and thoracic radiography were reviewed. Indices of Facing performance were obtained for feats that recovered and eventually raced and compared with values for the US racing population. Results-83 (72%) feats survived. Foals that did not survive were more likely to have extreme tachycardia (heart rate > 100 beats/min), be in respiratory distress, and have severe radiographic abnormalities on thoracic radiographs at the time of initial examination than were foals that survived. Clinicopathologic abnormalities were not associated with whether feats did or did not survive. Forty-five of the 83 surviving foals (54%) eventually raced at least once, but none of the factors examined was associated with whether foals went on to race. Racing performance of foals that raced as adults was not significantly different from that of the US racing population. Clinical Implications-R equi infection in foals is associated with a decreased chance of racing as an adult, however, foals that eventually go on to race perform comparably to the US racing population

  1. Structure of Rhodococcus equi virulence-associated protein B (VapB) reveals an eight-stranded antiparallel β-barrel consisting of two Greek-key motifs

    International Nuclear Information System (INIS)

    Geerds, Christina; Wohlmann, Jens; Haas, Albert; Niemann, Hartmut H.

    2014-01-01

    The structure of VapB, a member of the Vap protein family that is involved in virulence of the bacterial pathogen R. equi, was determined by SAD phasing and reveals an eight-stranded antiparallel β-barrel similar to avidin, suggestive of a binding function. Made up of two Greek-key motifs, the topology of VapB is unusual or even unique. Members of the virulence-associated protein (Vap) family from the pathogen Rhodococcus equi regulate virulence in an unknown manner. They do not share recognizable sequence homology with any protein of known structure. VapB and VapA are normally associated with isolates from pigs and horses, respectively. To contribute to a molecular understanding of Vap function, the crystal structure of a protease-resistant VapB fragment was determined at 1.4 Å resolution. The structure was solved by SAD phasing employing the anomalous signal of one endogenous S atom and two bound Co ions with low occupancy. VapB is an eight-stranded antiparallel β-barrel with a single helix. Structural similarity to avidins suggests a potential binding function. Unlike other eight- or ten-stranded β-barrels found in avidins, bacterial outer membrane proteins, fatty-acid-binding proteins and lysozyme inhibitors, Vaps do not have a next-neighbour arrangement but consist of two Greek-key motifs with strand order 41238567, suggesting an unusual or even unique topology

  2. Structure of Rhodococcus equi virulence-associated protein B (VapB) reveals an eight-stranded antiparallel β-barrel consisting of two Greek-key motifs

    Energy Technology Data Exchange (ETDEWEB)

    Geerds, Christina [Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld (Germany); Wohlmann, Jens; Haas, Albert [University of Bonn, Ulrich-Haberland Strasse 61a, 53121 Bonn (Germany); Niemann, Hartmut H., E-mail: hartmut.niemann@uni-bielefeld.de [Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld (Germany)

    2014-06-18

    The structure of VapB, a member of the Vap protein family that is involved in virulence of the bacterial pathogen R. equi, was determined by SAD phasing and reveals an eight-stranded antiparallel β-barrel similar to avidin, suggestive of a binding function. Made up of two Greek-key motifs, the topology of VapB is unusual or even unique. Members of the virulence-associated protein (Vap) family from the pathogen Rhodococcus equi regulate virulence in an unknown manner. They do not share recognizable sequence homology with any protein of known structure. VapB and VapA are normally associated with isolates from pigs and horses, respectively. To contribute to a molecular understanding of Vap function, the crystal structure of a protease-resistant VapB fragment was determined at 1.4 Å resolution. The structure was solved by SAD phasing employing the anomalous signal of one endogenous S atom and two bound Co ions with low occupancy. VapB is an eight-stranded antiparallel β-barrel with a single helix. Structural similarity to avidins suggests a potential binding function. Unlike other eight- or ten-stranded β-barrels found in avidins, bacterial outer membrane proteins, fatty-acid-binding proteins and lysozyme inhibitors, Vaps do not have a next-neighbour arrangement but consist of two Greek-key motifs with strand order 41238567, suggesting an unusual or even unique topology.

  3. Structural basis for the substrate specificity and the absence of dehalogenation activity in 2-chloromuconate cycloisomerase from Rhodococcus opacus 1CP.

    Science.gov (United States)

    Kolomytseva, Marina; Ferraroni, Marta; Chernykh, Alexey; Golovleva, Ludmila; Scozzafava, Andrea

    2014-09-01

    2-Chloromuconate cycloisomerase from the Gram-positive bacterium Rhodococcus opacus 1CP (Rho-2-CMCI) is an enzyme of a modified ortho-pathway, in which 2-chlorophenol is degraded using 3-chlorocatechol as the central intermediate. In general, the chloromuconate cycloisomerases catalyze not only the cycloisomerization, but also the process of dehalogenation of the chloromuconate to dienelactone. However Rho-2-CMCI, unlike the homologous enzymes from the Gram-negative bacteria, is very specific for only one position of the chloride on the substrate chloromuconate. Furthermore, Rho-2-CMCI is not able to dehalogenate the 5-chloromuconolactone and therefore it cannot generate the dienelactone. The crystallographic structure of the homooctameric Rho-2-CMCI was solved by molecular replacement using the coordinates of the structure of chloromuconate cycloisomerase from Pseudomonas putida PRS2000. The structure was analyzed and compared to the other already known structures of (chloro)muconate cycloisomerases. In addition to this, molecular docking calculations were carried out, which allowed us to determine the residues responsible for the high substrate specificity and the lack of dehalogenation activity of Rho-2-CMCI. Our studies highlight that a histidine, located in a loop that closes the active site cavity upon the binding of the substrate, could be related to the dehalogenation inability of Rho-2-CMCI and in general of the muconate cycloisomerases. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Production, Purification, and Identification of Cholest-4-en-3-one Produced by Cholesterol Oxidase from Rhodococcus sp. in Aqueous/Organic Biphasic System.

    Science.gov (United States)

    Wu, Ke; Li, Wei; Song, Jianrui; Li, Tao

    2015-01-01

    Cholest-4-en-3-one has positive uses against obesity, liver disease, and keratinization. It can be applied in the synthesis of steroid drugs as well. Most related studies are focused on preparation of cholest-4-en-3-one by using whole cells as catalysts, but production of high-quality cholest-4-en-3-one directly from cholesterol oxidase (COD) using an aqueous/organic two-phase system has been rarely explored. This study set up an enzymatic reaction system to produce cholest-4-en-3-one. We developed and optimized the enzymatic reaction system using COD from COX5-6 (a strain of Rhodococcus) instead of whole-cell biocatalyst. This not only simplifies and accelerates the production but also benefits the subsequent separation and purification process. Through extraction, washing, evaporation, column chromatography, and recrystallization, we got cholest-4-en-3-one with purity of 99.78%, which was identified by nuclear magnetic resonance, mass spectroscopy, and infrared spectroscopy. In addition, this optimized process of cholest-4-en-3-one production and purification can be easily scaled up for industrial production, which can largely decrease the cost and guarantee the purity of the product.

  5. Immunization by intrabronchial administration to 1-week-old foals of an unmarked double gene disruption strain of Rhodococcus equi strain 103+.

    Science.gov (United States)

    Pei, Yanlong; Nicholson, Vivian; Woods, Katharine; Prescott, John F

    2007-11-15

    Rhodococcus equi causes fatal granulomatous pneumonia in foals and immunocompromised animals and humans. However, there is no effective vaccine against this infection. In this study, the chromosomal genes isocitrate lyase (icl) and cholesterol oxidase (choE) were chosen as targets for mutation and assessment of the double mutant as an intrabronchial vaccine in 1-week-old foals. Using a modification of a suicide plasmid previously developed in this laboratory, we developed a choE-icl unmarked deletion mutant of R. equi strain 103+. Five 1-week-old foals were infected intrabronchially with the mutant and challenged intrabronchially with the parent, virulent, strain 2 weeks later. Three of the foals were protected against pneumonia caused by the virulent strain, but the other two foals developed pneumonia caused by the mutant strain during the post-challenge period. Since infection of 3-week-old foals by an icl mutant in an earlier study had shown complete attenuation of the strain, we conclude that a proportion of foals in the 1st week or so of life are predisposed to developing R. equi pneumonia because of an inability to mount an effective immune response. This has been suspected previously but this is the first time that this has been demonstrated experimentally.

  6. Efficacy of bacterial bioremediation: Demonstration of complete incorporation of hydrocarbons into membrane phospholipids from Rhodococcus hydrocarbon degrading bacteria by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, R.P.; Blumer, E.N.; Emmett, M.R.; Marshall, A.G.

    2000-02-01

    The authors present a method and example to establish complete incorporation of hydrocarbons into membrane phospholipids of putatively bioremediative bacteria. Bacteria are grown on minimal media containing a specified carbon source, either natural abundance or enriched. After extraction (but no other prior separation) of the membrane lipids, electrospray ionization yields a negative-ion FT-ICR mass spectrum containing prominent phospholipid parent ions. If {sup 13}C-enriched hydrocarbon incorporation is complete, then the mass of the parent ion will increase by n Da, in which n is the number of its constituent carbon atoms; moreover, the {sup 13}C isotopic distribution pattern will be reversed. The identities of the constituent fatty acids and polar headgroup are obtained by collisional dissociation (MS/MS), and their extent of {sup 13}C incorporation determined individually. The method is demonstrated for Rhodococcus rhodochrous (ATCC No. 53968), for which all 44 carbons of a representative phosphatidylinositol are shown to derive from the hydrocarbon source. Interestingly, although only C{sub 16} and C{sub 18} alkanes are provided in the growth medium, the bacteria synthesize uniformly enriched C16:0 and C19:0 fatty acids.

  7. Isolation of endosulfan sulfate-degrading Rhodococcus koreensis strain S1-1 from endosulfan contaminated soil and identification of a novel metabolite, endosulfan diol monosulfate

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Koji; Kawashima, Fujimasa [Department of Applied Biology and Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502 (Japan); Organochemicals Division, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604 (Japan); Takagi, Kazuhiro, E-mail: ktakagi@affrc.go.jp [Department of Applied Biology and Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502 (Japan); Organochemicals Division, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604 (Japan); Kataoka, Ryota [Department of Environmental Science, University of Yamanashi, 41-4-37 Takeda, Kofu, Yamanashi (Japan); Kotake, Masaaki [Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 981-8555 (Japan); Kiyota, Hiromasa [Graduate School of Environmental & Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530 (Japan); Yamazaki, Kenichi [Organochemicals Division, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604 (Japan); Sakakibara, Futa [Organochemicals Division, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604 (Japan); The Japan Society for the Promotion of Science(JSPS), 1-8 Chiyoda-ku, Tokyo (Japan); Okada, Sanae [Department of Applied Biology and Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502 (Japan)

    2016-05-13

    An aerobic endosulfan sulfate-degrading bacterium, Rhodococcus koreensis strain S1-1, was isolated from soil to which endosulfan had been applied annually for more than 10 years until 2008. The strain isolated in this work reduced the concentration of endosulfan sulfate (2) from 12.25 μM to 2.11 μM during 14 d at 30 °C. Using ultra performance liquid chromatography-electrospray ionization-mass spectroscopy (UPLC-ESI-MS), a new highly water-soluble metabolite possessing six chlorine atoms was found to be endosulfan diol monosulfate (6), derived from 2 by hydrolysis of the cyclic sulfate ester ring. The structure of 6 was elucidated by chemical synthesis of the candidate derivatives and by HR-MS and UPLC-MS analyses. Therefore, it was suggested that the strain S1-1 has a new metabolic pathway of 2. In addition, 6 was expected to be less toxic among the metabolites of 1 because of its higher water-solubility. -- Highlights: •A novel endosulfan sulfate-degrading bacterium was isolated and named strain S1-1. •Strain S1-1 degraded endosulfan sulfate into a novel metabolite endosulfan diol monosulfate. •Endosulfan diol monosulfate showed higher polarity than other known metabolites of endosulfan. •We proposed the plausible metabolic pathway of endosulfan in terms of organic chemistry.

  8. Isolation of endosulfan sulfate-degrading Rhodococcus koreensis strain S1-1 from endosulfan contaminated soil and identification of a novel metabolite, endosulfan diol monosulfate

    International Nuclear Information System (INIS)

    Ito, Koji; Kawashima, Fujimasa; Takagi, Kazuhiro; Kataoka, Ryota; Kotake, Masaaki; Kiyota, Hiromasa; Yamazaki, Kenichi; Sakakibara, Futa; Okada, Sanae

    2016-01-01

    An aerobic endosulfan sulfate-degrading bacterium, Rhodococcus koreensis strain S1-1, was isolated from soil to which endosulfan had been applied annually for more than 10 years until 2008. The strain isolated in this work reduced the concentration of endosulfan sulfate (2) from 12.25 μM to 2.11 μM during 14 d at 30 °C. Using ultra performance liquid chromatography-electrospray ionization-mass spectroscopy (UPLC-ESI-MS), a new highly water-soluble metabolite possessing six chlorine atoms was found to be endosulfan diol monosulfate (6), derived from 2 by hydrolysis of the cyclic sulfate ester ring. The structure of 6 was elucidated by chemical synthesis of the candidate derivatives and by HR-MS and UPLC-MS analyses. Therefore, it was suggested that the strain S1-1 has a new metabolic pathway of 2. In addition, 6 was expected to be less toxic among the metabolites of 1 because of its higher water-solubility. -- Highlights: •A novel endosulfan sulfate-degrading bacterium was isolated and named strain S1-1. •Strain S1-1 degraded endosulfan sulfate into a novel metabolite endosulfan diol monosulfate. •Endosulfan diol monosulfate showed higher polarity than other known metabolites of endosulfan. •We proposed the plausible metabolic pathway of endosulfan in terms of organic chemistry.

  9. Cloning, overexpression, purification, crystallization and preliminary X-ray analysis of 3-ketosteroid Δ4-(5α)-dehydrogenase from Rhodococcus jostii RHA1

    International Nuclear Information System (INIS)

    Oosterwijk, Niels van; Knol, Jan; Dijkhuizen, Lubbert; Geize, Robert van der; Dijkstra, Bauke W.

    2011-01-01

    The gene for 3-ketosteroid Δ 4 -(5α)-dehydrogenase from R. jostii RHA1 was cloned and overexpressed in E. coli and the protein product was purified and crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group C222 1 and diffraction data were collected to a resolution of 1.6 Å. 3-Ketosteroid dehydrogenases are flavoproteins which play key roles in steroid ring degradation. The enzymes are abundantly present in actinobacteria, including the catabolic powerhouse Rhodococcus jostii and the pathogenic species R. equi and Mycobacterium tuberculosis. The gene for 3-ketosteroid Δ 4 -(5α)-dehydrogenase [Δ 4 -(5α)-KSTD] from R. jostii RHA1 was cloned and overexpressed in Escherichia coli. His-tagged Δ 4 -(5α)-KSTD enzyme was purified by Ni 2+ –NTA affinity chromatography, anion-exchange chromatography and size-exclusion chromatography and was crystallized using the hanging-drop vapour-diffusion method. Seeding greatly improved the number of crystals obtained. The crystals belonged to space group C222 1 , with unit-cell parameters a = 99.2, b = 114.3, c = 110.2 Å. Data were collected to a resolution of 1.6 Å

  10. Cloning, overexpression, purification, crystallization and preliminary X-ray analysis of 3-ketosteroid Δ{sup 4}-(5α)-dehydrogenase from Rhodococcus jostii RHA1

    Energy Technology Data Exchange (ETDEWEB)

    Oosterwijk, Niels van; Knol, Jan; Dijkhuizen, Lubbert; Geize, Robert van der; Dijkstra, Bauke W., E-mail: b.w.dijkstra@rug.nl [University of Groningen, Nijenborgh 7, 9747 AG Groningen (Netherlands)

    2011-10-01

    The gene for 3-ketosteroid Δ{sup 4}-(5α)-dehydrogenase from R. jostii RHA1 was cloned and overexpressed in E. coli and the protein product was purified and crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group C222{sub 1} and diffraction data were collected to a resolution of 1.6 Å. 3-Ketosteroid dehydrogenases are flavoproteins which play key roles in steroid ring degradation. The enzymes are abundantly present in actinobacteria, including the catabolic powerhouse Rhodococcus jostii and the pathogenic species R. equi and Mycobacterium tuberculosis. The gene for 3-ketosteroid Δ{sup 4}-(5α)-dehydrogenase [Δ{sup 4}-(5α)-KSTD] from R. jostii RHA1 was cloned and overexpressed in Escherichia coli. His-tagged Δ{sup 4}-(5α)-KSTD enzyme was purified by Ni{sup 2+}–NTA affinity chromatography, anion-exchange chromatography and size-exclusion chromatography and was crystallized using the hanging-drop vapour-diffusion method. Seeding greatly improved the number of crystals obtained. The crystals belonged to space group C222{sub 1}, with unit-cell parameters a = 99.2, b = 114.3, c = 110.2 Å. Data were collected to a resolution of 1.6 Å.

  11. Infecção pulmonar por rhodococcus equi em doente vih+ - revisão baseada num caso clínico

    Directory of Open Access Journals (Sweden)

    João Faria

    2013-03-01

    Full Text Available Apesar do aumento no número de casos de infecção humana por Rhodococcus equi (R. equi registado nas últimas décadas, sobretudo em indivíduos infectados pelo vírus da imunodeficiência humana (VIH, esse diagnóstico permanece uma raridade. Os autores apresentam um caso de infecção pulmonar por R. equi num homem de 36 anos com síndrome de imunodeficiência adquirida (SIDA. A doença manifestou-se de forma insidiosa, apresentando-se radiologicamente sob a forma de lesão pulmonar esquerda com cavitação e nível hidroaéreo, tendo sido inicialmente colocada a hipótese diagnóstica de tuberculose pulmonar (TP dada a pesquisa de bacilos álcool-ácido resistentes (BAAR na expectoração ter sido positiva. Posteriormente, foi possível isolar o R. equi nas culturas de expectoração e lavado broncoalveolar (LBA. O estudo anátomo-patológico confirmou a presença concomitante de malacoplaquia pulmonar. O doente cumpriu antibioterapia dirigida ao agente e teve boa evolução clínica, analítica e radiológica. A propósito deste caso, os autores fazem uma revisão teórica do tema à luz dos conhecimentos actuais.

  12. EVALUACIÓN DE LA BIOTRANSFORMACIÓN DE GERANIOL Y (R-(+-α-PINENO EMPLEANDO CÉLULAS DE Rhodococcus opacus DSM 44313

    Directory of Open Access Journals (Sweden)

    JENNIFER PILAR ROJAS

    Full Text Available La alta biodisponibilidad de los monoterpenos los hace precursores promisorios en los procesos de biotransformación, mediante los que se producen compuestos de valor agregado que pueden considerarse naturales, debido a que se obtienen por métodos enzimáticos a partir de precursores aislados de la naturaleza. En el presente estudio se evaluó la biotransformación de geraniol y (R-(+-α-pineno empleando la cepa bacteriana Rhodococcus opacus DSM 44313, para ello se determinó la influencia del tiempo de crecimiento de la bacteria, tomando suspensiones celulares en la mitad y finalizando la fase exponencial. También se evaluaron tres tiempos de reacción (12, 24 y 48 h y el efecto de un cosolvente, agregando los sustratos puros y disueltos en etanol al 10%. A partir del geraniol se produjeron geranial, ácido geránico y 6-metil-5-hepten-2-ona, sólo cuando el sustrato se adicionó puro, y se formaron en mayor concentración cuando la bacteria estaba finalizando su fase de crecimiento exponencial. Con el (R-(+-α-pineno se produjo como compuesto principal el (R-(+-cis-verbenol, siendo mayor su concentración agregando el pineno disuelto en etanol, y cuando la bacteria se encontraba en la mitad de su fase de crecimiento exponencial. Los resultados indican que el comportamiento de la bacteria cambia según el sustrato adicionado, debido a las propiedades de cada monoterpeno, pero los compuestos obtenidos con ambos sustratos tienen importantes aplicaciones en las industrias farmacéutica, alimenticia y de perfumería

  13. Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes

    Directory of Open Access Journals (Sweden)

    Martina eCappelletti

    2015-05-01

    Full Text Available Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from butane metabolism. Two gene clusters, prmABCD and smoABCD – coding for soluble di-iron monooxgenases (SDIMOs involved in gaseous n-alkanes oxidation – were detected in the BCP1 genome. By means of reverse transcriptase-quantitative PCR (RT-qPCR analysis, a set of substrates inducing the expression of the sdimo genes in BCP1 were assessed as well as their transcriptional repression in the presence of sugars, organic acids or during the cell growth on rich medium (Luria Bertani broth. The transcriptional start sites of both the sdimo gene clusters were identified by means of primer extension experiments. Finally, proteomic studies revealed changes in the protein pattern induced by growth on gaseous- (n-butane and/or liquid (n-hexane short-chain n-alkanes as compared to growth on succinate. Among the differently expressed protein spots, two chaperonins and an isocytrate lyase were identified along with oxidoreductases involved in oxidation reactions downstream of the initial monooxygenase reaction step.

  14. Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes

    Science.gov (United States)

    Cappelletti, Martina; Presentato, Alessandro; Milazzo, Giorgio; Turner, Raymond J.; Fedi, Stefano; Frascari, Dario; Zannoni, Davide

    2015-01-01

    Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane) were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from n-butane metabolism. Two gene clusters, prmABCD and smoABCD—coding for Soluble Di-Iron Monooxgenases (SDIMOs) involved in gaseous n-alkanes oxidation—were detected in the BCP1 genome. By means of Reverse Transcriptase-quantitative PCR (RT-qPCR) analysis, a set of substrates inducing the expression of the sdimo genes in BCP1 were assessed as well as their transcriptional repression in the presence of sugars, organic acids, or during the cell growth on rich medium (Luria–Bertani broth). The transcriptional start sites of both the sdimo gene clusters were identified by means of primer extension experiments. Finally, proteomic studies revealed changes in the protein pattern induced by growth on gaseous- (n-butane) and/or liquid (n-hexane) short-chain n-alkanes as compared to growth on succinate. Among the differently expressed protein spots, two chaperonins and an isocytrate lyase were identified along with oxidoreductases involved in oxidation reactions downstream of the initial monooxygenase reaction step. PMID:26029173

  15. Predicting the accumulation of storage compounds by Rhodococcus jostii RHA1 in the feast-famine growth cycles using genome-scale flux balance analysis.

    Science.gov (United States)

    Tajparast, Mohammad; Frigon, Dominic

    2018-01-01

    Feast-famine cycles in biological wastewater resource recovery systems select for bacterial species that accumulate intracellular storage compounds such as poly-β-hydroxybutyrate (PHB), glycogen, and triacylglycerols (TAG). These species survive better the famine phase and resume rapid substrate uptake at the beginning of the feast phase faster than microorganisms unable to accumulate storage. However, ecophysiological conditions favouring the accumulation of either storage compounds remain to be clarified, and predictive capabilities need to be developed to eventually rationally design reactors producing these compounds. Using a genome-scale metabolic modelling approach, the storage metabolism of Rhodococcus jostii RHA1 was investigated for steady-state feast-famine cycles on glucose and acetate as the sole carbon sources. R. jostii RHA1 is capable of accumulating the three storage compounds (PHB, TAG, and glycogen) simultaneously. According to the experimental observations, when glucose was the substrate, feast phase chemical oxygen demand (COD) accumulation was similar for the three storage compounds; when acetate was the substrate, however, PHB accumulation was 3 times higher than TAG accumulation and essentially no glycogen was accumulated. These results were simulated using the genome-scale metabolic model of R. jostii RHA1 (iMT1174) by means of flux balance analysis (FBA) to determine the objective functions capable of predicting these behaviours. Maximization of the growth rate was set as the main objective function, while minimization of total reaction fluxes and minimization of metabolic adjustment (environmental MOMA) were considered as the sub-objective functions. The environmental MOMA sub-objective performed better than the minimization of total reaction fluxes sub-objective function at predicting the mixture of storage compounds accumulated. Additional experiments with 13C-labelled bicarbonate (HCO3-) found that the fluxes through the central

  16. The genus Dracunculus – A source of triacylglycerols containing odd-numbered ω-phenyl fatty acids

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Schreiberová, O.; Čejková, A.; Sigler, Karel

    2011-01-01

    Roč. 72, 14-15 (2011), s. 1914-1926 ISSN 0031-9422 R&D Projects: GA ČR(CZ) GAP503/11/0215; GA MŠk 2B08062 Institutional research plan: CEZ:AV0Z50200510 Keywords : Dracunculus vulgaris * Rhodococcus erythropolis * RP-HPLC/MS-APCI Subject RIV: EE - Microbiology, Virology Impact factor: 3.351, year: 2011

  17. EVALUACIÓN DE LA BIOTRANSFORMACIÓN DE GERANIOL Y (R-(+-α-PINENO EMPLEANDO CÉLULAS DE Rhodococcus opacus DSM 44313 EVALUATION OF THE BIOTRANSFORMATION OF GERANIOL AND (R-(+-α-PINENE USING CELL OF Rhodococcus opacus DSM 44313

    Directory of Open Access Journals (Sweden)

    JENNIFER PILAR ROJAS

    2009-12-01

    Full Text Available La alta biodisponibilidad de los monoterpenos los hace precursores promisorios en los procesos de biotransformación, mediante los que se producen compuestos de valor agregado que pueden considerarse naturales, debido a que se obtienen por métodos enzimáticos a partir de precursores aislados de la naturaleza. En el presente estudio se evaluó la biotransformación de geraniol y (R-(+-α-pineno empleando la cepa bacteriana Rhodococcus opacus DSM 44313, para ello se determinó la influencia del tiempo de crecimiento de la bacteria, tomando suspensiones celulares en la mitad y finalizando la fase exponencial. También se evaluaron tres tiempos de reacción (12, 24 y 48 h y el efecto de un cosolvente, agregando los sustratos puros y disueltos en etanol al 10%. A partir del geraniol se produjeron geranial, ácido geránico y 6-metil-5-hepten-2-ona, sólo cuando el sustrato se adicionó puro, y se formaron en mayor concentración cuando la bacteria estaba finalizando su fase de crecimiento exponencial. Con el (R-(+-α-pineno se produjo como compuesto principal el (R-(+-cis-verbenol, siendo mayor su concentración agregando el pineno disuelto en etanol, y cuando la bacteria se encontraba en la mitad de su fase de crecimiento exponencial. Los resultados indican que el comportamiento de la bacteria cambia según el sustrato adicionado, debido a las propiedades de cada monoterpeno, pero los compuestos obtenidos con ambos sustratos tienen importantes aplicaciones en las industrias farmacéutica, alimenticia y de perfumeríaThe high bioavailability of monoterpenes make them promising precursors in biotransformation processes, through which produce value-added compounds that can be considered natural because they are obtained by enzymatic methods from precursors isolated from nature. In the present study we evaluated the biotransformation of geraniol and (R-(+-α-pinene using a bacterial strain of Rhodococcus opacus DSM 44313; the influence of growth time

  18. A common soil flagellate (Cercomonas sp.) grows slowly when feeding on the bacterium Rhodococcus fascians in isolation, but does not discriminate against it in a mixed culture with Sphingopyxis witflariensis

    DEFF Research Database (Denmark)

    Lekfeldt, Jonas D S; Rønn, Regin

    2008-01-01

    Flagellates are very important predators on bacteria in soil. Because of their high growth rates, flagellate populations respond rapidly to changes in bacterial numbers. Previous results indicate that actinobacteria are generally less suitable than proteobacteria as food for flagellates. In this ......Flagellates are very important predators on bacteria in soil. Because of their high growth rates, flagellate populations respond rapidly to changes in bacterial numbers. Previous results indicate that actinobacteria are generally less suitable than proteobacteria as food for flagellates....... In this study, we investigated the growth of the flagellate Cercomonas sp. (ATCC 50334) on each of the two bacteria Sphingopyxis witflariensis (Alphaproteobacteria) and Rhodococcus fascians (actinobacteria) separately and in combination. The growth rate of the flagellate was lower and the lag phase was longer...

  19. In vitro effect of josamycin in strains of Rhodococcus equi isolated from pulmonar infections in foals / Efeito in vitro da josamicina em cepas de rhodocaccus equi isoladas de afecções pulmonares em potros

    Directory of Open Access Journals (Sweden)

    Jaime Galvão Dias Júnior

    2000-12-01

    Full Text Available Antmicrobial susceptibility test was performed in thirty-one samples of Rhodococcus equi isolated from iung infections in foals. Among the antimicrobial tosted, erythromycin (100,0 %, rifampin (96.3%. neomycin (93,6 %Josamycin (90,4% and gentamicin (90,4 %presented the highest sensitivity against R- equi- The most-common occurrence of resistance was observed from cephalexim (100,0 %}, lincomycin (100,0 %, cephalothin (96,3 %. oxacillin (96,8 %, penicillin G (96,8 %, amoxicillin (90,3 % and trimethoprim/sulfamethoxazole (83,8 %. The highest susceptibility of the R. equi to josamycin, suggest the drug as alternative for therapy of R. equi infections in foals.Procedeu-se o teste de sensibilidade microbiana in vitro pelo teste de difusão com discos em 31 cepas de Rhodococcus equi. isoladas de afecções pulmonares cm potros. frente a 20 antimicrobianos. Os maioires índices de sensibilidade de R. equi foram constatados para entromicina (100,0 %, níampicina (96.8 %}t ncomicina (93. 6 %. josamicina (90.4% e gentamicina (90A %. Os maiores índices de resistência do agente foram verificados para cefalexina (100,0%, lincomicina (100.0%, cefalotina (96.8 %, oxacilino (96,8 %}, penicilina G (96,3 %, amoxicilina (90.3 % e sulfametoxazol/trimetoprim (83,8 %. A alta sensibilidade das cepas de R. equi para a josamicina, sugere a possibilidade de utilização da droga como alternativa no tratamento da rodococose em potros.

  20. Perfil de suscetibilidade antimicrobiana e presença do gene vapA em Rhodococcus equi de origem humana, ambiental e equina

    Directory of Open Access Journals (Sweden)

    Lilian Kolling Girardini

    2013-06-01

    Full Text Available Rhodococcus equi é um micro-organismo intracelular facultativo, agente etiológico da rodococose, uma importante enfermidade que acomete principalmente potros com menos de seis meses de idade, causando a morte geralmente em decorrência de lesões pulmonares. Este agente também tem potencial zoonótico e emergiu como um patógeno oportunista no mundo, acometendo humanos imunocomprometidos, especialmente os transplantados e infectados pelo vírus da imunodeficiência humana (HIV. Entretanto, infecções por R. equi em hospedeiros hígidos tem sido relatadas, principalmente em crianças e idosos. Estudos tem mostrado um nível crescente na resistência de isolados de R. equi em relação aos antimicrobianos comumente utilizados no tratamento de animais e seres humanos infectados por este agente. A virulência deste pode estar associada a fatores como a cápsula de polissacarídeo, fosfolipase C e à enzima colesterol oxidase (fator equi. No entanto, uma proteína localizada em um plasmídeo, designada vapA, é essencial para a sobrevivência e replicação do agente em macrófagos. Com isso, os objetivos deste estudo foram avaliar o perfil de suscetibilidade de isolados de R. equi de diferentes fontes em relação aos antimicrobianos mais comumente utilizados na terapêutica animal e humana, bem como verificar a associação entre a presença do gene vapA e o índice de resistência múltipla aos antimicrobianos (IRMA. Neste estudo, 67 isolados brasileiros de R. qui de diferentes fontes foram analisados: 30 provenientes de amostras clínicas de equinos, sete de humanos e 30 ambientais (seis do solo e 24 de fezes de equinos. Para avaliar o perfil de suscetibilidade dos isolados utilizou-se o método de disco difusão, sendo testadas 16 drogas de diferentes classes de antimicrobianos. As amostras clínicas de equinos apresentaram as maiores taxas de resistência à penicilina (86,7% e lincomicina (30%. Além disso, foram também resistentes a

  1. MICROBIAL SURFACTANTS. I. GLYCOLIPIDS

    Directory of Open Access Journals (Sweden)

    Pirog T. Р.

    2014-02-01

    Full Text Available The review is devoted to surface-active glycolipids. The general characteristics, the physiological role of the rhamnolipids, trehalose lipids, sophorolipids, mannosylerythritol lipids and their traditional producers — the representatives of the genera Pseudozyma, Pseudomonas, Rhodococcus and Candida are given. The detailed analysis of the chemical structure, the stages of the biosynthesis and the regulation of some low molecular glycolipids are done. The own experimental data concerning the synthesis intensification, the physiological role and the practical use of Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241 and Nocardia vaccinii IMV B-7405 surfactants, which are a complex of the glyco-, phospho-, amino- and neutral lipids (glycolipids of all strains are presented by trehalose mycolates are summarized. It was found that R. erythropolis IMV Ac-5017, A. calcoaceticus IMV B-7241 and N. vaccinii IMV B-7405 surfactants have protective, antimicrobial and antiadhesive properties. It was shown that R. erythropolis IMV Ac-5017, A. calcoaceticus IMV B-7241 and N. vaccinii IMV B-7405 surfactants preparation of cultural liquid intensified the degradation of oil in water due to the activation of the natural petroleum-oxidizing microflora.

  2. Soroepidemiologia de Rhodococcus equi em equinos da região de Bagé, RS, pelo teste de inibição da hemólise sinérgica

    Directory of Open Access Journals (Sweden)

    Lazzari Andrea

    1997-01-01

    Full Text Available Com o objetivo de avaliar a situação soroepidemiológica da infecção por Rhodococcus equi na região de Bagé, RS, foram testadas 290 amostras de soro sanguíneo de éguas e potros aparentemente sadios, obtidos de 6 haras com diferentes histórias de rodococose. Para relacionar o resultado sorológico com a presença deste agente bacteriano no trato intestinal destes animais, foram coletadas 123 amostras de fezes. O teste sorológico utilizado foi a inibição da hemólise sinérgica (IHS que detecta anticorpos neutralizantes contra o "fator equi". Um percentual de 87,93% (255/290 dos animais amostrados apresentaram estes anticorpos. O título médio geométrico (GMT destes anticorpos foi mais elevado nos potros do que nas éguas. A soropositividade destes equinos ao teste sorológico teve correlação com o isolamento do R. equi nas fezes dos respectivos animais. A maior taxa de isolamento de R. equi das fezes dos equinos e o maior GMT, ocorreu no único haras com casos clínicos recentes de enfermidade causada por esta bactéria. No entanto, todos os animais deste e dos demais haras, encontravam-se aparentemente sadios, sendo necessário, estabelecer em trabalho futuro, a possível relação entre títulos de anticorpos e sua importância na detecção da enfermidade.

  3. Summary report on the aerobic degradation of diesel fuel and the degradation of toluene under aerobic, denitrifying and sulfate reducing conditions

    International Nuclear Information System (INIS)

    Coyne, P.; Smith, G.

    1995-01-01

    This report contains a number of studies that were performed to better understand the technology of the biodegradation of petroleum hydrocarbons. Topics of investigation include the following: diesel fuel degradation by Rhodococcus erythropolis; BTEX degradation by soil isolates; aerobic degradation of diesel fuel-respirometry; aerobic degradation of diesel fuel-shake culture; aerobic toluene degradation by A3; effect of HEPES, B1, and myo-inositol addition on the growth of A3; aerobic and anaerobic toluene degradation by contaminated soils; denitrifying bacteria MPNs; sulfate-reducing bacteria MPNs; and aerobic, DNB and SRB enrichments

  4. Biotransformation of benzonitrile herbicides via the nitrile hydratase-amidase pathway in rhodococci.

    Science.gov (United States)

    Veselá, Alicja B; Pelantová, Helena; Sulc, Miroslav; Macková, Martina; Lovecká, Petra; Thimová, Markéta; Pasquarelli, Fabrizia; Pičmanová, Martina; Pátek, Miroslav; Bhalla, Tek Chand; Martínková, Ludmila

    2012-12-01

    The aim of this work was to determine the ability of rhodococci to transform 3,5-dichloro-4-hydroxybenzonitrile (chloroxynil), 3,5-dibromo-4-hydroxybenzonitrile (bromoxynil), 3,5-diiodo-4-hydroxybenzonitrile (ioxynil) and 2,6-dichlorobenzonitrile (dichlobenil); to identify the products and determine their acute toxicities. Rhodococcus erythropolis A4 and Rhodococcus rhodochrous PA-34 converted benzonitrile herbicides into amides, but only the former strain was able to hydrolyze 2,6-dichlorobenzamide into 2,6-dichlorobenzoic acid, and produced also more of the carboxylic acids from the other herbicides compared to strain PA-34. Transformation of nitriles into amides decreased acute toxicities for chloroxynil and dichlobenil, but increased them for bromoxynil and ioxynil. The amides inhibited root growth in Lactuca sativa less than the nitriles but more than the acids. The conversion of the nitrile group may be the first step in the mineralization of benzonitrile herbicides but cannot be itself considered to be a detoxification.

  5. [Transformation of 2- and 4-cyanopyridines by free and immobilized cells of nitrile-hydrolyzing bacteria].

    Science.gov (United States)

    Maksimova, Iu G; Vasil'ev, D M; Ovechkina, G V; Maksimov, A Iu; Demakov, V A

    2013-01-01

    The transformation dynamics of 2- and 4-cyanopyridines by cells suspended and adsorbed on inorganic carriers has been studied in the Rhodococcus ruber gt 1 strain possessing nitrile hydratase activity and the Pseudomonas fluorescens C2 strain containing nitrilase. It was shown that both nitrile hydratase and nitrilase activities of immobilized cells against 2-cyanopyridine were 1.5-4 times lower compared to 4-cyanopyridine and 1.6-2 times lower than the activities of free cells against 2-cyanpopyridine. The possibility of obtaining isonicotinic acid during the combined conversion of 4-cyanopyridine by a mixed suspension of R. ruber gt 1 cells with a high level of nitrile hydratase activity and R. erythropolis 11-2 cells with a pronounced activity of amidase has been shown. Immobilization of Rhodococcus cells on raw coal and Pseudomonas cells on china clay was shown to yield a heterogeneous biocatalyst for the efficient transformation of cyanopyridines into respective amides and carbonic acids.

  6. Biosynthesis of 1α-hydroxycorticosterone in the winter skate Leucoraja ocellata: evidence to suggest a novel steroidogenic route.

    Science.gov (United States)

    Wiens, J; Ho, R; Brassinga, A K; Deck, C A; Walsh, P J; Ben, R N; Mcclymont, K; Charlton, T; Evans, A N; Anderson, W G

    2017-07-01

    The present study explores the ability of intracellular bacteria within the renal-inter-renal tissue of the winter skate Leucoraja ocellata to metabolize steroids and contribute to the synthesis of the novel elasmobranch corticosteroid, 1α-hydroxycorticosterone (1α-OH-B). Despite the rarity of C1 hydroxylation noted in the original identification of 1α-OH-B, literature provides evidence for steroid C1 hydroxylation by micro-organisms. Eight ureolytic bacterial isolates were identified in the renal-inter-renal tissue of L. ocellata, the latter being the site of 1α-OH-B synthesis. From incubations of bacterial isolates with known amounts of potential 1α-OH-B precursors, one isolate UM008 of the genus Rhodococcus was seen to metabolize corticosteroids and produce novel products via HPLC analysis. Cations Zn 2+ and Fe 3+ altered metabolism of certain steroid precursors, suggesting inhibition of Rhodococcus steroid catabolism. Genome sequencing of UM008 identified strong sequence and structural homology to that of Rhodococcus erythropolis PR4. A complete enzymatic pathway for steroid-ring oxidation as documented within other Actinobacteria was identified within the UM008 genome. This study highlights the potential role of Rhodococcus bacteria in steroid metabolism and proposes a novel alternative pathway for 1α-OH-B synthesis, suggesting a unique form of mutualism between intracellular bacteria and their elasmobranch host. © 2017 The Fisheries Society of the British Isles.

  7. Biodegradation of sulfamethoxazole by individual and mixed bacteria.

    Science.gov (United States)

    Larcher, Simone; Yargeau, Viviane

    2011-07-01

    Antibiotic compounds, like sulfamethoxazole (SMX), have become a concern in the aquatic environment due to the potential development of antibacterial resistances. Due to excretion and disposal, SMX has been frequently detected in wastewaters and surface waters. SMX removal in conventional wastewater treatment plants (WWTPs) ranges from 0% to 90%, and there are opposing results regarding its biodegradability at lab scale. The objective of this research was to determine the ability of pure cultures of individual and mixed consortia of bacteria (Bacillus subtilis, Pseudomonas aeruginosa, Pseudomonas putida, Rhodococcus equi, Rhodococcus erythropolis, Rhodococcus rhodocrous, and Rhodococcus zopfii) known to exist in WWTP activated sludge to remove SMX. Results showed that R. equi alone had the greatest ability to remove SMX leading to 29% removal (with glucose) and the formation of a metabolite. Degradation pathways and metabolite structures have been proposed based on the potential enzymes produced by R. equi. When R. equi was mixed with other microorganisms, a positive synergistic effect was not observed and the maximum SMX removal achieved was 5%. This indicates that pure culture results cannot be extrapolated to mixed culture conditions, and the methodology developed here to study the biodegradability of compounds under controlled mixed culture conditions offers an alternative to conventional studies using pure bacterial cultures or inocula from activated sludge sources consisting of unknown and variable microbial populations.

  8. Metabolomics of the Bio-Degradation Process of Aflatoxin B1 by Actinomycetes at an Initial pH of 6.0

    Directory of Open Access Journals (Sweden)

    Manal Eshelli

    2015-02-01

    Full Text Available Contamination of food and feed by Aflatoxin B1 (AFB1 is a cause of serious economic and health problems. Different processes have been used to degrade AFB1. In this study, biological degradation of AFB1 was carried out using three Actinomycete species, Rhodococcus erythropolis ATCC 4277, Streptomyces lividans TK 24, and S. aureofaciens ATCC 10762, in liquid cultures. Biodegradation of AFB1 was optimised under a range of temperatures from 25 to 40 °C and pH values of 4.0 to 8.0. An initial concentration of 20 µg/mL of AFB1 was used in this study. The amount of AFB1 remaining was measured against time by thin layer chromatography (TLC and high-performance liquid chromatography (HPLC, coupled with UV and mass spectrometry (LC-MS. All species were able to degrade the AFB1, and no significant difference was found between them. AFB1 remained in the liquid culture for R. erythropolis, S. lividans and S. aureofaciens were 0.81 µg/mL, 2.41 µg/mL and 2.78 µg/mL respectively, at the end of the first 24 h. Degradation occurred at all incubation temperatures and the pH with the optimal conditions for R. erythropolis was achieved at 30 °C and pH 6, whereas for S. lividans and S. aureofaciens the optimum conditions for degradation were 30 °C and pH 5. Analysis of the degradative route indicated that each microorganism has a different way of degrading AFB1. The metabolites produced by R. erythropolis were significantly different from the other two microorganisms. Products of degradation were identified through metabolomic studies by utilizing high-resolution mass spectral data. Mass spectrometric analysis indicated that the degradation of AFB1 was associated with the appearance of a range of lower molecular weight compounds. The pathway of degradation or chemical alteration of AFB1 was followed by means of high resolution Fourier transform mass spectrometry (HR-FTMS analysis as well as through the MS2 fragmentation to unravel the degradative pathway for

  9. Enhancement of dibenzothiophene biodesulfurization using {beta}-cyclodextrins in oil-to-water media

    Energy Technology Data Exchange (ETDEWEB)

    Ainhoa Caro; Pedro Leton; Eloy Garcia-Calvo; Leonardo Setti [Universidad de Alcala, Madrid (Spain). Departamento de Quimica Analitica e Ingeniera Quimica

    2007-11-15

    It has been reported that biodesulfurization (BDS) of dibenzothiophene (DBT) in oil-to-water emulsions is carried out by growing cells of the aerobic Rhodococcus erythropolis IGTS8 strain and developing the so-called 4S desulfurization pathway. On adding {beta}-cyclodextrins, it is possible to improve the BDS yields, increase the diffusion of DBT into the aqueous phase or avoid the HBP accumulation. Moreover, by using greater biocatalyst initial concentrations and adding 15 ppm of {beta}-cyclodextrin, a very high BDS yield has been observed, but the presence of mass transfer limitations and the inhibition effects were not satisfactorily avoided. The Haldane kinetic model agreed well with the experimental results obtained, and the values of the kinetic parameters were determined. Short communication. 20 refs., 2 figs., 2 tabs.

  10. A high-throughput screening strategy for nitrile-hydrolyzing enzymes based on ferric hydroxamate spectrophotometry.

    Science.gov (United States)

    He, Yu-Cai; Ma, Cui-Luan; Xu, Jian-He; Zhou, Li

    2011-02-01

    Nitrile-hydrolyzing enzymes (nitrilase or nitrile hydratase/amidase) have been widely used in the pharmaceutical industry for the production of carboxylic acids and their derivatives, and it is important to build a method for screening for nitrile-hydrolyzing enzymes. In this paper, a simple, rapid, and high-throughput screening method based on the ferric hydroxamate spectrophotometry has been proposed. To validate the accuracy of this screening strategy, the nitrilases from Rhodococcus erythropolis CGMCC 1.2362 and Alcaligenes sp. ECU0401 were used for evaluating the method. As a result, the accuracy for assaying aliphatic and aromatic carboxylic acids was as high as the HPLC-based method. Therefore, the method may be potentially used in the selection of microorganisms or engineered proteins with nitrile-hydrolyzing enzymes.

  11. Discovery and characterization of thermophilic limonene-1,2-epoxide hydrolases from hot spring metagenomic libraries

    DEFF Research Database (Denmark)

    Ferrandi, Erica Elisa; Sayer, Christopher; Isupov, Michail N.

    2015-01-01

    thermophilic sources, have higher optimal temperatures and apparent melting temperatures than Re-LEH. The new LEH enzymes have been crystallized and their structures solved to high resolution in the native form and in complex with the inhibitor valpromide for Tomsk-LEH and poly(ethylene glycol) for CH55-LEH......,2-epoxide hydrolase (LEH) family of enzymes. These two LEHs (Tomsk-LEH and CH55-LEH) show EH activities towards different epoxide substrates, differing in most cases from those previously identified for Rhodococcus erythropolis (Re-LEH) in terms of stereoselectivity. Tomsk-LEH and CH55-LEH, both from....... The structural analysis has provided insights into the LEH mechanism, substrate specificity and stereoselectivity of these new LEH enzymes, which has been supported by mutagenesis studies....

  12. Isolation and characterization of Rhodococcus ruber CGMCC3090 ...

    African Journals Online (AJOL)

    A bacterial strain was isolated from soil samples that had been polluted by nitrile compounds. This strain converts acrylonitrile to acrylamide with high activity. The nitrile hydrolysis activity was tested using eight substrates, including aliphatic, aromatic and heterocyclic (di)nitriles. All of the nitrile compounds were hydrolyzed ...

  13. Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Haddadin, Malik S.Y.; Abou Arqoub, Ansam A.; Abu Reesh, Ibrahim [Faculty of Graduate Studies, Jordan University, Queen Rania Street, Amman, 11942 (Jordan); Haddadin, Jamal [Faculty of Agriculture, Mutah University, P.O. Box 59, Mutah 61710 (Jordan)

    2009-04-15

    This study was done to extract hydrocarbon compounds from El-Lajjun oil shale using biosurfactant produced from two strains Rhodococcus erythropolis and Rhodococcus ruber. The results have shown that, optimal biosurfactant production was found using naphthalene and diesel as a carbon source for R. erthropolis and R. ruber, respectively. Optimum nitrogen concentration was 9 g/l and 7 g/l for R. erthropolis and R. ruber, respectively. Optimum K{sub 2}HPO{sub 4} to KH{sub 2}PO{sub 4} ratio, temperature, pH, and agitation speeds were 2:1, 37 C, 7 and 200 rpm. Under optimal conditions R. erthropolis and R. ruber produced 5.67 and 6.9 g/l biosurfactant, respectively. Maximum recovery of oil achieved with hydrogen peroxide pre-treatment was 25% and 26% at biosurfactant concentration of 8 g/l and 4 g/l for R. erthropolis and R. ruber, respectively. The extent desorption of hydrocarbons from the pre-treated oil shale by biosurfactant were inversely related to the concentration of high molecular weight hydrocarbons, asphaltenes compounds. Pre-treatment of oil shale with hydrogen peroxide produced better improvement in aromatic compounds extraction in comparison with improvement which resulted from demineralization of the oil shale. (author)

  14. Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria

    International Nuclear Information System (INIS)

    Haddadin, Malik S.Y.; Abou Arqoub, Ansam A.; Abu Reesh, Ibrahim; Haddadin, Jamal

    2009-01-01

    This study was done to extract hydrocarbon compounds from El-Lajjun oil shale using biosurfactant produced from two strains Rhodococcus erythropolis and Rhodococcus ruber. The results have shown that, optimal biosurfactant production was found using naphthalene and diesel as a carbon source for R. erthropolis and R. ruber, respectively. Optimum nitrogen concentration was 9 g/l and 7 g/l for R. erthropolis and R. ruber, respectively. Optimum K 2 HPO 4 to KH 2 PO 4 ratio, temperature, pH, and agitation speeds were 2:1, 37 deg. C, 7 and 200 rpm. Under optimal conditions R. erthropolis and R. ruber produced 5.67 and 6.9 g/l biosurfactant, respectively. Maximum recovery of oil achieved with hydrogen peroxide pre-treatment was 25% and 26% at biosurfactant concentration of 8 g/l and 4 g/l for R. erthropolis and R. ruber, respectively. The extent desorption of hydrocarbons from the pre-treated oil shale by biosurfactant were inversely related to the concentration of high molecular weight hydrocarbons, asphaltenes compounds. Pre- treatment of oil shale with hydrogen peroxide produced better improvement in aromatic compounds extraction in comparison with improvement which resulted from demineralization of the oil shale

  15. Genetic diversity of culturable bacteria in oil-contaminated rhizosphere of Galega orientalis

    International Nuclear Information System (INIS)

    Jussila, Minna M.; Jurgens, German; Lindstroem, Kristina; Suominen, Leena

    2006-01-01

    A collection of 50 indigenous meta-toluate tolerating bacteria isolated from oil-contaminated rhizosphere of Galega orientalis on selective medium was characterized and identified by classical and molecular methods. 16S rDNA partial sequencing showed the presence of five major lineages of the Bacteria domain. Gram-positive Rhodococcus, Bacillus and Arthrobacter and gram-negative Pseudomonas were the most abundant genera. Only one-fifth of the strains that tolerated m-toluate also degraded m-toluate. The inoculum Pseudomonas putida PaW85 was not found in the rhizosphere samples. The ability to degrade m-toluate by the TOL plasmid was detected only in species of the genus Pseudomonas. However, a few Rhodococcus erythropolis strains were found which were able to degrade m-toluate. A new finding was that Pseudomonas migulae strains and a few P. oryzihabitans strains were able to grow on m-toluate and most likely contained the TOL plasmid. Because strain specific differences in degradation abilities were found for P. oryzihabitans, separation at the strain level was important. For strain specific separation (GTG) 5 fingerprinting was the best method. A combination of the single locus ribotyping and the whole genomic fingerprinting techniques with the selective partial sequencing formed a practical molecular toolbox for studying genetic diversity of culturable bacteria in oil-contaminated rhizosphere. - Bacterial diversity during rhizoremediation in oil-contaminated soil is characterized by a combination of molecular methods

  16. Enzyme-substrate binding landscapes in the process of nitrile biodegradation mediated by nitrile hydratase and amidase.

    Science.gov (United States)

    Zhang, Yu; Zeng, Zhuotong; Zeng, Guangming; Liu, Xuanming; Chen, Ming; Liu, Lifeng; Liu, Zhifeng; Xie, Gengxin

    2013-08-01

    The continuing discharge of nitriles in various industrial processes has caused serious environmental consequences of nitrile pollution. Microorganisms possess several nitrile-degrading pathways by direct interactions of nitriles with nitrile-degrading enzymes. However, these interactions are largely unknown and difficult to experimentally determine but important for interpretation of nitrile metabolisms and design of nitrile-degrading enzymes with better nitrile-converting activity. Here, we undertook a molecular modeling study of enzyme-substrate binding modes in the bi-enzyme pathway for degradation of nitrile to acid. Docking results showed that the top substrates having favorable interactions with nitrile hydratase from Rhodococcus erythropolis AJ270 (ReNHase), nitrile hydratase from Pseudonocardia thermophila JCM 3095 (PtNHase), and amidase from Rhodococcus sp. N-771 (RhAmidase) were benzonitrile, 3-cyanopyridine, and L-methioninamide, respectively. We further analyzed the interactional profiles of these top poses with corresponding enzymes, showing that specific residues within the enzyme's binding pockets formed diverse contacts with substrates. This information on binding landscapes and interactional profiles is of great importance for the design of nitrile-degrading enzyme mutants with better oxidation activity toward nitriles or amides in the process of pollutant treatments.

  17. Secondary successions of biota in oil-polluted peat soil upon different biological remediation methods

    Science.gov (United States)

    Melekhina, E. N.; Markarova, M. Yu.; Shchemelinina, T. N.; Anchugova, E. M.; Kanev, V. A.

