WorldWideScience

Sample records for rho guanine nucleotide

  1. Scambio, a novel guanine nucleotide exchange factor for Rho

    Directory of Open Access Journals (Sweden)

    Groffen John

    2004-04-01

    Full Text Available Abstract Background Small GTPases of the Rho family are critical regulators of various cellular functions including actin cytoskeleton organization, activation of kinase cascades and mitogenesis. For this reason, a major objective has been to understand the mechanisms of Rho GTPase regulation. Here, we examine the function of a novel protein, Scambio, which shares homology with the DH-PH domains of several known guanine nucleotide exchange factors for Rho family members. Results Scambio is located on human chromosome 14q11.1, encodes a protein of around 181 kDa, and is highly expressed in both heart and skeletal muscle. In contrast to most DH-PH-domain containing proteins, it binds the activated, GTP-bound forms of Rac and Cdc42. However, it fails to associate with V14RhoA. Immunofluorescence studies indicate that Scambio and activated Rac3 colocalize in membrane ruffles at the cell periphery. In accordance with these findings, Scambio does not activate either Rac or Cdc42 but rather, stimulates guanine nucleotide exchange on RhoA and its close relative, RhoC. Conclusion Scambio associates with Rac in its activated conformation and functions as a guanine nucleotide exchange factor for Rho.

  2. A High-Throughput Assay for Rho Guanine Nucleotide Exchange Factors Based on the Transcreener GDP Assay.

    Science.gov (United States)

    Reichman, Melvin; Schabdach, Amanda; Kumar, Meera; Zielinski, Tom; Donover, Preston S; Laury-Kleintop, Lisa D; Lowery, Robert G

    2015-12-01

    Ras homologous (Rho) family GTPases act as molecular switches controlling cell growth, movement, and gene expression by cycling between inactive guanosine diphosphate (GDP)- and active guanosine triphosphate (GTP)-bound conformations. Guanine nucleotide exchange factors (GEFs) positively regulate Rho GTPases by accelerating GDP dissociation to allow formation of the active, GTP-bound complex. Rho proteins are directly involved in cancer pathways, especially cell migration and invasion, and inhibiting GEFs holds potential as a therapeutic strategy to diminish Rho-dependent oncogenesis. Methods for measuring GEF activity suitable for high-throughput screening (HTS) are limited. We developed a simple, generic biochemical assay method for measuring GEF activity based on the fact that GDP dissociation is generally the rate-limiting step in the Rho GTPase catalytic cycle, and thus addition of a GEF causes an increase in steady-state GTPase activity. We used the Transcreener GDP Assay, which relies on selective immunodetection of GDP, to measure the GEF-dependent stimulation of steady-state GTP hydrolysis by small GTPases using Dbs (Dbl's big sister) as a GEF for Cdc42, RhoA, and RhoB. The assay is well suited for HTS, with a homogenous format and far red fluorescence polarization (FP) readout, and it should be broadly applicable to diverse Rho GEF/GTPase pairs. © 2015 Society for Laboratory Automation and Screening.

  3. The Rac-RhoGDI complex and the structural basis for the regulation of Rho proteins by RhoGDI

    DEFF Research Database (Denmark)

    Scheffzek, K; Stephan, I; Jensen, Ole Nørregaard

    2000-01-01

    Rho family-specific guanine nucleotide dissociation inhibitors (RhoGDIs) decrease the rate of nucleotide dissociation and release Rho proteins such as RhoA, Rac and Cdc42 from membranes, forming tight complexes that shuttle between cytosol and membrane compartments. We have solved the crystal...

  4. Regulation of mitotic spindle formation by the RhoA guanine nucleotide exchange factor ARHGEF10

    Directory of Open Access Journals (Sweden)

    Satoh Takaya

    2009-07-01

    Full Text Available Abstract Background The Dbl family guanine nucleotide exchange factor ARHGEF10 was originally identified as the product of the gene associated with slowed nerve-conduction velocities of peripheral nerves. However, the function of ARHGEF10 in mammalian cells is totally unknown at a molecular level. ARHGEF10 contains no distinctive functional domains except for tandem Dbl homology-pleckstrin homology and putative transmembrane domains. Results Here we show that RhoA is a substrate for ARHGEF10. In both G1/S and M phases, ARHGEF10 was localized in the centrosome in adenocarcinoma HeLa cells. Furthermore, RNA interference-based knockdown of ARHGEF10 resulted in multipolar spindle formation in M phase. Each spindle pole seems to contain a centrosome consisting of two centrioles and the pericentriolar material. Downregulation of RhoA elicited similar phenotypes, and aberrant mitotic spindle formation following ARHGEF10 knockdown was rescued by ectopic expression of constitutively activated RhoA. Multinucleated cells were not increased upon ARHGEF10 knockdown in contrast to treatment with Y-27632, a specific pharmacological inhibitor for the RhoA effector kinase ROCK, which induced not only multipolar spindle formation, but also multinucleation. Therefore, unregulated centrosome duplication rather than aberration in cytokinesis may be responsible for ARHGEF10 knockdown-dependent multipolar spindle formation. We further isolated the kinesin-like motor protein KIF3B as a binding partner of ARHGEF10. Knockdown of KIF3B again caused multipolar spindle phenotypes. The supernumerary centrosome phenotype was also observed in S phase-arrested osteosarcoma U2OS cells when the expression of ARHGEF10, RhoA or KIF3B was abrogated by RNA interference. Conclusion Collectively, our results suggest that a novel RhoA-dependent signaling pathway under the control of ARHGEF10 has a pivotal role in the regulation of the cell division cycle. This pathway is not involved in

  5. Identification of a negative regulatory region for the exchange activity and characterization of T332I mutant of Rho guanine nucleotide exchange factor 10 (ARHGEF10).

    Science.gov (United States)

    Chaya, Taro; Shibata, Satoshi; Tokuhara, Yasunori; Yamaguchi, Wataru; Matsumoto, Hiroshi; Kawahara, Ichiro; Kogo, Mikihiko; Ohoka, Yoshiharu; Inagaki, Shinobu

    2011-08-26

    The T332I mutation in Rho guanine nucleotide exchange factor 10 (ARHGEF10) was previously found in persons with slowed nerve conduction velocities and thin myelination of peripheral nerves. However, the molecular and cellular basis of the T332I mutant is not understood. Here, we show that ARHGEF10 has a negative regulatory region in the N terminus, in which residue 332 is located, and the T332I mutant is constitutively active. An N-terminal truncated ARHGEF10 mutant, ARHGEF10 ΔN (lacking amino acids 1-332), induced cell contraction that was inhibited by a Rho kinase inhibitor Y27632 and had higher GEF activity for RhoA than the wild type. The T332I mutant also showed the phenotype similar to the N-terminal truncated mutant. These data suggest that the ARHGEF10 T332I mutation-associated phenotype observed in the peripheral nerves is due to activated GEF activity of the ARHGEF10 T332I mutant.

  6. Identification of a Negative Regulatory Region for the Exchange Activity and Characterization of T332I Mutant of Rho Guanine Nucleotide Exchange Factor 10 (ARHGEF10)*

    Science.gov (United States)

    Chaya, Taro; Shibata, Satoshi; Tokuhara, Yasunori; Yamaguchi, Wataru; Matsumoto, Hiroshi; Kawahara, Ichiro; Kogo, Mikihiko; Ohoka, Yoshiharu; Inagaki, Shinobu

    2011-01-01

    The T332I mutation in Rho guanine nucleotide exchange factor 10 (ARHGEF10) was previously found in persons with slowed nerve conduction velocities and thin myelination of peripheral nerves. However, the molecular and cellular basis of the T332I mutant is not understood. Here, we show that ARHGEF10 has a negative regulatory region in the N terminus, in which residue 332 is located, and the T332I mutant is constitutively active. An N-terminal truncated ARHGEF10 mutant, ARHGEF10 ΔN (lacking amino acids 1–332), induced cell contraction that was inhibited by a Rho kinase inhibitor Y27632 and had higher GEF activity for RhoA than the wild type. The T332I mutant also showed the phenotype similar to the N-terminal truncated mutant. These data suggest that the ARHGEF10 T332I mutation-associated phenotype observed in the peripheral nerves is due to activated GEF activity of the ARHGEF10 T332I mutant. PMID:21719701

  7. In vitro guanine nucleotide exchange activity of DHR-2/DOCKER/CZH2 domains.

    Science.gov (United States)

    Côté, Jean-François; Vuori, Kristiina

    2006-01-01

    Rho family GTPases regulate a large variety of biological processes, including the reorganization of the actin cytoskeleton. Like other members of the Ras superfamily of small GTP-binding proteins, Rho GTPases cycle between a GDP-bound (inactive) and a GTP-bound (active) state, and, when active, the GTPases relay extracellular signals to a large number of downstream effectors. Guanine nucleotide exchange factors (GEFs) promote the exchange of GDP for GTP on Rho GTPases, thereby activating them. Most Rho-GEFs mediate their effects through their signature domain known as the Dbl Homology-Pleckstrin Homology (DH-PH) module. Recently, we and others identified a family of evolutionarily conserved, DOCK180-related proteins that also display GEF activity toward Rho GTPases. The DOCK180-family of proteins lacks the canonical DH-PH module. Instead, they rely on a novel domain, termed DHR-2, DOCKER, or CZH2, to exchange GDP for GTP on Rho targets. In this chapter, the experimental approach that we used to uncover the exchange activity of the DHR-2 domain of DOCK180-related proteins will be described.

  8. Solo, a RhoA-targeting guanine nucleotide exchange factor, is critical for hemidesmosome formation and acinar development in epithelial cells.

    Science.gov (United States)

    Fujiwara, Sachiko; Matsui, Tsubasa S; Ohashi, Kazumasa; Deguchi, Shinji; Mizuno, Kensaku

    2018-01-01

    Cell-substrate adhesions are essential for various physiological processes, including embryonic development and maintenance of organ functions. Hemidesmosomes (HDs) are multiprotein complexes that attach epithelial cells to the basement membrane. Formation and remodeling of HDs are dependent on the surrounding mechanical environment; however, the upstream signaling mechanisms are not well understood. We recently reported that Solo (also known as ARHGEF40), a guanine nucleotide exchange factor targeting RhoA, binds to keratin8/18 (K8/K18) intermediate filaments, and that their interaction is important for force-induced actin and keratin cytoskeletal reorganization. In this study, we show that Solo co-precipitates with an HD protein, β4-integrin. Co-precipitation assays revealed that the central region (amino acids 330-1057) of Solo binds to the C-terminal region (1451-1752) of β4-integrin. Knockdown of Solo significantly suppressed HD formation in MCF10A mammary epithelial cells. Similarly, knockdown of K18 or treatment with Y-27632, a specific inhibitor of Rho-associated kinase (ROCK), suppressed HD formation. As Solo knockdown or Y-27632 treatment is known to disorganize K8/K18 filaments, these results suggest that Solo is involved in HD formation by regulating K8/K18 filament organization via the RhoA-ROCK signaling pathway. We also showed that knockdown of Solo impairs acinar formation in MCF10A cells cultured in 3D Matrigel. In addition, Solo accumulated at the site of traction force generation in 2D-cultured MCF10A cells. Taken together, these results suggest that Solo plays a crucial role in HD formation and acinar development in epithelial cells by regulating mechanical force-induced RhoA activation and keratin filament organization.

  9. Expression of a Rho guanine nucleotide exchange factor, Ect2, in the developing mouse pituitary.

    Science.gov (United States)

    Islam, M S; Tsuji, T; Higashida, C; Takahashi, M; Higashida, H; Koizumi, K

    2010-05-01

    The pituitary gland is a highly mitotically active tissue after birth. Various cell types are known to undergo proliferation in the anterior pituitary. However, little is known about the mechanisms regulating mitotic activity in this tissue. When searching for genes specifically expressed in the pituitary gland among those that we previously screened in Drosophila, we found epithelial cell-transforming gene 2 (Ect2). Ect2 is a guanine nucleotide exchange factor for Rho GTPases, which is known to play an essential role in cytokinesis. Although there have been many cellular studies regarding the function of Ect2, the temporal and spatial expression patterns of Ect2 in vivo have not been determined. In the present study, we examined the postnatal developmental expression of Ect2 in the mouse pituitary. Enhanced Ect2 expression was detected in the mouse pituitary gland during the first 3 weeks after birth, which coincided well with the period of rapid pituitary expansion associated with increased growth rate. Immunostaining analysis showed that Ect2-expressing cells were distributed in the anterior and intermediate lobes, but not the posterior lobe, of the pituitary. These Ect2-expressing cells frequently incorporated the thymidine analogue, EdU (5-ethynyl-2'-deoxyuridine), indicating that these cells were mitotically active. Taken together, the results demonstrate the functional role of Ect2 in postnatal proliferating cells in the two lobes of the pituitary, thereby suggesting roles in developmental growth of the mammalian pituitary.

  10. Purine nucleotide synthesis from exogenous adenine and guanine in rodent small intestine

    International Nuclear Information System (INIS)

    Gross, C.J.; Karlberg, P.K.; Savaiano, D.A.

    1986-01-01

    14 C-Adenine and 14 C-guanine uptake was studied in isolated guinea pig enterocytes. Cells were incubated in Hank's buffer and separated from the medium by centrifugation through silicone oil into 1M PCA. Uptake was temperature and concentration dependent. Both compounds were incorporated into nucleotides as measured by HPLC and HVE. Adenine was more extensively incorporated into nucleotides than was guanine. Adenine nucleotides accounted for about 70% of the intracellular label after 30 min with a majority being ADP and ATP (medium concentration = 10 μM). Guanine nucleotides accounted for only 30% of the intracellular label after 30 min. Labeled intracellular free adenine or guanine were not detected. Significantly more guanine vs. adenine was converted to uric acid. After 30 min, 11.5 +/- 3.9% (n=3) and 83.0 +/- 8.4% (n=4) of the label was present as uric acid in the medium when adenine and guanine, respectively, were the substrate. After 1 min, 34.8 +/- 3.4% (n=4) of the label in the medium was present as uric acid when guanine was the substrate. Decreasing the concentration of adenine resulted in an increase in the percent of uric acid in the medium. 14 C-adenine (75 nmol) was injected into 1 gm segments of rat jejunum. After 5 min., segments were quickly flushed and the tissue homogenized in 1M PCA. Only uric acid was present after 5 min (n=6). In contrast, in animals fasted 3 to 5 days, less conversion to uric acid was observed in the intestinal content (50-80% of the same dose was still present as adenine after 5 min) and nucleotide formation was observed in the tissue. The results indicate that uric acid and nucleotide synthesis from exogenous adenine and guanine are concentration dependent and affected by nutritional state

  11. ARHGEF7 (Beta-PIX acts as guanine nucleotide exchange factor for leucine-rich repeat kinase 2.

    Directory of Open Access Journals (Sweden)

    Karina Haebig

    Full Text Available BACKGROUND: Mutations within the leucine-rich repeat kinase 2 (LRRK2 gene are a common cause of familial and sporadic Parkinson's disease. The multidomain protein LRRK2 exhibits overall low GTPase and kinase activity in vitro. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that the rho guanine nucleotide exchange factor ARHGEF7 and the small GTPase CDC42 are interacting with LRRK2 in vitro and in vivo. GTPase activity of full-length LRRK2 increases in the presence of recombinant ARHGEF7. Interestingly, LRRK2 phosphorylates ARHGEF7 in vitro at previously unknown phosphorylation sites. We provide evidence that ARHGEF7 might act as a guanine nucleotide exchange factor for LRRK2 and that R1441C mutant LRRK2 with reduced GTP hydrolysis activity also shows reduced binding to ARHGEF7. CONCLUSIONS/SIGNIFICANCE: Downstream effects of phosphorylation of ARHGEF7 through LRRK2 could be (i a feedback control mechanism for LRRK2 activity as well as (ii an impact of LRRK2 on actin cytoskeleton regulation. A newly identified familial mutation N1437S, localized within the GTPase domain of LRRK2, further underlines the importance of the GTPase domain of LRRK2 in Parkinson's disease pathogenesis.

  12. Guanine nucleotides stimulate hydrolysis of phosphatidyl inositol bis phosphate in human myelin membranes

    International Nuclear Information System (INIS)

    Boulias, C.; Moscarello, M.A.

    1989-01-01

    Phosphodiesterase activity was stimulated in myelin membranes in the presence of guanine nucleotide analogues. This activity was reduced in myelin membranes which had been adenosine diphosphate ribosylated in the presence of cholera toxin which ADP-ribosylated three proteins of Mr 46,000, 43,000 and 18,500. Aluminum fluoride treatment of myelin had the same stimulatory effects on phosphodiesterase activity as did the guanine nucleotides

  13. Coupling of guanine nucleotide inhibitory protein to somatostatin receptors on pancreatic acinar membranes

    International Nuclear Information System (INIS)

    Sakamoto, C.; Matozaki, T.; Nagao, M.; Baba, S.

    1987-01-01

    Guanine nucleotides and pertussis toxin were used to investigate whether somatostatin receptors interact with the guanine nucleotide inhibitory protein (NI) on pancreatic acinar membranes in the rat. Guanine nucleotides reduced 125 I-[Tyr 1 ]somatostatin binding to acinar membranes up to 80%, with rank order of potency being 5'-guanylyl imidodiphosphate [Gpp(NH)p]>GTP>TDP>GMP. Scatchard analysis revealed that the decrease in somatostatin binding caused by Gpp(NH)p was due to the decrease in the maximum binding capacity without a significant change in the binding affinity. The inhibitory effect of Gpp(NH)p was partially abolished in the absence of Mg 2+ . When pancreatic acini were treated with 1 μg/ml pertussis toxin for 4 h, subsequent 125 I-[Tyr 1 ]somatostatin binding to acinar membranes was reduced. Pertussis toxin treatment also abolished the inhibitory effect of somatostatin on vasoactive intestinal peptide-stimulated increase in cellular content of adenosine 3',5'-cyclic monophosphate (cAMP) in the acini. The present results suggest that 1) somatostatin probably functions in the pancreas to regulate adenylate cyclase enzyme system via Ni, 2) the extent of modification of Ni is correlated with the ability of somatostatin to inhibit cAMP accumulation in acini, and 3) guanine nucleotides also inhibit somatostatin binding to its receptor

  14. Guanine nucleotide exchange factor αPIX leads to activation of the Rac 1 GTPase/glycogen phosphorylase pathway in interleukin (IL)-2-stimulated T cells

    DEFF Research Database (Denmark)

    Llavero, Francisco; Urzelai, Bakarne; Osinalde, Nerea

    2015-01-01

    Recently, we have reported that the active form of Rac 1 GTPase binds to the glycogen phosphorylase muscle isoform (PYGM) and modulates its enzymatic activity leading to T cell proliferation. In the lymphoid system, Rac 1 and in general other small GTPases of the Rho family participate...... in the signaling cascades that are activated after engagement of the T cell antigen receptor. However, little is known about the IL-2-dependent Rac 1 activator molecules. For the first time, a signaling pathway leading to the activation of Rac 1/PYGM in response to IL-2-stimulated T cell proliferation is described....... More specifically, αPIX, a known guanine nucleotide exchange factor for the small GTPases of the Rho family, preferentially Rac 1, mediates PYGM activation in Kit 225 T cells stimulated with IL-2. Using directed mutagenesis, phosphorylation of αPIX Rho-GEF serines 225 and 488 is required for activation...

  15. Solubilization and reconstitution of the formylmethionylleucylphenylalanine receptor coupled to guanine nucleotide regulatory protein

    International Nuclear Information System (INIS)

    Williamson, K.; Dickey, B.F.; Pyun, H.Y.; Navarro, J.

    1988-01-01

    The authors describe the solubilization, resolution, and reconstitution of the formylmethionylleucylphenylalanine (fMet-Leu-Phe) receptor and guanine nucleotide regulatory proteins (G-proteins). The receptor was solubilized with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Guanine nucleotides decreased the number of high-affinity binding sites and accelerated the rate of dissociation of the receptor-ligand complex, suggesting that the solubilized receptor remained coupled to endogenous G-proteins. The solubilized receptor was resolved from endogenous G-proteins by fractionation on a wheat germ agglutinin (WGA)-Sepharose 4B column. High-affinity [ 3 H]fMet-Leu-Phe binding to the WGA-purified receptor was diminished and exhibited reduced guanine nucleotide sensitivity. High-affinity [ 3 H]fMET-Leu-Phe binding and guanine nucleotide sensitivity were reconstituted upon the addition of purified brain G-proteins. Similar results were obtained when the receptor was reconstituted with brain G-proteins into phospholipid vesicles by gel filtration chromatography. In addition, they also demonstrated fMET-Leu-Phe-dependent GTP hydrolysis in the reconstituted vesicles. The results of this work indicate that coupling of the fMet-Leu-Phe receptor to G-proteins converts the receptor to a high-affinity binding state and that agonist produces activation of G-proteins. The resolution and functional reconstitution of this receptor should provide an important step toward the elucidation of the molecular mechanism of the fMet-Leu-Phe transduction system in neutrophils

  16. Guanine nucleotide regulation of α1-adrenergic receptors of muscle and kidney eptihelial cells

    International Nuclear Information System (INIS)

    Terman, B.I.; Hughes, R.J.; Slivka, S.R.; Insel, P.A.

    1986-01-01

    The authors have examined the effect of guanine nucleotides on the interaction of adrenergic agents with α 1 -adrenergic receptors of two cell lines, the Madin-Darby Canine Kidney (MDCK) and BC3H-1 muscle cells. While gaunylylimidodiphosphoate (Gpp(NH)p) had no effect on the affinity or the total number of [ -3 H]prazosin binding sites in membranes prepared from these cells, the nucleotide decreased the apparent affinity of the agonist epinephrine in competing for [ 3 H]prazosin binding sites in both cell types. The EC 50 of Gpp(NH)p was ∼100 μM, and a maximal effect was seen at 500 μM. In contrast, 100 μM Gpp(NH)p yielding maximal shifts in binding of epinephrine to β-adrenergic receptors in BC3H-1 cell membranes. Guanine nucleotides were significantly more effective than adenine nucleotides in shifting agonist affinity for the α 1 -receptor and Mg ++ was required to observe a maximal effect. α 1 -receptor agonists activated phosphatidylinositol (PI) hydrolysis in both cell types, but have no direct effect on membrane adenylate cyclase activity. In intact BC3H-1 cells, α 1 -agonists inhibited β-adrenergic cAMP production, an effect which appears in preliminary studies not to result from enhanced phosphodieterase activity. These results show that agonist binding to α 1 -adrenergic receptors in mammalian kidney and muscle cells is regulated by guanine nucleotides. This regulation and inturn transmembrane signalling (PI hydrolysis) by these receptors appear to involve a guanine nucleotide binding (G) protein, which may be different than G/sub s/ and G/sub i/

  17. Signaling efficiency of Galphaq through its effectors p63RhoGEF and GEFT depends on their subcellular location

    NARCIS (Netherlands)

    Goedhart, J.; Unen, J. van; Adjobo-Hermans, M.J.W.; Gadella, T.W.

    2013-01-01

    The p63RhoGEF and GEFT proteins are encoded by the same gene and both members of the Dbl family of guanine nucleotide exchange factors. These proteins can be activated by the heterotrimeric G-protein subunit Galphaq. We show that p63RhoGEF is located at the plasma membrane, whereas GEFT is confined

  18. The Emerging Role of Guanine Exchange Factors in ALS and other neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Cristian eDroppelmann

    2014-09-01

    Full Text Available Small GTPases participate in a broad range of cellular processes such as proliferation, differentiation and migration. The exchange of GDP for GTP resulting in the activation of these GTPases is catalyzed by a group of enzymes called guanine nucleotide exchange factors (GEFs, of which two classes: Dbl-related exchange factors and the more recently described Dock family exchange factors. Increasingly, deregulation of normal GEF activity or function has been associated with a broad range of disease states, including neurodegeneration and neurodevelopmental disorders. In this review, we examine this evidence with special emphasis on the novel role of Rho guanine nucleotide exchange factor (RGNEF/p190RhoGEF in the pathogenesis of amyotrophic lateral sclerosis (ALS. RGNEF is the first neurodegeneration-linked GEF that regulates not only RhoA GTPase activation but also functions as an RNA binding protein that directly acts with low molecular weight neurofilament (NEFL mRNA 3’UTR to regulate its stability. This dual role for RGNEF, coupled with the increasing understanding of the key role for GEFs in modulating the GTPase function in cell survival suggests a prominent role for GEFs in mediating a critical balance between cytotoxicity and neuroprotection which, when disturbed, contributes to neuronal loss.

  19. The 'invisible hand': regulation of RHO GTPases by RHOGDIs.

    Science.gov (United States)

    Garcia-Mata, Rafael; Boulter, Etienne; Burridge, Keith

    2011-07-22

    The 'invisible hand' is a term originally coined by Adam Smith in The Theory of Moral Sentiments to describe the forces of self-interest, competition and supply and demand that regulate the resources in society. This metaphor continues to be used by economists to describe the self-regulating nature of a market economy. The same metaphor can be used to describe the RHO-specific guanine nucleotide dissociation inhibitor (RHOGDI) family, which operates in the background, as an invisible hand, using similar forces to regulate the RHO GTPase cycle.

  20. The invisible hand: regulation of RHO GTPases by RHOGDIs

    Science.gov (United States)

    Garcia-Mata, Rafael; Boulter, Etienne; Burridge, Keith

    2011-01-01

    Preface The 'invisible hand' is a term originally coined by Adam Smith in the Theory of Moral Sentiments to describe the forces of self-interest, competition, and supply and demand that regulate the resources in society. This metaphor continues to be used by economists to describe the self-regulating nature of a market economy. The same metaphor can be used to describe the RHO-specific guanine nucleotide dissociation inhibitor (RHOGDI) family, which operates in the background, as an invisible hand, using similar forces to regulate the RHO GTPase cycle. PMID:21779026

  1. Signaling efficiency of Gαq through its effectors p63RhoGEF and GEFT depends on their subcellular location.

    NARCIS (Netherlands)

    Goedhart, J.; van Unen, J.; Adjobo-Hermans, M.J.W.; Gadella (jr.), T.W.J.

    2013-01-01

    The p63RhoGEF and GEFT proteins are encoded by the same gene and both members of the Dbl family of guanine nucleotide exchange factors. These proteins can be activated by the heterotrimeric G-protein subunit Galphaq. We show that p63RhoGEF is located at the plasma membrane, whereas GEFT is confined

  2. Protein Kinase A (PKA) Type I Interacts with P-Rex1, a Rac Guanine Nucleotide Exchange Factor

    Science.gov (United States)

    Chávez-Vargas, Lydia; Adame-García, Sendi Rafael; Cervantes-Villagrana, Rodolfo Daniel; Castillo-Kauil, Alejandro; Bruystens, Jessica G. H.; Fukuhara, Shigetomo; Taylor, Susan S.; Mochizuki, Naoki; Reyes-Cruz, Guadalupe; Vázquez-Prado, José

    2016-01-01

    Morphology of migrating cells is regulated by Rho GTPases and fine-tuned by protein interactions and phosphorylation. PKA affects cell migration potentially through spatiotemporal interactions with regulators of Rho GTPases. Here we show that the endogenous regulatory (R) subunit of type I PKA interacts with P-Rex1, a Rac guanine nucleotide exchange factor that integrates chemotactic signals. Type I PKA holoenzyme interacts with P-Rex1 PDZ domains via the CNB B domain of RIα, which when expressed by itself facilitates endothelial cell migration. P-Rex1 activation localizes PKA to the cell periphery, whereas stimulation of PKA phosphorylates P-Rex1 and prevents its activation in cells responding to SDF-1 (stromal cell-derived factor 1). The P-Rex1 DEP1 domain is phosphorylated at Ser-436, which inhibits the DH-PH catalytic cassette by direct interaction. In addition, the P-Rex1 C terminus is indirectly targeted by PKA, promoting inhibitory interactions independently of the DEP1-PDZ2 region. A P-Rex1 S436A mutant construct shows increased RacGEF activity and prevents the inhibitory effect of forskolin on sphingosine 1-phosphate-dependent endothelial cell migration. Altogether, these results support the idea that P-Rex1 contributes to the spatiotemporal localization of type I PKA, which tightly regulates this guanine exchange factor by a multistep mechanism, initiated by interaction with the PDZ domains of P-Rex1 followed by direct phosphorylation at the first DEP domain and putatively indirect regulation of the C terminus, thus promoting inhibitory intramolecular interactions. This reciprocal regulation between PKA and P-Rex1 might represent a key node of integration by which chemotactic signaling is fine-tuned by PKA. PMID:26797121

  3. Trichomonas vaginalis NTPDase and ecto-5'-nucleotidase hydrolyze guanine nucleotides and increase extracellular guanosine levels under serum restriction.

    Science.gov (United States)

    Menezes, Camila Braz; Durgante, Juliano; de Oliveira, Rafael Rodrigues; Dos Santos, Victor Hugo Jacks Mendes; Rodrigues, Luiz Frederico; Garcia, Solange Cristina; Dos Santos, Odelta; Tasca, Tiana

    2016-05-01

    Trichomonas vaginalis is the aethiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease in the world. The purinergic signaling pathway is mediated by extracellular nucleotides and nucleosides that are involved in many biological effects as neurotransmission, immunomodulation and inflammation. Extracellular nucleotides can be hydrolyzed by a family of enzymes known as ectonucleotidases including the ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) family which hydrolyses nucleosides triphosphate and diphosphate as preferential substrates and ecto-5'-nucleotidase which catalyzes the conversion of monophosphates into nucleosides. In T. vaginalis the E-NTPDase and ecto-5'-nucleotidase activities upon adenine nucleotides have already been characterized in intact trophozoites but little is known concerning guanine nucleotides and nucleoside. These enzymes may exert a crucial role on nucleoside generation, providing the purine sources for the synthesis de novo of these essential nutrients, sustaining parasite growth and survival. In this study, we investigated the hydrolysis profile of guanine-related nucleotides and nucleoside in intact trophozoites from long-term-grown and fresh clinical isolates of T. vaginalis. Knowing that guanine nucleotides are also substrates for T. vaginalis ectoenzymes, we evaluated the profile of nucleotides consumption and guanosine uptake in trophozoites submitted to a serum limitation condition. Results show that guanine nucleotides (GTP, GDP, GMP) were substrates for T. vaginalis ectonucleotidases, with expected kinetic parameters for this enzyme family. Different T. vaginalis isolates (two from the ATCC and nine fresh clinical isolates) presented a heterogeneous hydrolysis profile. The serum culture condition increased E-NTPDase and ecto-5'-nucleotidase activities with high consumption of extracellular GTP generating enhanced GDP, GMP and guanosine levels as demonstrated by HPLC, with final

  4. Adenine and guanine nucleotide metabolism during platelet storage at 22 degree C

    International Nuclear Information System (INIS)

    Edenbrandt, C.M.; Murphy, S.

    1990-01-01

    Adenine and guanine nucleotide metabolism of platelet concentrates (PCs) was studied during storage for transfusion at 22 +/- 2 degrees C over a 7-day period using high-pressure liquid chromatography. There was a steady decrease in platelet adenosine triphosphate (ATP) and adenosine diphosphate (ADP), which was balanced quantitatively by an increase in plasma hypoxanthine. As expected, ammonia accumulated along with hypoxanthine but at a far greater rate. A fall in platelet guanosine triphosphate (GTP) and guanosine diphosphate (GDP) paralleled the fall in ATP + ADP. When adenine was present in the primary anticoagulant, it was carried over into the PC and metabolized. ATP, GTP, total adenine nucleotides, and total guanine nucleotides declined more slowly in the presence of adenine than in its absence. With adenine, the increase in hypoxanthine concentration was more rapid and quantitatively balanced the decrease in adenine and platelet ATP + ADP. Plasma xanthine rose during storage but at a rate that exceeded the decline in GTP + GDP. When platelet ATP + ADP was labeled with 14C-adenine at the initiation of storage, half of the radioactivity was transferred to hypoxanthine (45%) and GTP + GDP + xanthine (5%) by the time storage was completed. The isotopic data were consistent with the presence of a radioactive (metabolic) and a nonradioactive (storage) pool of ATP + ADP at the initiation of storage with each pool contributing approximately equally to the decline in ATP + ADP during storage. The results suggested a continuing synthesis of GTP + GDP from ATP + ADP, explaining the slower rate of fall of GTP + GDP relative to the rate of rise of plasma xanthine. Throughout storage, platelets were able to incorporate 14C-hypoxanthine into both adenine and guanine nucleotides but at a rate that was only one fourth the rate of hypoxanthine accumulation

  5. Differential Rac1 signalling by guanine nucleotide exchange factors implicates FLII in regulating Rac1-driven cell migration

    Science.gov (United States)

    Marei, Hadir; Carpy, Alejandro; Woroniuk, Anna; Vennin, Claire; White, Gavin; Timpson, Paul; Macek, Boris; Malliri, Angeliki

    2016-01-01

    The small GTPase Rac1 has been implicated in the formation and dissemination of tumours. Upon activation by guanine nucleotide exchange factors (GEFs), Rac1 associates with a variety of proteins in the cell thereby regulating various functions, including cell migration. However, activation of Rac1 can lead to opposing migratory phenotypes raising the possibility of exacerbating tumour progression when targeting Rac1 in a clinical setting. This calls for the identification of factors that influence Rac1-driven cell motility. Here we show that Tiam1 and P-Rex1, two Rac GEFs, promote Rac1 anti- and pro-migratory signalling cascades, respectively, through regulating the Rac1 interactome. In particular, we demonstrate that P-Rex1 stimulates migration through enhancing the interaction between Rac1 and the actin-remodelling protein flightless-1 homologue, to modulate cell contraction in a RhoA-ROCK-independent manner. PMID:26887924

  6. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    Science.gov (United States)

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-11-01

    Inosine-5'-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches.

  7. The invisible hand: regulation of RHO GTPases by RHOGDIs

    OpenAIRE

    Garcia-Mata, Rafael; Boulter, Etienne; Burridge, Keith

    2011-01-01

    The 'invisible hand' is a term originally coined by Adam Smith in the Theory of Moral Sentiments to describe the forces of self-interest, competition, and supply and demand that regulate the resources in society. This metaphor continues to be used by economists to describe the self-regulating nature of a market economy. The same metaphor can be used to describe the RHO-specific guanine nucleotide dissociation inhibitor (RHOGDI) family, which operates in the background, as an invisible hand, u...

  8. Rasp21 sequences opposite the nucleotide binding pocket are required for GRF-mediated nucleotide release

    DEFF Research Database (Denmark)

    Leonardsen, L; DeClue, J E; Lybaek, H

    1996-01-01

    The substrate requirements for the catalytic activity of the mouse Cdc25 homolog Guanine nucleotide Release Factor, GRF, were determined using the catalytic domain of GRF expressed in insect cells and E. coli expressed H-Ras mutants. We found a requirement for the loop 7 residues in Ras (amino ac...... and the human Ras like proteins RhoA, Rap1A, Rac1 and G25K revealed a strict Ras specificity; of these only S. pombe Ras was GRF sensitive....

  9. Overexpression of GEFT, a Rho family guanine nucleotide exchange factor, predicts poor prognosis in patients with rhabdomyosarcoma.

    Science.gov (United States)

    Sun, Chao; Liu, Chunxia; Li, Shugang; Li, Hongan; Wang, Yuanyuan; Xie, Yuwen; Li, Bingcheng; Cui, Xiaobin; Chen, Yunzhao; Zhang, Wenjie; Li, Feng

    2014-01-01

    Rhabdomyosarcoma (RMS) is one of the most common soft-tissue sarcomas in children and adolescents with poor prognosis. Yet, there is lack of effective prognostic biomarkers for RMS. The present study, therefore, aimed to explore potential biomarkers for RMS based on our previous findings using array comparative genomic hybridization. We investigated guanine nucleotide exchange factor, GEFT, at expression level in 45 RMS patients and 36 normal striated muscle controls using immunohistochemistry using tissue microarrays. The expression rate of GEFT in RMS samples (42/45, 93.33%) was significantly higher (Prate of GEFT in RMS (31/45, 68.89%) was also significantly higher (P<0.05) than that in normal controls (0/36, 0.00%). Increased expression of GEFT correlated significantly with advanced disease stages (stages III/IV) (P=0.001), lymph node metastasis (P=0.019), and distant metastasis (P=0.004), respectively, in RMS patients. In addition, RMS patients having overexpressed GEFT experienced worse overall survival (OS) than those having low levels of GEFT (P=0.001). GEFT overexpression was determined to be an independent prognostic factor for poor OS in RMS patients (hazard ratio: 3.491, 95% confidence interval: 1.121-10.871, P=0.004). In conclusion, these observations provide the first evidence of GEFT overexpression in RMS and its correlations with disease aggressiveness and metastasis. These findings suggest that GEFT may serve as a promising biomarker predicting poor prognosis in RMS patients, thus implying its potential as a therapeutic target.

  10. The Cdc42 guanine nucleotide exchange factor FGD6 coordinates cell polarity and endosomal membrane recycling in osteoclasts.

    Science.gov (United States)

    Steenblock, Charlotte; Heckel, Tobias; Czupalla, Cornelia; Espírito Santo, Ana Isabel; Niehage, Christian; Sztacho, Martin; Hoflack, Bernard

    2014-06-27

    The initial step of bone digestion is the adhesion of osteoclasts onto bone surfaces and the assembly of podosomal belts that segregate the bone-facing ruffled membrane from other membrane domains. During bone digestion, membrane components of the ruffled border also need to be recycled after macropinocytosis of digested bone materials. How osteoclast polarity and membrane recycling are coordinated remains unknown. Here, we show that the Cdc42-guanine nucleotide exchange factor FGD6 coordinates these events through its Src-dependent interaction with different actin-based protein networks. At the plasma membrane, FGD6 couples cell adhesion and actin dynamics by regulating podosome formation through the assembly of complexes comprising the Cdc42-interactor IQGAP1, the Rho GTPase-activating protein ARHGAP10, and the integrin interactors Talin-1/2 or Filamin A. On endosomes and transcytotic vesicles, FGD6 regulates retromer-dependent membrane recycling through its interaction with the actin nucleation-promoting factor WASH. These results provide a mechanism by which a single Cdc42-exchange factor controlling different actin-based processes coordinates cell adhesion, cell polarity, and membrane recycling during bone degradation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. GDP-bound and nucleotide-free intermediates of the guanine nucleotide exchange in the Rab5·Vps9 system.

    Science.gov (United States)

    Uejima, Tamami; Ihara, Kentaro; Goh, Tatsuaki; Ito, Emi; Sunada, Mariko; Ueda, Takashi; Nakano, Akihiko; Wakatsuki, Soichi

    2010-11-19

    Many GTPases regulate intracellular transport and signaling in eukaryotes. Guanine nucleotide exchange factors (GEFs) activate GTPases by catalyzing the exchange of their GDP for GTP. Here we present crystallographic and biochemical studies of a GEF reaction with four crystal structures of Arabidopsis thaliana ARA7, a plant homolog of Rab5 GTPase, in complex with its GEF, VPS9a, in the nucleotide-free and GDP-bound forms, as well as a complex with aminophosphonic acid-guanylate ester and ARA7·VPS9a(D185N) with GDP. Upon complex formation with ARA7, VPS9 wedges into the interswitch region of ARA7, inhibiting the coordination of Mg(2+) and decreasing the stability of GDP binding. The aspartate finger of VPS9a recognizes GDP β-phosphate directly and pulls the P-loop lysine of ARA7 away from GDP β-phosphate toward switch II to further destabilize GDP for its release during the transition from the GDP-bound to nucleotide-free intermediates in the nucleotide exchange reaction.

  12. TrkB-T1 regulates the RhoA signaling and actin cytoskeleton in glioma cells

    International Nuclear Information System (INIS)

    Ohira, Koji; Homma, Koichi J.; Hirai, Hirohisa; Nakamura, Shun; Hayashi, Motoharu

    2006-01-01

    Recently, the truncated TrkB receptor, T1, has been reported to be involved in the control of cell morphology via the regulation of Rho proteins, through which T1 binds Rho guanine nucleotide dissociation inhibitor (Rho GDI) 1 and dissociates it in a brain-derived neurotrophic factor (BDNF)-dependent manner. However, it is unclear whether T1 signaling regulates the downstream of Rho signaling and the actin cytoskeleton. In this study, we investigated this question using C6 rat glioma cells, which express T1 endogenously. Rho GDI1 was dissociated from T1 in a BDNF-dependent manner, which also causes decreases in the activities of Rho-signaling molecules such as RhoA, Rho-associated kinase, p21-activated kinase, and extracellular-signal regulated kinase1/2. Moreover, BDNF treatment resulted in the disappearance of stress fibers in the cells treated with lysophosphatidic acid, an activator of RhoA, and in morphological changes in cells. Furthermore, a competitive assay with cyan fluorescent protein fusion proteins of T1-specific sequences reduced the effects of BDNF. These results suggest that T1 regulates the Rho-signaling pathways and the actin cytoskeleton

  13. Guanine nucleotide regulatory protein co-purifies with the D2-dopamine receptor

    International Nuclear Information System (INIS)

    Senogles, S.E.; Caron, M.G.

    1986-01-01

    The D 2 -dopamine receptor from bovine anterior pituitary was purified ∼1000 fold by affinity chromatography on CMOS-Sepharose. Reconstitution of the affinity-purified receptor into phospholipid vesicles revealed the presence of high and low affinity agonist sites as detected by N-n-propylnorapomorphine (NPA) competition experiments with 3 H-spiperone. High affinity agonist binding could be converted to the low affinity form by guanine nucleotides, indicating the presence of an endogenous guanine nucleotide binding protein (N protein) in the affinity-purified D 2 receptor preparations. Furthermore, this preparation contained an agonist-sensitive GTPase activity which was stimulated 2-3 fold over basal by 10 μM NPA. 35 S-GTPγS binding to these preparations revealed a stoichiometry of 0.4-0.7 mole N protein/mole receptor, suggesting the N protein may be specifically coupled with the purified D 2 -dopamine receptor and not present as a contaminant. Pertussis toxin treatment of the affinity purified receptor preparations prevented high affinity agonist binding, as well as agonist stimulation of the GTPase activity, presumably by inactivating the associated N protein. Pertussis toxin lead to the ADP-ribosylation of a protein of 39-40K on SDS-PAGE. These findings indicate that an endogenous N protein, N/sub i/ or N/sub o/, co-purifies with the D 2 -dopamine receptor which may reflect a precoupling of this receptor with an N protein within the membranes

  14. Yersinia Virulence Depends on Mimicry of Host Rho-Family Nucleotide Dissociation Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Prehna,G.; Ivanov, M.; Blisha, J.; Stebbins, C.

    2006-01-01

    Yersinia spp. cause gastroenteritis and the plague, representing historically devastating pathogens that are currently an important biodefense and antibiotic resistance concern. A critical virulence determinant is the Yersinia protein kinase A, or YpkA, a multidomain protein that disrupts the eukaryotic actin cytoskeleton. Here we solve the crystal structure of a YpkA-Rac1 complex and find that YpkA possesses a Rac1 binding domain that mimics host guanidine nucleotide dissociation inhibitors (GDIs) of the Rho GTPases. YpkA inhibits nucleotide exchange in Rac1 and RhoA, and mutations that disrupt the YpkA-GTPase interface abolish this activity in vitro and impair in vivo YpkA-induced cytoskeletal disruption. In cell culture experiments, the kinase and the GDI domains of YpkA act synergistically to promote cytoskeletal disruption, and a Y. pseudotuberculosis mutant lacking YpkA GDI activity shows attenuated virulence in a mouse infection assay. We conclude that virulence in Yersinia depends strongly upon mimicry of host GDI proteins by YpkA.

  15. Role of a guanine nucleotide-binding protein in α1-adrenergic receptor-mediated Ca2+ mobilization in DDT1 MF-2 cells

    International Nuclear Information System (INIS)

    Cornett, L.E.; Norris, J.S.

    1987-01-01

    In this study the mechanisms involved in α 1 -adrenergic receptor-mediated Ca 2+ mobilization at the level of the plasma membrane were investigated. Stimulation of 45 Ca 2+ efflux from saponin-permeabilized DDT 1 MF-2 cells was observed with the addition of either the α 1 -adrenergic agonist phenylephrine and guanosine-5'-triphosphate or the nonhydrolyzable guanine nucleotide guanylyl-imidodiphosphate. In the presence of [ 32 P] NAD, pertussis toxin was found to catalyze ADP-ribosylation of a M/sub r/ = 40,500 (n = 8) peptide in membranes prepared from DDT 1 , MF-2 cells, possibly the α-subunit of N/sub i/. However, stimulation of unidirectional 45 Ca 2+ efflux by phenylephrine was not affected by previous treatment of cells with 100 ng/ml pertussis toxin. These data suggest that the putative guanine nucleotide-binding protein which couples the α 1 -adrenergic receptor to Ca 2+ mobilization in DDT 1 MF-2 cells is not a pertussis toxin substrate and may possibly be an additional member of guanine nucleotide binding protein family

  16. RhoG regulates anoikis through a phosphatidylinositol 3-kinase-dependent mechanism

    International Nuclear Information System (INIS)

    Yamaki, Nao; Negishi, Manabu; Katoh, Hironori

    2007-01-01

    In normal epithelial cells, cell-matrix interaction is required for cell survival and proliferation, whereas disruption of this interaction causes epithelial cells to undergo apoptosis called anoikis. Here we show that the small GTPase RhoG plays an important role in the regulation of anoikis. HeLa cells are capable of anchorage-independent cell growth and acquire resistance to anoikis. We found that RNA interference-mediated knockdown of RhoG promoted anoikis in HeLa cells. Previous studies have shown that RhoG activates Rac1 and induces several cellular functions including promotion of cell migration through its effector ELMO and the ELMO-binding protein Dock180 that function as a Rac-specific guanine nucleotide exchange factor. However, RhoG-induced suppression of anoikis was independent of the ELMO- and Dock180-mediated activation of Rac1. On the other hand, the regulation of anoikis by RhoG required phosphatidylinositol 3-kinase (PI3K) activity, and constitutively active RhoG bound to the PI3K regulatory subunit p85α and induced the PI3K-dependent phosphorylation of Akt. Taken together, these results suggest that RhoG protects cells from apoptosis caused by the loss of anchorage through a PI3K-dependent mechanism, independent of its activation of Rac1

  17. Protein Kinase A (PKA) Type I Interacts with P-Rex1, a Rac Guanine Nucleotide Exchange Factor: EFFECT ON PKA LOCALIZATION AND P-Rex1 SIGNALING.

    Science.gov (United States)

    Chávez-Vargas, Lydia; Adame-García, Sendi Rafael; Cervantes-Villagrana, Rodolfo Daniel; Castillo-Kauil, Alejandro; Bruystens, Jessica G H; Fukuhara, Shigetomo; Taylor, Susan S; Mochizuki, Naoki; Reyes-Cruz, Guadalupe; Vázquez-Prado, José

    2016-03-18

    Morphology of migrating cells is regulated by Rho GTPases and fine-tuned by protein interactions and phosphorylation. PKA affects cell migration potentially through spatiotemporal interactions with regulators of Rho GTPases. Here we show that the endogenous regulatory (R) subunit of type I PKA interacts with P-Rex1, a Rac guanine nucleotide exchange factor that integrates chemotactic signals. Type I PKA holoenzyme interacts with P-Rex1 PDZ domains via the CNB B domain of RIα, which when expressed by itself facilitates endothelial cell migration. P-Rex1 activation localizes PKA to the cell periphery, whereas stimulation of PKA phosphorylates P-Rex1 and prevents its activation in cells responding to SDF-1 (stromal cell-derived factor 1). The P-Rex1 DEP1 domain is phosphorylated at Ser-436, which inhibits the DH-PH catalytic cassette by direct interaction. In addition, the P-Rex1 C terminus is indirectly targeted by PKA, promoting inhibitory interactions independently of the DEP1-PDZ2 region. A P-Rex1 S436A mutant construct shows increased RacGEF activity and prevents the inhibitory effect of forskolin on sphingosine 1-phosphate-dependent endothelial cell migration. Altogether, these results support the idea that P-Rex1 contributes to the spatiotemporal localization of type I PKA, which tightly regulates this guanine exchange factor by a multistep mechanism, initiated by interaction with the PDZ domains of P-Rex1 followed by direct phosphorylation at the first DEP domain and putatively indirect regulation of the C terminus, thus promoting inhibitory intramolecular interactions. This reciprocal regulation between PKA and P-Rex1 might represent a key node of integration by which chemotactic signaling is fine-tuned by PKA. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. The RNA-mediated, asymmetric ring regulatory mechanism of the transcription termination Rho helicase decrypted by time-resolved nucleotide analog interference probing (trNAIP).

    Science.gov (United States)

    Soares, Emilie; Schwartz, Annie; Nollmann, Marcello; Margeat, Emmanuel; Boudvillain, Marc

    2014-08-01

    Rho is a ring-shaped, ATP-dependent RNA helicase/translocase that dissociates transcriptional complexes in bacteria. How RNA recognition is coupled to ATP hydrolysis and translocation in Rho is unclear. Here, we develop and use a new combinatorial approach, called time-resolved Nucleotide Analog Interference Probing (trNAIP), to unmask RNA molecular determinants of catalytic Rho function. We identify a regulatory step in the translocation cycle involving recruitment of the 2'-hydroxyl group of the incoming 3'-RNA nucleotide by a Rho subunit. We propose that this step arises from the intrinsic weakness of one of the subunit interfaces caused by asymmetric, split-ring arrangement of primary RNA tethers around the Rho hexamer. Translocation is at highest stake every seventh nucleotide when the weak interface engages the incoming 3'-RNA nucleotide or breaks, depending on RNA threading constraints in the Rho pore. This substrate-governed, 'test to run' iterative mechanism offers a new perspective on how a ring-translocase may function or be regulated. It also illustrates the interest and versatility of the new trNAIP methodology to unveil the molecular mechanisms of complex RNA-based systems. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Direct demonstration of guanine nucleotide sensitive receptors for vasoactive intestinal peptide in the anterior lobe of the rat pituitary gland

    International Nuclear Information System (INIS)

    Agui, T.; Matsumoto, K.

    1990-01-01

    The vasoactive intestinal peptide (VIP) receptors were identified on the membranes from the rat anterior pituitary gland with [ 125 I]VIP. The dissociation constant (Kd) and the maximal binding capacity (Bmax) values were estimated from the competitive inhibition data. The Kd and Bmax values were 1.05 +/- 0.75 nM and 103 +/- 11 fmol/mg protein, respectively. The order of molar potency of related peptides to inhibit [ 125 I]VIP binding was VIP greater than peptide histidine isoleucine (PHI) greater than secretin greater than glucagon. Glucagon was not effective to inhibit the binding. [ 125 I]VIP binding was effectively inhibited by the addition of guanine nucleotides. The order of molar potency to inhibit the binding was Gpp(NH)p greater than GTP greater than GDP greater than GMP greater than ATP. These results directly suggest the coupling of VIP receptors with guanine nucleotide binding proteins in the anterior pituitary gland

  20. NMR characterization of weak interactions between RhoGDI2 and fragment screening hits.

    Science.gov (United States)

    Liu, Jiuyang; Gao, Jia; Li, Fudong; Ma, Rongsheng; Wei, Qingtao; Wang, Aidong; Wu, Jihui; Ruan, Ke

    2017-01-01

    The delineation of intrinsically weak interactions between novel targets and fragment screening hits has long limited the pace of hit-to-lead evolution. Rho guanine-nucleotide dissociation inhibitor 2 (RhoGDI2) is a novel target that lacks any chemical probes for the treatment of tumor metastasis. Protein-observed and ligand-observed NMR spectroscopy was used to characterize the weak interactions between RhoGDI2 and fragment screening hits. We identified three hits of RhoGDI2 using streamlined NMR fragment-based screening. The binding site residues were assigned using non-uniformly sampled C α - and H α -based three dimensional NMR spectra. The molecular docking to the proposed geranylgeranyl binding pocket of RhoGDI2 was guided by NMR restraints of chemical shift perturbations and ligand-observed transferred paramagnetic relaxation enhancement. We further validated the weak RhoGDI2-hit interactions using mutagenesis and structure-affinity analysis. Weak interactions between RhoGDI2 and fragment screening hits were delineated using an integrated NMR approach. Binders to RhoGDI2 as a potential anti-cancer target have been first reported, and their weak interactions were depicted using NMR spectroscopy. Our work highlights the powerfulness and the versatility of the integrative NMR techniques to provide valuable structural insight into the intrinsically weak interactions between RhoGDI2 and the fragment screening hits, which could hardly be conceived using other biochemical techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Kinetics of the interactions between yeast elongation factors 1A and 1Balpha, guanine nucleotides, and aminoacyl-tRNA

    DEFF Research Database (Denmark)

    Gromadski, Kirill B; Schümmer, Tobias; Strømgaard, Anne

    2007-01-01

    of guanine nucleotides. At the concentrations of nucleotides and factors prevailing in the cell, the overall exchange rate is expected to be in the range of 6 s(-1), which is compatible with the rate of protein synthesis in the cell. eEF1A.GTP binds Phe-tRNA(Phe) with a K(d) of 3 nm, whereas eEF1A.GDP shows...... no significant binding, indicating that eEF1A has similar tRNA binding properties as its prokaryotic homolog, EF-Tu. Udgivelsesdato: 2007-Dec-7...

  2. Signaling efficiency of Gαq through its effectors p63RhoGEF and GEFT depends on their subcellular location.

    Science.gov (United States)

    Goedhart, Joachim; van Unen, Jakobus; Adjobo-Hermans, Merel J W; Gadella, Theodorus W J

    2013-01-01

    The p63RhoGEF and GEFT proteins are encoded by the same gene and both members of the Dbl family of guanine nucleotide exchange factors. These proteins can be activated by the heterotrimeric G-protein subunit Gαq. We show that p63RhoGEF is located at the plasma membrane, whereas GEFT is confined to the cytoplasm. Live-cell imaging studies yielded quantitative information on diffusion coefficients, association rates and encounter times of GEFT and p63RhoGEF. Calcium signaling was examined as a measure of the signal transmission, revealing more efficient signaling through the membrane-associated p63RhoGEF. A rapamycin dependent recruitment system was used to dynamically alter the subcellular location and concentration of GEFT, showing efficient signaling through GEFT only upon membrane recruitment. Together, our results show efficient signal transmission through membrane located effectors, and highlight a role for increased concentration rather than increased encounter times due to membrane localization in the Gαq mediated pathways to p63RhoGEF and PLCβ.

  3. High pressure {sup 31}P NMR spectroscopy on guanine nucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Spoerner, Michael; Karl, Matthias; Lopes, Pedro; Hoering, Marcus; Loeffel, Karoline; Nuehs, Andrea; Adelsberger, Joseph; Kremer, Werner; Kalbitzer, Hans Robert, E-mail: hans-robert.kalbitzer@ur.de [University of Regensburg, Centre of Magnetic Resonance in Chemistry and Biomedicine, Institute of Biophysics and Physical Biochemistry (Germany)

    2017-01-15

    The {sup 31}P NMR pressure response of guanine nucleotides bound to proteins has been studied in the past for characterizing the pressure perturbation of conformational equilibria. The pressure response of the {sup 31}P NMR chemical shifts of the phosphate groups of GMP, GDP, and GTP as well as the commonly used GTP analogs GppNHp, GppCH{sub 2}p and GTPγS was measured in the absence and presence of Mg{sup 2+}-ions within a pressure range up to 200 MPa. The pressure dependence of chemical shifts is clearly non-linear. For all nucleotides a negative first order pressure coefficient B{sub 1} was determined indicating an upfield shift of the resonances with pressure. With exception of the α-phosphate group of Mg{sup 2+}·GMP and Mg{sup 2+}·GppNHp the second order pressure coefficients are positive. To describe the data of Mg{sup 2+}·GppCH{sub 2}p and GTPγS a Taylor expansion of 3rd order is required. For distinguishing pH effects from pressure effects a complete pH titration set is presented for GMP, as well as GDP and GTP in absence and presence of Mg{sup 2+} ions using indirect referencing to DSS under identical experimental conditions. By a comparison between high pressure {sup 31}P NMR data on free Mg{sup 2+}-GDP and Mg{sup 2+}-GDP in complex with the proto-oncogene Ras we demonstrate that pressure induced changes in chemical shift are clearly different between both forms.

  4. An extracellular-matrix-specific GEF-GAP interaction regulates Rho GTPase crosstalk for 3D collagen migration.

    Science.gov (United States)

    Kutys, Matthew L; Yamada, Kenneth M

    2014-09-01

    Rho-family GTPases govern distinct types of cell migration on different extracellular matrix proteins in tissue culture or three-dimensional (3D) matrices. We searched for mechanisms selectively regulating 3D cell migration in different matrix environments and discovered a form of Cdc42-RhoA crosstalk governing cell migration through a specific pair of GTPase activator and inhibitor molecules. We first identified βPix, a guanine nucleotide exchange factor (GEF), as a specific regulator of migration in 3D collagen using an affinity-precipitation-based GEF screen. Knockdown of βPix specifically blocks cell migration in fibrillar collagen microenvironments, leading to hyperactive cellular protrusion accompanied by increased collagen matrix contraction. Live FRET imaging and RNAi knockdown linked this βPix knockdown phenotype to loss of polarized Cdc42 but not Rac1 activity, accompanied by enhanced, de-localized RhoA activity. Mechanistically, collagen phospho-regulates βPix, leading to its association with srGAP1, a GTPase-activating protein (GAP), needed to suppress RhoA activity. Our results reveal a matrix-specific pathway controlling migration involving a GEF-GAP interaction of βPix with srGAP1 that is critical for maintaining suppressive crosstalk between Cdc42 and RhoA during 3D collagen migration.

  5. A bacterial cytotoxin identifies the RhoA exchange factor Net1 as a key effector in the response to DNA damage.

    Directory of Open Access Journals (Sweden)

    Lina Guerra

    Full Text Available BACKGROUND: Exposure of adherent cells to DNA damaging agents, such as the bacterial cytolethal distending toxin (CDT or ionizing radiations (IR, activates the small GTPase RhoA, which promotes the formation of actin stress fibers and delays cell death. The signalling intermediates that regulate RhoA activation and promote cell survival are unknown. PRINCIPAL FINDINGS: We demonstrate that the nuclear RhoA-specific Guanine nucleotide Exchange Factor (GEF Net1 becomes dephosphorylated at a critical inhibitory site in cells exposed to CDT or IR. Expression of a dominant negative Net1 or Net1 knock down by iRNA prevented RhoA activation, inhibited the formation of stress fibers, and enhanced cell death, indicating that Net1 activation is required for this RhoA-mediated responses to genotoxic stress. The Net1 and RhoA-dependent signals involved activation of the Mitogen-Activated Protein Kinase p38 and its downstream target MAPK-activated protein kinase 2. SIGNIFICANCE: Our data highlight the importance of Net1 in controlling RhoA and p38 MAPK mediated cell survival in cells exposed to DNA damaging agents and illustrate a molecular pathway whereby chronic exposure to a bacterial toxin may promote genomic instability.

  6. Mutagenic and Cytotoxic Properties of 6-Thioguanine, S6-Methylthioguanine, and Guanine-S6-sulfonic Acid*S⃞

    OpenAIRE

    Yuan, Bifeng; Wang, Yinsheng

    2008-01-01

    Thiopurine drugs, including 6-thioguanine (SG), 6-mercaptopurine, and azathioprine, are widely employed anticancer agents and immunosuppressants. The formation of SG nucleotides from the thiopurine prodrugs and their subsequent incorporation into nucleic acids are important for the drugs to exert their cytotoxic effects. SG in DNA can be methylated by S-adenosyl-l-methionine to give S6-methylthioguanine (S6mG) and oxidized by UVA light to render guanine-S6-sulfonic acid ...

  7. WBSCR16 Is a Guanine Nucleotide Exchange Factor Important for Mitochondrial Fusion

    Directory of Open Access Journals (Sweden)

    Guorui Huang

    2017-07-01

    Full Text Available Regulated inter-mitochondrial fusion/fission is essential for maintaining optimal mitochondrial respiration and control of apoptosis and autophagy. In mammals, mitochondrial fusion is controlled by outer membrane GTPases MFN1 and MFN2 and by inner membrane (IM GTPase OPA1. Disordered mitochondrial fusion/fission contributes to various pathologies, and MFN2 or OPA1 mutations underlie neurodegenerative diseases. Here, we show that the WBSCR16 protein is primarily associated with the outer face of the inner mitochondrial membrane and is important for mitochondrial fusion. We provide evidence of a WBSCR16/OPA1 physical interaction in the intact cell and of a WBSCR16 function as an OPA1-specific guanine nucleotide exchange factor (GEF. Homozygosity for a Wbscr16 mutation causes early embryonic lethality, whereas neurons of mice heterozygous for the mutation have mitochondria with reduced membrane potential and increased susceptibility to fragmentation upon exposure to stress, suggesting roles for WBSCR16 deficits in neuronal pathologies.

  8. Molecular cloning, characterization, and expression of human ADP-ribosylation factors: Two guanine nucleotide-dependent activators of cholera toxin

    International Nuclear Information System (INIS)

    Bobak, D.A.; Nightingale, M.S.; Murtagh, J.J.; Price, S.R.; Moss, J.; Vaughan, M.

    1989-01-01

    ADP-ribosylation factors (ARFs) are small guanine nucleotide-binding proteins that enhance the enzymatic activities of cholera toxin. Two ARF cDNAs, ARF1 and ARF3, were cloned from a human cerebellum library. Based on deduced amino acid sequences and patterns of hybridization of cDNA and oligonucleotide probes with mammalian brain poly(A) + RNA, human ARF1 is the homologue of bovine ARF1. Human ARF3, which differs from bovine ARF1 and bovine ARF2, appears to represent a newly identified third type of ARF. Hybridization patterns of human ARF cDNA and clone-specific oligonucleotides with poly(A) + RNA are consistent with the presence of at least two, and perhaps four, separate ARF messages in human brain. In vitro translation of ARF1, ARF2, and ARF3 produced proteins that behaved, by SDS/PAGE, similar to a purified soluble brain ARF. Deduced amino acid sequences of human ARF1 and ARF3 contain regions, similar to those in other G proteins, that are believed to be involved in GTP binding and hydrolysis. ARFS also exhibit a modest degree of homology with a bovine phospholipase C. The observations reported here support the conclusion that the ARFs are members of a multigene family of small guanine nucleotide-binding proteins. Definition of the regulation of ARF mRNAs and of function(s) of recombinant ARF proteins will aid in the elucidation of the physiologic role(s) of ARFs

  9. Guanine nucleotide-dependent, pertussis toxin-insensitive, stimulation of inositol phosphate formation by carbachol in a membrane preparation from astrocytoma cells

    International Nuclear Information System (INIS)

    Hepler, J.R.; Harden, T.K.

    1986-01-01

    Formation of the inositol phosphates (InsP), InsP 3 , InsP 2 , and InsP 1 was increased in a concentration dependent manner (K/sub 0.5/ ∼ 5 μM) by GTPΣS in washed membranes prepared from 3 H-inositol-prelabelled 1321N1 human astrocytoma cells. Both GTPγS and GppNHp stimulated InsP formation by 2-3 fold over control; GTP and GDP were much less efficacious and GMP had no effect. Although the muscarinic cholinergic receptor agonist carbachol had no effect in the absence of guanine nucleotide, in the presence of 10 μM GTPγS, carbachol stimulated (K/sub 0.5/ ∼ 10 μ M) the formation of InsP above the level achieved with GTPγS alone. The effect of carbachol was completely blocked by atropine. The order of potency for a series of nucleotides for stimulation of InsP formation in the presence of 500 μM carbachol was GTPγS > GppNHp > GTP = GDP. Pertussis toxin, at concentrations that fully ADP-ribosylate and functionally inactivate G/sub i/, had no effect on InsP formation in the presence of GTPγS or GTPγS plus carbachol. Histamine and bradykinin also stimulated InsP formation in the presence of GTPγS in washed membranes from 1321N1 cells. These data are consistent with the idea that a guanine nucleotide regulatory protein that is not G/sub i/ is involved in receptor-mediated stimulation of InsP formation in 1321N1 human astrocytoma cells

  10. RhoGDI: multiple functions in the regulation of Rho family GTPase activities

    DEFF Research Database (Denmark)

    Dovas, Athanassios; Couchman, John R

    2005-01-01

    necessary for the correct targeting and regulation of Rho activities by conferring cues for spatial restriction, guidance and availability to effectors. These potential functions are discussed in the context of RhoGDI-associated multimolecular complexes, the newly emerged shuttling capability...... insight as to how RhoGDI exerts its effects on nucleotide binding, the membrane association-dissociation cycling of the GTPase and how these activities are controlled. Despite the initial negative roles attributed to RhoGDI, recent evidence has come to suggest that it may also act as a positive regulator...... of activities....

  11. Myristoylated α subunits of guanine nucleotide-binding regulatory proteins

    International Nuclear Information System (INIS)

    Buss, J.E.; Mumby, S.M.; Casey, P.J.; Gilman, A.G.; Sefton, B.M.

    1987-01-01

    Antisera directed against specific subunits of guanine nucleotide-binding regulatory proteins (G proteins) were used to immunoprecipitate these polypeptides from metabolically labeled cells. This technique detects, in extracts of a human astrocytoma cell line, the α subunits of G/sub s/ (stimulatory) (α 45 and α 52 ), a 41-kDa subunit of G/sub i/ (inhibitory) (α 41 ), a 40-kDa protein (α 40 ), and the 36-kDa β subunit. No protein that comigrated with the α subunit of G 0 (unknown function) (α 39 ) was detected. In cells grown in the presence of [ 3 H]myristic acid, α 41 and α 40 contained 3 H label, while the β subunit did not. Chemical analysis of lipids attached covalently to purified α 41 and α 39 from bovine brain also revealed myristic acid. Similar analysis of brain G protein β and γ subunits and of G/sub t/ (Transducin) subunits (α, β, and γ) failed to reveal fatty acids. The fatty acid associated with α 41 , α 40 , and α 39 was stable to treatment with base, suggesting that the lipid is linked to the polypeptide via an amide bond. These GTP binding proteins are thus identified as members of a select group of proteins that contains myristic acid covalently attached to the peptide backbone. Myristate may play an important role in stabilizing interactions of G proteins with phospholipid or with membrane-bound proteins

  12. Rational Design of Rho Protein Inhibitors

    National Research Council Canada - National Science Library

    Rojas, Rafael J

    2006-01-01

    ... nucleotide exchange factors (RhoGEFs). We have developed a high throughput screening strategy identify novel inhibitors of Rho activation are currently following up on several compounds which appear to selectively inhibit Rho activation. These compounds may form the basis of future drug development strategies for the treatment of metastatic breast cancer.

  13. Rational Design of Rho Protein Inhibitors

    National Research Council Canada - National Science Library

    Rojas, Rafael J

    2005-01-01

    ... nucleotide exchange factors (RhoGEFs). We have developed a high throughput screening strategy identify novel inhibitors of Rho activation are currently following up on several compounds which appear to selectively inhibit Rho activation. These compounds may form the basis of future drug development strategies for the treatment of metastatic breast cancer.

  14. The selective phosphorylation of a guanine nucleotide-binding regulatory protein

    International Nuclear Information System (INIS)

    Carlson, K.E.

    1989-01-01

    Receptor-activated signal transduction pathways regulate the responsiveness of cells to external stimuli. These transduction pathways themselves are subject to regulation, most commonly by phosphorylation. Guanine nucleotide-binding regulatory proteins (G Proteins), as requisite signal transducing elements for many plasma membrane receptors, are considered likely targets for regulation by phosphorylation. Protein kinase C (PKC) has been shown to phosphorylate the α subunit of G i and other G proteins in solution. However, the occurrence of the phosphorylation of G 1 within intact cells in response to activation of PKC has not been rigorously demonstrated. In this thesis, the extent to which the α subunits of G i undergo phosphorylation within human platelets in response to activation of PKC was examined by means of radiolabeling and immunoprecipitation. Incubation of platelets with phorbol-12-myristate-13-acetate (PMA), a potent activator of PKC, promoted the phosphorylation of several proteins within saponin-permeabilized and intact platelets incubated with [γ 32 P]ATP and [ 32 P]H 3 PO 4 , respectively. None of the phosphoproteins, however, were precipitated by either of two antisera containing antibodies differing in specificities for epitopes within G iα -despite precipitation of a substantial fraction of the subunit itself. In contrast, other antisera, containing antibodies specific for the recently describe G zα , or antibodies for both G zα and G iα , precipitated a 40-kDa phosphoprotein

  15. Chlamydial entry involves TARP binding of guanine nucleotide exchange factors.

    Directory of Open Access Journals (Sweden)

    B Josh Lane

    2008-03-01

    Full Text Available Chlamydia trachomatis attachment to cells induces the secretion of the elementary body-associated protein TARP (Translocated Actin Recruiting Protein. TARP crosses the plasma membrane where it is immediately phosphorylated at tyrosine residues by unknown host kinases. The Rac GTPase is also activated, resulting in WAVE2 and Arp2/3-dependent recruitment of actin to the sites of chlamydia attachment. We show that TARP participates directly in chlamydial invasion activating the Rac-dependent signaling cascade to recruit actin. TARP functions by binding two distinct Rac guanine nucleotide exchange factors (GEFs, Sos1 and Vav2, in a phosphotyrosine-dependent manner. The tyrosine phosphorylation profile of the sequence YEPISTENIYESI within TARP, as well as the transient activation of the phosphatidylinositol 3-kinase (PI3-K, appears to determine which GEF is utilized to activate Rac. The first and second tyrosine residues, when phosphorylated, are utilized by the Sos1/Abi1/Eps8 and Vav2, respectively, with the latter requiring the lipid phosphatidylinositol 3,4,5-triphosphate. Depletion of these critical signaling molecules by siRNA resulted in inhibition of chlamydial invasion to varying degrees, owing to a possible functional redundancy of the two pathways. Collectively, these data implicate TARP in signaling to the actin cytoskeleton remodeling machinery, demonstrating a mechanism by which C.trachomatis invades non-phagocytic cells.

  16. T1R3 homomeric sweet taste receptor regulates adipogenesis through Gαs-mediated microtubules disassembly and Rho activation in 3T3-L1 cells.

    Directory of Open Access Journals (Sweden)

    Yosuke Masubuchi

    Full Text Available We previously reported that 3T3-L1 cells express a functional sweet taste receptor possibly as a T1R3 homomer that is coupled to Gs and negatively regulates adipogenesis by a Gαs-mediated but cAMP-independent mechanism. Here, we show that stimulation of this receptor with sucralose or saccharin induced disassembly of the microtubules in 3T3-L1 preadipocytes, which was attenuated by overexpression of the dominant-negative mutant of Gαs (Gαs-G226A. In contrast, overexpression of the constitutively active mutant of Gαs (Gαs-Q227L as well as treatment with cholera toxin or isoproterenol but not with forskolin caused disassembly of the microtubules. Sweetener-induced microtubule disassembly was accompanied by activation of RhoA and Rho-associated kinase (ROCK. This was attenuated with by knockdown of GEF-H1, a microtubule-localized guanine nucleotide exchange factor for Rho GTPase. Furthermore, overexpression of the dominant-negative mutant of RhoA (RhoA-T19N blocked sweetener-induced dephosphorylation of Akt and repression of PPARγ and C/EBPα in the early phase of adipogenic differentiation. These results suggest that the T1R3 homomeric sweet taste receptor negatively regulates adipogenesis through Gαs-mediated microtubule disassembly and consequent activation of the Rho/ROCK pathway.

  17. Proteomic analysis of Rac1 signaling regulation by guanine nucleotide exchange factors.

    Science.gov (United States)

    Marei, Hadir; Carpy, Alejandro; Macek, Boris; Malliri, Angeliki

    2016-08-02

    The small GTPase Rac1 is implicated in various cellular processes that are essential for normal cell function. Deregulation of Rac1 signaling has also been linked to a number of diseases, including cancer. The diversity of Rac1 functioning in cells is mainly attributed to its ability to bind to a multitude of downstream effectors following activation by Guanine nucleotide Exchange Factors (GEFs). Despite the identification of a large number of Rac1 binding partners, factors influencing downstream specificity are poorly defined, thus hindering the detailed understanding of both Rac1's normal and pathological functions. In a recent study, we demonstrated a role for 2 Rac-specific GEFs, Tiam1 and P-Rex1, in mediating Rac1 anti- versus pro-migratory effects, respectively. Importantly, via conducting a quantitative proteomic screen, we identified distinct changes in the Rac1 interactome following activation by either GEF, indicating that these opposing effects are mediated through GEF modulation of the Rac1 interactome. Here, we present the full list of identified Rac1 interactors together with functional annotation of the differentially regulated Rac1 binding partners. In light of this data, we also provide additional insights into known and novel signaling cascades that might account for the GEF-mediated Rac1-driven cellular effects.

  18. Regulation of formyl peptide receptor binding to rabbit neutrophil plasma membranes. Use of monovalent cations, guanine nucleotides, and bacterial toxins to discriminate among different states of the receptor

    International Nuclear Information System (INIS)

    Feltner, D.E.; Marasco, W.A.

    1989-01-01

    The regulation by monovalent cations, guanine nucleotides, and bacterial toxins of [3H]FMLP binding to rabbit neutrophil plasma membranes was studied by using dissociation techniques to identify regulatory effects on separate receptor states. Under conditions of low receptor occupancy (1 nM [3H]FMLP) and in both Na+ and K+ buffers, dissociation is heterogenous, displaying two distinct, statistically significant off rates. [3H]FMLP binding was enhanced by substituting other monovalent cations for Na+. In particular, enhanced binding in the presence of K+ relative to Na+ was caused by additional binding to both rapidly and slowly dissociating receptors. Three receptor dissociation rates, two of which appear to correspond to the two affinity states detected in equilibrium binding studies, were defined by specific GTP and pertussis toxin (PT) treatments. Neither GTP, nor PT or cholera toxins (CT) had an effect on the rate of dissociation of [3H]FMLP from the rapidly dissociating form of the receptor. Both 100 microM GTP and PT treatments increased the percentage of rapidly dissociating receptors, correspondingly decreasing the percentage of slowly dissociating receptors. The observed changes in the rapidly and slowly dissociating receptors after GTP, PT, and CT treatments were caused by an absolute decrease in the amount of binding to the slowly dissociating receptors. However, complete inhibition of slowly dissociating receptor binding by GTP, PT, or both was never observed. Both GTP and PT treatments, but not CT treatment, increased by two-fold the rate of dissociation of 1 nM [3H]FMLP from the slowly dissociating form of the receptor, resulting in a third dissociation rate. Thus, slowly dissociating receptors comprise two different receptor states, a G protein-associated guanine nucleotide and PT-sensitive state and a guanine nucleotide-insensitive state

  19. The domain architecture of large guanine nucleotide exchange factors for the small GTP-binding protein Arf

    Directory of Open Access Journals (Sweden)

    Geldner Niko

    2005-02-01

    Full Text Available Abstract Background Small G proteins, which are essential regulators of multiple cellular functions, are activated by guanine nucleotide exchange factors (GEFs that stimulate the exchange of the tightly bound GDP nucleotide by GTP. The catalytic domain responsible for nucleotide exchange is in general associated with non-catalytic domains that define the spatio-temporal conditions of activation. In the case of small G proteins of the Arf subfamily, which are major regulators of membrane trafficking, GEFs form a heterogeneous family whose only common characteristic is the well-characterized Sec7 catalytic domain. In contrast, the function of non-catalytic domains and how they regulate/cooperate with the catalytic domain is essentially unknown. Results Based on Sec7-containing sequences from fully-annotated eukaryotic genomes, including our annotation of these sequences from Paramecium, we have investigated the domain architecture of large ArfGEFs of the BIG and GBF subfamilies, which are involved in Golgi traffic. Multiple sequence alignments combined with the analysis of predicted secondary structures, non-structured regions and splicing patterns, identifies five novel non-catalytic structural domains which are common to both subfamilies, revealing that they share a conserved modular organization. We also report a novel ArfGEF subfamily with a domain organization so far unique to alveolates, which we name TBS (TBC-Sec7. Conclusion Our analysis unifies the BIG and GBF subfamilies into a higher order subfamily, which, together with their being the only subfamilies common to all eukaryotes, suggests that they descend from a common ancestor from which species-specific ArfGEFs have subsequently evolved. Our identification of a conserved modular architecture provides a background for future functional investigation of non-catalytic domains.

