WorldWideScience

Sample records for rhodamine 6g adsorbed

  1. Determination of Cerium (IV) Using Rhodamine 6G Fluorescence Quenching

    Science.gov (United States)

    Zhao, Zh.; Sheng, L.; Su, B.; Tao, C.; Jing, W.

    2017-11-01

    The interaction between rhodamine 6G (Rh6G) and cerium sulfate was studied by the fluorescence quenching method. In a sulfuric acid medium, the interaction of Ce(IV) with Rh6G results in Rh6G fluorescence quenching. The maximum excitation wavelength (λex) and the maximum emission wavelength (λem) are 530 nm and 555 nm, respectively. A good linearity between the relative fl uorescence intensity (ΔF) and Ce(IV) was observed in the range 0.12-1.08 μg/mL. The detection limit was 1.4 × 10-3 μg/mL. The optimum reaction conditions, influencing factors, and effect of coexisting substances were investigated in the experiment. We found that the concentration of Rh6G was 3.2 × 10-6 mol/L, and the fl uorescence intensity was maximum.

  2. Superradiant laser emission from rhodamine 6G and rhodamine B using a coaxial flashpump.

    Science.gov (United States)

    Mumola, P. B.

    1972-01-01

    Superradiant laser emission has been observed from ethanol solutions of rhodamine 6G and rhodamine B using a coaxial flashlamp pump. The dependence of input threshold energy on dye concentration is examined. The possibility of exciting other dyes to superradiance is discussed.

  3. Rhodamine 6G hexachloridostannate(IV acetonitrile disolvate

    Directory of Open Access Journals (Sweden)

    Ramaiyer Venkatraman

    2008-01-01

    Full Text Available In the title compound, bis({6-ethylamino-10-[2-(methoxycarbonylphenyl]-2,7-dimethylxanthen-3-ylidene}ethanaminium hexachloridotin(IV acetonitrile disolvate, (C27H29N2O32[SnCl6]·2C2H3N, the octahedral SnCl62− anion lies on an inversion center. The xanthene ring system is essentially planar, with an average deviation of 0.020 Å, and the substituent benzene ring forms a dihedral angle of 85.89 (2° with it. The Sn—Cl distances are in the range 2.4237 (3–2.4454 (3 Å. There are N—H...Cl hydrogen bonds between SnCl62− ions and rhodamine 6G cations as well as π–π stacking interactions between rhodamine 6G cations (interplanar distance of 3.827 Å.

  4. Tunable cytotoxicity of rhodamine 6G via anion variations.

    Science.gov (United States)

    Magut, Paul K S; Das, Susmita; Fernand, Vivian E; Losso, Jack; McDonough, Karen; Naylor, Brittni M; Aggarwal, Sita; Warner, Isiah M

    2013-10-23

    Chemotherapeutic agents with low toxicity to normal tissues are a major goal in cancer research. In this regard, the therapeutic activities of cationic dyes, such as rhodamine 6G, toward cancer cells have been studied for decades with observed toxicities toward normal and cancer cells. Herein, we report rhodamine 6G-based organic salts with varying counteranions that are stable under physiological conditions, display excellent fluorescence photostability, and more importantly have tunable chemotherapeutic properties. Our in vitro studies indicate that the hydrophobic compounds of this series allow production of nanoparticles which are nontoxic to normal cells and toxic to cancer cells. Furthermore, the anions, in combination with cations such as sodium, were observed to be nontoxic to both normal and cancer cells. To the best of our knowledge, this is the first demonstration that both the cation and anion play an extremely important and cooperative role in the antitumor properties of these compounds.

  5. Rhodamine 6G impregnated porous silica: A photoluminescence study

    Energy Technology Data Exchange (ETDEWEB)

    Anedda, A. [Dipartimento di Fisica, Universita degli Studi di Cagliari and INMF UdR Cagliari, SP no8, Km 0700, 09042, Monserrato (Canada) (Italy); Carbonaro, C.M. [Dipartimento di Fisica, Universita degli Studi di Cagliari and INMF UdR Cagliari, SP no8, Km 0700, 09042, Monserrato (Canada) (Italy)]. E-mail: cm.carbonaro@dsf.unica.it; Clemente, F. [Dipartimento di Fisica, Universita degli Studi di Cagliari and INMF UdR Cagliari, SP no8, Km 0700, 09042, Monserrato (Ca) (Italy); Corpino, R. [Dipartimento di Fisica, Universita degli Studi di Cagliari and INMF UdR Cagliari, SP no8, Km 0700, 09042, Monserrato (Ca) (Italy); Ricci, P.C. [Dipartimento di Fisica, Universita degli Studi di Cagliari and INMF UdR Cagliari, SP no8, Km 0700, 09042, Monserrato (Ca) (Italy); Rossini, S. [Dipartimento di Fisica, Universita degli Studi di Cagliari and INMF UdR Cagliari, SP no8, Km 0700, 09042, Monserrato (Ca) (Italy)

    2005-12-15

    The optical properties of rhodamine 6G dye confined in porous silica are reported. Photoluminescence properties of embedded chromophores in mesoporous hosts can be affected by the surrounding matrices: shifts in emission spectra and variations of photoluminescence quantum yield are found as compared to dye solutions. Host-guest interactions are studied here by varying both SiO{sub 2} xerogels porosity and the dye concentration. Comparing samples obtained by impregnating matrices with 5.4 and 18.2 nm pores with solutions having concentrations in the rhodamine 6G high laser gain, matrices with 5.4 nm pores impregnated with a dye concentration of 5 x 10{sup -4} M are found to be the most stable and efficient in the examined range.

  6. Fluorescence spectroscopy of Rhodamine 6G: concentration and solvent effects.

    Science.gov (United States)

    Zehentbauer, Florian M; Moretto, Claudia; Stephen, Ryan; Thevar, Thangavel; Gilchrist, John R; Pokrajac, Dubravka; Richard, Katherine L; Kiefer, Johannes

    2014-01-01

    Rhodamine 6G (R6G), also known as Rhodamine 590, is one of the most frequently used dyes for application in dye lasers and as a fluorescence tracer, e.g., in the area of environmental hydraulics. Knowing the spectroscopic characteristics of the optical emission is key to obtaining high conversion efficiency and measurement accuracy, respectively. In this work, solvent and concentration effects are studied. A series of eight different organic solvents (methanol, ethanol, n-propanol, iso-propanol, n-butanol, n-pentanol, acetone, and dimethyl sulfoxide (DMSO)) are investigated at constant dye concentration. Relatively small changes of the fluorescence spectrum are observed for the different solvents; the highest fluorescence intensity is observed for methanol and lowest for DMSO. The shortest peak wavelength is found in methanol (568 nm) and the longest in DMSO (579 nm). Concentration effects in aqueous R6G solutions are studied over the full concentration range from the solubility limit to highly dilute states. Changing the dye concentration provides tunability between ∼550 nm in the dilute case and ∼620 nm at high concentration, at which point the fluorescence spectrum indicates the formation of R6G aggregates. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Fluorescence studies of Rhodamine 6G functionalized silicon oxide nanostructures

    International Nuclear Information System (INIS)

    Baumgaertel, Thomas; Borczyskowski, Christian von; Graaf, Harald

    2010-01-01

    Selective anchoring of optically active molecules on nanostructured surfaces is a promising step towards the creation of nanoscale devices with new functionalities. Recently we have demonstrated the electrostatic attachment of charged fluorescent molecules on silicon oxide nanostructures prepared by atomic force microscopy (AFM) nanolithography via local anodic oxidation (LAO) of dodecyl-terminated silicon. In this paper we report on our findings from a more detailed optical investigation of the bound dye Rhodamine 6G. High sensitivity optical wide field microscopy as well as confocal laser microscopy have been used to characterize the Rhodamine fluorescence emission. A highly interesting question concerns the interaction between an emitter close to a silicon surface because mechanisms such as energy transfer and fluorescence quenching will occur which are still not fully understood. Since the oxide thickness can be varied during preparation continuously from 1 to ∼ 5 nm, it is possible to investigate the fluorescence of the bound dye in close proximity to the underlying silicon. Using confocal laser microscopy we were also able to obtain optical spectra from the bound molecules. Together with the results from an analysis of their photochemical bleaching behaviour, we conjecture that some of the Rhodamine 6G molecules on the structure are interacting with the oxide, causing a spectral shift and differences in their photochemical properties.

  8. Photostabilization of Rhodamine 6G in acetone by β-carotene and t-butyl hydroxyanisole

    OpenAIRE

    Aoki, Keisuke; Matsuda, Masahiro; Yamamoto, Daisuke; Abe, Yasuhiro; Akutsu, Shinya; Fujita, Koichi; Doi, Kazutaka; Kobayashi, Masami

    2011-01-01

    The photostability of Rhodamine 6G is of crucial importance for the organic light-emitting display of mobilephones. Photobleaching of Rhodamine 6G in acetone was not protected by β-carotene, but was efficientlyphotostabilized by t-butyl hydroxyanisole. The results indicate that photobleaching of Rhodamine 6G inacetone was not caused by singlet oxygen but some radical species.

  9. [Fluorescence Resonance Energy Transfer Detection of Cobalt Ions by Silver Triangular Nanoplates and Rhodamine 6G].

    Science.gov (United States)

    Zhang, Xiu-qing; Peng, Jun; Ling, Jian; Liu, Chao-juan; Cao, Qiu-e; Ding, Zhong-tao

    2015-04-01

    In the present paper, the authors studied fluorescence resonance energy transfer (FRET) phenomenon between silver triangular nanoplates and bovine serum albumin (BSA)/Rhodamine 6G fluorescence complex, and established a fluorescence method for the detection of cobalt ions. We found that when increasing the silver triangular nanoplates added to certain concentrations of fluorescent bovine serum albumin (BSA)/Rhodamine 6G complex, the fluorescence of Rhodamine 6G would be quenched up to 80% due to the FRET between the quencher and donor. However, in the presence of cobalt ions, the disassociation of the fluorescent complex from silver triangular nanoplates occurred and the fluorescence of the Rhodamine 6G recovered. The recovery of fluorescence intensity rate (I/I0) has a good relationship with the cobalt ion concentration (cCO2+) added. Thus, the authors developed a fluorescence method for the detection of cobalt ions based on the FRET of silver triangular nanoplates and Rhodamine 6G.

  10. Fabrication and Photostability of Rhodamine-6G Gold Nanoparticle Doped Polymer Optical Fiber

    International Nuclear Information System (INIS)

    Sebastian, Suneetha; Ajina, C; Vallabhan, C. P. G; Nampoori, V. P. N.; Radhakrishnan, P.; Kailasnath, M.

    2013-01-01

    We report on fabrication of a rhodamine-6G-gold-nanoparticle doped polymer optical fiber. The gold nanoparticle is synthesized directly into the monomer solution of the polymer using laser ablation synthesis in liquid. The size of the particle is found from the transmission electron microscopy. Rhodamine-6G is then mixed with the nanoparticle-monomer solution and optical characterization of the solution is investigated. It is found that there is a pronounced quenching of fluorescence of rhodamine 6G due to fluorescence resonance energy transfer. The monomer solution containing rhodamine 6G and gold nanoparticles is now made into a cylindrical rod and drawn into a polymer optical fiber. Further, the photostability is calculated with respect to the pure dye doped polymer optical fiber

  11. [Fluorescence Determination of Trace Se with the Hydride-K13-Rhodamine 6G System].

    Science.gov (United States)

    Liang, Ai-hui; Li, Yuan; Huang, Shan-shan; Luo, Yang-he; Wen, Gui-qing; Jiang, Zhi-liang

    2015-05-01

    Se is a necessary trace element for human and animals, but the excess intake of Se caused poison. Thus, it is very important to determination of Se in foods and water. The target of this study is development of a new, sensitive and selective hydride generation-molecular fluorescence method for the determination of Se. In 0. 36 mol . L-1 sulfuric acid, NaBH4 as reducing agent, Se (IV) is reduced to H2 Se. Usin3-g I solution as absorption liquid3, I- is reduced to I- by H2Se. When adding rhodamine 6G, Rhodamine 6G and I3- form association particles, which lead to the fluorescence intensity decreased. When Se(IV) existing, Rhodamine 6G and I3- bind less, And the remaining amount of Rhodamine 6G increase. So the fluorescence intensity is enhanced. The analytical conditions were optimized, a 0. 36 ml . L-1 H2SO4, 21. 6.g . L-1 NaBH4, 23.3 µm . L-1 rhodamine 6G, and 50 µmol . L-1 KI3 were chosen for use. When the excitation wavelength is at 480nm, the Rayleigh scattering peak does not affect the fluorescence recording, and was selected for determination of Se. Under the selected conditions, Se(IV) concentration in the 0. 02~0. 60 µg . mL-1 range and the increase value of the fluorescence intensity (ΔF) at 562 nm linear relationship. The linear regression equation is ΔF562 nm =12. 6c + 20. 9. The detecton limit was 0.01 µ.g . L-1. The influence of coexistence substances on the hydride generatin-molecular fluorescence determination of 5. 07 X10(-6) mol . L-1 Se(IV) was considered in details. Results showed that this new fluorescence method is of high selectivity, that is, 0. 5 mmol. L-1 Ba2+, Ca2+, Zn2+ and Fe3+, 0. 25 mmol . L-1 . Mg2+, 0. 05 mmol . L-1 K+, 0. 2 mmol . L-1 Al3+, 0. 025 mmol . L-1 Te(VI) do not interfere with the determination. The influence of Hg2+, CD2+ and Cu2+ that precipitate with Se(IV), can be eliminated by addition of complex reagent. This hydride generation-molecular fluorescence method has been applied to determination of trace Se in water

  12. Low concentrations of Rhodamine-6G selectively destroy tumor cells and improve survival of melanoma transplanted mice.

    Science.gov (United States)

    Kutushov, M; Gorelik, O

    2013-01-01

    Rhodamine-6G is a fluorescent dye binding to mitochondria, thus reducing the intact mitochondria number and inhibiting mitochondrial metabolic activity. Resultantly, the respiratory chain functioning becomes blocked, the cell "suffocated" and eventually destroyed. Unlike normal cells, malignant cells demonstrate a priori reduced mitochondrial numbers and aberrant metabolism. Therefore, a turning point might exist, when Rhodamine-induced loss of active mitochondria would selectively destroy malignant, but spare normal cells. Various malignant vs. non-malignant cell lines were cultured with Rhodamine-6G at different concentrations. In addition, C57Bl mice were implanted with B16-F10 melanoma and treated with Rhodamine-6G at different dosage/time regimens. Viability and proliferation of cultured tumor cells were time and dose-dependently inhibited, up to 90%, by Rhodamine-6G, with profound histological signs of cell death. By contrast, inhibition of normal control cell proliferation hardly exceeded 15-17%. Melanoma-transplanted mice receiving Rhodamine-6G demonstrated prolonged survival, improved clinical parameters, inhibited tumor growth and metastases count, compared to their untreated counterparts. Twice-a-week 10-6M Rhodamine-6G regimen yielded the most prominent results. We conclude that malignant, but not normal, cells are selectively destroyed by low doses of Rhodamine-6G. In vivo, such treatment selectively suppresses tumor progression and dissemination, thus improving prognosis. We suggest that selective anti-tumor properties of Rhodamine-6G are based on unique physiologic differences in energy metabolism between malignant and normal cells. If found clinically relevant, low concentrations of Rhodamine-6G might be useful for replacing, or backing up, more aggressive nonselective chemotherapeutic compounds.

  13. Biochemical activity of a fluorescent dye rhodamine 6G: Molecular modeling, electrochemical, spectroscopic and thermodynamic studies.

    Science.gov (United States)

    Al Masum, Abdulla; Chakraborty, Maharudra; Ghosh, Soumen; Laha, Dipranjan; Karmakar, Parimal; Islam, Md Maidul; Mukhopadhyay, Subrata

    2016-11-01

    Interaction of CT DNA with Rhodamine 6G (R6G) has been studied using molecular docking, electrochemical, spectroscopic and thermodynamic methods. From the study, it was illustrated that Rhodamine 6G binds to the minor groove of CT DNA. The binding was cooperative in nature. Circular voltametric study showed significant change in peak current and peak potential due to complexation. All the studies showed that the binding constant was in the order of 10 6 M -1 . Circular dichroic spectra showed significant conformational change on binding and DNA unwind during binding. Thermodynamic study showed that binding was favored by negative enthalpy and positive entropy change. From thermodynamic study it was also observed that several positive and negative free energies played significant role during binding and the unfavorable conformational free energy change was overcame by highly negative hydrophobic and salt dependent free energy changes. The experimental results were further validated using molecular docking study and the effect of structure on binding has been studied theoretically. From docking study it was found that the hydrophobic interaction and hydrogen bonds played a significant role during binding. The dye was absorbed by cell and this phenomenon was studied using fluorescent microscope. Cell survivability test showed that the dye active against Human Breast Cancer cells MDA-MB 468. ROS study showed that the activity is due to the production of reactive oxygen. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Fluorescence spectra of Rhodamine 6G for high fluence excitation laser radiation

    CERN Document Server

    Hung, J; Olaizola, A M

    2003-01-01

    Fluorescence spectral changes of Rhodamine 6G in ethanol and glycerol solutions and deposited as a film on a silica surface have been studied using a wide range of pumping field fluence at 532 nm at room temperature. Blue shift of the fluorescence spectra and fluorescence quenching of the dye molecule in solution are observed at high excitation fluence values. Such effects are not reported for the film sample. The effects are interpreted as the result of population redistribution in the solute-solvent molecular system induced by the high fluence field and the fluence dependence of the radiationless decay mechanism.

  15. Silver nanoparticles plasmonic effect on eosin and rhodamine 6G luminescence in various media

    Science.gov (United States)

    Samusev, Ilia G.; Tikhomirova, Nadezhda S.; Slezhkin, Vasiliy A.; Zyubin, Andrey Yu.; Bryukhanov, Valery V.; Tsibulnikova, Anna V.

    2016-11-01

    The plasmonic enhancement and quenching of phosphorescence and fluorescence of the anionic (eosin) and cationic (rhodamine 6G) dyes have been studied in various environments: silver nanoparticles of silver hydrosol citrate in water, in polymer films and on the surface of nanoporous silica in order to determine the kinetic and spectral effects on the dye luminescence. Depending on the silver nanoparticles concentration both the enhancement and quenching of the dyes phosphorescence and fluorescence have been detected. The mechanism of interaction between the excited molecules and silver nanoparticles has been discussed.

  16. Laser-Induced Population Inversion in Rhodamine 6G for Lysozyme Oligomer Detection.

    Science.gov (United States)

    Hanczyc, Piotr; Sznitko, Lech

    2017-06-06

    Fluorescence spectroscopy is a common method for detecting amyloid fibrils in which organic fluorophores are used as markers that exhibit an increase in quantum yield upon binding. However, most of the dyes exhibit enhanced emission only when bound to mature fibrils, and significantly weaker signals are obtained in the presence of amyloid oligomers. In the concept of population inversion, a laser is used as an excitation source to keep the major fraction of molecules in the excited state to create the pathways for the occurrence of stimulated emission. In the case of the proteins, the conformational changes lead to the self-ordering and thus different light scattering conditions that can influence the optical signatures of the generated light. Using this methodology, we show it is possible to optically detect amyloid oligomers using commonly available staining dyes in which population inversion can be induced. The results indicate that rhodamine 6G molecules are complexed with oligomers, and using a laser-assisted methodology, weakly emissive states can be detected. Significant spectral red-shifting of rhodamine 6G dispersed with amyloid oligomers and a notable difference determined by comparison of spectra of the fibrils suggest the existence of specific dye aggregates around the oligomer binding sites. This approach can provide new insights into intermediate oligomer states that are believed to be responsible for toxic seeding in neurodegeneration diseases.

  17. Fluorescence fluctuation of Rhodamine 6G dye for high repetition rate laser excitation

    International Nuclear Information System (INIS)

    Singh, Nageshwar; Patel, Hemant K.; Dixit, S.K.; Vora, H.S.

    2013-01-01

    In this paper, fluorescence from Rhodamine 6G dye for stationary and flowing liquid medium, excited by copper vapor laser, operating at 6 kHz pulse repetition frequency, was investigated. Large fluctuations in spectral width (about 5 nm) and spectral intensity in the fluorescence from stationary dye solution were observed, while fluctuations in the spectral width diminish in a flowing dye medium. However, this increases spectral intensity and slightly red shifts the fluorescence peak emission wavelength. Theoretical analysis was carried out to explain the observed results by incorporating the temperature induced refractive index, beam deflection and spectral variation in stationary dye solution. Numerical analysis of thermal load and contour of temperature in the optical pumped region inside the dye cell in stationary, 0.2 and 1.5 m/s flow velocity was also investigated to support our analysis. - Highlights: ► High repetition rate excitation generates inhomogeneity in the gain medium. ► Fluorescence of Rhodamine 6G in stationary and flowing medium was carried out. ► Fluorescence fluctuations lessen in flowing medium in contrast to stationary medium. ► Our theoretical and numerical analysis enlightens the experimented outcome trend.

  18. Narrow Bandwidth Top-Emitting OLEDs Designed for Rhodamine 6G Excitation in Biological Sensing Applications

    Directory of Open Access Journals (Sweden)

    Matthias Jahnel

    2015-11-01

    Full Text Available Organic light emitting diodes (OLED are promising candidates offering in optical sensor applications to detect different gas compositions and excitable optical marker groups in chemical and biological processes. They enable attractive solutions for monitoring the gas phase composition of e.g., dissolved molecular oxygen (O2 species in bio reactors or excitation of fluorescent markers. In this work, we investigate different OLED devices for biomedical applications to excite the fluorescent dye rhodamine 6G (R6G. The OLED devices are built in top emission geometry comprising a distributed Bragg reflector (DBR acting as optical mirror. The OLED is optimized to provide a very narrow emission characteristic to excite the R6G at 530 nm wavelength and enabling the possibility to minimize the optical crosstalk between the OLED electroluminescence and the fluorescence of R6G. The DBR includes a thin film encapsulation and enables the narrowing of the spectral emission band depending on the number of DBR pairs. The comparison between optical simulation data and experimental results exhibits good agreement and proves process stability.

  19. Cavity-enhanced spontaneous emission rates for rhodamine 6-G in levitated microdroplets

    International Nuclear Information System (INIS)

    Barnes, M.D.; Whitten, W.B.; Ramsey, J.M.; Arnold, S.

    1992-01-01

    Fluorescence decay kinetics of Rhodamine 6-G molecules in levitated glycerol microdroplets (4--20 microns in diameter) have been investigated to determine the effects of spherical cavity resonances on spontaneous emission rates. For droplet diameters greater than 10 microns, the fluorescence lifetime is essentially the same as in bulk glycerol. As the droplet diameter is decreased below 10 microns, bi-exponential decay behavior is observed with a slow component whose rate is similar to bulk glycerol, and a fast component whose rate is as much as a factor of 10 larger than the bulk decay rate. This fast component is attributed to cavity enhancement of the spontaneous emission rate and, within the weak coupling approximation, a value for the homogeneous linewidth at room temperature can be estimated from the fluorescence lifetime data

  20. Rapid and simple preparation of rhodamine 6G loaded HY zeolite for highly selective nitrite detection

    Science.gov (United States)

    Viboonratanasri, Duangkamon; Pabchanda, Suwat; Prompinit, Panida

    2018-05-01

    In this study, a simple, rapid and relatively less toxic method for rhodamine 6G dye adsorption on hydrogen-form Y-type zeolite for highly selective nitrite detection was demonstrated. The adsorption behavior was described by Langmuir isotherm and the adsorption process reached the equilibrium promptly within a minute. The developed test papers characterized by fluorescence technique display high sensing performance with wide working range (0.04-20.0 mg L-1) and high selectivity. The test papers show good reproducibility with relative standard deviation (RSD) of 7% for five replicated determinations of 3 mg L-1 of nitrite. The nitrite concentration determined by using the test paper was in the same range as using ion chromatography within a 95% confidence level. The test papers offer advantages in terms of low cost and practical usage enabling them to be a promising candidate for nitrite sensor in environmental samples, food, and fertilizers.

  1. Two rhodamine 6G derivative compounds: a structural and fluorescence single-crystal study.

    Science.gov (United States)

    Di Paolo, Matias; Bossi, Mariano L; Baggio, Ricardo; Suarez, Sebastián A

    2016-10-01

    The synthesis, characterization, structural analysis and fluorescence properties of two rhodamine 6G derivatives are described, namely a propargylamine derivative, 3',6'-bis(ethylamino)-2',7'-dimethyl-2-(methylcyanide)spiro[isoindole-1,9'-xanthen]-3(2H)-one (I), and a γ-aminobutyric acid (GABA) derivative, 3',6'-bis(ethylamino)-2',7'-dimethyl-3-oxospiro[isoindole-1,9'-xanthen]-2(3H)-yl)butyricacid (II). Both structures are compared with four similar ones from the Cambridge Structural Database (CSD), and the interactions involved in the stabilization are analyzed using the atoms in molecules (AIM) theory. Finally, a single-crystal in-situ reaction study is presented, carried out by fluorescence methods, which enabled the `opening' of the spirolactam ring in the solid phase.

  2. Efficient photocatalytic degradation of rhodamine 6G with a quantum dot-metal organic framework nanocomposite.

    Science.gov (United States)

    Kaur, Rajnish; Vellingiri, Kowsalya; Kim, Ki-Hyun; Paul, A K; Deep, Akash

    2016-07-01

    The hybrid structures of metal organic frameworks (MOFs) and nanoparticles may offer the realization of effective photocatalytic materials due to combined benefits of the porous and molecular sieving properties of MOF matrix and the functional characteristics of encapsulated nanoparticles. In this study, cadmium telluride (CdTe) quantum dots (QD) are conjugated with a europium-MOF for the synthesis of a novel nanocomposite material with photocatalytic properties. Successful synthesis of a QD/Eu-MOF nanocomposite was characterized with various spectroscopic and microscopic techniques. This QD/Eu-MOF is found to be an effective catalyst to complete the degradation of Rhodamine 6G dye within 50 min. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Development of magnetic luminescent core/shell nanocomplex particles with fluorescence using Rhodamine 6G

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Uk; Song, Yoon Seok [Department of Chemical and Biological Engineering, Korea University, 5 Ga, Anam-Dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of); Park, Chulhwan [Department of Chemical Engineering, Kwangwoon University, 447-1 Wolgye-Dong, Nowon-Gu, Seoul 139-701 (Korea, Republic of); Kim, Seung Wook, E-mail: kimsw@korea.ac.kr [Department of Chemical and Biological Engineering, Korea University, 5 Ga, Anam-Dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of)

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► A simple method was developed to synthesize Co-B/SiO{sub 2}/dye/SiO{sub 2} composite particles. ► The magnetic particle shows that highly luminescent and core/shell particles are formed. ► Such core/shell particles can be easily suspended in water. ► The magnetic particles could detect fluorescence for the application of biosensor. -- Abstract: A simple and reproducible method was developed to synthesize a novel class of Co-B/SiO{sub 2}/dye/SiO{sub 2} composite core/shell particles. Using a single cobalt core, Rhodamine 6G of organic dye molecules was entrapped in a silica shell, resulting in core/shell particles of ∼200 nm diameter. Analyses using a variety of techniques such as transmission electron microscopy, X-ray photoelectron spectroscopy, vibration sample magnetometry, confocal laser scanning microscopy, and fluorescence intensity demonstrated that dye molecules were trapped inside the core/shell particles. A photoluminescence investigation showed that highly luminescent and photostable core/shell particles were formed. Such core/shell particles can be easily suspended in water. The synthesized magnetic particles could be used to detect fluorescence on glass substrate arrays for bioassay and biosensor applications.

  4. Computational design and fabrication of core-shell magnetic molecularly imprinted polymer for dispersive micro-solid-phase extraction coupled with high-performance liquid chromatography for the determination of rhodamine 6G.

    Science.gov (United States)

    Xie, Jin; Xie, Jie; Deng, Jian; Fang, Xiangfang; Zhao, Haiqing; Qian, Duo; Wang, Hongjuan

    2016-06-01

    A novel core-shell magnetic nano-adsorbent with surface molecularly imprinted polymer coating was fabricated and then applied to dispersive micro-solid-phase extraction followed by determination of rhodamine 6G using high-performance liquid chromatography. The molecularly imprinted polymer coating was prepared by copolymerization of dopamine and m-aminophenylboronic acid (functional monomers), in the presence of rhodamine 6G (template). The selection of the suitable functional monomers was based on the interaction between different monomers and the template using the density functional theory. The ratios of the monomers to template were further optimized by an OA9 (3(4) ) orthogonal array design. The binding performances of the adsorbent were evaluated by static, kinetic, and selective adsorption experiments. The results reveal that the adsorbent possesses remarkable affinity and binding specificity for rhodamine 6G because of the enhanced Lewis acid-base interaction between the B(Ш) embedded in the imprinted cavities and the template. The nano-adsorbent was successfully applied to dispersive micro-solid-phase extraction coupled to high-performance liquid chromatography for the trace determination of rhodamine 6G in samples with a detection limit of 2.7 nmol/L. Spiked recoveries ranged from 93.0-99.1, 89.5-92.7, and 86.9-105% in river water, matrimony vine and paprika samples, respectively, with relative standard deviations of less than 4.3%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Random laser based on Rhodamine 6G (Rh6G doped poly(methyl methacrylate (PMMA films coating on ZnO nanorods synthesized by hydrothermal oxidation

    Directory of Open Access Journals (Sweden)

    Hua Zhang

    Full Text Available Random laser based on Rh6G doped PMMA thin films coating on ZnO nanorods synthesized by a simple hydrothermal oxidation method has been demonstrated. This kind of random laser medium is based on waveguide structure consisting of ZnO nanorods, Rh6G doped PMMA film and air. By controlling the time of hydrothermal oxidation reaction, wheat-like and hexagonal prism ZnO nanorods have been successfully fabricated. The emission spectra of these gain mediums based on different ZnO nanorods are different. The one based on wheat-like ZnO nanorods mainly exhibits amplified spontaneous emission, and the other one based on hexagonal prism ZnO nanorods shows random laser emission. The threshold of the random laser medium is about 73.8 μJ/pulse, and the full width at half maximum (FWHM is around 2.1 nm. The emission spectra measured at different detecting angles reveal that the output direction is strongly confined in ±30° by the waveguide effect. Our experiments demonstrate a promising method to achieve organic random laser medium. Keywords: Random laser, ZnO nanorods, Hydrothermal oxidation, Rhodamine 6G (Rh6G, Poly(methyl methacrylate (PMMA

  6. Lasing of a Solid-State Active Element Based on Anodized Aluminum Oxide Film Doped with Rhodamine 6G

    Science.gov (United States)

    Shelkovnikov, V. V.; Lyubas, G. A.; Korotaev, S. V.; Kopylova, T. N.; Tel'minov, E. N.; Gadirov, R. M.; Nikonova, E. N.; Nikonov, S. Yu.; Solodova, T. A.; Novikov, V. A.

    2017-04-01

    Spectral-luminescent and lasing characteristics of rhodamine 6G in porous aluminum oxide films anodized under various conditions are investigated. Lasing is obtained without external resonator in the longitudinal scheme under excitation by the second harmonic of Nd3+:YAG-laser radiation. The threshold pump power densities are in the range 3.5-15 MW/cm2 depending on the anodizing conditions. Wherein, the lasing line narrows down from 12 to 5 nm.

  7. A sensitive and selective fluorescence assay for metallothioneins by exploiting the surface energy transfer between rhodamine 6G and gold nanoparticles

    International Nuclear Information System (INIS)

    Yan, Yu-Qian; Tang, Xian; Wang, Yong-Sheng; Li, Ming-Hui; Cao, Jin-Xiu; Chen, Si-Han; Zhu, Yu-Feng; Wang, Xiao-Feng; Huang, Yan-Qin

    2015-01-01

    We report on a sensitive and selective strategy for the determination of metallothioneins (MTs). The assay is based on the suppression of the surface energy transfer that occurs between rhodamine 6G (Rh6G) and gold nanoparticles (AuNPs). If Rh6G is adsorbed onto the surface of AuNPs in water solution of pH 3.0, its fluorescence is quenched due to surface energy transfer. However, on addition of MTs to the Rh6G-AuNPs system, fluorescence is recovered owing to the formation of the MTs-AuNPs complex and the release of Rh6G into the solution. Under optimized conditions, the increase in fluorescence intensity is directly proportional to the concentration of the MTs in the range from 9.68 to 500 ng mL −1 , with a detection limit as low as 2.9 ng mL −1 . The possible mechanism of this assay is discussed. The method was successfully applied to the determination of MTs in (spiked) human urine. (author)

  8. Application of derivative and derivative ratio spectrophotometry to simultaneous trace determination of rhodamine B and rhodamine 6G after dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Xiao, Ni; Deng, Jian; Huang, Kaihui; Ju, Saiqin; Hu, Canhui; Liang, Jun

    2014-07-15

    Two novel methods, first derivative spectrophotometric method ((1)D) and first derivative ratio spectrophotometric method ((1)DR), have been developed for the simultaneous trace determination of rhodamine B (RhB) and rhodamine 6G (Rh6G) in food samples after dispersive liquid-liquid microextraction (DLLME). The combination of derivative spectrophotometric techniques and DLLME procedure endows the presented methods with enhanced sensitivity and selectivity. Under optimum conditions, the linear calibration curves ranged from 5 to 450 ng mL(-1), with the correlation coefficients (r) of 0.9997 for RhB and 0.9977 for Rh6G by (1)D method, and 0.9987 for RhB and 0.9958 for Rh6G by (1)DR method, respectively. The calculated limits of detection (LODs) based on the variability of the blank solutions (S/N = 3 criterion) for 11 measurements were in the range of 0.48-1.93 ng mL(-1). The recoveries ranged from 88.1% to 111.6% (with RSD less than 4.4%) and 91.5-110.5% (with RSD less than 4.7%) for (1)D and (1)DR method, respectively. The influence of interfering substances such as foreign ions and food colorants which might be present in the food samples on the signals of RhB and Rh6G was examined. The developed methods have been successfully applied to the determination of RhB and Rh6G in black tea, red wine and chilli powder samples with the characteristics of simplicity, cost-effectiveness, environmental friendliness, and could be valuable for routine analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Polypyrrole-magnetite dispersive micro-solid-phase extraction combined with ultraviolet-visible spectrophotometry for the determination of rhodamine 6G and crystal violet in textile wastewater.

    Science.gov (United States)

    Kamaruddin, Amirah Farhan; Sanagi, Mohd Marsin; Wan Ibrahim, Wan Aini; Md Shukri, Dyia S; Abdul Keyon, Aemi S

    2017-11-01

    Polypyrrole-magnetite dispersive micro-solid-phase extraction method combined with ultraviolet-visible spectrophotometry was developed for the determination of selected cationic dyes in textile wastewater. Polypyrrole-magnetite was used as adsorbent due to its thermal stability, magnetic properties, and ability to adsorb Rhodamine 6G and crystal violet. Dispersive micro-solid-phase extraction parameters were optimized, including sample pH, adsorbent amount, extraction time, and desorption solvent. The optimum polypyrrole-magnetite dispersive micro-solid phase-extraction conditions were sample pH 8, 60 mg polypyrrole-magnetite adsorbent, 5 min of extraction time, and acetonitrile as the desorption solvent. Under the optimized conditions, the polypyrrole-magnetite dispersive micro-solid-phase extraction with ultraviolet-visible method showed good linearity in the range of 0.05-7 mg/L (R 2  > 0.9980). The method also showed a good limit of detection for the dyes (0.05 mg/L) and good analyte recoveries (97.4-111.3%) with relative standard deviations extraction and determination of dyes at trace concentration levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Degradation of a cationic dye (Rhodamine 6G) using hydrodynamic cavitation coupled with other oxidative agents: Reaction mechanism and pathway.

    Science.gov (United States)

    Rajoriya, Sunil; Bargole, Swapnil; Saharan, Virendra Kumar

    2017-01-01

    In the present study, decolorization and mineralization of a cationic dye, Rhodamine 6G (Rh6G), has been carried out using hydrodynamic cavitation (HC). Two cavitating devices such as slit and circular venturi were used to generate cavitation in HC reactor. The process parameters such as initial dye concentration, solution pH, operating inlet pressure, and cavitation number were investigated in detail to evaluate their effects on the decolorization efficiency of Rh6G. Decolorization of Rh6G was marginally higher in the case of slit venturi as compared to circular venturi. The kinetic study showed that decolorization and mineralization of the dye fitted first-order kinetics. The loadings of H 2 O 2 and ozone have been optimized to intensify the decolorization and mineralization efficiency of Rh6G using HC. Nearly 54% decolorization of Rh6G was obtained using a combination of HC and H 2 O 2 at a dye to H 2 O 2 molar ratio of 1:30. The combination of HC with ozone resulted in 100% decolorization in almost 5-10min of processing time depending upon the initial dye concentration. To quantify the extent of mineralization, total organic carbon (TOC) analysis was also performed using various processes and almost 84% TOC removal was obtained using HC coupled with 3g/h of ozone. The degradation by-products formed during the complete degradation process were qualitatively identified by liquid chromatography-mass spectrometry (LC-MS) and a detailed degradation pathway has been proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Flotation-spectrophotometric determination of ruthenium in the Ru(IV)-chloride-rhodamine 6G-toluene system

    International Nuclear Information System (INIS)

    Balcerzak, M.

    1985-01-01

    The reduction of RuO 4 in hydrochloric acid has been examined. A sensitive flotation-spectrophotometric method of the determination of ruthenium based on the ion associate formed by the anionic chlorid complex of ruthenium RuCl 2- 6 with the basic dye Rhodamine 6G (R6G) has been developed. The solution of the ion associate obeys Beer's law up to the concentration of 0.25 μg Ru/ml. The ion associate precipitates when the aqueous solution is shaken with toluene. The separated compound is dissolved in acetone. The molar absorptivity (epsilon) at 530 nm is 5.1 x 10 5 l x mole -1 x cm -1 . The relative standard deviation is 3-7%. The mole ratio of Ru:R6G in the complex is 1:5. Osmium reacts similarly. The determination of ruthenium can be selective after the preliminary separation of osmium as OsO 4 . The method was applied to the determination of microgram amounts of ruthenium in crucible platinum. (Author)

  12. Giant unilamellar vesicles containing Rhodamine 6G as a marker for immunoassay of bovine serum albumin and lipocalin-2.

    Science.gov (United States)

    Sakamoto, Misato; Shoji, Atsushi; Sugawara, Masao

    2016-07-15

    Functionalized giant unilamellar vesicles (GUVs) containing a fluorescence dye Rhodamine 6G is proposed as a marker in sandwich-type immunoassay for bovine serum albumin (BSA) and lipocalin-2 (LCN2). The GUVs were prepared by the electroformation method and functionalized with anti-BSA antibody and anti-LCN2 antibody, respectively. The purification of antibody-modified GUVs was achieved by conventional centrifugation and a washing step in a flow system. To antigen on an antibody slip, antibody-modified GUVs were added as a marker and incubated. After wash-out of excess reagents and lysis of the bound GUVs with Triton X-100, the fluorescence image was captured. The fluorometric immunoassays for BSA and LCN2 exhibited lower detection limits of 4 and 80 fg ml(-)(1), respectively. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Enhanced chemiluminescence for trazodone trace analysis based on acidic permanganate oxidation in concurrent presence of rhodamine 6G.

    Science.gov (United States)

    Fujimori, Keiichi; Sakata, Yuta; Moriuchi-Kawakami, Takayo; Shibutani, Yasuhiko

    2017-11-01

    A new sensitized chemiluminescence method by acidic permanganate oxidation was developed for the sensitive determination of trazodone. A fluorescent dye as used rhodamine 6G to increase a chemiluminescence intensity. Under optimum conditions, the liner range of the calibration curve was obtained for 1-5000 nmol/L. The limit of detection was calculated from 3σ of a blank was 0.23 nmol/L. The coexistent ions and substances had no interference with the chemiluminescence measurement. The chemiluminescence spectra were measured to elucidate a possible mechanism for the system. The present method was satisfactorily used in the determination of the drugs in pharmaceutical samples and animal serums. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Synthesis and study of the optical properties of dielectric Bragg reflectors infiltrated with 6G-Rhodamine

    International Nuclear Information System (INIS)

    Gómez-Barojas, E; Aca-López, V; Luna-López, J A; Sánchez-Mora, E; Silva-González, R

    2014-01-01

    We report the study of the optical properties of 6G-Rhodamine (Rhd) infiltrated porous silicon dielectric Bragg reflectors (DBRs) with 31 constituent periods. The DBRs were obtained by an electrochemical anodizing process of Si in a two electrodes Teflon cell. The porosity was determined by gravimetric measurements on single Porous silicon (PSi) layers. Based on the characterization results of single layers the DBRs were synthesized. After anodizing, the DBRs were silanized with a 3-mercaptopropyltrimethoxysilane solution and functionalized with Rhd solutions at different concentrations. Cross section scanning electron micrographs show that the DBRs synthesis was successful. After each preparation step, Reflectance and Fluorescence (FL) spectra were recorded. These spectra show that as the Rhd concentration in solution is increased the stop band intensity as well as the FL intensity are enhanced due to constructive interference effects

  15. Mixed Hemi/Ad-Micelle Sodium Dodecyl Sulfate-Coated Magnetic Iron Oxide Nanoparticles for the Efficient Removal and Trace Determination of Rhodamine-B and Rhodamine-6G.

    Science.gov (United States)

    Ranjbari, Elias; Hadjmohammadi, Mohammad Reza; Kiekens, Filip; De Wael, Karolien

    2015-08-04

    Mixed hemi/ad-micelle sodium dodecyl sulfate (SDS)-coated magnetic iron oxide nanoparticles (MHAMS-MIONPs) were used as an efficient adsorbent for both removal and preconcentration of two important carcinogenic xanthine dyes named rhodamine-B (RB) and rhodamine-6G (RG). To gain insight in the configuration of SDS molecules on the surface of MIONPs, zeta potential measurements were performed in different [SDS]/[MIONP] ratios. Zeta potential data indicated that mixed hemi/ad-micelle MHAM was formed in [SDS]/[MIONP] ratios over the range of 1.1 to 7.3. Parameters affecting the adsorption of dyes were optimized as removal efficiency by one variable at-a-time and response surface methodology; the obtained removal efficiencies were ∼100%. Adsorption kinetic and equilibrium studies, under the optimum condition (pH = 2; amount of MIONPs = 87.15 mg; [SDS]/[MIONP] ratio = 2.9), showed that adsorption of both dyes are based on the pseudo-second-order and the Langmuir isotherm models, respectively. The maximum adsorption capacities for RB and RG were 385 and 323 mg g(-1), respectively. MHAMS-MIONPs were also applied for extraction of RB and RG. Under optimum conditions (pH = 2; amount of damped MHAMS-MIONPs = 90 mg; eluent solvent volume = 2.6 mL of 3% acetic acid in acetonitrile), extraction recoveries for 0.5 mg L(-1) of RB and RG were 98% and 99%, with preconcentration factors of 327 and 330, respectively. Limit of detection obtained for rhodamine dyes were <0.7 ng mL(-1). Finally, MHAMS-MIONPs were successfully applied for both removal and trace determination of RB and RG in environmental and wastewater samples.

  16. LiFePO4 microcrystals as an efficient heterogeneous Fenton-like catalyst in degradation of rhodamine 6G.

    Science.gov (United States)

    Li, Zhan Jun; Ali, Ghafar; Kim, Hyun Jin; Yoo, Seong Ho; Cho, Sung Oh

    2014-01-01

    We present a novel heterogeneous Fenton-like catalyst of LiFePO4 (LFP). LFP has been widely used as an electrode material of a lithium ion battery, but we observed that commercial LFP (LFP-C) could act as a good Fenton-like catalyst to decompose rhodamine 6G. The catalytic activity of LFP-C microparticles was much higher than a popular catalyst, magnetite nanoparticles. Furthermore, we found that the catalytic activity of LFP-C could be further increased by increasing the specific surface area. The reaction rate constant of the hydrothermally synthesized LFP microcrystals (LFP-H) is at least 18 times higher than that of magnetite nanoparticles even though the particle size of LFP is far larger than magnetite nanoparticles. The LFP catalysts also exhibited a good recycling behavior and high stability under an oxidizing environment. The effects of the experimental parameters such as the concentration of the catalysts, pH, and the concentration of hydrogen peroxide on the catalytic activity of LFP were also analyzed.

  17. Comparitive study of fluorescence lifetime quenching of rhodamine 6G by MoS2 and Au-MoS2

    Science.gov (United States)

    Shakya, Jyoti; Kasana, Parath; Mohanty, T.

    2018-04-01

    Time resolved fluorescence study of Rhodamine 6G (R6G) in the presence of Molybdenum disulfide (MoS2) nanosheets and gold doped MoS2 (Au-MoS2) have been carried out and discussed. We have analyzed the fluorescence decay curves of R6G and it is observed that Au-MoS2 is a better fluorescence lifetime quencher as compare to MoS2 nanosheets. Also, the energy transfer efficiency and energy transfer rate from R6G to MoS2 and Au-MoS2 has been calculated and found higher for Au-MoS2.

  18. Dual optoelectronic visual detection and quantification of spectroscopically silent heavy metal toxins: A multi-measurand sensing strategy based on Rhodamine 6G as chromo or fluoro ionophore

    Energy Technology Data Exchange (ETDEWEB)

    Prathish, K.P.; James, D.; Jaisy, J. [Inorganic and Polymeric Materials Group, National Institute for Interdisciplinary Science and Technology (CSIR), Industrial Estate (P.O), Pappanamcode, Trivandrum 695019 (India); Prasada Rao, T., E-mail: rao@csrrltrd.ren.nic.in [Inorganic and Polymeric Materials Group, National Institute for Interdisciplinary Science and Technology (CSIR), Industrial Estate (P.O), Pappanamcode, Trivandrum 695019 (India)

    2009-08-04

    A novel colorimetric chemo-sensor for the simultaneous visual detection and quantification of spectroscopically silent heavy metal toxins viz. cadmium, lead and mercury has been developed. This is based on the proposed sequential ligand exchange (SLE) mechanism of iodide from Pb-I{sup -}-Rhodamine 6G ion associate with citrate (without affecting ion associates of Cd and Hg) and subsequently from Cd-I{sup -}-Rhodamine 6G ion associate with EDTA (without affecting Hg-I{sup -}-Rhodamine 6G). Multi-measurand detection and quantification by colorimetry is possible as the individual toxins gives identical bathochromic shifts in aqueous solution, i.e. from 530 to 575 nm on formation of ternary ion associates in singular, binary and ternary mixtures. The visual detection provides a simple, quick and sensitive detection method in addition to quantification via spectrophotometry with Sandell sensitivities of 1.1, 15 and 2.5 {mu}g dm{sup -2} for cadmium, lead and mercury, respectively. The developed procedure has been successfully tested for the analysis of environmental (cast alkali, lead acid battery and zinc manufacturing industry effluents) samples. Furthermore, the multi-measurand quantification of the above-mentioned heavy metal toxins based on fluorescence quenching and use of Pyronine G as chromo-ionophore instead of Rhodamine 6G is also described.

  19. Simple and fast fluorescence detection of benzoyl peroxide in wheat flour by N-methoxy rhodamine-6G spirolactam based on consecutive chemical reactions

    International Nuclear Information System (INIS)

    Chen Wei; Shi Wen; Li Zhao; Ma Huimin; Liu Yang; Zhang Jinghua; Liu Qingjun

    2011-01-01

    Graphical abstract: A simple and fast method for fluorescence detection of benzoyl peroxide in wheat flour by N-methoxy rhodamine-6G spirolactam (1) is proposed based on consecutive chemical reactions. Highlights: ► Benzoyl peroxide can oxidize Fe 2+ into Fe 3+ . ► Fe 3+ selectively induces the opening of rhodamine spirolactam ring. ► The two reactions led to the development of a new fluorescent method for benzoyl peroxide. ► The method is simple and fast, and is used to detect benzoyl peroxide in wheat flour. - Abstract: Benzoyl peroxide (BPO) as a brightener is often added to wheat flour, and excessive use of this food additive is receiving increasing concern. Herein, a simple and fast method for fluorescence detection of BPO is proposed based on consecutive chemical reactions. In this approach, BPO first oxidizes Fe 2+ into Fe 3+ and the resulting Fe 3+ then induces the opening of the spirolactam ring of a new rhodamine derivative, N-methoxy rhodamine-6G spirolactam, switching on fluorescence of the detection system. More importantly, the fluorescence response of the reaction system to BPO is rather rapid and sensitive, with a detection limit of 6 mg kg −1 (k = 3), which makes it to be of great potential use in food safety analysis. The applicability of the proposed method has been successfully demonstrated on the determination of BPO in wheat flour samples.

  20. Plasmon enhancement of Raman scattering and fluorescence for rhodamine 6G molecules in the porous glass and PVA films with nanoparticles of silver citrate hydrosol

    International Nuclear Information System (INIS)

    Konstantinova, E I; Zyubin, A U; Samusev, I G; Slezhkin, V A; Bryukhanov, V V

    2016-01-01

    The study of Raman and fluorescence spectra for Rhodamine 6G molecules in a film of polyvinyl alcohol on the modified by silver nanoparticles (NPs) porous glass and without the porous glass has been done. The gain of the scattering intensity and fluorescence emission has been obtained in the presence of silver nanoparticles. The gain order was obtained as ∼ 10"1"1 (paper)

  1. Förster resonance energy transfer between α -Bi2O3 nanorods and rhodamine 6G in aqueous media for turn-off glucose-sensing application

    International Nuclear Information System (INIS)

    Balasubramanian, Karthikeyan

    2017-01-01

    The present study deals with the Förster resonance energy transfer (FRET) process that takes place between α -Bi 2 O 3 nanorods (BN), which function as a donor, and Rhodamine 6G, which (R6G) functions as an acceptor. Fluorescence of R6G situated at 550 nm is found to be enhanced due to this FRET behaviour with the increase of the number of acceptor concentrations. Apart from this, the rate of energy transfer also increased. It is found that a decrease in the donor–acceptor distance is assisting FRET. Steady state and time-resolved fluorescence studies are performed in two different excitation wavelengths and it shows the possible FRET behaviour where the average lifetime increases with the increase of acceptor concentrations. This pair is used to sense the glucose in nM concentrations. (paper)

  2. Pyrazolone as a recognition site: Rhodamine 6G-based fluorescent probe for the selective recognition of Fe3+ in acetonitrile-aqueous solution.

    Science.gov (United States)

    Parihar, Sanjay; Boricha, Vinod P; Jadeja, R N

    2015-03-01

    Two novel Rhodamine-pyrazolone-based colorimetric off-on fluorescent chemosensors for Fe(3+) ions were designed and synthesized using pyrazolone as the recognition moiety and Rhodamine 6G as the signalling moiety. The photophysical properties and Fe(3+) -binding properties of sensors L(1) and L(2) in acetonitrile-aqueous solution were also investigated. Both sensors successfully exhibit a remarkably 'turn-on' response, toward Fe(3+) , which was attributed to 1: 2 complex formation between Fe(3+) and L(1) /L(2) . The fluorescent and colorimetric response to Fe(3+) can be detected by the naked eye, which provides a facile method for the visual detection of Fe(3+) . Copyright © 2014 John Wiley & Sons, Ltd.

  3. Photoionization of rhodamine dyes adsorbed at the aqueous solution surfaces investigated by synchrotron radiation

    International Nuclear Information System (INIS)

    Seno, Koichiro; Ishioka, Toshio; Harata, Akira; Hatano, Yoshihiko

    2002-01-01

    Photoionization spectroscopy using synchrotron radiation as a photon source was applied to the aqueous solution surfaces of rhodamine B (RhB), rhodamine 6G (Rh6G), and rhodamine 101 (Rh101) with their concentration of 0-100 μmol dm -3 . Synchrotron radiation was irradiated upon the solution surface between two electrodes in the photon energy range of 4-7 eV, and photoionization current was measured by a pico-ammeter. The photocurrent for each of the rhodamine aqueous solution surface showed an increase with the photon energy above a threshold photon energy. The photoionization threshold of RhB at the aqueous solution surface was 5.6 eV, which was smaller than that in the gas phase. The intensity of photoionization current of Rh6G was smaller than that of RhB or Rh101. Photoionization processes and the state of Rhodamine dye molecules at the aqueous solution surface were discussed in connection with results of surface tension measurements. (author)

  4. Inorganic-organic Ag-rhodamine 6G hybrid nanorods: "turn on" fluorescent sensors for highly selective detection of Pb2+ ions in aqueous solution.

    Science.gov (United States)

    Tyagi, A K; Ramkumar, Jayshree; Jayakumar, O D

    2012-02-07

    Lead metal ions are of great concern and the monitoring of their concentration in the environment has become extremely important. In the present study, a new inorganic-organic hybrid assay of Ag nanorods (AgNR)-Rhodamine 6G (R6G) was developed for the sensitive and selective determination of Pb(2+) ions in aqueous solutions. To the best of our knowledge there is almost no literature on the use of silver nanorod sensors for determination of lead ions in aqueous solutions. The sensor is developed by the coating of R6G on the surface of AgNRs. The sensing is based on the photoluminescence of R6G. The sensor was rapid as the measurements were carried out within 3 min of addition of the test solution to the AgNR-R6G hybrid. Moreover, the system showed excellent stability at tested concentration levels of Pb(2+) ions. The naked eye detection of the colour was possible with 1 mg L(-1) of Pb(2+) ions. The present method has a detection limit of 50 μg L(-1) of Pb(2+) (for a signal/noise (S/N) ratio > 3). The selectivity toward Pb(2+) ions against other metal ions was improved using chelating agents. The proposed method was validated by analysis using different techniques.

  5. Comparison and mechanism of photocatalytic activities of N-ZnO and N-ZrO2 for the degradation of rhodamine 6G.

    Science.gov (United States)

    Sudrajat, Hanggara; Babel, Sandhya

    2016-05-01

    N-doped ZnO (N-ZnO) and N-doped ZrO2 (N-ZrO2) are synthesized by novel, simple thermal decomposition methods. The catalysts are evaluated for the degradation of rhodamine 6G (R6G) under visible and UV light. N-ZnO exhibits higher dye degradation under both visible and UV light compared to N-ZrO2 due to possessing higher specific surface area, lower crystalline size, and lower band gap. However, it is less reusable than N-ZrO2 and its photocatalytic activity is also deteriorated at low pH. At the same intensity of 3.5 W/m(2), UVC light is shown to be a better UV source for N-ZnO, while UVA light is more suitable for N-ZrO2. At pH 7 with initial dye concentration of 10 mg/L, catalyst concentration of 1 g/L, and UVC light, 94.3 % of R6G is degraded by N-ZnO within 2 h. Using UVA light under identical experimental conditions, 93.5 % degradation of R6G is obtained by N-ZrO2. Moreover, the type of light source is found to determine the reactive species produced in the R6G degradation by N-ZnO and N-ZrO2. Less oxidative reactive species such as superoxide radical and singlet oxygen play a major role in the degradation of R6G under visible light. On the contrary, highly oxidative hydroxyl radicals are predominant under UVC light. Based on the kinetic study, the adsorption of R6G on the catalyst surface is found to be the controlling step.

  6. A highly selective and sensitive photoswitchable fluorescent probe for Hg2+ based on bisthienylethene-rhodamine 6G dyad and for live cells imaging.

    Science.gov (United States)

    Xu, Li; Wang, Sheng; Lv, Yingnian; Son, Young-A; Cao, Derong

    2014-07-15

    A new photochromic diarylethene derivative bearing rhodamine 6G dimmer as a fluorescent molecular probe is designed and synthesized successfully. All the compounds are characterized by nuclear magnetic resonance and mass spectrometry. The bisthienylethene-rhodamine 6G dyad exhibit excellent phtochromism with reversibly color and fluorescence changes alternating irradiation with ultraviolet and visible light. Upon addition of Hg(2+), its color changes from colorless to red and its fluorescence is remarkably enhanced. Whereas other ions including K(+), Na(+), Ca(2+), Mg(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Mn(2+), Pb(2+), Ni(2+), Fe(3+), Al(3+), Cr(3+) and so on induce basically no spectral changes, which constitute a highly selective and sensitive photoswitchable fluorescent probe toward Hg(2+). Furthermore, by means of laser confocal scanning microscopy experiments, it is demonstrated that this probe can be applied for live cell imaging and monitoring Hg(2+) in living lung cancer cells with satisfying results, which shows its value of potential application in environmental and biological systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Highly Selective and Ultrasensitive Turn-On Luminescence Chemosensor for Mercury (II) Determination Based on the Rhodamine 6G Derivative FC1 and Au Nanoparticles

    Science.gov (United States)

    Brasca, Romina; Onaindia, María C.; Goicoechea, Héctor C.; Muñoz de la Peña, Arsenio; Culzoni, María J.

    2016-01-01

    A method for the detection and quantitation of Hg2+ in aqueous samples by fluorescence spectroscopy is presented. It consists of a turn-on sensor developed by coupling Gold nanoparticles (AuNPs) with the rhodamine 6G derivative FC1, in which the response is generated by a mercury-induced ring-opening reaction. The AuNPs were included in order to improve the sensitivity of the method towards the analyte, maintaining its high selectivity. The method was validated in terms of linearity, precision and accuracy, and applied to the quantitation of Hg2+ in Milli-Q and tap water with and without spiked analyte. The limit of detection and quantitation were 0.15 μg·L−1 and 0.43 μg·L−1, respectively, constituting a substantial improvement of sensitivity in comparison with the previously reported detection of Hg2+ with free FC1. PMID:27782059

  8. Extraction spectrophotometric determination of elements in form of ion-association compounds of metal chaltes and dyes. Pt. 2. The system cobalt-5, 7-dichloro-8-hydroxyquinoline-rhodamine 6G, benzene

    International Nuclear Information System (INIS)

    Minczewski, J.; Chwastowska, J.; Lachowicz, E.

    1976-01-01

    The extraction of the ion-pair formed by the anionic, coordinatively saturated complex of cobalt with 5,7-dichloro-8-hydroxyquinoline (Cl 2 HOx) and Rhodamine 6G cation (ROD + ) was investigated. The cobalt ions at the concentration 4 x 10 -5 M are fully extractable at pH=6.3; 1 x 10 -3 M Cl 2 HOx and 4 x 10 -4 M Rhodamine 6G after 10 minutes of extraction. In absence of Rhodamine 6G the cobalt complexes are not extractable. The extractable ion-pair has the composition according to the formula Co(Cl 2 Ox) 3 - .ROD + . The molar absorptivity at lambda=542 nm is equal to 7.5 x 10 4 . The extraction constant log Ksub(ex)=0.44+-0.14. The protonation constant of Rhodamine (log K=-0.98+-0.08) and two-phase stability constant of the carbinol base of Rhodamine 6G (log β = 5.35. +- 0.04) were also calculated. (author)

  9. Growth temperature dependent surface plasmon resonances of densely packed gold nanoparticles’ films and their role in surface enhanced Raman scattering of Rhodamine6G

    International Nuclear Information System (INIS)

    Verma, Shweta; Rao, B. Tirumala; Bhartiya, S.; Sathe, V.; Kukreja, L.M.

    2015-01-01

    Highlights: • Growth temperature produces and tunes the surface plasmon resonance (SPR) of gold films. • Optimum thickness and growth temperature combination results narrow SPR band. • Alumina capping red-shifted the SPR band and showed marginal re-sputtering of films. • Densely packed gold nanoparticles of varying sizes can be realized by pulsed laser deposition. • High SERS intensity of dye from gold films of large SPR strength at excitation wavelength. - Abstract: Localized surface plasmon resonance (LSPR) characteristics of gold nanoparticles films grown at different substrate temperatures and mass thicknesses with and without alumina capping were studied. At different film mass thicknesses, the LSPR response was observed mainly in the films grown at high substrate temperatures. About 300 °C substrate temperature was found to be optimum for producing narrow and strong LSPR band in both uncapped and alumina capped gold nanoparticles films. The LSPR wavelength could be tuned in the range of 600–750 nm by changing either number of ablation pulses or decreasing target to substrate distance (TSD) and alumina layer capping. Though the alumina capping re-sputtered the gold films still these films exhibited stronger LSPR response compared to the uncapped films. Atomic force microscopic analysis revealed formation of densely packed nanoparticles films exhibiting strong LSPR response which is consistent with the package density of the nanoparticles predicted by the theoretical calculations. The average size of nanoparticles increased with substrate temperature, number of ablation pulses and decreasing the TSD. For the same mass thickness of gold films grown at different substrate temperatures the surface enhanced Raman scattering (SERS) intensity of Rhodamine6G dye was found to be significantly different which had direct correlation with the LSPR strength of the films at the excitation wavelength

  10. A highly sensitive fluorescence quenching method for perphenazine detection based on its catalysis of K{sub 2}S{sub 2}O{sub 8} oxidizing rhodamine 6G

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lihong; Huang, Qitong; Lin, Changqing [Department of Food and Biological Engineering, Zhangzhou Institute of Technology, Zhangzhou, 363000 (China); Lin, Xiaofeng [College of Chemistry and Environment, Minnan Normal University, Zhangzhou, 363000 (China); Huang, Yiqun [Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000 (China); Liu, Jiaming, E-mail: mnsdljm@163.com [College of Chemistry and Environment, Minnan Normal University, Zhangzhou, 363000 (China); Ma, Xudong, E-mail: maxudong005@hotmail.com [Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000 (China)

    2014-12-15

    In this paper, the fluorescence spectra of Rhod 6G (rhodamine 6G)–K{sub 2}S{sub 2}O{sub 8}–PPH (perphenazine) were studied. We found that Rhod 6G existed in the form of Rhod 6G{sup +} under the conditions of 60 °C, 10 min and pH 5.42, and Rhod 6G{sup +} can emit strong and stable fluorescence. Further study showed that when PPH and Rhod 6G{sup +} coexisted, the ester exchange reaction carried out between -OH of PPH and -COOC{sub 2}H{sub 5} of Rhod 6G{sup +} to produced Rhod 6G{sup +}–PPH compound. More interestingly, K{sub 2}S{sub 2}O{sub 8} could oxidize Rhod 6G{sup +} and quench its RTP signal, while PPH was oxidized to red compound PPH′ by K{sub 2}S{sub 2}O{sub 8}, and Rhod 6G{sup +}–PPH′ and PPH were produced in the ester exchange reaction between the -OH of PPH′ and the -COOC{sub 2}H{sub 5} of Rhod 6G{sup +}–PPH. In the above process, PPH catalyzed K{sub 2}S{sub 2}O{sub 8} oxidizing Rhod 6G, which caused the fluorescence signal of the system to quench sharply. Hence, a catalytic fluorescence quenching method for the determination of residual PPH has been developed based on the its catalyzing K{sub 2}S{sub 2}O{sub 8} oxidize rhodamine 6G. This sensitive, accurate, simple and selective fluorescence quenching method was used to determine residual PPH in biological samples with the results consisting with those obtained by high performance liquid chromatography (HPLC), showing good accuracy. The structures of Rhod 6G{sup +}, PPH and Rhod 6G{sup +}–PPH were characterized by infrared spectra. The reaction mechanism of the determination of PPH was also discussed. - Highlights: • Fluorescence for the determination of perphenazine (PPH) had been established. • This method had high sensitivity (limit of detection was 3.3×10{sup −14} g mL{sup −1}). • This method had been applied to determination of PPH in biological samples. • Structures of Rhod 6G{sup +}, PPH and Rhod 6G{sup +}–PPH were characterized by infrared spectra. • Mechanism

  11. Investigation of adsorption of Rhodamine B onto a natural adsorbent Argemone mexicana.

    Science.gov (United States)

    Khamparia, Shraddha; Jaspal, Dipika

    2016-12-01

    The present study aims at exploring the potential of the seeds of a tropical weed, Argemone mexicana (AM), for the removal of a toxic xanthene textile dye, Rhodamine B (RHB), from waste water. Impact of pH, adsorbent dosage, particle size, contact time and dye concentration have been assessed during adsorption. The weed has been well characterized by several latest techniques thereby providing an indepth information of the mechanism during adsorption. About 80% removal has been attained with 0.06 g of adsorbent over the studied system. Thermodynamic and kinetic studies, followed by second order kinetic model, directed towards the endothermic nature of adsorption. The results obtained from batch experiments were modelled using Langmuir and Freundlich isotherm and were analysed on the basis of R 2 and six error functions for selection of appropriate model. Langmuir isotherm was found to be best fitted to the experimental data with high values of R 2 and lower values of error functions. Adsorption study revealed the affinity of AM seeds for the dye ions present in waste water, introducing a novel adsorbent in field of waste water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Molecular dynamics simulation of the effect of pH on the adsorption of rhodamine laser dyes on TiO2 hydroxylated surfaces

    OpenAIRE

    2009-01-01

    Abstract We have carried out a study of the adsorption, on the (101) surface of anatase TiO2, of two industrially relevant rhodamines molecules (rhodamine 6G and rhodamine 800) employing Molecular Dynamics. These theoretical studies have shown that Rhodamine 6G must adsorb on surfaces under basic conditions. Moreover, the adsorption of this molecule shows a strong dependence upon the pH of the system, i.e. under neutral conditions the adsorption energy is quite smaller, and under ...

  13. An enhanced cerium(IV)-rhodamine 6G chemiluminescence system using guest-host interactions in a lab-on-a-chip platform for estimating the total phenolic content in food samples.

    Science.gov (United States)

    Al Haddabi, Buthaina; Al Lawati, Haider A J; Suliman, FakhrEldin O

    2016-04-01

    Two chemiluminescence-microfluidic (CL-MF) systems, e.g., Ce(IV)-rhodamine B (RB) and Ce(IV)-rhodamine 6G (R6G), for the determination of the total phenolic content in teas and some sweeteners were evaluated. The results indicated that the Ce(IV)-R6G system was more sensitive in comparison to the Ce(IV)-RB CL system. Therefore, a simple (CL-MF) method based on the CL of Ce(IV)-R6G was developed, and the sensitivity, selectivity and stability of this system were evaluated. Selected phenolic compounds (PCs), such as quercetin (QRC), catechin (CAT), rutin (RUT), gallic acid (GA), caffeic acid (CA) and syringic acid (SA), produced analytically useful chemiluminescence signals with low detection limits ranging from 0.35 nmol L(-1) for QRC to 11.31 nmol L(-1) for SA. The mixing sequence and the chip design were crucial, as the sensitivity and reproducibility could be substantially affected by these two factors. In addition, the anionic surfactant (i.e., sodium dodecyl sulfate (SDS)) can significantly enhance the CL signal intensity by as much as 300% for the QRC solution. Spectroscopic studies indicated that the enhancement was due to a strong guest-host interaction between the cationic R6G molecules and the anionic amphiphilic environment. Other parameters that could affect the CL intensities of the PCs were carefully optimized. Finally, the method was successfully applied to tea and sweetener samples. Six different tea samples exhibited total phenolic/antioxidant levels from 7.32 to 13.5 g per 100g of sample with respect to GA. Four different sweetener samples were also analyzed and exhibited total phenolic/antioxidant levels from 500.9 to 3422.9 mg kg(-1) with respect to GA. The method was selective, rapid and sensitive when used to estimate the total phenolic/antioxidant level, and the results were in good agreement with those reported for honey and tea samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Adsorption of rhodamine B and methylene blue dyes using waste of seeds of Aleurites Moluccana, a low cost adsorbent

    Directory of Open Access Journals (Sweden)

    Debora Luiza Postai

    2016-06-01

    Full Text Available Removal of the cationic dyes rhodamine B (RhB and methylene blue (MB by waste seeds Aleurites moluccana (WAM was studied in a batch system. The adsorbent was characterized by Fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA, point of zero charge measurement, and the Boehm titration method. The effects of contact time and pH were investigated for the removal of cationic dyes. An increase in pH from 3 to 9 was accompanied by an approximately three-fold increase in the amount of dye adsorbed. The adsorptions equilibrium values were obtained and analyzed using the Langmuir, Freundlich, Sips, and Redlich–Peterson equations, the Sips isotherm being the one that showed the best correlation with the experimental values. The maximum adsorption capacities of the dyes were 178 mg/g for the MB and 117 mg/g for the RhB. The kinetic sorption was evaluated by the pseudo-first-order, pseudo-second-order, and intraparticle diffusion models, where it was observed that sorption follows the pseudo-second-order kinetic model. The study of thermodynamics showed that the adsorption is a spontaneous and endothermic process. The results indicate that waste seeds of A. moluccana could be used as a low cost material for the removal of cationic dyes from wastewater.

  15. Surface-enhanced resonance Raman scattering spectroscopy of single R6G molecules

    Institute of Scientific and Technical Information of China (English)

    Zhou Zeng-Hui; Liu Li; Wang Gui-Ying; Xu Zhi-Zhan

    2006-01-01

    Surface-enhanced resonance Raman scattering (SERRS) of Rhodamine 6G (R6G) adsorbed on colloidal silver clusters has been studied. Based on the great enhancement of the Raman signal and the quench of the fluorescence, the SERRS spectra of R6G were recorded for the samples of dye colloidal solution with different concentrations. Spectral inhomogeneity behaviours from single molecules in the dried sample films were observed with complementary evidences, such as spectral polarization, spectral diffusion, intensity fluctuation of vibrational lines and even "breathing" of the molecules. Sequential spectra observed from a liquid sample with an average of 0.3 dye molecules in the probed volume exhibited the expected Poisson distribution for actually measuring 0, 1 or 2 molecules. Difference between the SERRS spectra of R6G excited by linearly and circularly polarized light were experimentally measured.