    2015-06-01

    The effects of different bioremediation methods on restoration of the oil-polluted peat soil (Histosol) in the northernmost taiga subzone of European Russia was studied. The population dynamics of microorganisms belonging to different trophic groups (hydrocarbon-oxidizing, ammonifying, nitrifying, and oligonitrophilic) were analyzed together with data on the soil enzyme (catalase and dehydrogenase) activities, population densities of soil microfauna groups, their structures, and states of phytocenoses during a sevenyear-long succession. The remediation with biopreparations Roder composed of oil-oxidizing microorganisms-Roder with Rhodococcus rubber and R. erythropolis and Universal with Rhodotorula glutinis and Rhodococcus sp.-was more efficient than the agrochemical and technical remediation. It was concluded that the biopreparations activate microbiological oil destruction, thereby accelerating restoration succession of phytocenosis and zoocenosis. The succession of dominant microfauna groups was observed: the dipteran larvae and Mesostigmata mites predominant at the early stages were replaced by collembolans at later stages. The pioneer oribatid mite species were Tectocepheus velatus, Oppiella nova, Liochthonius sellnicki, Oribatula tibialis, and Eupelops sp.

  18. From oil spills to barley growth - oil-degrading soil bacteria and their promoting effects.

    Science.gov (United States)

    Mikolasch, Annett; Reinhard, Anne; Alimbetova, Anna; Omirbekova, Anel; Pasler, Lisa; Schumann, Peter; Kabisch, Johannes; Mukasheva, Togzhan; Schauer, Frieder

    2016-11-01

    Heavy contamination of soils by crude oil is omnipresent in areas of oil recovery and exploitation. Bioremediation by indigenous plants in cooperation with hydrocarbon degrading microorganisms is an economically and ecologically feasible means to reclaim contaminated soils. To study the effects of indigenous soil bacteria capable of utilizing oil hydrocarbons on biomass production of plants growing in oil-contaminated soils eight bacterial strains were isolated from contaminated soils in Kazakhstan and characterized for their abilities to degrade oil components. Four of them, identified as species of Gordonia and Rhodococcus turned out to be effective degraders. They produced a variety of organic acids from oil components, of which 59 were identified and 7 of them are hitherto unknown acidic oil metabolites. One of them, Rhodococcus erythropolis SBUG 2054, utilized more than 140 oil components. Inoculating barley seeds together with different combinations of these bacterial strains restored normal growth of the plants on contaminated soils, demonstrating the power of this approach for bioremediation. Furthermore, we suggest that the plant promoting effect of these bacteria is not only due to the elimination of toxic oil hydrocarbons but possibly also to the accumulation of a variety of organic acids which modulate the barley's rhizosphere environment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Hydrolysis of nitriles by soil bacteria: variation with soil origin.

    Science.gov (United States)

    Rapheeha, O K L; Roux-van der Merwe, M P; Badenhorst, J; Chhiba, V; Bode, M L; Mathiba, K; Brady, D

    2017-03-01

    The aim of this study was to explore bacterial soil diversity for nitrile biocatalysts, in particular, those for hydrolysis of β-substituted nitriles, to the corresponding carboxamides and acids that may be incorporated into peptidomimetics. To achieve this, we needed to compare the efficiency of isolation methods and determine the influence of land use and geographical origin of the soil sample. Nitrile-utilizing bacteria were isolated from various soil environments across a 1000 km long transect of South Africa, including agricultural soil, a gold mine tailing dam and uncultivated soil. The substrate profile of these isolates was determined through element-limited growth studies on seven different aliphatic or aromatic nitriles. A subset of these organisms expressing broad substrate ranges was evaluated for their ability to hydrolyse β-substituted nitriles (3-amino-3-phenylpropionitrile and 3-hydroxy-4-phenoxybutyronitrile) and the active organisms were found to be Rhodococcus erythropolis from uncultivated soil and Rhodococcus rhodochrous from agricultural soils. The capacity for hydrolysis of β-substituted nitriles appears to reside almost exclusively in Rhodococci. Land use has a much greater effect on the biocatalysis substrate profile than geographical location. Enzymes are typically substrate specific in their catalytic reactions, and this means that a wide diversity of enzymes is required to provide a comprehensive biocatalysis toolbox. This paper shows that the microbial diversity of nitrile hydrolysis activity can be targeted according to land utilization. Nitrile biocatalysis is a green chemical method for the enzymatic production of amides and carboxylic acids that has industrial applications, such as in the synthesis of acrylamide and nicotinamide. The biocatalysts discovered in this study may be applied to the synthesis of peptidomimetics which are an important class of therapeutic compounds. © 2016 The Society for Applied Microbiology.

  20. Plant exudates promote PCB degradation by a rhodococcal rhizobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Toussaint, Jean-Patrick; Pham, Thi Thanh My; Barriault, Diane; Sylvestre, Michel [Instiut National de la Recherche Scientifique INRS, Laval, QC (Canada). Inst. Armand-Frappier

    2012-09-15

    Rhodococcus erythropolis U23A is a polychlorinated biphenyl (PCB)-degrading bacterium isolated from the rhizosphere of plants grown on a PCB-contaminated soil. Strain U23A bphA exhibited 99% identity with bphA1 of Rhodococcus globerulus P6. We grew Arabidopsis thaliana in a hydroponic axenic system, collected, and concentrated the plant secondary metabolite-containing root exudates. Strain U23A exhibited a chemotactic response toward these root exudates. In a root colonizing assay, the number of cells of strain U23A associated to the plant roots (5.7 x 105 CFU g{sup -1}) was greater than the number remaining in the surrounding sand (4.5 x 104 CFU g{sup -1}). Furthermore, the exudates could support the growth of strain U23A. In a resting cell suspension assay, cells grown in a minimal medium containing Arabidopsis root exudates as sole growth substrate were able to metabolize 2,3,4'- and 2,3',4-trichlorobiphenyl. However, no significant degradation of any of congeners was observed for control cells grown on Luria-Bertani medium. Although strain U23A was unable to grow on any of the flavonoids identified in root exudates, biphenyl-induced cells metabolized flavanone, one of the major root exudate components. In addition, when used as co-substrate with sodium acetate, flavanone was as efficient as biphenyl to induce the biphenyl catabolic pathway of strain U23A. Together, these data provide supporting evidence that some rhodococci can live in soil in close association with plant roots and that root exudates can support their growth and trigger their PCB-degrading ability. This suggests that, like the flagellated Gram-negative bacteria, non-flagellated rhodococci may also play a key role in the degradation of persistent pollutants. (orig.)

  1. Increasing the production of desulfurizing biocatalysts by means of fed - batch culture

    International Nuclear Information System (INIS)

    Berdugo, C I; Mena, J A; Acero, J R; Mogollon, L

    2001-01-01

    Over the past years, environmental regulations have driven a lot of effort for the development of new technologies for the upgrading of fossil fuels. Biotechnology offers an alternative way to process fossil fuels by means of a biodesulfurization technology where the production of the biocatalyst is one of the key topics. Traditionally, the production is carried out in batch culture where the maximum cellular concentration is restricted by inherent limitations of the culture type and the microorganism growth rate. This work addresses the production of two desulfurizing microorganisms: Rhodococcus erythropolis IGTS8 and gordona rubropertinctus ICP172 using fed-batch culture. Fed-batch cultures were conducted in a 12 L fermentor using ICP 4 medium containing glucose and DMSO as carbon and sulfur sources. As a result, cell concentration was increased 1.5 and 3 times with fed-batch cultures using constant and exponential flow respectively, achieving a maximum cell concentration of 7.3 g DCW/L of biocatalyst igts8 and 12.85 gGDCW/L of the new biocatalyst ICP172. Both biocatalysts presented biodesulfurization activity in a spiked matrix DBT/HXD and in diesel matrix with the detection of 2-HBP which is the end-product of DBT degradation pathway

  2. Ex situ bioremediation of oil-contaminated soil.

    Science.gov (United States)

    Lin, Ta-Chen; Pan, Po-Tsen; Cheng, Sheng-Shung

    2010-04-15

    An innovative bioprocess method, Systematic Environmental Molecular Bioremediation Technology (SEMBT) that combines bioaugmentation and biostimulation with a molecular monitoring microarray biochip, was developed as an integrated bioremediation technology to treat S- and T-series biopiles by using the landfarming operation and reseeding process to enhance the bioremediation efficiency. After 28 days of the bioremediation process, diesel oil (TPH(C10-C28)) and fuel oil (TPH(C10-C40)) were degraded up to approximately 70% and 63% respectively in the S-series biopiles. When the bioaugmentation and biostimulation were applied in the beginning of bioremediation, the microbial concentration increased from approximately 10(5) to 10(6) CFU/g dry soil along with the TPH biodegradation. Analysis of microbial diversity in the contaminated soils by microarray biochips revealed that Acinetobacter sp. and Pseudomonas aeruginosa were the predominant groups in indigenous consortia, while the augmented consortia were Gordonia alkanivorans and Rhodococcus erythropolis in both series of biopiles during bioremediation. Microbial respiration as influenced by the microbial activity reflected directly the active microbial population and indirectly the biodegradation of TPH. Field experimental results showed that the residual TPH concentration in the complex biopile was reduced to less than 500 mg TPH/kg dry soil. The above results demonstrated that the SEMBT technology is a feasible alternative to bioremediate the oil-contaminated soil. Crown Copyright 2009. Published by Elsevier B.V. All rights reserved.

  3. Increase in Bacterial Colony Formation from a Permafrost Ice Wedge Dosed with a Tomitella biformata Recombinant Resuscitation-Promoting Factor Protein.

    Science.gov (United States)

    Puspita, Indun Dewi; Kitagawa, Wataru; Kamagata, Yoichi; Tanaka, Michiko; Nakatsu, Cindy H

    2015-01-01

    Resuscitation-promoting factor (Rpf) is a protein that has been found in a number of different Actinobacteria species and has been shown to promote the growth of active cells and resuscitate dormant (non-dividing) cells. We previously reported the biological activity of an Rpf protein in Tomitella biformata AHU 1821(T), an Actinobacteria isolated from a permafrost ice wedge. This protein is excreted outside the cell; however, few studies have investigated its contribution in environmental samples to the growth or resuscitation of bacteria other than the original host. Therefore, the aim of the present study was to determine whether Rpf from T. biformata impacted the cultivation of other bacteria from the permafrost ice wedge from which it was originally isolated. All experiments used recombinant Rpf proteins produced using a Rhodococcus erythropolis expression system. Dilutions of melted surface sterilized ice wedge samples mixed with different doses of the purified recombinant Rpf (rRpf) protein indicated that the highest concentration tested, 1250 pM, had a significantly (p permafrost sediments. The results of the present study demonstrated that rRpf not only promoted the growth of T. biformata from which it was isolated, but also enhanced colony formation by another Actinobacteria in an environmental sample.

  4. Toxicity evaluation of 2-hydroxybiphenyl and other compounds involved in studies of fossil fuels biodesulphurisation.

    Science.gov (United States)

    Alves, L; Paixão, S M

    2011-10-01

    The acute toxicity of some compounds used in fossil fuels biodesulphurisation studies, on the respiration activity, was evaluated by Gordonia alkanivorans and Rhodococcus erythropolis. Moreover, the effect of 2-hydroxybiphenyl on cell growth of both strains was also determined, using batch (chronic bioassays) and continuous cultures. The IC₅₀ values obtained showed the toxicity of all the compounds tested to both strains, specially the high toxicity of 2-HBP. These results were confirmed by the chronic toxicity data. The toxicity data sets highlight for a higher sensitivity to the toxicant by the strain presenting a lower growth rate, due to a lower cells number in contact with the toxicant. Thus, microorganisms exhibiting faster generation times could be more resistant to 2-HBP accumulation during a BDS process. The physiological response of both strains to 2-HBP pulse in a steady-state continuous culture shows their potential to be used in a future fossil fuel BDS process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Characterization of micro-organisms isolated from dairy industry after cleaning and fogging disinfection with alkyl amine and peracetic acid.

    Science.gov (United States)

    Bore, E; Langsrud, S

    2005-01-01

    To characterize micro-organisms isolated from Norwegian dairy production plants after cleaning and fogging disinfection with alkyl amine/peracetic acid and to indicate reasons for survival. Microbial samples were collected from five dairy plants after cleaning and fogging disinfection. Isolates from two of these production plants, which used fogging with alkylamino acetate (plant A), and peracetic acid (plant B), were chosen for further characterization. The sequence of the 16S ribosomal DNA, fatty acid analysis and biochemical characteristics were used to identify isolates. Three isolates identified as Rhodococcus erythropolis, Methylobacterium rhodesianum and Rhodotorula mucilaginosa were isolated from plant A and one Sphingomonas sp. and two M. extorquens from plant B. Different patterns of resistance to seven disinfectants in a bactericidal suspension test and variable degree of attachment to stainless steel were found. The strains with higher disinfectant resistance showed lower degree of attachment than susceptible strains. The study identifies and characterizes micro-organisms present after cleaning and fogging disinfection. Both surface attachment and resistance were shown as possible reasons for the presence of the isolates after cleaning and disinfection. These results contribute to the awareness of disinfectant resistance as well as attachment as mechanisms of survival in dairy industry. It also strengthens the argument of frequent alternation of disinfectants in the food processing industry to avoid the establishment of resistant house strains.

  6. Catalytic Mechanism of Nitrile Hydratase Proposed by Time-resolved X-ray Crystallography Using a Novel Substrate, tert-Butylisonitrile*S⃞

    Science.gov (United States)

    Hashimoto, Koichi; Suzuki, Hiroyuki; Taniguchi, Kayoko; Noguchi, Takumi; Yohda, Masafumi; Odaka, Masafumi

    2008-01-01

    Nitrile hydratases (NHases) have an unusual iron or cobalt catalytic center with two oxidized cysteine ligands, cysteine-sulfinic acid and cysteine-sulfenic acid, catalyzing the hydration of nitriles to amides. Recently, we found that the NHase of Rhodococcus erythropolis N771 exhibited an additional catalytic activity, converting tert-butylisonitrile (tBuNC) to tert-butylamine. Taking advantage of the slow reactivity of tBuNC and the photoreactivity of nitrosylated NHase, we present the first structural evidence for the catalytic mechanism of NHase with time-resolved x-ray crystallography. By monitoring the reaction with attenuated total reflectance-Fourier transform infrared spectroscopy, the product from the isonitrile carbon was identified as a CO molecule. Crystals of nitrosylated inactive NHase were soaked with tBuNC. The catalytic reaction was initiated by photo-induced denitrosylation and stopped by flash cooling. tBuNC was first trapped at the hydrophobic pocket above the iron center and then coordinated to the iron ion at 120 min. At 440 min, the electron density of tBuNC was significantly altered, and a new electron density was observed near the isonitrile carbon as well as the sulfenate oxygen of αCys114. These results demonstrate that the substrate was coordinated to the iron and then attacked by a solvent molecule activated by αCys114-SOH. PMID:18948265

  7. Production of glycolipidic bio surfactants by environment bacteria: diversity and physiological part; Production de biosurfactants glycolipidiques par les bacteries de l`environnement: diversite et role physiologique

    Energy Technology Data Exchange (ETDEWEB)

    Arino, S

    1996-10-09

    About a hundred bacterial strains, isolated from soils, polluted or not by hydrocarbons, were tested for their capacity to excrete glycosides. The biggest productions were obtained for a soluble carbon source (glycerol) in a culture medium limited in the nitrogen source. In these conditions, 18 g/l of rhamnose lipids were produced by train Pseudomonas aeruginosa GL1 in a 200 h culture. Pseudomonas aeruginosa GL1, Cellulomonas celulans SA43 and Rhodococcus erythropolis DSM 43060 were studied in detail. The bio-surfactants produced were identified respectively as rhamnose lipids, oligosaccharide lipids and trehalose lipids, using various original analytical methods. Sugars and fatty acids composing these glycolipids had been shown to be usual components of the outer part of the cell wall in these microbial species. Moreover, cell hydrophobicity of the producing bacteria varied in time during culture. These results showed that both the cell wall and the extracellular glycolipids take part in the process of hydrocarbon uptake in the polluted environments. As other bacteria of the same species from different origins present the same characteristics, it may be concluded that glycolipid excretion does not constitute a specific response for hydrocarbon assimilation. In fact, a more general physiological role of glycolipids, concerning modifications of hydrophobic interfaces between the producing bacteria and their surrounding environment, could explain the production of glycolipids, and could also be utilized in hydrocarbon uptake. (author)

  8. Characterization of ATPase activity of the AAA ARC from Bifidobacterium longum subsp. infantis.

    Science.gov (United States)

    Guzmán-Rodríguez, Mabel; de la Rosa, Ana Paulina Barba; Santos, Leticia

    2015-01-01

    Bifidobacteria are considered to be probiotics that exist in the large intestine and are helpful to maintain human health. Oral administration of bifidobacteria may be effective in improving the intestinal flora and environment, stimulating the immune response and possibly preventing cancer. However, for consistent and positive results, further well-controlled studies are urgently needed to describe the basic mechanisms of this microorganism. Analysis of the proteasome-lacking Bifidobacterium longum genome reveals that it possesses a gene, IPR003593 AAA ATPase core, which codes a 56 kDa protein containing one AAA ATPase domain. Phylogenetic classification made by CLANS, positioned this sequence into the ARC divergent branch of the AAA ATPase family of proteins. N-terminal analysis of the sequence indicates this protein is closely related to other ATPases such as the Rhodococcus erythropolis ARC, Archaeoglobus fulgidus PAN, Mycobacterium tuberculosis Mpa and the human proteasomal Rpt1 subunit. This gene was cloned, the full-length recombinant protein was overexpressed in Escherichia coli, purified as a high-molecular size complex and named Bl-ARC. Enzymatic characterization showed that Bl-ARC ATPase is active, Mg(+2)-dependent and sensitive to N-ethylmaleimide. Gene organization positions bl-arc in a region flanked by a cluster of genes that includes pup, dop and pafA genes. These findings point to a possible function as a chaperone in the degradation pathway via pupylation.

  9. Transformation of saturated nitrogen-containing heterocyclic compounds by microorganisms.

    Science.gov (United States)

    Parshikov, Igor A; Silva, Eliane O; Furtado, Niege A J C

    2014-02-01

    The saturated nitrogen-containing heterocyclic compounds include many drugs and compounds that may be used as synthons for the synthesis of other pharmacologically active substances. The need for new derivatives of saturated nitrogen-containing heterocycles for organic synthesis, biotechnology and the pharmaceutical industry, including optically active derivatives, has increased interest in microbial synthesis. This review provides an overview of microbial technologies that can be valuable to produce new derivatives of saturated nitrogen-containing heterocycles, including hydroxylated derivatives. The chemo-, regio- and enantioselectivity of microbial processes can be indispensable for the synthesis of new compounds. Microbial processes carried out with fungi, including Beauveria bassiana, Cunninghamella verticillata, Penicillium simplicissimum, Aspergillus niger and Saccharomyces cerevisiae, and bacteria, including Pseudomonas sp., Sphingomonas sp. and Rhodococcus erythropolis, biotransform many substrates efficiently. Among the biological activities of saturated nitrogen-containing heterocyclic compounds are antimicrobial, antitumor, antihypertensive and anti-HIV activities; some derivatives are effective for the treatment and prevention of malaria and trypanosomiasis, and others are potent glycosidase inhibitors.

  10. Accumulation of thorium and uranium by microbes. The effect of pH, concentration of metals, and time course on the accumulation of both elements using streptomyces levoris

    International Nuclear Information System (INIS)

    Tsuruta, Takehiko

    2006-01-01

    The accumulation of thorium and uranium by various microorganisms from a solution containing both metals at pH 3.5 was examined. Among the tested species, a high accumulation ability for thorium was exhibited by strains of gram-positive bacteria, such as Arthrobacter nicotianae, Bacillus megaterium, B. subtilis, Micrococcus luteus, Rhodococcus erythropolis, and Streptomyces levoris. Though uranium was accumulated in small amounts by most of microorganisms. A. nicotianae, S. flavoviridis, and S. levoris had relatively high uranium accumulation abilities. In these high performance thorium- and uranium-accumulating microorganisms, S. levoris, which accumulated the largest amount of uranium from the solution containing only uranium at pH 3.5, accumulated about 300 μmol thorium and 133 μmol uranium per gram dry weight of microbial cells from a solution containing both thorium and uranium at pH 3.5. The amount and time course of the thorium accumulation were almost unaffected by the co-existing uranium, while those of uranium were strongly affected by the co-existing thorium. The effects of pH, the thorium and uranium concentrations, and time course on both metal accumulations were also evaluated by numerical formulas. (author)

  11. Distribution of hydrocarbon-degrading bacteria in the soil environment and their contribution to bioremediation.

    Science.gov (United States)

    Fukuhara, Yuki; Horii, Sachie; Matsuno, Toshihide; Matsumiya, Yoshiki; Mukai, Masaki; Kubo, Motoki

    2013-05-01

    A real-time PCR quantification method for indigenous hydrocarbon-degrading bacteria (HDB) carrying the alkB gene in the soil environment was developed to investigate their distribution in soil. The detection limit of indigenous HDB by the method was 1 × 10(6) cells/g-soil. The indigenous HDB were widely distributed throughout the soil environment and ranged from 3.7 × 10(7) to 5.0 × 10(8) cells/g-soil, and the ratio to total bacteria was 0.1-4.3 %. The dynamics of total bacteria, indigenous HDB, and Rhodococcus erythropolis NDKK6 (carrying alkB R2) during bioremediation were analyzed. During bioremediation with an inorganic nutrient treatment, the numbers of these bacteria were slightly increased. The numbers of HDB (both indigenous bacteria and strain NDKK6) were gradually decreased from the middle stage of bioremediation. Meanwhile, the numbers of these bacteria were highly increased and were maintained during bioremediation with an organic nutrient. The organic treatment led to activation of not only the soil bacteria but also the HDB, so an efficient bioremediation was carried out.

  12. Bio-desulfurization technology in Japan; Wagakuni ni okeru baio datsuryu gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Maruhashi, K. [Petroleum Energy Center, Tokyo (Japan)

    2000-05-01

    A bio-reaction of microbes (catalytic reaction by an enzyme) is characterized in that the reaction is carried out at a normal temperature and under a normal pressure and has particularly high specificity with respect to substrate (reactant). It is considered that a low loading process of environment harmony type can be constructed by applying the bio-reaction in petroleum refinery process. CO{sub 2} exhaust and energy consumption in the bio-desulfurization (BDS) is estimated to be 70 to 80% lower than those in hydrodesulfurization (HDS). The bio-technologies that can be applied to the petroleum refinery process include, for example, desulfurization, demetallation, dewaxing, denitration, cracking and so on. In this paper, the present state of bio-desulphurization technology is introduced. Particularly, as the research results in Japan, acquirement of mesophile R.erythropolis KA2-5-1 strain, thermophile Paenibacillus sp. A11-2 strain whose optimum temperature is 50 degrees C, BT degradation fungus Rhodococcus sp. T09 and the like are introduced. (NEDO)

  13. Nitrilase from rhodococcus rhodochrous ATCC BAA-870: fibre formation over time

    CSIR Research Space (South Africa)

    Frederick, J

    2008-07-01

    Full Text Available of a nitrile into its corresponding carboxylic acid and ammonia, and have become important industrial enzymes as a result of the products they afford. Successful commercial examples of nitrile bioconversion include production of nicotinic acid...

  14. Biotransformation of nitriles by Rhodococcus equi A4 immobilized in LentiKats

    Czech Academy of Sciences Publication Activity Database

    Kubáč, David; Čejková, A.; Masák, J.; Jirků, V.; Lemaire, M.; Gallienne, E.; Bolte, J.; Stloukal, R.; Martínková, Ludmila

    2006-01-01

    Roč. 39, - (2006), s. 59-61 ISSN 1381-1177 R&D Projects: GA ČR GA203/05/2267; GA MŠk OC D25.001; GA AV ČR IAA4020213 Institutional research plan: CEZ:AV0Z50200510 Keywords : nitrile hydratase * amidase * nitriles Subject RIV: EE - Microbiology, Virology Impact factor: 2.149, year: 2006

  15. Purification and characterization of the enantioselective nitrile hydratase from Rhodococcus equi A4

    Czech Academy of Sciences Publication Activity Database

    Přepechalová, Irena; Martínková, Ludmila; Stolz, A.; Ovesná, M.; Bezouška, Karel; Kopecký, Jan; Křen, Vladimír

    2001-01-01

    Roč. 55, - (2001), s. 150-156 ISSN 0175-7598 R&D Projects: GA AV ČR IAA4020802 Institutional research plan: CEZ:A53/98:Z5-020-9ii Subject RIV: EE - Microbiology, Virology Impact factor: 1.754, year: 2001

  16. Selective biotransformation of substituted alicyclic nitriles by Rhodococcus equi A4

    Czech Academy of Sciences Publication Activity Database

    Martínková, Ludmila; Klempier, N.; Preiml, M.; Ovesná, Mária; Kuzma, Marek; Mylerová, Veronika; Křen, Vladimír

    2002-01-01

    Roč. 80, - (2002), s. 724-727 ISSN 0008-4042 R&D Projects: GA ČR GA524/00/1275; GA AV ČR IAA4020802 Keywords : nitrile hydratase * substituted cyclohexanecarbonitriles * cyclopentanecarbonitriles Subject RIV: EE - Microbiology, Virology Impact factor: 1.260, year: 2002

  17. Modulation of the hormone setting by Rhodococcus fascians results in ectopic KNOX activation in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Depuydt, S.; Doležal, Karel; Van Lijsebettens, M.; Moritz, T.; Holsters, M.; Vereecke, D.

    2008-01-01

    Roč. 146, č. 3 (2008), s. 1267-1281 ISSN 0032-0889 Institutional research plan: CEZ:AV0Z50380511 Keywords : KNOTTED1-LIKE HOMEOBOX GENE * CYTOKININ BIOSYNTHESIS * MERISTEM ACTIVITY Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.110, year: 2008

  18. Transcriptional Response of Rhodococcus aetherivorans I24 to Polychlorinated Biphenyl-Contaminated Sediments

    KAUST Repository

    Puglisi, Edoardo; Cahill, Matt J.; Lessard, Philip A.; Capri, Ettore; Sinskey, Anthony John; Archer, John A.C.; Boccazzi, Paolo

    2010-01-01

    the natural environment. Our results indicate that the transcriptional response of R. aetherivorans I24 to PCBs, in both medium and sediment, is primarily directed towards reducing oxidative stress, rather than catabolism. © 2010 Springer Science

  19. Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant

    Czech Academy of Sciences Publication Activity Database

    Pertry, I.; Václavíková, Kateřina; Depuydt, S.; Galuszka, P.; Spíchal, Lukáš; Temmerman, W.; Stes, E.; Schmülling, T.; Kakimoto, T.; Van Montagu, M. C. E.; Strnad, Miroslav; Holsters, M.; Tarkowski, Petr; Vereecke, D.

    2009-01-01

    Roč. 106, č. 3 (2009), s. 929-934 ISSN 0027-8424 Institutional research plan: CEZ:AV0Z50380511 Keywords : phytopathogen * actinomycete * phytohormone Subject RIV: CE - Biochemistry Impact factor: 9.432, year: 2009

  20. Rhodococcus fascians Impacts Plant Development Through the Dynamic Fas-Mediated Production of a Cytokinin Mix

    Czech Academy of Sciences Publication Activity Database

    Pertry, I.; Václavíková, Kateřina; Gemrotová, Markéta; Spíchal, Lukáš; Galuszka, Petr; Depuydt, S.; Temmerman, W.; Stes, E.; De Keyser, A.; Riefler, M.; Biondi, S.; Novák, Ondřej; Schmülling, T.; Strnad, Miroslav; Tarkowski, Petr; Holsters, M.; Vereecke, D.

    2010-01-01

    Roč. 23, č. 9 (2010), s. 1164-1174 ISSN 0894-0282 R&D Projects: GA MŠk(CZ) LC06034; GA ČR GD522/08/H003 Institutional research plan: CEZ:AV0Z50380511 Keywords : LEAFY GALL FORMATION * CORYNEBACTERIUM-FASCIANS * ENDOGENOUS CYTOKININS Subject RIV: ED - Physiology Impact factor: 4.010, year: 2010

  1. Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Zhen [Hunan Univ. Changsha (China); Zeng, Guangming [Hunan Univ. Changsha (China); Huang, Fang [Georgia Inst. of Technology, Atlanta, GA (United States); Kosa, Matyas [Georgia Inst. of Technology, Atlanta, GA (United States); Huang, Danlian [Hunan Univ. Changsha (China); Ragauskas, Arthur J. [Georgia Inst. of Technology, Atlanta, GA (United States); Univ. of Tennessee, Knoxville, TN (United States)

    2015-04-09

    Kraft lignin (KL) from black liquor is an abundantly available, inexpensive aromatic resource that is regarded as a low value compound by the pulp and paper industry, necessitating the development of new applications.

  2. Characterisation of the nitrile biocatalytic activity of rhodococcus rhodochrous ATCC BAA-870

    CSIR Research Space (South Africa)

    Frederick, J

    2006-10-01

    Full Text Available rhodochrous ATCC BAA-870, was explored. The biocatalyst expressed a two enzyme system with sequential nitrile-converting activity: nitrile hydratase and amidase. This biocatalytic nitrile hydrolysis affords valuable applications in industry, including...

  3. Gasoline Biodesulfurization DE-FC07-97ID13570 FINAL REPORT; FINAL

    International Nuclear Information System (INIS)

    Pienkos, Philip T.

    2002-01-01

    Nine strains were identified to grow with gasoline as sole sulfur source. Two different genes were cloned from Gordonia terrae KGB1 and tested for the ability to support gasoline BDS. The first of these, fmoA, was cloned by screening a KGB1 gene library for the ability to convert indole to indigo (a sulfur-regulated capability in KGB1). The fmoA gene was overexpressed in a gasoline tolerant strain of Pseudomonas putida PpG1 and the recombinant strain was shown to convert thiophene to a dimer of thiophene sulfoxide at rates nearly two orders of magnitude higher than KGB1 could catalyze the reaction. Despite this high activity the recombinant PpG1 was unable to demonstrate any activity against gasoline either in shake flask or in bench-scale gasoline BDS bioreactor. A second gene (toeA) was cloned from KGB1 and shown to support growth of Rhodococcus erythropolis JB55 on gasoline. The toeA gene was also identified in another gasoline strain T. wratislaviensis EMT4, and was identified as a homolog of dszA from R. erythropolis IGTS8. Expression of this gene in JB55 supported conversion of DBTO2 (the natural substrate for DszA) to HPBS, but activity against gasoline was low and BDS results were inconsistent. It appeared that activity was directed against C2- and C3-thiophenes. Efforts to increase gene expression by plasmid manipulation, by addition of flavin reductase genes, or by expression in PpG1 were unsuccessful. The DszC protein (DBT monooxygenase) from IGTS8 has very little activity against the sulfur compounds in gasoline, but a mutant enzyme with a substitution of phenylalanine for valine at position 261 was shown to have an altered substrate range. This alteration resulted in increased activity against gasoline, with activity towards mainly C3- and C4-thiophenes and benzothiophene. A mutant library of dszB was constructed by RACHITT (W. C. Coco et al., DNA shuffling method for generating highly recombined genes and evolved enzymes. 2001. Nature Biotech. 19

  4. Gasoline Biodesulfurization DE-FC07-97ID13570 FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Pienkos, Philip T.

    2002-01-15

    Nine strains were identified to grow with gasoline as sole sulfur source. Two different genes were cloned from Gordonia terrae KGB1 and tested for the ability to support gasoline BDS. The first of these, fmoA, was cloned by screening a KGB1 gene library for the ability to convert indole to indigo (a sulfur-regulated capability in KGB1). The fmoA gene was overexpressed in a gasoline tolerant strain of Pseudomonas putida PpG1 and the recombinant strain was shown to convert thiophene to a dimer of thiophene sulfoxide at rates nearly two orders of magnitude higher than KGB1 could catalyze the reaction. Despite this high activity the recombinant PpG1 was unable to demonstrate any activity against gasoline either in shake flask or in bench-scale gasoline BDS bioreactor. A second gene (toeA) was cloned from KGB1 and shown to support growth of Rhodococcus erythropolis JB55 on gasoline. The toeA gene was also identified in another gasoline strain T. wratislaviensis EMT4, and was identified as a homolog of dszA from R. erythropolis IGTS8. Expression of this gene in JB55 supported conversion of DBTO2 (the natural substrate for DszA) to HPBS, but activity against gasoline was low and BDS results were inconsistent. It appeared that activity was directed against C2- and C3-thiophenes. Efforts to increase gene expression by plasmid manipulation, by addition of flavin reductase genes, or by expression in PpG1 were unsuccessful. The DszC protein (DBT monooxygenase) from IGTS8 has very little activity against the sulfur compounds in gasoline, but a mutant enzyme with a substitution of phenylalanine for valine at position 261 was shown to have an altered substrate range. This alteration resulted in increased activity against gasoline, with activity towards mainly C3- and C4-thiophenes and benzothiophene. A mutant library of dszB was constructed by RACHITT (W. C. Coco et al., DNA shuffling method for generating highly recombined genes and evolved enzymes. 2001. Nature Biotech. 19

  5. Dynamics of indigenous bacterial communities associated with crude oil degradation in soil microcosms during nutrient-enhanced bioremediation.

    Science.gov (United States)

    Chikere, Chioma B; Surridge, Karen; Okpokwasili, Gideon C; Cloete, Thomas E

    2012-03-01

    Bacterial population dynamics were examined during bioremediation of an African soil contaminated with Arabian light crude oil and nutrient enrichment (biostimulation). Polymerase chain reaction followed by denaturing gradient gel electrophoresis (DGGE) were used to generate bacterial community fingerprints of the different treatments employing the 16S ribosomal ribonucleic acid (rRNA) gene as molecular marker. The DGGE patterns of the nutrient-amended soils indicated the presence of distinguishable bands corresponding to the oil-contaminated-nutrient-enriched soils, which were not present in the oil-contaminated and pristine control soils. Further characterization of the dominant DGGE bands after excision, reamplification and sequencing revealed that Corynebacterium spp., Dietzia spp., Rhodococcus erythropolis sp., Nocardioides sp., Low G+C (guanine plus cytosine) Gram positive bacterial clones and several uncultured bacterial clones were the dominant bacterial groups after biostimulation. Prominent Corynebacterium sp. IC10 sequence was detected across all nutrient-amended soils but not in oil-contaminated control soil. Total heterotrophic and hydrocarbon utilizing bacterial counts increased significantly in the nutrient-amended soils 2 weeks post contamination whereas oil-contaminated and pristine control soils remained fairly stable throughout the experimental period. Gas chromatographic analysis of residual hydrocarbons in biostimulated soils showed marked attenuation of contaminants starting from the second to the sixth week after contamination whereas no significant reduction in hydrocarbon peaks were seen in the oil-contaminated control soil throughout the 6-week experimental period. Results obtained indicated that nutrient amendment of oil-contaminated soil selected and enriched the bacterial communities mainly of the Actinobacteria phylogenetic group capable of surviving in toxic contamination with concomitant biodegradation of the hydrocarbons. The

  6. Enrichment and Characterization of PCB-Degrading Bacteria as Potential Seed Cultures for Bioremediation of Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Dubravka Hršak

    2007-01-01

    Full Text Available The main objective of our study was to obtain seed cultures for enhancing the transformation of polychlorinated biphenyls (PCBs in contaminated soil of the transformer station in Zadar, Croatia, damaged during warfare activities in 1991. For enrichment, six soil samples were collected from different polluted areas and microcosm approach, stimulating the growth of biphenyl-degrading bacteria, was employed. Enrichment experiments resulted in the selection of two fast growing mixed cultures TSZ7 and AIR1, originating from the soil of the transformer station and the airport area, respectively. Both cultures showed significant PCB-degrading activity (56 to 60 % of PCB50 mixture was reduced after a two-week cultivation. Furthermore, the cultures displayed similar PCB-degrading competence and reduced di-to tetrachlorobiphenyls more effectively than penta- to hepta-chlorobiphenyls. Strain Z6, identified as Rhodococcus erythropolis, was found to be the only culture member showing PCB-transformation potential similar to that of the mixed culture TSZ7, from which it was isolated. Based on the metabolites identified in the assay with the single congener 2,4,4’-chlorobiphenyl, we proposed that the strain Z6 was able to use both the 2,3-and 3,4-dioxygenase pathways. Furthermore, the identified metabolites suggested that beside these pathways another unidentified pathway might also be active in strain Z6. Based on the obtained results, the culture TSZ7 and the strain Z6 were designated as potential seed cultures for bioremediation of the contaminated soil.

  7. Pivalic acid acts as a starter unit in a fatty acid and antibiotic biosynthetic pathway in Alicyclobacillus, Rhodococcus and Streptomyces

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Siřišťová, L.; Schreiberová, O.; Řezanka, M.; Masák, J.; Melzoch, K.; Sigler, Karel

    2011-01-01

    Roč. 13, č. 6 (2011), s. 1577-1589 ISSN 1462-2912 R&D Projects: GA MŠk 2B08062 Institutional research plan: CEZ:AV0Z50200510 Keywords : PERFORMANCE LIQUID-CHROMATOGRAPHY * AVERMECTIN BIOSYNTHESIS * SELECTIVE PRODUCTION Subject RIV: EE - Microbiology, Virology Impact factor: 5.843, year: 2011

  8. Enantioselective biocatalytic hydrolysis of ß-aminonitriles to ß-amino-amides using Rhodococcus rhodochrous ATCC BAA-870

    CSIR Research Space (South Africa)

    Chhiba, V

    2012-04-01

    Full Text Available . ?Current address: School of Chemistry, University of the Witwatersrand, PO Wits 2050, South Africa. *Corresponding author. CSIR Biosciences, Private bag X2, Modderfontein, 1645, South Africa. Tel +27-82-467- 6209. E-mail address: dbrady... of the achiral ?-alanine from the respective nitrile, and found that conversion proceeded better at pH 7.5 than pH 6.0, although higher a pH was not tested. The aryl methyl substituted nitrile had a maximum enantiomeric ratio (E) of 7.7 and the amide of 4...

  9. Moessbauer, electron paramagnetic resonance and magnetic susceptibility studies of photosensitive nitrile hydratase from Rhodococcus sp. N-771

    International Nuclear Information System (INIS)

    Nagamune, Teruyuki; Honda, Jun; Kobayashi, Yoshio; Sasabe, Hiroyuki; Endo, Isao; Ambe, Fumitoshi; Teratani, Yoshitaka; Hirata, Akira

    1992-01-01

    Moessbauer, magnetic susceptibility and electron paramagnetic resonance (EPR) studies of inactive and photoactivated NHase enzymes were performed to elucidate the electronic change of non-heme two-iron atom center of the enzyme by photoactivation. These spectroscopic investigations revealed that both the two iron atoms of the active NHase could be assigned to low-spin ferric state, and those of the inactive NHase could each be assigned to low-spin ferric and low-spin ferrous ones. From these results, it was concluded that one of the non-heme iron atoms is oxidized in the inactive NHase during photoactivation. (orig.)

  10. Characterization of new recombinant 3-ketosteroid-Δ1-dehydrogenases for the biotransformation of steroids.

    Science.gov (United States)

    Wang, Xiaojun; Feng, Jinhui; Zhang, Dalong; Wu, Qiaqing; Zhu, Dunming; Ma, Yanhe

    2017-08-01

    3-Ketosteroid-Δ 1 -dehydrogenases (KstDs [EC 1.3.99.4]) catalyze the Δ 1 -dehydrogenation of steroids and are a class of important enzymes for steroid biotransformations. In this study, we cloned 12 putative KstD-encoding (kstd) genes from both fungal and Gram-positive microorganisms and attempted to overproduce the recombinant proteins in E. coli BL21(DE3). Five successful recombinant enzymes catalyzed the Δ 1 -desaturation of a variety of steroidal compounds such as 4-androstene-3,17-dione (AD), 9α-hydroxy-4-androstene-3,17-dione (9-OH-AD), hydrocortisone, cortisone, and cortexolone. However, the substrate specificity and catalytic efficiency of the enzymes differ depending on their sources. The purified KstD from Mycobacterium smegmatis mc 2 155 (MsKstD1) displayed high catalytic efficiency toward hydrocortisone, progesterone, and 9-OH-AD, where it had the highest affinity (K m 36.9 ± 4.6 μM) toward 9-OH-AD. On the other hand, the KstD from Rhodococcus erythropolis WY 1406 (ReKstD) exhibited high catalytic efficiency toward androst-4,9(11)-diene-3,17-dione (Diene), 21-acetoxy-pregna-4,9(11),16-triene-3,20-dione (Triene), and cortexolone, where in all three cases the K m values (12.3 to 17.8 μM) were 2.5-4-fold lower than that toward hydrocortisone (46.3 μM). For both enzymes, AD was a good substrate although ReKstD had a 3-fold higher affinity than MsKstD1. Reaction conditions were optimized for the biotransformation of AD or hydrocortisone in terms of pH, temperature, and effects of hydrogen peroxide, solvent, and electron acceptor. For the biotransformation of hydrocortisone with 20 g/L wet resting E. coli cells harboring MsKstD1 enzyme, the yield of prednisolone was about 90% within 3 h at the substrate concentration of 6 g/L, demonstrating the application potential of the newly cloned KstDs.

  11. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane III

    2003-12-01

    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project will focus on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate amidase. The objective of the final phase of the project will be to develop derivative CN bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. The project is on schedule and no major difficulties have been encountered. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments have resulted in the isolation of promising cultures that may be capable of cleaving C-N bonds in aromatic amides, several amidase genes have been cloned and are currently undergoing directed evolution to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. Future research will address expression of these genes in Rhodococcus erythropolis. Enrichment culture experiments and directed evolution experiments continue to be a main focus of research activity and further work is required to obtain an appropriate amidase that will selectively cleave C-N bonds in aromatic substrates. Once an appropriate amidase gene is obtained it must be combined with genes encoding an enzyme capable of converting carbazole to 2'aminobiphenyl-2,3-diol: specifically carA genes. The carA genes from two sources have been cloned and are ready for construction of C-N bond cleavage

  12. Asymmetric biosynthesis of (1S, 2S)-ephedrine by Morganella ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-02-18

    >99% ee) and 84.4% molar yield. ... field of synthetic chemistry, which overlaps both organic chemistry ... that possess asymmetric synthesis abilities have been ..... erythropolis, and its application to double chiral compound.

  13. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane II

    2004-10-01

    poisoning, by nitrogen, of catalysts used in the hydrotreating and catalytic cracking of petroleum. Aromatic compounds such as carbazole are representative of the difficult-to-treat organonitrogen compounds most commonly encountered in petroleum. There are two C-N bonds in carbazole and the construction of a metabolic pathway for the removal of nitrogen from carbazole will require enzymes capable cleaving both C-N bonds. A multi-component enzyme, carbazole dioxygenase, which can selectively cleave the first C-N bond has been identified and the genes that encode this enzyme have been cloned, sequenced, and are being expressed in Rhodococcus erythropolis, a bacterial culture that tolerates exposure to petroleum. An enzyme capable of selectively cleaving the second C-N bond in carbazole has not yet been identified, but enrichment culture experiments have recently succeeded in isolating a bacterial culture that is a likely candidate and may possess a suitable enzyme. Research in the near future will verify if a suitable enzyme for the cleavage of the second C-N bond in carbazole has indeed been found, then the genes encoding a suitable enzyme will be identified, cloned, and sequenced. Ultimately genes encoding enzymes for selective cleavage of both C-N bonds in carbazole will be assembled into a new metabolic pathway and the ability of the resulting bacterial culture to remove nitrogen from petroleum will be determined.

  14. Biodegradace environmentálních polutantů - charakterizace mutantní halogenalkandehalogenasy DhaA31 z Rhodococcus rhodochrous NCIMB 13064

    OpenAIRE

    MALCHER, Pavel

    2013-01-01

    The project was focused on using of protein crystallography practically and mainly on preparation of crystals of model protein Thermolysin and haloalkan dehalogenase mutant variant DhaA31 with the use of standard and advanced crystallization methods. Later the DhaA31 structure was solved and graphically visualized using the molecular modeling programs as well as the structure of Thermolysin. Obtaining the crystals of both studied proteins and description of the DhaA31 structure, active site a...

  15. Crystallization and crystallographic analysis of the Rhodococcus rhodochrous NCIMB 13064 DhaA mutant DhaA31 and its complex with 1,2,3-trichloropropane.

    Science.gov (United States)

    Lahoda, Maryna; Chaloupkova, Radka; Stsiapanava, Alena; Damborsky, Jiri; Kuta Smatanova, Ivana

    2011-03-01

    Haloalkane dehalogenases hydrolyze carbon-halogen bonds in a wide range of halogenated aliphatic compounds. The potential use of haloalkane dehalogenases in bioremediation applications has stimulated intensive investigation of these enzymes and their engineering. The mutant DhaA31 was constructed to degrade the anthropogenic compound 1,2,3-trichloropropane (TCP) using a new strategy. This strategy enhances activity towards TCP by decreasing the accessibility of the active site to water molecules, thereby promoting formation of the activated complex. The structure of DhaA31 will help in understanding the structure-function relationships involved in the improved dehalogenation of TCP. The mutant protein DhaA31 was crystallized by the sitting-drop vapour-diffusion technique and crystals of DhaA31 in complex with TCP were obtained using soaking experiments. Both crystals belonged to the triclinic space group P1. Diffraction data were collected to high resolution: to 1.31 Å for DhaA31 and to 1.26 Å for DhaA31 complexed with TCP.

  16. Crystallization and crystallographic analysis of the Rhodococcus rhodochrous NCIMB 13064 DhaA mutant DhaA31 and its complex with 1,2,3-trichloropropane

    International Nuclear Information System (INIS)

    Lahoda, Maryna; Chaloupkova, Radka; Stsiapanava, Alena; Damborsky, Jiri; Kuta Smatanova, Ivana

    2011-01-01

    A mutant of the haloalkane dehalogenase DhaA (DhaA31) from R. rhodochrous NCIMB 13064 and its complex with 1,2,3-trichloropropane were crystallized and the crystals diffracted to high resolution. Haloalkane dehalogenases hydrolyze carbon–halogen bonds in a wide range of halogenated aliphatic compounds. The potential use of haloalkane dehalogenases in bioremediation applications has stimulated intensive investigation of these enzymes and their engineering. The mutant DhaA31 was constructed to degrade the anthropogenic compound 1,2,3-trichloropropane (TCP) using a new strategy. This strategy enhances activity towards TCP by decreasing the accessibility of the active site to water molecules, thereby promoting formation of the activated complex. The structure of DhaA31 will help in understanding the structure–function relationships involved in the improved dehalogenation of TCP. The mutant protein DhaA31 was crystallized by the sitting-drop vapour-diffusion technique and crystals of DhaA31 in complex with TCP were obtained using soaking experiments. Both crystals belonged to the triclinic space group P1. Diffraction data were collected to high resolution: to 1.31 Å for DhaA31 and to 1.26 Å for DhaA31 complexed with TCP

  17. Pulmonary infection by Rhodococcus equi presenting with positive Ziehl-Neelsen stain in a patient with human immunodeficiency virus: a case report

    OpenAIRE

    Spiliopoulou, Anastasia; Assimakopoulos, Stelios F; Foka, Antigoni; Kolonitsiou, Fevronia; Lagadinou, Maria; Petinaki, Efthimia; Anastassiou, Evangelos D; Spiliopoulou, Iris; Marangos, Markos

    2014-01-01

    Introduction Patients with human immunodeficiency virus carry a significant risk of contracting opportunistic infections. The worldwide increased incidence of tuberculosis has instituted pulmonary tuberculosis as an important diagnostic consideration in patients with human immunodeficiency virus presenting with lower respiratory tract infection. A positive result on the readily-available Ziehl-Neelsen stain usually leads to the initiation of antituberculous treatment, since tuberculosis may e...

  18. EFECT OF THE INOCULATION OF Rhodococcus fascians AND Azospirillum halopraeferens IN GERMINATION OF PALO FIERRO (Olneya tesota A. Gray UNDER GREENHOUSE CONDITIONS

    Directory of Open Access Journals (Sweden)

    Edgar Omar Rueda Puente

    2017-05-01

    Full Text Available The growth-promoting bacteria in plants (BGPB are a group of different species of bacteria can increase plant growth and productivity. Which can benefit plants through their own bacterial metabolism (phosphate solubilizing, producing hormones or fixing nitrogen. At present, desertification is a growing phenomenon worldwide, afforestation is one of the common solutions to combat this problem. Trees for reforestation are initially grown in greenhouses or nurseries. Among numerous reforestation practices, there is an alternative that inoculation with PGPB. Is a forest species that is endemic Olneya tesota Sonoran Desert, which is in danger of extinction. The objective was to evaluate the effect of bacteria growth promoter in plants with Rhodococcuis fascians and Azospirillum halopraeferens on germination and emergence of Ironwood under four salt concentrations (0, 0.25, 0.5 and 0.75 M NaCl under greenhouse conditions. Were obtained ironwood seeds in the region of Santa Ana, Sonora. Under greenhouse conditions was evaluated emergence percentage, germination rate, height, plant root length, fresh and dry weight of plant, number of bacterial cells attached to the root system, fresh and dry weight of the root. The results indicate that the germination percentage and other variables evaluated decreased as salinity increases. However, these changed positively to inoculation with bacteria R. fascians and A. halopraeferens.

  19. Disease: H01021 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available , Blots S, Vogelaers D ... TITLE ... Invasive infection with Rhodococcus equi--two case reports and review of ... ... TITLE ... Severe Rhodococcus equi pneumonia: case report and literature review. ... JOURNAL ... Eur J Clin Microbiol Infect Dis 10:762-8 (1991) DOI:10.1007/BF01972506

  20. NCBI nr-aa BLAST: CBRC-CREM-01-1327 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CREM-01-1327 ref|YP_705999.1| possible ABC antibiotics transporter [Rhodococcu...s sp. RHA1] gb|ABG97841.1| possible ABC antibiotics transporter [Rhodococcus sp. RHA1] YP_705999.1 3e-47 39% ...

  1. Biological control of Aspergillus flavus growth and subsequent ...

    African Journals Online (AJOL)

    ONOS

    2010-07-05

    Jul 5, 2010 ... 1School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia,. 2Department of Botany, Osmania University, Hyderabad, India. ... the biocontrol agents tested, culture filtrate of Rhodococcus ...

  2. Microbial biodegradation and toxicity of vinclozolin and its toxic metabolite 3,5-dichloroaniline.

    Science.gov (United States)

    Lee, Jung-Bok; Sohn, Ho-Yong; Shin, Kee-Sun; Kim, Jong-Sik; Jo, Min-Sub; Jeon, Chun-Pyo; Jang, Jong-Ok; Kim, Jang-Eok; Kwon, Gi-Seok

    2008-02-01

    Vinclozolin, an endocrine disrupting chemical, is a chlorinated fungicide widely used to control fungal diseases. However, its metabolite 3,5-dichloroaniline is more toxic and persistent than the parent vinclozolin. For the biodegradation of vinclozolin, vinclozolin- and/or 3,5-dichloroaniline-degrading bacteria were isolated from pesticide-polluted agriculture soil. Among the isolated bacteria, a Rhodococcus sp. was identified from a 16S rDNA sequence analysis and named Rhodococcus sp. T1-1. The degradation ratios for vinclozolin or 3,5- dichloroaniline in a minimal medium containing vinclozolin (200 microg/ml) or 3,5-dichloroaniline (120 microg/ml) were 90% and 84.1%, respectively. Moreover, Rhodococcus sp. T1-1 also showed an effective capability to biodegrade dichloroaniline isomers on enrichment cultures in which they were contained. Therefore, these results suggest that Rhodococcus sp. T1-1 can bioremediate vinclozolin as well as 3,5-dichloroaniline.

  3. Rape phosphatide concentrate in the technologies of surfactants production by the Actinobacteria

    Directory of Open Access Journals (Sweden)

    N. Koretska

    2015-05-01

    Full Text Available Introduction. Due to the fact that the production of microbial surfactants is limited by the low yield of end products and high cost of processes, the actual task is to optimize and reduce the cost of the technology of biosurfactants synthesis. One of the solutions of this problem is to use the industrial wastes, including rape phosphatide concentrate (PC. Materials and methods. Hexadecane and rape phosphatide concentrate (2% were used as a carbon source in a nutrient medium for the cultivation of bacteria. Lipids were extracted from a cell mass and supernatant by the mixture of chloroform-methanol 2:1. The qualitative analysis of metabolites was performed by a thin layer chromatography. Results and discussion. The peculiarities of synthesis of biosurfactants by strains G. rubripertincta UCM Aс-122 and R. erythropolis Au-1 during the growth on the nutrient media with rape phosphatide concentrate as a carbon source was studied. Quantity of biomass was 9.4 – 10.1 g/l, exopoly mers –8.9-9.5 g/l and the content of cellbound trehalose lipids was 1.37 – 2.26 g/l; whereas the content of exogenous trehalose lipids –metabolites of R. erythropolis Au-1 was 2.95 g/l. It was found that the addition of trehalose lipids (0.01 g/l to the nutrient medium caused the increase of biomass on 14.6 –17.0 % and cell-bound lipids on 13.9 –15.5 %. Conclusions. Rape phosphatide concentrate is economically viable carbon source in the technologies of surfactant production by Actinobacteria. Its use promotes an increasing of exogenous surfactants strain R. erythropolisAu-1 in 3-fold compared with cultivation on nutrient medium with hexadecane. Trehalose lipids show a stimulating effect on growth and synthesis of biosurfactants by strains of G. rubripertincta UCM Ac-122 and R. erythropolisAu-1.