  20. Application of Ammonium Persulfate for Selective Oxidation of Guanines for Nucleic Acid Sequencing

    Directory of Open Access Journals (Sweden)

    Yafen Wang

    2017-07-01

    Full Text Available Nucleic acids can be sequenced by a chemical procedure that partially damages the nucleotide positions at their base repetition. Many methods have been reported for the selective recognition of guanine. The accurate identification of guanine in both single and double regions of DNA and RNA remains a challenging task. Herein, we present a new, non-toxic and simple method for the selective recognition of guanine in both DNA and RNA sequences via ammonium persulfate modification. This strategy can be further successfully applied to the detection of 5-methylcytosine by using PCR.

  1. p115 RhoGEF activates the Rac1 GTPase signaling cascade in MCP1 chemokine-induced vascular smooth muscle cell migration and proliferation.

    Science.gov (United States)

    Singh, Nikhlesh K; Janjanam, Jagadeesh; Rao, Gadiparthi N

    2017-08-25

    Although the involvement of Rho proteins in the pathogenesis of vascular diseases is well studied, little is known about the role of their upstream regulators, the Rho guanine nucleotide exchange factors (RhoGEFs). Here, we sought to identify the RhoGEFs involved in monocyte chemotactic protein 1 (MCP1)-induced vascular wall remodeling. We found that, among the RhoGEFs tested, MCP1 induced tyrosine phosphorylation of p115 RhoGEF but not of PDZ RhoGEF or leukemia-associated RhoGEF in human aortic smooth muscle cells (HASMCs). Moreover, p115 RhoGEF inhibition suppressed MCP1-induced HASMC migration and proliferation. Consistent with these observations, balloon injury (BI) induced p115 RhoGEF tyrosine phosphorylation in rat common carotid arteries, and siRNA-mediated down-regulation of its levels substantially attenuated BI-induced smooth muscle cell migration and proliferation, resulting in reduced neointima formation. Furthermore, depletion of p115 RhoGEF levels also abrogated MCP1- or BI-induced Rac1-NFATc1-cyclin D1-CDK6-PKN1-CDK4-PAK1 signaling, which, as we reported previously, is involved in vascular wall remodeling. Our findings also show that protein kinase N1 (PKN1) downstream of Rac1-cyclin D1/CDK6 and upstream of CDK4-PAK1 in the p115 RhoGEF-Rac1-NFATc1-cyclin D1-CDK6-PKN1-CDK4-PAK1 signaling axis is involved in the modulation of vascular wall remodeling. Of note, we also observed that CCR2-G i/o -Fyn signaling mediates MCP1-induced p115 RhoGEF and Rac1 GTPase activation. These findings suggest that p115 RhoGEF is critical for MCP1-induced HASMC migration and proliferation in vitro and for injury-induced neointima formation in vivo by modulating Rac1-NFATc1-cyclin D1-CDK6-PKN1-CDK4-PAK1 signaling. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Guanine nucleotide-binding protein regulation of melatonin receptors in lizard brain

    International Nuclear Information System (INIS)

    Rivkees, S.A.; Carlson, L.L.; Reppert, S.M.

    1989-01-01

    Melatonin receptors were identified and characterized in crude membrane preparations from lizard brain by using 125 I-labeled melatonin ( 125 I-Mel), a potent melatonin agonist. 125 I-Mel binding sites were saturable; Scatchard analysis revealed high-affinity and lower affinity binding sites, with apparent K d of 2.3 ± 1.0 x 10 -11 M and 2.06 ± 0.43 x 10 -10 M, respectively. Binding was reversible and inhibited by melatonin and closely related analogs but not by serotonin or norepinephrine. Treatment of crude membranes with the nonhydrolyzable GTP analog guanosine 5'-[γ-thio]triphosphate (GTP[γS]), significantly reduced the number of high-affinity receptors and increased the dissociation rate of 125 I-Mel from its receptor. Furthermore, GTP[γS] treatment of ligand-receptor complexes solubilized by Triton X-100 also led to a rapid dissociation of 125 I-Mel from solubilized ligand-receptor complexes. Gel filtration chromatography of solubilized ligand-receptor complexes revealed two major peaks of radioactivity corresponding to M r > 400,000 and M r ca. 110,000. This elution profile was markedly altered by pretreatment with GTP[γS] before solubilization; only the M r 110,000 peak was present in GTP[γS]-pretreated membranes. The results strongly suggest that 125 I-mel binding sites in lizard brain are melatonin receptors, with agonist-promoted guanine nucleotide-binding protein (G protein) coupling and that the apparent molecular size of receptors uncoupled from G proteins is about 110,000

  3. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide-protein complexes.

    Science.gov (United States)

    Kondo, Jiro; Westhof, Eric

    2011-10-01

    Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide-protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson-Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson-Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues.

  4. AKAP13 Rho-GEF and PKD-binding domain deficient mice develop normally but have an abnormal response to β-adrenergic-induced cardiac hypertrophy.

    Directory of Open Access Journals (Sweden)

    Matthew J Spindler

    Full Text Available A-kinase anchoring proteins (AKAPs are scaffolding molecules that coordinate and integrate G-protein signaling events to regulate development, physiology, and disease. One family member, AKAP13, encodes for multiple protein isoforms that contain binding sites for protein kinase A (PKA and D (PKD and an active Rho-guanine nucleotide exchange factor (Rho-GEF domain. In mice, AKAP13 is required for development as null embryos die by embryonic day 10.5 with cardiovascular phenotypes. Additionally, the AKAP13 Rho-GEF and PKD-binding domains mediate cardiomyocyte hypertrophy in cell culture. However, the requirements for the Rho-GEF and PKD-binding domains during development and cardiac hypertrophy are unknown.To determine if these AKAP13 protein domains are required for development, we used gene-trap events to create mutant mice that lacked the Rho-GEF and/or the protein kinase D-binding domains. Surprisingly, heterozygous matings produced mutant mice at Mendelian ratios that had normal viability and fertility. The adult mutant mice also had normal cardiac structure and electrocardiograms. To determine the role of these domains during β-adrenergic-induced cardiac hypertrophy, we stressed the mice with isoproterenol. We found that heart size was increased similarly in mice lacking the Rho-GEF and PKD-binding domains and wild-type controls. However, the mutant hearts had abnormal cardiac contractility as measured by fractional shortening and ejection fraction.These results indicate that the Rho-GEF and PKD-binding domains of AKAP13 are not required for mouse development, normal cardiac architecture, or β-adrenergic-induced cardiac hypertrophic remodeling. However, these domains regulate aspects of β-adrenergic-induced cardiac hypertrophy.

  5. Ontogenetic changes in contribution of calcium sensitization and calcium entry to blood pressure maintenance of Wistar–Kyoto and spontaneously hypertensive rats

    Czech Academy of Sciences Publication Activity Database

    Behuliak, Michal; Vavřínová, Anna; Bencze, Michal; Polgárová, Kamila; Ergang, Peter; Kuneš, Jaroslav; Vaněčková, Ivana; Zicha, Josef

    2015-01-01

    Roč. 33, č. 12 (2015), s. 2443-2454 ISSN 0263-6352 R&D Projects: GA ČR(CZ) GAP304/12/0259; GA ČR(CZ) GP14-16225P Institutional support: RVO:67985823 Keywords : Ca2+ influx * Ca2+ sensitization * CPI-17 * fasudil * isolated arteries * nifedipine * Rho guanine nucleotide exchange factors * RhoA/Rho kinase Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 5.062, year: 2015

  6. Automated NMR fragment based screening identified a novel interface blocker to the LARG/RhoA complex.

    Directory of Open Access Journals (Sweden)

    Jia Gao

    Full Text Available The small GTPase cycles between the inactive GDP form and the activated GTP form, catalyzed by the upstream guanine exchange factors. The modulation of such process by small molecules has been proven to be a fruitful route for therapeutic intervention to prevent the over-activation of the small GTPase. The fragment based approach emerging in the past decade has demonstrated its paramount potential in the discovery of inhibitors targeting such novel and challenging protein-protein interactions. The details regarding the procedure of NMR fragment screening from scratch have been rarely disclosed comprehensively, thus restricts its wider applications. To achieve a consistent screening applicable to a number of targets, we developed a highly automated protocol to cover every aspect of NMR fragment screening as possible, including the construction of small but diverse libray, determination of the aqueous solubility by NMR, grouping compounds with mutual dispersity to a cocktail, and the automated processing and visualization of the ligand based screening spectra. We exemplified our streamlined screening in RhoA alone and the complex of the small GTPase RhoA and its upstream guanine exchange factor LARG. Two hits were confirmed from the primary screening in cocktail and secondary screening over individual hits for LARG/RhoA complex, while one of them was also identified from the screening for RhoA alone. HSQC titration of the two hits over RhoA and LARG alone, respectively, identified one compound binding to RhoA.GDP at a 0.11 mM affinity, and perturbed the residues at the switch II region of RhoA. This hit blocked the formation of the LARG/RhoA complex, validated by the native gel electrophoresis, and the titration of RhoA to ¹⁵N labeled LARG in the absence and presence the compound, respectively. It therefore provides us a starting point toward a more potent inhibitor to RhoA activation catalyzed by LARG.

  7. Preparation and bioevaluation of 99mTc-carbonyl complex of guanine

    International Nuclear Information System (INIS)

    Cigdem Ichedef; Serap Teksoez; Kamile Senocak; Eser Ucar; Ayfer Yurt Kilcar

    2011-01-01

    The aim of this study is to prepare radiolabeled guanine with 99m Tc(CO) 3 + core. For this purpose, guanine has been radiolabeled with 99m Tc(CO) 3 + core. Quality control study of radiolabeled guanine molecule with 99m Tc(CO) 3 + core was performed by thin layer radio chromatography (TLRC) and high performance liquid radio chromatography (HPLRC). The results showed that the radiolabeling yield was quite high (94 ± 3%). Beside that 99m Tc(CO) 3 -Gua complex has showed good in vitro stability during the 24 h period. Radiopharmaceutical potential of this complex was evaluated in Wistar Albino Rats. It was concluded that 99m Tc(CO) 3 -Gua could be used as a nucleotide radiopharmaceutical for in vivo applications. (author)

  8. Gα12/13 signaling promotes cervical cancer invasion through the RhoA/ROCK-JNK signaling axis

    International Nuclear Information System (INIS)

    Yuan, Bo; Cui, Jinquan; Wang, Wuliang; Deng, Kehong

    2016-01-01

    Several reports have indicated a role for the members of the G12 family of heterotrimeric G proteins (Gα12 and Gα13) in oncogenesis and tumor cell growth. The aims of the present study were to evaluate the role of G12 signaling in cervical cancer. We demonstrated that expression of the G12 proteins was highly upregulated in cervical cancer cells. Additionally, expression of the activated forms of Gα12/Gα13 but not expression of activated Gαq induced cell invasion through the activation of the RhoA family of G proteins, but had no effect on cell proliferation in the cervical cancer cells. Inhibition of G12 signaling by expression of the RGS domain of the p115-Rho-specific guanine nucleotide exchange factor (p115-RGS) blocked thrombin-stimulated cell invasion, but did not inhibit cell proliferation in cervical cells, whereas the inhibition of Gαq (RGS2) had no effect. Furthermore, G12 signaling was able to activate Rho proteins, and this stimulation was inhibited by p115-RGS, and Gα12-induced invasion was blocked by an inhibitor of RhoA/B/C (C3 toxin). Pharmacological inhibition of JNK remarkably decreased G12-induced JNK activation. Both a JNK inhibitor (SP600125) and a ROCK inhibitor (Y27632) reduced G12-induced JNK and c-Jun activation, and markedly inhibited G12-induced cellular invasion. Collectively, these findings demonstrate that stimulation of G12 proteins is capable of promoting invasion through RhoA/ROCK-JNK activation. -- Highlights: •Gα12/Gα13 is upregulated in cervical cancer cell lines. •Gα12/Gα13 is not involved in cervical cancer cell proliferation. •Gα12/Gα13 promotes cervical cancer cell invasion. •The role of Rho G proteins in G12-promoted cervical cancer cell invasion. •G12 promotes cell invasion through activation of the ROCK-JNK signaling axis.

  9. Binding and Translocation of Termination Factor Rho Studied at the Single-Molecule Level

    Science.gov (United States)

    Koslover, Daniel J.; Fazal, Furqan M.; Mooney, Rachel A.; Landick, Robert; Block, Steven M.

    2012-01-01

    Rho termination factor is an essential hexameric helicase responsible for terminating 20–50% of all mRNA synthesis in E. coli. We used single- molecule force spectroscopy to investigate Rho-RNA binding interactions at the Rho- utilization (rut) site of the ? tR1 terminator. Our results are consistent with Rho complexes adopting two states, one that binds 57 ±2 nucleotides of RNA across all six of the Rho primary binding sites, and another that binds 85 ±2 nucleotides at the six primary sites plus a single secondary site situated at the center of the hexamer. The single-molecule data serve to establish that Rho translocates 5′-to-3′ towards RNA polymerase (RNAP) by a tethered-tracking mechanism, looping out the intervening RNA between the rut site and RNAP. These findings lead to a general model for Rho binding and translocation, and establish a novel experimental approach that should facilitate additional single- molecule studies of RNA-binding proteins. PMID:22885804

  10. Guanine nucleotide binding protein-like 3 is a potential prognosis indicator of gastric cancer.

    Science.gov (United States)

    Chen, Jing; Dong, Shuang; Hu, Jiangfeng; Duan, Bensong; Yao, Jian; Zhang, Ruiyun; Zhou, Hongmei; Sheng, Haihui; Gao, Hengjun; Li, Shunlong; Zhang, Xianwen

    2015-01-01

    Guanine nucleotide binding protein-like 3 (GNL3) is a GIP-binding nuclear protein that has been reported to be involved in various biological processes, including cell proliferation, cellular senescence and tumorigenesis. This study aimed to investigate the expression level of GNL3 in gastric cancer and to evaluate the relationship between its expression and clinical variables and overall survival of gastric cancer patients. The expression level of GNL3 was examined in 89 human gastric cancer samples using immunohistochemistry (IHC) staining. GNL3 in gastric cancer tissues was significantly upregulated compared with paracancerous tissues. GNL3 expression in adjacent non-cancerous tissues was associated with sex and tumor size. Survival analyses showed that GNL3 expression in both gastric cancer and adjacent non-cancerous tissues were not related to overall survival. However, in the subgroup of patients with larger tumor size (≥ 6 cm), a close association was found between GNL3 expression in gastric cancer tissues and overall survival. GNL3-positive patients had a shorter survival than GNL3-negative patients. Our study suggests that GNL3 might play an important role in the progression of gastric cancer and serve as a biomarker for poor prognosis in gastric cancer patients.

  11. The activation of RhoC in vascular endothelial cells is required for the S1P receptor type 2-induced inhibition of angiogenesis.

    Science.gov (United States)

    Del Galdo, Sabrina; Vettel, Christiane; Heringdorf, Dagmar Meyer Zu; Wieland, Thomas

    2013-12-01

    Sphingosine-1-phosphate (S1P) is a multifunctional phospholipid inducing a variety of cellular responses in endothelial cells (EC). S1P responses are mediated by five G protein coupled receptors of which three types (S1P1R-S1P3R) have been described to be of importance in vascular endothelial cells (EC). Whereas the S1P1R regulates endothelial barrier function by coupling to Gαi and the monomeric GTPase Rac1, the signaling pathways involved in the S1P-induced regulation of angiogenesis are ill defined. We therefore studied the sprouting of human umbilical vein EC (HUVEC) in vitro and analyzed the activation of the RhoGTPases RhoA and RhoC. Physiological relevant concentrations of S1P (100-300nM) induce a moderate activation of RhoA and RhoC. Inhibition or siRNA-mediated depletion of the S1P2R preferentially decreased the activation of RhoC. Both manipulations caused an increase of sprouting in a spheroid based in vitro sprouting assay. Interestingly, a similar increase in sprouting was detected after effective siRNA-mediated knockdown of RhoC. In contrast, the depletion of RhoA had no influence on sprouting. Furthermore, suppression of the activity of G proteins of the Gα12/13 subfamily by adenoviral overexpression of the regulator of G protein signaling domain of LSC as well as siRNA-mediated knockdown of the Rho specific guanine nucleotide exchange factor leukemia associated RhoGEF (LARG) inhibited the S1P-induced activation of RhoC and concomitantly increased sprouting of HUVEC with similar efficacy. We conclude that the angiogenic sprouting of EC is suppressed via the S1P2R subtype. Thus, the increase in basal sprouting can be attributed to blocking of the inhibitory action of autocrine S1P stimulating the S1P2R. This inhibitory pathway involves the activation of RhoC via Gα12/13 and LARG, while the simultaneously occurring activation of RhoA is apparently dispensable here. © 2013.

  12. BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein regulates neurite development via PI3K-AKT and ERK signaling pathways.

    Science.gov (United States)

    Zhou, C; Li, C; Li, D; Wang, Y; Shao, W; You, Y; Peng, J; Zhang, X; Lu, L; Shen, X

    2013-12-19

    The elongation of neuron is highly dependent on membrane trafficking. Brefeldin A (BFA)-inhibited guanine nucleotide-exchange protein 1 (BIG1) functions in the membrane trafficking between the Golgi apparatus and the plasma membrane. BFA, an uncompetitive inhibitor of BIG1 can inhibit neurite outgrowth and polarity development. In this study, we aimed to define the possible role of BIG1 in neurite development and to further investigate the potential mechanism. By immunostaining, we found that BIG1 was extensively colocalized with synaptophysin, a marker for synaptic vesicles in soma and partly in neurites. The amount of both protein and mRNA of BIG1 were up-regulated during rat brain development. BIG1 depletion significantly decreased the neurite length and inhibited the phosphorylation of phosphatidylinositide 3-kinase (PI3K) and protein kinase B (AKT). Inhibition of BIG1 guanine nucleotide-exchange factor (GEF) activity by BFA or overexpression of the dominant-negative BIG1 reduced PI3K and AKT phosphorylation, indicating regulatory effects of BIG1 on PI3K-AKT signaling pathway is dependent on its GEF activity. BIG1 siRNA or BFA treatment also significantly reduced extracellular signal-regulated kinase (ERK) phosphorylation. Overexpression of wild-type BIG1 significantly increased ERK phosphorylation, but the dominant-negative BIG1 had no effect on ERK phosphorylation, indicating the involvement of BIG1 in ERK signaling regulation may not be dependent on its GEF activity. Our result identified a novel function of BIG1 in neurite development. The newly recognized function integrates the function of BIG1 in membrane trafficking with the activation of PI3K-AKT and ERK signaling pathways which are critical in neurite development. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. The Juxtamembrane and carboxy-terminal domains of Arabidopsis PRK2 are critical for ROP-induced growth in pollen tubes

    Science.gov (United States)

    Polarized growth of pollen tubes is a critical step for successful reproduction in angiosperms and is controlled by ROP GTPases. Spatiotemporal activation of ROP (Rho GTPases of plants) necessitates a complex and sophisticated regulatory system, in which guanine nucleotide exchange factors (RopGEFs)...

  14. The PDZ domain of the guanine nucleotide exchange factor PDZGEF directs binding to phosphatidic acid during brush border formation.

    Directory of Open Access Journals (Sweden)

    Sarah V Consonni

    Full Text Available PDZGEF is a guanine nucleotide exchange factor for the small G protein Rap. It was recently found that PDZGEF contributes to establishment of intestinal epithelial polarity downstream of the kinase Lkb1. By binding to phosphatidic acid enriched at the apical membrane, PDZGEF locally activates Rap2a resulting in induction of brush border formation via a pathway that includes the polarity players TNIK, Mst4 and Ezrin. Here we show that the PDZ domain of PDZGEF is essential and sufficient for targeting PDZGEF to the apical membrane of polarized intestinal epithelial cells. Inhibition of PLD and consequently production of phosphatidic acid inhibitis targeting of PDZGEF to the plasma membrane. Furthermore, localization requires specific positively charged residues within the PDZ domain. We conclude that local accumulation of PDZGEF at the apical membrane during establishment of epithelial polarity is mediated by electrostatic interactions between positively charged side chains in the PDZ domain and negatively charged phosphatidic acid.

  15. Ric-8A, a Gα protein guanine nucleotide exchange factor potentiates taste receptor signaling

    Directory of Open Access Journals (Sweden)

    Claire J Fenech

    2009-10-01

    Full Text Available Taste receptors for sweet, bitter and umami tastants are G-protein coupled receptors (GPCRs. While much effort has been devoted to understanding G-protein-receptor interactions and identifying the components of the signalling cascade downstream of these receptors, at the level of the G-protein the modulation of receptor signal transduction remains relatively unexplored. In this regard a taste-specific regulator of G-protein signaling (RGS, RGS21, has recently been identified. To study whether guanine nucleotide exchange factors (GEFs are involved in the transduction of the signal downstream of the taste GPCRs we investigated the expression of Ric-8A and Ric-8B in mouse taste cells and their interaction with G-protein subunits found in taste buds. Mammalian Ric-8 proteins were initially identified as potent GEFs for a range of Gα subunits and Ric-8B has recently been shown to amplify olfactory signal transduction. We find that both Ric-8A and Ric-8B are expressed in a large portion of taste bud cells and that most of these cells contain IP3R-3 a marker for sweet, umami and bitter taste receptor cells. Ric-8A interacts with Gα-gustducin and Gαi2 through which it amplifies the signal transduction of hTas2R16, a receptor for bitter compounds. Overall, these findings are consistent with a role for Ric-8 in mammalian taste signal transduction.

  16. A Histidine pH sensor regulates activation of the Ras-specific guanine nucleotide exchange factor RasGRP1.

    Science.gov (United States)

    Vercoulen, Yvonne; Kondo, Yasushi; Iwig, Jeffrey S; Janssen, Axel B; White, Katharine A; Amini, Mojtaba; Barber, Diane L; Kuriyan, John; Roose, Jeroen P

    2017-09-27

    RasGRPs are guanine nucleotide exchange factors that are specific for Ras or Rap, and are important regulators of cellular signaling. Aberrant expression or mutation of RasGRPs results in disease. An analysis of RasGRP1 SNP variants led to the conclusion that the charge of His 212 in RasGRP1 alters signaling activity and plasma membrane recruitment, indicating that His 212 is a pH sensor that alters the balance between the inactive and active forms of RasGRP1. To understand the structural basis for this effect we compared the structure of autoinhibited RasGRP1, determined previously, to those of active RasGRP4:H-Ras and RasGRP2:Rap1b complexes. The transition from the autoinhibited to the active form of RasGRP1 involves the rearrangement of an inter-domain linker that displaces inhibitory inter-domain interactions. His 212 is located at the fulcrum of these conformational changes, and structural features in its vicinity are consistent with its function as a pH-dependent switch.

  17. Purification and crystallization of the catalytic PRONE domain of RopGEF8 and its complex with Rop4 from Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Thomas, Christoph; Weyand, Michael; Wittinghofer, Alfred; Berken, Antje

    2006-01-01

    Crystals of the catalytic PRONE domain of the guanine nucleotide exchange factor RopGEF8 and its complex with the Rho-family protein Rop4 from A. thaliana were obtained that diffract to 2.2 and 3.1 Å resolution, respectively. The PRONE domain of the guanine nucleotide exchange factor RopGEF8 (PRONE8) was purified and crystallized free and in complex with the Rho-family protein Rop4 using the hanging-drop vapour-diffusion method. PRONE8 crystals were obtained using NaCl as precipitating agent and belong to the hexagonal space group P6 5 22. Native and anomalous data sets were collected using synchrotron radiation at 100 K to 2.2 and 2.8 Å resolution, respectively. Crystals of the Rop4–PRONE8 complex belonging to space group P6 3 were obtained using Tacsimate and PEG 3350 as precipitating agents and diffracted to 3.1 Å resolution

  18. Purification and crystallization of the catalytic PRONE domain of RopGEF8 and its complex with Rop4 from Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Christoph; Weyand, Michael; Wittinghofer, Alfred; Berken, Antje, E-mail: antje.berken@mpi-dortmund.mpg.de [Department of Structural Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund (Germany)

    2006-06-01

    Crystals of the catalytic PRONE domain of the guanine nucleotide exchange factor RopGEF8 and its complex with the Rho-family protein Rop4 from A. thaliana were obtained that diffract to 2.2 and 3.1 Å resolution, respectively. The PRONE domain of the guanine nucleotide exchange factor RopGEF8 (PRONE8) was purified and crystallized free and in complex with the Rho-family protein Rop4 using the hanging-drop vapour-diffusion method. PRONE8 crystals were obtained using NaCl as precipitating agent and belong to the hexagonal space group P6{sub 5}22. Native and anomalous data sets were collected using synchrotron radiation at 100 K to 2.2 and 2.8 Å resolution, respectively. Crystals of the Rop4–PRONE8 complex belonging to space group P6{sub 3} were obtained using Tacsimate and PEG 3350 as precipitating agents and diffracted to 3.1 Å resolution.

  19. Identification of potential small molecule binding pockets on Rho family GTPases.

    Directory of Open Access Journals (Sweden)

    Juan Manuel Ortiz-Sanchez

    Full Text Available Rho GTPases are conformational switches that control a wide variety of signaling pathways critical for eukaryotic cell development and proliferation. They represent attractive targets for drug design as their aberrant function and deregulated activity is associated with many human diseases including cancer. Extensive high-resolution structures (>100 and recent mutagenesis studies have laid the foundation for the design of new structure-based chemotherapeutic strategies. Although the inhibition of Rho signaling with drug-like compounds is an active area of current research, very little attention has been devoted to directly inhibiting Rho by targeting potential allosteric non-nucleotide binding sites. By avoiding the nucleotide binding site, compounds may minimize the potential for undesirable off-target interactions with other ubiquitous GTP and ATP binding proteins. Here we describe the application of molecular dynamics simulations, principal component analysis, sequence conservation analysis, and ensemble small-molecule fragment mapping to provide an extensive mapping of potential small-molecule binding pockets on Rho family members. Characterized sites include novel pockets in the vicinity of the conformationaly responsive switch regions as well as distal sites that appear to be related to the conformations of the nucleotide binding region. Furthermore the use of accelerated molecular dynamics simulation, an advanced sampling method that extends the accessible time-scale of conventional simulations, is found to enhance the characterization of novel binding sites when conformational changes are important for the protein mechanism.

  20. Studies on the energy metabolism of opossum (Didelphis virginiana) erythrocytes: V. Utilization of hypoxanthine for the synthesis of adenine and guanine nucleotides in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Bethlenfalvay, N.C.; White, J.C.; Chadwick, E.; Lima, J.E. (Fitzsimons Army Medical Center, Aurora, CO (USA))

    1990-06-01

    High pressure liquid radiochromatography was used to test the ability of opossum erythrocytes to incorporate tracer amounts of (G-{sup 3}H) hypoxanthine (Hy) into ({sup 3}H) labelled triphosphates of adenine and guanine. In the presence of supraphysiologic (30 mM) phosphate which is optimal for PRPP synthesis, both ATP and GTP are extensively labelled. When physiologic (1 mM) medium phosphate is used, red cells incubated under an atmosphere of nitrogen accumulate ({sup 3}H) ATP in a linear fashion suggesting ongoing PRPP synthesis in red cells whose hemoglobin is deoxygenated. In contrast, a lesser increase of labelled ATP is observed in cells incubated under oxygen, suggesting that conditions for purine nucleotide formation from ambient Hy are more favorable in the venous circulation.

  1. Studies on the energy metabolism of opossum (Didelphis virginiana) erythrocytes: V. Utilization of hypoxanthine for the synthesis of adenine and guanine nucleotides in vitro

    International Nuclear Information System (INIS)

    Bethlenfalvay, N.C.; White, J.C.; Chadwick, E.; Lima, J.E.

    1990-01-01

    High pressure liquid radiochromatography was used to test the ability of opossum erythrocytes to incorporate tracer amounts of [G- 3 H] hypoxanthine (Hy) into [ 3 H] labelled triphosphates of adenine and guanine. In the presence of supraphysiologic (30 mM) phosphate which is optimal for PRPP synthesis, both ATP and GTP are extensively labelled. When physiologic (1 mM) medium phosphate is used, red cells incubated under an atmosphere of nitrogen accumulate [ 3 H] ATP in a linear fashion suggesting ongoing PRPP synthesis in red cells whose hemoglobin is deoxygenated. In contrast, a lesser increase of labelled ATP is observed in cells incubated under oxygen, suggesting that conditions for purine nucleotide formation from ambient Hy are more favorable in the venous circulation

  2. Endogenous melatonin and oxidatively damaged guanine in DNA

    Directory of Open Access Journals (Sweden)

    Poulsen Henrik E

    2009-10-01

    Full Text Available Abstract Background A significant body of literature indicates that melatonin, a hormone primarily produced nocturnally by the pineal gland, is an important scavenger of hydroxyl radicals and other reactive oxygen species. Melatonin may also lower the rate of DNA base damage resulting from hydroxyl radical attack and increase the rate of repair of that damage. This paper reports the results of a study relating the level of overnight melatonin production to the overnight excretion of the two primary urinary metabolites of the repair of oxidatively damaged guanine in DNA. Methods Mother-father-daughter(s families (n = 55 were recruited and provided complete overnight urine samples. Total overnight creatinine-adjusted 6-sulphatoxymelatonin (aMT6s/Cr has been shown to be highly correlated with total overnight melatonin production. Urinary 8-oxo-7,8-dihydro-guanine (8-oxoGua results from the repair of DNA or RNA guanine via the nucleobase excision repair pathway, while urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG may possibly result from the repair of DNA guanine via the nucleotide excision repair pathway. Total overnight urinary levels of 8-oxodG and 8-oxoGua are therefore a measure of total overnight guanine DNA damage. 8-oxodG and 8-oxoGua were measured using a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry assay. The mother, father, and oldest sampled daughter were used for these analyses. Comparisons between the mothers, fathers, and daughters were calculated for aMT6s/Cr, 8-oxodG, and 8-oxoGua. Regression analyses of 8-oxodG and 8-oxoGua on aMT6s/Cr were conducted for mothers, fathers, and daughters separately, adjusting for age and BMI (or weight. Results Among the mothers, age range 42-80, lower melatonin production (as measured by aMT6s/CR was associated with significantly higher levels of 8-oxodG (p Conclusion Low levels of endogenous melatonin production among older individuals may lead to

  3. BLOC-3 mutated in Hermansky-Pudlak syndrome is a Rab32/38 guanine nucleotide exchange factor.

    Science.gov (United States)

    Gerondopoulos, Andreas; Langemeyer, Lars; Liang, Jin-Rui; Linford, Andrea; Barr, Francis A

    2012-11-20

    Hermansky-Pudlak syndrome (HPS) is a human disease characterized by partial loss of pigmentation and impaired blood clotting. These symptoms are caused by defects in the biogenesis of melanosomes and platelet dense granules, often referred to as lysosome-related organelles. Genes mutated in HPS encode subunits of the biogenesis of lysosome-related organelles complexes (BLOCs). BLOC-1 and BLOC-2, together with the AP-3 clathrin adaptor complex, act at early endosomes to sort components required for melanin formation and melanosome biogenesis away from the degradative lysosomal pathway toward early stage melanosomes. However the molecular functions of the Hps1-Hps4 complex BLOC-3 remain mysterious. Like other trafficking pathways, melanosome biogenesis and transport of enzymes involved in pigmentation involves specific Rab GTPases, in this instance Rab32 and Rab38. We now demonstrate that BLOC-3 is a Rab32 and Rab38 guanine nucleotide exchange factor (GEF). Silencing of the BLOC-3 subunits Hps1 and Hps4 results in the mislocalization of Rab32 and Rab38 and reduction in pigmentation. In addition, we show that BLOC-3 can promote specific membrane recruitment of Rab32/38. BLOC-3 therefore defines a novel Rab GEF family with a specific function in the biogenesis of lysosome-related organelles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Platelet cytosolic 44-kDa protein is a substrate of cholera toxin-induced ADP-ribosylation and is not recognized by antisera against the α subunit of the stimulatory guanine nucleotide-binding regulatory protein

    International Nuclear Information System (INIS)

    Molina Y Vedia, L.M.; Reep, B.R.; Lapetina, E.G.

    1988-01-01

    ADP-ribosylation induced by cholera toxin and pertussis toxin was studied in particulate and cytosolic fractions of human platelets. Platelets were disrupted by a cycle of freezing and thawing in the presence of a hyposmotic buffer containing protease inhibitors. In both fractions, the A subunit of cholera toxin ADP-ribosylates two proteins with molecular masses of 42 and 44 kDa, whereas pertussis toxin ADP-ribosylates a 41-kDa polypeptide. Two antisera against the α subunit of the stimulatory guanine nucleotide-binding regulatory protein recognize only the 42-kDa polypeptide. Cholera toxin-induced ADP-ribosylation of the 42- and 44-kDa proteins is reduced by pretreatment of platelets with iloprost, a prostacyclin analog. The 44-kDa protein, which is substrate of cholera toxin, could be extracted completely from the membrane and recovered in the cytosolic fraction when the cells were disrupted by Dounce homogenization and the pellet was extensively washed. A 44-kDa protein can also be labeled with 8-azidoguanosine 5'-[α- 32 P]triphosphate in the cytosol and membranes. These finding indicate that cholera and pertussis toxins produced covalent modifications of proteins present in particulate and cytosolic platelet fractions. Moreover, the 44-kDa protein might be an α subunit of a guanine nucleotide-binding regulatory protein that is not recognized by available antisera

  5. Serine34 phosphorylation of RHO guanine dissociation inhibitor (RHOGDI{alpha}) links signaling from conventional protein kinase C to RHO GTPase in cell adhesion

    DEFF Research Database (Denmark)

    Dovas, Athanassios; Choi, Youngsil; Yoneda, Atsuko

    2010-01-01

    . Phosphospecific antibodies reveal endogenous phosphorylation in several cell types that is sensitive to adhesion events triggered, for example, by hepatocyte growth factor. Phosphorylation is also sensitive to PKC inhibition. Together with FRET microscopy sensing GTP-RhoA levels, the data reveal a common pathway...

  6. PTP-PEST targets a novel tyrosine site in p120 catenin to control epithelial cell motility and Rho GTPase activity

    Science.gov (United States)

    Espejo, Rosario; Jeng, Yowjiun; Paulucci-Holthauzen, Adriana; Rengifo-Cam, William; Honkus, Krysta; Anastasiadis, Panos Z.; Sastry, Sarita K.

    2014-01-01

    ABSTRACT Tyrosine phosphorylation is implicated in regulating the adherens junction protein, p120 catenin (p120), however, the mechanisms are not well defined. Here, we show, using substrate trapping, that p120 is a direct target of the protein tyrosine phosphatase, PTP-PEST, in epithelial cells. Stable shRNA knockdown of PTP-PEST in colon carcinoma cells results in an increased cytosolic pool of p120 concomitant with its enhanced tyrosine phosphorylation and decreased association with E-cadherin. Consistent with this, PTP-PEST knockdown cells exhibit increased motility, enhanced Rac1 and decreased RhoA activity on a collagen substrate. Furthermore, p120 localization is enhanced at actin-rich protrusions and lamellipodia and has an increased association with the guanine nucleotide exchange factor, VAV2, and cortactin. Exchange factor activity of VAV2 is enhanced by PTP-PEST knockdown whereas overexpression of a VAV2 C-terminal domain or DH domain mutant blocks cell motility. Analysis of point mutations identified tyrosine 335 in the N-terminal domain of p120 as the site of PTP-PEST dephosphorylation. A Y335F mutant of p120 failed to induce the ‘p120 phenotype’, interact with VAV2, stimulate cell motility or activate Rac1. Together, these data suggest that PTP-PEST affects epithelial cell motility by controlling the distribution and phosphorylation of p120 and its availability to control Rho GTPase activity. PMID:24284071

  7. Transduction proteins of olfactory receptor cells: identification of guanine nucleotide binding proteins and protein kinase C

    International Nuclear Information System (INIS)

    Anholt, R.R.H.; Mumby, S.M.; Stoffers, D.A.; Girard, P.R.; Kuo, J.F.; Snyder, S.H.

    1987-01-01

    The authors have analyzed guanine nucleotide binding proteins (G-proteins) in the olfactory epithelium of Rana catesbeiana using subunit-specific antisera. The olfactory epithelium contained the α subunits of three G-proteins, migrating on polyacrylamide gels in SDS with apparent molecular weights of 45,000, 42,000, and 40,000, corresponding to G/sub s/, G/sub i/, and G/sub o/, respectively. A single β subunit with an apparent molecular weight of 36,000 was detected. An antiserum against the α subunit of retinal transducin failed to detect immunoreactive proteins in olfactory cilia detached from the epithelium. The olfactory cilia appeared to be enriched in immunoreactive G/sub sα/ relative to G/sub ichemical bond/ and G/sub ochemical bond/ when compared to membranes prepared from the olfactory epithelium after detachment of the cilia. Bound antibody was detected by autoradiography after incubation with [ 125 I]protein. Immunohistochemical studies using an antiserum against the β subunit of G-proteins revealed intense staining of the ciliary surface of the olfactory epithelium and of the axon bundles in the lamina propria. In contrast, an antiserum against a common sequence of the α subunits preferentially stained the cell membranes of the olfactory receptor cells and the acinar cells of Bowman's glands and the deep submucosal glands. In addition to G-proteins, they have identified protein kinase C in olfactory cilia via a protein kinase C specific antiserum and via phorbol ester binding. However, in contrast to the G-proteins, protein kinase C occurred also in cilia isolated from respiratory epithelium

  8. Guanine nucleotide regulation of muscarinic receptor-mediated inositol phosphate formation in permeabilized 1321N1 cells

    International Nuclear Information System (INIS)

    Orellana, S.A.; Trilivas, I.; Brown, J.H.

    1986-01-01

    Carbachol and guanine nucleotides stimulate formation of the ( 3 H)inositol phosphates IP, IP2, and IP3 in saponin-permeabilized monolayers labelled with ( 3 H) inositol. Carbachol alone has little effect on formation of the ( 3 H) inositol phosphates (IPs), but GTPγS causes synergistic accumulation of ( 3 H)IPs to levels similar to those seen in intact cells. GTP, GppNHp, and GTPγS all support formation of the ( 3 H)IPs, with or without hormone, but GTPγS is the most effective. In the presence of GTPγS, the effect of carbachol is dose-dependent. Half-maximal and maximal accumulation of the ( 3 H)IPs occur at ∼ 5 μM and ∼ 100 μM carbachol, respectively; values close to those seen in intact cells. GTPγS alone stimulates formation of the ( 3 H)IPs after a brief lag time. The combination of GTPγS and carbachol both increases the rate of, and decreases the lag in, formation of the ( 3 H)IPs. LiCl increases ( 3 H)IP and IP2, but not IP3, accumulation; while 2,3-diphosphoglycerate substantially increases that of ( 3 H)IP3. GTPγS and carbachol cause formation of ( 3 H)IPs in the absence of Ca ++ , but formation induced by GTPγS with or without carbachol is Ca ++ -sensitive over a range of physiological concentrations. Although carbachol, Ca ++ , and GTPγS all have effects on formation of ( 3 H)IPs, GTPγS appears to be a primary and obligatory regulator of phosphoinositide hydrolysis in the permeabilized 1321N1 astrocytoma cell

  9. The guanine nucleotide exchange factor RIC8 regulates conidial germination through Gα proteins in Neurospora crassa.

    Directory of Open Access Journals (Sweden)

    Carla J Eaton

    Full Text Available Heterotrimeric G protein signaling is essential for normal hyphal growth in the filamentous fungus Neurospora crassa. We have previously demonstrated that the non-receptor guanine nucleotide exchange factor RIC8 acts upstream of the Gα proteins GNA-1 and GNA-3 to regulate hyphal extension. Here we demonstrate that regulation of hyphal extension results at least in part, from an important role in control of asexual spore (conidia germination. Loss of GNA-3 leads to a drastic reduction in conidial germination, which is exacerbated in the absence of GNA-1. Mutation of RIC8 leads to a reduction in germination similar to that in the Δgna-1, Δgna-3 double mutant, suggesting that RIC8 regulates conidial germination through both GNA-1 and GNA-3. Support for a more significant role for GNA-3 is indicated by the observation that expression of a GTPase-deficient, constitutively active gna-3 allele in the Δric8 mutant leads to a significant increase in conidial germination. Localization of the three Gα proteins during conidial germination was probed through analysis of cells expressing fluorescently tagged proteins. Functional TagRFP fusions of each of the three Gα subunits were constructed through insertion of TagRFP in a conserved loop region of the Gα subunits. The results demonstrated that GNA-1 localizes to the plasma membrane and vacuoles, and also to septa throughout conidial germination. GNA-2 and GNA-3 localize to both the plasma membrane and vacuoles during early germination, but are then found in intracellular vacuoles later during hyphal outgrowth.

  10. Guanine nucleotide-binding protein subunit beta-2-like 1, a new Annexin A7 interacting protein

    International Nuclear Information System (INIS)

    Du, Yue; Meng, Jinyi; Huang, Yuhong; Wu, Jun; Wang, Bo; Ibrahim, Mohammed M.; Tang, Jianwu

    2014-01-01

    Highlights: • RACK1 formed a complex with Annexin A7. • Depletion of RACK1 inhibited the proliferation, migration and invasion. • RACK1 RNAi abolished RACK1-Annexin A7 interaction. • RACK1-Annexin A7 may play a role in regulating the metastatic potentials. - Abstract: We report for the first time that Guanine nucleotide-binding protein subunit beta-2-like 1 (RACK1) formed a complex with Annexin A7. Hca-F and Hca-P are a pair of syngeneic mouse hepatocarcinoma cell lines established and maintained in our laboratory. Our previous study showed that both Annexin A7 and RACK1 were expressed higher in Hca-F (lymph node metastasis >70%) than Hca-P (lymph node metastasis <30%). Suppression of Annexin A7 expression in Hca-F cells induced decreased migration and invasion ability. In this study, knockdown of RACK1 by RNA interference (RNAi) had the same impact on metastasis potential of Hca-F cells as Annexin A7 down-regulation. Furthermore, by co-immunoprecipitation and double immunofluorescence confocal imaging, we found that RACK1 was in complex with Annexin A7 in control cells, but not in the RACK1-down-regulated cells, indicating the abolishment of RACK1-Annexin A7 interaction in Hca-F cells by RACK1 RNAi. Taken together, these results suggest that RACK1-Annexin A7 interaction may be one of the means by which RACK1 and Annexin A7 influence the metastasis potential of mouse hepatocarcinoma cells in vitro

  11. RINL, guanine nucleotide exchange factor Rab5-subfamily, is involved in the EphA8-degradation pathway with odin.

    Directory of Open Access Journals (Sweden)

    Hiroaki Kajiho

    Full Text Available The Rab family of small guanosine triphosphatases (GTPases plays a vital role in membrane trafficking. Its active GTP-bound state is driven by guanine nucleotide-exchange factors (GEFs. Ras and Rab interactor (or Ras interaction/interference-like (RINL, which contains a conserved VPS9 domain critical for GEF action, was recently identified as a new Rab5 subfamily GEF in vitro. However, its detailed function and interacting molecules have not yet been fully elucidated. Here we found that RINL has GEF activity for the Rab5 subfamily proteins by measuring their GTP-bound forms in cultured cells. We also found that RINL interacts with odin, a member of the ankyrin-repeat and sterile-alpha motif (SAM domain-containing (Anks protein family. In addition, the Eph tyrosine kinase receptor EphA8 formed a ternary complex with both RINL and odin. Interestingly, RINL expression in cultured cells reduced EphA8 levels in a manner dependent on both its GEF activity and interaction with odin. In addition, knockdown of RINL increased EphA8 level in HeLa cells. Our findings suggest that RINL, as a GEF for Rab5 subfamily, is implicated in the EphA8-degradation pathway via its interaction with odin.

  12. HIV1 V3 loop hypermutability is enhanced by the guanine usage bias in the part of env gene coding for it.

    Science.gov (United States)

    Khrustalev, Vladislav Victorovich

    2009-01-01

    Guanine is the most mutable nucleotide in HIV genes because of frequently occurring G to A transitions, which are caused by cytosine deamination in viral DNA minus strands catalyzed by APOBEC enzymes. Distribution of guanine between three codon positions should influence the probability for G to A mutation to be nonsynonymous (to occur in first or second codon position). We discovered that nucleotide sequences of env genes coding for third variable regions (V3 loops) of gp120 from HIV1 and HIV2 have different kinds of guanine usage biases. In the HIV1 reference strain and 100 additionally analyzed HIV1 strains the guanine usage bias in V3 loop coding regions (2G>1G>3G) should lead to elevated nonsynonymous G to A transitions occurrence rates. In the HIV2 reference strain and 100 other HIV2 strains guanine usage bias in V3 loop coding regions (3G>2G>1G) should protect V3 loops from hypermutability. According to the HIV1 and HIV2 V3 alignment, insertion of the sequence enriched with 2G (21 codons in length) occurred during the evolution of HIV1 predecessor, while insertion of the different sequence enriched with 3G (19 codons in length) occurred during the evolution of HIV2 predecessor. The higher is the level of 3G in the V3 coding region, the lower should be the immune escaping mutation occurrence rates. This hypothesis was tested in this study by comparing the guanine usage in V3 loop coding regions from HIV1 fast and slow progressors. All calculations have been performed by our algorithms "VVK In length", "VVK Dinucleotides" and "VVK Consensus" (www.barkovsky.hotmail.ru).

  13. Expression Pattern and Localization Dynamics of Guanine Nucleotide Exchange Factor RIC8 during Mouse Oogenesis.

    Directory of Open Access Journals (Sweden)

    Merly Saare

    Full Text Available Targeting of G proteins to the cell cortex and their activation is one of the triggers of both asymmetric and symmetric cell division. Resistance to inhibitors of cholinesterase 8 (RIC8, a guanine nucleotide exchange factor, activates a certain subgroup of G protein α-subunits in a receptor independent manner. RIC8 controls the asymmetric cell division in Caenorhabditis elegans and Drosophila melanogaster, and symmetric cell division in cultured mammalian cells, where it regulates the mitotic spindle orientation. Although intensely studied in mitosis, the function of RIC8 in mammalian meiosis has remained unknown. Here we demonstrate that the expression and subcellular localization of RIC8 changes profoundly during mouse oogenesis. Immunofluorescence studies revealed that RIC8 expression is dependent on oocyte growth and cell cycle phase. During oocyte growth, RIC8 is abundantly present in cytoplasm of oocytes at primordial, primary and secondary preantral follicle stages. Later, upon oocyte maturation RIC8 also populates the germinal vesicle, its localization becomes cell cycle dependent, and it associates with chromatin and the meiotic spindle. After fertilization, RIC8 protein converges to the pronuclei and is also detectable at high levels in the nucleolus precursor bodies of both maternal and paternal pronucleus. During first cleavage of zygote RIC8 localizes in the mitotic spindle and cell cortex of forming blastomeres. In addition, we demonstrate that RIC8 co-localizes with its interaction partners Gαi1/2:GDP and LGN in meiotic/mitotic spindle, cell cortex and polar bodies of maturing oocytes and zygotes. Downregulation of Ric8 by siRNA leads to interferred translocation of Gαi1/2 to cortical region of maturing oocytes and reduction of its levels. RIC8 is also expressed at high level in female reproductive organs e.g. oviduct. Therefore we suggest a regulatory function for RIC8 in mammalian gametogenesis and fertility.

  14. The immediate nucleotide precursor, guanosine triphosphate, in the riboflavin biosynthetic pathway

    International Nuclear Information System (INIS)

    Mitsuda, Hisateru; Nakajima, Kenji; Nadamoto, Tomonori

    1977-01-01

    In the present paper, the nucleotide precursor of riboflavin was investigated by experiments with labeled purines using non-growing cells of Eremothecium ashbyii. The added purines, at 10 -4 M, were effectively incorporated into riboflavin at an early stage of riboflavin biosynthesis under the experimental conditions. In particular, both labeled xanthine and labeled guanine were specifically transported to guanosine nucleotides, GMP, GDP, GDP-Mannose and GTP, in the course of the riboflavin biosynthesis. A comparison of specific activities of labeled guanosine nucleotides and labeled riboflavin indicated that the nucleotide precursor of riboflavin is guanosine triphosphate. From the results obtained, a biosynthetic pathway of riboflavin is proposed. (auth.)

  15. RhoA/Rho-Kinase in the Cardiovascular System.

    Science.gov (United States)

    Shimokawa, Hiroaki; Sunamura, Shinichiro; Satoh, Kimio

    2016-01-22

    Twenty years ago, Rho-kinase was identified as an important downstream effector of the small GTP-binding protein, RhoA. Thereafter, a series of studies demonstrated the important roles of Rho-kinase in the cardiovascular system. The RhoA/Rho-kinase pathway is now widely known to play important roles in many cellular functions, including contraction, motility, proliferation, and apoptosis, and its excessive activity induces oxidative stress and promotes the development of cardiovascular diseases. Furthermore, the important role of Rho-kinase has been demonstrated in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, and heart failure. Cyclophilin A is secreted by vascular smooth muscle cells and inflammatory cells and activated platelets in a Rho-kinase-dependent manner, playing important roles in a wide range of cardiovascular diseases. Thus, the RhoA/Rho-kinase pathway plays crucial roles under both physiological and pathological conditions and is an important therapeutic target in cardiovascular medicine. Recently, functional differences between ROCK1 and ROCK2 have been reported in vitro. ROCK1 is specifically cleaved by caspase-3, whereas granzyme B cleaves ROCK2. However, limited information is available on the functional differences and interactions between ROCK1 and ROCK2 in the cardiovascular system in vivo. Herein, we will review the recent advances about the importance of RhoA/Rho-kinase in the cardiovascular system. © 2016 American Heart Association, Inc.

  16. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide–protein complexes

    Science.gov (United States)

    Kondo, Jiro; Westhof, Eric

    2011-01-01

    Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide–protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson–Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson–Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues. PMID:21737431

  17. A non-catalytic N-terminal domain negatively influences the nucleotide exchange activity of translation elongation factor 1Bα.

    Science.gov (United States)

    Trosiuk, Tetiana V; Shalak, Vyacheslav F; Szczepanowski, Roman H; Negrutskii, Boris S; El'skaya, Anna V

    2016-02-01

    Eukaryotic translation elongation factor 1Bα (eEF1Bα) is a functional homolog of the bacterial factor EF-Ts, and is a component of the macromolecular eEF1B complex. eEF1Bα functions as a catalyst of guanine nucleotide exchange on translation elongation factor 1A (eEF1A). The C-terminal domain of eEF1Bα is necessary and sufficient for its catalytic activity, whereas the N-terminal domain interacts with eukaryotic translation elongation factor 1Bγ (eEF1Bγ) to form a tight complex. However, eEF1Bγ has been shown to enhance the catalytic activity of eEF1Bα attributed to the C-terminal domain of eEF1Bα. This suggests that the N-terminal domain of eEF1Bα may in some way influence the guanine nucleotide exchange process. We have shown that full-length recombinant eEF1Bα and its truncated forms are non-globular proteins with elongated shapes. Truncation of the N-terminal domain of eEF1Bα, which is dispensable for catalytic activity, resulted in acceleration of the rate of guanine nucleotide exchange on eEF1A compared to full-length eEF1Bα. A similar effect on the catalytic activity of eEF1Bα was observed after its interaction with eEF1Bγ. We suggest that the non-catalytic N-terminal domain of eEF1Bα may interfere with eEF1A binding to the C-terminal catalytic domain, resulting in a decrease in the overall rate of the guanine nucleotide exchange reaction. Formation of a tight complex between the eEF1Bγ and eEF1Bα N-terminal domains abolishes this inhibitory effect. © 2015 FEBS.

  18. Haploinsufficiency of the Sec7 guanine nucleotide exchange factor gea1 impairs septation in fission yeast.

    Directory of Open Access Journals (Sweden)

    Alan M Eckler

    Full Text Available Membrane trafficking is essential to eukaryotic life and is controlled by a complex network of proteins that regulate movement of proteins and lipids between organelles. The GBF1/GEA family of Guanine nucleotide Exchange Factors (GEFs regulates trafficking between the endoplasmic reticulum and Golgi by catalyzing the exchange of GDP for GTP on ADP Ribosylation Factors (Arfs. Activated Arfs recruit coat protein complex 1 (COP-I to form vesicles that ferry cargo between these organelles. To further explore the function of the GBF1/GEA family, we have characterized a fission yeast mutant lacking one copy of the essential gene gea1 (gea1+/-, the Schizosaccharomyces pombe ortholog of GBF1. The haploinsufficient gea1+/- strain was shown to be sensitive to the GBF1 inhibitor brefeldin A (BFA and was rescued from BFA sensitivity by gea1p overexpression. No overt defects in localization of arf1p or arf6p were observed in gea1+/- cells, but the fission yeast homolog of the COP-I cargo sac1 was mislocalized, consistent with impaired COP-I trafficking. Although Golgi morphology appeared normal, a slight increase in vacuolar size was observed in the gea1+/- mutant strain. Importantly, gea1+/- cells exhibited dramatic cytokinesis-related defects, including disorganized contractile rings, an increased septation index, and alterations in septum morphology. Septation defects appear to result from altered secretion of enzymes required for septum dynamics, as decreased secretion of eng1p, a β-glucanase required for septum breakdown, was observed in gea1+/- cells, and overexpression of eng1p suppressed the increased septation phenotype. These observations implicate gea1 in regulation of septum breakdown and establish S. pombe as a model system to explore GBF1/GEA function in cytokinesis.

  19. Influence of GDP on interaction of transducin with cyclic nucleotide phosphodiesterase and rhodopsin from bovine retinal rods

    International Nuclear Information System (INIS)

    Rybin, V.O.

    1986-01-01

    In the presence of guanine nucleotides and rhodopsin-containing membranes from bovine retinal rod outer segments transducin stimulates light-sensitive cyclic nucleotide phosphodiesterase 5.5- to 7-fold. The activation constant (K/sub act/) for GTP and Gpp(NH)p is equal to 0.25 μM, while that for GDP and GDPβS is 14 and 110 μM, respectively. GDP free of admixtures of other nucleotides does not activate phosphodiesterase at concentrations up to 1 mM, but is bound to transducin and inhibits the Gpp(NH)p-dependent activation of phosphodiesterase. The nature of the interaction of transducin with depolarized rhodopsin also depends on the type of guanine nucleotide bound: in the presence of GDP rhodopsin-containing membranes bind 70-100% of the transducin, whereas in the presence of Gpp(NH)p only 13% of the protein is bound. The data obtained indicate that GDP and GTP convert transducin to two different functional states: the transducin-GTP complex is bound to phosphodiesterase and activates it, while the transducin-GDP complex is bound primarily to rhodopsin

  20. Mouse macrophages completely lacking Rho (RhoA, RhoB and RhoC) have severe lamellipodial retraction defects, but robust chemotactic navigation and increased motility

    DEFF Research Database (Denmark)

    Koenigs, Volker; Jennings, Richard; Vogl, Thomas

    2014-01-01

    RhoA is thought to be essential for coordination of the membrane protrusions and retractions required for immune cell motility and directed migration. Whether the subfamily of Rho (Ras homolog) GTPases (RhoA, RhoB and RhoC) is actually required for the directed migration of primary cells is diffi...

  1. High energy photoproduction of the rho and rho' vector mesons

    International Nuclear Information System (INIS)

    Bronstein, J.M.

    1977-01-01

    In an experiment in the broad band photon beam at Fermilab diffractive production of 2π + and 4π +- states from Be, Al, Cu, and Pb targets was observed. The 2π + data are dominated by the rho(770) and the 4π +- is dominated by the rho'(1500). The energy dependence of rho photoproduction from Be was measured, and no evidence was seen for energy variation of the forward cross section in the range 30 to 160 GeV. The forward cross section is consistent with its average value d sigma/dtlt. slash 0 = 3.42 +- 0.28 μb/GeV 2 over the entire range. For the /sub rho'// a mass of 1487 +- 20 MeV and a width of 675 +- 60 MeV are obtained. All quoted errors are statistical. A standard optical model analysis of the A dependence of the rho and rho'/ photoproduction yields the following results. f/sub rho'/ 2 /f/sub rho/ 2 = 3.7 +- 0.7, sigma /sub rho'//sigma /sub rho/ = 1.05 +- 0.18. Results for the photon coupling constants are in good agreement with GVMD and with the e + e - storage ring results. The approximate equality of the rho-nucleon and rho'-nucleon total cross sections is inconsistent with the diagonal version of GVMD and provides strong motivation for including transitions between different vector mesons in GVMD

  2. Mutagenic and cytotoxic properties of 6-thioguanine, S6-methylthioguanine, and guanine-S6-sulfonic acid.

    Science.gov (United States)

    Yuan, Bifeng; Wang, Yinsheng

    2008-08-29

    Thiopurine drugs, including 6-thioguanine ((S)G), 6-mercaptopurine, and azathioprine, are widely employed anticancer agents and immunosuppressants. The formation of (S)G nucleotides from the thiopurine prodrugs and their subsequent incorporation into nucleic acids are important for the drugs to exert their cytotoxic effects. (S)G in DNA can be methylated by S-adenosyl-l-methionine to give S(6)-methylthioguanine (S(6)mG) and oxidized by UVA light to render guanine-S(6)-sulfonic acid ((SO3H)G). Here, we constructed single-stranded M13 shuttle vectors carrying a (S)G, S(6)mG, or (SO3H)G at a unique site and allowed the vectors to propagate in wild-type and bypass polymerase-deficient Escherichia coli cells. Analysis of the replication products by using the competitive replication and adduct bypass and a slightly modified restriction enzyme digestion and post-labeling assays revealed that, although none of the three thionucleosides considerably blocked DNA replication in all transfected E. coli cells, both S(6)mG and (SO3H)G were highly mutagenic, which resulted in G-->A mutation at frequencies of 94 and 77%, respectively, in wild-type E. coli cells. Deficiency in bypass polymerases does not result in alteration of mutation frequencies of these two lesions. In contrast to what was found from previous steady-state kinetic analysis, our data demonstrated that 6-thioguanine is mutagenic, with G-->A transition occurring at a frequency of approximately 10%. The mutagenic properties of 6-thioguanine and its derivatives revealed in the present study offered important knowledge about the biological implications of these thionucleosides.

  3. 21 CFR 73.1329 - Guanine.

    Science.gov (United States)

    2010-04-01

    ... in this subpart as safe and suitable for use in color additive mixtures for coloring externally... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1329 Guanine. (a) Identity. (1) The color additive guanine is the crystalline material obtained from fish scales and consists principally of the two purines...

  4. Regulation of follitropin-sensitive adenylate cyclase by stimulatory and inhibitory forms of the guanine nucleotide regulatory protein in immature rat Sertoli cells

    International Nuclear Information System (INIS)

    Johnson, G.P.

    1987-01-01

    Studies have been designed to examine the role of guanine nucleotides in mediating FSH-sensitive adenylate cyclase activity in Sertoli cell plasma membranes. Analysis of [ 3 H]GDP binding to plasma membranes suggested a single high affinity site with a K d = 0.24 uM. Competition studies indicated that GTP γ S was 7-fold more potent than GDP β S. Bound GDP could be released by FSH in the presence of GTP γ S, but not by FSH alone. Adenylate cyclase activity was enhanced 5-fold by FSH in the presence of GTP. Addition of GDP β S to the activated enzyme (FSH plus GTP) resulted in a time-dependent decay to basal activity within 20 sec. GDP β S competitively inhibited GTP γ S-stimulated adenylate cyclase activity with a K i = 0.18 uM. Adenylate cyclase activity was also demonstrated to be sensitive to the nucleotide bound state. In the presence of FSH, only the GTP γ S-bound form persisted even if GDP β S previously occupied all available binding sites. Two membrane proteins, M r = 43,000 and 48,000, were ADP·ribosylated using cholera toxin and labeling was enhanced 2 to 4-fold by GTP γ S but not by GDP β S. The M r = 43,000 and 48,000 proteins represented variant forms of G S . A single protein of M r = 40,000 (G i ) was ADP-ribosylated by pertussis toxin in vitro. GTP inhibited forskolin-stimulated adenylate cyclase activity with an IC 50 = 0.1 uM. The adenosine analog, N 6 ·phenylisopropyl adenosine enhanced GTP inhibition of forskolin-stimulated adenylate cyclase activity by an additional 15%. GTP-dependent inhibition of forskolin-sensitive adenylate cyclase activity was abolished in membranes prepared from Sertoli cells treated in culture with pertussis toxin

  5. Measurement of exclusive $\\rho^{+}\\rho^{-}$ production in mid-virtuality two-photon interactions and study of the $\\gamma \\gamma^{*} \\to \\rho\\rho$ process at LEP

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefiev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Jin, B.N.; Jindal, P.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofiev, D.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosemann, C.; Rosenbleck, C.; Rosier-Lees, S.; Roth, Stefan; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, An.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.

    2005-01-01

    Exclusive rho+rho- production in two-photon collisions between a quasi-real photon, gamma, and a mid-virtuality photon, gamma*, is studied with data collected at LEP at centre-of-mass energies root(s)=183-209GeV with a total integrated luminosity of 684.8pb^-1. The cross section of the gamma gamma* -> rho+ rho- process is determined as a function of the photon virtuality, Q^2, and the two-photon centre-of-mass energy, W_gg, in the kinematic region: 0.2GeV^2 rho rho process over the Q^2-region 0.2GeV^2 < Q^2 < 30 GeV^2.

  6. Mutation analysis of inhibitory guanine nucleotide binding protein alpha (GNAI) loci in young and familial pituitary adenomas.

    Science.gov (United States)

    Demir, Hande; Donner, Iikki; Kivipelto, Leena; Kuismin, Outi; Schalin-Jäntti, Camilla; De Menis, Ernesto; Karhu, Auli

    2014-01-01

    Pituitary adenomas are neoplasms of the anterior pituitary lobe and account for 15-20% of all intracranial tumors. Although most pituitary tumors are benign they can cause severe symptoms related to tumor size as well as hypopituitarism and/or hypersecretion of one or more pituitary hormones. Most pituitary adenomas are sporadic, but it has been estimated that 5% of patients have a familial background. Germline mutations of the tumor suppressor gene aryl hydrocarbon receptor-interacting protein (AIP) predispose to hereditary pituitary neoplasia. Recently, it has been demonstrated that AIP mutations predispose to pituitary tumorigenesis through defective inhibitory GTP binding protein (Gαi) signaling. This finding prompted us to examine whether germline loss-of-function mutations in inhibitory guanine nucleotide (GTP) binding protein alpha (GNAI) loci are involved in genetic predisposition of pituitary tumors. To our knowledge, this is the first time GNAI genes are sequenced in order to examine the occurrence of inactivating germline mutations. Thus far, only somatic gain-of-function hot-spot mutations have been studied in these loci. Here, we have analyzed the coding regions of GNAI1, GNAI2, and GNAI3 in a set of young sporadic somatotropinoma patients (n = 32; mean age of diagnosis 32 years) and familial index cases (n = 14), thus in patients with a disease phenotype similar to that observed in AIP mutation carriers. In addition, expression of Gαi proteins was studied in human growth hormone (GH), prolactin (PRL), adrenocorticotropic hormone (ACTH)-secreting and non-functional pituitary tumors. No pathogenic germline mutations affecting the Gαi proteins were detected. The result suggests that loss-of-function mutations of GNAI loci are rare or nonexistent in familial pituitary adenomas.

  7. Guanine holes are prominent targets for mutation in cancer and inherited disease.

    Directory of Open Access Journals (Sweden)

    Albino Bacolla

    Full Text Available Single base substitutions constitute the most frequent type of human gene mutation and are a leading cause of cancer and inherited disease. These alterations occur non-randomly in DNA, being strongly influenced by the local nucleotide sequence context. However, the molecular mechanisms underlying such sequence context-dependent mutagenesis are not fully understood. Using bioinformatics, computational and molecular modeling analyses, we have determined the frequencies of mutation at G • C bp in the context of all 64 5'-NGNN-3' motifs that contain the mutation at the second position. Twenty-four datasets were employed, comprising >530,000 somatic single base substitutions from 21 cancer genomes, >77,000 germline single-base substitutions causing or associated with human inherited disease and 16.7 million benign germline single-nucleotide variants. In several cancer types, the number of mutated motifs correlated both with the free energies of base stacking and the energies required for abstracting an electron from the target guanines (ionization potentials. Similar correlations were also evident for the pathological missense and nonsense germline mutations, but only when the target guanines were located on the non-transcribed DNA strand. Likewise, pathogenic splicing mutations predominantly affected positions in which a purine was located on the non-transcribed DNA strand. Novel candidate driver mutations and tissue-specific mutational patterns were also identified in the cancer datasets. We conclude that electron transfer reactions within the DNA molecule contribute to sequence context-dependent mutagenesis, involving both somatic driver and passenger mutations in cancer, as well as germline alterations causing or associated with inherited disease.

  8. Synthesis of Lipophilic Guanine N-9 Derivatives

    DEFF Research Database (Denmark)

    Wamberg, Michael C; Pedersen, Pernille L; Löffler, Philipp M G

    2017-01-01

    the synthesis of five new guanine-N9 derivatives bearing alkyl chains with different attachment chemistries, exploiting a synthesis pathway that allows a flexible choice of hydrophobic anchor moiety. In this study, these guanine derivatives were functionalized with C10 chains for insertion into decanoic acid...... bilayer structures, in which both alkyl chain length and attachment chemistry determined their interaction with the membrane. Incubation of these guanine conjugates, as solids, with a decanoic acid vesicle suspension, showed that ether- and triazole-linked C10 anchors yielded an increased partitioning...... of the guanine derivative into the membranous phase compared to directly N-9-linked saturated alkyl anchors. Decanoic acid vesicle membranes could be loaded with up to 5.5 mol % guanine derivative, a 6-fold increase over previous limits. Thus, anchor chemistries exhibiting favorable interactions with a bilayer...

  9. Guanine limitation results in CodY-dependent and -independent alteration of Staphylococcus aureus physiology and gene expression.

    Science.gov (United States)

    King, Alyssa N; Borkar, Samiksha; Samuels, David J; Batz, Zachary; Bulock, Logan; Sadykov, Marat R; Bayles, Kenneth W; Brinsmade, Shaun R

    2018-04-30

    In Staphylococcus aureus , the global transcriptional regulator CodY modulates the expression of hundreds of genes in response to the availability of GTP and the branched-chain amino acids isoleucine, leucine, and valine (ILV). CodY DNA-binding activity is high when GTP and ILV are abundant. When GTP and ILV are limited, CodY's affinity for DNA drops, altering expression of CodY regulated targets. In this work, we investigated the impact of guanine nucleotides on S. aureus physiology and CodY activity by constructing a guaA null mutant (Δ guaA ). De novo biosynthesis of guanine monophosphate is abolished due to the guaA mutation; thus, the mutant cells require exogenous guanosine for growth. We also found that CodY activity was reduced when we knocked out guaA , activating the Agr two-component system and increasing secreted protease activity. Notably, in a rich, complex medium, we detected an increase in alternative sigma factor B activity in the Δ guaA mutant, which results in a 5-fold increase in production of the antioxidant pigment staphyloxanthin. Under biologically relevant flow conditions, Δ guaA cells failed to form robust biofilms when limited for guanine or guanosine. RNA-seq analysis of S. aureus transcriptome during growth in guanosine-limited chemostats revealed substantial CodY-dependent and -independent alteration of gene expression profiles. Importantly, these changes increase production of proteases and δ-toxin, suggesting that S. aureus exhibits a more invasive lifestyle when limited for guanosine. Further, gene-products upregulated under GN limitation, including those necessary for lipoic acid biosynthesis and sugar transport, may prove to be useful drug targets for treating Gram-positive infections. Importance Staphylococcus aureus infections impose a serious economic burden on healthcare facilities and patients because of the emergence of strains resistant to last-line antibiotics. Understanding the physiological processes governing

  10. RhoA/Rho Kinase Mediates Neuronal Death Through Regulating cPLA2 Activation.

    Science.gov (United States)

    Wu, Xiangbing; Walker, Chandler L; Lu, Qingbo; Wu, Wei; Eddelman, Daniel B; Parish, Jonathan M; Xu, Xiao-Ming

    2017-11-01

    Activation of RhoA/Rho kinase leads to growth cone collapse and neurite retraction. Although RhoA/Rho kinase inhibition has been shown to improve axon regeneration, remyelination and functional recovery, its role in neuronal cell death remains unclear. To determine whether RhoA/Rho kinase played a role in neuronal death after injury, we investigated the relationship between RhoA/Rho kinase and cytosolic phospholipase A 2 (cPLA 2 ), a lipase that mediates inflammation and cell death, using an in vitro neuronal death model and an in vivo contusive spinal cord injury model performed at the 10th thoracic (T10) vertebral level. We found that co-administration of TNF-α and glutamate induced spinal neuron death, and activation of RhoA, Rho kinase and cPLA 2 . Inhibition of RhoA, Rho kinase and cPLA 2 significantly reduced TNF-α/glutamate-induced cell death by 33, 52 and 43 %, respectively (p < 0.001). Inhibition of RhoA and Rho kinase also significantly downregulated cPLA 2 activation by 66 and 60 %, respectively (p < 0.01). Furthermore, inhibition of RhoA and Rho kinase reduced the release of arachidonic acid, a downstream substrate of cPLA 2 . The immunofluorescence staining showed that ROCK 1 or ROCK 2 , two isoforms of Rho kinase, was co-localized with cPLA 2 in neuronal cytoplasm. Interestingly, co-immunoprecipitation (Co-IP) assay showed that ROCK 1 or ROCK 2 bonded directly with cPLA 2 and phospho-cPLA 2 . When the Rho kinase inhibitor Y27632 was applied in mice with T10 contusion injury, it significantly decreased cPLA 2 activation and expression and reduced injury-induced apoptosis at and close to the lesion site. Taken together, our results reveal a novel mechanism of RhoA/Rho kinase-mediated neuronal death through regulating cPLA 2 activation.

  11. Hyperosmotic stress regulates the distribution and stability of myocardin-related transcription factor, a key modulator of the cytoskeleton

    DEFF Research Database (Denmark)

    Ly, Donald L.; Waheed, Faiza; Lodyga, Monika

    2013-01-01

    Hyperosmotic stress initiates several adaptive responses, including the remodeling of the cytoskeleton. Besides maintaining structural integrity, the cytoskeleton has emerged as an important regulator of gene transcription. Myocardin-related transcription factor (MRTF), an actin-regulated coactiv......Hyperosmotic stress initiates several adaptive responses, including the remodeling of the cytoskeleton. Besides maintaining structural integrity, the cytoskeleton has emerged as an important regulator of gene transcription. Myocardin-related transcription factor (MRTF), an actin......-regulated coactivator of serum response factor, is a major link between the actin skeleton and transcriptional control. We therefore investigated whether MRTF is regulated by hyperosmotic stress. Here we show that hypertonicity induces robust, rapid, and transient translocation of MRTF from the cytosol to the nucleus...... in kidney tubular cells. We found that the hyperosmolarity-triggered MRTF translocation is mediated by the RhoA/Rho kinase (ROK) pathway. Moreover, the Rho guanine nucleotide exchange factor GEF-H1 is activated by hyperosmotic stress, and it is a key contributor to the ensuing RhoA activation and MRTF...

  12. Differential binding of RhoA, RhoB, and RhoC to protein kinase C-related kinase (PRK) isoforms PRK1, PRK2, and PRK3: PRKs have the highest affinity for RhoB.

    Science.gov (United States)

    Hutchinson, Catherine L; Lowe, Peter N; McLaughlin, Stephen H; Mott, Helen R; Owen, Darerca

    2013-11-12

    Protein kinase C-related kinases (PRKs) are members of the protein kinase C superfamily of serine-threonine kinases and can be activated by binding to members of the Rho family of GTPases via a Rho-binding motif known as an HR1 domain. Three tandem HR1 domains reside at the N-terminus of the PRKs. We have assessed the ability of the HR1a and HR1b domains from the three PRK isoforms (PRK1, PRK2, and PRK3) to interact with the three Rho isoforms (RhoA, RhoB, and RhoC). The affinities of RhoA and RhoC for a construct encompassing both PRK1 HR1 domains were similar to those for the HR1a domain alone, suggesting that these interactions are mediated solely by the HR1a domain. The affinities of RhoB for both the PRK1 HR1a domain and the HR1ab didomain were higher than those of RhoA or RhoC. RhoB also bound more tightly to the didomain than to the HR1a domain alone, implicating the HR1b domain in the interaction. As compared with PRK1 HR1 domains, PRK2 and PRK3 domains bind less well to all Rho isoforms. Uniquely, however, the PRK3 domains display a specificity for RhoB that requires both the C-terminus of RhoB and the PRK3 HR1b domain. The thermal stability of the HR1a and HR1b domains was also investigated. The PRK2 HR1a domain was found to be the most thermally stable, while PRK2 HR1b, PRK3 HR1a, and PRK3 HR1b domains all exhibited lower melting temperatures, similar to that of the PRK1 HR1a domain. The lower thermal stability of the PRK2 and PRK3 HR1b domains may impart greater flexibility, driving their ability to interact with Rho isoforms.

  13. Ball with hair: modular functionalization of highly stable G-quadruplex DNA nano-scaffolds through N2-guanine modification.

    Science.gov (United States)

    Lech, Christopher Jacques; Phan, Anh Tuân

    2017-06-20

    Functionalized nanoparticles have seen valuable applications, particularly in the delivery of therapeutic and diagnostic agents in biological systems. However, the manufacturing of such nano-scale systems with the consistency required for biological application can be challenging, as variation in size and shape have large influences in nanoparticle behavior in vivo. We report on the development of a versatile nano-scaffold based on the modular functionalization of a DNA G-quadruplex. DNA sequences are functionalized in a modular fashion using well-established phosphoramidite chemical synthesis with nucleotides containing modification of the amino (N2) position of the guanine base. In physiological conditions, these sequences fold into well-defined G-quadruplex structures. The resulting DNA nano-scaffolds are thermally stable, consistent in size, and functionalized in a manner that allows for control over the density and relative orientation of functional chemistries on the nano-scaffold surface. Various chemistries including small modifications (N2-methyl-guanine), bulky aromatic modifications (N2-benzyl-guanine), and long chain-like modifications (N2-6-amino-hexyl-guanine) are tested and are found to be generally compatible with G-quadruplex formation. Furthermore, these modifications stabilize the G-quadruplex scaffold by 2.0-13.3 °C per modification in the melting temperature, with concurrent modifications producing extremely stable nano-scaffolds. We demonstrate the potential of this approach by functionalizing nano-scaffolds for use within the biotin-avidin conjugation approach. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. A Steric-inhibition model for regulation of nucleotide exchange via the Dock180 family of GEFs.