  16. Synthesis, characterization of organo-modified zeolitic nanomaterial from coal ash and application as adsorbent on remediation of contaminated water by rhodamine B and direct blue 71

    International Nuclear Information System (INIS)

    Alcântara, Raquel Reis

    2016-01-01

    The synthesis of zeolites from mineral coal fly and bottom ash was performed by alkaline hydrothermal treatment, which were named ZFA and ZBA, respectively. Organo-modified zeolites, SMZF and SMZB, were obtained from surface modification of ZFA and ZBA, respectively, using the cationic surfactant hexadecyltrimethylammonium bromide. From the remaining solutions generated in ZFA and ZBA synthesis it was possible to synthesis two new zeolites. The physicochemical characteristics of the synthesized nanomaterials zeolite as well as their respective raw materials, such as cation exchange capacity, density, specific area, chemical composition, mineralogical and morphological, among others, were determined. The adsorbents SMZF and SMZB were used to remove the dyes, Direct Blue 71 (DB71) and Rhodamine B (RB) from aqueous solutions in batch system. Thus, four systems DB71/SMZF, RB/SMZF, DB71/SMZB, RB/SMZB were investigated. The models of pseudo-first order and pseudo-second order were applied to the experimental data for the study the adsorption kinetics. The model of pseudo-second order was the one that best described the adsorption of all dye/organomodified-zeolites systems. The equilibrium adsorption was analyzed from four models isotherm, namely: Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-B). The results show that the model Freundlich and Langmuir best described the experimental data systems DB71/SMZF and DB71/SMZB, respectively. For systems with RB, the model D-R was the best fit for both adsorbents (SMZF and SMZB). The factorial design 2 4 was applied to the analysis of the following factors influencing the adsorption process: initial concentration of dye (C o ), pH, amount of adsorbent (M) and temperature (T). Under the conditions studied it concludes with the confidence interval of 95%, which for the DB71/SMZF system, the factors and their interactions that influence more were C 0 , M, pH, pH∗M, pH∗C 0 , M∗C 0 , pH∗M∗C 0 , in that order. In DB

  17. (18)F-labeled rhodamines as potential myocardial perfusion agents: comparison of pharmacokinetic properties of several rhodamines.

    Science.gov (United States)

    Bartholomä, Mark D; Zhang, Shaohui; Akurathi, Vamsidhar; Pacak, Christina A; Dunning, Patricia; Fahey, Frederic H; Cowan, Douglas B; Treves, S Ted; Packard, Alan B

    2015-10-01

    We recently reported the development of the [(18)F]fluorodiethylene glycol ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging (MPI). This compound was developed by optimizing the ester moiety on the rhodamine B core, and its pharmacokinetic properties were found to be superior to those of the prototype ethyl ester. The goal of the present study was to optimize the rhodamine core while retaining the fluorodiethyleneglycol ester prosthetic group. A series of different rhodamine cores (rhodamine 6G, rhodamine 101, and tetramethylrhodamine) were labeled with (18)F using the corresponding rhodamine lactones as the precursors and [(18)F]fluorodiethylene glycol ester as the prosthetic group. The compounds were purified by semipreparative HPLC, and their biodistribution was measured in rats. Additionally, the uptake of the compounds was evaluated in isolated rat cardiomyocytes. As was the case with the different prosthetic groups, we found that the rhodamine core has a significant effect on the in vitro and in vivo properties of this series of compounds. Of the rhodamines evaluated to date, the pharmacologic properties of the (18)F-labeled diethylene glycol ester of rhodamine 6G are superior to those of the (18)F-labeled diethylene glycol esters of rhodamine B, rhodamine 101, and tetramethylrhodamine. As with (18)F-labeled rhodamine B, [(18)F]rhodamine 6G was observed to localize in the mitochondria of isolated rat cardiomyocytes. Based on these results, the (18)F-labeled diethylene glycol ester of rhodamine 6G is the most promising potential PET MPI radiopharmaceutical of those that have evaluated to date, and we are now preparing to carry out first-in-human clinical studies with this compound. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. 18F-labeled rhodamines as potential myocardial perfusion agents: comparison of pharmacokinetic properties of several rhodamines

    International Nuclear Information System (INIS)

    Bartholomä, Mark D.; Zhang, Shaohui; Akurathi, Vamsidhar; Pacak, Christina A.; Dunning, Patricia; Fahey, Frederic H.; Cowan, Douglas B.; Ted Treves, S.; Packard, Alan B.

    2015-01-01

    Introduction: We recently reported the development of the [ 18 F]fluorodiethylene glycol ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging (MPI). This compound was developed by optimizing the ester moiety on the rhodamine B core, and its pharmacokinetic properties were found to be superior to those of the prototype ethyl ester. The goal of the present study was to optimize the rhodamine core while retaining the fluorodiethyleneglycol ester prosthetic group. Methods: A series of different rhodamine cores (rhodamine 6G, rhodamine 101, and tetramethylrhodamine) were labeled with 18 F using the corresponding rhodamine lactones as the precursors and [ 18 F]fluorodiethylene glycol ester as the prosthetic group. The compounds were purified by semipreparative HPLC, and their biodistribution was measured in rats. Additionally, the uptake of the compounds was evaluated in isolated rat cardiomyocytes. Results: As was the case with the different prosthetic groups, we found that the rhodamine core has a significant effect on the in vitro and in vivo properties of this series of compounds. Of the rhodamines evaluated to date, the pharmacologic properties of the 18 F-labeled diethylene glycol ester of rhodamine 6G are superior to those of the 18 F-labeled diethylene glycol esters of rhodamine B, rhodamine 101, and tetramethylrhodamine. As with 18 F-labeled rhodamine B, [ 18 F]rhodamine 6G was observed to localize in the mitochondria of isolated rat cardiomyocytes. Conclusions: Based on these results, the 18 F-labeled diethylene glycol ester of rhodamine 6G is the most promising potential PET MPI radiopharmaceutical of those that have evaluated to date, and we are now preparing to carry out first-in-human clinical studies with this compound

  19. 18F-labeled Rhodamines as Potential Myocardial Perfusion Agents: Comparison of Pharmacokinetic Properties of Several Rhodamines

    Science.gov (United States)

    Bartholoma, Mark D.; Zhang, Shaohui; Akurathi, Vamsidhar; Pacak, Christina A.; Dunning, Patricia; Fahey, Frederic H.; Cowan, Douglas B.; Treves, S. Ted; Packard, Alan B.

    2015-01-01

    Introduction We recently reported the development of the [18F]fluorodiethylene glycol ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging (MPI). This compound was developed by optimizing the ester moiety on the rhodamine B core, and its pharmacokinetic properties were found to be superior to those of the prototype ethyl ester. The goal of the present study was to optimize the rhodamine core while retaining the fluorodiethyleneglycol ester prosthetic group. Methods A series of different rhodamine cores (rhodamine 6G, rhodamine 101, and tetramethylrhodamine) were labeled with 18F using the corresponding rhodamine lactones as the precursors and [18F]fluorodiethylene glycol ester as the prosthetic group. The compounds were purified by semipreparative HPLC, and their biodistribution was measured in rats. Additionally, the uptake of the compounds was evaluated in isolated rat cardiomyocytes. Results As was the case with the different prosthetic groups, we found that the rhodamine core has a significant effect on the in vitro and in vivo properties of this series of compounds. Of the rhodamines evaluated to date, the pharmacologic properties of the 18F-labeled diethylene glycol ester of rhodamine 6G are superior to those of the 18F-labeled diethylene glycol esters of rhodamine B, rhodamine 101, and tetramethylrhodamine. As with 18F-labeled rhodamine B, [18F]rhodamine 6G was observed to localize in the mitochondria of isolated rat cardiomyocytes. Conclusions Based on these results, the 18F-labeled diethylene glycol ester of rhodamine 6G is the most promising potential PET MPI radiopharmaceutical of those that have been evaluated to date, and we are now preparing to carry out first-in-human clinical studies with this compound. PMID:26205075

  20. Synthesis and characterization of macromolecular rhodamine tethers and their interactions with P-glycoprotein.

    Science.gov (United States)

    Crawford, Lindsey; Putnam, David

    2014-08-20

    Rhodamine dyes are well-known P-glycoprotein (P-gp) substrates that have played an important role in the detection of inhibitors and other substrates of P-gp, as well as in the understanding of P-gp function. Macromolecular conjugates of rhodamines could prove useful as tethers for further probing of P-gp structure and function. Two macromolecular derivatives of rhodamine, methoxypolyethylene glycol-rhodamine6G and methoxypolyethylene glycol-rhodamine123, were synthesized through the 2'-position of rhodamine6G and rhodamine123, thoroughly characterized, and then evaluated by inhibition with verapamil for their ability to interact with P-gp and to act as efflux substrates. To put the results into context, the P-gp interactions of the new conjugates were compared to the commercially available methoxypolyethylene glycol-rhodamineB. FACS analysis confirmed that macromolecular tethers of rhodamine6G, rhodamine123, and rhodamineB were accumulated in P-gp expressing cells 5.2 ± 0.3%, 26.2 ± 4%, and 64.2 ± 6%, respectively, compared to a sensitive cell line that does not overexpress P-gp. Along with confocal imaging, the efflux analysis confirmed that the macromolecular rhodamine tethers remain P-gp substrates. These results open potential avenues for new ways to probe the function of P-gp both in vitro and in vivo.

  1. Quenching of photoluminescence of Rhodamine 6G molecules on functionalized graphene

    Czech Academy of Sciences Publication Activity Database

    Valeš, Václav; Kovaříček, Petr; Ji, X.; Ling, X.; Kong, J.; Dresselhaus, M. S.; Kalbáč, Martin

    2016-01-01

    Roč. 253, č. 12 (2016), s. 2347-2350 ISSN 0370-1972 Institutional support: RVO:61388955 Keywords : atomic force microscopy * functionalized graphene * photoluminiscence quenching Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.674, year: 2016

  2. Tip Enhanced Raman Spectroscopy of Rhodamine 6G on nanostructured gold substrate

    KAUST Repository

    Moretti, Manola

    2015-05-01

    A new concept based setup for Tip Enhanced Raman Scattering measurement assisted by gold nanostructure is presented, that can provide a platform for gap-mode enhancement of the signal at the single molecule level conjugated with controlled spatial localization of the molecule under investigation and a method to determine the diffraction limit properties of the tip. In essence, this effect is obtained illuminating a gold coated AFM tip which is raster scanned over a nanostructured gold substrate, after chemisorption of a Raman active molecule. We expect that the near-field Raman enhancement would be given by the gap-mode effect of the two facing nano-features. Thanks to the nanostructured substrate, we verify that the resolution of the Raman mapping signal is well below the diffraction limit given by the combination of the optics geometry and the laser wavelength. We show that the gap-mode TERS can generate an estimated field- enhancement (g) of ~20 in localized areas of the sample and we demonstrate the ability to spatially define the molecule position (by Raman mapping) at the tens of nanometers scale. © 2015 Elsevier Ltd.

  3. Tip Enhanced Raman Spectroscopy of Rhodamine 6G on nanostructured gold substrate

    KAUST Repository

    Moretti, Manola; Das, Gobind; Torre, Bruno; Allione, Marco; Di Fabrizio, Enzo M.

    2015-01-01

    A new concept based setup for Tip Enhanced Raman Scattering measurement assisted by gold nanostructure is presented, that can provide a platform for gap-mode enhancement of the signal at the single molecule level conjugated with controlled spatial localization of the molecule under investigation and a method to determine the diffraction limit properties of the tip. In essence, this effect is obtained illuminating a gold coated AFM tip which is raster scanned over a nanostructured gold substrate, after chemisorption of a Raman active molecule. We expect that the near-field Raman enhancement would be given by the gap-mode effect of the two facing nano-features. Thanks to the nanostructured substrate, we verify that the resolution of the Raman mapping signal is well below the diffraction limit given by the combination of the optics geometry and the laser wavelength. We show that the gap-mode TERS can generate an estimated field- enhancement (g) of ~20 in localized areas of the sample and we demonstrate the ability to spatially define the molecule position (by Raman mapping) at the tens of nanometers scale. © 2015 Elsevier Ltd.

  4. Spectroscopic insights on selfassembly and excited state interactions between rhodamine and phthalocyanine molecules.

    Science.gov (United States)

    Geng, Hao; Zhang, Xian-Fu

    2015-03-15

    The absorption and fluorescence spectra as well as fluorescence lifetimes of tetrasulfonated zinc phthalocyanine ZnPc(SO3Na)4 were measured in the absence and presence of four rhodamine dyes, Rhodamine B (RB), Ethyl rhodamine B (ERB), Rhodamine 6G (R6G), Rhodamine 110 (R110), and Pyronine B (PYB). The ground state complexes of phthalocyanine-(Rhodamine)2 were observed which exhibit new absorption bands. The binding constants are all very large (0.86×10(5)-0.22×10(8) M(-1)), suggesting rhodamine-phthalocyanine pairs are very good combinations for efficient selfassembly. Both the fluorescence intensity and the lifetime values of ZnPc(SO3Na)4 were decreased by the presence of rhodamines. The structural effect of rhodamines on selfassembly is significant. The ground state binding and dynamic quenching capability is PYB>R6G>ERB>RB>R110. The dynamic fluorescence quenching is due to the photoinduced electron transfer (PET). The PET rate constant is very large and in the order of 10(13) M(-1) s(-1), much greater than kf and kic (in the order of 10(8) M(-1) s(-1)), which means that the PET efficiency is almost 100%. Therefore the non-covalent Pc-rhodamine is a very good pair of donor/acceptor for potential efficient solar energy conversion. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Organic cation rhodamines for screening organic cation transporters in early stages of drug development.

    Science.gov (United States)

    Ugwu, Malachy C; Oli, Angus; Esimone, Charles O; Agu, Remigius U

    The aim of this study was to investigate the suitability of rhodamine-123, rhodamine-6G and rhodamine B as non-radioactive probes for characterizing organic cation transporters in respiratory cells. Fluorescent characteristics of the compounds were validated under standard in vitro drug transport conditions (buffers, pH, and light). Uptake/transport kinetics and intracellular accumulation of the compounds were investigated. Uptake/transport mechanisms were investigated by comparing the effect of pH, temperature, concentration, polarity, OCTs/OCTNs inhibitors/substrates, and metabolic inhibitors on the cationic dyes uptake in Calu-3 cells. Fluorescence stability and intensity of the compounds were altered by buffer composition, light, and pH. Uptake of the dyes was concentration-, temperature- and pH-dependent. OCTs/OCTNs inhibitors significantly reduced intracellular accumulation of the compounds. Whereas rhodamine-B uptake was sodium-dependent, pH had no effect on rhodamine-123 and rhodamine-6G uptake. Transport of the dyes across the cells was polarized: (AP→BL>BL→AP transport) and saturable: {V max =14.08±2.074, K m =1821±380.4 (rhodamine-B); V max =6.555±0.4106, K m =1353±130.4 (rhodamine-123) and V max =0.3056±0.01402, K m =702.9±60.97 (rhodamine-6G)}. The dyes were co-localized with MitoTracker®, the mitochondrial marker. Cationic rhodamines, especially rhodamine-B and rhodamine- 6G can be used as organic cation transporter substrates in respiratory cells. During such studies, buffer selection, pH and light exposure should be taken into consideration. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Pulse radiolysis of ethanolic solutions of rhodamine dyes

    International Nuclear Information System (INIS)

    Kartasheva, L.I.; Kucherenko, E.A.; Kozlov, A.S.; Pikaev, A.K.

    1983-01-01

    The primary products of radiolytical transformations of rhodamine 6G, rhodamine B, rhodamine 3B and rhodamine 110 in ethanolic solutions were studied by pulse radiolysis method under various conditions. It was found that the semireduced form of a dye was the only intermediate product of such transformations in ethanolic solutions of all dyes. It was shown that this species was formed by interaction of the dye with esub(s) - and CH 3 CHOH. The properties of this species were investigated and the rate constants of respective reactions for each dye were determined. It was found that nature and position of a substituent in the molecule of the dye have an effect on the rate of formation of the semi-reduced form. (author)

  7. Efficient Cycloaddition Reaction of Carbon Dioxide with Epoxide by Rhodamine Based Catalyst Under 1 atm Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Qing; Luo, Huadong; Cao, Di; Zhang, Haibo; Wang, Wenjing; Zhou, Xiaohai [Wuhan University, Wuhan (China)

    2012-06-15

    Rhodamine B (RhB) and rhodamine 6G (Rh6G) were employed as catalysts for the synthesis of cyclic carbonate from carbon dioxide and epoxide. It turned out that the catalytic activity of Rh6G was nearly 29 times higher than that of RhB at 1 atm pressure, 90 .deg. C. Furthermore, the catalytic efficiency of RhB and Rh6G was greatly enhanced with triethylamine as co-catalyst. Under the optimized conditions, the best isolated yield (93%) of cyclic carbonate was achieved without organic solvent and metal component

  8. Hydrophobic analogues of rhodamine B and rhodamine 101: potent fluorescent probes of mitochondria in living C. elegans

    Directory of Open Access Journals (Sweden)

    Laurie F. Mottram

    2012-12-01

    Full Text Available Mitochondria undergo dynamic fusion and fission events that affect the structure and function of these critical energy-producing cellular organelles. Defects in these dynamic processes have been implicated in a wide range of human diseases including ischemia, neurodegeneration, metabolic disease, and cancer. To provide new tools for imaging of mitochondria in vivo, we synthesized novel hydrophobic analogues of the red fluorescent dyes rhodamine B and rhodamine 101 that replace the carboxylate with a methyl group. Compared to the parent compounds, methyl analogues termed HRB and HR101 exhibit slightly red-shifted absorbance and emission spectra (5–9 nm, modest reductions in molar extinction coefficent and quantum yield, and enhanced partitioning into octanol compared with aqueous buffer of 10-fold or more. Comparison of living C. elegans (nematode roundworm animals treated with the classic fluorescent mitochondrial stains rhodamine 123, rhodamine 6G, and rhodamine B, as well as the structurally related fluorophores rhodamine 101, and basic violet 11, revealed that HRB and HR101 are the most potent mitochondrial probes, enabling imaging of mitochondrial motility, fusion, and fission in the germline and other tissues by confocal laser scanning microscopy after treatment for 2 h at concentrations as low as 100 picomolar. Because transgenes are poorly expressed in the germline of these animals, these small molecules represent superior tools for labeling dynamic mitochondria in this tissue compared with the expression of mitochondria-targeted fluorescent proteins. The high bioavailabilty of these novel fluorescent probes may facilitate the identification of agents and factors that affect diverse aspects of mitochondrial biology in vivo.

  9. Effects of single and double bonds in linkers on colorimetric and fluorescent sensing properties of polyving akohol grafting rhodamine hydrazides.

    Science.gov (United States)

    Geng, Tong-Mou; Wang, Xie; Wang, Zhu-Qing; Chen, Tai-Jie; Zhu, Hai; Wang, Yu

    2015-03-01

    Two rhodamine derivatives, N-mono-maleic acid amide-N'-rhodamine B hydrazide (MRBH) and N-mono-succinic acid amide-N'-rhodamine 6G hydrazide (SR6GH), were synthesized by amidation with maleic anhydride (MAH), succinic anhydride (SAH) and rhodamine B hydrazide, rhodamine 6G hydrazide, which were identified by FTIR, (1)H NMR and elemental analysis. Two water-soluble fluorescent materials (PVA-MRBH and PVA-SR6GH) were prepared via esterification reaction with N-mono-maleic acyl chloride amide-N'-rhodamine B hydrazide (MRBHCl) or N-mono-maleic acyl chloride amide-N'-rhodamine 6G hydrazide (SR6GHCl) and poly(vinyl alcohol) (PVA) in DMSO solution. The sensing behaviors of PVA-MRBH and PVA-SR6GH were explored by recording the fluorescence spectra in completely aqueous solution. Upon the addition of Cu(2+) and Fe(3+) ions to the aqueous solution of PVA-MRBH, visual color change from rose pink to amaranth and orange for Cu(2+) and Fe(3+) ions, respectively, and fluorescence quenching were observed. Titration of Cu(2+), Fe(3+), Cr(3+) or Hg(2+) into the aqueous solution of PVA-SR6GH, although they induced fluorescence enhancement, only Fe(3+) made the color changing from colorless to yellow. Moreover, other metal ions did not induce obvious changes to color and the fluorescence spectra.

  10. Complete braided adsorbent for marine testing to demonstrate 3g-U/kg-adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Chris [ORNL; Yatsandra, Oyola [ORNL; Mayes, Richard [ORNL; none,; Gill, Gary [PNNL; Li-Jung, Kuo [PNNL; Wood, Jordana [PNNL; Sadananda, Das [ORNL

    2014-04-30

    ORNL has manufactured four braided adsorbents that successfully demonstrated uranium adsorption capacities ranging from 3.0-3.6 g-U/kg-adsorbent in marine testing at PNNL. Four new braided and leno woven fabric adsorbents have also been prepared by ORNL and are currently undergoing marine testing at PNNL.

  11. Efficient removal of rhodamine 6G dye from aqueous solution using nickel sulphide incorporated polyacrylamide grafted gum karaya bionanocomposite hydrogel

    CSIR Research Space (South Africa)

    Kumar, N

    2016-02-01

    Full Text Available polymer of the Gk with the PAAm was synthesized using the graft co-polymerization technique. In the second step, the nickel sulphide nanoparticles were incorporated in situ within the hydrogel polymer matrix. The synthesized hydrogel nanocomposite...

  12. Efficient surface enhanced Raman scattering on confeito-like gold nanoparticle-adsorbed self-assembled monolayers.

    Science.gov (United States)

    Chang, Chia-Chi; Imae, Toyoko; Chen, Liang-Yih; Ujihara, Masaki

    2015-12-28

    Confeito-like gold nanoparticles (AuNPs; average diameter = 80 nm) exhibiting a plasmon absorption band at 590 nm were adsorbed through immersion-adsorption on two self-assembled monolayers (SAMs) of 3-aminopropyltriethoxysilane (APTES-SAM) and polystyrene spheres coated with amine-terminated poly(amido amine) dendrimers (DEN/PS-SAM). The surface enhanced Raman scattering (SERS) effect on the SAM substrates was examined using the molecules of a probe dye, rhodamine 6G (R6G). The Raman scattering was strongly intensified on both substrates, but the enhancement factor (>10,000) of the AuNP/DEN/PS-SAM hierarchy substrate was 5-10 times higher than that of the AuNP/APTES-SAM substrate. This strong enhancement is attributed to the large surface area of the substrate and the presence of hot spots. Furthermore, analyzing the R6G concentration dependence of SERS suggested that the enhancement mechanism effectively excited the R6G molecules in the first layer on the hot spots and invoked the strong SERS effect. These results indicate that the SERS activity of confeito-like AuNPs on SAM substrates has high potential in molecular electronic devices and ultrasensitive analyses.

  13. Preparation of a magnetic molecularly imprinted polymer for selective recognition of rhodamine B

    International Nuclear Information System (INIS)

    Liu, Xiuying; Yu, Dan; Yu, Yingchao; Ji, Shujuan

    2014-01-01

    Graphical abstract: A novel material based on the use of magnetic Fe3O4 nanoparticles coated with MMIP for preconcentration and determination of RhB in real samples prior to fluorospectrophotometry was developed. - Highlights: • A novel rhodamine B magnetic molecularly imprinted polymer by using Fe 3 O 4 magnetite as the magnetically susceptible component was synthesized. • The MMIP had rapid adsorption and high selectivity towards rhodamine B. • Rhodamine B can be extracted selectively by MMIP from real samples. • The method provides the advantages of short analysis time and high sensitivity. - Abstract: A novel magnetic molecularly imprinted polymer (MMIP) was developed as an adsorbent to selectively remove rhodamine B from real samples. The polymer was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, and thermo-gravimetric analysis. Static adsorption, kinetic adsorption, and selective recognition experiments were also performed to investigate the specific adsorption equilibrium, kinetics, and selective recognition ability of the MMIP. The MMIPs had outstanding thermal stability, large adsorption capacity, and high competitive selectivity. When they were used as dispersed solid-phase extraction adsorbents in real samples, rhodamine B recovery was 79.97–81.88% and 75.56–79.74% in intra-day and inter-day reproducibility experiments with relative standard deviations lower than 2.62% and 4.28%, respectively. Extraction was optimized for yield and efficiency. Precision, accuracy, and linear working range were determined under optimal experimental conditions. The limits of detection and quantification were 1.05 and 3.49 μg L −1 , respectively. These results suggest MMIPs may be used for determination of rhodamine B in real samples

  14. On different photodecomposition behaviors of rhodamine B on laponite and montmorillonite clay under visible light irradiation

    KAUST Repository

    Wang, Peng

    2013-12-11

    In this study, laponite and montmorillonite clays were found to be able to decompose rhodamine B upon visible light irradiation (λ>420nm). Very interestingly, it was found that rhodamine B on laponite underwent a stepwise N-deethylation and its decomposition was terminated once rhodamine 110, as a decomposition product, was formed, whereas the same phenomenon was not observed for rhodamine B on montmorillonite, whose decomposition involved chromophore destruction. Mechanistic study revealed that the different photodecomposition behaviors of rhodamine B on laponite and montmorillonite were attributed to the oxidation by different reactive oxygen species, with laponite involving HO2/O2- while montmorillonite involving OH. It was also found that the degradation pathway of rhodamine B on laponite switched from N-deethylation to chromophore destruction when solution pH was changed from 7.0 to 3.0, which was attributed to a much higher fraction of HO2 relative to O2- under pH 3.0 than under pH 7.0. Based on the results, a mechanism of rhodamine dye decomposition on clay under visible light was proposed, involving the clay as an electron acceptor, electron relay between the adsorbed dye molecules and oxygen molecules, and subsequent reactions between the generated dye radical cations and different reactive oxygen species. The results of this study shed light on how to best utilize visible light for organic pollutant degradation on clays within engineered treatment systems as well as on many of naturally occurring pollutant degradation processes in soils and air involving clay. © 2013 King Saud University.

  15. IV and IP administration of rhodamine in visualization of WBC-BBB interactions in cerebral vessels.

    Science.gov (United States)

    Reichenbach, Zachary Wilmer; Li, Hongbo; Gaughan, John P; Elliott, Melanie; Tuma, Ronald

    2015-10-01

    Epi-illuminescence intravital fluorescence microscopy has been employed to study leukocyte-endothelial interactions in a number of brain pathologies. Historically, dyes such as Rhodamine 6G have been injected intravenously. However, intravenous injections can predispose experimental animals to a multitude of complications and requires a high degree of technical skill. Here, we study the efficacy of injecting Rhodamine 6G into the peritoneum (IP) for the purpose of analyzing leukocyte-endothelial interactions through a cranial window during real time intravital microscopy. After examining the number of rolling and adherent leukocytes through a cranial window, we found no advantage to the intravenous injection (IV). Additionally, we tested blood from both routes of injection by flow cytometry to gain a very precise picture of the two methods. The two routes of administration failed to show any difference in the ability to detect cells. The study supports the notion that IP Rhodamine 6G works as efficaciously as IV and should be considered a viable alternative in experimental design for investigations employing intravital microscopy. Facilitated intravital studies will allow for more exploration into cerebral pathologies and allow for more rapid translation from the laboratory to the patient with less chance of experimental error from failed IV access. © 2015 Wiley Periodicals, Inc.

  16. Synthesis, characterization of organo-modified zeolitic nanomaterial from coal ash and application as adsorbent on remediation of contaminated water by rhodamine B and direct blue 71; Síntese, caracterização de nanomaterial zeolítico de cinzas de carvão organomodificado e aplicação como adsorvente na remediação de água contaminada por Rodamina B e Azul Direto 71

    Energy Technology Data Exchange (ETDEWEB)

    Alcântara, Raquel Reis

    2016-07-01

    The synthesis of zeolites from mineral coal fly and bottom ash was performed by alkaline hydrothermal treatment, which were named ZFA and ZBA, respectively. Organo-modified zeolites, SMZF and SMZB, were obtained from surface modification of ZFA and ZBA, respectively, using the cationic surfactant hexadecyltrimethylammonium bromide. From the remaining solutions generated in ZFA and ZBA synthesis it was possible to synthesis two new zeolites. The physicochemical characteristics of the synthesized nanomaterials zeolite as well as their respective raw materials, such as cation exchange capacity, density, specific area, chemical composition, mineralogical and morphological, among others, were determined. The adsorbents SMZF and SMZB were used to remove the dyes, Direct Blue 71 (DB71) and Rhodamine B (RB) from aqueous solutions in batch system. Thus, four systems DB71/SMZF, RB/SMZF, DB71/SMZB, RB/SMZB were investigated. The models of pseudo-first order and pseudo-second order were applied to the experimental data for the study the adsorption kinetics. The model of pseudo-second order was the one that best described the adsorption of all dye/organomodified-zeolites systems. The equilibrium adsorption was analyzed from four models isotherm, namely: Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-B). The results show that the model Freundlich and Langmuir best described the experimental data systems DB71/SMZF and DB71/SMZB, respectively. For systems with RB, the model D-R was the best fit for both adsorbents (SMZF and SMZB). The factorial design 2{sup 4} was applied to the analysis of the following factors influencing the adsorption process: initial concentration of dye (C{sub o}), pH, amount of adsorbent (M) and temperature (T). Under the conditions studied it concludes with the confidence interval of 95%, which for the DB71/SMZF system, the factors and their interactions that influence more were C{sub 0}, M, pH, pH∗M, pH∗C{sub 0}, M∗C{sub 0}, p

  17. Studying reactions of interaction of tungsten (6) with rhodamine B and rhodamine 6 Zh

    International Nuclear Information System (INIS)

    Andreeva, I.Yu.; Lebedeva, L.I.; Burmistrova, N.M.

    1978-01-01

    The reaction of the interaction between tungsten (6) and rhodamine B and rhodamine 6 Zh has been investigated. The formation of two compounds in the tungsten-rhodamine system is shown. The composition of these compounds has been determined, and their stability has been estimated. The composition of compounds in the solid phase has also been determined. This reaction is used for the determination of tungsten in stells

  18. Adsorber fires

    International Nuclear Information System (INIS)

    Holmes, W.

    1987-01-01

    The following conclusions are offered with respect to activated charcoal filter systems in nuclear power plants: (1) The use of activated charcoal in nuclear facilities presents a potential for deep-seated fires. (2) The defense-in-depth approach to nuclear fire safety requires that if an ignition should occur, fires must be detected quickly and subsequently suppressed. (3) Deep-seated fires in charcoal beds are difficult to extinguish. (4) Automatic water sprays can be used to extinguish fires rapidly and reliably when properly introduced into the burning medium. The second part of the conclusions offered are more like challenges: (1) The problem associated with inadvertent actuations of fire protection systems is not a major one, and it can be reduced further by proper design review, installation, testing, and maintenance. Eliminating automatic fire extinguishing systems for the protection of charcoal adsorbers is not justified. (2) Removal of automatic fire protection systems due to fear of inadvertent fire protection system operation is a case of treating the effect rather than the cause. On the other hand, properly maintaining automatic fire protection systems will preserve the risk of fire loss at acceptable levels while at the same time reducing the risk of damage presented by inadvertent operation of fire protection systems

  19. Application of activated carbon derived from scrap tires for adsorption of Rhodamine B.

    Science.gov (United States)

    Li, Li; Liu, Shuangxi; Zhu, Tan

    2010-01-01

    Activated carbon derived from solid hazardous waste scrap tires was evaluated as a potential adsorbent for cationic dye removal. The adsorption process with respect to operating parameters was investigated to evaluate the adsorption characteristics of the activated pyrolytic tire char (APTC) for Rhodamine B (RhB). Systematic research including equilibrium, kinetics and thermodynamic studies was performed. The results showed that APTC was a potential adsorbent for RhB with a higher adsorption capacity than most adsorbents. Solution pH and temperature exert significant influence while ionic strength showed little effect on the adsorption process. The adsorption equilibrium data obey Langmuir isotherm and the kinetic data were well described by the pseudo second-order kinetic model. The adsorption process followed intra-particle diffusion model with more than one process affecting the adsorption process. Thermodynamic study confirmed that the adsorption was a physisorption process with spontaneous, endothermic and random characteristics.

  20. Quirks of dye nomenclature. 5. Rhodamines.

    Science.gov (United States)

    Cooksey, C J

    2016-01-01

    Rhodamines were first produced in the late 19(th) century, when they constituted a new class of synthetic dyes. These compounds since have been used to color many things including cosmetics, inks, textiles, and in some countries, food products. Certain rhodamine dyes also have been used to stain biological specimens and currently are widely used as fluorescent probes for mitochondria in living cells. The early history and current biological applications are sketched briefly and an account of the ambiguities, complications and confusions concerning dye identification and nomenclature are discussed.

  1. Pharmacokinetics of Rhodamine 110 and Its Organ Distribution in Rats.

    Science.gov (United States)

    Jiang, Shiau-Han; Cheng, Yung-Yi; Huo, Teh-Ia; Tsai, Tung-Hu

    2017-09-06

    Rhodamine dyes have been banned as food additives due to their potential tumorigenicity. Rhodamine 110 is illegal as a food additive, although its pharmacokinetics have not been characterized, and no accurate bioanalytical methods are available to quantify rhodamine 110. The aim of this study was to develop and validate a fast, stable, and sensitive method to quantify rhodamine 110 using high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) to assess its pharmacokinetics and organ distribution in awake rats. Rhodamine 110 exhibited linear pharmacokinetics and slow elimination after oral administration. Furthermore, its oral bioavailability was approximately 34-35%. The distribution in the liver and kidney suggests that these organs are primarily responsible for rhodamine 110 metabolism and elimination. Our investigation describes the pharmacokinetics and a quantification method for rhodamine 110, improving our understanding of the food safety of rhodamine dyes.

  2. Pulse radiolysis of rhodamine dye solutions

    International Nuclear Information System (INIS)

    Kucherenko, E.A.; Kartasheva, L.I.; Pikaev, A.K.

    1982-01-01

    Applying the method of pulse radiolysis (5 MeV electrons) a study was made on intermediate products of rhodamine B radiolytic transformations in neutral aqueous and ethanol solutions. Rate constants of reactions of esub(aq) and OH with the dye (they are equal to (2.2+-0.3)x10 10 and (2.1+-0.3)x10 10 e/molxs, accordingly) as well as optical and kinetic characteristics of esub(aq), OH and H interaction products were measured. The nature of these products is concluded. It was found that in ethanol solutions the semirecovered form - electroneutral radical of rhodamine B - was the only intermediate product. It arises during the interaction of the dye with esub(s) (k=(9.2+-1.2)x10 9 e/molxs) and α-et hananol radical (k=(1.1+-0.1)x10 8 l/molxs). Properties of this product were investigated

  3. Rhodamine/Nanodiamond as a System Model for Drug Carrier.

    Science.gov (United States)

    Reina, G; Orlanducci, S; Cairone, C; Tamburri, E; Lenti, S; Cianchetta, I; Rossi, M; Terranova, M L

    2015-02-01

    In this paper we present some strategies that are being developed in our labs towards enabling nanodiamond-based applications for drug delivery. Rhodamine B (RhB) has been choosen as model molecule to study the loading of nanodiamonds with active moieties and the conditions for their controlled release. In order to test the chemical/physical interactions between functionalized detonation nanodiamond (DND) and complex molecules, we prepared and tested different RhB@DND systems, with RhB adsorbed or linked by ionic bonding to the DND surface. The chemical state of the DND surfaces before conjugation with the RhB molecules, and the chemical features of the DND-RhB interactions have been deeply analysed by coupling DND with Au nanoparticles and taking advantage of surface enhanced Raman spectroscopy SERS. The effects due to temperature and pH variations on the process of RhB release from the DND carrier have been also investigated. The amounts of released molecules are consistent with those required for effective drug action in conventional therapeutic applications, and this makes the DND promising nanostructured cargos for drug delivery applications.

  4. Marine sponge skeleton photosensitized by copper phthalocyanine: A catalyst for Rhodamine B degradation

    Directory of Open Access Journals (Sweden)

    Norman Małgorzata

    2016-01-01

    Full Text Available We present a combined approach to photo-assisted degradation processes, in which a catalyst, H2O2 and UV irradiation are used together to enhance the oxidation of Rhodamine B (RB. The heterogeneous photocatalyst was made by the process of adsorption of copper phthalocyanine tetrasulfonic acid (CuPC onto purified spongin-based Hippospongia communis marine sponge skeleton (HcS. The product obtained, CuPC-HcS, was investigated by a variety of spectroscopic (carbon-13 nuclear magnetic resonance 13C NMR, Fourier transform infrared spectroscopy FTIR, energy-dispersive X-ray spectroscopy EDS and microscopic techniques (scanning electron microscopy SEM, fluorescent and optical microscopy, as well as thermal analysis. The study confirms the stable combination of the adsorbent and adsorbate. For a 10 mg/L RB solution, the percentage degradation reached 95% using CuPC-HcS as a heterocatalyst. The mechanism of RB removal involves adsorption and photodegradation simultaneously.

  5. Photolysis of rhodamine-WT dye

    Science.gov (United States)

    Tai, D.Y.; Rathbun, R.E.

    1988-01-01

    Photolysis of rhodamine-WT dye under natural sunlight conditions was determined by measuring the loss of fluorescence as a function of time. Rate coefficients at 30?? north latitude ranged from 4.77 x 10-2 day-1 for summer to 3.16 x 10-2 day-1 for winter. Experimental coefficients were in good agreement with values calculated using a laboratory-determined value of the quantum yield.

  6. Radioiodinated Rhodamine-123: a potential cationic hepatobiliary imaging agent

    International Nuclear Information System (INIS)

    Moonen, P.; Gorree, G.C.M.; Hoekstra, A.

    1987-01-01

    The labelling of the cationic dye Rhodamine-123 with 125 I is described. The biodistribution of the iodinated Rhodamine-123 has been determined at different time intervals after intravenous injection into fasted rats. It turned out that the dye is predominantly cleared by the liver and discharged into the bile. The bile acid taurocholate did not enhance the rate of excretion of 125 I-Rhodamine-123. (author)

  7. Xanthium strumarium L. seed hull as a zero cost alternative for Rhodamine B dye removal.

    Science.gov (United States)

    Khamparia, Shraddha; Jaspal, Dipika Kaur

    2017-07-15

    Treatment of polluted water has been considered as one of the most important aspects in environmental sciences. Present study explores the decolorization potential of a low cost natural adsorbent Xanthium strumarium L. seed hull for the adsorption of a toxic xanthene dye, Rhodamine B (RHB). The characterization of the adsorbent revealed the presence of high amount of carbon, when exposed to Electron Dispersive Spectroscopy (EDS). Further appreciable decolorization took place which was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) analysis noticing shift in peaks. Isothermal studies indicated multilayer adsorption following Freundlich isotherm. The rate of adsorption was supported by second order kinetics directing a chemical phenomenon during the process with dominance of film diffusion as the rate governing step. Moreover paper aims at correlating the chemical arena to the mathematical aspect providing an in-depth information of the studied treatment process. For proper assessment and validation of the observed data, experimental data has been statistically treated by applying different error functions namely, Chi-square test (χ 2 ), Sum of absolute errors (EABS) and Normalized standard deviation (NSD). Further practical applicability of the low cost adsorbent was evaluated by continuous column mode studies with 72.2% of dye recovery. Xanthium strumarium L. proved to be environment friendly low cost natural adsorbent for decolorizing RHB from aquatic system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Application of Taguchi L16 design method for comparative study of ability of 3A zeolite in removal of Rhodamine B and Malachite green from environmental water samples

    Science.gov (United States)

    Rahmani, Mashaallah; Kaykhaii, Massoud; Sasani, Mojtaba

    2018-01-01

    This study aimed to investigate the efficiency of 3A zeolite as a novel adsorbent for removal of Rhodamine B and Malachite green dyes from water samples. To increase the removal efficiency, effecting parameters on adsorption process were investigated and optimized by adopting Taguchi design of experiments approach. The percentage contribution of each parameter on the removal of Rhodamine B and Malachite green dyes determined using ANOVA and showed that the most effective parameters in removal of RhB and MG by 3A zeolite are initial concentration of dye and pH, respectively. Under optimized condition, the amount predicted by Taguchi design method and the value obtained experimentally, showed good closeness (more than 94.86%). Good adsorption efficiency obtained for proposed methods indicates that, the 3A zeolite is capable to remove the significant amounts of Rhodamine B and Malachite green from environmental water samples.

  9. Modeling adsorption: Investigating adsorbate and adsorbent properties

    Science.gov (United States)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  10. Ly6G-mediated depletion of neutrophils is dependent on macrophages.

    Science.gov (United States)

    Bruhn, Kevin W; Dekitani, Ken; Nielsen, Travis B; Pantapalangkoor, Paul; Spellberg, Brad

    2016-01-01

    Antibody-mediated depletion of neutrophils is commonly used to study neutropenia. However, the mechanisms by which antibodies deplete neutrophils have not been well defined. We noticed that mice deficient in complement and macrophages had blunted neutrophil depletion in response to anti-Ly6G monoclonal antibody (MAb) treatment. In vitro, exposure of murine neutrophils to anti-Ly6G MAb in the presence of plasma did not result in significant depletion of cells, either in the presence or absence of complement. In vivo, anti-Ly6G-mediated neutrophil depletion was abrogated following macrophage depletion, but not complement depletion, indicating a requirement for macrophages to induce neutropenia by this method. These results inform the use and limitations of anti-Ly6G antibody as an experimental tool for depleting neutrophils in various immunological settings.

  11. Blocking of Single α-Hemolysin Pore by Rhodamine Derivatives.

    Science.gov (United States)

    Rokitskaya, Tatyana I; Nazarov, Pavel A; Golovin, Andrey V; Antonenko, Yuri N

    2017-06-06

    Measurements of ion conductance through α-hemolysin pore in a bilayer lipid membrane revealed blocking of the ion channel by a series of rhodamine 19 and rhodamine B esters. The longest dwell closed time of the blocking was observed with rhodamine 19 butyl ester (C4R1), whereas the octyl ester (C8R1) was of poor effect. Voltage asymmetry in the binding kinetics indicated that rhodamine derivatives bound to the stem part of the aqueous pore lumen. The binding frequency was proportional to a quadratic function of rhodamine concentrations, thereby showing that the dominant binding species were rhodamine dimers. Two levels of the pore conductance and two dwell closed times of the pore were found. The dwell closed times lengthened as the voltage increased, suggesting impermeability of the channel for the ligands. Molecular docking analysis revealed two distinct binding sites within the lumen of the stem of the α-hemolysin pore for the C4R1 dimer, but only one binding site for the C8R1 dimer. The blocking of the α-hemolysin nanopore by rhodamines could be utilized in DNA sequencing as additional optical sensing owing to bright fluorescence of rhodamines if used for DNA labeling. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Rhodamine-WT dye losses in a mountain stream environment

    Science.gov (United States)

    Bencala, Kenneth E.; Rathburn, Ronald E.; Jackman, Alan P.; Kennedy, Vance C.; Zellweger, Gary W.; Avanzino, Ronald J.

    1983-01-01

    A significant fraction of rhodamine WT dye was lost during a short term multitracer injection experiment in a mountain stream environment. The conservative anion chloride and the sorbing cation lithium were concurrently injected. In-stream rhodamine WT concentrations were as low as 45 percent of that expected, based on chloride data. Concentration data were available from shallow‘wells’dug near the stream course and from a seep of suspected return flow. Both rhodamine WT dye and lithium were nonconservative with respect to the conservative chloride, with rhodamine WT dye closely following the behavior of the sorbing lithium.Nonsorption and sorption mechanisms for rhodamine WT loss in a mountain stream were evaluated in laboratory experiments. Experiments evaluating nonsorption losses indicated minimal losses by such mechanisms. Laboratory experiments using sand and gravel size streambed sediments show an appreciable capacity for rhodamine WT sorption.The detection of tracers in the shallow wells and seep indicates interaction between the stream and the flow in the surrounding subsurface, intergravel water, system. The injected tracers had ample opportunity for intimate contact with materials shown in the laboratory experiments to be potentially sorptive. It is suggested that in the study stream system, interaction with streambed gravel was a significant mechanism for the attenuation of rhodamine WT dye (relative to chloride).

  13. [11 C]Rhodamine-123: Synthesis and biodistribution in rodents

    International Nuclear Information System (INIS)

    Bao Xiaofeng; Lu Shuiyu; Liow, Jeih-San; Morse, Cheryl L.; Anderson, Kacey B.; Zoghbi, Sami S.; Innis, Robert B.; Pike, Victor W.

    2012-01-01

    Introduction: Rhodamine-123 is a known substrate for the efflux transporter, P-glycoprotein (P-gp). We wished to assess whether rhodamine-123 might serve as a useful substrate for developing probes for imaging efflux transporters in vivo with positron emission tomography (PET). For this purpose, we aimed to label rhodamine-123 with carbon-11 (t 1/2 = 20.4 min) and to study its biodistribution in rodents. Methods: [ 11 C]Rhodamine-123 was prepared by treating rhodamine-110 (desmethyl-rhodamine-123) with [ 11 C]methyl iodide. The biodistribution of this radiotracer was studied with PET in wild-type mice and rats, in efflux transporter knockout mice, in wild-type rats pretreated with DCPQ (an inhibitor of P-gp) or with cimetidine (an inhibitor of organic cation transporters; OCT), and in P-gp knockout mice pretreated with cimetidine. Unchanged radiotracer in forebrain, plasma and peripheral tissues was also measured ex vivo at 30 min after radiotracer administration to wild-type and efflux transporter knockout rodents. Results: [ 11 C]Rhodamine-123 was obtained in 4.4% decay-corrected radiochemical yield from cyclotron-produced [ 11 C]carbon dioxide. After intravenous administration of [ 11 C]rhodamine-123 to wild-type rodents, PET and ex vivo measurements showed radioactivity uptake was very low in brain, but relatively high in some other organs such as heart, and especially liver and kidney. Inhibition of P-gp increased uptake in brain, heart, kidney and liver, but only by up to twofold. Secretion of radioactivity from kidney was markedly reduced by OCT knockout or pretreatment with cimetidine. Conclusions: [ 11 C]Rhodamine-123 was unpromising as a PET probe for P-gp function and appears to be a strong substrate of OCT in kidney. Cimetidine appears effective for blocking OCT in kidney in vivo.

  14. Localization of mitochondria in living cells with rhodamine 123.

    Science.gov (United States)

    Johnson, L V; Walsh, M L; Chen, L B

    1980-01-01

    The laser dye rhodamine 123 is shown to be a specific probe for the localization of mitochondria in living cells. By virtue of its selectivity for mitochondria and its fluorescent properties, the detectability of mitochondria stained with rhodamine 123 is significantly improved over that provided by conventional light microscopic techniques. With the use of rhodamine 123, it is possible to detect alterations in mitochondrial distribution following transformation by Rous sarcoma virus and changes in the shape and organization of mitochondria induced by colchicine treatment. Images PMID:6965798

  15. Milestone Report - Complete New Adsorbent Materials for Marine Testing to Demonstrate 4.5 g-U/kg Adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Christopher James [ORNL; Das, Sadananda [ORNL; Oyola, Yatsandra [ORNL; Mayes, Richard T. [ORNL; Saito, Tomonori [ORNL; Brown, Suree [ORNL; Gill, Gary [PNNL; Kuo, Li-Jung [PNNL; Wood, Jordana [PNNL

    2014-08-01

    This report describes work on the successful completion of Milestone M2FT-14OR03100115 (8/20/2014) entitled, “Complete new adsorbent materials for marine testing to demonstrate 4.5 g-U/kg adsorbent”. This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed two new families of fiber adsorbents that have demonstrated uranium adsorption capacities greater than 4.5 g-U/kg adsorbent after marine testing at PNNL. One adsorbent was synthesized by radiation-induced graft polymerization of itaconic acid and acrylonitrile onto high surface area polyethylene fibers followed by amidoximation and base conditioning. This fiber showed a capacity of 4.6 g-U/kg adsorbent in marine testing at PNNL. The second adsorbent was prepared by atom-transfer radical polymerization of t-butyl acrylate and acrylonitrile onto halide-functionalized round fibers followed by amidoximation and base hydrolysis. This fiber demonstrated uranium adsorption capacity of 5.4 g-U/kg adsorbent in marine testing at PNNL.

  16. Nanobeads of zinc oxide with rhodamine B dye as a sensitizer for dye sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Baviskar, P.K. [Thin Film and Nano Science Laboratory, Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425 001, MS (India); Zhang, J.B. [Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Gupta, V.; Chand, S. [Organic and Hybrid Solar Cell, Physics of Energy Harvesting Division, Dr. K. S. Krishnan Marg, National Physical Laboratory, New Delhi 110012 (India); Sankapal, B.R., E-mail: brsankapal@rediffmail.com [Thin Film and Nano Science Laboratory, Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425 001, MS (India)

    2012-01-05

    Highlights: > Synthesis of ZnO film was done at room temperature (27 deg. C). > Simple and inexpensive chemical bath deposition method was employed. > The as deposited film consists of mixed phases of hydroxide and oxide. > The post annealing was done at 200 deg. C in order to remove hydroxide phase. > Low-cost, metal free Rhodamine B dye was used for DSSC application. - Abstract: Cost effective, ruthenium metal free rhodamine B dye has been chemically adsorbed on ZnO films consisting of nanobeads to serve as a photo anode in dye sensitized solar cells. These ZnO films were chemically synthesized at room temperature (27 deg. C) on to fluorine doped tin oxide (FTO) coated glass substrates followed by annealing at 200 deg. C. These films consisting of inter connected nanobeads (20-40 nm) which are due to the agglomeration of very small size particles (3-5 nm) leading to high surface area. The film shows wurtzite structure having high crystallinity with optical direct band gap of 3.3 eV. Optical absorbance measurements for rhodamine B dye covered ZnO film revealed the good coverage in the visible region (460-590 nm) of the solar spectrum. With poly-iodide liquid as an electrolyte, device exhibits photon to electric energy conversion efficiency ({eta}) of 1.26% under AM 1.5G illumination at 100 mW/cm{sup 2}.

  17. Identifikasi Zat Warna Rhodamine B Pada Lipstik Berwarna Merah

    OpenAIRE

    A.H., Mukaromah; E.T., Maharani

    2008-01-01

    Telah dilakukan penelitian tentang identifikasi zat warna Rhodamine B pada lipsttk. Populasi Penelitian adalah sediaan lipstik yang berwarna merah dengan harga kurang atau sama dengan Rp 5000,00 (12 merk) dan sediaan lipstik yang berwarna merah dengan harga lebih Rp 5000,00 (13 merk) yang dijual di Pasar Johar Semarang. Masing-masing sediaan lipstik diambil 40 % dari total populasi secara acak. Metode yang digunakan untuk mangidentifikasi zat warna Rhodamine B adalah metode kromatograf...

  18. Kinetic, Thermodynamic and Equilibrium Studies on Uptake of Rhodamine B onto ZnCl2 Activated Low Cost Carbon

    Directory of Open Access Journals (Sweden)

    N. Bhadusha

    2012-01-01

    Full Text Available A carbonaceous adsorbent prepared from biomass waste like wood apple outer shell (Limonia acidissima by ZnCl2 treatment was investigated for its efficiency in removing Rhodamine B (RDB. Influence of agitation time, adsorbent dose, dye concentration, pH and temperature were explored. Two theoretical adsorption isotherms namely Langmuir and Freundlich were used to describe the experimental results. The Langmuir adsorption capacity (Qo was found to be 46.7 mg/g and the equilibrium parameter (RL values indicate favourable adsorption. The experimental data were well fitted with Langmuir isotherm model and pseudo second order kinetic model. Desorption studies showed that ion exchange mechanism might be involved in the adsorption process.

  19. Polymer optical fiber with Rhodamine doped cladding for fiber light systems

    Energy Technology Data Exchange (ETDEWEB)

    Narro-García, R., E-mail: roberto.narro@gmail.com [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Quintero-Torres, R. [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Domínguez-Juárez, J.L. [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Cátedras CONACyT, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Ocampo, M.A. [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico)

    2016-01-15

    Both preform and polymer optical fiber with a Poly(methyl methacrylate) core and THV–Rhodamine 6G cladding were characterized. UV–vis absorbance, photoluminescence spectra and lifetime of the preform were measured. Axial and lateral photoluminescence spectra of the polymer optical fiber were studied under 404 nm excitation in order to study the illumination performance of the fiber. It was observed that the peak wavelength from the fiber photoluminescence spectra is higher than the peak wavelength from the fiber preform and that the peak wavelength from the fiber photoluminescence spectra is red shifted with the fiber length in the case of axial emission. The obtained results suggest the influence of self-absorption on the photoluminescence shape. Strong lateral emission along the fiber was observed with the naked eyes in all the cases. The lateral photoluminescence spectra show that the lateral emission is a combination between the pump laser and the Rh6G molecule photoluminescence. The results suggest that this polymer optical fiber could be a potential candidate for the development of fiber lighting systems. - Highlights: • Axial and lateral emission along the fiber was studied. • Self-absorption effect was confirmed in the case of axial photoluminescence. • The lateral emission is a combination between the laser and the RhG6 emission. • This fiber could be a potential candidate for the development of lighting systems.

  20. Regenerative adsorbent heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  1. Adsorption kinetics of Rhodamine-B on used black tea leaves

    Directory of Open Access Journals (Sweden)

    Hossain Mohammad

    2012-08-01

    Full Text Available Abstract Rhodamine B (Rh-B is one of the most common pollutants in the effluents of textile industries effluents in developing countries. This study was carried out to evaluate the applicability of used black tea leaves (UBTL for the adsorptive removal of Rh-B from aqueous system by investigating the adsorption kinetics in batch process. The effects of concentration and temperature on adsorption kinetics were examined. First-, second- and pseudo-second order kinetic equations were used to investigate the adsorption mechanism. The adsorption of Rh-B on UBTL followed pseudo-second order kinetics. The equilibrium amount adsorbed and the equilibrium concentration were calculated from pseudo-second-order kinetic plots for different initial concentrations of Rh-B to construct the adsorption isotherm. The adsorption isotherm was well expressed by Langmuir equation. The maximum adsorption capacity of UBTL to Rh-B was found to be 53.2 mg/g at pH = 2.0. The equilibrium amount adsorbed, calculated from pseudo-second-order kinetic plots, increased with temperature increase. The positive value of enthalpy of adsorption, ΔHads = 31.22 kJ/mol, suggested that the adsorption of Rh-B on UBTL at pH = 2.0 is an endothermic process.

  2. Endogenous morphine-6-glucuronide (M6G) is present in the plasma of patients: validation of a specific anti-M6G antibody for clinical and basic research.

    Science.gov (United States)

    Laux-Biehlmann, Alexis; Chung, Hélène; Mouheiche, Jinane; Vérièpe, Julie; Delalande, François; Lamshöft, Marc; Welters, Ingeborg D; Soldevila, Stéphanie; Bazin, Hervé; Lamarque, Laurent; Van Dorsselaer, Alain; Poisbeau, Pierrick; Schneider, Francis; Goumon, Yannick; Garnero, Patrick

    2014-01-01

    Endogenous morphine and its derivatives (morphine-6-glucuronide [M6G]; morphine-3-glucuronide [M3G]) are formed by mammalian cells from dopamine. Changes in the concentrations of endogenous morphine have been demonstrated in several pathologies (sepsis, Parkinson's disease, etc.), and they might be relevant as pathological markers. While endogenous morphine levels are detectable using enzyme-linked immunosorbant assay (ELISA), mass spectrometry (MS) analysis was, so far, the only approach to detect and quantify M6G. This study describes the preparation of a specific anti-M6G rabbit polyclonal antibody and its validation. The specificity of this antibody was assessed against 30 morphine-related compounds. Then, a M6G-specific ELISA-assay was tested to quantify M6G in the plasma of healthy donors, morphine-treated, and critically ill patients. The antibody raised against M6G displays a strong affinity for M6G, codeine-6-glucuronide, and morphine-3-6-glucuronide, whereas only weak cross-reactivities were observed for the other compounds. Both M6G-ELISA and LC-MS/MS approaches revealed the absence of M6G in the plasma of healthy donors (controls, n = 8). In all positive donors treated with morphine-patch (n = 5), M6G was detected using both M6G-ELISA and LC-MS/MS analysis. Finally, in a study on critically ill patients with circulating endogenous morphine (n = 26), LC-MS/MS analysis revealed that 73% of the positive-patients (19 of 26), corresponding to high M6G-levels in M6G-ELISA, contained M6G. In conclusion, we show that endogenous M6G can be found at higher levels than morphine in the blood of morphine-naive patients. With respect to the interest of measuring endogenous M6G in pathologies, we provide evidences that our ELISA procedure represents a powerful tool as it can easily and specifically detect endogenous M6G levels. © 2013 International Union of Biochemistry and Molecular Biology.

  3. Transporting method for adsorbing tower and the adsorbing tower

    International Nuclear Information System (INIS)

    Shimokawa, Nobuhiro.

    1996-01-01

    A cylindrical plastic bag is disposed to the upper surface of an adsorbing tower so as to surround a suspending piece. One opening of the bag is sealed, and other opening is secured in a sealed state to a bag holding portion disposed to glove box at a gate for the adsorbing tower box. The adsorbing tower is transported into the glove box, and after the completion of the operation of the adsorbing tower, the adsorbing tower is taken out in a state that the bag is restricted and sealed at a portion below the adsorbing tower. The bag may be made of a vinyl plastic, the bag holding portion may be a short-cylindrical protrusion, and may have an O-ring groove at the outer surface. Even if the adsorbing tower is heavy, the adsorbing tower can be carried out easily in a state where it is sealed gas tightly. (N.H.)

  4. Noninvasive control of rhodamine-loaded capsules distribution in vivo

    Science.gov (United States)

    Stelmashchuk, O.; Tarakanchikova, Y.; Seryogina, E.; Piavchenko, G.; Zherebtsov, E.; Dunaev, A.; Popov, A.; Meglinski, I.

    2018-04-01

    Using fluorescence spectroscopy system with fibre-optical probe, we investigated the dynamics of propagation and circulation in the microcirculatory system of experimental nanocapsules fluorescent-labelled (rhodamine TRITC) nanocapsules. The studies were carried out in clinically healthy Wistar rats. The model animals were divided into control group and group received injections of the nanocapsules. The fluorescent measurements conducted transcutaneously on the thigh surface. The administration of the preparation with the rhodamine concentration of 5 mg/kg of animal weight resulted in twofold increase of fluorescence intensity by reference to the baseline level. As a result of the study, it was concluded that fluorescence spectroscopy can be used for transdermal measurements of the rhodamine-loaded capsules in vivo.

  5. The state of physically adsorbed substances in microporous adsorbents

    International Nuclear Information System (INIS)

    Fomkin, A.A.

    1987-01-01

    Xe, Kr, Ar, CF 3 Cl, CH 4 adsorption in NaX microporous zeolite of 0.98 Na 2 OxAl 2 O 3 x2.36SiO 2 x0.02H 2 O is studied. Some properties of adsorbates (density, coefficients of expansion, enthalpy, heat capacity) are determined and discussed. The adsorbate in the microporous adsorbent is shown to be a particular state of a substance. Liniarity of adsorption isosteres and sharp changes during isosteric heat capacity of the adsorbate points to the fact that in microporous adsorbents phase transformations of the second type are possible

  6. Synthesis of Rhodamines from Fluoresceins Using Pd-Catalyzed C–N Cross-Coupling

    Science.gov (United States)

    2011-01-01

    A unified, convenient, and efficient strategy for the preparation of rhodamines and N,N′-diacylated rhodamines has been developed. Fluorescein ditriflates were found to undergo palladium-catalyzed C–N cross-coupling with amines, amides, carbamates, and other nitrogen nucleophiles to provide direct access to known and novel rhodamine derivatives, including fluorescent dyes, quenchers, and latent fluorophores. PMID:22091952

  7. Orientational epitaxy in adsorbed monolayers

    International Nuclear Information System (INIS)

    Novaco, A.D.; McTague, J.P.

    1977-01-01

    The ground state for adsorbed monolayers on crystalline substrates is shown to involve a definite relative orientation of the substrate and adsorbate crystal axes, even when the relative lattice parameters are incommensurate. The rotation angle which defines the structure of the monolayer-substrate system is determined by the competition between adsorbate-substrate and adsorbate-adsorbate energy terms, and is generally not a symmetry angle. Numerical predictions are presented for the rare gas-graphite systems, whose interaction potentials are rather well known. Recent LEED data for some of these systems appear to corroborate these predictions

  8. Spiroguanidine rhodamines as fluorogenic probes for lysophosphatidic acid

    Science.gov (United States)

    Wang, Lei; Sibrian-Vazquez, Martha; Escobedo, Jorge O.; Wang, Jialu; Moore, Richard G.

    2015-01-01

    Direct determination of total lysophosphatidic acid (LPA) was accomplished using newly developed spiroguanidines derived from rhodamine B as universal fluorogenic probes. Optimum conditions for the quantitative analysis of total LPA were investigated. The linear range for the determination of total LPA is up to 5 μM with a limit of detection of 0.512 μM. PMID:25516957

  9. Separation of toxic rhodamine B from aqueous solution using an efficient low-cost material, Azolla pinnata, by adsorption method.

    Science.gov (United States)

    Kooh, Muhammad Raziq Rahimi; Lim, Linda B L; Lim, Lee Hoon; Dahri, Muhammad Khairud

    2016-02-01

    This study investigated the potential of untreated Azolla pinnata (AP) to remove toxic rhodamine B (RB) dye. The effects of adsorbent dosage, pH, ionic strength, contact time, and concentration were studied. Experiments involving the effects of pH and ionic strength indicated that hydrophobic-hydrophobic interactions might be the dominant force of attraction for the RB-AP adsorption system. The kinetics modelling of the kinetics experiment showed that pseudo-second-order best represented the adsorption process. The Weber-Morris intraparticle diffusion model showed that intraparticle diffusion is not the rate-limiting step, while the Boyd model suggested that film diffusion might be rate-limiting. The adsorption isotherm model, Langmuir, best represented the adsorption process, and the maximum adsorption capacity was predicted to be 72.2 and 199.7 mg g(-1) at 25 and 65 °C, respectively. Thermodynamics study indicates spontaneity, endothermic and physisorption-dominant adsorption process. The adsorbents were regenerated to satisfactory level with distilled water, HNO3 and NaOH. Pre-treatment of adsorbent with oxalic acid, citric acid, NaOH, HCl and phosphoric acid was investigated but the adsorption capacity was less than the untreated AP.

  10. A novel fluorescent probe based on rhodamine hydrazone derivatives bearing a thiophene group for Al³⁺.

    Science.gov (United States)

    Li, Meng-xiao; Zhang, Xia; Fan, Yu-hua; Bi, Cai-feng

    2016-05-01

    In the present work, a novel 5-methyl-thiophene-carbaldehyde-functionalized rhodamine 6G Schiff base (RA) was designed and easily prepared as an Al(3+) fluorescent and colorimetric probe, which could selectively and sensitively detect Al(3+) by showing enhanced fluorescence emission. Meanwhile distinct color variation from colorless to pink also provided 'naked eye' detection of Al(3+), due to the ring spirolactam opening of the rhodamine derivative. Other metal ions (including K(+), Mg(2+), Na(+), Ba(2+), Mn(2+), Cd(2+), Fe(2+), Ni(2+), Pb(2+), Zn(2+), Hg(2+), Co(2+), Li(+), Sr(2+) and Cu(2+)) could only induce limited interference. The detection limit of the fluorescent probe was estimated to be 4.17 × 10(-6) M, the binding constant of the RA-Al(3+) complex was 1.4 × 10(6)  M(-1). Moreover, this fluorescent probe RA possessed high reversibility. As aluminum is a ubiquitous metal in nature and plays vital roles in many biological processes, this chemosensor could be explored for biological study applications. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Pharmacokinetics and Biodistribution of the Illegal Food Colorant Rhodamine B in Rats.

    Science.gov (United States)

    Cheng, Yung-Yi; Tsai, Tung-Hu

    2017-02-08

    The International Agency for Research on Cancer (IARC) demonstrated rhodamine B as a potential carcinogen in 1978. Nevertheless, rhodamine B has been illegally used as a colorant in food in many countries. Few pharmacokinetic and toxicological investigations have been performed since the first pharmacokinetic study on rhodamine B in 1961. The aims of this study were to develop a simple and sensitive high-performance liquid chromatography method with fluorescence detection for the quantitative detection of rhodamine B in the plasma and organs of rats and to estimate its pharmacokinetics and biodistribution. The results demonstrated that the oral bioavailabilities of rhodamine B were 28.3 and 9.8% for the low-dose and high-dose exposures, respectively. Furthermore, rhodamine B was highly accumulated in the liver and, to a lesser extent, the kidney, but was undetectable in the brain. These results provide useful information for improving the pharmacokinetics and biodistribution of rhodamine B, supporting additional food safety evaluations.

  12. New fluorinated rhodamines for optical microscopy and nanoscopy.

    Science.gov (United States)

    Mitronova, Gyuzel Yu; Belov, Vladimir N; Bossi, Mariano L; Wurm, Christian A; Meyer, Lars; Medda, Rebecca; Moneron, Gael; Bretschneider, Stefan; Eggeling, Christian; Jakobs, Stefan; Hell, Stefan W

    2010-04-19

    New photostable rhodamine dyes represented by the compounds 1 a-r and 3-5 are proposed as efficient fluorescent markers with unique combination of structural features. Unlike rhodamines with monoalkylated nitrogen atoms, N',N-bis(2,2,2-trifluoroethyl) derivatives 1 e, 1 i, 1 j, 3-H and 5 were found to undergo sulfonation of the xanthene fragment at the positions 4' and 5'. Two fluorine atoms were introduced into the positions 2' and 7' of the 3',6'-diaminoxanthene fragment in compounds 1 a-d, 1 i-l and 1 m-r. The new rhodamine dyes may be excited with λ=488 or 514 nm light; most of them emit light at λ=512-554 nm (compounds 1 q and 1r at λ=576 and 589 nm in methanol, respectively) and have high fluorescence quantum yields in solution (up to 98 %), relatively long excited-state lifetimes (>3 ns) and are resistant against photobleaching, especially at high laser intensities, as is usually applied in confocal microscopy. Sulfonation of the xanthene fragment with 30 % SO3 in H2SO4 is compatible with the secondary amide bond (rhodamine-CON(Me)CH2CH2COOH) formed with MeNHCH2CH2COOCH3 to providing the sterically unhindered carboxylic group required for further (bio)conjugation reactions. After creating the amino reactive sites, the modified derivatives may be used as fluorescent markers and labels for (bio)molecules in optical microscopy and nanoscopy with very-high light intensities. Further, the new rhodamine dyes are able to pass the plasma membrane of living cells, introducing them as potential labels for recent live-cell-tag approaches. We exemplify the excellent performance of the fluorinated rhodamines in optical microscopy by fluorescence correlation spectroscopy (FCS) and stimulated emission depletion (STED) nanoscopy experiments. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High performance Mo adsorbent PZC

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1998-10-01

    We have developed Mo adsorbents for natural Mo(n, {gamma}){sup 99}Mo-{sup 99m}Tc generator. Among them, we called the highest performance adsorbent PZC that could adsorb about 250 mg-Mo/g. In this report, we will show the structure, adsorption mechanism of Mo, and the other useful properties of PZC when you carry out the examination of Mo adsorption and elution of {sup 99m}Tc. (author)

  14. Central Shops Burning/Rubble Pit 631-6G Additional Sampling and Monitor Well Installation Report

    International Nuclear Information System (INIS)

    Palmer, E.

    1995-02-01

    The Central Shops Burning/Rubble Pit 631-6G was constructed in 1951 as an unlined earthen pit in surficial sediments for disposal and incineration of potentially hazardous substances, such as metals and organic solvents

  15. Positronium chemistry in porous adsorbents

    International Nuclear Information System (INIS)

    Foti, G.; Nagy, L.G.; Moravcsik, G.; Schay, G.

    1981-01-01

    Kinetic studies on the annihilation of orthopositronium in porous adsorbents have been performed using lifetime spectroscopy. The positron source applied was 22 Na with 0.2 MBq activity. The adsorbents investigated were silica gels of different particle size and pore structure. The appearance of the long-lived component in the lifetime spectra can be explained by the diffusion of the orthopositronium into the pores affected by the particle size and the pore size of the adsorbent, the coverage on it and the chemical nature of the adsorbate. The long-term aim of the work is to determine and to explain these effects. (author)

  16. Energy transfer in porous anodic alumina/rhodamine 110 nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Elhouichet, H., E-mail: habib.elhouichet@fst.rnu.tn [Laboratoire de Physico-Chimie des Materiaux Mineraux et leurs Applications, Centre National de Recherches en Sciences des Materiaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Departement de Physique, Faculte des Sciences de Tunis, University of Tunis Elmanar 2092 Tunis (Tunisia); Harima, N.; Koyama, H. [Hyogo University of Teacher Education, Kato, Hyogo 673-1494 (Japan); Gaponenko, N.V. [Belarusian State University of Informatics and Radioelectronics, P. Browki St. 6, 220013 Minsk (Belarus)

    2012-09-15

    We have used porous anodic alumina (PAA) films as templates for embedding rhodamine 110 (Rh110) molecules and examined their photoluminescence (PL) properties in detail. The analysis of the polarization memory (PM) of PL strongly suggests that there is a significant energy transfer from PAA to Rh110 molecules. The effect of annealing the PAA layer on the PL properties of the nanocomposite has been studied. The results show that the energy transfer becomes more efficient in annealed PAA. - Highlights: Black-Right-Pointing-Pointer Porous anodic alumina-rhodamine 110 nanocomposites are elaborated. Black-Right-Pointing-Pointer Efficient energy transfer from the host to Rh110 molecules is evidenced from measurements of photoluminescence and degree of polarization memory spectra. Black-Right-Pointing-Pointer Thermal annealing of porous anodic alumina can improve the process of excitation transfer.