  4. Research Article Special Issue

    African Journals Online (AJOL)

    pc

    2018-03-07

    Mar 7, 2018 ... The performance of a Malaysian isolated strain, Rhodococcus UKMP-5M in ... Universiti Selangor Culture Collection was isolated from petroleum .... Other factors that may influence the biotransformation of acrylonitrile were also tested and the .... Indian Journal of Fundamental and Applied Life Sciences,.

  5. Biotransformation of geosmin by terpene-degrading bacteria.

    Science.gov (United States)

    Two terpene-degrading bacteria that are able to transform geosmin have been identified. Pseudomonas sp. SBR3-tpnb, isolated on -terpinene, converts geosmin to several products; the major products are keto-geosmins. This geosmin transformation ability is inducible by -terpinene. Rhodococcus wratisl...

  6. Nicotinoprotein methanol dehydrogenase enzymes in Gram-positive methylotrophic bacteria

    NARCIS (Netherlands)

    Hektor, Harm J.; Kloosterman, Harm; Dijkhuizen, Lubbert

    2000-01-01

    A novel type of alcohol dehydrogenase enzyme has been characterized from Gram-positive methylotrophic (Bacillus methanolicus, the actinomycetes Amycolatopsis methanolica and Mycobacterium gastri) and non-methylotrophic bacteria (Rhodococcus strains). Its in vivo role is in oxidation of methanol and

  7. Evaluation of the conserve flavin reductase gene from three ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... means of PCR technique. The nucleic acid sequences of the PCR primers were designed using conserved nucleic acid sequences of the flavin reductase enzyme from. Rhodococcus sp. strain IGTS8. The oligonucleotide primers were as follows: 5'-GAA TTC ATG TCT GAC. AAG CCG AAT GCC-3' (forward) ...

  8. Roles of horizontal gene transfer and gene integration in evolution of 1,3-dichloropropene- and 1,2-dibromoethane-degradative pathways

    NARCIS (Netherlands)

    Poelarends, GJ; Kulakov, LA; Larkin, MJ; van Hylckama Vlieg, Johan E.T.; Janssen, DB

    The haloalkane-degrading bacteria Rhodococcus rhodochrous NCIMB13064, Pseudomonas pavonaceae 170, and Mycobacterium sp. strain GP1 share a highly conserved haloalkane dehalogenase gene (dhaA). Here, we describe the extent of the conserved dhaA segments in these three phylogenetically distinct

  9. Morphological and proteomic analysis of early stage air-liquid interface biofilm formation in Mycobacterium smegmatis

    Czech Academy of Sciences Publication Activity Database

    Sochorová, Zuzana; Petráčková, Denisa; Sitařová, B.; Buriánková, Karolína; Bezoušková, Silvia; Benada, Oldřich; Kofroňová, Olga; Janeček, Jiří; Halada, Petr; Weiser, Jaroslav

    2014-01-01

    Roč. 160, JUL 2014 (2014), s. 1346-1356 ISSN 1350-0872 R&D Projects: GA AV ČR IAA500200913 Institutional support: RVO:61388971 Keywords : RHODOCOCCUS-JOSTII RHA1 * BACILLUS-SUBTILIS * GLASS- BEADS Subject RIV: EE - Microbiology, Virology Impact factor: 2.557, year: 2014

  10. Biotransformation of 3-substituted methyl (R,S)-4-cyanobutanoates with nitrile- and amide-converting biocatalysts

    Czech Academy of Sciences Publication Activity Database

    Martínková, Ludmila; Klempier, N.; Bardakji, J.; Kandelbauer, A.; Ovesná, M.; Podařilová, T.; Kuzma, Marek; Přepechalová, Irena; Griengl, G.; Křen, Vladimír

    2001-01-01

    Roč. 14, - (2001), s. 95-99 ISSN 1381-1177 R&D Projects: GA AV ČR IAA4020802 Institutional research plan: CEZ:AV0Z5020903 Keywords : Rhodococcus equi * nitrile hydratase * amidase Subject RIV: EE - Microbiology, Virology Impact factor: 1.408, year: 2001

  11. GenBank blastx search result: AK059236 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK059236 001-024-F01 AB016078.1 Rhodococcus sp. N-771 genes for nitrile hydratase r...egulator 2 and 1, amidase, nitrile hydratase alpha and beta subunits and nitrile hydratase activator, complete cds.|BCT BCT 8e-18 +3 ...

  12. GenBank blastx search result: AK243402 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243402 J100064O18 AB016078.1 AB016078 Rhodococcus sp. N-771 genes for nitrile hyd...ratase regulator 2 and 1, amidase, nitrile hydratase alpha and beta subunits and nitrile hydratase activator, complete cds. BCT 1e-27 1 ...

  13. GenBank blastx search result: AK060423 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060423 001-010-H01 AY498612.1 Rhodococcus opacus putative GntR type regulator of taurine... degradation (tauR) gene, partial cds; and alanine dehydrogenase (ald) and taurine-pyruvate aminotransferase (tpa) genes, complete cds.|BCT BCT 7e-32 +3 ...

  14. Dicty_cDB: SFL375 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 15 |pid:none) Rhodococcus opacus B4 DNA, comp... 88 4e-16 BC088249_1( BC088249 |pid:none) Rattus norvegicus pipecoli... BC114006 |pid:none) Bos taurus L-pipecolic acid oxidas... 87 1e-15 BC116493_1( B

  15. Gene : CBRC-CREM-01-1327 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CREM-01-1327 Novel UN C UNKNOWN BCH2_RHOCA 0.12 27% ref|YP_705999.1| possible ABC antibiotics... transporter [Rhodococcus sp. RHA1] gb|ABG97841.1| possible ABC antibiotics transporter [Rhod

  16. Analysis of 2-methylthio-derivatives of isoprenoid cytokinins by liquid chromatography-tandem mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Tarkowski, Petr; Václavíková, Kateřina; Novák, Ondřej; Pertry, I.; Hanuš, Jan; Whenham, R.; Vereecke, D.; Šebela, M.; Strnad, Miroslav

    2010-01-01

    Roč. 680, 1-2 (2010), s. 86-91 ISSN 0003-2670 R&D Projects: GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : Cytokinins * Rhodococcus fascians * High-performance liquid chromatography Subject RIV: CE - Biochemistry Impact factor: 4.310, year: 2010

  17. Structural and biochemical characterization of 3-hydroxybenzoate 6-hydroxylase

    NARCIS (Netherlands)

    Montersino, S.

    2012-01-01

    The thesis deals with the characterization of a new flavoprotein hydroxylase 3 hydroxybenzoate 6-hydroxylase (3HB6H) from Rhodococcus jostii RHA1. 3HB6H is able to insert exclusively oxygen in para-position and the enzyme has been chosen to study the structural basis of such regioselectivity. As

  18. Effect of microorganisms on the plutonium oxidation states

    International Nuclear Information System (INIS)

    Lukšienė, Benedikta; Druteikienė, Rūta; Pečiulytė, Dalia; Baltrūnas, Dalis; Remeikis, Vidmantas; Paškevičius, Algimantas

    2012-01-01

    Particular microbes from substrates at the low-level radioactive waste repository in the Ignalina NPP territory were exposed to 239 Pu (IV) at low pH under aerobic conditions. Pu(III) and Pu(IV) were separated and quantitatively evaluated using the modified anion exchange method and alpha spectrometry. Tested bacteria Bacillus mycoides and Serratia marcescens were more effective in Pu reduction than Rhodococcus fascians. Fungi Paecillomyces lilacinus and Absidia spinosa var. spinosa as well as bacterium Rhodococcus fascians did not alter the plutonium oxidation state. - Highlights: ► Particular microbes from low-level radioactive waste repository were exposed to Pu (IV). ► Some tested bacteria induced slight Pu (IV) reduction at low pH under aerobic conditions. ► Tested fungi did not show peculiarities to alter Pu oxidation state. ► The modified radiochemical method was applied to differentiate Pu oxidation states.

  19. Microbiological activities in a shallow-ground repository with cementitious wasteform

    International Nuclear Information System (INIS)

    Varlakova, G.A.; Dyakonova, A.T.; Netrusov, A.I.; Ojovan, M.I.

    2012-01-01

    Cementitious wasteform with immobilised nuclear power plant operational radioactive waste disposed in a near surface testing repository for about 20 years have been analysed for microbiological activities. Clean cultures were selected from the main metabolic groups expected within repository environment e.g. anaerobic de-nitrifying, fermenting, sulphur-reducing, iron-reducing, and oxidizing, thio-bacterium and mushrooms. Microbiological species were identified within cementitious wasteform, in the clayey soil near the wasteform and in the contacting water. The most populated medium was the soil with microbial populations Bacillus, Pseudomonas and Micrococcus, and densities of populations up to 3.6*10 5 colony/g. Microbial populations of generic type Bacillus, Pseudomonas, Rhodococcus, Alcaligenes, Micrococcus, Mycobacterium, and Arthrobacter were identified within cementitious wasteform. Populations of Arthrobacter, Pseudomonas, Alcaligenes, Rhodococcus, Bacillus and Flavobacterium were identified in the water samples contacting the cementitious wasteform. Microbiological species identified are potential destructors of cementitious wasteform and containers. (authors)

  20. Molecular biological enhancement of coal biodesulfurization. Seventh quarter report, May--July 1990

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J.; Bielaga, B.A.

    1990-07-01

    The overall objective of this project is to sue molecular genetics to develop strains of bacteria with enhanced ability to remove sulfur from coal and to obtain data that will allow the performance and economics of a coal biodesulfurization process to be predicted. The work planned for the current quarter (May 1990 to July 1990) includes the following activities: (1) Construct a cloning vector that can be used in Rhodococcus rhodochrous IGTS8 from the small cryptic plasmid found in Rhodococcus rhodochrous ATCC 190607; (2) Develop techniques for the genetic analysis of IGTS8; (3) Continue biochemical experiments, particularly those that may allow the identification of desulfurization-related enzymes; (4) Continue experiments with coal to determine the kinetics of organic sulfur removal.

  1. Effect of microorganisms on the plutonium oxidation states

    Energy Technology Data Exchange (ETDEWEB)

    Luksiene, Benedikta, E-mail: bena@ar.fi.lt [Center for Physical Sciences and Technology, Savanoriu ave 231, LT-02300 Vilnius (Lithuania); Druteikiene, Ruta [Center for Physical Sciences and Technology, Savanoriu ave 231, LT-02300 Vilnius (Lithuania); Peciulyte, Dalia [Nature Research Centre, Akademijos street 2, LT-08412 Vilnius (Lithuania); Baltrunas, Dalis; Remeikis, Vidmantas [Center for Physical Sciences and Technology, Savanoriu ave 231, LT-02300 Vilnius (Lithuania); Paskevicius, Algimantas [Nature Research Centre, Akademijos street 2, LT-08412 Vilnius (Lithuania)

    2012-03-15

    Particular microbes from substrates at the low-level radioactive waste repository in the Ignalina NPP territory were exposed to {sup 239}Pu (IV) at low pH under aerobic conditions. Pu(III) and Pu(IV) were separated and quantitatively evaluated using the modified anion exchange method and alpha spectrometry. Tested bacteria Bacillus mycoides and Serratia marcescens were more effective in Pu reduction than Rhodococcus fascians. Fungi Paecillomyces lilacinus and Absidia spinosa var. spinosa as well as bacterium Rhodococcus fascians did not alter the plutonium oxidation state. - Highlights: Black-Right-Pointing-Pointer Particular microbes from low-level radioactive waste repository were exposed to Pu (IV). Black-Right-Pointing-Pointer Some tested bacteria induced slight Pu (IV) reduction at low pH under aerobic conditions. Black-Right-Pointing-Pointer Tested fungi did not show peculiarities to alter Pu oxidation state. Black-Right-Pointing-Pointer The modified radiochemical method was applied to differentiate Pu oxidation states.

  2. Methyl tert-Butyl Ether (MTBE) - Its Movement and Fate in the Environment and Potential for Natural Attenuation

    Science.gov (United States)

    1999-10-01

    but at varying rates, by indigenous microbiota . Normal alkanes of low molecular weight (C-8 to C-22) are metabolized most rapidly, followed by...confirmed that TBA degradation occurred at a rate slower than MTBE degradation. Pure bacterial cultures isolated from activated sludge and the fruit of...isolated from activated sludge and fruit of the Gingko tree. They have been classified as belonging to the genuses Methlobacterium, Rhodococcus, and

  3. Characterisation of nitrilase and nitrile hydratase biocatalytic systems

    CSIR Research Space (South Africa)

    Brady, D

    2004-03-01

    Full Text Available (Faber 1992; Vogel 1989; Weiner and Chaplin 2000). Other nitrile compounds Many nitrile substrates were available from the laboratory com- pound inventory. All other substrates were obtained from Acros or Sigma. Analytical methods A Chromolith... regioselectivity for converting aromatic nitriles to the corresponding acid, but was also capable of hydrolys- ing aliphatic nitriles (Cohen et al. 1990). This catalytic capacity of Rhodococcus Novo SP361 for a broad substrate range was also observed...

  4. Engineering and improvement of the efficiency of a chimeric [P450cam-RhFRed reductase domain] enzyme.

    Science.gov (United States)

    Robin, Aélig; Roberts, Gareth A; Kisch, Johannes; Sabbadin, Federico; Grogan, Gideon; Bruce, Neil; Turner, Nicholas J; Flitsch, Sabine L

    2009-05-14

    A chimeric oxygenase, in which the P450cam domain was fused to the reductase host domains of a P450RhF from Rhodococcus sp. strain NCIMB 9784 was optimised to allow for a biotransformation at 30 mM substrate in 80% overall yield, with the linker region between P450 and FMN domain proving to be important for the effective biotransformation of (+)-camphor to 5-exo-hydroxycamphor.

  5. Molecular Mechanism and Genetic Determinants of Buprofezin Degradation

    OpenAIRE

    Chen, Xueting; Ji, Junbin; Zhao, Leizhen; Qiu, Jiguo; Dai, Chen; Wang, Weiwu; He, Jian; Jiang, Jiandong; Hong, Qing; Yan, Xin

    2017-01-01

    Buprofezin is a widely used insect growth regulator whose residue has been frequently detected in the environment, posing a threat to aquatic organisms and nontarget insects. Microorganisms play an important role in the degradation of buprofezin in the natural environment. However, the relevant catabolic pathway has not been fully characterized, and the molecular mechanism of catabolism is still completely unknown. Rhodococcus qingshengii YL-1 can utilize buprofezin as a sole source of carbon...

  6. Aerobic actinomycetes that masquerade as pulmonary tuberculosis

    OpenAIRE

    Franco-Paredes, Carlos

    2014-01-01

    Background: There is an increasing recognition of organisms in the order Actinomycetales including Nocardia sp. causing lung infections that mimic pulmonary tuberculosis or fungal pneumonias. Methods: We retrospectively evaluated a cohort of patients in the southeastern United States in whom a presumptive diagnosis of pulmonary tuberculosis was initially entertained but who eventually were found to have infection caused by Rhodococcus sp. or Tsukamurella sp. Results: Among a cohort of 52 indi...

  7. Model photo reaction centers via genetic engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zhiyu Wang; DiMagno, T.J.; Popov, M.; Norris, J.R. [Argonne National Lab., IL (United States)]|[Chicago Univ., IL (United States). Dept. of Chemistry; Chikin Chan; Fleming, G. [Chicago Univ., IL (United States). Dept. of Chemistry; Jau Tang; Hanson, D.; Schiffer, M. [Argonne National Lab., IL (United States)

    1992-12-31

    A series of reaction centers of Rhodococcus capsulatus isolated from a set of mutated organisms modified by site-directed mutagenesis at residues M208 and L181 are described. Changes in the amino acid at these sites affect both the energetics of the systems as well as the chemical kinetics for the initial ET event. Two empirical relations among the different mutants for the reduction potential and the ET rate are presented.

  8. Model photo reaction centers via genetic engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zhiyu Wang; DiMagno, T.J.; Popov, M.; Norris, J.R. (Argonne National Lab., IL (United States) Chicago Univ., IL (United States). Dept. of Chemistry); Chikin Chan; Fleming, G. (Chicago Univ., IL (United States). Dept. of Chemistry); Jau Tang; Hanson, D.; Schiffer, M. (Argonne National Lab., IL (United States))

    1992-01-01

    A series of reaction centers of Rhodococcus capsulatus isolated from a set of mutated organisms modified by site-directed mutagenesis at residues M208 and L181 are described. Changes in the amino acid at these sites affect both the energetics of the systems as well as the chemical kinetics for the initial ET event. Two empirical relations among the different mutants for the reduction potential and the ET rate are presented.

  9. Carotenoids content and sunlight susceptibility

    International Nuclear Information System (INIS)

    Oppezzo, Oscar J.; Costa, Cristina; Pizarro, Ramon A.

    2005-01-01

    Full text: An environmental pink pigmented bacterium was isolated and identified as Rhodococcus sp. Pigmentation mutants were obtained by chemical mutagenesis. Pigments present in the wild type strain (RMB90), in a pale yellow mutant (RMB91) and in two mutants exhibiting increased pigmentation (RMB92 and RMB93), were extracted with chloroform-methanol and analyzed by reverse phase HPLC. Survival of these strains after exposure to sunlight and ultraviolet radiation from artificial sources was studied under different physiological and irradiation conditions. The ability of RMB91 to survive sunlight exposure was reduced with respect to that of RMB90. Resistance was similar in both strains when bacteria grew in the presence of a carotenoid synthesis inhibitor, which had no effect on survival of RMB91. Reduced sunlight resistance in RMB91 was also observed during irradiations under N2. Using artificial radiation sources, non pigmented bacteria were less resistant to UVA, but not to UVB or UVC. Lethal effects of sunlight and UVA on RMB92 and RMB93 were increased with respect to the wild type strain. Carotenoids protect Rhodococcus sp against deleterious effects of sunlight. In non-photosynthetic bacteria studied to date, photo protection by carotenoids was dependent on [O 2 ]. This is not the case with Rhodococcus sp RMB90, suggesting the occurrence of a different mechanism for protection. UVA radiation seems to playa key role in photo-damage. (author)

  10. Application of two bacterial strains for wastewater bioremediation and assessment of phenolics biodegradation.

    Science.gov (United States)

    Paisio, Cintia E; Quevedo, María R; Talano, Melina A; González, Paola S; Agostini, Elizabeth

    2014-08-01

    The use of native bacteria is a useful strategy to decontaminate industrial effluents. In this work, two bacterial strains isolated from polluted environments constitutes a promising alternative since they were able to remove several phenolic compounds not only from synthetic solutions but also from effluents derived from a chemical industry and a tannery which are complex matrices. Acinetobacter sp. RTE 1.4 showed ability to completely remove 2-methoxyphenol (1000 mg/L) while Rhodococcus sp. CS 1 not only degrade the same concentration of this compound but also removed 4- chlorophenol, 2,4-dichlorophenol and pentachlorophenol with high efficiency. Moreover, both bacteria degraded phenols naturally present or even exogenously added at high concentrations in effluents from the chemical industry and a tannery in short time (up to 5 d). In addition, a significant reduction of biological oxygen demand and chemical oxygen demand values was achieved after 7 d of treatment for both effluents using Acinetobacter sp. RTE 1.4 and Rhodococcus sp. CS1, respectively. These results showed that Acinetobacter sp. RTE1.4 and Rhodococcus sp. CS 1 might be considered as useful biotechnological tools for an efficient treatment of different effluents, since they showed wide versatility to detoxify these complex matrices, even supplemented with high phenol concentrations.

  11. Chloromuconolactone dehalogenase ClcF of actinobacteria.

    Science.gov (United States)

    Solyanikova, Inna P; Plotnikova, Elena G; Shumkova, Ekaterina S; Robota, Irina V; Prisyazhnaya, Natalya V; Golovleva, Ludmila A

    2014-01-01

    This work investigated the distribution of the clcF gene in actinobacteria isolated from different ecotopes. The gene encodes chloromuconolactone dehalogenase (CMLD) ClcF, the enzyme found to date in only one representative of Gram-positive bacteria, Rhodococcus opacus 1CP, adapted to 2-chlorophenol (2CP). Using primers specific to the clcF gene, from the DNA matrix of rhodococcal strains closely related to species Rhodococcus wratislaviensis (P1, P12, P13, P20, G10, KT112, KT723, BO1) we obtained PCR products whose nucleotide sequences were 100% identical to that of the clcF gene from strain R. opacus 1CP. CMLDs isolated from the biomass of strains Rhodococcus spp. G10 and P1 grown on 2CP did not differ by their subunit molecular mass deduced from the known amino acid sequence of the clcF gene from the ClcF of strain R. opacus 1CP. Matrix-assisted laser dissociation/ionization time-of-flight mass spectrometry showed the presence of a peak with m/z 11,194-11,196 Da both in whole cells and in protein solutions with a ClcF activity. Thus, we have first time shown the distribution of ClcF among actinobacteria isolated from geographically distant habitats.

  12. Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on Earth.

    Science.gov (United States)

    McGenity, Terry J; Crombie, Andrew T; Murrell, J Colin

    2018-04-01

    Isoprene (2-methyl-1,3-butadiene), the most abundantly produced biogenic volatile organic compound (BVOC) on Earth, is highly reactive and can have diverse and often detrimental atmospheric effects, which impact on climate and health. Most isoprene is produced by terrestrial plants, but (micro)algal production is important in aquatic environments, and the relative bacterial contribution remains unknown. Soils are a sink for isoprene, and bacteria that can use isoprene as a carbon and energy source have been cultivated and also identified using cultivation-independent methods from soils, leaves and coastal/marine environments. Bacteria belonging to the Actinobacteria are most frequently isolated and identified, and Proteobacteria have also been shown to degrade isoprene. In the freshwater-sediment isolate, Rhodococcus strain AD45, initial oxidation of isoprene to 1,2-epoxy-isoprene is catalyzed by a multicomponent isoprene monooxygenase encoded by the genes isoABCDEF. The resultant epoxide is converted to a glutathione conjugate by a glutathione S-transferase encoded by isoI, and further degraded by enzymes encoded by isoGHJ. Genome sequence analysis of actinobacterial isolates belonging to the genera Rhodococcus, Mycobacterium and Gordonia has revealed that isoABCDEF and isoGHIJ are linked in an operon, either on a plasmid or the chromosome. In Rhodococcus strain AD45 both isoprene and epoxy-isoprene induce a high level of transcription of 22 contiguous genes, including isoABCDEF and isoGHIJ. Sequence analysis of the isoA gene, encoding the large subunit of the oxygenase component of isoprene monooxygenase, from isolates has facilitated the development of PCR primers that are proving valuable in investigating the ecology of uncultivated isoprene-degrading bacteria.

  13. Crystallization and preliminary X-ray diffraction analysis of the wild-type haloalkane dehalogenase DhaA and its variant DhaA13 complexed with different ligands

    Czech Academy of Sciences Publication Activity Database

    Stsiapanava, A.; Chaloupková, R.; Fořtová, A.; Brynda, Jiří; Weiss, M.S.; Damborský, J.; Kutá-Smatanová, Ivana

    2011-01-01

    Roč. 67, - (2011), s. 253-257 ISSN 1744-3091 R&D Projects: GA MŠk(CZ) LC06010 Grant - others:GA ČR(CZ) GA310/09/1407 Program:GA Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z60870520 Keywords : haloalkane dehalogenases * DhaA * Rhodococcus rhodochrous * microseeding * atomic resolution Subject RIV: EB - Genetics ; Molecular Biology; CD - Macromolecular Chemistry (UEK-B) Impact factor: 0.506, year: 2011

  14. Psychrotolerant bacteria for remediation of oil-contaminated soils in the Arctic

    Science.gov (United States)

    Svarovskaya, L. I.; Altunina, L. K.

    2017-12-01

    Samples of oil-contaminated peat soil are collected in the region of the Barents Sea in Arctic Kolguyev Island. A model experiment on biodegradation of polluting hydrocarbons by natural microflora exhibiting psychrophilic properties is carried out at +10°C. The geochemical activity of pure hydrocarbon-oxidizing Acinetobacter, Pseudomonas, Bacillus and Rhodococcus cultures isolated from the soil is studied at a lower temperature. The concentration of soil contamination is determined within the range 18-57 g/kg. The biodegradation of oil by natural microflora is 60% under the conditions of a model experiment.

  15. The antimicrobial activity of bupivacaine, lidocaine and mepivacaine against equine pathogens

    DEFF Research Database (Denmark)

    Adler, D. M. T.; Damborg, P.; Verwilghen, D. R.

    2017-01-01

    Lameness is the most commonly reported health problem in horses, and lameness investigations which include local anaesthetic injections are routinely performed by equine practitioners. Through this process, bacteria can enter the tissues perforated by the needle and may cause local infections...... the antimicrobial activity of the local anaesthetics bupivacaine, lidocaine and mepivacaine against 40 equine clinical bacterial isolates of the Actinobacillus, Corynebacterium, Enterobacter, Escherichia, Pseudomonas, Rhodococcus, Staphylococcus and Streptococcus genera. Minimum inhibitory and minimum bactericidal...... also bactericidal. The tested local anaesthetics possessed antimicrobial activity against equine pathogens at concentrations that are routinely applied in clinical cases. However, this antimicrobial activity should not discourage antiseptic preparation prior to local anaesthetic injections....

  16. Caavuranamide, a novel steroidal alkaloid from the ripe fruits of Solanum caavurana Vell. (Solanaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Vaz, Nelissa Pacheco; Santos, Erica L.; Marques, Francisco A.; Maia, Beatriz H.L.N. Sales, E-mail: noronha@ufpr.br [Departamento de Quimica, Universidade Federal do Parana, Centro Politecnico, Curitiba, PR (Brazil); Costa, Emmanoel V. [Departamento de Quimica, Universidade Federal de Sergipe, Sao Cristovao, SE (Brazil); Mikich, Sandra Bos [Laboratorio de Ecologia, Embrapa Florestas, Colombo, PR (Brazil); Braga, Raquel M. [Instituto de Quimica, Universidade Estadual de Campinas, SP (Brazil); Delarmelina, Camila; Duarte, Marta C.T. [Divisao de Microbiologia, Centro Pluridisciplinar de Pesquisas Quimicas Biologicas e Agricolas (CPQBA), Universidade Estadual de Campinas, SP (Brazil); Duarte, Marta C.T.; Ruiz, Ana Lucia T.G.; Souza, Vanessa H.S.; Carvalho, Joao E. de [Divisa de Farmacologia e Toxicologia, Centro Pluridisciplinar de Pesquisas Quimicas Biologicas e Agricolas (CPQBA), Universidade Estadual de Campinas, SP (Brazil)

    2012-07-01

    Phytochemical investigation of the ripe fruits of Solanum caavurana Vell. (Solanaceae) afforded a novel steroidal alkaloid with spirosolane-type skeleton, named as caavuranamide, together with the alkaloids 4-tomatiden-3-one and 5{alpha}-tomatidan-3-one. Their structures were elucidated on the basis of spectroscopic methods. The antiproliferative and antimicrobial activities for the ethanolic extract, sub-fractions obtained from partition and acid-base treatment were also evaluated. Caavuranamide showed antibacterial activity similar to the chloramphenicol positive control against Rhodococcus equi. (author)

  17. Caavuranamide, a novel steroidal alkaloid from the ripe fruits of Solanum caavurana Vell. (Solanaceae)

    International Nuclear Information System (INIS)

    Vaz, Nelissa Pacheco; Santos, Erica L.; Marques, Francisco A.; Maia, Beatriz H.L.N. Sales; Costa, Emmanoel V.; Mikich, Sandra Bos; Braga, Raquel M.; Delarmelina, Camila; Duarte, Marta C.T.; Duarte, Marta C.T.; Ruiz, Ana Lucia T.G.; Souza, Vanessa H.S.; Carvalho, Joao E. de

    2012-01-01

    Phytochemical investigation of the ripe fruits of Solanum caavurana Vell. (Solanaceae) afforded a novel steroidal alkaloid with spirosolane-type skeleton, named as caavuranamide, together with the alkaloids 4-tomatiden-3-one and 5α-tomatidan-3-one. Their structures were elucidated on the basis of spectroscopic methods. The antiproliferative and antimicrobial activities for the ethanolic extract, sub-fractions obtained from partition and acid-base treatment were also evaluated. Caavuranamide showed antibacterial activity similar to the chloramphenicol positive control against Rhodococcus equi. (author)

  18. Heterologous expression, purification and characterization of nitrilase from Aspergillus niger K10

    Czech Academy of Sciences Publication Activity Database

    Kaplan, Ondřej; Bezouška, Karel; Plíhal, Ondřej; Ettrich, Rüdiger; Kulik, Natallia; Vaněk, Ondřej; Kavan, Daniel; Benada, Oldřich; Malandra, Anna; Šveda, Ondřej; Veselá, Alicja Barbara; Rinágelová, Anna; Slámová, Kristýna; Cantarella, M.; Felsberg, Jürgen; Dušková, Jarmila; Dohnálek, Jan; Kotík, Michael; Křen, Vladimír; Martínková, Ludmila

    2011-01-01

    Roč. 11, č. 2 (2011), s. 1-15 ISSN 1472-6750 R&D Projects: GA AV ČR IAA500200708; GA MŠk(CZ) LC06010; GA MŠk OC09046; GA ČR GD305/09/H008; GA ČR GA310/09/1407 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z40500505; CEZ:AV0Z60870520 Keywords : MULTIPLE SEQUENCE ALIGNMENT * RHODOCOCCUS-RHODOCHROUS J1 * CRYSTAL-STRUCTURE Subject RIV: EE - Microbiology, Virology Impact factor: 2.349, year: 2011

  19. Uso de inoculante y fertilización nitrogenada en la producción de forraje de avena, ballico y trigo

    OpenAIRE

    Regina Carrillo Romo; Mario H. Esqueda Coronado; Alma Delia Báez González; Gerardo Reyes López; Mario H. Royo Márquez; José Luis Ibave González

    2010-01-01

    Los objetivos fueron evaluar el efecto combinado de diferentes dosis de inoculante (Rhodococcus fascians) y fertilización nitrogenada en la producción de forraje de gramíneas así como la relación costo/beneficio. Las gramíneas fueron, Avena sativa L, Lolium multiflorum Lam yTriticum durum L con los siguientes tratamientos, inoculación, fertilización nitrogenada (0, 30, 60 kg N ha-1), y la combinación de inoculante y fertilización. Las especies se establecieron en condiciones de riego en un su...

  20. "Navajita Cecilia" Bouteloua gracilis H.B.K (Lag.). Nueva variedad de pasto para zonas áridas y semiáridas

    OpenAIRE

    Sergio Beltrán López; Carlos Alberto García Díaz; José Antonio Hernández Alatorre; Catarina Loredo Osti; Jorge Urrutia Morales; Luis Antonio González Eguiarte; Héctor Guillermo Gámez Vázquez

    2010-01-01

    Los objetivos fueron evaluar el efecto combinado de diferentes dosis de inoculante (Rhodococcus fascians) y fertilización nitrogenada en la producción de forraje de gramíneas así como la relación costo/beneficio. Las gramíneas fueron: Avena sativa L, Lolium multiflorum Lam yTriticum durum L con los siguientes tratamientos: inoculación, fertilización nitrogenada (0, 30, 60 kg N ha-1), y la combinación de inoculante y fertilización. Las especies se establecieron en condiciones de riego en un...

  1. Cholesterol Oxidase Binds TLR2 and Modulates Functional Responses of Human Macrophages

    Directory of Open Access Journals (Sweden)

    Katarzyna Bednarska

    2014-01-01

    Full Text Available Cholesterol oxidase (ChoD is considered to be an important virulence factor for Mycobacterium tuberculosis (Mtb, but its influence on macrophage activity is unknown. Here we used Nocardia erythropolis ChoD, which is very similar to the Mtb enzyme (70% identity at the amino-acid level, to evaluate the impact of bacterial ChoD on the activity of THP-1-derived macrophages in vitro. We found that ChoD decreased the surface expression of Toll-like receptor type 2 (TLR2 and complement receptor 3 (CR3 on these macrophages. Flow cytometry and confocal microscopy showed that ChoD competed with lipoteichoic acid for ligand binding sites on TLR2 but not on CR3, suggesting that ChoD signaling is mediated via TLR2. Binding of ChoD to the membrane of macrophages had diverse effects on the activity of macrophages, activating p38 mitogen activated kinase and stimulating production of a large amount of interleukin-10. Moreover, ChoD primed macrophages to enhance the production of reactive oxygen species in response to the phorbol myristate acetate, which was reduced by “switching off” TLR-derived signaling through interleukin-1 receptor-associated kinases 1 and 4 inhibition. Our study revealed that ChoD interacts directly with macrophages via TLR2 and influences the biological activity of macrophages during the development of the initial response to infection.

  2. Bacterial degradation of Aroclor 1242 in the mycorrhizosphere soils of zucchini (Cucurbita pepo L.) inoculated with arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Qin, Hua; Brookes, Philip C; Xu, Jianming; Feng, Youzhi

    2014-11-01

    A greenhouse experiment was conducted to investigate the effects of zucchini (Cucurbita pepo L.), inoculated with the arbuscular mycorrhizal (AM) species Acaulospora laevis, Glomus caledonium, and Glomus mosseae, on the soil bacterial community responsible for Aroclor 1242 dissipation. The dissipation rates of Aroclor 1242 and soil bacteria abundance were much higher with the A. laevis and G. mosseae treatments compared to the non-mycorrhizal control. The biphenyl dioxygenase (bphA) and Rhodococcus-like 2,3-dihydroxybiphenyl dioxygenase (bphC) genes were more abundant in AM inoculated soils, suggesting that the bphA and Rhodococcus-like bphC pathways play an important role in Aroclor 1242 dissipation in the mycorrhizosphere. The soil bacterial communities were dominated by classes Betaproteobacteria and Actinobacteria, while the relative proportion of Actinobacteria was significantly (F=2.288, P<0.05) correlated with the PCB congener profile in bulk soil. Our results showed that AM fungi could enhance PCB dissipation by stimulating bph gene abundance and the growth of specific bacterial groups.

  3. Isolation and characterization of novel chitinolytic bacteria

    Science.gov (United States)

    Gürkök, Sümeyra; Görmez, Arzu

    2016-04-01

    Chitin, a linear polymer of β-1,4-N-acetylglucosamine units, is one of the most abundant biopolymers widely distributed in the marine and terrestrial environments. It is found as a structural component of insects, crustaceans and the cell walls of fungi. Chitinases, the enzymes degrading chitin by cleaving the β-(1-4) bond, have gained increased attention due to their wide range of biotechnological applications, especially for biocontrol of harmful insects and phytopathogenic fungi in agriculture. In the present study, 200 bacterial isolates from Western Anatolia Region of Turkey were screened for chitinolytic activity on agar media amended with colloidal chitin. Based on the chitin hydrolysis zone, 13 isolates were selected for further study. Bacterial isolates with the highest chitinase activity were identified as Acinetobacter calcoaceticus, Arthrobacter oxydans, Bacillus cereus, Bacillus megaterium, Brevibacillus reuszeri, Kocuria erythromyxa, Kocuria rosea, Novosphingobium capsulatum, Rhodococcus bratislaviensis, Rhodococcus fascians and Staphylococcus cohnii by MIS and BIOLOG systems. The next aims of the study are to compare the productivity of these bacteria quantitatively, to purify the enzyme from the most potent producer and to apply the pure enzyme for the fight against the phytopathogenic fungi and harmful insects.

  4. Rubber gloves biodegradation by a consortium, mixed culture and pure culture isolated from soil samples.

    Science.gov (United States)

    Nawong, Chairat; Umsakul, Kamontam; Sermwittayawong, Natthawan

    2018-02-03

    An increasing production of natural rubber (NR) products has led to major challenges in waste management. In this study, the degradation of rubber latex gloves in a mineral salt medium (MSM) using a bacterial consortium, a mixed culture of the selected bacteria and a pure culture were studied. The highest 18% weight loss of the rubber gloves were detected after incubated with the mixed culture. The increased viable cell counts over incubation time indicated that cells used rubber gloves as sole carbon source leading to the degradation of the polymer. The growth behavior of NR-degrading bacteria on the latex gloves surface was investigated using the scanning electron microscope (SEM). The occurrence of the aldehyde groups in the degradation products was observed by Fourier Transform Infrared Spectroscopy analysis. Rhodococcus pyridinivorans strain F5 gave the highest weight loss of rubber gloves among the isolated strain and posses latex clearing protein encoded by lcp gene. The mixed culture of the selected strains showed the potential in degrading rubber within 30 days and is considered to be used efficiently for rubber product degradation. This is the first report to demonstrate a strong ability to degrade rubber by Rhodococcus pyridinivorans. Copyright © 2018. Published by Elsevier Editora Ltda.

  5. Effect of biosurfactants on crude oil desorption and mobilization in a soil system

    Energy Technology Data Exchange (ETDEWEB)

    Kuyukina, M.S.; Ivshina, I.B. [Ural Branch of the Russian Academy of Sciences, Perm (Russian Federation). Institute of Ecology and Genetics of Microorganisms; Makarov, S.O.; Litvinenko, L.V. [Perm State University, Perm (Russian Federation); Cunningham, C.J. [University of Edinburgh (United Kingdom). Contaminated Land Assessment and Remediation Research Centre; Philp, J.C. [Napier University, Edinburgh (United Kingdom). School of Life Sciences

    2005-02-01

    Microbially produced biosurfactants were studied to enhance crude oil desorption and mobilization in model soil column systems. The ability of biosurfactants from Rhodococcus ruber to remove the oil from the soil core was 1.4-2.3 times greater than that of a synthetic surfactant of suitable properties, Tween 60. Biosurfactant-enhanced oil mobilization was temperature-related, and it was slower at 15{sup o}C than at 22-28{sup o}C. Mathematical modelling using a one-dimensional filtration model was applied to simulate the process of oil penetration through a soil column in the presence of (bio)surfactants. A strong positive correlation (R{sup 2} = 0.99) was found between surfactant penetration through oil-contaminated soil and oil removal activity. Biosurfactant was less adsorbed to soil components than synthetic surfactant, thus rapidly penetrating through the soil column and effectively removing 65-82% of crude oil. Chemical analysis showed that crude oil removed by biosurfactant contained a lower proportion of high-molecular-weight paraffins and asphaltenes, the most nonbiodegradable compounds, compared to initial oil composition. This result suggests that oil mobilized by biosurfactants could be easily biodegraded by soil bacteria. Rhodococcus biosurfactants can be used for in situ remediation of oil-contaminated soils. (author)

  6. Next-generation systematics: An innovative approach to resolve the structure of complex prokaryotic taxa

    Science.gov (United States)

    Sangal, Vartul; Goodfellow, Michael; Jones, Amanda L.; Schwalbe, Edward C.; Blom, Jochen; Hoskisson, Paul A.; Sutcliffe, Iain C.

    2016-12-01

    Prokaryotic systematics provides the fundamental framework for microbiological research but remains a discipline that relies on a labour- and time-intensive polyphasic taxonomic approach, including DNA-DNA hybridization, variation in 16S rRNA gene sequence and phenotypic characteristics. These techniques suffer from poor resolution in distinguishing between closely related species and often result in misclassification and misidentification of strains. Moreover, guidelines are unclear for the delineation of bacterial genera. Here, we have applied an innovative phylogenetic and taxogenomic approach to a heterogeneous actinobacterial taxon, Rhodococcus, to identify boundaries for intrageneric and supraspecific classification. Seven species-groups were identified within the genus Rhodococcus that are as distantly related to one another as they are to representatives of other mycolic acid containing actinobacteria and can thus be equated with the rank of genus. It was also evident that strains assigned to rhodococcal species-groups are underspeciated with many misclassified using conventional taxonomic criteria. The phylogenetic and taxogenomic methods used in this study provide data of theoretical value for the circumscription of generic and species boundaries and are also of practical significance as they provide a robust basis for the classification and identification of rhodococci of agricultural, industrial and medical/veterinary significance.

  7. New reactions and products resulting from alternative interactions between the P450 enzyme and redox partners.

    Science.gov (United States)

    Zhang, Wei; Liu, Yi; Yan, Jinyong; Cao, Shaona; Bai, Fali; Yang, Ying; Huang, Shaohua; Yao, Lishan; Anzai, Yojiro; Kato, Fumio; Podust, Larissa M; Sherman, David H; Li, Shengying

    2014-03-05

    Cytochrome P450 enzymes are capable of catalyzing a great variety of synthetically useful reactions such as selective C-H functionalization. Surrogate redox partners are widely used for reconstitution of P450 activity based on the assumption that the choice of these auxiliary proteins or their mode of action does not affect the type and selectivity of reactions catalyzed by P450s. Herein, we present an exceptional example to challenge this postulate. MycG, a multifunctional biosynthetic P450 monooxygenase responsible for hydroxylation and epoxidation of 16-membered ring macrolide mycinamicins, is shown to catalyze the unnatural N-demethylation(s) of a range of mycinamicin substrates when partnered with the free Rhodococcus reductase domain RhFRED or the engineered Rhodococcus-spinach hybrid reductase RhFRED-Fdx. By contrast, MycG fused with the RhFRED or RhFRED-Fdx reductase domain mediates only physiological oxidations. This finding highlights the larger potential role of variant redox partner protein-protein interactions in modulating the catalytic activity of P450 enzymes.

  8. Thermostabilization of desulfurization enzymes from Rhodococcos sp. IGTS8. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane II

    2000-12-15

    The objective of this project was to develop thermophilic cultures capable of expressing the desulfurization (dsz) operon of Rhodococcus sp. IGTS8. The approaches taken in this project included the development of plasmid and integrative expression vectors that function well in Thermus thermophilus, the cloning of Rhodococcus dsz genes in Thermus expression vectors, and the isolation of bacterial cultures that express the dsz operon at thermophilic temperatures. This project has resulted in the development of plasmid and integrative expression vectors for use in T. thermophilus. The dsz genes have been expressed at moderately thermophilic temperatures (52 C) in Mycobacterium phlei and at temperatures as high as 72 C in T. thermophilus. The tools and methods developed in this project will be generally useful for the expression of heterologous genes in Thermus. Key developments in the project have been the isolation of a Mycobacterium phlei culture capable of expressing the desulfurization operon at 52 C, development of plasmid and integrative expression vectors for Thermus thermophilus, and the development of a host-vector system based on the malate dehydrogenase gene that allows plasmids to be stably maintained in T. thermophilus and provides a convenient reporter gene for the accurate quantification of gene expression. Publications have been prepared regarding each of these topics; these preprints are included.

  9. Microbial Desulfurization of a Crude Oil Middle-Distillate Fraction: Analysis of the Extent of Sulfur Removal and the Effect of Removal on Remaining Sulfur

    Science.gov (United States)

    Grossman, M. J.; Lee, M. K.; Prince, R. C.; Garrett, K. K.; George, G. N.; Pickering, I. J.

    1999-01-01

    Rhodococcus sp. strain ECRD-1 was evaluated for its ability to desulfurize a 232 to 343°C middle-distillate (diesel range) fraction of Oregon basin (OB) crude oil. OB oil was provided as the sole source of sulfur in batch cultures, and the extent of desulfurization and the chemical fate of the residual sulfur in the oil after treatment were determined. Gas chromatography (GC), flame ionization detection, and GC sulfur chemiluminesce detection analysis were used to qualitatively evaluate the effect of Rhodococcus sp. strain ECRD-1 treatment on the hydrocarbon and sulfur content of the oil, respectively. Total sulfur was determined by combustion of samples and measurement of released sulfur dioxide by infrared absorption. Up to 30% of the total sulfur in the middle distillate cut was removed, and compounds across the entire boiling range of the oil were affected. Sulfur K-edge X-ray absorption-edge spectroscopy was used to examine the chemical state of the sulfur remaining in the treated OB oil. Approximately equal amounts of thiophenic and sulfidic sulfur compounds were removed by ECRD-1 treatment, and over 50% of the sulfur remaining after treatment was in an oxidized form. The presence of partially oxidized sulfur compounds indicates that these compounds were en route to desulfurization. Overall, more than two-thirds of the sulfur had been removed or oxidized by the microbial treatment. PMID:9872778

  10. Use of mycelia as paths for the isolation of contaminant‐degrading bacteria from soil

    Science.gov (United States)

    Furuno, Shoko; Remer, Rita; Chatzinotas, Antonis; Harms, Hauke; Wick, Lukas Y.

    2012-01-01

    Summary Mycelia of fungi and soil oomycetes have recently been found to act as effective paths boosting bacterial mobility and bioaccessibility of contaminants in vadose environments. In this study, we demonstrate that mycelia can be used for targeted separation and isolation of contaminant‐degrading bacteria from soil. In a ‘proof of concept’ study we developed a novel approach to isolate bacteria from contaminated soil using mycelia of the soil oomycete Pythium ultimum as translocation networks for bacteria and the polycyclic aromatic hydrocarbon naphthalene (NAPH) as selective carbon source. NAPH‐degrading bacterial isolates were affiliated with the genera Xanthomonas, Rhodococcus and Pseudomonas. Except for Rhodococcus the NAPH‐degrading isolates exhibited significant motility as observed in standard swarming and swimming motility assays. All steps of the isolation procedures were followed by cultivation‐independent terminal 16S rRNA gene terminal fragment length polymorphism (T‐RFLP) analysis. Interestingly, a high similarity (63%) between both the cultivable NAPH‐degrading migrant and the cultivable parent soil bacterial community profiles was observed. This suggests that mycelial networks generally confer mobility to native, contaminant‐degrading soil bacteria. Targeted, mycelia‐based dispersal hence may have high potential for the isolation of bacteria with biotechnologically useful properties. PMID:22014110

  11. Chromium (VI) biosorption properties of multiple resistant bacteria isolated from industrial sewerage.

    Science.gov (United States)

    Oyetibo, Ganiyu Oladunjoye; Ilori, Matthew Olusoji; Obayori, Oluwafemi Sunday; Amund, Olukayode Oladipo

    2013-08-01

    Chromium (VI) [Cr (VI)] biosorption by four resistant autochthonous bacterial strains was investigated to determine their potential for use in sustainable marine water-pollution control. Maximum exchange between Cr (VI) ions and protons on the cells surfaces were at 30-35 °C, pH 2.0 and 350-450 mg/L. The bacterial strains effectively removed 79.0-90.5 % Cr (VI) ions from solution. Furthermore, 85.3-93.0 % of Cr (VI) ions were regenerated from the biomasses, and 83.4-91.7 % of the metal was adsorbed when the biomasses was reused. Langmuir isotherm performed better than Freundlich isotherm, depicting that Cr (VI) affinity was in the sequence Rhodococcus sp. AL03Ni > Burkholderia cepacia AL96Co > Corynebacterium kutscheri FL108Hg > Pseudomonas aeruginosa CA207Ni. Biosorption isotherms confirmed that Rhodococcus sp. AL03Ni was a better biosorbent with a maximum uptake of 107.46 mg of Cr (VI) per g (dry weight) of biomass. The results highlight the high potential of the organisms for bacteria-based detoxification of Cr (VI) via biosorption.

  12. Coral-Associated Actinobacteria: Diversity, Abundance, and Biotechnological Potentials

    Science.gov (United States)

    Mahmoud, Huda M.; Kalendar, Aisha A.

    2016-01-01

    Marine Actinobacteria, particularly coral-associated Actinobacteria, have attracted attention recently. In this study, the abundance and diversity of Actinobacteria associated with three types of coral thriving in a thermally stressed coral reef system north of the Arabian Gulf were investigated. Coscinaraea columna, Platygyra daedalea and Porites harrisoni have been found to harbor equivalent numbers of culturable Actinobacteria in their tissues but not in their mucus. However, different culturable actinobacterial communities have been found to be associated with different coral hosts. Differences in the abundance and diversity of Actinobacteria were detected between the mucus and tissue of the same coral host. In addition, temporal and spatial variations in the abundance and diversity of the cultivable actinobacterial communities were detected. In total, 19 different actinobacterial genera, namely Micrococcus, Brachybacterium, Brevibacterium, Streptomyces, Micromonospora, Renibacterium, Nocardia, Microbacterium, Dietzia, Cellulomonas, Ornithinimicrobium, Rhodococcus, Agrococcus, Kineococcus, Dermacoccus, Devriesea, Kocuria, Marmoricola, and Arthrobacter, were isolated from the coral tissue and mucus samples. Furthermore, 82 isolates related to Micromonospora, Brachybacterium, Nocardia, Micrococcus, Arthrobacter, Rhodococcus, and Streptomyces showed antimicrobial activities against representative Gram-positive and/or Gram-negative bacteria. Even though Brevibacterium and Kocuria were the most dominant actinobacterial isolates, they failed to show any antimicrobial activity, whereas less dominant genera, such as Streptomyces, did show antimicrobial activity. Focusing on the diversity of coral-associated Actinobacteria may help to understand how corals thrive under harsh environmental conditions and may lead to the discovery of novel antimicrobial metabolites with potential biotechnological applications. PMID:26973601

  13. Insight in the PCB-degrading functional community in long-term contaminated soil under bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Petric, Ines; Hrsak, Dubravka; Udikovic-Kolic, Nikolina [Ruder Boskovic Inst., Division for Marine and Environmental Research, Zagreb (Croatia); Fingler, Sanja [Inst. for Medical Research and Occupational Health, Zagreb (Croatia); Bru, David; Martin-Laurent, Fabrice [INRA, Univ. der Bourgogne, Soil and Environmental Microbiology, Dijon (France)

    2011-02-15

    A small-scale bioremediation assay was developed in order to get insight into the functioning of a polychlorinated biphenyl (PCB) degrading community during the time course of bioremediation treatment of a contaminated soil. The study was conducted with the aim to better understand the key mechanisms involved in PCB-removal from soils. Materials and methods Two bioremediation strategies were applied in the assay: (a) biostimulation (addition of carvone as inducer of biphenyl pathway, soya lecithin for improving PCB bioavailability, and xylose as supplemental carbon source) and (b) bioaugmentation with selected seed cultures TSZ7 or Rhodococcus sp. Z6 originating from the transformer station soil and showing substantial PCB-degrading activity. Functional PCB-degrading community was investigated by using molecular-based approaches (sequencing, qPCR) targeting bphA and bphC genes, coding key enzymes of the upper biphenyl pathway, in soil DNA extracts. In addition, kinetics of PCBs removal during the bioremediation treatment was determined using gas chromatography mass spectrometry analyses. Results and discussion bphA-based phylogeny revealed that bioremediation affected the structure of the PCB-degrading community in soils, with Rhodococcus-like bacterial populations developing as dominant members. Tracking of this population further indicated that applied bioremediation treatments led to its enrichment within the PCB-degrading community. The abundance of the PCB-degrading community, estimated by quantifying the copy number of bphA and bphC genes, revealed that it represented up to 0.3% of the total bacterial community. All bioremediation treatments were shown to enhance PCB reduction in soils, with approximately 40% of total PCBs being removed during a 1-year period. The faster PCB reduction achieved in bioaugmented soils suggested an important role of the seed cultures in bioremediation processes. Conclusions The PCBs degrading community was modified in response to

  14. Enhanced biodegradation of methylhydrazine and hydrazine contaminated NASA wastewater in fixed-film bioreactor.

    Science.gov (United States)

    Nwankwoala, A U; Egiebor, N O; Nyavor, K

    2001-01-01

    The aerobic biodegradation of National Aeronautics and Space Administration (NASA) wastewater that contains mixtures of highly concentrated methylhydrazine/hydrazine, citric acid and their reaction product was studied on a laboratory-scale fixed film trickle-bed reactor. The degrading organisms, Achromobacter sp., Rhodococcus B30 and Rhodococcus J10, were immobilized on coarse sand grains used as support-media in the columns. Under continuous flow operation, Rhodococcus sp. degraded the methylhydrazine content of the wastewater from a concentration of 10 to 2.5 mg/mL within 12 days and the hydrazine from approximately 0.8 to 0.1 mg/mL in 7 days. The Achromobacter sp. was equally efficient in degrading the organics present in the wastewater, reducing the concentration of the methylhydrazine from 10 to approximately 5 mg/mL within 12 days and that of the hydrazine from approximately 0.8 to 0.2 mg/mL in 7 days. The pseudo first-order rate constants of 0.137 day(-1) and 0.232 day(-1) were obtained for the removal of methylhydrazine and hydrazine, respectively, in wastewater in the reactor column. In the batch cultures, rate constants for the degradation were 0.046 and 0.079 day(-1) for methylhydrazine and hydrazine respectively. These results demonstrate that the continuous flow bioreactor afford greater degradation efficiencies than those obtained when the wastewater was incubated with the microbes in growth-limited batch experiments. They also show that wastewater containing hydrazine is more amenable to microbial degradation than one that is predominant in methylhydrazine, in spite of the longer lag period observed for hydrazine containing wastewater. The influence of substrate concentration and recycle rate on the degradation efficiency is reported. The major advantages of the trickle-bed reactor over the batch system include very high substrate volumetric rate of turnover, higher rates of degradation and tolerance of the 100% concentrated NASA wastewater. The

  15. Microbial Community in a Biofilter for Removal of Low Load Nitrobenzene Waste Gas.

    Directory of Open Access Journals (Sweden)

    Jian Zhai

    Full Text Available To improve biofilter performance, the microbial community of a biofilter must be clearly defined. In this study, the performance of a lab-scale polyurethane biofilter for treating waste gas with low loads of nitrobenzene (NB (< 20 g m-3 h-1 was investigated when using different empty bed residence times (EBRT (64, 55.4 and 34 s, respectively. In addition, the variations of the bacterial community in the biofilm on the longitudinal distribution of the biofilters were analysed by using Illumina MiSeq high-throughput sequencing. The results showed that NB waste gas was successfully degraded in the biofilter. High-throughput sequencing data suggested that the phylum Actinobacteria and genus Rhodococcus played important roles in the degradation of NB. The variations of the microbial community were attributed to the different intermediate degradation products of NB in each layer. The strains identified in this study were potential candidates for purifying waste gas effluents containing NB.