    Science.gov (United States)

    Lu, Mingjian; Kinchen, Jason M; Rossman, Kent L; Grimsley, Cynthia; Hall, Matthew; Sondek, John; Hengartner, Michael O; Yajnik, Vijay; Ravichandran, Kodi S

    2005-02-22

    CDM (CED-5, Dock180, Myoblast city) family members have been recently identified as novel, evolutionarily conserved guanine nucleotide exchange factors (GEFs) for Rho-family GTPases . They regulate multiple processes, including embryonic development, cell migration, apoptotic-cell engulfment, tumor invasion, and HIV-1 infection, in diverse model systems . However, the mechanism(s) of regulation of CDM proteins has not been well understood. Here, our studies on the prototype member Dock180 reveal a steric-inhibition model for regulating the Dock180 family of GEFs. At basal state, the N-terminal SH3 domain of Dock180 binds to the distant catalytic Docker domain and negatively regulates the function of Dock180. Further studies revealed that the SH3:Docker interaction sterically blocks Rac access to the Docker domain. Interestingly, ELMO binding to the SH3 domain of Dock180 disrupted the SH3:Docker interaction, facilitated Rac access to the Docker domain, and contributed to the GEF activity of the Dock180/ELMO complex. Additional genetic rescue studies in C. elegans suggested that the regulation of the Docker-domain-mediated GEF activity by the SH3 domain and its adjoining region is evolutionarily conserved. This steric-inhibition model may be a general mechanism for regulating multiple SH3-domain-containing Dock180 family members and may have implications for a variety of biological processes.

  15. The Role of RhoA, RhoB and RhoC GTPases in Cell Morphology, Proliferation and Migration in Human Cytomegalovirus (HCMV Infected Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Melpomeni Tseliou

    2016-01-01

    Full Text Available Background/Aims: Rho GTPases are crucial regulators of the actin cytoskeleton, membrane trafficking and cell signaling and their importance in cell migration and invasion is well- established. The human cytomegalovirus (HCMV is a widespread pathogen responsible for generally asymptomatic and persistent infections in healthy people. Recent evidence indicates that HCMV gene products are expressed in over 90% of malignant type glioblastomas (GBM. In addition, the HCMV Immediate Early-1 protein (IE1 is expressed in >90% of tumors analyzed. Methods: RhoA, RhoB and RhoC were individually depleted in U373MG glioblastoma cells as well as U373MG cells stably expressing the HCMV IE1 protein (named U373MG-IE1 cells shRNA lentivirus vectors. Cell proliferation assays, migration as well as wound-healing assays were performed in uninfected and HCMV-infected cells. Results: The depletion of RhoA, RhoB and RhoC protein resulted in significant alterations in the morphology of the uninfected cells, which were further enhanced by the cytopathic effect caused by HCMV. Furthermore, in the absence or presence of HCMV, the knockdown of RhoB and RhoC proteins decreased the proliferation rate of the parental and the IE1-expressing glioblastoma cells, whereas the knockdown of RhoA protein in the HCMV infected cell lines restored their proliferation rate. In addition, wound healing assays in U373MG cells revealed that depletion of RhoA, RhoB and RhoC differentially reduced their migration rate, even in the presence or the absence of HCMV. Conclusion: Collectively, these data show for the first time a differential implication of Rho GTPases in morphology, proliferation rate and motility of human glioblastoma cells during HCMV infection, further supporting an oncomodulatory role of HCMV depending on the Rho isoforms' state.

  16. Rho GTPases and cancer

    DEFF Research Database (Denmark)

    Li, Hui; Peyrollier, Karine; Kilic, Gülcan

    2014-01-01

    Rho GTPases are a family of small GTPases, which play an important role in the regulation of the actin cytoskeleton. Not surprisingly, Rho GTPases are crucial for cell migration and therefore highly important for cancer cell invasion and the formation of metastases. In addition, Rho GTPases...... are involved in growth and survival of tumor cells, in the interaction of tumor cells with their environment, and they are vital for the cancer supporting functions of the tumor stroma. Recent research has significantly improved our understanding of the regulation of Rho GTPase activity, the specificity of Rho...

  17. A GAP that Divides [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Angika Basant

    2017-10-01

    Full Text Available Cytokinesis in metazoan cells is mediated by an actomyosin-based contractile ring that assembles in response to activation of the small GTPase RhoA. The guanine nucleotide exchange factor that activates RhoA during cytokinesis, ECT-2, is highly regulated. In most metazoan cells, with the notable exception of the early Caenorhabditis elegans embryo, RhoA activation and furrow ingression require the centralspindlin complex. This exception is due to the existence of a parallel pathway for RhoA activation in C. elegans. Centralspindlin contains CYK-4 which contains a predicted Rho family GTPase-activating protein (GAP domain. The function of this domain has been the subject of considerable debate. Some publications suggest that the GAP domain promotes RhoA activation (for example, Zhang and Glotzer, 2015; Loria, Longhini and Glotzer, 2012, whereas others suggest that it functions to inactivate the GTPase Rac1 (for example, Zhuravlev et al., 2017. Here, we review the mechanisms underlying RhoA activation during cytokinesis, primarily focusing on data in C. elegans. We highlight the importance of considering the parallel pathway for RhoA activation and detailed analyses of cyk-4 mutant phenotypes when evaluating the role of the GAP domain of CYK-4.

  18. [3H]WB4101 labels the 5-HT1A serotonin receptor subtype in rat brain. Guanine nucleotide and divalent cation sensitivity

    International Nuclear Information System (INIS)

    Norman, A.B.; Battaglia, G.; Creese, I.

    1985-01-01

    In the presence of a 30 nM prazosin mask, [ 3 H]-2-(2,6-dimethoxyphenoxyethyl) aminomethyl-1,4-benzodioxane ([ 3 H]WB4101) can selectively label 5-HT1 serotonin receptors. Serotonin exhibits high affinity (Ki = 2.5 nM) and monophasic competition for [ 3 H] WB4101 binding in cerebral cortex. We have found a significant correlation (r = 0.96) between the affinities of a number of serotonergic and nonserotonergic compounds at [ 3 H]WB4101-binding sites in the presence of 30 nM prazosin and [ 3 H] lysergic acid diethylamide ([ 3 H]LSD)-labeled 5-HT1 serotonin receptors in homogenates of rat cerebral cortex. Despite similar pharmacological profiles, distribution studies indicate that, in the presence of 5 mM MgSO4, the Bmax of [ 3 H]WB4101 is significantly lower than the Bmax of [ 3 H]LSD in various brain regions. WB4101 competition for [ 3 H] LSD-labeled 5-HT1 receptors fits best to a computer-derived model assuming two binding sites, with the KH for WB4101 being similar to the KD of [ 3 H]WB4101 binding derived from saturation experiments. This suggests that [ 3 H]WB4101 labels only one of the subtypes of the 5-HT1 serotonin receptors labeled by [ 3 H]LSD. The selective 5-HT1A serotonin receptor antagonist, spiperone, and the selective 5-HT1A agonist, 8-hydroxy-2-(di-n-propylamino) tetraline, exhibit high affinity and monophasic competition for [ 3 H]WB4101 but compete for multiple [ 3 H]LSD 5-HT1 binding sites. These data indicate that [ 3 H]WB4101 selectively labels the 5-HT1A serotonin receptor, whereas [ 3 H] LSD appears to label both the 5-HT1A and the 5-HT1B serotonin receptor subtypes. The divalent cations, Mn2+, Mg2+, and Ca2+ were found to markedly increase the affinity and Bmax of [ 3 H]WB4101 binding in cerebral cortex. Conversely, the guanine nucleotides guanylylimidodiphosphate and GTP, but not the adenosine nucleotide ATP, markedly reduce the Bmax of [ 3 H]WB4101 binding

  19. Arhgap28 is a RhoGAP that inactivates RhoA and downregulates stress fibers.

    Directory of Open Access Journals (Sweden)

    Ching-Yan Chloé Yeung

    Full Text Available The small GTPase RhoA is a major regulator of actin reorganization during the formation of stress fibers; thus identifying molecules that regulate Rho activity is necessary for a complete understanding of the mechanisms that determine cell contractility. Here, we have identified Arhgap28 as a Rho GTPase activating protein (RhoGAP that switches RhoA to its inactive form. We generated an Arhgap28-LacZ reporter mouse that revealed gene expression in soft tissues at E12.5, pre-bone structures of the limb at E15.5, and prominent expression restricted mostly to ribs and limb long bones at E18.5 days of development. Expression of recombinant Arhgap28-V5 in human osteosarcoma SaOS-2 cells caused a reduction in the basal level of RhoA activation and disruption of actin stress fibers. Extracellular matrix assembly studies using a 3-dimensional cell culture system showed that Arhgap28 was upregulated during Rho-dependent assembly of the ECM. Taken together, these observations led to the hypothesis that an Arhgap28 knockout mouse model would show a connective tissue phenotype, perhaps affecting bone. Arhgap28-null mice were viable and appeared normal, suggesting that there could be compensation from other RhoGAPs. Indeed, we showed that expression of Arhgap6 (a closely related RhoGAP was upregulated in Arhgap28-null bone tissue. An upregulation in RhoA expression was also detected suggesting that Arhgap28 may be able to additionally regulate Rho signaling at a transcriptional level. Microarray analyses revealed that Col2a1, Col9a1, Matn3, and Comp that encode extracellular matrix proteins were downregulated in Arhgap28-null bone. Although mutations in these genes cause bone dysplasias no bone phenotype was detected in the Arhgap-28 null mice. Together, these data suggest that the regulation of Rho by RhoGAPs, including Arhgap28, during the assembly and development of mechanically strong tissues is complex and may involve multiple RhoGAPs.

  20. Measurement of Exclusive $\\rho^+ \\rho^-$ Production in High-$Q^2$ Two-Photon Collisions at LEP

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosemann, C.; Rosenbleck, C.; Rosier-Lees, S.; Roth, Stefan; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, An.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.

    2004-01-01

    Exclusive rho^+ rho^- production in two-photon collisions involving a single highly-virtual photon is studied with data collected at LEP at centre-of-mass energies 89 GeV rho^+ rho^- is determined as a function of the photon virtuality, Q^2, and the two-photon centre-of-mass energy, W_gg, in the kinematic region: 1.2 GeV^2 rho^0 rho^0, measured in the same kinematic region by L3, and to have similar W_gg and Q^2 dependences.

  1. Effects of chronic Δ9-tetrahydrocannabinol treatment on Rho/Rho-kinase signalization pathway in mouse brain

    Directory of Open Access Journals (Sweden)

    Halil Mahir Kaplan

    2017-11-01

    Full Text Available Δ9-Tetrahydrocannabinol (Δ9-THC shows its effects by activating cannabinoid receptors which are on some tissues and neurons. Cannabinoid systems have role on cell proliferation and development of neurons. Furthermore, it is interesting that cannabinoid system and rho/rho-kinase signalization pathway, which have important role on cell development and proliferation, may have role on neuron proliferation and development together. Thus, a study is planned to investigate rhoA and rho-kinase enzyme expressions and their activities in the brain of chronic Δ9-THC treated mice. One group of mice are treated with Δ9-THC once to see effects of acute treatment. Another group of mice are treated with Δ9-THC three times per day for one month. After this period, rhoA and rho-kinase enzyme expressions and their activities in mice brains are analyzed by ELISA method. Chronic administration of Δ9-THC decreased the expression of rhoA while acute treatment has no meaningful effect on it. Administration of Δ9-THC did not affect expression of rho-kinase on both chronic and acute treatment. Administration of Δ9-THC increased rho-kinase activity on both chronic and acute treatment, however, chronic treatment decreased its activity with respect to acute treatment. This study showed that chronic Δ9-THC treatment down-regulated rhoA expression and did not change the expression level of rho-kinase which is downstream effector of rhoA. However, it elevated the rho-kinase activity. Δ9-THC induced down-regulation of rhoA may cause elevation of cypin expression and may have benefit on cypin related diseases. Furthermore, use of rho-kinase inhibitors and Δ9-THC together can be useful on rho-kinase related diseases.

  2. Silencing of RhoA and RhoC expression by RNA interference suppresses human colorectal carcinoma growth in vivo

    Directory of Open Access Journals (Sweden)

    Wang Haibo

    2010-09-01

    Full Text Available Abstract Background RhoA and RhoC have been proved to be over-expressed in many solid cancers, including colorectal cancer. The reduction of RhoA and RhoC expression by RNA interference (RNAi resulted growth inhibition of cancer cells. The present study was to evaluate the effect of silencing of RhoA and RhoC expression by RNAi on growth of human colorectal carcinoma (CRC in tumor-bearing nude mice in vivo. Methods To establish HCT116 cell transplantable model, the nude mice were subcutaneously inoculated with 1.0 × 107 HCT116 cells and kept growing till the tumor xenografts reached 5-7 mm in diameter. Then the mice were randomly assigned to three groups(seven mice in each group: (1 normal saline(NS group, (2replication-defective recombinant adenovirus carrying the negative control shRNA (Ad-HK group and (3replication-defective recombinant adenovirus carrying the 4-tandem linked RhoA and RhoC shRNAs (Ad-RhoA-RhoC group. Ad-HK (4 × 108 pfu, 30 ul/mouse, Ad-RhoA-RhoC (4 × 108 pfu, 30 ul/mouse or PBS (30 ul/mouse was injected intratumorally four times once every other day. The weight and volumes of tumor xenografts were recorded. The levels of RhoA and RhoC mRNA transcripts and proteins in tumor xenografts were detected by reverse quantitative transcription polymerase chain reaction (QRT-PCR and immunohistochemical staining respectively. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL assay was used to detect the death of cells. Results The xenografts in mice could be seen at 5th day from the implantation of HCT116 cells and all had reached 5-7 mm in size at 9th day. After injection intratumorally, the growth speed of tumor xenografts in Ad-RhoA-RhoC group was significantly delayed compared with those in NS and Ad-HK group(P RhoA and RhoC reduced more in Ad-RhoA-RhoC group than those in NS and Ad-HK group. The relative RhoA and RhoC mRNA transcripts were decreased to 48% and 43% respectively (P RhoA and Rho

  3. Structural and Functional Studies on Nucleotide Excision Repair From Recognition to Incision.

    Energy Technology Data Exchange (ETDEWEB)

    Caroline Kisker

    2001-01-01

    Maintenance of the correct genetic information is crucial for all living organisms because mutations are the primary cause of hereditary diseases, as well as cancer and may also be involved in aging. The importance of genomic integrity is underscored by the fact that 80 to 90% of all human cancers are ultimately due to DNA damage. Among the different repair mechanisms that have evolved to protect the genome, nucleotide excision repair (NER) is a universal pathway found in all organisms. NER removes a wide variety of bulky DNA adducts including the carcinogenic cyclobutane pyrimidine dimers induced by UV radiation, benzo(a)pyrene-guanine adducts caused by smoking and the guanine-cisplatin adducts induced by chemotherapy. The importance of this repair mechanism is reflected by three severe inherited diseases in humans, which are due to defects in NER: xeroderma pigmentosum, Cockayne's syndrome and trichothiodystrophy.

  4. Electron detachment of the hydrogen-bonded amino acid side-chain guanine complexes

    Science.gov (United States)

    Wang, Jing; Gu, Jiande; Leszczynski, Jerzy

    2007-07-01

    The photoelectron spectra of the hydrogen-bonded amino acid side-chain-guanine complexes has been studied at the partial third order (P3) self-energy approximation of the electron propagator theory. The correlation between the vertical electron detachment energy and the charge distributions on the guanine moiety reveals that the vertical electron detachment energy (VDE) increases as the positive charge distribution on the guanine increases. The low VDE values determined for the negatively charged complexes of the guanine-side-chain-group of Asp/Glu suggest that the influence of the H-bonded anionic groups on the VDE of guanine could be more important than that of the anionic backbone structure. The even lower vertical electron detachment energy for guanine is thus can be expected in the H-bonded protein-DNA systems.

  5. Exchange mechanisms for $\\pi^{-}p\\rightarrow\\rho^{0}$n and $\\rho-\\omega$ interference

    CERN Document Server

    Estabrooks, P G; Michael, C

    1974-01-01

    The 17 GeV/c pi /sup -/p to rho /sup 0/n production amplitudes are decomposed into pi , A/sub 2/ and non-evasive exchange contributions. Independent support for this description comes from the observed rho - omega interference effects and from the energy dependence of rho /sup 0/ production data. (18 refs).

  6. The atypical Rho GTPase RhoD is a regulator of actin cytoskeleton dynamics and directed cell migration

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Magdalena; Reis, Katarina [Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm (Sweden); Heldin, Johan [Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala SE-751 22 Uppsala (Sweden); Kreuger, Johan [Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala (Sweden); Aspenström, Pontus, E-mail: pontus.aspenstrom@ki.se [Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm (Sweden)

    2017-03-15

    RhoD belongs to the Rho GTPases, a protein family responsible for the regulation and organization of the actin cytoskeleton, and, consequently, many cellular processes like cell migration, cell division and vesicle trafficking. Here, we demonstrate that the actin cytoskeleton is dynamically regulated by increased or decreased protein levels of RhoD. Ectopic expression of RhoD has previously been shown to give an intertwined weave of actin filaments. We show that this RhoD-dependent effect is detected in several cell types and results in a less dynamic actin filament system. In contrast, RhoD depletion leads to increased actin filament-containing structures, such as cortical actin, stress fibers and edge ruffles. Moreover, vital cellular functions such as cell migration and proliferation are defective when RhoD is silenced. Taken together, we present data suggesting that RhoD is an important component in the control of actin dynamics and directed cell migration. - Highlights: • Increased RhoD expression leads to loss of actin structures, e.g. stress fibers and gives rise to decreased actin dynamics. • RhoD knockdown induces various actin-containing structures such as edge ruffles, stress fibers and cortical actin, in a cell-type specific manner. • RhoD induces specific actin rearrangements depending on its subcellular localization. • RhoD knockdown has effects on cellular processes, such as directed cell migration and proliferation.

  7. The atypical Rho GTPase RhoD is a regulator of actin cytoskeleton dynamics and directed cell migration

    International Nuclear Information System (INIS)

    Blom, Magdalena; Reis, Katarina; Heldin, Johan; Kreuger, Johan; Aspenström, Pontus

    2017-01-01

    RhoD belongs to the Rho GTPases, a protein family responsible for the regulation and organization of the actin cytoskeleton, and, consequently, many cellular processes like cell migration, cell division and vesicle trafficking. Here, we demonstrate that the actin cytoskeleton is dynamically regulated by increased or decreased protein levels of RhoD. Ectopic expression of RhoD has previously been shown to give an intertwined weave of actin filaments. We show that this RhoD-dependent effect is detected in several cell types and results in a less dynamic actin filament system. In contrast, RhoD depletion leads to increased actin filament-containing structures, such as cortical actin, stress fibers and edge ruffles. Moreover, vital cellular functions such as cell migration and proliferation are defective when RhoD is silenced. Taken together, we present data suggesting that RhoD is an important component in the control of actin dynamics and directed cell migration. - Highlights: • Increased RhoD expression leads to loss of actin structures, e.g. stress fibers and gives rise to decreased actin dynamics. • RhoD knockdown induces various actin-containing structures such as edge ruffles, stress fibers and cortical actin, in a cell-type specific manner. • RhoD induces specific actin rearrangements depending on its subcellular localization. • RhoD knockdown has effects on cellular processes, such as directed cell migration and proliferation.

  8. QCD factorizations in {gamma}*{gamma}*->{rho}{sub L}{sup 0}{rho}{sub L}{sup 0}

    Energy Technology Data Exchange (ETDEWEB)

    Pire, B. [CPHT, Unite mixte 7644 du CNRS, Ecole Polytechnique, 91128 Palaiseau (France)]. E-mail: pire@cpht.polytechnique.fr; Segond, M. [LPT, Unite mixte 8627 du CNRS, Universite Paris-Sud, 91405 Orsay (France); Szymanowski, L. [LPT, Unite mixte 8627 du CNRS, Universite Paris-Sud, 91405 Orsay (France); Universite de Liege, B-4000 Liege (Belgium); Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland); Wallon, S. [LPT, Unite mixte 8627 du CNRS. , Universite Paris-Sud, 91405 Orsay (France)

    2006-08-24

    We calculate the lowest order QCD amplitude, i.e. the quark exchange contribution, to the forward production amplitude of a pair of longitudinally polarized {rho} mesons in the scattering of two virtual photons {gamma}*(Q{sub 1}){gamma}*(Q{sub 2})->{rho}{sub L}{sup 0}{rho}{sub L}{sup 0}. We show that the scattering amplitude simultaneously factorizes in two quite different ways: the part with transverse photons is described by the QCD factorization formula involving the generalized distribution amplitude of two final {rho} mesons, whereas the part with longitudinally polarized photons takes the QCD factorized form with the {gamma}{sub L}*->{rho}{sub L}{sup 0} transition distribution amplitude. Perturbative expressions for these, in general, non-perturbative functions are obtained in terms of the {rho}-meson distribution amplitude.

  9. Rho GTPase expression in human myeloid cells.

    Directory of Open Access Journals (Sweden)

    Suzanne F G van Helden

    Full Text Available Myeloid cells are critical for innate immunity and the initiation of adaptive immunity. Strict regulation of the adhesive and migratory behavior is essential for proper functioning of these cells. Rho GTPases are important regulators of adhesion and migration; however, it is unknown which Rho GTPases are expressed in different myeloid cells. Here, we use a qPCR-based approach to investigate Rho GTPase expression in myeloid cells.We found that the mRNAs encoding Cdc42, RhoQ, Rac1, Rac2, RhoA and RhoC are the most abundant. In addition, RhoG, RhoB, RhoF and RhoV are expressed at low levels or only in specific cell types. More differentiated cells along the monocyte-lineage display lower levels of Cdc42 and RhoV, while RhoC mRNA is more abundant. In addition, the Rho GTPase expression profile changes during dendritic cell maturation with Rac1 being upregulated and Rac2 downregulated. Finally, GM-CSF stimulation, during macrophage and osteoclast differentiation, leads to high expression of Rac2, while M-CSF induces high levels of RhoA, showing that these cytokines induce a distinct pattern. Our data uncover cell type specific modulation of the Rho GTPase expression profile in hematopoietic stem cells and in more differentiated cells of the myeloid lineage.

  10. The atypical structure and function of newborn arterial endothelium is mediated by Rho/Rho kinase signaling.

    Science.gov (United States)

    Flavahan, Sheila; Flavahan, Nicholas A

    2014-08-15

    Endothelium of fetal or newborn arteries is atypical, displaying actin stress fibers and reduced nitric oxide (NO)-mediated dilatation. This study tested the hypothesis that Rho/Rho kinase signaling, which promotes endothelial stress fibers and inhibits endothelial dilatation, contributed to this phenotype. Carotid arteries were isolated from newborn [postnatal day 1 (P1)], P7, and P21 mice. Endothelial dilatation to acetylcholine (pressure myograph) was minimal at P1, increased at P7, and further increased at P21. Inhibition of Rho (C3 transferase) or Rho kinase (Y27632, fasudil) significantly increased dilatation to acetylcholine in P1 arteries but had no effect in P7 or P21 arteries. After inhibition of NO synthase (N(G)-nitro-l-arginine methyl ester), Rho kinase inhibition no longer increased acetylcholine responses in P1 arteries. Rho kinase inhibition did not affect dilatation to the NO donor DEA-NONOate. The endothelial actin cytoskeleton was labeled with phalloidin and visualized by laser-scanning microscopy. In P1 arteries, the endothelium had prominent transcytoplasmic stress fibers, whereas in P7 and P21 arteries, the actin fibers had a significantly reduced intensity and were restricted to cell borders. Phosphorylation of myosin light chains, a Rho kinase substrate, was highest in P1 endothelium and significantly reduced in P7 and P21 endothelium (laser-scanning microscopy). In P1 arteries, inhibition of Rho (C3 transferase) or Rho kinase (Y27632) significantly reduced the intensity of actin fibers, which were restricted to cell borders. Similarly, in P1 arteries, Rho inhibition significantly reduced endothelial levels of phosphorylated myosin light chains. These results indicate that the atypical function and morphology of newborn endothelium is mediated by Rho/Rho kinase signaling. Copyright © 2014 the American Physiological Society.

  11. Different effects of guanine nucleotides (GDP and GTP) on protein-mediated mitochondrial proton leak.

    Science.gov (United States)

    Woyda-Ploszczyca, Andrzej M; Jarmuszkiewicz, Wieslawa

    2014-01-01

    In this study, we compared the influence of GDP and GTP on isolated mitochondria respiring under conditions favoring oxidative phosphorylation (OXPHOS) and under conditions excluding this process, i.e., in the presence of carboxyatractyloside, an adenine nucleotide translocase inhibitor, and/or oligomycin, an FOF1-ATP synthase inhibitor. Using mitochondria isolated from rat kidney and human endothelial cells, we found that the action of GDP and GTP can differ diametrically depending on the conditions. Namely, under conditions favoring OXPHOS, both in the absence and presence of linoleic acid, an activator of uncoupling proteins (UCPs), the addition of 1 mM GDP resulted in the state 4 (non-phosphorylating respiration)-state 3 (phosphorylating respiration) transition, which is characteristic of ADP oxidative phosphorylation. In contrast, the addition of 1 mM GTP resulted in a decrease in the respiratory rate and an increase in the membrane potential, which is characteristic of UCP inhibition. The stimulatory effect of GDP, but not GTP, was also observed in inside-out submitochondrial particles prepared from rat kidney mitochondria. However, the effects of GDP and GTP were more similar in the presence of OXPHOS inhibitors. The importance of these observations in connection with the action of UCPs, adenine nucleotide translocase (or other carboxyatractyloside-sensitive carriers), carboxyatractyloside- and purine nucleotide-insensitive carriers, as well as nucleoside-diphosphate kinase (NDPK) are considered. Because the measurements favoring oxidative phosphorylation better reflect in vivo conditions, our study strongly supports the idea that GDP cannot be considered a significant physiological inhibitor of UCP. Moreover, it appears that, under native conditions, GTP functions as a more efficient UCP inhibitor than GDP and ATP.

  12. Guanine is indispensable for immunoglobulin switch region RNA-DNA hybrid formation

    International Nuclear Information System (INIS)

    Mizuta, Ryushin; Mizuta, Midori; Kitamura, Daisuke

    2005-01-01

    It is suggested that the formation of the switch (S) region RNA-DNA hybrid and the subsequent generation of higher-order chromatin structures including R-loop initiate a class switch recombination of the immunoglobulin gene. The primary factor of this recombination is the S-region derived noncoding RNA. However, the biochemical character of this guanine-rich (G-rich) transcript is poorly understood. The present study was performed to analyze the structure of this G-rich RNA using atomic force microscope (AFM). The in vitro transcribed S-region RNA was spread on a mica plate, air-dried and observed by non-contact mode AFM in air. The G-rich transcripts tend to aggregate on the template DNA and to generate a higher-order RNA-DNA complex. However, the transcripts that incorporated guanine analogues as substitutes for guanine neither aggregated nor generated higher-order structures. Incorporation of guanine analogues in transcribes RNA partially disrupts hydrogen bonds related to guanine, such as Watson-Crick GC-base pair and Hoogsteen bond GG-base pair. Thus, aggregation of S-region RNA and generation of the higher-order RNA-DNA complex are attributed to hydrogen bonds of guanine. (author)

  13. A negative modulatory role for rho and rho-associated kinase signaling in delamination of neural crest cells

    Directory of Open Access Journals (Sweden)

    Kalcheim Chaya

    2008-10-01

    Full Text Available Abstract Background Neural crest progenitors arise as epithelial cells and then undergo a process of epithelial to mesenchymal transition that precedes the generation of cellular motility and subsequent migration. We aim at understanding the underlying molecular network. Along this line, possible roles of Rho GTPases that act as molecular switches to control a variety of signal transduction pathways remain virtually unexplored, as are putative interactions between Rho proteins and additional known components of this cascade. Results We investigated the role of Rho/Rock signaling in neural crest delamination. Active RhoA and RhoB are expressed in the membrane of epithelial progenitors and are downregulated upon delamination. In vivo loss-of-function of RhoA or RhoB or of overall Rho signaling by C3 transferase enhanced and/or triggered premature crest delamination yet had no effect on cell specification. Consistently, treatment of explanted neural primordia with membrane-permeable C3 or with the Rock inhibitor Y27632 both accelerated and enhanced crest emigration without affecting cell proliferation. These treatments altered neural crest morphology by reducing stress fibers, focal adhesions and downregulating membrane-bound N-cadherin. Reciprocally, activation of endogenous Rho by lysophosphatidic acid inhibited emigration while enhancing the above. Since delamination is triggered by BMP and requires G1/S transition, we examined their relationship with Rho. Blocking Rho/Rock function rescued crest emigration upon treatment with noggin or with the G1/S inhibitor mimosine. In the latter condition, cells emigrated while arrested at G1. Conversely, BMP4 was unable to rescue cell emigration when endogenous Rho activity was enhanced by lysophosphatidic acid. Conclusion Rho-GTPases, through Rock, act downstream of BMP and of G1/S transition to negatively regulate crest delamination by modifying cytoskeleton assembly and intercellular adhesion.

  14. Quantum Point Contact Single-Nucleotide Conductance for DNA and RNA Sequence Identification.

    Science.gov (United States)

    Afsari, Sepideh; Korshoj, Lee E; Abel, Gary R; Khan, Sajida; Chatterjee, Anushree; Nagpal, Prashant

    2017-11-28

    Several nanoscale electronic methods have been proposed for high-throughput single-molecule nucleic acid sequence identification. While many studies display a large ensemble of measurements as "electronic fingerprints" with some promise for distinguishing the DNA and RNA nucleobases (adenine, guanine, cytosine, thymine, and uracil), important metrics such as accuracy and confidence of base calling fall well below the current genomic methods. Issues such as unreliable metal-molecule junction formation, variation of nucleotide conformations, insufficient differences between the molecular orbitals responsible for single-nucleotide conduction, and lack of rigorous base calling algorithms lead to overlapping nanoelectronic measurements and poor nucleotide discrimination, especially at low coverage on single molecules. Here, we demonstrate a technique for reproducible conductance measurements on conformation-constrained single nucleotides and an advanced algorithmic approach for distinguishing the nucleobases. Our quantum point contact single-nucleotide conductance sequencing (QPICS) method uses combed and electrostatically bound single DNA and RNA nucleotides on a self-assembled monolayer of cysteamine molecules. We demonstrate that by varying the applied bias and pH conditions, molecular conductance can be switched ON and OFF, leading to reversible nucleotide perturbation for electronic recognition (NPER). We utilize NPER as a method to achieve >99.7% accuracy for DNA and RNA base calling at low molecular coverage (∼12×) using unbiased single measurements on DNA/RNA nucleotides, which represents a significant advance compared to existing sequencing methods. These results demonstrate the potential for utilizing simple surface modifications and existing biochemical moieties in individual nucleobases for a reliable, direct, single-molecule, nanoelectronic DNA and RNA nucleotide identification method for sequencing.

  15. Characterization of oxidative guanine damage and repair in mammalian telomeres.

    Directory of Open Access Journals (Sweden)

    Zhilong Wang

    2010-05-01

    Full Text Available 8-oxo-7,8-dihydroguanine (8-oxoG and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG are among the most common oxidative DNA lesions and are substrates for 8-oxoguanine DNA glycosylase (OGG1-initiated DNA base excision repair (BER. Mammalian telomeres consist of triple guanine repeats and are subject to oxidative guanine damage. Here, we investigated the impact of oxidative guanine damage and its repair by OGG1 on telomere integrity in mice. The mouse cells were analyzed for telomere integrity by telomere quantitative fluorescence in situ hybridization (telomere-FISH, by chromosome orientation-FISH (CO-FISH, and by indirect immunofluorescence in combination with telomere-FISH and for oxidative base lesions by Fpg-incision/Southern blot assay. In comparison to the wild type, telomere lengthening was observed in Ogg1 null (Ogg1(-/- mouse tissues and primary embryonic fibroblasts (MEFs cultivated in hypoxia condition (3% oxygen, whereas telomere shortening was detected in Ogg1(-/- mouse hematopoietic cells and primary MEFs cultivated in normoxia condition (20% oxygen or in the presence of an oxidant. In addition, telomere length abnormalities were accompanied by altered telomere sister chromatid exchanges, increased telomere single- and double-strand breaks, and preferential telomere lagging- or G-strand losses in Ogg1(-/- mouse cells. Oxidative guanine lesions were increased in telomeres in Ogg1(-/- mice with aging and primary MEFs cultivated in 20% oxygen. Furthermore, oxidative guanine lesions persisted at high level in Ogg1(-/- MEFs after acute exposure to hydrogen peroxide, while they rapidly returned to basal level in wild-type MEFs. These findings indicate that oxidative guanine damage can arise in telomeres where it affects length homeostasis, recombination, DNA replication, and DNA breakage repair. Our studies demonstrate that BER pathway is required in repairing oxidative guanine damage in telomeres and maintaining telomere integrity

  16. Rho GTPase function in tumorigenesis

    DEFF Research Database (Denmark)

    Karlsson, R; Pedersen, Esben Ditlev Kølle; Wang, Zhipeng

    2009-01-01

    , for that reason, Rho GTPases, their regulators, and their effectors have been suggested to control tumor formation and progression in humans. However, while the tumor-relevant functions of Rho GTPases are very well documented in vitro, we are only now beginning to assess their contribution to cancer in human...... patients and in animal models. This review will give a very brief overview of Rho GTPase function in general and then focus on in vivo evidence for a role of Rho GTPases in malignant tumors, both in human patients and in genetically modified mice....

  17. Coordinated regulation by two VPS9 domain-containing guanine nucleotide exchange factors in small GTPase Rab5 signaling pathways in fission yeast

    International Nuclear Information System (INIS)

    Tsukamoto, Yuta; Kagiwada, Satoshi; Shimazu, Sayuri; Takegawa, Kaoru; Noguchi, Tetsuko; Miyamoto, Masaaki

    2015-01-01

    The small GTPase Rab5 is reported to regulate various cellular functions, such as vesicular transport and endocytosis. VPS9 domain-containing proteins are thought to activate Rab5(s) by their guanine-nucleotide exchange activities. Numerous VPS9 proteins have been identified and are structurally conserved from yeast to mammalian cells. However, the functional relationships among VPS9 proteins in cells remain unclear. Only one Rab5 and two VPS9 proteins were identified in the Schizosaccharomyces pombe genome. Here, we examined the cellular function of two VPS9 proteins and the relationship between these proteins in cellular functions. Vps901-GFP and Vps902-GFP exhibited dotted signals in vegetative and differentiated cells. vps901 deletion mutant (Δvps901) cells exhibited a phenotype deficient in the mating process and responses to high concentrations of ions, such as calcium and metals, and Δvps901Δvps902 double mutant cells exhibited round cell shapes similar to ypt5-909 (Rab5 mutant allele) cells. Deletion of both vps901 and vps902 genes completely abolished the mating process and responses to various stresses. A lack of vacuole formation and aberrant inner cell membrane structures were also observed in Δvps901Δvps902 cells by electron microscopy. These data strongly suggest that Vps901 and Vps902 are cooperatively involved in the regulation of cellular functions, such as cell morphology, sexual development, response to ion stresses, and vacuole formation, via Rab5 signaling pathways in fission yeast cells. - Highlights: • Roles of Rab5 activator VPS9 proteins in cellular functions. • Cooperation between VPS9 proteins in Rab5 signaling pathway. • Roles of each VPS9 protein in Rab5 signaling pathway are discussed

  18. Coordinated regulation by two VPS9 domain-containing guanine nucleotide exchange factors in small GTPase Rab5 signaling pathways in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, Yuta [Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501 (Japan); Kagiwada, Satoshi [Department of Biological Sciences, Faculty of Science, Nara Women' s University, Kitauoyanishi-machi, Nara 630-8506 (Japan); Shimazu, Sayuri [Center for Supports to Research and Education Activities, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501 (Japan); Takegawa, Kaoru [Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Noguchi, Tetsuko [Department of Biological Sciences, Faculty of Science, Nara Women' s University, Kitauoyanishi-machi, Nara 630-8506 (Japan); Miyamoto, Masaaki, E-mail: miya@kobe-u.ac.jp [Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501 (Japan); Center for Supports to Research and Education Activities, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501 (Japan)

    2015-03-20

    The small GTPase Rab5 is reported to regulate various cellular functions, such as vesicular transport and endocytosis. VPS9 domain-containing proteins are thought to activate Rab5(s) by their guanine-nucleotide exchange activities. Numerous VPS9 proteins have been identified and are structurally conserved from yeast to mammalian cells. However, the functional relationships among VPS9 proteins in cells remain unclear. Only one Rab5 and two VPS9 proteins were identified in the Schizosaccharomyces pombe genome. Here, we examined the cellular function of two VPS9 proteins and the relationship between these proteins in cellular functions. Vps901-GFP and Vps902-GFP exhibited dotted signals in vegetative and differentiated cells. vps901 deletion mutant (Δvps901) cells exhibited a phenotype deficient in the mating process and responses to high concentrations of ions, such as calcium and metals, and Δvps901Δvps902 double mutant cells exhibited round cell shapes similar to ypt5-909 (Rab5 mutant allele) cells. Deletion of both vps901 and vps902 genes completely abolished the mating process and responses to various stresses. A lack of vacuole formation and aberrant inner cell membrane structures were also observed in Δvps901Δvps902 cells by electron microscopy. These data strongly suggest that Vps901 and Vps902 are cooperatively involved in the regulation of cellular functions, such as cell morphology, sexual development, response to ion stresses, and vacuole formation, via Rab5 signaling pathways in fission yeast cells. - Highlights: • Roles of Rab5 activator VPS9 proteins in cellular functions. • Cooperation between VPS9 proteins in Rab5 signaling pathway. • Roles of each VPS9 protein in Rab5 signaling pathway are discussed.

  19. Measurement of Exclusive $\\rho^{0}\\rho^{0}$ Production in Mid-Virtuality Two-Photon Interactions at LEP

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Jin, B.N.; Jindal, P.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosemann, C.; Rosenbleck, C.; Rosier-Lees, S.; Roth, Stefan; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, An.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.

    2004-01-01

    Exclusive rho^0 rho^0 production in two-photon collisions between a quasi-real and a mid-virtuality photon is studied with data collected at LEP at centre-of-mass energies 183GeV rho^0 rho^0 is determined as a function of the photon virtuality, q^2, and the two-photon centre-of-mass energy, Wgg, in the kinematic region: 0.2GeV^2 < q^2 < 0.85GeV^2 and 1.1GeV < Wgg < 3GeV.

  20. Rac1 Activation Caused by Membrane Translocation of a Guanine Nucleotide Exchange Factor in Akt2-Mediated Insulin Signaling in Mouse Skeletal Muscle.

    Directory of Open Access Journals (Sweden)

    Nobuyuki Takenaka

    Full Text Available Insulin-stimulated glucose uptake in skeletal muscle is mediated by the glucose transporter GLUT4, which is translocated to the plasma membrane following insulin stimulation. Several lines of evidence suggested that the protein kinase Akt2 plays a key role in this insulin action. The small GTPase Rac1 has also been implicated as a regulator of insulin-stimulated GLUT4 translocation, acting downstream of Akt2. However, the mechanisms whereby Akt2 regulates Rac1 activity remain obscure. The guanine nucleotide exchange factor FLJ00068 has been identified as a direct regulator of Rac1 in Akt2-mediated signaling, but its characterization was performed mostly in cultured myoblasts. Here, we provide in vivo evidence that FLJ00068 indeed acts downstream of Akt2 as a Rac1 regulator by using mouse skeletal muscle. Small interfering RNA knockdown of FLJ00068 markedly diminished GLUT4 translocation to the sarcolemma following insulin administration or ectopic expression of a constitutively activated mutant of either phosphoinositide 3-kinase or Akt2. Additionally, insulin and these constitutively activated mutants caused the activation of Rac1 as shown by immunofluorescent microscopy using a polypeptide probe specific to activated Rac1 in isolated gastrocnemius muscle fibers and frozen sections of gastrocnemius muscle. This Rac1 activation was also abrogated by FLJ00068 knockdown. Furthermore, we observed translocation of FLJ00068 to the cell periphery following insulin stimulation in cultured myoblasts. Localization of FLJ00068 in the plasma membrane in insulin-stimulated, but not unstimulated, myoblasts and mouse gastrocnemius muscle was further affirmed by subcellular fractionation and subsequent immunoblotting. Collectively, these results strongly support a critical role of FLJ00068 in Akt2-mediated Rac1 activation in mouse skeletal muscle insulin signaling.

  1. Chiral symmetry breaking and the spin content of the {rho} and {rho}{sup '} mesons

    Energy Technology Data Exchange (ETDEWEB)

    Glozman, L.Ya., E-mail: leonid.glozman@uni-graz.at [Institut fuer Physik, FB Theoretische Physik, Universitaet Graz, A-8010 Graz (Austria); Lang, C.B., E-mail: christian.lang@uni-graz.at [Institut fuer Physik, FB Theoretische Physik, Universitaet Graz, A-8010 Graz (Austria); Limmer, M., E-mail: markus.limmer@uni-graz.at [Institut fuer Physik, FB Theoretische Physik, Universitaet Graz, A-8010 Graz (Austria)

    2011-11-03

    Using interpolators with different SU(2){sub L}xSU(2){sub R} transformation properties we study the chiral symmetry and spin contents of the {rho} and {rho}{sup '} mesons in lattice simulations with dynamical quarks. A ratio of couplings of the q-bar {gamma}{sup i}{tau}q and q-bar {sigma}{sup 0}i{tau}q interpolators to a given meson state at different resolution scales tells one about the degree of chiral symmetry breaking in the meson wave function at these scales. Using a Gaussian gauge invariant smearing of the quark fields in the interpolators, we are able to extract the chiral content of mesons up to the infrared resolution of {approx}1 fm. In the ground state {rho} meson the chiral symmetry is strongly broken with comparable contributions of both the (0,1)+(1,0) and (1/2,1/2){sub b} chiral representations with the former being the leading contribution. In contrast, in the {rho}{sup '} meson the degree of chiral symmetry breaking is manifestly smaller and the leading representation is (1/2,1/2){sub b}. Using a unitary transformation from the chiral basis to the {sup 2S+1}L{sub J} basis, we are able to define and measure the angular momentum content of mesons in the rest frame. This definition is different from the traditional one which uses parton distributions in the infinite momentum frame. The {rho} meson is practically a {sup 3}S{sub 1} state with no obvious trace of a 'spin crisis'. The {rho}{sup '} meson has a sizeable contribution of the {sup 3}D{sub 1} wave, which implies that the {rho}{sup '} meson cannot be considered as a pure radial excitation of the {rho} meson.

  2. Guanine base stacking in G-quadruplex nucleic acids

    Science.gov (United States)

    Lech, Christopher Jacques; Heddi, Brahim; Phan, Anh Tuân

    2013-01-01

    G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5′–5′ manner based on different accessible tetrad stacking modes at the stacking interfaces of 5′–5′ and 3′–3′ stacked G-quadruplexes. PMID:23268444

  3. Endogenous melatonin and oxidatively damaged guanine in DNA

    DEFF Research Database (Denmark)

    Davanipour, Zoreh; Poulsen, Henrik E; Weimann, Allan

    2009-01-01

    overnight guanine DNA damage. 8-oxodG and 8-oxoGua were measured using a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry assay. The mother, father, and oldest sampled daughter were used for these analyses. Comparisons between the mothers, fathers, and daughters were...... attack and increase the rate of repair of that damage. This paper reports the results of a study relating the level of overnight melatonin production to the overnight excretion of the two primary urinary metabolites of the repair of oxidatively damaged guanine in DNA. METHODS: Mother...

  4. Measurement of Exclusive $\\rho^0 \\rho^0$ Production in Two-Photon Collisions at High $Q^2$ at LEP

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, An.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.

    2003-01-01

    Exclusive rho rho production in two-photon collisions involving a single highly virtual photon is studied with data collected at LEP at centre-of-mass energies 89GeV rho rho is determined as a function of the photon virtuality, Q^2 and the two-photon centre-of-mass energy, Wgg, in the kinematic region: 1.2GeV^2 < Q^2 < 30GeV^2 and 1.1GeV < Wgg < 3GeV.

  5. A measurement of the branching ratio Σ+→rhoγ/Σ+→rhoπ0

    International Nuclear Information System (INIS)

    1985-06-01

    In an experiment performed in the CERN SPS hyperon beam a value for the branching ratio, Σ + →rhoγ/Σ + →rhoπ 0 of (2.46 sub(-0.35)sup(+0.30))x10 -3 , has been obtained corresponding to a branching ratio Σ + →rhoγ/Σ + → all of (1.27 sub(-0.18)sup(+0.16))x10 -3 . This result is discussed in the context of present understanding of hyperon radiative decays. (author)

  6. Base Sequence Context Effects on Nucleotide Excision Repair

    Directory of Open Access Journals (Sweden)

    Yuqin Cai

    2010-01-01

    Full Text Available Nucleotide excision repair (NER plays a critical role in maintaining the integrity of the genome when damaged by bulky DNA lesions, since inefficient repair can cause mutations and human diseases notably cancer. The structural properties of DNA lesions that determine their relative susceptibilities to NER are therefore of great interest. As a model system, we have investigated the major mutagenic lesion derived from the environmental carcinogen benzo[a]pyrene (B[a]P, 10S (+-trans-anti-B[a]P-2-dG in six different sequence contexts that differ in how the lesion is positioned in relation to nearby guanine amino groups. We have obtained molecular structural data by NMR and MD simulations, bending properties from gel electrophoresis studies, and NER data obtained from human HeLa cell extracts for our six investigated sequence contexts. This model system suggests that disturbed Watson-Crick base pairing is a better recognition signal than a flexible bend, and that these can act in concert to provide an enhanced signal. Steric hinderance between the minor groove-aligned lesion and nearby guanine amino groups determines the exact nature of the disturbances. Both nearest neighbor and more distant neighbor sequence contexts have an impact. Regardless of the exact distortions, we hypothesize that they provide a local thermodynamic destabilization signal for repair.

  7. Thiopurine Prodrugs Mediate Immunosuppressive Effects by Interfering with Rac1 Protein Function*

    Science.gov (United States)

    Shin, Jin-Young; Wey, Michael; Umutesi, Hope G.; Sun, Xiangle; Simecka, Jerry; Heo, Jongyun

    2016-01-01

    6-Thiopurine (6-TP) prodrugs include 6-thioguanine and azathioprine. Both are widely used to treat autoimmune disorders and certain cancers. This study showed that a 6-thioguanosine triphosphate (6-TGTP), converted in T-cells from 6-TP, targets Rac1 to form a disulfide adduct between 6-TGTP and the redox-sensitive GXXXXGK(S/T)C motif of Rac1. This study also showed that, despite the conservation of the catalytic activity of RhoGAP (Rho-specific GAP) on the 6-TGTP-Rac1 adduct to produce the biologically inactive 6-thioguanosine diphosphate (6-TGDP)-Rac1 adduct, RhoGEF (Rho-specific GEF) cannot exchange the 6-TGDP adducted on Rac1 with free guanine nucleotide. The biologically inactive 6-TGDP-Rac1 adduct accumulates in cells because of the ongoing combined actions of RhoGEF and RhoGAP. Because other Rho GTPases, such as RhoA and Cdc42, also possess the GXXXXGK(S/T)C motif, the proposed mechanism for the inactivation of Rac1 also applies to RhoA and Cdc42. However, previous studies have shown that CD3/CD28-stimulated T-cells contain more activated Rac1 than other Rho GTPases such as RhoA and Cdc42. Accordingly, Rac1 is the main target of 6-TP in activated T-cells. This explains the T-cell-specific Rac1-targeting therapeutic action of 6-TP that suppresses the immune response. This proposed mechanism for the action of 6-TP on Rac1 performs a critical role in demonstrating the capability to design a Rac1-targeting chemotherapeutic agent(s) for autoimmune disorders. Nevertheless, the results also suggest that the targeting action of other Rho GTPases in other organ cells, such as RhoA in vascular cells, may be linked to cytotoxicities because RhoA plays a key role in vasculature functions. PMID:27189938

  8. BFKL resummation effects in gamma* gamma* to rho rho

    Energy Technology Data Exchange (ETDEWEB)

    Enberg, R.; Pire, B.; Szymanowski, L.; Wallon, S.

    2005-08-11

    We calculate the leading order BFKL amplitude for the exclusive diffractive process {gamma}*{sub L}(Q{sub 1}{sup 2}) {gamma}*{sub L}(Q{sub 2}{sup 2}) {yields} {rho}{sub L}{sup 0}{rho}{sub L}{sup 0} in the forward direction, which can be studied in future high energy e{sup +}e{sup -} linear colliders. The resummation effects are very large compared to the fixed-order calculation. We also estimate the next-to-leading logarithmic corrections to the amplitude by using a specific resummation of higher order effects and find a substantial growth with energy, but smaller than in the leading logarithmic approximation.

  9. RhoA–Rho kinase and Platelet Activating Factor Stimulation of Ovine Fetal Pulmonary Vascular Smooth Muscle Cell Proliferation

    Science.gov (United States)

    Renteria, Lissette S.; Austin, Monique; Lazaro, Mariecon; Andrews, Mari Ashley; Lustina, Jennessee; Raj, J. Usha; Ibe, Basil O.

    2013-01-01

    Objectives Platelet Activating Factor (PAF) is produced by pulmonary vascular smooth muscle Cells (PVSMC). We studied effect of Rho kinase on PAF stimulation of PVSMC proliferation in an attempt to understand a role for RhoA/Rho kinase on PAF-induced ovine fetal pulmonary vascular remodeling. Our hypothesis is that PAF acts through Rho kinase, as one of its downstream signaling, to induce arterial (SMC-PA) and venous (SMC-PV) growth in the hypoxic lung environment of the fetus in utero. Materials and methods Rho kinase and MAPK effects on PAF receptor (PAFR)-mediated cell growth and PAFR expression were studied by DNA synthesis, Western and immunocytochemistry. Effects of constructs T19N and G14V on PAF-induced cell proliferation was also studied. Results Hypoxia increased PVSMC proliferation and the Rho kinase inhibitors, Y-27632 and Fasudil (HA-1077) as well as MAPK inhibitors PD 98059 and SB 203580 attenuated PAF stimulation of cell proliferation. RhoA T19N and G14V stimulated cell proliferation, but co-incubation with PAF did not affect proliferative effects of the constructs. PAFR protein expression was significantly down-regulated in both cell types by both Y-27632 and HA-1077 with comparable profiles. Also cells treated with Y-27632 showed less PAF receptor fluorescence with significant disruption of the cell morphology. Conclusions Our results show that Rho kinase nonspecifically modulates PAFR-mediated responses via a translational modification of PAFR protein and suggest that, in vivo, activation of Rho kinase by PAF may be one other pathway to sustain PAFR-mediated PVSMC growth. PMID:24033386

  10. RhoA-Rho kinase and platelet-activating factor stimulation of ovine foetal pulmonary vascular smooth muscle cell proliferation.

    Science.gov (United States)

    Renteria, L S; Austin, M; Lazaro, M; Andrews, M A; Lustina, J; Raj, J U; Ibe, B O

    2013-10-01

    Platelet-activating factor (PAF) is produced by pulmonary vascular smooth muscle cells (PVSMC). We studied effects of Rho kinase on PAF stimulation of PVSMC proliferation in an attempt to understand the role of RhoA/Rho kinase on PAF-induced ovine foetal pulmonary vascular remodelling. Our hypothesis is that PAF acts through Rho kinase, as one of its downstream signals, to induce arterial (SMC-PA) and venous (SMC-PV) cell proliferation in the hypoxic lung environment of the foetus, in utero. Rho kinase and MAPK effects on PAF receptor (PAFR)-mediated cell population expansion, and PAFR expression, were studied by DNA synthesis, western blot analysis and immunocytochemistry. Effects of constructs T19N and G14V on PAF-induced cell proliferation were also investigated. Hypoxia increased PVSMC proliferation and Rho kinase inhibitors, Y-27632 and Fasudil (HA-1077) as well as MAPK inhibitors PD 98059 and SB 203580 attenuated PAF stimulation of cell proliferation. RhoA T19N and G14V stimulated cell proliferation, but co-incubation with PAF did not affect proliferative effects of the constructs. PAFR protein expression was significantly downregulated in both cell types by both Y-27632 and HA-1077, with comparable profiles. Also, cells treated with Y-27632 had less PAF receptor fluorescence with significant disruption of cell morphology. Our results show that Rho kinase non-specifically modulated PAFR-mediated responses by a translational modification of PAFR protein, and suggest that, in vivo, activation of Rho kinase by PAF may be a further pathway to sustain PAFR-mediated PVSMC proliferation. © 2013 John Wiley & Sons Ltd.

  11. Classifying Coding DNA with Nucleotide Statistics

    Directory of Open Access Journals (Sweden)

    Nicolas Carels

    2009-10-01

    Full Text Available In this report, we compared the success rate of classification of coding sequences (CDS vs. introns by Codon Structure Factor (CSF and by a method that we called Universal Feature Method (UFM. UFM is based on the scoring of purine bias (Rrr and stop codon frequency. We show that the success rate of CDS/intron classification by UFM is higher than by CSF. UFM classifies ORFs as coding or non-coding through a score based on (i the stop codon distribution, (ii the product of purine probabilities in the three positions of nucleotide triplets, (iii the product of Cytosine (C, Guanine (G, and Adenine (A probabilities in the 1st, 2nd, and 3rd positions of triplets, respectively, (iv the probabilities of G in 1st and 2nd position of triplets and (v the distance of their GC3 vs. GC2 levels to the regression line of the universal correlation. More than 80% of CDSs (true positives of Homo sapiens (>250 bp, Drosophila melanogaster (>250 bp and Arabidopsis thaliana (>200 bp are successfully classified with a false positive rate lower or equal to 5%. The method releases coding sequences in their coding strand and coding frame, which allows their automatic translation into protein sequences with 95% confidence. The method is a natural consequence of the compositional bias of nucleotides in coding sequences.

  12. Interplay between Solo and keratin filaments is crucial for mechanical force–induced stress fiber reinforcement

    Science.gov (United States)

    Fujiwara, Sachiko; Ohashi, Kazumasa; Mashiko, Toshiya; Kondo, Hiroshi; Mizuno, Kensaku

    2016-01-01

    Mechanical force–induced cytoskeletal reorganization is essential for cell and tissue remodeling and homeostasis; however, the underlying cellular mechanisms remain elusive. Solo (ARHGEF40) is a RhoA-targeting guanine nucleotide exchange factor (GEF) involved in cyclical stretch–induced human endothelial cell reorientation and convergent extension cell movement in zebrafish gastrula. In this study, we show that Solo binds to keratin-8/keratin-18 (K8/K18) intermediate filaments through multiple sites. Solo overexpression promotes the formation of thick actin stress fibers and keratin bundles, whereas knockdown of Solo, expression of a GEF-inactive mutant of Solo, or inhibition of ROCK suppresses stress fiber formation and leads to disorganized keratin networks, indicating that the Solo-RhoA-ROCK pathway serves to precisely organize keratin networks, as well as to promote stress fibers. Of importance, knockdown of Solo or K18 or overexpression of GEF-inactive or deletion mutants of Solo suppresses tensile force–induced stress fiber reinforcement. Furthermore, knockdown of Solo or K18 suppresses tensile force-induced RhoA activation. These results strongly suggest that the interplay between Solo and K8/K18 filaments plays a crucial role in tensile force–induced RhoA activation and consequent actin cytoskeletal reinforcement. PMID:26823019

  13. A Conserved RhoGAP Limits M-phase Contractility and Coordinates with Microtubule Asters to Restrict Active RhoA to the Cell Equator During Cytokinesis

    Science.gov (United States)

    Zanin, Esther; Desai, Arshad; Poser, Ina; Toyoda, Yusuke; Andree, Cordula; Moebius, Claudia; Bickle, Marc; Conradt, Barbara; Piekny, Alisa; Oegema, Karen

    2014-01-01

    SUMMARY During animal cell cytokinesis, the spindle directs contractile ring assembly by activating RhoA in a narrow equatorial zone. Rapid GTPase activating protein (GAP)-mediated inactivation (RhoA flux) is proposed to limit RhoA zone dimensions. Testing the significance of RhoA flux has been hampered by the fact that the GAP targeting RhoA is not known. Here, we identify M-phase GAP (MP-GAP) as the primary GAP targeting RhoA during mitosis/cytokinesis. MP-GAP inhibition caused excessive RhoA activation in M-phase leading to the uncontrolled formation of large cortical protrusions and late cytokinesis failure. RhoA zone width was broadened by attenuation of the centrosomal asters but was not affected by MP-GAP inhibition alone. Simultaneous aster attenuation and MP-GAP inhibition led to RhoA accumulation around the entire cell periphery. These results identify the major GAP restraining RhoA during cell division and delineate the relative contributions of RhoA flux and centrosomal asters in controlling RhoA zone dimensions. PMID:24012485

  14. Son of sevenless directly links the Robo receptor to rac activation to control axon repulsion at the midline.

    Science.gov (United States)

    Yang, Long; Bashaw, Greg J

    2006-11-22

    Son of sevenless (Sos) is a dual specificity guanine nucleotide exchange factor (GEF) that regulates both Ras and Rho family GTPases and thus is uniquely poised to integrate signals that affect both gene expression and cytoskeletal reorganization. Here, using genetics, biochemistry, and cell biology, we demonstrate that Sos is recruited to the plasma membrane, where it forms a ternary complex with the Roundabout receptor and the SH3-SH2 adaptor protein Dreadlocks (Dock) to regulate Rac-dependent cytoskeletal rearrangement in response to the Slit ligand. Intriguingly, the Ras and Rac-GEF activities of Sos can be uncoupled during Robo-mediated axon repulsion; Sos axon guidance function depends on its Rac-GEF activity, but not its Ras-GEF activity. These results provide in vivo evidence that the Ras and RhoGEF domains of Sos are separable signaling modules and support a model in which Robo recruits Sos to the membrane via Dock to activate Rac during midline repulsion.

  15. RhoA and RhoC are involved in stromal cell-derived factor-1-induced cell migration by regulating F-actin redistribution and assembly.

    Science.gov (United States)

    Luo, Jixian; Li, Dingyun; Wei, Dan; Wang, Xiaoguang; Wang, Lan; Zeng, Xianlu

    2017-12-01

    Stromal cell-derived factor-1 (SDF-1) signaling is important to the maintenance and progression of T-cell acute lymphoblastic leukemia by inducing chemotaxis migration. To identify the mechanism of SDF-1 signaling in the migration of T-ALL, Jurkat acute lymphoblastic leukemia cells were used. Results showed that SDF-1 induces Jurkat cell migration by F-actin redistribution and assembly, which is dependent on Rho activity. SDF-1 induced RhoA and RhoC activation, as well as reactive oxygen species (ROS) production, which was inhibited by Rho inhibitor. The Rho-dependent ROS production led to subsequent cytoskeleton redistribution and assembly in the process of migration. Additionally, RhoA and RhoC were involved in SDF-1-induced Jurkat cell migration. Taken together, we found a SDF-1/CXCR4-RhoA and RhoC-ROS-cytoskeleton pathway that regulates Jurkat cell migration in response to SDF-1. This work will contribute to a clearer insight into the migration mechanism of acute lymphoblastic leukemia.

  16. Fluorescence enhancement of DNA-silver nanoclusters from guanine proximity

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Hsin-chih [Los Alamos National Laboratory; Sharma, Jaswinder [Los Alamos National Laboratory; Yoo, Hyojong [Los Alamos National Laboratory; Martinez, Jennifer S [Los Alamos National Laboratory

    2010-01-01

    Oligonucleotide-templated, silver nanoclusters (DNA/Ag NCs) are a versatile set of fluorophores and have already been used for live cell imaging, detection of specific metal ions, and single-nucleotide variation identification. Compared to commonly used organic dyes, these fluorescent nanoclusters have much better photostability and are often a few times brighter. Owing to their small size, simple preparation, and biocompatibility (i.e. made of nontoxic metals), DNA/Ag NCs should find more applications in biological imaging and chemical detection in the years to come. While clearly promising as new fluorophores, DNA/Ag NCs possess a unique and poorly understood dynamic process not shared by organic dyes or photoluminescent nanocrystals - the conversion among different NC species due to silver oxidation/reduction or NC regrouping. While this environmental sensitivity can be viewed as a drawback, in the appropriate context, it can be used as a sensor or reporter. Often reversible, conversions among different NC species have been found to depend upon a number of factors, including time, temperature, oxygen and salt content. In this communication, we report significant fluorescence enhancement of DNA/Ag NCs via interactions with guanine-rich DNA sequences. Moreover, we demonstrated this property can be used for sensitive detection of specific target DNA from a human oncogene (i.e. Braf gene).

  17. Photoluminescence properties of a novel conjugate of water-soluble CdTe quantum dots to guanine

    Energy Technology Data Exchange (ETDEWEB)

    Feng Xuejiao [North-East Normal University, Changchun 130024 (China); Shang, Qingkun, E-mail: shangqk995@nenu.edu.c [North-East Normal University, Changchun 130024 (China); Liu Hongjian [Relia Diagnostic Systems, Burlingame, CA 94010 (United States); Wang Wenlan; Wang Zhidan; Liu Junyu [North-East Normal University, Changchun 130024 (China)

    2010-04-15

    A novel conjugate of water-soluble CdTe quantum dots to a small biomolecule guanine has been obtained in aqueous phase. The photoluminescence property and the stability of the conjugate increased comparing to CdTe QDs. The interaction between CdTe QDs and guanine was studied by TEM, fluorescence microscope and photoluminescence (PL), IR, UV-Vis spectra. The effects of reflux time, pH value, ionic strength, and the ratio of CdTe QDs to guanine on the photoluminescence properties of conjugate were investigated in detail. The results show that guanine has a great influence on both the photoluminescence property and stability of thioglycolic acid-stabilized CdTe QDs. The formation of coordination and hydrogen bond between guanine molecules and CdTe including thioglycolic acid on its surface may effectively enhance the PL intensity and stability of CdTe QDs. The maximum PL intensity of the conjugate was obtained on the condition with lower ionic strength, less than 30 min reflux time, neutral pH value and 6/1 as molar ratio of guanine to CdTe.

  18. Increased mobility and on/off ratio in organic field-effect transistors using low-cost guanine-pentacene multilayers

    Science.gov (United States)

    Shi, Wei; Zheng, Yifan; Taylor, André D.; Yu, Junsheng; Katz, Howard E.

    2017-07-01

    Layer-by-layer deposited guanine and pentacene in organic field-effect transistors (OFETs) is introduced. Through adjusting the layer thickness ratio of guanine and pentacene, the tradeoff of two electronic parameters in OFETs, charge carrier mobility and current on/off ratio, was controlled. The charge mobility was enhanced by depositing pentacene over and between guanine layers and by increasing the proportion of pentacene in the layer-by-layer system, while the current on/off ratio was increased via the decreased off current induced by the guanine layers. The tunable device performance was mainly ascribed to the trap and dopant neutralizing properties of the guanine layers, which would decrease the density of free hydroxyl groups in the OFETs. Furthermore, the cost of the devices could be reduced remarkably via the adoption of low-cost guanine.

  19. Nitrogen K-edge X-ray absorption near edge structure (XANES) spectra of purine-containing nucleotides in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hiroyuki; Fukao, Taishi; Minami, Hirotake; Ukai, Masatoshi [Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588 (Japan); Fujii, Kentaro; Yokoya, Akinari [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Fukuda, Yoshihiro; Saitoh, Yuji [Synchrotron Radiation Research Center, Japan Atomic Energy Agency, Sayo-gun, Hyougo 679-5148 (Japan)

    2014-08-07

    The N K-edge X-ray absorption near edge structure (XANES) spectra of the purine-containing nucleotide, guanosine 5{sup ′}-monophosphate (GMP), in aqueous solution are measured under various pH conditions. The spectra show characteristic peaks, which originate from resonant excitations of N 1s electrons to π* orbitals inside the guanine moiety of GMP. The relative intensities of these peaks depend on the pH values of the solution. The pH dependence is explained by the core-level shift of N atoms at specific sites caused by protonation and deprotonation. The experimental spectra are compared with theoretical spectra calculated by using density functional theory for GMP and the other purine-containing nucleotides, adenosine 5{sup ′}-monophosphate, and adenosine 5{sup ′}-triphosphate. The N K-edge XANES spectra for all of these nucleotides are classified by the numbers of N atoms with particular chemical bonding characteristics in the purine moiety.

  20. Homozygous ARHGEF2 mutation causes intellectual disability and midbrain-hindbrain malformation.

    Science.gov (United States)

    Ravindran, Ethiraj; Hu, Hao; Yuzwa, Scott A; Hernandez-Miranda, Luis R; Kraemer, Nadine; Ninnemann, Olaf; Musante, Luciana; Boltshauser, Eugen; Schindler, Detlev; Hübner, Angela; Reinecker, Hans-Christian; Ropers, Hans-Hilger; Birchmeier, Carmen; Miller, Freda D; Wienker, Thomas F; Hübner, Christoph; Kaindl, Angela M

    2017-04-01

    Mid-hindbrain malformations can occur during embryogenesis through a disturbance of transient and localized gene expression patterns within these distinct brain structures. Rho guanine nucleotide exchange factor (ARHGEF) family members are key for controlling the spatiotemporal activation of Rho GTPase, to modulate cytoskeleton dynamics, cell division, and cell migration. We identified, by means of whole exome sequencing, a homozygous frameshift mutation in the ARHGEF2 as a cause of intellectual disability, a midbrain-hindbrain malformation, and mild microcephaly in a consanguineous pedigree of Kurdish-Turkish descent. We show that loss of ARHGEF2 perturbs progenitor cell differentiation and that this is associated with a shift of mitotic spindle plane orientation, putatively favoring more symmetric divisions. The ARHGEF2 mutation leads to reduction in the activation of the RhoA/ROCK/MLC pathway crucial for cell migration. We demonstrate that the human brain malformation is recapitulated in Arhgef2 mutant mice and identify an aberrant migration of distinct components of the precerebellar system as a pathomechanism underlying the midbrain-hindbrain phenotype. Our results highlight the crucial function of ARHGEF2 in human brain development and identify a mutation in ARHGEF2 as novel cause of a neurodevelopmental disorder.

  1. Homozygous ARHGEF2 mutation causes intellectual disability and midbrain-hindbrain malformation

    Science.gov (United States)

    Yuzwa, Scott A.; Hernandez-Miranda, Luis R.; Musante, Luciana; Boltshauser, Eugen; Schindler, Detlev; Hübner, Angela; Reinecker, Hans-Christian; Ropers, Hans-Hilger; Miller, Freda D.; Hübner, Christoph; Kaindl, Angela M.

    2017-01-01

    Mid-hindbrain malformations can occur during embryogenesis through a disturbance of transient and localized gene expression patterns within these distinct brain structures. Rho guanine nucleotide exchange factor (ARHGEF) family members are key for controlling the spatiotemporal activation of Rho GTPase, to modulate cytoskeleton dynamics, cell division, and cell migration. We identified, by means of whole exome sequencing, a homozygous frameshift mutation in the ARHGEF2 as a cause of intellectual disability, a midbrain-hindbrain malformation, and mild microcephaly in a consanguineous pedigree of Kurdish-Turkish descent. We show that loss of ARHGEF2 perturbs progenitor cell differentiation and that this is associated with a shift of mitotic spindle plane orientation, putatively favoring more symmetric divisions. The ARHGEF2 mutation leads to reduction in the activation of the RhoA/ROCK/MLC pathway crucial for cell migration. We demonstrate that the human brain malformation is recapitulated in Arhgef2 mutant mice and identify an aberrant migration of distinct components of the precerebellar system as a pathomechanism underlying the midbrain-hindbrain phenotype. Our results highlight the crucial function of ARHGEF2 in human brain development and identify a mutation in ARHGEF2 as novel cause of a neurodevelopmental disorder. PMID:28453519

  2. Exploring the correlation between the sequence composition of the nucleotide binding G5 loop of the FeoB GTPase domain (NFeoB) and intrinsic rate of GDP release.

    Science.gov (United States)

    Guilfoyle, Amy P; Deshpande, Chandrika N; Schenk, Gerhard; Maher, Megan J; Jormakka, Mika

    2014-12-12

    GDP release from GTPases is usually extremely slow and is in general assisted by external factors, such as association with guanine exchange factors or membrane-embedded GPCRs (G protein-coupled receptors), which accelerate the release of GDP by several orders of magnitude. Intrinsic factors can also play a significant role; a single amino acid substitution in one of the guanine nucleotide recognition motifs, G5, results in a drastically altered GDP release rate, indicating that the sequence composition of this motif plays an important role in spontaneous GDP release. In the present study, we used the GTPase domain from EcNFeoB (Escherichia coli FeoB) as a model and applied biochemical and structural approaches to evaluate the role of all the individual residues in the G5 loop. Our study confirms that several of the residues in the G5 motif have an important role in the intrinsic affinity and release of GDP. In particular, a T151A mutant (third residue of the G5 loop) leads to a reduced nucleotide affinity and provokes a drastically accelerated dissociation of GDP.

  3. Observation of the ${B^0 \\to \\rho^0 \\rho^0}$ decay from an amplitude analysis of ${B^0 \\to (\\pi^+\\pi^-)(\\pi^+\\pi^-)}$ decays

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casanova Mohr, Raimon; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gastaldi, Ugo; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Geraci, Angelo; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Humair, Thibaud; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lowdon, Peter; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Osorio Rodrigues, Bruno; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Sterpka, Christopher Francis; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Todd, Jacob; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viana Barbosa, Joao Vitor; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wiedner, Dirk; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang

    2015-01-01

    Proton-proton collision data recorded in 2011 and 2012 by the LHCb experiment, corresponding to an integrated luminosity of 3.0 fb$^{-1}$i, are analysed to search for the charmless ${B^0 \\to \\rho^0 \\rho^0}$ decay. More than 600 ${B^0 \\to (\\pi^+\\pi^-)(\\pi^+\\pi^-)}$ signal decays are selected and used to perform an amplitude analysis from which the ${B^0 \\to \\rho^0 \\rho^0}$ decay is observed for the first time with 7.1 standard deviations significance. The fraction of ${B^0 \\to \\rho^0 \\rho^0}$ decays yielding a longitudinally polarised final state is measured to be $fL = 0.745^{+0.048}_{-0.058} ({\\rm stat}) \\pm 0.034 ({\\rm syst})$. The ${B^0 \\to \\rho^0 \\rho^0}$ branching fraction, using the ${B^0 \\to \\phi K^*(892)^{0}}$ decay as reference, is also reported as $\\mathcal B (B^0 \\to \\rho^0 \\rho^0) = (0.94 \\pm 0.17 ({\\rm stat}) \\pm 0.09 ({\\rm syst}) \\pm 0.06 ({\\rm BF})) \\times 10^{-6}$.

  4. SOS2 and ACP1 Loci Identified through Large-Scale Exome Chip Analysis Regulate Kidney Development and Function

    DEFF Research Database (Denmark)

    Li, Man; Li, Yong; Weeks, Olivia

    2017-01-01

    Genome-wide association studies have identified >50 common variants associated with kidney function, but these variants do not fully explain the variation in eGFR. We performed a two-stage meta-analysis of associations between genotypes from the Illumina exome array and eGFR on the basis of serum...... creatinine (eGFRcrea) among participants of European ancestry from the CKDGen Consortium (nStage1: 111,666; nStage2: 48,343). In single-variant analyses, we identified single nucleotide polymorphisms at seven new loci associated with eGFRcrea (PPM1J, EDEM3, ACP1, SPEG, EYA4, CYP1A1, and ATXN2L; PStage1......associations of functional rare variants in three genes with eGFRcrea, including a novel association with the SOS Ras/Rho guanine nucleotide exchange factor 2 gene, SOS2 (P=5.4×10(-8) by sequence kernel...

  5. [Triplet expansion cytosine-guanine-guanine: Three cases of OMIM syndrome in the same family].

    Science.gov (United States)

    González-Pérez, Jesús; Izquierdo-Álvarez, Silvia; Fuertes-Rodrigo, Cristina; Monge-Galindo, Lorena; Peña-Segura, José Luis; López-Pisón, Francisco Javier

    2016-04-01

    The dynamic increase in the number of triplet repeats of cytosine-guanine-guanine (CGG) in the FMR1 gene mutation is responsible for three OMIM syndromes with a distinct clinical phenotype: Fragile X syndrome (FXS) and two pathologies in adult carriers of the premutation (55-200 CGG repeats): Primary ovarian insufficiency (FXPOI) and tremor-ataxia syndrome (FXTAS) associated with FXS. CGG mutation dynamics of the FMR1 gene were studied in DNA samples from peripheral blood from the index case and other relatives of first, second and third degree by TP-PCR, and the percentage methylation. Diagnosis of FXS was confirmed in three patients (21.4%), eight patients (57.1%) were confirmed in the premutation range transmitters, one male patient with full mutation/permutation mosaicism (7.1%) and two patients (14.3%) with normal study. Of the eight permutated patients, three had FXPOI and one male patient had FXTAS. Our study suggests the importance of making an early diagnosis of SXF in order to carry out a family study and genetic counselling, which allow the identification of new cases or premutated patients with FMR1 gene- associated syndromes (FXTAS, FXPOI). Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  6. Quantum molecular modeling of the interaction between guanine and alkylating agents--2--nitrogen mustard.

    Science.gov (United States)

    Hamza, A; Broch, H; Vasilescu, D

    1996-06-01

    The alkylation mechanism of guanine by nitrogen mustard (HN2) was studied by using a supermolecular modeling at the ab initio 6-31G level. Our computations show that interaction of guanine with the aziridinium form of HN2 necessitates a transition state for the N7 alkylation route. The pathway of N7-guanine alkylation by nitrogen and sulfur mustards is discussed on the basis of the Molecular Electrostatic Potential and HOMO-LUMO properties of these molecules.

  7. Tetramethylpyrazine Protects Against Oxygen-Glucose Deprivation-Induced Brain Microvascular Endothelial Cells Injury via Rho/Rho-kinase Signaling Pathway.

    Science.gov (United States)

    Yang, Guang; Qian, Chen; Wang, Ning; Lin, Chenyu; Wang, Yan; Wang, Guangyun; Piao, Xinxin

    2017-05-01

    Tetramethylpyrazine (TMP, also known as Ligustrazine), which is isolated from Chinese Herb Medicine Ligustium wollichii Franchat (Chuan Xiong), has been widely used in China for the treatment of ischemic stroke by Chinese herbalists. Brain microvascular endothelial cells (BMECs) are the integral parts of the blood-brain barrier (BBB), protecting BMECs against oxygen-glucose deprivation (OGD) which is important for the treatment of ischemic stroke. Here, we investigated the protective mechanisms of TMP, focusing on OGD-injured BMECs and the Rho/Rho-kinase (Rho-associated kinases, ROCK) signaling pathway. The model of OGD-injured BMECs was established in this study. BMECs were identified by von Willebrand factor III staining and exposed to fasudil, or TMP at different concentrations (14.3, 28.6, 57.3 µM) for 2 h before 24 h of OGD injury. The effect of each treatment was examined by cell viability assays, measurement of intracellular reactive oxygen species (ROS), and transendothelial electric resistance and western blot analysis (caspase-3, endothelial nitric oxide synthase (eNOS), RhoA, Rac1). Our results show that TMP significantly attenuated apoptosis and the permeability of BMECs induced by OGD. In addition, TMP could notably down-regulate the characteristic proteins in Rho/ROCK signaling pathway such as RhoA and Rac1, which triggered abnormal changes of eNOS and ROS, respectively. Altogether, our results show that TMP has a strong protective effect against OGD-induced BMECs injury and suggest that the mechanism might be related to the inhibition of the Rho/ROCK signaling pathway.