  17. Adsorption of rhodamine B by acid activated carbon-Kinetic, thermodynamic and equilibrium studies

    Directory of Open Access Journals (Sweden)

    Shanmugam Arivoli

    2009-08-01

    Full Text Available A carbonaceous adsorbent prepared from an indigenous waste by acid treatment was tested for its efficiency in removing Rhodamine B (RDB. The parameters studied include agitation time, initial dye concentration, carbon dose, pH and temperature. The adsorption followed first order kinetics and the rate is mainly controlled by intra-particle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity (Qm obtained from the Langmuir isotherm plots were 40.161, 35.700, 38.462 and 37.979 mg/g respectively at an initial pH of 7.0 at 30, 40, 50 and 60 0C. The temperature variation study showed that the RDB adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the RDB solutions. Almost 85% removal of RDB was observed at 60 0C. The Langmuir and Freundlich isotherms obtained, positive ?H0 value, pH dependent results and desorption of dye in mineral acid suggest that the adsorption of RDB by Banana bark carbon involves physisorption mechanism.

  18. Extended rhodamine photosensitizers for photodynamic therapy of cancer cells.

    Science.gov (United States)

    Davies, Kellie S; Linder, Michelle K; Kryman, Mark W; Detty, Michael R

    2016-09-01

    Extended thio- and selenorhodamines with a linear or angular fused benzo group were prepared. The absorption maxima for these compounds fell between 640 and 700nm. The extended rhodamines were evaluated for their potential as photosensitizers for photodynamic therapy in Colo-26 cells. These compounds were examined for their photophysical properties (absorption, fluorescence, and ability to generate singlet oxygen), for their dark and phototoxicity toward Colo-26 cells, and for their co-localization with mitochondrial-specific agents in Colo-26 and HUT-78 cells. The angular extended rhodamines were effective photosensitizers toward Colo-26 cells with 1.0Jcm(-2) laser light delivered at λmax±2nm with values of EC50 of (2.8±0.4)×10(-7)M for sulfur-containing analogue 6-S and (6.4±0.4)×10(-8)M for selenium-containing analogue 6-Se. The linear extended rhodamines were effective photosensitizers toward Colo-26 cells with 5 and 10Jcm(-2) of broad-band light (EC50's⩽2.4×10(-7)M). Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Hyper-Rayleigh scattering and hyper-Raman scattering of dye-adsorbed silver nanoparticles induced by a focused continuous-wave near-infrared laser

    International Nuclear Information System (INIS)

    Itoh, Tamitake; Ozaki, Yukihiro; Yoshikawa, Hiroyuki; Ihama, Takashi; Masuhara, Hiroshi

    2006-01-01

    We report that hyper-Rayleigh scattering, surface-enhanced hyper-Raman scattering, and two-photon excited luminescence occur intermittently by focusing a continuous-wave near-infrared (cw-NIR) laser into a colloidal silver solution including rhodamine 6G (R6G) and sodium chloride (NaCl). On the other hand, continuous hyper-Rayleigh scattering is observed from colloidal silver free from R6G and NaCl, demonstrating that hyper-Raman scattering and two-photon excited luminescence are attributed to R6G and their intermittent features are dependent on the colloidal dispersion. These results suggest that the cw-NIR laser has three roles; the source of the nonlinear response, optical trapping of nanoparticles, and making nanoparticle aggregates possessing the high activity for the nonlinear response

  20. Fluorescence quenching of Rhodamine B base by two amines

    Science.gov (United States)

    Bakkialakshmi, S.; Selvarani, P.; Chenthamarai, S.

    2013-03-01

    Fluorescence quenching of Rhodamine B base (RhB) in DMF solution has been studied at different concentrations of the amine Triethyl amine (TEA) and n-butyl amine (NBA) at room temperature. It has been observed that the fluorescence intensity of RhB decrease with increase in the concentration of the TEA and NBA. It has been observed that the quenching due to amines proceeds via dynamic quenching process. The rate constants for the quenching process have been calculated using Stern-Volmer equation. Time resolved fluorescence study and 1H NMR spectral study have also been carried out and discussed.

  1. Black Sprayable Molecular Adsorber Coating

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of this technology project is to develop, optimize, and flight qualify a black version of the molecular adsorber coating and a conductive version...

  2. On different photodecomposition behaviors of rhodamine B on laponite and montmorillonite clay under visible light irradiation

    KAUST Repository

    Wang, Peng; Cheng, Mingming; Zhang, Zhonghai

    2013-01-01

    In this study, laponite and montmorillonite clays were found to be able to decompose rhodamine B upon visible light irradiation (λ>420nm). Very interestingly, it was found that rhodamine B on laponite underwent a stepwise N-deethylation and its

  3. Synthesis of a Far-Red Photoactivatable Silicon-Containing Rhodamine for Super-Resolution Microscopy.

    Science.gov (United States)

    Grimm, Jonathan B; Klein, Teresa; Kopek, Benjamin G; Shtengel, Gleb; Hess, Harald F; Sauer, Markus; Lavis, Luke D

    2016-01-26

    The rhodamine system is a flexible framework for building small-molecule fluorescent probes. Changing N-substitution patterns and replacing the xanthene oxygen with a dimethylsilicon moiety can shift the absorption and fluorescence emission maxima of rhodamine dyes to longer wavelengths. Acylation of the rhodamine nitrogen atoms forces the molecule to adopt a nonfluorescent lactone form, providing a convenient method to make fluorogenic compounds. Herein, we take advantage of all of these structural manipulations and describe a novel photoactivatable fluorophore based on a Si-containing analogue of Q-rhodamine. This probe is the first example of a "caged" Si-rhodamine, exhibits higher photon counts compared to established localization microscopy dyes, and is sufficiently red-shifted to allow multicolor imaging. The dye is a useful label for super-resolution imaging and constitutes a new scaffold for far-red fluorogenic molecules. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. Synthesis of a Far‐Red Photoactivatable Silicon‐Containing Rhodamine for Super‐Resolution Microscopy

    Science.gov (United States)

    Grimm, Jonathan B.; Klein, Teresa; Kopek, Benjamin G.; Shtengel, Gleb; Hess, Harald F.; Sauer, Markus

    2015-01-01

    Abstract The rhodamine system is a flexible framework for building small‐molecule fluorescent probes. Changing N‐substitution patterns and replacing the xanthene oxygen with a dimethylsilicon moiety can shift the absorption and fluorescence emission maxima of rhodamine dyes to longer wavelengths. Acylation of the rhodamine nitrogen atoms forces the molecule to adopt a nonfluorescent lactone form, providing a convenient method to make fluorogenic compounds. Herein, we take advantage of all of these structural manipulations and describe a novel photoactivatable fluorophore based on a Si‐containing analogue of Q‐rhodamine. This probe is the first example of a “caged” Si‐rhodamine, exhibits higher photon counts compared to established localization microscopy dyes, and is sufficiently red‐shifted to allow multicolor imaging. The dye is a useful label for super‐resolution imaging and constitutes a new scaffold for far‐red fluorogenic molecules. PMID:26661345

  5. Rhodamine B induces long nucleoplasmic bridges and other nuclear anomalies in Allium cepa root tip cells.

    Science.gov (United States)

    Tan, Dehong; Bai, Bing; Jiang, Donghua; Shi, Lin; Cheng, Shunchang; Tao, Dongbing; Ji, Shujuan

    2014-03-01

    The cytogenetic toxicity of rhodamine B on root tip cells of Allium cepa was investigated. A. cepa were cultured in water (negative control), 10 ppm methyl methanesulfonate (positive control), and three concentrations of rhodamine B (200, 100, and 50 ppm) for 7 days. Rhodamine B inhibited mitotic activity; increased nuclear anomalies, including micronuclei, nuclear buds, and bridged nuclei; and induced oxidative stress in A. cepa root tissues. Furthermore, a substantial amount of long nucleoplasmic bridges were entangled together, and some nuclei were simultaneously linked to several other nuclei and to nuclear buds with nucleoplasmic bridges in rhodamine B-treated cells. In conclusion, rhodamine B induced cytogenetic effects in A. cepa root tip cells, which suggests that the A. cepa root is an ideal model system for detecting cellular interactions.

  6. IDENTIFIKASI RHODAMIN B PADA SAUS TOMAT YANG BEREDAR DI PASAR PAGI SAMARINDA

    Directory of Open Access Journals (Sweden)

    Eka Siswanto Syamsul

    2018-03-01

    Full Text Available Rhodamin B is a green powder synthetic dye used as a textile dye and is often used to color a food product, especially tomato sauce. Tomato sauce sampled in Samarinda Morning Market for 5 samples. This research used color reaction test and KLT method. The result of the research using color reaction test showed that the sample did not contain rhodamine synthetic dye B. The result of identification with thin layer chromatography obtained Rf value of A sample 0,46, sample B 0,46, sample C 0,4, sample D 0,5 and sample E 0.78, the value of Rf standard rhodamin B 0.8. From the value of Rf, the sample E contains rhodamine B because the color of the sample spots and rhodamin B are the same pink and the difference of Rf value is in the range ± 0.02 of the standard Rf.

  7. Krypton retention on solid adsorbents

    International Nuclear Information System (INIS)

    Monson, P.R. Jr.

    1980-01-01

    Radioactive krypton-85 is released to the atmosphere in the off-gas from nuclear reprocessing plants. Three main methods have been suggested for removal of krypton from off-gas streams: cryogenic distillation; fluorocarbon absorption; and adsorption on solid sorbents. Use of solid adsorbents is the least developed of these methods, but offers the potential advantages of enhanced safety and lower operating costs. An experimental laboratory program was developed that will be used to investigate systematically many solid adsorbents (such as zeolites, i.e., mordenites) for trapping krypton in air. The objective of this investigation is to find an adsorbent that is more economical than silver-exchanged mordenite. Various physical and chemical characteristics such as adsorption isotherms, decontamination factors, co-adsorption, regeneration, and the mechanism and kinetics of noble gas adsorption were used to characterize the adsorbents. In the experimental program, a gas chromatograph using a helium ionization detector was used to measure the krypton in air before and after the adsorbent bed. This method can determine directly decontamination factors greater than 100

  8. Penetration pattern of rhodamine dyes into enamel and dentin: confocal laser microscopy observation.

    Science.gov (United States)

    Kwon, S R; Wertz, P W; Li, Y; Chan, D C N

    2012-02-01

    Enamel and dentin are susceptible to extrinsic and intrinsic stains. The purposes of this study were to determine the penetration pattern of Rhodamine B and dextran-conjugated Rhodamine B into the enamel and dentin as observed by confocal laser microscopy and to relate it to the penetration pattern of hydrogen peroxide commonly used as an active ingredient in tooth-whitening agents and high-molecular-weight staining molecules. Eighteen recently extracted human maxillary anterior teeth were used. Teeth were cleaned and painted with nail varnish except for the crown area above the cemento-enamel junction (CEJ). The painted teeth were then immersed in Rhodamine B and dextran-conjugated Rhodamine B (70 000 MW) for 4, 7, 10 and 15 days. Teeth were sliced to 3 mm thickness in transverse plane and mounted on a glass slide just prior to observation with confocal laser microscopy. Rhodamine B and dextran-conjugated Rhodamine B readily penetrated into the enamel and dentin when exposed for 4 and 7 days, respectively. Rhodamine B penetrated along the interprismatic spaces of the enamel into the dentin. The penetration was accentuated in sections with existing crack lines in the enamel. Rhodamine B was readily absorbed into the dentinal tubules at the dentino-enamel junction and continued to penetrate through the dentin via the dentinal tubules into the pre-dentin. Within the limitations of this study, it is concluded that Rhodamine B and dextran-conjugated Rhodamine B when applied to the external surface of the tooth readily penetrate into the enamel and dentin via the interprismatic spaces in the enamel and dentinal tubules in the dentin, suggesting that stain molecules and bleaching agents possibly exhibit similar penetration pathways. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  9. Krypton retention on solid adsorbents

    International Nuclear Information System (INIS)

    Monson, P.R. Jr.

    1982-01-01

    An experimental laboratory program was conducted to develop economical solid adsorbents for the retention of krypton from a dissolver off-gas stream. The study indicates that a solid adsorbent system is feasible and competitive with other developing systems which utilize fluorocarbon absorption nd cryogenic distillation. This technology may have potential applications not only in nuclear fuel reprocessing plants, but also in nuclear reactors and in environmental monitoring. Of the 13 prospective adsorbents evaluated with respect to adsorption capacity and cost, the commercially available hydrogen mordenite was the most cost-effective material at subambient temperatures (-40 0 to -80 0 C). Silver mordenite has a higher capacity for krypton retention, but is 50 times more expensive than hydrogen mordenite

  10. Membrane adsorber for endotoxin removal

    Directory of Open Access Journals (Sweden)

    Karina Moita de Almeida

    Full Text Available ABSTRACT The surface of flat-sheet nylon membranes was modified using bisoxirane as the spacer and polyvinyl alcohol as the coating polymer. The amino acid histidine was explored as a ligand for endotoxins, aiming at its application for endotoxin removal from aqueous solutions. Characterization of the membrane adsorber, analysis of the depyrogenation procedures and the evaluation of endotoxin removal efficiency in static mode are discussed. Ligand density of the membranes was around 7 mg/g dry membrane, allowing removal of up to 65% of the endotoxins. The performance of the membrane adsorber prepared using nylon coated with polyvinyl alcohol and containing histidine as the ligand proved superior to other membrane adsorbers reported in the literature. The lack of endotoxin adsorption on nylon membranes without histidine confirmed that endotoxin removal was due to the presence of the ligand at the membrane surface. Modified membranes were highly stable, exhibiting a lifespan of approximately thirty months.

  11. Treatment of Refinery Waste Water Using Environmental Friendly Adsorbent

    Science.gov (United States)

    Devi, M. Geetha; Al-Moshrafi, Samira Mohammed Khamis; Al Hudaifi, Alaa; Al Aisari, Buthaina Hamood

    2017-12-01

    This research evaluates the effectiveness of activated carbon prepared from walnut shell in the removal of pollutants from refinery waste water by adsorption technique. A series of batch experiments were carried out by varying the effluent solution pH, stirring time, stirring speed and adsorbent dosage in the reduction of pollutants from refinery effluent. Characterization of the adsorbent was performed using Scanning Electron Microscopy (SEM), Brunauer Emmett and Teller (BET) isotherm and Fourier Transform Infrared (FTIR) Spectroscopy. The best quality activated carbon was obtained with a particle size of 0.75 µm, activation temperature of 800 °C and activation time 24 h. The maximum BET surface area obtained was 165.2653 m2/g. The experimental results demonstrates that the highest percentage reduction in COD was 79%, using 0.6 g walnut shell powder at an optimum stirring speed of 100 rpm, at pH 6 and 120 min of contact time. The outcome of the result shows that walnut shell carbon is a potentially useful adsorbent for the removal of pollutants from refinery waste water.

  12. Browns Ferry charcoal adsorber incident

    International Nuclear Information System (INIS)

    Mays, G.T.

    1979-01-01

    The article reviews the temperature excursion in the charcoal adsorber beds of the Browns Ferry Unit 3 off-gas system that occurred on July 17, 1977. Significant temperature increases were experienced in the charcoal adsorber beds when charcoal fines were ignited by the ignition of a combustible mixture of hydrogen and oxygen in the off-gas system. The Browns Ferry off-gas system is described, and events leading up to and surrounding the incident are discussed. The follow-up investigation by Tennessee Valley Authority and General Electric Company personnel and their recommendations for system and operational modifications are summarized

  13. Krypton retention on solid adsorbents

    International Nuclear Information System (INIS)

    Monson, P.R. Jr.

    1981-08-01

    Over a dozen prospective adsorbents for krypton were studied and evaluated with respect to adsorption capacity and cost for dissolver off-gas streams from nuclear reprocessing plants. Results show that, at subambient temperature (-40 0 to -80 0 C), the commercially available hydrogen mordenite has sufficient adsorptive capacity to be the most cost-effective material studied. Silver mordenite has a higher capacity for krypton retention, but is 50 times more expensive than hydrogen mordenite. The results indicate that a solid adsorbent system is feasible and competitive with other developing systems whih utilize fluorocarbon absorption and cryogenic distillation

  14. Conjugates of a Photoactivated Rhodamine with Biopolymers for Cell Staining

    Science.gov (United States)

    Zaitsev, Sergei Yu.; Shaposhnikov, Mikhail N.; Solovyeva, Daria O.; Solovyeva, Valeria V.; Rizvanov, Albert A.

    2014-01-01

    Conjugates of the photoactivated rhodamine dyes with biopolymers (proteins, polysaccharides, and nucleic acids) are important tools for microscopic investigation of biological tissue. In this study, a precursor of the photoactivated fluorescent dye (PFD) has been successfully used for staining of numerous mammalian cells lines and for conjugate formation with chitosan (“Chitosan-PFD”) and histone H1 (“Histone H1.3-PFD”). The intensive fluorescence has been observed after photoactivation of these conjugates inside cells (A431, HaCaT, HEK239, HBL-100, and MDCK). Developed procedures and obtained data are important for further application of novel precursors of fluorescent dyes (“caged” dyes) for microscopic probing of biological objects. Thus, the synthesized “Chitosan-PFD” and “Histone H1-PFD” have been successfully applied in this study for intracellular transport visualization by fluorescent microscopy. PMID:25383365

  15. PENURUNAN KADAR RHODAMIN B DALAM AIR LIMBAH DENGAN BIOFILTRASI SISTEM TANAMAN

    Directory of Open Access Journals (Sweden)

    K. Yogi Purnamawati

    2016-01-01

    Full Text Available The textile industry is growing rapidly and as the result it’s producing waste that can harm the environment. One of which is rhodamine B. Rhodamine B is a synthetics dyes that have a form crystalline which an organic base containing amino groups, so it is difficult to degrade naturally by microorganism. Biofiltration system method is one of many ways in handling wastewater. Layered filtration unit of sand and rocks combine with the adsorption of plant and decomposition by microorganisms in rhizosphere so that wastewater can be reused. The aim of this study determined effectiveness and capacity of biofiltration system vegetation in reducing concentrate of rhodamine-B, total dissolved solid (TDS, total suspended solid (TSS and the pH in wastewater. The result showed that biofiltration effectiveness in reducing rhodamine B, TDS and TSS concetrate were 51,70%; 47,60%; 50,44% while decreasing and stabilization of pH obtained at 30 hours treatment time with pH value is 7,5. Capacity of biofiltration system vegetation with volume 0,06 m3 can reduced rhodamine B, TDS and TSS by 0,2256 ppm; 278,0237 ppm and 9,4978 ppm respectively, while the optimum detention time of wastewater in the biosystem for reducing rhodamine B was 30 hours and for TSS and TDS was 36 hours. It can be concluded that biofiltration system vegetation was able to reduce rhodamine B, TDS, TSS and pH of wastewater

  16. A rhodamine-based turn-on nitric oxide sensor in aqueous medium with endogenous cell imaging: an unusual formation of nitrosohydroxylamine.

    Science.gov (United States)

    Alam, Rabiul; Islam, Abu Saleh Musha; Sasmal, Mihir; Katarkar, Atul; Ali, Mahammad

    2018-05-10

    A new sensor (L3) based on Rhodamine-B-en (2) and 2-(pyridin-2-ylmethoxy)benzaldehyde (1) has been developed for highly sensitive and selective recognition of NO in purely aqueous medium where the reaction of NO with the fluorophore leads to an unusual formation of nitrosohydroxylamine with the selective opening of the spirolactam ring over different cations, anions, amino-acids and other biological species with prominent enhancement in absorption and emission intensities. A large enhancement of fluorescence intensity for NO (11 fold) was observed upon addition of 3 equivalents of NO into the sensor in aqueous HEPES buffer (20 mM) at pH 7.20, μ = 0.05 M NaCl with naked eye detection. The corresponding Kf value was evaluated to be (7.55 ± 2.04) × 104 M-1 from the fluorescence titration plot. Quantum yields of L3 and the [L3 + NO] compound are found to be 0.07 and 0.77, respectively, using Rhodamine-6G as the standard. The LOD for NO was determined by the 3σ method and found to be 83.4 nM. The L3 sensor has low cytotoxicity, and is cell permeable and suitable for in vitro NO sensing. The in vivo compatibility of the sensor was also checked on zebrafish.

  17. Influence of the UV Radiation on Rhodamine WT Fluorescence in Water Samples

    OpenAIRE

    , L. Kola; , P. Lazo

    2016-01-01

    The şuorescence ability of Rhodamine WT enables its using as artiŞcial tracer in the water system studies. The problem is dealt with in relation to applying Rhodamine WT (RhWT) to trace and determine water movements within the karstic system and underground waters. Rhodamine WT has been used as an artiŞcial tracer for the Şrst times in our country on Mali me Gropa system study (2002). UV radiation may induce photochemical decomposition of the dye which can cause large measurement errors on me...

  18. A dansyl-rhodamine ratiometric fluorescent probe for Hg2+ based on FRET mechanism.

    Science.gov (United States)

    Xie, Puhui; Guo, Fengqi; Wang, Lingyu; Yang, Sen; Yao, Denghui; Yang, Guoyu

    2015-03-01

    Based on resonance energy transfer (FRET) from dansyl to rhodamine 101, a new fluorescent probe (compound 1) containing rhodamine 101 and a dansyl unit was synthesized for detecting Hg(2+) through ratiometric sensing in DMSO aqueous solutions. This probe shows a fast, reversible and selective response toward Hg(2+) in a wide pH range. Hg(2+) induced ring-opening reactions of the spirolactam rhodamine moiety of 1, leading to the formation of fluorescent derivatives that can serve as the FRET acceptors. Very large stokes shift (220 nm) was observed in this case. About 97-fold increase in fluorescence intensity ratio was observed upon its binding with Hg(2+).

  19. Iodine removal adsorbent histories, aging and regeneration

    International Nuclear Information System (INIS)

    Hunt, J.R.; Rankovic, L.; Lubbers, R.; Kovach, J.L.

    1976-01-01

    The experience of efficiency changes with life under various test conditions is described. The adsorbents were periodically removed from both standby and continuously operating systems and tested under various test methods for residual iodine adsorption efficiency. Adsorbent from several conventional ''sampler'' cartridges versus the bulk adsorbent was also tested showing deficiency in the use of cartridge type sampling. Currently required test conditions were found inadequate to follow the aging of the adsorbent because pre-equilibration of the sample acts as a regenerant and the sample is not tested in the ''as is'' condition. The most stringent test was found to be the ambient temperature, high humidity test to follow the aging of the adsorbent. Several methods were evaluated to regenerate used adsorbents; of these high temperature steaming and partial reimpregnation were found to produce adsorbents with near identical properties of freshly prepared adsorbents

  20. Thiophene-based rhodamine as selectivef luorescence probe for Fe(III) and Al(III) in living cells.

    Science.gov (United States)

    Wang, Kun-Peng; Chen, Ju-Peng; Zhang, Si-Jie; Lei, Yang; Zhong, Hua; Chen, Shaojin; Zhou, Xin-Hong; Hu, Zhi-Qiang

    2017-09-01

    The thiophene-modified rhodamine 6G (GYJ) has been synthesized as a novel chemosensor. The sensor has sufficiently high selectivity and sensitivity for the detection of Fe 3+ and Al 3+ ions (M 3+ ) by fluorescence and ultraviolet spectroscopy with a strong ability for anti-interference performance. The binding ratio of M 3+ -GYJ complex was determined to be 2:1 according to the Job's plot. The binding constants for Fe 3+ and Al 3+ were calculated to be 3.91 × 10 8 and 5.26 × 10 8  M -2 , respectively. All these unique features made it particularly favorable for cellular imaging applications. The obvious fluorescence microscopy experiments demonstrated that the probes could contribute to the detection of Fe 3+ and Al 3+ in related cells and biological organs with satisfying resolution. Graphical abstract GYJ has high selectivity and sensitivity for the detection of Fe(III) and Al(III) with the binding ratio of 2:1.

  1. A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste.

    Science.gov (United States)

    Sharma, Pankaj; Kaur, Harleen; Sharma, Monika; Sahore, Vishal

    2011-12-01

    The effluent water of many industries, such as textiles, leather, paper, printing, cosmetics, etc., contains large amount of hazardous dyes. There is huge number of treatment processes as well as adsorbent which are available for the processing of this effluent water-containing dye content. The applicability of naturally available low cast and eco-friendly adsorbents, for the removal of hazardous dyes from aqueous waste by adsorption treatment, has been reviewed. In this review paper, we have provided a compiled list of low-cost, easily available, safe to handle, and easy-to-dispose-off adsorbents. These adsorbents have been classified into five different categories on the basis of their state of availability: (1) waste materials from agriculture and industry, (2) fruit waste, (3) plant waste, (4) natural inorganic materials, and (5) bioadsorbents. Some of the treated adsorbents have shown good adsorption capacities for methylene blue, congo red, crystal violet, rhodamine B, basic red, etc., but this adsorption process is highly pH dependent, and the pH of the medium plays an important role in the treatment process. Thus, in this review paper, we have made some efforts to discuss the role of pH in the treatment of wastewater.

  2. Adsorption of chromium(VI) and Rhodamine B by surface modified tannery waste: Kinetic, mechanistic and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Anandkumar, J. [Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Mandal, B., E-mail: bpmandal@iitg.ernet.in [Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, Assam (India)

    2011-02-28

    In this study, various activation methods have been employed to examine the potential reuse of tannery residual biomass (TRB) obtained from vegetable tanning process for the removal of Cr(VI) and Rhodamine B (RB) from aqueous solution. The maximum BET surface area (10.42 m{sup 2}/g), honey comb pore distribution and uptake of both Cr(VI) and RB were achieved when only 3-fold volume of HCl was used to activate the biomass. The pH and temperature experiment showed that they have considerable impact on the adsorption capacity of the used adsorbent. The presence of other ions (Na{sup +}, Ca{sup 2+} and NH{sub 4}{sup +}) significantly reduces the metal uptake but marginal enhancement in the dye removal was observed when Na{sup +} and NH{sub 4}{sup +} ions were present in the solution. The equilibrium data fitted satisfactorily with the Langmuir model and monolayer sorption capacity obtained as 177-217 and 213-250 mg/g for Cr(VI) and RB at 30-50 deg. C, respectively. The sorption kinetics was found to follow the pseudo-second-order kinetic model. The increase in adsorption capacity for both metal and dye with increase in temperature indicates that the uptake was endothermic in nature. The results indicate that the HCl modified TRB (A-TRB) could be employed as a low cost adsorbent for the removal of both Cr(VI) and RB from the aqueous solution including industrial wastewater.

  3. Magnetic solid phase extraction using ionic liquid-coated core-shell magnetic nanoparticles followed by high-performance liquid chromatography for determination of Rhodamine B in food samples.

    Science.gov (United States)

    Chen, Jieping; Zhu, Xiashi

    2016-06-01

    Three hydrophobic ionic liquids (ILs) (1-butyl-3-methylimidazole hexafluorophosphate ([BMIM]PF6), 1-hexyl-3-methyl-imidazole hexafluoro-phosphate ([HMIM]PF6), and 1-octyl-3-methylimidazole hexafluorophosphate ([OMIM]PF6)) were used to coat Fe3O4@SiO2 nanoparticles (NPs) with core-shell structures to prepare magnetic solid phase extraction (MSPE) agents (Fe3O4@SiO2@IL). A novel method of MSPE coupled with high-performance liquid chromatography for the separation/analysis of Rhodamine B was then established. The results showed that Rhodamine B was adsorbed rapidly on Fe3O4@SiO2@[OMIM]PF6 and was released using ethanol. Under optimal conditions, the pre-concentration factor for the proposed method was 25. The linear range, limit of detection (LOD), correlation coefficient (R), and relative standard deviation (RSD) were found to be 0.50-150.00 μgL(-1), 0.08 μgL(-1), 0.9999, and 0.51% (n=3, c=10.00 μgL(-1)), respectively. The Fe3O4@SiO2 NPs could be re-used up to 10 times. The method was successfully applied to the determination of Rhodamine B in food samples. Copyright © 2016. Published by Elsevier Ltd.

  4. Stimulation of mitochondrial respiration induced by laser irradiation in the presence of rhodamine dyes

    International Nuclear Information System (INIS)

    Krasnikov, B.F.; Zorov, D.B.

    1996-01-01

    The effect of micromolar concentration of rhodamine 123 (methylrhodamine) and ethyl and amyl esters of unsubstituted rhodamine on oxygen consumption by rat liver mitochondria was studied under irradiation by an argon laser (488 and 514 nm). Irradiation of mitochondria in the presence of rhodamine stimulates their respiration. Light-induced stimulation of respiration is not inhibited by free radical scavenger ionol and by inhibitor of the permeability transition pore cyclosporine A. Stimulation of respiration by moderate doses of radiation is reversed in the dark. Increase in radiation dose resulted in only partial reversal of stimulated respiration in the dark. Rhodamine efficacy in stimulation of mitochondrial respiration depends on its structure (amyl > ethyl > methylrhodamine). 22 refs.; 4 figs

  5. Rhodamine 800 as reference substance for fluorescence quantum yield measurements in deep red emission range

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, A., E-mail: andrea.alessi@eni.com [Centro Ricerche per le Energie non Convenzionali, Istituto eni Donegani, e.n.i. S.p.A., Via G. Fauser 4, 28100 Novara (Italy); Salvalaggio, M. [Centro Ricerche per le Energie non Convenzionali, Istituto eni Donegani, e.n.i. S.p.A., Via G. Fauser 4, 28100 Novara (Italy); Ruzzon, G. [HORIBA Jobin Yvon Srl, Via Cesare Pavese 35/AB, 20090 Opera Milano (Italy)

    2013-02-15

    The determination of fluorescence quantum yields ({Phi}{sub f}) of deep red dyes emitting at 635-900 nm is difficult due to lack of suitable standards. In this work, we propose a commercial dye, rhodamine 800 (Rho800), as reference standard which belongs to the family of xanthenes. The quantum yield of rhodamine 800 in absolute ethanol has been studied using a relative method with cresyl violet (CV) and rhodamine 101 (Rho101) as references, and an absolute fluorometric method by integrating sphere measurements. - Highlights: Black-Right-Pointing-Pointer A red emitting dye Rhodamine 800 was electronic spectroscopy characterized. Black-Right-Pointing-Pointer Its fluorescence quantum yield was studied using a relative and an absolute method. Black-Right-Pointing-Pointer The values found are greater than the values currently known in the literature.

  6. Supercritical fluid regeneration of adsorbents

    Science.gov (United States)

    Defilippi, R. P.; Robey, R. J.

    1983-05-01

    The results of a program to perform studies supercritical (fluid) carbon dioxide (SCF CO2) regeneration of adsorbents, using samples of industrial wastewaters from manufacturing pesticides and synthetic solution, and to estimate the economics of the specific wastewater treatment regenerations, based on test data are given. Processing costs for regenerating granular activated carbon GAC) for treating industrial wastewaters depend on stream properties and regeneration throughput.

  7. Application of AlMCM-41 for competitive adsorption of methylene blue and rhodamine B: Thermodynamic and kinetic studies

    International Nuclear Information System (INIS)

    Eftekhari, S.; Habibi-Yangjeh, A.; Sohrabnezhad, Sh.

    2010-01-01

    AlMCM-41 was applied for adsorption of methylene blue (MB) and rhodamine B (RB) in single and binary component systems. In the single component systems, AlMCM-41 represents higher adsorption capacity for MB than RB with the maximal adsorption capacity of 2.08 x 10 -4 and 8.74 x 10 -5 mol/g at 25 deg. C for MB and RB, respectively. In the binary component system, MB and RB exhibit competitive adsorption onto the adsorbent. The adsorption is approximately reduced to 94 and 79% of single component adsorption systems for MB and RB (initial concentration of 8 x 10 -6 M) at 25 deg. C. In single and binary component systems, kinetic and adsorption isotherm studies demonstrate that the data are following pseudo-second-order kinetic model and Langmuir isotherm. Effect of solution pH on the adsorption in single and binary component systems was studied and the results were described by electrostatic interactions.

  8. Highly Sensitive Fluorescent Sensor for Cartap Based on Fluorescence Resonance Energy Transfer Between Gold Nanoparticles and Rhodamine B.

    Science.gov (United States)

    Dong, Liang; Hou, Changjun; Fa, Huanbao; Yang, Mei; Wu, Huixiang; Zhang, Liang; Huo, Danqun

    2018-04-01

    Cartap residue poses a great threat to human health and its derivatives would remain in soils, natural waters and other environmental domains for a long time. Herein, a simple, rapid and ultrasensitive analytical method for the determination of cartap based on fluorescence resonance energy transfer (FRET) between Au nanoparticles (AuNPs) and rhodamine B (RB) is first described. With the presence of citrate-stabilized AuNPs, the fluorescence of RB was remarkably quenched by AuNPs via FRET. The fluorescence of the AuNPs-RB system was recovered upon addition of cartap, cartap can be adsorbed on the surface of AuNPs due to its amino group that has good affinity with gold, which could induce the aggregation of AuNPs accompanying color change from red to blue. Thus, the FRET between AuNPs and RB was weakened and the PL intensity of RB was recovered accordingly. A good linear correlation for detection of RB was exhibited from 1 nM to 180 nM, and the detection limit reached 0.88 nM, which was much lower than the safety limit required by USA, UK and China. To the best of our knowledge, it has been the lowest detection ever without the aid of costly instrumentation. This method was successfully carried out for the assessment of cartap in real samples with satisfactory results, which revealed many advantages such as high sensitivity, low cost and non-time-consuming compared with traditional methods.

  9. Synthesis of fluorine-18 labeled rhodamine B: A potential PET myocardial perfusion imaging agent

    International Nuclear Information System (INIS)

    Heinrich, Tobias K.; Gottumukkala, Vijay; Snay, Erin; Dunning, Patricia; Fahey, Frederic H.; Ted Treves, S.; Packard, Alan B.

    2010-01-01

    There is considerable interest in developing an 18 F-labeled PET myocardial perfusion agent. Rhodamine dyes share several properties with 99m Tc-MIBI, the most commonly used single-photon myocardial perfusion agent, suggesting that an 18 F-labeled rhodamine dye might prove useful for this application. In addition to being lipophilic cations, like 99m Tc-MIBI, rhodamine dyes are known to accumulate in the myocardium and are substrates for Pgp, the protein implicated in MDR1 multidrug resistance. As the first step in determining whether 18 F-labeled rhodamines might be useful as myocardial perfusion agents for PET, our objective was to develop synthetic methods for preparing the 18 F-labeled compounds so that they could be evaluated in vivo. Rhodamine B was chosen as the prototype compound for development of the synthesis because the ethyl substituents on the amine moieties of rhodamine B protect them from side reactions, thus eliminating the need to include (and subsequently remove) protecting groups. The 2'-[ 18 F]fluoroethyl ester of rhodamine B was synthesized by heating rhodamine B lactone with [ 18 F]fluoroethyltosylate in acetonitrile at 165 deg. C for 30 min using [ 18 F]fluoroethyl tosylate, which was prepared by the reaction of ethyleneglycol ditosylate with Kryptofix 2.2.2, K 2 CO 3 , and [ 18 F]NaF in acetonitrile for 10 min at 90 deg. C. The product was purified by semi-preparative HPLC to produce the 2'-[ 18 F]fluoroethylester in >97% radiochemical purity with a specific activity of 1.3 GBq/μmol, an isolated decay corrected yield of 35%, and a total synthesis time of 90 min.

  10. Synthesis of fluorine-18 labeled rhodamine B: A potential PET myocardial perfusion imaging agent

    Science.gov (United States)

    Heinrich, Tobias K.; Gottumukkala, Vijay; Snay, Erin; Dunning, Patricia; Fahey, Frederic H; Treves, S. Ted; Packard, Alan B.

    2009-01-01

    There is considerable interest in developing an 18F-labeled PET myocardial perfusion agent. Rhodamine dyes share several properties with 99mTc-MIBI, the most commonly used single-photon myocardial perfusion agent, suggesting that an 18F-labeled rhodamine dye might prove useful for this application. In addition to being lipophilic cations, like 99mTc-MIBI, rhodamine dyes are known to accumulate in the myocardium and are substrates for Pgp, the protein implicated in MDR1 multidrug resistance. As the first step in determining whether 18F-labeled rhodamines might be useful as myocardial perfusion agents for PET, our objective was to develop synthetic methods for preparing the 18F-labeled compounds so that they could be evaluated in vivo. Rhodamine B was chosen as the prototype compound for development of the synthesis because the ethyl substituents on the amine moieties of rhodamine B protect them from side reactions, thus eliminating the need to include (and subsequently remove) protecting groups. The 2′-[18F]fluoroethyl ester of rhodamine B was synthesized by heating rhodamine B lactone with [18F]fluoroethyltosylate in acetonitrile at 165°C for 30 min.using [18F]fluoroethyl tosylate, which was prepared by the reaction of ethyleneglycol ditosylate with Kryptofix 2.2.2, K2CO3, and [18F]NaF in acetonitrile for 10 min. at 90°C. The product was purified by semi-preparative HPLC to produce the 2′-[18F]-fluoroethylester in >97% radiochemical purity with a specific activity of 1.3 GBq/μmol, an isolated decay corrected yield of 35%, and a total synthesis time of 90 min. PMID:19783150

  11. Turn-on fluorescent chemosensor for Hg2+ based on multivalent rhodamine ligands

    NARCIS (Netherlands)

    Wang, X.; Iqbal, M.; Huskens, Jurriaan; Verboom, Willem

    2012-01-01

    Rhodamine-based fluorescent chemosensors 1 and 2 exhibit selective fluorescence enhancement to Fe3+ and Hg2+ over other metal ions at 580 nm in CH3CN/H2O (3/1, v/v) solution. Bis(rhodamine) chemosensor 1, under optimized conditions (CH3CN/HEPES buffer (0.02 M, pH = 7.0) (95/5, v/v)), shows a high

  12. A NOVEL RHODAMINE-BASED FLUORESCENCE CHEMOSENSOR CONTAINING POLYETHER FOR MERCURY (II IONS IN AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    Wenqi Du

    Full Text Available A novel rhodamine-based Hg2+ chemosensor P2 containing polyether was readily synthesized and investigated, which displayed high selectivity and sensitivity for Hg2+. Because of good water-solubility of polyther, the rhodamine-based chemosensor containing polyether can be used in aqueous solution. The sensor responded rapidly to Hg2+ in pure water solutions with a 1:1 stoichiometry. Meanwhile, it indicated excellent adaptability and also the responsiveness.

  13. Synthesis of fluorine-18 labeled rhodamine B: A potential PET myocardial perfusion imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, Tobias K.; Gottumukkala, Vijay [Division of Nuclear Medicine, Department of Radiology, Children' s Hospital Boston, 300 Longwood Ave., Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Snay, Erin; Dunning, Patricia [Division of Nuclear Medicine, Department of Radiology, Children' s Hospital Boston, 300 Longwood Ave., Boston, MA 02115 (United States); Fahey, Frederic H.; Ted Treves, S. [Division of Nuclear Medicine, Department of Radiology, Children' s Hospital Boston, 300 Longwood Ave., Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Packard, Alan B. [Division of Nuclear Medicine, Department of Radiology, Children' s Hospital Boston, 300 Longwood Ave., Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States)], E-mail: alan.packard@childrens.harvard.edu

    2010-01-15

    There is considerable interest in developing an {sup 18}F-labeled PET myocardial perfusion agent. Rhodamine dyes share several properties with {sup 99m}Tc-MIBI, the most commonly used single-photon myocardial perfusion agent, suggesting that an {sup 18}F-labeled rhodamine dye might prove useful for this application. In addition to being lipophilic cations, like {sup 99m}Tc-MIBI, rhodamine dyes are known to accumulate in the myocardium and are substrates for Pgp, the protein implicated in MDR1 multidrug resistance. As the first step in determining whether {sup 18}F-labeled rhodamines might be useful as myocardial perfusion agents for PET, our objective was to develop synthetic methods for preparing the {sup 18}F-labeled compounds so that they could be evaluated in vivo. Rhodamine B was chosen as the prototype compound for development of the synthesis because the ethyl substituents on the amine moieties of rhodamine B protect them from side reactions, thus eliminating the need to include (and subsequently remove) protecting groups. The 2'-[{sup 18}F]fluoroethyl ester of rhodamine B was synthesized by heating rhodamine B lactone with [{sup 18}F]fluoroethyltosylate in acetonitrile at 165 deg. C for 30 min using [{sup 18}F]fluoroethyl tosylate, which was prepared by the reaction of ethyleneglycol ditosylate with Kryptofix 2.2.2, K{sub 2}CO{sub 3}, and [{sup 18}F]NaF in acetonitrile for 10 min at 90 deg. C. The product was purified by semi-preparative HPLC to produce the 2'-[{sup 18}F]fluoroethylester in >97% radiochemical purity with a specific activity of 1.3 GBq/{mu}mol, an isolated decay corrected yield of 35%, and a total synthesis time of 90 min.

  14. Use of scandium ionic associates with salicylic- or 2-phenylquinoline-4-carboxylic acid and rhodamine C

    Energy Technology Data Exchange (ETDEWEB)

    Kononenko, L.I.; Bel' tyukova, S V; Drobyazko, V N; Poluehktov, N S [AN Ukrainskoj SSR, Kiev. Inst. Obshchej i Neorganicheskoj Khimii; AN Ukrainskoj SSR, Odessa. Inst. Obshchej i Neorganicheskoj Khimii)

    1975-09-01

    With salicylic or 2-phenylquinoline-4-carboxylic acid and rhodamine C scandium forms ion associations whose benzene solutions are capable of luminescence. Optimum conditions for the formation of complexes and the composition of the complex with the ratio of Sc:acid:rhodamine C = 1:2:1 are established. A possibility of luminescence determination of scandium in the presence of rare earths is shown.

  15. Preparation of Rhodamine B Fluorescent Poly(methacrylic acid) Coated Gelatin Nanoparticles

    OpenAIRE

    Gan, Zhenhai; Ju, Jianhui; Zhang, Ting; Wu, Daocheng

    2011-01-01

    Poly(methacrylic acid) (PMAA)-coated gelatin nanoparticles encapsulated with fluorescent dye rhodamine B were prepared by the coacervation method with the aim to retard the release of rhodamine B from the gelatin matrix. With sodium sulfate as coacervation reagent for gelatin, a kind of biopolymer with excellent biocompatibility, the formed gelatin nanoparticles were cross-linked by formaldehyde followed by the polymerization of methacrylic acid coating. The fluorescent poly(methacrylic acid)...

  16. Improved fructan accumulation in perennial ryegrass transformed with the onion fructosyltransferase genes 1-SST and 6G-FFT

    DEFF Research Database (Denmark)

    Gadegaard, Gitte; Didion, Thomas; Foiling, Marianne

    2008-01-01

    Carbohydrate limitation has been identified as a main cause of inefficient nitrogen use in ruminant animals, which feed mainly on fresh forage, hay and silage. This inefficiency results in suboptimal meat and milk productivity. One important molecular breeding strategy is to improve the nutritional...... value of ryegrass (Lolium perenne) by increasing the fructan content through expression of heterologous fructan biosynthetic genes. We developed perennial ryegrass Lines expressing sucrose:sucrose 1-fructosyltransferase and fructan:fructan 6G-fructosyltransferase genes from onion (Allium cepa) which...... exhibited up to a 3-fold increased fructan content. Further, the high fructan content was stable during the growth period, whereas the fructan content in an elite variety, marketed as a high sugar variety, dropped rapidly after reaching its maximum and subsequently remained low. (c) 2007 Elsevier GmbH. ALL...

  17. Synthesis of an amphiphilic rhodamine derivative and characterization of its solution and thin film properties

    International Nuclear Information System (INIS)

    Aviv, Hagit; Harazi, Sivan; Schiff, Dillon; Ramon, Yoni; Tischler, Yaakov R.

    2014-01-01

    Here we present characterization of solution and thin film properties of Lissamine rhodamine B sulfonyl didodecyl amine (LRSD), an amphiphilic derivative of rhodamine. LRSD was synthesized by functionalizing Lissamine rhodamine B sulfonyl chloride (LRSC) with didodecylamine via a straightforward sulfonylation reaction. LRSD's long alkane chains make it highly soluble in chloroform, with a marked increase in brightness compared to the starting material. LRSD is shown to form well-defined robust micelles in water, without the addition of a co-surfactant and stable monolayers at the air–water interface. The greater lipophilicity of LRSD also enables doping into non-polar polymeric host matrices such as polystyrene with less aggregation and hence higher fluorescence quantum yield than LRSC or even rhodamine B. The monolayers of LRSD were prepared via Langmuir–Blodgett deposition and showed shifts in the photoluminescence peak from 575 nm to 595 nm, as the surface pressure is varied from 3 mN/m to 11 mN/m. - Highlights: • Lissamine rhodamine B sulfonyl didodecyl amine (LRSD) is soluble in chloroform. • LRSD shows robust quantum yield in solution and as a dopant in thin film. • LRSD is an amphiphilic rhodamine dye that forms compact fluorescent micelles. • LRSD forms a stable isotherm when spread at the air–water interface

  18. Electrochemical Degradation of Rhodamine B over Ti/SnO2-Sb Electrode.

    Science.gov (United States)

    Maharana, Dusmant; Niu, Junfeng; Gao, Ding; Xu, Zesheng; Shi, Jianghong

    2015-04-01

    Electrochemical degradation of rhodamine B (C28H31ClN2O3) over Ti/SnO2-Sb anode was investigated in a rectangular cell. The degradation reaction follows pseudo-first-order kinetics. The degradation efficiency of rhodamine B attained >90.0% after 20 minutes of electrolysis at initial concentrations of 5 to 200 mg/L at a constant current density of 20 mA/cm2 with a 10 mmol/L Na2SO4 supporting electrolyte solution. Rhodamine B (50 mg/L) degradation and total organic carbon (TOC) removal ratio achieved 99.9 and 86.7%, respectively, at the optimal conditions after 30 minutes of electrolysis. The results showed that the energy efficiency of rhodamine B (50 mg/L) degradation at the optimal current densities from 2 to 30 mA/cm2 were 23.2 to 84.6 Wh/L, whereas the electrolysis time for 90% degradation of rhodamine B with Ti/SnO2-Sb anode was 36.6 and 7.3 minutes, respectively. The electrochemical method can be an advisable option for the treatment of dyes such as rhodamine B in wastewater.

  19. A Photostable Silicon Rhodamine Platform for Optical Voltage Sensing

    Science.gov (United States)

    Huang, Yi-Lin; Walker, Alison S.; Miller, Evan W.

    2015-01-01

    This paper describes the design and synthesis of a photostable, far-red to near-infrared (NIR) platform for optical voltage sensing. We developed a new, sulfonated silicon rhodamine fluorophore and integrated it with a phenylenevinylene molecular wire to create a Berkeley Red Sensor of Transmembrane potential, or BeRST 1 (“burst”). BeRST 1 is the first member of a class of farred to NIR voltage sensitive dyes that make use of a photoinduced electron transfer (PeT) trigger for optical interrogation of membrane voltage. We show that BeRST 1 displays bright, membrane-localized fluorescence in living cells, high photostability, and excellent voltage sensitivity in neurons. Depolarization of the plasma membrane results in rapid fluorescence increases (24% ΔF/F per 100 mV). BeRST 1 can be used in conjunction with fluorescent stains for organelles, Ca2+ indicators, and voltage-sensitive fluorescent proteins. In addition, the red-shifted spectral profile of BeRST 1, relative to commonly employed optogenetic actuators like ChannelRhodopsin2 (ChR2), which require blue light, enables optical electrophysiology in neurons. The high speed, sensitivity, photostability and long-wavelength fluorescence profiles of BeRST 1 make it a useful platform for the non-invasive, optical dissection of neuronal activity. PMID:26237573

  20. Electronic excited states as a probe of surface adsorbate structure and dynamics in liquid xenon

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, E.S.

    1992-08-01

    A combination of second harmonic generation (SHG) and a simple dipole-dipole interaction model is presented as a new technique for determining adsorbate geometries on surfaces. The polarization dependence of SHG is used to define possible geometries of the adsorbate about the surface normal. Absorption band shifts using geometry constraints imposed by SHG data are derived for a dimer constructed from two arbitrarily placed monomers on the surface using the dipole-dipole interaction potential. These formulae can be used to determine the orientation of the two monomers relative to each other. A simplified version of this formalism is used to interpret absorption band shifts for rhodamine B adsorbed on fused silica. A brief history of the exciton is given with particular detail to Xe. Data are presented for transient absorption at RT in liquid xenon on the picosecond time scale. These are observations of both tunneling through the barrier that separates the free and trapped exciton states and the subsequent trapping of the exciton. In high densities both of these processes are found to occur within 2 to 6 picoseconds in agreement with theories of Kmiecik and Schreiber and of Martin. A threshold density is observed that separates relaxation via single binary collisions and relaxation that proceeds via Martin's resonant energy transfer hopping mechanism.

  1. Electronic excited states as a probe of surface adsorbate structure and dynamics in liquid xenon

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Eric Scott [Univ. of California, Berkeley, CA (United States)

    1992-08-01

    A combination of second harmonic generation (SHG) and a simple dipole-dipole interaction model is presented as a new technique for determining adsorbate geometries on surfaces. The polarization dependence of SHG is used to define possible geometries of the adsorbate about the surface normal. Absorption band shifts using geometry constraints imposed by SHG data are derived for a dimer constructed from two arbitrarily placed monomers on the surface using the dipole-dipole interaction potential. These formulae can be used to determine the orientation of the two monomers relative to each other. A simplified version of this formalism is used to interpret absorption band shifts for rhodamine B adsorbed on fused silica. A brief history of the exciton is given with particular detail to Xe. Data are presented for transient absorption at RT in liquid xenon on the picosecond time scale. These are observations of both tunneling through the barrier that separates the free and trapped exciton states and the subsequent trapping of the exciton. In high densities both of these processes are found to occur within 2 to 6 picoseconds in agreement with theories of Kmiecik and Schreiber and of Martin. A threshold density is observed that separates relaxation via single binary collisions and relaxation that proceeds via Martin`s resonant energy transfer hopping mechanism.

  2. The ICE-6G_C (VM5a) Global Model of the GIA Process: Antarctica at High Spatial Resolution

    Science.gov (United States)

    Peltier, W. R.; Drummond, R.; Argus, D. F.

    2016-12-01

    The ICE-6G_C (VM5a) global model of the glacial isostatic adjustment process (Argus et al., 2014 GJI 198, 537-563; Peltier et al. , 2015, JGR 119, doi:10.1002/2014JB011176) is the latest model in the ICE-nG (VMx) sequence. The model continues to be unique in that it is the only model whose properties are made freely available at each iterative step in its development. This latest version, which embodies detailed descriptions of the Laurentide , Fennoscandian/Barents Sea, Greenland and Antarctic ice sheets through the most recent glacial cycle, is a refinement based primarily upon the incorporation of the constraints being provided by GPS measurements of the vertical and horizontal motion of the crust as well as GRACE observations of the time dependent gravity field. The model has been shown to provide exceptionally accurate predictions of these space geodetic observations of the response to the most recent Late Quaternary glacial cycle. Particular attention has been paid to the Antarctic component as it is well known on the basis of analyses of the sedimentary stratigraphy off-shore and geomorphological characteristics of the continental shelf, that the Last Glacial Maximum state of the southern continent was one in which grounded ice extended out to the shelf break in most locations, including significant fractions of the Ross Sea and Weddell Sea embayments. In the latter regions especially, it is expected that grounded ice would have existed below sea level. In ICE-6G_C (VM5a) a grounding line tracking algorithm was employed (Stuhne and Peltier, 2015 JGR 120, 1841-1865) in order to describe the unloading of the solid surface by ice that was initially grounded below sea level, an apparently unique characteristic of this model. In the initially published version, in which the Sea Level Equation (SLE) was inverted on a basis of spherical harmonics truncated at degree and order 256, this led to "ringing" in the embayments when the Stokes coefficients of the model

  3. Physiological and transcriptional approaches reveal connection between nitrogen and manganese cycles in Shewanella algae C6G3

    Science.gov (United States)

    Aigle, Axel; Bonin, Patricia; Iobbi-Nivol, Chantal; Méjean, Vincent; Michotey, Valérie

    2017-03-01

    To explain anaerobic nitrite/nitrate production at the expense of ammonium mediated by manganese oxide (Mn(IV)) in sediment, nitrate and manganese respirations were investigated in a strain (Shewanella algae C6G3) presenting these features. In contrast to S. oneidensis MR-1, a biotic transitory nitrite accumulation at the expense of ammonium was observed in S. algae during anaerobic growth with Mn(IV) under condition of limiting electron acceptor, concomitantly, with a higher electron donor stoichiometry than expected. This low and reproducible transitory accumulation is the result of production and consumption since the strain is able to dissimilative reduce nitrate into ammonium. Nitrite production in Mn(IV) condition is strengthened by comparative expression of the nitrate/nitrite reductase genes (napA, nrfA, nrfA-2), and rates of the nitrate/nitrite reductase activities under Mn(IV), nitrate or fumarate conditions. Compared with S. oneidensis MR-1, S. algae contains additional genes that encode nitrate and nitrite reductases (napA-α and nrfA-2) and an Outer Membrane Cytochrome (OMC)(mtrH). Different patterns of expression of the OMC genes (omcA, mtrF, mtrH and mtrC) were observed depending on the electron acceptor and growth phase. Only gene mtrF-2 (SO1659 homolog) was specifically expressed under the Mn(IV) condition. Nitrate and Mn(IV) respirations seem connected at the physiological and transcriptional levels.

  4. Metabolism of methoxychlor by the P450-monooxygenase CYP6G1 involved in insecticide resistance of Drosophila melanogaster after expression in cell cultures of Nicotiana tabacum.

    Science.gov (United States)

    Joussen, Nicole; Schuphan, Ingolf; Schmidt, Burkhard

    2010-03-01

    Cytochrome P450 monooxygenase CYP6G1 of Drosophila melanogaster was heterologously expressed in a cell suspension culture of Nicotiana tabacum. This in vitro system was used to study the capability of CYP6G1 to metabolize the insecticide methoxychlor (=1,1,1-trichloro-2,2-bis(4-methoxyphenyl)ethane, 1) against the background of endogenous enzymes of the corresponding non-transgenic culture. The Cyp6g1-transgenic cell culture metabolized 96% of applied methoxychlor (45.8 microg per assay) within 24 h by demethylation and hydroxylation mainly to trishydroxy and catechol methoxychlor (16 and 17%, resp.). About 34% of the metabolism and the distinct formation of trishydroxy and catechol methoxychlor were due to foreign enzyme CYP6G1. Furthermore, methoxychlor metabolism was inhibited by 43% after simultaneous addition of piperonyl butoxide (458 microg), whereas inhibition in the non-transgenic culture amounted to 92%. Additionally, the rate of glycosylation was reduced in both cultures. These results were supported by the inhibition of the metabolism of the insecticide imidacloprid (6; 20 microg, 24 h) in the Cyp6g1-transgenic culture by 82% in the presence of piperonyl butoxide (200 microg). Due to CYP6G1 being responsible for imidacloprid resistance of Drosophila or being involved in DDT resistance, it is likely that CYP6G1 conveys resistance to methoxychlor (1). Furthermore, treating Drosophila with piperonyl butoxide could weaken the observed resistance phenomena.

  5. Evolutionary changes in gene expression, coding sequence and copy-number at the Cyp6g1 locus contribute to resistance to multiple insecticides in Drosophila.

    Directory of Open Access Journals (Sweden)

    Thomas W R Harrop

    Full Text Available Widespread use of insecticides has led to insecticide resistance in many populations of insects. In some populations, resistance has evolved to multiple pesticides. In Drosophila melanogaster, resistance to multiple classes of insecticide is due to the overexpression of a single cytochrome P450 gene, Cyp6g1. Overexpression of Cyp6g1 appears to have evolved in parallel in Drosophila simulans, a sibling species of D. melanogaster, where it is also associated with insecticide resistance. However, it is not known whether the ability of the CYP6G1 enzyme to provide resistance to multiple insecticides evolved recently in D. melanogaster or if this function is present in all Drosophila species. Here we show that duplication of the Cyp6g1 gene occurred at least four times during the evolution of different Drosophila species, and the ability of CYP6G1 to confer resistance to multiple insecticides exists in D. melanogaster and D. simulans but not in Drosophila willistoni or Drosophila virilis. In D. virilis, which has multiple copies of Cyp6g1, one copy confers resistance to DDT and another to nitenpyram, suggesting that the divergence of protein sequence between copies subsequent to the duplication affected the activity of the enzyme. All orthologs tested conferred resistance to one or more insecticides, suggesting that CYP6G1 had the capacity to provide resistance to anthropogenic chemicals before they existed. Finally, we show that expression of Cyp6g1 in the Malpighian tubules, which contributes to DDT resistance in D. melanogaster, is specific to the D. melanogaster-D. simulans lineage. Our results suggest that a combination of gene duplication, regulatory changes and protein coding changes has taken place at the Cyp6g1 locus during evolution and this locus may play a role in providing resistance to different environmental toxins in different Drosophila species.

  6. Application of optimized large surface area date stone (Phoenix dactylifera ) activated carbon for rhodamin B removal from aqueous solution: Box-Behnken design approach.

    Science.gov (United States)

    Danish, Mohammed; Khanday, Waheed Ahmad; Hashim, Rokiah; Sulaiman, Nurul Syuhada Binti; Akhtar, Mohammad Nishat; Nizami, Maniruddin

    2017-05-01

    Box-Behnken model of response surface methodology was used to study the effect of adsorption process parameters for Rhodamine B (RhB) removal from aqueous solution through optimized large surface area date stone activated carbon. The set experiments with three input parameters such as time (10-600min), adsorbent dosage (0.5-10g/L) and temperature (25-50°C) were considered for statistical significance. The adequate relation was found between the input variables and response (removal percentage of RhB) and Fisher values (F- values) along with P-values suggesting the significance of various term coefficients. At an optimum adsorbent dose of 0.53g/L, time 593min and temperature 46.20°C, the adsorption capacity of 210mg/g was attained with maximum desirability. The negative values of Gibb ' s free energy (ΔG) predicted spontaneity and feasibility of adsorption; whereas, positive Enthalpy change (ΔH) confirmed endothermic adsorption of RhB onto optimized large surface area date stone activated carbons (OLSADS-AC). The adsorption data were found to be the best fit on the Langmuir model supporting monolayer type of adsorption of RhB with maximum monolayer layer adsorption capacity of 196.08mg/g. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Changing M3G/M6G ratios and pharmacodynamics in a cancer patient during long-term morphine treatment

    DEFF Research Database (Denmark)

    Andersen, Gertrud; Christrup, Lona Louring; Sjøgren, Per

    2002-01-01

    A cancer patient receiving long-term oral sustained-release morphine treatment and periodically presenting with unusually high plasma M3G/M6G ratios is described. We found the patient's formation of M6G more unstable and perhaps delayed compared to the formation of M3G. There is no apparent...... explanation for this phenomenon and the high M3G/M6G ratios had no implications for the patient's pain experience or side effects from the morphine treatment....

  8. Postglacial Rebound and Current Ice Loss Estimates from Space Geodesy: The New ICE-6G (VM5a) Global Model

    Science.gov (United States)

    Peltier, W. R.; Argus, D.; Drummond, R.; Moore, A. W.

    2012-12-01

    We compare, on a global basis, estimates of site velocity against predictions of the newly constructed postglacial rebound model ICE-6G (VM5a). This model is fit to observations of North American postglacial rebound thereby demonstrating that the ice sheet at last glacial maximum must have been, relative to ICE-5G,thinner in southern Manitoba, thinner near Yellowknife (northwest Territories), thicker in eastern and southern Quebec, and thicker along the British Columbia-Alberta border. The GPS based estimates of site velocity that we employ are more accurate than were previously available because they are based on GPS estimates of position as a function of time determined by incorporating satellite phase center variations [Desai et al. 2011]. These GPS estimates are constraining postglacial rebound in North America and Europe more tightly than ever before. In particular, given the high density of GPS sites in North America, and the fact that the velocity of the mass center (CM) of Earth is also more tightly constrained, the new model much more strongly constrains both the lateral extent of the proglacial forebulge and the rate at which this peripheral bulge (that was emplaced peripheral to the late Pleistocence Laurentia ice sheet) is presently collapsing. This fact proves to be important to the more accurate inference of the current rate of ice loss from both Greenland and Alaska based upon the time dependent gravity observations being provided by the GRACE satellite system. In West Antarctica we have also been able to significantly revise the previously prevalent ICE-5G deglaciation history so as to enable its predictions to be optimally consistent with GPS site velocities determined by connecting campaign WAGN measurements to those provided by observations from the permanent ANET sites. Ellsworth Land (south of the Antarctic peninsula), is observed to be rising at 6 ±3 mm/yr according to our latest analyses; the Ellsworth mountains themselves are observed to be

  9. On the use of rhodamine WT for the characterization of stream hydrodynamics and transient storage

    Science.gov (United States)

    Runkel, Robert L.

    2015-01-01

    Recent advances in fluorometry have led to increased use of rhodamine WT as a tracer in streams and rivers. In light of this increased use, a review of the dye's behavior in freshwater systems is presented. Studies in the groundwater literature indicate that rhodamine WT is transported nonconservatively, with sorption removing substantial amounts of tracer mass. Column studies document a two-step breakthrough curve in which two structural isomers are chromatographically separated. Although the potential for nonconservative transport is acknowledged in the surface water literature, many studies assume that sorptive losses will not affect the characterization of physical transport processes. A literature review and modeling analysis indicates that this assumption is valid for quantification of physical properties that are based on the bulk of the tracer mass (traveltime), and invalid for the characterization of processes represented by the tracer tail (transient storage attributable to hyporheic exchange). Rhodamine WT should be considered nonconservative in the hyporheic zone due to nonconservative behavior demonstrated for similar conditions in groundwater. As such, rhodamine WT should not be used as a quantitative tracer in hyporheic zone investigations, including the study of long flow paths and the development of models describing hyporheic zone processes. Rhodamine WT may be used to qualitatively characterize storage in large systems, where there are few practical alternatives. Qualitative investigations should rely on early portions of the tracer profile, making use of the temporal resolution afforded by in situ fluorometry, while discarding later parts of the tracer profile that are adversely affected by sorption.

  10. A novel fiber-based adsorbent technology

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, T.A. [Chemica Technologies, Inc., Bend, OR (United States)

    1997-10-01

    In this Phase I Small Business Innovation Research program, Chemica Technologies, Inc. is developing an economical, robust, fiber-based adsorbent technology for removal of heavy metals from contaminated water. The key innovation is the development of regenerable adsorbent fibers and adsorbent fiber cloths that have high capacity and selectivity for heavy metals and are chemically robust. The process has the potential for widespread use at DOE facilities, mining operations, and the chemical process industry.

  11. Neutron scattering from adsorbed species

    International Nuclear Information System (INIS)

    Shuwang An

    1998-01-01

    Neutron reflection has been used to investigate the structure of layers of water-soluble diblock copolymers poly(2-(dimethylamino)ethyl methacrylate-block-methyl methacrylate (poly(DMAEMA-b-MMA)) (70 mol% DMAEMA, M n = 10k, 80 mol% DMAEMA, M n = 10k, and 70 mol% DMAEMA, M n = 20k) adsorbed at the air-liquid and solid-liquid interfaces. The surface tension behaviour of these copolymers at the air-liquid interface has also been investigated. The study of the structure of layers of poly(DMAEMA-b-MMA) adsorbed at the air-water interface forms the main part of the thesis. The surface structure, the effects of pH and ionic strength, and the effects of composition and molecular weight of the copolymers have been studied systematically. For the 70%-10k copolymer at pH 7.5, the adsorption isotherm shows that there is a surface phase transition. The concentration of copolymer at which the phase transition occurs is close to that at which micellar aggregation in the bulk solution also occurs. At low concentrations (below the CMC), the two blocks of the copolymer are approximately uniformly distributed in the direction normal to the interface and the layer is partially immersed in water. At high concentrations (above the CMC), the adsorbed layer has a cross-sectional structure resembling that expected for a micelle with the majority of the MMA blocks forming the core. The outer layers, comprising predominantly DMAEMA blocks, are not equivalent, being more highly extended on the aqueous side of the interface. The effects of pH and added electrolyte on the structure of layers of the 70%-10k copolymer show that the layered structure is promoted by any changes in the bulk solution that enhance the surface coverage but is inhibited by an increase in the fractional charge on the polyelectrolyte part of the copolymer. The effect of lowering the pH is to increase the positive charge on the weak polyelectrolyte block. Addition of electrolyte generally enhances the amount adsorbed and

  12. Filter-adsorber aging assessment

    Energy Technology Data Exchange (ETDEWEB)

    Winegardner, W.K. [Pacific Northwest Laboratory, Richland, WA (United States)

    1995-02-01

    An aging assessment of high-efficiency particulate (HEPA) air filters and activated carbon gas adsorption units was performed by the Pacific Northwest Laboratory as part of the U.S. Nuclear Regulatory Commission`s (USNRC) Nuclear Plant Aging Research (NPAR) Program. This evaluation of the general process in which characteristics of these two components gradually change with time or use included the compilation of information concerning failure experience, stressors, aging mechanisms and effects, and inspection, surveillance, and monitoring methods (ISMM). Stressors, the agents or stimuli that can produce aging degradation, include heat, radiation, volatile contaminants, and even normal concentrations of aerosol particles and gasses. In an experimental evaluation of degradation in terms of the tensile breaking strength of aged filter media specimens, over forty percent of the samples did not meet specifications for new material. Chemical and physical reactions can gradually embrittle sealants and gaskets as well as filter media. Mechanisms that can lead to impaired adsorber performance are associated with the loss of potentially available active sites as a result of the exposure of the carbon to airborne moisture or volatile organic compounds. Inspection, surveillance, and monitoring methods have been established to observe filter pressure drop buildup, check HEPA filters and adsorbers for bypass, and determine the retention effectiveness of aged carbon. These evaluations of installed filters do not reveal degradation in terms of reduced media strength but that under normal conditions aged media can continue to effectively retain particles. However, this degradation may be important when considering the likelihood of moisture, steam, and higher particle loadings during severe accidents and the fact it is probable that the filters have been in use for an extended period.

  13. Extraction/fluorometric determination of uranium with rhodamine B and 2-thenoyltrifluoroacetone

    International Nuclear Information System (INIS)

    Naganuma, Takeshi; Tuzuki, Satoshi; Jin, Jiye.

    1990-01-01

    A method for the fluorometric determination of uranium, based on a solvent extraction of an ion associate formed between Rhodamine B cation and 2-thenoyltrifluoroacetone(TTA)-metal chelate anion with benzene, is described. The procedure for the construction of the calibration curve is as follows. Varying amounts of uranium standard solution and 2 ml of 2 M ammonium acetate buffer solution are mixed. The solution is adjusted at pH 6.0 and 10 ml of 0.3 % Rhodamine B are added. It is then shaken for 5 min with 10 ml of 0.01 M TTA benzene solution. The fluoresence of the organic phase is measured at 545 nm (excitation) and 570 nm (emission) for uranyl-TTA-Rhodamine B complex. The fluorescence intensity is linearly related to the concentration of uranyl ion in the range of 0.05 ppm ot 1 ppm. (author)

  14. A turn-on fluorescent rhodamine-acyl hydrazide for selective detection of Cu"2"+ ions

    International Nuclear Information System (INIS)

    Yoon, Jung Won; Jeong, Hyuk; Lee, Min Hee

    2017-01-01

    We present a rhodamine-based probe that can detect Cu"2"+ ions via Cu"2"+-promoted hydrolysis in aqueous solutions. In solution, the probe is non-fluorescent and colorless, but gives a strong fluorescence at 586 nm and shows a color change to pink on the addition of Cu"2"+ ions. We demonstrate that the rhodamine-based probe undergoes Cu"2"+-promoted hydrolysis with a moderate reaction time (within 3 min) and provides a fluorescence off–on change, even in the presence of other competitive metal ions. The rhodamine-based probe shows a linear correlation between increasing fluorescence at 586 nm and the Cu"2"+ concentration, and can detect Cu"2"+ at nanomolar levels (10 nM) in CH_3CN:H_2O (v/v, 90:10)

  15. Rhodamine B conjugates of triterpenoic acids are cytotoxic mitocans even at nanomolar concentrations.

    Science.gov (United States)

    Sommerwerk, Sven; Heller, Lucie; Kerzig, Christoph; Kramell, Annemarie E; Csuk, René

    2017-02-15

    Triterpenoic acids 1-6 exhibited very low or no cytotoxicity at all, but their corresponding 2,3-di-O-acetyl-piperazinyl amides 13-18 showed low EC 50 values for several human tumor cell lines. Their cytotoxicity, however, was also high for the non-malignant mouse fibroblasts NIH 3T3. A significant improvement was achieved by preparing the rhodamine B derivatives 19-24. While rhodamine B is not cytotoxic (up to a concentration of 30μM - cut-off of the assay), the triterpenoid piperazine-spacered rhodamine B derivatives were cytotoxic in nano-molar concentration. Compound 24 (a diacetylated maslinic acid derivative) was most toxic for several human tumor cell lines but less toxic for mouse fibroblasts NIH 3T3. Staining and double-staining experiments revealed 24 to act as a mitocan. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. A rhodamine B-based fluorescent sensor toward highly selective mercury (II) ions detection.

    Science.gov (United States)

    Jiao, Yang; Zhang, Lei; Zhou, Peng

    2016-04-01

    This work presented the design, syntheses and photophysical properties of a rhodamine B-based fluorescence probe, which exhibited a sensitive and selective recognition towards mercury (II). The chemosensor RA (Rhodamine- amide- derivative) contained a 5-aminoisophthalic acid diethyl ester and a rhodamine group, and the property of spirolactone of this chemosensor RA was detected by X-ray crystal structure analyses. Chemosensor RA afforded turn-on fluorescence enhancement and displayed high brightness for Hg(2+), which leaded to the opening of the spirolactone ring and consequently caused the appearance of strong absorption at visible range, moreover, the obvious and characteristic color changed from colorless to pink was observed. We envisioned that the chemosensor RA exhibited a considerable specificity with two mercury (II) ions which was attributed to the open of spirolactone over other interference metal ions. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Rhodamine dyes as potential agents for photochemotherapy of cancer in human bladder carcinoma cells

    International Nuclear Information System (INIS)

    Shea, C.R.; Chen, N.; Wimberly, J.; Hasan, T.