  16. Threats and opportunities of plant pathogenic bacteria.

    Science.gov (United States)

    Tarkowski, Petr; Vereecke, Danny

    2014-01-01

    Plant pathogenic bacteria can have devastating effects on plant productivity and yield. Nevertheless, because these often soil-dwelling bacteria have evolved to interact with eukaryotes, they generally exhibit a strong adaptivity, a versatile metabolism, and ingenious mechanisms tailored to modify the development of their hosts. Consequently, besides being a threat for agricultural practices, phytopathogens may also represent opportunities for plant production or be useful for specific biotechnological applications. Here, we illustrate this idea by reviewing the pathogenic strategies and the (potential) uses of five very different (hemi)biotrophic plant pathogenic bacteria: Agrobacterium tumefaciens, A. rhizogenes, Rhodococcus fascians, scab-inducing Streptomyces spp., and Pseudomonas syringae. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Biotransformation of isoeugenol to vanillin by Pseudomonas putida IE27 cells.

    Science.gov (United States)

    Yamada, Mamoru; Okada, Yukiyoshi; Yoshida, Toyokazu; Nagasawa, Toru

    2007-01-01

    The ability to produce vanillin and/or vanillic acid from isoeugenol was screened using resting cells of various bacteria. The vanillin- and/or vanillic-acid-producing activities were observed in strains belonging to the genera Achromobacter, Aeromonas, Agrobacerium, Alcaligenes, Arthrobacter, Bacillus, Micrococcus, Pseudomonas, Rhodobacter, and Rhodococcus. Strain IE27, a soil isolate showing the highest vanillin-producing activity, was identified as Pseudomonas putida. We optimized the culture and reaction conditions for vanillin production from isoeugenol using P. putida IE27 cells. The vanillin-producing activity was induced by adding isoeugenol to the culture medium but not vanillin or eugenol. Under the optimized reaction conditions, P. putida IE27 cells produced 16.1 g/l vanillin from 150 mM isoeugenol, with a molar conversion yield of 71% at 20 degrees C after a 24-h incubation in the presence of 10% (v/v) dimethyl sulfoxide.

  18. Locating and Activating Molecular 'Time Bombs': Induction of Mycolata Prophages.

    Directory of Open Access Journals (Sweden)

    Zoe A Dyson

    Full Text Available Little is known about the prevalence, functionality and ecological roles of temperate phages for members of the mycolic acid producing bacteria, the Mycolata. While many lytic phages infective for these organisms have been isolated, and assessed for their suitability for use as biological control agents of activated sludge foaming, no studies have investigated how temperate phages might be induced for this purpose. Bioinformatic analysis using the PHAge Search Tool (PHAST on Mycolata whole genome sequence data in GenBank for members of the genera Gordonia, Mycobacterium, Nocardia, Rhodococcus, and Tsukamurella revealed 83% contained putative prophage DNA sequences. Subsequent prophage inductions using mitomycin C were conducted on 17 Mycolata strains. This led to the isolation and genome characterization of three novel Caudovirales temperate phages, namely GAL1, GMA1, and TPA4, induced from Gordonia alkanivorans, Gordonia malaquae, and Tsukamurella paurometabola, respectively. All possessed highly distinctive dsDNA genome sequences.

  19. Bacterial degradation of emulsified crude oil and the effects of various surfactants

    International Nuclear Information System (INIS)

    Bruheim, P.; Bredholt, H.; Eimhjellen, K.

    1997-01-01

    The effects of surfactants on the oxidation rate of alkanes in crude oil were investigated using a selected bacterial species, Rhodococcus sp., pregrown to various growth stages. Oxidation rates were measured in a three-hour period by Warburg respirometry. Response to emulsified oil was found to be dependent on the physiological state of the bacteria. In the exponential growth phase oxidation rates were negatively affected by surfactant amendment, whereas in the stationary growth phase oxidation rates appear to have been stimulated. The stimulatory effect was attributed to the chemical structure and physico-chemical properties of the surfactants. Surfactants with hydrophilic-lipophilic balance values (HLB) in the intermediate range of 8-12 gave the best values. Neither the commercial dispersants nor the biosurfactants exhibited any stimulative effects. 21 refs., 4 tabs., 1 fig

  20. Nitrile-synthesizing enzyme: Gene cloning, overexpression and application for the production of useful compounds.

    Science.gov (United States)

    Kumano, Takuto; Takizawa, Yuko; Shimizu, Sakayu; Kobayashi, Michihiko

    2016-09-12

    One of the nitrile-synthesizing enzymes, β-cyano-L-alanine synthase, catalyzes β-cyano-L-alanine (β-CNAla) from potassium cyanide and O-acetyl-L-serine or L-cysteine. We have identified this enzyme from Pseudomonas ovalis No. 111. In this study, we cloned the β-CNAla synthase gene and expressed it in Escherichia coli and Rhodococcus rhodochrous. Furthermore, we carried out co-expression of β-CNAla synthase with nitrilase or nitrile hydratases in order to synthesize aspartic acid and asparagine from KCN and O-acetyl-L-serine. This strategy can be used for the synthesis of labeled amino acids by using a carbon-labeled KCN as a substrate, resulting in an application for positron emission tomography.

  1. Recognition of Pneumocystis carinii in foals with respiratory distress

    International Nuclear Information System (INIS)

    Ainsworth, D.M.; Weldon, A.D.; Beck, K.A.; Rowland, P.H.

    1993-01-01

    Five 3-month-old foals presenting with fever and respiratory disease were found to have pulmonary abscesses with patchy to diffuse alveolar and interstitial pneumonia on post-mortem examination. All affected foals had evidence of Rhodococcus equi infection and had few to abundant Pneumocystis carinii cysts in the sections of affected lung. Of the 5 foals examined radiographically, 3 had a distinct reticulonodular (miliary) pattern which may aid in the ante-mortem diagnosis of P. carinii pneumonia (PCP). Leukocyte counts of foals with PCP were significantly greater than in the control group of foals with uncomplicated bacterial pneumonia. Foals with PCP tended to be more tachypnoeic than the control foals and 4 of the 5 PCP+ foals appeared dyspnoeic before death. The ante-mortem recognition of PCP may be expedited by bronchoalveolar lavage and successful treatment of foals with PCP may require the administration of adequate levels of potentiated sulphonamides

  2. ANTAGONISTIC BACTERIA AGAINST SCHIZOPHYLLUM COMMUNE FR. IN PENINSULAR MALAYSIA

    Directory of Open Access Journals (Sweden)

    ANTARJO DIKIN

    2006-01-01

    Full Text Available Schizophyllum commune Fr., is one of the important fungi, causes brown germ and seed rot of oil palm. Biodiversity of antagonistic bacteria from oil palm plantations in Peninsular Malaysia is expected to support in development of biopesticide. Isolation with liquid assay and screening antagonistic bacteria using dual culture assay were carried out in the bioexploration. A total of 265 bacterial isolates from plant parts of oil palm screened 52 antagonistic bacterial isolates against 5. commune. Bacterial isolates were identified by using Biolog* Identification System i.e. Bacillus macroccanus, B. thermoglucosidasius, Burkholderia cepacia, B. gladioli, B. multivorans, B pyrrocinia, B. spinosa, Corynebacterium agropyri, C. misitidis, Enterobacter aerogenes, Microbacterium testaceum, Pseudomonas aeruginosa, P. citronellolis, Rhodococcus rhodochrous, Serratia ficaria, Serratia sp., S. marcescens, Staphylococcus sciuri, Sternotrophomonas maltophilia.

  3. Lignite microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Bulankina, M.A.; Lysak, L.V.; Zvyagintsev, D.G. [Moscow MV Lomonosov State University, Moscow (Russian Federation). Faculty of Soil Science

    2007-03-15

    The first demonstration that samples of lignite at a depth of 10 m are considerably enriched in bacteria is reported. According to direct microscopy, the abundance of bacteria was about 10{sup 7} cells/g. About 70% of cells had intact cell membranes and small size, which points to their anabiotic state. The fungal mycelium length was no more than 1 m. Lignite inoculation onto solid glucose-yeast-peptone medium allowed us to isolate bacteria of the genera Bacillus, Rhodococcus, Arthrobacter, Micrococcus, Spirillum, and Cytophaga. Representatives of the genera Penicillium and Trichoderma were identified on Czapek medium. Moistening of lignite powder increased the microbial respiration rate and microbial and fungal abundance but did not increase their generic diversity. This finding suggests that the studied microorganisms are autochthonous to lignite.

  4. Occurrence of diverse alkane hydroxylase alkB genes in indigenous oil-degrading bacteria of Baltic Sea surface water.

    Science.gov (United States)

    Viggor, Signe; Jõesaar, Merike; Vedler, Eve; Kiiker, Riinu; Pärnpuu, Liis; Heinaru, Ain

    2015-12-30

    Formation of specific oil degrading bacterial communities in diesel fuel, crude oil, heptane and hexadecane supplemented microcosms of the Baltic Sea surface water samples was revealed. The 475 sequences from constructed alkane hydroxylase alkB gene clone libraries were grouped into 30 OPFs. The two largest groups were most similar to Pedobacter sp. (245 from 475) and Limnobacter sp. (112 from 475) alkB gene sequences. From 56 alkane-degrading bacterial strains 41 belonged to the Pseudomonas spp. and 8 to the Rhodococcus spp. having redundant alkB genes. Together 68 alkB gene sequences were identified. These genes grouped into 20 OPFs, half of them being specific only to the isolated strains. Altogether 543 diverse alkB genes were characterized in the brackish Baltic Sea water; some of them representing novel lineages having very low sequence identities with corresponding genes of the reference strains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Changes in the structure of bacterial complexes of vegetable crops in the course of their growth on a cultivated soddy-podzolic soil

    Science.gov (United States)

    Dobrovol'skaya, T. G.; Khusnetdinova, K. A.

    2017-11-01

    The dynamics of population density and taxonomic structure of epiphytic bacterial communities on the leaves and roots of potatoes, carrots, and beets have been studied. Significant changes take place in the ontogenesis of these vegetables with substitution of hydrolytic bacteria for eccrisotrophic bacteria feeding on products of plant exosmosis. The frequency of domination of representatives of different taxa of epiphytic bacteria on the studied plants has been determined for the entire period of their growth. Bacteria of different genera have been isolated from the aboveground and underground organs of vegetables; their functions are discussed. It is shown that the taxonomic structure of bacterial communities in the soil under studied plants is not subjected to considerable changes and is characterized by the domination of typical soil bacteria— Arthrobacter and bacilli—with the appearance of Rhodococcus as a codominant at the end of the season (before harvesting).

  6. Chemoenzymatic synthesis of carbon-14 labelled antioxidants

    International Nuclear Information System (INIS)

    Deigner, H.P.; Freyberg, C.; Heck, R.

    1993-01-01

    The syntheses of [ 14 C] labelled antioxidants are described. We developed an efficient synthetic methodology to prepare a series of labelled amides with antioxidant activity, starting from [ 14 C] KCN and alkyl or aryl halides. By a combination of nucleophilic displacement of halides by [ 14 C] cyanide, mediated by ultrasound and subsequent mild and selective enzymatic hydrolysis of the resulting nitriles, labelled carboxylic acids were obtained. Labelled amines were prepared by reduction of the respective nitriles. Availability of [ 14 C] KCN, efficient introduction of the label by ultrasound mediated reaction and selective and mild hydrolysis by commercially available nitrilase (Rhodococcus sp.), makes possible a wide range of applications of this methodology in the synthesis of functionalized labelled compounds. (Author)

  7. Co-metabolic formation of substituted phenylacetic acids by styrene-degrading bacteria

    Directory of Open Access Journals (Sweden)

    Michel Oelschlägel

    2015-06-01

    The styrene-degrading strains Rhodococcus opacus 1CP, Pseudomonas fluorescens ST, and the novel isolates Sphingopyxis sp. Kp5.2 and Gordonia sp. CWB2 were investigated with respect to their applicability to co-metabolically produce substituted phenylacetic acids. Isolates were found to differ significantly in substrate tolerance and biotransformation yields. Especially, P. fluorescens ST was identified as a promising candidate for the production of several phenylacetic acids. The biotransformation of 4-chlorostyrene with cells of strain ST was shown to be stable over a period of more than 200 days and yielded about 38 mmolproduct gcelldryweight−1 after nearly 350 days. Moreover, 4-chloro-α-methylstyrene was predominantly converted to the (S-enantiomer of the acid with 40% enantiomeric excess.

  8. Quorum quenching properties of Actinobacteria isolated from Malaysian tropical soils.

    Science.gov (United States)

    Devaraj, Kavimalar; Tan, Geok Yuan Annie; Chan, Kok-Gan

    2017-08-01

    In this study, a total of 147 soil actinobacterial strains were screened for their ability to inhibit response of Chromobacterium violaceum CV026 to short chain N-acyl homoserine lactone (AHL) which is a quorum sensing molecule. Of these, three actinobacterial strains showed positive for violacein inhibition. We further tested these strains for the inhibition of Pseudomonas aeruginosa PAO1 quorum sensing-regulated phenotypes, namely, swarming and pyocyanin production. The three strains were found to inhibit at least one of the quorum sensing-regulated phenotypes of PAO1. Phylogenetic analysis of the 16S rRNA gene sequences indicated that these strains belong to the genera Micromonospora, Rhodococcus and Streptomyces. This is the first report presenting quorum quenching activity by a species of the genus Micromonospora. Our data suggest that Actinobacteria may be a rich source of active compounds that can act against bacterial quorum sensing system.

  9. Insights on the Effects of Heat Pretreatment, pH, and Calcium Salts on Isolation of Rare Actinobacteria from Karstic Caves

    Science.gov (United States)

    Fang, Bao-Zhu; Salam, Nimaichand; Han, Ming-Xian; Jiao, Jian-Yu; Cheng, Juan; Wei, Da-Qiao; Xiao, Min; Li, Wen-Jun

    2017-01-01

    The phylum Actinobacteria is one of the most ubiquitously present bacterial lineages on Earth. In the present study, we try to explore the diversity of cultivable rare Actinobacteria in Sigangli Cave, Yunnan, China by utilizing a combination of different sample pretreatments and under different culture conditions. Pretreating the samples under different conditions of heat, setting the isolation condition at different pHs, and supplementation of media with different calcium salts were found to be effective for isolation of diverse rare Actinobacteria. During our study, a total of 204 isolates affiliated to 30 genera of phylum Actinobacteria were cultured. Besides the dominant Streptomyces, rare Actinobacteria of the genera Actinocorallia, Actinomadura, Agromyces, Alloactinosynnema, Amycolatopsis, Beutenbergia, Cellulosimicrobium, Gordonia, Isoptericola, Jiangella, Knoellia, Kocuria, Krasilnikoviella, Kribbella, Microbacterium, Micromonospora, Mumia, Mycobacterium, Nocardia, Nocardioides, Nocardiopsis, Nonomuraea, Oerskovia, Pseudokineococcus, Pseudonocardia, Rhodococcus, Saccharothrix, Streptosporangium, and Tsukamurella were isolated from these cave samples. PMID:28848538

  10. In-situ determination of the mechanical properties of gliding or non-motile bacteria by atomic force microscopy under physiological conditions without immobilization.

    Directory of Open Access Journals (Sweden)

    Samia Dhahri

    Full Text Available We present a study about AFM imaging of living, moving or self-immobilized bacteria in their genuine physiological liquid medium. No external immobilization protocol, neither chemical nor mechanical, was needed. For the first time, the native gliding movements of Gram-negative Nostoc cyanobacteria upon the surface, at speeds up to 900 µm/h, were studied by AFM. This was possible thanks to an improved combination of a gentle sample preparation process and an AFM procedure based on fast and complete force-distance curves made at every pixel, drastically reducing lateral forces. No limitation in spatial resolution or imaging rate was detected. Gram-positive and non-motile Rhodococcus wratislaviensis bacteria were studied as well. From the approach curves, Young modulus and turgor pressure were measured for both strains at different gliding speeds and are ranging from 20±3 to 105±5 MPa and 40±5 to 310±30 kPa depending on the bacterium and the gliding speed. For Nostoc, spatially limited zones with higher values of stiffness were observed. The related spatial period is much higher than the mean length of Nostoc nodules. This was explained by an inhomogeneous mechanical activation of nodules in the cyanobacterium. We also observed the presence of a soft extra cellular matrix (ECM around the Nostoc bacterium. Both strains left a track of polymeric slime with variable thicknesses. For Rhodococcus, it is equal to few hundreds of nanometers, likely to promote its adhesion to the sample. While gliding, the Nostoc secretes a slime layer the thickness of which is in the nanometer range and increases with the gliding speed. This result reinforces the hypothesis of a propulsion mechanism based, for Nostoc cyanobacteria, on ejection of slime. These results open a large window on new studies of both dynamical phenomena of practical and fundamental interests such as the formation of biofilms and dynamic properties of bacteria in real physiological conditions.

  11. Exploring the diversity and antimicrobial potential of marine Actinobacteria from the Comau Fjord in Northern Patagonia, Chile

    Directory of Open Access Journals (Sweden)

    Agustina Undabarrena

    2016-07-01

    Full Text Available Bioprospecting natural products in marine bacteria from fjord environments are attractive due to their unique geographical features. Although Actinobacteria are well known for producing a myriad of bioactive compounds, investigations regarding fjord-derived marine Actinobacteria are scarce. In this study, the diversity and biotechnological potential of Actinobacteria isolated from marine sediments within the Comau fjord, in Northern Chilean Patagonia, were assessed by culture-based approaches. The 16S rRNA gene sequences revealed that members phylogenetically related to the Micrococcaceae, Dermabacteraceae, Brevibacteriaceae, Corynebacteriaceae, Microbacteriaceae, Dietziaceae, Nocardiaceae and Streptomycetaceae families were present at the Comau fjord. A high diversity of cultivable Actinobacteria (10 genera was retrieved by using only five different isolation media. Four isolates belonging to Arthrobacter, Brevibacterium, Corynebacterium and Kocuria genera showed 16S rRNA gene identity <98.7% suggesting that they are novel species. Physiological features such as salt tolerance, artificial sea water requirement, growth temperature, pigmentation and antimicrobial activity were evaluated. Arthrobacter, Brachybacterium, Curtobacterium, Rhodococcus and Streptomyces isolates showed strong inhibition against both Gram-negative Pseudomonas aeruginosa, Escherichia coli and Salmonella enterica and Gram-positive Staphylococcus aureus, Listeria monocytogenes. Antimicrobial activities in Brachybacterium, Curtobacterium and Rhodococcus have been scarcely reported, suggesting that non-mycelial strains are a suitable source of bioactive compounds. In addition, all strains bear at least one of the biosynthetic genes coding for NRPS (91%, PKS I (18% and PKS II (73%.Our results indicate that the Comau fjord is a promising source of novel Actinobacteria with biotechnological potential for producing biologically active compounds.

  12. Novel extracellular PHB depolymerase from Streptomyces ascomycinicus: PHB copolymers degradation in acidic conditions.

    Directory of Open Access Journals (Sweden)

    Javier García-Hidalgo

    Full Text Available The ascomycin-producer strain Streptomyces ascomycinicus has been proven to be an extracellular poly(R-3-hydroxybutyrate (PHB degrader. The fkbU gene, encoding a PHB depolymerase (PhaZ Sa , has been cloned in E. coli and Rhodococcus sp. T104 strains for gene expression. Gram-positive host Rhodococcus sp. T104 was able to produce and secrete to the extracellular medium an active protein form. PhaZ Sa was purified by two hydrophobic interaction chromatographic steps, and afterwards was biochemically as well as structurally characterized. The enzyme was found to be a monomer with a molecular mass of 48.4 kDa, and displayed highest activity at 45°C and pH 6, thus being the first PHB depolymerase from a gram-positive bacterium presenting an acidic pH optimum. The PHB depolymerase activity of PhaZ Sa was increased in the presence of divalent cations due to non-essential activation, and also in the presence of methyl-β-cyclodextrin and PEG 3350. Protein structure was analyzed, revealing a globular shape with an alpha-beta hydrolase fold. The amino acids comprising the catalytic triad, Ser(131-Asp(209-His(269, were identified by multiple sequence alignment, chemical modification of amino acids and site-directed mutagenesis. These structural results supported the proposal of a three-dimensional model for this depolymerase. PhaZ Sa was able to degrade PHB, but also demonstrated its ability to degrade films made of PHB, PHBV copolymers and a blend of PHB and starch (7∶3 proportion wt/wt. The features shown by PhaZ Sa make it an interesting candidate for industrial applications involving PHB degradation.

  13. Stable isotope probing reveals the importance of Comamonas and Pseudomonadaceae in RDX degradation in samples from a Navy detonation site.

    Science.gov (United States)

    Jayamani, Indumathy; Cupples, Alison M

    2015-07-01

    This study investigated the microorganisms involved in hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation from a detonation area at a Navy base. Using Illumina sequencing, microbial communities were compared between the initial sample, samples following RDX degradation, and controls not amended with RDX to determine which phylotypes increased in abundance following RDX degradation. The effect of glucose on these communities was also examined. In addition, stable isotope probing (SIP) using labeled ((13)C3, (15)N3-ring) RDX was performed. Illumina sequencing revealed that several phylotypes were more abundant following RDX degradation compared to the initial soil and the no-RDX controls. For the glucose-amended samples, this trend was strong for an unclassified Pseudomonadaceae phylotype and for Comamonas. Without glucose, Acinetobacter exhibited the greatest increase following RDX degradation compared to the initial soil and no-RDX controls. Rhodococcus, a known RDX degrader, also increased in abundance following RDX degradation. For the SIP study, unclassified Pseudomonadaceae was the most abundant phylotype in the heavy fractions in both the presence and absence of glucose. In the glucose-amended heavy fractions, the 16S ribosomal RNA (rRNA) genes of Comamonas and Anaeromxyobacter were also present. Without glucose, the heavy fractions also contained the 16S rRNA genes of Azohydromonas and Rhodococcus. However, all four phylotypes were present at a much lower level compared to unclassified Pseudomonadaceae. Overall, these data indicate that unclassified Pseudomonadaceae was primarily responsible for label uptake in both treatments. This study indicates, for the first time, the importance of Comamonas for RDX removal.

  14. In-Situ Determination of the Mechanical Properties of Gliding or Non-Motile Bacteria by Atomic Force Microscopy under Physiological Conditions without Immobilization

    Science.gov (United States)

    Dhahri, Samia; Ramonda, Michel; Marlière, Christian

    2013-01-01

    We present a study about AFM imaging of living, moving or self-immobilized bacteria in their genuine physiological liquid medium. No external immobilization protocol, neither chemical nor mechanical, was needed. For the first time, the native gliding movements of Gram-negative Nostoc cyanobacteria upon the surface, at speeds up to 900 µm/h, were studied by AFM. This was possible thanks to an improved combination of a gentle sample preparation process and an AFM procedure based on fast and complete force-distance curves made at every pixel, drastically reducing lateral forces. No limitation in spatial resolution or imaging rate was detected. Gram-positive and non-motile Rhodococcus wratislaviensis bacteria were studied as well. From the approach curves, Young modulus and turgor pressure were measured for both strains at different gliding speeds and are ranging from 20±3 to 105±5 MPa and 40±5 to 310±30 kPa depending on the bacterium and the gliding speed. For Nostoc, spatially limited zones with higher values of stiffness were observed. The related spatial period is much higher than the mean length of Nostoc nodules. This was explained by an inhomogeneous mechanical activation of nodules in the cyanobacterium. We also observed the presence of a soft extra cellular matrix (ECM) around the Nostoc bacterium. Both strains left a track of polymeric slime with variable thicknesses. For Rhodococcus, it is equal to few hundreds of nanometers, likely to promote its adhesion to the sample. While gliding, the Nostoc secretes a slime layer the thickness of which is in the nanometer range and increases with the gliding speed. This result reinforces the hypothesis of a propulsion mechanism based, for Nostoc cyanobacteria, on ejection of slime. These results open a large window on new studies of both dynamical phenomena of practical and fundamental interests such as the formation of biofilms and dynamic properties of bacteria in real physiological conditions. PMID:23593493

  15. Limb salvage and reconstruction following a zebra attack

    Directory of Open Access Journals (Sweden)

    Jacob T. Carlson

    2017-06-01

    Full Text Available Animal bites are fairly rare events but can cause devastating traumatic injuries to the victim. In addition to the soft tissue, vascular, and orthopedic trauma inflicted by these occurrences, bite injuries also have the potential to introduce an inoculum of microbes, which may progress to an infection if not treated properly and expeditiously.We present the case of a healthy male who sustained multiple bite wounds from a domestic zebra to his left upper extremity. This attack caused severe damage, including devascularization of the arm at the brachial artery, disruption of the distal biceps and brachialis, stripping of the forearm nerves, and shearing of the overlying soft tissue. The patient was taken emergently to the operating room for revascularization of the extremity utilizing a vein bypass graft. The soft tissue injuries were addressed with numerous irrigation and debridement procedures, during which coverage of the vein bypass graft was obtained using a variety of techniques, including skin flaps, musculocutaneous advancements, and the application of an acellular dermal matrix (AlloDerm and a collagen-glycosaminoglycan matrix (Integra.Wound cultures obtained intra-operatively during the irrigation and debridement procedures were notable for the growth of multiple microbes, including Rhodococcus spp., which have been documented to cause infection in immunocompromised patients. The patient in this case was treated with a prolonged course of antibiotics, and wound cultures negative for microbial growth were eventually obtained prior to final closure of his wound. The patient then underwent successful biceps reconstruction with a pedicled latissimus dorsi muscle transfer. This case documents the extraordinary multidisciplinary approach provided in the salvage, management, and eventual reconstruction of a mangled left upper extremity that had sustained devastating traumatic injuries resulting from a rather unusual source. Keywords: Zebra

  16. Linking ceragenins to water-treatment membranes to minimize biofouling.

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael R.; Altman, Susan Jeanne; Feng, Yanshu (Brigham Young University, Provo, Utah); Savage, Paul B. (Brigham Young University, Provo, Utah); Pollard, Jacob (Brigham Young University, Provo, Utah); Branda, Steven S.; Goeres, Darla (Montana State University, Bozeman, MT); Buckingham-Meyer, Kelli (Montana State University, Bozeman, MT); Stafslien, Shane (North Dakota State University, Fargo, ND); Marry, Christopher; Jones, Howland D. T.; Lichtenberger, Alyssa; Kirk, Matthew F.; McGrath, Lucas K. (LMATA, Albuquerque, NM)

    2012-01-01

    Ceragenins were used to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. While ceragenins have been used on bio-medical devices, use of ceragenins on water-treatment membranes is novel. Biofouling impacts membrane separation processes for many industrial applications such as desalination, waste-water treatment, oil and gas extraction, and power generation. Biofouling results in a loss of permeate flux and increase in energy use. Creation of biofouling resistant membranes will assist in creation of clean water with lower energy usage and energy with lower water usage. Five methods of attaching three different ceragenin molecules were conducted and tested. Biofouling reduction was observed in the majority of the tests, indicating the ceragenins are a viable solution to biofouling on water treatment membranes. Silane direct attachment appears to be the most promising attachment method if a high concentration of CSA-121a is used. Additional refinement of the attachment methods are needed in order to achieve our goal of several log-reduction in biofilm cell density without impacting the membrane flux. Concurrently, biofilm forming bacteria were isolated from source waters relevant for water treatment: wastewater, agricultural drainage, river water, seawater, and brackish groundwater. These isolates can be used for future testing of methods to control biofouling. Once isolated, the ability of the isolates to grow biofilms was tested with high-throughput multiwell methods. Based on these tests, the following species were selected for further testing in tube reactors and CDC reactors: Pseudomonas ssp. (wastewater, agricultural drainage, and Colorado River water), Nocardia coeliaca or Rhodococcus spp. (wastewater), Pseudomonas fluorescens and Hydrogenophaga palleronii (agricultural drainage), Sulfitobacter donghicola, Rhodococcus fascians, Rhodobacter

  17. Microbial background flora in small-scale cheese production facilities does not inhibit growth and surface attachment of Listeria monocytogenes.

    Science.gov (United States)

    Schirmer, B C T; Heir, E; Møretrø, T; Skaar, I; Langsrud, S

    2013-10-01

    The background microbiota of 5 Norwegian small-scale cheese production sites was examined and the effect of the isolated strains on the growth and survival of Listeria monocytogenes was investigated. Samples were taken from the air, food contact surfaces (storage surfaces, cheese molds, and brine) and noncontact surfaces (floor, drains, and doors) and all isolates were identified by sequencing and morphology (mold). A total of 1,314 isolates were identified and found to belong to 55 bacterial genera, 1 species of yeast, and 6 species of mold. Lactococcus spp. (all of which were Lactococcus lactis), Staphylococcus spp., Microbacterium spp., and Psychrobacter sp. were isolated from all 5 sites and Rhodococcus spp. and Chryseobacterium spp. from 4 sites. Thirty-two genera were only found in 1 out of 5 facilities each. Great variations were observed in the microbial background flora both between the 5 producers, and also within the various production sites. The greatest diversity of bacteria was found in drains and on rubber seals of doors. The flora on cheese storage shelves and in salt brines was less varied. A total of 62 bacterial isolates and 1 yeast isolate were tested for antilisterial activity in an overlay assay and a spot-on-lawn assay, but none showed significant inhibitory effects. Listeria monocytogenes was also co-cultured on ceramic tiles with bacteria dominating in the cheese production plants: Lactococcus lactis, Pseudomonas putida, Staphylococcus equorum, Rhodococcus spp., or Psychrobacter spp. None of the tested isolates altered the survival of L. monocytogenes on ceramic tiles. The conclusion of the study was that no common background flora exists in cheese production environments. None of the tested isolates inhibited the growth of L. monocytogenes. Hence, this study does not support the hypothesis that the natural background flora in cheese production environments inhibits the growth or survival of L. monocytogenes. Copyright © 2013 American

  18. Arsenic-tolerant plant-growth-promoting bacteria isolated from arsenic-polluted soils in South Korea.

    Science.gov (United States)

    Shagol, Charlotte C; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Sundaram, Subbiah; Sa, Tongmin

    2014-01-01

    The Janghang smelter in Chungnam, South Korea started in 1936 was subsequently shutdown in 1989 due to heavy metal (loid) pollution concerns in the vicinity. Thus, there is a need for the soil in the area to be remediated to make it usable again especially for agricultural purposes. The present study was conducted to exploit the potential of arsenic (As)-tolerant bacteria thriving in the vicinity of the smelter-polluted soils to enhance phytoremediation of hazardous As. We studied the genetic and taxonomic diversity of 21 As-tolerant bacteria isolated from soils nearer to and away from the smelter. These isolates belonging to the genera Brevibacterium, Pseudomonas, Microbacterium, Rhodococcus, Rahnella, and Paenibacillus, could tolerate high concentrations of arsenite (As(III)) and arsenate (As(V)) with the minimum inhibitory concentration ranging from 3 to >20 mM for NaAsO2 and 140 to 310 mM NaH2AsO4 · 7H2O, respectively. All isolates exhibited As(V) reduction except Pseudomonas koreensis JS123, which exhibited both oxidation and reduction of As. Moreover, all the 21 isolates produced indole acetic acid (IAA), 13 isolates exhibited 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, 12 produced siderophore, 17 solubilized phosphate, and 13 were putative nitrogen fixers under in vitro conditions. Particularly, Rhodococcus aetherivorans JS2210, P. koreensis JS2214, and Pseudomonas sp. JS238 consistently increased root length of maize in the presence of 100 and 200 μM As(V). Possible utilization of these As-tolerant plant-growth-promoting bacteria can be a potential strategy in increasing the efficiency of phytoremediation in As-polluted soils.

  19. Metabolic versatility of Gram-positive microbial isolates from contaminated river sediments

    International Nuclear Information System (INIS)

    Narancic, Tanja; Djokic, Lidija; Kenny, Shane T.; O’Connor, Kevin E.; Radulovic, Vanja; Nikodinovic-Runic, Jasmina; Vasiljevic, Branka

    2012-01-01

    Highlights: ► Thirty-four isolated Gram-positive bacteria could degrade wide range of aromatic pollutants. ► Nine isolates could grow in the presence of extremely high levels of heavy metals. ► Twelve isolates accumulated polyphosphate, 3 polyhydroxybutyrate, 4 exopolysaccharides. ► The incidence of multiple antibiotic resistance markers among isolates was low. - Abstract: Gram-positive bacteria from river sediments affected by the proximity of a petrochemical industrial site were isolated and characterized with respect to their ability to degrade a wide range of aromatic compounds. In this study we identified metabolically diverse Gram-positive bacteria capable of growth on wide range aromatic compounds in the presence of heavy metals and with the ability to accumulate biopolymers. Thirty-four isolates that were able to use 9 or more common aromatic pollutants, such as benzene, biphenyl, naphthalene etc. as a sole source of carbon and energy included members of Bacillus, Arthrobacter, Rhodococcus, Gordonia, Streptomyces, and Staphylococcus genus. Rhodococcus sp. TN105, Gordonia sp. TN103 and Arthrobacter sp. TN221 were identified as novel strains. Nine isolates were able to grow in the presence of one or more metals (mercury, cadmium, nickel) at high concentration (100 mM). Seven isolates could degrade 15 different aromatic compounds and could grow in the presence of one or more heavy metals. Two of these isolates were resistant to multiple antibiotics including erythromycin and nalidixic acid. One third of isolates could accumulate at least one biopolymer. Twelve isolates (mainly Bacillus sp. and Arthrobacter sp.) accumulated polyphosphate, 3 Bacillus sp. accumulated polyhydroxybutyrate, while 4 isolates could accumulate exopolysaccharides.

  20. Isolamento e teste de susceptibilidade a antimicrobianos de bactérias em infecções uterinas de éguas Isolation and antimicrobial susceptibility of bacteria in uterine infections in mares

    Directory of Open Access Journals (Sweden)

    N. Silva

    1999-06-01

    Full Text Available Foram examinados 206 "swabs" cervicais e uterinos de éguas de várias raças, de diversas regiões do Estado de Minas Gerais, durante o período de 1986 a 1996. Cerca de 164 "swabs" foram positivos para a presença de microrganismos causadores de endometrites. Streptococcus equi subsp. zooepidemicus (25,7% e Escherichia coli (15,1% foram os principais agentes infecciosos isolados. Outros microrganismos presentes foram: Staphylococcus aureus (9,2%, Streptococcus alfa-hemolítico (9,2%, Pseudomonas aeruginosa (3,9%, Staphylococcus coagulase negativo (6,3%, Bacillus spp. (1,9%, Rhodococcus equi (3,4% e Proteus mirabilis (1,5%. As provas de susceptibilidade aos antimicrobianos revelaram que amicacina e gentamicina (70,2%, ampicilina (59,5% e cloranfenicol (59,5% foram os antibióticos de maior ação in vitro contra os microrganismos isolados.This study examined 206 cervical and uterine swabs collected from infected mares from herds in the Minas Gerais State, Brazil, from 1986 to 1996. Amongst 164 successful isolations, 25.7% were identified as Streptococcus equi, subsp. zooepidemicus, and 15.1% as Escherichia coli, both considered the most important isolates. Other bacteria found included Staphylococcus aureus (9.2%, Streptococcus alpha-hemolytic (9.2%, Pseudomonas aeruginosa (3.9%, coagulase negative Staphylococcus (6.3%, Bacillus spp. (1.9%, Rhodococcus equi (3.4% and Proteus mirabilis (1.5%. The antibiotic susceptibility tests revealed amikacin and gentamicin (70.2%, ampicillin and chloramphenicol (59.5% as the most effective in vitro antibiotics against these microorganisms.

  1. Novel extracellular PHB depolymerase from Streptomyces ascomycinicus: PHB copolymers degradation in acidic conditions.

    Science.gov (United States)

    García-Hidalgo, Javier; Hormigo, Daniel; Arroyo, Miguel; de la Mata, Isabel

    2013-01-01

    The ascomycin-producer strain Streptomyces ascomycinicus has been proven to be an extracellular poly(R)-3-hydroxybutyrate (PHB) degrader. The fkbU gene, encoding a PHB depolymerase (PhaZ Sa ), has been cloned in E. coli and Rhodococcus sp. T104 strains for gene expression. Gram-positive host Rhodococcus sp. T104 was able to produce and secrete to the extracellular medium an active protein form. PhaZ Sa was purified by two hydrophobic interaction chromatographic steps, and afterwards was biochemically as well as structurally characterized. The enzyme was found to be a monomer with a molecular mass of 48.4 kDa, and displayed highest activity at 45°C and pH 6, thus being the first PHB depolymerase from a gram-positive bacterium presenting an acidic pH optimum. The PHB depolymerase activity of PhaZ Sa was increased in the presence of divalent cations due to non-essential activation, and also in the presence of methyl-β-cyclodextrin and PEG 3350. Protein structure was analyzed, revealing a globular shape with an alpha-beta hydrolase fold. The amino acids comprising the catalytic triad, Ser(131)-Asp(209)-His(269), were identified by multiple sequence alignment, chemical modification of amino acids and site-directed mutagenesis. These structural results supported the proposal of a three-dimensional model for this depolymerase. PhaZ Sa was able to degrade PHB, but also demonstrated its ability to degrade films made of PHB, PHBV copolymers and a blend of PHB and starch (7∶3 proportion wt/wt). The features shown by PhaZ Sa make it an interesting candidate for industrial applications involving PHB degradation.

  2. THE BIOCATALYTIC DESULFURIZATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Scott Collins; David Nunn

    2003-10-01

    The analysis of Petro Star diesel sulfur species is complete and a report is attached. Further analytical efforts will concentrate on characterization of diesel fuel, hydrodesulfurized to varying degrees, in order to determine sulfur species that may be problematic to hydrogen treatment and represent potential target substrates for biodesulfurization in a combined HDS-BDS process. Quotes have been received and are being considered for the partial treatment of Petro Star Inc. marine diesel fuel. Direction of research is changing slightly; economic analysis of the hyphenated--BDSHDS, BDS-CED--has shown the highest probability of success to be with a BDS-HDS process where the biodesulfurization precedes hydrodesulfurization. Thus, the microorganisms will be tailored to focus on those compounds that tend to be recalcitrant to hydrodesulfurization and decrease the severity of the hydrodesulfurization step. A separate, detailed justification for this change is being prepared. Research activities have continued in the characterization of the desulfurization enzymes from multiple sources. Genes for all DszA, -B, -C and -D enzymes (and homologs) have been cloned and expressed. Activity determinations, on a variety of substituted benzothiophene and dibenzothiophene substrates, have been carried out and continue. In addition, chemical synthesis efforts have been carried out to generate additional substrates for analytical standards and activity determinations. The generation of a GSSM mutant library of the ''Rhodococcus IGTS8 dszA'' gene has been completed and development of protocols for a high throughput screen to expand substrate specificity are nearing completion. In an effort to obtain improved hosts as biocatalyst, one hundred-thirty ''Rhodococcus'' and related strains are being evaluated for growth characteristics and other criteria deemed important for an optimal biocatalyst strain. We have also begun an effort to generate

  3. Study of an aquifer contaminated by ethyl tert-butyl ether (ETBE): Site characterization and on-site bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Fayolle-Guichard, Francoise, E-mail: francoise.fayolle@ifpen.fr [IFP Energies nouvelles, 1 et 4 avenue de Bois-Preau, 92852 Rueil-Malmaison (France); Durand, Jonathan [Institut EGID Bordeaux 3, 1 Allee Daguin 33607 Pessac Cedex (France); SERPOL, 2 chemin du Genie, BP 80, 69633 Venissieux Cedex (France); Cheucle, Mathilde [SERPOL, 2 chemin du Genie, BP 80, 69633 Venissieux Cedex (France); Rosell, Monica [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig (Germany); Michelland, Rory Julien [Universite de Lyon, F-69622 Lyon (France); Universite Lyon 1, Villeurbanne (France); CNRS, UMR5557, Ecologie Microbienne (France); Tracol, Jean-Philippe [SERPOL, 2 chemin du Genie, BP 80, 69633 Venissieux Cedex (France); Le Roux, Francoise [IFP Energies nouvelles, 1 et 4 avenue de Bois-Preau, 92852 Rueil-Malmaison (France); Grundman, Genevieve [Universite de Lyon, F-69622 Lyon (France); Universite Lyon 1, Villeurbanne (France); CNRS, UMR5557, Ecologie Microbienne (France); Atteia, Olivier [Institut EGID Bordeaux 3, 1 Allee Daguin 33607 Pessac Cedex (France); Richnow, Hans H. [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig (Germany); Dumestre, Alain [SERPOL, 2 chemin du Genie, BP 80, 69633 Venissieux Cedex (France); and others

    2012-01-30

    Highlights: Black-Right-Pointing-Pointer Ethyl tert-butyl ether (ETBE) (>300 mg L{sup -1}) found in a groundwater (gas-station). Black-Right-Pointing-Pointer No significant carbon or hydrogen isotopic fractionation of ETBE along the plume. Black-Right-Pointing-Pointer MC-IFP culture degraded ETBE (0.91 mg L{sup -1} h{sup -1}) and BTEX (0.64 mg L{sup -1} h{sup -1}). Black-Right-Pointing-Pointer A pilot plant (2 m{sup 3}) inoculated with MC-IFP degraded ETBE in groundwater (15 Degree-Sign C). Black-Right-Pointing-Pointer ethB gene (ETBE biodegradation) amplified during bioaugmentation (5 Multiplication-Sign 10{sup 6}ethB gene copies L{sup -1}). - Abstract: Ethyl tert-butyl ether (ETBE) was detected at high concentration (300 mg L{sup -1}) in the groundwater below a gas-station. No significant carbon neither hydrogen isotopic fractionation of ETBE was detected along the plume. ETBE and BTEX biodegradation capacities of the indigenous microflora Pz1-ETBE and of a culture (MC-IFP) composed of Rhodococcus wratislaviensis IFP 2016, Rhodococcus aetherivorans IFP 2017 and Aquincola tertiaricarbonis IFP 2003 showed that ETBE and BTEX degradation rates were in the same range (ETBE: 0.91 and 0.83 mg L{sup -1} h{sup -1} and BTEX: 0.64 and 0.82 mg L{sup -1} h{sup -1}, respectively) but tert-butanol (TBA) accumulated transiently at a high level using Pz1-ETBE (74 mg L{sup -1}). An on-site pilot plant (2 m{sup 3}) filled with polluted groundwater and inoculated by MC-IFP, successfully degraded four successive additions of ETBE and gasoline. However, an insignificant ETBE isotopic fractionation was also accompanying this decrease which suggested the involvement of low fractionating-strains using EthB enzymes, but required of additional proofs. The ethB gene encoding a cytochrome P450 involved in ETBE biodegradation (present in R. aetherivorans IFP 2017) was monitored by quantitative real-time polymerase chain reaction (q-PCR) on DNA extracted from water sampled in the pilot plant

  4. Study of an aquifer contaminated by ethyl tert-butyl ether (ETBE): Site characterization and on-site bioremediation

    International Nuclear Information System (INIS)

    Fayolle-Guichard, Françoise; Durand, Jonathan; Cheucle, Mathilde; Rosell, Mònica; Michelland, Rory Julien; Tracol, Jean-Philippe; Le Roux, Françoise; Grundman, Geneviève; Atteia, Olivier; Richnow, Hans H.; Dumestre, Alain

    2012-01-01

    Highlights: ► Ethyl tert-butyl ether (ETBE) (>300 mg L −1 ) found in a groundwater (gas-station). ► No significant carbon or hydrogen isotopic fractionation of ETBE along the plume. ► MC-IFP culture degraded ETBE (0.91 mg L −1 h −1 ) and BTEX (0.64 mg L −1 h −1 ). ► A pilot plant (2 m 3 ) inoculated with MC-IFP degraded ETBE in groundwater (15 °C). ► ethB gene (ETBE biodegradation) amplified during bioaugmentation (5 × 10 6 ethB gene copies L −1 ). - Abstract: Ethyl tert-butyl ether (ETBE) was detected at high concentration (300 mg L −1 ) in the groundwater below a gas-station. No significant carbon neither hydrogen isotopic fractionation of ETBE was detected along the plume. ETBE and BTEX biodegradation capacities of the indigenous microflora Pz1-ETBE and of a culture (MC-IFP) composed of Rhodococcus wratislaviensis IFP 2016, Rhodococcus aetherivorans IFP 2017 and Aquincola tertiaricarbonis IFP 2003 showed that ETBE and BTEX degradation rates were in the same range (ETBE: 0.91 and 0.83 mg L −1 h −1 and BTEX: 0.64 and 0.82 mg L −1 h −1 , respectively) but tert-butanol (TBA) accumulated transiently at a high level using Pz1-ETBE (74 mg L −1 ). An on-site pilot plant (2 m 3 ) filled with polluted groundwater and inoculated by MC-IFP, successfully degraded four successive additions of ETBE and gasoline. However, an insignificant ETBE isotopic fractionation was also accompanying this decrease which suggested the involvement of low fractionating-strains using EthB enzymes, but required of additional proofs. The ethB gene encoding a cytochrome P450 involved in ETBE biodegradation (present in R. aetherivorans IFP 2017) was monitored by quantitative real-time polymerase chain reaction (q-PCR) on DNA extracted from water sampled in the pilot plant which yield up to 5 × 10 6 copies of ethB gene per L −1 .

  5. Enrichment of beneficial bacteria in the skin microbiota of bats persisting with white-nose syndrome.

    Science.gov (United States)

    Lemieux-Labonté, Virginie; Simard, Anouk; Willis, Craig K R; Lapointe, François-Joseph

    2017-09-05

    Infectious diseases of wildlife are increasing worldwide with implications for conservation and human public health. The microbiota (i.e. microbial community living on or in a host) could influence wildlife disease resistance or tolerance. White-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans (Pd), has killed millions of hibernating North American bats since 2007. We characterized the skin microbiota of naïve, pre-WNS little brown bats (Myotis lucifugus) from three WNS-negative hibernation sites and persisting, previously exposed bats from three WNS-positive sites to test the hypothesis that the skin microbiota of bats shifts following WNS invasion. Using high-throughput 16S rRNA gene sequencing on 66 bats and 11 environmental samples, we found that hibernation site strongly influenced the composition and diversity of the skin microbiota. Bats from WNS-positive and WNS-negative sites differed in alpha and beta diversity, as well as in microbiota composition. Alpha diversity was reduced in persisting, WNS-positive bats, and the microbiota profile was enriched with particular taxa such Janthinobacterium, Micrococcaceae, Pseudomonas, Ralstonia, and Rhodococcus. Some of these taxa are recognized for their antifungal activity, and specific strains of Rhodococcus and Pseudomonas are known to inhibit Pd growth. Composition of the microbial community in the hibernaculum environment and the community on bat skin was superficially similar but differed in relative abundance of some bacterial taxa. Our results are consistent with the hypothesis that Pd invasion leads to a shift in the skin microbiota of surviving bats and suggest the possibility that the microbiota plays a protective role for bats facing WNS. The detection of what appears to be enrichment of beneficial bacteria in the skin microbiota of persisting bats is a promising discovery for species re-establishment. Our findings highlight not only the potential value of management actions that

  6. Bacterial community analysis of Tatsoi cultivated by hydroponics.

    Science.gov (United States)

    Koo, Ok K; Kim, Hun; Kim, Hyun J; Baker, Christopher A; Ricke, Steven C

    2016-07-02

    Tatsoi (Brassica narinosa) is a popular Asian salad green that is mostly consumed as a source of fresh produce. The purpose of this study was to assess the microbial diversity of Tatsoi cultivated in a hydroponic system and of its ecosystem. Tatsoi leaves, nutrient solution, and perlite/earth samples from a trickle feed system (TFS) and an ebb-and-flow system (EFS) were collected and their microbial communities were analyzed by pyrosequencing analysis. The results showed that most bacteria in the leaves from the TFS contained genus Sporosarcina (99.6%), while Rhizobium (60.4%) was dominant in the leaves from the EFS. Genus Paucibacter (18.21%) and Pelomonas (12.37%) were the most abundant microbiota in the nutrient solution samples of the TFS. In the EFS, the nutrient solution samples contained mostly genus Rhodococcus and Acinetobacter. Potential microbial transfer between the leaves and the ecosystem was observed in the EFS, while samples in the TFS were found to share only one species between the leaves, nutrient solution, and earth. Together, these results show that the bacterial populations in Tatsoi and in its ecosystem are highly diverse based on the cultivation system.

  7. Atomic resolution studies of haloalkane dehalogenases DhaA04, DhaA14 and DhaA15 with engineered access tunnels.

    Science.gov (United States)

    Stsiapanava, A; Dohnalek, J; Gavira, J A; Kuty, M; Koudelakova, T; Damborsky, J; Kuta Smatanova, I

    2010-09-01

    The haloalkane dehalogenase DhaA from Rhodococcus rhodochrous NCIMB 13064 is a bacterial enzyme that shows catalytic activity for the hydrolytic degradation of the highly toxic industrial pollutant 1,2,3-trichloropropane (TCP). Mutagenesis focused on the access tunnels of DhaA produced protein variants with significantly improved activity towards TCP. Three mutants of DhaA named DhaA04 (C176Y), DhaA14 (I135F) and DhaA15 (C176Y + I135F) were constructed in order to study the functional relevance of the tunnels connecting the buried active site of the protein with the surrounding solvent. All three protein variants were crystallized using the sitting-drop vapour-diffusion technique. The crystals of DhaA04 belonged to the orthorhombic space group P2(1)2(1)2(1), while the crystals of DhaA14 and DhaA15 had triclinic symmetry in space group P1. The crystal structures of DhaA04, DhaA14 and DhaA15 with ligands present in the active site were solved and refined using diffraction data to 1.23, 0.95 and 1.22 A, resolution, respectively. Structural comparisons of the wild type and the three mutants suggest that the tunnels play a key role in the processes of ligand exchange between the buried active site and the surrounding solvent.

  8. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate.

    Science.gov (United States)

    Pavlova, Martina; Klvana, Martin; Prokop, Zbynek; Chaloupkova, Radka; Banas, Pavel; Otyepka, Michal; Wade, Rebecca C; Tsuda, Masataka; Nagata, Yuji; Damborsky, Jiri

    2009-10-01

    Engineering enzymes to degrade anthropogenic compounds efficiently is challenging. We obtained Rhodococcus rhodochrous haloalkane dehalogenase mutants with up to 32-fold higher activity than wild type toward the toxic, recalcitrant anthropogenic compound 1,2,3-trichloropropane (TCP) using a new strategy. We identified key residues in access tunnels connecting the buried active site with bulk solvent by rational design and randomized them by directed evolution. The most active mutant has large aromatic residues at two out of three randomized positions and two positions modified by site-directed mutagenesis. These changes apparently enhance activity with TCP by decreasing accessibility of the active site for water molecules, thereby promoting activated complex formation. Kinetic analyses confirmed that the mutations improved carbon-halogen bond cleavage and shifted the rate-limiting step to the release of products. Engineering access tunnels by combining computer-assisted protein design with directed evolution may be a valuable strategy for refining catalytic properties of enzymes with buried active sites.

  9. Microbial monoterpene transformations – A review

    Directory of Open Access Journals (Sweden)

    Robert eMarmulla

    2014-07-01

    Full Text Available Isoprene and monoterpenes constitute a significant fraction of new plant biomass. Emission rates into the atmosphere alone are estimated to be over 500 Tg per year. These natural hydrocarbons are mineralized annually in similar quantities. In the atmosphere, abiotic photochemical processes cause lifetimes of minutes to hours. Microorganisms encounter isoprene, monoterpenes and other volatiles of plant origin while living in and on plants, in the soil and in aquatic habitats. Below toxic concentrations, the compounds can serve as carbon and energy source for aerobic and anaerobic microorganisms. Besides these catabolic reactions, transformations may occur as part of detoxification processes. Initial transformations of monoterpenes involve the introduction of functional groups, oxidation reactions and molecular rearrangements catalyzed by various enzymes. Pseudomonas and Rhodococcus strains and members of the genera Castellaniella and Thauera have become model organisms for the elucidation of biochemical pathways. We review here the enzymes and their genes together with microorganisms known for a monoterpene metabolism, with a strong focus on microorganisms that are taxonomically validly described and currently available from culture collections. Metagenomes of microbiomes with a monoterpene-rich diet confirmed the ecological relevance of monoterpene metabolism and raised concerns on the quality of our insights based on the limited biochemical knowledge.