  8. Rac1 and RhoA: Networks, loops and bistability.

    Science.gov (United States)

    Nguyen, Lan K; Kholodenko, Boris N; von Kriegsheim, Alex

    2016-08-17

    Cell migration requires a precise temporal and spatial coordination of several processes which allow the cell to efficiently move. The extension and retraction of membrane protrusion, as well as adhesion are controlled by the Rho-family small GTPases. Two members of the family, Rac1 and RhoA, can show opposite behaviors and spatial localisations, with RhoA being active toward the rear of the cell and regulating its retraction during migration, whereas Rac1 is active toward the front of the cell. In addition to the spatial segregation, RhoA and Rac1 activity at the leading edge of the cells has an element of temporal segregation, with RhoA and Rac1 activities peaking at separate points during the migratory cycle of protrusion and retraction. Elements of this separation have been explained by the presence of 2 mutually inhibitory feedbacks, where Rac1 inhibits RhoA and RhoA in turn can inhibit Rac1. Recently, it was shown that Rac1 and RhoA activity and downstream signaling respond in a bistable manner to perturbations of this network.

  9. BFKL resummation effects in {gamma}{sup *}{gamma}{sup *}{yields}{rho}{rho}

    Energy Technology Data Exchange (ETDEWEB)

    Enberg, R. [Ecole Polytechnique, CPHT, Palaiseau (France); Lawrence Berkeley National Laboratory, Berkeley (United States); Pire, B. [Ecole Polytechnique, CPHT, Palaiseau (France); Szymanowski, L. [Soltan Institute for Nuclear Studies, Warsaw (Poland); Universite de Liege, Liege (Belgium); Wallon, S. [LPT, Universite Paris-Sud, Orsay (France)

    2006-03-15

    We calculate the leading order BFKL amplitude for the exclusive diffractive process {gamma}{sup *}{sub L}(Q{sub 1}{sup 2}){gamma}{sup *}{sub L}(Q{sub 2}{sup 2}){yields}{rho}{sub L}{sup 0}{rho}{sub L}{sup 0} in the forward direction, which can be studied in future high energy e{sup +}e{sup -} linear colliders. The resummation effects are very large compared to the fixed-order calculation. We also estimate the next-to-leading logarithmic corrections to the amplitude by using a specific resummation of higher order effects and find a substantial growth with energy, but smaller than in the leading logarithmic approximation. (orig.)

  10. Protein kinase C-α signals P115RhoGEF phosphorylation and RhoA activation in TNF-α-induced mouse brain microvascular endothelial cell barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Deng Xiaolu

    2011-04-01

    Full Text Available Abstract Background Tumor necrosis factor-α (TNF-α, a proinflammatory cytokine, is capable of activating the small GTPase RhoA, which in turn contributes to endothelial barrier dysfunction. However, the underlying signaling mechanisms remained undefined. Therefore, we aimed to determine the role of protein kinase C (PKC isozymes in the mechanism of RhoA activation and in signaling TNF-α-induced mouse brain microvascular endothelial cell (BMEC barrier dysfunction. Methods Bend.3 cells, an immortalized mouse brain endothelial cell line, were exposed to TNF-α (10 ng/mL. RhoA activity was assessed by pull down assay. PKC-α activity was measured using enzyme assasy. BMEC barrier function was measured by transendothelial electrical resistance (TER. p115RhoGEF phosphorylation was detected by autoradiography followed by western blotting. F-actin organization was observed by rhodamine-phalloidin staining. Both pharmacological inhibitors and knockdown approaches were employed to investigate the role of PKC and p115RhoGEF in TNF-α-induced RhoA activation and BMEC permeability. Results We observed that TNF-α induces a rapid phosphorylation of p115RhoGEF, activation of PKC and RhoA in BMECs. Inhibition of conventional PKC by Gö6976 mitigated the TNF-α-induced p115RhoGEF phosphorylation and RhoA activation. Subsequently, we found that these events are regulated by PKC-α rather than PKC-β by using shRNA. In addition, P115-shRNA and n19RhoA (dominant negative mutant of RhoA transfections had no effect on mediating TNF-α-induced PKC-α activation. These data suggest that PKC-α but not PKC-β acts as an upstream regulator of p115RhoGEF phosphorylation and RhoA activation in response to TNF-α. Moreover, depletion of PKC-α, of p115RhoGEF, and inhibition of RhoA activation also prevented TNF-α-induced stress fiber formation and a decrease in TER. Conclusions Taken together, our results show that PKC-α phosphorylation of p115RhoGEF mediates TNF

  11. Silver (I) as DNA glue: Ag+-mediated guanine pairing revealed by removing Watson-Crick constraints

    Science.gov (United States)

    Swasey, Steven M.; Leal, Leonardo Espinosa; Lopez-Acevedo, Olga; Pavlovich, James; Gwinn, Elisabeth G.

    2015-01-01

    Metal ion interactions with DNA have far-reaching implications in biochemistry and DNA nanotechnology. Ag+ is uniquely interesting because it binds exclusively to the bases rather than the backbone of DNA, without the toxicity of Hg2+. In contrast to prior studies of Ag+ incorporation into double-stranded DNA, we remove the constraints of Watson-Crick pairing by focusing on homo-base DNA oligomers of the canonical bases. High resolution electro-spray ionization mass spectrometry reveals an unanticipated Ag+-mediated pairing of guanine homo-base strands, with higher stability than canonical guanine-cytosine pairing. By exploring unrestricted binding geometries, quantum chemical calculations find that Ag+ bridges between non-canonical sites on guanine bases. Circular dichroism spectroscopy shows that the Ag+-mediated structuring of guanine homobase strands persists to at least 90 °C under conditions for which canonical guanine-cytosine duplexes melt below 20 °C. These findings are promising for DNA nanotechnology and metal-ion based biomedical science. PMID:25973536

  12. Silver (I) as DNA glue: Ag(+)-mediated guanine pairing revealed by removing Watson-Crick constraints.

    Science.gov (United States)

    Swasey, Steven M; Leal, Leonardo Espinosa; Lopez-Acevedo, Olga; Pavlovich, James; Gwinn, Elisabeth G

    2015-05-14

    Metal ion interactions with DNA have far-reaching implications in biochemistry and DNA nanotechnology. Ag(+) is uniquely interesting because it binds exclusively to the bases rather than the backbone of DNA, without the toxicity of Hg(2+). In contrast to prior studies of Ag(+) incorporation into double-stranded DNA, we remove the constraints of Watson-Crick pairing by focusing on homo-base DNA oligomers of the canonical bases. High resolution electro-spray ionization mass spectrometry reveals an unanticipated Ag(+)-mediated pairing of guanine homo-base strands, with higher stability than canonical guanine-cytosine pairing. By exploring unrestricted binding geometries, quantum chemical calculations find that Ag(+) bridges between non-canonical sites on guanine bases. Circular dichroism spectroscopy shows that the Ag(+)-mediated structuring of guanine homobase strands persists to at least 90 °C under conditions for which canonical guanine-cytosine duplexes melt below 20 °C. These findings are promising for DNA nanotechnology and metal-ion based biomedical science.

  13. Silver (I) as DNA glue: Ag+-mediated guanine pairing revealed by removing Watson-Crick constraints

    Science.gov (United States)

    Swasey, Steven M.; Leal, Leonardo Espinosa; Lopez-Acevedo, Olga; Pavlovich, James; Gwinn, Elisabeth G.

    2015-05-01

    Metal ion interactions with DNA have far-reaching implications in biochemistry and DNA nanotechnology. Ag+ is uniquely interesting because it binds exclusively to the bases rather than the backbone of DNA, without the toxicity of Hg2+. In contrast to prior studies of Ag+ incorporation into double-stranded DNA, we remove the constraints of Watson-Crick pairing by focusing on homo-base DNA oligomers of the canonical bases. High resolution electro-spray ionization mass spectrometry reveals an unanticipated Ag+-mediated pairing of guanine homo-base strands, with higher stability than canonical guanine-cytosine pairing. By exploring unrestricted binding geometries, quantum chemical calculations find that Ag+ bridges between non-canonical sites on guanine bases. Circular dichroism spectroscopy shows that the Ag+-mediated structuring of guanine homobase strands persists to at least 90 °C under conditions for which canonical guanine-cytosine duplexes melt below 20 °C. These findings are promising for DNA nanotechnology and metal-ion based biomedical science.

  14. Quantum molecular modeling of the interaction between guanine and alkylating agents--1--sulfur mustard.

    Science.gov (United States)

    Broch, H; Hamza, A; Vasilescu, D

    1996-06-01

    Interaction between Guanine and the episulfonium form of Sulfur mustard (HD) was studied using the ab initio LCAO-MO method at the HF/6-31G level. The alkylation mechanism on guanine-N7 was analyzed by using a supermolecular modeling. Our stereostructural results associated with the molecular electrostatic potentials and HOMO-LUMO properties, show that in vacuum the alkylation of the N7 of guanine by HD in the aggressive episulfonium form is a direct process without transition state and of which the pathway is determined.

  15. Different characteristics and nucleotide binding properties of inosine monophosphate dehydrogenase (IMPDH isoforms.

    Directory of Open Access Journals (Sweden)

    Elaine C Thomas

    Full Text Available We recently reported that Inosine Monophosphate Dehydrogenase (IMPDH, a rate-limiting enzyme in de novo guanine nucleotide biosynthesis, clustered into macrostructures in response to decreased nucleotide levels and that there were differences between the IMPDH isoforms, IMPDH1 and IMPDH2. We hypothesised that the Bateman domains, which are present in both isoforms and serve as energy-sensing/allosteric modules in unrelated proteins, would contribute to isoform-specific differences and that mutations situated in and around this domain in IMPDH1 which give rise to retinitis pigmentosa (RP would compromise regulation. We employed immuno-electron microscopy to investigate the ultrastructure of IMPDH macrostructures and live-cell imaging to follow clustering of an IMPDH2-GFP chimera in real-time. Using a series of IMPDH1/IMPDH2 chimera we demonstrated that the propensity to cluster was conferred by the N-terminal 244 amino acids, which includes the Bateman domain. A protease protection assay suggested isoform-specific purine nucleotide binding characteristics, with ATP protecting IMPDH1 and AMP protecting IMPDH2, via a mechanism involving conformational changes upon nucleotide binding to the Bateman domain without affecting IMPDH catalytic activity. ATP binding to IMPDH1 was confirmed in a nucleotide binding assay. The RP-causing mutation, R224P, abolished ATP binding and nucleotide protection and this correlated with an altered propensity to cluster. Collectively these data demonstrate that (i the isoforms are differentially regulated by AMP and ATP by a mechanism involving the Bateman domain, (ii communication occurs between the Bateman and catalytic domains and (iii the RP-causing mutations compromise such regulation. These findings support the idea that the IMPDH isoforms are subject to distinct regulation and that regulatory defects contribute to human disease.

  16. A DFT investigation on interactions between asymmetric derivatives of cisplatin and nucleobase guanine

    Science.gov (United States)

    Tai, Truong Ba; Nhat, Pham Vu

    2017-07-01

    The interactions of hydrolysis products of cisplatin and its asymmetric derivatives cis- and trans-[PtCl2(iPram)(Mepz)] with guanine were studied using DFT methods. These interactions are dominated by electrostatic effects, namely hydrogen bond contributions and there exists a charge flow from H-atoms of ligands to the O-atoms of guanine. The replacement of NH3 moieties by larger functional groups accompanies with a moderate reaction between PtII and guanine molecule, diminishing the cytotoxicity of the drug. The asymmetric and symmetric NH2 stretching modes of complexes having strong hydrogen bond interactions are red shifted importantly as compared to complexes without presence of hydrogen bond interactions.

  17. Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions

    Directory of Open Access Journals (Sweden)

    Andy Hesketh

    2017-07-01

    Full Text Available We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP, cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection.

  18. mDia2 and CXCL12/CXCR4 chemokine signaling intersect to drive tumor cell amoeboid morphological transitions.

    Science.gov (United States)

    Wyse, Meghan M; Goicoechea, Silvia; Garcia-Mata, Rafael; Nestor-Kalinoski, Andrea L; Eisenmann, Kathryn M

    2017-03-04

    Morphological plasticity in response to environmental cues in migrating cancer cells requires F-actin cytoskeletal rearrangements. Conserved formin family proteins play critical roles in cell shape, tumor cell motility, invasion and metastasis, in part, through assembly of non-branched actin filaments. Diaphanous-related formin-2 (mDia2/Diaph3/Drf3/Dia) regulates mesenchymal-to-amoeboid morphological conversions and non-apoptotic blebbing in tumor cells by interacting with its inhibitor diaphanous-interacting protein (DIP), and disrupting cortical F-actin assembly and bundling. F-actin disruption is initiated by a CXCL12-dependent mechanism. Downstream CXCL12 signaling partners inducing mDia2-dependent amoeboid conversions remain enigmatic. We found in MDA-MB-231 tumor cells CXCL12 induces DIP and mDia2 interaction in blebs, and engages its receptor CXCR4 to induce RhoA-dependent blebbing. mDia2 and CXCR4 associate in blebs upon CXCL12 stimulation. Both CXCR4 and RhoA are required for CXCL12-induced blebbing. Neither CXCR7 nor other Rho GTPases that activate mDia2 are required for CXCL12-induced blebbing. The Rho Guanine Nucleotide Exchange Factor (GEF) Net1 is required for CXCL12-driven RhoA activation and subsequent blebbing. These results reveal CXCL12 signaling, through CXCR4, directs a Net1/RhoA/mDia-dependent signaling hub to drive cytoskeleton rearrangements to regulate morphological plasticity in tumor cells. These signaling hubs may be conserved during normal and cancer cells responding to chemotactic cues. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Highly sensitive and selective fluorescent assay for guanine based on the Cu2 +/eosin Y system

    Science.gov (United States)

    Shi, Huimin; Cui, Yi; Gong, Yijun; Feng, Suling

    2016-05-01

    A fluorescent probe has been developed for the determination of guanine based on the quenched fluorescence signal of Cu2 +/eosin Y. Cu2 + interacted with eosin Y, resulting in fluorescence quenching. Subsequently, with the addition of guanine to the Cu2 +/eosin Y system, guanine reacted with Cu2 + to form 1:1 chelate cation, which further combined with eosin Y to form a 1:1 ternary ion-association complex by electrostatic attraction and hydrophobic interaction, resulting in significant decrease of the fluorescence. Hence, a fluorescent system was constructed for rapid, sensitive and selective detection of guanine with a detection limit as low as 1.5 nmol L- 1 and a linear range of 3.3-116 nmol L- 1. The method has been applied satisfactorily to the determination of guanine in DNA and urine samples with the recoveries from 98.7% to 105%. This study significantly expands the realm of application of ternary ion-association complex in fluorescence probe.

  20. Exclusive {rho}{sup 0} production at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Rostomyan, Armine Armand

    2008-11-15

    In this thesis the exclusive electroproduction of {rho}{sup 0} mesons is analyzed using the data accumulated with the HERMES spectrometer in the years 2002-2005 by scattering the lepton beam of the HERA accelerator of the internal target of HERMES filled with transversely polarized hydrogen gas atoms. The {rho}{sup 0} production mechanism and, in a model-dependent way, the structure of the nucleon are studied by measuring the spin-density matrix elements (SDMEs), which parameterize the {rho}{sup 0} production and decay angular distribution. The decomposition of the angular distribution in terms of SDMEs was previously done for both polarized and unpolarized lepton beam and unpolarized target. Recently, the angular distribution was decomposed in terms of SDMEs also for a transversely polarized target. A first measurement of the 30 'transverse' SDMEs is reported in this thesis, yielding information on the degree of s-channel helicity conservation and natural-parity exchange in the case of a transversely polarized target. The measured SDMEs are implemented into the rhoMC Monte Carlo generator, which is currently the only one capable of fully simulating the exclusive {rho}{sup 0} production and decay for both unpolarized and polarized beam and target. The interest in SDMEs for a polarized target arose after it was shown that at leading twist the corresponding SDMEs can be related to the azimuthal transverse target-spin asymmetry in the cross section of exclusive {rho}{sup 0} production which is sensitive to the unknown nucleon helicity-ip GPDs. Since the GPD formalism is only valid for longitudinally polarized vector mesons produced by longitudinal photons, for the first time the transverse target-spin asymmetry of longitudinally polarized {rho}{sup 0} mesons is extracted and compared to the available theoretical predictions, specically considering possible problems with next-to-leading order corrections. (orig.)

  1. Exclusive {rho}{sup 0} production at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Rostomyan, Armine Armand

    2008-11-15

    In this thesis the exclusive electroproduction of {rho}{sup 0} mesons is analyzed using the data accumulated with the HERMES spectrometer in the years 2002-2005 by scattering the lepton beam of the HERA accelerator of the internal target of HERMES filled with transversely polarized hydrogen gas atoms. The {rho}{sup 0} production mechanism and, in a model-dependent way, the structure of the nucleon are studied by measuring the spin-density matrix elements (SDMEs), which parameterize the {rho}{sup 0} production and decay angular distribution. The decomposition of the angular distribution in terms of SDMEs was previously done for both polarized and unpolarized lepton beam and unpolarized target. Recently, the angular distribution was decomposed in terms of SDMEs also for a transversely polarized target. A first measurement of the 30 'transverse' SDMEs is reported in this thesis, yielding information on the degree of s-channel helicity conservation and natural-parity exchange in the case of a transversely polarized target. The measured SDMEs are implemented into the rhoMC Monte Carlo generator, which is currently the only one capable of fully simulating the exclusive {rho}{sup 0} production and decay for both unpolarized and polarized beam and target. The interest in SDMEs for a polarized target arose after it was shown that at leading twist the corresponding SDMEs can be related to the azimuthal transverse target-spin asymmetry in the cross section of exclusive {rho}{sup 0} production which is sensitive to the unknown nucleon helicity-ip GPDs. Since the GPD formalism is only valid for longitudinally polarized vector mesons produced by longitudinal photons, for the first time the transverse target-spin asymmetry of longitudinally polarized {rho}{sup 0} mesons is extracted and compared to the available theoretical predictions, specically considering possible problems with next-to-leading order corrections. (orig.)

  2. The rho-parameter in supersymmetric models

    International Nuclear Information System (INIS)

    Lim, C.S.; Inami, T.; Sakai, N.

    1983-10-01

    The electroweak rho-parameter is examined in a general class of supersymmetric models. Formulae are given for one-loop contributions to Δrho from scalar quarks and leptons, gauge-Higgs fermions and an extra doublet of Higgs scalars. Mass differences between members of isodoublet scalar quarks and leptons are constrained to be less than about 200 GeV. (author)

  3. Effect of electroacupuncture on the mRNA and protein expression of Rho-A and Rho-associated kinase II in spinal cord injury rats

    Directory of Open Access Journals (Sweden)

    You-jiang Min

    2017-01-01

    Full Text Available Electroacupuncture is beneficial for the recovery of spinal cord injury, but the underlying mechanism is unclear. The Rho/Rho-associated kinase (ROCK signaling pathway regulates the actin cytoskeleton by controlling the adhesive and migratory behaviors of cells that could inhibit neurite regrowth after neural injury and consequently hinder the recovery from spinal cord injury. Therefore, we hypothesized electroacupuncture could affect the Rho/ROCK signaling pathway to promote the recovery of spinal cord injury. In our experiments, the spinal cord injury in adult Sprague-Dawley rats was caused by an impact device. Those rats were subjected to electroacupuncture at Yaoyangguan (GV3, Dazhui (GV14, Zusanli (ST36 and Ciliao (BL32 and/or monosialoganglioside treatment. Behavioral scores revealed that the hindlimb motor functions improved with those treatments. Real-time quantitative polymerase chain reaction, fluorescence in situ hybridization and western blot assay showed that electroacupuncture suppressed the mRNA and protein expression of Rho-A and Rho-associated kinase II (ROCKII of injured spinal cord. Although monosialoganglioside promoted the recovery of hindlimb motor function, monosialoganglioside did not affect the expression of Rho-A and ROCKII. However, electroacupuncture combined with monosialoganglioside did not further improve the motor function or suppress the expression of Rho-A and ROCKII. Our data suggested that the electroacupuncture could specifically inhibit the activation of the Rho/ROCK signaling pathway thus partially contributing to the repair of injured spinal cord. Monosialoganglioside could promote the motor function but did not suppress expression of RhoA and ROCKII. There was no synergistic effect of electroacupuncture combined with monosialoganglioside.

  4. gsub(ωrhoπ) coupling constant from QCD sum rules

    International Nuclear Information System (INIS)

    Eletsky, V.L.; Ioffe, B.L.; Kogan, Ya.I.

    1982-01-01

    QCD sum rules for the vertex function of two vector and one axial vector currents are used to calculate the gsub(ωrhoπ) coupling constant (where gsub(ωrhoπ) is a transition coupling constant for ω → rhoπ process). The obtained value, gsub(ωrhoπ) approximately 17 GeV -1 is in a good agreement with experimental data

  5. Double spin asymmetry in exclusive $\\rho^0$ muoproduction at COMPASS

    CERN Document Server

    Alexakhin, V Yu; Alexandrov, Yu A; Alexeev, G D; Amoroso, A; Arbuzov, A; Badelek, B; Balestra, F; Ball, J; Baum, G; Barth, J; Bedfer, Y; Bernet, C; Bertini, R; Bettinelli, M; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, Franco; Bravar, A; Bressan, A; Brona, G; Burtin, E; Bussa, M P; Chapiro, A; Chiosso, M; Cicuttin, A; Colantoni, M L; Costa, S; Crespo, M L; D'Hose, N; Dalla Torre, S; Das, S; Das-Gupta, S S; De Masi, R; Dedek, N; Denisov, O Yu; Dhara, L; Díaz, V; Dinkelbach, A M; Donskov, S V; Dorofeev, V A; Doshita, N; Duic, V; Dünnweber, W; Eversheim, P D; Eyrich, W; Fabro, M; Faessler, M; Falaleev, V; Ferrero, A; Ferrero, L; Finger, M; Finger, M Jr; Fischer, H; Franco, C; Franz, J; Friedrich, J M; Frolov, V; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gazda, R; Gerassimov, S G; Geyer, R; Giorgi, M; Gobbo, B; Görtz, S; Gorin, A M; Grabmuller, S; Grajek, O A; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Haas, F; Hannappel, J; Von Harrach, D; Hasegawa, T; Heckmann, J; Hedicke, S; Heinsius, F H; Hermann, R; Hess, C; Hinterberger, F; Von Hodenberg, M; Horikawa, N; Horikawa, S; Ilgner, C; Ioukaev, A I; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Janata, A; Jasinski, P; Joosten, R; Jouravlev, N I; Kabuss, E M; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Komissarov, E V; Kondo, K; Knigsmann, K; Konorov, I; Konstantinov, V F; Korentchenko, A S; Korzenev, A; Kotzinian, A M; Koutchinski, N A; Kuznetsov, O; Kravchuk, N P; Kral, A; Kroumchtein, Z V; Kühn, R; Kunne, Fabienne; Kurek, K; Ladygin, M E; Lamanna, M; Le Goff, J M; Lednev, A A; Lehmann, A; Lichtenstadt, J; Liska, T; Ludwig, I; Maggiora, A; Maggiora, M; Magnon, A; Mallot, G K; Mann, A; Marchand, C; Marroncle, J; Martin, A; Marzec, J; Massmann, F; Matsuda, T; Maksimov, A N; Meyer, W; Mielech, A; Mikhailov, Yu V; Moinester, M A; Mutter, A; Nahle, O; Nagaytsev, A; Nagel, T; Nassalski, J P; Neliba, S; Nerling, F; Neubert, a S; Neyret, D P; Nikolaenko, V I; Nikolaev, K; Olshevskii, A G; Ostrick, M; Padee, A; Pagano, P; Panebianco, S; Panknin, R; Panzieri, D; Paul, S; Pawlukiewicz-Kaminska, B; Peshekhonov, V D; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pretz, J; Procureur, S; Quintans, C; Rajotte, J F; Rapatsky, V; Ramos, S; Reicherz, G; Richter, A; Robinet, F; Rocco, E; Rondio, E; Rozhdestvensky, A M; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Santos, H; Sapozhnikov, M G; Sarkar, S; Savin, I A; Schiavon, Paolo; Schill, C; Schmitt, L; Schonmeier, P; Schroder, W; Shevchenko, O Yu; Siebert, H W; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Sugonyaev, V P; Srnka, A; Stinzing, F; Stolarski, M; Sulc, M; Sulej, R; Takabayashi, N; Tchalishev, V V; Tessaro, S; Tessarotto, F; Teufel, A; Tkatchev, L G; Venugopal, G; Virius, M; Vlassov, N V; Vossen, A; Webb, R; Weise, E; Weitzel, Q; Windmolders, R; Wirth, S; Wilicki, W; Zaremba, s K; Zavertyaev, M; Zemlyanichkina, E; Zhao, J; Ziegler, R; Zvyagin, A

    2007-01-01

    The longitudinal double spin asymmetry A_1^rho for exclusive leptoproduction of rho^0 mesons, mu + N -> mu + N + rho, is studied using the COMPASS 2002 and 2003 data. The measured reaction is incoherent exclusive rho^0 production on polarised deuterons. The Q^2 and x dependence of A_1^rho is presented in a wide kinematical range: 3x10^-3 < Q^2 < 7 (GeV/c)^2 and 5x10^-5 < x < 0.05. The presented results are the first measurements of A_1^rho at small Q2 (Q2 < 0.1 (GeV/c)^2) and small x (x < 3x10^-3). The asymmetry is in general compatible with zero in the whole kinematical range.

  6. RhoG protein regulates platelet granule secretion and thrombus formation in mice.

    Science.gov (United States)

    Goggs, Robert; Harper, Matthew T; Pope, Robert J; Savage, Joshua S; Williams, Christopher M; Mundell, Stuart J; Heesom, Kate J; Bass, Mark; Mellor, Harry; Poole, Alastair W

    2013-11-22

    Rho GTPases such as Rac, RhoA, and Cdc42 are vital for normal platelet function, but the role of RhoG in platelets has not been studied. In other cells, RhoG orchestrates processes integral to platelet function, including actin cytoskeletal rearrangement and membrane trafficking. We therefore hypothesized that RhoG would play a critical role in platelets. Here, we show that RhoG is expressed in human and mouse platelets and is activated by both collagen-related peptide (CRP) and thrombin stimulation. We used RhoG(-/-) mice to study the function of RhoG in platelets. Integrin activation and aggregation were reduced in RhoG(-/-) platelets stimulated by CRP, but responses to thrombin were normal. The central defect in RhoG(-/-) platelets was reduced secretion from α-granules, dense granules, and lysosomes following CRP stimulation. The integrin activation and aggregation defects could be rescued by ADP co-stimulation, indicating that they are a consequence of diminished dense granule secretion. Defective dense granule secretion in RhoG(-/-) platelets limited recruitment of additional platelets to growing thrombi in flowing blood in vitro and translated into reduced thrombus formation in vivo. Interestingly, tail bleeding times were normal in RhoG(-/-) mice, suggesting that the functions of RhoG in platelets are particularly relevant to thrombotic disorders.

  7. Partial contribution of Rho-kinase inhibition to the bioactivity of Ganoderma lingzhi and its isolated compounds: insights on discovery of natural Rho-kinase inhibitors.

    Science.gov (United States)

    Amen, Yhiya; Zhu, Qinchang; Tran, Hai-Bang; Afifi, Mohamed S; Halim, Ahmed F; Ashour, Ahmed; Shimizu, Kuniyoshi

    2017-04-01

    Recent studies identified Rho-kinase enzymes (ROCK-I and ROCK-II) as important targets that are involved in a variety of diseases. Synthetic Rho-kinase inhibitors have emerged as potential therapeutic agents to treat disorders such as hypertension, stroke, cancer, diabetes, glaucoma, etc. Our study is the first to screen the total ethanol extract of the medicinal mushroom Ganoderma lingzhi with thirty-five compounds for Rho-kinase inhibitory activity. Moreover, a molecular binding experiment was designed to investigate the binding affinity of the compounds at the active sites of Rho-kinase enzymes. The structure-activity relationship analysis was investigated. Our results suggest that the traditional uses of G. lingzhi might be in part due to the ROCK-I and ROCK-II inhibitory potential of this mushroom. Structure-activity relationship studies revealed some interesting features of the lanostane triterpenes that potentiate their Rho-kinase inhibition. These findings would be helpful for further studies on the design of Rho-kinase inhibitors from natural sources and open the door for contributions from other researchers for optimizing the development of natural Rho-kinase inhibitors.

  8. Highly sensitive and selective fluorescent assay for guanine based on the Cu(2+)/eosin Y system.

    Science.gov (United States)

    Shi, Huimin; Cui, Yi; Gong, Yijun; Feng, Suling

    2016-05-15

    A fluorescent probe has been developed for the determination of guanine based on the quenched fluorescence signal of Cu(2+)/eosin Y. Cu(2+) interacted with eosin Y, resulting in fluorescence quenching. Subsequently, with the addition of guanine to the Cu(2+)/eosin Y system, guanine reacted with Cu(2+) to form 1:1 chelate cation, which further combined with eosin Y to form a 1:1 ternary ion-association complex by electrostatic attraction and hydrophobic interaction, resulting in significant decrease of the fluorescence. Hence, a fluorescent system was constructed for rapid, sensitive and selective detection of guanine with a detection limit as low as 1.5 nmol L(-1) and a linear range of 3.3-116 nmol L(-1). The method has been applied satisfactorily to the determination of guanine in DNA and urine samples with the recoveries from 98.7% to 105%. This study significantly expands the realm of application of ternary ion-association complex in fluorescence probe. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Radicals of DNA and DNA nucleotides generated by ionising radiation

    International Nuclear Information System (INIS)

    Przybytniak, G.

    2004-01-01

    A first stage of cell processes leading to DNA damage of initiated by radical reactions. In a model system such transformations were generated by ionising radiation which involves production of electron loss and electron gain centers of the substrate and radical formation. Using cryogenic ESR spectroscopy it was found that the DNA nucleotides, which convert to radical anions upon electron capture undergo the separation of unpaired spin and charge due to protonation. Circular and linear dichroism studies enabled to conclude that iron ions(III) induce strong changes in the DNA helical structure indicating their coordination with nitrogen bases. The repair of DNA radicals produced via radiolytic oxidation, i.e. the guanine radical cation and the allyl type radical of thymine, is possible at elevated temperatures due to the involvement of sulphydryl groups. The influence of the thiol charge is then limited

  10. Grb2 mediates semaphorin-4D-dependent RhoA inactivation.

    Science.gov (United States)

    Sun, Tianliang; Krishnan, Rameshkumar; Swiercz, Jakub M

    2012-08-01

    Signaling through the semaphorin 4D (Sema4D) receptor plexin-B1 is modulated by its interaction with tyrosine kinases ErbB-2 and Met. In cells expressing the plexin-B1-ErbB-2 receptor complex, ligand stimulation results in the activation of small GTPase RhoA and stimulation of cellular migration. By contrast, in cells expressing plexin-B1 and Met, ligand stimulation results in an association with the RhoGTPase-activating protein p190 RhoGAP and subsequent RhoA inactivation--a process that involves the tyrosine phosphorylation of plexin-B1 by Met. Inactivation of RhoA is necessary for Sema4D-mediated inhibition of cellular migration. It is, however, unknown how plexin-B1 phosphorylation regulates RhoGAP interaction and activity. Here we show that the activation of plexin-B1 by Sema4D and its subsequent tyrosine phosphorylation by Met creates a docking site for the SH2 domain of growth factor receptor bound-2 (Grb2). Grb2 is thereby recruited into the plexin-B1 receptor complex and, through its SH3 domain, interacts with p190 RhoGAP and mediates RhoA deactivation. Phosphorylation of plexin-B1 by Met and the recruitment of Grb2 have no effect on the R-RasGAP activity of plexin-B1, but are required for Sema4D-induced, RhoA-dependent antimigratory effects of Sema4D on breast cancer cells. These data show Grb2 as a direct link between plexin and p190-RhoGAP-mediated downstream signaling.

  11. etaγ decays of rho0, ω, and phi mesons

    International Nuclear Information System (INIS)

    Andrews, D.E.; Fukushima, Y.; Harvey, J.; Lobkowicz, F.; May, E.N.; Nelson, C.A. Jr.; Thorndike, E.H.

    1977-01-01

    etaγ decays of rho 0 , ω, and phi are studied. We find GAMMA (phi→etaγ) =55 +- 12 keV. Our data admit two solutions for (rho 0 , ω) →etaγ: Either GAMMA (rho 0 →etaγ) =50 +- 13 keV, GAMMA (ω→etaγ) =3.0 +2 /sup ./ 5 /sub -/ 1 /sub ./ 8 keV, and the (ω,rho) →etaγ relative decay phase is near zero; or GAMMA (rho 0 →etaγ) =76 +- 15 keV, GAMMA (ω→etaγ) =29 +- 7 keV, and the decay phase is near 180degree

  12. Reactivity of chitosan derivatives and their interaction with guanine ...

    Indian Academy of Sciences (India)

    Density functional theory; hydrogen bonding; chitosan derivative; guanine; solvent effect. 1. Introduction .... Out of different models for accounting the solva- tion energies ..... Authors thank DST, New Delhi for financial support. (Grant No.

  13. Homozygous ARHGEF2 mutation causes intellectual disability and midbrain-hindbrain malformation.

    Directory of Open Access Journals (Sweden)

    Ethiraj Ravindran

    2017-04-01

    Full Text Available Mid-hindbrain malformations can occur during embryogenesis through a disturbance of transient and localized gene expression patterns within these distinct brain structures. Rho guanine nucleotide exchange factor (ARHGEF family members are key for controlling the spatiotemporal activation of Rho GTPase, to modulate cytoskeleton dynamics, cell division, and cell migration. We identified, by means of whole exome sequencing, a homozygous frameshift mutation in the ARHGEF2 as a cause of intellectual disability, a midbrain-hindbrain malformation, and mild microcephaly in a consanguineous pedigree of Kurdish-Turkish descent. We show that loss of ARHGEF2 perturbs progenitor cell differentiation and that this is associated with a shift of mitotic spindle plane orientation, putatively favoring more symmetric divisions. The ARHGEF2 mutation leads to reduction in the activation of the RhoA/ROCK/MLC pathway crucial for cell migration. We demonstrate that the human brain malformation is recapitulated in Arhgef2 mutant mice and identify an aberrant migration of distinct components of the precerebellar system as a pathomechanism underlying the midbrain-hindbrain phenotype. Our results highlight the crucial function of ARHGEF2 in human brain development and identify a mutation in ARHGEF2 as novel cause of a neurodevelopmental disorder.

  14. The Phosphatidylinositol (3,4,5)-Trisphosphate-dependent Rac Exchanger 1·Ras-related C3 Botulinum Toxin Substrate 1 (P-Rex1·Rac1) Complex Reveals the Basis of Rac1 Activation in Breast Cancer Cells.

    Science.gov (United States)

    Lucato, Christina M; Halls, Michelle L; Ooms, Lisa M; Liu, Heng-Jia; Mitchell, Christina A; Whisstock, James C; Ellisdon, Andrew M

    2015-08-21

    The P-Rex (phosphatidylinositol (3,4,5)-trisphosphate (PIP3)-dependent Rac exchanger) family (P-Rex1 and P-Rex2) of the Rho guanine nucleotide exchange factors (Rho GEFs) activate Rac GTPases to regulate cell migration, invasion, and metastasis in several human cancers. The family is unique among Rho GEFs, as their activity is regulated by the synergistic binding of PIP3 and Gβγ at the plasma membrane. However, the molecular mechanism of this family of multi-domain proteins remains unclear. We report the 1.95 Å crystal structure of the catalytic P-Rex1 DH-PH tandem domain in complex with its cognate GTPase, Rac1 (Ras-related C3 botulinum toxin substrate-1). Mutations in the P-Rex1·Rac1 interface revealed a critical role for this complex in signaling downstream of receptor tyrosine kinases and G protein-coupled receptors. The structural data indicated that the PIP3/Gβγ binding sites are on the opposite surface and markedly removed from the Rac1 interface, supporting a model whereby P-Rex1 binding to PIP3 and/or Gβγ releases inhibitory C-terminal domains to expose the Rac1 binding site. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Structure-wise discrimination of adenine and guanine by proteins on the basis of their nonbonded interactions.

    Science.gov (United States)

    Usha, S; Selvaraj, S

    2015-01-01

    We have analyzed the nonbonded interactions of the structurally similar moieties, adenine and guanine forming complexes with proteins. The results comprise (a) the amino acid-ligand atom preferences, (b) solvent accessibility of ligand atoms before and after complex formation with proteins, and (c) preferred amino acid residue atoms involved in the interactions. We have observed that the amino acid preferences involved in the hydrogen bonding interactions vary for adenine and guanine. The structural variation between the purine atoms is clearly reflected by their burial tendency in the solvent environment. Correlation of the mean amino acid preference values show the variation that exists between adenine and guanine preferences of all the amino acid residues. All our observations provide evidence for the discriminating nature of the proteins in recognizing adenine and guanine.

  16. Synthesis of a Pseudodisaccharide α-C-Glycosidically Linked to an 8-Alkylated Guanine

    Directory of Open Access Journals (Sweden)

    Jan Duchek

    2013-04-01

    Full Text Available The synthesis of stable guanofosfocin analogues has attracted considerable attention in the past 15 years. Several guanofosfocin analogues mimicking the three constitutional elements of mannose, ribose, and guanine were designed and synthesized. Interest in ether-linked pseudodisaccharides and 8-alkylated guanines is increasing, due to their potential applications in life science. In this article, a novel guanofosfocin analogue 6, an ether-linked pseudodisaccharide connected α-C-glycosidically to an 8-alkylated guanine, was synthesized in a 10-longest linear step sequence from known diol 13, resulting in an overall yield of 26%. The key steps involve the ring-opening of cyclic sulfate 8 by alkoxide generated from 7 and a reductive cyclization of 4-N-acyl-2,4-diamino-5-nitrosopyrimidine 19 to form compound 6.

  17. 1α,25-Dihydroxyvitamin D3 Ameliorates Seawater Aspiration-Induced Acute Lung Injury via NF-κB and RhoA/Rho Kinase Pathways

    Science.gov (United States)

    Liu, Wei; Wang, Li; Luo, Ying; Li, Zhichao; Jin, Faguang

    2014-01-01

    Introduction Inflammation and pulmonary edema are involved in the pathogenesis of seawater aspiration-induced acute lung injury (ALI). Although several studies have reported that 1α,25-Dihydroxyvitamin D3 (calcitriol) suppresses inflammation, it has not been confirmed to be effective in seawater aspiration-induced ALI. Thus, we investigated the effect of calcitriol on seawater aspiration-induced ALI and explored the probable mechanism. Methods Male SD rats receiving different doses of calcitriol or not, underwent seawater instillation. Then lung samples were collected at 4 h for analysis. In addition, A549 cells and rat pulmonary microvascular endothelial cells (RPMVECs) were cultured with calcitriol or not and then stimulated with 25% seawater for 40 min. After these treatments, cells samples were collected for analysis. Results Results from real-time PCR showed that seawater stimulation up-regulated the expression of vitamin D receptor in lung tissues, A549 cells and RPMVECs. Seawater stimulation also activates NF-κB and RhoA/Rho kinase pathways. However, we found that pretreatment with calcitriol significantly inhibited the activation of NF-κB and RhoA/Rho kinase pathways. Meanwhile, treatment of calcitriol also improved lung histopathologic changes, reduced inflammation, lung edema and vascular leakage. Conclusions These results demonstrated that NF-κB and RhoA/Rho kinase pathways are critical in the development of lung inflammation and pulmonary edema and that treatment with calcitriol could ameliorate seawater aspiration-induced ALI, which was probably through the inhibition of NF-κB and RhoA/Rho kinase pathways. PMID:25118599

  18. Helicase and Polymerase Move Together Close to the Fork Junction and Copy DNA in One-Nucleotide Steps

    Directory of Open Access Journals (Sweden)

    Manjula Pandey

    2014-03-01

    Full Text Available By simultaneously measuring DNA synthesis and dNTP hydrolysis, we show that T7 DNA polymerase and T7 gp4 helicase move in sync during leading-strand synthesis, taking one-nucleotide steps and hydrolyzing one dNTP per base-pair unwound/copied. The cooperative catalysis enables the helicase and polymerase to move at a uniformly fast rate without guanine:cytosine (GC dependency or idling with futile NTP hydrolysis. We show that the helicase and polymerase are located close to the replication fork junction. This architecture enables the polymerase to use its strand-displacement synthesis to increase the unwinding rate, whereas the helicase aids this process by translocating along single-stranded DNA and trapping the unwound bases. Thus, in contrast to the helicase-only unwinding model, our results suggest a model in which the helicase and polymerase are moving in one-nucleotide steps, DNA synthesis drives fork unwinding, and a role of the helicase is to trap the unwound bases and prevent DNA reannealing.

  19. Measurement of branching rates and search for CP violation in decays B0 {yields} {rho} {pi}, {rho} K; Mesure des rapports d'embranchement et recherche de la violation de CP dans les modes B{sup 0}{yields}rhopi, rhoK

    Energy Technology Data Exchange (ETDEWEB)

    Laplace, S

    2003-04-01

    The BABAR experiment, at the PEP-II collider at SLAC, has been studying since 1999 CP violation in the B meson system. After the precise measurement of sin(2*{beta}) we are now concentrating on measuring the alpha and gamma angles of the unitarity triangle. The work presented in this thesis concerns the measurement of the alpha angle in the B{sub 0} {yields} {rho}{pi} mode. We realized a time-dependant analysis of CP and the measurements of branching ratios concerning B{sub 0} {yields} {rho}{sup +-}{pi}{sup -+} and B{sub 0} {yields} {rho}{sup -}K{sup +} modes. The results obtained on an integrated luminosity of 80.9 fb{sup -1} are the following: B(B{sub 0} {yields} {rho}{sup +-}{pi}{sup -+}) = (22.6 {+-} 1.8 {+-} 2.2) 10{sup -6}, B(B{sub 0} {yields} {rho}{sup -}K{sup +}) (7.3 {+-} 1.3 {+-} 1.3) 10{sup -6}, ACP({rho}{pi}) = -0.18 {+-} 0.08 {+-} 0.03, ACP({rho}K) = -0.28 {+-} 0.17 {+-} 0.08, C({rho}{pi}) -0.36 {+-} 0.18 {+-} 0.04, S({rho}{pi}) = -0.19 {+-} 0.24 {+-} 0.03, {delta}C({rho}{pi}) = 0.28 {+-} 0.19 {+-} 0.04, {delta}S({rho}{pi}) = 0.15 {+-} 0.25 {+-} 0.03. We also measured the branching ratio of B{sub 0} {yields} {rho}{sub 0}{pi}{sub 0} with a significance of 2.7 {sigma}. We therefore put the following upper limit at 90% CL (confidence level): B(B{sub 0} {yields} {rho}{sub 0}{pi}{sub 0}) < 2.7*10{sup -6} at 90% CL. Finally, we built the heart of a complete Dalitz plot analysis of B{sub 0} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup 0}, and estimated the experimental sensibility on alpha. The results obtained on the B{sub 0} {yields} {rho}{pi} modes are interpreted in terms of constraints on the alpha angle with methods using SU(2) and SU(3) symmetries. We also measured the branching ratio of B{sub 0} {yields} {alpha}{sub 0}{pi} using a reduced luminosity, leading to the result: B(B{sub 0} {yields} {alpha}{sub 0}{pi}) = (6.2 +3.0-2.5 {+-} 1.1)*10{sup -6}. Some phenomenological studies have been performed to infer the feasibility of a CP analysis to determine the

  20. RhoC a new target for therapeutic vaccination against metastatic cancer

    DEFF Research Database (Denmark)

    Wenandy, L.; Sorensen, R.B.; Straten, P.T.

    2008-01-01

    Most cancer deaths are due to the development of metastases. Increased expression of RhoC is linked to enhanced metastatic potential in multiple cancers. Consequently, the RhoC protein is an attractive target for drug design. The clinical application of immunotherapy against cancer is rapidly...... of cancer makes RhoC a very attractive target for anti-cancer immunotherapy. Herein, we describe an HLA-A3 restricted epitope from RhoC, which is recognized by cytotoxic T cells. Moreover, RhoC-specific T cells show cytotoxic potential against HLA-matched cancer cells of different origin. Thus, RhoC may...... moving forward in multiple areas, including the adoptive transfer of anti-tumor-reactive T cells and the use of "therapeutic" vaccines. The over-expression of RhoC in cancer and the fact that immune escape by down regulation or loss of expression of this protein would reduce the morbidity and mortality...

  1. The small GTPase RhoH is an atypical regulator of haematopoietic cells

    Directory of Open Access Journals (Sweden)

    Kubatzky Katharina F

    2008-09-01

    Full Text Available Abstract Rho GTPases are a distinct subfamily of the superfamily of Ras GTPases. The best-characterised members are RhoA, Rac and Cdc42 that regulate many diverse actions such as actin cytoskeleton reorganisation, adhesion, motility as well as cell proliferation, differentiation and gene transcription. Among the 20 members of that family, only Rac2 and RhoH show an expression restricted to the haematopoietic lineage. RhoH was first discovered in 1995 as a fusion transcript with the transcriptional repressor LAZ3/BCL6. It was therefore initially named translation three four (TTF but later on renamed RhoH due to its close relationship to the Ras/Rho family of GTPases. Since then, RhoH has been implicated in human cancer as the gene is subject to somatic hypermutation and by the detection of RHOH as a translocation partner for LAZ3/BCL6 or other genes in human lymphomas. Underexpression of RhoH is found in hairy cell leukaemia and acute myeloid leukaemia. Some of the amino acids that are crucial for GTPase activity are mutated in RhoH so that the protein is a GTPase-deficient, so-called atypical Rho GTPase. Therefore other mechanisms of regulating RhoH activity have been described. These include regulation at the mRNA level and tyrosine phosphorylation of the protein's unique ITAM-like motif. The C-terminal CaaX box of RhoH is mainly a target for farnesyl-transferase but can also be modified by geranylgeranyl-transferase. Isoprenylation of RhoH and changes in subcellular localisation may be an additional factor to fine-tune signalling. Little is currently known about its signalling, regulation or interaction partners. Recent studies have shown that RhoH negatively influences the proliferation and homing of murine haematopoietic progenitor cells, presumably by acting as an antagonist for Rac1. In leukocytes, RhoH is needed to keep the cells in a resting, non-adhesive state, but the exact mechanism has yet to be elucidated. RhoH has also been

  2. Rho resonance parameters from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Dehua; Alexandru, Andrei; Molina, Raquel; Döring, Michael

    2016-08-01

    We perform a high-precision calculation of the phase shifts for $\\pi$-$\\pi$ scattering in the I = 1, J = 1 channel in the elastic region using elongated lattices with two mass-degenerate quark favors ($N_f = 2$). We extract the $\\rho$ resonance parameters using a Breit-Wigner fit at two different quark masses, corresponding to $m_{\\pi} = 226$MeV and $m_{\\pi} = 315$MeV, and perform an extrapolation to the physical point. The extrapolation is based on a unitarized chiral perturbation theory model that describes well the phase-shifts around the resonance for both quark masses. We find that the extrapolated value, $m_{\\rho} = 720(1)(15)$MeV, is significantly lower that the physical rho mass and we argue that this shift could be due to the absence of the strange quark in our calculation.

  3. Coding sequence of human rho cDNAs clone 6 and clone 9

    Energy Technology Data Exchange (ETDEWEB)

    Chardin, P; Madaule, P; Tavitian, A

    1988-03-25

    The authors have isolated human cDNAs including the complete coding sequence for two rho proteins corresponding to the incomplete isolates previously described as clone 6 and clone 9. The deduced a.a. sequences, when compared to the a.a. sequence deduced from clone 12 cDNA, show that there are in human at least three highly homologous rho genes. They suggest that clone 12 be named rhoA, clone 6 : rhoB and clone 9 : rhoC. RhoA, B and C proteins display approx. 30% a.a. identity with ras proteins,. mainly clustered in four highly homologous internal regions corresponding to the GTP binding site; however at least one significant difference is found; the 3 rho proteins have an Alanine in position corresponding to ras Glycine 13, suggesting that rho and ras proteins might have slightly different biochemical properties.

  4. CeO{sub 2} nanoparticles decorated multi-walled carbon nanotubes for electrochemical determination of guanine and adenine

    Energy Technology Data Exchange (ETDEWEB)

    Wei Yan [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China); Department of Chemistry, Wannan Medical College, Wuhu 241002 (China); Huang Qinan [Department of Chemistry, Wannan Medical College, Wuhu 241002 (China); Li Maoguo [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China); Huang Xingjiu [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Fang Bin, E-mail: binfang_47@yahoo.com.cn [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China); Wang Lun, E-mail: wanglun@mail.ahnu.edu.cn [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China)

    2011-10-01

    Sub-10 nm CeO{sub 2} nanoparticles decorated multi-walled carbon nanotubes has been constructed for electrochemial determination of guanine and adenine. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to characterize the nanoparticles CeO{sub 2}/MWCNTs. Electrochemical impedance spectroscopy (EIS) was used to characterize the electrode modifying process. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to study the electrocatalytic activity toward the electrochemical oxidation of guanine and adenine. The detection limit (S/N = 3) for adenine and guanine was found to be 20 and 10 nM, respectively. The obtained sensitivity toward guanine and adenine was 1.26 and 1.13 {mu}A/{mu}M in the linear concentration range 5-50 {mu}M and 5-35 {mu}M, respectively. These results demonstrate that the carbon nanotubes could provide huge locations and facilitate the adsorptive accumulation of the guanine and adenine, and the CeO{sub 2} nanoparticles are promising substrates for the development of high-performance electrocatalysts for biosensing.

  5. {gamma}*{gamma}*->{rho}{rho} at very high energy

    Energy Technology Data Exchange (ETDEWEB)

    Pire, B. [CPhT, Ecole Polytechnique, 91128 Palaiseau, France, UMR 7644 du CNRS (France); Szymanowski, L. [Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland) and Universite de Liege, B4000 Liege (Belgium); Wallon, S. [LPT, Universite d' Orsay, F 91405-Orsay (France); UMR 8627 du CNRS (France)

    2005-06-13

    The next generation of e{sup +}e{sup -}-colliders will offer a possibility of clean testing of QCD dynamics in the Regge limit. Recent progress in the theoretical description of exclusive processes permits for many of them a consistent use of the perturbative QCD methods. We advocate that the exclusive diffractive production of two {rho} mesons from virtual photons at very high energies should be measurable at the future linear collider (LC)

  6. Single nucleotide polymorphism discrimination with and without an ethidium bromide intercalator.

    Science.gov (United States)

    Fenati, Renzo A; Connolly, Ashley R; Ellis, Amanda V

    2017-02-15

    Single nucleotide polymorphism (SNP) genotyping is an important aspect in understanding genetic variations. Here, we discriminate SNPs using toe-hold mediated displacement reactions. The biological target is an 80 nucleotide long double-stranded-DNA from the mtDNA HV1 region, associated with maternal ancestry. This target has been specially designed with a pendant toehold and a cationic fluorophore, ATTO 647N, as a reporter, produced in a polymerase chain reaction. Rates of reaction for the toehold-polymerase chain reaction products (TPPs) with their corresponding complementary displacing sequences, labelled with a Black Hole Quencher 1, followed the order TPP-Cytosine > TPP-Thymine > TPP-Adenine ≥ TPP-Guanine. Non-complementary rates were the slowest with mismatches involving cytosine. These reactions, operating in a static/or contact mode, gave averaged readouts between SNPs within 15 min (with 80-90% quenching), compared to 25-30 min in previous studies involving fluorescence resonance energy transfer. Addition of an intercalating agent, ethidium bromide, retarded the rate of reaction in which cytosine was involved, presumably through stabilization of the base pairing, which resulted in markedly improved discrimination of cytosine containing SNPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Rho-associated kinase is a therapeutic target in neuroblastoma.

    Science.gov (United States)

    Dyberg, Cecilia; Fransson, Susanne; Andonova, Teodora; Sveinbjörnsson, Baldur; Lännerholm-Palm, Jessika; Olsen, Thale K; Forsberg, David; Herlenius, Eric; Martinsson, Tommy; Brodin, Bertha; Kogner, Per; Johnsen, John Inge; Wickström, Malin

    2017-08-08

    Neuroblastoma is a peripheral neural system tumor that originates from the neural crest and is the most common and deadly tumor of infancy. Here we show that neuroblastoma harbors frequent mutations of genes controlling the Rac/Rho signaling cascade important for proper migration and differentiation of neural crest cells during neuritogenesis. RhoA is activated in tumors from neuroblastoma patients, and elevated expression of Rho-associated kinase (ROCK)2 is associated with poor patient survival. Pharmacological or genetic inhibition of ROCK1 and 2, key molecules in Rho signaling, resulted in neuroblastoma cell differentiation and inhibition of neuroblastoma cell growth, migration, and invasion. Molecularly, ROCK inhibition induced glycogen synthase kinase 3β-dependent phosphorylation and degradation of MYCN protein. Small-molecule inhibition of ROCK suppressed MYCN -driven neuroblastoma growth in TH- MYCN homozygous transgenic mice and MYCN gene-amplified neuroblastoma xenograft growth in nude mice. Interference with Rho/Rac signaling might offer therapeutic perspectives for high-risk neuroblastoma.

  8. Kinetics of hydrogen-deuterium exchange in guanosine 5'-monophosphate and guanosine 3':5'-monophosphate determined by laser-Raman spectroscopy.

    Science.gov (United States)

    Lane, M J; Thomas, G J

    1979-09-04

    Pseudo-first-order rate constants governing the deuterium exchange of 8-CH groups in guanosine 5'-monophosphate (5'-rGMP) and guanosine 3':5'-monophosphate (cGMP) were determined as a function of temperature in the range 30-80 degrees C by means of laser-Raman spectroscopy. For each guanine nucleotide the logarithm of the rate constant exhibits a strictly linear dependence on reciprocal temperature: i.e., k psi = Ae-Ea/RT with A = 8.84 X 10(14) h-1 and Ea = 24.6 kcal/mol for 5'-rGMP and A = 3.33 X 10(13) h-1 and Ea = 22.2 kcal/mol for cGMP. Exchange of the 8-CH groups in guanine nucleotides is generally 2-3 times more rapid than in adenine nucleotides [cf. g. j. thomas, Jr., & J. Livramento (1975) Biochemistry 14, 5210-5218]. As in the case of adenine nucleotides, cyclic and 5' nucleotides of guanine exchange at markedly different rates at lower temperatures, with exchange in the cyclic nucleotide being the more facile. Each of the guanine nucleotides was prepared in four different isotopic modifications for Raman spectral analysis. The Raman frequency shifts resulting from the various isotopic substitutions have been tabulated, and assignments have been given for most of the observed vibrational frequencies.

  9. Cell adhesion controlled by adhesion G protein-coupled receptor GPR124/ADGRA2 is mediated by a protein complex comprising intersectins and Elmo-Dock.

    Science.gov (United States)

    Hernández-Vásquez, Magda Nohemí; Adame-García, Sendi Rafael; Hamoud, Noumeira; Chidiac, Rony; Reyes-Cruz, Guadalupe; Gratton, Jean Philippe; Côté, Jean-François; Vázquez-Prado, José

    2017-07-21

    Developmental angiogenesis and the maintenance of the blood-brain barrier involve endothelial cell adhesion, which is linked to cytoskeletal dynamics. GPR124 (also known as TEM5/ADGRA2) is an adhesion G protein-coupled receptor family member that plays a pivotal role in brain angiogenesis and in ensuring a tight blood-brain barrier. However, the signaling properties of GPR124 remain poorly defined. Here, we show that ectopic expression of GPR124 promotes cell adhesion, additive to extracellular matrix-dependent effect, coupled with filopodia and lamellipodia formation and an enrichment of a pool of the G protein-coupled receptor at actin-rich cellular protrusions containing VASP, a filopodial marker. Accordingly, GPR124-expressing cells also displayed increased activation of both Rac and Cdc42 GTPases. Mechanistically, we uncover novel direct interactions between endogenous GPR124 and the Rho guanine nucleotide exchange factors Elmo/Dock and intersectin (ITSN). Small fragments of either Elmo or ITSN1 that bind GPR124 blocked GPR124-induced cell adhesion. In addition, Gβγ interacts with the C-terminal tail of GPR124 and promotes the formation of a GPR124-Elmo complex. Furthermore, GPR124 also promotes the activation of the Elmo-Dock complex, as measured by Elmo phosphorylation on a conserved C-terminal tyrosine residue. Interestingly, Elmo and ITSN1 also interact with each other independently of their GPR124-recognition regions. Moreover, endogenous phospho-Elmo and ITSN1 co-localize with GPR124 at lamellipodia of adhering endothelial cells, where GPR124 expression contributes to polarity acquisition during wound healing. Collectively, our results indicate that GPR124 promotes cell adhesion via Elmo-Dock and ITSN. This constitutes a previously unrecognized complex formed of atypical and conventional Rho guanine nucleotide exchange factors for Rac and Cdc42 that is putatively involved in GPR124-dependent angiogenic responses. © 2017 by The American Society for

  10. Quasi-two-dimensional Fermi-liquid state in Sr2RhO4-δ

    International Nuclear Information System (INIS)

    Nagai, Ichiro; Shirakawa, Naoki; Umeyama, Norio; Ikeda, Shin-ichi

    2010-01-01

    Single crystals of layered perovskite Sr 2 RhO 4-δ (δ=0.0 and 0.1) are successfully grown by the floating-zone method. Stoichiometric single crystals (Sr 2 RhO 4.0 ) are obtained by O 2 -annealing the as-grown crystals (Sr 2 RhO 3.9 ). Sr 2 RhO 4.0 and Sr 2 RhO 3.9 show quasi-two-dimensional Fermi-liquid behavior at low temperatures, whereas there are large differences in the anisotropy of electrical resistivity ρ c (3 K)/ρ ab (3 K) and Wilson ratio R w between Sr 2 RhO 4.0 and Sr 2 RhO 3.9 : ρ c (3 K)/ρ ab (3 K)=2400 (19000) and R w =3.8 (6.4) for Sr 2 RhO 4.0 (Sr 2 RhO 3.9 ). The differences observed between the temperature dependence of the in-plane electrical resistivity (T 2 RhO 4.0 and Sr 2 RhO 3.9 are mainly derived from those between the density of states and band structure near the corresponding Fermi level. This indicates that the changes in these physical properties, which are accompanied by oxygen defects in the Sr 2 RhO 4-δ system, can be explained by the rigid band model. Moreover, these results suggest that t 2g band-filling can be controlled by adjusting the oxygen defect content δ in the Sr 2 RhO 4-δ system. Although many similarities are observed in this study between the physical properties of Sr 2 RhO 4.0 and Sr 2 RuO 4 . Sr 2 RhO 4.0 does not exhibit superconductivity down to 36 mK. (author)

  11. Electrochemical behaviors and simultaneous determination of guanine and adenine based on graphene–ionic liquid–chitosan composite film modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Niu Xiuli; Yang Wu; Ren Jie; Guo Hao; Long Shijia; Chen Jiaojiao; Gao Jinzhang

    2012-01-01

    Highlights: ► This work developed a novel electrochemical biosensors for guanine and adenine detection simultaneously. ► A disposable electrode based on graphene sheets, ionic liquid and chitosan was proposed. ► The presented method was also applied to simultaneous determination of guanine and adenine in denatured DNA samples with satisfying results. ► Easy fabrication, high sensitivity, excellent reproducibility and long-term stability. - Abstract: A graphene sheets (GS), ionic liquid (IL) and chitosan (CS) modified electrode was fabricated and the modified electrode displayed excellent electrochemical catalytic activities toward guanine and adenine. The transfer electron number (n) and the charge transfer coefficient (α) were calculated with the result as n = 2, α = 0.58 for guanine, and n = 2, α = 0.51 for adenine, which indicated the electrochemical oxidation of guanine and adenine on GS/IL/CS modified electrode was a two-electron and two-proton process. The oxidation overpotentials of guanine and adenine were decreased significantly compared with those obtained at the bare glassy carbon electrode and multi-walled carbon nanotubes modified electrode. The modified electrode exhibited good analytical performance and was successfully applied for individual and simultaneous determination of guanine and adenine. Low detection limits of 0.75 μM for guanine and 0.45 μM for adenine were obtained, with the linear calibration curves over the concentration range 2.5–150 μM and 1.5–350 μM, respectively. At the same time, the proposed method was successfully applied for the determination of guanine and adenine in denatured DNA samples with satisfying results. Moreover, the GS/IL/CS modified electrode exhibited good sensitivity, long-term stability and reproducibility for the determination of guanine and adenine.

  12. The activation of p38 MAPK primarily contributes to UV-induced RhoB expression by recruiting the c-Jun and p300 to the distal CCAAT box of the RhoB promoter

    International Nuclear Information System (INIS)

    Ahn, Jiwon; Choi, Jeong-Hae; Won, Misun; Kang, Chang-Mo; Gyun, Mi-Rang; Park, Hee-Moon; Kim, Chun-Ho; Chung, Kyung-Sook

    2011-01-01

    Highlights: → Regulation of transcriptional activation of RhoB is still unclear. → We examine the effect of p38 MAPK inhibition, and c-Jun and RhoB depletion on UV-induced RhoB expression and apoptosis. → We identify the regions of RhoB promoter necessary to confer UV responsiveness using pRhoB-luciferase reporter assays. → c-Jun, ATF2 and p300 are dominantly associated with NF-Y on the distal CCAAT box. → The activation of p38 MAPK primarily contribute to UV-induced RhoB expression by recruiting the c-Jun and p300 proteins on distal CCAAT box of RhoB promoter. -- Abstract: The Ras-related small GTP-binding protein RhoB is rapidly induced in response to genotoxic stresses caused by ionizing radiation. It is known that UV-induced RhoB expression results from the binding of activating transcription factor 2 (ATF2) via NF-Y to the inverted CCAAT box (-23) of the RhoB promoter. Here, we show that the association of c-Jun with the distal CCAAT box (-72) is primarily involved in UV-induced RhoB expression and p38 MAPK regulated RhoB induction through the distal CCAAT box. UV-induced RhoB expression and apoptosis were markedly attenuated by pretreatment with the p38 MAPK inhibitor. siRNA knockdown of RhoB, ATF2 and c-Jun resulted in decreased RhoB expression and eventually restored the growth of UV-irradiated Jurkat cells. In the reporter assay using luciferase under the RhoB promoter, inhibition of RhoB promoter activity by the p38 inhibitor and knockdown of c-Jun using siRNA occurred through the distal CCAAT box. Immunoprecipitation and DNA affinity protein binding assays revealed the association of c-Jun and p300 via NF-YA and the dissociation of histone deacetylase 1 (HDAC1) via c-Jun recruitment to the CCAAT boxes of the RhoB promoter. These results suggest that the activation of p38 MAPK primarily contributes to UV-induced RhoB expression by recruiting the c-Jun and p300 proteins to the distal CCAAT box of the RhoB promoter in Jurkat cells.

  13. Comprehensive behavioral analysis of mice deficient in Rapgef2 and Rapgef6, a subfamily of guanine nucleotide exchange factors for Rap small GTPases possessing the Ras/Rap-associating domain.

    Science.gov (United States)

    Maeta, Kazuhiro; Hattori, Satoko; Ikutomo, Junji; Edamatsu, Hironori; Bilasy, Shymaa E; Miyakawa, Tsuyoshi; Kataoka, Tohru

    2018-05-10

    Rapgef2 and Rapgef6 define a subfamily of guanine nucleotide exchange factors for Rap small GTPases, characterized by the possession of the Ras/Rap-associating domain. Previous genomic analyses suggested their possible involvement in the etiology of schizophrenia. We recently demonstrated the development of an ectopic cortical mass (ECM), which resembles the human subcortical band heterotopia, in the dorsal telencephalon-specific Rapgef2 conditional knockout (Rapgef2-cKO) brains. Additional knockout of Rapgef6 in Rapgef2-cKO mice resulted in gross enlargement of the ECM whereas knockout of Rapgef6 alone (Rapgef6-KO) had no discernible effect on the brain morphology. Here, we performed a battery of behavioral tests to examine the effects of Rapgef2 or Rapgef6 deficiency on higher brain functions. Rapgef2-cKO mice exhibited hyperlocomotion phenotypes. They showed decreased anxiety-like behavior in the elevated plus maze and the open-field tests as well as increased depression-like behavior in the Porsolt forced swim and tail suspension tests. They also exhibited increased sociability especially in novel environments. They showed defects in cognitive function as evidenced by reduced learning ability in the Barnes circular maze test and by impaired working memory in the T maze tests. In contrast, although Rapgef6 and Rapgef2 share similarities in biochemical roles, Rapgef6-KO mice exhibited mild behavioral abnormalities detected with a number of behavioral tests, such as hyperlocomotion phenotype in the open-field test and the social interaction test with a novel environment and working-memory defects in the T-maze test. In conclusion, although there were differences in their brain morphology and the magnitude of the behavioral abnormalities, Rapgef2-cKO mice and Rapgef6-KO mice exhibited hyperlocomotion phenotype and working-memory defect, both of which could be recognized as schizophrenia-like behavior.

  14. A novel missense variant (Gln220Arg) of GNB4 encoding guanine nucleotide-binding protein, subunit beta-4 in a Japanese family with autosomal dominant motor and sensory neuropathy.

    Science.gov (United States)

    Miura, Shiroh; Morikawa, Takuya; Fujioka, Ryuta; Noda, Kazuhito; Kosaka, Kengo; Taniwaki, Takayuki; Shibata, Hiroki

    2017-09-01

    Dominant intermediate Charcot-Marie-Tooth disease F (CMTDIF) is an autosomal dominant hereditary form of Charcot-Marie-Tooth disease (CMT) caused by variations in the guanine nucleotide-binding protein, subunit beta-4 gene (GNB4). We examined two Japanese familial cases with CMT. Case 1 was a 49-year-old male whose chief complaint was slowly progressive gait disturbance and limb dysesthesia that appeared at the age of 47. On neurological examination, he showed hyporeflexia or areflexia, distal limb muscle weakness, and distal sensory impairment with lower dominancy. Nerve conduction studies demonstrated demyelinating sensorimotor neuropathy with reduced action potentials in the lower limbs. Case 2 was an 80-year-old man, Case 1's father, who reported difficulty in riding a bicycle at the age of 76. On neurological examination, he showed areflexia in the upper and lower limbs. Distal sensory impairment in the lower limbs was also observed. Nerve conduction studies revealed mainly axonal involvement. Exome sequencing identified a novel heterozygous nonsynonymous variant (NM_021629.3:c.659T > C [p.Gln220Arg]) in GNB4 exon 8, which is known to be responsible for CMT. Sanger sequencing confirmed that both patients are heterozygous for the variation, which causes an amino acid substitution, Gln220Arg, in the highly conserved region of the WD40 domain of GNB4. The frequency of this variant in the Exome Aggregation Consortium Database was 0.000008247, and we confirmed its absence in 502 Japanese control subjects. We conclude that this novel GNB4 variant is causative for CMTDIF in these patients, who represent the first record of the disease in the Japanese population. Copyright © 2017. Published by Elsevier Masson SAS.

  15. Specificities and pH profiles of adenine and hypoxanthine-guanine-xanthine phosphoribosyltransferases (nucleotide synthases) of the thermoacidophile archaeon Sulfolobus solfataricus

    DEFF Research Database (Denmark)

    Hansen, Michael Riis; Jensen, Kristine Steen; Rasmussen, Mads Skytte

    2014-01-01

    Two open reading frames in the genome of Sulfolobus solfataricus (SSO2341 and SSO2424) were cloned and expressed in E. coli. The protein products were purified and their enzymatic activity characterized. Although SSO2341 was annotated as a gene (gpT-1) encoding a 6-oxopurine...... phosphoribosyltransferase (PRTase), the protein product turned out to be a PRTase highly specific for adenine and we suggest that the reading frame should be renamed apT. The other reading frame SSO2424 (gpT-2) proved to be a true 6-oxopurine PRTase active with hypoxanthine, xanthine and guanine as substrates, and we.......5, while maximal activity with xanthine was observed at pH 7.5. We discuss likely reasons why SSO2341 in S. solfataricus and similar open reading frames in other Crenarchaeota could not be identified as genes encoding APRTase....

  16. Rho GTPases in ameloblast differentiation

    Directory of Open Access Journals (Sweden)

    Keishi Otsu

    2016-05-01

    Full Text Available During tooth development, ameloblasts differentiate from inner enamel epithelial cells to enamel-forming cells by modulating the signal pathways mediating epithelial–mesenchymal interaction and a cell-autonomous gene network. The differentiation process of epithelial cells is characterized by marked changes in their morphology and polarity, accompanied by dynamic cytoskeletal reorganization and changes in cell–cell and cell–matrix adhesion over time. Functional ameloblasts are tall, columnar, polarized cells that synthesize and secrete enamel-specific proteins. After deposition of the full thickness of enamel matrix, ameloblasts become smaller and regulate enamel maturation. Recent significant advances in the fields of molecular biology and genetics have improved our understanding of the regulatory mechanism of the ameloblast cell life cycle, mediated by the Rho family of small GTPases. They act as intracellular molecular switch that transduce signals from extracellular stimuli to the actin cytoskeleton and the nucleus. In our review, we summarize studies that provide current evidence for Rho GTPases and their involvement in ameloblast differentiation. In addition to the Rho GTPases themselves, their downstream effectors and upstream regulators have also been implicated in ameloblast differentiation.

  17. LRRK2 kinase activity is dependent on LRRK2 GTP binding capacity but independent of LRRK2 GTP binding.

    Directory of Open Access Journals (Sweden)

    Jean-Marc Taymans

    Full Text Available Leucine rich repeat kinase 2 (LRRK2 is a Parkinson's disease (PD gene that encodes a large multidomain protein including both a GTPase and a kinase domain. GTPases often regulate kinases within signal transduction cascades, where GTPases act as molecular switches cycling between a GTP bound "on" state and a GDP bound "off" state. It has been proposed that LRRK2 kinase activity may be increased upon GTP binding at the LRRK2 Ras of complex proteins (ROC GTPase domain. Here we extensively test this hypothesis by measuring LRRK2 phosphorylation activity under influence of GDP, GTP or non-hydrolyzable GTP analogues GTPγS or GMPPCP. We show that autophosphorylation and lrrktide phosphorylation activity of recombinant LRRK2 protein is unaltered by guanine nucleotides, when co-incubated with LRRK2 during phosphorylation reactions. Also phosphorylation activity of LRRK2 is unchanged when the LRRK2 guanine nucleotide binding pocket is previously saturated with various nucleotides, in contrast to the greatly reduced activity measured for the guanine nucleotide binding site mutant T1348N. Interestingly, when nucleotides were incubated with cell lysates prior to purification of LRRK2, kinase activity was slightly enhanced by GTPγS or GMPPCP compared to GDP, pointing to an upstream guanine nucleotide binding protein that may activate LRRK2 in a GTP-dependent manner. Using metabolic labeling, we also found that cellular phosphorylation of LRRK2 was not significantly modulated by nucleotides, although labeling is significantly reduced by guanine nucleotide binding site mutants. We conclude that while kinase activity of LRRK2 requires an intact ROC-GTPase domain, it is independent of GDP or GTP binding to ROC.

  18. QCD Factorizations in Exclusive {gamma}*{gamma}*{yields}{rho}{sub L}{sup 0}{rho}{sub L}{sup 0}

    Energy Technology Data Exchange (ETDEWEB)

    Pire, B. [CPHT, Ecole Polytechnique, CNRS, Palaiseau (France); Segond, M. [LPTHE, Universite Paris 6 and 7, CNRS, Paris (France); LPT, Universite Paris-Sud, CNRS, Orsay (France); Szymanowski, L. [CPHT, Ecole Polytechnique, CNRS, Palaiseau (France); SINS, Warsaw (Poland); Wallon, S. [LPT, Universite Paris-Sud, CNRS, Orsay (France)

    2008-11-15

    The exclusive process e{sup +}e{sup -}{yields}e{sup +}e{sup -}{rho}{sub L}{sup 0}{rho}{sub L}{sup 0} allows to study various dynamics and factorization properties of perturbative QCD. At moderate energy, we demonstrate how collinearQCD factorization emerges, involving either generalized distribution amplitudes (GDA) or transition distribution amplitudes (TDA). At higher energies, in the Regge limit of QCD, we show that it offers a promising probe of the BFKL resummation effects to be studied at ILC.

  19. RhoA GTPase regulates radiation-induced alterations in endothelial cell adhesion and migration

    International Nuclear Information System (INIS)

    Rousseau, Matthieu; Gaugler, Marie-Hélène; Rodallec, Audrey; Bonnaud, Stéphanie; Paris, François; Corre, Isabelle

    2011-01-01

    Highlights: ► We explore the role of RhoA in endothelial cell response to ionizing radiation. ► RhoA is rapidly activated by single high-dose of radiation. ► Radiation leads to RhoA/ROCK-dependent actin cytoskeleton remodeling. ► Radiation-induced apoptosis does not require the RhoA/ROCK pathway. ► Radiation-induced alteration of endothelial adhesion and migration requires RhoA/ROCK. -- Abstract: Endothelial cells of the microvasculature are major target of ionizing radiation, responsible of the radiation-induced vascular early dysfunctions. Molecular signaling pathways involved in endothelial responses to ionizing radiation, despite being increasingly investigated, still need precise characterization. Small GTPase RhoA and its effector ROCK are crucial signaling molecules involved in many endothelial cellular functions. Recent studies identified implication of RhoA/ROCK in radiation-induced increase in endothelial permeability but other endothelial functions altered by radiation might also require RhoA proteins. Human microvascular endothelial cells HMEC-1, either treated with Y-27632 (inhibitor of ROCK) or invalidated for RhoA by RNA interference were exposed to 15 Gy. We showed a rapid radiation-induced activation of RhoA, leading to a deep reorganisation of actin cytoskeleton with rapid formation of stress fibers. Endothelial early apoptosis induced by ionizing radiation was not affected by Y-27632 pre-treatment or RhoA depletion. Endothelial adhesion to fibronectin and formation of focal adhesions increased in response to radiation in a RhoA/ROCK-dependent manner. Consistent with its pro-adhesive role, ionizing radiation also decreased endothelial cells migration and RhoA was required for this inhibition. These results highlight the role of RhoA GTPase in ionizing radiation-induced deregulation of essential endothelial functions linked to actin cytoskeleton.

  20. An adventitious interaction of filamin A with RhoGDI2(Tyr153Glu)

    International Nuclear Information System (INIS)

    Song, Mia; He, Qianjing; Berk, Benjamin-Andreas; Hartwig, John H.; Stossel, Thomas P.; Nakamura, Fumihiko

    2016-01-01

    Filamin A (FLNA) is an actin filament crosslinking protein with multiple intracellular binding partners. Mechanical force exposes cryptic FLNA binding sites for some of these ligands. To identify new force-dependent binding interactions, we used a fusion construct composed of two FLNA domains, one of which was previously identified as containing a force-dependent binding site as a bait in a yeast two-hybrid system and identified the Rho dissociation inhibitor 2 (RhoGDI2) as a potential interacting partner. A RhoGDI2 truncate with 81 N-terminal amino acid residues and a phosphomimetic mutant, RhoGDI(Tyr153Glu) interacted with the FLNA construct. However, neither wild-type or full-length RhoGDI2 phosphorylated at Y153 interacted with FLNA. Our interpretation of these contradictions is that truncation and/or mutation of RhoGDI2 perturbs its conformation to expose a site that adventitiously binds FLNA and is not a bona–fide interaction. Therefore, previous studies reporting that a RhoGDI(Y153E) mutant suppresses the metastasis of human bladder cancer cells must be reinvestigated in light of artificial interaction of this point mutant with FLNA. - Highlights: • RhoGDI2 is identified as a potential filamin A (FLNA)-binding partner. • Phosphomimetic mutant, RhoGDI2(Tyr153Glu) interacts with FLNA. • RhoGDI2 phosphorylated (Tyr153) by src kinase does not interact with FLNA. • Mutation of Tyr-153 to Glu of RhoGDI2 does not mimic phosphorylation. • RhoGDI2(Tyr153Glu) provokes an adventitious interaction with FLNA.