    1989-01-01

    The phototoxicity in vitro of rhodamine 123 and tetrabromo rhodamine 123 (TBR) was compared, in order to assess their photochemotherapeutic potential. Exposure to 514.5-nm radiation from an argon ion laser caused phototoxicity in MGH-U1 bladder carcinoma cells previously treated with either dye at 10 microM for 30 min. As assessed by colony formation and cellular morphology, TBR was markedly more phototoxic than rhodamine 123, reflecting increased intersystem crossing of TBR to the triplet manifold via spin-orbital coupling induced by the heavy bromine atoms. Photoreactions of TBR very efficiently generated singlet oxygen ( 1 O 2 ) in solution; furthermore, irradiation of TBR-treated cells was significantly more toxic when performed in the presence of deuterium oxide, an enhancer of damage caused by 1 O 2 . Retention of fluorescence in TBR-treated cells was enhanced by irradiation, indicating that a stable photoproduct may be formed in reaction with cellular components

  18. Ecological applications of the irradiated adsorbents

    International Nuclear Information System (INIS)

    Tusseyev, T.

    2004-01-01

    Full text: In our previous works it was shown that after irradiation some adsorbents gain new interesting properties such as increasing (or decreasing) of their adsorption capacity, selectivity in relation to some gases, change of chemical bounds of gas molecules with adsorbent surface as well as other properties. We investigated a lot of adsorbents with semiconducting and dielectric properties. A high temperature superconductor was investigated also. Adsorbents were irradiated by ultraviolet (UV) and gamma - radiation, reactor (n.γ) - radiation, α-particles (E=40-50 MeV), protons ( E=30 MeV), and also He-3 ions (E-29-60 MeV). The following techniques were used: volumetric (manometrical), mass-spectrometer and IR spectroscopic methods, and also method of electronic - paramagnetic resonance (spin paramagnetic resonance) The obtained results allow to speak about creation of new adsorbents for gas purification (clearing) from harmful impurities, gas selection into components, an increasing of adsorbing surface. Thus one more advantage of the irradiated adsorbents is that they have 'memory effect', i.e. they can be used enough long time after irradiation. In laboratory conditions we built the small-sized adsorptive pump on the basis of the irradiated zeolites which are capable to work in autonomous conditions. It was found, that some of adsorbents after irradiation gain (or lose) selectivity in relation to definite gases. So, silica gel, which one in initial state does not adsorb hydrogen, after gamma irradiation it becomes active in relation to hydrogen. Some of rare earths oxides also show selectivity in relation to hydrogen and oxygen depending on a type of irradiation. Thus, it is possible to create different absorbents, depending on a solved problem, using a way or selection of adsorbents, either of radiation type and energy, as a result obtained adsorbents can be used for various ecological purposes

  19. Indicating pressure and environmental effects by means of the spectral shift with rhodamine B and fluorescein

    Directory of Open Access Journals (Sweden)

    R. M. Johann

    2015-07-01

    Full Text Available Fluorescence absorption and emission wavelengths can be influenced by environmental conditions, such as pressure, temperature and concentration. Here those effects are explored with an emphasis on determining the potential of rhodamine B and fluorescein as high-pressure indicators. The red shift of the emission peak maxima of rhodamine B and fluorescein are investigated in dependence of pressure up to 200 MPa using as the solvents water, ethanol and poly(dimethylsiloxane (PDMS with rhodamine B and water, polystyrene beads and melamine resin beads with fluorescein. Emission spectra recording and peak fitting is done automatically at time intervals of down to a second and with 0.3 nm wavelength resolution. The wavenumber-pressure relation for rhodamine B reveals increasing divergence from linear behavior in the sequence of the solvents water, ethanol and silicone rubber. Graphical correlation of the data diverging only slightly from linearity with a selection of polarity functions is enabled using the concept of ‘deviation from linearity (DL’ plots. Using the example of rhodamine B dissolved in PDMS elastomer it is shown that there is a temperature induced irreversible molecular reordering, when scanning between 3 and ∼50°C, and a polarity change in the proximity of the embedded dye molecule. Swelling studies are performed with PDMS containing rhodamine B, where the elastomer is first put in water, then in ethanol and again in water. There a complex solvent exchange process is revealed in the elastomer demonstrating the feasibility of fluorescence spectroscopy, when observing variations in wavelength, to indicate and enlighten molecular rearrangements and swelling dynamics in the polymer, and polarity changes and solvent exchange processes in the dye solvation shell.

  20. Staining diatoms with rhodamine dyes: control of emission colour in photonic biocomposites

    Science.gov (United States)

    Kucki, Melanie; Fuhrmann-Lieker, Thomas

    2012-01-01

    The incorporation of rhodamine dyes in the cell wall of diatoms Coscinodiscus granii and Coscinodiscus wailesii for the production of luminescent hybrid nanostructures is investigated. By systematic variation of the substitution pattern of the rhodamine core, we found that carbonic acids are considerably better suited than esters because of their physiological compatibility. The amino substitution pattern that controls the optical properties of the chromophore has no critical influence on dye uptake and incorporation, thus a variety of biocomposites with different emission maxima can be prepared. Applications in biomineralization studies as well as in materials science are envisioned. PMID:21865248

  1. A Dansyl-Rhodamine Based Fluorescent Probe for Detection of Hg2+ and Cu2.

    Science.gov (United States)

    Yuan, Shizhuang; Su, Wei; Wang, Enju

    2017-09-01

    A novel fluorescent probe based on dansyl-appended rhodamine B was developed. The probe can selectively recognize and sense Hg2+ and Cu2+ from other common metal ions by showing unique fluorescence and absorption characteristics. In MeCN/HEPES buffer solution, the probe gives a ratiometric fluorescent response to Hg2+, which was ascribed to the fluorescence resonance energy transfer from dansyl moiety to the ring-opened rhodamine B moiety, while the presence of Cu2+ causes fluorescence quenching. Beside the fluorescence change, the presence of Cu2+ and Hg2+ can induce intensive absorption at about 555 nm, which resulted in a color change from colorless to pink.

  2. Thermodynamics of gas adsorption on solid adsorbents

    International Nuclear Information System (INIS)

    Budrugeac, P.

    1979-01-01

    Starting with several hypotheses about the adsorbtion system and the adsorption phenomenon, a thermodynamic treatment of gas adsorption on solid adsorbants is presented. The relationships for determination from isotherms and calorimetric data of thermodynamic functions are derived. The problem of the phase changes in adsorbed layer is discussed. (author)

  3. Near-Infrared Phosphorus-Substituted Rhodamine with Emission Wavelength above 700 nm for Bioimaging.

    Science.gov (United States)

    Chai, Xiaoyun; Cui, Xiaoyan; Wang, Baogang; Yang, Fan; Cai, Yi; Wu, Qiuye; Wang, Ting

    2015-11-16

    Phosphorus has been successfully fused into a classic rhodamine framework, in which it replaces the bridging oxygen atom to give a series of phosphorus-substituted rhodamines (PRs). Because of the electron-accepting properties of the phosphorus moiety, which is due to effective σ*-π* interactions and strengthened by the inductivity of phosphine oxide, PR exhibits extraordinary long-wavelength fluorescence emission, elongating to the region above 700 nm, with bathochromic shifts of 140 and 40 nm relative to rhodamine and silicon-substituted rhodamine, respectively. Other advantageous properties of the rhodamine family, including high molar extinction coefficient, considerable quantum efficiency, high water solubility, pH-independent emission, great tolerance to photobleaching, and low cytotoxicity, stay intact in PR. Given these excellent properties, PR is desirable for NIR-fluorescence imaging in vivo. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Analysis of Adsorbate-Adsorbate and Adsorbate-Adsorbent Interactions to Decode Isosteric Heats of Gas Adsorption.

    Science.gov (United States)

    Madani, S Hadi; Sedghi, Saeid; Biggs, Mark J; Pendleton, Phillip

    2015-12-21

    A qualitative interpretation is proposed to interpret isosteric heats of adsorption by considering contributions from three general classes of interaction energy: fluid-fluid heat, fluid-solid heat, and fluid-high-energy site (HES) heat. Multiple temperature adsorption isotherms are defined for nitrogen, T=(75, 77, 79) K, argon at T=(85, 87, 89) K, and for water and methanol at T=(278, 288, 298) K on a well-characterized polymer-based, activated carbon. Nitrogen and argon are subjected to isosteric heat analyses; their zero filling isosteric heats of adsorption are consistent with slit-pore, adsorption energy enhancement modelling. Water adsorbs entirely via specific interactions, offering decreasing isosteric heat at low pore filling followed by a constant heat slightly in excess of water condensation enthalpy, demonstrating the effects of micropores. Methanol offers both specific adsorption via the alcohol group and non-specific interactions via its methyl group; the isosteric heat increases at low pore filling, indicating the predominance of non-specific interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Inorganic chemically active adsorbents (ICAAs)

    Energy Technology Data Exchange (ETDEWEB)

    Ally, M.R. [Oak Ridge National Lab., TN (United States); Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  6. Rhodamine-Injected Eggs to Photographically Identify Small Nest-Predators

    Science.gov (United States)

    Thomas J. Maier; Richard M. DeGraaf

    2000-01-01

    Photographs that clearly disclose avian-nest predators are difficult to obtain, particularly when predators are small and exhibit subtle depredatory behavior. We exposed House Sparrow (Passer domesticus) eggs injected with Rhodamine B dye in camera-monitored ground nests for 12-d periods at 76 sites within mixed-hardwood forest stands in central...

  7. Influence of Ti–O–Si hetero-linkages in the photocatalytic degradation of Rhodamine B

    NARCIS (Netherlands)

    Rasalingam, S; Kibombo, H.S.; Wu, C.M.; Budhi, S.; Peng, R.; Baltrusaitis, Jonas; Koodali, R.T.

    2013-01-01

    The influence of Ti–O–Si hetero-linkages in the degradation of Rhodamine B (RhB) dye over TiO2–SiO2 xerogels is exemplified by XPS analysis. We demonstrate a relationship between the percentage surface content of Ti–O–Si and the rate of photocatalytic degradation of RhB. Our detailed surface

  8. A dansyl-rhodamine chemosensor for Fe(III) based on off-on FRET.

    Science.gov (United States)

    Piao, Jingyu; Lv, Jia; Zhou, Xin; Zhao, Tong; Wu, Xue

    2014-07-15

    A novel fluorescent chemosensor bearing a rhodamine and a dansyl moiety was developed for highly selective detection of Fe(3+) based on fluorescence resonance energy transfer (FRET) mechanism. Binding of Fe(3+) to the chemosensor induced spirolactam ring opening in the rhodamine moiety and subsequent off-on FRET from the dansyl energy donor to the rhodamine energy acceptor due to the spectral overlap between the emission of the dansyl moiety and the absorption of the ring opened rhodamine moiety. Job's plot analysis indicated a 1:1 binding stoichiometry between the chemosensor and Fe(3+). The association constant was estimated to be 2.72×10(3) M(-1) according to the Benesi-Hildebrand method. With the feature of easy synthesis, simple structural skeleton and excellent sensing ability, the newly synthesized chemosensor provided the potential for applying as a highly selective fluorescent probe in complex samples containing various competitive metal ions and developing other metal ion chemosensors to fulfill various needs of biological and environmental field. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Highly luminescent hybrid materials based on smectites with polyethylene glycol modified with rhodamine fluorophore

    Czech Academy of Sciences Publication Activity Database

    Sas, S.; Danko, M.; Bizovská, V.; Lang, Kamil; Bujdák, J.

    2017-01-01

    Roč. 138, MAR (2017), s. 25-33 ISSN 0169-1317 Institutional support: RVO:61388980 Keywords : Luminescent polymers * Rhodamine B * Molecular aggregation * Fluorescence * Optical materials Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 3.101, year: 2016

  10. A dansyl-rhodamine chemosensor for Fe(III) based on off-on FRET

    Science.gov (United States)

    Piao, Jingyu; Lv, Jia; Zhou, Xin; Zhao, Tong; Wu, Xue

    2014-07-01

    A novel fluorescent chemosensor bearing a rhodamine and a dansyl moiety was developed for highly selective detection of Fe3+ based on fluorescence resonance energy transfer (FRET) mechanism. Binding of Fe3+ to the chemosensor induced spirolactam ring opening in the rhodamine moiety and subsequent off-on FRET from the dansyl energy donor to the rhodamine energy acceptor due to the spectral overlap between the emission of the dansyl moiety and the absorption of the ring opened rhodamine moiety. Job's plot analysis indicated a 1:1 binding stoichiometry between the chemosensor and Fe3+. The association constant was estimated to be 2.72 × 103 M-1 according to the Benesi-Hildebrand method. With the feature of easy synthesis, simple structural skeleton and excellent sensing ability, the newly synthesized chemosensor provided the potential for applying as a highly selective fluorescent probe in complex samples containing various competitive metal ions and developing other metal ion chemosensors to fulfill various needs of biological and environmental field.

  11. KELAINAN PATOLOGI PADA MENCIT DAN TIKUS DISEBABKAN ZAT WARNA RHODAMINE B DAN METANIL YELLOW

    Directory of Open Access Journals (Sweden)

    Iwan T. Budiarso

    2012-09-01

    Full Text Available PATHOLOGICAL LESIONS IN MICE AND RATS CAUSED BY DYESTUFFS RHODAMINE B AND METANIL YELLOW. Rhodamine B and Metanil Yellow are 2 non-edible dyestuffs which are widely used for coloring snacks and drinks in Jakarta. These substances are reportedly toxic for human beings, however no data on acute or chronic intoxications are available so far. Groups of mice and rats were fed with either Rhodamine B or Metanil Yellow. The doses of these dyestuffs varied from 0.5 mg to 1350 mg per kilogram body weight. These animals were dcvided into 3 different experimental groups, respectively acute, subacute and chronic toxicity tests. Clinical signs included discoloration of the skin and its intensity depended upon the concentration of the dyestuffs used. The body weight gain of the test animals were consistently lower than those of the controls. Some animals became agressive and cannibalism occurred. Pathological lesions consisted of unthriftiness, focal liver inflammation, hydronephrosis, hepatoma and lymphoma. Considering the results of the experiments, it is justified to warn that the wide use of Rhodamine B and Metanil Yellow for food coloring might be hazardous for human health.

  12. DETEKSI KANDUNGAN RHODAMIN B PADA SAUS SERTA CEMARAN BORAKS DAN BAKTERI SALMONELLA SP. PADACILOK KELILING SALATIGA

    Directory of Open Access Journals (Sweden)

    Ardhikajaya Wahyu Prasetya

    2017-01-01

    Full Text Available ABSTRACT Borax and rhodamine B are preservative and dye banned to be used in food products. However, some traders still use borax and rhodamine B to their food and drink products. Cilok is a kind of food liked by schoolchildren and categorized as street vendor food (PKL. Most of food sold by street vendor has not touched by strict control from BPOM, so its quality is not good. Pentol cilok is a food made by starch. It tastes delicious and chewy. Furthermore, it is liked by schoolchildren. Cilok is also served by adding the sauce in order to make it tastier. It is common to add dye in that sauce and the dye is not natural dye nor food coloring. In the cilok, the contamination of microbe especially Salmonella sp. is influenced by unhygienic process. This research aims to find out borax and Salmonella sp. contamination and also the existence of rhodamine B on the cilok sauce. The methods used in this research are qualitative, quantitative, and the detection of Salmonella sp. contamination. The result shows, of the 8 tested samples, 4 samples (sample B, C, E, and H contain little amount of borax, the sauce contains no rhodamine B. This can be seen from Rf value and color reaction test. On the testing of Salmonella sp., there are bacteria before boiling process (when cilok is still in the form of dough and there are no bacteria after boiling and steaming process, so it is safe to be consumed.

  13. Preparation of Rhodamine B Fluorescent Poly(methacrylic acid Coated Gelatin Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhenhai Gan

    2011-01-01

    Full Text Available Poly(methacrylic acid (PMAA-coated gelatin nanoparticles encapsulated with fluorescent dye rhodamine B were prepared by the coacervation method with the aim to retard the release of rhodamine B from the gelatin matrix. With sodium sulfate as coacervation reagent for gelatin, a kind of biopolymer with excellent biocompatibility, the formed gelatin nanoparticles were cross-linked by formaldehyde followed by the polymerization of methacrylic acid coating. The fluorescent poly(methacrylic acid coated gelatin (FPMAAG nanoparticles had a uniform spherical shape and a size distribution of 60±5 nm. Infrared spectral analysis confirmed the formation of PMAA coating on the gelatin nanoparticles. Based on UV-Vis spectra, the loading efficiency of rhodamine B for the FPMAAG nanoparticles was 0.26 μg per mg nanoparticles. The encapsulated rhodamine B could sustain for two weeks. Favorable fluorescence property and fluorescence imaging of cells confirmed that the FPMAAG nanoparticles have promising biochemical, bioanalytical, and biomedical applications.

  14. Interplay of adsorbate-adsorbate and adsorbate-substrate interactions in self-assembled molecular surface nanostructures

    DEFF Research Database (Denmark)

    Schnadt, Joachim; Xu, Wei; Vang, Ronnie Thorbjørn

    2010-01-01

    a large tolerance to monatomic surface steps on the Ag(110) surface. The observed behaviour is explained in terms of strong intermolecular hydrogen bonding and a strong surface-mediated directionality, assisted by a sufficient degree of molecular backbone flexibility. In contrast, the same kind of step......-edge crossing is not observed when the molecules are adsorbed on the isotropic Ag(111) or more reactive Cu(110) surfaces. On Ag(111), similar 1-D assemblies are formed to those on Ag(110), but they are oriented along the step edges. On Cu(110), the carboxylic groups of NDCA are deprotonated and form covalent...... bonds to the surface, a situation which is also achieved on Ag(110) by annealing to 200 degrees C. These results show that the formation of particular self-assembled molecular nanostructures depends significantly on a subtle balance between the adsorbate-adsorbate and adsorbate-substrate interactions...

  15. Double-stranded RNA promotes CTL-independent tumor cytolysis mediated by CD11b+Ly6G+ intratumor myeloid cells through the TICAM-1 signaling pathway

    Science.gov (United States)

    Shime, Hiroaki; Matsumoto, Misako; Seya, Tsukasa

    2017-01-01

    PolyI:C, a synthetic double-stranded RNA analog, acts as an immune-enhancing adjuvant that regresses tumors in cytotoxic T lymphocyte (CTL)-dependent and CTL-independent manner, the latter of which remains largely unknown. Tumors contain CD11b+Ly6G+ cells, known as granulocytic myeloid-derived suppressor cells (G-MDSCs) or tumor-associated neutrophils (TANs) that play a critical role in tumor progression and development. Here, we demonstrate that CD11b+Ly6G+ cells respond to polyI:C and exhibit tumoricidal activity in an EL4 tumor implant model. PolyI:C-induced inhibition of tumor growth was attributed to caspase-8/3 cascade activation in tumor cells that occurred independently of CD8α+/CD103+ dendritic cells (DCs) and CTLs. CD11b+Ly6G+ cells was essential for the antitumor effect because depletion of CD11b+Ly6G+ cells totally abrogated tumor regression and caspase activation after polyI:C treatment. CD11b+Ly6G+ cells that had been activated with polyI:C showed cytotoxicity and inhibited tumor growth through the production of reactive oxygen species (ROS)/reactive nitrogen species (RNS). These responses were abolished in either Toll/interleukin-1 receptor domain-containing adaptor molecule-1 (TICAM-1)−/− or interferon (IFN)-αβ receptor 1 (IFNAR1)−/− mice. Thus, our results suggest that polyI:C activates the TLR3/TICAM-1 and IFNAR signaling pathways in CD11b+Ly6G+ cells in tumors, thereby eliciting their antitumor activity, independent of those in CD8α+/CD103+ DCs that prime CTLs. PMID:27834952

  16. Reversible photochromic system based on rhodamine B salicylaldehyde hydrazone metal complex.

    Science.gov (United States)

    Li, Kai; Xiang, Yu; Wang, Xiaoyan; Li, Ji; Hu, Rongrong; Tong, Aijun; Tang, Ben Zhong

    2014-01-29

    Photochromic molecules are widely applied in chemistry, physics, biology, and materials science. Although a few photochromic systems have been developed before, their applications are still limited by complicated synthesis, low fatigue resistance, or incomplete light conversion. Rhodamine is a class of dyes with excellent optical properties including long-wavelength absorption, large absorption coefficient, and high photostability in its ring-open form. It is an ideal chromophore for the development of new photochromic systems. However, known photochromic rhodamine derivatives, such as amides, exhibit only millisecond lifetimes in their colored ring-open forms, making their application very limited and difficult. In this work, rhodamine B salicylaldehyde hydrazone metal complex was found to undergo intramolecular ring-open reactions upon UV irradiation, which led to a distinct color and fluorescence change both in solution and in solid matrix. The complex showed good fatigue resistance for the reversible photochromism and long lifetime for the ring-open state. Interestingly, the thermal bleaching rate was tunable by using different metal ions, temperatures, solvents, and chemical substitutions. It was proposed that UV light promoted isomerization of the rhodamine B derivative from enol-form to keto-form, which induced ring-opening of the rhodamine spirolactam in the complex to generate color. The photochromic system was successfully applied for photoprinting and UV strength measurement in the solid state. As compared to other reported photochromic molecules, the system in this study has its advantages of facile synthesis and tunable thermal bleaching rate, and also provides new insights into the development of photochromic materials based on metal complex and spirolactam-containing dyes.

  17. Environmentally Robust Rhodamine Reporters for Probe-based Cellular Detection of the Cancer-linked Oxidoreductase hNQO1.

    Science.gov (United States)

    Best, Quinn A; Johnson, Amanda E; Prasai, Bijeta; Rouillere, Alexandra; McCarley, Robin L

    2016-01-15

    We successfully synthesized a fluorescent probe capable of detecting the cancer-associated quinoneoxidoreductase isozyme-1 within human cells, based on results from an investigation of the stability of various rhodamines and seminaphthorhodamines toward the biological reductant NADH, present at ∼100-200 μM within cells. While rhodamines are generally known for their chemical stability, we observe that NADH causes significant and sometimes rapid modification of numerous rhodamine analogues, including those oftentimes used in imaging applications. Results from mechanistic studies lead us to rule out a radical-based reduction pathway, suggesting rhodamine reduction by NADH proceeds by a hydride transfer process to yield the reduced leuco form of the rhodamine and oxidized NAD(+). A relationship between the structural features of the rhodamines and their reactivity with NADH is observed. Rhodamines with increased alkylation on the N3- and N6-nitrogens, as well as the xanthene core, react the least with NADH; whereas, nonalkylated variants or analogues with electron-withdrawing substituents have the fastest rates of reaction. These outcomes allowed us to judiciously construct a seminaphthorhodamine-based, turn-on fluorescent probe that is capable of selectively detecting the cancer-associated, NADH-dependent enzyme quinoneoxidoreductase isozyme-1 in human cancer cells, without the issue of NADH-induced deactivation of the seminaphthorhodamine reporter.

  18. PENGETAHUAN DAN PERILAKU PEDAGANG CABE MERAH GILING DALAM PENGGUNAAN RHODAMINE B DI PASAR TRADISIONAL DI DKI JAKARTA

    Directory of Open Access Journals (Sweden)

    Djarismawati Djarismawati

    2012-11-01

    Full Text Available Rhodamine B, a basic dye, is prohibited to be used in foods as it is hazardous to health. Recently, it is being used to make ground red chili and oher foods more colorful and brighter. A study was carried out in DKI Jakarta to elicit information about the knowledge and practice of ground red chili vendors using Rhodamine B in three traditional markets of Jakarta. A total of 90 samples were collected from Kramat Jati, Pasar Minggu, and Tanah Abang markets. The laboratory examination result confirmed that 67% of samples contained Rhodamine B. There were 60% of respondents who knew about the health hazard of Rhodamine B and 45% of them use if to make the ground chili a brighter red. The study also showed that there was a statistical correlation between the vendors knowledge and the use of Rhodamine B. The study suggests that regular inspection and education should be conducted to improve the knowledge of ground red chili vendors, as to increase awareness of the health hazards of Rhodamine B in foods.   Keywords: knowledge, practice, red chili, Rhodamine B

  19. Selective Activation of N,N'-Diacyl Rhodamine Pro-fluorophores Paired with Releasing Enzyme, Porcine Liver Esterase (PLE).

    Science.gov (United States)

    Abney, Kristopher K; Ramos-Hunter, Susan J; Romaine, Ian M; Godwin, J Shawn; Sulikowski, Gary A; Weaver, Charles David

    2018-04-21

    This study reports the synthesis and testing of a family of rhodamine pro-fluorophores and an enzyme capable of converting pro-fluorophores to Rhodamine 110. We prepared a library of simple N,N'-diacyl rhodamines and investigated Porcine Liver Esterase (PLE) as an enzyme to activate rhodamine-based pro-fluorophores. A PLE-expressing cell line generated an increase in fluorescence rapidly upon pro-fluorophore addition demonstrating the rhodamine pro-fluorophores are readily taken up and fluorescent upon PLE-mediated release. Rhodamine pro-fluorophore amides trifluoroacetamide (TFAm) and proponamide (PAm) appeared to be the best substrates using a cell-based assay using PLE expressing HEK293. Our pro-fluorophore series showed diffusion into live cells and resisted endogenous hydrolysis. The use of our engineered cell line containing the exogenous enzyme PLE demonstrated the rigorousness of amide masking when compared to cells not containing PLE. This simple and selective pro-fluorophore rhodamine pair with PLE offers the potential to be used in vitro and in vivo fluorescence based assays. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Alkali metal adsorbate sputtering by molecular impact

    International Nuclear Information System (INIS)

    Moran, J.P.; Wachman, H.Y.; Trilling, L.

    1974-01-01

    An exploratory study of the sputtering by a krypton molecular beam of rubidium adsorbed at low coverage on a tungsten substrate has been described in a previous paper. An extension of this work is reported now

  1. PERVAPORATION USING ADSORBENT-FILLED MEMBRANES

    Science.gov (United States)

    Membranes containing selective fillers, such as zeolites and activated carbon, can improve the separation by pervaporation. Applications of adsorbent-filled membranes in pervaporation have been demonstrated by a number of studies. These applications include removal of organic co...

  2. Chitin Adsorbents for Toxic Metals: A Review

    Directory of Open Access Journals (Sweden)

    Ioannis Anastopoulos

    2017-01-01

    Full Text Available Wastewater treatment is still a critical issue all over the world. Among examined methods for the decontamination of wastewaters, adsorption is a promising, cheap, environmentally friendly and efficient procedure. There are various types of adsorbents that have been used to remove different pollutants such as agricultural waste, compost, nanomaterials, algae, etc., Chitin (poly-β-(1,4-N-acetyl-d-glucosamine is the second most abundant natural biopolymer and it has attracted scientific attention as an inexpensive adsorbent for toxic metals. This review article provides information about the use of chitin as an adsorbent. A list of chitin adsorbents with maximum adsorption capacity and the best isotherm and kinetic fitting models are provided. Moreover, thermodynamic studies, regeneration studies, the mechanism of adsorption and the experimental conditions are also discussed in depth.

  3. Black Sprayable Molecular Adsorber Coating Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of this technology project is to develop, optimize, and flight qualify a black version of the molecular adsorber coating and a conductive version...

  4. Methyl iodide tests on used adsorbents

    International Nuclear Information System (INIS)

    Kovach, J.L.

    1993-01-01

    This paper discusses the history of events leading to the current problems in radioiodine test conditions. These radioiodine tests are performed in the adsorbent media from both safety and non-safety related Nuclear Air Treatment Systems (NATS). The main problem addressed is that currently there are still numerous plant technical specifications for NATS which reference outdated test protocols for the surveillance testing of the radioactive methyl iodide performance of the adsorbents. Recommendations for correcting the test condition problems are presented. 7 refs

  5. Dissolved Air Flotation of arsenic adsorbent particles

    Directory of Open Access Journals (Sweden)

    Mario Enrique Santander Muñoz

    2015-01-01

    Full Text Available The removal of arsenic from synthetic effluent was studied using the adsorbent particle flotation technique (APF and dissolved air flotation (DAF. A sample of an iron mineral was used as adsorbent particles of arsenic, ferric chloride as coagulant, cationic poly-acrylamide (NALCO 9808 as flocculants, and sodium oleate as collector. Adsorption studies to determine the pH influence, contact time, and adsorbent particles concentration on the adsorption of arsenic were carried out along with flotation studies to determine the removal efficiency of adsorbents particles. The results achieved indicate that the adsorption kinetic of arsenic is very rapid and that in range of pH’s from 2 to 7 the adsorption percentages remain constant. The equilibrium conditions were achieved in 60 minutes and about 95% of arsenic was adsorbed when used an adsorbent concentration of 2 g/L and pH 6.3. The maximum adsorption capacity of adsorbent particles was 4.96 mg/g. The mean free energy of adsorption (E was found to be 2.63 kJ/mol, which suggests physisorption. The results of the flotation studies demonstrated that when synthetic effluents with 8.9 mg/L of arsenic were treated under the following experimental conditions; 2 g/L of adsorbent particles, 120 mg/L of Fe(III, 2 mg/L of Nalco 9808, 20 mg/L of sodium oleate, and 40% of recycle ratio in the DAF, it was possible to reach 98% of arsenic removal and 6.3 NTU of residual turbidity in clarified synthetic effluent.

  6. Properties and selection criteria for adsorbents

    International Nuclear Information System (INIS)

    Wirth, H.

    1976-01-01

    The paper gives a survey of the most important industrial adsorbents and of their suitability for different purposes. With special consideration of activated carbon, the properties and characteristic data are discussed which are used for assessing adsorbents. These, among other things, are as follows: specific surface area, pore size distribution, adsorption isotherms, hydrophobic properties, catalytic properties, chemical resistance, heat resistance, particle size and hardness. (orig.) [de

  7. Protein purification using magnetic adsorbent particles

    DEFF Research Database (Denmark)

    Franzreb, M; Siemann-Herzberg, M.; Hobley, Timothy John

    2006-01-01

    The application of functionalised magnetic adsorbent particles in combination with magnetic separation techniques has received considerable attention in recent years. The magnetically responsive nature of such adsorbent particles permits their selective manipulation and separation in the presence...... separations are fast, gentle, scaleable, easily automated, can achieve separations that would be impossible or impractical to achieve by other techniques, and have demonstrated credibility in a wide range of disciplines, including minerals processing, wastewater treatment, molecular biology, cell sorting...

  8. Mesoporous Silica: A Suitable Adsorbent for Amines

    Directory of Open Access Journals (Sweden)

    Abdollahzadeh-Ghom Sara

    2009-01-01

    Full Text Available Abstract Mesoporous silica with KIT-6 structure was investigated as a preconcentrating material in chromatographic systems for ammonia and trimethylamine. Its adsorption capacity was compared to that of existing commercial materials, showing its increased adsorption power. In addition, KIT-6 mesoporous silica efficiently adsorbs both gases, while none of the employed commercial adsorbents did. This means that KIT-6 Mesoporous silica may be a good choice for integrated chromatography/gas sensing micro-devices.

  9. Echinococcus canadensis (Cestoda: Taeniidae) is a valid species consisting of the mitochondrial genotypes G6, G7, G8 and G10

    Science.gov (United States)

    The species status of Echinococcus canadensis has long been controversial, mainly because it consists of the mitochondrial genotypes G6, G7, G8 and G10 with different host affinity: G6 (camel strain) and G7 (pig strain) with domestic cycles and G8 (cervid strain) and G10 (Fennoscandian cervid strain...

  10. Statement of basis/proposed plan for the Central Shops Burning/Rubble Pit (631-6G). Revision 1, Final

    International Nuclear Information System (INIS)

    Palmer, E.

    1996-01-01

    The purpose of this plan is to describe the preferred alternative for addressing the Central Shops Burning/Rubble Pit 631-6G (BRP6G) located at SRS, in northwestern Barnwell County, South Carolina and to provide an opportunity for public input into the remedial action selection process. Arsenic, beryllium, iron, and octachloro-dibenzo-p-dioxin isomers (OCDD) concentrations in the pit soil are at levels consistent with those found in the background. Therefore, the only contamination attributable to actions in BRP6G is PCB-1254. After the risk contributions of these chemicals are eliminated, the only remaining risk attributable to the pit soil is from PCB-1254 (about 2 x 10 -6 via ingestion of vegetables grown on-site). The maximum concentration of PCB-1254 detected in the pit was 0.115 mg/kg, approximately 10% of the residential action level for PCBs of 1 mg/kg. Based on the results of the remedial investigation and the BRA, it is proposed that No Action be performed for the BRP6G. Considering the low levels of residual contamination present principally below 1.2 meters (4 feet) within the pit and the associated risks (about 2 x 10 -6 ) within the lower level of EPA's target risk range, action is not warranted for this unit

  11. RCRA Facility Investigation/Remedial Investigation Report with Baseline Risk Assessment for the Central Shops Burning/Rubble Pit (631-6G), Volume 1 Final

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The Burning/Rubble Pits at the Savannah River Site were usually shallow excavations approximately 3 to 4 meters in depth. Operations at the pits consisted of collecting waste on a continuous basis and burning on a monthly basis. The Central Shops Burning/Rubble Pit 631- 6G (BRP6G) was constructed in 1951 as an unlined earthen pit in surficial sediments for disposal of paper, lumber, cans and empty galvanized steel drums. The unit may have received other materials such as plastics, rubber, rags, cardboard, oil, degreasers, or drummed solvents. The BRP6G was operated from 1951 until 1955. After disposal activities ceased, the area was covered with soil. Hazardous substances, if present, may have migrated into the surrounding soil and/or groundwater. Because of this possibility, the United States Environmental Protection Agency (EPA) has designated the BRP6G as a Solid Waste Management Unit (SWMU) subject to the Resource Conservation Recovery Act/Comprehensive Environmental Response, Compensation and Liability Act (RCRA/CERCLA) process.

  12. Assimilating the ICE-6G_C Reconstruction of the Latest Quaternary Ice Age Cycle Into Numerical Simulations of the Laurentide and Fennoscandian Ice Sheets

    Science.gov (United States)

    Stuhne, G. R.; Peltier, W. R.

    2017-12-01

    We analyze the effects of nudging 100 kyr numerical simulations of the Laurentide and Fennoscandian ice sheets toward the glacial isostatic adjustment-based (GIA-based) ICE-6G_C reconstruction of the most recent ice age cycle. Starting with the ice physics approximations of the PISM ice sheet model and the SeaRISE simulation protocols, we incorporate nudging at characteristic time scales, τf, through anomalous mass balance terms in the ice mass conservation equation. As should be expected, these mass balances exhibit physically unrealistic details arising from pure GIA-based reconstruction geometry when nudging is very strong (τf=20 years for North America), while weakly nudged (τf=1,000 years) solutions deviate from ICE-6G_C sufficiently to degrade its observational fit quality. For reasonable intermediate time scales (τf=100 years and 200 years), we perturbatively analyze nudged ice dynamics as a superposition of "leading-order smoothing" that diffuses ICE-6G_C in a physically and observationally consistent manner and "higher-order" deviations arising, for instance, from biases in the time dependence of surface climate boundary conditions. Based upon the relative deviations between respective nudged simulations in which these biases follow surface temperature from ice cores and eustatic sea level from marine sediment cores, we compute "ice core climate adjustments" that suggest how local paleoclimate observations may be applied to the systematic refinement of ICE-6G_C. Our results are consistent with a growing body of evidence suggesting that the geographical origins of Meltwater Pulse 1B (MWP1b) may lie primarily in North America as opposed to Antarctica (as reconstructed in ICE-6G_C).

  13. Long-lived and largely red-shifted photoluminescence of solid-state rhodamine dyes: Molecular exciton coupling and structural effect

    International Nuclear Information System (INIS)

    Zhang, Xian-Fu; Zhang, Ya-Kui

    2015-01-01

    The optical absorption and fluorescence properties of five rhodamine dyes in solid-state are measured and show large difference from that in their gas phase or liquid solvents. All solid-state rhodamine dyes strongly absorb all light in UV and visible region, but emit only red and NIR fluorescence (680–800 nm, >100 nm red-shifted from that in solution). Further more, the absorption maxima of a solid-state rhodamine show a large red-shifted band (~100 nm) and blue-shifted peak (~125 nm) compared to that in solutions, indicating a strong molecular exciton coupling between molecules. All solid-state rhodamines still show reasonably good fluorescence quantum yield (Φ f ). In particular, solid-state Rhodamine B butyl ester and sulfonyl Rhodamine B showed a much longer emission lifetime (τ f ) than that of the corresponding molecular rhodamine, i.e. 4.12 and 4.14 ns in solid state compared to 1.61 and 2.47 ns in solution. The chemical structure of a rhodamine molecule showed dramatic effect on Φ f and τ f values for solid state rhodamine. The larger substituent in the benzene moiety favors higher Φ f and τ f values of rhodamine solids. These effects can be elucidated by the relation between structure-molecular distance and molecular exciton couplings. - Highlights: • Optical properties of solid rhodamines show large difference from that in solutions. • Solid-state rhodamine dyes emit red and NIR fluorescence (680–800 nm). • Solid-state rhodamines still show reasonably good fluorescence quantum yield. • Solid-state rhodamines have much longer fluorescence lifetimes than that in solutions

  14. Long-lived and largely red-shifted photoluminescence of solid-state rhodamine dyes: Molecular exciton coupling and structural effect

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xian-Fu, E-mail: zhangxianfu@tsinghua.org.cn [Institute of Applied Photochemistry & Center of Analysis and Measurements, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei Province (China); MPC Technologies, Hamilton, ON, Canada L8S 3H4 (Canada); Zhang, Ya-Kui [Institute of Applied Photochemistry & Center of Analysis and Measurements, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei Province (China)

    2015-10-15

    The optical absorption and fluorescence properties of five rhodamine dyes in solid-state are measured and show large difference from that in their gas phase or liquid solvents. All solid-state rhodamine dyes strongly absorb all light in UV and visible region, but emit only red and NIR fluorescence (680–800 nm, >100 nm red-shifted from that in solution). Further more, the absorption maxima of a solid-state rhodamine show a large red-shifted band (~100 nm) and blue-shifted peak (~125 nm) compared to that in solutions, indicating a strong molecular exciton coupling between molecules. All solid-state rhodamines still show reasonably good fluorescence quantum yield (Φ{sub f}). In particular, solid-state Rhodamine B butyl ester and sulfonyl Rhodamine B showed a much longer emission lifetime (τ{sub f}) than that of the corresponding molecular rhodamine, i.e. 4.12 and 4.14 ns in solid state compared to 1.61 and 2.47 ns in solution. The chemical structure of a rhodamine molecule showed dramatic effect on Φ{sub f} and τ{sub f} values for solid state rhodamine. The larger substituent in the benzene moiety favors higher Φ{sub f} and τ{sub f} values of rhodamine solids. These effects can be elucidated by the relation between structure-molecular distance and molecular exciton couplings. - Highlights: • Optical properties of solid rhodamines show large difference from that in solutions. • Solid-state rhodamine dyes emit red and NIR fluorescence (680–800 nm). • Solid-state rhodamines still show reasonably good fluorescence quantum yield. • Solid-state rhodamines have much longer fluorescence lifetimes than that in solutions.

  15. Removal of Rhodamine B under visible irradiation in the presence of Fe⁰, H₂O₂, citrate and aeration at circumneutral pH.

    Science.gov (United States)

    Hong, Jun; Lu, Sijia; Zhang, Caixiang; Qi, Shihua; Wang, Yanxin

    2011-09-01

    A new Vis-Fe(0)-H(2)O(2)-citrate-O(2) system comprising zero-valent iron, hydrogen peroxide, citrate anion and aeration at circumneutral pH under visible irradiation was studied. 21 μmol L(-1) of Rhodamine B (RhB) was chosen as the substrate to be tested. Experiments were conducted under conditions of 2.9 mmol L(-1) of H(2)O(2), 12.6g of Fe(0) and 1.0 mmol L(-1) of citrate at pH 7.5. Results showed that, in 1h reaction, 54% of RhB was removed with corresponding 26% of COD reduced. Meanwhile, the amount of released dissolved irons from Fe(0) surface was found to be at a very low level as removal in 3h reaction. Control and factor influencing experiments showed that the prohibitive extents of individual factor importance on RhB removal followed a decreasing order of Fe(0)>H(2)O(2)>citrate>Vis>O(2). This study showed an excellent system that could remove refractory organic compounds from water in laboratory researches, and also provided a good idea to reduce secondary contamination by dissolved irons in future investigations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Novel Fiber-Based Adsorbent Technology; FINAL

    International Nuclear Information System (INIS)

    Nixon, P.G.; Tsukamoto, T.; Brose, D.J.

    2001-01-01

    The overall of this Department of Energy (DOE) Phase II SBIR program was to develop a new class of highly robust fiber-based adsorbents for recovery of heavy metals from aqueous waste-streams. The fiber-based adsorbents,when commercialized,will be used for clean up metals in aqueous waste-streams emanating from DOE facilities,industry,mining,and groundwater-cleanup operations.The amount of toxic waste released by these streams is of great significance.The U.S.Environment Protection Agency (EPA) reports that in 1990 alone,4.8 billion pounds of toxic chemicals were released into the environment.Of this waste,the metals-containing waste was the second largest contributor,representing 569 million pounds. This report presents the results of the Phase II program,which successfully synthesized noval fiber-based adsorbents for the removal of Group 12 metals(i.e.mercury),Group 14 metals (lead),and Group 10 metals(platinum and palladium) from contaminated groundwater and industrial waste streams.These fiber-based adsorbents are ideally suited for the recovery of metal ions from aqueous waste streams presently not treatable due to the degrading nature of corrosive chemicals or radioactive components in the feed stream. The adsorbents developed in this program rely on chemically resistant and robust carbon fibers and fabrics as supports for metal-ion selective ligands.These adsorbents demonstrate loading capacities and selectivities for metal ions exceeding those of conventional ion-exchange resins.The adsorbents were also used to construct filter modules that demonstrate minimal fouling,minimal compaction,chemical and physical robustness,and regeneration of metal loading capacity without loss of performance

  17. Broadband Light-Harvesting Molecular Triads with High FRET Efficiency Based on the Coumarin-Rhodamine-BODIPY Platform.

    Science.gov (United States)

    He, Longwei; Zhu, Sasa; Liu, Yong; Xie, Yinan; Xu, Qiuyan; Wei, Haipeng; Lin, Weiying

    2015-08-17

    Broadband capturing and FRET-based light-harvesting molecular triads, CRBs, based on the coumarin-rhodamine-BODIPY platform were rationally designed and synthesized. The absorption band of CRBs starts from blue-green to yellow-orange regions (330-610 nm), covering the strong radiation scope of sunlight. The peripheral coumarin and BODIPY chromophore energy could transfer to the central acceptor rhodamine by a one-step direct way. The energy of the coumarin moiety could also transfer to the BODIPY unit, subsequently transferring to the rhodamine core by two-step sequential ways. Both the efficiencies of the coumarin moiety and the BODIPY unit to the rhodamine core in CRBs, determined by two different ways, are very high. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Chemiluminescence behavior based on oxidation reaction of rhodamine B with cerium(IV) in sulfuric acid medium

    International Nuclear Information System (INIS)

    Ma Yongjun; Jin Xiaoyong; Zhou Min; Zhang Ziyu; Teng Xiulan; Chen Hui

    2003-01-01

    The chemiluminescence (CL) of the rhodamine B (RhB)-cerium(IV) system was investigated by flow-injection. Rhodamine B was suggested to be a suitable chemiluminescent reagent in acidic conditions. When the concentration of rhodamine B was 100 mg l -1 and cerium sulfate was 1.6 mmol l -1 in sulfuric acid, the chemiluminescent intensity was found to be highest by using 0.3 mol l -1 sulfuric acid as a carrier solution. The particular chemiluminescent system could tolerate such distinct acidic environments that it was utilized for detecting many compounds that are stable in acidic solutions. Furthermore, by virtue of IR, UV-Vis and luminescence spectroscopic measurements, the chemiluminescent behavior of rhodamine B was studied and a possible mechanism for this chemiluminescent reaction was proposed. The emitter was affirmed to be a radical species due to one of the oxidation products of RhB; the chemiluminescent emissive wavelength was about 425 nm

  19. Turn-On Fluorescent Chemosensor for Hg2+ Based on Multivalent Rhodamine Ligands

    Science.gov (United States)

    Wang, Xuemei; Iqbal, Mudassir; Huskens, Jurriaan; Verboom, Willem

    2012-01-01

    Rhodamine-based fluorescent chemosensors 1 and 2 exhibit selective fluorescence enhancement to Fe3+ and Hg2+ over other metal ions at 580 nm in CH3CN/H2O (3/1, v/v) solution. Bis(rhodamine) chemosensor 1, under optimized conditions (CH3CN/HEPES buffer (0.02 M, pH = 7.0) (95/5, v/v)), shows a high selectivity and sensitivity to Hg2+, with a linear working range of 0–50 μM, a wide pH span of 4–10, and a detection limit of 0.4 μM Hg2+. PMID:23222686

  20. Characteristics of a Broadband Dye Laser Using Pyrromethene and Rhodamine Dyes

    Science.gov (United States)

    Tedder, Sarah A.; Danehy, Paul M.; Wheeler, Jeffrey L.

    2011-01-01

    A broadband dye laser pumped by a frequency-doubled Nd:YAG laser with a full-width half-maximum (FWHM) from 592 to 610 nm was created for the use in a dual-pump broadband CARS system called WIDECARS. The desired broadband dye laser was generated with a mixture of Pyrromethene dyes as an oscillator gain medium and a spectral selective optic in the oscillator cavity. A mixture of Rhodamine dyes were used in the amplifier dye cell. To create this laser a study was performed to characterize the spectral behavior of broadband dye lasers created with Rhodamine dyes 590, 610, and 640, Pyrromethene dyes 597 and 650 as well as mixture of these dyes.

  1. Adsorption properties of cationic rhodamine B dye onto metals chloride-activated castor bean residue carbons.

    Science.gov (United States)

    Zhi, Lee Lin; Zaini, Muhammad Abbas Ahmad

    2017-02-01

    This work was aimed to evaluate the feasibility of castor bean residue based activated carbons prepared through metals chloride activation. The activated carbons were characterized for textural properties and surface chemistry, and the adsorption data of rhodamine B were established to investigate the removal performance. Zinc chloride-activated carbon with specific surface area of 395 m 2 /g displayed a higher adsorption capacity of 175 mg/g. Magnesium chloride and iron(III) chloride are less toxic and promising agents for composite chemical activation. The adsorption data obeyed Langmuir isotherm and pseudo-second-order kinetics model. The rate-limiting step in the adsorption of rhodamine B is film diffusion. The positive values of enthalpy and entropy indicate that the adsorption is endothermic and spontaneous at high temperature.

  2. Teaching Old Dyes New Tricks: Biological Probes Built from Fluoresceins and Rhodamines.

    Science.gov (United States)

    Lavis, Luke D

    2017-06-20

    Small-molecule fluorophores, such as fluorescein and rhodamine derivatives, are critical tools in modern biochemical and biological research. The field of chemical dyes is old; colored molecules were first discovered in the 1800s, and the fluorescein and rhodamine scaffolds have been known for over a century. Nevertheless, there has been a renaissance in using these dyes to create tools for biochemistry and biology. The application of modern chemistry, biochemistry, molecular genetics, and optical physics to these old structures enables and drives the development of novel, sophisticated fluorescent dyes. This critical review focuses on an important example of chemical biology-the melding of old and new chemical knowledge-leading to useful molecules for advanced biochemical and biological experiments.

  3. Spectrophotometric procedure using rhodamine B for determination of submicrogram quantities of antimony in rocks

    Science.gov (United States)

    Schnepfe, M.M.

    1973-01-01

    A spectrophotometric procedure using Rhodamine B is given for the determination of antimony in mineralized rocks after its separation as stibine. A study of the Rhodamine B reaction points to the importance of the order of addition of reagents in enhancing sensitivity and increasing the stability of the system. The tolerance of some 26 elements is established for the overall procedure. Although the limit of determination is approximately 0??5 ppm Sb in a 0??2-g sample, the procedure is intended primarily for screening samples containing more than 1 ppm Sb. In pure solutions 0??1 ??g of antimony can be determined with a relative standard deviation of 25%. For >0??2 ??g of antimony a relative standard deviation of 15% or less can be expected. ?? 1973.

  4. Ratiometric Signaling of Hypochlorite by the Oxidative Cleavage of Sulfonhydrazide-Based Rhodamine-Dansyl Dyad.

    Science.gov (United States)

    Lee, Hyo Jin; Cho, Min Jeoung; Chang, Suk-Kyu

    2015-09-08

    A reaction-based probe 1 for hypochlorite signaling was designed by the conjugation of two fluorophores, rhodamine and dansyl moieties, by the reaction of rhodamine B base with dansylhydrazine. Probe 1 exhibited pronounced hypochlorite-selective chromogenic and fluorescent signaling behavior over other oxidants used in practical applications, such as hydrogen peroxide, peracetic acid, and ammonium persulfate, as well as commonly encountered metal ions and anions. Signaling was attributed to the hypochlorite-induced oxidative cleavage of the sulfonhydrazide linkage of the probe. In particular, favorable ratiometric fluorescence signaling was possible by utilizing the emissions of the two fluorophores. A detection limit of 1.13 × 10(-6) M (0.058 ppm) was estimated for the determination of hypochlorite. A paper-based test strip was prepared and was used as a semiquantitative indicator for the presence of hypochlorite in aqueous solutions. The probe was also successfully applied for the determination of hypochlorite in practical tap water samples.

  5. A thiourea-appended rhodamine chemodosimeter for mercury(II) and its bioimaging application

    Science.gov (United States)

    Tantipanjaporn, Ajcharapan; Prabpai, Samran; Suksen, Kanoknetr; Kongsaeree, Palangpon

    2018-03-01

    A rhodamine-thiourea conjugate RTP with an o-phenylenediamine linker was developed as a fluorogenic chemodosimeter for Hg2+ detection. In the presence of Hg2+, a colorless solution of RTP turned pink with a maximum absorption band at 555 nm and with a 62-fold fluorescence enhancement at 578 nm (Φ = 0.34). RTP is highly selective to Hg2+ among other metal ions with a detection limit of 1.6 nM (0.3 ppb). A similar rhodamine analog with a flexible ethylenediamine spacer was less selective and less sensitive than RTP. Hg2+ induced cyclic guanylation to yield a benzimidazole moiety and a subsequent ring-opening of the spirolactam unit resulted in chromogenic and fluorogenic changes. The membrane-permeable RTP probe was successfully demonstrated in monitoring of Hg2+ in cultured HeLa cells.

  6. Preparation of TiO₂/Carbon Nanotubes/Reduced Graphene Oxide Composites with Enhanced Photocatalytic Activity for the Degradation of Rhodamine B.

    Science.gov (United States)

    Huang, Yanzhen; Chen, Dongping; Hu, Xinling; Qian, Yingjiang; Li, Dongxu

    2018-06-13

    In this report, ternary titanium dioxide (TiO₂)/carbon nanotubes (CNTs)/reduced graphene oxide (rGO) composites were fabricated by a facile and environmentally friendly one-pot solvethermal method for the removal of Rhodamine B (RhB). Its structures were represented by X-ray powder diffraction (XRD), Raman spectrometry, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photocatalytic performance was tested by the degradation efficiency of RhB under UV-vis light irradiation. The experimental results indicated that photocatalytic activity improved as the ratio of CNTs:TiO₂ ranged from 0.5% to 3% but reduced when the content increased to 5% and 10%, and the TiO₂/CNTs/rGO-3% composites showed superior photocatalytic activity compared with the binary ones (i.e., TiO₂/CNTs, TiO₂/rGO) and pristine TiO₂. The rate constant k of the pseudo first-order reaction was about 1.5 times that of TiO₂. The improved photocatalytic activity can be attributed to the addition of rGO and CNTs, which reduced the recombination of photo-induced electron-hole pairs, and the fact that CNTs and rGO, with a high specific surface area and high adsorption ability to efficiently adsorb O₂, H₂O and organics, can increase the hydroxyl content of the photocatalyst surface.

  7. Nanocomposite of exfoliated bentonite/g-C3N4/Ag3PO4 for enhanced visible-light photocatalytic decomposition of Rhodamine B.

    Science.gov (United States)

    Ma, Jianfeng; Huang, Daiqin; Zhang, Wenyi; Zou, Jing; Kong, Yong; Zhu, Jianxi; Komarneni, Sridhar

    2016-11-01

    Novel visible-light-driven heterojunction photocatalyst comprising exfoliated bentonite, g-C3N4 and Ag3PO4 (EB/g-C3N4/Ag3PO4) was synthesized by a facile and green method. The composites EB/g-C3N4/Ag3PO4 were characterized by X-ray diffraction, Transmission electron microscopy, Fourier transform infrared spectroscopy, UV-Vis diffuse reflectance spectroscopy and the Brunauer, Emmett, and Teller (BET) surface area method. Under visible light irradiation, EB/g-C3N4/Ag3PO4 composites displayed much higher photocatalytic activity than that of either pure g-C3N4 or pure Ag3PO4 in the degradation of Rhodamine B (RhB). Among the hybrid photocatalysts, EB/g-C3N4/Ag3PO4 composite containing 20 wt% Ag3PO4 exhibited the highest photocatalytic activity for the decolorization of RhB. Under the visible-light irradiation, the RhB dye was completely decolorized in less than 60 min. The enhanced photocatalytic performance is attributed to the stable structure, enlarged surface area, strong adsorbability, strong light absorption ability, and high-efficiency separation rate of photoinduced electron-hole pairs. Our finding paves a way to design highly efficient and stable visible-light-induced photocatalysts for practical applications in wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Evolution of group 14 rhodamines as platforms for near-infrared fluorescence probes utilizing photoinduced electron transfer.

    Science.gov (United States)

    Koide, Yuichiro; Urano, Yasuteru; Hanaoka, Kenjiro; Terai, Takuya; Nagano, Tetsuo

    2011-06-17

    The absorption and emission wavelengths of group 14 pyronines and rhodamines, which contain silicon, germanium, or tin at the 10 position of the xanthene chromophore, showed large bathochromic shifts compared to the original rhodamines, owing to stabilization of the LUMO energy levels by σ*-π* conjugation between group 14 atom-C (methyl) σ* orbitals and a π* orbital of the fluorophore. These group 14 pyronines and rhodamines retain the advantages of the original rhodamines, including high quantum efficiency in aqueous media (Φ(fl) = 0.3-0.45), tolerance to photobleaching, and high water solubility. Group 14 rhodamines have higher values of reduction potential than other NIR light-emitting original rhodamines, and therefore, we speculated their NIR fluorescence could be controlled through the photoinduced electron transfer (PeT) mechanism. Indeed, we found that the fluorescence quantum yield (Φ(fl)) of Si-rhodamine (SiR) and Ge-rhodamine (GeR) could be made nearly equal to zero, and the threshold level for fluorescence on/off switching lies at around 1.3-1.5 V for the SiRs. This is about 0.1 V lower than in the case of TokyoGreens, in which the fluorophore is well established to be effective for PeT-based probes. That is to say, the fluorescence of SiR and GeR can be drastically activated by more than 100-fold through a PeT strategy. To confirm the validity of this strategy for developing NIR fluorescence probes, we employed this approach to design two kinds of novel fluorescence probes emitting in the far-red to NIR region, i.e., a series of pH-sensors for use in acidic environments and a Zn(2+) sensor. We synthesized these probes and confirmed that they work well.

  9. Ion associates of rare earth elements with salicylic acid derivatives and rhodamine B and their analytical application

    Energy Technology Data Exchange (ETDEWEB)

    Tselik, E I; Poluehktov, N S; Mishchenko, V T [AN Ukrainskoj SSR, Odessa. Fiziko-Khimicheskij Inst.

    1979-10-01

    The determination of rare earth elements by extraction photometry (fluorimetric) technique with the use of salicylic acid derivatives and Rhodamine B is reported. The best results in the determination of REE in the form of ionic associates between their acidocomplexes and Rhodamine B are obtained with the use of 3,5-diiodinesalicylic acid. The ratio between components in the compounds formed and the conditions of extraction are determined.

  10. Black molecular adsorber coatings for spaceflight applications

    Science.gov (United States)

    Abraham, Nithin S.; Hasegawa, Mark M.; Straka, Sharon A.

    2014-09-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  11. Process for producing zeolite adsorbent and process for treating radioactive liquid waste with the zeolite adsorbent

    International Nuclear Information System (INIS)

    Motojima, K.; Kawamura, F.

    1984-01-01

    Zeolite is contacted with an aqueous solution containing at least one of copper, nickel, cobalt, manganese and zinc salts, preferably copper and nickel salts, particularly preferably copper salt, in such a form as sulfate, nitrate, or chloride, thereby adsorbing the metal on the zeolite in its pores by ion exchange, then the zeolite is treated with a water-soluble ferrocyanide compound, for example, potassium ferrocyanide, thereby forming metal ferrocyanide on the zeolite in its pores. Then, the zeolite is subjected to ageing treatment, thereby producing a zeolite adsorbent impregnated with metal ferrocyanide in the pores of zeolite. The adsorbent can selectively recover cesium with a high percent cesium removal from a radioactive liquid waste containing at least radioactive cesium, for example, a radioactive liquid waste containing cesium and such coexisting ions as sodium, magnesium, calcium and carbonate ions at the same time at a high concentration. The zeolite adsorbent has a stable adsorbability for a prolonged time

  12. Method for modifying trigger level for adsorber regeneration

    Science.gov (United States)

    Ruth, Michael J.; Cunningham, Michael J.

    2010-05-25

    A method for modifying a NO.sub.x adsorber regeneration triggering variable. Engine operating conditions are monitored until the regeneration triggering variable is met. The adsorber is regenerated and the adsorbtion efficiency of the adsorber is subsequently determined. The regeneration triggering variable is modified to correspond with the decline in adsorber efficiency. The adsorber efficiency may be determined using an empirically predetermined set of values or by using a pair of oxygen sensors to determine the oxygen response delay across the sensors.

  13. Adsorbent catalytic nanoparticles and methods of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Slowing, Igor Ivan; Kandel, Kapil

    2017-01-31

    The present invention provides an adsorbent catalytic nanoparticle including a mesoporous silica nanoparticle having at least one adsorbent functional group bound thereto. The adsorbent catalytic nanoparticle also includes at least one catalytic material. In various embodiments, the present invention provides methods of using and making the adsorbent catalytic nanoparticles. In some examples, the adsorbent catalytic nanoparticles can be used to selectively remove fatty acids from feedstocks for biodiesel, and to hydrotreat the separated fatty acids.

  14. A selectively rhodamine-based colorimetric probe for detecting copper(II) ion.

    Science.gov (United States)

    Zhang, Jiangang; Zhang, Li; Wei, Yanli; Chao, Jianbing; Shuang, Shaomin; Cai, Zongwei; Dong, Chuan

    2014-11-11

    A novel rhodamine derivative 3-bromo-5-methylsalicylaldehyde rhodamine B hydrazone (BMSRH) has been synthesized by reacting rhodamine B hydrazide with 3-bromo-5-methylsalicylaldehyde and developed as a new colorimetric probe for the selective and sensitive detection of Cu2+. Addition of Cu2+ to the solution of BMSRH results in a rapid color change from colorless to red together with an obvious new band appeared at 552 nm in the UV-vis absorption spectra. This change is attributed to the spirocycle form of BMSRH opened via coordination with Cu2+ in a 1:1 stoichiometry and their association constant is determined as 3.2×10(4) L mol(-1). Experimental results indicate that the BMSRH can provide a rapid, selective and sensitive response to Cu2+ with a linear dynamic range 0.667-240 μmol/L. Common interferent ions do not show any interference on the Cu2+ determination. It is anticipated that BMSRH can be a good candidate probe and has potential application for Cu2+ determination. The proposed probe exhibits the following advantages: a quick, simple and facile synthesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Multi step FRET among three laser dyes Pyrene, Acriflavine and Rhodamine B

    International Nuclear Information System (INIS)

    Saha, Jaba; Dey, Dibyendu; Roy, Arpan Datta; Bhattacharjee, D.; Hussain, Syed Arshad

    2016-01-01

    Fluorescence Resonance Energy Transfer (FRET) system using three dyes has been demonstrated. It has been observed that multi step energy transfer occurred from Pyrene to Rhodamine B via Acriflavine. Here Acriflavine acts as an antenna to receive energy from Pyrene and transfer the same to Rhodamine B. This multi step FRET system is advantageous compared to the conventional FRET as this can be used to study molecular level interaction beyond conventional FRET distance (1–10 nm) as well as studying multi-branched macromolecules. The introduction of clay enhances the FRET efficiencies among the dye pair, which is an advantage to make the multi step system more useful. Similar approach can be used for increasing FRET efficiencies by using other dyes. - Highlights: • Multi-step FRET occurred from Pyrene (Py) to Rhodamine B (RhB) via Acriflavine (Acf). • Acf acts as an antenna to receive energy from Py and to transfer energy to RhB. • Multi-step FRET can be used to study molecular level interaction beyond 1–10 nm. • Incorporation of nanoclay laponite enhances the energy transfer efficiency.

  16. New fluorescent pH sensors based on covalently linkable PET rhodamines

    Science.gov (United States)

    Aigner, Daniel; Borisov, Sergey M.; Orriach Fernández, Francisco J.; Fernández Sánchez, Jorge F.; Saf, Robert; Klimant, Ingo

    2012-01-01

    A new class of rhodamines for the application as indicator dyes in fluorescent pH sensors is presented. Their pH-sensitivity derives from photoinduced electron transfer between non-protonated amino groups and the excited chromophore which results in effective fluorescence quenching at increasing pH. The new indicator class carries a pentafluorophenyl group at the 9-position of the xanthene core where other rhodamines bear 2-carboxyphenyl substituents instead. The pentafluorophenyl group is used for covalent coupling to sensor matrices by “click” reaction with mercapto groups. Photophysical properties are similar to “classical” rhodamines carrying 2′-carboxy groups. pH sensors have been prepared with two different matrix materials, silica gel and poly(2-hydroxyethylmethacrylate). Both sensors show high luminescence brightness (absolute fluorescence quantum yield ΦF≈0.6) and high pH-sensitivity at pH 5–7 which makes them suitable for monitoring biotechnological samples. To underline practical applicability, a dually lifetime referenced sensor containing Cr(III)-doped Al2O3 as reference material is presented. PMID:22967541

  17. Foam separation of Rhodamine-G and Evans Blue using a simple separatory bottle system.

    Science.gov (United States)

    Dasarathy, Dhweeja; Ito, Yoichiro

    2017-09-29

    A simple separatory glass bottle was used to improve separation effectiveness and cost efficiency while simultaneously creating a simpler system for separating biological compounds. Additionally, it was important to develop a scalable separation method so this would be applicable to both analytical and preparative separations. Compared to conventional foam separation methods, this method easily forms stable dry foam which ensures high purity of yielded fractions. A negatively charged surfactant, sodium dodecyl sulfate (SDS), was used as the ligand to carry a positively charged Rhodamine-G, leaving a negatively charged Evans Blue in the bottle. The performance of the separatory bottle was tested for separating Rhodamine-G from Evans Blue with sample sizes ranged from 1 to 12mg in preparative separations and 1-20μg in analytical separations under optimum conditions. These conditions including N 2 gas pressure, spinning speed of contents with a magnetic stirrer, concentration of the ligand, volume of the solvent, and concentration of the sample, were all modified and optimized. Based on the calculations at their peak absorbances, Rhodamine-G and Evans Blue were efficiently separated in times ranging from 1h to 3h, depending on sample volume. Optimal conditions were found to be 60psi N 2 pressure and 2mM SDS for the affinity ligand. This novel separation method will allow for rapid separation of biological compounds while simultaneously being scalable and cost effective. Published by Elsevier B.V.

  18. The influence of functional groups on the permeation and distribution of antimycobacterial rhodamine chelators.

    Science.gov (United States)

    Moniz, T; Leite, A; Silva, T; Gameiro, P; Gomes, M S; de Castro, B; Rangel, M

    2017-10-01

    We formerly hypothesized a mechanism whereby the antimycobacterial efficiency of a set of rhodamine labelled iron chelators is improved via the rhodamine fluorophore which enhances the chelators' permeation properties through membranes. To validate our hypothesis in a cellular context and to understand the influence of the structure of the fluorophore on the chelator's uptake and distribution within macrophages we now report comparative confocal microscopy studies performed with a set of rhodamine labelled chelators. We identify the functional groups of the chelator's framework that favor uptake by macrophages and conclude that the antimycobacterial effect is strongly related with the capacity of the chelator to distribute within the host cell and its compartments, a property that is closely related with the chelators' ability to interact with membranes. The quantification of the chelators' interaction with membranes was assessed through measurement of the corresponding partition constants in liposomes. The overall results support that the compounds which are preferentially taken up are the most efficient antimycobacterial chelators and for that reason we infer that the biological activity is modulated by the structural features of the fluorophore. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Toward Protein Structure In Situ: Comparison of Two Bifunctional Rhodamine Adducts of Troponin C

    Science.gov (United States)

    Julien, Olivier; Sun, Yin-Biao; Knowles, Andrea C.; Brandmeier, Birgit D.; Dale, Robert E.; Trentham, David R.; Corrie, John E. T.; Sykes, Brian D.; Irving, Malcolm

    2007-01-01

    As part of a program to develop methods for determining protein structure in situ, sTnC was labeled with a bifunctional rhodamine (BR or BSR), cross-linking residues 56 and 63 of its C-helix. NMR spectroscopy of the N-terminal domain of BSR-labeled sTnC in complex with Ca2+ and the troponin I switch peptide (residues 115–131) showed that BSR labeling does not significantly affect the secondary structure of the protein or its dynamics in solution. BR-labeling was previously shown to have no effect on the solution structure of this complex. Isometric force generation in isolated demembranated fibers from rabbit psoas muscle into which BR- or BSR-labeled sTnC had been exchanged showed reduced Ca2+-sensitivity, and this effect was larger with the BSR label. The orientation of rhodamine dipoles with respect to the fiber axis was determined by polarized fluorescence. The mean orientations of the BR and BSR dipoles were almost identical in relaxed muscle, suggesting that both probes accurately report the orientation of the C-helix to which they are attached. The BSR dipole had smaller orientational dispersion, consistent with less flexible linkers between the rhodamine dipole and cysteine-reactive groups. PMID:17483167

  20. Tests of rhodamine WT dye for toxicity to oysters and fish

    Science.gov (United States)

    Parker, Garald G.

    1973-01-01

    Because of the toxicity to oyster larvae and eggs of rhodamine B dye in concentrations greater than 1 mg/l in earlier tests, there was a concern that rhodamine WT, a similar tracer dye, would have a detrimental effect on marine life being developed under the aquaculture program of the Lummi Indian Tribe near Bellingham, Wash. Tests showed that 48-hour exposures at 24° C of 11,000 oyster eggs per liter and 6,000 12-day-old larvae per liter, in sea water with concentrations of rhodamine WT ranging from 1 μg/l to 10 mg/l, resulted in development of the eggs to normal straight-hinge larvae and no abnormalities in the larvae development. Tests made on the smolt of both silver salmon and Donaldson trout, with the fish held for 17.5 hours in a tankfull of sea water with a dye concentration of 10 mg/l at 22°C showed no mortalities or respiratory problems. With the concentration increased to 375 mg/l, and the time extended an additional 3.2 hours, still no mortalities or abnormalities were noted. The fish remained healthy in dye-free water when last checked a month after the test.

  1. Advanced oxidation of rhodamine B with hydrogen peroxide over ZnCr layered double hydroxide catalysts

    Directory of Open Access Journals (Sweden)

    Nguyen Tien Thao

    2017-09-01

    Full Text Available Zn/Cr layered zinc hydroxide materials with different molar ratios of Cr/Zn have been synthesized through the coprecipitation method at pH of 9.0–9.5. At high Cr/Zn molar ratios of 0.5/1–1/3, the materials possess some layered structure with carbonate anions between the interlayer galleries. The catalysts present uniform particle sizes and quite high surface area. An isomorphous substitution of Zn2+ by Cr3+ in the brucite-like sheets makes the layered Cr-doped zinc hydroxides potential catalysts for efficient oxidation of rhodamine B with H2O2 solution. The experimental results indicated that the intra-lattice Cr3+ ions are more active than Cr2O3 components in the oxidative removal of rhodamine B. The degradation efficiency is dependent on the intra lattice Cr3+ contents and reaction variables. The Cr/Zn LDH gave a high decolorization (99% of rhodamine B at near neutral pH and room temperature.

  2. Identification of 5g and 6g terms and revised ionization energies in the Yb II 4f14nl isoelectronic sequence

    International Nuclear Information System (INIS)

    Sugar, J.; Kaufman, V.

    1979-01-01

    The 5f-5g transitions in Lu III through Os VIII and the 5f-6g transitions in Hf IV through W VI were identified and used to redetermine the ionization energies of Yb II, Lu III, W VI, Re VII, and Os VIII. Complete line-lists and energy levels are given for the one-electron spectra Hf IV, W VI and Os VIII

  3. Identification of 5g and 6g terms and revised ionization energies in the Yb II 4f/sup 14/nl isoelectronic sequence

    Energy Technology Data Exchange (ETDEWEB)

    Sugar, J.; Kaufman, V.

    1979-01-01

    The 5f-5g transitions in Lu III through Os VIII and the 5f-6g transitions in Hf IV through W VI were identified and used to redetermine the ionization energies of Yb II, Lu III, W VI, Re VII, and Os VIII. Complete line-lists and energy levels are given for the one-electron spectra Hf IV, W VI and Os VIII.

  4. Genomic and Transcriptomic Associations Identify a New Insecticide Resistance Phenotype for the Selective Sweep at the Cyp6g1 Locus of Drosophila melanogaster.