  10. Culture-dependent and culture-independent characterization of potentially functional biphenyl-degrading bacterial community in response to extracellular organic matter from Micrococcus luteus.

    Science.gov (United States)

    Su, Xiao-Mei; Liu, Yin-Dong; Hashmi, Muhammad Zaffar; Ding, Lin-Xian; Shen, Chao-Feng

    2015-05-01

    Biphenyl (BP)-degrading bacteria were identified to degrade various polychlorinated BP (PCB) congers in long-term PCB-contaminated sites. Exploring BP-degrading capability of potentially useful bacteria was performed for enhancing PCB bioremediation. In the present study, the bacterial composition of the PCB-contaminated sediment sample was first investigated. Then extracellular organic matter (EOM) from Micrococcus luteus was used to enhance BP biodegradation. The effect of the EOM on the composition of bacterial community was investigated by combining with culture-dependent and culture-independent methods. The obtained results indicate that Proteobacteria and Actinobacteria were predominant community in the PCB-contaminated sediment. EOM from M. luteus could stimulate the activity of some potentially difficult-to-culture BP degraders, which contribute to significant enhancement of BP biodegradation. The potentially difficult-to-culture bacteria in response to EOM addition were mainly Rhodococcus and Pseudomonas belonging to Gammaproteobacteria and Actinobacteria respectively. This study provides new insights into exploration of functional difficult-to-culture bacteria with EOM addition and points out broader BP/PCB degrading, which could be employed for enhancing PCB-bioremediation processes. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  11. Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil

    International Nuclear Information System (INIS)

    Chaineau, C.H.; Dupont, J.; Bury, E.; Oudot, J.; Morel, J.

    1999-01-01

    Strains of hydrocarbon-degrading microorganisms (bacteria and fungi) were isolated from an agricultural soil in France. In a field, a portion was treated with oily cuttings resulting from the drilling of an onshore well. The cuttings which were spread at the rate of 600 g HC m -2 contained 10% of fuel oil hydrocarbons (HC). Another part of the field was left untreated. Three months after HC spreading, HC adapted bacteria and fungi were isolated at different soil depths in the two plots and identified. The biodegradation potential of the isolated strains was monitored by measuring the degradation rate of total HC, saturated hydrocarbons, aromatic hydrocarbons and resins of the fuel. Bacteria of the genera Pseudomonas, Brevundimonas, Sphingomonas, Acinetobacter, Rhodococcus, Arthrobacter, Corynebacterium and fungi belonging to Aspergillus, Penicillium, Beauveria, Acremonium, Cladosporium, Fusarium, and Trichoderma were identified. The most active strains in the assimilation of saturates and aromatics were Arthrobacter sp., Sphingomonas spiritivorum, Acinetobacter baumanii, Beauveria alba and Penicillum simplicissimum. The biodegradation potential of the hydrocarbon utilizing microorganisms isolated from polluted or unpolluted soils were similar. In laboratory pure cultures, saturated HC were more degraded than aromatic HC, whereas resins were resistant to microbial attack. On an average, individual bacterial strains were more active than fungi in HC biodegradation. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. Irradiation of Microbes from Spent Nuclear Fuel Storage Pool Environments

    International Nuclear Information System (INIS)

    Breckenridge, C.R.; Watkins, C.S.; Bruhn, D.F.; Roberto, F.F.; Tsang, M.N.; Pinhero, P.J.; Brey, R.F.; Wright, R.N.; Windes, W.F.

    1999-01-01

    Microbes have been isolated and identified from spent nuclear fuel storage pools at the Idaho National Engineering and Environmental Laboratory (INEEL). Included among these are Corynebacterium aquaticum, Pseudomonas putida, Comamonas acidovorans, Gluconobacter cerinus, Micrococcus diversus, Rhodococcus rhodochrous, and two strains of sulfate-reducing bacteria (SRB). We examined the sensitivity of these microbes to a variety of total exposures of radiation generated by a 6-MeV linear accelerator (LINAC). The advantage of using a LINAC is that it provides a relatively quick screen of radiation tolerance. In the first set of experiments, we exposed each of the aforementioned microbes along with four additional microbes, pseudomonas aeruginosa, Micrococcus luteus, Escherchia coli, and Deinococcus radiodurans to exposures of 5 x 10 3 and 6 x 10 4 rad. All microbial specimens withstood the lower exposure with little or no reduction in cell population. Upon exposing the microbes to the larger dose of 6 x 10 4 rad, we observed two distinct groupings: microbes that demonstrate resistance to radiation, and microbes that display intolerance through a dramatic reduction from their initial population. Microbes in the radiation tolerant grouping were exposed to 1.1 x 10 5 rad to examine the extent of their resistance. We observe a correlation between radiation resistance and gram stain. The gram-positive species we examined seem to demonstrate a greater radiation resistance

  13. Siderophore: Structural And Functional Characterisation – A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    Sah Stuti

    2015-09-01

    Full Text Available Plants and microbes have enormous importance in our daily life. Iron is said to be the fourth most abundant element in the earth's crust from soil, still many plants face problem in uptaking iron because it is found in insoluble form, which severely restricts the bioavailability of this metal. In response to this, microorganisms present in soil such as Pseudomonas sp., Enterobacter genera, Bacillus and Rhodococcus produce special iron carriers or iron-binding compounds called as ‘siderphores’ or ‘siderochromes’. This paper is an attempt to review the importance of siderphores in enhancing plants’ iron utilisation strategies, the mode of transport of siderophores along with iron across the memberane and depending on the difference in their chemical structure, functional moiety and their source of isolation of four different types of siderophore (hydroxamates, catecholates, carboxylates and siderophore with mixed ligand. Siderophore and their derivative have large application in agriculture as to increase soil fertility and as biocontrol for fungal pathogen. This review unlike other reviews includes (1 types of siderophore, (2 the structural difference amongst them, (3 siderophore biosynthesis, (4 transport mechanism, (5 the genetics of siderophore and (6 their efficacy in human life.

  14. Chemical Modification and Detoxification of the Pseudomonas aeruginosa Toxin 2-Heptyl-4-hydroxyquinoline N-Oxide by Environmental and Pathogenic Bacteria.

    Science.gov (United States)

    Thierbach, Sven; Birmes, Franziska S; Letzel, Matthias C; Hennecke, Ulrich; Fetzner, Susanne

    2017-09-15

    2-Heptyl-4-hydroxyquinoline N-oxide (HQNO), a major secondary metabolite and virulence factor produced by the opportunistic pathogen Pseudomonas aeruginosa, acts as a potent inhibitor of respiratory electron transfer and thereby affects host cells as well as microorganisms. In this study, we demonstrate the previously unknown capability of environmental and pathogenic bacteria to transform and detoxify this compound. Strains of Arthrobacter and Rhodococcus spp. as well as Staphylococcus aureus introduced a hydroxyl group at C-3 of HQNO, whereas Mycobacterium abscessus, M. fortuitum, and M. smegmatis performed an O-methylation, forming 2-heptyl-1-methoxy-4-oxoquinoline as the initial metabolite. Bacillus spp. produced the glycosylated derivative 2-heptyl-1-(β-d-glucopyranosydyl)-4-oxoquinoline. Assaying the effects of these metabolites on cellular respiration and on quinol oxidase activity of membrane fractions revealed that their EC 50 values were up to 2 orders of magnitude higher than that of HQNO. Furthermore, cellular levels of reactive oxygen species were significantly lower in the presence of the metabolites than under the influence of HQNO. Therefore, the capacity to transform HQNO should lead to a competitive advantage against P. aeruginosa. Our findings contribute new insight into the metabolic diversity of bacteria and add another layer of complexity to the metabolic interactions which likely contribute to shaping polymicrobial communities comprising P. aeruginosa.

  15. Identification of Inhibitors in Lignocellulosic Slurries and Determination of Their Effect on Hydrocarbon-Producing Microorganisms

    Directory of Open Access Journals (Sweden)

    Shihui Yang

    2018-04-01

    Full Text Available The aim of this work was to identify inhibitors in pretreated lignocellulosic slurries, evaluate high-throughput screening strategies, and investigate the impact of inhibitors on potential hydrocarbon-producing microorganisms. Compounds present in slurries that could inhibit microbial growth were identified through a detailed analysis of saccharified slurries by applying a combination of approaches of high-performance liquid chromatography, GC-MS, LC-DAD-MS, and ICP-MS. Several high-throughput assays were then evaluated to generate toxicity profiles. Our results demonstrated that Bioscreen C was useful for analyzing bacterial toxicity but not for yeast. AlamarBlue reduction assay can be a useful high-throughput assay for both bacterial and yeast strains as long as medium components do not interfere with fluorescence measurements. In addition, this work identified two major inhibitors (furfural and ammonium acetate for three potential hydrocarbon-producing bacterial species that include Escherichia coli, Cupriavidus necator, and Rhodococcus opacus PD630, which are also the primary inhibitors for ethanologens. This study was strived to establish a pipeline to quantify inhibitory compounds in biomass slurries and high-throughput approaches to investigate the effect of inhibitors on microbial biocatalysts, which can be applied for various biomass slurries or hydrolyzates generated through different pretreatment and enzymatic hydrolysis processes or different microbial candidates.

  16. Influence of Biopreparations on the Bacterial Community of Oily Waste

    Science.gov (United States)

    Biktasheva, L. R.; Galitskaya, P. Yu; Selivanovskaya, S. Yu

    2018-01-01

    Oil pollution is reported to be one the most serious environmental problems nowadays. Therefore, methods of remediation of oily polluted soils and oily wastes are of great importance. Bioremediation being a perspective method of sanitation of oil pollutions, includes biostimulation of the polluted sites’ indigenous microflora, and in some cases additional introduction of active strains able to decompose hydrocarbon. The efficacy of introducing such biopreparations depends on the interactions between the introduced microbes and the indigenous ones. In this study, the influence of bacterial consortium (Rhodococcus jialingiae, Stenotrophomonas rhizophila and Pseudomonas gessardii) introduction on the bioremediation of an oily waste sampled from a refinery situated in the Mari El region (Russia) was estimated. Single and multiple inoculations of the consortium in addition to moistening and aeration were compared with a control sample, which included only aeration and moistening of the waste. It was shown, that two of the three introduced strains (Rh. jialingiae and Ps.gessardii) gene copy numbers were higher in the inoculated variants than in the control sample and with their initial counts, which meant that these strains survived and included into the bacterial community of the wastes. At the same time, bacterial counts were significantly lower, and the physiological profile of waste microflora slightly altered in the inoculated remediation variants as compared with the control sample. Interestingly, no difference in the degradation rates of hydrocarbons was revealed in the inoculated remediation variants and the control sample.

  17. Selective cultures for the isolation of biosurfactant producing bacteria: comparison of different combinations of environmental inocula and hydrophobic carbon sources.

    Science.gov (United States)

    Domingues, Patrícia M; Louvado, António; Oliveira, Vanessa; Coelho, Francisco J C R; Almeida, Adelaide; Gomes, Newton C M; Cunha, Angela

    2013-01-01

    The potential of estuarine microniches as reservoirs of biosurfactant-producing bacteria was evaluated by testing different combinations of inocula and hydrophobic carbon sources. Selective cultures using diesel, petroleum, or paraffin as hydrophobic carbon sources were prepared and inoculated with water from the surface microlayer, bulk sediments, and sediment of the rhizosphere of Halimione portulacoides. These inocula were compared regarding the frequency of biosurfactant-producing strains among selected isolates. The community structure of the selective cultures was profiled using denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA gene fragments at the end of the incubation. The DGGE profiles corresponding to the communities established in selective cultures at the end of the incubation revealed that communities were different in terms of structural diversity. The highest diversity was observed in the selective cultures containing paraffin (H (') = 2.5). Isolates were obtained from the selective cultures (66) and tested for biosurfactant production by the atomized oil assay. Biosurfactant production was detected in 17 isolates identified as Microbacterium, Pseudomonas, Rhodococcus, and Serratia. The combination of estuarine surface microlayer (SML) water as inoculum and diesel as carbon source seems promising for the isolation of surfactant-producing bacteria. Supplemental materials are available for this article. Go to the publisher's online edition of Preparative Biochemistry and Biotechnology to view the supplemental file.

  18. Mechanism of enhanced conversion of 1,2,3-trichloropropane by mutant haloalkane dehalogenase revealed by molecular modeling

    Science.gov (United States)

    Banáš, Pavel; Otyepka, Michal; Jeřábek, Petr; Petřek, Martin; Damborský, Jiří

    2006-06-01

    1,2,3-Trichloropropane (TCP) is a highly toxic, recalcitrant byproduct of epichlorohydrin manufacture. Haloalkane dehalogenase (DhaA) from Rhodococcus sp. hydrolyses the carbon-halogen bond in various halogenated compounds including TCP, but with low efficiency ( k cat/ K m = 36 s-1 M-1). A Cys176Tyr-DhaA mutant with a threefold higher catalytic efficiency for TCP dehalogenation has been previously obtained by error-prone PCR. We have used molecular simulations and quantum mechanical calculations to elucidate the molecular mechanisms involved in the improved catalysis of the mutant, and enantioselectivity of DhaA toward TCP. The Cys176Tyr mutation modifies the protein access and export routes. Substitution of the Cys residue by the bulkier Tyr narrows the upper tunnel, making the second tunnel "slot" the preferred route. TCP can adopt two major orientations in the DhaA enzyme, in one of which the halide-stabilizing residue Asn41 forms a hydrogen bond with the terminal halogen atom of the TCP molecule, while in the other it bonds with the central halogen atom. The differences in these binding patterns explain the preferential formation of the ( R)- over the ( S)-enantiomer of 2,3-dichloropropane-1-ol in the reaction catalyzed by the enzyme.

  19. The role of bacteria and mycorrhiza in plant sulfur supply

    Directory of Open Access Journals (Sweden)

    Jacinta Mariea Gahan

    2014-12-01

    Full Text Available Plant growth is highly dependent on bacteria, saprophytic and mycorrhizal fungi which facilitate the cycling and mobilization of nutrients. Over 95% of the sulfur (S in soil is present in an organic form. Sulfate-esters and sulfonates, the major forms of organo-S in soils, arise through deposition of biological material and are transformed through subsequent humification. Fungi and bacteria release S from sulfate-esters using sulfatases, however, release of S from sulfonates is catalyzed by a bacterial multi-component mono-oxygenase system. The asfA gene is used as a key marker in this desulfonation process to study sulfonatase activity in soil bacteria identified as Variovorax, Polaromonas, Acidovorax and Rhodococcus. The rhizosphere is regarded as a hot spot for microbial activity and recent studies indicate that this is also the case for the mycorrhizosphere where bacteria may attach to the fungal hyphae capable of mobilizing organo-S. While current evidence is not showing sulfatase and sulfonatase activity in arbuscular mycorrhiza, their effect on the expression of plant host sulfate transporters is documented. A revision of the role of bacteria, fungi and the interactions between soil bacteria and mycorrhiza in plant S supply was conducted.

  20. Bacterial communities in ancient permafrost profiles of Svalbard, Arctic.

    Science.gov (United States)

    Singh, Purnima; Singh, Shiv M; Singh, Ram N; Naik, Simantini; Roy, Utpal; Srivastava, Alok; Bölter, Manfred

    2017-12-01

    Permafrost soils are unique habitats in polar environment and are of great ecological relevance. The present study focuses on the characterization of bacterial communities from permafrost profiles of Svalbard, Arctic. Counts of culturable bacteria range from 1.50 × 10 3 to 2.22 × 10 5 CFU g -1 , total bacterial numbers range from 1.14 × 10 5 to 5.52 × 10 5 cells g -1 soil. Bacterial isolates are identified through 16S rRNA gene sequencing. Arthrobacter and Pseudomonas are the most dominant genera, and A. sulfonivorans, A. bergeri, P. mandelii, and P. jessenii as the dominant species. Other species belong to genera Acinetobacter, Bacillus, Enterobacter, Nesterenkonia, Psychrobacter, Rhizobium, Rhodococcus, Sphingobacterium, Sphingopyxis, Stenotrophomonas, and Virgibacillus. To the best of our knowledge, genera Acinetobacter, Enterobacter, Nesterenkonia, Psychrobacter, Rhizobium, Sphingobacterium, Sphingopyxis, Stenotrophomonas, and Virgibacillus are the first northernmost records from Arctic permafrost. The present study fills the knowledge gap of culturable bacterial communities and their chronological characterization from permafrost soils of Ny-Ålesund (79°N), Arctic. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Selection of biosurfactan/bioemulsifier-producing bacteria from hydrocarbon-contaminated soil

    Directory of Open Access Journals (Sweden)

    Sabina Viramontes-Ramos

    2010-10-01

    Full Text Available Petroleum-derived hydrocarbons are among the most persistent soil contaminants, and some hydrocarbon-degrading microorganisms can produce biosurfactants to increase bioavailability and degradation. The aim of this work was to identify biosurfactant-producing bacterial strains isolated from hydrocarbon-contaminated sites, and to evaluate their biosurfactant properties. The drop-collapse method and minimal agar added with a layer of combustoleo were used for screening, and positive strains were grown in liquid medium, and surface tension and emulsification index were determined in cell-free supernantant and cell suspension. A total of 324 bacterial strains were tested, and 17 were positive for the drop-collapse and hydrocarbon-layer agar methods. Most of the strains were Pseudomonas, except for three strains (Acinetobacter, Bacillus, Rhodococcus. Surface tension was similar in cell-free and cell suspension measurements, with values in the range of 58 to 26 (mN/m, and all formed stable emulsions with motor oil (76-93% E24. Considering the variety of molecular structures among microbial biosurfactants, they have different chemical properties that can be exploited commercially, for applications as diverse as bioremediation or degradable detergents.

  2. Bioremediation of polyaromatic hydrocarbons (PAHs using rhizosphere technology

    Directory of Open Access Journals (Sweden)

    Sandeep Bisht

    2015-03-01

    Full Text Available The remediation of polluted sites has become a priority for society because of increase in quality of life standards and the awareness of environmental issues. Over the past few decades there has been avid interest in developing in situ strategies for remediation of environmental contaminants, because of the high economic cost of physicochemical strategies, the biological tools for remediation of these persistent pollutants is the better option. Major foci have been considered on persistent organic chemicals i.e.polyaromatic hydrocarbons (PAHs due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity. Rhizoremediation, a specific type of phytoremediation that involves both plants and their associated rhizospheric microbes is the creative biotechnological approach that has been explored in this review. Moreover, in this review we showed the significance of rhizoremediation of PAHs from other bioremediation strategies i.e. natural attenuation, bioaugmentation and phytoremediation and also analyze certain environmental factor that may influence the rhizoremediation technique. Numerous bacterial species were reported to degrade variety of PAHs and most of them are isolated from contaminated soil, however few reports are available from non contaminated soil. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Finally, exploring the molecular communication between plants and microbes, and exploiting this communication to achieve better results in the elimination of contaminants, is a fascinating area of research for future perspective.

  3. High-sensitivity stable-isotope probing by a quantitative terminal restriction fragment length polymorphism protocol.

    Science.gov (United States)

    Andeer, Peter; Strand, Stuart E; Stahl, David A

    2012-01-01

    Stable-isotope probing (SIP) has proved a valuable cultivation-independent tool for linking specific microbial populations to selected functions in various natural and engineered systems. However, application of SIP to microbial populations with relatively minor buoyant density increases, such as populations that utilize compounds as a nitrogen source, results in reduced resolution of labeled populations. We therefore developed a tandem quantitative PCR (qPCR)-TRFLP (terminal restriction fragment length polymorphism) protocol that improves resolution of detection by quantifying specific taxonomic groups in gradient fractions. This method combines well-controlled amplification with TRFLP analysis to quantify relative taxon abundance in amplicon pools of FAM-labeled PCR products, using the intercalating dye EvaGreen to monitor amplification. Method accuracy was evaluated using mixtures of cloned 16S rRNA genes, DNA extracted from low- and high-G+C bacterial isolates (Escherichia coli, Rhodococcus, Variovorax, and Microbacterium), and DNA from soil microcosms amended with known amounts of genomic DNA from bacterial isolates. Improved resolution of minor shifts in buoyant density relative to TRFLP analysis alone was confirmed using well-controlled SIP analyses.

  4. Microbial degradation of Cold Lake Blend and Western Canadian select dilbits by freshwater enrichments.

    Science.gov (United States)

    Deshpande, Ruta S; Sundaravadivelu, Devi; Techtmann, Stephen; Conmy, Robyn N; Santo Domingo, Jorge W; Campo, Pablo

    2018-06-15

    Treatability experiments were conducted to determine the biodegradation of diluted bitumen (dilbit) at 5 and 25 °C for 72 and 60 days, respectively. Microbial consortia obtained from the Kalamazoo River Enbridge Energy spill site were enriched on dilbit at both 5 (cryo) and 25 (meso) ºC. On every sampling day, triplicates were sacrificed and residual hydrocarbon concentrations (alkanes and polycyclic aromatic hydrocarbons) were determined by GCMS/MS. The composition and relative abundance of different bacterial groups were identified by 16S rRNA gene sequencing analysis. While some physicochemical differences were observed between the two dilbits, their biodegradation profiles were similar. The rates and extent of degradation were greater at 25 °C. Both consortia metabolized 99.9% of alkanes; however, the meso consortium was more effective at removing aromatics than the cryo consortium (97.5 vs 70%). Known hydrocarbon-degrading bacteria were present in both consortia (Pseudomonas, Rhodococcus, Hydrogenophaga, Parvibaculum, Arthrobacter, Acidovorax), although their relative abundances depended on the temperatures at which they were enriched. Regardless of the dilbit type, the microbial community structure significantly changed as a response to the diminishing hydrocarbon load. Our results demonstrate that dilbit can be effectively degraded by autochthonous microbial consortia from sites with recent exposure to dilbit contamination. Published by Elsevier B.V.

  5. Clinical, Bacteriological, and Histopathological Findings of a Testicular Fibrosis in a 6-Year-Old Lusitano Stallion

    Directory of Open Access Journals (Sweden)

    A. Rocha

    2012-01-01

    Full Text Available A 6-year-old Lusitano stallion was referred to our centre due to an enlarged left testicle. Anamnesis indicated that the stallion had a chronic hypertrophy of the left testicle, with no apparent ill effect on work (dressage training or semen production. Prolonged use of anti-inflammatory drugs (NSAIDs and antibiotics were probable. Upon examination of the animal, it was found that clinical signs were compatible with chronic testicular degeneration or fibrosis. Ultrasound scanning did not evidence the exuberant macroscopic lesions seen upon hemicastration of the left testicle, but it showed in the left spermatic cord a conspicuous absence of the typical hypoechogenic areas representing the pampiniform plexus. Swabbing of the penis, prepuce, and distal urethra resulted in the isolation of Rhodococcus equi and Corynebacterium spp. However, histopathological examination did not support infectious orchitis as cause of the lesions and no bacterial growth was obtained from swabbing of the parenchyma in the excised testicle. Histopathological findings were compatible with chronic orchitis with fibrosis and necrosis, probably secondary to ischemia of the testicular parenchyma. After hemi-castration, the stallion resumed semen production at acceptable levels.

  6. Ex situ treatment of N-nitrosodimethylamine (NDMA) in groundwater using a fluidized bed reactor.

    Science.gov (United States)

    Webster, Todd S; Condee, Charles; Hatzinger, Paul B

    2013-02-01

    N-nitrosodimethylamine (NDMA) is a suspected human carcinogen that has traditionally been treated in water using ultraviolet irradiation (UV). The objective of this research was to examine the application of a laboratory-scale fluidized bed reactor (FBR) as an alternative technology for treating NDMA to part-per-trillion (ng/L) concentrations in groundwater. Previous studies have shown that the bacterium Rhodococcus ruber ENV425 is capable of cometabolizing NDMA during growth on propane as a primary substrate in batch culture (Fournier et al., 2009) and in a bench-scale membrane bioreactor (Hatzinger et al., 2011) to low ng/L concentrations. R. ruber ENV425 was inoculated into the FBR during this study. With a hydraulic residence time (HRT) of 20 min, the FBR was found to be an effective means to treat 10-20 μg/L of NDMA to effluent concentrations less than 100 ng/L. When the HRT was increased to 30 min and oxygen and propane addition rates were optimized, the FBR system demonstrated treatment of the NDMA to effluent concentrations of less than 10 ng/L. Short-term shutdowns and the presence of trichloroethene (TCE) at 6 μg/L as a co-contaminant had minimal effect on the treatment of NDMA in the FBR. The data suggest that the FBR technology can be a viable alternative to UV for removing NDMA from groundwater. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Diversity, ecological distribution and biotechnological potential of Actinobacteria inhabiting seamounts and non-seamounts in the Tyrrhenian Sea

    KAUST Repository

    Ettoumi, Besma; Chouchane, Habib; Guesmi, Amel; Mahjoubi, Mouna; Brusetti, Lorenzo; Neifar, Mohamed; Borin, Sara; Daffonchio, Daniele; Cherif, Ameur

    2016-01-01

    In the present study, the ecological distribution of marine Actinobacteria isolated from seamount and non-seamount stations in the Tyrrhenian Sea was investigated. A collection of 110 isolates was analyzed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and 16S rRNA gene sequencing of representatives for each ARISA haplotype (n = 49). Phylogenetic analysis of 16S rRNA sequences showed a wide diversity of marine isolates and clustered the strains into 11 different genera, Janibacter, Rhodococcus, Arthrobacter, Kocuria, Dietzia, Curtobacterium, Micrococcus, Citricoccus, Brevibacterium, Brachybacterium and Nocardioides. Interestingly, Janibacter limosus was the most encountered species particularly in seamounts stations, suggesting that it represents an endemic species of this particular ecosystem. The application of BOX-PCR fingerprinting on J. limosus sub-collection (n = 22), allowed their separation into seven distinct BOX-genotypes suggesting a high intraspecific microdiversity among the collection. Furthermore, by screening the biotechnological potential of selected actinobacterial strains, J. limosus was shown to exhibit the most important biosurfactant activity. Our overall data indicates that Janibacter is a major and active component of seamounts in the Tyrrhenian Sea adapted to low nutrient ecological niche.

  8. Degradation Capability of n-hexadecane Degrading Bacteria from Petroleum Contaminated Soils

    Directory of Open Access Journals (Sweden)

    PENG Huai-li

    2017-05-01

    Full Text Available Samplings were performed in the petroleum contaminated soils of Dongying, Shandong Province of China. Degrading bacteria was isolated through enrichment in a Bushnel-Hass medium, with n-hexadecane as the sole source of carbon and energy. Then the isolated strains were identified by amplification of 16S rDNA gene and sequencing. The strain TZSX2 was selected as the powerful bacteria with stronger degradation ability, which was then identified as Rhodococcus hoagii genera based on the constructing results of the phylogenetic tree. The optimum temperature that allowed both high growth and efficient degradation ratio was in the scope of 28~36 ℃, and gas chromatography results showed that approximately more than 30% of n-hexadecane could be degraded in one week of incubation within the temperature range. Moreover, the strain TZSX2 was able to grow in high concentrations of n-hexadecane. The degradation rate reached 79% when the initial n-hexadecane concentration was 2 mL·L-1,while it still achieved 12% with n-hexadecane concentration of 20 mL·L-1. The optimal pH was 9 that allowed the highest growth and the greatest degradation rate of 91%. Above all, the screened strain TZSX2 showed high capabilities of alkali tolerance with excellent degradation efficiency for even high concentration of n-hexadecane, and thus it would be quite suitable for the remediation of petroleum contaminated soils especially in the extreme environment.

  9. Bacterial diversity characterization in petroleum samples from Brazilian reservoirs

    Science.gov (United States)

    de Oliveira, Valéria Maia; Sette, Lara Durães; Simioni, Karen Christina Marques; dos Santos Neto, Eugênio Vaz

    2008-01-01

    This study aimed at evaluating potential differences among the bacterial communities from formation water and oil samples originated from biodegraded and non-biodegraded Brazilian petroleum reservoirs by using a PCR-DGGE based approach. Environmental DNA was isolated and used in PCR reactions with bacterial primers, followed by separation of 16S rDNA fragments in the DGGE. PCR products were also cloned and sequenced, aiming at the taxonomic affiliation of the community members. The fingerprints obtained allowed the direct comparison among the bacterial communities from oil samples presenting distinct degrees of biodegradation, as well as between the communities of formation water and oil sample from the non-biodegraded reservoir. Very similar DGGE band profiles were observed for all samples, and the diversity of the predominant bacterial phylotypes was shown to be low. Cloning and sequencing results revealed major differences between formation water and oil samples from the non-biodegraded reservoir. Bacillus sp. and Halanaerobium sp. were shown to be the predominant components of the bacterial community from the formation water sample, whereas the oil sample also included Alicyclobacillus acidoterrestris, Rhodococcus sp., Streptomyces sp. and Acidithiobacillus ferrooxidans. The PCR-DGGE technique, combined with cloning and sequencing of PCR products, revealed the presence of taxonomic groups not found previously in these samples when using cultivation-based methods and 16S rRNA gene library assembly, confirming the need of a polyphasic study in order to improve the knowledge of the extent of microbial diversity in such extreme environments. PMID:24031244

  10. Screening of biosurfactant producers from petroleum hydrocarbon contaminated sources in cold marine environments.

    Science.gov (United States)

    Cai, Qinhong; Zhang, Baiyu; Chen, Bing; Zhu, Zhiwen; Lin, Weiyun; Cao, Tong

    2014-09-15

    An overview of literature about isolating biosurfactant producers from marine sources indicated no such producers have been reported form North Atlantic Canada. Water and sediment samples were taken from petroleum hydrocarbon contaminated coastal and offshore areas in this region. Either n-hexadecane or diesel was used as the sole carbon source for the screening. A modified colony-based oil drop collapsing test was used to cover sessile biosurfactant producers. Fifty-five biosurfactant producers belong to genera of Alcanivorax, Exiguobacterium, Halomonas, Rhodococcus, Bacillus, Acinetobacter, Pseudomonas, and Streptomyces were isolated. The first three genera were established after 1980s with interesting characteristics and limited relevant publications. Some of the 55 isolated strains were found with properties such as greatly reducing surface tension, stabilizing emulsion and producing flocculant. Isolates P6-4P and P1-5P were selected to demonstrate the performance of biosurfactant production, and were found to reduce the surface tension of water to as low as 28 dynes/cm. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. [Elimination of volatile compounds of leaf tobacco from air emissions using biofiltration].

    Science.gov (United States)

    Zagustina, N A; Misharina, T A; Vepritskiĭ, A A; Zhukov, V G; Ruzhitskiĭ, A O; Terenina, M B; Krikunova, N I; Kulikova, A K; Popov, V O

    2012-01-01

    The composition of the volatile organic compounds (VOCs) of various leaf tobacco brands and their blends has been studied. The differences in the content of nicotine, solanone, tetramethyl hexadecenol, megastigmatrienones, and other compounds, determining the specific tobacco smell, have been revealed. A microbial consortium, which is able to deodorize simulated tobacco emissions and decompose nicotine, has been formed by long-term adaptation to the VOCs of tobacco leaves in a laboratory reactor, functioning as a trickle-bed biofilter. Such a biofilter eliminates 90% of the basic toxic compound (nicotine) and odor-active compounds; the filtration efficiency does not change for tobacco brands with different VOC concentrations or in the presence of foreign substances. The main strains, isolated from the formed consortium and participating in the nicotine decomposition process, belong to the genera Pseudomonas, Bacillus, and Rhodococcus. An examination of the biofilter trickling fluid has shown full decomposition of nicotine and odor-active VOCs. The compounds, revealed in the trickling fluid, did not have any odor and were nontoxic. The obtained results make it possible to conduct scaling of the biofiltration process to eliminate odor from air emissions in the tobacco industry.

  12. Synthetic biology for manufacturing chemicals: constraints drive the use of non-conventional microbial platforms.

    Science.gov (United States)

    Czajka, Jeffrey; Wang, Qinhong; Wang, Yechun; Tang, Yinjie J

    2017-10-01

    Genetically modified microbes have had much industrial success producing protein-based products (such as antibodies and enzymes). However, engineering microbial workhorses for biomanufacturing of commodity compounds remains challenging. First, microbes cannot afford burdens with both overexpression of multiple enzymes and metabolite drainage for product synthesis. Second, synthetic circuits and introduced heterologous pathways are not yet as "robust and reliable" as native pathways due to hosts' innate regulations, especially under suboptimal fermentation conditions. Third, engineered enzymes may lack channeling capabilities for cascade-like transport of metabolites to overcome diffusion barriers or to avoid intermediate toxicity in the cytoplasmic environment. Fourth, moving engineered hosts from laboratory to industry is unreliable because genetic mutations and non-genetic cell-to-cell variations impair the large-scale fermentation outcomes. Therefore, synthetic biology strains often have unsatisfactory industrial performance (titer/yield/productivity). To overcome these problems, many different species are being explored for their metabolic strengths that can be leveraged to synthesize specific compounds. Here, we provide examples of non-conventional and genetically amenable species for industrial manufacturing, including the following: Corynebacterium glutamicum for its TCA cycle-derived biosynthesis, Yarrowia lipolytica for its biosynthesis of fatty acids and carotenoids, cyanobacteria for photosynthetic production from its sugar phosphate pathways, and Rhodococcus for its ability to biotransform recalcitrant feedstock. Finally, we discuss emerging technologies (e.g., genome-to-phenome mapping, single cell methods, and knowledge engineering) that may facilitate the development of novel cell factories.

  13. Effects of bovine milk lactoperoxidase system on some bacteria.

    Science.gov (United States)

    Cankaya, M; Sişecioğlu, M; Bariş, O; Güllüce, M; Ozdemir, H

    2010-01-01

    Bovine lactoperoxidase (LPO) was purified from skimmed milk using amberlite CG-50-H+ resin, CM sephadex C-50 ion-exchange chromatography, and sephadex G-100 gel filtration chromatography. Lactoperoxidase was purified 20.45-fold with a yield of 28.8%. Purity of enzyme checked by sodium dodecyl sulphate-polyacrylamide gel electrophoresis method and a single band was observed. Km was 0.25 mM at 20 degrees C, Vmax value was 7.95 micromol/ml min at 20 degrees C (pH 6.0). Antibacterial study was done by disk diffusion method of Kir-by-Bauer using Mueller-Hinton agar medium with slight modification. Bovine LPO showed high antibacterial activity in 100 mM thiocyanate-100 mM H2O2 medium for some bacteria (Brevibacillus centrosaurus, B. choshinensis, B. lyticum, Cedecea davisae, Chryseobacterium indoltheticum, Clavibacter michiganense pv. insidiosum, Kocuria erythromyxa, K. kristinae, K. rosea, K. varians, Paenibacillus validus, Pseudomonas syringae pv. populans, Ralstonia pickettii, Rhodococcus wratislaviensis, Serratia fonticola, Streptomyces violaceusniger, Vibrio cholerae-nonO1) respectively, and compared with well known antibacterial substances (levofloxacin, netilmicin). LPO system has inhibition effects on all type bacteria and concentration is really important such as LPO-100 mM thiocyanate-100 mM H2O2 system was proposed as an effective agent against many factors causing several diseases.

  14. Diversity of the microbiota involved in wine and organic apple cider submerged vinegar production as revealed by DHPLC analysis and next-generation sequencing.

    Science.gov (United States)

    Trček, Janja; Mahnič, Aleksander; Rupnik, Maja

    2016-04-16

    Unfiltered vinegar samples collected from three oxidation cycles of the submerged industrial production of each, red wine and organic apple cider vinegars, were sampled in a Slovene vinegar producing company. The samples were systematically collected from the beginning to the end of an oxidation cycle and used for culture-independent microbial analyses carried out by denaturing high pressure liquid chromatography (DHPLC) and Illumina MiSeq sequencing of 16S rRNA gene variable regions. Both approaches showed a very homogeneous bacterial structure during wine vinegar production but more heterogeneous during organic apple cider vinegar production. In all wine vinegar samples Komagataeibacter oboediens (formerly Gluconacetobacter oboediens) was a predominating species. In apple cider vinegar the acetic acid and lactic acid bacteria were two major groups of bacteria. The acetic acid bacterial consortium was composed of Acetobacter and Komagataeibacter with the Komagataeibacter genus outcompeting the Acetobacter in all apple cider vinegar samples at the end of oxidation cycle. Among the lactic acid bacterial consortium two dominating genera were identified, Lactobacillus and Oenococcus, with Oenococcus prevailing with increasing concentration of acetic acid in vinegars. Unexpectedly, a minor genus of the acetic acid bacterial consortium in organic apple cider vinegar was Gluconobacter, suggesting a possible development of the Gluconobacter population with a tolerance against ethanol and acetic acid. Among the accompanying bacteria of the wine vinegar, the genus Rhodococcus was detected, but it decreased substantially by the end of oxidation cycles. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Selection of mesophilic microorganisms with biodesulfuration capacity

    International Nuclear Information System (INIS)

    Madero, A; Mogollon, L. I; Mora, A.L; Osorio, L.F

    1998-01-01

    The development of bio desulfurization (BDS) processes for hydrocarbons requires fast and reliable methods for the screening of microorganisms. This work shows the results of the screening process for indigenous Colombian strains with a BDS potential capacity. The main criteria for the screening were the qualitative and quantitative determination of 2-hydroxybiphenyl (2-HBP) as the typical metabolite of the 4S specific pathway. Microorganisms were cultured by two methodologies, A and B, using DBT as the model compound. The quantitative determination of metabolites was made by HPLC. Thirteen strains were evaluated, including the strain Rhodococcus rhodocrous IGTS8, by methods A and B. In method A, the inoculum was exposed to DBT since the beginning of the culture. Method B, employed two stages: (i) Growth period under limiting sulfur conditions, (ii) Transforming period, in which the pre-grown inoculum was exposed to the organic sulfur substrate. The culture of mesophilic microorganisms isolated by method B, served to find a mechanism for the organic sulfur metabolism, and the evaluation of the sulfur removal capability of five indigenous strains. In the cultures of these strains, 2- hydroxybiphenyl (2-HBP) was detected as a byproduct of DBT metabolism, both qualitatively and quantitatively

  16. The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: feasibility during field studies.

    Science.gov (United States)

    Szulc, Alicja; Ambrożewicz, Damian; Sydow, Mateusz; Ławniczak, Łukasz; Piotrowska-Cyplik, Agnieszka; Marecik, Roman; Chrzanowski, Łukasz

    2014-01-01

    The study focused on assessing the influence of bioaugmentation and addition of rhamnolipids on diesel oil biodegradation efficiency during field studies. Initial laboratory studies (measurement of emitted CO2 and dehydrogenase activity) were carried out in order to select the consortium for bioaugmentation as well as to evaluate the most appropriate concentration of rhamnolipids. The selected consortium consisted of following bacterial taxa: Aeromonas hydrophila, Alcaligenes xylosoxidans, Gordonia sp., Pseudomonas fluorescens, Pseudomonas putida, Rhodococcus equi, Stenotrophomonas maltophilia, Xanthomonas sp. It was established that the application of rhamnolipids at 150 mg/kg of soil was most appropriate in terms of dehydrogenase activity. Based on the obtained results, four treatment methods were designed and tested during 365 days of field studies: I) natural attenuation; II) addition of rhamnolipids; III) bioaugmentation; IV) bioaugmentation and addition of rhamnolipids. It was observed that bioaugmentation contributed to the highest diesel oil biodegradation efficiency, whereas the addition of rhamnolipids did not notably influence the treatment process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. The Effectiveness of Anti-R. equi Hyperimmune Plasma against R. equi Challenge in Thoroughbred Arabian Foals of Mares Vaccinated with R. equi Vaccine

    Directory of Open Access Journals (Sweden)

    Osman Erganis

    2014-01-01

    Full Text Available This study aimed to determine the effectiveness of a pregnant mare immunization of a Rhodococcus equi (R. equi vaccine candidate containing a water-based nanoparticle mineral oil adjuvanted (Montanide IMS 3012 inactive bacterin and virulence-associated protein A (VapA, as well as the administration of anti-R. equi hyperimmune (HI plasma against R. equi challenge in the mares’ foals. The efficacy of passive immunizations (colostral passive immunity by mare vaccination and artificial passive immunity by HI plasma administration was evaluated based on clinical signs, complete blood count, blood gas analysis, serological response (ELISA, interleukin-4 (IL-4 and interferon gamma (IFN-γ, total cell count of the bronchoalveolar lavage fluids (BALF samples, reisolation rate of R. equi from BALF samples (CFU/mL, lung samples (CFU/gr, and lesion scores of the organs and tissue according to pathological findings after necropsy in the foals. The vaccination of pregnant mares and HI plasma administration in the foals reduced the severity of R. equi pneumonia and lesion scores of the organs and tissue by 3.54-fold compared to the control foals. This study thus indicates that immunization of pregnant mares with R. equi vaccine candidate and administration of HI plasma in mares’ foals effectively protect foals against R. equi challenge.

  18. Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents

    International Nuclear Information System (INIS)

    Gargouri, Boutheina; Karray, Fatma; Mhiri, Najla; Aloui, Fathi; Sayadi, Sami

    2011-01-01

    A continuously stirred tank bioreactor (CSTR) was used to optimize feasible and reliable bioprocess system in order to treat hydrocarbon-rich industrial wastewaters. A successful bioremediation was developed by an efficient acclimatized microbial consortium. After an experimental period of 225 days, the process was shown to be highly efficient in decontaminating the wastewater. The performance of the bioaugmented reactor was demonstrated by the reduction of COD rates up to 95%. The residual total petroleum hydrocarbon (TPH) decreased from 320 mg TPH l -1 to 8 mg TPH l -1 . Analysis using gas chromatography-mass spectrometry (GC-MS) identified 26 hydrocarbons. The use of the mixed cultures demonstrated high degradation performance for hydrocarbons range n-alkanes (C10-C35). Six microbial isolates from the CSTR were characterized and species identification was confirmed by sequencing the 16S rRNA genes. The partial 16S rRNA gene sequences demonstrated that 5 strains were closely related to Aeromonas punctata (Aeromonas caviae), Bacillus cereus, Ochrobactrum intermedium, Stenotrophomonas maltophilia and Rhodococcus sp. The 6th isolate was affiliated to genera Achromobacter. Besides, the treated wastewater could be considered as non toxic according to the phytotoxicity test since the germination index of Lepidium sativum ranged between 57 and 95%. The treatment provided satisfactory results and presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries.

  19. Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents.

    Science.gov (United States)

    Gargouri, Boutheina; Karray, Fatma; Mhiri, Najla; Aloui, Fathi; Sayadi, Sami

    2011-05-15

    A continuously stirred tank bioreactor (CSTR) was used to optimize feasible and reliable bioprocess system in order to treat hydrocarbon-rich industrial wastewaters. A successful bioremediation was developed by an efficient acclimatized microbial consortium. After an experimental period of 225 days, the process was shown to be highly efficient in decontaminating the wastewater. The performance of the bioaugmented reactor was demonstrated by the reduction of COD rates up to 95%. The residual total petroleum hydrocarbon (TPH) decreased from 320 mg TPH l(-1) to 8 mg TPH l(-1). Analysis using gas chromatography-mass spectrometry (GC-MS) identified 26 hydrocarbons. The use of the mixed cultures demonstrated high degradation performance for hydrocarbons range n-alkanes (C10-C35). Six microbial isolates from the CSTR were characterized and species identification was confirmed by sequencing the 16S rRNA genes. The partial 16S rRNA gene sequences demonstrated that 5 strains were closely related to Aeromonas punctata (Aeromonas caviae), Bacillus cereus, Ochrobactrum intermedium, Stenotrophomonas maltophilia and Rhodococcus sp. The 6th isolate was affiliated to genera Achromobacter. Besides, the treated wastewater could be considered as non toxic according to the phytotoxicity test since the germination index of Lepidium sativum ranged between 57 and 95%. The treatment provided satisfactory results and presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents

    Energy Technology Data Exchange (ETDEWEB)

    Gargouri, Boutheina; Karray, Fatma; Mhiri, Najla; Aloui, Fathi [Laboratoire des Bioprocedes Environnementaux, Pole d' Excellence Regional AUF-LBPE, Centre de Biotechnologie de Sfax, Universite de Sfax, BP 1117, 3018 Sfax (Tunisia); Sayadi, Sami, E-mail: sami.sayadi@cbs.rnrt.tn [Laboratoire des Bioprocedes Environnementaux, Pole d' Excellence Regional AUF-LBPE, Centre de Biotechnologie de Sfax, Universite de Sfax, BP 1117, 3018 Sfax (Tunisia)

    2011-05-15

    A continuously stirred tank bioreactor (CSTR) was used to optimize feasible and reliable bioprocess system in order to treat hydrocarbon-rich industrial wastewaters. A successful bioremediation was developed by an efficient acclimatized microbial consortium. After an experimental period of 225 days, the process was shown to be highly efficient in decontaminating the wastewater. The performance of the bioaugmented reactor was demonstrated by the reduction of COD rates up to 95%. The residual total petroleum hydrocarbon (TPH) decreased from 320 mg TPH l{sup -1} to 8 mg TPH l{sup -1}. Analysis using gas chromatography-mass spectrometry (GC-MS) identified 26 hydrocarbons. The use of the mixed cultures demonstrated high degradation performance for hydrocarbons range n-alkanes (C10-C35). Six microbial isolates from the CSTR were characterized and species identification was confirmed by sequencing the 16S rRNA genes. The partial 16S rRNA gene sequences demonstrated that 5 strains were closely related to Aeromonas punctata (Aeromonas caviae), Bacillus cereus, Ochrobactrum intermedium, Stenotrophomonas maltophilia and Rhodococcus sp. The 6th isolate was affiliated to genera Achromobacter. Besides, the treated wastewater could be considered as non toxic according to the phytotoxicity test since the germination index of Lepidium sativum ranged between 57 and 95%. The treatment provided satisfactory results and presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries.

  1. The effect of structure and a secondary carbon source on the microbial degradation of chlorophenoxy acids.

    Science.gov (United States)

    Evangelista, S; Cooper, D G; Yargeau, V

    2010-05-01

    Pseudomonas putida, Aspergillus niger, Bacillus subtilis, Pseudomonas fluorescens, Sphingomonas herbicidovorans and Rhodococcus rhodochrous growing on glucose in a medium containing one of three chlorophenoxy acids at a concentration of 0.1 g L(-1) (clofibric acid, (R)-2-(4-chloro-2-methylphenoxy)propionic acid (mecoprop or MCPP) and 4-chloro-2-methylphenoxyacetic acid (MCPA)) degraded these compounds to varying degrees; from nonmeasurable to almost complete removal. These results with the addition of glucose (2.5 g L(-1)) as an easy to use carbon source indicated the formation of metabolites different from results reported in the literature for growth studies in which the chlorophenoxy acid was the sole carbon source. The metabolite, 4-chloro-2-methylphenol, which had been reported previously, was only observed in trace amounts for MCPP and MCPA in the presence of S. herbicidovorans and glucose. In addition, three other compounds (M1, M3 and M4) were observed. It is suggested that these unidentified metabolites resulted from ring opening of the metabolite 4-chloro-2-methylphenol (M2). The rate of biodegradation of the chlorophenoxy acids was influenced by the degree of steric hindrance adjacent to the internal oxygen bond common to all three compounds. The most hindered compound, clofibric acid, was converted to ethyl clofibrate by R. rhodochrous but was not degraded by any microorganisms studied. The more accessible internal oxygen bonds of the other two chlorophenoxy acids, MCPP and MCPA, were readily broken by S. herbicidovorans. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Actinobacterial community structure in the Polar Frontal waters of the Southern Ocean of the Antarctica using Geographic Information System (GIS: A novel approach to study Ocean Microbiome

    Directory of Open Access Journals (Sweden)

    P. Sivasankar

    2018-04-01

    Full Text Available Integration of microbiological data and geographical locations is necessary to understand the spatiotemporal patterns of the microbial diversity of an ecosystem. The Geographic Information System (GIS to map and catalogue the data on the actinobacterial diversity of the Southern Ocean waters was completed through sampling and analysis. Water samples collected at two sampling stations viz. Polar Front 1 (Station 1 and Polar Front 2 (Station 2 during 7th Indian Scientific Expedition to the Indian Ocean Sector of the Southern Ocean (SOE-2012-13 were used for analysis. At the outset, two different genera of Actinobacteria were recorded at both sampling stations. Streptomyces was the dominanted with the high score (> 60%, followed by Nocardiopsis (< 30% at both the sampling stations-Polar Front 1 and Polar Front 2-along with other invasive genera such as Agrococcus, Arthrobacter, Cryobacterium, Curtobacterium, Microbacterium, Marisediminicola, Rhodococcus and Kocuria. This data will help to discriminate the diversity and distribution pattern of the Actinobacteria in the Polar Frontal Region of the Southern Ocean waters. It is a novel approach useful for geospatial cataloguing of microbial diversity from extreme niches and in various environmental gradations. Furthermore, this research work will act as the milestone for bioprospecting of microbial communities and their products having potential applications in healthcare, agriculture and beneficial to mankind. Hence, this research work would have significance in creating a database on microbial communities of the Antarctic ecosystem. Keywords: Antarctica, Marine actinobacteria, Southern ocean, GIS, Polar Frontal waters, Microbiome

  3. Bioaccumulation of 137Cs by culture collection strains of bacteria and fungi

    International Nuclear Information System (INIS)

    Pipiska, M.; Rozloznik, M.; Augustin, J.

    2003-01-01

    Soil decontamination of soil contaminated by low-level activities of radionuclides, mainly by caesium-137, which come from accidental releases by maintenance of nuclear devices and by liquid wastes reprocessing, is long-term and expensive technology. Knowledge of the causations, which control the processes of bioaccumulation of radionuclides, is a necessary condition for critical assessment and successful utilization of processes of bioremediation in situ in practise. The authors present the experimentally gained quantitative values of bioaccumulation of caesium-137 from water solutions by micro organism cultures of Rhodotorula aurantiaca CCY 20-9-1, Sacharomyces cerevisiae, Rhodococcus rhodochrous ATCC 15906, Streptomyces sp. DX-IX, Coriolus versicolor CCWDF-14 and Rhizopus sp. R-18. Intensively growing cultures reach the highest values of bioaccumulation; the cultures in non-growing phase reach several orders lower values. From researched micro organisms the highest values of bioaccumulation of Cs + 5.1 pmol/g (wet weight) at initial concentration of Cs + in solution co = 1 nmol/l (without carrier) and 29.2 μmol/g (wet weight) at co = 6 mmol/l Cs + (adding of carrier CsCl) were found out at growing culture S. cerevisiae as model of eukaryotic cell after an achievement of maximal stationary grow phase. Acquired information refer to the possible role of soil micro organisms at bioaccumulation of 137 Cs in contaminated soils and their potential utilization in lowering of radioactive contamination of environment (authors)

  4. Biodegradación de hidrocarburos en fondos de tanques de la industria petrolera

    Directory of Open Access Journals (Sweden)

    Graciela Pucci

    2015-04-01

    Full Text Available Los fondos de tanques provenientes de la industria petrolera son un problema ambiental a resolver en la cuenca del golfo San Jorge. En este trabajo se estudio la biodegradación del hidrocarburo remanente que queda en el sedimento después del lavado con agua y detergente del fondo de tanque. Se realizaron bioreactores a los cuales se los siguió con el sistema OxiTop, consumo de oxígeno, se realizaron recuentos bacterianos y determinación de hidrocarburos por infrarrojo (IR y por cromatografía gaseosa (GC. El sedimento proveniente del lavado de fondo de tanque contenía cantidad suficiente de bacterias degradadoras y aerobias totales, con un predominio de los géneros Pseudomonas sp y Rhodococcus sp que junto a las condiciones de 20 % humedad, oxigenación y nutrientes en una proporción de 100:3:03 redujeron los hidrocarburos de 2,9 a 0,4 %. La degradación se produjo mayoritariamente entre los hidrocarburos alifáticos de cadena entre 13 a 26 átomos de carbono, la fracción aromáticas presentó baja degradación.

  5. Stabilization of heavy oil-water emulsions using a bio/chemical emulsifier mixture

    Energy Technology Data Exchange (ETDEWEB)

    Farahbakhsh, A.; Taghizadeh, M.; Movagharnejad, K. [Chemical Engineering Department, Babol University of Technology, Babol (Iran, Islamic Republic of); Yakhchali, B. [National Institute of Genetic Engineering and Biotechnology, Tehran (Iran, Islamic Republic of)

    2011-11-15

    In this study, the viscosity reduction of heavy oil has been investigated through the formation of oil-water emulsion using a bio/chemical emulsifier mixture. Four bioemulsifiers from indigenous Rhodococcus ergthropolis and Bacillus licheniformis strains were used to stabilize a highly-viscous oil-in-water emulsion. The Taguchi method with an L{sub 9} orthogonal array design was used to investigate the effect of various control factors on the formation of the oil/water emulsions. An emulsion with lowest viscosity was formed using ACO4 strain. The substantial stability of the oil-in-water emulsion allows the heavy oil to be transported practically over long distances or remain stationary for a considerable period of time prior to utilization. As the result of Taguchi analysis, the temperature and concentration of the emulsifier had a significant influence on viscosity reduction of the emulsion. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Bacterial production of short-chain organic acids and trehalose from levulinic acid: a potential cellulose-derived building block as a feedstock for microbial production.