  1. An adventitious interaction of filamin A with RhoGDI2(Tyr153Glu)

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mia; He, Qianjing [Hematology Division, Department of Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston MA (United States); Berk, Benjamin-Andreas [Faculty of Veterinary Medicine and Faculty of Biosciences and Pharmacy, University of Leipzig, Leipzig (Germany); Hartwig, John H.; Stossel, Thomas P. [Hematology Division, Department of Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston MA (United States); Nakamura, Fumihiko, E-mail: fnakamura@partners.org [Hematology Division, Department of Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston MA (United States)

    2016-01-15

    Filamin A (FLNA) is an actin filament crosslinking protein with multiple intracellular binding partners. Mechanical force exposes cryptic FLNA binding sites for some of these ligands. To identify new force-dependent binding interactions, we used a fusion construct composed of two FLNA domains, one of which was previously identified as containing a force-dependent binding site as a bait in a yeast two-hybrid system and identified the Rho dissociation inhibitor 2 (RhoGDI2) as a potential interacting partner. A RhoGDI2 truncate with 81 N-terminal amino acid residues and a phosphomimetic mutant, RhoGDI(Tyr153Glu) interacted with the FLNA construct. However, neither wild-type or full-length RhoGDI2 phosphorylated at Y153 interacted with FLNA. Our interpretation of these contradictions is that truncation and/or mutation of RhoGDI2 perturbs its conformation to expose a site that adventitiously binds FLNA and is not a bona–fide interaction. Therefore, previous studies reporting that a RhoGDI(Y153E) mutant suppresses the metastasis of human bladder cancer cells must be reinvestigated in light of artificial interaction of this point mutant with FLNA. - Highlights: • RhoGDI2 is identified as a potential filamin A (FLNA)-binding partner. • Phosphomimetic mutant, RhoGDI2(Tyr153Glu) interacts with FLNA. • RhoGDI2 phosphorylated (Tyr153) by src kinase does not interact with FLNA. • Mutation of Tyr-153 to Glu of RhoGDI2 does not mimic phosphorylation. • RhoGDI2(Tyr153Glu) provokes an adventitious interaction with FLNA.

  2. Scaffold-hopping from xanthines to tricyclic guanines: A case study of dipeptidyl peptidase 4 (DPP4) inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Pissarnitski, Dmitri A.; Zhao, Zhiqiang; Cole, David; Wu, Wen-Lian; Domalski, Martin; Clader, John W.; Scapin, Giovanna; Voigt, Johannes; Soriano, Aileen; Kelly, Theresa; Powles, Mary Ann; Yao, Zuliang; Burnett, Duane A. (Merck)

    2016-11-01

    Molecular modeling of unbound tricyclic guanine scaffolds indicated that they can serve as effective bioisosteric replacements of xanthines. This notion was further confirmed by a combination of X-ray crystallography and SAR studies, indicating that tricyclic guanine DPP4 inhibitors mimic the binding mode of xanthine inhibitors, exemplified by linagliptin. Realization of the bioisosteric relationship between these scaffolds potentially will lead to a wider application of cyclic guanines as xanthine replacements in drug discovery programs for a variety of biological targets. Newly designed DPP4 inhibitors achieved sub-nanomolar potency range and demonstrated oral activity in vivo in mouse glucose tolerance test.

  3. Ameloblasts require active RhoA to generate normal dental enamel.

    Science.gov (United States)

    Xue, Hui; Li, Yong; Everett, Eric T; Ryan, Kathleen; Peng, Li; Porecha, Rakhee; Yan, Yan; Lucchese, Anna M; Kuehl, Melissa A; Pugach, Megan K; Bouchard, Jessica; Gibson, Carolyn W

    2013-08-01

    RhoA plays a fundamental role in regulation of the actin cytoskeleton, intercellular attachment, and cell proliferation. During amelogenesis, ameloblasts (which produce the enamel proteins) undergo dramatic cytoskeletal changes and the RhoA protein level is up-regulated. Transgenic mice were generated that express a dominant-negative RhoA transgene in ameloblasts using amelogenin gene-regulatory sequences. Transgenic and wild-type (WT) molar tooth germs were incubated with sodium fluoride (NaF) or sodium chloride (NaCl) in organ culture. Filamentous actin (F-actin) stained with phalloidin was elevated significantly in WT ameloblasts treated with NaF compared with WT ameloblasts treated with NaCl or with transgenic ameloblasts treated with NaF, thereby confirming a block in the RhoA/Rho-associated protein kinase (ROCK) pathway in the transgenic mice. Little difference in quantitative fluorescence (an estimation of fluorosis) was observed between WT and transgenic incisors from mice provided with drinking water containing NaF. We subsequently found reduced transgene expression in incisors compared with molars. Transgenic molar teeth had reduced amelogenin, E-cadherin, and Ki67 compared with WT molar teeth. Hypoplastic enamel in transgenic mice correlates with reduced expression of the enamel protein, amelogenin, and E-cadherin and cell proliferation are regulated by RhoA in other tissues. Together these findings reveal deficits in molar ameloblast function when RhoA activity is inhibited. © 2013 Eur J Oral Sci.

  4. Lifetime of rho meson in correlation with magnetic-dimensional reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Mamiya [Nagoya University, Department of Physics, Nagoya (Japan); Matsuzaki, Shinya [Nagoya University, Department of Physics, Nagoya (Japan); Nagoya University, Institute for Advanced Research, Nagoya (Japan)

    2017-04-15

    It is naively expected that in a strong magnetic configuration, the Landau quantization ceases the neutral rho meson to decay to the charged pion pair, so the neutral rho meson will be long-lived. To closely access this naive observation, we explicitly compute the charged pion loop in the magnetic field at the one-loop level, to evaluate the magnetic dependence of the lifetime for the neutral rho meson as well as its mass. Due to the dimensional reduction induced by the magnetic field (violation of the Lorentz invariance), the polarization (spin s{sub z} = 0, ±1) modes of the rho meson, as well as the corresponding pole mass and width, are decomposed in a nontrivial manner compared to the vacuum case. To see the significance of the reduction effect, we simply take the lowest Landau level approximation to analyze the spin-dependent rho masses and widths. We find that the ''fate'' of the rho meson may be more complicated because of the magnetic-dimensional reduction: as the magnetic field increases, the rho width for the spin s{sub z} = 0 starts to develop, reaches a peak, then vanishes at the critical magnetic field to which the folklore refers. On the other side, the decay rates of the other rhos for s{sub z} = ±1 monotonically increase as the magnetic field develops. The correlation between the polarization dependence and the Landau level truncation is also addressed. (orig.)

  5. Basal and Activated Calcium Sensitization Mediated by RhoA/Rho Kinase Pathway in Rats with Genetic and Salt Hypertension

    Czech Academy of Sciences Publication Activity Database

    Behuliak, Michal; Bencze, Michal; Vaněčková, Ivana; Kuneš, Jaroslav; Zicha, Josef

    2017-01-01

    Roč. 2017, January (2017), č. článku 8029728. ISSN 2314-6133 R&D Projects: GA ČR(CZ) GP14-16225P; GA MZd(CZ) NV15-25396A Institutional support: RVO:67985823 Keywords : calcium sensitization * RhoA/Rho kinase * fasudil * calcium influx * nifedipine * BAY K8644 Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery OBOR OECD: Cardiac and Cardiovascular systems Impact factor: 2.476, year: 2016

  6. Problems with rho R measurements: what are the ways out

    International Nuclear Information System (INIS)

    Pan, Y.L.; Larsen, J.T.

    1977-01-01

    An important scaling parameter or figure of merit in inertially-confined fusion is the maximum fuel rho R achieved by the target--rho is the density, and R the radius of the fuel. Every technique used, thus far, in laser-initiated-fusion-microexplosion experiments to obtain this data had major deficiencies. We examine critically the merits of the various possible methods of measuring fuel rho R and their ranges of applicability

  7. Absence of hypoxanthine:guanine phosphoribosyltransferase activity in murine Dunn osteosarcoma

    International Nuclear Information System (INIS)

    Abelson, H.T.; Gorka, C.

    1983-01-01

    The transplantable murine Dunn osteosarcoma has no detectable hypoxanthine:guanine phosphoribosyltransferase (EC 2.4.2.8) activity. This was established from the tumors directly and from tissue culture cell lines derived from the tumor using a variety of assays: e.g., no [3H]hypoxanthine uptake into tumor or tissue culture cells, no conversion of [3H]hypoxanthine to [3H]IMP by cell extracts from tumors or tissue culture cells, no growth of tissue culture cells in hypoxanthine:aminopterin:thymidine medium, and normal growth of these cells in 10 microM 6-mercaptopurine. Ten human osteosarcomas have been assayed, and two have no apparent hypoxanthine:guanine phosphoribosyltransferase enzyme activity. After high-dose methotrexate treatment in vivo, murine tumors could be selectively killed and normal tissues could be spared by using a rescue regimen of hypoxanthine-thymidine-allopurinol

  8. Identification of a GTP-bound Rho specific scFv molecular sensor by phage display selection

    Directory of Open Access Journals (Sweden)

    Chinestra Patrick

    2008-03-01

    Full Text Available Abstract Background The Rho GTPases A, B and C proteins, members of the Rho family whose activity is regulated by GDP/GTP cycling, function in many cellular pathways controlling proliferation and have recently been implicated in tumorigenesis. Although overexpression of Rho GTPases has been correlated with tumorigenesis, only their GTP-bound forms are able to activate the signalling pathways implicated in tumorigenesis. Thus, the focus of much recent research has been to identify biological tools capable of quantifying the level of cellular GTP-bound Rho, or determining the subcellular location of activation. However useful, these tools used to study the mechanism of Rho activation still have limitations. The aim of the present work was to employ phage display to identify a conformationally-specific single chain fragment variable (scFv that recognizes the active, GTP-bound, form of Rho GTPases and is able to discriminate it from the inactive, GDP-bound, Rho in endogenous settings. Results After five rounds of phage selection using a constitutively activated mutant of RhoB (RhoBQ63L, three scFvs (A8, C1 and D11 were selected for subsequent analysis. Further biochemical characterization was pursued for the single clone, C1, exhibiting an scFv structure. C1 was selective for the GTP-bound form of RhoA, RhoB, as well as RhoC, and failed to recognize GTP-loaded Rac1 or Cdc42, two other members of the Rho family. To enhance its production, soluble C1 was expressed in fusion with the N-terminal domain of phage protein pIII (scFv C1-N1N2, it appeared specifically associated with GTP-loaded recombinant RhoA and RhoB via immunoprecipitation, and endogenous activated Rho in HeLa cells as determined by immunofluorescence. Conclusion We identified an antibody, C1-N1N2, specific for the GTP-bound form of RhoB from a phage library, and confirmed its specificity towards GTP-bound RhoA and RhoC, as well as RhoB. The success of C1-N1N2 in discriminating activated

  9. The phosphomimetic mutation of syndecan-4 binds and inhibits Tiam1 modulating Rac1 activity in PDZ interaction-dependent manner.

    Directory of Open Access Journals (Sweden)

    Aniko Keller-Pinter

    Full Text Available The small GTPases of the Rho family comprising RhoA, Rac1 and Cdc42 function as molecular switches controlling several essential biochemical pathways in eukaryotic cells. Their activity is cycling between an active GTP-bound and an inactive GDP-bound conformation. The exchange of GDP to GTP is catalyzed by guanine nucleotide exchange factors (GEFs. Here we report a novel regulatory mechanism of Rac1 activity, which is controlled by a phosphomimetic (Ser179Glu mutant of syndecan-4 (SDC4. SDC4 is a ubiquitously expressed transmembrane, heparan sulfate proteoglycan. In this study we show that the Ser179Glu mutant binds strongly Tiam1, a Rac1-GEF reducing Rac1-GTP by 3-fold in MCF-7 breast adenocarcinoma cells. Mutational analysis unravels the PDZ interaction between SDC4 and Tiam1 is indispensable for the suppression of the Rac1 activity. Neither of the SDC4 interactions is effective alone to block the Rac1 activity, on the contrary, lack of either of interactions can increase the activity of Rac1, therefore the Rac1 activity is the resultant of the inhibitory and stimulatory effects. In addition, SDC4 can bind and tether RhoGDI1 (GDP-dissociation inhibitor 1 to the membrane. Expression of the phosphomimetic SDC4 results in the accumulation of the Rac1-RhoGDI1 complex. Co-immunoprecipitation assays (co-IP-s reveal that SDC4 can form complexes with RhoGDI1. Together, the regulation of the basal activity of Rac1 is fine tuned and SDC4 is implicated in multiple ways.

  10. The phosphomimetic mutation of syndecan-4 binds and inhibits Tiam1 modulating Rac1 activity in PDZ interaction–dependent manner

    Science.gov (United States)

    Keller-Pinter, Aniko; Ughy, Bettina; Domoki, Monika; Pettko-Szandtner, Aladar; Letoha, Tamas; Tovari, Jozsef; Timar, Jozsef

    2017-01-01

    The small GTPases of the Rho family comprising RhoA, Rac1 and Cdc42 function as molecular switches controlling several essential biochemical pathways in eukaryotic cells. Their activity is cycling between an active GTP-bound and an inactive GDP-bound conformation. The exchange of GDP to GTP is catalyzed by guanine nucleotide exchange factors (GEFs). Here we report a novel regulatory mechanism of Rac1 activity, which is controlled by a phosphomimetic (Ser179Glu) mutant of syndecan-4 (SDC4). SDC4 is a ubiquitously expressed transmembrane, heparan sulfate proteoglycan. In this study we show that the Ser179Glu mutant binds strongly Tiam1, a Rac1-GEF reducing Rac1-GTP by 3-fold in MCF-7 breast adenocarcinoma cells. Mutational analysis unravels the PDZ interaction between SDC4 and Tiam1 is indispensable for the suppression of the Rac1 activity. Neither of the SDC4 interactions is effective alone to block the Rac1 activity, on the contrary, lack of either of interactions can increase the activity of Rac1, therefore the Rac1 activity is the resultant of the inhibitory and stimulatory effects. In addition, SDC4 can bind and tether RhoGDI1 (GDP-dissociation inhibitor 1) to the membrane. Expression of the phosphomimetic SDC4 results in the accumulation of the Rac1–RhoGDI1 complex. Co-immunoprecipitation assays (co-IP-s) reveal that SDC4 can form complexes with RhoGDI1. Together, the regulation of the basal activity of Rac1 is fine tuned and SDC4 is implicated in multiple ways. PMID:29121646

  11. The phosphomimetic mutation of syndecan-4 binds and inhibits Tiam1 modulating Rac1 activity in PDZ interaction-dependent manner.

    Science.gov (United States)

    Keller-Pinter, Aniko; Ughy, Bettina; Domoki, Monika; Pettko-Szandtner, Aladar; Letoha, Tamas; Tovari, Jozsef; Timar, Jozsef; Szilak, Laszlo

    2017-01-01

    The small GTPases of the Rho family comprising RhoA, Rac1 and Cdc42 function as molecular switches controlling several essential biochemical pathways in eukaryotic cells. Their activity is cycling between an active GTP-bound and an inactive GDP-bound conformation. The exchange of GDP to GTP is catalyzed by guanine nucleotide exchange factors (GEFs). Here we report a novel regulatory mechanism of Rac1 activity, which is controlled by a phosphomimetic (Ser179Glu) mutant of syndecan-4 (SDC4). SDC4 is a ubiquitously expressed transmembrane, heparan sulfate proteoglycan. In this study we show that the Ser179Glu mutant binds strongly Tiam1, a Rac1-GEF reducing Rac1-GTP by 3-fold in MCF-7 breast adenocarcinoma cells. Mutational analysis unravels the PDZ interaction between SDC4 and Tiam1 is indispensable for the suppression of the Rac1 activity. Neither of the SDC4 interactions is effective alone to block the Rac1 activity, on the contrary, lack of either of interactions can increase the activity of Rac1, therefore the Rac1 activity is the resultant of the inhibitory and stimulatory effects. In addition, SDC4 can bind and tether RhoGDI1 (GDP-dissociation inhibitor 1) to the membrane. Expression of the phosphomimetic SDC4 results in the accumulation of the Rac1-RhoGDI1 complex. Co-immunoprecipitation assays (co-IP-s) reveal that SDC4 can form complexes with RhoGDI1. Together, the regulation of the basal activity of Rac1 is fine tuned and SDC4 is implicated in multiple ways.

  12. Tentative of observation of the {rho}{sup +} {yields} {pi}{sup +} + {gamma} decay mode; Tentative de mise en evidence du mode de desintegration {rho}{sup +} {yields} {pi}{sup +} + {gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Daudin, A.; Jabiol, M.A.; Kochowski, C.; Lewin, C.; Rogozinski, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Mongelli, S.; Romano, A.; Waloschek, P. [Istituto di Fisica dell' Universita, Bari (Italy)

    1964-07-01

    One of the purposes of the 1.6 GeV/c {pi}{sup +} p experiment, carried out in the 50 cm Saclay hydrogen bubble chamber, was to observe the {rho}{sup +} {yields} {pi}{sup +} {gamma} radiative decay mode in {pi}{sup +} p {yields} {pi}{sup +} p {gamma} interactions. A 6 mm thick lead plate, set at the outgoing part of the chamber, was used to convert {gamma} into e{sup +} e{sup -}. Among the {gamma} observed arising directly from the investigated interactions, no event originates from a {pi}{sup +} {gamma} compound in the region of {rho}{sup +}. This gives an upper limit of 2 per cent for the branching ratio ({rho}{sup +} {yields} {pi}{sup +} {gamma}) / ({rho}{sup +} {yields} {pi}{sup +} {gamma} + {rho}{sup +} {yields} {pi}{sup +} {pi}{sup 0}). (authors) [French] Une experience, dont l'un des buts etait de mettre en evidence le mode de desintegration radiatif du {rho}{sup +} en {pi}{sup +} {gamma} dans les interactions {pi}{sup +} p {yields} p {pi}{sup +} {gamma} a 1,6 GeV/c, a ete effectuee a l'aide de la chambre a bulles a hydrogene liquide de 50 cm de diametre de Saclay. Une plaque de plomb de 6 mm d'epaisseur, servant de convertisseur {gamma} {yields} e{sup +} e{sup -} a ete placee au sein du liquide a la sortie de la chambre. Parmi les y observes issus directement de l'interaction etudiee, aucun ne provient d'un complexe {pi}{sup +} {gamma} ayant la masse du {rho}{sup +}, ce qui fixe la limite superieure du rapport de branchement ({rho}{sup +} {yields} {pi}{sup +} {gamma}) / ({rho}{sup +} {yields} {pi}{sup +} {gamma} + {rho}{sup +} {yields} {pi}{sup +} {pi}{sup 0}) a 2 pour cent. (auteurs)

  13. Characterization of RhoC Expression in Benign and Malignant Breast Disease

    Science.gov (United States)

    Kleer, Celina G.; van Golen, Kenneth L.; Zhang, Yanhong; Wu, Zhi-Fen; Rubin, Mark A.; Merajver, Sofia D.

    2002-01-01

    The most important factor in predicting outcome in patients with early breast cancer is the stage of the disease. There is no robust marker capable of identifying invasive carcinomas that despite their small size have a high metastatic potential, and that would benefit from more aggressive treatment. RhoC-GTPase is a member of the Ras-superfamily and is involved in cell polarity and motility. We hypothesized that RhoC expression would be a good marker to identify breast cancer patients with high risk of developing metastases, and that it would be a prognostic marker useful in the clinic. We developed a specific anti-RhoC antibody and studied archival breast tissues that comprise a broad spectrum of breast disease. One hundred eighty-two specimens from 164 patients were used. Immunohistochemistry was performed on formalin-fixed tissues. Staining intensity was graded 0 to 3+ (0 to 1+ was considered negative and 2 to 3+ was considered positive). RhoC was not expressed in any of the normal, fibrocystic changes, atypical hyperplasia, or ductal carcinoma in situ, but was expressed in 36 of 118 invasive carcinomas and strongly correlated with tumor stage (P = 0.01). RhoC had high specificity (88%) in detecting invasive carcinomas with metastatic potential. Of the invasive carcinomas smaller than 1 cm, RhoC was highly specific in detecting tumors that developed metastases. RhoC expression was associated with negative progesterone receptor and HER-2/neu overexpression. We characterized RhoC expression in human breast tissues. RhoC is specifically expressed in invasive breast carcinomas capable of metastasizing, and it may be clinically useful in patients with tumors smaller than 1 cm to guide treatment. PMID:11839578

  14. Implications of Rho GTPase signaling in glioma cell invasion and tumor progression

    Directory of Open Access Journals (Sweden)

    Shannon Patricia Fortin Ensign

    2013-10-01

    Full Text Available Glioblastoma (GB is the most malignant of primary adult brain tumors, characterized by a highly locally-invasive cell population, as well as abundant proliferative cells, neoangiogenesis, and necrosis. Clinical intervention with chemotherapy or radiation may either promote or establish an environment for manifestation of invasive behavior. Understanding the molecular drivers of invasion in the context of glioma progression may be insightful in directing new treatments for patients with GB. Here, we review current knowledge on Rho family GTPases, their aberrant regulation in GB, and their effect on GB cell invasion and tumor progression. Rho GTPases are modulators of cell migration through effects on actin cytoskeleton rearrangement; in non-neoplastic tissue, expression and activation of Rho GTPases are normally under tight regulation. In GB, Rho GTPases are deregulated, often via hyperactivity or overexpression of their activators, Rho GEFs. Downstream effectors of Rho GTPases have been shown to promote invasiveness and, importantly, glioma cell survival. The study of aberrant Rho GTPase signaling in GB is thus an important investigation of cell invasion as well as treatment resistance and disease progression.

  15. Implementation of Pollard Rho attack on elliptic curve cryptography over binary fields

    Science.gov (United States)

    Wienardo, Yuliawan, Fajar; Muchtadi-Alamsyah, Intan; Rahardjo, Budi

    2015-09-01

    Elliptic Curve Cryptography (ECC) is a public key cryptosystem with a security level determined by discrete logarithm problem called Elliptic Curve Discrete Logarithm Problem (ECDLP). John M. Pollard proposed an algorithm for discrete logarithm problem based on Monte Carlo method and known as Pollard Rho algorithm. The best current brute-force attack for ECC is Pollard Rho algorithm. In this research we implement modified Pollard Rho algorithm on ECC over GF (241). As the result, the runtime of Pollard Rho algorithm increases exponentially with the increase of the ECC key length. This work also presents the estimated runtime of Pollard Rho attack on ECC over longer bits.

  16. QuadBase2: web server for multiplexed guanine quadruplex mining and visualization

    Science.gov (United States)

    Dhapola, Parashar; Chowdhury, Shantanu

    2016-01-01

    DNA guanine quadruplexes or G4s are non-canonical DNA secondary structures which affect genomic processes like replication, transcription and recombination. G4s are computationally identified by specific nucleotide motifs which are also called putative G4 (PG4) motifs. Despite the general relevance of these structures, there is currently no tool available that can allow batch queries and genome-wide analysis of these motifs in a user-friendly interface. QuadBase2 (quadbase.igib.res.in) presents a completely reinvented web server version of previously published QuadBase database. QuadBase2 enables users to mine PG4 motifs in up to 178 eukaryotes through the EuQuad module. This module interfaces with Ensembl Compara database, to allow users mine PG4 motifs in the orthologues of genes of interest across eukaryotes. PG4 motifs can be mined across genes and their promoter sequences in 1719 prokaryotes through ProQuad module. This module includes a feature that allows genome-wide mining of PG4 motifs and their visualization as circular histograms. TetraplexFinder, the module for mining PG4 motifs in user-provided sequences is now capable of handling up to 20 MB of data. QuadBase2 is a comprehensive PG4 motif mining tool that further expands the configurations and algorithms for mining PG4 motifs in a user-friendly way. PMID:27185890

  17. Inelastic photoproduction of ω and rho+-mesons

    International Nuclear Information System (INIS)

    Nelson, C.A. Jr.; May, E.N.; Abramson, J.; Andrews, D.E.; Harvey, J.; Lobkowicz, F.; Singer, M.N.; Thorndike, E.H.; Nordberg, M.E. Jr.

    1978-01-01

    We report measurements of inelastic photoproduction of ω and rho +- mesons from hydrogen and deuterium at incident photon energies in the range 7.5-10.5 GeV. For ωΔ and rho - Δ ++ production differential cross sections dsigma/dt' and spin density matrices are presented. For higher missing masses the cross sections dsigma/dM/sub X/ 2 and invariant structure functions F(x) are also given. The data are compared to a one-pion-exchange model. We conclude that pion exchange is dominant for inelastic ω photoproduction, but unimportant for rho +- during annealing, even though the resistively determined transport scattering time increased by a factor of 7.8 during annealing. Orbital depairing was found to follow a relation zeta = zeta 0 + αH 2 and to increase with annealing in a manner expected from the change in mean free path determined from measurements of H/sub cnu/

  18. RhoA is dispensable for skin development, but crucial for contraction and directed migration of keratinocytes

    DEFF Research Database (Denmark)

    Jackson, Ben; Peyrollier, Karine; Pedersen, Esben

    2011-01-01

    RhoA is a small guanosine-5'-triphosphatase (GTPase) suggested to be essential for cytokinesis, stress fiber formation, and epithelial cell-cell contacts. In skin, loss of RhoA was suggested to underlie pemphigus skin blistering. To analyze RhoA function in vivo, we generated mice with a keratino......RhoA is a small guanosine-5'-triphosphatase (GTPase) suggested to be essential for cytokinesis, stress fiber formation, and epithelial cell-cell contacts. In skin, loss of RhoA was suggested to underlie pemphigus skin blistering. To analyze RhoA function in vivo, we generated mice......-cell contacts. Furthermore we observed increased cell spreading due to impaired RhoA-ROCK (Rho-associated protein kinase)-MLC phosphatase-MLC-mediated cell contraction, independent of Rac1. Rho-inhibiting toxins further increased multinucleation of RhoA-null cells but had no significant effect on spreading......, suggesting that RhoB and RhoC have partially overlapping functions with RhoA. Loss of RhoA decreased directed cell migration in vitro caused by reduced migration speed and directional persistence. These defects were not related to the decreased cell contraction and were independent of ROCK, as ROCK...

  19. RhoA determines disease progression by controlling neutrophil motility and restricting hyperresponsiveness

    DEFF Research Database (Denmark)

    Jennings, Richard T; Strengert, Monika; Hayes, Patti

    2014-01-01

    Neutrophil responses are central to host protection and inflammation. Neutrophil activation follows a two-step process where priming amplifies responses to activating stimuli. Priming is essential for life span extension, chemotaxis and respiratory burst activity. Here we show that the cytoskeletal...... organizer RhoA suppresses neutrophil priming via formins. Premature granule exocytosis in Rho-deficient neutrophils activated numerous signaling pathways and amplified superoxide generation. Deletion of Rho altered front-to-back coordination by simultaneously increasing uropod elongation, leading edge...... neutrophils exacerbated LPS-mediated lung injury, deleting Rho in innate immune cells was highly protective in Influenza A virus infection. Hence, Rho is a key regulator of disease progression by maintaining neutrophil quiescence and suppressing hyperresponsiveness....

  20. Born order study of {gamma}{sup *}{gamma}{sup *} {yields} {rho}{rho} at very high energy

    Energy Technology Data Exchange (ETDEWEB)

    Pire, B. [Ecole Polytechnique, 91 - Palaiseau (France). Centre de Physique Theorique; Szymanowski, L. [Soltan Institute for Nuclear Studies, Warsaw (Poland); Liege Univ. (Belgium); Wallon, S. [Paris-11 Univ., Lab. de Physique Theorique, 91 - Orsay (France)

    2005-07-01

    We calculate the cross-section for the diffractive exclusive process {gamma}{sub L}{sup *}(Q{sub 1}{sup 2}){gamma}{sub L}{sup *}(Q{sub 2}{sup 2}) {yields} {rho}{sub L}{sup 0}{rho}{sub L}{sup 0}, in view of its study in the future high energy e{sup +}e{sup -} linear collider. The Born order approximation of the amplitude is completely calculable in the hard region Q{sub 1}{sup 2},Q{sub 2}{sup 2} >> {lambda}{sup 2}(QCD). The resulting cross-section is large enough for this process to be measurable with foreseen luminosity and energy, for Q{sub 1}{sup 2} and Q{sub 2}{sup 2} in the range of a few GeV{sup 2}. (authors)

  1. Assay of cyclic nucleotide phosphodiesterase using radiolabeled and fluorescent substrates

    International Nuclear Information System (INIS)

    Kincaid, R.L.; Manganiello, V.C.

    1988-01-01

    There are four major classes of phosphodiesterase with different specificities for cAMP and cGMP and different allosteric regulators. Type I phosphodiesterase is activated by calmodulin plus Ca/sup 2+/ and has a higher affinity for cGMP than cAMP. Type II phosphodiesterase likewise has a higher affinity for cGMP than cAMP, but the activity toward one substrate is markedly stimulated by low (micromolar) concentrations of the other nucleotide. Type III phosphodiesterase has a higher affinity for cAMP than cGMP; its activity is increased in responsive cells by certain hormones, e.g., insulin, isoproterenol. Type IV phosphodiesterase is the cGMP-specific enzyme, which also has an allosteric binding site for cGMP. An example of this class of enzyme is the one from retinal rod outer segments, which is activated by light via rhodopsin and the guanine nucleotide-binding protein transducin. There appears to be little structural relatedness among these enzymes based on immunologic analysis, consistent with the possibility that divergent forms evolved from an ancestral enzyme. Determination of the amount of a specific form of phosphodiesterase in crude material is often difficult. Modification of assay conditions by judicious choice of substrate and/or inhibitor concentrations may selectively favor (or reduce) the activity of a particular form; in many instances, however, some fractionation of enzymes may be necessary. This is discussed more fully in the final section of this chapter

  2. Interplay between Solo and keratin filaments is crucial for mechanical force-induced stress fiber reinforcement.

    Science.gov (United States)

    Fujiwara, Sachiko; Ohashi, Kazumasa; Mashiko, Toshiya; Kondo, Hiroshi; Mizuno, Kensaku

    2016-03-15

    Mechanical force-induced cytoskeletal reorganization is essential for cell and tissue remodeling and homeostasis; however, the underlying cellular mechanisms remain elusive. Solo (ARHGEF40) is a RhoA-targeting guanine nucleotide exchange factor (GEF) involved in cyclical stretch-induced human endothelial cell reorientation and convergent extension cell movement in zebrafish gastrula. In this study, we show that Solo binds to keratin-8/keratin-18 (K8/K18) intermediate filaments through multiple sites. Solo overexpression promotes the formation of thick actin stress fibers and keratin bundles, whereas knockdown of Solo, expression of a GEF-inactive mutant of Solo, or inhibition of ROCK suppresses stress fiber formation and leads to disorganized keratin networks, indicating that the Solo-RhoA-ROCK pathway serves to precisely organize keratin networks, as well as to promote stress fibers. Of importance, knockdown of Solo or K18 or overexpression of GEF-inactive or deletion mutants of Solo suppresses tensile force-induced stress fiber reinforcement. Furthermore, knockdown of Solo or K18 suppresses tensile force-induced RhoA activation. These results strongly suggest that the interplay between Solo and K8/K18 filaments plays a crucial role in tensile force-induced RhoA activation and consequent actin cytoskeletal reinforcement. © 2016 Fujiwara et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. BAR domain proteins regulate Rho GTPase signaling.

    Science.gov (United States)

    Aspenström, Pontus

    2014-01-01

    BAR proteins comprise a heterogeneous group of multi-domain proteins with diverse biological functions. The common denominator is the Bin-Amphiphysin-Rvs (BAR) domain that not only confers targeting to lipid bilayers, but also provides scaffolding to mold lipid membranes into concave or convex surfaces. This function of BAR proteins is an important determinant in the dynamic reconstruction of membrane vesicles, as well as of the plasma membrane. Several BAR proteins function as linkers between cytoskeletal regulation and membrane dynamics. These links are provided by direct interactions between BAR proteins and actin-nucleation-promoting factors of the Wiskott-Aldrich syndrome protein family and the Diaphanous-related formins. The Rho GTPases are key factors for orchestration of this intricate interplay. This review describes how BAR proteins regulate the activity of Rho GTPases, as well as how Rho GTPases regulate the function of BAR proteins. This mutual collaboration is a central factor in the regulation of vital cellular processes, such as cell migration, cytokinesis, intracellular transport, endocytosis, and exocytosis.

  4. Problem-Solving Test: The Mechanism of Transcription Termination by the Rho Factor

    Science.gov (United States)

    Szeberenyi, Jozsef

    2012-01-01

    Transcription termination comes in two forms in "E. coli" cells. Rho-dependent termination requires the binding of a termination protein called Rho factor to the transcriptional machinery at the terminator region, whereas Rho-independent termination is achieved by conformational changes in the transcript itself. This article presents a test…

  5. T1rho mapping of entire femoral cartilage using depth- and angle-dependent analysis

    International Nuclear Information System (INIS)

    Nozaki, Taiki; Kaneko, Yasuhito; Yu, Hon J.; Yoshioka, Hiroshi; Kaneshiro, Kayleigh; Schwarzkopf, Ran; Hara, Takeshi

    2016-01-01

    To create and evaluate normalized T1rho profiles of the entire femoral cartilage in healthy subjects with three-dimensional (3D) angle- and depth-dependent analysis. T1rho images of the knee from 20 healthy volunteers were acquired on a 3.0-T unit. Cartilage segmentation of the entire femur was performed slice-by-slice by a board-certified radiologist. The T1rho depth/angle-dependent profile was investigated by partitioning cartilage into superficial and deep layers, and angular segmentation in increments of 4 over the length of segmented cartilage. Average T1rho values were calculated with normalized T1rho profiles. Surface maps and 3D graphs were created. T1rho profiles have regional and depth variations, with no significant magic angle effect. Average T1rho values in the superficial layer of the femoral cartilage were higher than those in the deep layer in most locations (p < 0.05). T1rho values in the deep layer of the weight-bearing portions of the medial and lateral condyles were lower than those of the corresponding non-weight-bearing portions (p < 0.05). Surface maps and 3D graphs demonstrated that cartilage T1rho values were not homogeneous over the entire femur. Normalized T1rho profiles from the entire femoral cartilage will be useful for diagnosing local or early T1rho abnormalities and osteoarthritis in clinical applications. (orig.)

  6. T1rho mapping of entire femoral cartilage using depth- and angle-dependent analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, Taiki; Kaneko, Yasuhito; Yu, Hon J.; Yoshioka, Hiroshi [University of California Irvine, Department of Radiological Sciences, Orange, CA (United States); Kaneshiro, Kayleigh [University of California Irvine, School of Medicine, Irvine, CA (United States); Schwarzkopf, Ran [University of California Irvine, Department of Orthopedic Surgery, Irvine, CA (United States); Hara, Takeshi [Gifu University Graduate School of Medicine, Department of Intelligent Image Information, Division of Regeneration and Advanced Medical Sciences, Gifu (Japan)

    2016-06-15

    To create and evaluate normalized T1rho profiles of the entire femoral cartilage in healthy subjects with three-dimensional (3D) angle- and depth-dependent analysis. T1rho images of the knee from 20 healthy volunteers were acquired on a 3.0-T unit. Cartilage segmentation of the entire femur was performed slice-by-slice by a board-certified radiologist. The T1rho depth/angle-dependent profile was investigated by partitioning cartilage into superficial and deep layers, and angular segmentation in increments of 4 over the length of segmented cartilage. Average T1rho values were calculated with normalized T1rho profiles. Surface maps and 3D graphs were created. T1rho profiles have regional and depth variations, with no significant magic angle effect. Average T1rho values in the superficial layer of the femoral cartilage were higher than those in the deep layer in most locations (p < 0.05). T1rho values in the deep layer of the weight-bearing portions of the medial and lateral condyles were lower than those of the corresponding non-weight-bearing portions (p < 0.05). Surface maps and 3D graphs demonstrated that cartilage T1rho values were not homogeneous over the entire femur. Normalized T1rho profiles from the entire femoral cartilage will be useful for diagnosing local or early T1rho abnormalities and osteoarthritis in clinical applications. (orig.)

  7. Diacylglycerol kinase ζ regulates RhoA activation via a kinase-independent scaffolding mechanism

    DEFF Research Database (Denmark)

    Ard, Ryan; Mulatz, Kirk; Abramovici, Hanan

    2012-01-01

    , but the underlying mechanisms are unclear. Diacylglycerol kinase ζ (DGKζ), which phosphorylates diacylglycerol to yield phosphatidic acid, selectively dissociates Rac1 by stimulating PAK1-mediated phosphorylation of RhoGDI on Ser-101/174. Similarly, phosphorylation of RhoGDI on Ser-34 by protein kinase Cα (PKCα......GDI and was required for efficient interaction of PKCα and RhoA. DGKζ-null fibroblasts had condensed F-actin bundles and altered focal adhesion distribution, indicative of aberrant RhoA signaling. Two targets of the RhoA effector ROCK showed reduced phosphorylation in DGKζ-null cells. Collectively our findings suggest...

  8. Dipole moments of the rho meson

    International Nuclear Information System (INIS)

    Hecht, M.B.; McKellar, B.H.P.

    1997-04-01

    The electric and magnetic dipole moments (EDM) of the rho meson are calculated using the propagators and vertices derived from the quantum chromodynamics Dyson-Schwinger equations. Results obtained from using the Bethe-Salpeter amplitude studied by Chappell, Mitchell et. al., and Pichowsky and Lee, are compared. The rho meson EDM is generated through the inclusion of a quark electric dipole moment, which is left as a free variable. These results are compared to the perturbative results to obtain a measure of the effects of quark interactions and confinement. The two dipole moments are also calculated using the phenomenological MIT bag model to provide a further basis for comparison

  9. Membrane depolarization-induced RhoA/Rho-associated kinase activation and sustained contraction of rat caudal arterial smooth muscle involves genistein-sensitive tyrosine phosphorylation

    Science.gov (United States)

    Mita, Mitsuo; Tanaka, Hitoshi; Yanagihara, Hayato; Nakagawa, Jun-ichi; Hishinuma, Shigeru; Sutherland, Cindy; Walsh, Michael P.; Shoji, Masaru

    2013-01-01

    Rho-associated kinase (ROK) activation plays an important role in K+-induced contraction of rat caudal arterial smooth muscle (Mita et al., Biochem J. 2002; 364: 431–40). The present study investigated a potential role for tyrosine kinase activity in K+-induced RhoA activation and contraction. The non-selective tyrosine kinase inhibitor genistein, but not the src family tyrosine kinase inhibitor PP2, inhibited K+-induced sustained contraction (IC50 = 11.3 ± 2.4 µM). Genistein (10 µM) inhibited the K+-induced increase in myosin light chain (LC20) phosphorylation without affecting the Ca2+ transient. The tyrosine phosphatase inhibitor vanadate induced contraction that was reversed by genistein (IC50 = 6.5 ± 2.3 µM) and the ROK inhibitor Y-27632 (IC50 = 0.27 ± 0.04 µM). Vanadate also increased LC20 phosphorylation in a genistein- and Y-27632-dependent manner. K+ stimulation induced translocation of RhoA to the membrane, which was inhibited by genistein. Phosphorylation of MYPT1 (myosin-targeting subunit of myosin light chain phosphatase) was significantly increased at Thr855 and Thr697 by K+ stimulation in a genistein- and Y-27632-sensitive manner. Finally, K+ stimulation induced genistein-sensitive tyrosine phosphorylation of proteins of ∼55, 70 and 113 kDa. We conclude that a genistein-sensitive tyrosine kinase, activated by the membrane depolarization-induced increase in [Ca2+]i, is involved in the RhoA/ROK activation and sustained contraction induced by K+. Ca2+ sensitization, myosin light chain phosphatase, RhoA, Rho-associated kinase, tyrosine kinase PMID:24133693

  10. The mitochondrial genome sequence of the ciliate Paramecium caudatum reveals a shift in nucleotide composition and codon usage within the genus Paramecium

    Directory of Open Access Journals (Sweden)

    Berendonk Thomas U

    2011-05-01

    Full Text Available Abstract Background Despite the fact that the organization of the ciliate mitochondrial genome is exceptional, only few ciliate mitochondrial genomes have been sequenced until today. All ciliate mitochondrial genomes are linear. They are 40 kb to 47 kb long and contain some 50 tightly packed genes without introns. Earlier studies documented that the mitochondrial guanine + cytosine contents are very different between Paramecium tetraurelia and all studied Tetrahymena species. This raises the question of whether the high mitochondrial G+C content observed in P. tetraurelia is a characteristic property of Paramecium mtDNA, or whether it is an exception of the ciliate mitochondrial genomes known so far. To test this question, we determined the mitochondrial genome sequence of Paramecium caudatum and compared the gene content and sequence properties to the closely related P. tetraurelia. Results The guanine + cytosine content of the P. caudatum mitochondrial genome was significantly lower than that of P. tetraurelia (22.4% vs. 41.2%. This difference in the mitochondrial nucleotide composition was accompanied by significantly different codon usage patterns in both species, i.e. within P. caudatum clearly A/T ending codons dominated, whereas for P. tetraurelia the synonymous codons were more balanced with a higher number of G/C ending codons. Further analyses indicated that the nucleotide composition of most members of the genus Paramecium resembles that of P. caudatum and that the shift observed in P. tetraurelia is restricted to the P. aurelia species complex. Conclusions Surprisingly, the codon usage bias in the P. caudatum mitochondrial genome, exemplified by the effective number of codons, is more similar to the distantly related T. pyriformis and other single-celled eukaryotes such as Chlamydomonas, than to the closely related P. tetraurelia. These differences in base composition and codon usage bias were, however, not reflected in the amino

  11. The interdependence of the Rho GTPases and apicobasal cell polarity.

    Science.gov (United States)

    Mack, Natalie Ann; Georgiou, Marios

    2014-01-01

    Signaling via the Rho GTPases provides crucial regulation of numerous cell polarization events, including apicobasal (AB) polarity, polarized cell migration, polarized cell division and neuronal polarity. Here we review the relationships between the Rho family GTPases and epithelial AB polarization events, focusing on the 3 best-characterized members: Rho, Rac and Cdc42. We discuss a multitude of processes that are important for AB polarization, including lumen formation, apical membrane specification, cell-cell junction assembly and maintenance, as well as tissue polarity. Our discussions aim to highlight the immensely complex regulatory mechanisms that encompass Rho GTPase signaling during AB polarization. More specifically, in this review we discuss several emerging common themes, that include: 1) the need for Rho GTPase activities to be carefully balanced in both a spatial and temporal manner through a multitude of mechanisms; 2) the existence of signaling feedback loops and crosstalk to create robust cellular responses; and 3) the frequent multifunctionality that exists among AB polarity regulators. Regarding this latter theme, we provide further discussion of the potential plasticity of the cell polarity machinery and as a result the possible implications for human disease.

  12. Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Dominique Colinet

    2007-12-01

    Full Text Available Inactivation of host Rho GTPases is a widespread strategy employed by bacterial pathogens to manipulate mammalian cellular functions and avoid immune defenses. Some bacterial toxins mimic eukaryotic Rho GTPase-activating proteins (GAPs to inactivate mammalian GTPases, probably as a result of evolutionary convergence. An intriguing question remains whether eukaryotic pathogens or parasites may use endogenous GAPs as immune-suppressive toxins to target the same key genes as bacterial pathogens. Interestingly, a RhoGAP domain-containing protein, LbGAP, was recently characterized from the parasitoid wasp Leptopilina boulardi, and shown to protect parasitoid eggs from the immune response of Drosophila host larvae. We demonstrate here that LbGAP has structural characteristics of eukaryotic RhoGAPs but that it acts similarly to bacterial RhoGAP toxins in mammals. First, we show by immunocytochemistry that LbGAP enters Drosophila immune cells, plasmatocytes and lamellocytes, and that morphological changes in lamellocytes are correlated with the quantity of LbGAP they contain. Demonstration that LbGAP displays a GAP activity and specifically interacts with the active, GTP-bound form of the two Drosophila Rho GTPases Rac1 and Rac2, both required for successful encapsulation of Leptopilina eggs, was then achieved using biochemical tests, yeast two-hybrid analysis, and GST pull-down assays. In addition, we show that the overall structure of LbGAP is similar to that of eukaryotic RhoGAP domains, and we identify distinct residues involved in its interaction with Rac GTPases. Altogether, these results show that eukaryotic parasites can use endogenous RhoGAPs as virulence factors and that despite their differences in sequence and structure, eukaryotic and bacterial RhoGAP toxins are similarly used to target the same immune pathways in insects and mammals.

  13. Mechanisms of RhoGDI2 Mediated Lung Cancer Epithelial-Mesenchymal Transition Suppression

    Directory of Open Access Journals (Sweden)

    Huiyan Niu

    2014-11-01

    Full Text Available Background: The aim of this study was to evaluate the function of RhoGDI2 in lung cancer epithelial-mesenchymal transition (EMT process and to illustrate the underlying mechanisms that will lead to improvement of lung cancer treatment. Methods: The RhoGDI2 knock-down and overexpressing A549 cell lines were first constructed. The influence of RhoGDI2 on cytoskeleton in A549 cells was studied using two approaches: G-LISA-based Rac1 activity measurement and immunostaining-based F-actin distribution. The expression levels of key EMT genes were analyzed using real time quantitative polymerase chain reaction (RT-qPCR, western blot and immunostaining in untreated and RhoGDI2 knock-down or overexpressing A549 cells in both in vivo and in vitro experimental settings. Results: Our study showed that the activity of Rac1, a key gene that is crucial for the initiation and metastasis of human lung adenocarcinoma, causing the redistribution of F-actin with partial loss of cell-cell adhesions and stress fibers, was significantly suppressed by RhoGDI2. RhoGDI2 promoted the expression of EMT marker gene E-cadherin and repressed EMT promoting genes Slug, Snail, α-SMA in both A549 cells and lung and liver organs derived from the mouse models. Knocking-down RhoGDI2 induced abnormal morphology for lung organs. Conclusion: These findings indicate that RhoGDI2 repressed the activity of Rac1 and may be involved in the rearrangement of cytoskeleton in lung cancer cells. RhoGDI2 suppresses the metastasis of lung cancer mediated through EMT by regulating the expression of key genes such as E-cadherin, Slug, Snail and α-SMA in both in vivo and in vitro models.

  14. Measurement of Branching Fractions and CP-violating Charge Asymmetries in B sup + -> rho sup +pi sup 0 and B sup + -> rho sup 0 pi sup + decays, and search for B sup 0 -> rho sup 0 pi sup 0

    CERN Document Server

    Yu, Z

    2003-01-01

    The present preliminary measurements of branching fractions and CP-violating charge asymmetries in B-meson decays to rho pi. The data sample comprises 89 million UPSILON(4S) -> B(bar B) decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factor at SLAC. They find the charge-averaged branching fractions BETA(B sup + -> rho sup +pi sup 0) = (11.0 +- 1.9(stat.) +- 1.9(syst.)) x 10 sup - sup 6 and BETA(B sup + -> rho sup 0 pi sup +) = (9.3 +- 1.0(stat.) +- 0.8(syst.)) x 10 sup - sup 6; they set a 90% confidence-level upper limit of BETA(B sup 0 -> rho sup 0 pi sup 0) < 2.5 x 10 sup - sup 6. They measure the CP-violating charge asymmetries A sub C sub P suprho sup + suppi sup 0 = 0.23 +- 0.16(stat.) +- 0.06(syst.) and A sub C sub P suprho sup 0 suppi sup + = -0.17 +- 0.11(stat.) +- 0.02(syst.).

  15. RhoE deficiency produces postnatal lethality, profound motor deficits and neurodevelopmental delay in mice.

    Directory of Open Access Journals (Sweden)

    Enric Mocholí

    Full Text Available Rnd proteins are a subfamily of Rho GTPases involved in the control of actin cytoskeleton dynamics and other cell functions such as motility, proliferation and survival. Unlike other members of the Rho family, Rnd proteins lack GTPase activity and therefore remain constitutively active. We have recently described that RhoE/Rnd3 is expressed in the Central Nervous System and that it has a role in promoting neurite formation. Despite their possible relevance during development, the role of Rnd proteins in vivo is not known. To get insight into the in vivo function of RhoE we have generated mice lacking RhoE expression by an exon trapping cassette. RhoE null mice (RhoE gt/gt are smaller at birth, display growth retardation and early postnatal death since only half of RhoE gt/gt mice survive beyond postnatal day (PD 15 and 100% are dead by PD 29. RhoE gt/gt mice show an abnormal body position with profound motor impairment and impaired performance in most neurobehavioral tests. Null mutant mice are hypoactive, show an immature locomotor pattern and display a significant delay in the appearance of the hindlimb mature responses. Moreover, they perform worse than the control littermates in the wire suspension, vertical climbing and clinging, righting reflex and negative geotaxis tests. Also, RhoE ablation results in a delay of neuromuscular maturation and in a reduction in the number of spinal motor neurons. Finally, RhoE gt/gt mice lack the common peroneal nerve and, consequently, show a complete atrophy of the target muscles. This is the first model to study the in vivo functions of a member of the Rnd subfamily of proteins, revealing the important role of Rnd3/RhoE in the normal development and suggesting the possible involvement of this protein in neurological disorders.

  16. Impact of liver fibrosis and fatty liver on T1rho measurements: A prospective study

    International Nuclear Information System (INIS)

    Xie, Shuang Shuang; Li, Qing; Cheng, Yue; Shen, Wen; Zhang, Yu; Zhuo, Zhi Zheng; Zhao, Guiming

    2017-01-01

    To investigate the liver T1rho values for detecting fibrosis, and the potential impact of fatty liver on T1rho measurements. This study included 18 healthy subjects, 18 patients with fatty liver, and 18 patients with liver fibrosis, who underwent T1rho MRI and mDIXON collections. Liver T1rho, proton density fat fraction (PDFF) and T2* values were measured and compared among the three groups. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the T1rho values for detecting liver fibrosis. Liver T1rho values were correlated with PDFF, T2* values and clinical data. Liver T1rho and PDFF values were significantly different (p 0.05). T1rho MRI is useful for noninvasive detection of liver fibrosis, and may not be affected with the presence of fatty liver

  17. Accurate and reproducible measurements of RhoA activation in small samples of primary cells.

    Science.gov (United States)

    Nini, Lylia; Dagnino, Lina

    2010-03-01

    Rho GTPase activation is essential in a wide variety of cellular processes. Measurement of Rho GTPase activation is difficult with limited material, such as tissues or primary cells that exhibit stringent culture requirements for growth and survival. We defined parameters to accurately and reproducibly measure RhoA activation (i.e., RhoA-GTP) in cultured primary keratinocytes in response to serum and growth factor stimulation using enzyme-linked immunosorbent assay (ELISA)-based G-LISA assays. We also established conditions that minimize RhoA-GTP in unstimulated cells without affecting viability, allowing accurate measurements of RhoA activation on stimulation or induction of exogenous GTPase expression. Copyright 2009 Elsevier Inc. All rights reserved.

  18. The Study of Adsorption of Patulin by Nanocellulose Conjugated with Poly Guanine in Contaminated Apple juice

    Directory of Open Access Journals (Sweden)

    M Ghafori Bidakhavidi

    2016-07-01

    Full Text Available Abstract Introdction: Patulin is a dangerous toxin produced by various fungi. Hence, the current study aimed to evaluate adsorption of Patulin by nanocellulose conjugated with Poly-guanine in contaminated apple juice. Methods: Firstly, nanocellulose was synthesized, and then it was bonded to poly-guanine by a cross-linker. Then, concentration serial of Patulin was prepared in the apple juice, conjugated nanoparticles were added to them, and all were incubated at 37 ºC. After incubation, the Patulin concentration was measured by HPLC, and finally the adsorption percentage was calculated for each tube. Regarding molecular simulation, the initial structures of Patulin and nanocellulose conjugated with Poly-guanine were inserted into Hyperchem software, and their intermolecular energy was calculated during 50 picoseconds. Results: The results of the present study demonstrated that there was a significant direct correlation between the initial concentration of Patulin and the adsorption percentage of toxin. In addition, the adsorption maximum was reported 70±5 %, and the intermolecular energy between two structures was -20.3 Kcal/mol based on the computational simulation. Conclusions: It can be concluded that nanocellulose conjugated with Poly-guanine seems to be a good adsorbent for Patulin, which is demanded to be used in the future studies in regard with its application.

  19. A solution to the rho-π puzzle: Spontaneously broken symmetries of the quark model

    International Nuclear Information System (INIS)

    Caldi, D.G.; Pagels, H.

    1976-01-01

    This article proposes a solution to the long-standing rho-π puzzle: How can the rho and π be members of a quark model U(6) 36 and the π be a Nambu-Goldstone boson satisfying partial conservation of the axial-vector current (PCAC) Our solution to the puzzle requires a revision of conventional concepts regarding the vector mesons rho, ω, K*, and phi. Just as the π is a Goldstone state, a collective excitation of the Nambu--Jona-Lasinio type, transforming as a member of the (3, 3) + (3, 3) representation of the chiral SU(3) x SU(3) group, so also the rho transforms like (3, 3) + (3, 3) and is also a collective state, a ''dormant'' Goldstone boson that is a true Goldstone boson in the static chiral U(6) x U(6) limit. The static chiral U(6) x U(6) is to be spontaneously broken to static U(6) in the vacuum. Relativisitc effects provide for U(6) breaking and a massive rho. This viewpoint has many consequences. Vector-meson dominance is a consequence of spontaneously broken chiral symmetry: the mechanism that couples the axial-vector current to the π couples the vector current to the rho. The transition rate is calculated as γ/sub rho/ -1 = f/sub pi//m/sub rho/ in rough agreement with experiment. This picture requires soft rho's to decouple. The chiral partner of the rho is not the A 1 but the B (1235). The experimental absence of the A 1 is no longer a theoretical embarrassment in this scheme. As the analog of PCAC for the pion we establish a tensor-field identity for the rho meson in which the rho is interpreted as a dormant Goldstone state. The decays delta → eta + π, B → ω + π, epsilon → 2π are estimated and are found to be in agreement with the observed rates. A static U(6) x U(6) generalization of the Σ model is presented with the π, rho, sigma, B in the (6, 6) + (6, 6) representation. The rho emerges as a dormant Goldstone boson in this model

  20. Involvement of rho-gtpases in fibroblast adhesion and fibronectine fibrillogenesis under stretch

    Science.gov (United States)

    Guignandon, A.; Lambert, C.; Rattner, A.; Servotte, S.; Lapiere, C.; Nusgens, B.; Vico, L.

    The Rho family small GTPases play a crucial role in mediating cellular adaptation to mechanical stimulation (MS), and possibly to microgravity (μg), through effects on the cytoskeleton and cell adhesion which is, in turn, mainly regulated by fibronectin fibrillogenesis (FnF). It remains unclear how mechanical stimulation is transduced to the Rho signaling pathways and how it impacts on fibronectin (fbn) fibrillogenesis (FnF). μg (2 days, mission STS-095) led to de-adhesion of fibroblasts and modification of the underlying extracellular matrix. To determine whether GTPases modulated FnF, we generated stable cell lines expressing high level of activated RhoA and Rac1 (QL) as compared to wild type (WI26-WT). After MS application [8% deformation, 1Hz, 15 min., 3 times/day for 1-2 days], we quantified focal adhesion (vinculin, paxillin, FAKY397), f-actin stress fibers (Sf) and FnF with home-developed softwares. We reported that after MS, Sf are more rapidly (30min) formed under the nucleus in Wi26-WT (+100%) and Rac1 (+200%) than in RhoA (+20%). Vinculin & paxillin were only restricted to the cell edge in static conditions and homogeneously distributed after MS in WT and Rac1. The relative area of contacts (vinculin & paxillin) was more dramatically enhanced by MS in Rac1 (+80%) than in WT (+40%) and RhoA (+25%) indicating that new focal contacts are formed under MS and supported the presence of Sf. MS Activation of FAK (FAKY397) was clear in WT and Rac1 and reduced in RhoA. FnF was restricted to cell-cell contacts zone without any change in the relative area of fbn after a 2-days MS. However we found more numerous spots of fbn at the cell center in Rac1 as compared with RhoA & WT suggesting that these fibrillar contacts will grow upon maturation and modulate FnF. The results indicate that MS induces formation of Sf and focal adhesions and enhances FF. RhoA has been shown to induce the formation of Sf and focal adhesions, and Rac1 activation decreases Rho activity in

  1. Rac and Rho GTPases in cancer cell motility control

    Directory of Open Access Journals (Sweden)

    Parri Matteo

    2010-09-01

    Full Text Available Abstract Rho GTPases represent a family of small GTP-binding proteins involved in cell cytoskeleton organization, migration, transcription, and proliferation. A common theme of these processes is a dynamic reorganization of actin cytoskeleton which has now emerged as a major switch control mainly carried out by Rho and Rac GTPase subfamilies, playing an acknowledged role in adaptation of cell motility to the microenvironment. Cells exhibit three distinct modes of migration when invading the 3 D environment. Collective motility leads to movement of cohorts of cells which maintain the adherens junctions and move by photolytic degradation of matrix barriers. Single cell mesenchymal-type movement is characterized by an elongated cellular shape and again requires extracellular proteolysis and integrin engagement. In addition it depends on Rac1-mediated cell polarization and lamellipodia formation. Conversely, in amoeboid movement cells have a rounded morphology, the movement is independent from proteases but requires high Rho GTPase to drive elevated levels of actomyosin contractility. These two modes of cell movement are interconvertible and several moving cells, including tumor cells, show an high degree of plasticity in motility styles shifting ad hoc between mesenchymal or amoeboid movements. This review will focus on the role of Rac and Rho small GTPases in cell motility and in the complex relationship driving the reciprocal control between Rac and Rho granting for the opportunistic motile behaviour of aggressive cancer cells. In addition we analyse the role of these GTPases in cancer progression and metastatic dissemination.

  2. Peptide substrates for Rho-associated kinase 2 (Rho-kinase 2/ROCK2.

    Directory of Open Access Journals (Sweden)

    Jeong-Hun Kang

    Full Text Available Peptide substrates sensitive for a certain protein kinase could be important for new-drug development and to understand the mechanism of diseases. Rho-associated kinase (Rho-kinase/ROCK is a serine/threonine kinase, and plays an important part in cardiovascular disease, migration and invasion of tumor cells, and in neurological disorders. The purpose of this study was to find substrates with high affinity and sensitivity for ROCK2. We synthesized 136 peptide substrates from protein substrates for ROCK2 with different lengths and charged peptides. Incorporation of (32P [counts per minute (CPM] for each peptide substrate was determined by the radiolabel assay using [γ-(32P]ATP. When the top five peptide substrates showing high CPMs (R4, R22, R133, R134, and R135 were phosphorylated by other enzymes (PKA, PKCα, and ERK1, R22, R133, and R135 displayed the highest CPM level for ROCK2 compared with other enzymes, whereas R4 and R134 showed similar CPM levels for ROCK2 and PKCα. We hypothesize that R22, R133, and R135 can be useful peptide substrates for ROCK2.

  3. ER stress in retinal degeneration in S334ter Rho rats.

    Directory of Open Access Journals (Sweden)

    Vishal M Shinde

    Full Text Available The S334ter rhodopsin (Rho rat (line 4 bears the rhodopsin gene with an early termination codon at residue 334 that is a model for several such mutations found in human patients with autosomal dominant retinitis pigmentosa (ADRP. The Unfolded Protein Response (UPR is implicated in the pathophysiology of several retinal disorders including ADRP in P23H Rho rats. The aim of this study was to examine the onset of UPR gene expression in S334ter Rho retinas to determine if UPR is activated in ADRP animal models and to investigate how the activation of UPR molecules leads to the final demise of S334ter Rho photoreceptors. RT-PCR was performed to evaluate the gene expression profiles for the P10, P12, P15, and P21 stages of the development and progression of ADRP in S334ter Rho photoreceptors. We determined that during the P12-P15 period, ER stress-related genes are strongly upregulated in transgenic retinas, resulting in the activation of the UPR that was confirmed using western blot analysis and RT-PCR. The activation of UPR was associated with the increased expression of JNK, Bik, Bim, Bid, Noxa, and Puma genes and cleavage of caspase-12 that together with activated calpains presumably compromise the integrity of the mitochondrial MPTP, leading to the release of pro-apoptotic AIF1 into the cytosol of S334ter Rho photoreceptor cells. Therefore, two major cross-talking pathways, the UPR and mitochondrial MPTP occur in S334ter-4 Rho retina concomitantly and eventually promote the death of the photoreceptor cells.

  4. Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions.

    Science.gov (United States)

    Hesketh, Andy; Vergnano, Marta; Wan, Chris; Oliver, Stephen G

    2017-07-25

    We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP), cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA) and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR) inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection. IMPORTANCE During infections, pathogenic bacteria can release nucleotides into the cells of their eukaryotic hosts. These nucleotides are recognized as signals that contribute to the initiation of defensive immune responses that help the infected

  5. Table of charged particle energies versus magnetic field strength x orbit radius (B{rho}) for A = 1 to 7 (100< (B{rho}) < 1200 kG.cm); Table des energies des particules chargees en fonction de la rigidite magnetique (B{rho}) pour A = 1 a 7 (100< (B{rho}) < 1200 kG.cm)

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, L. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    A table of charged particle energies versus magnetic field strength x orbit radius (B{sub {rho}}) is presented. Particles p, d, t, {sup 3}He{sup ++}, {sup 4}He{sup +}, {sup 4}He{sup ++}, {sup 6}Li{sup +}, {sup 6}Li{sup ++}, {sup 6}Li{sup +++}, {sup 7}Li{sup +}, {sup 7}Li{sup ++}, {sup 7}Li{sup +++}. Values of B{sub {rho}}: 100 to 1200 kG.cm by steps of 0.5 kG.cm. Values of energies are given in keV. (author) [French] Nous presentons une table des energies de protons, deutons, tritons, {sup 3}He{sup ++}, {sup 4}He{sup +}, {sup 4}He{sup ++}, {sup 6}Li{sup +}, {sup 6}Li{sup ++}, {sup 6}Li{sup +++}, {sup 7}Li{sup +}, {sup 7}Li{sup ++}, {sup 7}Li{sup +++} en fonction de leur rigidite magnetique (B{sub {rho}}). Les valeurs de B{sub {rho}} sont comprises entre 100 et 1200 kG.cm par pas de 0.5 kG.cm. Les valeurs des energies sont donnees en keV. (auteur)

  6. Study of the decay B0(barB0) --> rho+rho-, and constraints on the CKM angle α

    International Nuclear Information System (INIS)

    Aubert, B.; Babar Collaboration

    2004-01-01

    Using a data sample of 89 million Υ(4S)-->BBbar decays collected with the BaBar detector at the PEP-II asymmetric B Factory at SLAC, we measure the B 0 (barB 0 )-->rho + rho - branching fraction as (30+-4 (stat)+-5(syst)) x 10 -6 and a longitudinal polarization fraction of f L 0.99+-0.03(stat) +0.04 ) -0.03 (syst). We measure the time-dependent-asymmetry parameters of the longitudinally polarized component of this decay as C L = -0.17+-0.27(stat)+-0.14 (syst) and S L -0.42+-0.42(stat)+-0.14(syst). We present constraints on the CKM angle α

  7. Rho GTPasas como blancos terapéuticos relevantes en cáncer y otras enfermedades humanas Rho GTPases as therapeutic targets in cancer and other human diseases

    Directory of Open Access Journals (Sweden)

    Pablo Lorenzano Menna

    2010-12-01

    Full Text Available Las Rho GTPasas son una familia de proteínas clave en la transmisión de señales provenientes del exterior celular hacia efectores intracelulares tanto citoplasmáticos como nucleares. En los últimos año ha habido un desarrollo vertiginoso de múltiples herramientas genéticas y farmacológicas, lo que ha permitido establecer de manera mucho más precisa las funciones específicas de estas proteínas. El objetivo de la presente revisión es hacer foco en las múltiples funciones celulares reguladas por las Rho GTPasas, describiendo en detalle el mecanismo molecular involucrado. Se discute además la participación de estas proteínas en diversas enfermedades humanas haciendo énfasis en su vinculación con el cáncer. Por último, se hace una actualización detallada sobre las estrategias terapéuticas en experimentación que tienen a las Rho GTPasas como blancos moleculares.Rho GTPases are a key protein family controlling the transduction of external signals to cytoplasmatic and nuclear effectors. In the last few years, the development of genetic and pharmacological tools has allowed a more precise definition of the specific roles of Rho GTPases. The aim of this review is to describe the cellular functions regulated by these proteins with focus on the molecular mechanism involved. We also address the role of Rho GTPases in the development of different human diseases such as cancer. Finally, we describe different experimental therapeutic strategies with Rho GTPases as molecular targets.

  8. Rational Design of Rho Protein Inhibitors

    National Research Council Canada - National Science Library

    Rojas, Rafael J

    2006-01-01

    Rho GTPases are molecular switches that fluctuate between on and off states. When active, these proteins function to remodel the actin cytoskeleton by interacting with a number of downstream effector molecules...

  9. Rational Design of Rho Protein Inhibitors

    National Research Council Canada - National Science Library

    Rojas, Rafael J

    2005-01-01

    Rho GTPases are molecular switches that fluctuate between on and off states. When active, these proteins function to remodel the actin cytoskeleton by interacting with a number of downstream effector molecules...

  10. High-performance liquid chromatography/electrospray mass spectrometry for the analysis of modified bases in DNA: 7-(2-hydroxyethyl)guanine, the major ethylene oxide-DNA adduct.

    Science.gov (United States)

    Leclercq, L; Laurent, C; De Pauw, E

    1997-05-15

    A method was developed for the analysis of 7-(2-hydroxyethyl)guanine (7HEG), the major DNA adduct formed after exposure to ethylene oxide (EO). The method is based on DNA neutral thermal hydrolysis, adduct micro-concentration, and final characterization and quantification by HPLC coupled to single-ion monitoring electrospray mass spectrometry (HPLC/SIR-ESMS). The method was found to be selective, sensitive, and easy to handle with no need for enzymatic digestion or previous sample derivatization. Detection limit was found to be close to 1 fmol of adduct injected (10(-10) M), thus allowing the detection of approximately three modified bases on 10(8) intact nucleotides in blood sample analysis. Quantification results are shown for 7HEG after calf thymus DNA and blood exposure to various doses of EO, in both cases obtaining clear dose-response relationships.

  11. Critique of Dilley's N/D generation of the rho resonance

    International Nuclear Information System (INIS)

    Tryon, E.P.

    1977-01-01

    Rigorous sum rules for negative moments of the discontinuity across the left-hand cut of the ππ P wave are derived and analyzed. A model by Dilley wherein the rho resonance emerges from elastic N/D equations is shown to be severely inconsistent with these sum rules. Dilley's method for selecting the input left cut is analyzed and shown to be strongly biased in favor of generating a rho. Because of this bias, together with the aforementioned violation of sum rules, Dilley's model does not comprise evidence that the rho is generated by forces in the ππ channel. Numerous successes of the quark model suggest otherwise

  12. New investigations of the guanine trichloro cuprate(II) complex crystal

    Science.gov (United States)

    Fabijanić, Ivana; Matković-Čalogović, Dubravka; Pilepić, Viktor; Ivanišević, Irena; Mohaček-Grošev, Vlasta; Sanković, Krešimir

    2017-01-01

    Crystals of the guanine trichloro cuprate(II) complex, (HGua)2[Cu2Cl6]·2H2O (HGua = protonated guanine), were prepared and analysed by spectroscopic (IR, Raman) and computational methods. A new single-crystal X-ray diffraction analysis was conducted to obtain data with lower standard uncertainties than those in the previously published structure. Raman and IR spectroscopy and quantum-mechanical analysis gave us new insight into the vibrational states of the (HGua)2[Cu2Cl6]·2H2O crystal. The vibrational spectra of the crystal were assigned by performing a normal coordinate analysis for a free dimer with a centre of inversion as the only symmetry element. The stretching vibration observed at 279 cm-1 in the infrared spectrum corresponds to the N-Cu bond. The noncovalent interaction (NCI) plots and quantum theory of atoms in molecules (QTAIM) analysis of the electron density obtained from periodic DFT calculations elucidated the interactions that exist within the crystal structure. Closed-shell ionic attractions, as well as weak and medium strength hydrogen bonds, prevailed in the crystal packing.

  13. Voltammetric Determination of Guanine on the Electrode Modified by Gold Deposit and Nafion Film

    Directory of Open Access Journals (Sweden)

    L.G. Shaidarova

    2016-09-01

    Full Text Available Electrodeposited gold and Nafion-gold composite on the surface of glassy carbon electrodes (GCE have shown electrocatalytic activity during guanine oxidation. In comparison with the unmodified electrode, decreasing of the oxidation potential by 100 mV and increasing of the current of organic compound oxidation have been observed. When the Nafion (NF film is applied to the surface of the glassy carbon electrode with electrodeposited gold, a five-fold increase of guanine oxidation current has been achieved compared to its oxidation on the modified electrode without the NF film. Conditions have been found for electrodeposition of gold on the surface of the glassy carbon electrode, including that one covered with the NF film, as well as for registration of the maximum catalytic current on these electrodes. Linear dependence of the electrocatalytic response of the modified electrode from the guanine concentration has been observed in the range from 5·10–6 to 5·10–3 mol·L–1 (for Au GCE and from 5·10–7 to 5·10–3 mol·L–1 (for NF-Au GCE.

  14. Stable isotope labeling-mass spectrometry analysis of methyl- and pyridyloxobutyl-guanine adducts of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in p53-derived DNA sequences.

    Science.gov (United States)

    Rajesh, Mathur; Wang, Gang; Jones, Roger; Tretyakova, Natalia

    2005-02-15

    The p53 tumor suppressor gene is a primary target in smoking-induced lung cancer. Interestingly, p53 mutations observed in lung tumors of smokers are concentrated at guanine bases within endogenously methylated (Me)CG dinucleotides, e.g., codons 157, 158, 245, 248, and 273 ((Me)C = 5-methylcytosine). One possible mechanism for the increased mutagenesis at these sites involves targeted binding of metabolically activated tobacco carcinogens to (Me)CG sequences. In the present work, a stable isotope labeling HPLC-ESI(+)-MS/MS approach was employed to analyze the formation of guanine lesions induced by the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) within DNA duplexes representing p53 mutational "hot spots" and surrounding sequences. Synthetic DNA duplexes containing p53 codons 153-159, 243-250, and 269-275 were prepared, where (Me)C was incorporated at all physiologically methylated CG sites. In each duplex, one of the guanine bases was replaced with [1,7,NH(2)-(15)N(3)-2-(13)C]-guanine, which served as an isotope "tag" to enable specific quantification of guanine lesions originating from that position. After incubation with NNK diazohydroxides, HPLC-ESI(+)-MS/MS analysis was used to determine the yields of NNK adducts at the isotopically labeled guanine and at unlabeled guanine bases elsewhere in the sequence. We found that N7-methyl-2'-deoxyguanosine and N7-[4-oxo-4-(3-pyridyl)but-1-yl]guanine lesions were overproduced at the 3'-guanine bases within polypurine runs, while the formation of O(6)-methyl-2'-deoxyguanosine and O(6)-[4-oxo-4-(3-pyridyl)but-1-yl]-2'-deoxyguanosine adducts was specifically preferred at the 3'-guanine base of 5'-GG and 5'-GGG sequences. In contrast, the presence of 5'-neighboring (Me)C inhibited O(6)-guanine adduct formation. These results indicate that the N7- and O(6)-guanine adducts of NNK are not overproduced at the endogenously methylated CG dinucleotides within the p53 tumor suppressor gene

  15. The role of alkali metal cations in the stabilization of guanine quadruplexes: why K(+) is the best.

    Science.gov (United States)

    Zaccaria, F; Paragi, G; Fonseca Guerra, C

    2016-08-21

    The alkali metal ion affinity of guanine quadruplexes has been studied using dispersion-corrected density functional theory (DFT-D). We have done computational investigations in aqueous solution that mimics artificial supramolecular conditions where guanine bases assemble into stacked quartets as well as biological environments in which telomeric quadruplexes are formed. In both cases, an alkali metal cation is needed to assist self-assembly. Our quantum chemical computations on these supramolecular systems are able to reproduce the experimental order of affinity of the guanine quadruplexes for the cations Li(+), Na(+), K(+), Rb(+), and Cs(+). The strongest binding is computed between the potassium cation and the quadruplex as it occurs in nature. The desolvation and the size of alkali metal cations are thought to be responsible for the order of affinity. Until now, the relative importance of these two factors has remained unclear and debated. By assessing the quantum chemical 'size' of the cation, determining the amount of deformation of the quadruplex needed to accommodate the cation and through the energy decomposition analysis (EDA) of the interaction energy between the cation and the guanines, we reveal that the desolvation and size of the alkali metal cation are both almost equally responsible for the order of affinity.

  16. Rotation in USco and rho Oph with K2

    Science.gov (United States)

    Rebull, Luisa; Stauffer, John; K2 Clusters Team

    2018-01-01

    K2 observed Upper Scorpius and rho Oph as part of their Campaign 2 in 2014. At ~8 and ~1 Myr respectively, the stars in Upper Sco and rho Oph exhibit greater diversity of light curve shapes than are found in older clusters observed with K2 such as Pleiades or Praesepe. Nonetheless, we are able to derive rotation periods for 85% (971/1136) of the USco members and 80% (71/88) of the rho Oph members. About 25% of the periodic stars have evidence for multiple periods. These light curves sample smaller amplitudes to lower masses and with a far better cadence, than has even been probed before. We can compare USco with similar stars in Praesepe (~700 Myr) and the Pleiades (~125 Myr), all with K2 light curves.

  17. Rnd3 induces stress fibres in endothelial cells through RhoB

    Directory of Open Access Journals (Sweden)

    Undine Gottesbühren

    2012-12-01

    Rnd proteins are atypical Rho family proteins that do not hydrolyse GTP and are instead regulated by expression levels and post-translational modifications. Rnd1 and Rnd3/RhoE induce loss of actin stress fibres and cell rounding in multiple cell types, whereas responses to Rnd2 are more variable. Here we report the responses of endothelial cells to Rnd proteins. Rnd3 induces a very transient decrease in stress fibres but subsequently stimulates a strong increase in stress fibres, in contrast to the reduction observed in other cell types. Rnd2 also increases stress fibres whereas Rnd1 induces a loss of stress fibres and weakening of cell–cell junctions. Rnd3 does not act through any of its known signalling partners and does not need to associate with membranes to increase stress fibres. Instead, it acts by increasing RhoB expression, which is then required for Rnd3-induced stress fibre assembly. Rnd2 also increases RhoB levels. These data indicate that the cytoskeletal response to Rnd3 expression is dependent on cell type and context, and identify regulation of RhoB as a new mechanism for Rnd proteins to affect the actin cytoskeleton.

  18. Covalent Bonding of Pyrrolobenzodiazepines (PBDs) to Terminal Guanine Residues within Duplex and Hairpin DNA Fragments

    Science.gov (United States)

    Mantaj, Julia; Jackson, Paul J. M.; Karu, Kersti; Rahman, Khondaker M.; Thurston, David E.