    Science.gov (United States)

    Battlay, Paul; Schmidt, Joshua M; Fournier-Level, Alexandre; Robin, Charles

    2016-08-09

    Scans of the Drosophila melanogaster genome have identified organophosphate resistance loci among those with the most pronounced signature of positive selection. In this study, the molecular basis of resistance to the organophosphate insecticide azinphos-methyl was investigated using the Drosophila Genetic Reference Panel, and genome-wide association. Recently released full transcriptome data were used to extend the utility of the Drosophila Genetic Reference Panel resource beyond traditional genome-wide association studies to allow systems genetics analyses of phenotypes. We found that both genomic and transcriptomic associations independently identified Cyp6g1, a gene involved in resistance to DDT and neonicotinoid insecticides, as the top candidate for azinphos-methyl resistance. This was verified by transgenically overexpressing Cyp6g1 using natural regulatory elements from a resistant allele, resulting in a 6.5-fold increase in resistance. We also identified four novel candidate genes associated with azinphos-methyl resistance, all of which are involved in either regulation of fat storage, or nervous system development. In Cyp6g1, we find a demonstrable resistance locus, a verification that transcriptome data can be used to identify variants associated with insecticide resistance, and an overlap between peaks of a genome-wide association study, and a genome-wide selective sweep analysis. Copyright © 2016 Battlay et al.

  5. The Dynamics and Structures of Adsorbed Surfaces

    DEFF Research Database (Denmark)

    Nielsen, M; Ellenson, W. D.; McTague, J. P.

    1978-01-01

    . Elastic neutron diffraction measurements, determining the two-dimensional structural ordering of the adsorbed films, have been performed on layers of N2, Ar, H2, D2, O2, Kr, and He. Measurements on layers of larger molecules such as CD4 and ND3 have also been reported. Inelastic neutron scattering...... measurements, studying the dynamics of the adsorbed films are only possible in a few especially favourable cases such as 36Ar and D2 films, where the coherent phonon scattering cross-sections are very large. In other cases incoherent scattering from hydrogen can give information about e.g. the mobility...

  6. Biological characterization of F-18-labeled rhodamine B, a potential positron emission tomography perfusion tracer.

    Science.gov (United States)

    Bartholomä, Mark D; He, Huamei; Pacak, Christina A; Dunning, Patricia; Fahey, Frederic H; McGowan, Francis X; Cowan, Douglas B; Treves, S Ted; Packard, Alan B

    2013-11-01

    Myocardial infarction is the leading cause of death in western countries, and positron emission tomography (PET) plays an increasing role in the diagnosis and treatment planning for this disease. However, the absence of an (18)F-labeled PET myocardial perfusion tracer hampers the widespread use of PET in myocardial perfusion imaging (MPI). We recently reported a potential MPI agent based on (18)F-labeled rhodamine B. The goal of this study was to more completely define the biological properties of (18)F-labeled rhodamine B with respect to uptake and localization in an animal model of myocardial infarction and to evaluate the uptake (18)F-labeled rhodamine B by cardiomyocytes. A total of 12 female Sprague Dawley rats with a permanent ligation of the left anterior descending artery (LAD) were studied with small-animal PET. The animals were injected with 100-150 μCi of (18)F-labeled rhodamine B diethylene glycol ester ([(18)F]RhoBDEGF) and imaged two days before ligation. The animals were imaged again two to ten days post-ligation. After the post-surgery scans, the animals were euthanized and the hearts were sectioned into 1mm slices and myocardial infarct size was determined by phosphorimaging and 2,3,5-triphenyltetrazolium chloride staining (TTC). In addition, the uptake of [(18)F]RhoBDEGF in isolated rat neonatal cardiomyocytes was determined by fluorescence microscopy. Small-animal PET showed intense and uniform uptake of [(18)F]RhoBDEGF throughout the myocardium in healthy rats. After LAD ligation, well defined perfusion defects were observed in the PET images. The defect size was highly correlated with the infarct size as determined ex vivo by phosphorimaging and TTC staining. In vitro, [(18)F]RhoBDEGF was rapidly internalized into rat cardiomyocytes with ~40 % of the initial activity internalized within the 60 min incubation time. Fluorescence microscopy clearly demonstrated localization of [(18)F]RhoBDEGF in the mitochondria of rat cardiomyocytes. Fluorine-18

  7. Biological characterization of F-18-labeled rhodamine B, a potential positron emission tomography perfusion tracer

    International Nuclear Information System (INIS)

    Bartholomä, Mark D.; He, Huamei; Pacak, Christina A.; Dunning, Patricia; Fahey, Frederic H.; McGowan, Francis X.; Cowan, Douglas B.; Treves, S. Ted; Packard, Alan B.

    2013-01-01

    Introduction: Myocardial infarction is the leading cause of death in western countries, and positron emission tomography (PET) plays an increasing role in the diagnosis and treatment planning for this disease. However, the absence of an 18 F-labeled PET myocardial perfusion tracer hampers the widespread use of PET in myocardial perfusion imaging (MPI). We recently reported a potential MPI agent based on 18 F-labeled rhodamine B. The goal of this study was to more completely define the biological properties of 18 F-labeled rhodamine B with respect to uptake and localization in an animal model of myocardial infarction and to evaluate the uptake 18 F-labeled rhodamine B by cardiomyocytes. Methods: A total of 12 female Sprague Dawley rats with a permanent ligation of the left anterior descending artery (LAD) were studied with small-animal PET. The animals were injected with 100–150 μCi of 18 F-labeled rhodamine B diethylene glycol ester ([ 18 F]RhoBDEGF) and imaged two days before ligation. The animals were imaged again two to ten days post-ligation. After the post-surgery scans, the animals were euthanized and the hearts were sectioned into 1 mm slices and myocardial infarct size was determined by phosphorimaging and 2,3,5-triphenyltetrazolium chloride staining (TTC). In addition, the uptake of [ 18 F]RhoBDEGF in isolated rat neonatal cardiomyocytes was determined by fluorescence microscopy. Results: Small-animal PET showed intense and uniform uptake of [ 18 F]RhoBDEGF throughout the myocardium in healthy rats. After LAD ligation, well defined perfusion defects were observed in the PET images. The defect size was highly correlated with the infarct size as determined ex vivo by phosphorimaging and TTC staining. In vitro, [ 18 F]RhoBDEGF was rapidly internalized into rat cardiomyocytes with ∼ 40 % of the initial activity internalized within the 60 min incubation time. Fluorescence microscopy clearly demonstrated localization of [ 18 F]RhoBDEGF in the mitochondria

  8. Theoretical Insight of Physical Adsorption for a Single Component Adsorbent + Adsorbate System: II. The Henry Region

    KAUST Repository

    Chakraborty, Anutosh

    2009-07-07

    The Henry coefficients of a single component adsorbent + adsorbate system are calculated from experimentally measured adsorption isotherm data, from which the heat of adsorption at zero coverage is evaluated. The first part of the papers relates to the development of thermodynamic property surfaces for a single-component adsorbent + adsorbate system1 (Chakraborty, A.; Saha, B. B.; Ng, K. C.; Koyama, S.; Srinivasan, K. Langmuir 2009, 25, 2204). A thermodynamic framework is presented to capture the relationship between the specific surface area (Ai) and the energy factor, and the surface structural and the surface energy heterogeneity distribution factors are analyzed. Using the outlined approach, the maximum possible amount of adsorbate uptake has been evaluated and compared with experimental data. It is found that the adsorbents with higher specific surface areas tend to possess lower heat of adsorption (ΔH°) at the Henry regime. In this paper, we have established the definitive relation between Ai and ΔH° for (i) carbonaceous materials, metal organic frameworks (MOFs), carbon nanotubes, zeolites + hydrogen, and (ii) activated carbons + methane systems. The proposed theoretical framework of At and AH0 provides valuable guides for researchers in developing advanced porous adsorbents for methane and hydrogen uptake. © 2009 American Chemical Society.

  9. Volatile organic compounds adsorption using different types of adsorbent

    Directory of Open Access Journals (Sweden)

    Pimanmes Chanayotha

    2014-09-01

    Full Text Available Adsorbents were synthesized from coconut shell, coal and coke by pyrolysis followed by chemical activation process. These synthesized materials were used as adsorbents in adsorption test to determine the amount of volatile organic compounds (VOCs namely, 2-Hydroxyethyl methacrylate (HEMA, Octamethylcyclotetrasiloxane and Alkanes standard solution (C8-C20. The adsorption capacities of both synthesized adsorbents and commercial grade adsorbents (Carbotrap™ B and Carbotrap™ C were also compared. It was found that adsorbent A402, which was produced from coconut shell, activated with 40% (wt. potassium hydroxide and at activating temperature of 800°C for 1 hr, could adsorb higher amount of both HEMA and Octamethylcyclotetrasiloxane than other synthesized adsorbents. The maximum adsorption capacity of adsorbent A402 in adsorbing HEMA and Octamethylcyclotetrasiloxane were 77.87% and 50.82% respectively. These adsorption capabilities were 79.73% and 70.07% of the adsorption capacity of the commercial adsorbent Carbotrap™ B respectively. All three types of the synthesized adsorbent (A402, C302, C402 showed the capability to adsorb alkanes standard solution through the range of C8-C20 . However, their adsorption capacities were high in a specific range of C10-C11. The result from the isotherm plot was indicated that surface adsorption of synthesized adsorbent was isotherm type I while the surface adsorption of commercial adsorbent was isotherm type III.

  10. Photoemission spectroscopy of surfaces and adsorbates

    International Nuclear Information System (INIS)

    Chiang, T.C.; Kaindl, G.; Himpsel, F.J.; Eastman, D.E.

    1982-01-01

    Core level photoelectron spectroscopy is providing new information concerning the electronic properties of adsorbates and surfaces. Several examples will be discussed, including studies of adsorbed rare gas submonolayers and multilayers as well as clean metal surfaces. For rare gas multilayers adsorbed on metal surfaces, the photoelectrons and Auger electrons exhibit well-resolved increases in kinetic energy with decreasing distance between the excited atom and the substrate, allowing a direct labeling of the layers. These energy shifts are mainly due to the substrate screening effects, and can be described well by an image-charge model. For a Kr/Xe bilayer system prepared by first coating a Pd substrate with a monolayer of Kr and then overcoating with a layer of Xe, a thermally activated layer inversion process is observed when the temperature is raised, with Xe coming in direct contact with the substrate. For rare gas submonolayers adsorbed on the Al(111) surface, coverage-dependent core level shift and work function measurements provide information about the adatom spatial distributions, polarizabilities, and dipole moments for the ground and excited states. We have also studied the 2p core level shifts for a clean Al(001) surface relative to the bulk. The shifts have a large contribution from the initial-state effects

  11. Heterogeneous membranes filled with hypercrosslinked microparticle adsorbent

    Czech Academy of Sciences Publication Activity Database

    Hradil, Jiří; Krystl, V.; Hrabánek, P.; Bernauer, B.; Kočiřík, Milan

    2005-01-01

    Roč. 65, 1-2 (2005), s. 57-68 ISSN 1381-5148 R&D Projects: GA ČR GA104/03/0680 Institutional research plan: CEZ:AV0Z40500505 Keywords : heterogeneous membranes * hypercrosslinked adsorbent * microparticle s Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.565, year: 2005

  12. ANALISIS ZAT PEWARNA RHODAMIN B PADA SAUS CABAI YANG BEREDAR DI KAMPUS UNIVERSITAS ISLAM NEGERI RADEN FATAH PALEMBANG

    Directory of Open Access Journals (Sweden)

    Debby Chrislia

    2017-01-01

    Full Text Available Chili sauce is one of the most popular food product because it was used as food complement. Generally in processing manufacture chili sauce added coloring substance, so product colour interesting. Nowadays more and more food manufacturers use dye that have been banned use. Rhodamine B dye in the form of a crystalline powder green or reddish purple, odorless and dissolves easily in bright red solution berfluoresan as textile dyes. Rhodamin b is still no food products were found to countain rhodamine B dye such as crackers, sauces, ice and other pastries. Rhodamin B is a synthetic dye that was banned for use in foods and is certified as a hazardous material according to Minister of Healthy of Indonesian Republic No. 722/Menkes/Per/IX/1998. Rhodamin B is carcinogenic, in the long term use can cause liver damage, kidney inflammation, and cancer. The kind of research this used a quantitative approach with the experimental methods laboratory. The purpose of this study was to determine whether there rhodamin B in the test samples using thin layer chromatography (TLC. The result shows that 7 examined samples doesn’t contain rhodamin B and and shows f count smaller than f table (F count< F table (3,61< 3,71. Synthetic dyes are contained in most of the analyzed samples are dyes that allow its use for food by the Regulation of the Minister of Health of Indonesia such as ponceau 4R and amarant and Contribution of research given by researchers of worksheets students and implementation plan learning

  13. Analisa Kandungan Rhodamin B dan Formalin pada Gula Merah Serta Pengetahuan dan Sikap Pedagang di Pasar Tradisional Kecamatan Medan Baru Tahun 2013

    OpenAIRE

    Sihombing, Emma Sari Yanti

    2014-01-01

    Rhodamine B and formaldehyde is colouration substance and preservative substance that prohibits to be utilized in food product. But there are still traders using rhodamine B and formaldehyde in food products and beverages. Brown sugar is one of the food ingredients that are often encountered in daily life. The purpose of this research is to determine the rhodamine B dye and preservative formaldehyde in brown sugar in the traditional market sub-district Medan Baru in 2013 and determine the ...

  14. Analisa Kandungan Rhodamin B dan Formalin pada Gula Merah Serta Pengetahuan dan Sikap Pedagang di Pasar Tradisional Kecamatan Medan Baru Tahun 2013

    OpenAIRE

    sihombing, emma; hasan, wirsal; marsaulina, irnawati

    2014-01-01

    Rhodamine B and formaldehyde is colouration substance and preservative substance that prohibits to be utilized in food product. But there are still traders using rhodamine B and formaldehyde in food products and beverages. Brown sugar is one of the food ingredients that are often encountered in daily life. The purpose of this research is to determine the rhodamine B dye and preservative formaldehyde in brown sugar in the traditional market sub-district Medan Baru in 2013 and determine the lev...

  15. Ag3PO4/ZnO: An efficient visible-light-sensitized composite with its application in photocatalytic degradation of Rhodamine B

    International Nuclear Information System (INIS)

    Liu, Wei; Wang, Mingliang; Xu, Chunxiang; Chen, Shifu; Fu, Xianliang

    2013-01-01

    Graphical abstract: The free OH radicals generated in the VB of ZnO play the primary role in the visible-light photocatalytic degradation of RhB in Ag 3 PO 4 /ZnO system. The accumulated electrons in the CB of Ag 3 PO 4 can be transferred to O 2 adsorbed on the surface of the composite semiconductors and H 2 O 2 yields. H 2 O 2 reacts with electrons in succession to produce active ·OH to some extent. Display Omitted Highlights: ► Efficient visible-light-sensitized Ag 3 PO 4 /ZnO composites were successfully prepared. ► Effect of Ag 3 PO 4 content on the catalytic activity of Ag 3 PO 4 /ZnO is studied in detail. ► Rate constant of RhB degradation over Ag 3 PO 4 (3.0 wt.%)/ZnO is 3 times that of Ag 3 PO 4 . ► The active species in RhB degradation are examined by adding a series of scavengers. ► Visible light degradation mechanism of RhB over Ag 3 PO 4 /ZnO is systematically studied. -- Abstract: The efficient visible-light-sensitized Ag 3 PO 4 /ZnO composites with various weight percents of Ag 3 PO 4 were prepared by a facile ball milling method. The photocatalysts were characterized by XRD, DRS, SEM, EDS, XPS, and BET specific area. The ·OH radicals produced during the photocatalytic reaction was detected by the TA–PL technique. The photocatalytic property of Ag 3 PO 4 /ZnO was evaluated by photocatalytic degradation of Rhodamine B under visible light irradiation. Significantly, the results revealed that the photocatalytic activity of the composites was much higher than that of pure Ag 3 PO 4 and ZnO. The rate constant of RhB degradation over Ag 3 PO 4 (3.0 wt.%)/ZnO is 3 times that of single-phase Ag 3 PO 4 . The optimal percentage of Ag 3 PO 4 in the composite is 3.0 wt.%. It is proposed that the ·OH radicals produced in the valence band of ZnO play the leading role in the photocatalytic degradation of Rhodamine B by Ag 3 PO 4 /ZnO systems under visible light irradiation.

  16. In search of laterally heterogeneous viscosity models of Glacial Isostatic Adjustment with the ICE-6G_C global ice history model

    Science.gov (United States)

    Li, Tanghua; Wu, Patrick; Steffen, Holger; Wang, Hansheng

    2018-05-01

    Most models of Glacial Isostatic Adjustment (GIA) assume that the Earth is laterally homogeneous. However, seismic and geological observations clearly show that the Earth's mantle is laterally heterogeneous. Previous studies of GIA with lateral heterogeneity mostly focused on its effect or sensitivity on GIA predictions, and it is not clear to what extent can lateral heterogeneity solve the misfits between GIA predictions and observations. Our aim is to search for the best 3D viscosity models that can simultaneously fit the global relative sea-level (RSL) data, the peak uplift rates (u-dot from GNSS) and peak gravity-rate-of-change (g-dot from the GRACE satellite mission) in Laurentia and Fennoscandia. However, the search is dependent on the ice and viscosity model inputs - the latter depends on the background viscosity and the seismic tomography models used. In this paper, the ICE-6G_C ice model, with Bunge & Grand's seismic tomography model and background viscosity models close to VM5 will be assumed. A Coupled Laplace-Finite Element Method is used to compute gravitationally self-consistent sea level change with time dependent coastlines and rotational feedback in addition to changes in deformation, gravity and the state of stress. Several laterally heterogeneous models are found to fit the global sea level data better than laterally homogeneous models. Two of these laterally heterogeneous models also fit the ICE-6G_C peak g-dot and u-dot rates observed in Laurentia simultaneously. However, even with the introduction of lateral heterogeneity, no model that is able to fit the present-day g-dot and uplift rate data in Fennoscandia has been found. Therefore, either the ice history of ICE-6G_C in Fennoscandia and Barent Sea needs some modifications, or the sub-lithospheric property/non-thermal effect underneath northern Europe must be different from that underneath Laurentia.

  17. Efflux of rhodamine from CD56+ cells as a surrogate marker for reversal of P-glycoprotein-mediated drug efflux by PSC 833

    DEFF Research Database (Denmark)

    Robey, R; Bakke, S; Stein, W

    1999-01-01

    minutes. A dose-response relationship was shown between the concentration of PSC 833 in the blood and the inhibition of rhodamine efflux, with an apparent plateau of the inhibition of rhodamine efflux at approximately 1,000 ng/mL. The Ki, defined as the concentration required for half-maximal inhibition...... of Pgp-mediated rhodamine efflux, was determined to be in the range of 29 to 181 ng/mL; although results in two patients were distinctly different, with Ki values of 914 and 916 ng/mL. MRK-16 staining was similar among all patients. We conclude that measurement of rhodamine efflux from CD56(+) cells...

  18. Bioconjugated graphene oxide hydrogel as an effective adsorbent for cationic dyes removal.

    Science.gov (United States)

    Soleimani, Khadijeh; Tehrani, Abbas Dadkhah; Adeli, Mohsen

    2018-01-01

    In this study, graphene oxide - cellulose nanowhiskers nanocomposite hydrogel was easily synthesized through covalent functionalization of cellulose nanowhiskers with graphene oxide via a facile approach. The nitrene chemistry applied for covalent functionalization of graphene oxide sheets. The surface morphology and chemical structure of the nanocomposite hydrogel were characterized by FTIR, TGA, Raman, XRD, elemental analysis and SEM. The UV/Visible absorption spectrum revealed that the obtained porous nanocomposite hydrogel can efficiently remove cationic dyes such as methylene blue (MB) and Rhodamine B (RhB) from wastewater with high absorption power. The adsorption process showed that 100% of MB and 90% of RhB have been removed and the equilibrium state has been reached in 15min for low concentration solutions in accordance with the pseudo-second-order model. Moreover, the sample exhibited stable performance after being used several times. High adsorption capacity and easy recovery are the efficient factors making these materials as good adsorbent for water pollutants and wastewater treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The adsorber loop concept for the contact between seawater and adsorber granulate

    International Nuclear Information System (INIS)

    Koske, P.H.; Ohlrogge, K.

    1984-01-01

    The present paper deals with the so-called ''adsorber loop concept'' in which the adsorber granulate is carried along with the seawater to be processed in a loop-like configuration and is separated again from the depleted water before this is leaving the adsorption unit. This concept enables high seawater velocities thus reducing the required bed area. Theoretical considerations are presented together with experimental results from field tests. (orig.) [de

  20. Electronic spectral properties of surfaces and adsorbates and atom-adsorbate van der Waals interactions

    International Nuclear Information System (INIS)

    Lovric, D.; Gumhalter, B.

    1988-01-01

    The relevance of van der Waals interactions in the scattering of neutral atoms from adsorbates has been recently confirmed by highly sensitive molecular-beam techniques. The theoretical descriptions of the collision dynamics which followed the experimental studies have necessitated very careful qualitative and quantitative examinations and evaluations of the properties of atom-adsorbate van der Waals interactions for specific systems. In this work we present a microscopic calculation of the strengths and reference-plane positions for van der Waals potentials relevant for scattering of He atoms from CO adsorbed on various metallic substrates. In order to take into account the specificities of the polarization properties of real metals (noble and transition metals) and of chemisorbed CO, we first calculate the spectra of the electronic excitations characteristic of the respective electronic subsystems by using various data sources available and combine them with the existing theoretical models. The reliability of the calculated spectra is then verified in each particular case by universal sum rules which may be established for the electronic excitations of surfaces and adsorbates. The substrate and adsorbate polarization properties which derive from these calculations serve as input data for the evaluation of the strengths and reference-plane positions of van der Waals potentials whose computed values are tabulated for a number of real chemisorption systems. The implications of the obtained results are discussed in regard to the atom-adsorbate scattering cross sections pertinent to molecular-beam scattering experiments

  1. Derivatives of Rhodamine 19 as Mild Mitochondria-targeted Cationic Uncouplers*

    Science.gov (United States)

    Antonenko, Yuri N.; Avetisyan, Armine V.; Cherepanov, Dmitry A.; Knorre, Dmitry A.; Korshunova, Galina A.; Markova, Olga V.; Ojovan, Silvia M.; Perevoshchikova, Irina V.; Pustovidko, Antonina V.; Rokitskaya, Tatyana I.; Severina, Inna I.; Simonyan, Ruben A.; Smirnova, Ekaterina A.; Sobko, Alexander A.; Sumbatyan, Natalia V.; Severin, Fedor F.; Skulachev, Vladimir P.

    2011-01-01

    A limited decrease in mitochondrial membrane potential can be beneficial for cells, especially under some pathological conditions, suggesting that mild uncouplers (protonophores) causing such an effect are promising candidates for therapeutic uses. The great majority of protonophores are weak acids capable of permeating across membranes in their neutral and anionic forms. In the present study, protonophorous activity of a series of derivatives of cationic rhodamine 19, including dodecylrhodamine (C12R1) and its conjugate with plastoquinone (SkQR1), was revealed using a variety of assays. Derivatives of rhodamine B, lacking dissociable protons, showed no protonophorous properties. In planar bilayer lipid membranes, separating two compartments differing in pH, diffusion potential of H+ ions was generated in the presence of C12R1 and SkQR1. These compounds induced pH equilibration in liposomes loaded with the pH probe pyranine. C12R1 and SkQR1 partially stimulated respiration of rat liver mitochondria in State 4 and decreased their membrane potential. Also, C12R1 partially stimulated respiration of yeast cells but, unlike the anionic protonophore FCCP, did not suppress their growth. Loss of function of mitochondrial DNA in yeast (grande-petite transformation) is known to cause a major decrease in the mitochondrial membrane potential. We found that petite yeast cells are relatively more sensitive to the anionic uncouplers than to C12R1 compared with grande cells. Together, our data suggest that rhodamine 19-based cationic protonophores are self-limiting; their uncoupling activity is maximal at high membrane potential, but the activity decreases membrane potentials, which causes partial efflux of the uncouplers from mitochondria and, hence, prevents further membrane potential decrease. PMID:21454507

  2. Photoluminescence of urea- and urea/rhodamine B-capped TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalo-Juan, I., E-mail: gonzalo@materials.tu-darmstadt.de; Macé, L.; Tengeler, S.; Mosallem, A.; Nicoloso, N.; Riedel, R.

    2016-07-01

    Urea- and rhodamine B (RhB)-capped TiO{sub 2} nanoparticles (NPs) have been prepared by solvothermal synthesis and characterized by HRTEM, XRD, FTIR, XPS, optical absorption and photoemission. The urea and urea/RhB ligands are capped to the surface of the TiO{sub 2} NPs for the first time through carbamate bonding. The band gap of TiO{sub 2} is slightly reduced from 3.1 eV to 3.0 eV in the urea capped TiO{sub 2} NPs (TU) and 2.9 eV for the NPs capped with urea/RhB (TUR). The generation of new trapping states in TU and TUR at the conduction band edges (surface oxygen vacancies) has been confirmed by the Urbach law providing tail state energies of 180 meV and 270 meV, respectively. These tail states are considered to be responsible for the strong reduction of the photoluminescence at ≈400 nm and the increased emission at ≈600 nm in TU and TUR. The findings suggest that urea- and RhB-capped TiO{sub 2} NPs could have potential applications as photocatalysts, opto-electronic devices, sensors, biological labels and anti-bacterial agents. - Highlights: • Urea- and urea/rhodamine B (RhB)-capped TiO{sub 2} nanoparticles preparation. • Characterization of optical properties of urea- and urea/rhodamine B (RhB)-capped TiO{sub 2} nanoparticles. • The recombination of electrons and holes is significantly reduced in the capped TiO{sub 2} nanoparticles, in comparison with TiO{sub 2}.

  3. Comment on "An Assessment of the ICE-6G_C (VM5a) Glacial Isostatic Adjustment Model" by Purcell et al.

    Science.gov (United States)

    Richard Peltier, W.; Argus, Donald F.; Drummond, Rosemarie

    2018-02-01

    The most recently published model of the glacial isostatic adjustment process in the ICE-NG (VMX) sequence from the University of Toronto, denoted ICE-6G_C (VM5a), was originally developed to degree and order 256 in spherical harmonics and has been shown to provide accurate fits to a voluminous database of GPS observations from North America, Eurasia, and Antarctica, to time dependent gravity data being provided by the GRACE satellites, and to radiocarbon-dated relative sea level histories through the Holocene epoch. The authors of the Purcell et al. (2016, https://doi.org/10.1002/2015JB012742) paper have suggested this model to be flawed. We have produced a further version of our model, denoted ICE-6G_D (VM5a), by employing the same BEDMAP2 bathymetry for the Southern Ocean as employed in their analysis which has somewhat reduced the differences between our results. However, significant physically important differences remain, including the magnitude of present-day vertical crustal motion in the embayments and in the spectrum of Stokes coefficients for present-day geoid height time dependence which continues to "flatten" at high spherical harmonic degree. We explore the reasons for these differences and trace them to the use by Purcell et al. of a loading history for the embayments that differs significantly from that tabulated for both the original and modified versions of our model.

  4. Use of Rhodamine B as a biomarker for oral plague vaccination of prairie dogs

    Science.gov (United States)

    Fernandez, Julia Rodriguez-Ramos; Rocke, Tonie E.

    2011-01-01

    Oral vaccination against Yersinia pestis could provide a feasible approach for controlling plague in prairie dogs (Cynomys spp.) for conservation and public health purposes. Biomarkers are useful in wildlife vaccination programs to demonstrate exposure to vaccine baits. Rhodamine B (RB) was tested as a potential biomarker for oral plague vaccination because it allows nonlethal sampling of animals through hair, blood, and feces. We found that RB is an appropriate marker for bait uptake studies of C. ludovicianus) when used at concentrations 10 mg RB per kg target animal mass. Whiskers with follicles provided the best sample for RB detection.

  5. Synthesis and Characterization of Rhodamine B-ethylenediamine-hyaluronan Acid as Potential Biological Functional Materials

    Science.gov (United States)

    Li, Y. L.; Wang, W. X.; Wang, Y.; Zhang, W. B.; Gong, H. M.; Liu, M. X.

    2018-05-01

    The purpose of this study is to synthesize and characterize fluorescent polymers, rhodamine B-ethylenediamine-hyaluronan acid (RhB-EA-HA). RhB-EA-HA was successfully synthesized by ester ammonolysis reaction and amidation reaction. Moreover, the structural properties of RhB-EA-HA were characterized by 1H-NMR spectra, UV-vis spectrometry and Fourier transform infrared spectroscopy (FT-IR). RhB-EA-HA can be grafted on the surface of silica nanomaterials, which may be potential biological functional materials for drug delivery system.

  6. Fluorescent Rhodamines and Fluorogenic Carbopyronines for Super‐Resolution STED Microscopy in Living Cells

    Science.gov (United States)

    Mitronova, Gyuzel Yu.; Sidenstein, Sven C.; Klocke, Jessica L.; Kamin, Dirk; Meineke, Dirk N. H.; D'Este, Elisa; Kraemer, Philip‐Tobias; Danzl, Johann G.

    2016-01-01

    Abstract A range of bright and photostable rhodamines and carbopyronines with absorption maxima in the range of λ=500–630 nm were prepared, and enabled the specific labeling of cytoskeletal filaments using HaloTag technology followed by staining with 1 μm solutions of the dye–ligand conjugates. The synthesis, photophysical parameters, fluorogenic behavior, and structure–property relationships of the new dyes are discussed. Light microscopy with stimulated emission depletion (STED) provided one‐ and two‐color images of living cells with an optical resolution of 40–60 nm. PMID:26844929

  7. Adsorbents for radioactive organic solvent wastes

    International Nuclear Information System (INIS)

    Ichinose, Shigeo; Kiribayashi, Takehiko.

    1986-01-01

    Purpose: To enable to settle radioactive solvents such as tributyl phosphate (TBP) and n-dodecane as they are without using hydrophobicizing agent such as quaternary ammonium salts. Constitution: The adsorbents are prepared by replacing interlaminer ions of swelling-type synthetic mica with alkaline earth metals or metal ions. For instance, synthetic micas introduced with Zr 4+ or Ca 2+ between the layers provide quite different functions from those of starting materials due to the properties of ions introduced between the layers. That is, they provide an intense affinity to organic phosphates such as TBP and transform into material showing a property of adsorbing and absorbing them. Particularly, the fixing nature to the phosphor content constituting TBP is significantly increased. (Horiuchi, T.)

  8. Zeolites as alcohol adsorbents from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Cekova Blagica

    2006-01-01

    Full Text Available The potential usage of zeolites as adsorbents for the removal of organic molecules from water was investigated in a series of experiments with aqueous solutions of lower alcohols. This could represent a simple solution to the problem of cleaning up industrial wastewater as well as recovering valuable chemicals at relatively low costs. Adsorption isotherms of the Langmuir type were applied, and calculations showed that the amount of propanol adsorbed on silicalite corresponded to approximately 70% of the pore volume. The adsorption process is simple, and recovery of the more concentrated products is easily done by heat treatment and/or at lowered pressures. Adsorption experiments with aqueous acetone showed that silicalite had approximately the same adsorption capacity for acetone as for n-propanol. Heats of adsorption were determined calorimetrically.

  9. Analysis of Adsorbed Natural Gas Tank Technology

    Science.gov (United States)

    Knight, Ernest; Schultz, Conrad; Rash, Tyler; Dohnke, Elmar; Stalla, David; Gillespie, Andrew; Sweany, Mark; Seydel, Florian; Pfeifer, Peter

    With gasoline being an ever decreasing finite resource and with the desire to reduce humanity's carbon footprint, there has been an increasing focus on innovation of alternative fuel sources. Natural gas burns cleaner, is more abundant, and conforms to modern engines. However, storing compressed natural gas (CNG) requires large, heavy gas cylinders, which limits space and fuel efficiency. Adsorbed natural gas (ANG) technology allows for much greater fuel storage capacity and the ability to store the gas at a much lower pressure. Thus, ANG tanks are much more flexible in terms of their size, shape, and weight. Our ANG tank employs monolithic nanoporous activated carbon as its adsorbent material. Several different configurations of this Flat Panel Tank Assembly (FPTA) along with a Fuel Extraction System (FES) were examined to compare with the mass flow rate demands of an engine.

  10. Green Adsorbents for Wastewaters: A Critical Review

    Directory of Open Access Journals (Sweden)

    George Z. Kyzas

    2014-01-01

    Full Text Available One of the most serious environmental problems is the existence of hazardous and toxic pollutants in industrial wastewaters. The major hindrance is the simultaneous existence of many/different types of pollutants as (i dyes; (ii heavy metals; (iii phenols; (iv pesticides and (v pharmaceuticals. Adsorption is considered to be one of the most promising techniques for wastewater treatment over the last decades. The economic crisis of the 2000s led researchers to turn their interest in adsorbent materials with lower cost. In this review article, a new term will be introduced, which is called “green adsorption”. Under this term, it is meant the low-cost materials originated from: (i agricultural sources and by-products (fruits, vegetables, foods; (ii agricultural residues and wastes; (iii low-cost sources from which most complex adsorbents will be produced (i.e., activated carbons after pyrolysis of agricultural sources. These “green adsorbents” are expected to be inferior (regarding their adsorption capacity to the super-adsorbents of previous literature (complex materials as modified chitosans, activated carbons, structurally-complex inorganic composite materials etc., but their cost-potential makes them competitive. This review is a critical approach to green adsorption, discussing many different (maybe in some occasions doubtful topics such as: (i adsorption capacity; (ii kinetic modeling (given the ultimate target to scale up the batch experimental data to fixed-bed column calculations for designing/optimizing commercial processes and (iii critical techno-economical data of green adsorption processes in order to scale-up experiments (from lab to industry with economic analysis and perspectives of the use of green adsorbents.

  11. Generating Atomistic Slab Surfaces with Adsorbates

    Science.gov (United States)

    2017-12-01

    slabs of various thickness and with various vacuum spacing need be calculated. This can occur in serial or simultaneously . If performed in serial, the...the user. Although the optimization of the slab thickness and vacuum padding can be done simultaneously , it is more computationally conservative to...monolayer is a slab (True if slab), the type of mesh desired (adsorbates.py was written for “Gamma”), how detailed the mesh should be (in units of inverse

  12. Green Adsorbents for Wastewaters: A Critical Review

    Science.gov (United States)

    Kyzas, George Z.; Kostoglou, Margaritis

    2014-01-01

    One of the most serious environmental problems is the existence of hazardous and toxic pollutants in industrial wastewaters. The major hindrance is the simultaneous existence of many/different types of pollutants as (i) dyes; (ii) heavy metals; (iii) phenols; (iv) pesticides and (v) pharmaceuticals. Adsorption is considered to be one of the most promising techniques for wastewater treatment over the last decades. The economic crisis of the 2000s led researchers to turn their interest in adsorbent materials with lower cost. In this review article, a new term will be introduced, which is called “green adsorption”. Under this term, it is meant the low-cost materials originated from: (i) agricultural sources and by-products (fruits, vegetables, foods); (ii) agricultural residues and wastes; (iii) low-cost sources from which most complex adsorbents will be produced (i.e., activated carbons after pyrolysis of agricultural sources). These “green adsorbents” are expected to be inferior (regarding their adsorption capacity) to the super-adsorbents of previous literature (complex materials as modified chitosans, activated carbons, structurally-complex inorganic composite materials etc.), but their cost-potential makes them competitive. This review is a critical approach to green adsorption, discussing many different (maybe in some occasions doubtful) topics such as: (i) adsorption capacity; (ii) kinetic modeling (given the ultimate target to scale up the batch experimental data to fixed-bed column calculations for designing/optimizing commercial processes) and (iii) critical techno-economical data of green adsorption processes in order to scale-up experiments (from lab to industry) with economic analysis and perspectives of the use of green adsorbents. PMID:28788460

  13. Adsorbate Diffusion on Transition Metal Nanoparticles

    Science.gov (United States)

    2015-01-01

    correlation is a Bronsted-Evans-Polanyi ( BEP )- type of correlation, similar to other BEP correlations established earlier for surface-catalyzed bond- breaking...bond-making reactions.6-9 The universal BEP -type correlation is independent of the nature of the adsorbed species and that of the metal surface. For...a certain class of surface-catalyzed reactions, the existence of a BEP -type correlation reflects a similarity between the geometry of the transition

  14. Theoretical Insight of Physical Adsorption for a Single-Component Adsorbent + Adsorbate System: I. Thermodynamic Property Surfaces

    KAUST Repository

    Chakraborty, Anutosh; Saha, Bidyut Baran; Ng, Kim Choon; Koyama, Shigeru; Srinivasan, Kandadai

    2009-01-01

    Thermodynamic property surfaces for a single-component adsorbent + adsorbate system are derived and developed from the viewpoint of classical thermodynamics, thermodynamic requirements of chemical equilibrium, Gibbs law, and Maxwell relations

  15. Biological adsorbent for water decontamination from uranium

    Energy Technology Data Exchange (ETDEWEB)

    Jilek, R [Vyzkumny Ustav Veterinarniho Lekarstvi, Brno-Medlanky (Czechoslovakia); Fuska, J; Nemec, P [Slovenska Vysoka Skola Technicka, Bratislava (Czechoslovakia). Chemickotechnologicka Fakulta

    1978-01-01

    A study was made into the capacity of native and heat-denaturated mycelium to adsorb uranium salts from solutions and into the effect of uranium on the growth of the microorganism biomass. The presence of uranium did not inhibit the growth of Penicillium and Aspergillus strains used at a concentration of up to 5x10/sup -4/ M/dm/sup 3/. Uranium added to a nutrient medium produced complexes with phosphorus ions which were adsorbed on the surface of growing hyphae, thus the removal of the mycelium also removed uranium. The results of the experiments with denaturated mycelium of the same strains suggested that uranium was also bound to the biomass with chemical bonds so that mycelium acted as a ''multifunction ion exchanger'' from which adsorbed uranium can be removed step by step by elution. A sorbent of a three-dimensional structure could be prepared from a dried native mycelium using reinforcing resins, which prevented leakage of the biomass. Uranium sorption by biosorbents is a function of the concentration of the cation sorbed and of the pH of the solution.

  16. Biological adsorbent for water decontamination from uranium

    International Nuclear Information System (INIS)

    Jilek, R.; Fuska, J.; Nemec, P.

    1978-01-01

    A study was made into the capacity of native and heat-denaturated mycelium to adsorb uranium salts from solutions and into the effect of uranium on the growth of the microorganism biomass. The presence of uranium did not inhibit the growth of Penicillium and Aspergillus strains used at a concentration of up to 5x10 -4 M/dm 3 . Uranium added to a nutrient medium produced complexes with phosphorus ions which were adsorbed on the surface of growing hyphae, thus the removal of the mycelium also removed uranium. The results of the experiments with denaturated mycelium of the same strains suggested that uranium was also bound to the biomass with chemical bonds so that mycelium acted as a ''multifunction ion exchanger'' from which adsorbed uranium can be removed step by step by elution. A sorbent of a three-dimensional structure could be prepared from a dried native mycelium using reinforcing resins, which prevented leakage of the biomass. Uranium sorption by biosorbents is a function of the concentration of the cation sorbed and of the pH of the solution. (author)

  17. Characterisation of lignite as an industrial adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Ying Qi; Andrew F.A. Hoadley; Alan L. Chaffee; Gil Garnier [Monash University, Clayton, Vic. (Australia). Department of Chemical Engineering

    2011-04-15

    An alternative use of the abundant and inexpensive lignite (also known as brown coal) as an industrial adsorbent has been characterised. The adsorptive properties of two Victorian lignite without any pre-treatment were investigated using the cationic methylene blue dye as a model compound in aqueous solutions. Two commercial activated carbon products were also studied for comparison. The adsorption equilibrium of the four adsorbents was better described by the Langmuir isotherm model than the Freundlich model. The adsorption capacities of the two untreated lignite adsorbents, Loy Yang and Yallourn, calculated using Langmuir isotherms were 286 and 370 mg/g, respectively, higher than a coconut shell-based activated carbon (167 mg/g), but lower than a coal-based activated carbon (435 mg/g). Surface area results suggested that larger micropores and mesopores were important for achieving good methylene blue adsorption by the activated carbons. However, FTIR and cation exchange capacity analyses revealed that, for the lignite, chemical interactions between lignite surface functional groups and methylene blue molecules occurred, thereby augmenting its adsorption capacity. 63 refs., 3 figs., 7 tabs.

  18. A turn-on fluorescent rhodamine-acyl hydrazide for selective detection of Cu{sup 2+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jung Won; Jeong, Hyuk; Lee, Min Hee [Dept. of Chemistry, Sookmyung Women' s University, Seoul (Korea, Republic of)

    2017-03-15

    We present a rhodamine-based probe that can detect Cu{sup 2+} ions via Cu{sup 2+}-promoted hydrolysis in aqueous solutions. In solution, the probe is non-fluorescent and colorless, but gives a strong fluorescence at 586 nm and shows a color change to pink on the addition of Cu{sup 2+} ions. We demonstrate that the rhodamine-based probe undergoes Cu{sup 2+}-promoted hydrolysis with a moderate reaction time (within 3 min) and provides a fluorescence off–on change, even in the presence of other competitive metal ions. The rhodamine-based probe shows a linear correlation between increasing fluorescence at 586 nm and the Cu{sup 2+} concentration, and can detect Cu{sup 2+} at nanomolar levels (10 nM) in CH{sub 3}CN:H{sub 2}O (v/v, 90:10)

  19. Highly regenerable carbon-Fe{sub 3}O{sub 4} core–satellite nanospheres as oxygen reduction electrocatalyst and magnetic adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wenqiang [Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, and Institute for Advanced Study, Tongji University, Shanghai 201804 (China); School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Liu, Minmin; Cai, Chao [Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, and Institute for Advanced Study, Tongji University, Shanghai 201804 (China); Zhou, Haijun, E-mail: zhouhaijun@just.edu.cn [School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Liu, Rui, E-mail: ruiliu@tongji.edu.cn [Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, and Institute for Advanced Study, Tongji University, Shanghai 201804 (China)

    2017-02-15

    We present the synthesis and multifunctional utilization of core-satellite carbon-Fe{sub 3}O{sub 4} nanoparticles to serve as the enabling platform for a range of applications including oxygen reduction reaction (ORR) and magnetic adsorbent. Starting from polydopamine (PDA) nanoparticles and Fe(NO{sub 3}){sub 3}, carbon-Fe{sub 3}O{sub 4} core–satellite nanospheres are synthesized through successive steps of impregnation, ammoniation and carbonization. The synergistic combination of Fe{sub 3}O{sub 4} and N-doped carbon endows the nanocomposite with high electrochemical activity in ORR and mainly four electrons transferred in reaction process. Furthermore, carbon-Fe{sub 3}O{sub 4} nanoparticles used as magnetic adsorbent exhibit the efficient removal of Rhodamine B from an aqueous solution. The recovery and reuse of the adsorbent is demonstrated 5 times without any detectible loss in activity. - Graphical abstract: Starting from polydopamine (PDA) nanoparticles and Fe(NO{sub 3}){sub 3}, carbon-Fe{sub 3}O{sub 4} core–satellite nanospheres are synthesized through successive steps of impregnation, ammoniation and carbonization. The nanocomposites serve as the enabling platform for a range of applications including oxygen reduction reaction (ORR) and magnetic adsorbent. - Highlights: • Carbon-Fe{sub 3}O{sub 4} core–satellite nanospheres are synthesized through successive steps of impregnation, ammoniation and carbonization. • Polydopamine and Fe(NO{sub 3}){sub 3} are precursors for N-doped carbon source and Fe{sub 3}O{sub 4} nanoparticles, respectively. • The nanocomposites exhibit high electrochemical activity in ORR. • The nanocomposites effectively adsorb organic dyes with magnetic recovery and good recycle property.

  20. Synthesis of Tb_4O_7 complexed with reduced graphene oxide for Rhodamine-B absorption

    International Nuclear Information System (INIS)

    Gao, Hui; Zhou, Yang; Chen, Keqin; Li, Xiaolong

    2016-01-01

    Highlights: • Tb–rGO composite was fabricated via a facile thermally reduction process. • The green and blue emissions were both observed in the composite. • The composite exhibited efficient absorption capability for Rhodamine-B. - Abstract: Tb_4O_7 complexed with reduced graphene oxide composite (Tb–rGO) had been designed and fabricated by a facile thermal reduction method. The formation of Tb_4O_7 particles and reduction of graphene oxide (GO) occurred simultaneously, and partial terbium ions would be complexed with rGO via oxygen-containing function groups on rGO sheets. Introducing of terbium ions could effectively tune the photoluminescence properties of rGO, and the composite exhibited the typical green emission of terbium ions as well as the blue self-luminescence of graphene entered at 440 nm. Moreover, Tb–rGO had demonstrated its high capability as an organic dye (Rhodamine-B) scavenger with high speed and efficiency. The findings showed the promising applications for large-scale removal of organic dye contaminants, especially in the field of waste water treatment.

  1. Novel Spectrofluorimetric Method for the Determination of Perindopril Erbumine Based on Fluorescence Quenching of Rhodamine B.

    Science.gov (United States)

    Fael, Hanan; Sakur, Amir Al-Haj

    2015-11-01

    A novel, simple and specific spectrofluorimetric method was developed and validated for the determination of perindopril erbumine (PDE). The method is based on the fluorescence quenching of Rhodamine B upon adding perindopril erbumine. The quenched fluorescence was monitored at 578 nm after excitation at 500 nm. The optimization of the reaction conditions such as the solvent, reagent concentration, and reaction time were investigated. Under the optimum conditions, the fluorescence quenching was linear over a concentration range of 1.0-6.0 μg/mL. The proposed method was fully validated and successfully applied to the analysis of perindopril erbumine in pure form and tablets. Statistical comparison of the results obtained by the developed and reference methods revealed no significant differences between the methods compared in terms of accuracy and precision. The method was shown to be highly specific in the presence of indapamide, a diuretic that is commonly combined with perindopril erbumine. The mechanism of rhodamine B quenching was also discussed.

  2. A simple rhodamine hydrazide-based turn-on fluorescent probe for HOCl detection.

    Science.gov (United States)

    Zhang, Zhen; Zou, Yuan; Deng, Chengquan; Meng, Liesu

    2016-06-01

    Hypochlorous acid (HOCl) plays a crucial role in daily life and mediates a variety of physiological processes, however, abnormal levels of HOCl have been associated with numerous human diseases. It is therefore of significant interest to establish a simple, selective, rapid and sensitive fluorogenic method for the detection of HOCl in environmental and biological samples. A hydrazide-containing fluorescent probe based on a rhodamine scaffold was facilely developed that could selectively detect HOCl over other biologically relevant reactive oxygen species, reactive nitrogen species and most common metal ions in vitro. Via an irreversible oxidation-hydrolysis mechanism, and upon HOCl-triggered opening of the intramolecular spirocyclic ring during detection, the rhodamine hydrazide-based probe exhibited large fluorescence enhancement in the emission spectra with a fast response, low detection limit and comparatively wide pH detection range in aqueous media. The probe was further successfully applied to monitoring trace HOCl in tap water and imaging both exogenous and endogenous HOCl within living cells. It is anticipated that this simple and useful probe might be an efficient tool with which to facilitate more HOCl-related chemical and biological research. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Rhodamine-123: a p-glycoprotein marker complex with sodium lauryl sulfate.

    Science.gov (United States)

    Al-Mohizea, Abdullah M; Al-Jenoobi, Fahad Ibrahim; Alam, Mohd Aftab

    2015-03-01

    Aim of this study was to investigate the role of sodium lauryl sulfate (SLS) as P-glycoprotein inhibitor. The everted rat gut sac model was used to study in-vitro mucosal to serosal transport of Rhodamine-123 (Rho-123). Surprisingly, SLS decreases the serosal absorption of Rho-123 at all investigated concentrations. Investigation reveals complex formation between Rhodamine-123 and sodium lauryl sulfate. Interaction profile of SLS & Rho-123 was studied at variable SLS concentrations. The SLS concentration higher than critical micelle concentration (CMC) increases the solubility of Rho-123 but could not help in serosal absorption, on the contrary the absorption of Rho-123 decreased. Rho-123 and SLS form pink color complex at sub-CMC. The SLS concentrations below CMC decrease the solubility of Rho-123. For further studies, Rho-123 & SLS complex was prepared by using solvent evaporation technique and characterized by using differential scanning calorimeter (DSC). Thermal analysis also proved the formation of complex between SLS & Rho-123. The P values were found to be significant (<0.05) except group comprising 0.0001% SLS, and that is because 0.0001% SLS is seems to be very low to affect the solubility or complexation of Rho-123.

  4. Gold nanorods-enhanced rhodamine B-permanganate chemiluminescence and its analytical application.

    Science.gov (United States)

    Hassanzadeh, Javad; Amjadi, Mohammad; Manzoori, Jamshid L; Sorouraddin, Mohammad Hossein

    2013-04-15

    A novel enhanced chemiluminescence system was developed by applying gold nanorods (Au NRs) as catalysts in rhodamine B-permanganate reaction. Au NRs with three different aspect ratios were synthesized by seed mediated growth method and characterized by UV-Vis spectra and transmission electron microscopy. It was demonstrated that Au NRs have much higher catalytic effect than spherical nanoparticles on rhodamine B-permanganate chemiluminescence reaction. Among various sizes of Au NRs, those with average aspect ratio of 3.0 were found to have the most remarkable catalytic activity. As an analytical application of the new chemiluminescence system, albumin as a model protein was quantified based on its interaction with NRs. Albumin binds to Au NRs active surfaces and inhibits their catalytic action and therefore decreases the intensity of chemiluminescence. This diminution effect is linearly related to the concentration of the human and bovine serum albumin over the ranges of 0.45-90 and 0.75-123 nmol L(-1), respectively with the corresponding limits of detection of 0.18 and 0.30 nmol L(-1). The method was successfully applied to the determination of albumin in human and bovine serum samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Photocatalytic degradation of Rhodamine B dye using Fe doped TiO2 nanocomposites

    Science.gov (United States)

    Barkhade, Tejal; Banerjee, Indrani

    2018-05-01

    The unique properties of titanium dioxide (TiO2) such as high photo catalytic activity, high chemical stability and low toxicity have made it a suitable photocatalyst in recent decades. The effect of modification of TiO2 with doping of iron on its characteristics and photo catalytic efficiency was studied. The change in band gap energy of TiO2 nanoparticles after doping with Fe has been studied. Significant enhancement in photo catalytic property of TiO2 after Fe doping under light exposure conditions has been investigated. Acute exposure to non-biodegradable Rhodamine B resulted in many health problems like burning of eyes, skin irritation, nasal burning, and chest pain etc. Therefore, degradation of this dye is needed to save environment and animals. Considering the similar radius of Fe3+ and Ti4+ ions (respectively 0.64 Å and 0.68 Å), titanium position in the lattice of TiO2 can be replaced by iron cations easily. The undoped and Fe doped TiO2 nano composites were synthesized by sol-gel method, in which 1.0M% of Fe was doped with TiO2 and then the samples were characterized by using FE-SEM, UV-Visible diffuse spectroscopy, Raman Spectroscopy, and FTIR. Photo catalytic degradation of Rhodamine B dye experiment was carried out in visible light range. After 90 min time duration pink colour of dye turned colourless, indicating significant degradation rate with time.

  6. Characterization of Rhodamine Self-Assembled Films Using Desorption Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Shi, Ruixia; Na, Na; Jiang, Fubin; Ouyang, Jin

    2013-06-01

    Growth process information and molecular structure identification are very important for characterization of self-assembled films. Here, we explore the possible application of desorption electrospray ionization mass spectrometry (DESI-MS) that provides the assembled information of rhodamine B (Rh B) and rhodamine 123 (Rh 123) films. With the help of lab-made DESI source, two characteristic ions [Rh B]+ and [Rh 123]+ are observed directly in the open environment. To evaluate the reliability of this technique, a comparative study of ultraviolet-visible (UV-vis) spectroscopy and our method is carried out, and the result shows good correlation. According to the signal intensity of characteristic ions, the layer-by-layer adsorption process of dyes can be monitored, and the thicknesses of multilayer films can also be comparatively determined. Combining the high sensitivity, selectivity, and speed of mass spectrometry, the selective adsorption of similar structure molecules under different pH is recognized easily from extracted ion chronograms. The variation trend of dyes signalling intensity with concentration of polyelectrolyte is studied as well, which reflects the effect of surface charge on dyes deposition. Additionally, the desorption area, surface morphology, and thicknesses of multilayer films are investigated using fluorescence microscope, scanning electron microscope (SEM), and atomic force microscopy (AFM), respectively. Because the desorption area was approximately as small as 2 mm2, the distribution situation of organic dyes in an arbitrary position could be gained rapidly, which means DESI-MS has advantages on in situ analysis.

  7. Off–on switchable chemosensor based on rhodamine armed with morpholine moiety

    Energy Technology Data Exchange (ETDEWEB)

    Dhara, Anamika; Guchhait, Nikhil, E-mail: nguchhait@yahoo.com; Kar, Susanta K., E-mail: skkar_cu@yahoo.co.in

    2015-12-15

    We have synthesized a novel morpholine functionalized rhodamine derivative RBM which specifically binds to Fe{sup 3+} in the presence of large excess of other competing metal ions. The chemosensor is highly selective for Fe{sup 3+} over other cations. Meanwhile, the distinct color changes and rapid switch-on fluorescence also provide “naked eyes” detection for Fe{sup 3+} over a broad pH range. The chemosensor also displays 1:1 complex formation with Fe{sup 3+} ion, with a detection limit of 2.1 µM in aqueous CH{sub 3}CN solution, showing that it may offer potential as a chemosensor for the detection of submillimolar Fe{sup 3+} ions in physiological environments. - Highlights: • Design and synthesis of morpholine functionalized rhodamine derivative RBM. • RBM is a highly selective fluorescence sensor for Fe{sup 3+} via reversible CHEF mechanism. • Distinct color changes “naked-eye” and rapid switch-on fluorescence detection for Fe{sup 3+}. • Detection limit was calculated to be 2.1 μM for Fe{sup 3+} ion.

  8. Removing organic contaminants with bifunctional iron modified rectorite as efficient adsorbent and visible light photo-Fenton catalyst

    International Nuclear Information System (INIS)

    Zhao, Xiaorong; Zhu, Lihua; Zhang, Yingying; Yan, Jingchun; Lu, Xiaohua; Huang, Yingping; Tang, Heqing

    2012-01-01

    Highlights: ► Rectorite was modified by ultrasonic-assisted ion-exchange and hydrolysis. ► The pillaring increased the layer-to-layer spacing of rectorite. ► The iron-modified rectorite was found to be an excellent adsorbent. ► The iron-modified rectorite showed good visible light photocatalytic ability. ► FeR was highly chemically stable with a wide operating range of pH. - Abstract: Iron-modified rectorite (FeR) was prepared as both adsorbent and catalyst. The iron modification increased layer-to-layer spacing and surface area of rectorite, leading to much increased adsorption of Rhodamine B (RhB) on rectorite. The maximum adsorption capacity of RhB on FeR reached 101 mg g −1 at pH 4.5, being 11 folds of that on the unmodified one. The iron modification also enabled rectorite to have efficient visible light photocatalytic ability. The apparent rate constant for the degradation of RhB (80 μM) at 298 K and pH 4.5 in the presence of H 2 O 2 (6.0 mM) and FeR (0.4 g L −1 ) was evaluated to be 0.0413 min −1 under visible light and 0.122 min −1 under sunlight, respectively. The analysis with electron spin resonance spin-trapping technique supported that the iron modified rectorite effectively catalyzed the decomposition of H 2 O 2 into hydroxyl radicals. On the basis of the characterization and analysis, the new bifunctional material was well clarified as both adsorbent and photocatalyst in the removing of organic pollutants.

  9. Synthesis of highly phosphonic acid functionalized benzene-bridged periodic mesoporous organosilicas for use as efficient dye adsorbents

    International Nuclear Information System (INIS)

    Deka, Juti Rani; Liu, Chia-Ling; Wang, Tzu-Hua; Chang, Wei-Chieh; Kao, Hsien-Ming

    2014-01-01

    Highlights: • Synthesis of highly phosphonic acid functionalized benzene-bridged PMOs. • Phosphonic acid loaded PMOs as adsorbent for cationic and anionic dyes. • Due to electrostatic interaction the adsorbent has high dye adsorption capacity. • π–π stacking interaction between benzene and dye enhances adsorption capacity. • Intraparticle diffusion played a dominant role in the adsorption process. - Abstract: Periodic mesoporous organosilicas (PMOs) with benzene bridging groups in the silica wall were functionalized with a tunable content of phosphonic acid groups. These bifunctional materials were synthesized by co-condensation of two different organosilane precursors, that is, 1,4-bis(triethoxysilyl)benzene (BTEB) and sodium 3-(trihydroxysilyl)propyl methyl phosphate (SPMP), under acidic conditions using nonionic surfactant Brij-S10 as template. The materials exhibited well-ordered mesostructures and were characterized by X-ray diffraction, nitrogen sorption, TEM, TGA, FTIR, and solid-state NMR measurements. The materials thus obtained were employed as adsorbents to remove different types of dyes, for example, cationic dyes methylene blue and phenosafranine, anionic orange II, and amphoteric rhodamine B, from aqueous solutions. The materials exhibited a remarkably high adsorption capacity than activated carbon due to their ordered mesostructures, a large number of phosphonic acid groups, and high surface areas. The adsorption was mainly governed by electrostatic interaction, but also involved π–π stacking interaction as well as hydrogen bonding. The adsorption kinetics can be better fitted by the pseudo-second order model. The adsorption process was controlled by the mechanisms of external mass transfer and intraparticle diffusion. The materials retained more than 97% dye removal efficiency after use for five consecutive cycles

  10. High orbital angular momentum states in H2 and D2. II. The 6h--5g and 6g--5f transitions

    International Nuclear Information System (INIS)

    Jungen, C.; Dabrowski, I.; Herzberg, G.; Kendall, D.J.W.

    1989-01-01

    A group of lines accompanying the first line of the Pfund series of the H atom has been observed by Fourier transform infrared spectrometry. The lines are due to transitions in molecular hydrogen of a nonpenetrating Rydberg electron possessing a high-orbital angular momentum, which is coupled only loosely to the vibrations and rotations of the H + 2 core. Lines belonging to the 6h--5g and 6g--5f (v=0--3) transitions of H 2 have been identified. The identifications are based on a calculation of the spectrum from first principles by multichannel quantum defect theory. The interaction between the nonpenetrating electron and the core was evaluated in terms of the permanent and induced molecular moments of H + 2 as calculated by Bishop and collaborators. The analogous transitions in D 2 have also been observed and assigned

  11. A rhodamine-labeled citalopram analogue as a high-affinity fluorescent probe for the serotonin transporter

    DEFF Research Database (Denmark)

    Zhang, Peng; Jørgensen, Trine Nygaard; Løland, Claus Juul

    2013-01-01

    A novel fluorescent ligand was synthesized as a high-affinity, high specificity probe for visualizing the serotonin transporter (SERT). The rhodamine fluorophore was extended from an aniline substitution on the 5-position of the dihydroisobenzofuran ring of citalopram (2, 1-(3-(dimethylamino......)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile), using an ethylamino linker. The resulting rhodamine-labeled ligand 8 inhibited [3H]5-HT uptake in COS-7 cells (Ki = 225 nM) with similar potency to the tropane-based JHC 1-064 (1), but with higher specificity towards the SERT relative...

  12. The adsorber loop concept for the contact between seawater and adsorber granulate

    International Nuclear Information System (INIS)

    Koske, P.H.; Ohlrogge, K.

    1984-01-01

    For the production of 1 kg uranium from seawater about 10 9 kg seawater - depending on the extraction efficiency - have to be processed in a production plant. Such high seawater flows have to be put through adsorber beds the area of which depends on the flow velocity of the water in the bed. For a typical polyamidoxim (PAO) adsorber granulate with a grain size distribution of 0.3 to 1.2 mm the velocity in a fluidized bed is limited to about 1 cm/s in order to prevent carry out of the adsorber material. The consequences of this rather low bed velocity are large and expensive bed areas for technical production plants. The present paper deals with the so-called ''adsorber loop concept'' in which the adsorber granulate is carried along with the seawater to be processed in a loop-like configuration and is separated again from the water before this is leaving the adsorption unit. This concept enables considerably higher seawater velocities thus reducing the bed area. Theoretical considerations are presented together with experimental results from field tests. (author)

  13. Removal of adsorbent particles od copper ions by Jet flotation

    International Nuclear Information System (INIS)

    Santander, M.; Tapia, P.; Pavez, O.; Valderrama, L.; Guzman, D.

    2009-01-01

    The present study shows the results obtained on the removal of copper ions from synthetic effluents by using the adsorbent particles flotation technique (APF) in a Jet flotation cell (Jameson type). In a typical experimental run, a mineral with high quartz content was used as adsorbent particles in the adsorption and flotation experiments, to determine optimal pH conditions, adsorbent particles concentration; flotation reagents dosage and air/effluent flow ratio for applying in the Jet cell to maximize the efficiency of copper ions adsorptions and the removal of particles adsorbents containing the absorbed copper ions. The results indicate the at pH>7 and at adsorbent particles concentration of 2 kg.m - 3, 99% of copper ions is adsorbed and, when the air/effluent flow ratio applied in the Jet cell is 0,2, 98% of absorbent particles containing the adsorbed copper ions is removed. (Author) 39 refs.

  14. Development of adsorbents for recovery of uranium from seawater

    International Nuclear Information System (INIS)

    Egawa, Hiroaki; Furusaki, Shintaro.

    1987-01-01

    The largest subject for putting the extraction of uranium from seawater in practical use is the development of high performance adsorbents for uranium. In this paper, the way of thinking about the development of adsorbents for extracting uranium from seawater and the recent reports on this subject are described. Next, the research on the adsorbing capacity and adsorbing rate of the adsorbents developed so far is summarized, and the way of thinking about the evaluation of adsorbent performance which is the base of the design of a system for extracting uranium from seawater is explained, taking amidoxime type adsorbent as the example. For Japan where energy resources are scant, the uranium contained in seawater, which is estimated to be about 4.2 billion t, is the most luring important element. Uranium is contained in seawater is very low concentration of 3 ppb, and exists as anion complex salt. In 1960s, the Harwell Atomic Energy Research Establishment in UK found out that titanium oxide hydrate is the most promising as the adsorbent. Also a number of organic absorbents have been developed. In order to bring adsorbents in contact with seawater, pumping, ocean current and wave force are utilized. Adsorbents are in spherical, fiber and film forms, and held as fixed beds and fluidized beds. (Kako, I.) 48 refs

  15. Bright new colours: the history and analysis of fluorescein, eosin, erythrosine, rhodamine and some of their derivatives

    NARCIS (Netherlands)

    de Keijzer, M.; van Bommel, M.R.; Kirby, J.

    2017-01-01

    This paper discusses the history, chemical constitution, production, dyeing processes and properties of the hydroxyphthaleins. Important dyes of this dye class are fluorescein, the eosins, phloxines, erythrosines, rose bengals and rhodamines. These dyes were used for textile dyeing and as painting

  16. Novel synthesis and initial preclinical evaluation of (18)F-[FDG] labeled rhodamine: a potential PET myocardial perfusion imaging agent.

    Science.gov (United States)

    AlJammaz, Ibrahim; Al-Otaibi, Basim; AlHindas, Hussein; Okarvi, Subhani M

    2015-10-01

    Myocardial perfusion imaging is one of the most commonly performed investigations in nuclear medicine studies. Due to the clinical importance of [(18)F]-fluoro-2-deoxy-D-glucose ([(18)F]-FDG) and its availability in almost every PET center, a new radiofluorinated [(18)F]-FDG-rhodamine conjugate was synthesized using [(18)F]-FDG as a prosthetic group. In a convenient and simple one-step radiosynthesis, [(18)F]-FDG-rhodamine conjugate was prepared in quantitative radiochemical yields, with total synthesis time of nearly 20 min and radiochemical purity of greater than 98%, without the need for HPLC purification, which make these approaches amenable for automation. Biodistribution studies in normal rats at 60 min post-injection demonstrated a high uptake in the heart (>11% ID/g) and favorable pharmacokinetics. Additionally, [(18)F]-FDG-rhodamine showed an extraction value of 27.63%±5.12% in rat hearts. These results demonstrate that [(18)F]-FDG-rhodamine conjugate may be useful as an imaging agent for the positron emission tomography evaluation of myocardial perfusion. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. A Study on the Interaction of Rhodamine B with Methylthioadenosine Phosphorylase Protein Sourced from an Antarctic Soil Metagenomic Library

    Science.gov (United States)

    Bujacz, Anna; Wierzbicka-Woś, Anna; Kur, Józef

    2013-01-01

    The presented study examines the phenomenon of the fluorescence under UV light excitation (312 nm) of E. coli cells expressing a novel metagenomic-derived putative methylthioadenosine phosphorylase gene, called rsfp, grown on LB agar supplemented with a fluorescent dye rhodamine B. For this purpose, an rsfp gene was cloned and expressed in an LMG194 E. coli strain using an arabinose promoter. The resulting RSFP protein was purified and its UV-VIS absorbance spectrum and emission spectrum were assayed. Simultaneously, the same spectroscopic studies were carried out for rhodamine B in the absence or presence of RSFP protein or native E. coli proteins, respectively. The results of the spectroscopic studies suggested that the fluorescence of E. coli cells expressing rsfp gene under UV illumination is due to the interaction of rhodamine B molecules with the RSFP protein. Finally, this interaction was proved by a crystallographic study and then by site-directed mutagenesis of rsfp gene sequence. The crystal structures of RSFP apo form (1.98 Å) and complex RSFP/RB (1.90 Å) show a trimer of RSFP molecules located on the crystallographic six fold screw axis. The RSFP complex with rhodamine B revealed the binding site for RB, in the pocket located on the interface between symmetry related monomers. PMID:23383268

  18. A first principles study of fluorescence quenching in rhodamine B dimers : how can quenching occur in dimeric species?

    NARCIS (Netherlands)

    Setiawan, Dani; Kazaryan, Andranik; Martoprawiro, Muhamad Abdulkadir; Filatov, Michael

    2010-01-01

    Rhodamine B (RhB) is widely used in chemistry and biology due to its high fluorescence quantum yield. In high concentrations, the quantum yield of fluorescence decreases considerably which is attributed to the formation of RhB dimers. In the present work, a possible mechanism of fluorescence

  19. Chemiluminescence behavior based on oxidation reaction of rhodamine B with cerium(IV) in sulfuric acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yongjun; Jin Xiaoyong; Zhou Min; Zhang Ziyu; Teng Xiulan; Chen Hui

    2003-08-18

    The chemiluminescence (CL) of the rhodamine B (RhB)-cerium(IV) system was investigated by flow-injection. Rhodamine B was suggested to be a suitable chemiluminescent reagent in acidic conditions. When the concentration of rhodamine B was 100 mg l{sup -1} and cerium sulfate was 1.6 mmol l{sup -1} in sulfuric acid, the chemiluminescent intensity was found to be highest by using 0.3 mol l{sup -1} sulfuric acid as a carrier solution. The particular chemiluminescent system could tolerate such distinct acidic environments that it was utilized for detecting many compounds that are stable in acidic solutions. Furthermore, by virtue of IR, UV-Vis and luminescence spectroscopic measurements, the chemiluminescent behavior of rhodamine B was studied and a possible mechanism for this chemiluminescent reaction was proposed. The emitter was affirmed to be a radical species due to one of the oxidation products of RhB; the chemiluminescent emissive wavelength was about 425 nm.

  20. Theoretical Insight of Physical Adsorption for a Single Component Adsorbent + Adsorbate System: II. The Henry Region

    KAUST Repository

    Chakraborty, Anutosh; Saha, Bidyut Baran; Ng, Kim Choon; Koyama, Shigeru; Srinivasan, Kandadai

    2009-01-01

    evaluated and compared with experimental data. It is found that the adsorbents with higher specific surface areas tend to possess lower heat of adsorption (ΔH°) at the Henry regime. In this paper, we have established the definitive relation between Ai and ΔH

  1. Natural adsorbents of dyes from aqueous solution

    Science.gov (United States)

    Rahmani, Meryem; El Hajjaji, souad; Dahchour, Abdelmalek; El M'Rabet, Mohammadine

    2017-04-01

    Contamination of natural waters is a current environmental problem and lot of work has been done to find methods for its, prevention and remediation such as ionic exchange, adsorption on active carbon, filtration, electrolysis, biodegradation …etc. Adsorption is one of the most applied methods according to its effectiveness and easy management. Some adsorbents with good properties such as active alumina, zeolites, crop residues … etc, are suitable to substitute usual active carbon. This study aimed at the removal of dyes using oil shale as natural support, and its optimization by factorial experiment. Three factors were considered namly:pollutant concentration, pH and weight of the adsorbent. Tests have been performed with cationic and anionic dyes. Experimental results show that pseudo-first-order kinetic model provided the best fit to the experimental data for the adsorption by the oil shale. Langmuir, Freundlich and Temkin isotherm models were tested to fit experimental data, the adsorption equilibrium was well described by Freundlich isotherm for methylorange and Temkin for methyl blue. Analysis were completed by oil shale characterization educing XRD, IR, XRF techniques, and cationic exchange capacity.

  2. Optimizing heterosurface adsorbent synthesis for liquid chromatography

    Science.gov (United States)

    Bogoslovskii, S. Yu.; Serdan, A. A.