    Science.gov (United States)

    Habe, Hiroshi; Sato, Shun; Morita, Tomotake; Fukuoka, Tokuma; Kirimura, Kohtaro; Kitamoto, Dai

    2015-02-01

    Levulinic acid (LA) is a platform chemical derived from cellulosic biomass, and the expansion of LA utilization as a feedstock is important for production of a wide variety of chemicals. To investigate the potential of LA as a substrate for microbial conversion to chemicals, we isolated and identified LA-utilizing bacteria. Among the six isolated strains, Pseudomonas sp. LA18T and Rhodococcus hoagie LA6W degraded up to 70 g/L LA in a high-cell-density system. The maximal accumulation of acetic acid by strain LA18T and propionic acid by strain LA6W was 13.6 g/L and 9.1 g/L, respectively, after a 4-day incubation. Another isolate, Burkholderia stabilis LA20W, produced trehalose extracellularly in the presence of 40 g/L LA to approximately 2 g/L. These abilities to produce useful compounds supported the potential of microbial LA conversion for future development and cellulosic biomass utilization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Isolation and identification of aerobic polychlorinated biphenyls degrading bacteria

    Directory of Open Access Journals (Sweden)

    Bibi Fatemeh Nabavi

    2013-01-01

    Full Text Available Aims: The purpose of this study was to isolate and identify aerobic polychlorinated biphenyls (PCBs degrading bacteria. Materials and Methods: This study was performed in lab scale aerobic sequencing batch biofilm reactor. Polyurethane foams were used as bio-carrier and synthetic wastewater was prepared with PCBs in transformer oil as the main substrate (20-700 μg/l and acetone as a solvent for PCBs as well as microelements. After achieving to adequate microbial population and acclimation of microorganisms to PCB compounds with high efficiency of PCB removal, identification of degrading microbial species was performed by 16s rRNA gene sequencing of isolated bacteria. Results: Gene sequencing results of the isolated bacteria showed that Rhodococcus spp., Pseudomonas spp., Pseudoxanthomonas spp., Agromyces spp., and Brevibacillus spp. were dominant PCB-degrading bacteria. Conclusion: PCB compounds can be degraded by some microorganisms under aerobic or anaerobic conditions or at least be reduced to low chlorinated congeners, despite their chemical stability and toxicity. Based on the results of the study, five bacterial species capable of degrading PCBs in transformer oil have been identified.

  8. Genetic diversity of the causative agent of ice-ice disease of the seaweed Kappaphycus alvarezii from Karimunjawa island, Indonesia

    Science.gov (United States)

    Syafitri, E.; Prayitno, S. B.; Ma'ruf, W. F.; Radjasa, O. K.

    2017-02-01

    An essential step in investigating the bacterial role in the occurrence of diseases in Kappaphycus alvarezii is the characterization of bacteria associated with this seaweed. A molecular characterization was conducted on the genetic diversity of the causative agents of ice-ice disease associated with K. alvarezii widely known as the main source of kappa carrageenan. K. alvrezii infected with ice-ice were collected from the Karimunjawa island, North Java Sea, Indonesia. Using Zobell 2216E marine agar medium, nine bacterial species were isolated from the infected seaweed. The molecular characterizations revealed that the isolated bacteria causing ice-ice disease were closely related to the genera of Alteromonas, Bacillus, Pseudomonas, Pseudoalteromonas, Glaciecola, Aurantimonas, and Rhodococcus. In order to identify the symptoms causative organisms, the isolated bacterial species were cultured and were evaluated for their pathogenity. Out of 9 species, only 3 isolates were able to cause the ice-ice symptoms and consisted of Alteromonas macleodii, Pseudoalteromonas issachenkonii and Aurantimonas coralicida. A. macleodii showed the highest pathogenity.

  9. Actinomycetes from red sea sponges: Sources for chemical and phylogenetic diversity

    KAUST Repository

    Abdelmohsen, Usama Ramadan

    2014-05-12

    The diversity of actinomycetes associated with marine sponges collected off Fsar Reef (Saudi Arabia) was investigated in the present study. Forty-seven actinomycetes were cultivated and phylogenetically identified based on 16S rRNA gene sequencing and were assigned to 10 different actinomycete genera. Eight putatively novel species belonging to genera Kocuria, Mycobacterium, Nocardia, and Rhodococcus were identified based on sequence similarity values below 98.2% to other 16S rRNA gene sequences available in the NCBI database. PCR-based screening for biosynthetic genes including type I and type II polyketide synthases (PKS-I, PKS-II) as well as nonribosomal peptide synthetases (NRPS) showed that 20 actinomycete isolates encoded each at least one type of biosynthetic gene. The organic extracts of nine isolates displayed bioactivity against at least one of the test pathogens, which were Gram-positive and Gram-negative bacteria, fungi, human parasites, as well as in a West Nile Virus protease enzymatic assay. These results emphasize that marine sponges are a prolific resource for novel bioactive actinomycetes with potential for drug discovery. 2014 by the authors; licensee MDPI.

  10. Microbial Lipid Production from Enzymatic Hydrolysate of Pecan Nutshell Pretreated by Combined Pretreatment.

    Science.gov (United States)

    Qin, Lizhen; Qian, Hanyu; He, Yucai

    2017-12-01

    Biodiesel is a fuel composed of monoalkyl esters of long-chain fatty acids derived from renewable biomass sources. In this study, biomass waste pecan nutshell (PS) was attempted to be converted into microbial oil. For effective utilization of PS, sequential pretreatment with ethylene glycol-H 2 SO 4 -water (78:2:20, wt:wt:wt) at 130 °C for 30 min and aqueous ammonia (25 wt%) at 50 °C for 24 h was used to enhance its enzymatic saccharification. Significant linear correlation was obtained about delignification-saccharification (R 2  = 0.9507). SEM and FTIR results indicated that combination pretreatment could effectively remove lignin and xylan in PS for promoting its enzymatic saccharification. After 72 h, the reducing sugars from the hydrolysis of 50 g/L pretreated PS by combination pretreatment could be obtained at 73.6% yield. Using the recovered PS hydrolysates containing 20 g/L glucose as carbon source, microbial lipids produced from the PS hydrolysates by Rhodococcus opacus ACCC41043. Four fatty acids including palmitic acid (C16:0; 23.1%), palmitoleic acid (C16:1; 22.4%), stearic acid (C18:0; 15.3%), and oleic acid (C18:1; 23.9%) were distributed in total fatty acids. In conclusion, this strategy has potential application in the future.

  11. Diversity and structure of soil bacterial communities in the Fildes Region (maritime Antarctica as revealed by 454 pyrosequencing

    Directory of Open Access Journals (Sweden)

    Neng Fei eWang

    2015-10-01

    Full Text Available This study assessed the diversity and composition of bacterial communities in four different soils (human-, penguin-, seal-colony impacted soils and pristine soil in the Fildes Region (King George Island, Antarctica using 454 pyrosequencing with bacterial-specific primers targeting the 16S rRNA gene. Proteobacteria, Actinobacteria, Acidobacteria, and Verrucomicrobia were abundant phyla in almost all the soil samples. The four types of soils were significantly different in geochemical properties and bacterial community structure. Thermotogae, Cyanobacteria, Fibrobacteres, Deinococcus-Thermus, and Chlorobi obviously varied in their abundance among the 4 soil types. Considering all the samples together, members of the genera Gaiella, Chloracidobacterium, Nitrospira, Polaromonas, Gemmatimonas, Sphingomonas and Chthoniobacter were found to predominate, whereas members of the genera Chamaesiphon, Herbaspirillum, Hirschia, Nevskia, Nitrosococcus, Rhodococcus, Rhodomicrobium, and Xanthomonas varied obviously in their abundance among the four soil types. Distance-based redundancy analysis revealed that pH (p < 0.01, phosphate phosphorus (p < 0.01, organic carbon (p < 0.05, and organic nitrogen (p < 0.05 were the most significant factors that correlated with the community distribution of soil bacteria. To our knowledge, this is the first study to explore the soil bacterial communities in human-, penguin-, and seal- colony impacted soils from ice-free areas in maritime Antarctica using high-throughput pyrosequencing.

  12. Production, Purification, and Identification of Cholest-4-en-3-one Produced by Cholesterol Oxidase from sp. in Aqueous/Organic Biphasic System

    Directory of Open Access Journals (Sweden)

    Ke Wu

    2015-01-01

    Full Text Available Cholest-4-en-3-one has positive uses against obesity, liver disease, and keratinization. It can be applied in the synthesis of steroid drugs as well. Most related studies are focused on preparation of cholest-4-en-3-one by using whole cells as catalysts, but production of high-quality cholest-4-en-3-one directly from cholesterol oxidase (COD using an aqueous/organic two-phase system has been rarely explored. This study set up an enzymatic reaction system to produce cholest-4-en-3-one. We developed and optimized the enzymatic reaction system using COD from COX5-6 (a strain of Rhodococcus instead of whole-cell biocatalyst. This not only simplifies and accelerates the production but also benefits the subsequent separation and purification process. Through extraction, washing, evaporation, column chromatography, and recrystallization, we got cholest-4-en-3-one with purity of 99.78%, which was identified by nuclear magnetic resonance, mass spectroscopy, and infrared spectroscopy. In addition, this optimized process of cholest-4-en-3-one production and purification can be easily scaled up for industrial production, which can largely decrease the cost and guarantee the purity of the product.

  13. Internalisation potential of Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica subsp. enterica serovar Typhimurium and Staphylococcus aureus in lettuce seedlings and mature plants.

    Science.gov (United States)

    Standing, Taryn-Ann; du Plessis, Erika; Duvenage, Stacey; Korsten, Lise

    2013-06-01

    The internalisation potential of Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7 and Salmonella enterica subsp. enterica serovar Typhimurium in lettuce was evaluated using seedlings grown in vermiculite in seedling trays as well as hydroponically grown lettuce. Sterile distilled water was spiked with one of the four human pathogenic bacteria (10(5) CFU/mL) and used to irrigate the plants. The potential for pathogen internalisation was investigated over time using light microscopy, transmission electron microscopy and viable plate counts. Additionally, the identities of the pathogens isolated from internal lettuce plant tissues were confirmed using polymerase chain reaction with pathogen-specific oligonucleotides. Internalisation of each of the human pathogens was evident in both lettuce seedlings and hydroponically grown mature lettuce plants. To our knowledge, this is the first report of S. aureus internalisation in lettuce plants. In addition, the levels of background microflora in the lettuce plants were determined by plate counting and the isolates identified using matrix-assisted laser ionisation-time of flight (MALDI-TOF). Background microflora assessments confirmed the absence of the four pathogens evaluated in this study. A low titre of previously described endophytes and soil inhabitants, i.e., Enterobacter cloacae, Enterococcus faecalis, Lysinibacillus fusiformis, Rhodococcus rhodochrous, Staphylococcus epidermidis and Staphylococcus hominis were identified.

  14. Optimization of phenol biodegradation by efficient bacteria isolated from petrochemical effluents

    Directory of Open Access Journals (Sweden)

    M. Shahriari Moghadam

    2016-05-01

    Full Text Available Phenol is an environmental pollutant present in industrial wastewaters such as refineries, coal processing and petrochemicals products. In this study three phenol degrading bacteria from Arak Petrochemical Complex effluent were isolated which consume phenol. Molecular analysis was used to identify bacteria and isolated bacteria were identified as Rhodococcus pyridinivorans (NS1, Advenella faeciporci (NS2 and Pseudomonas aeroginosa (NS3. Among the isolated strains, NS1 had the highest ability to degrade phenol. In order to observe the best yield in phenol biodegradation using NS1, optimization was performed using one factor at a time of experimental design to investigate the effect of four factors, including pH, temperature, phosphate and urea concentration. The optimal biodegradation condition through or tho pathway was pH = 8, urea = 1 g/L, temperature = 30°C and K2HPO4 = 0.5 g/L. Under the suggested condition, a biodegradation efficiency of 100% was achieved. Moreover, NS1 has shown growth and phenol degradation in concentrations between 250 to 2000 mg/L. In a nutshell, the results revealed thatphenol efficiently consumed by NS1 as the sole carbon source. Obviously, the isolate strain may be seen as an important tool in the bioremediation of wastewater effluent, petrochemical complex.

  15. Correlation of maple sap composition with bacterial and fungal communities determined by multiplex automated ribosomal intergenic spacer analysis (MARISA).

    Science.gov (United States)

    Filteau, Marie; Lagacé, Luc; LaPointe, Gisèle; Roy, Denis

    2011-08-01

    During collection, maple sap is contaminated by bacteria and fungi that subsequently colonize the tubing system. The bacterial microbiota has been more characterized than the fungal microbiota, but the impact of both components on maple sap quality remains unclear. This study focused on identifying bacterial and fungal members of maple sap and correlating microbiota composition with maple sap properties. A multiplex automated ribosomal intergenic spacer analysis (MARISA) method was developed to presumptively identify bacterial and fungal members of maple sap samples collected from 19 production sites during the tapping period. Results indicate that the fungal community of maple sap is mainly composed of yeast related to Mrakia sp., Mrakiella sp., Guehomyces pullulans, Cryptococcus victoriae and Williopsis saturnus. Mrakia, Mrakiella and Guehomyces peaks were identified in samples of all production sites and can be considered dominant and stable members of the fungal microbiota of maple sap. A multivariate analysis based on MARISA profiles and maple sap chemical composition data showed correlations between Candida sake, Janthinobacterium lividum, Williopsis sp., Leuconostoc mesenteroides, Mrakia sp., Rhodococcus sp., Pseudomonas tolaasii, G. pullulans and maple sap composition at different flow periods. This study provides new insights on the relationship between microbial community and maple sap quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Molecular characterization of Mycobacterium bovis strains isolated from cattle slaughtered at two abattoirs in Algeria

    Directory of Open Access Journals (Sweden)

    Ouzrout Rachid

    2009-01-01

    Full Text Available Abstract Background Bovine Tuberculosis is prevalent in Algeria despite governmental attempts to control the disease. The objective of this study was to conduct, for the first time, molecular characterization of a population sample of Mycobacterium bovis strains isolated from slaughter cattle in Algeria. Between August and November 2007, 7250 animals were consecutively screened at the abattoirs of Algiers and Blida. In 260 animals, gross visible granulomatous lesions were detected and put into culture. Bacterial isolates were subsequently analysed by molecular methods. Results Altogether, 101 bacterial strains from 100 animals were subjected to molecular characterization. M. bovis was isolated from 88 animals. Other bacteria isolated included one strain of M. caprae, four Rhodococcus equi strains, three Non-tuberculous Mycobacteria (NTM and five strains of other bacterial species. The M. bovis strains isolated showed 22 different spoligotype patterns; four of them had not been previously reported. The majority of M. bovis strains (89% showed spoligotype patterns that were previously observed in strains from European cattle. Variable Number of Tandem Repeat (VNTR typing supported a link between M. bovis strains from Algeria and France. One spoligotype pattern has also been shown to be frequent in M. bovis strains from Mali although the VNTR pattern of the Algerian strains differed from the Malian strains. Conclusion M. bovis infections account for a high amount of granulomatous lesions detected in Algerian slaughter cattle during standard meat inspection at Algiers and Blida abattoir. Molecular typing results suggested a link between Algerian and European strains of M. bovis.

  17. Haloalkane hydrolysis with an immobilized haloalkane dehalogenase.

    Science.gov (United States)

    Dravis, B C; Swanson, P E; Russell, A J

    2001-11-20

    Haloalkane dehalogenase from Rhodococcus rhodochrous was covalently immobilized onto a polyethyleneimine impregnated gamma-alumina support. The dehalogenating enzyme was found to retain greater than 40% of its original activity after immobilization, displaying an optimal loading (max. activity/supported protein) of 70 to 75 mg/g with an apparent maximum (max. protein/support) of 156 mg/g. The substrate, 1,2,3-trichloropropane, was found to favorably partition (adsorb) onto the inorganic alumina carrier (10 to 20 mg/g), thereby increasing the local reactant concentration with respect to the catalyst's environment, whereas the product, 2,3-dichloropropan-1-ol, demonstrated no affinity. Additionally, the inorganic alumina support exhibited no adverse effects because of solvent/component incompatibilities or deterioration due to pH variance (pH 7.0 to 10.5). As a result of the large surface area to volume ratio of the support matrix and the accessibility of the bound protein, the immobilized biocatalyst was not subject to internal mass transfer limitations. External diffusional restrictions could be eliminated with simple agitation (mixing speed: 50 rpm; flux: 4.22 cm/min). The pH-dependence of the immobilized dehalogenase was essentially the same as that for the native enzyme. Finally, both the thermostability and resistance toward inactivation by organic solvent were improved by more than an order of magnitude after immobilization. Copyright 2001 John Wiley & Sons, Inc.

  18. Genomics of Sponge-Associated Streptomyces spp. Closely Related to Streptomyces albus J1074: Insights into Marine Adaptation and Secondary Metabolite Biosynthesis Potential

    Science.gov (United States)

    Ian, Elena; Malko, Dmitry B.; Sekurova, Olga N.; Bredholt, Harald; Rückert, Christian; Borisova, Marina E.; Albersmeier, Andreas; Kalinowski, Jörn; Gelfand, Mikhail S.; Zotchev, Sergey B.

    2014-01-01

    A total of 74 actinomycete isolates were cultivated from two marine sponges, Geodia barretti and Phakellia ventilabrum collected at the same spot at the bottom of the Trondheim fjord (Norway). Phylogenetic analyses of sponge-associated actinomycetes based on the 16S rRNA gene sequences demonstrated the presence of species belonging to the genera Streptomyces, Nocardiopsis, Rhodococcus, Pseudonocardia and Micromonospora. Most isolates required sea water for growth, suggesting them being adapted to the marine environment. Phylogenetic analysis of Streptomyces spp. revealed two isolates that originated from different sponges and had 99.7% identity in their 16S rRNA gene sequences, indicating that they represent very closely related strains. Sequencing, annotation, and analyses of the genomes of these Streptomyces isolates demonstrated that they are sister organisms closely related to terrestrial Streptomyces albus J1074. Unlike S. albus J1074, the two sponge streptomycetes grew and differentiated faster on the medium containing sea water. Comparative genomics revealed several genes presumably responsible for partial marine adaptation of these isolates. Genome mining targeted to secondary metabolite biosynthesis gene clusters identified several of those, which were not present in S. albus J1074, and likely to have been retained from a common ancestor, or acquired from other actinomycetes. Certain genes and gene clusters were shown to be differentially acquired or lost, supporting the hypothesis of divergent evolution of the two Streptomyces species in different sponge hosts. PMID:24819608

  19. Identities of epilithic hydrocarbon-utilizing diazotrophic bacteria from the Arabian Gulf Coasts, and their potential for oil bioremediation without nitrogen supplementation.

    Science.gov (United States)

    Radwan, Samir; Mahmoud, Huda; Khanafer, Majida; Al-Habib, Aamar; Al-Hasan, Redha

    2010-08-01

    Gravel particles from four sites along the Arabian Gulf coast in autumn, winter, and spring were naturally colonized with microbial consortia containing between 7 and 400 × 10(2) cm(-2) of cultivable oil-utilizing bacteria. The 16S rRNA gene sequences of 70 representatives of oil-utilizing bacteria revealed that they were predominantly affiliated with the Gammaproteobacteria and the Actinobacteria. The Gammaproteobacteria comprised among others, the genera Pseudomonas, Pseudoalteromonas, Shewanella, Marinobacter, Psychrobacter, Idiomarina, Alcanivorax, Cobetia, and others. Actinobacteria comprised the genera Dietzia, Kocuria, Isoptericola, Rhodococcus, Microbacterium, and others. In autumn, Firmicutes members were isolated from bay and nonbay stations while Alphaproteobacteria were detected only during winter from Anjefa bay station. Fingerprinting by denaturing gradient gel electrophoresis of amplified 16S rRNA genes of whole microbial consortia confirmed the culture-based bacterial diversities in the various epilithons in various sites and seasons. Most of the representative oil-utilizing bacteria isolated from the epilithons were diazotrophic and could attenuate oil also in nitrogen-rich (7.9-62%) and nitrogen-free (4-54%) cultures, which, makes the microbial consortia suitable for oil bioremediation in situ, without need for nitrogen supplementation. This was confirmed in bench-scale experiments in which unfertilized oily seawater was bioremediated by epilithon-coated gravel particles.

  20. Characterization and evaluation of catechol oxygenases by twelve bacteria, isolated from oil contaminated soils in Malaysia

    Directory of Open Access Journals (Sweden)

    Arezoo Tavakoli

    2017-01-01

    Full Text Available Introduction: Catechol is a common intermediate compound in aromatic degradation process. Some microorganisms have this potentiality to degrade aromatic hydrocarbons by catechol dioxygenases to less toxic compounds with ability of entering the tricarboxylic acid cycle. In the present study, the catechol oxygenase activity was measured for 12 crude oil degrader bacteria. Materials and methods: Catechol oxygenase activity of two enzymes includes catechol 1, 2 dioxygenase and catechol 2, 3 dioxygenase were determined using spectrophotometer at 260 nm and 375 nm, respectively. Results: The highest enzyme activity for catechol 1, 2 dioxygenase by Bacillus cereus UKMP-6G was (0.07 U/mL and about catechol 2, 3 dioxygenase was 0.031 U/mL by Rhodococcus ruber UKMP-5M during the first minute of incubation. Catechol 1, 2 dioxygenase and catechol 2, 3 dioxygenase followed the ortho and meta pathway, respectively. Discussion and conclusion: The enzyme assay results showed that among 12 examined bacteria, only R. ruber UKMP-5M has the ability to use meta pathway for degradation and produce 2-hydroxymuconic acid. The other isolates use ortho pathway and create cis, cis-muconic acid.

  1. A Combination of Stable Isotope Probing, Illumina Sequencing, and Co-occurrence Network to Investigate Thermophilic Acetate- and Lactate-Utilizing Bacteria.

    Science.gov (United States)

    Sun, Weimin; Krumins, Valdis; Dong, Yiran; Gao, Pin; Ma, Chunyan; Hu, Min; Li, Baoqin; Xia, Bingqing; He, Zijun; Xiong, Shangling

    2018-01-01

    Anaerobic digestion is a complicated microbiological process that involves a wide diversity of microorganisms. Acetate is one of the most important intermediates, and interactions between acetate-oxidizing bacteria and archaea could play an important role in the formation of methane in anoxic environments. Anaerobic digestion at thermophilic temperatures is known to increase methane production, but the effects on the microbial community are largely unknown. In the current study, stable isotope probing was used to characterize acetate- and lactate-oxidizing bacteria in thermophilic anaerobic digestion. In microcosms fed 13 C-acetate, bacteria related to members of Clostridium, Hydrogenophaga, Fervidobacterium, Spirochaeta, Limnohabitans, and Rhodococcus demonstrated elevated abundances of 13 C-DNA fractions, suggesting their activities in acetate oxidation. In the treatments fed 13 C-lactate, Anaeromyxobacter, Desulfobulbus, Syntrophus, Cystobacterineae, and Azospira were found to be the potential thermophilic lactate utilizers. PICRUSt predicted that enzymes related to nitrate and nitrite reduction would be enriched in 13 C-DNA fractions, suggesting that the acetate and lactate oxidation may be coupled with nitrate and/or nitrite reduction. Co-occurrence network analysis indicated bacterial taxa not enriched in 13 C-DNA fractions that may also play a critical role in thermophilic anaerobic digestion.

  2. Diversity of cultivable bacteria involved in the formation of macroscopic microbial colonies (Cave silver on the walls of a cave in Slovenia

    Directory of Open Access Journals (Sweden)

    Blagajana Herzog Velikonja

    2014-01-01

    Full Text Available Karstic caves often support white, yellow, grey or pink microbial colonies that are termed ‘cave silver’ by speleologists. Using various sample pre-treatments and culture media, a wide variety of bacteria associated with these colonies were recovered from a cave in Slovenia, Pajsarjeva jama. Decreasing the inoculum size resulted in significant increases in viable counts, while pre-treatments had the opposite effect with the exception of microwave irradiation. While all growth media yielded viable counts, the maximal counts were observed on a low-nutrient TWA medium. Based on the 16S rRNA gene sequence of OTU representatives, the majority of the 80 isolates examined belonged to Streptomyces (25%, Micrococcus (16% and Rhodococcus (10% Other abundant groups were Pseudomonas (9%, Agrobacterium (8%, Lysobacter (6% and Paenibacillus (5%, while members of genera Microbacterium, Agrococcus, Arthrobacter, Bacillus, Kocuria, Oerskovia, Sphingomonas, Aerococcus, and Bosea represented a minor portion of cultivable diversity encountered. Members of Streptomyces and Agrobacterium were common to all samples. Although these microorganisms readily form colonies under laboratory conditions, they were unrelated to abundant environmental phylotypes recovered from same samples in a previous study. However, the comparative 16S rRNA analysis showed that microorganisms highly related to the ones obtained in this study were cultivated from other subterranean environments indicating that they might represent true microbial cave dwellers.

  3. Effect of the anode feeding composition on the performance of a continuous-flow methane-producing microbial electrolysis cell.

    Science.gov (United States)

    Zeppilli, Marco; Villano, Marianna; Aulenta, Federico; Lampis, Silvia; Vallini, Giovanni; Majone, Mauro

    2015-05-01

    A methane-producing microbial electrolysis cell (MEC) was continuously fed at the anode with a synthetic solution of soluble organic compounds simulating the composition of the soluble fraction of a municipal wastewater. The MEC performance was assessed at different anode potentials in terms of chemical oxygen demand (COD) removal efficiency, methane production, and energy efficiency. As a main result, about 72-80% of the removed substrate was converted into current at the anode, and about 84-86% of the current was converted into methane at the cathode. Moreover, even though both COD removed and methane production slightly decreased as the applied anode potential decreased, the energy efficiency (i.e., the energy recovered as methane with respect to the energy input into the system) increased from 54 to 63%. Denaturing gradient gel electrophoresis (DGGE) analyses revealed a high diversity in the anodic bacterial community with the presence of both fermentative (Proteiniphilum acetatigenes and Petrimonas sulphurifila) and aerobic (Rhodococcus qingshengii) microorganisms, whereas only two microorganisms (Methanobrevibacter arboriphilus and Methanosarcina mazei), both assignable to methanogens, were observed in the cathodic community.

  4. Profiling microbial community structures across six large oilfields in China and the potential role of dominant microorganisms in bioremediation.

    Science.gov (United States)

    Sun, Weimin; Li, Jiwei; Jiang, Lei; Sun, Zhilei; Fu, Meiyan; Peng, Xiaotong

    2015-10-01

    Successful bioremediation of oil pollution is based on a comprehensive understanding of the in situ physicochemical conditions and indigenous microbial communities as well as the interaction between microorganisms and geochemical variables. Nineteen oil-contaminated soil samples and five uncontaminated controls were taken from six major oilfields across different geoclimatic regions in China to investigate the spatial distribution of the microbial ecosystem. Microbial community analysis revealed remarkable variation in microbial diversity between oil-contaminated soils taken from different oilfields. Canonical correspondence analysis (CCA) further demonstrated that a suite of in situ geochemical parameters, including soil moisture and sulfate concentrations, were among the factors that influenced the overall microbial community structure and composition. Phylogenetic analysis indicated that the vast majority of sequences were related to the genera Arthrobacter, Dietzia, Pseudomonas, Rhodococcus, and Marinobacter, many of which contain known oil-degrading or oil-emulsifying species. Remarkably, a number of archaeal genera including Halalkalicoccus, Natronomonas, Haloterrigena, and Natrinema were found in relatively high abundance in some of the oil-contaminated soil samples, indicating that these Euryarchaeota may play an important ecological role in some oil-contaminated soils. This study offers a direct and reliable reference of the diversity of the microbial community in various oil-contaminated soils and may influence strategies for in situ bioremediation of oil pollution.

  5. Microbial communities inhabiting oil-contaminated soils from two major oilfields in Northern China: Implications for active petroleum-degrading capacity.

    Science.gov (United States)

    Sun, Weimin; Dong, Yiran; Gao, Pin; Fu, Meiyan; Ta, Kaiwen; Li, Jiwei

    2015-06-01

    Although oilfields harbor a wide diversity of microorganisms with various metabolic potentials, our current knowledge about oil-degrading bacteria is limited because the vast majority of oil-degrading bacteria remain uncultured. In the present study, microbial communities in nine oil-contaminated soils collected from Daqing and Changqing, two of the largest oil fields in China, were characterized through highthroughput sequencing of 16S rRNA genes. Bacteria related to the phyla Proteobacteria and Actinobacteria were dominant in four and three samples, respectively. At the genus level, Alkanindiges, Arthrobacter, Pseudomonas, Mycobacterium, and Rhodococcus were frequently detected in nine soil samples. Many of the dominant genera were phylogenetically related to the known oil-degrading species. The correlation between physiochemical parameters within the microbial communities was also investigated. Canonical correspondence analysis revealed that soil moisture, nitrate, TOC, and pH had an important impact in shaping the microbial communities of the hydrocarbon-contaminated soil. This study provided an in-depth analysis of microbial communities in oilcontaminated soil and useful information for future bioremediation of oil contamination.

  6. [Oil degradation by basidiomycetes in soil and peat at low temperatures].

    Science.gov (United States)

    Kulikova, N A; Klein, O I; Pivchenko, D V; Landesman, E O; Pozdnyakova, N N; Turkovskaya, O V; Zaichik, B Ts; Ruzhitskii, A O; Koroleva, O V

    2016-01-01

    A total of 17 basidiomycete strains causing white rot and growing on oil-contaminated substrates have been screened. Three strains with high (Steccherinum murashkinskyi), average (Trametes maxima), and low (Pleurotus ostreatus) capacities for the colonization of oil-contaminated substrates have been selected. The potential for degrading crude oil hydrocarbons has been assessed with the use of fungi grown on nonsterile soil and peat at low temperatures. Candida sp. and Rhodococcus sp. commercial strains have been used as reference organisms with oil-degrading ability. All microorganisms introduced in oil-contaminated soil have proved to be ineffective, whereas the inoculation of peat with basidiomycetes and oil-degrading microorganisms accelerated the destruction of oil hydrocarbons. The greatest degradation potential of oil-aliphatic hydrocarbons has been found in S. murashlinskyi. T. maxima turned out to be the most successful in degrading aromatic hydrocarbons. It has been suggested that aboriginal microflora contributes importantly to the effectiveness of oil-destructing microorganisms. T. maxima and S. murashkinskyi strains are promising for further study as oil-oxidizing agents during bioremediation of oil-contaminated peat soil under conditions of low temperatures.

  7. The structure and functions of bacterial communities in an agrocenosis

    Science.gov (United States)

    Dobrovol'skaya, T. G.; Khusnetdinova, K. A.; Manucharova, N. A.; Balabko, P. N.

    2016-01-01

    The most significant factor responsible for the specific taxonomic composition of the bacterial communities in the agrocenosis studied was found to be a part or organ of plants (leaves, flowers, roots, fruits). A stage of plant ontogeny also determines changes of taxa. In the course of the plant growth, eccrisotrophic bacteria are replaced by hydrolytic ones that belong to the group of cellulose-decomposing bacteria. Representatives of the proteobacteria genera that are difficult to identify by phenotypic methods were determined using molecular-biological methods. They were revealed only on oat leaves in the moist period. As the vetch-oat mixture was fertilized with BIOUD-1 (foliar application) in the phyllosphere of both oats and vetch, on all the plant organs, representatives of the Rhodococcus genus as dominants were isolated. This fact was related to the capability of bacteria to decompose the complex aromatic compounds that are ingredients of the fertilizers applied. Another positive effect for plants of the bacterial communities forming in agrocenoses is the presence of bacteria that are antagonists of phytopathogenic bacteria. Thus, in agrocenoses, some interrelationships promoting the growth and reproduction of plants are formed in crop plants and bacteria.

  8. Combined impact of quorum quenching and backwashing on biofouling control in a semi-pilot scale mbr treating real wastewater

    International Nuclear Information System (INIS)

    Hasnain, G.; Khan, S.J.; Arshad, M.Z.; Abdullah, H.Y.

    2017-01-01

    This study demonstrates the combined effect of quorum quenching (QQ) and backwashing on biofouling control in MBR treating real wastewater. The quorum quenching mechanism is an emerging biological technique using Rhodococcus sp. entrapped in polymer coated sodium alginate beads whereas, backwashing is a distinguished physical technique for biofouling control. Two parallel semi-pilot scale MBRs i.e., QQ-MBR (quorum quenching MBR) with cell-entrapping beads (CEBs) and C-MBR (conventional MBR) with vacant CEBs at 0.5% effective volume of the bioreactor, were monitored for comparative performance evaluation. In the first phase, both the MBRs were operated without backwashing having operational cycle of eight min filtration and two min relaxation and in the second phase; MBRs were operated with backwashing having operation cycle of eight min filtration, one min relaxation and one min backwashing. QQ-MBR-with backwashing exhibited greater biofouling control capability and elongated filtration duration with respect to QQ-MBR without backwashing. Comparatively less soluble EPS concentrations were detected in QQ-MBR as compare to C-MBR in both modes of operation while backwashing contributed to retard the rapid increase in trans-membrane pressure (TMP) also known as TMP jump. Study reveals the novelty of successful application of combined influence of permeate backflushing technique and QQ (anti-biofouling) strategy in MBR and potential use for full scale applications. (author)

  9. Isolation and characterization of a novel polychlorinated biphenyl-degrading bacterium, Paenibacillus sp. KBC101

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, M.; Ezaki, S.; Suzuki, N.; Kurane, R. [Kubota Corporation, Ryuugasaki City (Japan). Biotechnology Research Centre

    2005-07-01

    The biphenyl-utilizing bacterial strain KBC101 has been newly isolated from soil. Biphenyl-grown cells of KBC101 efficiently degraded di- to nonachlorobiphenyls. The isolate was identified as Paenibacillus sp. with respect to its 16S rDNA sequence and fatty acid profiles, as well as various biological and physiological characteristics. In the case of highly chlorinated biphenyl (polychlorinated biphenyl; PCB) congeners, the degradation activities of this strain were superior to those of the previously reported strong PCB degrader, Rhodococcus sp. RHA1. Recalcitrant coplanar PCBs, such as 3,4,3',4'-CB, were also efficiently degraded by strain KBC101 cells. This is the first report of a representative of the genus Paenibacillus capable of degrading PCBs. In addition to growth of biphenyl, strain KBC101 could grow on dibenzofuran, xanthene, benzophenone, anthrone, phenanthrene, napthalene, fluorene, fluoranthene, and chrysene as sole sources of carbon and energy. Paenibacillus sp. strain KBC101 presented heterogeneous degradation profiles toward various aromatic compounds. (orig.)

  10. Enhanced antibacterial activity of silver-decorated sandwich-like mesoporous silica/reduced graphene oxide nanosheets through photothermal effect

    Science.gov (United States)

    Liu, Rong; Wang, Xuandong; Ye, Jun; Xue, Ximei; Zhang, Fangrong; Zhang, Huicong; Hou, Xuemei; Liu, Xiaolong; Zhang, Yun

    2018-03-01

    Drug resistance of bacteria has become a global health problem, as it makes conventional antibiotics less efficient. It is urgently needed to explore novel antibacterial materials and develop effective treatment strategies to overcome the drug resistance of antibiotics. Herein, we successfully synthesized silver decorated sandwich-like mesoporous silica/reduced graphene oxide nanosheets (rGO/MSN/Ag) as a novel antibacterial material through facile method. The rGO and Ag nanoparticles can be reduced in the reaction system without adding any other reductants. In addition, the rGO/MSN/Ag showed higher photothermal conversion capacity due to the modification of silver nanoparticles and exhibited excellent antibacterial activities against Pseudomonas putida, Escherichia coli and Rhodococcus at relatively low dosages, which was confirmed by the minimum inhibitory concentration (MIC) test. Meanwhile, the E. coli with a high concentration was selected for exposure using an 808 nm laser, and the antibacterial effect was obviously enhanced by the near-infrared irradiation induced photothermal effect. Moreover, the hepatocyte LO2 were used for the cytotoxicity evaluation, and the rGO/MSN/Ag showed low toxicity and were without detectable cytotoxicity at the antimicrobial dose. As the prepared rGO/MSN/Ag nanosheets have the advantages of low-cost and high antibacterial activity, they might be of promising and useful antibacterial agents for different applications.

  11. Analysis of 2-methylthio-derivatives of isoprenoid cytokinins by liquid chromatography-tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tarkowski, Petr, E-mail: petr.tarkowski@upol.cz [Laboratory of Growth Regulators, Palacky University and Institute of Experimental Botany ASCR, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Biochemistry, Faculty of Science, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Vaclavikova, Katerina, E-mail: katka.vaclavik@seznam.cz [Laboratory of Growth Regulators, Palacky University and Institute of Experimental Botany ASCR, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Biochemistry, Faculty of Science, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Novak, Ondrej, E-mail: ondrej.novak@upol.cz [Laboratory of Growth Regulators, Palacky University and Institute of Experimental Botany ASCR, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Pertry, Ine, E-mail: ine.pertry@ugent.BE [Department of Plant Biotechnology and Genetics, Ghent University, K.L.Ledeganckstraat 35, B-9000 Gent (Belgium); Hanus, Jan, E-mail: helehan@seznam.cz [Isotope Laboratory, Institute of Experimental Botany ASCR, Videnska 1083, 142 20 Prague (Czech Republic); Whenham, Robert [Apex Organics, Devon, England (United Kingdom); Vereecke, Danny, E-mail: danny.vereecke@hogent.BE [Department of Plant Production, University College Ghent, Ghent University, Schoonmeersstraat 52, B-9000 Gent (Belgium); Sebela, Marek, E-mail: marek.sebela@upol.cz [Department of Biochemistry, Faculty of Science, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Strnad, Miroslav, E-mail: miroslav.strnad@upol.cz [Laboratory of Growth Regulators, Palacky University and Institute of Experimental Botany ASCR, Slechtitelu 11, 783 71 Olomouc (Czech Republic)

    2010-11-08

    A sensitive and reliable high-performance liquid chromatographic method with tandem mass spectrometric detection has been developed and used for the determination of 2-methylthio-cytokinin derivatives produced by the phytopathogenic actinomycete Rhodococcus fascians. The cultivation medium containing secreted cytokinins was concentrated and subjected to a solid-phase extraction (C18 and ion-exchange). The purified samples were further separated and analyzed by HPLC-ESI-MS/MS. This allowed to achieve chromatographic resolution of six highly hydrophobic cytokinin species including 2-methylthio-isopentenyladenine, 2-methylthio-isopentenyladenosine, 2-methylthio-trans-zeatin and 2-methylthio-trans-zeatin riboside and their cis-isomers when a reversed-phase chromatographic column (C4) and a mobile phase consisting of acetonitrile and 20 mM ammonium formate, pH 5, were used. Quantification was performed by a standard isotope dilution method using a multiple-reaction monitoring (MRM) mode. In the MRM mode, limits of detection reached 20-30 fmol and linear ranges spanned four orders of magnitude. Recovery values were between 35% and 65% and the analytical accuracy between 95% and 149%. The proposed bioanalytical method, which takes advantage of effective chromatographic separation of six 2-methyltio-derivatives (including isomers of zeatin-type cytokinins) and sensitive mass spectrometric detection, may become useful for plant biologists studying the significance of these substances in plant-microbe interactions.

  12. Efflux pump-deficient mutants as a platform to search for microbes that produce antibiotics.

    Science.gov (United States)

    Molina-Santiago, Carlos; Udaondo, Zulema; Daddaoua, Abdelali; Roca, Amalia; Martín, Jesús; Pérez-Victoria, Ignacio; Reyes, Fernando; Ramos, Juan-Luis

    2015-07-01

    Pseudomonas putida DOT-T1E-18 is a strain deficient in the major antibiotic efflux pump (TtgABC) that exhibits an overall increased susceptibility to a wide range of drugs when compared with the wild-type strain. We used this strain as a platform to search for microbes able to produce antibiotics that inhibit growth. A collection of 2400 isolates from soil, sediments and water was generated and a drop assay developed to identify, via growth inhibition halos, strains that prevent the growth of DOT-T1E-18 on solid Luria-Bertani plates. In this study, 35 different isolates that produced known and unknown antibiotics were identified. The most potent inhibitor of DOT-T1E-18 growth was an isolate named 250J that, through multi-locus sequence analysis, was identified as a Pseudomonas sp. strain. Culture supernatants of 250J contain four different xantholysins that prevent growth of Gram-positive bacteria, Gram-negative and fungi. Two of the xantholysins were produced in higher concentrations and purified. Xantholysin A was effective against Bacillus, Lysinibacillus and Rhodococcus strains, and the effect against these microbes was enhanced when used in combination with other antibiotics such as ampicillin, gentamicin and kanamycin. Xantholysin C was also efficient against Gram-positive bacteria and showed an interesting antimicrobial effect against Pseudomonas strains, and a synergistic inhibitory effect with ampicillin, chloramphenicol and gentamicin. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  13. Diversity of pigmented Gram-positive bacteria associated with marine macroalgae from Antarctica.

    Science.gov (United States)

    Leiva, Sergio; Alvarado, Pamela; Huang, Ying; Wang, Jian; Garrido, Ignacio

    2015-12-01

    Little is known about the diversity and roles of Gram-positive and pigmented bacteria in Antarctic environments, especially those associated with marine macroorganisms. This work is the first study about the diversity and antimicrobial activity of culturable pigmented Gram-positive bacteria associated with marine Antarctic macroalgae. A total of 31 pigmented Gram-positive strains were isolated from the surface of six species of macroalgae collected in the King George Island, South Shetland Islands. On the basis of 16S rRNA gene sequence similarities ≥99%, 18 phylotypes were defined, which were clustered into 11 genera of Actinobacteria (Agrococcus, Arthrobacter, Brachybacterium, Citricoccus, Kocuria, Labedella, Microbacterium, Micrococcus, Rhodococcus, Salinibacterium and Sanguibacter) and one genus of the Firmicutes (Staphylococcus). It was found that five isolates displayed antimicrobial activity against a set of macroalgae-associated bacteria. The active isolates were phylogenetically related to Agrococcus baldri, Brachybacterium rhamnosum, Citricoccus zhacaiensis and Kocuria palustris. The results indicate that a diverse community of pigmented Gram-positive bacteria is associated with Antartic macroalgae and suggest its potential as a promising source of antimicrobial and pigmented natural compounds. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. THE PHOTODYNAMIC EFFECT OF LED-MAGNETIC EXPOSURE TO PHOTOINACTIVATION OF AEROBIC PHOTOSYNTETIC BACTERIA

    Directory of Open Access Journals (Sweden)

    Suryani Dyah Astuti

    2014-01-01

    Full Text Available All photosynthetic bacteria have a major pigment of bacteriochlorophyl and accessor pigment e.g. the carotenoids, which both have an important role in photosynthesis process. This study aim to explore the exogenous organic photosensitizer from photosyntetic bacteria for photodynamic therapy application. This study is an experimental research aiming to test the potential illumination ofLED with wavelength 409, 430, 528 and 629 nm, and power optimization and time exposure LED-magnetic for optimum photo activation Rhodococcus growth. The reseach design use a factorial completely randomized design with factor ofpower and exposure time. The number ofbacterial colonies grown measure using ofTotal Plate Count (TPC methods. The result ofanova test shows that irradiation treatment with LED 409 nm, 430 nm, 528 nm and 629 nm significantly affects on bacterial colony growth. LED 409 nm exposure has the greatest potential to boost the growth ofbacterial colonies by 77%. LED exposure and the addition of1.8 mT magnetic field increases bacterial colony growth by 98%. Results of optimization of LED and magnetic fields show power 46 mW and a 40 minute (energy dose 110 J/cm2 optimum growth ofbacterial colonies increase by 184%. So LED and magnetic illumination has potentially increased the viability ofan aerob photosyntetic bacteria colonies.

  15. Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology

    Science.gov (United States)

    Bisht, Sandeep; Pandey, Piyush; Bhargava, Bhavya; Sharma, Shivesh; Kumar, Vivek; Sharma, Krishan D.

    2015-01-01

    The remediation of polluted sites has become a priority for society because of increase in quality of life standards and the awareness of environmental issues. Over the past few decades there has been avid interest in developing in situ strategies for remediation of environmental contaminants, because of the high economic cost of physicochemical strategies, the biological tools for remediation of these persistent pollutants is the better option. Major foci have been considered on persistent organic chemicals i.e. polyaromatic hydrocarbons (PAHs) due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity. Rhizoremediation, a specific type of phytoremediation that involves both plants and their associated rhizospheric microbes is the creative biotechnological approach that has been explored in this review. Moreover, in this review we showed the significance of rhizoremediation of PAHs from other bioremediation strategies i.e. natural attenuation, bioaugmentation and phytoremediation and also analyze certain environmental factor that may influence the rhizoremediation technique. Numerous bacterial species were reported to degrade variety of PAHs and most of them are isolated from contaminated soil, however few reports are available from non contaminated soil. Pseudomonas aeruginosa , Pseudomons fluoresens , Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Finally, exploring the molecular communication between plants and microbes, and exploiting this communication to achieve better results in the elimination of contaminants, is a fascinating area of research for future perspective. PMID:26221084

  16. Diversity, ecological distribution and biotechnological potential of Actinobacteria inhabiting seamounts and non-seamounts in the Tyrrhenian Sea

    KAUST Repository

    Ettoumi, Besma

    2016-04-01

    In the present study, the ecological distribution of marine Actinobacteria isolated from seamount and non-seamount stations in the Tyrrhenian Sea was investigated. A collection of 110 isolates was analyzed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and 16S rRNA gene sequencing of representatives for each ARISA haplotype (n = 49). Phylogenetic analysis of 16S rRNA sequences showed a wide diversity of marine isolates and clustered the strains into 11 different genera, Janibacter, Rhodococcus, Arthrobacter, Kocuria, Dietzia, Curtobacterium, Micrococcus, Citricoccus, Brevibacterium, Brachybacterium and Nocardioides. Interestingly, Janibacter limosus was the most encountered species particularly in seamounts stations, suggesting that it represents an endemic species of this particular ecosystem. The application of BOX-PCR fingerprinting on J. limosus sub-collection (n = 22), allowed their separation into seven distinct BOX-genotypes suggesting a high intraspecific microdiversity among the collection. Furthermore, by screening the biotechnological potential of selected actinobacterial strains, J. limosus was shown to exhibit the most important biosurfactant activity. Our overall data indicates that Janibacter is a major and active component of seamounts in the Tyrrhenian Sea adapted to low nutrient ecological niche.

  17. Irradiation of Microbes from Spent Nuclear Fuel Storage Pool Environments

    Energy Technology Data Exchange (ETDEWEB)

    Breckenridge, C.R.; Watkins, C.S.; Bruhn, D.F.; Roberto, F.F.; Tsang, M.N.; Pinhero, P.J. [INEEL (US); Brey, R.F. [ISU (US); Wright, R.N.; Windes, W.F.

    1999-09-03

    Microbes have been isolated and identified from spent nuclear fuel storage pools at the Idaho National Engineering and Environmental Laboratory (INEEL). Included among these are Corynebacterium aquaticum, Pseudomonas putida, Comamonas acidovorans, Gluconobacter cerinus, Micrococcus diversus, Rhodococcus rhodochrous, and two strains of sulfate-reducing bacteria (SRB). We examined the sensitivity of these microbes to a variety of total exposures of radiation generated by a 6-MeV linear accelerator (LINAC). The advantage of using a LINAC is that it provides a relatively quick screen of radiation tolerance. In the first set of experiments, we exposed each of the aforementioned microbes along with four additional microbes, pseudomonas aeruginosa, Micrococcus luteus, Escherchia coli, and Deinococcus radiodurans to exposures of 5 x 10{sup 3} and 6 x 10{sup 4} rad. All microbial specimens withstood the lower exposure with little or no reduction in cell population. Upon exposing the microbes to the larger dose of 6 x 10{sup 4} rad, we observed two distinct groupings: microbes that demonstrate resistance to radiation, and microbes that display intolerance through a dramatic reduction from their initial population. Microbes in the radiation tolerant grouping were exposed to 1.1 x 10{sup 5} rad to examine the extent of their resistance. We observe a correlation between radiation resistance and gram stain. The gram-positive species we examined seem to demonstrate a greater radiation resistance.

  18. Analysis of 2-methylthio-derivatives of isoprenoid cytokinins by liquid chromatography-tandem mass spectrometry

    International Nuclear Information System (INIS)

    Tarkowski, Petr; Vaclavikova, Katerina; Novak, Ondrej; Pertry, Ine; Hanus, Jan; Whenham, Robert; Vereecke, Danny; Sebela, Marek; Strnad, Miroslav

    2010-01-01

    A sensitive and reliable high-performance liquid chromatographic method with tandem mass spectrometric detection has been developed and used for the determination of 2-methylthio-cytokinin derivatives produced by the phytopathogenic actinomycete Rhodococcus fascians. The cultivation medium containing secreted cytokinins was concentrated and subjected to a solid-phase extraction (C18 and ion-exchange). The purified samples were further separated and analyzed by HPLC-ESI-MS/MS. This allowed to achieve chromatographic resolution of six highly hydrophobic cytokinin species including 2-methylthio-isopentenyladenine, 2-methylthio-isopentenyladenosine, 2-methylthio-trans-zeatin and 2-methylthio-trans-zeatin riboside and their cis-isomers when a reversed-phase chromatographic column (C4) and a mobile phase consisting of acetonitrile and 20 mM ammonium formate, pH 5, were used. Quantification was performed by a standard isotope dilution method using a multiple-reaction monitoring (MRM) mode. In the MRM mode, limits of detection reached 20-30 fmol and linear ranges spanned four orders of magnitude. Recovery values were between 35% and 65% and the analytical accuracy between 95% and 149%. The proposed bioanalytical method, which takes advantage of effective chromatographic separation of six 2-methyltio-derivatives (including isomers of zeatin-type cytokinins) and sensitive mass spectrometric detection, may become useful for plant biologists studying the significance of these substances in plant-microbe interactions.

  19. Study on the reaction mechanism of oxygen-added enzyme for effective use of unused seaweeds; Miriyo kaiso no shigenka ni shisuru sanso tenka koso no hanno kiko ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For effective use of unused seaweeds, efficient search of available microorganism systems and their conversion for effective use were studied. Since generally found Phaeophyceae includes a large amount of polyphenol such as phlorotannin, it is refused by plant-eating animals, inhibits protein from effective absorption, and is inadequate for livestock feed because of tasteless. Bacteria Rhodococcus sp. PG7-2 was isolated which can be effectively increased using phloroglucinol as substrate. Participation of oxygen- adding enzyme was suggested in the initial stage of decomposition which adds molecular oxygen to aromatic rings. In the experiment using combinations of extracted and isolated enzymes and various coenzymes, no significant decomposition was observed. Since phlorotannin of Phaeophyceae is the polymer which shows a matrix-like extent through difficult-to-decompose bond such as biphenyl bond and phenyl ether bond, its decomposition by one kind of bacterium is extremely difficult. Search of decomposition systems of polymer remains as the future issue. 15 refs., 30 figs., 5 tabs.

  20. Actinomycetes from red sea sponges: Sources for chemical and phylogenetic diversity

    KAUST Repository

    Abdelmohsen, Usama Ramadan; Yang, Chen; Horn, Hannes; Hajjar, Dina A.; Ravasi, Timothy; Hentschel, Ute

    2014-01-01

    The diversity of actinomycetes associated with marine sponges collected off Fsar Reef (Saudi Arabia) was investigated in the present study. Forty-seven actinomycetes were cultivated and phylogenetically identified based on 16S rRNA gene sequencing and were assigned to 10 different actinomycete genera. Eight putatively novel species belonging to genera Kocuria, Mycobacterium, Nocardia, and Rhodococcus were identified based on sequence similarity values below 98.2% to other 16S rRNA gene sequences available in the NCBI database. PCR-based screening for biosynthetic genes including type I and type II polyketide synthases (PKS-I, PKS-II) as well as nonribosomal peptide synthetases (NRPS) showed that 20 actinomycete isolates encoded each at least one type of biosynthetic gene. The organic extracts of nine isolates displayed bioactivity against at least one of the test pathogens, which were Gram-positive and Gram-negative bacteria, fungi, human parasites, as well as in a West Nile Virus protease enzymatic assay. These results emphasize that marine sponges are a prolific resource for novel bioactive actinomycetes with potential for drug discovery. 2014 by the authors; licensee MDPI.

  1. Actinobacteria possessing antimicrobial and antioxidant activities isolated from the pollen of scots pine (Pinus sylvestris) grown on the Baikal shore.