    2016-01-01

    Pyrrolobenzodiazepines (PBDs) are covalent-binding DNA-interactive agents with growing importance as payloads in Antibody Drug Conjugates (ADCs). Until now, PBDs were thought to covalently bond to C2-NH2 groups of guanines in the DNA-minor groove across a three-base-pair recognition sequence. Using HPLC/MS methodology with designed hairpin and duplex oligonucleotides, we have now demonstrated that the PBD Dimer SJG-136 and the C8-conjugated PBD Monomer GWL-78 can covalently bond to a terminal guanine of DNA, with the PBD skeleton spanning only two base pairs. Control experiments with the non-C8-conjugated anthramycin along with molecular dynamics simulations suggest that the C8-substituent of a PBD Monomer, or one-half of a PBD Dimer, may provide stability for the adduct. This observation highlights the importance of PBD C8-substituents, and also suggests that PBDs may bind to terminal guanines within stretches of DNA in cells, thus representing a potentially novel mechanism of action at the end of DNA strand breaks. PMID:27055050

  19. RhoA/ROCK downregulates FPR2-mediated NADPH oxidase activation in mouse bone marrow granulocytes.

    Science.gov (United States)

    Filina, Julia V; Gabdoulkhakova, Aida G; Safronova, Valentina G

    2014-10-01

    Polymorphonuclear neutrophils (PMNs) express the high and low affinity receptors to formylated peptides (mFPR1 and mFPR2 in mice, accordingly). RhoA/ROCK (Rho activated kinase) pathway is crucial for cell motility and oxidase activity regulated via FPRs. There are contradictory data on RhoA-mediated regulation of NADPH oxidase activity in phagocytes. We have shown divergent Rho GTPases signaling via mFPR1 and mFPR2 to NADPH oxidase in PMNs from inflammatory site. The present study was aimed to find out the role of RhoA/ROCK in the respiratory burst activated via mFPR1 and mFPR2 in the bone marrow PMNs. Different kinetics of RhoA activation were detected with 0.1μM fMLF and 1μM WKYMVM operating via mFPR1 and mFPR2, accordingly. RhoA was translocated in fMLF-activated cells towards the cell center and juxtamembrane space versus uniform allocation in the resting cells. Specific inhibition of RhoA by CT04, Rho inhibitor I, weakly depressed the respiratory burst induced via mFPR1, but significantly increased the one induced via mFPR2. Inhibition of ROCK, the main effector of RhoA, by Y27632 led to the same effect on the respiratory burst. Regulation of mFPR2-induced respiratory response by ROCK was impossible under the cytoskeleton disruption by cytochalasin D, whereas it persisted in the case of mFPR1 activation. Thus we suggest RhoA to be one of the regulatory and signal transduction components in the respiratory burst through FPRs in the mouse bone marrow PMNs. Both mFPR1 and mFPR2 binding with a ligand trigger the activation of RhoA. FPR1 signaling through RhoA/ROCK increases NADPH-oxidase activity. But in FPR2 action RhoA/ROCK together with cytoskeleton-linked systems down-regulates NADPH-oxidase. This mechanism could restrain the reactive oxygen species dependent damage of own tissues during the chemotaxis of PMNs and in the resting cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Corrections to the rho-parameter due to a heavy Higgs particle

    International Nuclear Information System (INIS)

    Bij, J.J. van der.

    1983-01-01

    The main part of this thesis is concerned with the calculation of the two-loop contribution to the rho-parameter, i.e. the ratio of charged and neutral vector boson masses, due to a heavy Higgs particle. It involves the calculation of a large number of Feynman diagrams. The result is that a contribution growing like m 2 exists (m = Higgs mass), but it does not correspond to the poles at n=3 in the non-linear model. First the model is introduced, the precise definition of rho is given and the formal connection with the non-linear model is derived. Then the one-loop infinities are calculated. It is shown that no m 2 corrections are observable in one loop and the log m 2 correction to rho is calculated. Finally the two-loop correction to rho is calculated. (Auth.)

  1. RhoC is essential for TGF-β1-induced invasive capacity of rat ascites hepatoma cells

    International Nuclear Information System (INIS)

    Mukai, M.; Endo, H.; Iwasaki, T.; Tatsuta, M.; Togawa, A.; Nakamura, H.; Inoue, M.

    2006-01-01

    Transforming growth factor-β1 (TGF-β1) is a multifunctional growth factor that plays a role in cell proliferation, differentiation, extracellular matrix production, apoptosis, and cell motility. We show here that TGF-β1 increased the invasiveness of MM1 cells, which are a highly invasive clone of rat ascites hepatoma cells. Both mRNA and protein levels of RhoC but not RhoA in TGF-β1-treated MM1 cells increased. In parallel with this increase in expression, RhoC activity was induced by TGF-β1 treatment. When RhoC was overexpressed in MM1 cells, the invasive capacity increased. The RhoC-overexpressing cells formed more nodules than did mock cells when injected into rat peritoneum. Furthermore, when RhoC expression was reduced by transfection with shRNA/RhoC, the invasiveness of MM1 cells decreased with concomitant suppression of RhoC expression. Thus, the induced expression of RhoC by TGF-β1 in MM1 cells plays a critical role in TGF-β1-induced cell migration

  2. DNA topoisomerase IIβ stimulates neurite outgrowth in neural differentiated human mesenchymal stem cells through regulation of Rho-GTPases (RhoA/Rock2 pathway) and Nurr1 expression.

    Science.gov (United States)

    Zaim, Merve; Isik, Sevim

    2018-04-25

    DNA topoisomerase IIβ (topo IIβ) is known to regulate neural differentiation by inducing the neuronal genes responsible for critical neural differentiation events such as neurite outgrowth and axon guidance. However, the pathways of axon growth controlled by topo IIβ have not been clarified yet. Microarray results of our previous study have shown that topo IIβ silencing in neural differentiated primary human mesenchymal stem cells (hMSCs) significantly alters the expression pattern of genes involved in neural polarity, axonal growth, and guidance, including Rho-GTPases. This study aims to further analyze the regulatory role of topo IIβ on the process of axon growth via regulation of Rho-GTPases. For this purpose, topo IIβ was silenced in neurally differentiated hMSCs. Cells lost their morphology because of topo IIβ deficiency, becoming enlarged and flattened. Additionally, a reduction in both neural differentiation efficiency and neurite length, upregulation in RhoA and Rock2, downregulation in Cdc42 gene expression were detected. On the other hand, cells were transfected with topo IIβ gene to elucidate the possible neuroprotective effect of topo IIβ overexpression on neural-induced hMSCs. Topo IIβ overexpression prompted all the cells to exhibit neural cell morphology as characterized by longer neurites. RhoA and Rock2 expressions were downregulated, whereas Cdc42 expression was upregulated. Nurr1 expression level correlated with topo IIβ in both topo IIβ-overexpressed and -silenced cells. Furthermore, differential translocation of Rho-GTPases was detected by immunostaining in response to topo IIβ. Our results suggest that topo IIβ deficiency could give rise to neurodegeneration through dysregulation of Rho-GTPases. However, further in-vivo research is needed to demonstrate if re-regulation of Rho GTPases by topo IIβ overexpression could be a neuroprotective treatment in the case of neurodegenerative diseases.

  3. Diffractive {rho} production with an AdS/QCD holographic wavefunction for the {rho} meson

    Energy Technology Data Exchange (ETDEWEB)

    Forshaw, Jeff [University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Sandapen, Ruben [Universite de Moncton, Moncton, N-B, E1A 3E9 (Canada) and Mount Allison University, Sackville, N-B, E46 1E6 (Canada)

    2013-04-15

    We report on the results of our recent research published in [1] that shows that AdS/QCD generates predictions for the rate of diffractive {rho}-meson electroproduction that are in agreement with data collected at the HERA electron-proton collider [2, 3]. Preliminary results of this research were presented in [4].

  4. A RhoA-FRET Biosensor Mouse for Intravital Imaging in Normal Tissue Homeostasis and Disease Contexts

    Directory of Open Access Journals (Sweden)

    Max Nobis

    2017-10-01

    Full Text Available The small GTPase RhoA is involved in a variety of fundamental processes in normal tissue. Spatiotemporal control of RhoA is thought to govern mechanosensing, growth, and motility of cells, while its deregulation is associated with disease development. Here, we describe the generation of a RhoA-fluorescence resonance energy transfer (FRET biosensor mouse and its utility for monitoring real-time activity of RhoA in a variety of native tissues in vivo. We assess changes in RhoA activity during mechanosensing of osteocytes within the bone and during neutrophil migration. We also demonstrate spatiotemporal order of RhoA activity within crypt cells of the small intestine and during different stages of mammary gestation. Subsequently, we reveal co-option of RhoA activity in both invasive breast and pancreatic cancers, and we assess drug targeting in these disease settings, illustrating the potential for utilizing this mouse to study RhoA activity in vivo in real time.

  5. The N54-αs Mutant Has Decreased Affinity for βγ and Suggests a Mechanism for Coupling Heterotrimeric G Protein Nucleotide Exchange with Subunit Dissociation.

    Science.gov (United States)

    Cleator, John H; Wells, Christopher A; Dingus, Jane; Kurtz, David T; Hildebrandt, John D

    2018-05-01

    Ser54 of G s α binds guanine nucleotide and Mg 2+ as part of a conserved sequence motif in GTP binding proteins. Mutating the homologous residue in small and heterotrimeric G proteins generates dominant-negative proteins, but by protein-specific mechanisms. For α i/o , this results from persistent binding of α to βγ , whereas for small GTP binding proteins and α s this results from persistent binding to guanine nucleotide exchange factor or receptor. This work examined the role of βγ interactions in mediating the properties of the Ser54-like mutants of G α subunits. Unexpectedly, WT- α s or N54- α s coexpressed with α 1B -adrenergic receptor in human embryonic kidney 293 cells decreased receptor stimulation of IP3 production by a cAMP-independent mechanism, but WT- α s was more effective than the mutant. One explanation for this result would be that α s , like Ser47 α i/o , blocks receptor activation by sequestering βγ ; implying that N54- α S has reduced affinity for βγ since it was less effective at blocking IP3 production. This possibility was more directly supported by the observation that WT- α s was more effective than the mutant in inhibiting βγ activation of phospholipase C β 2. Further, in vitro synthesized N54- α s bound biotinylated- βγ with lower apparent affinity than did WT- α s The Cys54 mutation also decreased βγ binding but less effectively than N54- α s Substitution of the conserved Ser in α o with Cys or Asn increased βγ binding, with the Cys mutant being more effective. This suggests that Ser54 of α s is involved in coupling changes in nucleotide binding with altered subunit interactions, and has important implications for how receptors activate G proteins. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Identification and characterization of a lymphocytic Rho-GTPase effector: rhotekin-2

    International Nuclear Information System (INIS)

    Collier, F.M.; Gregorio-King, C.C.; Gough, T.J.; Talbot, C.D.; Walder, K.; Kirkland, M.A.

    2004-01-01

    Rhotekin belongs to the group of proteins containing a Rho-binding domain that are target peptides (effectors) for the Rho-GTPases. We previously identified a novel cDNA with homology to human rhotekin and in this study we cloned and characterized the coding region of this novel 12-exon gene. The ORF encodes a 609 amino-acid protein comprising a Class I Rho-binding domain and pleckstrin homology (PH) domain. Cellular cDNA expression of this new protein, designated Rhotekin-2 (RTKN2), was shown in the cytosol and nucleus of CHO cells. Using bioinformatics and RTPCR we identified three major splice variants, which vary in both the Rho-binding and PH domains. Real-time PCR studies showed exclusive RTKN2 expression in pooled lymphocytes and further purification indicated sole expression in CD4 pos T-cells and bone marrow-derived B-cells. Gene expression was increased in quiescent T-cells but negligible in activated proliferating cells. In malignant samples expression was absent in myeloid leukaemias, low in most B-cell malignancies and CD8 pos T-cell malignancies, but very high in CD4 pos /CD8 pos T-lymphoblastic lymphoma. As the Rho family is critical in lymphocyte development and function, RTKN2 may play an important role in lymphopoiesis

  7. Molecular characterization of a novel RhoGAP, RRC-1 of the nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Delawary, Mina; Nakazawa, Takanobu; Tezuka, Tohru; Sawa, Mariko; Iino, Yuichi; Takenawa, Tadaomi; Yamamoto, Tadashi

    2007-01-01

    The GTPase-activating proteins for Rho family GTPases (RhoGAP) transduce diverse intracellular signals by negatively regulating Rho family GTPase-mediated pathways. In this study, we have cloned and characterized a novel RhoGAP for Rac1 and Cdc42, termed RRC-1, from Caenorhabditis elegans. RRC-1 was highly homologous to mammalian p250GAP and promoted GTP hydrolysis of Rac1 and Cdc42 in cells. The rrc-1 mRNA was expressed in all life stages. Using an RRC-1::GFP fusion protein, we found that RRC-1 was localized to the coelomocytes, excretory cell, GLR cells, and uterine-seam cell in adult worms. These data contribute toward understanding the roles of Rho family GTPases in C. elegans

  8. Photoproduction of $\\rho^0$ in ultra--peripheral nuclear collisions at ALICE

    CERN Document Server

    Skjerdal, Kyrre

    2013-01-01

    Photoproduction of $\\rho^0$ mesons in ultra-peripheral Pb+Pb collisions has been studied by the ALICE Collaboration at the CERN LHC. The strong photon flux associated with relativistic charged nuclei leads to a very large cross section for exclusive photoproduction of $\\rho^0$ meson in interactions of the type $Pb + Pb \\rightarrow Pb + Pb + \\rho^0$. For a $\\rho^0$ produced at mid-rapidity at the LHC, the photon-nucleus center of mass energy is higher than in any previous experiment. The ALICE detector is a general purpose detector dedicated to study heavy--ion collisions. ALICE has excellent performance in the low $p_T$ region, and can reconstruct charged particle tracks with 0.1 GeV/c $\\leq p_T \\leq 100$ GeV/c. In this analysis all tracks were required to be within ALICE's central barrel. Analysis of data from the first heavy ion run at the LHC in 2010 will be discussed in this paper.

  9. Single nucleotide polymorphism discrimination with and without an ethidium bromide intercalator

    International Nuclear Information System (INIS)

    Fenati, Renzo A.; Connolly, Ashley R.; Ellis, Amanda V.

    2017-01-01

    Single nucleotide polymorphism (SNP) genotyping is an important aspect in understanding genetic variations. Here, we discriminate SNPs using toe-hold mediated displacement reactions. The biological target is an 80 nucleotide long double-stranded–DNA from the mtDNA HV1 region, associated with maternal ancestry. This target has been specially designed with a pendant toehold and a cationic fluorophore, ATTO 647N, as a reporter, produced in a polymerase chain reaction. Rates of reaction for the toehold-polymerase chain reaction products (TPPs) with their corresponding complementary displacing sequences, labelled with a Black Hole Quencher 1, followed the order TPP–Cytosine > TPP–Thymine > TPP–Adenine ≥ TPP–Guanine. Non-complementary rates were the slowest with mismatches involving cytosine. These reactions, operating in a static/or contact mode, gave averaged readouts between SNPs within 15 min (with 80–90% quenching), compared to 25–30 min in previous studies involving fluorescence resonance energy transfer. Addition of an intercalating agent, ethidium bromide, retarded the rate of reaction in which cytosine was involved, presumably through stabilization of the base pairing, which resulted in markedly improved discrimination of cytosine containing SNPs. - Highlights: • Fluorophores and DNA intercalators effect the rate of toehold-mediated strand displacement. • Ethidium bromide had a destabilizing effect on mismatches that contained cytosine. • A cationic fluorophore and Black Hole Quencher 1 strand displacement system was 2–3 times faster than a FRET system. • This enabled SNP detection using toehold-mediated strand displacement in 15 min.

  10. Single nucleotide polymorphism discrimination with and without an ethidium bromide intercalator

    Energy Technology Data Exchange (ETDEWEB)

    Fenati, Renzo A.; Connolly, Ashley R. [Flinders Centre for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5042 (Australia); Ellis, Amanda V., E-mail: amanda.ellis@flinders.edu.au [Flinders Centre for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5042 (Australia); Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC 3010 (Australia)

    2017-02-15

    Single nucleotide polymorphism (SNP) genotyping is an important aspect in understanding genetic variations. Here, we discriminate SNPs using toe-hold mediated displacement reactions. The biological target is an 80 nucleotide long double-stranded–DNA from the mtDNA HV1 region, associated with maternal ancestry. This target has been specially designed with a pendant toehold and a cationic fluorophore, ATTO 647N, as a reporter, produced in a polymerase chain reaction. Rates of reaction for the toehold-polymerase chain reaction products (TPPs) with their corresponding complementary displacing sequences, labelled with a Black Hole Quencher 1, followed the order TPP–Cytosine > TPP–Thymine > TPP–Adenine ≥ TPP–Guanine. Non-complementary rates were the slowest with mismatches involving cytosine. These reactions, operating in a static/or contact mode, gave averaged readouts between SNPs within 15 min (with 80–90% quenching), compared to 25–30 min in previous studies involving fluorescence resonance energy transfer. Addition of an intercalating agent, ethidium bromide, retarded the rate of reaction in which cytosine was involved, presumably through stabilization of the base pairing, which resulted in markedly improved discrimination of cytosine containing SNPs. - Highlights: • Fluorophores and DNA intercalators effect the rate of toehold-mediated strand displacement. • Ethidium bromide had a destabilizing effect on mismatches that contained cytosine. • A cationic fluorophore and Black Hole Quencher 1 strand displacement system was 2–3 times faster than a FRET system. • This enabled SNP detection using toehold-mediated strand displacement in 15 min.

  11. RhoA: A therapeutic target for chronic myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Molli Poonam R

    2012-03-01

    Full Text Available Abstract Background Chronic Myeloid Leukemia (CML is a malignant pluripotent stem cells disorder of myeloid cells. In CML patients, polymorphonuclear leukocytes (PMNL the terminally differentiated cells of myeloid series exhibit defects in several actin dependent functions such as adhesion, motility, chemotaxis, agglutination, phagocytosis and microbicidal activities. A definite and global abnormality was observed in stimulation of actin polymerization in CML PMNL. Signalling molecules ras and rhoGTPases regulate spatial and temporal polymerization of actin and thus, a broad range of physiological processes. Therefore, status of these GTPases as well as actin was studied in resting and fMLP stimulated normal and CML PMNL. Methods To study expression of GTPases and actin, Western blotting and flow cytometry analysis were done, while spatial expression and colocalization of these proteins were studied by using laser confocal microscopy. To study effect of inhibitors on cell proliferation CCK-8 assay was done. Significance of differences in expression of proteins within the samples and between normal and CML was tested by using Wilcoxon signed rank test and Mann-Whitney test, respectively. Bivariate and partial correlation analyses were done to study relationship between all the parameters. Results In CML PMNL, actin expression and its architecture were altered and stimulation of actin polymerization was absent. Differences were also observed in expression, organization or stimulation of all the three GTPases in normal and CML PMNL. In normal PMNL, ras was the critical GTPase regulating expression of rhoGTPases and actin and actin polymerization. But in CML PMNL, rhoA took a central place. In accordance with these, treatment with rho/ROCK pathway inhibitors resulted in specific growth inhibition of CML cell lines. Conclusions RhoA has emerged as the key molecule responsible for functional defects in CML PMNL and therefore can be used as a

  12. Impact of liver fibrosis and fatty liver on T1rho measurements: A prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Shuang Shuang; Li, Qing; Cheng, Yue; Shen, Wen [Dept. of Radiology, Tianjin First Center Hospital, Tianjin (China); Zhang, Yu; Zhuo, Zhi Zheng [Clinical Science, Philips Healthcare, Beijing (China); Zhao, Guiming [Dept. of Hepatology, Tianjin Second People' s Hospital, Tianjin (China)

    2017-11-15

    To investigate the liver T1rho values for detecting fibrosis, and the potential impact of fatty liver on T1rho measurements. This study included 18 healthy subjects, 18 patients with fatty liver, and 18 patients with liver fibrosis, who underwent T1rho MRI and mDIXON collections. Liver T1rho, proton density fat fraction (PDFF) and T2* values were measured and compared among the three groups. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the T1rho values for detecting liver fibrosis. Liver T1rho values were correlated with PDFF, T2* values and clinical data. Liver T1rho and PDFF values were significantly different (p < 0.001), whereas the T2* (p = 0.766) values were similar, among the three groups. Mean liver T1rho values in the fibrotic group (52.6 ± 6.8 ms) were significantly higher than those of healthy subjects (44.9 ± 2.8 ms, p < 0.001) and fatty liver group (45.0 ± 3.5 ms, p < 0.001). Mean liver T1rho values were similar between healthy subjects and fatty liver group (p = 0.999). PDFF values in the fatty liver group (16.07 ± 10.59%) were significantly higher than those of healthy subjects (1.43 ± 1.36%, p < 0.001) and fibrosis group (1.07 ± 1.06%, p < 0.001). PDFF values were similar in healthy subjects and fibrosis group (p = 0.984). Mean T1rho values performed well to detect fibrosis at a threshold of 49.5 ms (area under the ROC curve, 0.855), had a moderate correlation with liver stiffness (r = 0.671, p = 0.012), and no correlation with PDFF, T2* values, subject age, or body mass index (p > 0.05). T1rho MRI is useful for noninvasive detection of liver fibrosis, and may not be affected with the presence of fatty liver.

  13. Control of Homeostasis and Dendritic Cell Survival by the GTPase RhoA

    DEFF Research Database (Denmark)

    Li, Shuai; Dislich, Bastian; Brakebusch, Cord H

    2015-01-01

    11b(-)CD8(+) and CD11b(+)Esam(hi) DC subsets, whereas CD11b(+)Esam(lo) DCs were not affected in conditional RhoA-deficient mice. Proteome analyses revealed a defective prosurvival pathway via PI3K/protein kinase B (Akt1)/Bcl-2-associated death promoter in the absence of RhoA. Taken together, our...... findings identify RhoA as a central regulator of DC homeostasis, and its deletion decreases DC numbers below critical thresholds for immune protection and homeostasis, causing aberrant compensatory DC proliferation....

  14. Involvement of RhoA/Rho kinase signaling in VEGF-induced endothelial cell migration and angiogenesis in vitro

    NARCIS (Netherlands)

    Nieuw Amerongen, G.P. van; Koolwijk, P.; Versteilen, A.; Hinsbergh, V.W.M. van

    2003-01-01

    Objective - Growth factor-induced angiogenesis involves migration of endothelial cells (ECs) into perivascular areas and requires active remodeling of the endothelial F-actin cytoskeleton. The small GTPase RhoA previously has been implicated in vascular endothelial growth factor (VEGF)-induced

  15. RhoA activation and nuclearization marks loss of chondrocyte phenotype in crosstalk with Wnt pathway.

    Science.gov (United States)

    Öztürk, Ece; Despot-Slade, Evelin; Pichler, Michael; Zenobi-Wong, Marcy

    2017-11-15

    De-differentiation comprises a major drawback for the use of autologous chondrocytes in cartilage repair. Here, we investigate the role of RhoA and canonical Wnt signaling in chondrocyte phenotype. Chondrocyte de-differentiation is accompanied by an upregulation and nuclear localization of RhoA. Effectors of canonical Wnt signaling including β-catenin and YAP/TAZ are upregulated in de-differentiating chondrocytes in a Rho-dependent manner. Inhibition of Rho activation with C3 transferase inhibits nuclear localization of RhoA, induces expression of chondrogenic markers on 2D and enhances the chondrogenic effect of 3D culturing. Upregulation of chondrogenic markers by Rho inhibition is accompanied by loss of canonical Wnt signaling markers in 3D or on 2D whereas treatment of chondrocytes with Wnt-3a abrogates this effect. However, induction of canonical Wnt signaling inhibits chondrogenic markers on 2D but enhances chondrogenic re-differentiation on 2D with C3 transferase or in 3D. These data provide insights on the context-dependent role of RhoA and Wnt signaling in de-differentiation and on mechanisms to induce chondrogenic markers for therapeutic approaches. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. RhoA-Mediated Functions in C3H10T1/2 Osteoprogenitors Are Substrate Topography Dependent.

    Science.gov (United States)

    Ogino, Yoichiro; Liang, Ruiwei; Mendonça, Daniela B S; Mendonça, Gustavo; Nagasawa, Masako; Koyano, Kiyoshi; Cooper, Lyndon F

    2016-03-01

    Surface topography broadly influences cellular responses. Adherent cell activities are regulated, in part, by RhoA, a member of the Rho-family of GTPases. In this study, we evaluated the influence of surface topography on RhoA activity and associated cellular functions. The murine mesenchymal stem cell line C3H10T1/2 cells (osteoprogenitor cells) were cultured on titanium substrates with smooth topography (S), microtopography (M), and nanotopography (N) to evaluate the effect of surface topography on RhoA-mediated functions (cell spreading, adhesion, migration, and osteogenic differentiation). The influence of RhoA activity in the context of surface topography was also elucidated using RhoA pharmacologic inhibitor. Following adhesion, M and N adherent cells developed multiple projections, while S adherent cells had flattened and widespread morphology. RhoA inhibitor induced remarkable longer and thinner cytoplasmic projections on all surfaces. Cell adhesion and osteogenic differentiation was topography dependent with S topography roughness dependent (S topography. Smooth surface adherent cells appear highly sensitive to RhoA function, while nano-scale topography adherent cell may utilize alternative cellular signaling pathway(s) to influence adherent cellular functions regardless of RhoA activity. © 2015 Wiley Periodicals, Inc.

  17. Inclusive and semi-inclusive rho0 production in π-p interactions at 147 GeV/c

    International Nuclear Information System (INIS)

    Fong, D.; Heller, M.; Shapiro, A.M.; Widgoff, M.; Bruyant, F.; Bogert, D.; Johnson, M.; Burnstein, R.; Fu, C.; Petersen, D.; Robertson, M.; Rubin, H.; Sard, R.; Snyder, A.; Tortora, J.; Alyea, D.; Chien, C.-Y.; Lucas, P.; Pevsner, A.; Zdanis, R.; Brau, J.; Grunhaus, J.; Hafen, E.S.; Hulsizer, R.I.; Karshon, U.; Kistiakowsky, V.; Levy, A.; Napier, A.; Pless, I.A.; Trepagnier, P.C.; Wolfson, J.; Yamamoto, R.K.; Cohn, H.; Ou, T.C.; Plano, R.; Watts, T.; Brucker, E.; Koller, E.; Stamer, P.; Taylor, S.; Bugg, W.; Condo, G.; Handler, T.; Hart, E.; Kraybill, H.; Ljung, D.; Ludlam, T.; Taft, H.D.

    1975-01-01

    Data on inclusive and semi-inclusive rho 0 production in 147 GeV/c π - p interactions are presented. A total cross section of 7.3+-1.3 mb is found. Most of this cross section is found in the lower topology events ( 2 dependence of rho 0 production, sub(rho 0 ) per event, and the rho 0 /π + ratios are also discussed. (Auth.)

  18. A multi-functional guanine derivative for studying the DNA G-quadruplex structure.

    Science.gov (United States)

    Ishizuka, Takumi; Zhao, Pei-Yan; Bao, Hong-Liang; Xu, Yan

    2017-10-23

    In the present study, we developed a multi-functional guanine derivative, 8F G, as a G-quadruplex stabilizer, a fluorescent probe for the detection of G-quadruplex formation, and a 19 F sensor for the observation of the G-quadruplex. We demonstrate that the functional nucleoside bearing a 3,5-bis(trifluoromethyl)benzene group at the 8-position of guanine stabilizes the DNA G-quadruplex structure and fluoresces following the G-quadruplex formation. Furthermore, we show that the functional sensor can be used to directly observe DNA G-quadruplexes by 19 F-NMR in living cells. To our knowledge, this is the first study showing that the nucleoside derivative simultaneously allows for three kinds of functions at a single G-quadruplex DNA. Our results suggest that the multi-functional nucleoside derivative can be broadly used for studying the G-quadruplex structure and serves as a powerful tool for examining the molecular basis of G-quadruplex formation in vitro and in living cells.

  19. RhoA Drives T-Cell Activation and Encephalitogenic Potential in an Animal Model of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Alba Manresa-Arraut

    2018-05-01

    Full Text Available T-cells are known to be intimately involved in the pathogenesis of multiple sclerosis (MS and its animal model experimental autoimmune encephalomyelitis (EAE. T-cell activation is controlled by a range of intracellular signaling pathways regulating cellular responses such as proliferation, cytokine production, integrin expression, and migration. These processes are crucial for the T-cells’ ability to mediate inflammatory processes in autoimmune diseases such as MS. RhoA is a ubiquitously expressed small GTPase well described as a regulator of the actin cytoskeleton. It is essential for embryonic development and together with other Rho GTPases controls various cellular processes such as cell development, shaping, proliferation, and locomotion. However, the specific contribution of RhoA to these processes in T-cells in general, and in autoreactive T-cells in particular, has not been fully characterized. Using mice with a T-cell specific deletion of the RhoA gene (RhoAfl/flLckCre+, we investigated the role of RhoA in T-cell development, functionality, and encephalitogenic potential in EAE. We show that lack of RhoA specifically in T-cells results in reduced numbers of mature T-cells in thymus and spleen but normal counts in peripheral blood. EAE induction in RhoAfl/flLckCre+ mice results in significantly reduced disease incidence and severity, which coincides with a reduced CNS T-cell infiltration. Besides presenting reduced migratory capacity, both naïve and autoreactive effector T-cells from RhoAfl/flLckCre+ mice show decreased viability, proliferative capacity, and an activation profile associated with reduced production of Th1 pro-inflammatory cytokines. Our study demonstrates that RhoA is a central regulator of several archetypical T-cell responses, and furthermore points toward RhoA as a new potential therapeutic target in diseases such as MS, where T-cell activity plays a central role.

  20. DNA sequence polymorphisms within the bovine guanine nucleotide-binding protein Gs subunit alpha (Gsα-encoding (GNAS genomic imprinting domain are associated with performance traits

    Directory of Open Access Journals (Sweden)

    Mullen Michael P

    2011-01-01

    Full Text Available Abstract Background Genes which are epigenetically regulated via genomic imprinting can be potential targets for artificial selection during animal breeding. Indeed, imprinted loci have been shown to underlie some important quantitative traits in domestic mammals, most notably muscle mass and fat deposition. In this candidate gene study, we have identified novel associations between six validated single nucleotide polymorphisms (SNPs spanning a 97.6 kb region within the bovine guanine nucleotide-binding protein Gs subunit alpha gene (GNAS domain on bovine chromosome 13 and genetic merit for a range of performance traits in 848 progeny-tested Holstein-Friesian sires. The mammalian GNAS domain consists of a number of reciprocally-imprinted, alternatively-spliced genes which can play a major role in growth, development and disease in mice and humans. Based on the current annotation of the bovine GNAS domain, four of the SNPs analysed (rs43101491, rs43101493, rs43101485 and rs43101486 were located upstream of the GNAS gene, while one SNP (rs41694646 was located in the second intron of the GNAS gene. The final SNP (rs41694656 was located in the first exon of transcripts encoding the putative bovine neuroendocrine-specific protein NESP55, resulting in an aspartic acid-to-asparagine amino acid substitution at amino acid position 192. Results SNP genotype-phenotype association analyses indicate that the single intronic GNAS SNP (rs41694646 is associated (P ≤ 0.05 with a range of performance traits including milk yield, milk protein yield, the content of fat and protein in milk, culled cow carcass weight and progeny carcass conformation, measures of animal body size, direct calving difficulty (i.e. difficulty in calving due to the size of the calf and gestation length. Association (P ≤ 0.01 with direct calving difficulty (i.e. due to calf size and maternal calving difficulty (i.e. due to the maternal pelvic width size was also observed at the rs

  1. 42 CFR 493.859 - Standard; ABO group and D (Rho) typing.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Standard; ABO group and D (Rho) typing. 493.859 Section 493.859 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN..., Or Any Combination of These Tests § 493.859 Standard; ABO group and D (Rho) typing. (a) Failure to...

  2. An adenine-to-guanine nucleotide change in the IRES SL-IV domain of picornavirus/hepatitis C chimeric viruses leads to a nonviable phenotype

    International Nuclear Information System (INIS)

    McKnight, Kevin L.; Sandefur, Stephanie; Phipps, Krista M.; Heinz, Beverly A.

    2003-01-01

    The inability for the internal ribosomal entry site (IRES) of hepatitis C virus (HCV) to be readily studied in the context of viral replication has been circumvented by constructing chimeras such as with poliovirus (PV), in which translation of the genome polyprotein is under control of the HCV IRES. During our attempts to configure the PV/HCV chimera for our drug discovery efforts, we discovered that an adenine- (A) to-guanine (G) change at nt 350 in domain IV of the HCV IRES resulted in a nonviable phenotype. Similarly, a mengovirus (MV)/HCV chimera using the same configuration with a G at nt 350 (G-350) was found to be nonviable. In contrast, a bovine viral diarrhea virus (BVDV)/HCV chimera remained viable with G-350 in the HCV IRES insert. Second-site, resuscitating mutations were identified from the G-350 PV/HCV and MV/HCV viruses after blind passaging. For both viruses, the resuscitating mutations involved destabilization of domain IV in the HCV IRES. The nonviability of G-350 in the picornavirus/HCV chimeric background might be linked to translation efficiency as indicated by analyses with dual reporter and PV/HCV replicon constructs

  3. Triptolide disrupts the actin-based Sertoli-germ cells adherens junctions by inhibiting Rho GTPases expression

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiang; Zhao, Fang [Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009 (China); Lv, Zhong-ming; Shi, Wei-qin [Jiangsu Provincial Center for Disease Control and Prevention, Nanjing (China); Zhang, Lu-yong, E-mail: lyzhang@cpu.edu.cn [Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing (China); State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 (China); Yan, Ming, E-mail: brookming@cpu.edu.cn [Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009 (China)

    2016-11-01

    Triptolide (TP), derived from the medicinal plant Triterygium wilfordii Hook. f. (TWHF), is a diterpene triepoxide with variety biological and pharmacological activities. However, TP has been restricted in clinical application due to its narrow therapeutic window especially in reproductive system. During spermatogenesis, Sertoli cell cytoskeleton plays an essential role in facilitating germ cell movement and cell-cell actin-based adherens junctions (AJ). At Sertoli cell-spermatid interface, the anchoring device is a kind of AJ, known as ectoplasmic specializations (ES). In this study, we demonstrate that β-actin, an important component of cytoskeleton, has been significantly down-regulated after TP treatment. TP can inhibit the expression of Rho GTPase such as, RhoA, RhoB, Cdc42 and Rac1. Downstream of Rho GTPase, Rho-associated protein kinase (ROCKs) gene expressions were also suppressed by TP. F-actin immunofluorescence proved that TP disrupts Sertoli cells cytoskeleton network. As a result of β-actin down-regulation, TP treatment increased expression of testin, which indicating ES has been disassembled. In summary, this report illustrates that TP induces cytoskeleton dysfunction and disrupts cell-cell adherens junctions via inhibition of Rho GTPases. - Highlights: • Triptolide induced the disruption of Sertoli-germ cell adherens junction. • Rho GTPases expression and actin dynamics have been suppressed by triptolide. • Actin-based adherens junction is a potential antifertility target of triptolide. • Rho-Rock is involved in the regulation of actin dynamics.

  4. Triptolide disrupts the actin-based Sertoli-germ cells adherens junctions by inhibiting Rho GTPases expression

    International Nuclear Information System (INIS)

    Wang, Xiang; Zhao, Fang; Lv, Zhong-ming; Shi, Wei-qin; Zhang, Lu-yong; Yan, Ming

    2016-01-01

    Triptolide (TP), derived from the medicinal plant Triterygium wilfordii Hook. f. (TWHF), is a diterpene triepoxide with variety biological and pharmacological activities. However, TP has been restricted in clinical application due to its narrow therapeutic window especially in reproductive system. During spermatogenesis, Sertoli cell cytoskeleton plays an essential role in facilitating germ cell movement and cell-cell actin-based adherens junctions (AJ). At Sertoli cell-spermatid interface, the anchoring device is a kind of AJ, known as ectoplasmic specializations (ES). In this study, we demonstrate that β-actin, an important component of cytoskeleton, has been significantly down-regulated after TP treatment. TP can inhibit the expression of Rho GTPase such as, RhoA, RhoB, Cdc42 and Rac1. Downstream of Rho GTPase, Rho-associated protein kinase (ROCKs) gene expressions were also suppressed by TP. F-actin immunofluorescence proved that TP disrupts Sertoli cells cytoskeleton network. As a result of β-actin down-regulation, TP treatment increased expression of testin, which indicating ES has been disassembled. In summary, this report illustrates that TP induces cytoskeleton dysfunction and disrupts cell-cell adherens junctions via inhibition of Rho GTPases. - Highlights: • Triptolide induced the disruption of Sertoli-germ cell adherens junction. • Rho GTPases expression and actin dynamics have been suppressed by triptolide. • Actin-based adherens junction is a potential antifertility target of triptolide. • Rho-Rock is involved in the regulation of actin dynamics.

  5. Ornithine decarboxylase regulates the activity and localization of rhoA via polyamination

    International Nuclear Information System (INIS)

    Maekitie, Laura T.; Kanerva, Kristiina; Andersson, Leif C.

    2009-01-01

    Ornithine decarboxylase (ODC) is the rate-limiting enzyme of polyamine synthesis. Polyamines and ODC are connected to cell proliferation and transformation. Resting cells display a low ODC activity while normal, proliferating cells display fluctuations in ODC activity that coincide with changes in the actin cytoskeleton during the cell cycle. Cancerous cells display constitutively elevated ODC activity. Overexpression of ODC in NIH 3T3 fibroblasts induces a transformed phenotype. The cytoskeletal rearrangements during cytokinesis and cell transformation are intimately coupled to the ODC activity but the molecular mechanisms have remained elusive. In this study we investigated how ODC and polyamines influence the organization of the cytoskeleton. Given that the small G-proteins of the rho family are key modulators of the actin cytoskeleton, we investigated the molecular interactions of rhoA with ODC and polyamines. Our results show that transglutaminase-catalyzed polyamination of rhoA regulates its activity. The polyamination status of rhoA crucially influences the progress of the cell cycle as well as the rate of transformation of rat fibroblasts infected with temperature-sensitive v-src. We also show that ODC influences the intracellular distribution of rhoA. These findings provide novel insights into the mechanisms by which ODC and polyamines regulate the dynamics of the cytoskeleton during cell proliferation and transformation

  6. Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage.

    Science.gov (United States)

    Borthakur, Arijitt; Mellon, Eric; Niyogi, Sampreet; Witschey, Walter; Kneeland, J Bruce; Reddy, Ravinder

    2006-11-01

    In this article, both sodium magnetic resonance (MR) and T1rho relaxation mapping aimed at measuring molecular changes in cartilage for the diagnostic imaging of osteoarthritis are reviewed. First, an introduction to structure of cartilage, its degeneration in osteoarthritis (OA) and an outline of diagnostic imaging methods in quantifying molecular changes and early diagnostic aspects of cartilage degeneration are described. The sodium MRI section begins with a brief overview of the theory of sodium NMR of biological tissues and is followed by a section on multiple quantum filters that can be used to quantify both bi-exponential relaxation and residual quadrupolar interaction. Specifically, (i) the rationale behind the use of sodium MRI in quantifying proteoglycan (PG) changes, (ii) validation studies using biochemical assays, (iii) studies on human OA specimens, (iv) results on animal models and (v) clinical imaging protocols are reviewed. Results demonstrating the feasibility of quantifying PG in OA patients and comparison with that in healthy subjects are also presented. The section concludes with the discussion of advantages and potential issues with sodium MRI and the impact of new technological advancements (e.g. ultra-high field scanners and parallel imaging methods). In the theory section on T1rho, a brief description of (i) principles of measuring T1rho relaxation, (ii) pulse sequences for computing T1rho relaxation maps, (iii) issues regarding radio frequency power deposition, (iv) mechanisms that contribute to T1rho in biological tissues and (v) effects of exchange and dipolar interaction on T1rho dispersion are discussed. Correlation of T1rho relaxation rate with macromolecular content and biomechanical properties in cartilage specimens subjected to trypsin and cytokine-induced glycosaminoglycan depletion and validation against biochemical assay and histopathology are presented. Experimental T1rho data from osteoarthritic specimens, animal models

  7. Function of the Nucleotide Exchange Activity of Vav1 in T cell Development and Activation*

    Science.gov (United States)

    Saveliev, Alexander; Vanes, Lesley; Ksionda, Olga; Rapley, Jonathan; Smerdon, Stephen J.; Rittinger, Katrin; Tybulewicz, Victor L. J.

    2012-01-01

    The guanine nucleotide exchange factor (GEF) Vav1 is essential for transducing T cell antigen receptor (TCR) signals and therefore plays a critical role in the development and activation of T cells. It has been presumed that the GEF activity of Vav1 is important for its function; however, there has been no direct demonstration of this. Here, we generated mice expressing enzymatically inactive, but normally folded, Vav1 protein. Analysis of these mice showed that the GEF activity of Vav1 was necessary for the selection of thymocytes and for the optimal activation of T cells, including signal transduction to Rac1, Akt, and integrins. In contrast, the GEF activity of Vav1 was not required for TCR-induced calcium flux, activation of extracellular signal–regulated kinase (ERK) and protein kinase D1 (PKD1), and cell polarization. Thus, in T cells, the GEF activity of Vav1 is essential for some, but not all, of its functions. PMID:20009105

  8. Function of the nucleotide exchange activity of vav1 in T cell development and activation.

    Science.gov (United States)

    Saveliev, Alexander; Vanes, Lesley; Ksionda, Olga; Rapley, Jonathan; Smerdon, Stephen J; Rittinger, Katrin; Tybulewicz, Victor L J

    2009-12-15

    The guanine nucleotide exchange factor (GEF) Vav1 is essential for transducing T cell antigen receptor (TCR) signals and therefore plays a critical role in the development and activation of T cells. It has been presumed that the GEF activity of Vav1 is important for its function; however, there has been no direct demonstration of this. Here, we generated mice expressing enzymatically inactive, but normally folded, Vav1 protein. Analysis of these mice showed that the GEF activity of Vav1 was necessary for the selection of thymocytes and for the optimal activation of T cells, including signal transduction to Rac1, Akt, and integrins. In contrast, the GEF activity of Vav1 was not required for TCR-induced calcium flux, activation of extracellular signal-regulated kinase and protein kinase D1, and cell polarization. Thus, in T cells, the GEF activity of Vav1 is essential for some, but not all, of its functions.

  9. Nanofibrillar scaffolds induce preferential activation of Rho GTPases in cerebral cortical astrocytes

    Science.gov (United States)

    Tiryaki, Volkan Mujdat; Ayres, Virginia M; Khan, Adeel A; Ahmed, Ijaz; Shreiber, David I; Meiners, Sally

    2012-01-01

    Cerebral cortical astrocyte responses to polyamide nanofibrillar scaffolds versus poly-L-lysine (PLL)-functionalized planar glass, unfunctionalized planar Aclar coverslips, and PLL-functionalized planar Aclar surfaces were investigated by atomic force microscopy and immunocytochemistry. The physical properties of the cell culture environments were evaluated using contact angle and surface roughness measurements and compared. Astrocyte morphological responses, including filopodia, lamellipodia, and stress fiber formation, and stellation were imaged using atomic force microscopy and phalloidin staining for F-actin. Activation of the corresponding Rho GTPase regulators was investigated using immunolabeling with Cdc42, Rac1, and RhoA. Astrocytes cultured on the nanofibrillar scaffolds showed a unique response that included stellation, cell–cell interactions by stellate processes, and evidence of depression of RhoA. The results support the hypothesis that the extracellular environment can trigger preferential activation of members of the Rho GTPase family, with demonstrable morphological consequences for cerebral cortical astrocytes. PMID:22915841

  10. Viral activation of MK2-hsp27-p115RhoGEF-RhoA signaling axis causes cytoskeletal rearrangements, p-body disruption and ARE-mRNA stabilization.

    Directory of Open Access Journals (Sweden)

    Jennifer A Corcoran

    2015-01-01

    Full Text Available Kaposi's sarcoma-associated herpesvirus (KSHV is the infectious cause of several AIDS-related cancers, including the endothelial cell (EC neoplasm Kaposi's sarcoma (KS. KSHV-infected ECs secrete abundant host-derived pro-inflammatory molecules and angiogenic factors that contribute to tumorigenesis. The precise contributions of viral gene products to this secretory phenotype remain to be elucidated, but there is emerging evidence for post-transcriptional regulation. The Kaposin B (KapB protein is thought to contribute to the secretory phenotype in infected cells by binding and activating the stress-responsive kinase MK2, thereby selectively blocking decay of AU-rich mRNAs (ARE-mRNAs encoding pro-inflammatory cytokines and angiogenic factors. Processing bodies (PBs are cytoplasmic ribonucleoprotein foci in which ARE-mRNAs normally undergo rapid 5' to 3' decay. Here, we demonstrate that PB dispersion is a feature of latent KSHV infection, which is dependent on kaposin protein expression. KapB is sufficient to disperse PBs, and KapB-mediated ARE-mRNA stabilization could be partially reversed by treatments that restore PBs. Using a combination of genetic and chemical approaches we provide evidence that KapB-mediated PB dispersion is dependent on activation of a non-canonical Rho-GTPase signaling axis involving MK2, hsp27, p115RhoGEF and RhoA. PB dispersion in latently infected cells is likewise dependent on p115RhoGEF. In addition to PB dispersion, KapB-mediated RhoA activation in primary ECs caused actin stress fiber formation, increased cell motility and angiogenesis; these effects were dependent on the activity of the RhoA substrate kinases ROCK1/2. By contrast, KapB-mediated PB dispersion occurred in a ROCK1/2-independent manner. Taken together, these observations position KapB as a key contributor to viral reprogramming of ECs, capable of eliciting many of the phenotypes characteristic of KS tumor cells, and strongly contributing to the post

  11. Search for the Decay B^0 -> a^\\pm_1 \\rho^\\mp

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.

    2006-05-10

    The authors present a search for the rare B-meson decay B{sup 0} {yields} {alpha}{sub 1}{sup {+-}}{rho}{sup {-+}} with {alpha}{sub 1}{sup {+-}} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup {+-}}. We use (110 {+-} 1.2) x 10{sup 6} {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEp-II asymmetric-energy B Factory at SLAC. They obtain an upper limit of 30 x 10{sup -6} (90% C.L.) for the branching fraction product {Beta}(B{sup 0} {yields} {alpha}{sub 1}{sup {+-}}{rho}{sup {-+}}) {Beta}({alpha}{sub 1}{sup {+-}} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup {+-}}), where they assume that the {alpha}{sub 1}{sup {+-}} decays exclusively to {rho}{sup 0}{pi}{sup {+-}}.

  12. Cell elongation is an adaptive response for clearing long chromatid arms from the cleavage plane

    Science.gov (United States)

    Kotadia, Shaila; Montembault, Emilie; Sullivan, William

    2012-01-01

    Chromosome segregation must be coordinated with cell cleavage to ensure correct transmission of the genome to daughter cells. Here we identify a novel mechanism by which Drosophila melanogaster neuronal stem cells coordinate sister chromatid segregation with cleavage furrow ingression. Cells adapted to a dramatic increase in chromatid arm length by transiently elongating during anaphase/telophase. The degree of cell elongation correlated with the length of the trailing chromatid arms and was concomitant with a slight increase in spindle length and an enlargement of the zone of cortical myosin distribution. Rho guanine-nucleotide exchange factor (Pebble)–depleted cells failed to elongate during segregation of long chromatids. As a result, Pebble-depleted adult flies exhibited morphological defects likely caused by cell death during development. These studies reveal a novel pathway linking trailing chromatid arms and cortical myosin that ensures the clearance of chromatids from the cleavage plane at the appropriate time during cytokinesis, thus preserving genome integrity. PMID:23185030

  13. Geft is dispensable for the development of the second heart field

    Directory of Open Access Journals (Sweden)

    Xiongwei Fan

    2012-03-01

    Full Text Available Geft is a guanine nucleotide exchange factor, which can specificallyactivate Rho family of small GTPase by catalyzing theexchange of bound GDP for GTP. Geft is highly expressed inthe excitable tissue as heart and skeletal muscle and plays importantroles in many cellular processes, such as cell proliferation,migration, and cell fate decision. However, the invivo role of Geft remains unknown. Here, we generated a Geftconditional knockout mouse by flanking exons 5-17 of Geftwith loxP sites. Cre-mediated deletion of the Geft gene in heartusing Mef2c-Cre transgenic mice resulted in a dramatic decreaseof Geft expression. Geft knockout mice develop normallyand exhibit no discernable phenotype, suggesting Geft isdispensable for the development of the second heart field inmouse. The Geft conditional knockout mouse will be a valuablegenetic tool for uncovering the in vivo roles of Geft duringdevelopment and in adult homeostasis. (BMB reports2012; 45(3: 153-158

  14. Rho, a Fraction From Rhodiola crenulate, Ameliorates Hepatic Steatosis in Mice Models

    Directory of Open Access Journals (Sweden)

    Qin Yi

    2018-03-01

    Full Text Available The prevalence of non-alcoholic fatty liver disease (NAFLD, which is developed from hepatic steatosis, is increasing worldwide. However, no specific drugs for NAFLD have been approved yet. To observe the effects of Rho, a fraction from Rhodiola crenulate, on non-alcoholic hepatic steatosis, three mouse models with characteristics of NAFLD were used including high-fat diet (HFD-induced obesity (DIO mice, KKAy mice, and HFD combined with tetracycline stimulated Model-T mice. Hepatic lipid accumulation was determined via histopathological analysis and/or hepatic TG determination. The responses to insulin were evaluated by insulin tolerance test (ITT, glucose tolerance test (GTT, and hyperinsulinemic-euglycemic clamp, respectively. The pathways involved in hepatic lipid metabolism were observed via western-blot. Furthermore, the liver microcirculation was observed by inverted microscopy. The HPLC analysis indicated that the main components of Rho were flavan polymers. The results of histopathological analysis showed that Rho could ameliorate hepatic steatosis in DIO, KKAy, and Model-T hepatic steatosis mouse models, respectively. After Rho treatment in DIO mice, insulin resistance was improved with increasing glucose infusion rate (GIR in hyperinsulinemic-euglycemic clamp, and decreasing areas under the blood glucose-time curve (AUC in both ITT and GTT; the pathways involved in fatty acid uptake and de novo lipogenesis were both down-regulated, respectively. However, the pathways involved in beta-oxidation and VLDL-export on hepatic steatosis were not changed significantly. The liver microcirculation disturbances were also improved by Rho in DIO mice. These results suggest that Rho is a lead nature product for hepatic steatosis treatment. The mechanism is related to enhancing insulin sensitivity, suppressing fatty acid uptake and inhibiting de novo lipogenesis in liver.

  15. Expression loss and revivification of RhoB gene in ovary carcinoma carcinogenesis and development.

    Science.gov (United States)

    Liu, Yingwei; Song, Na; Ren, Kexing; Meng, Shenglan; Xie, Yao; Long, Qida; Chen, Xiancheng; Zhao, Xia

    2013-01-01

    RhoB, a member of small GTPases belonging to the Ras protein superfamily, might have a suppressive activity in cancer progression. Here, expression of RhoB gene was evaluated in human benign, borderline and malignant ovary tumors by immunostaining, with normal ovary tissue as control. Malignant tumors were assessed according to Federation Internationale de Gynecologie Obstetrique (FIGO) guidelines and classified in stage I-IV. Revivification of RhoB gene was investigated by analyzing the effect of histone deacetylase (HDAC) inhibitor trichostatin (TSA) and methyltransferase inhibitor 5-azacytidine (5-Aza) on ovarian cancer cells via RT-PCR and western blot. Apoptosis of ovary cancer cells was detected using flowcytometry and fluorescence microscopy. Subsequently, RhoB expression is detected in normal ovary epithelium, borderline tumors, and decreases significantly or lost in the majority of ovarian cancer specimen (Pcancer cells, but 5-Aza couldn't. Interference into Revivification of RhoB gene results in reduction of ovary carcinoma cell apoptosis. It is proposed that loss of RhoB expression occurs frequently in ovary carcinogenesis and progression and its expression could be regulated by histone deacetylation but not by promoter hypermethylation, which may serve as a prospective gene treatment target for the patients with ovarian malignancy not responding to standard therapies.

  16. Examination of the effect of the annealing cation on higher order structures containing guanine or isoguanine repeats

    Science.gov (United States)

    Pierce, Sarah E.; Wang, Junmei; Jayawickramarajah, Janarthanan; Hamilton, Andrew D.; Brodbelt, Jennifer S.

    2010-01-01

    Isoguanine (2-oxo-6-amino-guanine), a natural but non-standard base, exhibits unique self-association properties compared to its isomer, guanine, and results in formation of different higher order DNA structures. In this work, the higher order structures formed by oligonucleotides containing guanine repeats or isoguanine repeats after annealing in solutions containing various cations are evaluated by electrospray ionization mass spectrometry (ESI-MS) and circular dichroism (CD) spectroscopy. The guanine-containing strand (G9) consistently formed quadruplexes upon annealing, whereas the isoguanine strand (Ig9) formed both pentaplexes and quadruplexes depending on the annealing cation. Quadruplex formation with G9 showed some dependence on the identity of the cation present during annealing with high relative quadruplex formation detected with six of ten cations. Analogous annealing experiments with Ig9 resulted in complex formation with all ten cations, and the majority of the resulting complexes were pentaplexes. CD results indicated most of the original complexes survived the desalting process necessary for ESI-MS analysis. In addition, several complexes, especially the pentaplexes, were found to be capable of cation exchange with ammonium ions. Ab initio calculations were conducted for isoguanine tetrads and pentads coordinated with all ten cations to predict the most energetically stable structures of the complexes in the gas phase. The observed preference of forming quadruplexes versus pentaplexes as a function of the coordinated cation can be interpreted by the calculated reaction energies of both the tetrads and pentads in combination with the distortion energies of tetrads. PMID:19746468

  17. Circular dichroism spectroscopy of conformers of (guanine + adenine) repeat strands of DNA

    Czech Academy of Sciences Publication Activity Database

    Kejnovská, Iva; Kypr, Jaroslav; Vorlíčková, Michaela

    2003-01-01

    Roč. 15, č. 7 (2003), s. 584-592 ISSN 0899-0042 R&D Projects: GA AV ČR IAA4004201; GA ČR GA204/01/0561 Institutional research plan: CEZ:AV0Z5004920 Keywords : DNA conformation * (guanine + adenine) repeats * homoduplexes Subject RIV: BO - Biophysics Impact factor: 1.793, year: 2003

  18. Exclusive $\\rho^0$ Meson Photoproduction with a Leading Neutron at HERA

    CERN Document Server

    Andreev, V.; Begzsuren, K.; Belousov, A.; Bolz, A.; Boudry, V.; Brandt, G.; Brisson, V.; Britzger, D.; Buniatyan, A.; Bylinkin, A.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cerny, K.; Chekelian, V.; Contreras, J.G.; Cvach, J.; Dainton, J.B.; Daum, K.; Diaconu, C.; Dobre, M.; Dodonov, V.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Feltesse, J.; Ferencei, J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Haidt, D.; Henderson, R.C.W.; Hladký, J.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jung, H.; Kapichine, M.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kogler, R.; Kostka, P.; Kretzschmar, J.; Krüger, K.; Landon, M.P.J.; Lange, W.; Laycock, P.; Lebedev, A.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Malinovski, E.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Morozov, A.; Müller, K.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nowak, G.; Olsson, J.E.; Ozerov, D.; Pascaud, C.; Patel, G.D.; Perez, E.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Plačakytė, R.; Pokorny, B.; Polifka, R.; Povh, B.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rusakov, S.; Šálek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schöning, A.; Sefkow, F.; Shushkevich, S.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Straumann, U.; Sykora, T.; Thompson, P.D.; Traynor, D.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Vazdik, Y.; Wegener, D.; Wünsch, E.; Žáček, J.; Zhang, Z.; Žlebčík, R.; Zohrabyan, H.; Zomer, F.

    2016-01-23

    A first measurement is presented of exclusive photoproduction of $\\rho^0$ mesons associated with leading neutrons at HERA. The data were taken with the H1 detector in the years $2006$ and $2007$ at a centre-of-mass energy of $\\sqrt{s}=319$ GeV and correspond to an integrated luminosity of $1.16$ pb$^{-1}$. The $\\rho^0$ mesons with transverse momenta $p_T0.35$, are detected in the Forward Neutron Calorimeter. The phase space of the measurement is defined by the photon virtuality $Q^2 < 2$ GeV$^2$, the total energy of the photon-proton system $20 < W_{\\gamma p} < 100$ GeV and the polar angle of the leading neutron $\\theta_n < 0.75$ mrad. The cross section of the reaction $\\gamma p \\to \\rho^0 n \\pi^+$ is measured as a function of several variables. The data are interpreted in terms of a double peripheral process, involving pion exchange at the proton vertex followed by elastic photoproduction of a $\\rho^0$ meson on the virtual pion. In the framework of one-pion-exchange dominance the elastic cross se...

  19. Inclusive rho0 production in anti νsub(μ)p charged current interactions

    International Nuclear Information System (INIS)

    Graessler, H.; Lanske, D.; Schulte, R.; Barnham, K.W.J.; Clayton, E.F.; Hamisi, F.; Miller, D.B.; Mobayyen, M.M.; Corrigan, G.; Myatt, G.; Radojicic, D.; Saitta, B.; Wells, J.

    1986-01-01

    Inclusive rho 0 production has been studied in antineutrino-proton charged current interactions, using a sample of 3340 events obtained in BEBC filled with hydrogen and exposed to the CERN wideband antineutrino beam. An average multiplicity of 0.11+-0.02 rho 0 per event at a mean hadronic mass W of 4.2 GeV is observed. The rho 0 production characteristics are determined as functions of psub(T), chisub(F), and z. The ratio rho 0 /'π 0 ' is found to be low at small z values consistent with centrally produced pions coming mainly from resonances. At large z values this ratio approaches 0.45+-0.15 which is compatible with a vector/pseudoscalar meson direct production ratio of one. The results are compared with those obtained from neutrino-proton interactions in the same experimental set-up. (orig.)

  20. Structural landscape of the proline-rich domain of Sos1 nucleotide exchange factor.

    Science.gov (United States)

    McDonald, Caleb B; Bhat, Vikas; Kurouski, Dmitry; Mikles, David C; Deegan, Brian J; Seldeen, Kenneth L; Lednev, Igor K; Farooq, Amjad

    2013-01-01

    Despite its key role in mediating a plethora of cellular signaling cascades pertinent to health and disease, little is known about the structural landscape of the proline-rich (PR) domain of Sos1 guanine nucleotide exchange factor. Herein, using a battery of biophysical tools, we provide evidence that the PR domain of Sos1 is structurally disordered and adopts an extended random coil-like conformation in solution. Of particular interest is the observation that while chemical denaturation of PR domain results in the formation of a significant amount of polyproline II (PPII) helices, it has little or negligible effect on its overall size as measured by its hydrodynamic radius. Our data also show that the PR domain displays a highly dynamic conformational basin in agreement with the knowledge that the intrinsically unstructured proteins rapidly interconvert between an ensemble of conformations. Collectively, our study provides new insights into the conformational equilibrium of a key signaling molecule with important consequences on its physiological function. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Pan-pathway based interaction profiling of FDA-approved nucleoside and nucleobase analogs with enzymes of the human nucleotide metabolism.

    Science.gov (United States)

    Egeblad, Louise; Welin, Martin; Flodin, Susanne; Gräslund, Susanne; Wang, Liya; Balzarini, Jan; Eriksson, Staffan; Nordlund, Pär

    2012-01-01

    To identify interactions a nucleoside analog library (NAL) consisting of 45 FDA-approved nucleoside analogs was screened against 23 enzymes of the human nucleotide metabolism using a thermal shift assay. The method was validated with deoxycytidine kinase; eight interactions known from the literature were detected and five additional interactions were revealed after the addition of ATP, the second substrate. The NAL screening gave relatively few significant hits, supporting a low rate of "off target effects." However, unexpected ligands were identified for two catabolic enzymes guanine deaminase (GDA) and uridine phosphorylase 1 (UPP1). An acyclic guanosine prodrug analog, valaciclovir, was shown to stabilize GDA to the same degree as the natural substrate, guanine, with a ΔT(agg) around 7°C. Aciclovir, penciclovir, ganciclovir, thioguanine and mercaptopurine were also identified as ligands for GDA. The crystal structure of GDA with valaciclovir bound in the active site was determined, revealing the binding of the long unbranched chain of valaciclovir in the active site of the enzyme. Several ligands were identified for UPP1: vidarabine, an antiviral nucleoside analog, as well as trifluridine, idoxuridine, floxuridine, zidovudine, telbivudine, fluorouracil and thioguanine caused concentration-dependent stabilization of UPP1. A kinetic study of UPP1 with vidarabine revealed that vidarabine was a mixed-type competitive inhibitor with the natural substrate uridine. The unexpected ligands identified for UPP1 and GDA imply further metabolic consequences for these nucleoside analogs, which could also serve as a starting point for future drug design.

  2. NMR solution structure of an N2-guanine DNA adduct derived from the potent tumorigen dibenzo[a,l]pyrene: Intercalation from the minor groove with ruptured Watson-Crick base pairing

    Science.gov (United States)

    Tang, Yijin; Liu, Zhi; Ding, Shuang; Lin, Chin H.; Cai, Yuqin; Rodriguez, Fabian A.; Sayer, Jane M.; Jerina, Donald M.; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E.

    2012-01-01

    The most potent tumorigen identified among the polycyclic aromatic hydrocarbons (PAH) is the non-planar fjord region dibenzo[a,l]pyrene (DB[a,l]P). It is metabolically activated in vivo through the widely-studied diol epoxide (DE) pathway to form covalent adducts with DNA bases, predominantly guanine and adenine. The (+)-11S,12R,13R,14S DE enantiomer forms adducts via its C14-position with the exocyclic amino group of guanine. Here, we present the first NMR solution structure of a DB[a,l]P-derived adduct, the 14R (+)-trans-anti-DB[a,l]P–N2-dG (DB[a,l]P-dG) lesion in double-stranded DNA. In contrast to the stereochemically identical benzo[a]pyrene-derived N2-dG adduct (B[a]P-dG) in which the B[a]P rings reside in the B-DNA minor groove on the 3’-side of the modifed deoxyguanosine, in the DB[a,l]P-derived adduct the DB[a,l]P rings intercalate into the duplex on the 3’-side of the modified base from the sterically crowded minor groove. Watson-Crick base pairing of the modified guanine with the partner cytosine is broken, but these bases retain some stacking with the bulky DB[a,l]P ring system. This new theme in PAH DE - DNA adduct conformation differs from: (1) the classical intercalation motif where Watson-Crick base-pairing is intact at the lesion site, and (2) the base-displaced intercalation motif in which the damaged base and its partner are extruded from the helix . The structural considerations that lead to the intercalated conformation of the DB[a,l]P-dG lesion in contrast to the minor groove alignment of the B[a]P-dG adduct, and the implications of the DB[a,l]P-dG conformational motif for the recognition of such DNA lesions by the human nucleotide excision repair apparatus, are discussed. PMID:23121427

  3. Regulation of white and brown adipocyte differentiation by RhoGAP DLC1.

    Directory of Open Access Journals (Sweden)

    Choon Kiat Sim

    Full Text Available Adipose tissues constitute an important component of metabolism, the dysfunction of which can cause obesity and type II diabetes. Here we show that differentiation of white and brown adipocytes requires Deleted in Liver Cancer 1 (DLC1, a Rho GTPase Activating Protein (RhoGAP previously studied for its function in liver cancer. We identified Dlc1 as a super-enhancer associated gene in both white and brown adipocytes through analyzing the genome-wide binding profiles of PPARγ, the master regulator of adipogenesis. We further observed that Dlc1 expression increases during differentiation, and knockdown of Dlc1 by siRNA in white adipocytes reduces the formation of lipid droplets and the expression of fat marker genes. Moreover, knockdown of Dlc1 in brown adipocytes reduces expression of brown fat-specific genes and diminishes mitochondrial respiration. Dlc1-/- knockout mouse embryonic fibroblasts show a complete inability to differentiate into adipocytes, but this phenotype can be rescued by inhibitors of Rho-associated kinase (ROCK and filamentous actin (F-actin, suggesting the involvement of Rho pathway in DLC1-regulated adipocyte differentiation. Furthermore, PPARγ binds to the promoter of Dlc1 gene to regulate its expression during both white and brown adipocyte differentiation. These results identify DLC1 as an activator of white and brown adipocyte differentiation, and provide a molecular link between PPARγ and Rho pathways.

  4. Mycobacterium tuberculosis Rho is an NTPase with distinct kinetic properties and a novel RNA-binding subdomain.

    Directory of Open Access Journals (Sweden)

    Anirban Mitra

    Full Text Available Two mechanisms--factor independent and dependent termination--ensure the completion of RNA synthesis in eubacteria. Factor-dependent mechanism relies on the Rho protein to terminate transcription by interacting with RNA polymerase. Although well studied in Escherichia coli, the properties of the Rho homologs from most bacteria are not known. The rho gene is unusually large in genus Mycobacterium and other members of actinobacteria, having ∼150 additional residues towards the amino terminal end. We describe the distinct properties of Rho from Mycobacterium tuberculosis. It is an NTPase with a preference for purine nucleoside triphosphates with kinetic properties different from E. coli homolog and an ability to use various RNA substrates. The N-terminal subdomain of MtbRho can bind to RNA by itself, and appears to contribute to the interaction of the termination factor with RNAs. Furthermore, the interaction with RNA induces changes in conformation and oligomerization of MtbRho.

  5. Activation of G protein-coupled estrogen receptor 1 induces coronary artery relaxation via Epac/Rap1-mediated inhibition of RhoA/Rho kinase pathway in parallel with PKA.

    Directory of Open Access Journals (Sweden)

    Xuan Yu

    Full Text Available Previously, we reported that cAMP/PKA signaling is involved in GPER-mediated coronary relaxation by activating MLCP via inhibition of RhoA pathway. In the current study, we tested the hypothesis that activation of GPER induces coronary artery relaxation via inhibition of RhoA/Rho kinase pathway by cAMP downstream targets, exchange proteins directly activated by cAMP (Epac as well as PKA. Our results show that Epac inhibitors, brefeldin A (BFA, 50 μM, or ESI-09 (20 μM, or CE3F4 (100 μM, all partially inhibited porcine coronary artery relaxation response to the selective GPER agonist, G-1 (0.3-3 μM; while concurrent administration of BFA and PKI (5 μM, a PKA inhibitor, almost completely blocked the relaxation effect of G-1. The Epac specific agonist, 8-CPT-2Me-cAMP (007, 1-100 μM, induced a concentration-dependent relaxation response. Furthermore, the activity of Ras-related protein 1 (Rap1 was up regulated by G-1 (1 μM treatment of porcine coronary artery smooth muscle cells (CASMCs. Phosphorylation of vasodilator-stimulated phosphoprotein (p-VASP was elevated by G-1 (1 μM treatment, but not by 007 (50 μM; and the effect of G-1 on p-VASP was blocked by PKI, but not by ESI-09, an Epac antagonist. RhoA activity was similarly down regulated by G-1 and 007, whereas ESI-09 restored most of the reduced RhoA activity by G-1 treatment. Furthermore, G-1 decreased PGF2α-induced p-MYPT1, which was partially reversed with either ESI-09 or PKI; whereas, concurrent administration of ESI-09 and PKI totally prevented the inhibitory effect of G-1. The inhibitory effects of G-1 on p- MLC levels in CASMCs were mostly restored by either ESI-09 or PKI. These results demonstrate that activation of GPER induces coronary artery relaxation via concurrent inhibition of RhoA/Rho kinase by Epac/Rap1 and PKA. GPER could be a potential drug target for preventing and treating cardiovascular diseases.

  6. Human Mammary Epithelial Cell Transformation by Rho GTPase Through a Novel Mechanism

    Science.gov (United States)

    2009-08-01

    87: 635-44. 18. Burbelo P, Wellstein A, Pestell RG. Altered Rho GTPase signaling pathways in breast cancer cells. Breast Cancer Res Treat 2004; 84...Burbelo P, Wellstein A, Pestell RG. Altered Rho GTPase signaling pathways in breast cancer cells. Breast Cancer Res Treat 2004;84:43–8. 19. Band V

  7. Follicle-stimulating hormone receptor-mediated uptake of 45Ca2+ by cultured rat Sertoli cells does not require activation of cholera toxin- or pertussis toxin-sensitive guanine nucleotide binding proteins or adenylate cyclase

    International Nuclear Information System (INIS)

    Grasso, P.; Reichert, L.E. Jr.

    1990-01-01

    We have previously reported that FSH stimulates flux of 45Ca2+ into cultured Sertoli cells from immature rats via voltage-sensitive and voltage-independent calcium channels. In the present study, we show that this effect of FSH does not require cholera toxin (CT)- or pertussis toxin (PT)-sensitive guanine nucleotide binding (G) protein or activation of adenylate cyclase (AC). Significant stimulation of 45Ca2+ influx was observed within 1 min, and maximal response (3.2-fold over basal levels) was achieved within 2 min after exposure to FSH. FSH-stimulated elevations in cellular cAMP paralleled increases in 45Ca2+ uptake, suggesting a possible coupling of AC activation to 45Ca2+ influx. (Bu)2cAMP, however, was not able to enhance 45Ca2+ uptake over basal levels at a final concentration of 1000 microM, although a concentration-related increase in androstenedione conversion to estradiol was evident. Exposure of Sertoli cells to CT (10 ng/ml) consistently stimulated basal levels of androstenedione conversion to estradiol but had no effect on basal levels of 45Ca2+ uptake. Similarly, CT had no effect on FSH-induced 45Ca2+ uptake, but potentiated FSH-stimulated estradiol synthesis. PT (10 ng/ml) augmented basal and FSH-stimulated estradiol secretion without affecting 45Ca2+ influx. The adenosine analog N6-phenylisopropyladenosine, which binds to Gi-coupled adenosine receptors on Sertoli cells, inhibited FSH-stimulated androgen conversion to estradiol in a dose-related (1-1000 nM) manner, but FSH-stimulated 45Ca2+ influx remained unchanged. Our results show that in contrast to FSH-stimulated estradiol synthesis, the flux of 45Ca2+ into Sertoli cells in response to FSH is not mediated either directly or indirectly by CT- or PT-sensitive G protein, nor does it require activation of AC. Our data further suggest that the FSH receptor itself may function as a calcium channel

  8. Termination factor Rho: From the control of pervasive transcription to cell fate determination in Bacillus subtilis

    Science.gov (United States)

    Nicolas, Pierre; Repoila, Francis; Bardowski, Jacek; Aymerich, Stéphane

    2017-01-01

    In eukaryotes, RNA species originating from pervasive transcription are regulators of various cellular processes, from the expression of individual genes to the control of cellular development and oncogenesis. In prokaryotes, the function of pervasive transcription and its output on cell physiology is still unknown. Most bacteria possess termination factor Rho, which represses pervasive, mostly antisense, transcription. Here, we investigate the biological significance of Rho-controlled transcription in the Gram-positive model bacterium Bacillus subtilis. Rho inactivation strongly affected gene expression in B. subtilis, as assessed by transcriptome and proteome analysis of a rho–null mutant during exponential growth in rich medium. Subsequent physiological analyses demonstrated that a considerable part of Rho-controlled transcription is connected to balanced regulation of three mutually exclusive differentiation programs: cell motility, biofilm formation, and sporulation. In the absence of Rho, several up-regulated sense and antisense transcripts affect key structural and regulatory elements of these differentiation programs, thereby suppressing motility and biofilm formation and stimulating sporulation. We dissected how Rho is involved in the activity of the cell fate decision-making network, centered on the master regulator Spo0A. We also revealed a novel regulatory mechanism of Spo0A activation through Rho-dependent intragenic transcription termination of the protein kinase kinB gene. Altogether, our findings indicate that distinct Rho-controlled transcripts are functional and constitute a previously unknown built-in module for the control of cell differentiation in B. subtilis. In a broader context, our results highlight the recruitment of the termination factor Rho, for which the conserved biological role is probably to repress pervasive transcription, in highly integrated, bacterium-specific, regulatory networks. PMID:28723971

  9. The Human SLC25A33 and SLC25A36 Genes of Solute Carrier Family 25 Encode Two Mitochondrial Pyrimidine Nucleotide Transporters*

    Science.gov (United States)

    Di Noia, Maria Antonietta; Todisco, Simona; Cirigliano, Angela; Rinaldi, Teresa; Agrimi, Gennaro; Iacobazzi, Vito; Palmieri, Ferdinando

    2014-01-01

    The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport inorganic anions, amino acids, carboxylates, nucleotides, and coenzymes across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. Here two members of this family, SLC25A33 and SLC25A36, have been thoroughly characterized biochemically. These proteins were overexpressed in bacteria and reconstituted in phospholipid vesicles. Their transport properties and kinetic parameters demonstrate that SLC25A33 transports uracil, thymine, and cytosine (deoxy)nucleoside di- and triphosphates by an antiport mechanism and SLC25A36 cytosine and uracil (deoxy)nucleoside mono-, di-, and triphosphates by uniport and antiport. Both carriers also transported guanine but not adenine (deoxy)nucleotides. Transport catalyzed by both carriers was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. In confirmation of their identity (i) SLC25A33 and SLC25A36 were found to be targeted to mitochondria and (ii) the phenotypes of Saccharomyces cerevisiae cells lacking RIM2, the gene encoding the well characterized yeast mitochondrial pyrimidine nucleotide carrier, were overcome by expressing SLC25A33 or SLC25A36 in these cells. The main physiological role of SLC25A33 and SLC25A36 is to import/export pyrimidine nucleotides into and from mitochondria, i.e. to accomplish transport steps essential for mitochondrial DNA and RNA synthesis and breakdown. PMID:25320081

  10. GMP reverses the facilitatory effect of glutamate on inhibitory avoidance task in rats.

    Science.gov (United States)

    Rubin, M A; Jurach, A; da Costa Júnior, E M; Lima, T T; Jiménez-Bernal, R E; Begnini, J; Souza, D O; de Mello, C F

    1996-09-02

    Previous studies have demonstrated that post-training intrahippocampal glutamate administration improves inhibitory avoidance task performance in rats. Antagonism of the agonist actions of glutamate by guanine nucleotides has been shown at the molecular and behavioural level. In the present investigation we demonstrate that intrahippocampal co-administration of GMP (guanosine 5'-monophosphate) reverses the facilitatory effect of glutamate on the inhibitory avoidance learning paradigm and inhibits [3H]glutamate binding in hippocampal synaptic plasma membranes. These results suggest that guanine nucleotides may modulate glutamate actions.

  11. A preliminary study of the T1rho values of normal knee cartilage using 3 T-MRI

    International Nuclear Information System (INIS)

    Goto, Hajimu; Iwama, Yuki; Fujii, Masahiko; Aoyama, Nobukazu; Kubo, Seiji; Kuroda, Ryosuke; Ohno, Yoshiharu; Sugimura, Kazuro

    2012-01-01

    Introduction: To investigate the degree of the effect of aging and weight-bearing on T1rho values in normal cartilage. Materials and methods: Thirty-two asymptomatic patients were examined using 3.0-T magnetic resonance imaging (MRI) to determine knee cartilage T1rho values and T2 values. The femoral and tibial cartilage was divided into weight-bearing (WB-Rs) and less-weight-bearing (LWB-Rs) regions. Single regression analysis was used to assess the relationship between cartilage T1rho values and age and between T2 values and age. Analysis of variance and post hoc-testing were used to evaluate differences in WB-Rs and LWB-Rs cartilage T1rho values and T2 values. Multiple linear regression modeling was performed to predict cartilage T1rho values. Results: Cartilage T1rho values correlated positively with age for all cartilage regions tested (p < 0.001). There were no significant correlations between cartilage T2 values and age. In both the medial femoral and tibial cartilage, T1rho values were significantly higher in WB-Rs than in LWB-Rs (p < 0.05). There were no significant differences in T2 values between WB-Rs and LWB-Rs. Multiple linear regression analysis showed that both age and weight-bearing were significant predictors of increased medial knee cartilage T1rho values (p < 0.001). Conclusions: Aging and the degree of weight-bearing correlate with the change in cartilage T1rho values. Based on multiple regression modeling, aging may be a more important factor than weight-bearing for cartilage T1rho values.