    2016-03-01

    The structural and geometric parameters of a silica matrix (SM) for the synthesis of heterosurface adsorbents (HAs) are optimized. Modification is performed by shielding the external surfaces of alkyl-modified silica (AS) using human serum albumin and its subsequent crosslinking. The structural and geometric characteristics of the SM, AS, and HA are measured via low-temperature nitrogen adsorption. It is found that the structural characteristics of AS pores with diameters D 9 nm reduces significantly due to adsorption of albumin. It is concluded that silica gel with a maximum pore size distribution close to 5 nm and a minimal proportion of pores with D > 9 nm is optimal for HA synthesis; this allows us to achieve the greatest similarity between the chromatographic retention parameters for HA and AS. The suitability of the synthesized adsorbents for analyzing drugs in biological fluids through direct sample injection is confirmed by chromatography. It was found that the percentage of the protein fraction detected at the outlet of the chromatographic column is 98%.

  3. Synthesis of a Cu2+-Selective Probe Derived from Rhodamine and Its Application in Cell Imaging

    Directory of Open Access Journals (Sweden)

    Chunwei Yu

    2014-11-01

    Full Text Available A new fluorescent probe P based on rhodamine for Cu2+ was synthesized and characterized. The new probe P showed high selectivity to Cu2+ over other tested metal ions. With optimal conditions, the proposed probe P worked in a wide linear range of 1.0 × 10−6–1.0 × 10−5 M with a detection limit of 3.3 × 10−7 M Cu2+ in ethanol-water solution (9:1, v:v, 20 mM HEPES, pH 7.0. Furthermore, it has been used for imaging of Cu2+ in living cells with satisfying results.

  4. Highly Selective Deethylation of Rhodamine B on Prepared in Supercritical Fluids

    Directory of Open Access Journals (Sweden)

    Yuzun Fan

    2012-01-01

    Full Text Available Pure phase anatase TiO2 nanoparticles with sizes of 5–8 nm and varying crystallinity were synthesized in supercritical isopropanol/water using a continuous flow reactor. Their photodegradation of rhodamine B (RhB was evaluated under visible light irradiation. The as-prepared TiO2 nanoparticles show much higher photodegradation efficiencies than commercial Degussa P25 TiO2. Moreover, the photodegradation of RhB on the as-prepared TiO2 follows a different process from that on P25 TiO2, quicker N-deethylation and slower cleavage of conjugated chromophore structure. Based on PXRD, TEM, and BET measurements, these two photodegradation properties have been explained by the physicochemical properties of TiO2.

  5. A new rhodamine-based fluorescent probe for the discrimination of Fe"3"+ from Fe"2"+

    International Nuclear Information System (INIS)

    You, Qi Hua; Huang, Hua Bin; Zhuang, Zhi Xia; Wang, Xiao Ru; Chan, Wing Hong

    2016-01-01

    A new rhodamine-based fluorescent probe for the discrimination of Fe"3"+ from Fe"2"+ has been designed and investigated. The probe shows an immediate visual color change in response to Fe"3"+ and Cu"2"+, while only Fe"3"+ triggers the fluorescent change of the probe. The existence of large amount of other metal ions shows negligible interference in the detection of Fe"3"+. The association constant K_a_s_s of 4.64 × 10"8 M"-"2 (R"2 = 0.994) and 5.38 × 10"8 M"-"2 (R"2 = 0.991) of the complex was derived from UV/Vis and fluorescence titration assuming 1:2 stoichiometry of probe–Fe"3"+ complex, respectively

  6. Studies of rhodamine-123: effect on rat prostate cancer and human prostate cancer cells in vitro.

    Science.gov (United States)

    Arcadi, J A; Narayan, K S; Techy, G; Ng, C P; Saroufeem, R M; Jones, L W

    1995-06-01

    The effect of the lipophilic, cationic dye, Rhodamine-123 (Rh-123), on prostate cancer in rats, and on three tumor cell lines in vitro is reported here. The general toxicity of Rh-123 in mice has been found to be minimal. Lobund-Wistar (L-W) rats with the autochthonous prostate cancer of Pollard were treated for six doses with Rh-123 at a dose of 15 mg/kg subcutaneously every other day. Microscopic examination of the tumors revealed cellular and acinar destruction. The effectiveness of Rh-123 as a cytotoxic agent was tested by clonogenic and viability assays in vitro with three human prostate cancer cell lines. Severe (60-95%) growth inhibition was observed following Rh-123 exposure for 2-5 days at doses as low as 1.6 micrograms/ml in all three prostate cancer cell lines.

  7. Degradation and removal of Ceftriaxone sodium in aquatic environment with Bi2WO6/g-C3N4 photocatalyst.

    Science.gov (United States)

    Zhao, Yanyan; Liang, Xuhua; Wang, Yongbo; Shi, Huanxian; Liu, Enzhou; Fan, Jun; Hu, Xiaoyun

    2018-08-01

    Modern chemistry aims to identify outstanding photocatalytic materials for antibiotic degradation given the overuse and misuse of antibiotics. Herein, highly efficient heterojunction photocatalysts composed of Bi 2 WO 6 nanoflowers (BW) and g-C 3 N 4 nanosheets (CNNs) were successfully synthesized. The Bi 2 WO 6 /g-C 3 N 4 (BW/CNNs) were presented for Ceftriaxone sodium degradation in the aquatic environment at low concentrations under visible light irradiation. The 40%-BW/CNNs showed excellent photocatalytic activity, and approximately 94.50% Ceftriaxone sodium was degraded under visible lightirradiation for 120 min. h + and O 2 - played major roles compared with ·OH in the photocatalytic process. The degradation mechanism and the intermediate products were proposed to better understand the reaction process. Moreover, the as-prepared photocatalysts were highly stable in recycling photocatalytic experiments. Therefore, the photocatalysts prepared in the study showed outstanding photocatalytic activity and potential applications in inhibiting environmental pollution. In addition, this work provides a new insight for constructing other high-performance, low-cost photocatalysts for wastewater treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Two sugar-rhodamine "turn-on" fluorescent probes for the selective detection of Fe3 +

    Science.gov (United States)

    Chen, Qing; Fang, Zhijie

    2018-03-01

    Two new sugar-rhodamine fluorescent probes (RDG1 and RDG2) have been synthesized and characterized by 1H NMR, 13C NMR and HRMS. Their UV-Vis, fluorescence spectra and fluorescence-response to Fe3 + are investigated and discussed. RDG1 had a very nice linear relationship between UV absorbance and Fe3 + concentration with the correlation coefficient as high as 0.997 and the detection limit is 3.46 × 10- 6 M. Upon the addition of Fe3 +, the spirolactam ring of RDG1 was opened and a 1:1 metal ligand complex was formed from Job's plot. The results showed that RDG1 can be used as an effective fluorescent probe for selective detection of Fe3 + in water. RDG2 was incorporated the well-known rhodamine group and a water-soluble D-glucose group within one molecule and can be used for detecting Fe3 + in natural water as a selective fluorescent sensor. The addition of Fe3 + into RDG2 resulted in a strongly enhanced fluorescence as well as color change of solution from colorless to pink. Job's plot of RDG2 indicated 1:1 stoichiometry of RDG2-Fe3 +. RDG2 can serve as a probe for Fe3 + between pH = 4.0 to 7.0 and it's detection limit is 2.09 × 10- 6 M. The OFF-ON fluorescent mechanisms of RDG1-Fe3 + and RDG2-Fe3 + are proposed.

  9. New type of amidoxime-group-containing adsorbent for the recovery of uranium from seawater. III. Recycle use of adsorbent

    International Nuclear Information System (INIS)

    Omichi, H.; Katakai, A.; Sugo, T.; Okamoto, J.

    1986-01-01

    An amidoxime-group adsorbent for recovering uranium from seawater was made by radiation-induced graft polymerization of acrylonitrile onto polymeric fiber, followed by amidoximation. Uranium adsorption of the adsorbent contacted with seawater in a column increased with the increase in flow rate, then leveled off. The relationship between uranium adsorption in a batch process and the ratio of the amount of seawater to that of adsorbent was found to be effective in evaluating adsorbent contacted with any amount of seawater. The conditioning of the adsorbent with an alkaline solution at higher temperature (∼80 0 C) after the acid desorption recovered the adsorption ability to the original level. This made it possible to apply the adsorbent to recycle use. On the other hand, the adsorbent conditioned at room temperature or that without conditioning lost adsorption ability during recycle use. The increase in water uptake was observed as one of the physical changes produced during recycle use of the alkaline-conditioned adsorbent, while the decrease in water uptake was observed with the unconditioned adsorbent. The IR spectra of the adsorbent showed a probability of reactions of amidoxime groups with acid and alkaline solutions, which can explain the change in uranium adsorption during the adsorption-desorption cycle

  10. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    International Nuclear Information System (INIS)

    Tsouris, Costas; Mayes, Richard T.; Janke, Christopher James; Dai, Sheng; Das, S.; Liao, W.P.; Kuo, Li-Jung; Wood, Jordana; Gill, Gary; Byers, Maggie Flicker; Schneider, Eric

    2015-01-01

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater. The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous

  11. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mayes, Richard T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Janke, Christopher James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Das, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liao, W. -P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wood, Jordana [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, Gary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Byers, Maggie Flicker [Univ. of Texas, Austin, TX (United States); Schneider, Eric [Univ. of Texas, Austin, TX (United States)

    2015-09-30

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater. The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous

  12. Creation of the technical adsorbent from local raw materials

    International Nuclear Information System (INIS)

    Isobaev, M.D.; Davlatnazarova, M.D.; Abdullaev, T.H.

    2016-01-01

    The results showed the possibility of obtaining effective adsorbents of walnut shell and the sunflower for environmental purposes, in particular for the purification of polluted waters from heavy metals. It has been shown, that 1 g of walnut shell adsorbent can adsorb on its surface ions of lead in amount of 47% by weight. The dependence of the adsorption activity of the semi-coke received from walnut shell from particle size and concentration of the solution. (author)

  13. WGS-Adsorbent Reaction Studies at Laboratory Scale

    International Nuclear Information System (INIS)

    Marano, M.; Torreiro, Y.

    2014-01-01

    This document reports the most significant results obtained during the experimental work performed under task WGS adsorbent experimental studies within CAPHIGAS project (National Research Plan 2008-2011, ref: ENE2009-08002). The behavior of the binary adsorbent-catalyst system which will be used in the hybrid system is described in this document. Main results reported here were used during the design and development of the hybrid system adsorbent catalyst- membrane proposed in the CAPHIGAS project. The influence of main operating parameters and the optimized volume ratio adsorbent-catalyst are also presented in this report. (Author)

  14. Neutralization of Rubidium Adsorbate Electric Fields by Electron Attachment

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, J. A. [Univ. of Oklahoma, Norman, OK (United States); Kim, E. [Univ. of Nevada, Las Vegas, NV (United States); Rittenhouse, S. T. [Western Washington Univ., Bellingham, WA (United States); US Naval Academy, Annapolis, MD (United States); Weck, Philippe F [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sadeghpour, H. R. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Shaffer, J. P. [Univ. of Oklahoma, Norman, OK (United States)

    2015-10-01

    We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric elds resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the Rb induces a negative electron affnity (NEA) on the quartz surface. The NEA surface allows for low energy electrons to bind to the surface and cancel the electric eld from the Rb adsorbates. Our results have implications for integrating Rydberg atoms into hybrid quantum systems and the fundamental study of atom-surface interactions, as well as applications for electrons bound to a 2D surface.

  15. ICE-6G models of postglacial relative sea-level history applied to Holocene coral reef and mangrove records of the western Caribbean

    Science.gov (United States)

    Toscano, M. A.; Peltier, W. R.; Drummond, R.; Gonzalez, J.

    2012-12-01

    Fossil coral reefs and mangrove peat accumulations at western Caribbean sites along a latitudinal gradient from the Florida Keys through Belize and Panama provide dated and interpreted 8,000 year Holocene sea-level records for comparison with RSL predictions of the ICE-6G (VM5A, VM5B; L90) models of glacio-hydro-isostatic adjustment, with and without rotational feedback. These presumably passive continental margin sites provide the means to establish a N-S spatial trend in the varying influences of GIA, eustatic components of Holocene sea level, extent of forebulge collapse and influence of rotational feedback over a 20° latitudinal range. Previous ICE6G (VM5A) model-coral data comparisons for St Croix, USVI, Antigua, Martinique and Barbados (Toscano, Peltier and Drummond, 2011, QSR) along the eastern Caribbean plate and island arc illustrated the close model-data compatibility, the influence of rotational feedback acting as a significant factor in reducing misfits, and the need for high quality in situ data to confirm the extension of the proglacial forebulge into tropical latitudes. The gradient of western Caribbean continental shelf sites comprises a much more varied range of model-data relationships based on extensive combined Acropora palmata (reef crest coral) and Rhizophora mangle (microtidal mangrove) peat datasets in all cases. Starting at the northernmost region with the Florida Keys, there exist negative model misfits to the data, suggesting the possibility of a positive tectonic overprint upon expectations related to the glacial isostatic adjustment process acting alone, even though this region is normally believed to be tectonically stable. The largest multi-proxy database from Belize supports the likelihood of increasing rates of subsidence from north to south in the Belize Lagoon, which may account for numerous positive GIA model-data misfits. The southernmost site at Panama is most similar to Belize in the possible nature of tectonic influences on

  16. Theoretical Insight of Physical Adsorption for a Single-Component Adsorbent + Adsorbate System: I. Thermodynamic Property Surfaces

    KAUST Repository

    Chakraborty, Anutosh

    2009-02-17

    Thermodynamic property surfaces for a single-component adsorbent + adsorbate system are derived and developed from the viewpoint of classical thermodynamics, thermodynamic requirements of chemical equilibrium, Gibbs law, and Maxwell relations. They enable us to compute the entropy and enthalpy of the adsorbed phase, the isosteric heat of adsorption, specific heat capacity, and the adsorbed phase volume thoroughly. These equations are very simple and easy to handle for calculating the energetic performances of any adsorption system. We have shown here that the derived thermodynamic formulations fill up the information gap with respect to the state of adsorbed phase to dispel the confusion as to what is the actual state of the adsorbed phase. We have also discussed and established the temperature-entropy diagrams of (i) CaCl 2-in-silica gel + water system for cooling applications, and (ii) activated carbon (Maxsorb III) + methane system for gas storage. © Copyright 2009 American Chemical Society.

  17. Effect of temperature on the expansion and microstructure Of U3 Si2-AI mini plate fuel of 3.6 g/cm3 uranium loading

    International Nuclear Information System (INIS)

    Ginting, A. Br.; Samosir, N.; Suparjo; Nasution, H.

    2000-01-01

    Expansion analysis has been conducted to 50 x 20-mm U 3 Si 2 -AI mini plate of 3.6 g/cm 3 uranium loading using dilatometer. The analysis was carried out at various temperatures of 170 o C, 350 o C and 550 o C in Argon medium with delay time 4 days. The result showed that the fuel plate was relatively stable with increasing of heating time but underwent significant expansion. Heating at 170 o C, 350 o C and 550 o C resulted in the expansion of the U 3 Si 2 -AI fuel plate of to 83-212 mum, 333-475 mum, and 433-724 mum with coefficient expansion of 24.2x10 -6 / o C - 24.3x10 -6 / o C, 25.5x10 -6 / o C - 26.2x10 -6 /'oC and 26.6 x 10 -6 / o C - 28.2 x 10 -6 / o C respectively. Microanalysis of the U 3 Si 2 -AI mini plate fuel with SEM-EDS upon heating at those temperature variation showed that microstructure change didn't occur at 170 o C, mean while interaction between AIMg2 cladding and the fuel meat appeared to take place at 350 o C and 550 o C. Data on the expansion and microstructure change of U 3 Si 2 -AI fuel plate upon heating are of great important for the manufacture/fabrication of research fuel plate to produce silicide fuel element for higher uranium loading. (author)

  18. Glacial Isostatic Adjustment Derived Boundary Conditions for Paleoclimate Simulation: the Refined ICE-6G_D (VM5a) Model and the Dansgaard-Oeschger Oscillation

    Science.gov (United States)

    Peltier, W. R.; Vettoretti, G.; Argus, D. F.

    2017-12-01

    Global models of the glacial isostatic adjustment (GIA) process are designed to fit a wide range of geophysical and geomorphological observations that simultaneously constrain the internal viscoelastic structure of Earths interior and the history of grounded ice thickness variations that has occurred over the most recent ice-age cycle of the Late Quaternary interval of time. The most recent refinement of the ICE-NG (VMX) series of such global models from the University of Toronto, ICE-6G_C (VM5a), has recently been slightly modified insofar as its Antarctic component is concerned to produce a "_D" version of the structure. This has been chosen to provide the boundary conditions for the next round of model-data inter-comparisons in the context of the international Paleoclimate Modeling Inter-comparison Project (PMIP). The output of PMIP will contribute to the Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change which is now under way. A highly significant test of the utility of this latest model has recently been performed that is focused upon the Dansgaard-Oeschger oscillation that was the primary source of climate variability during Marine Isotope Stage 3 (MIS3) of the most recent glacial cycle. By introducing the surface boundary conditions for paleotopography and paleobathymetry, land-sea mask and surface albedo into the NCAR CESM1 coupled climate model configured at full one degree by one degree CMIP5 resolution, together with the appropriate trace gas and orbital insolation forcing, we show that the millennium timescale Dansgard-Oeschger oscillation naturally develops following spin- up of the model into the glacial state.

  19. Ion exchange/adsorbent pilot plant

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    A decontamination of greater than 99% of the actinides and fission products contained in radioactive waste water can be obtained using ion exchange resins. A system for achieving this result is described in this paper. This ion exchange pilot-plant design is the culmination of five years of study of the decontamination of radioactive waste streams by ion exchange resins and other adsorbents at Mound. In order to maintain maximum flexibility of treatments, this pilot-plant design is a conceptual design with specific flows, resins, and column specifications, but with many optional features and no rigid equipment specifications. This flexibility allows the system to be amenable to almost any radioactive waste stream. Very specific designs can be constructed from this conceptual design for the treatment of any specific waste stream. Operating and capital costs are also discussed. 1 figure, 5 tables

  20. Canyon solvent cleaning with solid adsorbents

    International Nuclear Information System (INIS)

    Reif, D.J.

    1987-01-01

    The HM Process at the Savannah River Plant (SRP) uses 7.5% tributyl phosphate in n-paraffin as an extraction solvent. During use, the solvent is altered due to hydrolysis and radiolysis, forming materials that influence product losses, product decontamination, and separation efficiencies. Laboratory studies to improve online solvent cleaning have shown that carbonate washing, although removing residual solvent activity, does not remove binding ligands that hold fission products in the solvent. Treatment of solvent with a solid adsorbent removes binding ligands and significantly improves recycle solvent performance. Both laboratory work defining a full-scale adsorption process and the use of the process to clean HM Process first cycle solvent are presented

  1. Arsenic Remediation by Synthetic and Natural Adsorbents

    Directory of Open Access Journals (Sweden)

    Muhammad Saqaf Jagirani

    2017-06-01

    Full Text Available The contagion of toxic metals in water is a serious environmental and health concern and threatening problem worldwide. Particularly arsenic contamination in ground water has became great dilemma in the earlier decades. With advent in research for arsenic remediation, standard of drinking water is improving and now reduced to few parts per million (ppm level of arsenic in drinking water sources. However, due to continuous enhancement in environmental pollution, remediation techniques are still needed to achieve the drinking water quality standard. Development of novel and economically feasible removal techniques or materials for selective separation of this toxic specie has been the main focus of research. Several arsenic removal techniques, including membrane separation, coagulation, precipitation, anion exchange have been developed. The aim of this article is to review briefly arsenic chemistry and previous and current available technologies that have been reported various low-cost adsorbents for arsenic removal.

  2. The condensation of water on adsorbed viruses.

    Science.gov (United States)

    Alonso, José María; Tatti, Francesco; Chuvilin, Andrey; Mam, Keriya; Ondarçuhu, Thierry; Bittner, Alexander M

    2013-11-26

    The wetting and dewetting behavior of biological nanostructures and to a greater degree single molecules is not well-known even though their contact with water is the basis for all biology. Here, we show that environmental electron microscopy (EM) can be applied as a means of imaging the condensation of water onto viruses. We captured the formation of submicrometer water droplets and filaments on single viral particles by environmental EM and by environmental transmission EM. The condensate structures are compatible with capillary condensation between adsorbed virus particles and with known droplet shapes on patterned surfaces. Our results confirm that such droplets exist down to condensation/evaporation cycle as expected from their stability in air and water. Moreover we developed procedures that overcome problems of beam damage and of resolving structures with a low atomic number.

  3. Applications of core level spectroscopy to adsorbates

    International Nuclear Information System (INIS)

    Nilsson, Anders

    2002-01-01

    In the following review different applications of core-level spectroscopy to atomic and molecular adsorbates will be shown. Core-holes are created through core-level ionization and X-ray absorption processes and the core-hole decays by radiant and non-radiant processes. This forms the basis for X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, Auger electron spectroscopy and X-ray emission spectroscopy. We will demonstrate how we can use the different methods to obtain information about the chemical state, local geometric structure, nature of chemical bonding and dynamics in electron transfer processes. The adsorption of N 2 and CO on Ni(100) will be used as prototype systems for chemisorption while N 2 on graphite and Ar on Pt for physisorption

  4. In vitro hydroxyapatite adsorbed salivary proteins

    International Nuclear Information System (INIS)

    Vitorino, Rui; Lobo, Maria Joao C.; Duarte, Jose; Ferrer-Correia, Antonio J.; Tomer, Kenneth B.; Dubin, Joshua R.; Domingues, Pedro M.; Amado, Francisco M.L.

    2004-01-01

    In spite of the present knowledge about saliva components and their respective functions, the mechanism(s) of pellicle and dental plaque formation have hitherto remained obscure. This has prompted recent efforts on in vitro studies using hydroxyapatite (HA) as an enamel model. In the present study salivary proteins adsorbed to HA were extracted with TFA and EDTA and resolved by 2D electrophoresis over a pH range between 3 and 10, digested, and then analysed by MALDI-TOF/TOF mass spectrometry and tandem mass spectrometry. Nineteen different proteins were identified using automated MS and MS/MS data acquisition. Among them, cystatins, amylase, carbonic anhydrase, and calgranulin B, were identified

  5. 软模板法制备中孔碳材料及其对罗丹明B吸附性能的研究%Synthesis of mesoporous carbon by soft-templating method and it absorption performance for Rhodamine B

    Institute of Scientific and Technical Information of China (English)

    陈刚; 赵振波; 杜鹏

    2012-01-01

    Mesoporous carbon has been synthesized by soft-templating method. The samples were characterized by XRD,FT-IR,SEM and N2 adsorption-desorption method. The adsorption properties of mesoporous carbon to Rhodamine B were investigated detailedly. It was found that adsorption capacity of mesoporous carbon depends on pH of solution, temperature and mass of adsorbent. When the pH value and temperature were 1 and 25 % respectively, the adsorption properties of mesoporous carbon to Rhodamine B are the best. ;%采用软模板法合成了较大比表面积的中孔碳材料,通过XRD、FT-IR、SEM、N2吸附-脱附对样品进行了表征.并以所制备的中孔碳材料为吸附剂,以罗丹明B溶液模拟染料废水,进行了吸附脱色实验,考察了吸附时的pH值、温度、吸附剂加入量等因素对吸附性能的影响.研究发现在pH=1,吸附温度为25℃时,所合成的中孔碳材料对罗丹明B表现出了最好的吸附性能.

  6. Biodegradation of bacterial polysaccharides adsorbed on montmorillonite

    International Nuclear Information System (INIS)

    Guckert, A.; Tok, H.H.; Jacquin, F.

    1977-01-01

    In this research, by means of a model, a study was made of the biodegradation of microbial organic compounds adsorbed on clays, with a parallel experiment on Fontainebleau sand serving as the control. During incubation the three classes of organic matter ( 14 C-labelled glucose, 14 C-labelled polysaccharides and 14 C-labelled microbial cells) mineralize more actively in the presence of sand than in the presence of clay, since the latter provides protection against biodegradation. Mineralization of the adsorbed organic compounds, however, is marked by clear-cut differences after three weeks - glucose (55%)>polysaccharides (43%)>microbial organisms (7.3%). After incubation, chemical extraction of the organo-mineral complexes by alkaline solvents shows only water-soluble and alkali-soluble products in the case of sand; conversely, in that of montmorillonite the bulk of the 14 C was found in the non-extractable fraction or humin (18.1% of the initial 14 C for glucose, 27.3% for the polysaccharides, and 67.6% for the microbial organisms). A second incubation carried out after a phase in which there was drying and remoistening of the organo-mineral complexes, brings to light the important part played by climatic alternations during the biodegradation process. A new mineralization phase is observed, affecting more the bacterial organisms (14.1%) than the polysaccharides (6.3%), with the glucose-base complexes occupying an intermediate position (11.2%). The chemical fractioning of the organo-mineral complexes following re-incubation shows the stability of 14 C in humin very clearly, especially in the case of polysaccharides, where the mineralization phase relates primarily to the products extractable with alkalis. (author)

  7. Understanding Trends in Catalytic Activity: The Effect of Adsorbate-Adsorbate Interactions for CO Oxidation Over Transition Metals

    DEFF Research Database (Denmark)

    Grabow, Lars; Larsen, Britt Hvolbæk; Nørskov, Jens Kehlet

    2010-01-01

    Using high temperature CO oxidation as the example, trends in the reactivity of transition metals are discussed on the basis of density functional theory (DFT) calculations. Volcano type relations between the catalytic rate and adsorption energies of important intermediates are introduced...... and the effect of adsorbate-adsorbate interaction on the trends is discussed. We find that adsorbate-adsorbate interactions significantly increase the activity of strong binding metals (left side of the volcano) but the interactions do not change the relative activity of different metals and have a very small...... influence on the position of the top of the volcano, that is, on which metal is the best catalyst....

  8. A specific Tween-80-Rhodamine S-MWNTs phosphorescent reagent for the detection of trace calcitonin

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jiaming, E-mail: zzsyliujiaming@163.com [Department of Chemistry and Environmental Science, Zhangzhou Normal College, Zhangzhou, 363000 (China); Huang Xiaomei; Zhang Lihong; Zheng Zhiyong [Department of Chemistry and Environmental Science, Zhangzhou Normal College, Zhangzhou, 363000 (China); Department of Food and Biological Engineering, Zhangzhou Institute of Technology, Zhangzhou, 363000 (China); Lin Xuan; Zhang Xiaoyang; Jiao Li; Cui Malin [Department of Chemistry and Environmental Science, Zhangzhou Normal College, Zhangzhou, 363000 (China); Jiang Shulian [Fujian Provincial Bureau of Quality and Technical Supervision, Zhangzhou, 363000 (China); Lin Shaoqin [Department of Biochemistry, Fujian Education College, Fuzhou 350001 (China)

    2012-09-26

    Graphical abstract: A new Tween-80-Rhodamine S-water-soluble multi-walled carbon nanotubes (Tween-80-Rhod.S-MWNTs-EDC-NHS, TRMEN) phosphorescent labelling reagent was developed. High sensitive solid substrate room temperature phosphorescence immunoassay (SSRTPIA) for the determination of calcitonin (CT) in human serum and the prediction of human diseases based on the TRMEN could be used to label anti-calcitonin antibody (Ab{sub CT}) to form the TRMEN-Ab{sub CT} labelling product, which could take high specific immunoreaction with CT causing that the {Delta}I{sub p} of the system was linear to the content of CT. Moreover, the reaction mechanisms of both labelling Ab{sub CT} by TRMEN and SSRTPIA for the determination of trace CT were discussed. This research not only provides a new hormones analysis method, but also expands the application field of MWNTs and promotes the development of SSRTP and IA. --Highlights: Black-Right-Pointing-Pointer A Tween-80-Rhodamine S-multi-walled carbon nanotubes labelling reagent was developed. Black-Right-Pointing-Pointer The phosphorescence immunoassay was established for the determination of calcitonin. Black-Right-Pointing-Pointer This method has been applied to determine CT and the prediction of diseases. Black-Right-Pointing-Pointer The structure of MWNTs was characterized with SEM and IR. Black-Right-Pointing-Pointer The mechanisms for both determining trace CT and labelling Ab{sub CT} were discussed. - Abstract: The present study proposed a simple sensitive and specific immunoassay for the quantification of calcitonin (CT) in human serum with water-soluble multi-walled carbon nanotubes (MWNTs). The -COOH group of MWNTs could react with the -NH- group of rhodamine S (Rhod.S) molecules to form Rhod.S-MWNTs, which could emit room temperature phosphorescence (RTP) on acetate cellulose membrane (ACM) and react with Tween-80 to form micellar compound. Tween-80-Rhod.S-MWNTs (TRM), as a phosphorescent labelling reagent, could

  9. A nuclear standard high-efficiency adsorber for iodine

    International Nuclear Information System (INIS)

    Wang Jianmin; Qian Yinge

    1988-08-01

    The structure of a nuclear standard high-efficiency adsorber, adsorbent and its performance are introduced. The performance and structure were compared with the same kind product of other firms. The results show that the leakage rate is less than 0.005%

  10. Comparative evaluation of selected starches as adsorbent for Thin ...

    African Journals Online (AJOL)

    The most commonly used is silica gel which is an inorganic adsorbent. Organic substances like cellulose, polyethylene are also used. All these are imported into Nigeria and are unhealthy for economic policies. Most commonly used adsorbent may not be easy to produce locally, but starch, which is a very common product, ...

  11. Synthesis and properties of porous zeolite aluminosilicate adsorbents

    International Nuclear Information System (INIS)

    Shilina, A.S.; Milinchuk, V.K.; Burukhin, S.B.; Gordienko, A.B.

    2015-01-01

    Environmentally safe non-energy-intensive methods of the synthesis have been developed and the properties of solid inorganic nanostructured zeolite-like adsorbents of a broad spectrum have been studied. The sorption capacities of the adsorbents with respect to various components of water pollution have been determined [ru

  12. Development of ultrafiltration and inorganic adsorbents: January--March 1977

    International Nuclear Information System (INIS)

    Koenst, J.W. Jr.

    1977-01-01

    Ultrafiltration media with and without the assistance of bone char filters were evaluated to determine their effectiveness in removing radionuclides from contaminated solutions. Precipitants, resin, adsorbents, and inorganic adsorbents were studied to determine their effectiveness in decontaminating solutions. A study of the effects of radiation on ultrafiltration media was initiated. An ultrafiltration media pilot plant was ordered and is being installed

  13. Friction and diffusion dynamics of adsorbates at surfaces

    NARCIS (Netherlands)

    Fusco, C.

    2005-01-01

    A theoretical study of the motion of adsorbates (e. g. atoms, molecules or clusters) on solid surfaces is presented, with a focus on surface diffusion and atomic-scale friction. These two phenomena are inextricably linked, because when an atomic or molecular adsorbate diffuses, or is pulled, it

  14. Mixed-matrix membrane adsorbers for protein separation

    NARCIS (Netherlands)

    Avramescu, M.E.; Borneman, Z.; Wessling, M.

    2003-01-01

    The separation of two similarly sized proteins, bovine serum albumin (BSA) and bovine hemoglobin (Hb) was carried out using a new type of ion-exchange mixed-matrix adsorber membranes. The adsorber membranes were prepared by incorporation of various types of Lewatit ion-exchange resins into an

  15. Single bank NOx adsorber for heavy duty diesel engines

    NARCIS (Netherlands)

    Genderen, M. van; Aken, M.G. van

    2003-01-01

    In a NOx adsorber programme the feasibility for applying this technology to heavy duty diesel engines was investigated. After modelling and simulations for realising best λ < 1 engine conditions a platform was build which was used to obtain good NOx adsorber regeneration settings in a number of

  16. Ionogenic adsorbents based on local raw materials for radiation protection

    International Nuclear Information System (INIS)

    Isobaev, M.D.; Davlatnazarova, M.; Turdialiev, M.Z.; Abdullayev, T.H.; Pulatov, E.H.

    2012-01-01

    The successful management of uranium wastes and creating the conditions for effective rehabilitation activities require special adsorbents capable of holding on the surface complexes, including radioactive elements. Currently tested and have shown promising synthetic adsorbents based pitted apricot fruits and other fruit plants. This report presents data for the establishment of ionic type available adsorbents based on Tajikistan coal. As the base for the creation of this type of adsorbent were taken the coal of the 'Ziddi' deposits. As follows from our data on the chemical composition, the studied coals contain more than 20% of the ash. According to the available literature theses ashes contains various minerals compositions that can form the adsorbent's active surface. Thus, the model for this type of activated carbon can serve as a mixture of zeolite, ion exchange resins and activated carbon itself.

  17. Processing method and device for iodine adsorbing material

    International Nuclear Information System (INIS)

    Watanabe, Shin-ichi; Shiga, Reiko.

    1997-01-01

    An iodine adsorbing material adsorbing silver compounds is reacted with a reducing gas, so that the silver compounds are converted to metal silver and stored. Then, the silver compounds are not melted or recrystallized even under a highly humid condition, accordingly, peeling of the adsorbed materials from a carrier can be prevented, and the iodine adsorbing material can be stored stably. Since the device is disposed in an off gas line for discharging off gases from a nuclear power facility, the iodine adsorbing material formed by depositing silver halides to the carrier is contained, and a reducing or oxidizing gas is supplied to the vessel as required, and silver halides can be converted to metal silver or the metal silver can be returned to silver halide. (T.M.)

  18. Nano-sized Adsorbate Structure Formation in Anisotropic Multilayer System

    Science.gov (United States)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Yanovsky, Vladimir V.

    2017-05-01

    In this article, we study dynamics of adsorbate island formation in a model plasma-condensate system numerically. We derive the generalized reaction-diffusion model for adsorptive multilayer system by taking into account anisotropy in transfer of adatoms between neighbor layers induced by electric field. It will be found that with an increase in the electric field strength, a structural transformation from nano-holes inside adsorbate matrix toward separated nano-sized adsorbate islands on a substrate is realized. Dynamics of adsorbate island sizes and corresponding distributions are analyzed in detail. This study provides an insight into details of self-organization of adatoms into nano-sized adsorbate islands in anisotropic multilayer plasma-condensate systems.

  19. Noble gas separation with the use of inorganic adsorbents

    International Nuclear Information System (INIS)

    Pence, D.T.; Chou, C.C.; Christian, J.D.; Paplawsky, W.J.

    1979-01-01

    A noble gas separation process is proposed for application to airborne nuclear fuel reprocessing plant effluents. The process involves the use of inorganic adsorbents for the removal of contaminant gases and noble gas separation through selective adsorption. Water and carbon dioxide are removed with selected zeolites that do not appreciably adsorb the noble gases. Xenon is essentially quantitatively removed with a specially developed adsorbent using conventional adsorption-desorption techniques. Oxygen is removed to low ppM levels by the use of a rapid cycle adsorption technique on a special adsorbent leaving a krypton-nitrogen mixture. Krypton is separated from nitrogen with a special adsorbent operated at about -80 0 C. Because the separation process does not require high pressures and oxygen is readily removed to sufficiently limit ozone formation to insignificant levels, appreciable capital and operating cost savings with this process are possible compared with other proposed processes. In addition, the proposed process is safer to operate

  20. Flow boundary conditions for chain-end adsorbing polymer blends.

    Science.gov (United States)

    Zhou, Xin; Andrienko, Denis; Delle Site, Luigi; Kremer, Kurt

    2005-09-08

    Using the phenol-terminated polycarbonate blend as an example, we demonstrate that the hydrodynamic boundary conditions for a flow of an adsorbing polymer melt are extremely sensitive to the structure of the epitaxial layer. Under shear, the adsorbed parts (chain ends) of the polymer melt move along the equipotential lines of the surface potential whereas the adsorbed additives serve as the surface defects. In response to the increase of the number of the adsorbed additives the surface layer becomes thinner and solidifies. This results in a gradual transition from the slip to the no-slip boundary condition for the melt flow, with a nonmonotonic dependence of the slip length on the surface concentration of the adsorbed ends.

  1. Development of a high-throughput liquid state assay for lipase activity using natural substrates and rhodamine B.

    Science.gov (United States)

    Zottig, Ximena; Meddeb-Mouelhi, Fatma; Beauregard, Marc

    2016-03-01

    A fluorescence-based assay for the determination of lipase activity using rhodamine B as an indicator, and natural substrates such as olive oil, is described. It is based on the use of a rhodamine B-natural substrate emulsion in liquid state, which is advantageous over agar plate assays. This high-throughput method is simple and rapid and can be automated, making it suitable for screening and metagenomics application. Reaction conditions such as pH and temperature can be varied and controlled. Using triolein or olive oil as a natural substrate allows monitoring of lipase activity in reaction conditions that are closer to those used in industrial settings. The described method is sensitive over a wide range of product concentrations and offers good reproducibility. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Efficient Photocatalytic Degradation of Rhodamine B Dye by Aligned Arrays of Self-Assembled Hydrogen Titanate Nanotubes

    Directory of Open Access Journals (Sweden)

    Sriparna Chatterjee

    2014-01-01

    Full Text Available We show that an aligned array of hydrothermally grown, multiwalled hydrogen titanate (H2Ti3O7 nanotubes—anchored to both faces of a metallic Ti foil—acts as an efficient photocatalyst. We studied the degradation of rhodamine B dye in the presence of the nanostructured photocatalyst under UV irradiation, by monitoring the optical absorption of the dye. Rhodamine B was chosen as a representative—and particularly harmful—industrial pollutant dye. The inner and outer diameters of the H2Ti3O7 nanotubes were 5 nm and 10 nm, respectively. The nanotube array catalyst is recyclable and structurally stable. Most importantly, it shows comparable or higher photodecomposition rate constant than those of both H2Ti3O7 nanotube powder and P-25 (Degussa. The enhanced photocatalytic performance may be ascribed to the nanotube array having a superhydrophilic surface with a high accessible surface area.

  3. Synthesis of metal free ultrathin graphitic carbon nitride sheet for photocatalytic dye degradation of Rhodamine B under visible light irradiation

    Science.gov (United States)

    Rahman, Shakeelur; Momin, Bilal; Higgins M., W.; Annapure, Uday S.; Jha, Neetu

    2018-04-01

    In recent times, low cost and metal free photocatalyts driven under visible light have attracted a lot of interest. One such photo catalyst researched extensively is bulk graphitic carbon nitride sheets. But the low surface area and weak mobility of photo generated electrons limits its photocatalytic performance in the visible light spectrum. Here we present the facile synthesis of ultrathin graphitic carbon nitride using a cost effective melamine precursor and its application in highly efficient photocatalytic dye degradation of Rhodamine B molecules. Compared to bulk graphitic carbon nitride, the synthesized ultrathin graphitic carbon nitride shows an increase in surface area, a a decrease in optical band gap and effective photogenerated charge separation which facilitates the harvest of visible light irradiation. Due to these optimal properties of ultrathin graphitic carbon nitride, it shows excellent photocatalytic activity with photocatalytic degradation of about 95% rhodamine B molecules in 1 hour.

  4. Random laser emission from a Rhodamine B-doped GPTS/TEOS-derived organic/silica monolithic xerogel

    Science.gov (United States)

    Abegão, Luis M. G.; Manoel, D. S.; Otuka, A. J. G.; Ferreira, P. H. D.; Vollet, D. R.; Donatti, D. A.; De Boni, L.; Mendonça, C. R.; De Vicente, F. S.; Rodrigues, J. J., Jr.; Alencar, M. A. R. C.

    2017-06-01

    A Rhodamine B-doped 3-glycidoxypropyltrimethoxysilane (GPTS)/tetraethyl orthosilicate (TEOS)-derived organic/silica monolithic xerogel with excellent optical properties was prepared and its potential as a random laser host investigated. This hybrid material has a non-porous organic/inorganic morphology with silica-rich nanoparticles of less than 10 nm in diameter homogeneously dispersed within the matrix. Random laser emission with incoherent feedback, centered at 618 nm, was observed from Rhodamine B incorporated into the monolithic xerogel when excited by a 532 nm pulsed laser. This hybrid system is shown to be very promising for the development of a new class of random laser-based integrated devices, with applications ranging from optical bio-imaging to sensing.

  5. Modification of fluorescence and optical properties of Rhodamine B dye doped PVA/Chitosan polymer blend films

    Science.gov (United States)

    Padmakumari, R.; Ravindrachary, V.; Mahantesha, B. K.; Sagar, Rohan N.; Sahanakumari, R.; Bhajantri, R. F.

    2018-05-01

    Pure and Rhodamine B doped Poly (vinyl alcohol)/Chitosan composite films are prepared using solution casting method. Fourier transforms infrared spectra (FTIR), Ultraviolet-Visible (UV-Vis), fluorescence studies were used to characterize the prepared polymer films. The FT-IR results show that the appearance of new peaks along with shift in peak positions indicates the interaction of Rhodamine B with PVA-CS blend. Optical absorption edge, band gap and activation energy were determined from UV-Visible studies. The optical absorption edge increases, band gap decreases and activation energy increases with dopant concentration respectively. The corresponding emission spectra were studied using fluorescence spectroscopy. From the fluorescence study the quenching phenomena are observed in emission wavelength range of 607nm-613nm upon excitation with absorption maxima 443nm.

  6. Study of the deposition features of the organic dye Rhodamine B on the porous surface of silicon with different pore sizes

    Energy Technology Data Exchange (ETDEWEB)

    Lenshin, A. S., E-mail: lenshinas@phys.vsu.ru; Seredin, P. V.; Kavetskaya, I. V.; Minakov, D. A.; Kashkarov, V. M. [Voronezh State University (Russian Federation)

    2017-02-15

    The deposition features of the organic dye Rhodamine B on the porous surface of silicon with average pore sizes of 50–100 and 100–250 nm are studied. Features of the composition and optical properties of the obtained systems are studied using infrared and photoluminescence spectroscopy. It is found that Rhodamine-B adsorption on the surface of por-Si with various porosities is preferentially physical. The optimal technological parameters of its deposition are determined.

  7. Solvent extraction of W(VI) and Hg(II) with malachite green and rhodamine-B respectively into organic solvents

    International Nuclear Information System (INIS)

    Patil, V.B.; David, M.M.; Turel, Z.R.

    1992-01-01

    Aqueous malachite green and alcoholic rhodamine-B have been used for the extraction of tungsten( W(VI)) and mercury( Hg(II)) respectively into nitrobenzene. This paper deals with developing a rapid method and selective method for the extraction of tungsten(W(VI)) and mercury (Hg(II)) using malachite green and rhodamine-B respectively. 185 W and 203 Hg were used as tracers for studying the extraction process.(author). 2 refs., 2 tab

  8. Rhodamine B triggers ovarian toxicity through oxidative stress, decreases in the number of follicles, 17B-estradiol level, and thickness of endometrium

    Directory of Open Access Journals (Sweden)

    Syiska Atik Maryanti

    2014-06-01

    Full Text Available Objective: The purpose of this study was to analyze the effects of exposure to rhodamine B on ovarian oxidative stress, ovarian follicles, hormone 17beta-estradiol and thickness of endometrium. Methods: A total of 28 female rats were divided into four groups consisting of control; groups treated with rhodamine B at doses of 4.5; 9, and 18 milligram/200 gram body weight. Rhodamine B was administered orally for 36 days with the probe. Analysis of MDA level was done spectrophotometrically. Analysis of the number of ovarian follicles and thickness of endometrium was done histopathologically by hematoxylin eosin staining. Analysis of 17-estradiol level was done by ELISA. Results: Rhodamine B administered in different doses in female rats can increase ovarian MDA levels significantly than the control (P 0.05. Administration of rhodamine B of the second and third doses in female rats can reduce the number of primary, secondary, and De Graaf follicles significantly compared to the control (P 0.05. Administration of rhodamine B of the second and third doses in female rats can reduce 17-estradiol level significantly compared to the control (P 0.05. The administration of rhodamine B could reduce thickness of endometrium significantly compared to the control (P 0.05. Conclusion: It was concluded that administration of rhodamine B triggered ovarian toxicity through oxidative stress, a decrease in the number of follicles, and decreased level of 17-estradiol which ultimately lowered the thickness of endometrium. [Cukurova Med J 2014; 39(3.000: 451-457

  9. Rhodamine bound maghemite as a long-term dual imaging nanoprobe of adipose tissue-derived mesenchymal stromal cells

    Czech Academy of Sciences Publication Activity Database

    Cmiel, V.; Skopalík, J.; Poláková, K.; Solař, J.; Havrdová, M.; Milde, D.; Justan, I.; Magro, M.; Starčuk jr., Zenon; Provazník, I.

    2017-01-01

    Roč. 46, JUL (2017), s. 433-444 ISSN 0175-7571 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : intracellular fluorescent labels * stem cell tracking * dual contrast agents * iron oxide nanoparticles * confocal microscopy * mesenchymal stromal cells * rhodamine Subject RIV: FS - Medical Facilities ; Equipment OBOR OECD: Biophysics Impact factor: 1.472, year: 2016

  10. Bioavailability of Carbon Nanomaterial-Adsorbed Polycyclic Aromatic Hydrocarbons to Pimphales promelas: Influence of Adsorbate Molecular Size and Configuration.

    Science.gov (United States)

    Linard, Erica N; Apul, Onur G; Karanfil, Tanju; van den Hurk, Peter; Klaine, Stephen J

    2017-08-15

    Despite carbon nanomaterials' (CNMs) potential to alter the bioavailability of adsorbed contaminants, information characterizing the relationship between adsorption behavior and bioavailability of CNM-adsorbed contaminants is still limited. To investigate the influence of CNM morphology and organic contaminant (OC) physicochemical properties on this relationship, adsorption isotherms were generated for a suite of polycyclic aromatic hydrocarbons (PAHs) on multiwalled carbon nanotubes (MWCNTs) and exfoliated graphene (GN) in conjunction with determining the bioavailability of the adsorbed PAHs to Pimphales promelas using bile analysis via fluorescence spectroscopy. Although it appeared that GN adsorbed PAHs indiscriminately compared to MWCNTs, the subsequent bioavailability of GN-adsorbed PAHs was more sensitive to PAH morphology than MWCNTs. GN was effective at reducing bioavailability of linear PAHs by ∼70%, but had little impact on angular PAHs. MWCNTs were sensitive to molecular size, where bioavailability of two-ringed naphthalene was reduced by ∼80%, while bioavailability of the larger PAHs was reduced by less than 50%. Furthermore, the reduction in bioavailability of CNM-adsorbed PAHs was negatively correlated with the amount of CNM surface area covered by the adsorbed-PAHs. This study shows that the variability in bioavailability of CNM-adsorbed PAHs is largely driven by PAH size, configuration and surface area coverage.

  11. Surface Behavior of Rhodamin and Tartrazine on Silica-Cellulose Sol-Gel Surfaces by Thin Layer Elution

    Directory of Open Access Journals (Sweden)

    Surjani Wonorahardjo

    2016-05-01

    Full Text Available Physical and chemical interactions are the principles for different types of separation systems as the equillibrium dynamics on surface plays a key-role. Surface modification is a way for selective separation at interfaces. Moreover, synthesis of gel silica by a sol-gel method is preferred due to the homogeneity and surface feature easily controlled. Cellulose can be added in situ to modified the silica features during the process. Further application for to study interaction of rhodamin and tartrazine in its surface and their solubilities in mobile phase explains the possibility for their separation. This paper devoted to evaluate the surface behavior in term of adsorption and desorption of tartrazine and rhodamin on silica-cellulose thin layer in different mobile phase. Some carrier liquids applied such as methanol, acetone, n-hexane and chloroform. The result proves tartrazine and rhodamin is separated and have different behavior in different mobile phase. The retardation factors (Rf of the mixtures suggest complexity behavior on silica-cellulose surface.

  12. Surface characterization of Ag/Titania adsorbents

    International Nuclear Information System (INIS)

    Samokhvalov, Alexander; Nair, Sachin; Duin, Evert C.; Tatarchuk, Bruce J.

    2010-01-01

    The Ag/Titania adsorbent for selective removal of the desulfurization-refractive polycyclic aromatic sulfur heterocycles (PASHs) from liquid hydrocarbon fuels was prepared, its total and the Ag specific surface area were determined and the surface reaction sites in the sorbent that may be active in the adsorptive selective desulfurization were characterized by several spectroscopic and surface science techniques. The sorbent contains Ag, Ti, O and spurious C on its surface, as by the XPS measurements. Silver is present as an oxide, as judged by the XPS Auger parameter (AP). The complementary electron spin resonance (ESR) spectroscopy confirms that the majority of Ag is present in the diamagnetic Ag 1+ form, with the minor concentration (∼0.1% of total Ag) present as Ag 2+ . The findings by XPS and ESR are confirmed by the XRD, UV-vis spectroscopy and thermodynamic considerations. The supported Ag is highly dispersed on the surface of the titania support, with the particle size of ∼30-60 A depending on Ag content, with an Ag specific surface area of ∼7-14 m 2 /g, vs. the total surface area of ∼114-58 m 2 /g.

  13. Removal of methylene blue and rhodamine B from water by zirconium oxide/graphene

    Directory of Open Access Journals (Sweden)

    Sumita Rani

    2016-04-01

    Full Text Available Methylene blue (MB and rhodamine B dyes (RB were degraded from water using zirconium oxide (ZrO2 and zirconium oxide/graphene composites (ZrO2/GR as photocatalyst. The photocatalytic efficiency was calculated from absorption spectra obtained using UV–visible spectroscopy. It has been observed that photodegradation time as well as photocatalytic efficiency increase with the concentration of catalyst up to a certain limit after which effect was reversed. The degradation was studied as a function of pH also. It was found that photocatalytic efficiency was more in alkaline medium than acidic medium. Degradation of RB takes place at higher value of pH as compared to MB. The degradation time for MB was 1 h using ZrO2 which get reduced to 32 min using ZrO2/GR composite and for RB it reduced to 40 min (using ZrO2/GR from 80 min (ZrO2.

  14. Rhodamine Inhibitors of P-glycoprotein: An Amide/Thioamide “Switch” for ATPase Activity

    Science.gov (United States)

    Gannon, Michael K.; Holt, Jason J.; Bennett, Stephanie M.; Wetzel, Bryan R.; Loo, Tip W.; Bartlett, M. Claire; Clarke, David M.; Sawada, Geri A.; Higgins, J. William; Tombline, Gregory; Raub, Thomas J.; Detty, Michael R.

    2012-01-01

    We have examined 46 tetramethylrosamine/rhodamine derivatives with structural diversity in the heteroatom of the xanthylium core, the amino substituents of the 3- and 6-positions, and the alkyl, aryl, or heteroaryl group at the 9-substituent. These compounds were examined for affinity and ATPase stimulation in isolated MDR3 CL P-gp and human P-gp-His10, for their ability to promote uptake of calcein AM and vinblastine in multidrug-resistant MDCKII-MDR1 cells, and for transport in monolayers of MDCKII-MDR1 cells. Thioamide 31-S gave KM of 0.087 μM in human P-gp. Small changes in structure among this set of compounds affected affinity as well as transport rate (or flux) even though all derivatives examined were substrates for P-gp. With isolated protein, tertiary amide groups dictate high affinity and high stimulation while tertiary thioamide groups give high affinity and inhibition of ATPase activity. In MDCKII-MDR1 cells, the tertiary thioamide-containing derivatives promote uptake of calcein AM and have very slow passive, absorptive, and secretory rates of transport relative to transport rates for tertiary amide-containing derivatives. Thioamide 31-S promoted uptake of calcein AM and inhibited efflux of vinblastine with IC50’s of ~2 μM in MDCKII-MDR1 cells. PMID:19402665

  15. Occurrence of rhodamine B contamination in capsicum caused by agricultural materials during the vegetation process.

    Science.gov (United States)

    Gao, Wei; Wu, Naiying; Du, Jingjing; Zhou, Li; Lian, Yunhe; Wang, Lei; Liu, Dengshuai

    2016-08-15

    This paper reports on the environmental rhodamine B (RhB) contamination in capsicum caused by agricultural materials during the vegetation process. Ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was applied to detect 64 capsicum samples from China, Peru, India and Burma. Results demonstrated that RhB was found in all samples at low concentrations (0.11-0.98 μg/kg), indicating RhB contamination in capsicums is probably a ubiquitous phenomenon. In addition, studies into soils, roots, stems and leaves in Handan of Hebei province, China showed that the whole ecologic chain had been contaminated with RhB with the highest levels in leaves. The investigation into the agricultural environment in Handan of Hebei province and Korla of Xinjiang province, China demonstrated that the appearances of RhB contamination in the tested capsicums are mainly due to the agricultural materials contamination. The study verified that environmental contamination should be an important origin for the RhB contamination in capsicum fruits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Animal Bone Supported SnO2 as Recyclable Photocatalyst for Degradation of Rhodamine B Dye.

    Science.gov (United States)

    Wu, Yun; Wang, Hui; Cao, Mengdie; Zhang, Yichi; Cao, Feifei; Zheng, Xinsheng; Hu, Jinfei; Dong, Jiangshan; Xiao, Zhidong

    2015-09-01

    SnO2 nanoparticles supported on an animal bone which serves as inexpensive and environment-friendly natural products were developed by a facile hydrothermal approach. As a promising photocatalyst, the novel SnO2/porcine bone material exhibited high photocatalytic activity towards the degradation of rhodamine B (RhB) dye under UV-Vis irradiation. About 97.3% of RhB can be effectively decomposed by the catalysis with the SnO2/porcine bone in 90 min, while only 51.5% of RhB can be degraded by pure SnO2 nanoparticles. Moreover, the photocatalytic activity was incremental with the increase of cycle times in previous five cycles. It is mainly because the photocatalyst which has been used for several times possesses a stronger ability of light absorption and utilization compared to the fresh catalyst according to the results of the characterization and relative experiments. It is noteworthy that the animal bone support can improve the activity for the photocatalyst, which would provide further impetus to alternate synthesis strategies for photocatalysts and make the photocatalysis process faster, less expensive, and more environmentally friendly.

  17. Interaction of Lysozyme with Rhodamine B: A combined analysis of spectroscopic & molecular docking.

    Science.gov (United States)

    Millan, Sabera; Satish, Lakkoji; Kesh, Sandeep; Chaudhary, Yatendra S; Sahoo, Harekrushna

    2016-09-01

    The interaction of Rhodamine B (RB) with Lysozyme (Lys) was investigated by different optical spectroscopic techniques such as absorption, fluorescence, and circular-dichroism (CD), along with molecular docking studies. The fluorescence results (including steady-state and time-resolved mode) revealed that the addition of RB effectively causes strong quenching of intrinsic fluorescence in Lysozyme and mostly, by the static quenching mechanism. Different binding and thermodynamic parameters were calculated at different temperatures and the binding constant value was found to be 2963.54Lmol(-1) at 25°C. The average distance (r0) was found to be 3.31nm according to Förster's theory of non-radiative energy transfer between Lysozyme and RB. The conformational change in Lysozyme during interaction with RB was confirmed from absorbance, synchronous fluorescence, and circular dichroism measurements. Finally, molecular docking studies were done to confirm that the dye binds with Lysozyme. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Single bead near-infrared random laser based on silica-gel infiltrated with Rhodamine 640

    Science.gov (United States)

    Moura, André L.; Barbosa-Silva, Renato; Dominguez, Christian T.; Pecoraro, Édison; Gomes, Anderson S. L.; de Araújo, Cid B.

    2018-04-01

    Photoluminescence properties of single bead silica-gel (SG) embedded with a laser-dye were studied aiming at the operation of near-infrared (NIR) Random Lasers (RLs). The operation of RLs in the NIR spectral region is especially important for biological applications since the optical radiation has deep tissue penetration with negligible damage. Since laser-dyes operating in the NIR have poor stability and are poor emitters, ethanol solutions of Rhodamine 640 (Rh640) infiltrated in SG beads were used. The Rh640 concentrations in ethanol varied from 10-5 to 10-2 M and the excitation at 532 nm was made by using a 7 ns pulsed laser. The proof-of-principle RL scheme herein presented was adopted in order to protect the dye-molecules from the environment and to favor formation of aggregates. The RL emission from ≈650 nm to 720 nm, beyond the typical Rh640 monomer and dimer wavelengths emissions range, was attributed to the trade-off between reabsorption and reemission processes along the light pathways inside the SG bead and the contribution of Rh640 aggregates.

  19. Bifunctional Rhodamine Probes of Myosin Regulatory Light Chain Orientation in Relaxed Skeletal Muscle Fibers

    Science.gov (United States)

    Brack, Andrew S.; Brandmeier, Birgit D.; Ferguson, Roisean E.; Criddle, Susan; Dale, Robert E.; Irving, Malcolm

    2004-01-01

    The orientation of the regulatory light chain (RLC) region of the myosin heads in relaxed skinned fibers from rabbit psoas muscle was investigated by polarized fluorescence from bifunctional rhodamine (BR) probes cross-linking pairs of cysteine residues introduced into the RLC. Pure 1:1 BR-RLC complexes were exchanged into single muscle fibers in EDTA rigor solution for 30 min at 30°C; ∼60% of the native RLC was removed and stoichiometrically replaced by BR-RLC, and >85% of the BR-RLC was located in the sarcomeric A-bands. The second- and fourth-rank order parameters of the orientation distributions of BR dipoles linking RLC cysteine pairs 100-108, 100-113, 108-113, and 104-115 were calculated from polarized fluorescence intensities, and used to determine the smoothest RLC orientation distribution—the maximum entropy distribution—consistent with the polarized fluorescence data. Maximum entropy distributions in relaxed muscle were relatively broad. At the peak of the distribution, the “lever” axis, linking Cys707 and Lys843 of the myosin heavy chain, was at 70–80° to the fiber axis, and the “hook” helix (Pro830–Lys843) was almost coplanar with the fiber and lever axes. The temperature and ionic strength of the relaxing solution had small but reproducible effects on the orientation of the RLC region. PMID:15041671

  20. Formulation and in vitro interaction of rhodamine-B loaded PLGA nanoparticles with cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Antranik Jonderian

    2016-12-01

    Full Text Available This study aims to characterize rhodamine B (Rh B loaded poly(D,L-lactide-co-glycolide (PLGA nanoparticles (NPs and their interactions with cardiac myocytes. PLGA NPs were formulated using single emulsion solvent evaporation technique. The influence of varying parameters such as the stabilizer concentration, the sonication time, and the organic to aqueous ratio were investigated. The diameter, the dispersity, the encapsulation efficiency and the zeta potential of the optimized nanoparticles were about 184 nm, 0.19, 40% and -21.7 mV respectively. In vitro release showed that 29% of the Rh B was released within the first 8 hours. Scanning electron microscopy (SEM measurements performed on the optimized nanoparticles showed smooth surface and spherical shapes. No significant cytotoxic or apoptotic effects were observed on fetal cardiac myocytes after 24 and 48 hours of exposure with concentrations up to 200 µg/mL. The kinetic of the intracellular uptake was confirmed by confocal microscopy and cells took up PLGA NPs within the first hours. Interestingly, our data show an increase in the nanoparticles’ uptake with time of exposure. Taken together, we demonstrate for the first time that the designed NPs can be used as potential probes for drug delivery in cardiac myocytes.

  1. A new rhodamine B based fluorometric chemodosimeter for Cu2+ ion in aqueous and cellular media

    International Nuclear Information System (INIS)

    Kempahanumakkagaari, Suresh Kumar; Thippeswamy, Ramakrishnappa; Malingappa, Pandurangappa

    2014-01-01

    A simple, sensitive and selective fluorescent chemo dosimeter rhodamine B phenyl hydrazide (RBPH) for Cu 2+ was proposed. This probe is non fluorescent and colorless but exhibits fluorescent enhancement at 580 nm and displayed color change from colorless to pink for Cu 2+ in the pH range 1–6. Fluorescence microscope experimental results reveals that this chemo sensor is cell permeable and can be used for fluorescence imaging of Cu 2+ ions in living cells. This probe can detect Cu 2+ with good linear relationships from 10 to 100 nM with r=0.99971 then limit of detection was found to be 0.015 nM with ±0.91% RSD at 10 nM concentrations. -- Highlights: • The new sensitive, highly selective fluorescent chemodosimeter for Cu 2+ based on spirolactam ring opening process has been proposed. • The probe posse’s excellent cell permeability and it has been applied for fluorescence imaging of Cu 2+ ions in MCF-7 cell lines. • The protocol has been successfully applied for copper determination in blood and urine samples

  2. Studies on the Removal of Rhodamine B and Malachite Green from Aqueous Solutions by Activated Carbon

    Directory of Open Access Journals (Sweden)

    A. Edwin Vasu

    2008-01-01

    Full Text Available Activated carbon prepared from tamarind fruit shells by direct carbonization was used for the removal of rhodamine B and malachite green dyes from aqueous solutions. Adsorption studies were performed by varying such parameters as dye concentration, pH of the dye solution, time and temperature. The equilibrium adsorption data obtained were used to calculate the Freundlich, Langmuir and Redlich-Peterson isotherm parameters. Increase in pH of the solution pH resulted in increased adsorption of both the dyes. Kinetic studies indicate that the pseudo-second order model can be used for describing the dynamics of the sorption processes. Film diffusion of the dyes was the rate determining step at low dye concentrations while diffusion of dyes through the pores the carbon particles determined the overall uptake at high concentrations. Thermodynamic parameters of the endothermic sorptions were evaluated using van’t Hoff equation. Desorption studies with acids were also performed in order to regenerate the used carbons.

  3. Determination of cyanide using a chemiluminescence system composed of permanganate, rhodamine B, and gold nanoparticles

    International Nuclear Information System (INIS)

    Amjadi, Mohammad; Hassanzadeh, Javad; Manzoori, Jamshid L.

    2014-01-01

    We describe a new chemiluminescence (CL) system based on the oxidation of rhodamine B (RhoB) with alkaline potassium permanganate in the presence of gold nanoparticles (Au-NPs) and anionic detergent sodium dodecyl sulfate. Free RhoB is weakly chemiluminescent when oxidized with permanganate at alkaline pH values. However, a remarkably strong enhancement of CL is observed in the presence of Au-NPs, probably due to a strong interaction between RhoB and the NPs. The possible mechanism was studied via recording the CL emission. It is also found that the intensity of CL gradually decreases in the presence of cyanide due to its interaction with the Au-NPs. The relation between the decreased CL intensity and cyanide concentration was exploited to develop a method for the determination of cyanide in the 0.01–0.5 μM concentration range, with a detection limit of 2.8 nM. The method was used to determine cyanide in spiked water, urine, and serum. (author)

  4. Highly selective rhodamine-based fluorescence turn-on chemosensor for Al3+ ion

    Science.gov (United States)

    Manjunath, Rangasamy; Kannan, Palaninathan

    2018-05-01

    A new rhodamine-based colorimetric and fluorescent turn-on chemosensor (L) has been designed and synthesized for selective and sensitive detection of Al3+ ion. The sensing behavior toward metal ion was investigated by UV/Vis and fluorescence spectroscopy. Upon addition of Al3+ ion to solution of L provided a visual color change as well as significantly fluorescent enhancement, while other metal ions including Na+, Mg2+, K+, Mn2+, Fe3+, Ni2+, Cu2+, Zn2+, Pb2+, Cd2+ and Hg2+ ions fails to generate a distinct color and spectral changes, the distinct color change and rapid switch-on fluorescence also provide naked eye detection for Al3+ ion. The mechanism involved equilibrium between non-fluorescent spirocyclic form and highly fluorescent ring open form process was utilized and 1:2 stoichiometry for L-Al3+ complex formed with an association constant of 1.42 × 103 M-1. Moreover, chemosensor L was applied for living cell imaging and confirmed that can be used as a fluorescent probe for monitoring Al3+ ion in living cells.

  5. Mercury adsorption properties of sulfur-impregnated adsorbents

    Science.gov (United States)

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  6. A theoretical study of adsorbate-adsorbate interactions on Ru(0001)

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Hammer, Bjørk; Nørskov, Jens Kehlet

    1998-01-01

    the barrier for dissociation, whereas S will increase it. The interaction with alkali atoms is mainly of an electrostatic nature. The poisoning by S is due to two kinds of repulsive interactions: a Pauli repulsion and a reduced covalent bond strength between the adsorbate and the surface d-electrons. In order...... to investigate these different interactions in more detail, we look at three different species (N atoms, and terminally bonded N(2) and CO) and use them as probes to study their interaction with two modifier atoms (Na and S). The two modifier atoms have very different properties, which allows us to decouple...

  7. Scanning tunneling spectroscopy of Co adsorbates on superconducting Pb nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Decker, Regis; Caminale, Michael; Oka, Hirofumi; Stepniak, Agnieszka; Leon Vanegas, Augusto A.; Sander, Dirk; Kirschner, Juergen [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)

    2015-07-01

    Superconductivity in low-dimensional structures has become an active research area. In order to understand the superconducting pairing, long-standing work has been devoted to the pair breaking effect, where magnetic impurities break Cooper pair singlets. We performed scanning tunneling spectroscopy at low temperature on Co adsorbates on superconducting Pb nanoislands. On the Co adsorbates, we observe spectral features in the superconductor's energy gap, which we attribute to magnetic impurity induced bound states, a hallmark of the pair breaking effect. We discuss the response of the superconducting islands to the presence of Co adsorbates.

  8. Ciprofloxacin@SiO2: Fluorescent nanobubbles

    Indian Academy of Sciences (India)

    Unknown

    Centre, Indian Institute of Technology Madras, Chennai 600 036, India ... modified pharmacological and toxicological properties of these drugs in the form of ... Apart from these, there are a few other studies on the application of the .... kind of red shift was also found in the case of rhodamine 6G adsorbed on clay minerals.

  9. Dynamics of CO 2 Adsorption on Amine Adsorbents. 2. Insights Into Adsorbent Design

    KAUST Repository

    Bollini, Praveen

    2012-11-21

    Packed bed breakthrough experiments are reported for commercial zeolite 13X and 3-aminopropyl-functionalized SBA-15 silica materials with three different amine loadings. Mass and heat transfer dynamics for all four materials are modeled successfully. Amine adsorbents with open pores are found to exhibit faster mass diffusion rates compared to zeolite 13X. When amine loading is increased by coupling aminopropyl groups, premature breakthrough combined with a long tail is observed. Contrary to conventional physisorbants, finite heat losses to the column wall do not explain the long breakthrough tail. A rate model that accounts for heterogeneity in diffusion was found to accurately capture the breakthrough shape of the high loading material. Batch uptake measurements support the hypothesis that slow diffusion through the polymer phase is what hampers adsorption kinetics in the high amine loading adsorbent. The results emphasize the importance of designing materials that are not overloaded with amine sites, as excessive amine loadings can lead to depressed adsorption kinetics and premature column breakthrough. © 2012 American Chemical Society.

  10. Electronic structure of benzene adsorbed on Ni and Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weinelt, M.; Nilsson, A.; Wassdahl, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Benzene has for a long time served as a prototype adsorption system of large molecules. It adsorbs with the molecular plane parallel to the surface. The bonding of benzene to a transition metal is typically viewed to involve the {pi} system. Benzene adsorbs weakly on Cu and strongly on Ni. It is interesting to study how the adsorption strength is reflected in the electronic structure of the adsorbate-substrate complex. The authors have used X-ray Emission (XE) and X-ray Absorption (XA) spectroscopies to selectively study the electronic states localized on the adsorbed benzene molecule. Using XES the occupied states can be studies and with XAS the unoccupied states. The authors have used beamline 8.0 and the Swedish endstation equipped with a grazing incidence x-ray spectrometer and a partial yield absorption detector. The resolution in the XES and XAS were 0.5 eV and 0.05 eV, respectively.

  11. Enhanced vanillin production from ferulic acid using adsorbent resin.

    Science.gov (United States)

    Hua, Dongliang; Ma, Cuiqing; Song, Lifu; Lin, Shan; Zhang, Zhaobin; Deng, Zixin; Xu, Ping

    2007-03-01

    High vanillin productivity was achieved in the batch biotransformation of ferulic acid by Streptomyces sp. strain V-1. Due to the toxicity of vanillin and the product inhibition, fed-batch biotransformation with high concentration of ferulic acid was unsuccessful. To solve this problem and improve the vanillin yield, a biotransformation strategy using adsorbent resin was investigated. Several macroporous adsorbent resins were chosen to adsorb vanillin in situ during the bioconversion. Resin DM11 was found to be the best, which adsorbed the most vanillin and the least ferulic acid. When 8% resin DM11 (wet w/v) was added to the biotransformation system, 45 g l(-1) ferulic acid could be added continually and 19.2 g l(-1) vanillin was obtained within 55 h, which was the highest vanillin yield by bioconversion until now. This yield was remarkable for exceeding the crystallization concentration of vanillin and therefore had far-reaching consequence in its downstream processing.

  12. Production of Flocculants, Adsorbents, and Dispersants from Lignin.

    Science.gov (United States)

    Chen, Jiachuan; Eraghi Kazzaz, Armin; AlipoorMazandarani, Niloofar; Hosseinpour Feizi, Zahra; Fatehi, Pedram

    2018-04-10

    Currently, lignin is mainly produced in pulping processes, but it is considered as an under-utilized chemical since it is being mainly used as a fuel source. Lignin contains many hydroxyl groups that can participate in chemical reactions to produce value-added products. Flocculants, adsorbents, and dispersants have a wide range of applications in industry, but they are mainly oil-based chemicals and expensive. This paper reviews the pathways to produce water soluble lignin-based flocculants, adsorbents, and dispersants. It provides information on the recent progress in the possible use of these lignin-based flocculants, adsorbents, and dispersants. It also critically discusses the advantages and disadvantages of various approaches to produce such products. The challenges present in the production of lignin-based flocculants, adsorbents, and dispersants and possible scenarios to overcome these challenges for commercial use of these products in industry are discussed.

  13. Order-disorder transitions in adsorbed systems on magnetic surfaces

    International Nuclear Information System (INIS)

    Aguilera-Granja, F.; Moran-Lopez, J.L.; Instituto Politecnico Nacional, Mexico City. Centro de Investigacion y de Estudios Avanzados); Falicov, L.M.