    Science.gov (United States)

    Axenov-Gribanov, Denis V; Voytsekhovskaya, Irina V; Rebets, Yuriy V; Tokovenko, Bogdan T; Penzina, Tatyana A; Gornostay, Tatyana G; Adelshin, Renat V; Protasov, Eugenii S; Luzhetskyy, Andriy N; Timofeyev, Maxim A

    2016-10-01

    Isolated ecosystems existing under specific environmental conditions have been shown to be promising sources of new strains of actinobacteria. The taiga forest of Baikal Siberia has not been well studied, and its actinobacterial population remains uncharacterized. The proximity between the huge water mass of Lake Baikal and high mountain ranges influences the structure and diversity of the plant world in Siberia. Here, we report the isolation of eighteen actinobacterial strains from male cones of Scots pine trees (Pinus sylvestris) growing on the shore of the ancient Lake Baikal in Siberia. In addition to more common representative strains of Streptomyces, several species belonging to the genera Rhodococcus, Amycolatopsis, and Micromonospora were isolated. All isolated strains exhibited antibacterial and antifungal activities. We identified several strains that inhibited the growth of the pathogen Candida albicans but did not hinder the growth of Saccharomyces cerevisiae. Several isolates were active against Gram-positive and Gram-negative bacteria. The high proportion of biologically active strains producing antibacterial and specific antifungal compounds may reflect their role in protecting pollen against phytopathogens.

  2. Recovery of metallo-tolerant and antibiotic resistant psychrophilic bacteria from Siachen glacier, Pakistan.

    Directory of Open Access Journals (Sweden)

    Muhammad Rafiq

    Full Text Available Cultureable bacterial diversity of previously unexplored Siachen glacier, Pakistan, was studied. Out of 50 isolates 33 (66% were Gram negative and 17 (34% Gram positive. About half of the isolates were pigment producers and were able to grow at 4-37°C. 16S rRNA gene sequences revealed Gram negative bacteria dominated by Proteobacteria (especially γ-proteobacteria and β-proteobacteria and Flavobacteria. The genus Pseudomonas (51.51%, 17 was dominant among γ- proteobacteria. β-proteobacteria constituted 4 (12.12% Alcaligenes and 4 (12.12% Janthinobacterium strains. Among Gram positive bacteria, phylum Actinobacteria, Rhodococcus (23.52%, 4 and Arthrobacter (23.52%, 4 were the dominating genra. Other bacteria belonged to Phylum Firmicutes with representative genus Carnobacterium (11.76%, 2 and 4 isolates represented 4 genera Bacillus, Lysinibacillus, Staphylococcus and Planomicrobium. Most of the Gram negative bacteria were moderate halophiles, while most of the Gram positives were extreme halophiles and were able to grow up to 6.12 M of NaCl. More than 2/3 of the isolates showed antimicrobial activity against multidrug resistant S. aureus, E. coli, Klebsiella pneumonia, Enterococcus faecium, Candida albicans, Aspergillus flavus and Aspergillus fumigatus and ATCC strains. Gram positive bacteria (94.11% were more resistant to heavy metals as compared to Gram negative (78.79% and showed maximum tolerance against iron and least tolerance against mercury.

  3. Phylogenetic diversity of actinobacteria associated with soft coral Alcyonium gracllimum and stony coral Tubastraea coccinea in the East China Sea.

    Science.gov (United States)

    Yang, Shan; Sun, Wei; Tang, Cen; Jin, Liling; Zhang, Fengli; Li, Zhiyong

    2013-07-01

    Actinobacteria are widely distributed in the marine environment. To date, few studies have been performed to explore the coral-associated Actinobacteria, and little is known about the diversity of coral-associated Actinobacteria. In this study, the actinobacterial diversity associated with one soft coral Alcyonium gracllimum and one stony coral Tubastraea coccinea collected from the East China Sea was investigated using both culture-independent and culture-dependent approaches. A total of 19 actinobacterial genera were detected in these two corals, among which nine genera (Corynebacterium, Dietzia, Gordonia, Kocuria, Microbacterium, Micrococcus, Mycobacterium, Streptomyces, and Candidatus Microthrix) were common, three genera (Cellulomonas, Dermatophilus, and Janibacter) were unique to the soft coral, and seven genera (Brevibacterium, Dermacoccus, Leucobacter, Micromonospora, Nocardioides, Rhodococcus, and Serinicoccus) were unique to the stony coral. This finding suggested that highly diverse Actinobacteria were associated with different types of corals. In particular, five actinobacterial genera (Cellulomonas, Dermacoccus, Gordonia, Serinicoccus, and Candidatus Microthrix) were recovered from corals for the first time, extending the known diversity of coral-associated Actinobacteria. This study shows that soft and stony corals host diverse Actinobacteria and can serve as a new source of marine actinomycetes.

  4. Diversity, ecological distribution and biotechnological potential of Actinobacteria inhabiting seamounts and non-seamounts in the Tyrrhenian Sea.

    Science.gov (United States)

    Ettoumi, Besma; Chouchane, Habib; Guesmi, Amel; Mahjoubi, Mouna; Brusetti, Lorenzo; Neifar, Mohamed; Borin, Sara; Daffonchio, Daniele; Cherif, Ameur

    2016-01-01

    In the present study, the ecological distribution of marine Actinobacteria isolated from seamount and non-seamount stations in the Tyrrhenian Sea was investigated. A collection of 110 isolates was analyzed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and 16S rRNA gene sequencing of representatives for each ARISA haplotype (n=49). Phylogenetic analysis of 16S rRNA sequences showed a wide diversity of marine isolates and clustered the strains into 11 different genera, Janibacter, Rhodococcus, Arthrobacter, Kocuria, Dietzia, Curtobacterium, Micrococcus, Citricoccus, Brevibacterium, Brachybacterium and Nocardioides. Interestingly, Janibacter limosus was the most encountered species particularly in seamounts stations, suggesting that it represents an endemic species of this particular ecosystem. The application of BOX-PCR fingerprinting on J. limosus sub-collection (n=22), allowed their separation into seven distinct BOX-genotypes suggesting a high intraspecific microdiversity among the collection. Furthermore, by screening the biotechnological potential of selected actinobacterial strains, J. limosus was shown to exhibit the most important biosurfactant activity. Our overall data indicates that Janibacter is a major and active component of seamounts in the Tyrrhenian Sea adapted to low nutrient ecological niche. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Brazilian Cerrado soil Actinobacteria ecology.

    Science.gov (United States)

    Suela Silva, Monique; Naves Sales, Alenir; Teixeira Magalhães-Guedes, Karina; Ribeiro Dias, Disney; Schwan, Rosane Freitas

    2013-01-01

    A total of 2152 Actinobacteria strains were isolated from native Cerrado (Brazilian Savannah) soils located in Passos, Luminárias, and Arcos municipalities (Minas Gerais State, Brazil). The soils were characterised for chemical and microbiological analysis. The microbial analysis led to the identification of nine genera (Streptomyces, Arthrobacter, Rhodococcus, Amycolatopsis, Microbacterium, Frankia, Leifsonia, Nakamurella, and Kitasatospora) and 92 distinct species in both seasons studied (rainy and dry). The rainy season produced a high microbial population of all the aforementioned genera. The pH values of the soil samples from the Passos, Luminárias, and Arcos regions varied from 4.1 to 5.5. There were no significant differences in the concentrations of phosphorus, magnesium, and organic matter in the soils among the studied areas. Samples from the Arcos area contained large amounts of aluminium in the rainy season and both hydrogen and aluminium in the rainy and dry seasons. The Actinobacteria population seemed to be unaffected by the high levels of aluminium in the soil. Studies are being conducted to produce bioactive compounds from Actinobacteria fermentations on different substrates. The present data suggest that the number and diversity of Actinobacteria spp. in tropical soils represent a vast unexplored resource for the biotechnology of bioactives production.

  6. Endophytic Actinobacteria Associated with Dracaena cochinchinensis Lour.: Isolation, Diversity, and Their Cytotoxic Activities.

    Science.gov (United States)

    Salam, Nimaichand; Khieu, Thi-Nhan; Liu, Min-Jiao; Vu, Thu-Trang; Chu-Ky, Son; Quach, Ngoc-Tung; Phi, Quyet-Tien; Narsing Rao, Manik Prabhu; Fontana, Angélique; Sarter, Samira; Li, Wen-Jun

    2017-01-01

    Dracaena cochinchinensis Lour. is an ethnomedicinally important plant used in traditional Chinese medicine known as dragon's blood. Excessive utilization of the plant for extraction of dragon's blood had resulted in the destruction of the important niche. During a study to provide a sustainable way of utilizing the resources, the endophytic Actinobacteria associated with the plant were explored for potential utilization of their medicinal properties. Three hundred and four endophytic Actinobacteria belonging to the genera Streptomyces , Nocardiopsis , Brevibacterium , Microbacterium , Tsukamurella , Arthrobacter , Brachybacterium , Nocardia , Rhodococcus , Kocuria , Nocardioides , and Pseudonocardia were isolated from different tissues of D. cochinchinensis Lour. Of these, 17 strains having antimicrobial and anthracyclines-producing activities were further selected for screening of antifungal and cytotoxic activities against two human cancer cell lines, MCF-7 and Hep G2. Ten of these selected endophytic Actinobacteria showed antifungal activities against at least one of the fungal pathogens, of which three strains exhibited cytotoxic activities with IC 50 -values ranging between 3 and 33  μ g·mL -1 . Frequencies for the presence of biosynthetic genes, polyketide synthase- (PKS-) I, PKS-II, and nonribosomal peptide synthetase (NRPS) among these 17 selected bioactive Actinobacteria were 29.4%, 70.6%, and 23.5%, respectively. The results indicated that the medicinal plant D. cochinchinensis Lour. is a good niche of biologically important metabolites-producing Actinobacteria.

  7. Actinobacterial diversity in limestone deposit sites in Hundung, Manipur (India and their antimicrobial activities

    Directory of Open Access Journals (Sweden)

    Salam eNimaichand

    2015-05-01

    Full Text Available Studies on actinobacterial diversity in limestone habitats are scarce. This paper reports profiling of actinobacteria isolated from Hundung limestone samples in Manipur, India using ARDRA as the molecular tool for preliminary classification. A total of 137 actinobacteria were clustered into 31 phylotypic groups based on the ARDRA pattern generated and representative of each group was subjected to 16S rRNA gene sequencing. Generic diversity of the limestone isolates consisted of Streptomyces (15 phylotypic groups, Micromonospora (4, Amycolatopsis (3, Arthrobacter (3, Kitasatospora (2, Janibacter (1, Nocardia (1, Pseudonocardia (1 and Rhodococcus (1. Considering the antimicrobial potential of these actinobacteria, 19 showed antimicrobial activities against at least one of the bacterial and candidal test pathogens, while 45 exhibit biocontrol activities against at least one of the rice fungal pathogens. Out of the 137 actinobacterial isolates, 118 were found to have at least one of the three biosynthetic gene clusters (PKS-I, PKS-II, NRPS. The results indicate that 86% of the strains isolated from Hundung limestone deposit sites possessed biosynthetic gene clusters of which 40% exhibited antimicrobial activities. It can, therefore, be concluded that limestone habitat is a promising source for search of novel secondary metabolites.

  8. Brazilian Cerrado Soil Actinobacteria Ecology

    Directory of Open Access Journals (Sweden)

    Monique Suela Silva

    2013-01-01

    Full Text Available A total of 2152 Actinobacteria strains were isolated from native Cerrado (Brazilian Savannah soils located in Passos, Luminárias, and Arcos municipalities (Minas Gerais State, Brazil. The soils were characterised for chemical and microbiological analysis. The microbial analysis led to the identification of nine genera (Streptomyces, Arthrobacter, Rhodococcus, Amycolatopsis, Microbacterium, Frankia, Leifsonia, Nakamurella, and Kitasatospora and 92 distinct species in both seasons studied (rainy and dry. The rainy season produced a high microbial population of all the aforementioned genera. The pH values of the soil samples from the Passos, Luminárias, and Arcos regions varied from 4.1 to 5.5. There were no significant differences in the concentrations of phosphorus, magnesium, and organic matter in the soils among the studied areas. Samples from the Arcos area contained large amounts of aluminium in the rainy season and both hydrogen and aluminium in the rainy and dry seasons. The Actinobacteria population seemed to be unaffected by the high levels of aluminium in the soil. Studies are being conducted to produce bioactive compounds from Actinobacteria fermentations on different substrates. The present data suggest that the number and diversity of Actinobacteria spp. in tropical soils represent a vast unexplored resource for the biotechnology of bioactives production.

  9. Diversity and antibacterial activity of culturable actinobacteria isolated from five species of the South China Sea gorgonian corals.

    Science.gov (United States)

    Zhang, Xiao-Yong; He, Fei; Wang, Guang-Hua; Bao, Jie; Xu, Xin-Ya; Qi, Shu-Hua

    2013-06-01

    This study describes the diversity and antibacterial activity of culturable actinobacteria isolated from five species of gorgonian corals (Echinogorgia aurantiaca, Melitodes squamata, Muricella flexuosa, Subergorgia suberosa, and Verrucella umbraculum) collected in shallow water of the South China Sea. A total of 123 actinobacterial isolates were recovered using ten different isolation media, and assigned to 11 genera, including Streptomyces and Micromonospora as the dominant genera, followed by Nocardia, Verrucosispora, Nocardiopsis, Rhodococcus, Pseudonocardia, Agrococcus, Saccharomonospora, Saccharopolyspora and Dietzia. Comparable analysis indicated that the numbers of actinobacterial genera and isolates from the five gorgonian coral species varied significantly. It was found that 72 isolates displayed antibacterial activity against at least one indicator bacterium, and the antibacterial strains isolated from different gorgonians had almost the same proportion (~50 %). These results provide direct evidence for the hypotheses that gorgonian coral species contain large and diverse communities of actinobacteria, and suggest that many gorgonian-associated actinobacteria could produce some antibacterial agents to protect their hosts against pathogens. To our knowledge, this is the first report about the diversity of culturable actinobacteria isolated from gorgonian corals.

  10. Zinc and lead detoxifying abilities of humic substances relevant to environmental bacterial species.

    Science.gov (United States)

    Perelomov, L V; Sarkar, Binoy; Sizova, O I; Chilachava, K B; Shvikin, A Y; Perelomova, I V; Atroshchenko, Y M

    2018-04-30

    The effect of humic substances (HS) and their different fractions (humic acids (HA) and hymatomelanic acids (HMA)) on the toxicity of zinc and lead to different strains of bacteria was studied. All tested bacteria demonstrated a lower resistance to zinc than lead showing minimum inhibitory concentrations of 0.1 - 0.3mM and 0.3-0.5mM, respectively. The highest resistance to lead was characteristic of Pseudomonas chlororaphis PCL1391 and Rhodococcus RS67, while Pseudomonas chlororaphis PCL1391 showed the greatest resistance to zinc. The combined fractions of HS and HA alone reduced zinc toxicity at all added concentrations of the organic substances (50 - 200mgL -1 ) to all microorganisms, while hymatomelanic acids reduced zinc toxicity to Pseudomonas chlororaphis PCL1391 at 200mgL -1 organic concentration only. The HS fractions imparted similar effects on lead toxicity also. This study demonstrated that heavy metal toxicity to bacteria could be reduced through complexation with HS and their fractions. This was particularly true when the metal-organic complexes held a high stability, and low solubility and bioavailability. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Bacterial diversity characterization in petroleum samples from Brazilian reservoirs Caracterização da diversidade bacteriana em amostras de petróleo provenientes de reservatórios brasileiros

    Directory of Open Access Journals (Sweden)

    Valéria Maia de Oliveira

    2008-09-01

    Full Text Available This study aimed at evaluating potential differences among the bacterial communities from formation water and oil samples originated from biodegraded and non-biodegraded Brazilian petroleum reservoirs by using a PCR-DGGE based approach. Environmental DNA was isolated and used in PCR reactions with bacterial primers, followed by separation of 16S rDNA fragments in the DGGE. PCR products were also cloned and sequenced, aiming at the taxonomic affiliation of the community members. The fingerprints obtained allowed the direct comparison among the bacterial communities from oil samples presenting distinct degrees of biodegradation, as well as between the communities of formation water and oil sample from the non-biodegraded reservoir. Very similar DGGE band profiles were observed for all samples, and the diversity of the predominant bacterial phylotypes was shown to be low. Cloning and sequencing results revealed major differences between formation water and oil samples from the non-biodegraded reservoir. Bacillus sp. and Halanaerobium sp. were shown to be the predominant components of the bacterial community from the formation water sample, whereas the oil sample also included Alicyclobacillus acidoterrestris, Rhodococcus sp., Streptomyces sp. and Acidithiobacillus ferrooxidans. The PCR-DGGE technique, combined with cloning and sequencing of PCR products, revealed the presence of taxonomic groups not found previously in these samples when using cultivation-based methods and 16S rRNA gene library assembly, confirming the need of a polyphasic study in order to improve the knowledge of the extent of microbial diversity in such extreme environments.Este estudo teve como objetivo comparar as comunidades bacterianas de amostras de água de formação e de óleo de reservatórios de petróleo brasileiros com diferentes graus de biodegradação usando a técnica de PCR-DGGE. O DNA ambiental foi isolado e empregado em reações de PCR com primers bacterianos

  12. Crystallization and preliminary X-ray diffraction analysis of the wild-type haloalkane dehalogenase DhaA and its variant DhaA13 complexed with different ligands.

    Science.gov (United States)

    Stsiapanava, Alena; Chaloupkova, Radka; Fortova, Andrea; Brynda, Jiri; Weiss, Manfred S; Damborsky, Jiri; Smatanova, Ivana Kuta

    2011-02-01

    Haloalkane dehalogenases make up an important class of hydrolytic enzymes which catalyse the cleavage of carbon-halogen bonds in halogenated aliphatic compounds. There is growing interest in these enzymes owing to their potential use in environmental and industrial applications. The haloalkane dehalogenase DhaA from Rhodococcus rhodochrous NCIMB 13064 can slowly detoxify the industrial pollutant 1,2,3-trichloropropane (TCP). Structural analysis of this enzyme complexed with target ligands was conducted in order to obtain detailed information about the structural limitations of its catalytic properties. In this study, the crystallization and preliminary X-ray analysis of complexes of wild-type DhaA with 2-propanol and with TCP and of complexes of the catalytically inactive variant DhaA13 with the dye coumarin and with TCP are described. The crystals of wild-type DhaA were plate-shaped and belonged to the triclinic space group P1, while the variant DhaA13 can form prism-shaped crystals belonging to the orthorhombic space group P2(1)2(1)2(1) as well as plate-shaped crystals belonging to the triclinic space group P1. Diffraction data for crystals of wild-type DhaA grown from crystallization solutions with different concentrations of 2-propanol were collected to 1.70 and 1.26 Å resolution, respectively. A prism-shaped crystal of DhaA13 complexed with TCP and a plate-shaped crystal of the same variant complexed with the dye coumarin diffracted X-rays to 1.60 and 1.33 Å resolution, respectively. A crystal of wild-type DhaA and a plate-shaped crystal of DhaA13, both complexed with TCP, diffracted to atomic resolutions of 1.04 and 0.97 Å, respectively.

  13. Biodegradation of 1,2,3-trichloropropane through directed evolution and heterologous expression of a haloalkane dehalogenase gene.

    Science.gov (United States)

    Bosma, Tjibbe; Damborský, Jirí; Stucki, Gerhard; Janssen, Dick B

    2002-07-01

    Using a combined strategy of random mutagenesis of haloalkane dehalogenase and genetic engineering of a chloropropanol-utilizing bacterium, we constructed an organism that is capable of growth on 1,2,3-trichloropropane (TCP). This highly toxic and recalcitrant compound is a waste product generated from the manufacture of the industrial chemical epichlorohydrin. Attempts to select and enrich bacterial cultures that can degrade TCP from environmental samples have repeatedly been unsuccessful, prohibiting the development of a biological process for groundwater treatment. The critical step in the aerobic degradation of TCP is the initial dehalogenation to 2,3-dichloro-1-propanol. We used random mutagenesis and screening on eosin-methylene blue agar plates to improve the activity on TCP of the haloalkane dehalogenase from Rhodococcus sp. m15-3 (DhaA). A second-generation mutant containing two amino acid substitutions, Cys176Tyr and Tyr273Phe, was nearly eight times more efficient in dehalogenating TCP than wild-type dehalogenase. Molecular modeling of the mutant dehalogenase indicated that the Cys176Tyr mutation has a global effect on the active-site structure, allowing a more productive binding of TCP within the active site, which was further fine tuned by Tyr273Phe. The evolved haloalkane dehalogenase was expressed under control of a constitutive promoter in the 2,3-dichloro-1-propanol-utilizing bacterium Agrobacterium radiobacter AD1, and the resulting strain was able to utilize TCP as the sole carbon and energy source. These results demonstrated that directed evolution of a key catabolic enzyme and its subsequent recruitment by a suitable host organism can be used for the construction of bacteria for the degradation of a toxic and environmentally recalcitrant chemical.

  14. Determination of physiological, taxonomic, and molecular characteristics of a cultivable arsenic-resistant bacterial community.

    Science.gov (United States)

    Cordi, A; Pagnout, C; Devin, S; Poirel, J; Billard, P; Dollard, M A; Bauda, P

    2015-09-01

    A collection of 219 bacterial arsenic-resistant isolates was constituted from neutral arsenic mine drainage sediments. Isolates were grown aerobically or anaerobically during 21 days on solid DR2A medium using agar or gelan gum as gelling agent, with 7 mM As(III) or 20 mM As(V) as selective pressure. Interestingly, the sum of the different incubation conditions used (arsenic form, gelling agent, oxygen pressure) results in an overall increase of the isolate diversity. Isolated strains mainly belonged to Proteobacteria (63%), Actinobacteria (25%), and Bacteroidetes (10%). The most representative genera were Pseudomonas (20%), Acinetobacter (8%), and Serratia (15%) among the Proteobacteria; Rhodococcus (13%) and Microbacterium (5%) among Actinobacteria; and Flavobacterium (13%) among the Bacteroidetes. Isolates were screened for the presence of arsenic-related genes (arsB, ACR3(1), ACR3(2), aioA, arsM, and arrA). In this way, 106 ACR3(1)-, 74 arsB-, 22 aioA-, 14 ACR3(2)-, and one arsM-positive PCR products were obtained and sequenced. Analysis of isolate sensitivity toward metalloids (arsenite, arsenate, and antimonite) revealed correlations between taxonomy, sensitivity, and genotype. Antimonite sensitivity correlated with the presence of ACR3(1) mainly present in Bacteroidetes and Actinobacteria, and arsenite or antimonite resistance correlated with arsB gene presence. The presence of either aioA gene or several different arsenite carrier genes did not ensure a high level of arsenic resistance in the tested conditions.

  15. Comparative analysis of mycobacterium and related actinomycetes yields insight into the evolution of mycobacterium tuberculosis pathogenesis

    Directory of Open Access Journals (Sweden)

    McGuire Abigail

    2012-03-01

    Full Text Available Abstract Background The sequence of the pathogen Mycobacterium tuberculosis (Mtb strain H37Rv has been available for over a decade, but the biology of the pathogen remains poorly understood. Genome sequences from other Mtb strains and closely related bacteria present an opportunity to apply the power of comparative genomics to understand the evolution of Mtb pathogenesis. We conducted a comparative analysis using 31 genomes from the Tuberculosis Database (TBDB.org, including 8 strains of Mtb and M. bovis, 11 additional Mycobacteria, 4 Corynebacteria, 2 Streptomyces, Rhodococcus jostii RHA1, Nocardia farcinia, Acidothermus cellulolyticus, Rhodobacter sphaeroides, Propionibacterium acnes, and Bifidobacterium longum. Results Our results highlight the functional importance of lipid metabolism and its regulation, and reveal variation between the evolutionary profiles of genes implicated in saturated and unsaturated fatty acid metabolism. It also suggests that DNA repair and molybdopterin cofactors are important in pathogenic Mycobacteria. By analyzing sequence conservation and gene expression data, we identify nearly 400 conserved noncoding regions. These include 37 predicted promoter regulatory motifs, of which 14 correspond to previously validated motifs, as well as 50 potential noncoding RNAs, of which we experimentally confirm the expression of four. Conclusions Our analysis of protein evolution highlights gene families that are associated with the adaptation of environmental Mycobacteria to obligate pathogenesis. These families include fatty acid metabolism, DNA repair, and molybdopterin biosynthesis. Our analysis reinforces recent findings suggesting that small noncoding RNAs are more common in Mycobacteria than previously expected. Our data provide a foundation for understanding the genome and biology of Mtb in a comparative context, and are available online and through TBDB.org.

  16. Comparative analysis of Mycobacterium and related Actinomycetes yields insight into the evolution of Mycobacterium tuberculosis pathogenesis.

    Science.gov (United States)

    McGuire, Abigail Manson; Weiner, Brian; Park, Sang Tae; Wapinski, Ilan; Raman, Sahadevan; Dolganov, Gregory; Peterson, Matthew; Riley, Robert; Zucker, Jeremy; Abeel, Thomas; White, Jared; Sisk, Peter; Stolte, Christian; Koehrsen, Mike; Yamamoto, Robert T; Iacobelli-Martinez, Milena; Kidd, Matthew J; Maer, Andreia M; Schoolnik, Gary K; Regev, Aviv; Galagan, James

    2012-03-28

    The sequence of the pathogen Mycobacterium tuberculosis (Mtb) strain H37Rv has been available for over a decade, but the biology of the pathogen remains poorly understood. Genome sequences from other Mtb strains and closely related bacteria present an opportunity to apply the power of comparative genomics to understand the evolution of Mtb pathogenesis. We conducted a comparative analysis using 31 genomes from the Tuberculosis Database (TBDB.org), including 8 strains of Mtb and M. bovis, 11 additional Mycobacteria, 4 Corynebacteria, 2 Streptomyces, Rhodococcus jostii RHA1, Nocardia farcinia, Acidothermus cellulolyticus, Rhodobacter sphaeroides, Propionibacterium acnes, and Bifidobacterium longum. Our results highlight the functional importance of lipid metabolism and its regulation, and reveal variation between the evolutionary profiles of genes implicated in saturated and unsaturated fatty acid metabolism. It also suggests that DNA repair and molybdopterin cofactors are important in pathogenic Mycobacteria. By analyzing sequence conservation and gene expression data, we identify nearly 400 conserved noncoding regions. These include 37 predicted promoter regulatory motifs, of which 14 correspond to previously validated motifs, as well as 50 potential noncoding RNAs, of which we experimentally confirm the expression of four. Our analysis of protein evolution highlights gene families that are associated with the adaptation of environmental Mycobacteria to obligate pathogenesis. These families include fatty acid metabolism, DNA repair, and molybdopterin biosynthesis. Our analysis reinforces recent findings suggesting that small noncoding RNAs are more common in Mycobacteria than previously expected. Our data provide a foundation for understanding the genome and biology of Mtb in a comparative context, and are available online and through TBDB.org.

  17. Antibiotics promote aggregation within aquatic bacterial communities

    Directory of Open Access Journals (Sweden)

    Gianluca eCorno

    2014-07-01

    Full Text Available The release of antibiotics (AB into the environment poses several threats for human health due to potential development of ABresistant natural bacteria. Even though the use of low-dose antibiotics has been promoted in health care and farming, significant amounts of AB are observed in aquatic environments. Knowledge on the impact of AB on natural bacterial communities is missing both in terms of spread and evolution of resistance mechanisms, and of modifications of community composition and productivity. New approaches are required to study the response of microbial communities rather than individual resistance genes. In this study a chemostat-based experiment with 4 coexisting bacterial strains has been performed to mimicking the response of a freshwater bacterial community to the presence of antibiotics in low and high doses. Bacterial abundance rapidly decreased by 75% in the presence of AB, independently of their concentration, and remained constant until the end of the experiment. The bacterial community was mainly dominated by Aeromonas hydrophila and Brevundimonas intermedia while the other two strains, Micrococcus luteus and Rhodococcus sp. never exceed 10%. Interestingly, the bacterial strains, which were isolated at the end of the experiment, were not AB-resistant, while reassembled communities composed of the 4 strains, isolated from treatments under AB stress, significantly raised their performance (growth rate, abundance in the presence of AB compared to the communities reassembled with strains isolated from the treatment without AB. By investigating the phenotypic adaptations of the communities subjected to the different treatments, we found that the presence of AB significantly increased co-aggregation by 5-6 fold.These results represent the first observation of co-aggregation as a successful strategy of AB resistance based on phenotype in aquatic bacterial communities, and can represent a fundamental step in the understanding of

  18. Isolation and characterization of Arctic microorganisms decomposing bioplastics.

    Science.gov (United States)

    Urbanek, Aneta K; Rymowicz, Waldemar; Strzelecki, Mateusz C; Kociuba, Waldemar; Franczak, Łukasz; Mirończuk, Aleksandra M

    2017-12-01

    The increasing amount of plastic waste causes significant environmental pollution. In this study, screening of Arctic microorganisms which are able to degrade bioplastics was performed. In total, 313 microorganisms were isolated from 52 soil samples from the Arctic region (Spitsbergen). Among the isolated microorganisms, 121 (38.66%) showed biodegradation activity. The ability of clear zone formation on emulsified poly(butylene succinate-co-adipate) (PBSA) was observed for 116 microorganisms (95.87%), on poly(butylene succinate) (PBS) for 73 microorganisms (60.33%), and on poly(ɛ-caprolactone) (PCL) for 102 microorganisms (84.3%). Moreover, the growth of microorganisms on poly(lactic acid) (PLA) agar plates was observed for 56 microorganisms (46.28%). Based on the 16S rRNA sequence, 10 bacterial strains which showed the highest ability for biodegradation were identified as species belonging to Pseudomonas sp. and Rhodococcus sp. The isolated fungal strains were tested for polycaprolactone films and commercial corn and potato starch bags degradation under laboratory conditions. Strains 16G (based on the analysis of a partial 18S rRNA sequence, identified as Clonostachys rosea) and 16H (identified as Trichoderma sp.) showed the highest capability for biodegradation. A particularly high capability for biodegradation was observed for the strain Clonostachys rosea, which showed 100% degradation of starch films and 52.91% degradation of PCL films in a 30-day shake flask experiment. The main advantage of the microorganisms isolated from Arctic environment is the ability to grow at low temperature and efficient biodegradation under this condition. The data suggest that C. rosea can be used in natural and laboratory conditions for degradations of bioplastics.

  19. Identification of selected microorganisms from activated sludge capable of benzothiazole and benzotriazole transformation.

    Science.gov (United States)

    Kowalska, Katarzyna; Felis, Ewa

    2015-01-01

    Benzothiazole (BT) and benzotriazole (BTA) are present in the environment - especially in urban and industrial areas, usually as anthropogenic micropollutants. BT and BTA have been found in the municipal and industrial wastewater, rivers, soil, groundwater, sediments and sludge. The origins of those substances' presence in the environment are various industry branches (food, chemical, metallurgical, electrical), households and surface runoff from industrial areas. Increasingly strict regulations on water quality and the fact that the discussed compounds are poorly biodegradable, make them a serious problem in the environment. Considering this, it is important to look for environmentally friendly and socially acceptable ways to remove BT and BTA. The aim of this study was to identify microorganisms capable of BT and BTA transformation or/and degradation in aquatic environment. Selected microorganisms were isolated from activated sludge. The identification of microorganisms capable of BT and BTA removal was possible using molecular biology techniques (PCR, DNA sequencing). Among isolated microorganisms of activated sludge are bacteria potentially capable of BT and BTA biotransformation and/or removal. The most common bacteria capable of BT and BTA transformation were Rhodococcus sp., Enterobacter sp., Arthrobacter sp. They can grow in a medium with BT and BTA as the only carbon source. Microorganisms previously adapted to the presence of the studied substances at a concentration of 10 mg/l, showed a greater rate of growth of colonies on media than microorganisms unconditioned to the presence of such compounds. Results of the biodegradation test suggest that BT was degraded to a greater extent than BTA, 98-100% and 11-19%, respectively.

  20. Intramuscular administration of a synthetic CpG-oligodeoxynucleotide modulates functional responses of neutrophils of neonatal foals.

    Directory of Open Access Journals (Sweden)

    Noah D Cohen

    Full Text Available Neutrophils play an important role in protecting against infection. Foals have age-dependent deficiencies in neutrophil function that may contribute to their predisposition to infection. Thus, we investigated the ability of a CpG-ODN formulated with Emulsigen to modulate functional responses of neutrophils in neonatal foals. Eighteen foals were randomly assigned to receive either a CpG-ODN with Emulsigen (N = 9 or saline intramuscularly at ages 1 and 7 days. At ages 1, 3, 9, 14, and 28, blood was collected and neutrophils were isolated from each foal. Neutrophils were assessed for basal and Rhodococcus equi-stimulated mRNA expression of the cytokines interferon-γ (IFN-γ, interleukin (IL-4, IL-6, and IL-8 using real-time PCR, degranulation by quantifying the amount of β-D glucuronidase activity, and reactive oxygen species (ROS generation using flow cytometry. In vivo administration of the CpG-ODN formulation on days 1 and 7 resulted in significantly (P<0.05 increased IFN-γ mRNA expression by foal neutrophils on days 3, 9, and 14. Degranulation was significantly (P<0.05 lower for foals in the CpG-ODN-treated group than the control group at days 3 and 14, but not at other days. No effect of treatment on ROS generation was detected. These results indicate that CpG-ODN administration to foals might improve innate and adaptive immune responses that could protect foals against infectious diseases and possibly improve responses to vaccination.

  1. Hydrocarbonoclastic bacteria isolated from petroleum contaminated sites in Tunisia: isolation, identification and characterization of the biotechnological potential.

    Science.gov (United States)

    Mahjoubi, Mouna; Jaouani, Atef; Guesmi, Amel; Ben Amor, Sonia; Jouini, Ahlem; Cherif, Hanen; Najjari, Afef; Boudabous, Abdellatif; Koubaa, Nedra; Cherif, Ameur

    2013-09-25

    Petroleum hydrocarbons are important energy resources used by industry and in our daily life, whose production contributes highly to environmental pollution. To control such risk, bioremediation constitutes an environmentally friendly alternative technology that has been established and applied. It constitutes the primary mechanism for the elimination of hydrocarbons from contaminated sites by natural existing populations of microorganisms. In this work, a collection of 125 strains, adapted to grow on minimal medium supplemented with crude oil, was obtained from contaminated sediments and seawater from a refinery harbor of the Bizerte coast in the North of Tunisia. The diversity of the bacterial collection was analyzed by amplification of the internal transcribed spacers between the 16S and the 23S rRNA genes (ITS-PCR) and by 16S rRNA sequencing. A total of 36 distinct ITS haplotypes were detected on agarose matrix. Partial 16S rRNA gene sequencing performed on 50 isolates showed high level of identity with known sequences. Strains were affiliated to Ochrabactrum, Sphingobium, Acinetobacter, Gordonia, Microbacterium, Brevundimonas, Novosphingobium, Stenotrophomonas, Luteibacter, Rhodococcus, Agrobacterium, Achromobacter, Bacilllus, Kocuria and Pseudomonas genera. Acinetobacter and Stenotrophomons were found to be the most abundant species characterized by a marked microdiversity as shown through ITS typing. Culture-independent approach (DGGE) showed high diversity in the microbial community in all the studied samples with a clear correlation with the hydrocarbon pollution rate. Sequencing of the DGGE bands revealed a high proportion of Proteobacteria represented by the Alpha and Gamma subclasses. The predominant bacterial detected by both dependent and independent approaches were the Proteobacteria. The biotechnological potential of the isolates revealed a significant production of biosurfactants with important emulsification activities useful in bioremediation

  2. Dynamic {sup 11}C-methionine PET analysis has an additional value for differentiating malignant tumors from granulomas: an experimental study using small animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Songji; Zhao, Yan [Hokkaido University, Department of Nuclear Medicine, Graduate School of Medicine, Sapporo (Japan); Hokkaido University, Department of Tracer Kinetics and Bioanalysis, Graduate School of Medicine, Sapporo (Japan); Kuge, Yuji; Hatano, Toshiyuki [Hokkaido University, Central Institute of Isotope Science, Sapporo (Japan); Yi, Min; Kohanawa, Masashi [Hokkaido University, Department of Advanced Medicine, Graduate School of Medicine, Sapporo (Japan); Magota, Keiichi; Tamaki, Nagara [Hokkaido University, Department of Nuclear Medicine, Graduate School of Medicine, Sapporo (Japan); Nishijima, Ken-ichi [Hokkaido University, Department of Molecular Imaging, Graduate School of Medicine, Sapporo (Japan)

    2011-10-15

    We evaluated whether the dynamic profile of L-{sup 11}C-methionine ({sup 11}C-MET) may have an additional value in differentiating malignant tumors from granulomas in experimental rat models by small animal positron emission tomography (PET). Rhodococcus aurantiacus and allogenic rat C6 glioma cells were inoculated, respectively, into the right and left calf muscles to generate a rat model bearing both granulomas and tumors (n = 6). Ten days after the inoculations, dynamic {sup 11}C-MET PET was performed by small animal PET up to 120 min after injection of {sup 11}C-MET. The next day, after overnight fasting, the rats were injected with {sup 18}F-2-deoxy-2-fluoro-D-glucose ({sup 18}F-FDG), and dynamic {sup 18}F-FDG PET was performed up to 180 min. The time-activity curves, static images, and mean standardized uptake value (SUV) in the lesions were calculated. {sup 11}C-MET uptake in the granuloma showed a slow exponential clearance after an initial distribution, while the uptake in the tumor gradually increased with time. The dynamic pattern of {sup 11}C-MET uptake in the granuloma was significantly different from that in the tumor (p < 0.001). In the static analysis of {sup 11}C-MET, visual assessment and SUV analysis could not differentiate the tumor from the granuloma in all cases, although the mean SUV in the granuloma (1.48 {+-} 0.09) was significantly lower than that in the tumor (1.72 {+-} 0.18, p < 0.01). The dynamic patterns, static images, and mean SUVs of {sup 18}F-FDG in the granuloma were similar to those in the tumor (p = NS). Dynamic {sup 11}C-MET PET has an additional value for differentiating malignant tumors from granulomatous lesions, which deserves further elucidation in clinical settings. (orig.)

  3. Screening of biosurfactants from cloud microorganisms

    Science.gov (United States)

    Sancelme, Martine; Canet, Isabelle; Traikia, Mounir; Uhliarikova, Yveta; Capek, Peter; Matulova, Maria; Delort, Anne-Marie; Amato, Pierre

    2015-04-01

    The formation of cloud droplets from aerosol particles in the atmosphere is still not well understood and a main source of uncertainties in the climate budget today. One of the principal parameters in these processes is the surface tension of atmospheric particles, which can be strongly affected by trace compounds called surfactants. Within a project devoted to bring information on atmospheric surfactants and their effects on cloud droplet formation, we focused on surfactants produced by microorganisms present in atmospheric waters. From our unique collection of microorganisms, isolated from cloud water collected at the Puy-de-Dôme (France),1 we undertook a screening of this bank for biosurfactant producers. After extraction of the supernatants of the pure cultures, surface tension of crude extracts was determined by the hanging drop technique. Results showed that a wide variety of microorganisms are able to produce biosurfactants, some of them exhibiting strong surfactant properties as the resulting tension surface decreases to values less then 35 mN.m-1. Preliminary analytical characterization of biosurfactants, obtained after isolation from overproducing cultures of Rhodococcus sp. and Pseudomonas sp., allowed us to identify them as belonging to two main classes, namely glycolipids and glycopeptides. 1. Vaïtilingom, M.; Attard, E.; Gaiani, N.; Sancelme, M.; Deguillaume, L.; Flossmann, A. I.; Amato, P.; Delort, A. M. Long-term features of cloud microbiology at the puy de Dôme (France). Atmos. Environ. 2012, 56, 88-100. Acknowledgements: This work is supported by the French-USA ANR SONATA program and the French-Slovakia programs Stefanik and CNRS exchange.

  4. Multidrug resistant bacteria isolated from septic arthritis in horses

    Directory of Open Access Journals (Sweden)

    Rodrigo G. Motta

    Full Text Available ABSTRACT: Septic arthritis is a debilitating joint infectious disease of equines that requires early diagnosis and immediate therapeutic intervention to prevent degenerative effects on the articular cartilage, as well as loss of athletic ability and work performance of the animals. Few studies have investigated the etiological complexity of this disease, as well as multidrug resistance of isolates. In this study, 60 horses with arthritis had synovial fluid samples aseptically collected, and tested by microbiological culture and in vitro susceptibility test (disk diffusion using nine antimicrobials belonging to six different pharmacological groups. Bacteria were isolated in 45 (75.0% samples, as follows: Streptococcus equi subsp. equi (11=18.3%, Escherichia coli (9=15.0%, Staphylococcus aureus (6=10.0%, Streptococcus equi subsp. zooepidemicus (5=8.3%, Staphylococcus intermedius (2=3.3%, Proteus vulgaris (2=3.3%, Trueperella pyogenes (2=3.3%, Pseudomonas aeruginosa (2=3.3%, Klebsiella pneumoniae (1=1.7%, Rhodococcus equi (1=1.7%, Staphylococcus epidermidis (1=1.7%, Klebsiella oxytoca (1=1.7%, Nocardia asteroides (1=1.7%, and Enterobacter cloacae (1=1.7%. Ceftiofur was the most effective drug (>70% efficacy against the pathogens in the disk diffusion test. In contrast, high resistance rate (>70% resistance was observed to penicillin (42.2%, enrofloxacin (33.3%, and amikacin (31.2%. Eleven (24.4% isolates were resistant to three or more different pharmacological groups and were considered multidrug resistant strains. The present study emphasizes the etiological complexity of equine septic arthritis, and highlights the need to institute treatment based on the in vitro susceptibility pattern, due to the multidrug resistance of isolates. According to the available literature, this is the first report in Brazil on the investigation of the etiology. of the septic arthritis in a great number of horses associated with multidrug resistance of the isolates.

  5. Aerobic biodegradation of N-nitrosodimethylamine (NDMA) by axenic bacterial strains.

    Science.gov (United States)

    Sharp, Jonathan O; Wood, Thomas K; Alvarez-Cohen, Lisa

    2005-03-05

    The water contaminant N-nitrosodimethylamine (NDMA) is a probable human carcinogen whose appearance in the environment is related to the release of rocket fuel and to chlorine-based disinfection of water and wastewater. Although this compound has been shown to be biodegradable, there is minimal information about the organisms capable of this degradation, and little is understood of the mechanisms or biochemistry involved. This study shows that bacteria expressing monooxygenase enzymes functionally similar to those demonstrated to degrade NDMA in eukaryotes have the capability to degrade NDMA. Specifically, induction of the soluble methane monooxygenase (sMMO) expressed by Methylosinus trichosporium OB3b, the propane monooxygenase (PMO) enzyme of Mycobacterium vaccae JOB-5, and the toluene 4-monooxygenases found in Ralstonia pickettii PKO1 and Pseudomonas mendocina KR1 resulted in NDMA degradation by these strains. In each of these cases, brief exposure to acetylene gas, a suicide substrate for certain monooxygenases, inhibited the degradation of NDMA. Further, Escherichia coli TG1/pBS(Kan) containing recombinant plasmids derived from the toluene monooxygenases found in strains PKO1 and KR1 mimicked the behavior of the parent strains. In contrast, M. trichosporium OB3b expressing the particulate form of MMO, Burkholderia cepacia G4 expressing the toluene 2-monooxygenase, and Pseudomonas putida mt-2 expressing the toluene sidechain monooxygenase were not capable of NDMA degradation. In addition, bacteria expressing aromatic dioxygenases were not capable of NDMA degradation. Finally, Rhodococcus sp. RR1 exhibited the ability to degrade NDMA by an unidentified, constitutively expressed enzyme that, unlike the confirmed monooxygenases, was not inhibited by acetylene exposure. 2005 Wiley Periodicals, Inc.

  6. Diversity, metabolic properties and arsenic mobilization potential of indigenous bacteria in arsenic contaminated groundwater of West Bengal, India.

    Science.gov (United States)

    Paul, Dhiraj; Kazy, Sufia K; Gupta, Ashok K; Pal, Taraknath; Sar, Pinaki

    2015-01-01

    Arsenic (As) mobilization in alluvial aquifers is caused by a complex interplay of hydro-geo-microbiological activities. Nevertheless, diversity and biogeochemical significance of indigenous bacteria in Bengal Delta Plain are not well documented. We have deciphered bacterial community compositions and metabolic properties in As contaminated groundwater of West Bengal to define their role in As mobilization. Groundwater samples showed characteristic high As, low organic carbon and reducing property. Culture-independent and -dependent analyses revealed presence of diverse, yet near consistent community composition mostly represented by genera Pseudomonas, Flavobacterium, Brevundimonas, Polaromonas, Rhodococcus, Methyloversatilis and Methylotenera. Along with As-resistance and -reductase activities, abilities to metabolize a wide range carbon substrates including long chain and polyaromatic hydrocarbons and HCO3, As3+ as electron donor and As5+/Fe3+ as terminal electron acceptor during anaerobic growth were frequently observed within the cultivable bacteria. Genes encoding cytosolic As5+ reductase (arsC) and As3+ efflux/transporter [arsB and acr3(2)] were found to be more abundant than the dissimilatory As5+ reductase gene arrA. The observed metabolic characteristics showed a good agreement with the same derived from phylogenetic lineages of constituent populations. Selected bacterial strains incubated anaerobically over 300 days using natural orange sand of Pleistocene aquifer showed release of soluble As mostly as As3+ along with several other elements (Al, Fe, Mn, K, etc.). Together with the production of oxalic acid within the biotic microcosms, change in sediment composition and mineralogy indicated dissolution of orange sand coupled with As/Fe reduction. Presence of arsC gene, As5+ reductase activity and oxalic acid production by the bacteria were found to be closely related to their ability to mobilize sediment bound As. Overall observations suggest that

  7. Arsenic release from shallow aquifers of the Hetao basin, Inner Mongolia: evidence from bacterial community in aquifer sediments and groundwater.

    Science.gov (United States)

    Li, Yuan; Guo, Huaming; Hao, Chunbo

    2014-12-01

    Indigenous microbes play crucial roles in arsenic mobilization in high arsenic groundwater systems. Databases concerning the presence and the activity of microbial communities are very useful in evaluating the potential of microbe-mediated arsenic mobilization in shallow aquifers hosting high arsenic groundwater. This study characterized microbial communities in groundwaters at different depths with different arsenic concentrations by DGGE and one sediment by 16S rRNA gene clone library, and evaluated arsenic mobilization in microcosm batches with the presence of indigenous bacteria. DGGE fingerprints revealed that the community structure changed substantially with depth at the same location. It indicated that a relatively higher bacterial diversity was present in the groundwater sample with lower arsenic concentration. Sequence analysis of 16S rRNA gene demonstrated that the sediment bacteria mainly belonged to Pseudomonas, Dietzia and Rhodococcus, which have been widely found in aquifer systems. Additionally, NO3(-)-reducing bacteria Pseudomonas sp. was the largest group, followed by Fe(III)-reducing, SO4(2-)-reducing and As(V)-reducing bacteria in the sediment sample. These anaerobic bacteria used the specific oxyanions as electron acceptor and played a significant role in reductive dissolution of Fe oxide minerals, reduction of As(V), and release of arsenic from sediments into groundwater. Microcosm experiments, using intact aquifer sediments, showed that arsenic release and Fe(III) reduction were microbially mediated in the presence of indigenous bacteria. High arsenic concentration was also observed in the batch without amendment of organic carbon, demonstrating that the natural organic matter in sediments was the potential electron donor for microbially mediated arsenic release from these aquifer sediments.

  8. Biocatalytic synthesis of flavones and hydroxyl-small molecules by recombinant Escherichia coli cells expressing the cyanobacterial CYP110E1 gene

    Directory of Open Access Journals (Sweden)

    Makino Takuya

    2012-07-01

    Full Text Available Abstract Background Cyanobacteria possess several cytochrome P450s, but very little is known about their catalytic functions. CYP110 genes unique to cyanaobacteria are widely distributed in heterocyst-forming cyanobacteria including nitrogen-fixing genera Nostoc and Anabaena. We screened the biocatalytic functions of all P450s from three cyanobacterial strains of genus Nostoc or Anabaena using a series of small molecules that contain flavonoids, sesquiterpenes, low-molecular-weight drugs, and other aromatic compounds. Results Escherichia coli cells carrying each P450 gene that was inserted into the pRED vector, containing the RhFRed reductase domain sequence from Rhodococcus sp. NCIMB 9784 P450RhF (CYP116B2, were co-cultured with substrates and products were identified when bioconversion reactions proceeded. Consequently, CYP110E1 of Nostoc sp. strain PCC 7120, located in close proximity to the first branch point in the phylogenetic tree of the CYP110 family, was found to be promiscuous for the substrate range mediating the biotransformation of various small molecules. Naringenin and (hydroxyl flavanones were respectively converted to apigenin and (hydroxyl flavones, by functioning as a flavone synthase. Such an activity is reported for the first time in prokaryotic P450s. Additionally, CYP110E1 biotransformed the notable sesquiterpene zerumbone, anti-inflammatory drugs ibuprofen and flurbiprofen (methylester forms, and some aryl compounds such as 1-methoxy and 1-ethoxy naphthalene to produce hydroxylated compounds that are difficult to synthesize chemically, including novel compounds. Conclusion We elucidated that the CYP110E1 gene, C-terminally fused to the P450RhF RhFRed reductase domain sequence, is functionally expressed in E. coli to synthesize a robust monooxygenase, which shows promiscuous substrate specificity (affinity for various small molecules, allowing the biosynthesis of not only flavones (from flavanones but also a variety of

  9. Use of antibiotic beads to salvage infected breast implants.

    Science.gov (United States)

    Sherif, Rami D; Ingargiola, Michael; Sanati-Mehrizy, Paymon; Torina, Philip J; Harmaty, Marco A

    2017-10-01

    When an implant becomes infected, implant salvage is often performed where the implant is removed, capsulectomy is performed, and a new implant is inserted. The patient is discharged with a PICC line and 6-8 weeks of intravenous (IV) antibiotics. This method has variable success and subjects the patient to long-term systemic antibiotics. In the 1960s, the use of antibiotic-impregnated beads for the treatment of chronic osteomyelitis was described. These beads deliver antibiotic directly to the site of the infection, thereby eliminating the complications of systemic IV antibiotics. This study aimed to present a case series illustrating the use of STIMULAN calcium sulfate beads loaded with vancomycin and tobramycin to increase the rate of salvage of the infected implant and forgo IV antibiotics. A retrospective analysis was performed of patients who were treated at Mount Sinai Hospital for implant infection with salvage and antibiotic beads. Twelve patients were identified, 10 of whom had breast cancer. Comorbidities included hypertension, smoking, and immunocompromised status. Infections were noted anywhere from 5 days to 8 years postoperatively. Salvage was successful in 9 out of the 12 infected implants using antibiotic bead therapy without home IV antibiotics. The use of antibiotic beads is promising for salvaging infected breast implants without IV antibiotics. Seventy-five percent of the implants were successfully salvaged. Of the three patients who had unsalvageable implants, one was infected with antibiotic-resistant Rhodococcus that was refractory to bead therapy and one was noncompliant with postoperative instructions. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. Biodegradability of fuel-ethers in environment; Biodegradabilite des ethers-carburants dans l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    Fayolle-Guichard, F

    2005-04-01

    Fuel ethers (methyl tert-butyl ether or MTBE, ethyl tert-butyl ether or ETBE and tert-amyl methyl ether or TAME have been used as gasoline additives since about twenty years in order to meet the requirements for the octane index and to limit the polluting emission in exhaust pipe gas (unburnt hydrocarbons and carbon monoxide). The high water solubility and the poor biodegradability of these compounds make them pollutants frequently encountered in aquifers. The present manuscript summarizes the knowledge concerning the biodegradability of fuel ethers obtained both at IFP and during collaborations with the Pasteur Institute (Paris), the Biotechnology Research Institute (Montreal, Canada) and the Center for Environmental Biotechnology (University of Tennessee, USA). Rhodococcus ruber IFP 2001 and Mycobacterium austroafricanum IFP 2012, two microorganisms isolated at IFP for their ability to grow, respectively, on ETBE and MTBE, were studied in order to determine the intermediates produced during MTBE and ETBE biodegradation and the enzymes required for each biodegradation step, thus allowing us to propose MTBE and ETBE catabolic pathways. A proteomic approach, from the protein induced during the degradation of ETBE or MTBE to the genes encoding these different enzymes, was carried out. The isolation of such genes is required:1) to use them for help in determining the bio-remediation capacities in polluted aquifers (DNA micro-arrays), 2) to monitor the microorganisms isolated for their degradative capacities during bio-remediation processes (fluorescent in situ hybridization or FISH) and 3) to create new tools for the detection and the quantification of ETBE or MTBE in contaminated aquifers (bio-sensor). The manuscript also describes the different ways for the adaptation of microorganisms to the presence of a xenobiotic compound. (author)

  11. Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high arctic soils.

    Science.gov (United States)

    Yergeau, Etienne; Sanschagrin, Sylvie; Beaumier, Danielle; Greer, Charles W

    2012-01-01

    As human activity in the Arctic increases, so does the risk of hydrocarbon pollution events. On site bioremediation of contaminated soil is the only feasible clean up solution in these remote areas, but degradation rates vary widely between bioremediation treatments. Most previous studies have focused on the feasibility of on site clean-up and very little attention has been given to the microbial and functional communities involved and their ecology. Here, we ask the question: which microorganisms and functional genes are abundant and active during hydrocarbon degradation at cold temperature? To answer this question, we sequenced the soil metagenome of an ongoing bioremediation project in Alert, Canada through a time course. We also used reverse-transcriptase real-time PCR (RT-qPCR) to quantify the expression of several hydrocarbon-degrading genes. Pseudomonas species appeared as the most abundant organisms in Alert soils right after contamination with diesel and excavation (t = 0) and one month after the start of the bioremediation treatment (t = 1m), when degradation rates were at their highest, but decreased after one year (t = 1y), when residual soil hydrocarbons were almost depleted. This trend was also reflected in hydrocarbon degrading genes, which were mainly affiliated with Gammaproteobacteria at t = 0 and t = 1m and with Alphaproteobacteria and Actinobacteria at t = 1y. RT-qPCR assays confirmed that Pseudomonas and Rhodococcus species actively expressed hydrocarbon degradation genes in Arctic biopile soils. Taken together, these results indicated that biopile treatment leads to major shifts in soil microbial communities, favoring aerobic bacteria that can degrade hydrocarbons.