  12. Polymerase recognition of 2-thio-iso-guanine·5-methyl-4-pyrimidinone (iGs·P)--A new DD/AA base pair.

    Science.gov (United States)

    Lee, Dong-Kye; Switzer, Christopher

    2016-02-15

    Polymerase specificity is reported for a previously unknown base pair with a non-standard DD/AA hydrogen bonding pattern: 2-thio-iso-guanine·5-methyl-4-pyrimidinone. Our findings suggest that atomic substitution may provide a solution for low fidelity previously associated with enzymatic copying of iso-guanine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Role of the strange quark in the rho(770) meson

    Energy Technology Data Exchange (ETDEWEB)

    Molina Peralta, Raquel [George Washington Univ., Washington, DC (United States); Guo, Dehua [George Washington Univ., Washington, DC (United States); Hu, B. [George Washington Univ., Washington, DC (United States); Alexandru, Andrei; Doering, Michael [George Washington Univ., Washington, DC (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-03-01

    Recently, the GWU lattice group has evaluated high-precision phase-shift data for $\\pi\\pi$ scattering in the $I = 1$, $J = 1$ channel. Unitary Chiral Perturbation Theory describes these data well around the resonance region and for different pion masses. Moreover, it allows to extrapolate to the physical point and estimate the effect of the missing $K\\bar{K}$ channel in the two-flavor lattice calculation. The absence of the strange quark in the lattice data leads to a lower $\\rho$ mass, and the analysis with U$\\chi$PT shows that the $K \\bar{K}$ channel indeed pushes the $\\pi\\pi$-scattering phase shift upward, having a surprisingly large effect on the $\\rho$-mass. The inelasticity is shown to be compatible with the experimental data. The analysis is then extended to all available two-flavor lattice simulations and similar mass shifts are observed. Chiral extrapolations of $N_f = 2 + 1$ lattice simulations for the $\\rho(770)$ are also reported.

  14. Differential regulation of the Rac1 GTPase-activating protein (GAP) BCR during oxygen/glucose deprivation in hippocampal and cortical neurons.

    Science.gov (United States)

    Smith, Katharine R; Rajgor, Dipen; Hanley, Jonathan G

    2017-12-08

    Brain ischemia causes oxygen and glucose deprivation (OGD) in neurons, triggering a cascade of events leading to synaptic accumulation of glutamate. Excessive activation of glutamate receptors causes excitotoxicity and delayed cell death in vulnerable neurons. Following global cerebral ischemia, hippocampal CA1 pyramidal neurons are more vulnerable to injury than their cortical counterparts, but the mechanisms that underlie this difference are unclear. Signaling via Rho-family small GTPases, their upstream guanine nucleotide exchange factors, and GTPase-activating proteins (GAPs) is differentially dysregulated in response to OGD/ischemia in hippocampal and cortical neurons. Increased Rac1 activity caused by OGD/ischemia contributes to neuronal death in hippocampal neurons via diverse effects on NADPH oxidase activity and dendritic spine morphology. The Rac1 guanine nucleotide exchange factor Tiam1 mediates an OGD-induced increase in Rac1 activity in hippocampal neurons; however, the identity of an antagonistic GAP remains elusive. Here we show that the Rac1 GAP breakpoint cluster region (BCR) associates with NMDA receptors (NMDARs) along with Tiam1 and that this protein complex is more abundant in hippocampal compared with cortical neurons. Although total BCR is similar in the two neuronal types, BCR is more active in hippocampal compared with cortical neurons. OGD causes an NMDAR- and Ca 2+ -permeable AMPAR-dependent deactivation of BCR in hippocampal but not cortical neurons. BCR knockdown occludes OGD-induced Rac1 activation in hippocampal neurons. Furthermore, disrupting the Tiam1-NMDAR interaction with a fragment of Tiam1 blocks OGD-induced Tiam1 activation but has no effect on the deactivation of BCR. This work identifies BCR as a critical player in Rac1 regulation during OGD in hippocampal neurons. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Allergic sensitization enhances the contribution of Rho-kinase to airway smooth muscle contraction

    NARCIS (Netherlands)

    Schaafsma, D.; Gosens, Reinout; Bos, I.S.T.; Meurs, Herman; Zaagsma, Hans; Nelemans, Herman

    2004-01-01

    1 Repeated allergen challenge has been shown to increase the role of Rho-kinase in airway smooth muscle (ASM) contraction. We considered the possibility that active allergic sensitization by itself, that is, without subsequent allergen exposure, could be sufficient to enhance Rho-kinase-mediated ASM

  16. Simultaneous protection of organic p- and n-channels in complementary inverter from aging and bias-stress by DNA-base guanine/Al2O3 double layer.

    Science.gov (United States)

    Lee, Junyeong; Hwang, Hyuncheol; Min, Sung-Wook; Shin, Jae Min; Kim, Jin Sung; Jeon, Pyo Jin; Lee, Hee Sung; Im, Seongil

    2015-01-28

    Although organic field-effect transistors (OFETs) have various advantages of lightweight, low-cost, mechanical flexibility, and nowadays even higher mobility than amorphous Si-based FET, stability issue under bias and ambient condition critically hinder its practical application. One of the most detrimental effects on organic layer comes from penetrated atmospheric species such as oxygen and water. To solve such degradation problems, several molecular engineering tactics are introduced: forming a kinetic barrier, lowering the level of molecule orbitals, and increasing the band gap. However, direct passivation of organic channels, the most promising strategy, has not been reported as often as other methods. Here, we resolved the ambient stability issues of p-type (heptazole)/or n-type (PTCDI-C13) OFETs and their bias-stability issues at once, using DNA-base small molecule guanine (C5H5N5O)/Al2O3 bilayer. The guanine protects the organic channels as buffer/and H getter layer between the channels and capping Al2O3, whereas the oxide capping resists ambient molecules. As a result, both p-type and n-type OFETs are simultaneously protected from gate-bias stress and 30 days-long ambient aging, finally demonstrating a highly stable, high-gain complementary-type logic inverter.

  17. Rho family GTP binding proteins are involved in the regulatory volume decrease process in NIH3T3 mouse fibroblasts

    DEFF Research Database (Denmark)

    Pedersen, Stine F; Beisner, Kristine H; Willumsen, Berthe M

    2002-01-01

    The role of Rho GTPases in the regulatory volume decrease (RVD) process following osmotic cell swelling is controversial and has so far only been investigated for the swelling-activated Cl- efflux. We investigated the involvement of RhoA in the RVD process in NIH3T3 mouse fibroblasts, using wild......-type cells and three clones expressing constitutively active RhoA (RhoAV14). RhoAV14 expression resulted in an up to fourfold increase in the rate of RVD, measured by large-angle light scattering. The increase in RVD rate correlated with RhoAV14 expression. RVD in wild-type cells was unaffected by the Rho...

  18. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence*

    Science.gov (United States)

    Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L.; Embrey, Kevin J.; Golovanov, Alexander P.

    2016-01-01

    The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly 15N-labeled Ras as well as [13C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions. PMID:26565026

  19. Upregulated STAT3 and RhoA signaling in colorectal cancer (CRC) regulate the invasion and migration of CRC cells.

    Science.gov (United States)

    Zhang, G-Y; Yang, W-H; Chen, Z

    2016-05-01

    We aimed to reveal the expression and activation of signal transducers and activators of transcription 3 (STAT3) and RhoA/Rho-associated coiled-coil forming kinase 1 (ROCK1) signaling in CRC tissues, and to investigate the regulatory role of STAT3 and RhoA signaling in the invasion and migration of colorectal cancer cells. We examined the expression of STAT3, RhoA and ROCK1 in CRC tissues with real-time PCR and Western blotting methods. And then we examined the interaction between STAT3 and RhoA/ROCK1 signaling in CRC HT-29 cells with gain-of-function and loss-of-function strategies. In addition, we determined the regulation by STAT3 and RhoA/ROCK1 on the invasion and migration of CRC HT-29 cells. Our study demonstrated a significant upregulation of RhoA and ROCK1 expression and STAT3-Y705 phosphorylation in 32 CRC specimens, compared to the 17 normal CRC tissues. Further study demonstrated there was a coordination between STAT3 and RhoA/Rock signaling in the HT-29 cells. Moreover, STAT3 knockdown or RhoA knockdown significantly repressed the migration and invasion in HT-29 cells and vice versa. STAT3 and RhoA signaling regulate the invasion and migration of CRC cells, implying the orchestrated and oncogenic roles of STAT3 and RhoA/ROCK1 signaling in CRC.

  20. Lovastatin-induced RhoA modulation and its effect on senescence in prostate cancer cells

    International Nuclear Information System (INIS)

    Lee, Jeeyun; Lee, Inkyoung; Park, Chaehwa; Kang, Won Ki

    2006-01-01

    Lovastatin inhibits a 3-hydroxy 3-methylglutaryl coenzyme A reductase and prevents the synthesis of cholesterol precursors, such as farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP), responsible for important cell signaling in cell proliferation and migration. Recently, the anti-cancer effect of lovastatin has been suggested in various tumor types. In this study, we showed that a low dose lovastatin induced senescence and G1 cell cycle arrest in human prostate cancer cells. Addition of GGPP or mevalonate, but not FPP, prevented the lovastatin-induced G1 phase cell cycle arrest and cell senescence. We found that constitutively active RhoA (caRhoA) reversed lovastatin-induced senescence in caRhoA-transfected PC-3 cells. Thus, we postulate that modulation of RhoA may be critical in lovastatin-induced senescence in PC-3 cells

  1. Inclusive rho0 production in anti pp interactions at 22.4 GeV/c

    International Nuclear Information System (INIS)

    Ermilova, D.I.; Filippova, V.V.; Samojlov, V.V.

    1978-01-01

    Inclusive rho 0 production has been investigated in anti pp reactions at 22.4 GeV/c. The total cross section for rho 0 production is 8.1+-2.0 mb. The average number of rhosup(0') s per event is 0.17+-0.03. The average transverse momentum, as obtained by extrapolation of a simple exponential to the psub(T)sup(2) distribution, is 0.52+-0.12 GeV. The Feynman x and center of mass rapidity distributions show rho 0 to be ''centrally'' produced

  2. Loss of RhoB expression enhances the myelodysplastic phenotype of mammalian diaphanous-related Formin mDia1 knockout mice.

    Directory of Open Access Journals (Sweden)

    Aaron D DeWard

    Full Text Available Myelodysplastic syndrome (MDS is characterized by ineffective hematopoiesis and hyperplastic bone marrow. Complete loss or interstitial deletions of the long arm of chromosome 5 occur frequently in MDS. One candidate tumor suppressor on 5q is the mammalian Diaphanous (mDia-related formin mDia1, encoded by DIAPH1 (5q31.3. mDia-family formins act as effectors for Rho-family small GTP-binding proteins including RhoB, which has also been shown to possess tumor suppressor activity. Mice lacking the Drf1 gene that encodes mDia1 develop age-dependent myelodysplastic features. We crossed mDia1 and RhoB knockout mice to test whether the additional loss of RhoB expression would compound the myelodysplastic phenotype. Drf1(-/-RhoB(-/- mice are fertile and develop normally. Relative to age-matched Drf1(-/-RhoB(+/- mice, the age of myelodysplasia onset was earlier in Drf1(-/-RhoB(-/- animals--including abnormally shaped erythrocytes, splenomegaly, and extramedullary hematopoiesis. In addition, we observed a statistically significant increase in the number of activated monocytes/macrophages in both the spleen and bone marrow of Drf1(-/-RhoB(-/- mice relative to Drf1(-/-RhoB(+/- mice. These data suggest a role for RhoB-regulated mDia1 in the regulation of hematopoietic progenitor cells.

  3. Guanine as a hygienic index for allergological relevant mite infestation in mattress dust

    NARCIS (Netherlands)

    Bronswijk, van J.E.M.H.

    1986-01-01

    Since guanine is not only an essential constituent of vital nucleic acids, but also the main end product of nitrogenous waste excretion in arachnids, it is a potential candidate for a hygienic index for mite activity in house dust. The public health significance of these mites is based on their

  4. NUCLEOTIDES IN INFANT FEEDING

    Directory of Open Access Journals (Sweden)

    L.G. Mamonova

    2007-01-01

    Full Text Available The article reviews the application of nucleotides-metabolites, playing a key role in many biological processes, for the infant feeding. The researcher provides the date on the nucleotides in the women's milk according to the lactation stages. She also analyzes the foreign experience in feeding newborns with nucleotides-containing milk formulas. The article gives a comparison of nucleotides in the adapted formulas represented in the domestic market of the given products.Key words: children, feeding, nucleotides.

  5. RhoE interferes with Rb inactivation and regulates the proliferation and survival of the U87 human glioblastoma cell line

    International Nuclear Information System (INIS)

    Poch, Enric; Minambres, Rebeca; Mocholi, Enric; Ivorra, Carmen; Perez-Arago, Amparo; Guerri, Consuelo; Perez-Roger, Ignacio; Guasch, Rosa M.

    2007-01-01

    Rho GTPases are important regulators of actin cytoskeleton, but they are also involved in cell proliferation, transformation and oncogenesis. One of this proteins, RhoE, inhibits cell proliferation, however the mechanism that regulates this effect remains poorly understood. Therefore, we undertook the present study to determine the role of RhoE in the regulation of cell proliferation. For this purpose we generated an adenovirus system to overexpress RhoE in U87 glioblastoma cells. Our results show that RhoE disrupts actin cytoskeleton organization and inhibits U87 glioblastoma cell proliferation. Importantly, RhoE expressing cells show a reduction in Rb phosphorylation and in cyclin D1 expression. Furthermore, RhoE inhibits ERK activation following serum stimulation of quiescent cells. Based in these findings, we propose that RhoE inhibits ERK activation, thereby decreasing cyclin D1 expression and leading to a reduction in Rb inactivation, and that this mechanism is involved in the RhoE-induced cell growth inhibition. Moreover, we also demonstrate that RhoE induces apoptosis in U87 cells and also in colon carcinoma and melanoma cells. These results indicate that RhoE plays an important role in the regulation of cell proliferation and survival, and suggest that this protein may be considered as an oncosupressor since it is capable to induce apoptosis in several tumor cell lines

  6. Nuclear magnetic resonance solution structure of an N(2)-guanine DNA adduct derived from the potent tumorigen dibenzo[a,l]pyrene: intercalation from the minor groove with ruptured Watson-Crick base pairing.

    Science.gov (United States)

    Tang, Yijin; Liu, Zhi; Ding, Shuang; Lin, Chin H; Cai, Yuqin; Rodriguez, Fabian A; Sayer, Jane M; Jerina, Donald M; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E

    2012-12-04

    The most potent tumorigen identified among the polycyclic aromatic hydrocarbons (PAH) is the nonplanar fjord region dibenzo[a,l]pyrene (DB[a,l]P). It is metabolically activated in vivo through the widely studied diol epoxide (DE) pathway to form covalent adducts with DNA bases, predominantly guanine and adenine. The (+)-11S,12R,13R,14S DE enantiomer forms adducts via its C14 position with the exocyclic amino group of guanine. Here, we present the first nuclear magnetic resonance solution structure of a DB[a,l]P-derived adduct, the 14R-(+)-trans-anti-DB[a,l]P-N(2)-dG (DB[a,l]P-dG) lesion in double-stranded DNA. In contrast to the stereochemically identical benzo[a]pyrene-derived N(2)-dG adduct (B[a]P-dG) in which the B[a]P rings reside in the B-DNA minor groove on the 3'-side of the modifed deoxyguanosine, in the DB[a,l]P-derived adduct the DB[a,l]P rings intercalate into the duplex on the 3'-side of the modified base from the sterically crowded minor groove. Watson-Crick base pairing of the modified guanine with the partner cytosine is broken, but these bases retain some stacking with the bulky DB[a,l]P ring system. This new theme in PAH DE-DNA adduct conformation differs from (1) the classical intercalation motif in which Watson-Crick base pairing is intact at the lesion site and (2) the base-displaced intercalation motif in which the damaged base and its partner are extruded from the helix. The structural considerations that lead to the intercalated conformation of the DB[a,l]P-dG lesion in contrast to the minor groove alignment of the B[a]P-dG adduct, and the implications of the DB[a,l]P-dG conformational motif for the recognition of such DNA lesions by the human nucleotide excision repair apparatus, are discussed.

  7. Nucleotide Metabolism

    DEFF Research Database (Denmark)

    Martinussen, Jan; Willemoës, M.; Kilstrup, Mogens

    2011-01-01

    Metabolic pathways are connected through their utilization of nucleotides as supplier of energy, allosteric effectors, and their role in activation of intermediates. Therefore, any attempt to exploit a given living organism in a biotechnological process will have an impact on nucleotide metabolis...

  8. Foci of cyclin A2 interact with actin and RhoA in mitosis.

    Science.gov (United States)

    Loukil, Abdelhalim; Izard, Fanny; Georgieva, Mariya; Mashayekhan, Shaereh; Blanchard, Jean-Marie; Parmeggiani, Andrea; Peter, Marion

    2016-06-09

    Cyclin A2 is a key player in the regulation of the cell cycle. Its degradation in mid-mitosis depends primarily on the ubiquitin-proteasome system (UPS), while autophagy also contributes. However, a fraction of cyclin A2 persists beyond metaphase. In this work, we focus on cyclin A2-rich foci detected in mitosis by high resolution imaging and analyse their movements. We demonstrate that cyclin A2 interacts with actin and RhoA during mitosis, and that cyclin A2 depletion induces a dramatic decrease in active RhoA in mitosis. Our data suggest cyclin A2 participation in RhoA activation in late mitosis.

  9. Rho0 Photoproduction in Ultra-Peripheral Relativistic Heavy Ion Collisions with STAR

    Energy Technology Data Exchange (ETDEWEB)

    STAR Coll

    2007-12-20

    Photoproduction reactions occur when the electromagnetic field of a relativistic heavy ion interacts with another heavy ion. The STAR collaboration presents a measurement of {rho}{sup 0} and direct {pi}{sup +}{pi}{sup -} photoproduction in ultra-peripheral relativistic heavy ion collisions at {radical}s{sub NN} = 200 GeV. We observe both exclusive photoproduction and photoproduction accompanied by mutual Coulomb excitation. We find a coherent cross-section of {sigma}(AuAu {yields} Au*Au* {rho}{sup 0}) = 530 {+-} 19 (stat.) {+-} 57 (syst.) mb, in accord with theoretical calculations based on a Glauber approach, but considerably below the predictions of a color dipole model. The {rho}{sup 0} transverse momentum spectrum (p{sub T}{sup 2}) is fit by a double exponential curve including both coherent and incoherent coupling to the target nucleus; we find {sigma}{sub inc}/{sigma}{sub coh} = 0.29 {+-} 0.03 (stat.) {+-} 0.08 (syst.). The ratio of direct {pi}{sup +}{pi}{sup -} production is comparable to that observed in {gamma}p collisions at HERA, and appears to be independent of photon energy. Finally, the measured {rho}{sup 0} spin helicity matrix elements agree within errors with the expected s-channel helicity conservation.

  10. Exclusive {rho}{sup 0} production in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2007-08-15

    Exclusive {rho}{sup 0} electroproduction at HERA has been studied with the ZEUS detector using 120 pb{sup -1} of integrated luminosity collected during 1996-2000. The analysis was carried out in the kinematic range of photon virtuality 2rho}{sup 0}p cross section and the distribution of the squared-four-momentum transfer to the proton. The helicity analysis of the decay-matrix elements of the {rho}{sup 0} was used to study the ratio of the {gamma}{sup *}p cross section for longitudinal and transverse photon as a function of Q{sup 2} and W. Finally, an effective Pomeron trajectory was extracted. The results are compared to various theoretical predictions. (orig.)

  11. A Point Mutation in p190A RhoGAP Affects Ciliogenesis and Leads to Glomerulocystic Kidney Defects.

    Directory of Open Access Journals (Sweden)

    Katherine Stewart

    2016-02-01

    Full Text Available Rho family GTPases act as molecular switches regulating actin cytoskeleton dynamics. Attenuation of their signaling capacity is provided by GTPase-activating proteins (GAPs, including p190A, that promote the intrinsic GTPase activity of Rho proteins. In the current study we have performed a small-scale ENU mutagenesis screen and identified a novel loss of function allele of the p190A gene Arhgap35, which introduces a Leu1396 to Gln substitution in the GAP domain. This results in decreased GAP activity for the prototypical Rho-family members, RhoA and Rac1, likely due to disrupted ordering of the Rho binding surface. Consequently, Arhgap35-deficient animals exhibit hypoplastic and glomerulocystic kidneys. Investigation into the cystic phenotype shows that p190A is required for appropriate primary cilium formation in renal nephrons. P190A specifically localizes to the base of the cilia to permit axoneme elongation, which requires a functional GAP domain. Pharmacological manipulations further reveal that inhibition of either Rho kinase (ROCK or F-actin polymerization is able to rescue the ciliogenesis defects observed upon loss of p190A activity. We propose a model in which p190A acts as a modulator of Rho GTPases in a localized area around the cilia to permit the dynamic actin rearrangement required for cilia elongation. Together, our results establish an unexpected link between Rho GTPase regulation, ciliogenesis and glomerulocystic kidney disease.

  12. Expression and cytoprotective activity of the small GTPase RhoB induced by the Escherichia coli cytotoxic necrotizing factor 1

    DEFF Research Database (Denmark)

    Huelsenbeck, Stefanie C; Roggenkamp, Dennis; May, Martin

    2013-01-01

    B expression, based on the inactivation of Rho/Ras proteins. In this study, we report on a long lasting expression of RhoB in cultured cells upon activation of Rho proteins by the cytotoxic necrotizing factor 1 (CNF1) from Escherichia coli. The observations of this study highlight a new pathway involving Rac1...... without any signs of cell death. In conclusion, the cytoprotective RhoB response is not only evoked by bacterial protein toxins inactivating Rho/Ras proteins but also by the Rac1-activating toxin CNF1....

  13. Rho GTPases, their post-translational modifications, disease-associated mutations and pharmacological inhibitors.

    Science.gov (United States)

    Olson, Michael F

    2018-05-04

    The 20 members of the Rho GTPase family are key regulators of a wide-variety of biological activities. In response to activation, they signal via downstream effector proteins to induce dynamic alterations in the organization of the actomyosin cytoskeleton. In this review, post-translational modifications, mechanisms of dysregulation identified in human pathological conditions, and the ways that Rho GTPases might be targeted for chemotherapy will be discussed.

  14. On $rho$-dilations of commuting operators

    Czech Academy of Sciences Publication Activity Database

    Müller, Vladimír

    2017-01-01

    Roč. 78, č. 1 (2017), s. 3-20 ISSN 0379-4024 R&D Projects: GA ČR(CZ) GA14-07880S Institutional support: RVO:67985840 Keywords : regular unitary dilation * rho-dilation Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.524, year: 2016 http://www.mathjournals.org/jot/2017-078-001/2017-078-001-001. html

  15. Downstream components of RhoA required for signal pathway of superoxide formation during phagocytosis of serum opsonized zymosans in macrophages.

    Science.gov (United States)

    Kim, Jun Sub; Kim, Jae Gyu; Jeon, Chan Young; Won, Ha Young; Moon, Mi Young; Seo, Ji Yeon; Kim, Jong Il; Kim, Jaebong; Lee, Jae Yong; Choi, Soo Young; Park, Jinseu; Yoon Park, Jung Han; Ha, Kwon Soo; Kim, Pyeung Hyeun; Park, Jae Bong

    2005-12-31

    Rac1 and Rac2 are essential for the control of oxidative burst catalyzed by NADPH oxidase. It was also documented that Rho is associated with the superoxide burst reaction during phagocytosis of serum- (SOZ) and IgG-opsonized zymosan particles (IOZ). In this study, we attempted to reveal the signal pathway components in the superoxide formation regulated by Rho GTPase. Tat-C3 blocked superoxide production, suggesting that RhoA is essentially involved in superoxide formation during phagocytosis of SOZ. Conversely SOZ activated both RhoA and Rac1/2. Inhibition of RhoA-activated kinase (ROCK), an important downstream effector of RhoA, by Y27632 and myosin light chain kinase (MLCK) by ML-7 abrogated superoxide production by SOZ. Extracellular signaling-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) were activated during phagocytosis of SOZ, and Tat-C3 and SB203580 reduced ERK1/2 and p38 MAPK activation, suggesting that RhoA and p38 MAPK may be upstream regulators of ERK1/2. Inhibition of ERK1/2, p38 MAPK, phosphatidyl inositol 3-kinase did not block translocation of RhoA to membranes, suggesting that RhoA is upstream to these kinases. Inhibition of RhoA by Tat-C3 blocked phosphorylation of p47(PHOX). Taken together, RhoA, ROCK, p38MAPK, ERK1/2, and p47(PHOX) may be subsequently activated, leading to activation of NADPH oxidase to produce superoxide.

  16. Infralimbic cortex Rho-kinase inhibition causes antidepressant-like activity in rats.

    Science.gov (United States)

    Inan, Salim Yalcin; Soner, Burak Cem; Sahin, Ayse Saide

    2015-03-03

    Depression is one of the most common psychiatric disorders in the world; however, its mechanisms remain unclear. Recently, a new signal-transduction pathway, namely Rho/Rho-kinase signalling, has been suggested to be involved in diverse cellular events in the central nervous system; such as epilepsy, anxiety-related behaviors, regulation of dendritic and axonal morphology, antinociception, subarachnoid haemorrhage, spinal cord injury and amyotrophic lateral sclerosis. However there is no evidence showing the involvement of Rho-kinase pathway in depression. In addition, the infralimbic cortex, rodent equivalent to subgenual cingulate cortex has been shown to be responsible for emotional responses. Thus, in the present study, intracranial guide cannulae were stereotaxically implanted bilaterally into the infralimbic cortex, and the effects of repeated microinjections of a Rho-kinase (ROCK) inhibitor Y-27632 (10 nmol) were investigated in rats. Y-27632 significantly decreased immobility time and increased swimming and climbing behaviors when compared to fluoxetine (10 μg) and saline groups in the forced swim test. In addition, Y-27632 treatment did not affect spontaneous locomotor activity and forelimb use in the open-field and cylinder tests respectively; but it enhanced limb placing accuracy in the ladder rung walking test. Our results suggest that Y-27632 could be a potentially active antidepressant agent. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. A proteomic approach for comprehensively screening substrates of protein kinases such as Rho-kinase.

    Directory of Open Access Journals (Sweden)

    Mutsuki Amano

    Full Text Available BACKGROUND: Protein kinases are major components of signal transduction pathways in multiple cellular processes. Kinases directly interact with and phosphorylate downstream substrates, thus modulating their functions. Despite the importance of identifying substrates in order to more fully understand the signaling network of respective kinases, efficient methods to search for substrates remain poorly explored. METHODOLOGY/PRINCIPAL FINDINGS: We combined mass spectrometry and affinity column chromatography of the catalytic domain of protein kinases to screen potential substrates. Using the active catalytic fragment of Rho-kinase/ROCK/ROK as the model bait, we obtained about 300 interacting proteins from the rat brain cytosol fraction, which included the proteins previously reported as Rho-kinase substrates. Several novel interacting proteins, including doublecortin, were phosphorylated by Rho-kinase both in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE: This method would enable identification of novel specific substrates for kinases such as Rho-kinase with high sensitivity.

  18. T1rho MRI of menisci and cartilage in patients with osteoarthritis at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ligong, E-mail: ligong.wang@nyumc.org [Quantitative Multinuclear Musculoskeletal Imaging Group (QMMIG), Center for Biomedical Imaging, Department of Radiology, New York University Langone Medical Center, New York, NY (United States); Chang, Gregory, E-mail: gregory.chang@nyumc.org [Quantitative Multinuclear Musculoskeletal Imaging Group (QMMIG), Center for Biomedical Imaging, Department of Radiology, New York University Langone Medical Center, New York, NY (United States); Xu, Jian, E-mail: jian.xu.sz@siemens.com [Siemens HealthCare, New York, NY (United States); Vieira, Renata L.R., E-mail: Renata.Vieira@nyumc.org [Quantitative Multinuclear Musculoskeletal Imaging Group (QMMIG), Center for Biomedical Imaging, Department of Radiology, New York University Langone Medical Center, New York, NY (United States); Krasnokutsky, Svetlana, E-mail: Svetlana.Krasnokutsky@nyumc.org [Division of Rheumatology, New York University Langone Medical Center, New York, NY (United States); Abramson, Steven, E-mail: StevenB.Abramson@nyumc.org [Division of Rheumatology, New York University Langone Medical Center, New York, NY (United States); Regatte, Ravinder R., E-mail: Ravinder.Regatte@nyumc.org [Quantitative Multinuclear Musculoskeletal Imaging Group (QMMIG), Center for Biomedical Imaging, Department of Radiology, New York University Langone Medical Center, New York, NY (United States)

    2012-09-15

    Objective: To assess and compare subregional and whole T1rho values (median ± interquartile range) of femorotibial cartilage and menisci in patients with doubtful (Kellgren–Lawrence (KL) grade 1) to severe (KL4) osteoarthritis (OA) at 3T. Materials and methods: 30 subjects with varying degrees of OA (KL1–4, 13 females, 17 males, mean age ± SD = 63.9 ± 13.1 years) were evaluated on a 3T MR scanner using a spin-lock-based 3D GRE sequence for T1rho mapping. Clinical proton density (PD)-weighted fast spin echo (FSE) images in sagittal (without fat saturation), axial, and coronal (fat-saturated) planes were acquired for cartilage and meniscus Whole-organ MR imaging score (WORMS) grading. Wilcoxon rank sum test was performed to determine whether there were any statistically significant differences between subregional and whole T1rho values of femorotibial cartilage and menisci in subjects with doubtful to severe OA. Results: Lateral (72 ± 10 ms, median ± interquartile range) and medial (65 ± 10 ms) femoral anterior cartilage subregions in moderate–severe OA subjects had significantly higher T1rho values (P < 0.05) than cartilage subregions and whole femorotibial cartilage in doubtful–minimal OA subjects. There were statistically significant differences in meniscus T1rho values of the medial posterior subregion of subjects with moderate–severe OA and T1rho values of all subregions and the whole meniscus in subjects with doubtful–minimal OA. When evaluated based on WORMS, statistically significant differences were identified in T1rho values between the lateral femoral anterior cartilage subregion in patients with WORMS5–6 (advanced degeneration) and whole femorotibial cartilage and all cartilage subregions in patients with WORMS0–1 (normal). Conclusion: T1rho values are higher in specific meniscus and femorotibial cartilage subregions. These findings suggest that regional damage of both femorotibial hyaline cartilage and menisci may be associated with

  19. Diabetes and overexpression of proNGF cause retinal neurodegeneration via activation of RhoA pathway.

    Directory of Open Access Journals (Sweden)

    Mohammed M H Al-Gayyar

    Full Text Available Our previous studies showed positive correlation between accumulation of proNGF, activation of RhoA and neuronal death in diabetic models. Here, we examined the neuroprotective effects of selective inhibition of RhoA kinase in the diabetic rat retina and in a model that stably overexpressed the cleavage-resistance proNGF plasmid in the retina. Male Sprague-Dawley rats were rendered diabetic using streptozotocin or stably express cleavage-resistant proNGF plasmid. The neuroprotective effects of the intravitreal injection of RhoA kinase inhibitor Y27632 were examined in vivo. Effects of proNGF were examined in freshly isolated primary retinal ganglion cell (RGC cultures and RGC-5 cell line. Retinal neurodegeneration was assessed by counting TUNEL-positive and Brn-3a positive retinal ganglion cells. Expression of proNGF, p75(NTR, cleaved-PARP, caspase-3 and p38MAPK/JNK were examined by Western-blot. Activation of RhoA was assessed by pull-down assay and G-LISA. Diabetes and overexpression of proNGF resulted in retinal neurodegeneration as indicated by 9- and 6-fold increase in TUNEL-positive cells, respectively. In vitro, proNGF induced 5-fold cell death in RGC-5 cell line, and it induced >10-fold cell death in primary RGC cultures. These effects were associated with significant upregulation of p75(NTR and activation of RhoA. While proNGF induced TNF-α expression in vivo, it selectively activated RhoA in primary RGC cultures and RGC-5 cell line. Inhibiting RhoA kinase with Y27632 significantly reduced diabetes- and proNGF-induced activation of proapoptotic p38MAPK/JNK, expression of cleaved-PARP and caspase-3 and prevented retinal neurodegeneration in vivo and in vitro. Taken together, these results provide compelling evidence for a causal role of proNGF in diabetes-induced retinal neurodegeneration through enhancing p75(NTR expression and direct activation of RhoA and p38MAPK/JNK apoptotic pathways.

  20. T1rho MRI of menisci and cartilage in patients with osteoarthritis at 3T

    International Nuclear Information System (INIS)

    Wang, Ligong; Chang, Gregory; Xu, Jian; Vieira, Renata L.R.; Krasnokutsky, Svetlana; Abramson, Steven; Regatte, Ravinder R.

    2012-01-01

    Objective: To assess and compare subregional and whole T1rho values (median ± interquartile range) of femorotibial cartilage and menisci in patients with doubtful (Kellgren–Lawrence (KL) grade 1) to severe (KL4) osteoarthritis (OA) at 3T. Materials and methods: 30 subjects with varying degrees of OA (KL1–4, 13 females, 17 males, mean age ± SD = 63.9 ± 13.1 years) were evaluated on a 3T MR scanner using a spin-lock-based 3D GRE sequence for T1rho mapping. Clinical proton density (PD)-weighted fast spin echo (FSE) images in sagittal (without fat saturation), axial, and coronal (fat-saturated) planes were acquired for cartilage and meniscus Whole-organ MR imaging score (WORMS) grading. Wilcoxon rank sum test was performed to determine whether there were any statistically significant differences between subregional and whole T1rho values of femorotibial cartilage and menisci in subjects with doubtful to severe OA. Results: Lateral (72 ± 10 ms, median ± interquartile range) and medial (65 ± 10 ms) femoral anterior cartilage subregions in moderate–severe OA subjects had significantly higher T1rho values (P < 0.05) than cartilage subregions and whole femorotibial cartilage in doubtful–minimal OA subjects. There were statistically significant differences in meniscus T1rho values of the medial posterior subregion of subjects with moderate–severe OA and T1rho values of all subregions and the whole meniscus in subjects with doubtful–minimal OA. When evaluated based on WORMS, statistically significant differences were identified in T1rho values between the lateral femoral anterior cartilage subregion in patients with WORMS5–6 (advanced degeneration) and whole femorotibial cartilage and all cartilage subregions in patients with WORMS0–1 (normal). Conclusion: T1rho values are higher in specific meniscus and femorotibial cartilage subregions. These findings suggest that regional damage of both femorotibial hyaline cartilage and menisci may be associated with

  1. Lysophosphatidic acid-induced RhoA signaling and prolonged macrophage infiltration worsens fibrosis and fatty infiltration following rotator cuff tears.

    Science.gov (United States)

    Davies, Michael R; Lee, Lawrence; Feeley, Brian T; Kim, Hubert T; Liu, Xuhui

    2017-07-01

    Previous studies have suggested that macrophage-mediated chronic inflammation is involved in the development of rotator cuff muscle atrophy and degeneration following massive tendon tears. Increased RhoA signaling has been reported in chronic muscle degeneration, such as muscular dystrophy. However, the role of RhoA signaling in macrophage infiltration and rotator muscle degeneration remains unknown. Using a previously established rat model of massive rotator cuff tears, we found RhoA signaling is upregulated in rotator cuff muscle following a massive tendon-nerve injury. This increase in RhoA expression is greatly potentiated by the administration of a potent RhoA activator, lysophosphatidic acid (LPA), and is accompanied by increased TNFα and TGF-β1 expression in rotator cuff muscle. Boosting RhoA signaling with LPA significantly worsened rotator cuff muscle atrophy, fibrosis, and fatty infiltration, accompanied with massive monocytic infiltration of rotator cuff muscles. Co-staining of RhoA and the tissue macrophage marker CD68 showed that CD68+ tissue macrophages are the dominant cell source of increased RhoA signaling in rotator cuff muscles after tendon tears. Taken together, our findings suggest that LPA-mediated RhoA signaling in injured muscle worsens the outcomes of atrophy, fibrosis, and fatty infiltration by increasing macrophage infiltraion in rotator cuff muscle. Clinically, inhibiting RhoA signaling may represent a future direction for developing new treatments to improve muscle quality following massive rotator cuff tears. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1539-1547, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. The human SLC25A33 and SLC25A36 genes of solute carrier family 25 encode two mitochondrial pyrimidine nucleotide transporters.

    Science.gov (United States)

    Di Noia, Maria Antonietta; Todisco, Simona; Cirigliano, Angela; Rinaldi, Teresa; Agrimi, Gennaro; Iacobazzi, Vito; Palmieri, Ferdinando

    2014-11-28

    The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport inorganic anions, amino acids, carboxylates, nucleotides, and coenzymes across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. Here two members of this family, SLC25A33 and SLC25A36, have been thoroughly characterized biochemically. These proteins were overexpressed in bacteria and reconstituted in phospholipid vesicles. Their transport properties and kinetic parameters demonstrate that SLC25A33 transports uracil, thymine, and cytosine (deoxy)nucleoside di- and triphosphates by an antiport mechanism and SLC25A36 cytosine and uracil (deoxy)nucleoside mono-, di-, and triphosphates by uniport and antiport. Both carriers also transported guanine but not adenine (deoxy)nucleotides. Transport catalyzed by both carriers was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. In confirmation of their identity (i) SLC25A33 and SLC25A36 were found to be targeted to mitochondria and (ii) the phenotypes of Saccharomyces cerevisiae cells lacking RIM2, the gene encoding the well characterized yeast mitochondrial pyrimidine nucleotide carrier, were overcome by expressing SLC25A33 or SLC25A36 in these cells. The main physiological role of SLC25A33 and SLC25A36 is to import/export pyrimidine nucleotides into and from mitochondria, i.e. to accomplish transport steps essential for mitochondrial DNA and RNA synthesis and breakdown. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Rho-Kinase/ROCK as a Potential Drug Target for Vitreoretinal Diseases

    Directory of Open Access Journals (Sweden)

    Muneo Yamaguchi

    2017-01-01

    Full Text Available Rho-associated kinase (Rho-kinase/ROCK was originally identified as an effector protein of the G protein Rho. Its involvement in various diseases, particularly cancer and cardiovascular disease, has been elucidated, and ROCK inhibitors have already been applied clinically for cerebral vasospasm and glaucoma. Vitreoretinal diseases including diabetic retinopathy, age-related macular degeneration, and proliferative vitreoretinoapthy are still a major cause of blindness. While anti-VEGF therapy has recently been widely used for vitreoretinal disorders due to its efficacy, attention has been drawn to new unmet needs. The importance of ROCK in pathological vitreoretinal conditions has also been elucidated and is attracting attention as a potential therapeutic target. ROCK is involved in angiogenesis and hyperpermeability and also in the pathogenesis of various pathologies such as inflammation and fibrosis. It has been expected that ROCK inhibitors will become new molecular target drugs for vitreoretinal diseases. This review summarizes the recent progress on the mechanisms of action of ROCK and their applications in disease treatment.

  4. Inclusive photoproduction of rho and ω in the photon energy range 20 to 70 GeV

    International Nuclear Information System (INIS)

    Atkinson, M.; Laberrigue, J.; Levy, J.M.; La Vaissiere, C. de; Yiou, T.P.; Lassalle, J.C.; Patrick, G.N.; Storr, K.M.; Axon, T.J.; Barberis, D.; Brodbeck, T.J.; Brookes, G.R.; Bunn, J.J.; Bussey, P.J.; Clegg, A.B.; Dainton, J.B.; Davenport, M.; Dickinson, B.; Diekmann, B.; Donnachie, A.; Ellison, R.J.; Flower, P.; Hughes-Jones, R.E.; Hutton, J.S.; Ibbotson, M.; Jakob, H.P.; Jung, M.; Kemp, M.A.R.; Kumar, B.R.; Lafferty, G.D.; Lane, J.B.; Liebenau, V.; McClatchey, R.H.; Mercer, D.; Morris, J.A.G.; Morris, J.V.; Newton, D.; Paterson, C.; Paul, E.; Raine, C.; Reidenbach, M.; Rotscheidt, H.; Schloesser, A.; Sharp, P.H.; Skillicorn, I.O.; Smith, K.M.; Thompson, R.J.; Waite, A.P.; Worsell, M.F.

    1984-01-01

    Inclusive production of rho 0 , ω, and rhosup(+-) at low transverse momentum has been measured in γp collisions with photons of energy 20 to 70 GeV. The vector mesons have been studied as functions of the Feynman variable chisub(F), varying between -0.2 and 0.95, i.e. excluding the 'elastic' peaks of rho 0 and ω photoproduction. For chisub(F) 0 ) approx.= sigma (ω) approx.= 1/2[sigma(p + ) + sigma(p - )]. For chisub(F) > 0.6, it is observed that sigma(p 0 ) > sigma(ω) >=1/2[sigma(rho + )+sigma(rho - )] and the differences increase with increasing chisub(F). Over the rhosub(F) range -0.2 0 and ω production. (orig.)

  5. The rhodopsin-transducin complex houses two distinct rhodopsin molecules.

    Science.gov (United States)

    Jastrzebska, Beata; Ringler, Philippe; Palczewski, Krzysztof; Engel, Andreas

    2013-05-01

    Upon illumination the visual receptor rhodopsin (Rho) transitions to the activated form Rho(∗), which binds the heterotrimeric G protein, transducin (Gt) causing GDP to GTP exchange and Gt dissociation. Using succinylated concanavalin A (sConA) as a probe, we visualized native Rho dimers solubilized in 1mM n-dodecyl-β-d-maltoside (DDM) and Rho monomers in 5mM DDM. By nucleotide depletion and affinity chromatography together with crosslinking and size exclusion chromatography, we trapped and purified nucleotide-free Rho(∗)·Gt and sConA-Rho(∗)·Gt complexes kept in solution by either DDM or lauryl-maltose-neopentyl-glycol (LMNG). The 3 D envelope calculated from projections of negatively stained Rho(∗)·Gt-LMNG complexes accommodated two Rho molecules, one Gt heterotrimer and a detergent belt. Visualization of triple sConA-Rho(∗)·Gt complexes unequivocally demonstrated a pentameric assembly of the Rho(∗)·Gt complex in which the photoactivated Rho(∗) dimer serves as a platform for binding the Gt heterotrimer. Importantly, individual monomers of the Rho(∗) dimer in the heteropentameric complex exhibited different capabilities for regeneration with either 11-cis or 9-cis-retinal. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Potent and Selective Peptide-based Inhibition of the G Protein Gαq*

    Science.gov (United States)

    Charpentier, Thomas H.; Waldo, Gary L.; Lowery-Gionta, Emily G.; Krajewski, Krzysztof; Strahl, Brian D.; Kash, Thomas L.; Harden, T. Kendall; Sondek, John

    2016-01-01

    In contrast to G protein-coupled receptors, for which chemical and peptidic inhibitors have been extensively explored, few compounds are available that directly modulate heterotrimeric G proteins. Active Gαq binds its two major classes of effectors, the phospholipase C (PLC)-β isozymes and Rho guanine nucleotide exchange factors (RhoGEFs) related to Trio, in a strikingly similar fashion: a continuous helix-turn-helix of the effectors engages Gαq within its canonical binding site consisting of a groove formed between switch II and helix α3. This information was exploited to synthesize peptides that bound active Gαq in vitro with affinities similar to full-length effectors and directly competed with effectors for engagement of Gαq. A representative peptide was specific for active Gαq because it did not bind inactive Gαq or other classes of active Gα subunits and did not inhibit the activation of PLC-β3 by Gβ1γ2. In contrast, the peptide robustly prevented activation of PLC-β3 or p63RhoGEF by Gαq; it also prevented G protein-coupled receptor-promoted neuronal depolarization downstream of Gαq in the mouse prefrontal cortex. Moreover, a genetically encoded form of this peptide flanked by fluorescent proteins inhibited Gαq-dependent activation of PLC-β3 at least as effectively as a dominant-negative form of full-length PLC-β3. These attributes suggest that related, cell-penetrating peptides should effectively inhibit active Gαq in cells and that these and genetically encoded sequences may find application as molecular probes, drug leads, and biosensors to monitor the spatiotemporal activation of Gαq in cells. PMID:27742837

  7. First-Principles Vibrational Electron Energy Loss Spectroscopy of β -Guanine

    Science.gov (United States)

    Radtke, G.; Taverna, D.; Lazzeri, M.; Balan, E.

    2017-07-01

    A general approach to model vibrational electron energy loss spectra obtained using an electron beam positioned away from the specimen is presented. The energy-loss probability of the fast electron is evaluated using first-principles quantum mechanical calculations (density functional theory) of the dielectric response of the specimen. The validity of the method is assessed using recently measured anhydrous β -guanine, an important molecular solid used by animals to produce structural colors. The good agreement between theory and experiments lays the basis for a quantitative interpretation of this spectroscopy in complex systems.

  8. Effect O6-guanine alkylation on DNA flexibility studied by comparative molecular dynamics simulations.

    Science.gov (United States)

    Kara, Mahmut; Drsata, Tomas; Lankas, Filip; Zacharias, Martin

    2015-01-01

    Alkylation of guanine at the O6 atom is a highly mutagenic DNA lesion because it alters the coding specificity of the base causing G:C to A:T transversion mutations. Specific DNA repair enzymes, e.g. O(6)-alkylguanin-DNA-Transferases (AGT), recognize and repair such damage after looping out the damaged base to transfer it into the enzyme active site. The exact mechanism how the repair enzyme identifies a damaged site within a large surplus of undamaged DNA is not fully understood. The O(6)-alkylation of guanine may change the deformability of DNA which may facilitate the initial binding of a repair enzyme at the damaged site. In order to characterize the effect of O(6)-methyl-guanine (O(6)-MeG) containing base pairs on the DNA deformability extensive comparative molecular dynamics (MD) simulations on duplex DNA with central G:C, O(6)-MeG:C or O(6)-MeG:T base pairs were performed. The simulations indicate significant differences in the helical deformability due to the presence of O(6)-MeG compared to regular undamaged DNA. This includes enhanced base pair opening, shear and stagger motions and alterations in the backbone fine structure caused in part by transient rupture of the base pairing at the damaged site and transient insertion of water molecules. It is likely that the increased opening motions of O(6)-MeG:C or O(6)-MeG:T base pairs play a decisive role for the induced fit recognition or for the looping out of the damaged base by repair enzymes. © 2014 Wiley Periodicals, Inc.

  9. Measurement of the spin density matrix for the $\\rho^0$, $K^{*0}(892)$ and $\\phi$ produced in $Z^0$ Decays

    CERN Document Server

    Abreu, P; Adye, T; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andersson, P; Andreazza, A; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbi, M S; Barbiellini, Guido; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Bärring, O; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bizouard, M A; Bloch, D; Blume, M; Bonesini, M; Bonivento, W; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cao, F; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Cindro, V; Collins, P; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djannati, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Durand, J D; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Feindt, Michael; Fenyuk, A; Ferrari, P; Ferrer, A; Fichet, S; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gerdyukov, L N; Gokieli, R; Golob, B; Gonçalves, P; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Knoblauch, D; Kokkinias, P; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krstic, J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Mahon, J R; Maio, A; Malmgren, T G M; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Medbo, J; Meroni, C; Meyer, S; Meyer, W T; Myagkov, A; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Münich, K; Mulders, M; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Nikolenko, M; Niss, P; Nomerotski, A; Normand, Ainsley; Nygren, A; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pain, R; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Podobnik, T; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Roos, L; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sannino, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Serbelloni, L; Shellard, R C; Sheridan, A; Siegrist, P; Silvestre, R; Simonetto, F; Sissakian, A N; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sokolov, A; Solovyanov, O; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stapnes, Steinar; Stavitski, I; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Tegenfeldt, F; Terranova, F; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; van Apeldoorn, G W; van Dam, P; Van Eldik, J; Van Lysebetten, A; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Wlodek, T; Yi, J; Yip, K; Yushchenko, O P; Zach, F; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G

    1997-01-01

    The spin density matrix elements for the $\\rho^0$, K$^{*0}(892)$ and $\\phi$ produced in hadronic Z$^0$ decays are measured in the DELPHI detector. There is no evidence for spin alignment of the K$^{*0}(892)$ and $\\phi$ in the region $x_p \\leq 0.3$ ($x_p = p/p_{beam}$), where $\\rho_{00} = 0.33 \\pm 0.05$ and $\\rho_{00} = 0.30 \\pm 0.04$, respectively. In the fragmentation region, $x_p \\geq 0.4$, there is some indication for spin alignment of the $\\rho^0$ and K$^{*0}(892)$, since $\\rho_{00} = 0.43 \\pm 0.05$ and $\\rho_{00} = 0.46 \\pm 0.08$, respectively. These values are compared with those found in meson-induced hadronic reactions. For the $\\phi$, $\\rho_{00} = 0.30 \\pm 0.04$ for $x_p \\geq 0.4$ and $0.55 \\pm 0.10$ for $x_p \\geq 0.7$. The off-diagonal spin density matrix element $\\rho_{1-1}$ is consistent with zero in all cases.

  10. Follicle-stimulating hormone receptor-mediated uptake of sup 45 Ca sup 2+ by cultured rat Sertoli cells does not require activation of cholera toxin- or pertussis toxin-sensitive guanine nucleotide binding proteins or adenylate cyclase

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, P.; Reichert, L.E. Jr. (Albany Medical College, NY (USA))

    1990-08-01

    We have previously reported that FSH stimulates flux of 45Ca2+ into cultured Sertoli cells from immature rats via voltage-sensitive and voltage-independent calcium channels. In the present study, we show that this effect of FSH does not require cholera toxin (CT)- or pertussis toxin (PT)-sensitive guanine nucleotide binding (G) protein or activation of adenylate cyclase (AC). Significant stimulation of 45Ca2+ influx was observed within 1 min, and maximal response (3.2-fold over basal levels) was achieved within 2 min after exposure to FSH. FSH-stimulated elevations in cellular cAMP paralleled increases in 45Ca2+ uptake, suggesting a possible coupling of AC activation to 45Ca2+ influx. (Bu)2cAMP, however, was not able to enhance 45Ca2+ uptake over basal levels at a final concentration of 1000 microM, although a concentration-related increase in androstenedione conversion to estradiol was evident. Exposure of Sertoli cells to CT (10 ng/ml) consistently stimulated basal levels of androstenedione conversion to estradiol but had no effect on basal levels of 45Ca2+ uptake. Similarly, CT had no effect on FSH-induced 45Ca2+ uptake, but potentiated FSH-stimulated estradiol synthesis. PT (10 ng/ml) augmented basal and FSH-stimulated estradiol secretion without affecting 45Ca2+ influx. The adenosine analog N6-phenylisopropyladenosine, which binds to Gi-coupled adenosine receptors on Sertoli cells, inhibited FSH-stimulated androgen conversion to estradiol in a dose-related (1-1000 nM) manner, but FSH-stimulated 45Ca2+ influx remained unchanged. Our results show that in contrast to FSH-stimulated estradiol synthesis, the flux of 45Ca2+ into Sertoli cells in response to FSH is not mediated either directly or indirectly by CT- or PT-sensitive G protein, nor does it require activation of AC. Our data further suggest that the FSH receptor itself may function as a calcium channel.

  11. Measurement of Branching Fractions and CP-Violating Asymmetries in B -> rho+/-h-/+

    CERN Document Server

    Höcker, A

    2003-01-01

    We present measurements of branching fractions and CP-violating asymmetries in B sup 0 -> rho sup+- pi sup+- and B sup 0 -> rho sup - K sup + decays. The results are obtained from a data sample of 88.9 x 10 sup 6 UPSILON(4S) -> B(bar B) decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. From a time-dependent maximum likelihood fit we measure the charge-averaged branching fractions BETA(B sup 0 -> rho sup+- pi sup+-) = (22.6 +- 1.8 (stat) +- 2.2 (syst)) x 10 sup - sup 6 and BETA(B sup 0 -> rho sup - K sup +) = (7.3 sub - sub 1 sub . sub 2 sup + sup 1 sup . sup 3 +- 1.3) x 10 sup - sup 6; and the CP-violating charge asymmetries A sub C sub P suprho suppi = -0.18 +- 0.08 +- 0.03 and A sub C sub P suprho sup K = 0.28 +- 0.17 +- 0.08; the direct CP violation parameter C subrho subpi = 0.36 +- 0.18 +- 0.04 and the mixing-induced CP violation parameter S subrho subpi = 0.19 +- 0.24 +- 0.03; and the dilution parameters DELTA C subrho subpi = 0.28 sub - sub 0 sub . sub 1 sub 9 ...

  12. PHASE-RESOLVED TIMING ANALYSIS OF GRS 1915+105 IN ITS {rho} STATE

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shu-Ping; Wang, Na; Ding, Guo-Qiang [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, 150 Science 1-Street, Urumqi, Xinjiang 830011 (China); Qu, Jin-Lu, E-mail: yanshup@xao.ac.cn, E-mail: na.wang@xao.ac.cn [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049 (China)

    2013-04-10

    We made a phase-resolved timing analysis of GRS 1915+105 in its {rho} state and obtained detailed {rho} cycle evolutions of the frequency, amplitude, and coherence of the low-frequency quasi-periodic oscillation (LFQPO). We combined our timing results with the spectral study by Neilsen et al. to perform an elaborate comparison analysis. Our analyses show that the LFQPO frequency does not scale with the inner disk radius, but it is related to the spectral index, indicating a possible correlation between the LFQPO and the corona. The LFQPO amplitude spectrum and other results are naturally explained by tying the LFQPO to the corona. The similarities of the spectra of variability parameters between the LFQPOs from {rho} state and those from more steady states indicate that the LFQPOs of GRS 1915+105 in very different states seem to share the same origin.

  13. Amphetamine activates Rho GTPase signaling to mediate dopamine transporter internalization and acute behavioral effects of amphetamine

    Science.gov (United States)

    Wheeler, David S.; Underhill, Suzanne M.; Stolz, Donna B.; Murdoch, Geoffrey H.; Thiels, Edda; Romero, Guillermo; Amara, Susan G.

    2015-01-01

    Acute amphetamine (AMPH) exposure elevates extracellular dopamine through a variety of mechanisms that include inhibition of dopamine reuptake, depletion of vesicular stores, and facilitation of dopamine efflux across the plasma membrane. Recent work has shown that the DAT substrate AMPH, unlike cocaine and other nontransported blockers, can also stimulate endocytosis of the plasma membrane dopamine transporter (DAT). Here, we show that when AMPH enters the cytoplasm it rapidly stimulates DAT internalization through a dynamin-dependent, clathrin-independent process. This effect, which can be observed in transfected cells, cultured dopamine neurons, and midbrain slices, is mediated by activation of the small GTPase RhoA. Inhibition of RhoA activity with C3 exotoxin or a dominant-negative RhoA blocks AMPH-induced DAT internalization. These actions depend on AMPH entry into the cell and are blocked by the DAT inhibitor cocaine. AMPH also stimulates cAMP accumulation and PKA-dependent inactivation of RhoA, thus providing a mechanism whereby PKA- and RhoA-dependent signaling pathways can interact to regulate the timing and robustness of AMPH’s effects on DAT internalization. Consistent with this model, the activation of D1/D5 receptors that couple to PKA in dopamine neurons antagonizes RhoA activation, DAT internalization, and hyperlocomotion observed in mice after AMPH treatment. These observations support the existence of an unanticipated intracellular target that mediates the effects of AMPH on RhoA and cAMP signaling and suggest new pathways to target to disrupt AMPH action. PMID:26553986

  14. RhoA/Rho kinase signaling regulates transforming growth factor-β1-induced chondrogenesis and actin organization of synovium-derived mesenchymal stem cells through interaction with the Smad pathway.

    Science.gov (United States)

    Xu, Ting; Wu, Mengjie; Feng, Jianying; Lin, Xinping; Gu, Zhiyuan

    2012-11-01

    Recent studies have suggested that synovium-derived mesenchymal stem cells (SMSCs) may be promising candidates for tissue engineering and play an important role in cartilage regeneration. However, the mechanisms of SMSC chondrogenesis remain to be identified and characterized. The aim of this study was to evaluate the activation of the RhoA/Rho kinase (ROCK) pathway, as well as the manner by which it may contribute to chondrogenesis and the actin cytoskeletal organization of rat temporomandibular SMSCs in response to transforming growth factor-β1 (TGF-β1). Primary isolated SMSCs were treated with TGF-β1, and their actin organization was examined by fluorescein isothiocyanate-phalloidin staining. The specific biochemical inhibitors, C3 transferase, Y27632 and SB431542, were employed to evaluate the function of RhoA/ROCK and Smads. The effect of C3 transferase and Y27632 on the gene expression of chondrocyte-specific markers was evaluated by quantitative real-time polymerase chain reaction. To examine the effect of Y27632 on Smad2/3 phosphorylation induced by TGF-β1, western blot analysis was also performed. The stimulation of TGF-β1 in SMSCs resulted in the activation of the RhoA/ROCK pathway and concomitantly induced cytoskeletal reorganization, which was specifically blocked by C3 transferase and Y27632. The TGF-β-induced gene expression of Sox9, type I collagen, type II collagen and aggrecan was also inhibited by both C3 transferase and Y27632, at different levels. Y27632 treatment reduced the phosphorylation of Smad2/3 in a concentration-dependent manner. These results demonstrate the RhoA/ROCK activation regulates chondrocyte-specific gene transcription and cytoskeletal organization induced by TGF-β1 by interacting with the Smad pathway. This may have significant implications for the successful utilization of SMSCs as a cell source for articular cartilage tissue engineering.

  15. RhoA, Rac1 and Cdc42 differentially regulate aSMA and collagen I expression in mesenchymal stem cells.

    Science.gov (United States)

    Ge, Jianfeng; Burnier, Laurent; Adamopoulou, Maria; Kwa, Mei Qi; Schaks, Matthias; Rottner, Klemens; Brakebusch, Cord

    2018-04-26

    Mesenchymal stem cells (MSC) are suggested to be important progenitors of myofibroblasts in fibrosis. To understand the role of Rho GTPase signaling in TGFβ-induced myofibroblast differentiation of MSC, we generated a novel MSC line and descendants of it lacking functional Rho GTPases and Rho GTPase signaling components. Unexpectedly, our data revealed that Rho GTPase signaling is required for TGFβ-induced expression of αSMA, but not of collagen I α1 (col1a1). While loss of RhoA and Cdc42 reduced αSMA expression, ablation of the Rac1 gene had the opposite effect. Although actin polymerization and MRTFa were crucial for TGFβ-induced αSMA expression, neither Arp2/3 dependent actin polymerization nor cofilin dependent severing and depolymerization of F-actin were required. Instead, F-actin levels were dependent on cell contraction and TGFβ-induced actin polymerisation correlated with increased cell contraction mediated by RhoA and Cdc42. Finally, we observed impaired collagen I secretion in MSC lacking RhoA or Cdc42. These data give novel molecular insights into the role of Rho GTPases in TGFβ signaling and have implications for our understanding of MSC function in fibrosis. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Cholesterol modulates the volume-regulated anion current in Ehrlich-Lettre ascites cells via effects on Rho and F-actin

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjaer; Hougaard, Charlotte; Hoffmann, Else K

    2006-01-01

    swollen cells, this reduction was prevented by cholesterol depletion, which also increased isotonic Rho activity. Thrombin, which stimulates Rho and causes actin polymerization, potentiated VRAC in modestly swollen cells. VRAC activity was unaffected by inclusion of a water-soluble PtdIns(4,5)P(2......) analogue or a PtdIns(4,5)P(2)-blocking antibody in the pipette, or neomycin treatment to sequester PtdIns(4,5)P(2). It is suggested that in ELA cells, F-actin and Rho-Rho kinase modulate VRAC magnitude and activation rate, respectively, and that cholesterol depletion potentiates VRAC at least in part......The mechanisms controlling the volume-regulated anion current (VRAC) are incompletely elucidated. Here, we investigate the modulation of VRAC by cellular cholesterol and the potential involvement of F-actin, Rho, Rho kinase, and phosphatidylinositol-(4,5)-bisphosphate [PtdIns(4,5)P(2...

  17. Primary overproduction of urate caused by a partial deficiency of hypoxanthine-guanine phosphoribosyl transferase

    International Nuclear Information System (INIS)

    Cassidy, M.; Gregory, M.C.; Harley, E.H.

    1980-01-01

    Inherited enzyme deficiencies are found in a small proportion of patients with gout who produce an excess of uric acid. The clinical, biochemical and therapeutic aspects of a case of hyperuricaemia caused by an atypical mutant hypoxanthine-guanine phophoribosyl transferase are presented. Urate overproduction was moderate and controlled by allopurinol therapy

  18. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence.

    Science.gov (United States)

    Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L; Embrey, Kevin J; Golovanov, Alexander P

    2016-01-22

    The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly (15)N-labeled Ras as well as [(13)C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. RhoA signaling modulates cyclin D1 expression in human lung fibroblasts; implications for idiopathic pulmonary fibrosis

    Directory of Open Access Journals (Sweden)

    Hoban PR

    2006-06-01

    Full Text Available Abstract Background Idiopathic Pulmonary Fibrosis (IPF is a debilitating disease characterized by exaggerated extracellular matrix deposition and aggressive lung structural remodeling. Disease pathogenesis is driven by fibroblastic foci formation, consequent on growth factor overexpression and myofibroblast proliferation. We have previously shown that both CTGF overexpression and myofibroblast formation in IPF cell lines are dependent on RhoA signaling. As RhoA-mediated regulation is also involved in cell cycle progression, we hypothesise that this pathway is key to lung fibroblast turnover through modulation of cyclin D1 kinetic expression. Methods Cyclin D1 expression was compared in primary IPF patient-derived fibroblasts and equivalent normal control cells. Quantitative real time PCR was employed to examine relative expression levels of cyclin D1 mRNA; protein expression was confirmed by western blotting. Effects of Rho signaling were investigated using transient transfection of constitutively active and dominant negative RhoA constructs as well as pharmacological inhibitors. Cellular proliferation of lung fibroblasts was determined by BrdU incorporation ELISA. To further explore RhoA regulation of cyclin D1 in lung fibroblasts and associated cell cycle progression, an established Rho inhibitor, Simvastatin, was incorporated in our studies. Results Cyclin D1 expression was upregulated in IPF compared to normal lung fibroblasts under exponential growth conditions (p Conclusion These findings report for the first time that cyclin D1 expression is deregulated in IPF through a RhoA dependent mechanism that influences lung fibroblast proliferation. This potentially unravels new molecular targets for future anti-IPF strategies; accordingly, Simvastatin inhibition of Rho-mediated cyclin D1 expression in IPF fibroblasts merits further exploitation.

  20. Nanoswitches based on DNA base pairs: why adenine-thymine is less suitable than guanine-cytosine

    NARCIS (Netherlands)

    Fonseca Guerra, C.; van der Wijst, T.; Bickelhaupt, F.M.

    2006-01-01

    Substituted Watson-Crick guanine-cytosine (GC) base pairs were recently shown to yield robust three-state nanoswitches. Here, we address the question: Can such supramolecular switches also be based on Watson-Crick adenine-thymine (AT) base pairs? We have theoretically analyzed AT pairs in which

  1. Involvement of Rho-kinase in cold ischemia-reperfusion injury after liver transplantation in rats.

    Science.gov (United States)

    Shiotani, Satoko; Shimada, Mitsuo; Suehiro, Taketoshi; Soejima, Yuji; Yosizumi, Tomoharu; Shimokawa, Hiroaki; Maehara, Yoshihiko

    2004-08-15

    Reperfusion of ischemic tissues is known to cause the generation of reactive oxygen species (ROS) with resultant tissue damage. However, the sources of ROS in reperfused tissues are not fully characterized. We hypothesized that the small GTPase Rho and its target effector Rho-kinase/ROK/ROCK are involved in the oxidative burst in reperfused tissue with resultant reperfusion injury. In an in vivo rat model of liver transplantation using cold ischemia for 12 hr followed by reperfusion, a specific Rho-kinase inhibitor, fasudil (30 mg/kg), was administered orally 1 hr before the transplantation. Fasudil suppressed the ischemia-reperfusion (I/R)-induced generation of ROS after reperfusion (P<0.01) and also suppressed the release of inflammatory cytokines (tumor necrosis factor-alpha, interleukin-1beta) 3 hr after reperfusion, resulting in a significant reduction of I/R-induced hepatocellular injury (P<0.05), necrosis, apoptosis (P<0.01), and neutrophil infiltration (P<0.0001) 12 hr after reperfusion. All animals receiving a graft without fasudil died within 3 days, whereas 40% of those receiving fasudil survived (P<0.001). The present study demonstrates that Rho-kinase-mediated production of ROS and inflammatory cytokines are substantially involved in the pathogenesis of hepatocellular necrosis and apoptosis induced by cold I/R in vivo and that Rho-kinase may be regarded as a novel therapeutic target for the disorder.

  2. Rho A Regulates Epidermal Growth Factor-Induced Human Osteosarcoma MG63 Cell Migration

    Directory of Open Access Journals (Sweden)

    Jinyang Wang

    2018-05-01

    Full Text Available Osteosarcoma, the most common primary bone tumor, occurs most frequently in children and adolescents and has a 5-year survival rate, which is unsatisfactory. As epidermal growth factor receptor (EGFR positively correlates with TNM (tumor-node-metastasis stage in osteosarcoma, EGFR may play an important role in its progression. The purpose of this study was to explore potential mechanisms underlying this correlation. We found that EGF promotes MG63 cell migration and invasion as well as stress fiber formation via Rho A activation and that these effects can be reversed by inhibiting Rho A expression. In addition, molecules downstream of Rho A, including ROCK1, LIMK2, and Cofilin, are activated by EGF in MG63 cells, leading to actin stress fiber formation and cell migration. Moreover, inhibition of ROCK1, LIMK2, or Cofilin in MG63 cells using known inhibitors or short hairpin RNA (shRNA prevents actin stress fiber formation and cell migration. Thus, we conclude that Rho A/ROCK1/LIMK2/Cofilin signaling mediates actin microfilament formation in MG63 cells upon EGFR activation. This novel pathway provides a promising target for preventing osteosarcoma progression and for treating this cancer.

  3. Role of the Small GTPase Rho3 in Golgi/Endosome trafficking through functional interaction with adaptin in Fission Yeast.

    Directory of Open Access Journals (Sweden)

    Ayako Kita

    Full Text Available BACKGROUND: We had previously identified the mutant allele of apm1(+ that encodes a homolog of the mammalian µ1A subunit of the clathrin-associated adaptor protein-1 (AP-1 complex, and we demonstrated the role of Apm1 in Golgi/endosome trafficking, secretion, and vacuole fusion in fission yeast. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we isolated rho3(+, which encodes a Rho-family small GTPase, an important regulator of exocystosis, as a multicopy-suppressor of the temperature-sensitive growth of the apm1-1 mutant cells. Overexpression of Rho3 suppressed the Cl(- sensitivity and immunosuppressant sensitivity of the apm1-1 mutant cells. Overexpression of Rho3 also suppressed the fragmentation of vacuoles, and the accumulation of v-SNARE Syb1 in Golgi/endosomes and partially suppressed the defective secretion associated with apm1-deletion cells. Notably, electron microscopic observation of the rho3-deletion cells revealed the accumulation of abnormal Golgi-like structures, vacuole fragmentation, and accumulation of secretory vesicles; these phenotypes were very similar to those of the apm1-deletion cells. Furthermore, the rho3-deletion cells and apm1-deletion cells showed very similar phenotypic characteristics, including the sensitivity to the immunosuppressant FK506, the cell wall-damaging agent micafungin, Cl(-, and valproic acid. Green fluorescent protein (GFP-Rho3 was localized at Golgi/endosomes as well as the plasma membrane and division site. Finally, Rho3 was shown to form a complex with Apm1 as well as with other subunits of the clathrin-associated AP-1 complex in a GTP- and effector domain-dependent manner. CONCLUSIONS/SIGNIFICANCE: Taken together, our findings reveal a novel role of Rho3 in the regulation of Golgi/endosome trafficking and suggest that clathrin-associated adaptor protein-1 and Rho3 co-ordinate in intracellular transport in fission yeast. To the best of our knowledge, this study provides the first evidence

  4. A single splice site mutation in human-specific ARHGAP11B causes basal progenitor amplification

    Science.gov (United States)

    Florio, Marta; Namba, Takashi; Pääbo, Svante; Hiller, Michael; Huttner, Wieland B.

    2016-01-01

    The gene ARHGAP11B promotes basal progenitor amplification and is implicated in neocortex expansion. It arose on the human evolutionary lineage by partial duplication of ARHGAP11A, which encodes a Rho guanosine triphosphatase–activating protein (RhoGAP). However, a lack of 55 nucleotides in ARHGAP11B mRNA leads to loss of RhoGAP activity by GAP domain truncation and addition of a human-specific carboxy-terminal amino acid sequence. We show that these 55 nucleotides are deleted by mRNA splicing due to a single C→G substitution that creates a novel splice donor site. We reconstructed an ancestral ARHGAP11B complementary DNA without this substitution. Ancestral ARHGAP11B exhibits RhoGAP activity but has no ability to increase basal progenitors during neocortex development. Hence, a single nucleotide substitution underlies the specific properties of ARHGAP11B that likely contributed to the evolutionary expansion of the human neocortex. PMID:27957544

  5. Cdc42 and RhoA reveal different spatio-temporal dynamics upon local stimulation with Semaphorin-3A

    Directory of Open Access Journals (Sweden)

    Federico eIseppon

    2015-08-01

    Full Text Available Small RhoGTPases, such as Cdc42 and RhoA, are key players in integrating external cues and intracellular signaling pathways that regulate growth cone (GC motility. Indeed, Cdc42 is involved in actin polymerization and filopodia formation, whereas RhoA induces GC collapse and neurite retraction through actomyosin contraction. In this study we employed Förster Resonance Energy Transfer (FRET microscopy to study the spatio-temporal dynamics of Cdc42 and RhoA in GCs in response to local Semaphorin-3A stimulation obtained with lipid vesicles filled with Semaphorin-3A and positioned near the selected GC using optical tweezers. We found that Cdc42 and RhoA were activated at the leading edge of NG108-15 neuroblastoma cells during spontaneous cycles of protrusion and retraction, respectively. The release of Semaphorin-3A brought to a progressive activation of RhoA within 30 seconds from the stimulus in the central region of the GC that collapsed and retracted. In contrast, the same stimulation evoked waves of Cdc42 activation propagating away from the stimulated region. A more localized stimulation obtained with Sema3A coated beads placed on the GC, led to Cdc42 active waves that propagated in a retrograde manner with a mean period of 70 seconds, and followed by GC retraction. Therefore, Semaphorin-3A activates both Cdc42 and RhoA with a complex and different spatial-temporal dynamics.

  6. ROCK and RHO Playlist for Preimplantation Development: Streaming to HIPPO Pathway and Apicobasal Polarity in the First Cell Differentiation.

    Science.gov (United States)

    Alarcon, Vernadeth B; Marikawa, Yusuke

    2018-01-01

    In placental mammalian development, the first cell differentiation produces two distinct lineages that emerge according to their position within the embryo: the trophectoderm (TE, placenta precursor) differentiates in the surface, while the inner cell mass (ICM, fetal body precursor) forms inside. Here, we discuss how such position-dependent lineage specifications are regulated by the RHOA subfamily of small GTPases and RHO-associated coiled-coil kinases (ROCK). Recent studies in mouse show that activities of RHO/ROCK are required to promote TE differentiation and to concomitantly suppress ICM formation. RHO/ROCK operate through the HIPPO signaling pathway, whose cell position-specific modulation is central to establishing unique gene expression profiles that confer cell fate. In particular, activities of RHO/ROCK are essential in outside cells to promote nuclear localization of transcriptional co-activators YAP/TAZ, the downstream effectors of HIPPO signaling. Nuclear localization of YAP/TAZ depends on the formation of apicobasal polarity in outside cells, which requires activities of RHO/ROCK. We propose models of how RHO/ROCK regulate lineage specification and lay out challenges for future investigations to deepen our understanding of the roles of RHO/ROCK in preimplantation development. Finally, as RHO/ROCK may be inhibited by certain pharmacological agents, we discuss their potential impact on human preimplantation development in relation to fertility preservation in women.

  7. Induction of human microsomal prostaglandin E synthase 1 by activated oncogene RhoA GTPase in A549 human epithelial cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hye Jin [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Lee, Dong-Hyung [Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University, Busan (Korea, Republic of); Park, Seong-Hwan; Kim, Juil; Do, Kee Hun [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); An, Tae Jin; Ahn, Young Sup; Park, Chung Berm [Department of Herbal Crop Research, NIHHS, RDA, Eumseong (Korea, Republic of); Moon, Yuseok, E-mail: moon@pnu.edu [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Medical Research Institute and Research Institute for Basic Sciences, Pusan National University, Busan (Korea, Republic of)

    2011-09-30

    Highlights: {yields} As a target of oncogene RhoA-linked signal, a prostaglandin metabolism is assessed. {yields} RhoA activation increases PGE{sub 2} levels and its metabolic enzyme mPGES-1. {yields} RhoA-activated NF-{kappa}B and EGR-1 are positively involved in mPGES-1 induction. -- Abstract: Oncogenic RhoA GTPase has been investigated as a mediator of pro-inflammatory responses and aggressive carcinogenesis. Among the various targets of RhoA-linked signals, pro-inflammatory prostaglandin E{sub 2} (PGE{sub 2}), a major prostaglandin metabolite, was assessed in epithelial cancer cells. RhoA activation increased PGE{sub 2} levels and gene expression of the rate-limiting PGE{sub 2} producing enzymes, cyclooxygenase-2 and microsomal prostaglandin E synthase 1 (mPGES-1). In particular, human mPGES-1 was induced by RhoA via transcriptional activation in control and interleukin (IL)-1{beta}-activated cancer cells. To address the involvement of potent signaling pathways in RhoA-activated mPGES-1 induction, various signaling inhibitors were screened for their effects on mPGES-1 promoter activity. RhoA activation enhanced basal and IL-1{beta}-mediated phosphorylated nuclear factor-{kappa}B and extracellular signal-regulated kinase1/2 proteins, all of which were positively involved in RhoA-induced gene expression of mPGES-1. As one potent down-stream transcription factor of ERK1/2 signals, early growth response gene 1 product also mediated RhoA-induced gene expression of mPGES-1 by enhancing transcriptional activity. Since oncogene-triggered PGE{sub 2} production is a critical modulator of epithelial tumor cells, RhoA-associated mPGES-1 represents a promising chemo-preventive or therapeutic target for epithelial inflammation and its associated cancers.

  8. A Salmonella typhimurium-translocated Glycerophospholipid:Cholesterol Acyltransferase Promotes Virulence by Binding to the RhoA Protein Switch Regions

    Energy Technology Data Exchange (ETDEWEB)

    LaRock, Doris L.; Brzovic, Peter S.; Levin, Itay; Blanc, Marie-Pierre; Miller, Samuel I.