    1984-01-01

    It is investigated the effect of adsorbed atoms on the magnetic properties of ferromagnets. The Ising model is employed considering nearest neigbours with antiferromagnetic coupling between atoms. (M.W.O.) [pt

  14. Production of Flocculants, Adsorbents, and Dispersants from Lignin

    Directory of Open Access Journals (Sweden)

    Jiachuan Chen

    2018-04-01

    Full Text Available Currently, lignin is mainly produced in pulping processes, but it is considered as an under-utilized chemical since it is being mainly used as a fuel source. Lignin contains many hydroxyl groups that can participate in chemical reactions to produce value-added products. Flocculants, adsorbents, and dispersants have a wide range of applications in industry, but they are mainly oil-based chemicals and expensive. This paper reviews the pathways to produce water soluble lignin-based flocculants, adsorbents, and dispersants. It provides information on the recent progress in the possible use of these lignin-based flocculants, adsorbents, and dispersants. It also critically discusses the advantages and disadvantages of various approaches to produce such products. The challenges present in the production of lignin-based flocculants, adsorbents, and dispersants and possible scenarios to overcome these challenges for commercial use of these products in industry are discussed.

  15. Comparative analysis of the efficiencies of two low cost adsorbents ...

    African Journals Online (AJOL)

    ISHIOMA

    tanning, metallurgical operation and manufacturing have led to the release ... pulmonary fibrosis and inhibit many enzymatic functions. (Liphadzi ... sector is a low cost adsorbent for heavy metal but has ... as its economic value is less. The aim ...

  16. Low Pressure Adsorbent for Recovery & Storage Vented Hydrogen, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A high performance fullerene-based adsorbent is proposed for recovery and storage hydrogen and separating helium via pressure-swing-adsorption (PSA) process....

  17. Selectivity of β-Sitosterol Imprinted Polymers as Adsorbent

    Science.gov (United States)

    Fauziah, St.; Hariani Soekamto, Nunuk; Taba, Paulina; Bachri Amran, Muh

    2018-03-01

    Molecularly Imprinted Polymers (MIPs) are smart materials that have been used as adsorbents in separation processes of compounds because they have a memorial effect to a certain compound. In this research, MIP synthesized was used as adsorbent for β-sitosterol. The objective of the research was to know the selectivity of MIP in adsorbing β-sitosterol. The concentrations of β-sitosterol after adsorption and desorption were analyzed by a UV-Vis spectrophotometer and the selectivity test was analyzed by HPLC. Result showed that the MIP had high adsorption ability ( qe ). The recovery of β-sitosterol from MIP for the adsorption-desorption process was 68.48%. The MIP was very selective to β-sitosterol compared to cholesterol because it can adsorb β-sitosterol as many as 100%, whereas the adsorption of cholesterol was only 30.27 %.

  18. TESTING OF CARBONACEOUS ADSORBENTS FOR REMOVAL OF POLLUTANTS FROM WATER

    Directory of Open Access Journals (Sweden)

    RAISA NASTAS

    2012-03-01

    Full Text Available Testing of carbonaceous adsorbents for removal of pollutants from water. Relevant direction for improving of quality of potable water is application of active carbons at various stages of water treatments. This work includes complex research dealing with testing of a broad spectrum of carbonaceous adsorbents for removal of hydrogen sulfide and nitrite ions from water. The role of the surface functional groups of carbonaceous adsorbents, their acid-basic properties, and the influence of the type of impregnated heteroatom (N, O, or metals (Fe, Cu, Ni, on removal of hydrogen sulfide species and nitrite ions have been researched. The efficiency of the catalyst obtained from peach stones by impregnation with Cu2+ ions of oxidized active carbon was established, being recommended for practical purposes to remove the hydrogen sulfide species from the sulfurous ground waters. Comparative analysis of carbonaceous adsorbents reveals the importance of surface chemistry for oxidation of nitrite ions.

  19. Characterization of novel adsorbents for radiostrontium reduction in foods

    International Nuclear Information System (INIS)

    Puziy, A.M.; Bengtsson, G.B.; Hansen, H.S.

    1999-01-01

    Distribution coefficients, pH dependence, isotherms, kinetics and breakthrough curves of Sr binding have been measured on several types of adsorbents (carbons modified with titanium silicate, crystalline titanium silicate, mixed titanium-manganese oxide, and synthetic zeolites A4 and P) from different water solutions. It is concluded that acid-base properties of the adsorbent is very important for Sr binding. Titanium silicate based adsorbents had reduced chemical stability in an artificial food fluid below pH 2, the mixed titanium manganese oxide below pH 6, zeolite A4 below pH 5 and zeolite P below pH 7. Consideration is given to the feasibility of the adsorbents for food decontamination. (author)

  20. Adsorption of β-galactosidase on silica and aluminosilicate adsorbents

    Science.gov (United States)

    Atyaksheva, L. F.; Dobryakova, I. V.; Pilipenko, O. S.

    2015-03-01

    It is shown that adsorption of β-galactosidase of Aspergillus oryzae fungi on mesoporous and biporous silica and aluminosilicate adsorbents and the rate of the process grow along with the diameter of the pores of the adsorbent. It is found that the shape of the adsorption isotherms changes as well, depending on the texture of the adsorbent: the Michaelis constant rises from 0.3 mM for the enzyme in solution to 0.4-0.5 mM for the enzyme on a surface in the hydrolysis of o-nitrophenyl-β-D-galactopyranoside. It is concluded that β-galactosidase displays its maximum activity on the surface of biporous adsorbents.

  1. Adsorption of uranium on adsorbents produced from used tires

    International Nuclear Information System (INIS)

    Mahramanlioglu, M.

    2003-01-01

    Potential use of adsorbents produced from used tires for the removal of uranium from aqueous solutions is investigated. Two different adsorbents were used including char and activated carbon produced from used tires. The surface area was larger on activated carbon. Adsorption experiments were carried out as a function of time, adsorbent concentration, pH and initial concentration of uranium. The adsorption kinetics was found to follow the Lagergren equation. The rate constants of intraparticle diffusion and mass transfer coefficients were calculated. It was shown that the equilibrium data could be fitted by the Langmuir and Freundlich equations. The adsorption of uranium in the presence of different cations were also studied and the results were correlated with the ionic potential of the cations. It was demonstrated that the activated carbon produced from used tires can be considered as an adsorbent that has a commercial potential for uranium removal. (author)

  2. Ratiometric Time-Gated Luminescence Probe for Nitric Oxide Based on an Apoferritin-Assembled Lanthanide Complex-Rhodamine Luminescence Resonance Energy Transfer System.

    Science.gov (United States)

    Tian, Lu; Dai, Zhichao; Liu, Xiangli; Song, Bo; Ye, Zhiqiang; Yuan, Jingli

    2015-11-03

    Using apoferritin (AFt) as a carrier, a novel ratiometric luminescence probe based on luminescence resonance energy transfer (LRET) between a Tb(3+) complex (PTTA-Tb(3+)) and a rhodamine derivative (Rh-NO), PTTA-Tb(3+)@AFt-Rh-NO, has been designed and prepared for the specific recognition and time-gated luminescence detection of nitric oxide (NO) in living samples. In this LRET probe, PTTA-Tb(3+) encapsulated in the core of AFt is the energy donor, and Rh-NO, a NO-responsive rhodamine derivative, bound on the surface of AFt is the energy acceptor. The probe only emits strong Tb(3+) luminescence because the emission of rhodamine is switched off in the absence of NO. Upon reaction with NO, accompanied by the turn-on of rhodamine emission, the LRET from Tb(3+) complex to rhodamine occurs, which results in the remarkable increase and decrease of the long-lived emissions of rhodamine and PTTA-Tb(3+), respectively. After the reaction, the intensity ratio of rhodamine emission to Tb(3+) emission, I565/I539, is ∼24.5-fold increased, and the dose-dependent enhancement of I565/I539 shows a good linearity in a wide concentration range of NO. This unique luminescence response allowed PTTA-Tb(3+)@AFt-Rh-NO to be conveniently used as a ratiometric probe for the time-gated luminescence detection of NO with I565/I539 as a signal. Taking advantages of high specificity and sensitivity of the probe as well as its good water-solubility, biocompatibility, and cell membrane permeability, PTTA-Tb(3+)@AFt-Rh-NO was successfully used for the luminescent imaging of NO in living cells and Daphnia magna. The results demonstrated the efficacy of the probe and highlighted it's advantages for the ratiometric time-gated luminescence bioimaging application.

  3. Kinetic and catalytic analysis of mesoporous metal oxides on the oxidation of Rhodamine B

    Science.gov (United States)

    Xaba, Morena S.; Noh, Ji-Hyang; Mokgadi, Keabetswe; Meijboom, Reinout

    2018-05-01

    In this study, we demonstrate the synthesis and catalytic activity of different mesoporous transition metal oxides, silica (SiO2), copper oxide (CuO), chromium oxide (Cr2O3), iron oxide (Fe2O3) cobalt oxide (Co3O4), cerium oxide (CeO2) and nickel oxide (NiO), on the oxidation of a pollutant dye, Rhodamine B (RhB). These metal oxides were synthesized by inverse micelle formation method and characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), adsorption-desorption isotherms (BET) and H2-temperature programmed reduction (TPR). UV-vis spectrophotometry was used to monitor the time-resolved absorbance of RhB at λmax = 554 nm. Mesoporous copper oxide was calcined at different final heating temperatures of 250, 350, 450 and 550 °C, and each mesoporous copper oxide catalyst showed unique physical properties and catalytic behavior. Mesoporous CuO-550 with the smallest characteristic path length δ, proved to be the catalyst of choice for the oxidation of RhB in aqueous media. We observed that the oxidation of RhB in aqueous media is dependent on the crystallite size and characteristic path length of the mesoporous metal oxide. The Langmuir-Hinshelwood model was used to fit the experimental data and to prove that the reaction occurs on the surface of the mesoporous CuO. The thermodynamic parameters, EA, ΔH#, ΔS# and ΔG# were calculated and catalyst recycling and reusability were demonstrated.

  4. Decolourization of Rhodamine B: A swirling jet-induced cavitation combined with NaOCl.

    Science.gov (United States)

    Mancuso, Giuseppe; Langone, Michela; Laezza, Marco; Andreottola, Gianni

    2016-09-01

    A hydrodynamic cavitation reactor (Ecowirl) based on swirling jet-induced cavitation has been used in order to allow the degradation of a waste dye aqueous solution (Rhodamine B, RhB). Cavitation generated by Ecowirl reactor was directly compared with cavitation generated by using multiple hole orifice plates. The effects of operating conditions and parameters such as pressure, pH of dye solution, initial concentration of RhB and geometry of the cavitating devices on the degradation rate of RhB were discussed. In similar operative conditions, higher extents of degradation (ED) were obtained using Ecowirl reactor rather than orifice plate. An increase in the ED from 8.6% to 14.7% was observed moving from hole orifice plates to Ecowirl reactor. Intensification in ED of RhB by using hydrodynamic cavitation in presence of NaOCl as additive has been studied. It was found that the decolourization was most efficient for the combination of hydrodynamic cavitation and chemical oxidation as compared to chemical oxidation and hydrodynamic cavitation alone. The value of ED of 83.4% was reached in 37min using Ecowirl combined with NaOCl (4.0mgL(-1)) as compared to the 100min needed by only mixing NaOCl at the same concentration. At last, the energetic consumptions of the cavitation devices have been evaluated. Increasing the ED and reducing the treatment time, Ecowirl reactor resulted to be more energy efficient as compared to hole orifice plates, Venturi and other swirling jet-induced cavitation devices, as reported in literature. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Heat response of mouse tumor cells treated with 5-thio-D-glucose and Rhodamine-123

    International Nuclear Information System (INIS)

    Rhee, J.G.; Lyons, J.C.; Song, C.W.

    1987-01-01

    Cellular heat-sensitivity has been known to depend on intracellular energy. The authors studied the thermal response of cultured SCK mammary carcinoma cells in vitro, following glycolytic inhibition with 5-thio-D-glucose (TG) and mitochondrial inactivation with Rhodamine-123 (Rh). The cells in exponential growth phase in RPMI 1640 medium supplemented with serum and antibiotics were exposed to medium containing Rh and/or TG, heated in a prewarmed water bath, and the clonogenic survivals of the heated cells were determined. Thermal cell killing by the 30 min. heating was increased, when 10 and 20 μg/ml Rh were present in the medium at temperatures above 42 0 and 40 0 C, respectively. The slope of the heat survival curve for 43 0 C heating became steeper in the presence of 10 and 20 μg/ml Rh, and the initial shoulder of the survival curve was unaltered at the dose of 10 μg/ml Rh, but disappeared at 20 μg/ml. A TG dose of 3 mg/ml, which is about 10 times that necessary to kill 90% of cells in 5 hrs. under hypoxic condition, was ineffective in altering any parameters of the heat survival curve of aerobic cells. The combined effect of TG and Rh on the thermal cell killing in aerobic condition did not exceed the effect of Rh alone. The above results indicate that the energy supply derived by mitochondria is an important determinant for the shape of heat survival curve of the proliferating and aerobic SCK tumor cells

  6. Role of adsorbates on current fluctuations in DC field emission

    International Nuclear Information System (INIS)

    Luong, M.; Bonin, B.; Long, H.; Safa, H.

    1996-01-01

    Field emission experiments in DC regime usually show important current fluctuations for a fixed electric field. These fluctuations are attributed to adsorbed layers (molecules or atoms), liable to affect the work function, height and shape of the potential barrier binding the electron in the metal. The role of these adsorbed species is investigated by showing that the field emission from a well desorbed sample is stable and reproducible and by comparing the emission from the same sample before and after desorption. (author)

  7. Simulations of the Static Friction Due to Adsorbed Molecules

    OpenAIRE

    He, Gang; Robbins, Mark O.

    2001-01-01

    The static friction between crystalline surfaces separated by a molecularly thin layer of adsorbed molecules is calculated using molecular dynamics simulations. These molecules naturally lead to a finite static friction that is consistent with macroscopic friction laws. Crystalline alignment, sliding direction, and the number of adsorbed molecules are not controlled in most experiments and are shown to have little effect on the friction. Temperature, molecular geometry and interaction potenti...

  8. Vanadium (4) complexing in phase of adsorbent with benzimidazole groups

    Energy Technology Data Exchange (ETDEWEB)

    Shvoeva, O P; Kuchava, G P; Evtikova, G A; Belyaeva, V K; Myasoedova, G V; Marov, I N [AN SSSR, Moscow (USSR). Inst. Geokhimii i Analiticheskoj Khimii

    1989-04-01

    Equilibrium and kinetic characteristics of V{sup 4+} sorption by POLYORGS XI-H adsorbent with benzimidazole groups (BIm) are investigated. Using ESR method it is stated that (VO{sup 2+}):(BIm)1:2 complex, where VO{sup 2+} is combined with nitrogen atoms of two imidazole groups, is formed in adsorbent phase. The highest distribution factor of 4.7x10{sup 3} is attained at pH6.

  9. Residence time determination for adsorbent beds of different configurations

    Energy Technology Data Exchange (ETDEWEB)

    Otermat, J.E.; Wikoff, W.O.; Kovach, J.L.

    1995-02-01

    The residence time calculations of ASME AG-1 Code, Section FC, currently specify a screen surface area method, that is technically incorrect. Test data has been obtained on Type II adsorber trays of different configurations to establish residence time in the adsorber trays. These data indicate that the air volume/carbon volume ratio or the average screen area are more appropriate for the calculation of the residence time calculation than the currently used, smallest screen area basis.

  10. Vanadium (4) complexing in phase of adsorbent with benzimidazole groups

    International Nuclear Information System (INIS)

    Shvoeva, O.P.; Kuchava, G.P.; Evtikova, G.A.; Belyaeva, V.K.; Myasoedova, G.V.; Marov, I.N.

    1989-01-01

    Equilibrium and kinetic characteristics of V 4+ sorption by POLYORGS XI-H adsorbent with benzimidazole groups (BIm) are investigated. Using ESR method it is stated that [VO 2+ ]:[BIm]1:2 complex, where VO 2+ is combined with nitrogen atoms of two imidazole groups, is formed in adsorbent phase. The highest distribution factor of 4.7x10 3 is attained at pH6

  11. Efforts to Consolidate Chalcogels with Adsorbed Iodine

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Pierce, David A.; Chun, Jaehun

    2013-08-28

    This document discusses ongoing work with non-oxide aerogels, called chalcogels, that are under development at the Pacific Northwest National Laboratory as sorbents for gaseous iodine. Work was conducted in fiscal year 2012 to demonstrate the feasibility of converting Sn2S3 chalcogel without iodine into a glass. This current document summarizes the work conducted in fiscal year 2013 to assess the consolidation potential of non-oxide aerogels with adsorbed iodine. The Sn2S3 and Sb13.5Sn5S20 chalcogels were selected for study. The first step in the process for these experiments was to load them with iodine (I2). The I2 uptake was ~68 mass% for Sn2S3 and ~50 mass% for Sb13.5Sn5S20 chalcogels. X-ray diffraction (XRD) of both sets of sorbents showed that metal-iodide complexes were formed during adsorption, i.e., SnI4 for Sn2S3 and SbI3 for Sb13.5Sn5S20. Additionally, metal-sulfide-iodide complexes were formed, i.e., SnSI for Sn2S3 and SbSI for Sb13.5Sn5S20. No XRD evidence for unreacted iodine was found in any of these samples. Once the chalcogels had reached maximum adsorption, the consolidation potential was assessed. Here, the sorbents were heated for consolidation in vacuum-sealed quartz vessels. The Sb13.5Sn5S20 chalcogel was heated both (1) in a glassy carbon crucible within a fused quartz tube and (2) in a single-containment fused quartz tube. The Sn2S3 chalcogel was only heated in a single-containment fused quartz tube. In both cases with the single-containment fused quartz experiments, the material consolidated nicely. However, in both cases, there were small fractions of metal iodides not incorporated into the final product as well as fused quartz particles within the melt due to the sample attacking the quartz wall during the heat treatment. The Sb13.5Sn5S20 did not appear to attack the glassy carbon crucible so, for future experiments, it would be ideal to apply a coating, such as pyrolytic graphite, to the inner walls of the fused quartz vessel to prevent

  12. Irradiation Degradation of Adsorbents for Minor Actinides Recovery

    International Nuclear Information System (INIS)

    Watanabe, S.; Sano, Y.; Kofuji, H.; Takeuchi, M.; Koizumi, T.

    2015-01-01

    Extraction chromatography is one of the promising technologies for minor actinides (MA: Am and Cm) recovery from high-level liquid waste. The degradation behaviour of the organic species in the adsorbents under radiation exposure is important to discuss the safety and durability of the adsorbent in the extraction chromatography process. In this study, gamma-ray irradiation experiments on TODGA/SiO 2 -P adsorbent were carried out to investigate the degradation products from radiolysis of the adsorbent. The degraded organic species eluted from the adsorbent and those remaining inside the adsorbent were thoroughly identified by GC/MS, FT-IR and NMR analyses. The species suspected as hydrolysis products of TODGA were mainly detected from the analyses. Since some radicals such as.H or.OH are generated by the gamma-ray irradiation on water molecules, it was discussed that the radicals products from radiolysis of HNO 3 solution are related to the degradation reaction of the extractants. (authors)

  13. Gold recovery from low concentrations using nanoporous silica adsorbent

    Science.gov (United States)

    Aledresse, Adil

    The development of high capacity adsorbents with uniform porosity denoted 5%MP-HMS (5% Mercaptopropyl-Hexagonal Mesoporous Structure) to extract gold from noncyanide solutions is presented. The preliminary studies from laboratory simulated noncyanide gold solutions show that the adsorption capacities of these materials are among the highest reported. The high adsorption saturation level of these materials, up to 1.9 mmol/g (37% of the adsorbent weight) from gold chloride solutions (potassium tetrachloroaurate) and 2.9 mmol/g (57% of the adsorbent weight) from gold bromide solutions (potassium tetrabromoaurate) at pH = 2, is a noteworthy feature of these materials. This gold loading from [AuC4]- and [AuBr4 ]- solutions corresponds to a relative Au:S molar ratio of 2.5:1 and 3.8:1, respectively. These rates are significantly higher than the usual 1:1 (Au:S) ratio expected for metal ion binding with the material. The additional gold ions loaded have been spontaneously reduced to metallic gold in the mesoporous material. Experimental studies indicated high maximum adsorptions of gold as high as 99.9% recovery. Another promising attribute of these materials is their favourable adsorption kinetics. The MP-HMS reaches equilibrium (saturation) in less than 1 minute of exposure in gold bromide and less than 10 minutes in gold chloride. The MP-HMS materials adsorption is significantly improved by agitation and the adsorption capacity of Au (III) ions increases with the decrease in pH. The recovery of adsorbed gold and the regeneration of spent adsorbent were investigated for MP-HMS adsorbent. The regenerated adsorbent (MP-HMS) maintained its adsorption capacity even after repeated use and all the gold was successfully recovered from the spent adsorbent. For the fist time, a promising adsorbent system has been found that is capable of effectively concentrating gold thiosulphate complexes, whereas conventional carbon-inpulp (CIP) and carbon-in-leach (CIL) systems fail. The

  14. Cell for studying electron-adsorbed gas interactions; Cellule d'etudes des interactions electron-gaz adsorbe

    Energy Technology Data Exchange (ETDEWEB)

    Golowacz, H; Degras, D A [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires, Deptartement de Physique des Plasmas et de la Fusion Controlee, Service de Physique Appliquee, Service de Physique des Interractions Electroniques, Section d' Etude des Interactions Gaz-Solides

    1967-07-01

    The geometry and the technology of a cell used for investigations on electron-adsorbed gas interactions are described. The resonance frequencies of the surface ions which are created by the electron impact on the adsorbed gas are predicted by simplified calculations. The experimental data relative to carbon monoxide and neon are in good agreement with these predictions. (authors) [French] Les caracteristiques geometriques et technologiques generales d'une cellule d'etude des interactions entre un faisceau d'electrons et un gaz adsorbe sont donnees. Un calcul simplifie permet de prevoir les frequences de resonance des ions de surface crees par l'impact des electrons sur le gaz adsorbe. Les donnees experimentales sur l'oxyde de carbone et le neon confirment les previsions du calcul. (auteurs)

  15. Study on the adsorption performance of composite adsorbent of CaCl2 and expanded graphite with ammonia as adsorbate

    International Nuclear Information System (INIS)

    Li, S.L.; Wu, J.Y.; Xia, Z.Z.; Wang, R.Z.

    2009-01-01

    A novel constant volume test unit was built to study the adsorption performance of a new type composite adsorbent. This test unit can measure the adsorption isosteres of the working pairs. The adsorption isosteres are the curves of the adsorption pressure variation with the adsorption temperatures at constant adsorption quantities. Compared to the former test results of isothermals and isobars, the isosteres are better for the calculation of the adsorption heat, desorption heat and the selection the adsorption working pairs. Three experimental results were obtained: the first result was that the expanded graphite powders were superior to the expandable graphite powders to facilitate the transportation of working fluid in the composite adsorbent. The second one was that the composite adsorbent treated by solution is more homogeneous than the simple mixed composite adsorbent and the treated composite adsorbent has a better mass transfer performance. The last one was that the adsorption isosteres was the same one not only in the heating process but also in the cooling process and this performance was not relevant to the homogeneity of the composite adsorbent

  16. Highly selective coextraction of rhodamine B and dibenzyl phthalate based on high-density dual-template imprinted shells on silica microparticles.

    Science.gov (United States)

    Long, Zerong; Xu, Weiwei; Peng, Yumei; Lu, Yi; Luo, Qian; Qiu, Hongdeng

    2017-01-01

    A simple one-pot approach based on molecularly imprinted polymer shells dispersed on the surface of silica for simultaneous determination of rhodamine B and dibenzyl phthalate (DBzP) has been developed. Highly dense molecularly imprinted polymer shells were formed in the mixture of acetonitrile and toluene by the copolymerization of methacrylic acid and ethylene glycol dimethacrylate, as well as two templates, rhodamine B and dibenzyl phthalate, directed by the vinyl end groups functional monolayer at surface silica microspheres after 3-methacryloxypropyl trimethoxysilane modification. The obtained imprinted polymer shells showed large average pore diameter (102.5 nm) and about 100 nm shell thickness. The imprinted particles also showed high imprinting factor (α RhB = 3.52 and α DBzP = 3.94), rapid binding kinetics, and excellent selective affinity capacity for rhodamine B and dibenzyl phthalate containing another three competitors in mixed solution. Moreover, the imprinted particles coupled with ultra high performance liquid chromatography was successfully applied to simultaneous analysis of rhodamine B and dibenzyl phthalate in two spiked beverage samples with average recoveries in the range of 88.0-93.0% for rhodamine B and 84.0-92.0% for dibenzyl phthalate with the relative standard deviation lower than 5.1%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Design and Investigation of Optical Properties of N-(Rhodamine-B)-Lactam-Ethylenediamine (RhB-EDA) Fluorescent Probe.

    Science.gov (United States)

    Soršak, Eva; Volmajer Valh, Julija; Korent Urek, Špela; Lobnik, Aleksandra

    2018-04-14

    This study presents chemical modification of a Rhodamine B (RhB) sensor probe by ethylenediamine (EDA), and investigation of its spectral as well as sensor properties to the various metals. The synthesised N -(Rhodamine-B)-lactam-ethylenediamine (RhB-EDA) fluorescent probe shows interesting optical sensor properties, and high sensitivity and selectivity to Ag⁺ ions among all the tested metal ions (K⁺, Mg 2+ , Cu 2+ , Ni 2+ , Fe 2+ , Pb 2+ , Na⁺, Mn 2+ , Li⁺, Al 3+ , Co 2+ , Hg 2+ , Sr 2+ , Ca 2+ , Ag⁺, Cd 2+ and Zn 2+ ), while the well-known Rhodamine B (RhB) fluorescent probe shows much less sensitivity to Ag⁺ ions, but high sensitivity to Fe 2+ ions. The novel fluorescent sensor probe RhB-EDA has the capabilities to sense Ag⁺ ions up to µM ranges by using the fluorescence quenching approach. The probe displayed a dynamic response to Ag⁺ in the range of 0.43 × 10 -3 -10 -6 M with a detection limit of 0.1 μM. The sensing system of an RhB-EDA novel fluorescent probe was optimised according to the spectral properties, effect of pH and buffer, photostability, incubation time, sensitivity, and selectivity. Since all the spectral and sensing properties were tested in green aqueous media, although many other similar sensor systems rely on organic solvent solutions, the RhB-EDA sensing probe may be a good candidate for measuring Ag⁺ ions in real-life applications.

  18. AgBr/diatomite for the efficient visible-light-driven photocatalytic degradation of Rhodamine B

    Science.gov (United States)

    Fang, Jing; Zhao, Huamei; Liu, Qinglei; Zhang, Wang; Gu, Jiajun; Su, Yishi; Abbas, Waseem; Su, Huilan; You, Zhengwei; Zhang, Di

    2018-03-01

    The treatment of organic pollution via photocatalysis has been investigated for a few decades. However, earth-abundant, cheap, stable, and efficient substrates are still to be developed. Here, we prepare an efficient visible-light-driven photocatalyst via the deposition of Ag nanoparticles (light intensity. For comparison, AgBr/SiO2 ( κ = 0.04 min-1) and commercial AgBr nanoparticles ( κ = 0.05 min-1) were measured as well. The experimental results reveal that diatomite acted more than a substrate benefiting the dispersion of AgBr nanoparticles, as well as a cooperator to help harvest visible light and adsorb dye molecules, leading to the efficient visible-light-driven photocatalytic performance of AgBr/diatomite. Considering the low cost (10 per ton) and large-scale availability of diatomite, our study provides the possibility to prepare other types of diatomite-based efficient photocatalytic composites with low-cost but excellent photocatalytic performance.

  19. Effect of porphyrin on photocatalytic activity of TiO2 nanoparticles toward Rhodamine B photodegradation.

    Science.gov (United States)

    Ahmed, M A; Abou-Gamra, Z M; Medien, H A A; Hamza, M A

    2017-11-01

    As known, porphyrins have central role in photosynthesis, biological oxidation and reduction and oxygen transport beside to their intensive color which qualify them to be good photosensitizers. Herein, tetra (4-carboxyphenyl) porphyrin (TCPP) was prepared by a simple one-pot synthesis to use as a visible antenna for TiO 2 nanoparticles that were prepared via a simple template-free sol-gel method. Various loading percentages of TCPP (0.05-1%) were incorporated on the surface of TiO 2 as photosensitizer for photocatalytic degradation of Rhodamine B (Rh B) dye as a primary cationic pollutant model. Among them, 0.1% TCPP-TiO 2 was the most reactive sample. It was found that the photoactivity of 0.1% TCPP-TiO 2 sample (0.5g/L) was approximately 1.5 times greater than that of pure TiO 2 (0.5g/L) toward the degradation of Rh B (1×10 -5 M) under UV-A irradiation. Transient fluorescence decay measurements showed that the life time of TiO 2 excited state has doubled after anchoring TCPP, thus the probability of electron-hole recombination has decreased. The samples were characterized by XRD, HR-TEM, DRS and N 2 adsorption-desorption isotherms. The XRD patterns confirmed the successful preparation of TiO 2 nanoparticles with average crystalline size of 25.7nm. Also, XRD patterns suggested the presence of mixed phase TiO 2 nanoparticles of 77% anatase and 23% rutile. DRS showed that the characteristic peaks of TCPP covered the whole visible range 400-700nm. HR-TEM images showed the spheroids shape of TiO 2 nanoparticles and confirmed the presence of anatase and rutile phases as suggested from XRD data. The different parameters affecting the photodegradation of Rh B dye such as catalyst dose, dye concentration and pH were studied to obtain the optimum conditions. Almost complete degradation of Rh B was obtained which confirmed by HPLC and TOC measurements. The effect of scavengers was studied to indicate the most active species. TCPP-TiO 2 gave a good response toward the

  20. Enhanced visible light photocatalytic degradation of Rhodamine B over phosphorus doped graphitic carbon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Bo, E-mail: willycb@163.com; Yan, Juntao; Wang, Chunlei; Ren, Zhandong; Zhu, Yuchan

    2017-01-01

    Highlights: • The phosphorus doped g-C{sub 3}N{sub 4} photocatalysts are synthesized by a co-pyrolysis procedure. • The crystal phase, morphology, and optical property of P doped g-C{sub 3}N{sub 4} are characterized. • The P doped g-C{sub 3}N{sub 4} photocatalysts show the improved photocatalytic activity. • The possible mechanism for enhanced photocatalytic activity is proposed. - Abstract: Phosphorus doped graphitic carbon nitride (g-C{sub 3}N{sub 4}) was easily synthesized using ammonium hexafluorophosphate (NH{sub 4}PF{sub 6}) as phosphorus source, and ammonium thiocyanate (NH{sub 4}SCN) as g-C{sub 3}N{sub 4} precursor, through a direct thermal co-polycondensation procedure. The obtained phosphorus doped g-C{sub 3}N{sub 4} was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectra (FTIR), UV–vis diffuse reflectance absorption spectra (UV-DRS), photoelectrochemical measurement and photoluminescence spectra (PL). The photocatalytic activities of phosphorus doped g-C{sub 3}N{sub 4} samples were evaluated by degradation of Rhodamine B (RhB) solution under visible light irradiation. The results showed that the phosphorus doped g-C{sub 3}N{sub 4} had a superior photocatalytic activity than that of pristine g-C{sub 3}N{sub 4}, attributing to the phosphorus atoms substituting carbon atoms of g-C{sub 3}N{sub 4} frameworks to result in light harvesting enhancement and delocalized π-conjugated system of this copolymer, beneficial for the increase of photocatalytic performance. The photoelectrochemical measurements also verified that the charge carrier separation efficiency was promoted by phosphorus doping g-C{sub 3}N{sub 4}. Moreover, the tests of radical scavengers demonstrated that the holes (h{sup +}) and superoxide radicals (·O{sub 2}{sup −}) were the main active species for the

  1. One-pot synthesis and characterization of rhodamine derivative-loaded magnetic core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jin, E-mail: jzhang@eng.uwo.ca; Li Jiaxin [University of Western Ontario, Department of Chemical and Biochemical Engineering (Canada); Razavi, Fereidoon S. [Brock University, Department of Physics (Canada); Mumin, Abdul Md. [University of Western Ontario, Department of Chemical and Biochemical Engineering (Canada)

    2011-05-15

    A new method to produce elaborate nanostructure with magnetic and fluorescent properties in one entity is reported in this article. Magnetite (Fe{sub 3}O{sub 4}) coated with fluorescent silica (SiO{sub 2}) shell was produced through the one-pot reaction, in which one reactor was utilized to realize the synthesis of superparamagnetic core of Fe{sub 3}O{sub 4}, the formation of SiO{sub 2} coating through the condensation and polymerization of tetraethylorthosilicate (TEOS), and the encapsulation of tetramethyl rhodamine isothiocyanate-dextran (TRITC-dextran) within silica shell. Transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, and X-ray diffraction (XRD) were carried out to investigate the core-shell structure. The magnetic core of the core-shell nanoparticles is 60 {+-} 10 nm in diameter. The thickness of the fluorescent SiO{sub 2} shell is estimated at 15 {+-} 5 nm. In addition, the fluorescent signal of the SiO{sub 2} shell has been detected by the laser confocal scanning microscopy (LCSM) with emission wavelength ({lambda}{sub em}) at 566 nm. In addition, the magnetic properties of TRITC-dextran loaded silica-coating iron oxide nanoparticles (Fe{sub 3}O{sub 4}-SiO{sub 2} NPs) were studied. The hysteresis loop of the core-shell NPs measured at room temperature shows that the saturation magnetization (M{sub s}) is not reached even at the field of 70 kOe (7T). Meanwhile, the very low coercivity (H{sub c}) and remanent magnetization (M{sub r}) are 0.375 kOe and 6.6 emu/g, respectively, at room temperature. It indicates that the core-shell particles have the superparamagnetic properties. The measured blocking temperature (T{sub B}) of the TRITC-dextran loaded Fe{sub 3}O{sub 4}-SiO{sub 2} NPs is about 122.5 K. It is expected that the multifunctional core-shell nanoparticles can be used in bio-imaging.

  2. A contribution to the study of radioactive waste dilution in the Rhone involving tests with a rhodamine B tracer; Contribution a l'etude de la dilution des effluents radioactifs dans le Rhone par le rejet experimental de rhodamine B

    Energy Technology Data Exchange (ETDEWEB)

    Rodier, J.; Marichal, M. [Commissariat a l' energie atomique et aux energies alternatives - CEA, Centre de production de plutonium de Marcoule, Service de protection contre les radiations (France)

    1961-07-01

    The process whereby waste from the Marcoule plant mixes with the water in the Rhone was followed in tests with rhodamine as a chemical tracer. Satisfactory dispersion was noted less than 4 km downstream from the waste discharge duct outlet, and the degree of homogeneity was considered to be satisfactory at the bridge of Roquemaure, und perfect at Avignon. This investigation not only revealed a complete absence of any preferential flow paths containing high radioactive waste concentrations, but it also enabled the most representative points to be selected at which to take Rhone water samples during future radioactive waste discharges. Reprint of a paper published in 'La Houille Blanche' N. 5 - Aug 196, p. 636-641 [French] L'emploi de la rhodamine comme traceur chimique a permis de suivre l'evolution du melange des effluents du Centre de Marcoule aux eaux du Rhone. La dispersion est deja satisfaisante a moins de 4 km en aval de la conduite des rejets, et l'homogeneite peut etre consideree comme atteinte au pont de Roquemaure et parfaite a Avignon. Cette etude a montre que les veines preferentielles ou se concentrait l'ecoulement des effluents radioactifs n'existent pas. Elle a permis de preciser en outre les emplacements les plus representatifs des points d'echantillonnage des eaux du Rhone au cours des rejets. Reproduction d'un article publie dans 'La houille blanche' N. 5 - Aug 196, p. 636-641.

  3. Development of a rapid, simple and sensitive HPLC-FLD method for determination of rhodamine B in chili-containing products.

    Science.gov (United States)

    Qi, Ping; Lin, Zhihao; Li, Jiaxu; Wang, ChengLong; Meng, WeiWei; Hong, Hong; Zhang, Xuewu

    2014-12-01

    In this work, a simple, rapid and sensitive analytical method for the determination of rhodamine B in chili-containing foodstuffs is described. The dye is extracted from samples with methanol and analysed without further cleanup procedure by high-performance liquid chromatography (HPLC) coupled to fluorescence detection (FLD). The influence of matrix fluorescent compounds (capsaicin and dihydrocapsaicin) on the analysis was overcome by the optimisation of mobile-phase composition. The limit of determination (LOD) and limit of quantification (LOQ) were 3.7 and 10 μg/kg, respectively. Validation data show a good repeatability and within-lab reproducibility with relative standard deviations rhodamine B in foodstuffs. This method is suitable for the routine analysis of rhodamine B due to its sensitivity, simplicity, reasonable time and cost. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Microporous carbonaceous adsorbents for CO2 separation via selective adsorption

    KAUST Repository

    Zhao, Yunfeng

    2015-01-01

    Selective adsorption of CO2 has important implications for many energy and environment-related processes, which require the separation of CO2 from other gases (e.g. N2 and CH4) with high uptakes and selectivity. The development of high-performance adsorbents is one of the most promising solutions to the success of these processes. The present review is focused on the state-of-the-art of carbon-based (carbonaceous) adsorbents, covering microporous inorganic carbons and microporous organic polymers, with emphasis on the correlation between their textural and compositional properties and their CO2 adsorption/separation performance. Special attention is given to the most recently developed materials that were not covered in previous reviews. We summarize various effective strategies (N-doping, surface functionalization, extra-framework ions, molecular design, and pore size engineering) for enhancing the CO2 adsorption capacity and selectivity of carbonaceous adsorbents. Our discussion focuses on CO2/N2 separation and CO2/CH4 separation, while including an introduction to the methods and criteria used for evaluating the performance of the adsorbents. Critical issues and challenges regarding the development of high-performance adsorbents as well as some overlooked facts and misconceptions are also discussed, with the aim of providing important insights into the design of novel carbonaceous porous materials for various selective adsorption based applications. This journal is © The Royal Society of Chemistry.

  5. Adsorption behavior of lithium from seawater using manganese oxide adsorbent

    International Nuclear Information System (INIS)

    Wajima, Takaaki; Munakata, Kenzo; Uda, Tatsuhiko

    2012-01-01

    The deuterium-tritium (D-T) fusion reactor system is expected to provide the main source of electricity in the future. Large amounts of lithium will be required, dependent on the reactor design concept, and alternative resources should be found to provide lithium inventories for nuclear fusion plants. Seawater has recently become an attractive source of this element and the separation and recovery of lithium from seawater by co-precipitation, solvent extraction and adsorption have been investigated. Amongst these techniques, the adsorption method is suitable for recovery of lithium from seawater, because certain inorganic ion-exchange materials, especially spinel-type manganese oxides, show extremely high selectivity for the lithium ion. In this study, we prepared a lithium adsorbent (HMn 2 O 4 ) by elution of spinel-type lithium di-manganese-tetra-oxide (LiMn 2 O 4 ) and examined the kinetics of the adsorbent for lithium ions in seawater using a pseudo-second-order kinetic model. The intermediate, LiMn 2 O 4 , can be synthesized from LiOH·H 2 O and Mn 3 O 4 , from which the lithium adsorbent can subsequently be prepared via acid treatment., The adsorption kinetics become faster and the amount of lithium adsorbed on the adsorbent increases with increasing solution temperature. The thermodynamic values, ΔG 0 , ΔH 0 and ΔS 0 , indicate that adsorption is an endothermic and spontaneous process. (author)

  6. Kinetics of conformational changes of fibronectin adsorbed onto model surfaces.

    Science.gov (United States)

    Baujard-Lamotte, L; Noinville, S; Goubard, F; Marque, P; Pauthe, E

    2008-05-01

    Fibronectin (FN), a large glycoprotein found in body fluids and in the extracellular matrix, plays a key role in numerous cellular behaviours. We investigate FN adsorption onto hydrophilic bare silica and hydrophobic polystyrene (PS) surfaces using Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) in aqueous medium. Adsorption kinetics using different bulk concentrations of FN were followed for 2h and the surface density of adsorbed FN and its time-dependent conformational changes were determined. When adsorption occurs onto the hydrophilic surface, FN molecules keep their native conformation independent of the adsorption conditions, but the amount of adsorbed FN increases with time and the bulk concentration. Although the protein surface density is the same on the hydrophobic PS surface, this has a strong impact on the average conformation of the adsorbed FN layer. Indeed, interfacial hydration changes induced by adsorption onto the hydrophobic surface lead to a decrease in unhydrated beta-sheet content and cause an increase in hydrated beta-strand and hydrated random domain content of adsorbed FN. This conformational change is mainly dependent on the bulk concentration. Indeed, at low bulk concentrations, the secondary structures of adsorbed FN molecules undergo strong unfolding, allowing an extended and hydrated conformation of the protein. At high bulk concentrations, the molecular packing reduces the unfolding of the stereoregular structures of the FN molecules, preventing stronger spreading of the protein.

  7. Synthesis of Tb{sub 4}O{sub 7} complexed with reduced graphene oxide for Rhodamine-B absorption

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hui, E-mail: hope@lzu.edu.cn [School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Zhou, Yang; Chen, Keqin [School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Li, Xiaolong, E-mail: lixiaolong@sinap.ac.cn [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China)

    2016-05-15

    Highlights: • Tb–rGO composite was fabricated via a facile thermally reduction process. • The green and blue emissions were both observed in the composite. • The composite exhibited efficient absorption capability for Rhodamine-B. - Abstract: Tb{sub 4}O{sub 7} complexed with reduced graphene oxide composite (Tb–rGO) had been designed and fabricated by a facile thermal reduction method. The formation of Tb{sub 4}O{sub 7} particles and reduction of graphene oxide (GO) occurred simultaneously, and partial terbium ions would be complexed with rGO via oxygen-containing function groups on rGO sheets. Introducing of terbium ions could effectively tune the photoluminescence properties of rGO, and the composite exhibited the typical green emission of terbium ions as well as the blue self-luminescence of graphene entered at 440 nm. Moreover, Tb–rGO had demonstrated its high capability as an organic dye (Rhodamine-B) scavenger with high speed and efficiency. The findings showed the promising applications for large-scale removal of organic dye contaminants, especially in the field of waste water treatment.

  8. Rhodamine-based chemodosimeter for fluorescent determination of Hg(2+) in 100% aqueous solution and in living cells.

    Science.gov (United States)

    Li, Dan; Li, Chun-Yan; Li, Yong-Fei; Li, Zhi; Xu, Fen

    2016-08-31

    A rhodamine spirolactam derivative (1) bearing a hydrophilic carboxylic acid group is developed as a fluorescent chemodosimeter for bivalent mercury ions (Hg(2+)) in 100% aqueous solution. It exhibits a highly sensitive "turn-on" fluorescent response toward Hg(2+) with a 42-fold fluorescence intensity enhancement under 1 equiv. of Hg(2+) added. The chemodosimeter can be applied to the quantification of Hg(2+) with a linear range covering from 3.0 × 10(-7) to 1.0 × 10(-5) M and a detection limit of 9.7 × 10(-8) M. Most importantly, the fluorescence changes of the chemodosimeter are remarkably specific for Hg(2+) in the presence of other metal ions, which meet the selective requirements for practical application. Moreover, the experiment results show that the response behavior of 1 towards Hg(2+) is pH independent in neutral condition (pH 5.0-8.0) and the response is fast (response time less than 3 min). Furthermore, the ring-opening mechanism of the rhodamine spirolactam induced by Hg(2+) was supported by NMR, MS, and DFT theoretical calculations. In addition, the proposed chemodosimeter has been used to detect Hg(2+) in water samples and image Hg(2+) in living cells with satisfying results. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A solvent-dependent fluorescent detection method for Fe(3+) and Hg(2+) based on a rhodamine B derivative.

    Science.gov (United States)

    Li, Xutian; Yin, Yue; Deng, Junjie; Zhong, Huixian; Tang, Jian; Chen, Zhi; Yang, Liting; Ma, Li-Jun

    2016-07-01

    A new rhodamine B-benzofurazan based fluorescent probe (1) for Fe(3+) and Hg(2+) was synthesized. In aqueous solution containing 30% (v/v) ethanol, probe 1 shows a high selective fluorescent enhancement recognition to Fe(3+) with a binding ratio of 1:1 (probe 1: Fe(3+)), when the concentration of Fe(3+) is less than that of the probe. When the concentration of Fe(3+) is higher than that of the probe, it shows fluorescent "turn-on" response to Fe(3+) by opening the rhodamine spirolactam with a binding ratio of 1:2 (probe 1: Fe(3+)). Furthermore, probe 1 displays a high selectivity and a hypersensitivity (detection limit is 4.4nM) to Hg(2+) with a binding ratio of 1:1 in ethanol. NMR and UV-vis experiments indicate that the different fluorescent recognition signals to Fe(3+) and Hg(2+) are derived from different binding modes of 1-Fe(3+) and 1-Hg(2+). Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Spectrophotometric determination of trace carbaryl in water and grain samples by inhibition of the rhodamine-B oxidation.

    Science.gov (United States)

    Gupta, Nirja; Pillai, Ajai Kumar; Parmar, Prachi

    2015-03-15

    A novel, sensitive, selective and simple kinetic spectrophotometric method has been developed for determination of trace levels of carbaryl based on its inhibitory effect on the oxidation of rhodamine-B by chlorine and bromine released from reaction of potassium bromate with hydrochloric acid in micellar medium. A linear relationship was observed between the inhibitory effect and the concentration of the compound. The absorbance was monitored at the maximum wavelength of 555 nm. The effect of different parameters such as pH, temperature and concentration of rhodamine-B, potassium bromate and surfactant on the reaction were investigated and optimum conditions were established. Under the selected experimental conditions, carbaryl was determined in the range of 0.04-0.4 μg mL(-1). Sandell's sensitivity and molar absorptivity were found to be 0.00055 μg cm(-2) and 3.658×10(5) L mol(-1) cm(-1) respectively. The proposed method was applied satisfactorily for the determination of carbaryl in water and different grain samples. The results were compared with those obtained by reference method and were found to be in agreement. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Determination of fluvoxamine maleate in human urine and human serum using alkaline KMnO4 -rhodamine B chemiluminescence.

    Science.gov (United States)

    Yang, Dongqin; He, Yanyan; Chen, Funan

    2017-09-01

    The flow-injection chemiluminescence (FI-CL) behavior of a gold nanocluster (Au NC)-enhanced rhodamine B-KMnO 4 system was studied under alkaline conditions for the first time. In the present study, the as-prepared bovine serum albumin-stabilized Au NCs showed excellent stability and reproducibility. The addition of trace levels of fluvoxamine maleate (Flu) led to an obvious decline in CL intensity in the rhodamine B-KMnO 4 -Au NCs system, which could be used for quantitative detection of Flu. Under optimized conditions, the proposed CL system exhibited a favorable analytical performance for Flu determination in the range 2 to 100 μg ml -1 . The detection limit for Flu measurement was 0.021 μg ml -1 . Moreover, this newly developed system revealed outstanding selectivity for Flu detection when compared with a multitude of other species, such as the usual ions, uric acid and a section of hydroxy compounds. Additionally, CL spectra, UV-visible spectroscopes and fluorescence spectra were measured in order to determine the possible reaction mechanism. This approach could be used to detect Flu in human urine and human serum samples with the desired recoveries and could have promising application under physiological conditions. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Study on adsorption of rhodamine B onto Beta zeolites by tuning SiO2/Al2O3 ratio.

    Science.gov (United States)

    Cheng, Zhi-Lin; Li, Yan-Xiang; Liu, Zan

    2018-02-01

    The exploration of the relationship between zeolite composition and adsorption performance favored to facilitate its better application in removal of the hazardous substances from water. The adsorption capacity of rhodamine B (RB) onto Beta zeolite from aqueous solution was reported. The relationship between SiO 2 /Al 2 O 3 ratio and adsorption capacity of Beta zeolite for RB was explored. The structure and physical properties of Beta zeolites with various SiO 2 /Al 2 O 3 ratios were determined by XRD, FTIR, TEM, BET, UV-vis and so on characterizations. The adsorption behavior of rhodamine B onto Beta zeolite matched to Langmuir adsorption isotherm and more suitable description for the adsorption kinetics was a pseudo-second-order reaction model. The maximum adsorption capacity of the as-prepared Beta zeolite with SiO 2 /Al 2 O 3 = 18.4 was up to 27.97mg/g. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. A study on linear and non-linear optical constants of Rhodamine B thin film deposited on FTO glass

    Science.gov (United States)

    Yahia, I. S.; Jilani, Asim; Abutalib, M. M.; AlFaify, S.; Shkir, M.; Abdel-wahab, M. Sh.; Al-Ghamdi, Attieh A.; El-Naggar, A. M.

    2016-06-01

    The aim of this research was to fabricate/deposit the good quality thin film of Rhodamine B dye on fluorine doped tin oxide glass substrate by the low cost spin coating technique and study their linear and nonlinear optical parameters. The thickness of the thin film was measured about 300 nm with alpha step system. The transmittance of the fabricated thin film was found to be above 75% corresponding to the fluorine doped tin oxide layer. The structural analysis was performed with X-rays diffraction spectroscopy. Atomic force microscope showed the topographic image of deposited thin film. Linear optical constant like absorption coefficient, band gap, and extinction index was calculated. The dielectric constant was calculated to know the optical response of Rhodamine B dye over fluorine doped tin oxide substrate. The nonlinear optical constant like linear optical susceptibility χ(1), nonlinear optical susceptibility χ(3), nonlinear refractive index (n2) were calculated by spectroscopic method. This method has advantage over the experimental method like Z-Scan for organic dye base semiconductors for future advance optoelectronics applications like dye synthesis solar cell.

  14. A novel three-input monomolecular logic circuit on a rhodamine inspired bio-compatible bi-compartmental molecular platform

    International Nuclear Information System (INIS)

    Mistri, Tarun; Bhowmick, Rahul; Katarkar, Atul; Chaudhuri, Keya; Ali, Mahammad

    2017-01-01

    Methodological synthesis of a new biocompatible bi-compartmental rhodamine based probe (L 3 ) provides a multi-inputs and multi-outputs molecular logic circuit based on simple chemosensing phenomena. Spectroscopic responses of Cu 2+ and Hg 2+ towards L 3 together with reversible binding of S 2- with L 3 -Cu 2+ and L 3 -Hg 2+ complexes help us to construct a thee-input molecular circuit on their control and sequential addition to a solution of L 3 in a mixed organo-aqueous medium. We have further successfully encoded binary digits out of these inputs and outputs which may convert a three-digit input string into a two-digit output string resulting a simple monomolecular logic circuit. Such a molecular ‘Boolean’ logic operation may improve the complexity of logic gate circuitry and computational speed and may be useful to employ in potential biocompatible molecular logic platforms. - Graphical abstract: A new bi-compartmental molecular system equipped with Rhodamine fluorophore unit provides a Multi-inputs and Multi-outputs Molecular Logic Circuit based on a very simple observation of chemosensing activities.

  15. A novel three-input monomolecular logic circuit on a rhodamine inspired bio-compatible bi-compartmental molecular platform

    Energy Technology Data Exchange (ETDEWEB)

    Mistri, Tarun; Bhowmick, Rahul [Department of Chemistry, Jadavpur University, 188 Raja S.C. Mullick Road, Kolkata 700032 (India); Katarkar, Atul; Chaudhuri, Keya [Molecular & Human Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032 (India); Ali, Mahammad, E-mail: mali@chemistry.jdvu.ac.in [Department of Chemistry, Jadavpur University, 188 Raja S.C. Mullick Road, Kolkata 700032 (India)

    2017-05-15

    Methodological synthesis of a new biocompatible bi-compartmental rhodamine based probe (L{sup 3}) provides a multi-inputs and multi-outputs molecular logic circuit based on simple chemosensing phenomena. Spectroscopic responses of Cu{sup 2+} and Hg{sup 2+} towards L{sup 3} together with reversible binding of S{sup 2-} with L{sup 3}-Cu{sup 2+} and L{sup 3}-Hg{sup 2+} complexes help us to construct a thee-input molecular circuit on their control and sequential addition to a solution of L{sup 3} in a mixed organo-aqueous medium. We have further successfully encoded binary digits out of these inputs and outputs which may convert a three-digit input string into a two-digit output string resulting a simple monomolecular logic circuit. Such a molecular ‘Boolean’ logic operation may improve the complexity of logic gate circuitry and computational speed and may be useful to employ in potential biocompatible molecular logic platforms. - Graphical abstract: A new bi-compartmental molecular system equipped with Rhodamine fluorophore unit provides a Multi-inputs and Multi-outputs Molecular Logic Circuit based on a very simple observation of chemosensing activities.

  16. Delivery of cyclodextrin polymers to bacterial biofilms - An exploratory study using rhodamine labelled cyclodextrins and multiphoton microscopy.

    Science.gov (United States)

    Thomsen, Hanna; Benkovics, Gábor; Fenyvesi, Éva; Farewell, Anne; Malanga, Milo; Ericson, Marica B

    2017-10-15

    Cyclodextrin (CD) polymers are interesting nanoparticulate systems for pharmaceutical delivery; however, knowledge regarding their applications towards delivery into complex microbial biofilm structures is so far limited. The challenge is to demonstrate penetration and transport through the biofilm and its exopolysaccharide matrix. The ideal functionalization for penetration into mature biofilms is unexplored. In this paper, we present a novel set of rhodamine labelled βCD-polymers, with different charge moieties, i.e., neutral, anionic, and cationic, and explore their potential delivery into mature Staphylococcus epidermidis biofilms using multiphoton laser scanning microscopy (MPM). The S. epidermidis biofilms, being a medically relevant model organism, were stained with SYTO9. By using MPM, three-dimensional imaging and spectral investigation of the distribution of the βCD-polymers could be obtained. It was found that the cationic βCD-polymers showed significantly higher integration into the biofilms, compared to neutral and anionic functionalized βCDs. None of the carriers presented any inherent toxicity to the biofilms, meaning that the addition of rhodamine moiety does not affect the inertness of the delivery system. Taken together, this study demonstrates a novel approach by which delivery of fluorescently labelled CD nanoparticles to bacterial biofilms can be explored using MPM. Future studies should be undertaken investigating the potential in using cationic functionalization of CD based delivery systems for targeting anti-microbial effects in biofilms. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. A study on linear and non-linear optical constants of Rhodamine B thin film deposited on FTO glass

    Energy Technology Data Exchange (ETDEWEB)

    Yahia, I.S. [Nano-Science & Semiconductor Labs, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Jilani, Asim, E-mail: asim.jilane@gmail.com [Centre of Nanotechnology, Physics Department-Faculty of Science-AL Faisaliah Campus, King Abdulaziz University, P.O. Box 80200, Jeddah 21589 (Saudi Arabia); Abutalib, M.M. [Centre of Nanotechnology, Physics Department-Faculty of Science-AL Faisaliah Campus, King Abdulaziz University, P.O. Box 80200, Jeddah 21589 (Saudi Arabia); AlFaify, S. [Nano-Science & Semiconductor Labs, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Shkir, M. [Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Abdel-wahab, M.Sh.; Al-Ghamdi, Attieh A. [Centre of Nanotechnology, Physics Department-Faculty of Science-AL Faisaliah Campus, King Abdulaziz University, P.O. Box 80200, Jeddah 21589 (Saudi Arabia); El-Naggar, A.M. [Exploitation of Renewable Energy Applications in Saudi Arabia, Physics & Astronomy Department, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451 (Saudi Arabia)

    2016-06-01

    The aim of this research was to fabricate/deposit the good quality thin film of Rhodamine B dye on fluorine doped tin oxide glass substrate by the low cost spin coating technique and study their linear and nonlinear optical parameters. The thickness of the thin film was measured about 300 nm with alpha step system. The transmittance of the fabricated thin film was found to be above 75% corresponding to the fluorine doped tin oxide layer. The structural analysis was performed with X-rays diffraction spectroscopy. Atomic force microscope showed the topographic image of deposited thin film. Linear optical constant like absorption coefficient, band gap, and extinction index was calculated. The dielectric constant was calculated to know the optical response of Rhodamine B dye over fluorine doped tin oxide substrate. The nonlinear optical constant like linear optical susceptibility χ{sup (1)}, nonlinear optical susceptibility χ{sup (3)}, nonlinear refractive index (n{sub 2}) were calculated by spectroscopic method. This method has advantage over the experimental method like Z-Scan for organic dye base semiconductors for future advance optoelectronics applications like dye synthesis solar cell.

  18. Quantitative relationship between adsorbed amount of solute and solvent composition

    International Nuclear Information System (INIS)

    Wang Yan; Geng Xindu; Zebolsky, Don M.

    2003-01-01

    A new adsorption isotherm that relates the amount of solute adsorbed to the solvent concentration is proposed. The new equation is derived from Geng and Shi's stoichiometric displacement model for adsorption (SDM-A). The obtained equation may be simplified to an expression containing two parameters. The equation with two parameters, valid for low concentrations of solute, is a logarithmically linear relationship. The intercept contains a thermodynamic equilibrium constant of the solute displacing solvent from the adsorbent. The slope is the negative value of the stoichiometric displacement parameter (Z), the average total number of solvent molecules displaced from an active site on the adsorbent and from the solute. Tests with a homologous series of aromatic alcohols by frontal analysis in reversed phase liquid chromatography demonstrate that experimental results fit the equation well

  19. Lotus Dust Mitigation Coating and Molecular Adsorber Coating

    Science.gov (United States)

    O'Connor, Kenneth M.; Abraham, Nithin S.

    2015-01-01

    NASA Goddard Space Flight Center has developed two unique coating formulations that will keep surfaces clean and sanitary and contain contaminants.The Lotus Dust Mitigation Coating, modeled after the self-cleaning, water-repellant lotus leaf, disallows buildup of dust, dirt, water, and more on surfaces. This coating, has been successfully tested on painted, aluminum, glass, silica, and some composite surfaces, could aid in keeping medical assets clean.The Molecular Adsorber Coating is a zeolite-based, sprayable molecular adsorber coating, designed to prevent outgassing in materials in vacuums. The coating works well to adsorb volatiles and contaminates in manufacturing and processing, such as in pharmaceutical production. The addition of a biocide would also aid in controlling bacteria levels.

  20. Solid adsorbents for removal of hydrogen sulphide from hot gas

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Yumura, Motoo

    1986-04-01

    A wide range of solids have been tested as potential adsorbents for H/sub 2/S removal from hot gas. These solids can be divided into two main groups, i.e., the adsorbents containing alkaline earth metals and those containing transition metals. Among the former, calcium oxide and naturally occurring materials such as limestone, dolomite and calcium silicate have attracted a great deal of attention. The adsorbents of the second group include iron oxide alone or in combination with some supports, zinc oxide, zinc ferrite and manganese oxide. The materials containing both the alkaline earth metals and transition metals, e.g., manganese nodules, fly ash and the reject from the aluminium industry (red mud) have been evaluated as well.

  1. Radioactive diffusion gaseous probe technique for study adsorbent structure inhomogeneity

    International Nuclear Information System (INIS)

    Zyuzin, A.Yu.; Korobkov, V.I.; Bekman, I.N.

    1990-01-01

    One of the versions of the method of diffusion gaseous probe - method of longitudinal shear in combination with autoradiography (ARG) - was used for characterising sorbents and catalysts, which are considered to be promising for reprocessing of sulfur-containing natural gases. Hydrogen sulfide, labelled with 35 S was used as diffusion radioactive probe. Zeolite granules of 4A type and granulated adsorbents on the basis of CR and AM aluminium oxides, which are industrial catalysts of Clauss reaction developed at SNEA company, were used as objects under investigation. It is shown that technique for fabrication of 4A zeolite granules leads to asymmetrical pore distribution over the granule diameter. Technique for AM granule fabrication leads to occuRrence of local inhomogeneities of the structure in the form of narrow coaxial rings with decreased or increased local adsorption ability. Granules of adsorbent of CR type are characterized by rather homogeneous structure. It is recommended to use the mentioned method for industrial adsorbent diagnosis

  2. Heat transfer between adsorbate and laser-heated hot electrons

    International Nuclear Information System (INIS)

    Ueba, H; Persson, B N J

    2008-01-01

    Strong short laser pulses can give rise to a strong increase in the electronic temperature at metal surfaces. Energy transfer from the hot electrons to adsorbed molecules may result in adsorbate reactions, e.g. desorption or diffusion. We point out the limitations of an often used equation to describe the heat transfer process in terms of a friction coupling. We propose a simple theory for the energy transfer between the adsorbate and hot electrons using a newly introduced heat transfer coefficient, which depends on the adsorbate temperature. We calculate the transient adsorbate temperature and the reaction yield for a Morse potential as a function of the laser fluency. The results are compared to those obtained using a conventional heat transfer equation with temperature-independent friction. It is found that our equation of energy (heat) transfer gives a significantly lower adsorbate peak temperature, which results in a large modification of the reaction yield. We also consider the heat transfer between different vibrational modes excited by hot electrons. This mode coupling provides indirect heating of the vibrational temperature in addition to the direct heating by hot electrons. The formula of heat transfer through linear mode-mode coupling of two harmonic oscillators is applied to the recent time-resolved study of carbon monoxide and atomic oxygen hopping on an ultrafast laser-heated Pt(111) surface. It is found that the maximum temperature of the frustrated translation mode can reach high temperatures for hopping, even when direct friction coupling to the hot electrons is not strong enough

  3. SAPO-34 coated adsorbent heat exchanger for adsorption chillers

    International Nuclear Information System (INIS)

    Freni, Angelo; Bonaccorsi, Lucio; Calabrese, Luigi; Caprì, Angela; Frazzica, Andrea; Sapienza, Alessio

    2015-01-01

    In this work, adsorbent coatings on aluminum surfaces were prepared by dip-coating method starting from a water suspension of SAPO-34 zeolite and a silane-based binder. Silane-zeolite coatings morphology and surface coverage grade were evaluated by scanning electron microscopy. Adhesive and mechanical properties were evaluated by peel, pull-off, impact and micro-hardness tests, confirming the good interaction between metal substrate, binder and zeolite. Adsorption equilibrium and kinetics of water vapour adsorption on the adsorbent coating were studied in the range T = 30–150 °C and pH 2 O = 11 mbar using a CAHN 2000 thermo-balance. It was found that, in the investigated conditions, the organic binder doesn't affect the water adsorption capacity and adsorption kinetics of the original SAPO-34 zeolite. Subsequently, the zeolite coating was applied on a finned flat-tubes aluminum heat exchanger realizing a full-scale AdHEx with an uniform adsorbent coating 0.1 mm thick and a metal/adsorbent mass ratio = 6. The cooling capacity of the realized coated AdHEx was measured by a lab-scale adsorption chiller under realistic operating conditions for air conditioning applications. The coated AdHEx produced up to 675 W/kg ads specific cooling power with a cycle time of 5 min. Adsorption stability of the coated adsorber subjected to 600 sorption cycles was successfully verified. - Highlights: • Adsorbent coatings on aluminum surfaces were prepared by dip-coating method. • Silane-zeolite coatings morphology, and mechanical properties were studied. • The zeolite coating was applied on a finned flat-tubes aluminum heat exchanger. • The coated AdHEx was tested in a lab scale adsorption chiller

  4. Scientific Opinion on the safety and suitability for use by infants of follow-on formulae with a protein content of at least 1.6 g/100 kcal

    DEFF Research Database (Denmark)

    Sjödin, Anders Mikael

    2017-01-01

    Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver a scientific opinion on the safety and suitability for use by infants of follow-on formulae (FOF) based on cow’s milk intact protein with a protein content...... of at least 1.6 g/100 kcal (rounded value) that meet otherwise the requirements of relevant EU legislation. If the formula under evaluation is considered to be safe and suitable for use by infants, the NDA Panel is also asked to advise on whether FOF based on goat’s milk intact protein, soy protein isolates...... legislation is safe and suitable for healthy infants living in Europe with an intake of complementary foods of a sufficient quality. This conclusion does not apply to infant formula (IF). The Panel also concludes that the safety and suitability of FOF with a protein content of at least 1.6 g/100 kcal...

  5. Hydrogen molecule on lithium adsorbed graphene: A DFT study

    International Nuclear Information System (INIS)

    Kaur, Gagandeep; Gupta, Shuchi; Gaganpreet; Dharamvir, Keya

    2016-01-01

    Electronic structure calculations for the adsorption of molecular hydrogen on lithium (Li) decorated and pristine graphene have been studied systematically using SIESTA code [1] within the framework of the first-principle DFT under the Perdew-Burke-Ernzerhof (PBE) form of the generalized gradient approximation (GGA)[2], including spin polarization. The energy of adsorption of hydrogen molecule on graphene is always enhanced by the presence of co-adsorbed lithium. The most efficient adsorption configuration is when H 2 is lying parallel to lithium adsorbed graphene which is in contrast to its adsorption on pristine graphene (PG) where it prefers perpendicular orientation.

  6. Surface characterization of adsorbed asphaltene on a stainless steel surface

    International Nuclear Information System (INIS)

    Abdallah, W.A.; Taylor, S.D.

    2007-01-01

    X-ray photoelectron spectroscopy was used to characterize a single layer of adsorbed asphaltene on a metallic surface. The deposits were created by immersing a stainless steel disc into a dilute asphaltene solution with either toluene or dichloromethane as the solvent, although the toluene solution allowed for better control of the adsorbed asphaltene layer and less atmospheric oxygen contamination. The analyses for C 1s, S 2p 3/2 , N 1s and O 1s photoemission peaks indicated that different functional groups are present in the asphaltene layer including carboxylic, pyrrolic, pyridininc, thiophenic and sulfite, with slight differences in their binding energies

  7. Adsorbates in a Box: Titration of Substrate Electronic States

    Science.gov (United States)

    Cheng, Zhihai; Wyrick, Jonathan; Luo, Miaomiao; Sun, Dezheng; Kim, Daeho; Zhu, Yeming; Lu, Wenhao; Kim, Kwangmoo; Einstein, T. L.; Bartels, Ludwig

    2010-08-01

    Nanoscale confinement of adsorbed CO molecules in an anthraquinone network on Cu(111) with a pore size of ≈4nm arranges the CO molecules in a shell structure that coincides with the distribution of substrate confined electronic states. Molecules occupy the states approximately in the sequence of rising electron energy. Despite the sixfold symmetry of the pore boundary itself, the adsorbate distribution adopts the threefold symmetry of the network-substrate system, highlighting the importance of the substrate even for such quasi-free-electron systems.

  8. Adsorption and transport of cadmium and rhodamine WT in pumice sand columns

    International Nuclear Information System (INIS)

    Pang, L.; Close, M.; Greenfield, H.; Stanton, G.

    2004-01-01

    The transport and attenuation of cadmium (Cd) and rhodamine WT (RWT) in a pumice sand aquifer media was investigated using column experiments to study a scenario of point-source contamination. A pore-water velocity of 1.7-1.8 m/day, which is a typical field groundwater velocity in a pumice sand aquifer system, was applied to triplicate columns. A pulse of a solution containing Cd and RWT, together with the conservative tracer tritiated water ( 3 H 2 O) at pH = 7, was introduced into the columns. Experimental results showed that concentration breakthrough curves (BTCs) of 3 H 2 O were symmetrical and fitted well into an equilibrium model. In contrast, BTCs of Cd and RWT were asymmetrical with significant tailings and fitted well with a two-site adsorption/desorption model. The symmetric 3 H 2 O BTCs suggest that physical non-equilibrium was absent in the experimental system, therefore the asymmetrical BTCs of Cd and RWT were attributed to chemical non-equilibrium. Modelling results showed that, in comparison with 3 H 2 O, Cd was apparently retarded by 101-108 times in pumice sand aquifer media (apparent adsorption coefficient 7.33-9.24 ml/g) and underwent a mass loss of 20-30% that was probably because of precipitation of CdCO 3 . As CdCO 3 is extremely insoluble, Cd precipitation would be irreversible and therefore it would not contribute to the tailing of the Cd BTCs. The experimental results suggest that the adsorption and desorption of Cd in pumice sand aquifer media in hydrodynamic conditions was a kinetic process. Cd desorption rates were two orders-of-magnitude slower than its adsorption rates. This resulted in a prolonged mean residence time for Cd in pumice sand aquifer media, which was 10-12 days in the 18-cm-long columns under a flow velocity of 1.7-1.8 m/day. Since the mean residence time is only indicative for the arrival of the central of mass in a contaminant BTC, the time required for the total disappearance of Cd will be much longer than the mean

  9. Efficient tetracycline adsorption and photocatalytic degradation of rhodamine B by uranyl coordination polymer

    Science.gov (United States)

    Ren, Ya-Nan; Xu, Wei; Zhou, Lin-Xia; Zheng, Yue-Qing

    2017-07-01

    Two mixed uranyl-cadmium malonate coordination polymers [(UO2)2Cd(H-bipy)2(mal)4(H2O)2]·4H2O 1 and [(UO2)Cd(bipy)(mal)2]·H2O 2 (H2mal = malonic acid, bipy =4,4‧-bipyridine) have been synthesized in room temperature. Compound 1 represents a one-dimensional (1D) chain assembly of Cd(II) ions, uranyl centers and malonate ligands. Compound 2 exhibits a two-dimensional (2D) 2D +2D → 3D polycatenated framework based on inclined interlocked 2D 44 sql grids. The two compounds have been characterized by elemental analysis, IR and UV-vis spectroscopy, thermal analysis, powder X-ray diffraction and photoluminescence spectroscopy. And the ferroelectric property of 2 also has been studied. Moreover, compound 2 exhibits good photocatalytic activity for dye degradation under UV light and is excellent adsorbent for removing tetracycline antibiotics in the aqueous solution.

  10. Mercury chemisorption by sulfur adsorbed in porous materials

    NARCIS (Netherlands)

    Steijns, M.; Peppelenbos, A.; Mars, P.