  12. Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high arctic soils.

    Directory of Open Access Journals (Sweden)

    Etienne Yergeau

    Full Text Available As human activity in the Arctic increases, so does the risk of hydrocarbon pollution events. On site bioremediation of contaminated soil is the only feasible clean up solution in these remote areas, but degradation rates vary widely between bioremediation treatments. Most previous studies have focused on the feasibility of on site clean-up and very little attention has been given to the microbial and functional communities involved and their ecology. Here, we ask the question: which microorganisms and functional genes are abundant and active during hydrocarbon degradation at cold temperature? To answer this question, we sequenced the soil metagenome of an ongoing bioremediation project in Alert, Canada through a time course. We also used reverse-transcriptase real-time PCR (RT-qPCR to quantify the expression of several hydrocarbon-degrading genes. Pseudomonas species appeared as the most abundant organisms in Alert soils right after contamination with diesel and excavation (t = 0 and one month after the start of the bioremediation treatment (t = 1m, when degradation rates were at their highest, but decreased after one year (t = 1y, when residual soil hydrocarbons were almost depleted. This trend was also reflected in hydrocarbon degrading genes, which were mainly affiliated with Gammaproteobacteria at t = 0 and t = 1m and with Alphaproteobacteria and Actinobacteria at t = 1y. RT-qPCR assays confirmed that Pseudomonas and Rhodococcus species actively expressed hydrocarbon degradation genes in Arctic biopile soils. Taken together, these results indicated that biopile treatment leads to major shifts in soil microbial communities, favoring aerobic bacteria that can degrade hydrocarbons.

  13. Biotreatment of industrial wastewater by selected algal-bacterial consortia

    Energy Technology Data Exchange (ETDEWEB)

    Safonova, E.; Kvitko, K.V. [St. Petersburg State University, Biological Institute, Oranienbaum Chaussee 2, Old Peterhof, 198504 St. Petersburg (Russian Federation); Iankevitch, M.I.; Surgko, L.F.; Afti, I.A. [Ecoprom Ltd., Gruzovoi Proezd 13, Obukhovo, 192289 St. Petersburg (Russian Federation); Reisser, W. [Universitaet Leipzig, Botanisches Institut, Johannisallee 21-23, D-04103 Leipzig (Germany)

    2004-08-01

    A new approach for remediation processes in highly polluted environments is presented. The efficiency of algal-bacterial associations for the remediation of industrial wastewater of a pond in Samara, Russia, was investigated. After screening of algae and bacteria for the resistance to the wastewater the following strains were selected: the algal strains Chlorella sp. ES-13, Chlorella sp. ES-30, Scenedesmus obliquus ES-55, several Stichococcus strains (ES-19, ES-85, ES-86, ES-87, ES-88), and Phormidium sp. ES-90 and the bacterial strains Rhodococcus sp. Ac-1267, Kibdelosporangium aridum 754 as well as two unidentified bacterial strains (St-1, St-2) isolated from the collector pond. All the strains listed above were immobilized onto various solid carriers (capron fibers for algae; ceramics, capron and wood for bacteria) and used for biotreatment in a pilot installation. The results showed that the selected algae and bacteria formed stable consortia during the degradation of the waste, which was demonstrated for the first time for the green alga Stichococcus. Stichococcus and Phormidium cells attached to capron fibers with the help of slime and formed a matrix. This matrix fixed the bacteria and eukaryotic algae and prevented them from being washed off. A significant decrease in the content of the pollutants was observed: phenols were removed up to 85 %, anionic surface active substances (anionic SAS) up to 73 %, oil spills up to 96 %, copper up to 62 %, nickel up to 62 %, zinc up to 90 %, manganese up to 70 %, and iron up to 64 %. The reduction of the biological oxygen demand (BOD{sub 25}) and the chemical oxygen demand COD amounted to 97 % and 51 %, respectively. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  14. Application of terpene-induced cell for enhancing biodegradation of TCE contaminated soil

    Directory of Open Access Journals (Sweden)

    Ekawan Luepromchai

    2004-02-01

    Full Text Available Trichloroethylene (TCE, a chlorinated solvent, is a major water pollutant originating from spillage and inappropriate disposal of dry cleaning agents, degreasing solvents, and paint strippers. Due to its widespread contamination and potential health threat, remediation technology to clean-up TCE is necessary. Aerobic biodegradation of TCE is reported to occur via cometabolism, by which TCE degrading bacteria utilize other compounds such as toluene, phenol, and methane as growth substrate and enzyme inducer. Although toluene is reported to be the most effective inducer, it is regulated as a hazardous material and should not be applied to the environment. The objectives of this study were to identify an alternative enzyme inducer as well as to apply the induced bacteria for degradation of TCE in contaminated soil. We investigated the effect of terpenes, the main components in volatile essential oils of plants, on induction of TCE degradation in Rhodococcus gordoniae P3, a local Gram (+ bacterium. Selected terpenes including cumene, limonene, carvone and pinene at various concentrations were used in the study. Results from liquid culture showed that 25 mg l-1 cumeneinduced R. gordoniae P3 cells resulted in 75% degradation of 10 ppm TCE within 24 hrs. Soil microcosms were later employed to investigate the ability of cumene to enhance TCE biodegradation in the environment. There were two bioremediation treatments studied, including bioaugmentation, the inoculation of cumeneinduced R. gordoniae P3, and biostimulation, the addition of cumene to induce soil indigenous microorganisms to degrade TCE. Bioaugmentation and biostimulation were shown to accelerate TCE reduction significantly more than control treatment at the beginning of study. The results suggest that cumene-induced R. gordoniae P3 and cumene can achieve rapid TCE biodegradation.

  15. Assessment of bacterial bph gene in Amazonian dark earth and their adjacent soils.

    Science.gov (United States)

    Brossi, Maria Julia de Lima; Mendes, Lucas William; Germano, Mariana Gomes; Lima, Amanda Barbosa; Tsai, Siu Mui

    2014-01-01

    Amazonian Anthrosols are known to harbour distinct and highly diverse microbial communities. As most of the current assessments of these communities are based on taxonomic profiles, the functional gene structure of these communities, such as those responsible for key steps in the carbon cycle, mostly remain elusive. To gain insights into the diversity of catabolic genes involved in the degradation of hydrocarbons in anthropogenic horizons, we analysed the bacterial bph gene community structure, composition and abundance using T-RFLP, 454-pyrosequencing and quantitative PCR essays, respectively. Soil samples were collected in two Brazilian Amazon Dark Earth (ADE) sites and at their corresponding non-anthropogenic adjacent soils (ADJ), under two different land use systems, secondary forest (SF) and manioc cultivation (M). Redundancy analysis of T-RFLP data revealed differences in bph gene structure according to both soil type and land use. Chemical properties of ADE soils, such as high organic carbon and organic matter, as well as effective cation exchange capacity and pH, were significantly correlated with the structure of bph communities. Also, the taxonomic affiliation of bph gene sequences revealed the segregation of community composition according to the soil type. Sequences at ADE sites were mostly affiliated to aromatic hydrocarbon degraders belonging to the genera Streptomyces, Sphingomonas, Rhodococcus, Mycobacterium, Conexibacter and Burkholderia. In both land use sites, shannon's diversity indices based on the bph gene data were higher in ADE than ADJ soils. Collectively, our findings provide evidence that specific properties in ADE soils shape the structure and composition of bph communities. These results provide a basis for further investigations focusing on the bio-exploration of novel enzymes with potential use in the biotechnology/biodegradation industry.

  16. Effect of Pseudomonas sp. MT5 baths on Flavobacterium columnare infection of rainbow trout and on microbial diversity on fish skin and gills.

    Science.gov (United States)

    Suomalainen, L R; Tiirola, M A; Valtonen, E T

    2005-01-25

    Use of Pseudomonas sp. strain MT5 to prevent and treat Flavobacterium columnare infection was studied in 2 experiments with fingerling rainbow trout Oncorhynchus mykiss. In the first experiment, length heterogeneity analysis of PCR-amplified DNA fragments (LH-PCR) was used to assess the effect of antagonistic baths on the microbial diversity of healthy and experimentally infected fish. In the 148 samples studied, no difference was found between bathed and unbathed fish, and 3 fragment lengths were detected most frequently: 500 (in 75.7% of the samples), 523 (62.2%) and 517 bp (40.5%). The species contributing to these fragment sizes were Pseudomonas sp., Rhodococcus sp. and F. columnare, respectively. A specific PCR for detection of Pseudomonas sp. MT5 was designed, but none of the tissue samples were found to be positive, most likely indicating poor adhesion of the strain during bathing. LH-PCR was found to be a more powerful tool for detecting F. columnare in fish tissue than traditional culture methods (chi2 = 3.9, df = 1, p < 0.05). Antagonistic baths had no effect on the outbreak of infection or on fish mortality. F. columnare was also detected in healthy fish prior to and after experimental infection, indicating that these fish were carriers of the disease. In the second experiment, intensive Pseudomonas sp. MT5 antagonistic baths were given daily to rainbow trout suffering from a natural columnaris infection. Again, the antagonistic bacteria had no effect on fish mortality, which reached 95 % in both control and antagonist-treated groups in 7 d.

  17. Culture-based and denaturing gradient gel electrophoresis analysis of the bacterial community from Chungkookjang, a traditional Korean fermented soybean food.

    Science.gov (United States)

    Hong, Sung Wook; Choi, Jae Young; Chung, Kun Sub

    2012-10-01

    The bacterial community of Chungkookjang and raw rice-straw collected from various areas in South Korea was investigated using both culture-dependent and culture-independent methods. Pure cultures were isolated from Chungkookjang and raw rice-straw on tryptic soy agar plates with 72 to 121 colonies and identified by 16S rDNA gene sequence analysis, respectively. The traditional culture-based method and denaturing gradient gel electrophoresis analysis of PCR-amplified 16S rDNA confirmed that Pantoea agglomerans and B. subtilis were identified as predominant in the raw rice-straw and Chungkookjang, respectively, from Iljuk district of Gyeonggi province, P. ananatis and B. licheniformis were identified as predominant in the raw rice-straw and Chungkookjang from Wonju district of Gangwon province, and Microbacterium sp. and B. licheniformis were identified as predominant in the raw rice-straw and Chungkookjang from Sunchang district of Jeolla province. Other strains, such as Bacillus, Enterococcus, Pseudomonas, Rhodococcus, and uncultured bacteria were also present in raw rice-straw and Chungkookjang. A comprehensive analysis of these microorganisms would provide a more detailed understanding of the biologically active components of Chungkookjang and help improve its quality. Polymerase chain reaction-denaturing gradient gel electrophoresis analysis can be successfully applied to a fermented food to detect unculturable or more species than the culture-dependent method. This technique is an effective and convenient culture-independent method for studying the bacterial community in Chungkookjang. In this study, the bacterial community of Chungkookjang collected from various areas in South Korea was investigated using both culture-dependent and culture-independent methods. © 2012 Institute of Food Technologists®

  18. Western Bats as a Reservoir of Novel Streptomyces Species with Antifungal Activity.

    Science.gov (United States)

    Hamm, Paris S; Caimi, Nicole A; Northup, Diana E; Valdez, Ernest W; Buecher, Debbie C; Dunlap, Christopher A; Labeda, David P; Lueschow, Shiloh; Porras-Alfaro, Andrea

    2017-03-01

    At least two-thirds of commercial antibiotics today are derived from Actinobacteria , more specifically from the genus Streptomyces Antibiotic resistance and new emerging diseases pose great challenges in the field of microbiology. Cave systems, in which actinobacteria are ubiquitous and abundant, represent new opportunities for the discovery of novel bacterial species and the study of their interactions with emergent pathogens. White-nose syndrome is an invasive bat disease caused by the fungus Pseudogymnoascus destructans , which has killed more than six million bats in the last 7 years. In this study, we isolated naturally occurring actinobacteria from white-nose syndrome (WNS)-free bats from five cave systems and surface locations in the vicinity in New Mexico and Arizona, USA. We sequenced the 16S rRNA region and tested 632 isolates from 12 different bat species using a bilayer plate method to evaluate antifungal activity. Thirty-six actinobacteria inhibited or stopped the growth of P. destructans , with 32 (88.9%) actinobacteria belonging to the genus Streptomyces Isolates in the genera Rhodococcus , Streptosporangium , Luteipulveratus , and Nocardiopsis also showed inhibition. Twenty-five of the isolates with antifungal activity against P. destructans represent 15 novel Streptomyces spp. based on multilocus sequence analysis. Our results suggest that bats in western North America caves possess novel bacterial microbiota with the potential to inhibit P. destructans IMPORTANCE This study reports the largest collection of actinobacteria from bats with activity against Pseudogymnoascus destructans , the fungal causative agent of white-nose syndrome. Using multigene analysis, we discovered 15 potential novel species. This research demonstrates that bats and caves may serve as a rich reservoir for novel Streptomyces species with antimicrobial bioactive compounds. Copyright © 2017 American Society for Microbiology.

  19. Community-acquired lobar pneumonia in children in the era of universal 7-valent pneumococcal vaccination: a review of clinical presentations and antimicrobial treatment from a Canadian pediatric hospital

    Directory of Open Access Journals (Sweden)

    Rowan-Legg Anne

    2012-08-01

    Full Text Available Abstract Background Community-acquired pneumonia (CAP is a common cause of pediatric admission to hospital. The objectives of this study were twofold: 1 to describe the clinical characteristics of CAP in children admitted to a tertiary care pediatric hospital in the pneumococcal vaccination era and, 2 to examine the antimicrobial selection in hospital and on discharge. Methods A retrospective review of healthy immunocompetent children admitted to a tertiary pediatric hospital from January 2007 to December 2008 with clinical features consistent with pneumonia and a radiographically-confirmed consolidation was performed. Clinical, microbiological and antimicrobial data were collected. Results One hundred and thirty-five hospitalized children with pneumonia were evaluated. Mean age at admission was 4.8 years (range 0–17 years. Two thirds of patients had been seen by a physician in the 24 hours prior to presentation; 56 (41.5% were on antimicrobials at admission. 52 (38.5% of patients developed an effusion, and 22/52 (42.3% had pleural fluid sampled. Of 117 children who had specimens (blood/pleural fluid cultured, 9 (7.7% had pathogens identified (7 Streptococcus pneumoniae, 1 Group A Streptococcus, and 1 Rhodococcus. 55% of patients received 2 or more antimicrobials in hospital. Cephalosporins were given to 130 patients (96.1% in hospital. Only 21/126 patients (16.7% were discharged on amoxicillin. The median length of stay was 3 days (IQR 2–4 for those without effusion and 9 (IQR 5–13 for those with effusion. No deaths were related to pneumonia. Conclusions This study provides comprehensive data on the clinical characteristics of hospitalized children with CAP in the pneumococcal 7-valent vaccine era. Empiric antimicrobial choice at our institution is variable, highlighting a need for heightened antimicrobial stewardship.

  20. Novel Kombucha Beverage from Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum, with Antibacterial and Antioxidant Effects.

    Science.gov (United States)

    Sknepnek, Aleksandra; Pantić, Milena; Matijašević, Danka; Miletić, Dunja; Lević, Steva; Nedović, Viktor; Niksic, Miomir

    2018-01-01

    Kombucha is a nonalcoholic beverage traditionally made by fermenting black tea using a combination of yeast and acetic acid bacteria (AAB) cultures. Ganoderma lucidum hot water extract (HWE) was used-to our knowledge for the first time-to prepare a novel, health-promoting kombucha product. During the 11-day fermentation, pH, total acidity, and the numbers of yeasts and AAB were monitored. It was found that sweetened G. lucidum HWE was a good medium for yeast and AAB growth. The desired acidity for the beverage was reached on the second day (3 g/L) of the fermentation process; the maximum established acidity was 22.8 ± 0.42 g/L. Fourier transform infrared analysis revealed that the vacuum-dried beverage is a mixture of various compounds such as polysaccharides, phenols, proteins, and lipids. Total phenolic content of the liquid sample was 4.91 ± 0.2338 mg gallic acid equivalents/g, whereas the vacuum-dried sample had a smaller amount of phenolics (2.107 ± 0.228 mg gallic acid equivalents/g). Established half-maximal effective concentrations for DPPH scavenging activity and reducing power were 22.8 ± 0.17 and 10.61 ± 0.34 mg/mL, respectively. The antibacterial testing revealed that activity does not originate solely from synthesized acetic acid. The liquid G. lucidum beverage was the most effective against the tested bacteria, with the lowest minimum inhibitory concentration (0.04 mg/mL) against Staphylococcus epidermidis and Rhodococcus equi, and a minimum bactericidal concentration (0.16 mg/mL) against Bacillus spizizenii, B. cereus, and R. equi. The vacuum-dried sample was less effective, with the lowest minimum bactericidal concentration against the Gram-positive bacteria R. equi (1.875 mg/mL) and against the Gram-negative bacteria Proteus hauseri (30 mg/mL).

  1. Changes in soil physicochemical properties and soil bacterial community in mulberry (Morus alba L.)/alfalfa (Medicago sativa L.) intercropping system.

    Science.gov (United States)

    Zhang, Meng-Meng; Wang, Ning; Hu, Yan-Bo; Sun, Guang-Yu

    2018-04-01

    A better understanding of tree-based intercropping effects on soil physicochemical properties and bacterial community has a potential contribution to improvement of agroforestry productivity and sustainability. In this study, we investigated the effects of mulberry/alfalfa intercropping on soil physicochemical properties and soil bacterial community by MiSeq sequencing of bacterial 16S rRNA gene. The results showed a significant increase in the contents of available nitrogen, available phosphate, available potassium, and total carbon in the rhizosphere soil of the intercropped alfalfa. Sequencing results showed that intercropping improved bacterial richness and diversity of mulberry and alfalfa based on richness estimates and diversity indices. The relative abundances of Proteobacteria, Actinobacteria, and Firmicutes were significantly higher in intercropping mulberry than in monoculture mulberry; and the abundances of Proteobacteria, Bacteroidetes, and Gemmatimonadetes in the intercropping alfalfa were markedly higher than that in monoculture alfalfa. Bacterial taxa with soil nutrients cycling were enriched in the intercropping system. There were higher relative abundances of Bacillus (0.32%), Pseudomonas (0.14%), and Microbacterium (0.07%) in intercropping mulberry soil, and Bradyrhizobium (1.0%), Sphingomonas (0.56%), Pseudomonas (0.18%), Microbacterium (0.15%), Rhizobium (0.09%), Neorhizobium (0.08%), Rhodococcus (0.06%), and Burkholderia (0.04%) in intercropping alfalfa soil. Variance partition analysis showed that planting pattern contributed 26.7% of the total variation of bacterial community, and soil environmental factors explained approximately 56.5% of the total variation. This result indicated that the soil environmental factors were more important than the planting pattern in shaping the bacterial community in the field soil. Overall, mulberry/alfalfa intercropping changed soil bacterial community, which was related to changes in soil total carbon

  2. Comparison of commercially-available preservatives for maintaining the integrity of bacterial DNA in human milk.

    Science.gov (United States)

    Lackey, Kimberly A; Williams, Janet E; Price, William J; Carrothers, Janae M; Brooker, Sarah L; Shafii, Bahman; McGuire, Mark A; McGuire, Michelle K

    2017-10-01

    Inhibiting changes to bacteria in human milk between sample collection and analysis is necessary for unbiased characterization of the milk microbiome. Although cold storage is considered optimal, alternative preservation is sometimes necessary. The objective of this study was to compare the effectiveness of several commercially-available preservatives with regard to maintaining bacterial DNA in human milk for delayed microbiome analysis. Specifically, we compared Life Technologies' RNAlater® stabilization solution, Biomatrica's DNAgard® Saliva, Advanced Instruments' Broad Spectrum Microtabs II™, and Norgen Biotek Corporation's Milk DNA Preservation and Isolation Kit. Aliquots of 8 pools of human milk were treated with each preservative. DNA was extracted immediately and at 1, 2, 4, and 6wk, during which time milk was held at 37°C. The V1-V3 region of the bacterial 16S rRNA gene was amplified and sequenced. Changes in bacterial community structure and diversity over time were evaluated. Comparable to other studies, the most abundant genera were Streptococcus (33.3%), Staphylococcus (14.0%), Dyella (6.3%), Pseudomonas (3.0%), Veillonella (2.5%), Hafnia (2.0%), Prevotella (1.7%), Rhodococcus (1.6%), and Granulicatella (1.4%). Overall, use of Norgen's Milk DNA Preservation and Isolation Kit best maintained the consistency of the bacterial community structure. Total DNA, diversity, and evenness metrics were also highest in samples preserved with this method. When collecting human milk for bacterial community analysis in field conditions where cold storage is not available, our results suggest that Norgen's Milk DNA Preservation and Isolation Kit may be a useful method, at least for a period of 2weeks. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Atividade antibacteriana in vitro da própolis marrom

    Directory of Open Access Journals (Sweden)

    Maria F.F. Gomes

    2016-04-01

    Full Text Available Resumo Objetivou-se avaliar a atividade antibacteriana in vitro da própolis marrom, por meio da determinação da Concentração Inibitória Mínima (CIM. O extrato alcoólico de própolis foi obtido de 35 g de própolis bruta macerada em 65 mL de álcool de cereais. As concentrações do extrato de própolis usadas foram: 75mg/mL; 56,4mg/mL; 37,5mg/mL; 18,9mg/mL; 9,3mg/mL; 4,5mg/mL e 2,25mg/mL. Foram utilizados 32 isolados de bactérias Gram-positivas: Rhodococcus equi, Staphylococcus aureus, Staphylococcus hyicus, Staphylococcus spp. e Streptococcus spp., e 32 isolados de bactérias Gram-negativas: Enterobacter agglomerans, Escherichia coli, Klebsiella pneumoniae, Klebsiella sp., Pseudomonas aeruginosa, Pseudomonas spp., Salmonella spp. e Serratia rubidaea, provenientes de processos clínicos infecciosos de animais domésticos, obtidas e armazenadas no Laboratório de Bacteriologia da FAMEZ/UFMS. O extrato de própolis marrom apresentou atividade antimicrobiana com CIM variando de 2,25 a 18,9mg/mL para as bactérias Gram-positivas e 4,5 a 18,9mg/mL para as bactérias Gram-negativas, sendo as bactérias provenientes de bovinos e caninos as mais resistentes. Conclui-se que a própolis marrom tem ação bactericida, em função da espécie da bactéria e da procedência animal.

  4. Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production

    Directory of Open Access Journals (Sweden)

    Shi Shuobo

    2012-02-01

    Full Text Available Abstract Background Wax ester synthases (WSs can synthesize wax esters from alcohols and fatty acyl coenzyme A thioesters. The knowledge of the preferred substrates for each WS allows the use of yeast cells for the production of wax esters that are high-value materials and can be used in a variety of industrial applications. The products of WSs include fatty acid ethyl esters, which can be directly used as biodiesel. Results Here, heterologous WSs derived from five different organisms were successfully expressed and evaluated for their substrate preference in Saccharomyces cerevisiae. We investigated the potential of the different WSs for biodiesel (that is, fatty acid ethyl esters production in S. cerevisiae. All investigated WSs, from Acinetobacter baylyi ADP1, Marinobacter hydrocarbonoclasticus DSM 8798, Rhodococcus opacus PD630, Mus musculus C57BL/6 and Psychrobacter arcticus 273-4, have different substrate specificities, but they can all lead to the formation of biodiesel. The best biodiesel producing strain was found to be the one expressing WS from M. hydrocarbonoclasticus DSM 8798 that resulted in a biodiesel titer of 6.3 mg/L. To further enhance biodiesel production, acetyl coenzyme A carboxylase was up-regulated, which resulted in a 30% increase in biodiesel production. Conclusions Five WSs from different species were functionally expressed and their substrate preference characterized in S. cerevisiae, thus constructing cell factories for the production of specific kinds of wax ester. WS from M. hydrocarbonoclasticus showed the highest preference for ethanol compared to the other WSs, and could permit the engineered S. cerevisiae to produce biodiesel.

  5. Bioremediation potential of a tropical soil contaminated with a mixture of crude oil and production water.

    Science.gov (United States)

    Alvarez, Vanessa Marques; Santos, Silvia Cristina Cunha Dos Santos; Casella, Renata da Costa; Vital, Ronalt Leite; Sebastin, Gina Vasquez; Seldin, Lucy

    2008-12-01

    A typical tropical soil from the northeast of Brazil, where an important terrestrial oil field is located, was accidentally contaminated with a mixture of oil and saline production water. To study the bioremediation potential in this area, molecular methods based on PCR-DGGE were used to determine the diversity of the bacterial communities in bulk and in contaminated soils. Bacterial fingerprints revealed that the bacterial communities were affected by the presence of the mixture of oil and production water, and different profiles were observed when the contaminated soils were compared with the control. Halotolerant strains capable of degrading crude oil were also isolated from enrichment cultures obtained from the contaminated soil samples. Twenty-two strains showing these features were characterized genetically by amplified ribosomal DNA restriction analysis (ARDRA) and phenotypically by their colonial morphology and tolerance to high NaCl concentrations. Fifteen ARDRA groups were formed. Selected strains were analyzed by 16S rDNA sequencing, and Actinobacteria was identified as the main group found. Strains were also tested for their growth capability in the presence of different oil derivatives (hexane, dodecane, hexadecane, diesel, gasoline, toluene, naphthalene, o-xylene, and p-xylene) and different degradation profiles were observed. PCR products were obtained from 12 of the 15 ARDRA representatives when they were screened for the presence of the alkane hydroxylase gene (alkB). Members of the genera Rhodococcus and Gordonia were identified as predominant in the soil studied. These genera are usually implicated in oil degradation processes and, as such, the potential for bioremediation in this area can be considered as feasible.

  6. Assessment of Bacterial bph Gene in Amazonian Dark Earth and Their Adjacent Soils

    Science.gov (United States)

    Brossi, Maria Julia de Lima; Mendes, Lucas William; Germano, Mariana Gomes; Lima, Amanda Barbosa; Tsai, Siu Mui

    2014-01-01

    Amazonian Anthrosols are known to harbour distinct and highly diverse microbial communities. As most of the current assessments of these communities are based on taxonomic profiles, the functional gene structure of these communities, such as those responsible for key steps in the carbon cycle, mostly remain elusive. To gain insights into the diversity of catabolic genes involved in the degradation of hydrocarbons in anthropogenic horizons, we analysed the bacterial bph gene community structure, composition and abundance using T-RFLP, 454-pyrosequencing and quantitative PCR essays, respectively. Soil samples were collected in two Brazilian Amazon Dark Earth (ADE) sites and at their corresponding non-anthropogenic adjacent soils (ADJ), under two different land use systems, secondary forest (SF) and manioc cultivation (M). Redundancy analysis of T-RFLP data revealed differences in bph gene structure according to both soil type and land use. Chemical properties of ADE soils, such as high organic carbon and organic matter, as well as effective cation exchange capacity and pH, were significantly correlated with the structure of bph communities. Also, the taxonomic affiliation of bph gene sequences revealed the segregation of community composition according to the soil type. Sequences at ADE sites were mostly affiliated to aromatic hydrocarbon degraders belonging to the genera Streptomyces, Sphingomonas, Rhodococcus, Mycobacterium, Conexibacter and Burkholderia. In both land use sites, shannon's diversity indices based on the bph gene data were higher in ADE than ADJ soils. Collectively, our findings provide evidence that specific properties in ADE soils shape the structure and composition of bph communities. These results provide a basis for further investigations focusing on the bio-exploration of novel enzymes with potential use in the biotechnology/biodegradation industry. PMID:24927167

  7. atpE gene as a new useful specific molecular target to quantify Mycobacterium in environmental samples

    Science.gov (United States)

    2013-01-01

    Background The environment is the likely source of many pathogenic mycobacterial species but detection of mycobacteria by bacteriological tools is generally difficult and time-consuming. Consequently, several molecular targets based on the sequences of housekeeping genes, non-functional RNA and structural ribosomal RNAs have been proposed for the detection and identification of mycobacteria in clinical or environmental samples. While certain of these targets were proposed as specific for this genus, most are prone to false positive results in complex environmental samples that include related, but distinct, bacterial genera. Nowadays the increased number of sequenced genomes and the availability of software for genomic comparison provide tools to develop novel, mycobacteria-specific targets, and the associated molecular probes and primers. Consequently, we conducted an in silico search for proteins exclusive to Mycobacterium spp. genomes in order to design sensitive and specific molecular targets. Results Among the 3989 predicted proteins from M. tuberculosis H37Rv, only 11 proteins showed 80% to 100% of similarity with Mycobacterium spp. genomes, and less than 50% of similarity with genomes of closely related Corynebacterium, Nocardia and Rhodococcus genera. Based on DNA sequence alignments, we designed primer pairs and a probe that specifically detect the atpE gene of mycobacteria, as verified by quantitative real-time PCR on a collection of mycobacteria and non-mycobacterial species. The real-time PCR method we developed was successfully used to detect mycobacteria in tap water and lake samples. Conclusions The results indicate that this real-time PCR method targeting the atpE gene can serve for highly specific detection and precise quantification of Mycobacterium spp. in environmental samples. PMID:24299240

  8. Fatores de risco associados a doenças respiratórias em potros Puro Sangue Inglês do nascimento ao sexto mês de vida Risk factors associated the respiratory diseases in Thoroughbred foals, from birth to six months of life

    Directory of Open Access Journals (Sweden)

    Leandro do Monte Ribas

    2009-09-01

    Full Text Available Foram avaliados fatores de risco associados à ocorrência de doenças respiratórias em 349 potros Puro Sangue Inglês (PSI monitorados do nascimento ao sexto mês de vida na região de Bagé, Rio Grande do Sul (RS, Brasil. A partir da avaliação clínica e laboratorial pôde-se registrar a frequência de 9,5% (33 casos respiratórios, com mortalidade de 0,57% (2. A ocorrência de casos foi mais elevada nos meses de verão, e potros com idade entre quatro e seis meses foram mais suscetíveis (PRisk factors associated the occurrence of respiratory diseases they were evaluated between 349 Thoroughbred foals, monitored of the birth to the sixth month of life in the region of Bagé-RS-Brazil. From the laboratory and clinical evaluation, the frequency of 9.5% (33 of respiratory cases with mortality of 0.57% (2 was recorded. The occurrence of cases was higher in months of summer and foals with age between four and six months were more susceptible (P<0.001. The development of the diseases was influenced (P<0.001 by the breeding system of and management practices that increased the environmental contamination potential. In the evaluation microbiological, , the highest frequency of isolated was of Streptococcus equi (57%, followed by the Rhodococcus equi (17%, lethal in 50% of the cases. No clinic case was associated to the equine influenza virus (EIV and to the equine herpesvirus (EHV-1-4. The results suggest that connected factors to the management in the breeding of thoroughbred equine are going to contribute decisively for the manifestation of the respiratory disease and alert for the morbidity caused by the equine adenitis and the lethality related to rodococosis.

  9. Identification of degradation routes of metamitron in soil microcosms using 13C-isotope labeling.

    Science.gov (United States)

    Wang, Shizong; Miltner, Anja; Nowak, Karolina M

    2017-01-01

    Metamitron is one of the most commonly used herbicide in sugar beet and flower bulb cultures. Numerous laboratory and field studies on sorption and degradation of metamitron were performed. Detailed biodegradation studies in soil using 13 C-isotope labeling are still missing. Therefore, we aimed at providing a detailed turnover mass balance of 13 C 6 -metamitron in soil microcosms over 80 days. In the biotic system, metamitron mineralized rapidly, and 13 CO 2 finally constituted 60% of the initial 13 C 6 -metamitron equivalents. In abiotic control experiments CO 2 rose to only 7.4% of the initial 13 C 6 -metamitron equivalents. The 13 C label from 13 C 6 -metamitron was incorporated into microbial amino acids that were ultimately stabilized in the soil organic matter forming presumably harmless biogenic residues. Finally, 13 C label from 13 C 6 -metamitron was distributed between the 13 CO 2 and the 13 C-biogenic residues indicating nearly complete biodegradation. The parallel increase of 13 C-alanine, 13 C-glutamate and 13 CO 2 indicates that metamitron was initially biodegraded via the desamino-metamitron route suggesting its relevance in the growth metabolism. In later phases of biodegradation, the "Rhodococcus route" was indicated by the low 13 CO 2 evolution and the high relevance of the pyruvate pathway, which aims at biomolecule synthesis and seems to be related to starvation. This is a first report on the detailed degradation route of metamitron in soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Application of magnetic OMS-2 in sequencing batch reactor for treating dye wastewater as a modulator of microbial community.

    Science.gov (United States)

    Pan, Fei; Yu, Yang; Xu, Aihua; Xia, Dongsheng; Sun, Youmin; Cai, Zhengqing; Liu, Wen; Fu, Jie

    2017-10-15

    The potential and mechanism of synthesized magnetic octahedral molecular sieve (Fe 3 O 4 @OMS-2) nanoparticles in enhancing the aerobic microbial ability of sequencing batch reactor (SBR) for treating dye wastewater have been revealed in this study. The addition of Fe 3 O 4 @OMS-2 of 0.25g/L enhanced the decolorization of SBRs with an operation cycle of 24h by more than 20%. The 16S rRNA gene high-throughput sequencing indicated Fe 3 O 4 @OMS-2 increased the microbial richness and diversity of SBRs, and more importantly, promoted the potential dye-degrading bacteria. After a series of enriching and screening, four bacterial strains with the considerable decolorizing ability were isolated from SBRs, designating Alcaligenes faecalis FP-G1, Bacillus aryabhattai FP-F1, Escherichia fergusonii FP-D1 and Rhodococcus ruber FP-E1, respectively. The growth and decolorization of these pure strains were promoted in the presence of Fe 3 O 4 @OMS-2, which agrees with the result of high-throughput sequencing. Monitoring dissolved Fe/Mn ions and investigating the change of oxidation states of Fe/Mn species discovered OMS-2 composition played the critical role in modulating the microbial community. The significant enhancement of Mn-oxidizing/-reducing bacteria suggested microbial Mn redox may be the key action mechanism of Fe 3 O 4 @OMS-2, which can provide numerous benefits for the microbial community and decolorization of SBRs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Biodegradability of fuel-ethers in environment; Biodegradabilite des ethers-carburants dans l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    Fayolle-Guichard, F.

    2005-04-01

    Fuel ethers (methyl tert-butyl ether or MTBE, ethyl tert-butyl ether or ETBE and tert-amyl methyl ether or TAME have been used as gasoline additives since about twenty years in order to meet the requirements for the octane index and to limit the polluting emission in exhaust pipe gas (unburnt hydrocarbons and carbon monoxide). The high water solubility and the poor biodegradability of these compounds make them pollutants frequently encountered in aquifers. The present manuscript summarizes the knowledge concerning the biodegradability of fuel ethers obtained both at IFP and during collaborations with the Pasteur Institute (Paris), the Biotechnology Research Institute (Montreal, Canada) and the Center for Environmental Biotechnology (University of Tennessee, USA). Rhodococcus ruber IFP 2001 and Mycobacterium austroafricanum IFP 2012, two microorganisms isolated at IFP for their ability to grow, respectively, on ETBE and MTBE, were studied in order to determine the intermediates produced during MTBE and ETBE biodegradation and the enzymes required for each biodegradation step, thus allowing us to propose MTBE and ETBE catabolic pathways. A proteomic approach, from the protein induced during the degradation of ETBE or MTBE to the genes encoding these different enzymes, was carried out. The isolation of such genes is required:1) to use them for help in determining the bio-remediation capacities in polluted aquifers (DNA micro-arrays), 2) to monitor the microorganisms isolated for their degradative capacities during bio-remediation processes (fluorescent in situ hybridization or FISH) and 3) to create new tools for the detection and the quantification of ETBE or MTBE in contaminated aquifers (bio-sensor). The manuscript also describes the different ways for the adaptation of microorganisms to the presence of a xenobiotic compound. (author)

  12. Hydrocarbon degradation potential and plant growth-promoting activity of culturable endophytic bacteria of Lotus corniculatus and Oenothera biennis from a long-term polluted site.

    Science.gov (United States)

    Pawlik, Małgorzata; Cania, Barbara; Thijs, Sofie; Vangronsveld, Jaco; Piotrowska-Seget, Zofia

    2017-08-01

    Many endophytic bacteria exert beneficial effects on their host, but still little is known about the bacteria associated with plants growing in areas heavily polluted by hydrocarbons. The aim of the study was characterization of culturable hydrocarbon-degrading endophytic bacteria associated with Lotus corniculatus L. and Oenothera biennis L. collected in long-term petroleum hydrocarbon-polluted site using culture-dependent and molecular approaches. A total of 26 hydrocarbon-degrading endophytes from these plants were isolated. Phylogenetic analyses classified the isolates into the phyla Proteobacteria and Actinobacteria. The majority of strains belonged to the genera Rhizobium, Pseudomonas, Stenotrophomonas, and Rhodococcus. More than 90% of the isolates could grow on medium with diesel oil, approximately 20% could use n-hexadecane as a sole carbon and energy source. PCR analysis revealed that 40% of the isolates possessed the P450 gene encoding for cytochrome P450-type alkane hydroxylase (CYP153). In in vitro tests, all endophytic strains demonstrated a wide range of plant growth-promoting traits such as production of indole-3-acetic acid, hydrogen cyanide, siderophores, and phosphate solubilization. More than 40% of the bacteria carried the gene encoding for the 1-aminocyclopropane-1-carboxylic acid deaminase (acdS). Our study shows that the diversity of endophytic bacterial communities in tested plants was different. The results revealed also that the investigated plants were colonized by endophytic bacteria possessing plant growth-promoting features and a clear potential to degrade hydrocarbons. The properties of isolated endophytes indicate that they have the high potential to improve phytoremediation of petroleum hydrocarbon-polluted soils.

  13. Metagenomic Analysis of the Bioremediation of Diesel-Contaminated Canadian High Arctic Soils

    Science.gov (United States)

    Yergeau, Etienne; Sanschagrin, Sylvie; Beaumier, Danielle; Greer, Charles W.

    2012-01-01

    As human activity in the Arctic increases, so does the risk of hydrocarbon pollution events. On site bioremediation of contaminated soil is the only feasible clean up solution in these remote areas, but degradation rates vary widely between bioremediation treatments. Most previous studies have focused on the feasibility of on site clean-up and very little attention has been given to the microbial and functional communities involved and their ecology. Here, we ask the question: which microorganisms and functional genes are abundant and active during hydrocarbon degradation at cold temperature? To answer this question, we sequenced the soil metagenome of an ongoing bioremediation project in Alert, Canada through a time course. We also used reverse-transcriptase real-time PCR (RT-qPCR) to quantify the expression of several hydrocarbon-degrading genes. Pseudomonas species appeared as the most abundant organisms in Alert soils right after contamination with diesel and excavation (t = 0) and one month after the start of the bioremediation treatment (t = 1m), when degradation rates were at their highest, but decreased after one year (t = 1y), when residual soil hydrocarbons were almost depleted. This trend was also reflected in hydrocarbon degrading genes, which were mainly affiliated with Gammaproteobacteria at t = 0 and t = 1m and with Alphaproteobacteria and Actinobacteria at t = 1y. RT-qPCR assays confirmed that Pseudomonas and Rhodococcus species actively expressed hydrocarbon degradation genes in Arctic biopile soils. Taken together, these results indicated that biopile treatment leads to major shifts in soil microbial communities, favoring aerobic bacteria that can degrade hydrocarbons. PMID:22253877

  14. The microbial impact on the sorption behaviour of selenite in an acidic, nutrient-poor boreal bog

    International Nuclear Information System (INIS)

    Lusa, M.; Bomberg, M.; Aromaa, H.; Knuutinen, J.; Lehto, J.

    2015-01-01

    79 Se is among the most important long lived radionuclides in spent nuclear fuel and selenite, SeO 3 2− , is its typical form in intermediate redox potential. The sorption behaviour of selenite and the bacterial impact on the selenite sorption in a 7-m-deep profile of a nutrient-poor boreal bog was studied using batch sorption experiments. The batch distribution coefficient (K d ) values of selenite decreased as a function of sampling depth and highest K d values, 6600 L/kg dry weight (DW), were observed in the surface moss and the lowest in the bottom clay at 1700 L/kg DW. The overall maximum sorption was observed at pH between 3 and 4 and the K d values were significantly higher in unsterilized compared to sterilized samples. The removal of selenite from solution by Pseudomonas sp., Burkholderia sp., Rhodococcus sp. and Paenibacillus sp. strains isolated from the bog was affected by incubation temperature and time. In addition, the incubation of sterilized surface moss, subsurface peat and gyttja samples with added bacteria effectively removed selenite from the solution and on average 65% of selenite was removed when Pseudomonas sp. or Burkholderia sp. strains were used. Our results demonstrate the important role of bacteria for the removal of selenite from the solution phase in the bog environment, having a high organic matter content and a low pH. - Highlights: • Sterilization of bog samples inhibited the SeO 3 2− removal from simulated bog water. • Bacteria isolated from the bog samples removed selenite from the solution. • Bacteria affect the removal of SeO 3 2− from the solution in a nutrient-poor bog. • Selenite is reduced by the bacteria present in the bog both under oxic and anoxic conditions within the different microniches therein. • That is a prerequisite to read the record of the deformational history in metamorphic rocks

  15. Autochthonous bioaugmentation with environmental samples rich in hydrocarbonoclastic bacteria for bench-scale bioremediation of oily seawater and desert soil.

    Science.gov (United States)

    Ali, Nedaa; Dashti, Narjes; Salamah, Samar; Al-Awadhi, Husain; Sorkhoh, Naser; Radwan, Samir

    2016-05-01

    Oil-contaminated seawater and desert soil batches were bioaugmented with suspensions of pea (Pisum sativum) rhizosphere and soil with long history of oil pollution. Oil consumption was measured by gas-liquid chromatography. Hydrocarbonoclastic bacteria in the bioremediation batches were counted using a mineral medium with oil vapor as a sole carbon source and characterized by their 16S ribosomal RNA (rRNA)-gene sequences. Most of the oil was consumed during the first 2-4 months, and the oil-removal rate decreased or ceased thereafter due to nutrient and oxygen depletion. Supplying the batches with NaNO3 (nitrogen fertilization) at a late phase of bioremediation resulted in reenhanced oil consumption and bacterial growth. In the seawater batches bioaugmented with rhizospheric suspension, the autochthonous rhizospheric bacterial species Microbacterium oxidans and Rhodococcus spp. were established and contributed to oil-removal. The rhizosphere-bioaugmented soil batches selectively favored Arthrobacter nitroguajacolicus, Caulobacter segnis, and Ensifer adherens. In seawater batches bioaugmented with long-contaminated soil, the predominant oil-removing bacterium was the marine species Marinobacter hydrocarbonoclasticus. In soil batches on the other hand, the autochthonous inhabitants of the long-contaminated soil, Pseudomonas and Massilia species were established and contributed to oil removal. It was concluded that the use of rhizospheric bacteria for inoculating seawater and desert soil and of bacteria in long-contaminated soil for inoculating desert soil follows the concept of "autochthonous bioaugmentation." Inoculating seawater with bacteria in long-contaminated soil, on the other hand, merits the designation "allochthonous bioaugmentation."

  16. The involvement of coordinative interactions in the binding of dihydrolipoamide dehydrogenase to titanium dioxide-Localization of a putative binding site.

    Science.gov (United States)

    Dayan, Avraham; Babin, Gilad; Ganoth, Assaf; Kayouf, Nivin Samir; Nitoker Eliaz, Neta; Mukkala, Srijana; Tsfadia, Yossi; Fleminger, Gideon

    2017-08-01

    Titanium (Ti) and its alloys are widely used in orthodontic and orthopedic implants by virtue to their high biocompatibility, mechanical strength, and high resistance to corrosion. Biointegration of the implants with the tissue requires strong interactions, which involve biological molecules, proteins in particular, with metal oxide surfaces. An exocellular high-affinity titanium dioxide (TiO 2 )-binding protein (TiBP), purified from Rhodococcus ruber, has been previously studied in our lab. This protein was shown to be homologous with the orthologous cytoplasmic rhodococcal dihydrolipoamide dehydrogenase (rhDLDH). We have found that rhDLDH and its human homolog (hDLDH) share the TiO 2 -binding capabilities with TiBP. Intrigued by the unique TiO 2 -binding properties of hDLDH, we anticipated that it may serve as a molecular bridge between Ti-based medical structures and human tissues. The objective of the current study was to locate the region and the amino acids of the protein that mediate the protein-TiO 2 surface interaction. We demonstrated the role of acidic amino acids in the nonelectrostatic enzyme/dioxide interactions at neutral pH. The observation that the interaction of DLDH with various metal oxides is independent of their isoelectric values strengthens this notion. DLDH does not lose its enzymatic activity upon binding to TiO 2 , indicating that neither the enzyme undergoes major conformational changes nor the TiO 2 binding site is blocked. Docking predictions suggest that both rhDLDH and hDLDH bind TiO 2 through similar regions located far from the active site and the dimerization sites. The putative TiO 2 -binding regions of both the bacterial and human enzymes were found to contain a CHED (Cys, His, Glu, Asp) motif, which has been shown to participate in metal-binding sites in proteins. Copyright © 2017 John Wiley & Sons, Ltd.

  17. N-terminus determines activity and specificity of styrene monooxygenase reductases.

    Science.gov (United States)

    Heine, Thomas; Scholtissek, Anika; Westphal, Adrie H; van Berkel, Willem J H; Tischler, Dirk

    2017-12-01

    Styrene monooxygenases (SMOs) are two-enzyme systems that catalyze the enantioselective epoxidation of styrene to (S)-styrene oxide. The FADH 2 co-substrate of the epoxidase component (StyA) is supplied by an NADH-dependent flavin reductase (StyB). The genome of Rhodococcus opacus 1CP encodes two SMO systems. One system, which we define as E1-type, displays homology to the SMO from Pseudomonas taiwanensis VLB120. The other system, originally reported as a fused system (RoStyA2B), is defined as E2-type. Here we found that E1-type RoStyB is inhibited by FMN, while RoStyA2B is known to be active with FMN. To rationalize the observed specificity of RoStyB for FAD, we generated an artificial reductase, designated as RoStyBart, in which the first 22 amino acid residues of RoStyB were joined to the reductase part of RoStyA2B, while the oxygenase part (A2) was removed. RoStyBart mainly purified as apo-protein and mimicked RoStyB in being inhibited by FMN. Pre-incubation with FAD yielded a turnover number at 30°C of 133.9±3.5s -1 , one of the highest rates observed for StyB reductases. RoStyBart holo-enzyme switches to a ping-pong mechanism and fluorescence analysis indicated for unproductive binding of FMN to the second (co-substrate) binding site. In summary, it is shown for the first time that optimization of the N-termini of StyB reductases allows the evolution of their activity and specificity. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Development of a Novel Escherichia coli–Kocuria Shuttle Vector Using the Cryptic pKPAL3 Plasmid from K. palustris IPUFS-1 and Its Utilization in Producing Enantiopure (S-Styrene Oxide

    Directory of Open Access Journals (Sweden)

    Hiroshi Toda

    2017-11-01

    Full Text Available The novel cryptic pKPAL3 plasmid was isolated from the Gram-positive microorganism Kocuria palustris IPUFS-1 and characterized in detail. pKPAL3 is a circular plasmid that is 4,443 bp in length. Open reading frame (ORF and homology search analyses indicated that pKPAL3 possesses four ORFs; however, there were no replication protein coding genes predicted in the plasmid. Instead, there were two nucleotide sequence regions that showed significant identities with untranslated regions of K. rhizophila DC2201 (NBRC 103217 genomic sequences, and these sequences were essential for autonomous replication of pKPAL3 in Kocuria cells. Based on these findings, we constructed the novel Escherichia coli–Kocuria shuttle vectors pKITE301 (kanamycin resistant and pKITE303 (thiostrepton resistant from pKPAL3. The copy numbers of the constructed shuttle vectors were estimated to be 20 per cell, and they exhibited low segregation stability in Kocuria transformant cells in the absence of antibiotics. Moreover, constructed vectors showed compatibility with the other K. rhizophila shuttle vector pKITE103. We successfully expressed multiple heterologous genes, including the styrene monooxygenase gene from Rhodococcus sp. ST-10 (rhsmo and alcohol dehydrogenase gene from Leifsonia sp. S749 (lsadh, in K. rhizophila DC2201 using the pKITE301P and pKITE103P vectors under the control of the glyceraldehyde 3-phosphate dehydrogenase (gapdh promotor. The RhSMO–LSADH co-expressing K. rhizophila was used as a biocatalyst in an organic solvent–water biphasic reaction system to efficiently convert styrene into (S-styrene oxide with 99% ee in the presence of 2-propanol as a hydrogen donor. The product concentration of the reaction in the organic solvent reached 235 mM after 30 h under optimum conditions. Thus, we demonstrated that this novel shuttle vector is useful for developing biocatalysts based on organic solvent-tolerant Kocuria cells.

  19. Dynamic 11C-methionine PET analysis has an additional value for differentiating malignant tumors from granulomas: an experimental study using small animal PET

    International Nuclear Information System (INIS)

    Zhao, Songji; Zhao, Yan; Kuge, Yuji; Hatano, Toshiyuki; Yi, Min; Kohanawa, Masashi; Magota, Keiichi; Tamaki, Nagara; Nishijima, Ken-ichi

    2011-01-01

    We evaluated whether the dynamic profile of L- 11 C-methionine ( 11 C-MET) may have an additional value in differentiating malignant tumors from granulomas in experimental rat models by small animal positron emission tomography (PET). Rhodococcus aurantiacus and allogenic rat C6 glioma cells were inoculated, respectively, into the right and left calf muscles to generate a rat model bearing both granulomas and tumors (n = 6). Ten days after the inoculations, dynamic 11 C-MET PET was performed by small animal PET up to 120 min after injection of 11 C-MET. The next day, after overnight fasting, the rats were injected with 18 F-2-deoxy-2-fluoro-D-glucose ( 18 F-FDG), and dynamic 18 F-FDG PET was performed up to 180 min. The time-activity curves, static images, and mean standardized uptake value (SUV) in the lesions were calculated. 11 C-MET uptake in the granuloma showed a slow exponential clearance after an initial distribution, while the uptake in the tumor gradually increased with time. The dynamic pattern of 11 C-MET uptake in the granuloma was significantly different from that in the tumor (p 11 C-MET, visual assessment and SUV analysis could not differentiate the tumor from the granuloma in all cases, although the mean SUV in the granuloma (1.48 ± 0.09) was significantly lower than that in the tumor (1.72 ± 0.18, p 18 F-FDG in the granuloma were similar to those in the tumor (p = NS). Dynamic 11 C-MET PET has an additional value for differentiating malignant tumors from granulomatous lesions, which deserves further elucidation in clinical settings. (orig.)

  20. Geomicrobiology of High Level Nuclear Waste-Contaminated Vadose Sediments at the Hanford Site, Washington State

    International Nuclear Information System (INIS)

    Fredrickson, Jim K.; Zachara, John M.; Balkwill, David L.; Kennedy, David W.; Li, Shu-Mei W.; Kostandarithes, Heather M.; Daly, Michael J.; Romine, Margaret F.; Brockman, Fred J.

    2004-01-01

    Sediments from a high-level nuclear waste plume were collected as part of investigations to evaluate the potential fate and migration of contaminants in the subsurface. The plume originated from a leak that occurred in 1962 from a waste tank consisting of high concentrations of alkali, nitrate, aluminate, Cr(VI), 137Cs, and 99Tc. Investigations were initiated to determine the distribution of viable microorganisms in the vadose sediment samples, probe the phylogeny of cultivated and uncultivated members, and evaluate the ability of the cultivated organisms to survive acute doses of ionizing radiation. The populations of viable aerobic heterotrophic bacteria were generally low, from below detection to ∼104 7 CFU g-1 but viable microorganisms were recovered from 11 of 16 samples including several of the most radioactive ones (e.g., > 10 ?Ci/g 137Cs). The isolates from the contaminated sediments and clone libraries from sediment DNA extracts were dominated by members related to known Gram-positive bacteria. Gram-positive bacteria most closely related to Arthrobacter species were the most common isolates among all samples but other high G+C phyla were also represented including Rhodococcus and Nocardia. Two isolates from the second most radioactive sample (>20 ?Ci 137Cs g-1) were closely related to Deinococcus radiodurans and were able to survive acute doses of ionizing radiation approaching 20kGy. Many of the Gram-positive isolates were resistant to lower levels of gamma radiation. These results demonstrate that Gram-positive bacteria, predominantly high G+C phyla, are indigenous to Hanford vadose sediments and some are effective at surviving the extreme physical and chemical stress associated with radioactive waste