    1976-01-01

    The sorption of mercury vapor by adsorbed sulfur in the zeolites CaA (= 5A) and NaX (=13X) and two types of active carbon has been measured at a temperature of 50°C. With increasing degree of micropore filling by sulfur the fraction of sulfur accessible to mercury atoms decreased for CaA and NaX.

  11. Electrospun chitosan/baker's yeast nanofibre adsorbent: preparation ...

    Indian Academy of Sciences (India)

    poration, complexation, reverse osmosis and membrane pro- cesses [2–4]. ... activities and some human activities such as exploitation of uranium and ... bre adsorbent for U(VI) and Th(IV) removal from aqueous solutions. 2. Experimental ..... Adsorption capacity of uranium(VI) and thorium(IV) in binary systems. where. H.

  12. Substrate induced ordering of molecular adsorbates on Au(111)

    International Nuclear Information System (INIS)

    Schott, J.H.; White, H.S.; Arana, C.R.

    1992-01-01

    Using scanning tunneling microscopy in dimethylformate, [Ru(bpy) 2 (bpy-(CH 2 ) x -bpy) 2+ ] (x = 4 and 5) monolayers adsorbed on the unreconstructed and √3 x 22 reconstructed surfaces of Au(111) were imaged in this paper. The substrate had a highly ordered pattern on the reconstructed surface, but random spatial distribution on the unreconstructed surface. 17 refs., 3 figs

  13. Removal of nickel from wastewater using an agricultural adsorbent

    African Journals Online (AJOL)

    2009-11-26

    Nov 26, 2009 ... qmax is the theoretical maximum adsorption capacity of the adsorbent (mg/g). KL is the Langmuir affinity constant (ℓ/mg). Ce is the supernatant equilibrium concentration of the system (mg/ℓ) (Febrianto et al., 2009). The Freundlich isotherm model can also be expressed in the linearised logarithmic form (Eq.

  14. Magnetic-supported cucurbituril: A recyclable adsorbent for the ...

    Indian Academy of Sciences (India)

    Administrator

    removal of humic acid from simulated water. QIN YANG* ... The commonly used adsorbents are activated carbon. (Deng and Bai ... Q[n] is practically insoluble in all common organic solvents. ... Q[n] has other advantages such as its strong rigid structure .... and it does not result in the phase change of Fe3O4. In addition ...

  15. Interactions between adsorbed macromolecules : measurements on emulsions and liquid films

    NARCIS (Netherlands)

    Vliet, van T.

    1977-01-01

    The aim of this study was to gain more insight into the factors, determining the inter- and intramolecular interactions between adsorbed macromolecules. To that end several experimental and theoretical approaches were followed, using well-defined systems. It was shown that these

  16. Analytical phase diagrams for colloids and non-adsorbing polymer

    NARCIS (Netherlands)

    Fleer, G.J.; Tuinier, R.

    2008-01-01

    We review the free-volume theory (FVT) of Lekkerkerker et al. [Europhys. Lett. 20 (1992) 5591 for the phase behavior of colloids in the presence of non-adsorbing polymer and we extend this theory in several aspects: (i) We take the solvent into account as a separate component and show that the

  17. Application of adsorbent as a novel technique during ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-17

    Sep 17, 2008 ... hydrophilic compound (carbon), thermally activated at temperatures of 300, 500, 700 and ... carbon in microbial degradation of anthracene, elicits an enhanced disappearance rate of the ... persistence, toxicity and their tendency to bioaccumulate ... paper therefore, investigates the use of adsorbent (acti-.

  18. Polar red-emitting rhodamine dyes with reactive groups: synthesis, photophysical properties, and two-color STED nanoscopy applications.

    Science.gov (United States)

    Kolmakov, Kirill; Wurm, Christian A; Meineke, Dirk N H; Göttfert, Fabian; Boyarskiy, Vadim P; Belov, Vladimir N; Hell, Stefan W

    2014-01-03

    The synthesis, reactivity, and photophysical properties of new rhodamines with intense red fluorescence, two polar residues (hydroxyls, primary phosphates, or sulfonic acid groups), and improved hydrolytic stability of the amino-reactive sites (NHS esters or mixed N-succinimidyl carbonates) are reported. All fluorophores contain an N-alkyl-1,2-dihydro-2,2,4-trimethylquinoline fragment, and most of them bear a fully substituted tetrafluoro phenyl ring with a secondary carboxamide group. The absorption and emission maxima in water are in the range of 635-639 and 655-659 nm, respectively. A vastly simplified approach to red-emitting rhodamines with two phosphate groups that are compatible with diverse functional linkers was developed. As an example, a phosphorylated dye with an azide residue was prepared and was used in a click reaction with a strained alkyne bearing an N-hydroxysuccinimid (NHS) ester group. This method bypasses the undesired activation of phosphate groups, and gives an amphiphilic amino-reactive dye, the solubility and distribution of which between aqueous and organic phases can be controlled by varying the pH. The presence of two hydroxyl groups and a phenyl ring with two carboxyl residues in the dyes with another substitution pattern is sufficient for providing the hydrophilic properties. Selective formation of a mono-N-hydroxysuccinimidyl ester from 5-carboxy isomer of this rhodamine is reported. The fluorescence quantum yields varied from 58 to 92% for free fluorophores, and amounted to 18-64% for antibody conjugates in aqueous buffers. The brightness and photostability of these fluorophores facilitated two-color stimulated emission depletion (STED) fluorescence nanoscopy of biological samples with high contrast and minimal background. Selecting a pair of fluorophores with absorption/emission bands at 579/609 and 635/655 nm enabled two-color channels with low cross-talk and negligible background at approximately 40 nm resolution. Copyright

  19. Rhodamine-labeled 2beta-carbomethoxy-3beta-(3,4-dichlorophenyl)tropane analogues as high-affinity fluorescent probes for the dopamine transporter

    DEFF Research Database (Denmark)

    Cha, Joo Hwan; Zou, Mu-Fa; Adkins, Erika M

    2005-01-01

    linker. The resulting 2-substituted (5) and N-substituted (9) rhodamine-labeled ligands provided the highest DAT binding affinities expressed in COS-7 cells (Ki= 27 and 18 nM, respectively) in the series. Visualization of the DAT with 5 and 9 was demonstrated by confocal fluorescence laser scanning...

  20. Synthesis and characterization of core-shell magnetic molecularly imprinted polymers for solid-phase extraction and determination of Rhodamine B in food.

    Science.gov (United States)

    Su, Xiaomeng; Li, Xiaoyan; Li, Junjie; Liu, Min; Lei, Fuhou; Tan, Xuecai; Li, Pengfei; Luo, Weiqiang

    2015-03-15

    Core-shell magnetic molecularly imprinted polymers (MIPs) nanoparticles (NPs), in which a Rhodamine B-imprinted layer was coated on Fe3O4 NPs. were synthesized. First, Fe3O4 NPs were prepared by a coprecipitation method. Then, amino-modified Fe3O4 NPs (Fe3O4@SiO2-NH2) was prepared. Finally, the MIPs were coated on the Fe3O4@SiO2-NH2 surface by the copolymerization with functional monomer, acrylamide, using a cross-linking agent, ethylene glycol dimethacrylate; an initiator, azobisisobutyronitrile and a template molecule, Rhodamine B. The Fe3O4@MIPs were characterized using a scanning electron microscope, Fourier transform infrared spectrometer, vibrating sample magnetometer, and re-binding experiments. The Fe3O4@MIPs showed a fast adsorption equilibrium, a highly improved imprinting capacity, and significant selectivity; they could be used as a solid-phase extraction material and detect illegal addition Rhodamine B in food. A method was developed for the selective isolation and enrichment of Rhodamine B in food samples with recoveries in the range 78.47-101.6% and the relative standard deviation was <2%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Synthesis of magnetic CoFe2O4/ordered mesoporous carbon nanocomposites and application in Fenton-like oxidation of rhodamine B.

    Science.gov (United States)

    Deng, Jing; Chen, Yi-Jing; Lu, Yu-An; Ma, Xiao-Yan; Feng, Shan-Fang; Gao, Naiyun; Li, Jun

    2017-06-01

    CoFe 2 O 4 /ordered mesoporous carbon (OMC) nanocomposites were synthesized and tested as heterogeneous peroxymonosulfate (PMS) activator for the removal of rhodamine B. Characterization confirmed that CoFe 2 O 4 nanoparticles were tightly bonded to OMC, and the hybrid catalyst possessed high surface area, pore volume, and superparamagnetism. Oxidation experiments demonstrated that CoFe 2 O 4 /OMC nanocomposites displayed favorable catalytic activity in PMS solution and rhodamine B degradation could be well described by pseudo-first-order kinetic model. Sulfate radicals (SO 4 - ·) were verified as the primary reactive species which was responsible for the decomposition of rhodamine B. The optimum loading ratio of CoFe 2 O 4 and OMC was determined to be 5:1. Under optimum operational condition (catalyst dosage 0.05 g/L, PMS concentration 1.5 mM, pH 7.0, and 25 °C), CoFe 2 O 4 /OMC-activated peroxymonosulfate system could achieve almost complete decolorization of 100 mg/L rhodamine B within 60 min. The enhanced catalytic activity of CoFe 2 O 4 /OMC nanocomposites compared to that of CoFe 2 O 4 nanoparticles could be attributable to the increased adsorption capacity and accelerated redox cycles between Co(III)/Co(II) and Fe(III)/Fe(II).

  2. Dynamic adsorption of mixtures of Rhodamine B, Pb (II), Cu (II) and Zn(II) ions on composites chitosan-silica-polyethylene glycol membrane

    Science.gov (United States)

    Mahatmanti, F. W.; Rengga, W. D. P.; Kusumastuti, E.; Nuryono

    2018-04-01

    The adsorption of a solution mixture of Rhodamine B, Pb (II), Cu (II) and Zn(II) was studied using dynamic methods employing chitosan-silica-polyethylene glycol (Ch/Si/P) composite membrane as an adsorptive membrane. The composite Ch/Si/P membrane was prepared by mixing a chitosan-based membrane with silica isolated from rice husk ash (ASP) and polyethylene glycol (PEG) as a plasticizer. The resultant composite membrane was a stronger and more flexible membrane than the original chitosan-based membrane as indicated by the maximum percentage of elongation (20.5 %) and minimum Young’s Modulus (80.5 MPa). The composite membrane also showed increased mechanical and hydrophilic properties compared to the chitosan membranes. The membrane was used as adsorption membrane for Pb (II), Cu (II), Cd (II) ions and Rhodamine B dyes in a dynamic system where the permeation and selectivity were determined. The permeation of the components was observed to be in the following order: Rhodamine B > Cd (II) > Pb (II) > Cu (II) whereas the selectivity was shown to decrease the order of Cu (II) > Pb (II) > Cd (II) > Rhodamine B.

  3. Natural material adsorbed onto a polymer to enhance immune function

    Directory of Open Access Journals (Sweden)

    Reinaque AP

    2012-08-01

    Full Text Available Ana Paula Barcelos Reinaque,1 Eduardo Luzía França,2 Edson Fredulin Scherer,3 Mayra Aparecida Côrtes,1 Francisco José Dutra Souto,4 Adenilda Cristina Honorio-França51Post Graduate Program in Material Science, 2Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, 3Post Graduate Program in Material Science, Institute of Biological and Health Science, Federal University of Mato Grosso, Pontal do Araguaia, 4Faculty of Medical Sciences, Federal University of Mato Grosso, Cuiabá, 5Institute of Biological and Health Science, Federal University of Mato Grosso, Pontal do Araguaia, MT, BrazilBackground: In this study, we produced poly(ethylene glycol (PEG microspheres of different sizes and adsorbing a medicinal plant mixture, and verified their effect in vitro on the viability, superoxide production, and bactericidal activity of phagocytes in the blood.Methods: The medicinal plant mixture was adsorbed onto PEG microspheres and its effects were evaluated by flow cytometry and fluorescence microscopy.Results: Adsorption of the herbal mixture onto the PEG microspheres was achieved and the particles were internalized by phagocytes. PEG microspheres bearing the adsorbed herbal mixture stimulated superoxide release, and activated scavenging and microbicidal activity in phagocytes. No differences in functional activity were observed when the phagocytes were not incubated with PEG microspheres bearing the adsorbed herbal mixture.Conclusion: This system may be useful for the delivery of a variety of medicinal plants and can confer additional protection against infection. The data reported here suggest that a polymer adsorbed with a natural product is a treatment alternative for enhancing immune function.Keywords: natural product, polymer, adsorption, immune function, phagocytes

  4. Hg(II) sensing platforms with improved photostability: The combination of rhodamine derived chemosensors and up-conversion nanocrystals.

    Science.gov (United States)

    Song, Kai; Mo, Jingang; Lu, Chengwen

    2017-05-15

    This paper reported two nanocomposite sensing platforms for Hg(II) detection with improved photostability, using two rhodamine derivatives as chemosensors and up-conversion nanocrystals as excitation host, respectively. There existed a secondary energy transfer from this excitation host to these chemosensors, which was confirmed by spectral analysis, energy transfer radius calculation and emission decay lifetime comparison. In this case, chemosensor photostability was greatly improved. Further analysis suggested that these chemosensors recognized Hg(II) following a simple binding stoichiometry of 1:1. Hg(II) sensing performance of these sensing platforms was analyzed through their emission spectra upon various Hg(II) concentrations. Emission spectral response, Stern-Volmer equation, emission stability and sensing selectivity were discussed in detail. It was finally concluded that these chemosensors showed emission turn on effect towards Hg(II), with high photostability, good selectivity and linear response. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Sensitive detection of strong acidic condition by a novel rhodamine-based fluorescent pH chemosensor.

    Science.gov (United States)

    Tan, Jia-Lian; Yang, Ting-Ting; Liu, Yu; Zhang, Xue; Cheng, Shu-Jin; Zuo, Hua; He, Huawei

    2016-05-01

    A novel rhodamine-based fluorescent pH probe responding to extremely low pH values has been synthesized and characterized. This probe showed an excellent photophysical response to pH on the basis that the colorless spirocyclic structure under basic conditions opened to a colored and highly fluorescent form under extreme acidity. The quantitative relationship between fluorescence intensity and pH value (1.75-2.62) was consistent with the equilibrium equation pH = pKa + log[(Imax - I)/(I - Imin)]. This sensitive pH probe was also characterized with good reversibility and no interaction with interfering metal ions, and was successfully applied to image Escherichia coli under strong acidity. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Monitoring of chlorsulfuron in biological fluids and water samples by molecular fluorescence using rhodamine B as fluorophore.

    Science.gov (United States)

    Alesso, Magdalena; Escudero, Luis A; Talio, María Carolina; Fernández, Liliana P

    2016-11-01

    A new simple methodology is proposed for chlorsufuron (CS) traces quantification based upon enhancement of rhodamine B (RhB) fluorescent signal. Experimental variables that influence fluorimetric sensitivity have been studied and optimized. The zeroth order regression calibration was linear from 0.866 to 35.800µgL(-1) CS, with a correlation coefficient of 0.99. At optimal experimental conditions, a limit of detection of 0.259µgL(-1) and a limit of quantification of 0.866µgL(-1) were obtained. The method showed good sensitivity and adequate selectivity and was applied to the determination of trace amounts of CS in plasma, serum and water samples with satisfactory results analyzed by ANOVA test. The proposed methodology represents an alternative to traditional chromatographic techniques for CS monitoring in complex samples, using an accessible instrument in control laboratories. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A contribution to the study of radioactive waste dilution in the Rhone involving tests with a rhodamine B tracer

    International Nuclear Information System (INIS)

    Rodier, J.; Marichal, M.

    1961-01-01

    The process whereby waste from the Marcoule plant mixes with the water in the Rhone was followed in tests with rhodamine as a chemical tracer. Satisfactory dispersion was noted less than 4 km downstream from the waste discharge duct outlet, and the degree of homogeneity was considered to be satisfactory at the bridge of Roquemaure, und perfect at Avignon. This investigation not only revealed a complete absence of any preferential flow paths containing high radioactive waste concentrations, but it also enabled the most representative points to be selected at which to take Rhone water samples during future radioactive waste discharges. Reprint of a paper published in 'La Houille Blanche' N. 5 - Aug 196, p. 636-641 [fr

  8. Thermodynamic study of rhodamine 123-calf thymus DNA interaction: determination of calorimetric enthalpy by optical melting study.

    Science.gov (United States)

    Masum, Abdulla Al; Chakraborty, Maharudra; Pandya, Prateek; Halder, Umesh Chandra; Islam, Md Maidul; Mukhopadhyay, Subrata

    2014-11-20

    In this paper, the interaction of rhodamine123 (R123) with calf thymus DNA has been studied using molecular modeling and other biophysical methods like UV-vis spectroscopy, fluoremetry, optical melting, isothermal titration calorimetry, and circular dichroic studies. Results showed that the binding energy is about -6 to -8 kcal/mol, and the binding process is favored by both negative enthalpy change and positive entropy change. A new method to determine different thermodynamic properties like calorimetric enthalpy and heat capacity change has been introduced in this paper. The obtained data has been crossed-checked by other methods. After dissecting the free-energy contribution, it was observed that the binding was favored by both negative hydrophobic free energy and negative molecular free energy which compensated for the positive free energies due to the conformational change loss of rotational and transitional freedom of the DNA helix.

  9. A Continuous Flow System for the Measurement of Ambient Nitrogen Oxides [NO + NO] Using Rhodamine B Hydrazide as a Chemosensor

    Directory of Open Access Journals (Sweden)

    Pandurangappa Malingappa

    2014-01-01

    Full Text Available A new chemosensor has been used to monitor atmospheric nitrogen oxides [NO + NO 2 ] at parts per billion (ppb level. It is based on the catalytic reaction of nitrogen oxides with rhodamine B hydrazide (RBH to produce a colored compound through the hydrolysis of the amide bond of the molecule. A simple colorimeter has been used to monitor atmospheric nitrogen dioxide at ppb level. The air samples were purged through a sampling cuvette containing RBH solution using peristaltic pump. The proposed method has been successfully applied to monitor the ambient nitrogen dioxide levels at traffic junction points within the city limits and the results obtained are compared with the standard Griess-Ilosvay method.

  10. A new rhodamine-based fluorescent probe for the discrimination of Fe{sup 3+} from Fe{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    You, Qi Hua; Huang, Hua Bin; Zhuang, Zhi Xia; Wang, Xiao Ru [Dept. of Science and Technology for Inspection, Xiamen Huaxia University, Xiamen (China); Chan, Wing Hong [Dept. of of Chemistry, Hong Kong Bap tist University, Hong Kong (China)

    2016-11-15

    A new rhodamine-based fluorescent probe for the discrimination of Fe{sup 3+} from Fe{sup 2+} has been designed and investigated. The probe shows an immediate visual color change in response to Fe{sup 3+} and Cu{sup 2+}, while only Fe{sup 3+} triggers the fluorescent change of the probe. The existence of large amount of other metal ions shows negligible interference in the detection of Fe{sup 3+}. The association constant K{sub ass} of 4.64 × 10{sup 8} M{sup -2} (R{sup 2} = 0.994) and 5.38 × 10{sup 8} M{sup -2} (R{sup 2} = 0.991) of the complex was derived from UV/Vis and fluorescence titration assuming 1:2 stoichiometry of probe–Fe{sup 3+} complex, respectively.

  11. Fluorescein isothiocyanate and rhodamine B dye encapsulated mesoporous SiO2 for applications of blue LED excited white LED

    Science.gov (United States)

    Das, Sourav; Manam, J.

    2018-05-01

    In this work, the fluorescein isothiocyanate (FITC) and rhodamine B (RhB) dyes were encapsulated in mesoporous silica nanoparticles (MSNp). The MSNp-FITC-RhB nanohybrids phosphor showed a dichromatic PL emission at green region and orange region when excited at 460 nm. A Forster Resonance Energy Transfer (FRET) was observed from FITC to RhB. The materials were further characterized by XRD, FTIR, TEM, and temperature dependent photoluminescence. The CIE coordinates were tuned from greenish yellow to the orange region and quantum yield was reached 52.04% based on FRET. So by combining the MSNp-FITC-RhB nanohybrids phosphor with the blue LED chip, the white light emission with flexible Color Correlated Temperature and improved Color Rendering Index can be obtained.

  12. Investigation of ionic associates of rare earths with 3,5-diiodosalicylic acid and rhodamine B as an analytical form

    Energy Technology Data Exchange (ETDEWEB)

    Tselik, E I; Kushch, V P; Poluehktov, N S; Mishchenko, V T [AN Ukrainskoj SSR, Kiev. Inst. Fizicheskoj Khimii

    1979-11-01

    It is established that three-charge ions of rare earth elements form ionic associates with 3,5-diiodosalicylic acid (DISA) and rhodamine B (RB) with the ratio of components Me:DISA:RB = 1:4:1. For the associates toluene is the most suitable solvent. Certain correlation dependencies of properties in the natural series of these elements are found. Extraction-photometric method of Nd and Er determination with sensitivity of 0.026 and 0.033 ..mu..g/ml respectively (l = 0.3 cm) and relative standard deviation of <= 0.043 is developed. The use of DISA permits to increase the method sensitivity as compared with the method in which salicylic acid is used.

  13. Fabrication and characterization of microcavity lasers in rhodamine B doped SU8 using high energy proton beam

    Science.gov (United States)

    Venugopal Rao, S.; Bettiol, A. A.; Vishnubhatla, K. C.; Bhaktha, S. N. B.; Narayana Rao, D.; Watt, F.

    2007-03-01

    The authors present their results on the characterization of individual dye-doped microcavity polymer lasers fabricated using a high energy proton beam. The lasers were fabricated in rhodamine B doped SU8 resist with a single exposure step followed by chemical processing. The resulting trapezoidal shaped cavities had dimensions of ˜250×250μm2. Physical characterization of these structures was performed using a scanning electron microscope while the optical characterization was carried out by recording the emission subsequent to pumping the lasers with 532nm, 6 nanosecond pulses. The authors observed intense, narrow emission near 624nm with the best emission linewidth full width at half maximum of ˜9nm and a threshold ˜150μJ/mm2.

  14. Characterization of channel waveguides and tunable microlasers in SU8 doped with rhodamine B fabricated using proton beam writing

    International Nuclear Information System (INIS)

    Rao, S Venugopal; Bettiol, A A; Watt, F

    2008-01-01

    We present our results on the fabrication and characterization of buried channel waveguides and tunable microlasers in SU8 doped with rhodamine B achieved using direct writing with a 2.0 MeV proton beam. The channel waveguides, fabricated in single exposure, had an optical propagation loss of -1 at 532 nm measured using the scattering technique while the microlasers with dimensions of 250 x 250 μm 2 had a threshold of ∼150 μJ mm -2 when pumped with 532 nm nanosecond pulses. The emitted wavelength from the microlasers was tunable to an extent of ∼15 nm with increasing pump intensity and different pumping angles. The advantages of such micro-photonic components for the realization of a lab-on-a-chip device are discussed briefly. (fast track communication)

  15. A rhodamine chromene-based turn-on fluorescence probe for selectively imaging Cu2+ in living cell

    Science.gov (United States)

    Liu, Wei-Yong; Li, Hai-Ying; Lv, Hong-Shui; Zhao, Bao-Xiang; Miao, Jun-Ying

    We describe the development of a rhodamine chromene-based turn-on fluorescence probe to monitor the intracellular Cu2+ level in living cells. The new fluorescent probe with a chlorine group in chromene moiety exhibits good membrane-permeable property than previous reported because the predicted lipophilicity of present probe 4 is stronger than that of methoxyl substituted probe in our previous work (CLogP of 4: 8.313, CLogP of methoxyl substituted probe: 7.706), and a fluorescence response toward Cu2+ under physiological conditions with high sensitivity and selectivity, and facilitates naked-eye detection of Cu2+. The fluorescence intensity was remarkably increased upon the addition of Cu2+ within 1 or 2 min, while the other sixteen metal ions caused no significant effect.

  16. Gold nanoparticles and the corresponding filter membrane as chemosensors and adsorbents for dual signal amplification detection and fast removal of mercury(ii).

    Science.gov (United States)

    Chen, Gaosong; Hai, Jun; Wang, Hao; Liu, Weisheng; Chen, Fengjuan; Wang, Baodui

    2017-03-02

    Nowadays, the development of a multifunction system for the simultaneous multiple signal amplification detection and fast removal of Hg 2+ remains a major challenge. Herein, we for the first time used gold nanoparticles (Au NPs) and the corresponding filter membrane as chemosensors and adsorbents for dual signal amplification detection and fast removal of Hg 2+ . Such a system was based on the formation of gold amalgam and a gold amalgam-based reaction between rhodamine B (RhB) and NaBH 4 with fluorescence and colorimetric sensing functions. When the gold amalgam catalyzes the reduction of RhB, the red color and orange fluorescence of RhB gradually changed to colorless by switching the amount of Hg 2+ deposited on 13 nm Au NPs. The detection limit of the fluorescence assay and colorimetric assay is 1.16 nM and 2.54 nM for Hg 2+ , respectively. Interestingly, the color and fluorescence of RhB could be recovered when the above colorless reaction solution was exposed to air for about 2 hours. Taking advantage of the above optical phenomenon, a recyclable paper-based sensor has been developed by immobilizing the Au NPs and RhB dye on filter paper and has been successfully used for detection of Hg 2+ in real water samples. In addition, the filter membrane immobilized Au NPs could allow fast removal of mercury ions in Yellow river water and tap water with the removal efficiency close to 99%.

  17. The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories

    Science.gov (United States)

    Argus, Donald F.; Peltier, W. R.; Drummond, R.; Moore, Angelyn W.

    2014-07-01

    A new model of the deglaciation history of Antarctica over the past 25 kyr has been developed, which we refer to herein as ICE-6G_C (VM5a). This revision of its predecessor ICE-5G (VM2) has been constrained to fit all available geological and geodetic observations, consisting of: (1) the present day uplift rates at 42 sites estimated from GPS measurements, (2) ice thickness change at 62 locations estimated from exposure-age dating, (3) Holocene relative sea level histories from 12 locations estimated on the basis of radiocarbon dating and (4) age of the onset of marine sedimentation at nine locations along the Antarctic shelf also estimated on the basis of 14C dating. Our new model fits the totality of these data well. An additional nine GPS-determined site velocities are also estimated for locations known to be influenced by modern ice loss from the Pine Island Bay and Northern Antarctic Peninsula regions. At the 42 locations not influenced by modern ice loss, the quality of the fit of postglacial rebound model ICE-6G_C (VM5A) is characterized by a weighted root mean square residual of 0.9 mm yr-1. The Southern Antarctic Peninsula is inferred to be rising at 2 mm yr-1, requiring there to be less Holocene ice loss there than in the prior model ICE-5G (VM2). The East Antarctica coast is rising at approximately 1 mm yr-1, requiring ice loss from this region to have been small since Last Glacial Maximum. The Ellsworth Mountains, at the base of the Antarctic Peninsula, are inferred to be rising at 5-8 mm yr-1, indicating large ice loss from this area during deglaciation that is poorly sampled by geological data. Horizontal deformation of the Antarctic Plate is minor with two exceptions. First, O'Higgins, at the tip of the Antarctic Peninsula, is moving southeast at a significant 2 mm yr-1 relative to the Antarctic Plate. Secondly, the margins of the Ronne and Ross Ice Shelves are moving horizontally away from the shelf centres at an approximate rate of 0.8 mm yr-1, in

  18. Electrochemical sensors based on gold nanoparticles modified with rhodamine B hydrazide to sensitively detect Cu(II)

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Donglai; Hu, Bin; Kang, Mengmeng [Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001 (China); Wang, Minghua [Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, No.136, Science Avenue, Zhengzhou 450001 (China); He, Linghao [Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001 (China); Zhang, Zhihong, E-mail: mainzhh@163.com [Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001 (China); Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, No.136, Science Avenue, Zhengzhou 450001 (China); Fang, Shaoming, E-mail: mingfang@zzuli.edu.cn [Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001 (China); Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, No.136, Science Avenue, Zhengzhou 450001 (China)

    2016-12-30

    Highlights: • An electrochemical sensor based on gold nanoparticles modified with rhodamine B hydrazide (AuNPs-RBH) was developed. • The sensor was applied in the highly sensitive and selective detection of Cu{sup 2+} in water. • The electrochemical sensor displays excellent regeneration, stability, and practicability for Cu{sup 2+} detection. • EIS was used to determine Cu{sup 2+} ions in an aqueous solution with the developed AuNPs-RBH-based electrochemical sensor. - Abstract: An electrochemical sensor based on gold nanoparticles (Au NPs) modified with rhodamine B hydrazide (RBH) (AuNPs-RBH) was developed and applied in the highly sensitive and selective detection of Cu{sup 2+} in water. RBH molecules were bounded onto the surface of AuNPs via the strong interaction between the amino groups and Au NPs. The chemical structure variations were characterized by X-ray photoelectron spectroscopy and fluoresence spectroscopy. Additionally, electrochemical impedance spectroscopy was used to determine Cu{sup 2+} ions in an aqueous solution with the developed AuNPs-RBH-based electrochemical sensor. Results show that the fabricated sensor exhibits good electrochemical performance because of the presence of Au NPs and high affinity with the Cu{sup 2+} resulting from the strong coordination chemistry between Cu{sup 2+} and RBH. The as-developed sensor towards detecting Cu{sup 2+} has a detection limitation of 12.5 fM within the concentration range of 0.1 pM–1 nM by using the electrochemical impedance technique. It also displays excellent selectivity, regeneration, stability, and practicability for Cu{sup 2+} detection. Therefore, the new strategy of the RBH-based electrochemical sensor exhibits great potential application in environment treatment and protection.

  19. Composite Magnetic Nanoparticles (CuFe₂O₄) as a New Microsorbent for Extraction of Rhodamine B from Water Samples.

    Science.gov (United States)

    Roostaie, Ali; Allahnoori, Farzad; Ehteshami, Shokooh

    2017-09-01

    In this work, novel composite magnetic nanoparticles (CuFe2O4) were synthesized based on sol-gel combustion in the laboratory. Next, a simple production method was optimized for the preparation of the copper nanoferrites (CuFe2O4), which are stable in water, magnetically active, and have a high specific area used as sorbent material for organic dye extraction in water solution. CuFe2O4 nanopowders were characterized by field-emission scanning electron microscopy (SEM), FTIR spectroscopy, and energy dispersive X-ray spectroscopy. The size range of the nanoparticles obtained in such conditions was estimated by SEM images to be 35-45 nm. The parameters influencing the extraction of CuFe2O4 nanoparticles, such as desorption solvent, amount of sorbent, desorption time, sample pH, ionic strength, and extraction time, were investigated and optimized. Under the optimum conditions, a linear calibration curve in the range of 0.75-5.00 μg/L with R2 = 0.9996 was obtained. The LOQ (10Sb) and LOD (3Sb) of the method were 0.75 and 0.25 μg/L (n = 3), respectively. The RSD for a water sample spiked with 1 μg/L rhodamine B was 3% (n = 5). The method was applied for the determination of rhodamine B in tap water, dishwashing foam, dishwashing liquid, and shampoo samples. The relative recovery percentages for these samples were in the range of 95-99%.

  20. A novel magnetic poly(aniline-naphthylamine)-based nanocomposite for micro solid phase extraction of rhodamine B

    International Nuclear Information System (INIS)

    Bagheri, Habib; Daliri, Rasoul; Roostaie, Ali

    2013-01-01

    Graphical abstract: -- Highlights: •A Fe 3 O 4 –aniline-naphthylamine nanocomposite was prepared via a simple route. •The magnetic nanocomposite was applied for isolation of RhB from water. •The nanocomposite applicability was compared with other pristine polymers. •The method was applied for the determination of RhB in different samples. -- Abstract: A novel Fe 3 O 4 –poly(aniline-naphthylamine)-based nanocomposite was synthesized by chemical oxidative polymerization process as a magnetic sorbent for micro solid phase extraction. The scanning electron microscopy images of the synthesized nanocomposite revealed that the copolymer posses a porous structure with diameters less than 50 nm. The extraction efficiency of this sorbent was examined by isolation of rhodamine B, a mutagenic and carcinogenic dye, from aquatic media in dispersion mode. Among different synthesized polymers, Fe 3 O 4 /poly(aniline-naphthylamine) nanocomposite showed a prominent efficiency. Parameters including the desorption solvent, amount of sorbent, desorption time, sample pH, ionic strength, extraction time and stirring rate were optimized. Under the optimum condition, a linear spiked calibration curve in the range of 0.35–5.00 μg L −1 with R 2 = 0.9991 was obtained. The limits of detection (3S b ) and limits of quantification (10S b ) of the method were 0.10 μg L −1 and 0.35 μg L −1 (n = 3), respectively. The relative standard deviation for water sample with 0.5 μg L −1 of RhB was 4.2% (n = 5) and the absolute recovery was 92%. The method was applied for the determination of rhodamine B in dishwashing foam, dishwashing liquid, shampoo, pencil, matches tips and eye shadows samples and the relative recovery percentage were in the range of 94–99%

  1. Synthesis, surface group modification of 3D MnV2O6 nanostructures and adsorption effect on Rhodamine B

    International Nuclear Information System (INIS)

    Zhang, Wanqun; Shi, Lei; Tang, Kaibin; Liu, Zhongping

    2012-01-01

    Highlights: ► Fabrication of urchin-like MnV 2 O 6 with oxygen-containing surface groups. ► Mn 0.5 V 2 O 5 ·nH 2 O as an intermediate product holds the key to the final products. ► 3D architectures of MnV 2 O 6 with oxygen-containing surface groups as sorbent. ► The sorbent shows a good adsorption ability. -- Abstract: Highly uniform 3D MnV 2 O 6 nanostructures modified by oxygen functional groups (-COO-) were successfully prepared in large quantities by an approach involving preparation of vanadyl ethylene glycolate as the precursor. The growth and self-assembly of MnV 2 O 6 nanobelts and nanorods could be readily tuned by additive species and quantities, which brought different morphologies and sizes to the final products. With a focus on the regulation of structure, the formation process of 3D architectures of MnV 2 O 6 by self-assembly of nanobelts was followed by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The consecutive processes of vanadyl ethylene glycolate and benzoyl peroxide assisted formation of layered structure Mn 0.5 V 2 O 5 ·nH 2 O, growth of aligned MnV 2 O 6 nanobelts, and oriented assembly were proposed for the growth mechanism. The band gap vs. different morphology was also studied. Optical characterization of these MnV 2 O 6 with different morphologies showed direct bandgap energies at 1.8–1.95 eV. The adsorption properties of 3D MnV 2 O 6 nanostructures synthesized under different conditions were investigated through the removal test of Rhodamine B in aqueous water, and the 3D nanostructures synthesized with 30 g L −1 benzoyl peroxide showed good adsorption capability of Rhodamine B.

  2. Use of rhodamine B to mark the body and seminal fluid of male Aedes aegypti for mark-release-recapture experiments and estimating efficacy of sterile male releases.

    Science.gov (United States)

    Johnson, Brian J; Mitchell, Sara N; Paton, Christopher J; Stevenson, Jessica; Staunton, Kyran M; Snoad, Nigel; Beebe, Nigel; White, Bradley J; Ritchie, Scott A

    2017-09-01

    Recent interest in male-based sterile insect technique (SIT) and incompatible insect technique (IIT) to control Aedes aegypti and Aedes albopictus populations has revealed the need for an economical, rapid diagnostic tool for determining dispersion and mating success of sterilized males in the wild. Previous reports from other insects indicated rhodamine B, a thiol-reactive fluorescent dye, administered via sugar-feeding can be used to stain the body tissue and seminal fluid of insects. Here, we report on the adaptation of this technique for male Ae. aegypti to allow for rapid assessment of competitiveness (mating success) during field releases. Marking was achieved by feeding males on 0.1, 0.2, 0.4 or 0.8% rhodamine B (w/v) in 50% honey solutions during free flight. All concentrations produced >95% transfer to females and successful body marking after 4 days of feeding, with 0.4 and 0.8% solutions producing the longest-lasting body marking. Importantly, rhodamine B marking had no effect on male mating competitiveness and proof-of-principle field releases demonstrated successful transfer of marked seminal fluid to females under field conditions and recapture of marked males. These results reveal rhodamine B to be a potentially useful evaluation method for male-based SIT/IIT control strategies as well as a viable body marking technique for male-based mark-release-recapture experiments without the negative side-effects of traditional marking methods. As a standalone method for use in mating competitiveness assays, rhodamine B marking is less expensive than PCR (e.g. paternity analysis) and stable isotope semen labelling methods and less time-consuming than female fertility assays used to assess competitiveness of sterilised males.

  3. Use of rhodamine B to mark the body and seminal fluid of male Aedes aegypti for mark-release-recapture experiments and estimating efficacy of sterile male releases.

    Directory of Open Access Journals (Sweden)

    Brian J Johnson

    2017-09-01

    Full Text Available Recent interest in male-based sterile insect technique (SIT and incompatible insect technique (IIT to control Aedes aegypti and Aedes albopictus populations has revealed the need for an economical, rapid diagnostic tool for determining dispersion and mating success of sterilized males in the wild. Previous reports from other insects indicated rhodamine B, a thiol-reactive fluorescent dye, administered via sugar-feeding can be used to stain the body tissue and seminal fluid of insects. Here, we report on the adaptation of this technique for male Ae. aegypti to allow for rapid assessment of competitiveness (mating success during field releases.Marking was achieved by feeding males on 0.1, 0.2, 0.4 or 0.8% rhodamine B (w/v in 50% honey solutions during free flight. All concentrations produced >95% transfer to females and successful body marking after 4 days of feeding, with 0.4 and 0.8% solutions producing the longest-lasting body marking. Importantly, rhodamine B marking had no effect on male mating competitiveness and proof-of-principle field releases demonstrated successful transfer of marked seminal fluid to females under field conditions and recapture of marked males.These results reveal rhodamine B to be a potentially useful evaluation method for male-based SIT/IIT control strategies as well as a viable body marking technique for male-based mark-release-recapture experiments without the negative side-effects of traditional marking methods. As a standalone method for use in mating competitiveness assays, rhodamine B marking is less expensive than PCR (e.g. paternity analysis and stable isotope semen labelling methods and less time-consuming than female fertility assays used to assess competitiveness of sterilised males.

  4. Condition of granulating titanium-activated carbon composite adsorbent and its adsorption for uranium

    International Nuclear Information System (INIS)

    Miyai, Yoshitaka; Kitamura, Takao; Katoh, Shunsaku; Miyazaki, Hidetoshi

    1979-01-01

    The powdery titanium-activated carbon composite adsorbent was granulated, and the strength and uranium adsorptivity of the granulated adsorbent were studied in relation to its granulating condition. By use of polyvinylalcohol (PVA) with degree of polymerization above 2,000 as binder, the granular adsorbent with as much the same strength as commercial granular activated carbon was obtained. Addition of PVA did not affect the amount of adsorbed uranium in equilibrium, but decreased the adsorption rate. Effect of granule size between 2-5 mm on the uranium adsorption rate was that the uranium adsorption rate changed proportionally to surface area of assumed sphere. As a test for practical use, 5 times repetitions of adsorption and desorption were carried out on the same granular adsorbent. During this repetition the adsorbent containing formalized PVA revealed smaller weight loss than non-treated adsorbent. The amount of adsorbed uranium decreased with increasing repetition times, and reason of this was discussed. (author)

  5. Interstitial and adsorbed phosphates in shelf sediments off Visakhapatnam, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma; Raju, G.R.K.

    Spatial distribution of interstitial and adsorbed phosphates in the shelf sediments shows an increasing trend with distance from coastal to inshore region. Maximum concentration ranges of interstitial and adsorbed phosphates are 16-19 and 40-50 mu g...

  6. Adsorption removal of hydrogen sulfide gas. IV. Characteristics of adsorbents for the adsorption removal of hydrogen sulfide gas

    Energy Technology Data Exchange (ETDEWEB)

    Boki, K

    1974-10-25

    The amount of hydrogen sulfide gas adsorbed was affected by the surface properties (surface pH, acid strength, acid amount, and basic amount), the surface structure (pore volume), and the surface form (scanning electron microscopic observation) of 32 tested adsorbents. In general, the amount adsorption increased in the following order, amount of H/sub 2/S adsorbed on the silicate adsorbents, on the active carbon adsorbents, and on the zeolite adsorbents. The amount of H/sub 2/S adsorbed on magnesium silicate and silica gel adsorbents was mainly affected by the surface structure, and the amount adsorbed on the aluminum silicate adsorbents was affected by the distinctions on the surface forms of the adsorbents. The amount of H/sub 2/S adsorbed on 10 kinds of active carbon was determined by the surface properties and the surface structures of the adsorbents. The amount adsorbed on 12 kinds of zeolites was determined by either the surface properties or by the surface structures of the adsorbents. The amount of H/sub 2/S adsorbed on the silicate, active carbon, and zeolite adsorbents interacted with the heat of adsorption, and among the same kinds of adsorbents, the amount adsorbed was linearly related to the heat of adsorption.

  7. Competitive Adsorption of a Two-Component Gas on a Deformable Adsorbent

    OpenAIRE

    Usenko, A. S.

    2013-01-01

    We investigate the competitive adsorption of a two-component gas on the surface of an adsorbent whose adsorption properties vary in adsorption due to the adsorbent deformation. The essential difference of adsorption isotherms for a deformable adsorbent both from the classical Langmuir adsorption isotherms of a two-component gas and from the adsorption isotherms of a one-component gas taking into account variations in adsorption properties of the adsorbent in adsorption is obtained. We establi...

  8. Reply to Comment by W. R. Peltier, D. F. Argus, and R. Drummond on "An Assessment of the ICE6G_C (VM5a) Glacial Isostatic Adjustment Model"

    Science.gov (United States)

    Purcell, A.; Tregoning, P.; Dehecq, A.

    2018-02-01

    The empirical approximation of Purcell et al. (2011, https://doi.org/10.1029/2011GL048624) has been validated by Peltier et al. (2018, https://doi.org/10.1002/2016JB013844). In their Comment they introduced new results derived from the same ice/rheology models of ICE6G_C (VM5a) but using a different model for Antarctic bathymetry. This has greatly reduced the differences in predicted Antarctic uplift rates relative to those of Purcell et al. (2016, https://doi.org/10.1002/2015JB012742). In fact, with a ˜50% reduction in uplift rate in the Weddell Sea, the results of Peltier et al. (2018, https://doi.org/10.1002/2016JB013844) now agree more closely with the predictions of Purcell et al. (2016, https://doi.org/10.1002/2015JB012742) than with the original ICE6G_C values. Peltier et al. (2018, https://doi.org/10.1002/2016JB013844) state that the high power in their high-frequency spherical harmonic coefficients remains in their new calculations. They also claim that Purcell et al. (2016, https://doi.org/10.1002/2015JB012742) used an inaccurate loading history in deriving their velocity field. In fact, the ice load history was unchanged; to remove any ambiguity, the ice and water load histories used in the CALSEA calculations are provided in the supporting information.

  9. Determination of Cr and Cd concentration adsorbed by chicken feathers

    International Nuclear Information System (INIS)

    Lopez M, A.; Cuapio O, L.A.; Cardenas P, S.; Balcazar, M.; Jauregui, V.; Bonilla P, A.

    2008-01-01

    In this work the results of the samples analysis of chicken feathers are presented, used as adsorber of the heavy metals Cd and Cr present in water solutions with well-known concentrations of these metals. It was used the Neutron Activation Analysis technique (AAN), using the TRIGA Mark-III reactor of the Nuclear Center of Mexico. The obtained results they show the advantages of having a versatile installation for the analysis of this type of samples. By means of the analysis of the results, it was determined the feasibility of using chicken feathers like adsorber of these metals present in polluted waters, additionally, it was detected the presence of others polluting elements in the inputs to prepare the reference solutions as well as in the processes, so much of preparation of the feathers like of the metals adsorption. (Author)

  10. Plant waste materials from restaurants as the adsorbents for dyes

    Directory of Open Access Journals (Sweden)

    Pavlović Marija D.

    2015-01-01

    Full Text Available This paper has demonstrated the valorization of inexpensive and readily available restaurant waste containing most consumed food and beverage residues as adsorbents for methylene blue dye. Coffee, tea, lettuce and citrus waste have been utilized without any pre-treatment, thus the adsorption capacities and dye removal efficiency were determined. Coffee waste showed highest adsorbent capacity, followed by tea, lettuce and citrus waste. The dye removal was more effective as dye concentration increases from 5 up to 60 mg/L. The favorable results obtained for lettuce waste have been especially encouraged, as this material has not been commonly employed for sorption purposes. Equilibrium data fitted very well in a Freundlich isotherm model, whereas pseudo-second-order kinetic model describes the process behavior. Restaurant waste performed rapid dye removal at no cost, so it can be adopted and widely used in industries for contaminated water treatment.

  11. Topological features of engineered arrays of adsorbates in honeycomb lattices

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Arraga, Luis A., E-mail: ludovici83@gmail.com [IMDEA Nanociencia, Calle de Faraday, 9, Cantoblanco, 28049 Madrid (Spain); Lado, J.L. [International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330 Braga (Portugal); Guinea, Francisco [IMDEA Nanociencia, Calle de Faraday, 9, Cantoblanco, 28049 Madrid (Spain); School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)

    2016-09-01

    Hydrogen adatoms are one of the most the promising proposals for the functionalization of graphene. The adatoms induce narrow resonances near the Dirac energy, which lead to the formation of magnetic moments. Furthermore, they also create local lattice distortions which enhance the spin–orbit coupling. The combination of magnetism and spin–orbit coupling allows for a rich variety of phases, some of which have non-trivial topological features. We analyze the interplay between magnetism and spin–orbit coupling in ordered arrays of adsorbates on honeycomb lattice monolayers, and classify the different phases that may arise. We extend our model to consider arrays of adsorbates in graphene-like crystals with stronger intrinsic spin–orbit couplings. We also consider a regime away from half-filling in which the Fermi level is at the bottom of the conduction band, we find a Berry curvature distribution corresponding to a Valley–Hall effect.

  12. pyIAST: Ideal adsorbed solution theory (IAST) Python package

    Science.gov (United States)

    Simon, Cory M.; Smit, Berend; Haranczyk, Maciej

    2016-03-01

    Ideal adsorbed solution theory (IAST) is a widely-used thermodynamic framework to readily predict mixed-gas adsorption isotherms from a set of pure-component adsorption isotherms. We present an open-source, user-friendly Python package, pyIAST, to perform IAST calculations for an arbitrary number of components. pyIAST supports several common analytical models to characterize the pure-component isotherms from experimental or simulated data. Alternatively, pyIAST can use numerical quadrature to compute the spreading pressure for IAST calculations by interpolating the pure-component isotherm data. pyIAST can also perform reverse IAST calculations, where one seeks the required gas phase composition to yield a desired adsorbed phase composition.

  13. New apparatus for measuring radon adsorption on solid adsorbents

    International Nuclear Information System (INIS)

    Hassan, N.M.; Hines, A.L.; Ghosh, T.K.; Loyalka, S.K.; Ketring, A.R.

    1991-01-01

    A new experimental system was designed to measure radon uptake by solid adsorbents from air or other carrier gases/vapors. The total amount of radon adsorbed corresponding to a specific gas-phase concentration was determined by simultaneously measuring the solid-phase and gas-phase concentrations. The system was used to measure radon adsorption isotherms on BPL activated carbon at 288, 298, and 308 K and on silica gel and molecular sieve 13X at 298 K. The isotherms were of type III according to Brunauer's classification. The heat of adsorption data indicated that the BPL activated carbon provided a heterogeneous surface for radon adsorption. The equilibrium data were correlated by the Freundlich equation. In this paper the possible adsorption mechanism and the use of the adsorption isotherms to measure indoor radon concentrations are discussed

  14. Ozonation of isoproturon adsorbed on silica particles under atmospheric conditions

    Science.gov (United States)

    Pflieger, Maryline; Grgić, Irena; Kitanovski, Zoran

    2012-12-01

    The results on heterogeneous ozonation of a phenylurea pesticide, isoproturon, under atmospheric conditions are presented for the first time in the present study. The study was carried out using an experimental device previously adopted and validated for the heterogeneous reactivity of organics toward ozone (Pflieger et al., 2011). Isoproturon was adsorbed on silica particles via a liquid-to-solid equilibrium with a load far below a monolayer (0.02% by weight/surface coverage of 0.5%). The rate constants were estimated by measuring the consumption of the organic (dark, T = 26 °C, RH isoproturon on the aerosol surface does not affect the kinetics of ozonation, indicating that both compounds are adsorbed on different surface sites of silica particles.

  15. Radiolysis of alanine adsorbed in a clay mineral

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Ovando, Ellen Y.; Negron-Mendoza, Alicia [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Apartado Postal 70-543, Deleg. Coyoacan, C.P. 04510 (Mexico)

    2013-07-03

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically {gamma}-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  16. Radiolysis of alanine adsorbed in a clay mineral

    International Nuclear Information System (INIS)

    Aguilar-Ovando, Ellen Y.; Negrón-Mendoza, Alicia

    2013-01-01

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically γ-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine

  17. A Method for Field Calibration of the PA260 Phosphorus Analyzer Using Solid Adsorbent Materials

    Science.gov (United States)

    1989-12-01

    plant environment. The solid adsorbent approach has two major advantages over other traditional air sampling devices such as bubblers or impingers...GC (60/80 mesh) or Chromosorb 106 (80/100 mesh). Both adsorbents were supplied by Alltech Associates (Deerfield, IL). The adsorbents were packed in

  18. Performance of adsorbent-embedded heat exchangers using binder-coating method

    KAUST Repository

    Li, Ang; Thu, Kyaw; Ismail, Azhar Bin; Shahzad, Muhammad Wakil; Ng, Kim Choon

    2016-01-01

    The performance of adsorption (AD) chillers or desalination cycles is dictated by the rates of heat and mass transfer of adsorbate in adsorbent-packed beds. Conventional granular-adsorbent, packed in fin-tube heat exchangers, suffered from poor heat

  19. Single stage batch adsorber design for efficient Eosin yellow removalby polyaniline coated ligno-cellulose

    CSIR Research Space (South Africa)

    Debnath, S

    2015-01-01

    Full Text Available Polyaniline-coated lignin-based adsorbent (PLC) was synthesized and used for uptake of reactive dye eosin yellow (EY) from aqueous solution. The adsorption capability of the adsorbent was found to be more effective than the unmodified adsorbent (LC...

  20. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid

    Science.gov (United States)

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2•6H2O functionalization of zeolite. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The adsorption capacity of the adsorbents at 21...

  1. Infrared Analysis Of Enzymes Adsorbed Onto Model Surfaces

    Science.gov (United States)

    Story, Gloria M.; Rauch, Deborah S.; Brode, Philip F.; Marcott, Curtis A.

    1989-12-01

    The adsorption of the enzymes, subtilisin BPN' and lysozyme, onto model surfaces was examined using attenuated total reflectance (ATR) infrared (IR) spectroscopy. Using a cylindrical internal reflection (CIRcle) cell with a Germanium (Ge) internal reflection element (IRE), model hydrophilic surfaces were made by plasma cleaning the IRE and model hydrophobic surfaces were made by precoating the IRE with a thin film of polystyrene. Gas chromatography (GC)-IR data collection software was used to monitor adsorption kinetics during the first five minutes after injection of the enzyme into the CIRcle cell. It was found that for both lysozyme and BPN', most of the enzyme that was going to adsorb onto the model surface did so within ten seconds after injection. Nearly an order-of-magnitude more BPN' adsorbed on the hydrophobic Ge surface than the hydrophilic one, while lysozyme adsorbed somewhat more strongly to the hydrophilic Ge surface. Overnight, the lysozyme layer continued to increase in thickness, while BPN' maintained its initial coverage. The appearance of carboxylate bands in some of the adsorbed BPN' spectra suggests the occurrence of peptide bond hydrolysis. A Au/Pd coating on the CIRcle cell o-rings had a significant effect on the adsorption of BPN'. (This coating was applied in an attempt to eliminate interfering Teflon absorption bands.) An apparent electrochemical reaction occurred, involving BPN', Ge, Au/Pd, and the salt solution used to stabilize BPN'. The result of this reaction was enhanced adsorption of the enzyme around the coated o-rings, etching of the Ge IRE at the o-ring site, and some autolysis of the enzyme. No such reaction was observed with lysozyme.

  2. Removal of toxic industrial chemicals using novel adsorbent hollow fibres

    OpenAIRE

    Jeffs, Corinne

    2015-01-01

    The current military respirator provides protection from contaminants using a cartridge packed with adsorbent activated carbon particles treated with metal salts to provide protection from toxic gases. However, the user of this respirator is subject to a physiological burden as a result. One component of this burden is the pressure drop, which makes breathing through the respirator filter difficult, with the burden becoming more severe at higher breathing rates. This project investigates the ...

  3. Iodine-adsorbent poisoning: FY-82 summary report

    International Nuclear Information System (INIS)

    Jolley, J.G.; Casper, L.A.

    1982-10-01

    Along with its positive attributes as an adsorbent of radioiodine in nuclear plant air cleaning systems, silver zeolite has the disadvantage of being susceptible to poisoning. (Poisoning is defined as the reduction of efficiency in radioiodine removal.) In view of the gravimetric and infrared spectroscopy data presented, π-bonded hydrocarbons, oxygenated organics, and halocarbons appear to be probable poisons of a silver zeolite filtration system

  4. Scattering of atoms by molecules adsorbed at solid surfaces

    International Nuclear Information System (INIS)

    Parra, Zaida.

    1988-01-01

    The formalism of collisional time-correlation functions, appropriate for scattering by many-body targets, is implemented to study energy transfer in the scattering of atoms and ions from molecules adsorbed on metal surfaces. Double differential cross-sections for the energy and angular distributions of atoms and ions scattered by a molecule adsorbed on a metal surface are derived in the limit of impulsive collisions and within a statistical model that accounts for single and double collisions. They are found to be given by the product of an effective cross-section that accounts for the probability of deflection into a solid angle times a probability per unit energy transfer. A cluster model is introduced for the vibrations of an adsorbed molecule which includes the molecular atoms, the surface atoms binding the molecule, and their nearest neighbors. The vibrational modes of CO adsorbed on a Ni(001) metal surface are obtained using two different cluster models to represent the on-top and bridge-bonding situations. A He/OC-Ni(001) potential is constructed from a strongly repulsive potential of He interacting with the oxygen atom in the CO molecule and a van der Waals attraction accounting for the He interaction with the free Ni(001) surface. A potential is presented for the Li + /OC-Ni(001) where a coulombic term is introduced to account for the image force. Trajectory studies are performed and analyzed in three dimensions to obtain effective classical cross-sections for the He/OC-Ni(001) and Li + /OC-Ni(001) systems. Results for the double differential cross-sections are presented as functions of scattering angles, energy transfer and collisional energy. Temperature dependence results are also analyzed. Extensions of the approach and inclusion of effects such as anharmonicity, collisions at lower energies, and applications of the approach to higher coverages are discussed

  5. Non-linear optical studies of adsorbates: Spectroscopy and dynamics

    International Nuclear Information System (INIS)

    Zhu, Xiangdong.

    1989-08-01

    In the first part of this thesis, we have established a systematic procedure to apply the surface optical second-harmonic generation (SHG) technique to study surface dynamics of adsorbates. In particular, we have developed a novel technique for studies of molecular surface diffusions. In this technique, the laser-induced desorption with two interfering laser beams is used to produce a monolayer grating of adsorbates. The monolayer grating is detected with diffractions of optical SHG. By monitoring the first-order second-harmonic diffraction, we can follow the time evolution of the grating modulation from which we are able to deduce the diffusion constant of the adsorbates on the surface. We have successfully applied this technique to investigate the surface diffusion of CO on Ni(111). The unique advantages of this novel technique will enable us to readily study anisotropy of a surface diffusion with variable grating orientation, and to investigate diffusion processes of a large dynamic range with variable grating spacings. In the second part of this work, we demonstrate that optical infrared-visible sum-frequency generation (SFG) from surfaces can be used as a viable surface vibrational spectroscopic technique. We have successfully recorded the first vibrational spectrum of a monolayer of adsorbates using optical infrared-visible SFG. The qualitative and quantitative correlation of optical SFG with infrared absorption and Raman scattering spectroscopies are examined and experimentally demonstrated. We have further investigated the possibility to use transient infrared-visible SFG to probe vibrational transients and ultrafast relaxations on surfaces. 146 refs

  6. Non-linear optical studies of adsorbates: Spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiangdong.

    1989-08-01

    In the first part of this thesis, we have established a systematic procedure to apply the surface optical second-harmonic generation (SHG) technique to study surface dynamics of adsorbates. In particular, we have developed a novel technique for studies of molecular surface diffusions. In this technique, the laser-induced desorption with two interfering laser beams is used to produce a monolayer grating of adsorbates. The monolayer grating is detected with diffractions of optical SHG. By monitoring the first-order second-harmonic diffraction, we can follow the time evolution of the grating modulation from which we are able to deduce the diffusion constant of the adsorbates on the surface. We have successfully applied this technique to investigate the surface diffusion of CO on Ni(111). The unique advantages of this novel technique will enable us to readily study anisotropy of a surface diffusion with variable grating orientation, and to investigate diffusion processes of a large dynamic range with variable grating spacings. In the second part of this work, we demonstrate that optical infrared-visible sum-frequency generation (SFG) from surfaces can be used as a viable surface vibrational spectroscopic technique. We have successfully recorded the first vibrational spectrum of a monolayer of adsorbates using optical infrared-visible SFG. The qualitative and quantitative correlation of optical SFG with infrared absorption and Raman scattering spectroscopies are examined and experimentally demonstrated. We have further investigated the possibility to use transient infrared-visible SFG to probe vibrational transients and ultrafast relaxations on surfaces. 146 refs.

  7. CHEMICAL REACTIONS ON ADSORBING SURFACE: KINETIC LEVEL OF DESCRIPTION

    Directory of Open Access Journals (Sweden)

    P.P.Kostrobii

    2003-01-01

    Full Text Available Based on the effective Hubbard model we suggest a statistical description of reaction-diffusion processes for bimolecular chemical reactions of gas particles adsorbed on the metallic surface. The system of transport equations for description of particles diffusion as well as reactions is obtained. We carry out the analysis of the contributions of all physical processes to the formation of diffusion coefficients and chemical reactions constants.

  8. Removal of arsenic from drinking water by natural adsorbents

    OpenAIRE

    MD SHAHNOOR ALAM KHAN

    2017-01-01

    The presence of arsenic in groundwater has been reported in many countries across the world and it is a serious threat to public health. The aim of this study was to identify prospective natural materials with high arsenic adsorption capacity and durable hydraulic property to produce adequate flow of water. The comparative study identified Skye sand as the best natural adsorbent. The prototype household filter with Skye sand achieved complete removal of arsenic and iron. Arsenic removal by du...

  9. Heat capacity of xenon adsorbed in nanobundle grooves

    International Nuclear Information System (INIS)

    Chishko, K.A.; Sokolova, E.S.

    2016-01-01

    A model of one-dimensional real gas under external transverse force field is applied to interpret the experimentally observed thermodynamical properties of xenon deposited into groves on the surface of carbon nanobundles. This non-ideal gas model with pair interaction is not quite adequate to describe the dense adsorbates (especially at low temperature limit), but it makes possible to take into account easily the particle exchange between 1D adsorbate and 3D atmosphere which becomes an essential factor since intermediate (for xenon - of order 35 K) up to high (approx 100 K) temperatures. In this paper we treat the 1D real gas with only Lennard-Jones pair interaction, but at presence of exact equilibrium conditions on the atom numbers between low-dimensional adsorbate and three-dimensional atmosphere of the experimental cell. The low-temperature branch of the heat capacity has been fitted separately within the elastic atomic chain model to get the best agreement between theory and experiment in as wide as possible region just from zero temperature. The gas approximation is introduced from the temperatures where the chain heat capacity tends definitely to 1D equipartition law. In this case the principal parameters for both models can be chosen in such a way that the heat capacity C(T) of the chain goes continuously into the corresponding curve of the gas approximation. So, it seems to be expected that adequate interpretation for temperature dependences of the atomic adsorbate heat capacity can be obtained through a reasonable combination of 1D gas and phonon approaches. The principal parameters of the gas approximation (such a desorption energy) found from the fitting between theory and experiment for xenon heat capacity are in good agreement with corresponding data known in literature.

  10. Characterization of fractals with an adsorbed superfluid film

    International Nuclear Information System (INIS)

    Golov, A.I.; Berkutov, I.B.; Babuin, S.; Cousins, D.J.

    2003-01-01

    The tortuosity of a capillary-condensed film of superfluid 4 He adsorbed on 91%-porous silica aerogel has been measured, with transverse sound, as a function of helium coverage. Complementary data from 4 He adsorption isotherms and small-angle X-ray scattering have also been used for substrate characterization. The tortuosity is found to be roughly inversely proportional to the volume fraction of the liquid phase of helium

  11. Toxicity of Uranium Adsorbent Materials using the Microtox Toxicity Test

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jiyeon [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jeters, Robert T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, Gary A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bonheyo, George T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-01

    The Marine Sciences Laboratory at the Pacific Northwest National Laboratory evaluated the toxicity of a diverse range of natural and synthetic materials used to extract uranium from seawater. The uranium adsorbent materials are being developed as part of the U. S. Department of Energy, Office of Nuclear Energy, Fuel Resources Program. The goal of this effort was to identify whether deployment of a farm of these materials into the marine environment would have any toxic effects on marine organisms.

  12. Adsorbate-driven cooling of carbene-based molecular junctions

    Czech Academy of Sciences Publication Activity Database

    Foti, Giuseppe; Vázquez, Héctor

    2017-01-01

    Roč. 8, Oct (2017), s. 2060-2068 ISSN 2190-4286 R&D Projects: GA ČR GA15-19672S EU Projects: European Commission(XE) 702114 - HEATEXMOL Institutional support: RVO:68378271 Keywords : adsorbate * carbene * current-induced heating and cooling * molecular junction * vibrations Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.127, year: 2016

  13. Linear response theory of activated surface diffusion with interacting adsorbates

    Energy Technology Data Exchange (ETDEWEB)

    Marti' nez-Casado, R. [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Sanz, A.S.; Vega, J.L. [Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain); Rojas-Lorenzo, G. [Instituto Superior de Tecnologi' as y Ciencias Aplicadas, Ave. Salvador Allende, esq. Luaces, 10400 La Habana (Cuba); Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cienti' ficas, Serrano 123, 28006 Madrid (Spain); Miret-Artes, S., E-mail: s.miret@imaff.cfmac.csic.es [Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cienti' ficas, Serrano 123, 28006 Madrid (Spain)

    2010-05-12

    Graphical abstract: Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account the interaction with the surface phonons, while the other one describes the surface coverage, this leading to defining a collisional friction. Here, the corresponding theory is applied to simple systems, such as diffusion on flat surfaces and the frustrated translational motion in a harmonic potential. Classical and quantum closed formulas are obtained. Furthermore, a more realistic problem, such as atomic Na diffusion on the corrugated Cu(0 0 1) surface, is presented and discussed within the classical context as well as within the framework of Kramer's theory. Quantum corrections to the classical results are also analyzed and discussed. - Abstract: Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account the interaction with the surface phonons, while the other one describes the surface coverage, this leading to defining a collisional friction. Here, the corresponding theory is applied to simple systems, such as diffusion on flat surfaces and the frustrated translational motion in a harmonic potential. Classical and quantum closed formulas are obtained. Furthermore, a more realistic problem, such as atomic Na diffusion on the corrugated Cu(0 0 1) surface, is presented and discussed within the classical context as well as within the framework of Kramer's theory. Quantum corrections to the classical results are also analyzed and discussed.

  14. Rotary adsorbers for waste air purification and solvent recovery

    International Nuclear Information System (INIS)

    Konrad, G.; Eigenberger, G.

    1994-01-01

    Rotary Adsorbers for Waste Air Purification and Solvent Recovery. Thanks to their compact construction and low pressure drops, adsorbers with rotating adsorbent beds are highly suitable both for retrofitting of waste air purification units and generally for the removal of absorbable components from gas streams. When used in conjunction with straightforward hot gas desorption they permit almost complete purification of gas flows with concomitant concentration of the separated components in the desorbate by a factor of 10 to 20. They can also be used in conjunction with recovery of the separated components by partial condensation of the desorbate. Owing to the fixed coupling of adsorption and desorption times, which is determined by the geometry of the unit, the behaviour of the system is distinctly different from that of conventional multiple bed systems in cyclic operation. A detailed model description and computer simulation of operating behaviour are particularly useful for their analysis. It is shown that the behaviour of commercially available rotor concepts can be much better understood in this way and new concepts for exhaust air purification with integrated solvent recovery can be developed which are characterised by significantly reduced energy requirements for desorption and condensation. (orig.) [de

  15. Specific binding-adsorbent assay method and test means

    International Nuclear Information System (INIS)

    1981-01-01

    A description is given of an improved specific binding assay method and test means employing a nonspecific adsorbent for the substance to be determined, particularly hepatitis B surface (HBsub(s)) antigen, in its free state or additionally in the form of its immune complex. The invention is illustrated by 1) the radioimmunoadsorbent assay for HBsub(s) antigen, 2) the radioimmunoadsorbent assay for HBsub(s) antigen in the form of immune complex with antibody, 3) a study of adsorption characteristics of various anion exchange materials for HBsub(s) antigen, 4) the use of hydrophobic adsorbents in a radioimmunoadsorbent assay for HBsub(s) antigen and 5) the radioimmunoadsorbent assay for antibody to HBsub(s) antigen. The advantages of the present method for detecting HBsub(s) antigen compared to previous methods include the manufacturing advantages of eliminating the need for insolubilised anti-HBsub(s) and the advantages of a single incubation step, fewer manipulations, storability of adsorbent materials, increased sensitivity and versatility of detecting HBsub(s) antigen in the form of its immune complex if desired. (U.K.)

  16. Interaction of atomic hydrogen with ethylene adsorbed on nickel films

    International Nuclear Information System (INIS)

    Korchak, V.N.; Tret'yakov, I.I.; Kislyuk, M.U.

    1976-01-01

    The reactivity of ethylene adsorbed on the pure films of nickel at various temperatures was studied with respect to hydrogen atoms generated in the gaseous phase. The experiments were conducted in a glass vacuum apparatus enabling one to obtain the highest vacuum up to 2x20 -10 torr. The catalyst, nickel films, was produced by their deposition onto the walls of the glass reactor at a pressure of the residual gas of 10 -9 torr and a temperature of the walls of 25 deg C. Gas purity was analyzed by the mass spectrometric method. The ethylene adsorbed at the temperatures below 173 deg K reacted readily with the hydrogen atoms to yield ethane. The process ran without practically any activation energy involved and was limited by the attachment of the first hydrogen atom to the ethylene molecule. The efficiency of this interaction was 0.02 of the number of the hydrogen atoms collisions against the surface occupied by the ethylene. The adsorption of the ethylene at room and higher temperatures was accompanied by its disproportioning with the release of the hydrogen into the gaseous phase and a serious destruction of the ethylene molecules adsorbed to produce hydrogen residues interacting with neither molecular nor atomic hydrogen [ru

  17. Distribution of metal and adsorbed guest species in zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes {sup 129}Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of {sup 129}Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, {sup 129}Xe NMR is insensitive to fine structural details at room temperature.

  18. Stochastic Description of Activated Surface Diffusion with Interacting Adsorbates

    Science.gov (United States)

    Martínez-Casado, Ruth; Vega, José Luis; Sanz, Ángel S.; Miret-Artés, Salvador

    Activated surface diffusion on metal surfaces is receiving much attention both experimentally and theoretically. One of the main theoretical problems in this field is to explain the line-shape broadening observed when the surface coverage is increased. Recently, we have proposed a fully stochastic model, the interacting single adsorbate (ISA) model, aimed at explaining and understanding this type of experiments, which essentially consists of considering the classical Langevin formulation with two types of noise forces: (i) a Gaussian white noise accounting for the substrate friction, and (ii) a shot noise simulating the interacting adsorbates at different coverages. No interaction potential between adsorbates is included because any trace of microscopic interaction seems to be wiped out in a Markovian regime. This model describes in a good approximation, and at a very low computational cost, the line-shape broadening observed experimentally. Furthermore, its mathematical simplicity also allows to derive some analytical expressions which are of much help in the interpretation of the physics underlying surface diffusion processes.

  19. Shrimp pond wastewater treatment using pyrolyzed chicken feather as adsorbent

    Science.gov (United States)

    Moon, Wei Chek; Jbara, Mohamad Hasan; Palaniandy, Puganeshwary; Yusoff, Mohd Suffian

    2017-10-01

    In this study, chicken feather fiber was used as a raw material to prepare a non-expensive adsorbent by pyrolysis without chemical activation. The main pollutants treated in this study were chemical oxygen demand (COD) and ammoniacal nitrogen (NH3-N) from shrimp pond wastewater containing high concentrations of nutrients, which caused the eutrophication phenomenon in adjacent water. Batch adsorption studies were performed to investigate the effect of pH (5-8), mass of adsorbent (0.5-3 g), and shaking time (0.5-2 h) on the removal efficiency of COD and NH3- N. Experimental results showed that the optimum conditions were as follows: pH 5, 0.5 g of adsorbent, and 0.5 h of shaking. Under these conditions, 34.01% and 40.47% of COD and NH3-N were removed, respectively, from shrimp pond wastewater. The adsorption processes were best described by the Langmuir isotherm model for COD and NH3-N removal, with maximum monolayer adsorption capacity of 36.9 and 7.24 mg/g for COD and NH3-N, respectively. The results proved that chicken feather could remove COD and NH3-N from shrimp pond wastewater. However, further studies on thermal treatment should be carried out to increase the removal efficiency of pyrolyzed chicken feather fiber.

  20. Distribution of metal and adsorbed guest species in zeolites

    International Nuclear Information System (INIS)

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes 129 Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of 129 Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, 129 Xe NMR is insensitive to fine structural details at room temperature