    2012-08-24

    Salmonella enterica serovar typhimurium translocates a glycerophospholipid: cholesterol acyltransferase (SseJ) into the host cytosol after its entry into mammalian cells. SseJ is recruited to the cytoplasmic face of the host cell phagosome membrane where it is activated upon binding the small GTPase, RhoA. SseJ is regulated similarly to cognate eukaryotic effectors, as only the GTP-bound form of RhoA family members stimulates enzymatic activity. Using NMR and biochemistry, this work demonstrates that SseJ competes effectively with Rhotekin, ROCK, and PKN1 in binding to a similar RhoA surface. The RhoA surface that binds SseJ includes the regulatory switch regions that control activation of mammalian effectors. These data were used to create RhoA mutants with altered SseJ binding and activation. This structure-function analysis supports a model in which SseJ activation occurs predominantly through binding to residues within switch region II. We further defined the nature of the interaction between SseJ and RhoA by constructing SseJ mutants in the RhoA binding surface. These data indicate that SseJ binding to RhoA is required for recruitment of SseJ to the endosomal network and for full Salmonella virulence for inbred susceptible mice, indicating that regulation of SseJ by small GTPases is an important virulence strategy of this bacterial pathogen. The dependence of a bacterial effector on regulation by a mammalian GTPase defines further how intimately host pathogen interactions have coevolved through similar and divergent evolutionary strategies.

  9. RPO41-independent maintenance of [rho-] mitochondrial DNA in Saccharomyces cerevisiae.

    Science.gov (United States)

    Fangman, W L; Henly, J W; Brewer, B J

    1990-01-01

    A subset of promoters in the mitochondrial DNA (mtDNA) of the yeast Saccharomyces cerevisiae has been proposed to participate in replication initiation, giving rise to a primer through site-specific cleavage of an RNA transcript. To test whether transcription is essential for mtDNA maintenance, we examined two simple mtDNA deletion ([rho-]) genomes in yeast cells. One genome (HS3324) contains a consensus promoter (ATATAAGTA) for the mitochondrial RNA polymerase encoded by the nuclear gene RPO41, and the other genome (4a) does not. As anticipated, in RPO41 cells transcripts from the HS3324 genome were more abundant than were transcripts from the 4a genome. When the RPO41 gene was disrupted, both [rho-] genomes were efficiently maintained. The level of transcripts from HS3324 mtDNA was decreased greater than 400-fold in cells carrying the RPO41 disrupted gene; however, the low-level transcripts from 4a mtDNA were undiminished. These results indicate that replication of [rho-] genomes can be initiated in the absence of wild-type levels of the RPO41-encoded RNA polymerase.

  10. Diffractive Photoproduction of Rho Mesons with Large Momentum Transfer at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fleischmann, P.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hajduk, L.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Luke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A.J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Steder, M.; Stella, B.; Stiewe, J.; Straumann, U.; Sunar, D.; Tchoulakov, V.; Thompson, Graham; Thompson, P.D.; Toll, T.; Tomasz, F.; Traynor, D.; Truol, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, Marcel; Usik, A.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Ya.; Veelken, C.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-01-01

    The diffractive photoproduction of rho mesons, e p \\to e rho Y, with large momentum transfer squared at the proton vertex, |t|, is studied with the H1 detector at HERA using an integrated luminosity of 20.1 pb^{-1}. The photon-proton centre of mass energy spans the range 75 < W < 95 GeV, the photon virtuality is restricted to Q^2 < 0.01 GeV^2 and the mass M_Y of the proton remnant is below 5 GeV. The t dependence of the cross section is measured for the range 1.5 < |t| < 10.0 GeV^2 and is well described by a power law, dsigma/ d|t| \\propto |t|^{-n}. The spin density matrix elements, which provide information on the helicity structure of the interaction, are extracted using measurements of angular distributions of the rho decay products. The data indicate a violation of s-channel helicity conservation, with contributions from both single and double helicity-flip being observed. The results are compared to the predictions of perturbative QCD models.

  11. A Study of Spin Alignment of $\\rho(770)^{\\pm}$ and $\\omega(782)$ Mesons in Hadronic $Z^{0}$ Decays

    CERN Document Server

    Abbiendi, G.; Alexander, G.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bloodworth, I.J.; Bock, P.; Bohme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couchman, J.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Davis, R.; De Jong, S.; De Roeck, A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A.A.; Feld, L.; Fiedler, F.; Fierro, M.; Fleck, I.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hobson, P.R.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klier, A.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lauber, J.; Lawson, I.; Layter, J.G.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Lui, D.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Poli, B.; Polok, J.; Przybycien, M.; Quadt, A.; Rembser, C.; Rick, H.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Steuerer, J.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; Wetterling, D.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.

    2000-01-01

    The helicity density matrix elements rho[00] of rho(770)+- and omega(782) mesons produced in Z decays have been measured using the OPAL detector at LEP. Over the measured meson energy range, the values are compatible with 1/3, corresponding to a statistical mix of helicity -1, 0 and +1 states. For the highest accessible scaled energy range 0.3 < x_E < 0.6, the measured rho[00] values of the rho(770)+- and the omega are 0.373 +- 0.052 and 0.142 +- 0.114, respectively. These results are compared to measurements of other vector mesons.

  12. The influence of N-7 guanine modifications on the strength of Watson-Crick base pairing and guanine N-1 acidity: Comparison of gas-phase and condensed-phase trends

    Czech Academy of Sciences Publication Activity Database

    Burda, J. V.; Šponer, Jiří; Hrabáková, J.; Zeizinger, M.; Leszczynski, J.

    2003-01-01

    Roč. 107, č. 22 (2003), s. 5349-5356 ISSN 1520-6106 R&D Projects: GA MŠk ME 517; GA MŠk LN00A016 Grant - others:Wellcome Trust(GB) GR067507MF; ONR(US) N00034-03-1-0116; National Science Foundation(US) CREST 9805465 Institutional research plan: CEZ:AV0Z5004920 Keywords : Watson-Crick base pairing * guanines * gas-phase and condensed-phase trends Subject RIV: BO - Biophysics Impact factor: 3.679, year: 2003

  13. Reactions of guanine with methyl chloride and methyl bromide: O6-methylation versus charge transfer complex formation

    Science.gov (United States)

    Shukla, P. K.; Mishra, P. C.; Suhai, S.

    Density functional theory (DFT) at the B3LYP/6-31+G* and B3LYP/AUG-cc-pVDZ levels was employed to study O6-methylation of guanine due to its reactions with methyl chloride and methyl bromide and to obtain explanation as to why the methyl halides cause genotoxicity and possess mutagenic and carcinogenic properties. Geometries of the various isolated species involved in the reactions, reactant complexes (RCs), and product complexes (PCs) were optimized in gas phase. Transition states connecting the reactant complexes with the product complexes were also optimized in gas phase at the same levels of theory. The reactant complexes, product complexes, and transition states were solvated in aqueous media using the polarizable continuum model (PCM) of the self-consistent reaction field theory. Zero-point energy (ZPE) correction to total energy and the corresponding thermal energy correction to enthalpy were made in each case. The reactant complexes of the keto form of guanine with methyl chloride and methyl bromide in water are appreciably more stable than the corresponding complexes involving the enol form of guanine. The nature of binding in the product complexes was found to be of the charge transfer type (O6mG+ · X-, X dbond Cl, Br). Binding of HCl, HBr, and H2O molecules to the PCs obtained with the keto form of guanine did not alter the positions of the halide anions in the PCs, and the charge transfer character of the PCs was also not modified due to this binding. Further, the complexes obtained due to the binding of HCl, HBr, and H2O molecules to the PCs had greater stability than the isolated PCs. The reaction barriers involved in the formation of PCs were found to be quite high (?50 kcal/mol). Mechanisms of genotoxicity, mutagenesis and carcinogenesis caused by the methyl halides appear to involve charge transfer-type complex formation. Thus the mechanisms of these processes involving the methyl halides appear to be quite different from those that involve the

  14. P190B RhoGAP Regulates Chromosome Segregation in Cancer Cells

    International Nuclear Information System (INIS)

    Hwang, Melissa; Peddibhotla, Sirisha; McHenry, Peter; Chang, Peggy; Yochum, Zachary; Park, Ko Un; Sears, James Cooper; Vargo-Gogola, Tracy

    2012-01-01

    Rho GTPases are overexpressed and hyperactivated in many cancers, including breast cancer. Rho proteins, as well as their regulators and effectors, have been implicated in mitosis, and their altered expression promotes mitotic defects and aneuploidy. Previously, we demonstrated that p190B Rho GTPase activating protein (RhoGAP) deficiency inhibits ErbB2-induced mammary tumor formation in mice. Here we describe a novel role for p190B as a regulator of mitosis. We found that p190B localized to centrosomes during interphase and mitosis, and that it is differentially phosphorylated during mitosis. Knockdown of p190B expression in MCF-7 and Hela cells increased the incidence of aberrant microtubule-kinetochore attachments at metaphase, lagging chromosomes at anaphase, and micronucleation, all of which are indicative of aneuploidy. Cell cycle analysis of p190B deficient MCF-7 cells revealed a significant increase in apoptotic cells with a concomitant decrease in cells in G1 and S phase, suggesting that p190B deficient cells die at the G1 to S transition. Chemical inhibition of the Rac GTPase during mitosis reduced the incidence of lagging chromosomes in p190B knockdown cells to levels detected in control cells, suggesting that aberrant Rac activity in the absence of p190B promotes chromosome segregation defects. Taken together, these data suggest that p190B regulates chromosome segregation and apoptosis in cancer cells. We propose that disruption of mitosis may be one mechanism by which p190B deficiency inhibits tumorigenesis

  15. P190B RhoGAP Regulates Chromosome Segregation in Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Melissa [Department of Biochemistry and Molecular Biology and the Indiana University Simon Cancer Center, Indiana University School of Medicine, 1234 Notre Dame Avenue, South Bend, IN 46617 (United States); Peddibhotla, Sirisha [Department of Molecular and Human Genetics, Baylor College of Medicine, John P. McGovern Campus, NABS-0250, Houston, TX 77030 (United States); McHenry, Peter [Department of Biology, Southwestern Adventist University, 100 W. Hillcrest, Keene, TX 76059 (United States); Chang, Peggy; Yochum, Zachary; Park, Ko Un; Sears, James Cooper; Vargo-Gogola, Tracy, E-mail: vargo-gogola.1@nd.edu [Department of Biochemistry and Molecular Biology and the Indiana University Simon Cancer Center, Indiana University School of Medicine, 1234 Notre Dame Avenue, South Bend, IN 46617 (United States)

    2012-04-25

    Rho GTPases are overexpressed and hyperactivated in many cancers, including breast cancer. Rho proteins, as well as their regulators and effectors, have been implicated in mitosis, and their altered expression promotes mitotic defects and aneuploidy. Previously, we demonstrated that p190B Rho GTPase activating protein (RhoGAP) deficiency inhibits ErbB2-induced mammary tumor formation in mice. Here we describe a novel role for p190B as a regulator of mitosis. We found that p190B localized to centrosomes during interphase and mitosis, and that it is differentially phosphorylated during mitosis. Knockdown of p190B expression in MCF-7 and Hela cells increased the incidence of aberrant microtubule-kinetochore attachments at metaphase, lagging chromosomes at anaphase, and micronucleation, all of which are indicative of aneuploidy. Cell cycle analysis of p190B deficient MCF-7 cells revealed a significant increase in apoptotic cells with a concomitant decrease in cells in G1 and S phase, suggesting that p190B deficient cells die at the G1 to S transition. Chemical inhibition of the Rac GTPase during mitosis reduced the incidence of lagging chromosomes in p190B knockdown cells to levels detected in control cells, suggesting that aberrant Rac activity in the absence of p190B promotes chromosome segregation defects. Taken together, these data suggest that p190B regulates chromosome segregation and apoptosis in cancer cells. We propose that disruption of mitosis may be one mechanism by which p190B deficiency inhibits tumorigenesis.

  16. Comparisons of actin filament disruptors and Rho kinase inhibitors as potential antiglaucoma medications

    OpenAIRE

    Tian, Baohe; Kaufman, Paul L

    2012-01-01

    Dynamics of the actin cytoskeleton in the trabecular meshwork play a crucial role in the regulation of trabecular outflow resistance. The actin filament disruptors and Rho kinase inhibitors affect the dynamics of the actomyosin system by either disrupting the actin filaments or inhibiting the Rho kinase-activated cellular contractility. Both approaches induce similar morphological changes and resistance decreases in the trabecular outflow pathway, and thus both have potential as antiglaucoma ...

  17. QCD and resonance physics. The rho-ω mixing

    International Nuclear Information System (INIS)

    Shifman, M.A.; Vainshtein, A.I.; Zakharov, V.I.

    1978-01-01

    The QCD-based approach to the resonance physics proposed earlier is extended to cover the rho-ω mixing problem. A two-point function relevant to the problem with account of nonperturbative contributions is considered. The sum rules are derived and related phenomenology is introduced. The rho-ω interference is found to be due to the relatively strong isotopic symmetry breaking in the quark masses, and a solution with msub(u) = 0, msub(d) not equal to 0 seems to be ruled out. It is shown that virtual photon exchanges alone can not explain the observed value of the mixing parameter. The phenomenon gets a natural explanation if one assumes a large isotopic symmetry violation in the mechanical quark masses, (msub(d) - msub(u))/(msub(d) + msub(u)) approximately 0.3. This number is close to that resulting from the well-known pseudoscalar meson analysis. Unlike the latter, the result, however, does not assume an exact SU(3)sub(flavor) symmetry in vacuum-to-vacuum matrix elements

  18. Mechanism of RhoB/FTI Action in Breast Cancer

    National Research Council Canada - National Science Library

    Kamasani, Uma R; Prendergast, George

    2004-01-01

    .... What factors dictate FTI efficacy? In this period, we advanced our studies of the role of cyclin B1, a key regulator of mitosis, as a critical target for RhoB suppression in FTI-induced apoptosis...

  19. Mechanism of RhoB/FTI Action in Breast Cancer

    National Research Council Canada - National Science Library

    Kamasani, Uma

    2003-01-01

    .... What factors dictate FTI efficacy? Work completed earlier in this project defined rules for RhoB and its downstream effector kinase PRK in mediating growth inhibition by FTI in epithelial cells, including human breast epithelial cells...

  20. Benchmark Theoretical and Experimental Study on N-15 NMR Shifts of Oxidatively Damaged Guanine

    Czech Academy of Sciences Publication Activity Database

    Dračínský, Martin; Šála, Michal; Klepetářová, Blanka; Šebera, Jakub; Fukal, Jiří; Holečková, Veronika; Tanaka, Y.; Nencka, Radim; Sychrovský, Vladimír

    2016-01-01

    Roč. 120, č. 5 (2016), s. 915-925 ISSN 1520-6106 R&D Projects: GA ČR GA13-27676S; GA ČR GA15-11223S Institutional support: RVO:61388963 Keywords : NMR spectroscopy * DFT calculations * oxidatively damaged guanine * hOGG1 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.177, year: 2016

  1. Increased RhoA prenylation in the loechrig (loe mutant leads to progressive neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Mandy Cook

    Full Text Available The Drosophila mutant loechrig (loe shows age-dependent degeneration of the nervous system and is caused by the loss of a neuronal isoform of the AMP-activated protein kinase (AMPK γ-subunit (also known as SNF4Aγ. The trimeric AMPK complex is activated by low energy levels and metabolic insults and regulates multiple important signal pathways that control cell metabolism. A well-known downstream target of AMPK is hydroxyl-methylglutaryl-CoA reductase (HMGR, a key enzyme in isoprenoid synthesis, and we have previously shown that HMGR genetically interacts with loe and affects the severity of the degenerative phenotype. Prenylation of proteins like small G-proteins is an important posttranslational modification providing lipid moieties that allow the association of these proteins with membranes, thereby facilitating their subsequent activation. Rho proteins have been extensively studied in neuronal outgrowth, however, much less is known about their function in neuronal maintenance. Here we show that the loe mutation interferes with isoprenoid synthesis, leading to increased prenylation of the small GTPase Rho1, the fly orthologue of vertebrate RhoA. We also demonstrate that increased prenylation and Rho1 activity causes neurodegeneration and aggravates the behavioral and degenerative phenotypes of loe. Because we cannot detect defects in the development of the central nervous system in loe, this suggests that loe only interferes with the function of the RhoA pathway in maintaining neuronal integrity during adulthood. In addition, our results show that alterations in isoprenoids can result in progressive neurodegeneration, supporting findings in vertebrates that prenylation may play a role in neurodegenerative diseases like Alzheimer's Disease.

  2. Measurement of the CKM Angle Alpha at the BABAR Detector Using B Meson Decays to Rho Final States

    Energy Technology Data Exchange (ETDEWEB)

    Mihalyi, Attila; /Wisconsin U., Madison

    2006-10-16

    This thesis contains the results of an analysis of B{sup 0} {yields} {rho}{sup +}{rho}{sup -} using 232 million {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. From a fitted signal yield of 617 {+-} 52 events, the longitudinal polarizations fraction, f{sub L}, of the decay is measured to be 0.978 {+-} 0.014(stat){sub -0.029}{sup +0.021}(syst). The nearly fully longitudinal dominance of the B{sup 0} {yields} {rho}{sup +}{rho}{sup -} decay allows for a measurement of the time dependent CP parameters S{sub L} and C{sub L}, where the first parameter is sensitive to mixing induced CP violation and the second one to direct CP violation. From the same signal yield, these values are found to be S{sub L} = -0.33 {+-} 0.24(stat){sub -0.14}{sup +0.08}(syst) and C{sub L} = - 0.03 {+-} 0.18(stat) {+-} 0.09(syst). The CKM angle {alpha} is then determined, using these results and the branching fractions and polarizations of the decays B{sup 0} {yields} {rho}{sup 0}{rho}{sup 0} and B{sup +} {yields} {rho}{sup +}{rho}{sup 0}. This measurement is done with an isospin analysis, in which a triangle is constructed from the isospin amplitudes of these three decay modes. A {chi}{sup 2} expression that includes the measured quantities expressed as the lengths of the sides of the isospin triangles is constructed and minimized to determine a confidence level on {alpha}. Selecting the solution compatible with the Standard Model, one obtains {alpha} = 100{sup o} {+-} 13{sup o}.

  3. Abnormal Activation of RhoA/ROCK-I Signaling in Junctional Zone Smooth Muscle Cells of Patients With Adenomyosis.

    Science.gov (United States)

    Wang, S; Duan, H; Zhang, Y; Sun, F Q

    2016-03-01

    Adenomyosis (ADS) is a common estrogen-dependent gynecological disease with unknown etiology. The RhoA/Rho-kinase (ROCK) signaling pathway is involved in various cellular functions, including migration, proliferation, and smooth muscle contraction. Here we examined the potential role of this pathway in junctional zone (JZ) contraction in women with and without ADS. We demonstrated that in the normal JZ, RhoA and ROCK-I messenger RNA (mRNA) and protein expression was significantly higher in the proliferative phase of the menstrual cycle than in the secretory phase. Expression of RhoA and ROCK-I in the JZ from women with ADS was significantly higher than in the control women and showed no significant differences across the menstrual cycle. Treatment of JZ smooth muscle cells (JZSMCs) with estrogen at 0, 1, 10, or 100 nmol/L for 24 hours resulted in increased expression of RhoA, ROCK-I, and myosin light-chain (MLC) phosphorylation (p-MLC) in a dose-dependent manner. In parallel to its effects on p-MLC, estrogen-mediated, dose-dependent contraction responses in JZSMCs. Estrogen-mediated contraction in the ADS group was significantly higher than in the controls and also showed no significant differences across the menstrual cycle. These effects were suppressed in the presence of ICI 182780 or Y27632, supporting an estrogen receptor-dependent and RhoA activation-dependent mechanism. Our results indicate that the level of RhoA and ROCK-I increases in patients with ADS and the cyclic change is lost. Estrogen may affect uterine JZ contraction of ADS by enhancing RhoA/ ROCK-I signaling. © The Author(s) 2015.

  4. The rho-exchange isovector parity-violating potential

    International Nuclear Information System (INIS)

    McKellar, B.H.J.

    1979-01-01

    It is shown that the rho-exchange isovector parity-violating potential is constrained by PCAC to be much weaker than the π-exchange potential and much weaker than recently proposed by Galic et al (J. Phys. G.; 5: L113 (1979)). This potential does not therefore provide a mechanism for suppressing enhanced neutral-current effects in the π-exchange potential. (author)

  5. The Popeye Domain Containing Genes and Their Function in Striated Muscle

    Science.gov (United States)

    Schindler, Roland F. R.; Scotton, Chiara; French, Vanessa; Ferlini, Alessandra; Brand, Thomas

    2016-01-01

    The Popeye domain containing (POPDC) genes encode a novel class of cAMP effector proteins, which are abundantly expressed in heart and skeletal muscle. Here, we will review their role in striated muscle as deduced from work in cell and animal models and the recent analysis of patients carrying a missense mutation in POPDC1. Evidence suggests that POPDC proteins control membrane trafficking of interacting proteins. Furthermore, we will discuss the current catalogue of established protein-protein interactions. In recent years, the number of POPDC-interacting proteins has been rising and currently includes ion channels (TREK-1), sarcolemma-associated proteins serving functions in mechanical stability (dystrophin), compartmentalization (caveolin 3), scaffolding (ZO-1), trafficking (NDRG4, VAMP2/3) and repair (dysferlin) or acting as a guanine nucleotide exchange factor for Rho-family GTPases (GEFT). Recent evidence suggests that POPDC proteins might also control the cellular level of the nuclear proto-oncoprotein c-Myc. These data suggest that this family of cAMP-binding proteins probably serves multiple roles in striated muscle. PMID:27347491

  6. Stepwise high-throughput virtual screening of Rho kinase inhibitors from natural product library and potential therapeutics for pulmonary hypertension.

    Science.gov (United States)

    Su, Hao; Yan, Ji; Xu, Jian; Fan, Xi-Zhen; Sun, Xian-Lin; Chen, Kang-Yu

    2015-08-01

    Pulmonary hypertension (PH) is a devastating disease characterized by progressive elevation of pulmonary arterial pressure and vascular resistance due to pulmonary vasoconstriction and vessel remodeling. The activation of RhoA/Rho-kinase (ROCK) pathway plays a central role in the pathologic progression of PH and thus the Rho kinase, an essential effector of the ROCK pathway, is considered as a potential therapeutic target to attenuate PH. In the current study, a synthetic pipeline is used to discover new potent Rho inhibitors from various natural products. In the pipeline, the stepwise high-throughput virtual screening, quantitative structure-activity relationship (QSAR)-based rescoring, and kinase assay were integrated. The screening was performed against a structurally diverse, drug-like natural product library, from which six identified compounds were tested to determine their inhibitory potencies agonist Rho by using a standard kinase assay protocol. With this scheme, we successfully identified two potent Rho inhibitors, namely phloretin and baicalein, with activity values of IC50 = 0.22 and 0.95 μM, respectively. Structural examination suggested that complicated networks of non-bonded interactions such as hydrogen bonding, hydrophobic forces, and van der Waals contacts across the complex interfaces of Rho kinase are formed with the screened compounds.

  7. Structure of Radicals from X-irradiated Guanine Derivatives: An Experimental and Computational Study of Sodium Guanosine Dihydrate Single Crystals

    Science.gov (United States)

    Jayatilaka, Nayana; Nelson, William H.

    2008-01-01

    In sodium guanosine dihydrate single crystals, the guanine moiety is deprotonated at N1 due to growth from high-pH (>12) solutions. EPR and ENDOR study of crystals x-irradiated at 10 K detected evidence for three radical forms. Radical R1,characterized by two proton and two nitrogen hyperfine interactions, was identified as the product of net hydrogenation at N7 of the N1-deprotonated guanine unit. R1 exhibited an unusually distorted structure leading to net positive isotropic components of the hydrogen couplings. Radical R2, characterized by one proton and one nitrogen hyperfine coupling was identified as the primary electron loss product. This product is equivalent to that of deprotonation at N1 by the guanine cation and represents the first ENDOR characterization of that product. Radical R3, characterized by a single hydrogen hyperfine coupling, was identified as the product of net dehydrogenation at C1 of the ribose moiety. The identification of radicals R1-R3 was supported by DFT calculations on several possible structures using the B3LYP/6-311G(2df,p)//6-31G(d,p) approach. Radical R4, detected after warming the crystals to room temperature, was identified as the well-known product of net hydrogenation of C8 of the (N1-deprotonated) guanine component. Radical R1, evidently formed by protonation of the primary electron addition product, was present as roughly 60% of the total radicals detected at 10 K. Radical R2 was present as roughly 27% of the total yield, and the concentration of R3 contributed the remaining 13%. R3 is evidently the product of oneelectron oxidation followed by deprotonation; thus, the balance of oxidation and reduction products is approximately equal within experimental uncertainty. PMID:17249824

  8. Fabrication and non-covalent modification of highly oriented thin films of a zeolite-like metal-organic framework (ZMOF) with rho topology

    KAUST Repository

    Shekhah, Osama

    2015-01-01

    Here we report the fabrication of the first thin film of a zeolite-like metal-organic framework (ZMOF) with rho topology (rho-ZMOF-1, ([In48(HImDC)96]48-)n) in a highly oriented fashion on a gold-functionalized substrate. The oriented rho-ZMOF-1 film was functionalized by non-covalent modification via post-synthetic exchange of different probe molecules, such as acridine yellow, methylene blue, and Nile red. In addition, encapsulation of a porphyrin moiety was achieved via in situ synthesis and construction of the rho-ZMOF. Adsorption kinetics of volatile organic compounds on rho-ZMOF-1 thin films was also investigated. This study suggests that rho-ZMOF-1 thin films can be regarded as a promising platform for various applications such as sensing and catalysis. This journal is

  9. Cell cycle-dependent Rho GTPase activity dynamically regulates cancer cell motility and invasion in vivo.

    Science.gov (United States)

    Kagawa, Yoshinori; Matsumoto, Shinji; Kamioka, Yuji; Mimori, Koshi; Naito, Yoko; Ishii, Taeko; Okuzaki, Daisuke; Nishida, Naohiro; Maeda, Sakae; Naito, Atsushi; Kikuta, Junichi; Nishikawa, Keizo; Nishimura, Junichi; Haraguchi, Naotsugu; Takemasa, Ichiro; Mizushima, Tsunekazu; Ikeda, Masataka; Yamamoto, Hirofumi; Sekimoto, Mitsugu; Ishii, Hideshi; Doki, Yuichiro; Matsuda, Michiyuki; Kikuchi, Akira; Mori, Masaki; Ishii, Masaru

    2013-01-01

    The mechanism behind the spatiotemporal control of cancer cell dynamics and its possible association with cell proliferation has not been well established. By exploiting the intravital imaging technique, we found that cancer cell motility and invasive properties were closely associated with the cell cycle. In vivo inoculation of human colon cancer cells bearing fluorescence ubiquitination-based cell cycle indicator (Fucci) demonstrated an unexpected phenomenon: S/G2/M cells were more motile and invasive than G1 cells. Microarray analyses showed that Arhgap11a, an uncharacterized Rho GTPase-activating protein (RhoGAP), was expressed in a cell-cycle-dependent fashion. Expression of ARHGAP11A in cancer cells suppressed RhoA-dependent mechanisms, such as stress fiber formation and focal adhesion, which made the cells more prone to migrate. We also demonstrated that RhoA suppression by ARHGAP11A induced augmentation of relative Rac1 activity, leading to an increase in the invasive properties. RNAi-based inhibition of Arhgap11a reduced the invasion and in vivo expansion of cancers. Additionally, analysis of human specimens showed the significant up-regulation of Arhgap11a in colon cancers, which was correlated with clinical invasion status. The present study suggests that ARHGAP11A, a cell cycle-dependent RhoGAP, is a critical regulator of cancer cell mobility and is thus a promising therapeutic target in invasive cancers.

  10. Cell cycle-dependent Rho GTPase activity dynamically regulates cancer cell motility and invasion in vivo.

    Directory of Open Access Journals (Sweden)

    Yoshinori Kagawa

    Full Text Available The mechanism behind the spatiotemporal control of cancer cell dynamics and its possible association with cell proliferation has not been well established. By exploiting the intravital imaging technique, we found that cancer cell motility and invasive properties were closely associated with the cell cycle. In vivo inoculation of human colon cancer cells bearing fluorescence ubiquitination-based cell cycle indicator (Fucci demonstrated an unexpected phenomenon: S/G2/M cells were more motile and invasive than G1 cells. Microarray analyses showed that Arhgap11a, an uncharacterized Rho GTPase-activating protein (RhoGAP, was expressed in a cell-cycle-dependent fashion. Expression of ARHGAP11A in cancer cells suppressed RhoA-dependent mechanisms, such as stress fiber formation and focal adhesion, which made the cells more prone to migrate. We also demonstrated that RhoA suppression by ARHGAP11A induced augmentation of relative Rac1 activity, leading to an increase in the invasive properties. RNAi-based inhibition of Arhgap11a reduced the invasion and in vivo expansion of cancers. Additionally, analysis of human specimens showed the significant up-regulation of Arhgap11a in colon cancers, which was correlated with clinical invasion status. The present study suggests that ARHGAP11A, a cell cycle-dependent RhoGAP, is a critical regulator of cancer cell mobility and is thus a promising therapeutic target in invasive cancers.

  11. Relative Proper Motions in the Rho Ophiuchi Cluster

    Science.gov (United States)

    2016-01-06

    identified as YSOs and may be newly identified cluster members. Key words: ISM: individual objects (Rho Ophiuchi cloud) – stars: formation – stars: pre-main...sequence 1. INTRODUCTION The majority of stars in the Galaxy form in clusters that once the binding mass of the molecular gas is removed, disperse into

  12. HAWC+/SOFIA observations of Rho Oph A: far-infrared polarization spectrum

    Science.gov (United States)

    Santos, Fabio; Dowell, Charles D.; Houde, Martin; Looney, Leslie; Lopez-Rodriguez, Enrique; Novak, Giles; Ward-Thompson, Derek; HAWC+ Science Team

    2018-01-01

    In this work, we present preliminary results from the HAWC+ far-infrared polarimeter that operates on the SOFIA airborne observatory. The densest portions of the Rho Ophiuchi molecular complex, known as Rho Oph A, have been mapped using HAWC+ bands C (89 microns) and D (155 microns). Rho Oph A is a well known nearby star forming region. At the target's distance of approximately 130 pc, our observations provide excellent spatial resolution (~5 mpc in band C).The magnetic field map suggests a compressed and distorted field morphology around Oph S1, a massive B3 star that is the main heat source of Rho Oph A. We compute the ratio p(D)/p(C), where p(C) and p(D) are the polarization degree maps at bands C and D, respectively. This ratio estimates the slope of the polarization spectrum in the far-infrared. Although the slope is predicted to be positive by dust grain models, previous observations of other molecular clouds have revealed that negative slopes are common. In Rho Oph A, we find that there is a smooth gradient of p(D)/p(C) across the mapped field. The change in p(D)/p(C) is well correlated with the integrated NH3 (1,1) emission. A positive slope dominates the lower density and well illuminated portions of the cloud, whereas a transition to a negative slope is observed at the denser and less evenly illuminated cloud core.We interpret the positive to negative slope transition as being consistent with the radiative torques (RATs) grain alignment theory. For the sight lines of higher column density, polarized emission from the warmer outer cloud layers is added to emission from the colder inner well-shielded layers lying along the same line-of-sight. Given that the outer layers receive more radiation from Oph S1, their grain alignment efficiency is expected to be higher according to RATs. The combination of warmer, well aligned grains with cooler, poorly aligned grains is what causes the negative slope. This effect is not present in the sight lines of lower column

  13. Maturation and integration of adult born hippocampal neurons: signal convergence onto small Rho GTPases

    Directory of Open Access Journals (Sweden)

    Krishna eVadodaria

    2013-08-01

    Full Text Available Adult neurogenesis, restricted to specific regions in the mammalian brain, represents one of the most interesting forms of plasticity in the mature nervous system. Adult-born hippocampal neurons play important roles in certain forms of learning and memory, and altered hippocampal neurogenesis has been associated with a number of neuropsychiatric diseases such as major depression and epilepsy. Newborn neurons go through distinct developmental steps from a dividing neurogenic precursor to a synaptically integrated mature neuron. Previous studies have uncovered several molecular signaling pathways involved in distinct steps of this maturational process. In this context, the small Rho GTPases, Cdc42, Rac1 and RhoA have recently been shown to regulate the morphological and synaptic maturation of adult-born dentate granule cells in vivo. Distinct upstream regulators, including several growth factors that modulate maturation and integration of newborn neurons have been shown to also recruit the small Rho GTPases. Here we review recent findings and highlight the possibility that small Rho GTPases may act as central assimilators, downstream of critical input onto adult-born hippocampal neurons contributing to their maturation and integration into the existing dentate gyrus circuitry.

  14. UNC-73/trio RhoGEF-2 activity modulates Caenorhabditis elegans motility through changes in neurotransmitter signaling upstream of the GSA-1/Galphas pathway.

    Science.gov (United States)

    Hu, Shuang; Pawson, Tony; Steven, Robert M

    2011-09-01

    Rho-family GTPases play regulatory roles in many fundamental cellular processes. Caenorhabditis elegans UNC-73 RhoGEF isoforms function in axon guidance, cell migration, muscle arm extension, phagocytosis, and neurotransmission by activating either Rac or Rho GTPase subfamilies. Multiple differentially expressed UNC-73 isoforms contain a Rac-specific RhoGEF-1 domain, a Rho-specific RhoGEF-2 domain, or both domains. The UNC-73E RhoGEF-2 isoform is activated by the G-protein subunit Gαq and is required for normal rates of locomotion; however, mechanisms of UNC-73 and Rho pathway regulation of locomotion are not clear. To better define UNC-73 function in the regulation of motility we used cell-specific and inducible promoters to examine the temporal and spatial requirements of UNC-73 RhoGEF-2 isoform function in mutant rescue experiments. We found that UNC-73E acts within peptidergic neurons of mature animals to regulate locomotion rate. Although unc-73 RhoGEF-2 mutants have grossly normal synaptic morphology and weak resistance to the acetylcholinesterase inhibitor aldicarb, they are significantly hypersensitive to the acetylcholine receptor agonist levamisole, indicating alterations in acetylcholine neurotransmitter signaling. Consistent with peptidergic neuron function, unc-73 RhoGEF-2 mutants exhibit a decreased level of neuropeptide release from motor neuron dense core vesicles (DCVs). The unc-73 locomotory phenotype is similar to those of rab-2 and unc-31, genes with distinct roles in the DCV-mediated secretory pathway. We observed that constitutively active Gαs pathway mutations, which compensate for DCV-mediated signaling defects, rescue unc-73 RhoGEF-2 and rab-2 lethargic movement phenotypes. Together, these data suggest UNC-73 RhoGEF-2 isoforms are required for proper neurotransmitter signaling and may function in the DCV-mediated neuromodulatory regulation of locomotion rate.

  15. Wash functions downstream of Rho1 GTPase in a subset of Drosophila immune cell developmental migrations

    Science.gov (United States)

    Verboon, Jeffrey M.; Rahe, Travis K.; Rodriguez-Mesa, Evelyn; Parkhurst, Susan M.

    2015-01-01

    Drosophila immune cells, the hemocytes, undergo four stereotypical developmental migrations to populate the embryo, where they provide immune reconnoitering, as well as a number of non–immune-related functions necessary for proper embryogenesis. Here, we describe a role for Rho1 in one of these developmental migrations in which posteriorly located hemocytes migrate toward the head. This migration requires the interaction of Rho1 with its downstream effector Wash, a Wiskott–Aldrich syndrome family protein. Both Wash knockdown and a Rho1 transgene harboring a mutation that prevents Wash binding exhibit the same developmental migratory defect as Rho1 knockdown. Wash activates the Arp2/3 complex, whose activity is needed for this migration, whereas members of the WASH regulatory complex (SWIP, Strumpellin, and CCDC53) are not. Our results suggest a WASH complex–independent signaling pathway to regulate the cytoskeleton during a subset of hemocyte developmental migrations. PMID:25739458

  16. Differences between high-affinity forskolin binding sites in dopamine-riche and other regions of rat brain

    International Nuclear Information System (INIS)

    Poat, J.A.; Cripps, H.E.; Iversen, L.L.

    1988-01-01

    Forskolin labelled with [ 3 H] bound to high- and low-affinity sites in the rat brain. The high-affinity site was discretely located, with highest densities in the striatum, nucleus accumbens, olfactory tubercule, substantia nigra, hippocampus, and the molecular layers of the cerebellum. This site did not correlate well with the distribution of adenylate cyclase. The high-affinity striatal binding site may be associated with a stimulatory guanine nucleotide-binding protein. Thus, the number of sites was increased by the addition of Mg 2+ and guanylyl imidodiphosphate. Cholera toxin stereotaxically injected into rat striatum increased the number of binding sites, and no further increase was noted following the subsequent addition of guanyl nucleotide. High-affinity forskolin binding sites in non-dopamine-rich brain areas (hippocampus and cerebullum) were modulated in a qualitatively different manner by guanyl nucleotides. In these areas the number of binding sites was significantly reduced by the addition of guanyl nucleotide. These results suggest that forskolin may have a potential role in identifying different functional/structural guanine nucleotide-binding proteins

  17. Double-spin asymmetries in the cross section of rho sup 0 and phi production at intermediate energies

    CERN Document Server

    Airapetian, A; Akopov, Z; Amarian, M

    2003-01-01

    Double-spin asymmetries in the cross section of electroproduction of rho sup 0 and phi mesons on the proton and deuteron are measured at the HERMES experiment. The photoabsorption asymmetry in exclusive rho sup 0 electroproduction on the proton exhibits a positive tendency. This is consistent with theoretical predictions that the exchange of an object with unnatural parity contributes to exclusive rho sup 0 electroproduction by transverse photons. The photoabsorption asymmetry on the deuteron is found to be consistent with zero. Double-spin asymmetries in rho sup 0 and phi meson electroproduction by quasi-real photons were also found to be consistent with zero; the asymmetry in the case of the phi meson is compatible with a theoretical prediction which involves s anti s knockout from the nucleon. (orig.)

  18. Structure directing agents induced morphology evolution and phase transition from indium-based rho- to sod-ZMOF

    KAUST Repository

    Shi, Yanshu; Cairns, Amy; Liu, Yunling; Belmabkhout, Youssef; Cai, Xuechao; Pang, Maolin; Eddaoudi, Mohamed

    2017-01-01

    In this report, indium-based rho-and sod-ZMOFs with different morphologies and sizes were prepared. Simultaneous morphology evolution and phase transformation from porous rho-to nonporous sod-ZMOFs were reported for the first time by simply varying the concentration of structure directing agents (SDAs).

  19. Structure directing agents induced morphology evolution and phase transition from indium-based rho- to sod-ZMOF

    KAUST Repository

    Shi, Yanshu

    2017-06-23

    In this report, indium-based rho-and sod-ZMOFs with different morphologies and sizes were prepared. Simultaneous morphology evolution and phase transformation from porous rho-to nonporous sod-ZMOFs were reported for the first time by simply varying the concentration of structure directing agents (SDAs).

  20. The electrochemical reduction of the purines guanine and adenine at platinum electrodes in several room temperature ionic liquids

    International Nuclear Information System (INIS)

    Zanoni, Maria Valnice Boldrin; Rogers, Emma I.; Hardacre, Christopher; Compton, Richard G.

    2010-01-01

    The reduction of guanine was studied by microelectrode voltammetry in the room temperature ionic liquids (RTILs) N-hexyltriethylammonium bis (trifluoromethanesulfonyl) imide [N 6,2,2,2 ][N(Tf) 2 ], 1-butyl-3-methylimidazolium hexafluorosphosphate [C 4 mim][PF 6 ], N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide [C 4 mpyrr][N(Tf) 2 ], 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C 4 mim][N(Tf) 2 ], N-butyl-N-methyl-pyrrolidinium dicyanamide [C 4 mpyrr][N(NC) 2 ] and tris(P-hexyl)-tetradecylphosphonium trifluorotris(pentafluoroethyl)phosphate [P 14,6,6,6 ][FAP] on a platinum microelectrode. In [N 6,2,2,2 ][NTf 2 ] and [P 14,6,6,6 ][FAP], but not in the other ionic liquids studied, guanine reduction involves a one-electron, diffusion-controlled process at very negative potential to produce an unstable radical anion, which is thought to undergo a dimerization reaction, probably after proton abstraction from the cation of the ionic liquid. The rate of this subsequent reaction depends on the nature of the ionic liquid, and it is faster in the ionic liquid [P 14,6,6,6 ][FAP], in which the formation of the resulting dimer can be voltammetrically monitored at less negative potentials than required for the reduction of the parent molecule. Adenine showed similar behaviour to guanine but the pyrimidines thymine and cytosine did not; thymine was not reduced at potentials less negative than required for solvent (RTIL) decomposition while only a poorly defined wave was seen for cytosine. The possibility for proton abstraction from the cation in [N 6,2,2,2 ][NTf 2 ] and [P 14,6,6,6 ][FAP] is noted and this is thought to aid the electrochemical dimerization process. The resulting rapid reaction is thought to shift the reduction potentials for guanine and adenine to lower values than observed in RTILs where the scope for proton abstraction is not present. Such shifts are characteristic of so-called EC processes where reversible electron transfer

  1. Higher order structural effects stabilizing the reverse watson-crick guanine-cytosine base pair in functional RNAs

    KAUST Repository

    Chawla, Mohit; Abdel-Azeim, Safwat; Oliva, Romina; Cavallo, Luigi

    2013-01-01

    of the Guanine can increase its stability. Herein, we extend our survey and report on other H-bonding interactions that can increase the stability of this base pair. To this aim, we performed a bioinformatics search of the PDB to locate all the occurencies of G

  2. Measurements of Branching Ratios And Search for CP Violation in the Modes B0 to Rho Pi, Rho K

    Energy Technology Data Exchange (ETDEWEB)

    Laplace, Sandrine; /Paris U., VI-VII

    2006-09-18

    The BABAR experiment, at the PEP-II collider at SLAC, has been studying since 1999 CP violation in the B meson system. After the precise measurement of sin2{beta}, one is now concentrating on measuring the angles {alpha} and {gamma} of the unitarity triangle. The work presented in this thesis concerns the measurement of the angle {alpha} in the B{sup 0} {yields} {rho}{pi} mode.

  3. Methanol conversion to lower olefins over RHO type zeolite

    KAUST Repository

    Masih, Dilshad; Imai, Hiroyuki; Yokoi, Toshiyuki; Kondo, Junkonomura; Tatsumi, Takashi

    2013-01-01

    Eight-membered ring small-pore zeolite of RHO-type topology has been synthesized, characterized and tested for methanol-to-olefin (MTO) reaction. The zeolite was hydrothermally crystallized from the gel with Si/Al ratio of 5.0. It showed a high BET

  4. Role of contractile prostaglandins and Rho-kinase in growth factor-induced airway smooth muscle contraction

    Directory of Open Access Journals (Sweden)

    Zaagsma Johan

    2005-07-01

    Full Text Available Abstract Background In addition to their proliferative and differentiating effects, several growth factors are capable of inducing a sustained airway smooth muscle (ASM contraction. These contractile effects were previously found to be dependent on Rho-kinase and have also been associated with the production of eicosanoids. However, the precise mechanisms underlying growth factor-induced contraction are still unknown. In this study we investigated the role of contractile prostaglandins and Rho-kinase in growth factor-induced ASM contraction. Methods Growth factor-induced contractions of guinea pig open-ring tracheal preparations were studied by isometric tension measurements. The contribution of Rho-kinase, mitogen-activated protein kinase (MAPK and cyclooxygenase (COX to these reponses was established, using the inhibitors Y-27632 (1 μM, U-0126 (3 μM and indomethacin (3 μM, respectively. The Rho-kinase dependency of contractions induced by exogenously applied prostaglandin F2α (PGF2α and prostaglandin E2 (PGE2 was also studied. In addition, the effects of the selective FP-receptor antagonist AL-8810 (10 μM and the selective EP1-antagonist AH-6809 (10 μM on growth factor-induced contractions were investigated, both in intact and epithelium-denuded preparations. Growth factor-induced PGF2α-and PGE2-release in the absence and presence of Y-27632, U-0126 and indomethacin, was assessed by an ELISA-assay. Results Epidermal growth factor (EGF-and platelet-derived growth factor (PDGF-induced contractions of guinea pig tracheal smooth muscle preparations were dependent on Rho-kinase, MAPK and COX. Interestingly, growth factor-induced PGF2α-and PGE2-release from tracheal rings was significantly reduced by U-0126 and indomethacin, but not by Y-27632. Also, PGF2α-and PGE2-induced ASM contractions were largely dependent on Rho-kinase, in contrast to other contractile agonists like histamine. The FP-receptor antagonist AL-8810 (10 μM significantly

  5. T^{\\sigma}_{\\rho}(G) Theories and Their Hilbert Series

    CERN Document Server

    Cremonesi, Stefano; Mekareeya, Noppadol; Zaffaroni, Alberto

    2015-01-01

    We give an explicit formula for the Higgs and Coulomb branch Hilbert series for the class of 3d N=4 superconformal gauge theories T^{\\sigma}_{\\rho}(G) corresponding to a set of D3 branes ending on NS5 and D5-branes, with or without O3 planes. Here G is a classical group, \\sigma is a partition of G and \\rho a partition of the dual group G^\\vee. In deriving such a formula we make use of the recently discovered formula for the Hilbert series of the quantum Coulomb branch of N=4 superconformal theories. The result can be expressed in terms of a generalization of a class of symmetric functions, the Hall-Littlewood polynomials, and can be interpreted in mathematical language in terms of localization. We mainly consider the case G=SU(N) but some interesting results are also given for orthogonal and symplectic groups.

  6. Neurodevelopmental disease-associated de novo mutations and rare sequence variants affect TRIO GDP/GTP exchange factor activity.

    Science.gov (United States)

    Katrancha, Sara M; Wu, Yi; Zhu, Minsheng; Eipper, Betty A; Koleske, Anthony J; Mains, Richard E

    2017-12-01

    Bipolar disorder, schizophrenia, autism and intellectual disability are complex neurodevelopmental disorders, debilitating millions of people. Therapeutic progress is limited by poor understanding of underlying molecular pathways. Using a targeted search, we identified an enrichment of de novo mutations in the gene encoding the 330-kDa triple functional domain (TRIO) protein associated with neurodevelopmental disorders. By generating multiple TRIO antibodies, we show that the smaller TRIO9 isoform is the major brain protein product, and its levels decrease after birth. TRIO9 contains two guanine nucleotide exchange factor (GEF) domains with distinct specificities: GEF1 activates both Rac1 and RhoG; GEF2 activates RhoA. To understand the impact of disease-associated de novo mutations and other rare sequence variants on TRIO function, we utilized two FRET-based biosensors: a Rac1 biosensor to study mutations in TRIO (T)GEF1, and a RhoA biosensor to study mutations in TGEF2. We discovered that one autism-associated de novo mutation in TGEF1 (K1431M), at the TGEF1/Rac1 interface, markedly decreased its overall activity toward Rac1. A schizophrenia-associated rare sequence variant in TGEF1 (F1538Intron) was substantially less active, normalized to protein level and expressed poorly. Overall, mutations in TGEF1 decreased GEF1 activity toward Rac1. One bipolar disorder-associated rare variant (M2145T) in TGEF2 impaired inhibition by the TGEF2 pleckstrin-homology domain, resulting in dramatically increased TGEF2 activity. Overall, genetic damage to both TGEF domains altered TRIO catalytic activity, decreasing TGEF1 activity and increasing TGEF2 activity. Importantly, both GEF changes are expected to decrease neurite outgrowth, perhaps consistent with their association with neurodevelopmental disorders. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Potent and Selective Peptide-based Inhibition of the G Protein Gαq.

    Science.gov (United States)

    Charpentier, Thomas H; Waldo, Gary L; Lowery-Gionta, Emily G; Krajewski, Krzysztof; Strahl, Brian D; Kash, Thomas L; Harden, T Kendall; Sondek, John

    2016-12-02

    In contrast to G protein-coupled receptors, for which chemical and peptidic inhibitors have been extensively explored, few compounds are available that directly modulate heterotrimeric G proteins. Active Gα q binds its two major classes of effectors, the phospholipase C (PLC)-β isozymes and Rho guanine nucleotide exchange factors (RhoGEFs) related to Trio, in a strikingly similar fashion: a continuous helix-turn-helix of the effectors engages Gα q within its canonical binding site consisting of a groove formed between switch II and helix α3. This information was exploited to synthesize peptides that bound active Gα q in vitro with affinities similar to full-length effectors and directly competed with effectors for engagement of Gα q A representative peptide was specific for active Gα q because it did not bind inactive Gα q or other classes of active Gα subunits and did not inhibit the activation of PLC-β3 by Gβ 1 γ 2 In contrast, the peptide robustly prevented activation of PLC-β3 or p63RhoGEF by Gα q ; it also prevented G protein-coupled receptor-promoted neuronal depolarization downstream of Gα q in the mouse prefrontal cortex. Moreover, a genetically encoded form of this peptide flanked by fluorescent proteins inhibited Gα q -dependent activation of PLC-β3 at least as effectively as a dominant-negative form of full-length PLC-β3. These attributes suggest that related, cell-penetrating peptides should effectively inhibit active Gα q in cells and that these and genetically encoded sequences may find application as molecular probes, drug leads, and biosensors to monitor the spatiotemporal activation of Gα q in cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Rac1 modulates G-protein-coupled receptor-induced bronchial smooth muscle contraction.

    Science.gov (United States)

    Sakai, Hiroyasu; Kai, Yuki; Sato, Ken; Ikebe, Mitsuo; Chiba, Yohihiko

    2018-01-05

    Increasing evidence suggests a functional role of RhoA/Rho-kinase signalling as a mechanism for smooth muscle contraction; however, little is known regarding the roles of Rac1 and other members of the Rho protein family. This study aimed to examine whether Rac1 modulates bronchial smooth muscle contraction. Ring preparations of bronchi isolated from rats were suspended in an organ bath, and isometric contraction of circular smooth muscle was measured. Immunoblotting was used to examine myosin light chain phosphorylation in bronchial smooth muscle. Our results demonstrated that muscle contractions induced by carbachol (CCh) and endothelin-1 (ET-1) were inhibited by EHT1864, a selective Rac1 inhibitor, and NSC23766, a selective inhibitor of Rac1-specific guanine nucleotide exchange factors. Similarly, myosin light chain and myosin phosphatase target subunit 1 (MYPT1) at Thr853 phosphorylation induced by contractile agonist were inhibited with Rac1 inhibition. However, contractions induced by high K + , calyculin A (a potent protein phosphatase inhibitor) and K + /PDBu were not inhibited by these Rac1 inhibitors. Interestingly, NaF (a G-protein activator)-induced contractions were inhibited by EHT1864 but not by NSC23766. We next examined the effects of a trans-acting activator of transcription protein transduction domain (PTD) fusion protein with Rac1 (PTD-Rac1) on muscle contraction. The constitutively active form of PTD-Rac1 directly induced force development and contractions were abolished by EHT1864. These results suggest that Rac1, activated by G protein-coupled receptor agonists, such as CCh and ET-1, may induce myosin light chain and MYPT phosphorylation and modulate the contraction of bronchial smooth muscle. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Involvement of Rho kinase in the pathogenesis of acute pulmonary embolism-induced polystyrene microspheres in rats.

    Science.gov (United States)

    Toba, M; Nagaoka, T; Morio, Y; Sato, K; Uchida, K; Homma, N; Takahashi, K

    2010-03-01

    Acute pulmonary embolism (PE) is a life-threatening disease, and several vasoconstrictors, including endothelin-1 (ET-1), play a key role in vasoconstriction and hypoxemia during the development of PE. Rho kinase is activated by various vasoconstrictors resulting in vascular contraction and remodeling. Recent evidence has revealed an important role of Rho kinase in the pathogenesis of systemic and pulmonary vascular diseases. However, contribution of Rho kinase in PE remains unclear. We thus investigated the role of Rho kinase in the PE rat model induced by intrajugular administration of polystyrene microspheres (mean diameter, 26 microm). At 6 h following the administration of microspheres (1.5 ml/kg), right ventricular systolic pressure (RVSP) was higher in the PE than in the control rats (15.8 +/- 1.6 vs. 32.9 +/- 7.5 mmHg). Arterial oxygen tension was lower (92.3 +/- 12.5 vs. 66.0 +/- 17.7 Torr), and alveolar-arterial difference in oxygen partial pressure was higher (3.9 +/- 3.8 vs. 36.5 +/- 26.9 Torr) in the PE rats. Western blotting analysis revealed upregulation and downregulation in expression of vascular cell adhesion molecule-1 and endothelial nitric oxide synthase in lungs from the PE rats, respectively, and radioimmunoassay demonstrated an increase in plasma ET-1 levels. Lung Rho kinase alpha expression was greater in the PE rats. At 5 h following administration of microspheres (0.75 ml/kg), intravenous Rho kinase inhibitors HA1077 and Y27632 (3 mg/kg each) attenuated elevation of RVSP (22.0 +/- 3.7, 17.1 +/- 3.2, 14.3 +/- 2.6 mmHg, PE, PE+HA1077, PE+Y27632) and the severity of hypoxemia (66.3 +/- 16.2, 94.9 +/- 23.0, 89.1 +/- 8.5 Torr, PE, PE+HA1077, PE+Y27632) in the PE rats. These results suggest that pulmonary endothelial dysfunction and activation of Rho kinase may contribute to the potentiation of vasoconstriction and hypoxemia in the PE rats.

  10. Rho0 production and possible modification in Au+Au and p+p collisions at square root [sNN] = 200 GeV.

    Science.gov (United States)

    Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Ganti, M S; Gaudichet, L; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grebenyuk, O; Gronstal, S; Grosnick, D; Guertin, S M; Gupta, A; Gutierrez, T D; Hallman, T J; Hamed, A; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Hughes, E; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Jiang, H; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaplan, M; Keane, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; LeVine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mischke, A; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, D A; Morozov, V; De Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seyboth, P; Shahaliev, E; Shao, M; Shao, W; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Timoshenko, S; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Varma, R; Vasilevski, I; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Vznuzdaev, M; Waggoner, W; Wang, F; Wang, G; Wang, G; Wang, X L; Wang, Y; Wang, Z M; Ward, H; Watson, J W; Webb, J C; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Yuting, B; Zanevski, Y V; Zhang, H; Zhang, W M; Zhang, Z P; Zhaomin, Z P; Zizong, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N

    2004-03-05

    We report results on rho(770)(0)-->pi(+)pi(-) production at midrapidity in p+p and peripheral Au+Au collisions at sqrt[s(NN)]=200 GeV. This is the first direct measurement of rho(770)(0)-->pi(+)pi(-) in heavy-ion collisions. The measured rho(0) peak in the invariant mass distribution is shifted by approximately 40 MeV/c(2) in minimum bias p+p interactions and approximately 70 MeV/c(2) in peripheral Au+Au collisions. The rho(0) mass shift is dependent on transverse momentum and multiplicity. The modification of the rho(0) meson mass, width, and shape due to phase space and dynamical effects are discussed.

  11. Rho meson decay width in SU(2) gauge theories with 2 fundamental flavours

    CERN Document Server

    Janowski, Tadeusz; Pica, Claudio

    2016-01-01

    SU(2) gauge theories with two quark flavours in the fundamental representation are among the most promising theories of composite dynamics describing the electroweak sector. Three out of five Goldstone bosons in these models become the longitudinal components of the W and Z bosons giving them mass. Like in QCD, we expect a spectrum of excitations which appear as resonances in vector boson scattering, in particular the vector resonance corresponding to the rho-meson in QCD. In this talk I will present the preliminary results of the first calculation of the rho-meson decay width in this theory, which is analogous to rho to two pions decay calculation in QCD. The results presented were calculated in a moving frame with total momentum (0,0,1) on two ensembles. Future plans include using 3 moving frames on a larger set of ensembles to extract the resonance parameters more reliably and also take the chiral and continuum limits.

  12. UNC-73/Trio RhoGEF-2 Activity Modulates Caenorhabditis elegans Motility Through Changes in Neurotransmitter Signaling Upstream of the GSA-1/Gαs Pathway

    Science.gov (United States)

    Hu, Shuang; Pawson, Tony; Steven, Robert M.

    2011-01-01

    Rho-family GTPases play regulatory roles in many fundamental cellular processes. Caenorhabditis elegans UNC-73 RhoGEF isoforms function in axon guidance, cell migration, muscle arm extension, phagocytosis, and neurotransmission by activating either Rac or Rho GTPase subfamilies. Multiple differentially expressed UNC-73 isoforms contain a Rac-specific RhoGEF-1 domain, a Rho-specific RhoGEF-2 domain, or both domains. The UNC-73E RhoGEF-2 isoform is activated by the G-protein subunit Gαq and is required for normal rates of locomotion; however, mechanisms of UNC-73 and Rho pathway regulation of locomotion are not clear. To better define UNC-73 function in the regulation of motility we used cell-specific and inducible promoters to examine the temporal and spatial requirements of UNC-73 RhoGEF-2 isoform function in mutant rescue experiments. We found that UNC-73E acts within peptidergic neurons of mature animals to regulate locomotion rate. Although unc-73 RhoGEF-2 mutants have grossly normal synaptic morphology and weak resistance to the acetylcholinesterase inhibitor aldicarb, they are significantly hypersensitive to the acetylcholine receptor agonist levamisole, indicating alterations in acetylcholine neurotransmitter signaling. Consistent with peptidergic neuron function, unc-73 RhoGEF-2 mutants exhibit a decreased level of neuropeptide release from motor neuron dense core vesicles (DCVs). The unc-73 locomotory phenotype is similar to those of rab-2 and unc-31, genes with distinct roles in the DCV-mediated secretory pathway. We observed that constitutively active Gαs pathway mutations, which compensate for DCV-mediated signaling defects, rescue unc-73 RhoGEF-2 and rab-2 lethargic movement phenotypes. Together, these data suggest UNC-73 RhoGEF-2 isoforms are required for proper neurotransmitter signaling and may function in the DCV-mediated neuromodulatory regulation of locomotion rate. PMID:21750262

  13. Crucial role of rho-kinase in pressure overload-induced right ventricular hypertrophy and dysfunction in mice.

    Science.gov (United States)

    Ikeda, Shohei; Satoh, Kimio; Kikuchi, Nobuhiro; Miyata, Satoshi; Suzuki, Kota; Omura, Junichi; Shimizu, Toru; Kobayashi, Kenta; Kobayashi, Kazuto; Fukumoto, Yoshihiro; Sakata, Yasuhiko; Shimokawa, Hiroaki

    2014-06-01

    Right ventricular (RV) failure is the leading cause of death in various cardiopulmonary diseases, including pulmonary hypertension. It is generally considered that the RV is vulnerable to pressure overload as compared with the left ventricle (LV). However, as compared with LV failure, the molecular mechanisms of RV failure are poorly understood, and hence therapeutic targets of the disorder remain to be elucidated. Thus, we aimed to identify molecular therapeutic targets for RV failure in a mouse model of pressure overload. To induce pressure overload to respective ventricles, we performed pulmonary artery constriction or transverse aortic constriction in mice. We first performed microarray analysis and found that the molecules related to RhoA/Rho-kinase and integrin pathways were significantly upregulated in the RV with pulmonary artery constriction compared with the LV with transverse aortic constriction. Then, we examined the responses of both ventricles to chronic pressure overload in vivo. We demonstrated that compared with transverse aortic constriction, pulmonary artery constriction caused greater extents of mortality, Rho-kinase expression (especially ROCK2 isoform), and oxidative stress in pressure-overloaded RV, reflecting the weakness of the RV in response to pressure overload. Furthermore, mice with myocardial-specific overexpression of dominant-negative Rho-kinase showed resistance to pressure overload-induced hypertrophy and dysfunction associated with reduced oxidative stress. Finally, dominant-negative Rho-kinase mice showed a significantly improved long-term survival in both pulmonary artery constriction and transverse aortic constriction as compared with littermate controls. These results indicate that the Rho-kinase pathway plays a crucial role in RV hypertrophy and dysfunction, suggesting that the pathway is a novel therapeutic target of RV failure in humans. © 2014 American Heart Association, Inc.

  14. Fabrication and non-covalent modification of highly oriented thin films of a zeolite-like metal-organic framework (ZMOF) with rho topology

    KAUST Repository

    Shekhah, Osama; Cadiau, Amandine; Eddaoudi, Mohamed

    2015-01-01

    Here we report the fabrication of the first thin film of a zeolite-like metal-organic framework (ZMOF) with rho topology (rho-ZMOF-1, ([In48(HImDC)96]48-)n) in a highly oriented fashion on a gold-functionalized substrate. The oriented rho-ZMOF-1

  15. Antinociceptive effect of purine nucleotides.

    Science.gov (United States)

    Mello, C F; Begnini, J; De-La-Vega, D D; Lopes, F P; Schwartz, C C; Jimenez-Bernal, R E; Bellot, R G; Frussa-Filho, R

    1996-10-01

    The antinociceptive effect of purine nucleotides administered systematically (sc) was determined using the formalin and writhing tests in adult male albino mice. The mechanisms underlying nucleotide-induced antinociception were investigated by preinjecting the animals (sc) with specific antagonists for opioid (naloxone, 1 mg/kg), purinergic P1 (caffeine, 5, 10, of 30 mg/kg); theophylline, 10 mg/kg) or purinergic P2 receptors (suramin, 100 mg/kg; Coomassie blue, 30-300 mg/kg; quinidine, 10 mg/kg). Adenosine, adenosine monophosphate (AMP), diphosphate (ADP) and triphosphate (ATP) caused a reduction in the number of writhes and in the time of licking the formalin-injected paw. Naloxone had no effect on adenosine- or adenine nucleotide-induced antinociception. Caffeine (30 mg/kg) and theophylline (10 mg/kg) reversed the antinociceptive action of adenosine and adenine nucleotide derivatives in both tests. P2 antagonists did not reverse adenine nucleotide-induced antinociception. These results suggest that antinociceptive effect of adenine nucleotides is mediated by adenosine.

  16. Effect of QSKL on MAPK and RhoA Pathways in a Rat Model of Heart Failure

    Directory of Open Access Journals (Sweden)

    Kai Xia

    2017-01-01

    Full Text Available Qishenkeli (QSKL is one of the Chinese medicine formulae for treating heart failure and has been shown to have an antifibrotic effect. However, the mechanism of its therapeutic effects remains unclear. In this study, we aimed to explore whether QSKL could exert an antifibrotic effect by attenuating ras homolog family member A (RhoA and mitogen activated protein kinase (MAPK pathways. Rats were randomly divided into sham group, model group, QSKL group, and positive control group. Heart failure was induced by ligation of the left ventricle anterior descending artery. Cardiac functions were measured by echocardiography and collagen deposition was assessed by Masson staining. Expressions of the key molecules involved in the RhoA and MAPK pathways were also measured. Twenty-one days after surgery, cardiac functions were severely impaired and collagen deposition was remarkable, while QSKL treatment could improve heart functions and alleviate collagen deposition. Further results demonstrated that the effects may be mediated by suppressing expressions of extracellular signal-regulated kinase (ERK and c-Jun N-terminal kinase (JNK. Moreover, expressions of RhoA, Rho-associated protein kinase 1/2 (ROCK1/2, and phosphorylated myosin light chain (p-MLC were also downregulated by QSKL compared with the model group. The cardioprotective mechanism of QSKL on heart failure is probably mediated by regulating both the MAPK and RhoA signaling pathways.

  17. Kindlin-2 Association with Rho GDP-Dissociation Inhibitor α Suppresses Rac1 Activation and Podocyte Injury.

    Science.gov (United States)

    Sun, Ying; Guo, Chen; Ma, Ping; Lai, Yumei; Yang, Fan; Cai, Jun; Cheng, Zhehao; Zhang, Kuo; Liu, Zhongzhen; Tian, Yeteng; Sheng, Yue; Tian, Ruijun; Deng, Yi; Xiao, Guozhi; Wu, Chuanyue

    2017-12-01

    Alteration of podocyte behavior is critically involved in the development and progression of many forms of human glomerular diseases. The molecular mechanisms that control podocyte behavior, however, are not well understood. Here, we investigated the role of Kindlin-2, a component of cell-matrix adhesions, in podocyte behavior in vivo Ablation of Kindlin-2 in podocytes resulted in alteration of actin cytoskeletal organization, reduction of the levels of slit diaphragm proteins, effacement of podocyte foot processes, and ultimately massive proteinuria and death due to kidney failure. Through proteomic analyses and in vitro coimmunoprecipitation experiments, we identified Rho GDP-dissociation inhibitor α (RhoGDI α ) as a Kindlin-2-associated protein. Loss of Kindlin-2 in podocytes significantly reduced the expression of RhoGDI α and resulted in the dissociation of Rac1 from RhoGDI α , leading to Rac1 hyperactivation and increased motility of podocytes. Inhibition of Rac1 activation effectively suppressed podocyte motility and alleviated the podocyte defects and proteinuria induced by the loss of Kindlin-2 in vivo Our results identify a novel Kindlin-2-RhoGDI α -Rac1 signaling axis that is critical for regulation of podocyte structure and function in vivo and provide evidence that it may serve as a useful target for therapeutic control of podocyte injury and associated glomerular diseases. Copyright © 2017 by the American Society of Nephrology.

  18. Raf-1/CK2 and RhoA/ROCK signaling promote TNF-α-mediated endothelial apoptosis via regulating vimentin cytoskeleton.

    Science.gov (United States)

    Yang, Lifeng; Tang, Lian; Dai, Fan; Meng, Guoliang; Yin, Runting; Xu, Xiaole; Yao, Wenjuan

    2017-08-15

    Both RhoA/ROCK and Raf-1/CK2 pathway play essential roles in cell proliferation, apoptosis, differentiation, and multiple other common cellular functions. We previously reported that vimentin is responsible for TNF-α-induced cell apoptosis. Herein, we investigated the regulation of RhoA/ROCK and Raf-1/CK2 signaling on vimentin filaments and endothelial apoptosis mediated by TNF-α. Treatment with TNF-α significantly induced the activation of RhoA and ROCK, and the expression of ROCK1. RhoA deficiency could obviously inhibit ROCK activation and ROCK1 expression induced by TNF-α. Both RhoA deficiency and ROCK activity inhibition (Y-27632) greatly inhibited endothelial apoptosis and preserved cell viability in TNF-α-induced human umbilical vein endothelial cells (HUVECs). Also vimentin phosphorylation and the remodeling of vimentin or phospho-vimentin induced by TNF-α were obviously attenuated by RhoA suppression and ROCK inhibition. TNF-α-mediated vimentin cleavage was significantly inhibited by RhoA suppression and ROCK inhibition through decreasing the activation of caspase3 and 8. Furthermore, TNF-α treatment greatly enhanced the activation of Raf-1. Suppression of Raf-1 or CK2 by its inhibitor (GW5074 or TBB) blocked vimentin phosphorylation, remodeling and endothelial apoptosis, and preserved cell viability in TNF-α-induced HUVECs. However, Raf-1 inhibition showed no significant effect on TNF-α-induced ROCK expression and activation, suggesting that the regulation of Raf-1/CK2 signaling on vimentin was independent of ROCK. Taken together, these results indicate that both RhoA/ROCK and Raf-1/CK2 pathway are responsible for TNF-α-mediated endothelial cytotoxicity via regulating vimentin cytoskeleton. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Inverse relationship between TCTP/RhoA and p53/ /cyclin A/actin expression in ovarian cancer cells Inverse relationship between TCTP/RhoA and p53/ /cyclin A/actin expression in ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Malgorzata Kloc

    2012-10-01

    Full Text Available The translationally controlled tumor protein (TCTP plays a role in cell growth, cell cycle and cancer
    progression. TCTP controls negatively the stability of the p53 tumor suppressor protein and interacts with the
    cellular cytoskeleton. The deregulation of the actin and cytokeratin cytoskeleton is responsible for the increased
    migratory activity of tumor cells and is linked with poor patient outcome. Recent studies indicate that cyclin A,
    a key regulator of cell cycle, controls actin organization and negatively regulates cell motility via regulation of RhoA
    expression. We studied the organization of actin and cytokeratin cytoskeleton and the expression of TCTP, p53,
    cyclin A, RhoA and actin in HIO180 non-transformed ovarian epithelial cells, and OVCAR3 and SKOV3 (expressing
    low level of inducible p53 ovarian epithelial cancer cells with different metastatic potential. Immunostaining
    and ultrastructural analyses illustrated a dramatic difference in the organization of the cytokeratin and actin
    filaments in non-transformed versus cancer cell lines. We also determined that there is an inverse relationship between
    the level of TCTP/RhoA and actin/p53/cyclin A expression in ovarian cancer cell lines. This previously unidentified
    negative relationship between TCTP/RhoA and actin/p53/cyclin A may suggest that this interaction is linked
    with the high aggressiveness of ovarian cancers.The translationally controlled tumor protein (TCTP plays a role in cell growth, cell cycle and cancer
    progression. TCTP controls negatively the stability of the p53 tumor suppressor protein and interacts with the
    cellular cytoskeleton. The deregulation of the actin and cytokeratin cytoskeleton is responsible for the increased
    migratory activity of tumor cells and is linked with poor patient outcome. Recent studies indicate that cyclin A,
    a key regulator of cell cycle, controls actin organization

  20. The arabidopsis cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara Elizabeth

    2016-05-11

    Background Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and phosphodiesterases that are the main targets of cyclic nucleotides in animals. Methods An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis thaliana. The identified proteins were subjected to a computational analysis that included a sequence, transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic nucleotide signaling. Results A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP and nitric oxide treatment. Conclusions We propose that the identified proteins function together as points of cross-talk between cyclic nucleotide, nitric oxide and reactive oxygen species signaling during the defence response.

  1. Rho proteins − the key regulators of cytoskeleton in the progression of mitosis and cytokinesis

    Directory of Open Access Journals (Sweden)

    Anna Klimaszewska

    2011-11-01

    Full Text Available The Rho proteins are members of the Ras superfamily of small GTPases. They are thought to be crucial regulators of multiple signal transduction pathways that influence a wide range of cellular functions, including migration, membrane trafficking, adhesion, polarity and cell shape changes. Thanks to their ability to control the assembly and organization of the actin and microtubule cytoskeletons, Rho GTPases are known to regulate mitosis and cytokinesis progression. These proteins are required for formation and rigidity of the cortex during mitotic cell rounding, mitotic spindle formation and attachment of the spindle microtubules to the kinetochore. In addition, during cytokinesis, they are involved in promoting division plane determination, contractile ring and cleavage furrow formation and abscission. They are also known as regulators of cell cycle progression at the G1/S and G2/M transition. Thus, the signal transduction pathways in which Rho proteins participate, appear to connect dynamics of actin and microtubule cytoskeletons to cell cycle progression. We review the current state of knowledge concerning the molecular mechanisms by which Rho GTPase signaling regulates remodeling of actin and microtubule cytoskeletons in order to control cell division progression.

  2. Exclusive {rho}{sup 0} meson cross section ratios on deuterium and hydrogen targets

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, A.G.S.

    2006-08-15

    The HERMES experiment is a large forward angle spectrometer located at the HERA accelerator ring at DESY, Hamburg. This thesis presents the analysis of the kinematic dependencies of {rho}{sup 0} vector meson production on hydrogen and deuterium targets. The relative gluon and quark contribution to the {rho}{sup 0} production amplitude is expected to depend on the kinematical variable x{sub Bj}, and by measuring the ratio of {rho}{sup 0} electroproduction cross sections on deuterium and hydrogen from HERMES data this dependence is confirmed. This thesis describes the methods used to extract the cross section ratio from the HERMES data taken between the years 1996 and 2000 and compares the results with the theoretical predictions. Until 2005 the missing mass resolution of the HERMES spectrometer was only sufficient to allow exclusivity at the level of a data sample. The HERMES Recoil Detector, installed in early 2006, is an upgrade which will augment the HERMES spectrometer by establishing exclusivity at the event level and therefore improving the resolution to which various kinematical variables may be reconstructed. Additionally, the Recoil Detector will contribute to the overall background suppression capability of the HERMES spectrometer. These improvements will provide a strong reduction in the statistical uncertainties present in the {rho}{sup 0}-analysis and other analyses at HERMES. The Recoil Detector critically relies on its track reconstruction software to enable its capability to provide event level exclusive measurements. This tracking code is presented in detail. (orig.)

  3. Reduction of Fibrogenesis by Selective Delivery of a Rho Kinase Inhibitor to Hepatic Stellate Cells in Mice

    NARCIS (Netherlands)

    van Beuge, M. M.; Prakash, J.; Lacombe, M.; Gosens, R.; Post, E.; Reker-Smit, C.; Beljaars, L.; Poelstra, K.

    One of the pathways activated during liver fibrosis is the Rho kinase pathway, which regulates activation, migration, and contraction of hepatic stellate cells (HSC). Inhibition of this kinase by the Rho kinase inhibitor Y27632 [(+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl)cyclohexanecarboxamide

  4. Coherent rho+ production in neutrino-neon interactions

    International Nuclear Information System (INIS)

    Ballagh, H.C.; Bingham, H.H.; Lawry, T.J.

    1988-01-01

    Coherent rho + production on neon nuclei has been observed in charged-current events in a neutrino bubble-chamber experiment. The incident neutrino energy was 10--320 GeV, with a median event energy of 80 GeV. The rate per charged-current event was (0.28 +- 0.10)%. Comparison was made to vector-meson-dominance predictions; agreement with the overall rate, but disagreement at high neutrino energies and at high Q 2 , was found

  5. Structural determinants for antagonist pharmacology that distinguish the rho1 GABAC receptor from GABAA receptors.

    Science.gov (United States)

    Zhang, Jianliang; Xue, Fenqin; Chang, Yongchang

    2008-10-01

    GABA receptor (GABAR) types C (GABACR) and A (GABAAR) are both GABA-gated chloride channels that are distinguished by their distinct competitive antagonist properties. The structural mechanism underlying these distinct properties is not well understood. In this study, using previously identified binding residues as a guide, we made individual or combined mutations of nine binding residues in the rho1 GABACR subunit to their counterparts in the alpha1beta2gamma2 GABAAR or reverse mutations in alpha1 or beta2 subunits. The mutants were expressed in Xenopus laevis oocytes and tested for sensitivities of GABA-induced currents to the GABAA and GABAC receptor antagonists. The results revealed that bicuculline insensitivity of the rho1 GABACR was mainly determined by Tyr106, Phe138 and Phe240 residues. Gabazine insensitivity of the rho1 GABACR was highly dependent on Tyr102, Tyr106, and Phe138. The sensitivity of the rho1 GABACR to 3-aminopropyl-phosphonic acid and its analog 3-aminopropyl-(methyl)phosphinic acid mainly depended on residues Tyr102, Val140, FYS240-242, and Phe138. Thus, the residues Tyr102, Tyr106, Phe138, and Phe240 in the rho1 GABACR are major determinants for its antagonist properties distinct from those in the GABAAR. In addition, Val140 in the GABACR contributes to 3-APA binding. In conclusion, we have identified the key structural elements underlying distinct antagonist properties for the GABACR. The mechanistic insights were further extended and discussed in the context of antagonists docking to the homology models of GABAA or GABAC receptors.

  6. Inhibition of Rho-associated kinases disturbs the collective cell migration of stratified TE-10 cells

    Directory of Open Access Journals (Sweden)

    Taro Mikami

    2015-01-01

    Full Text Available BACKGROUND: The collective cell migration of stratified epithelial cells is considered to be an important phenomenon in wound healing, development, and cancer invasion; however, little is known about the mechanisms involved. Furthermore, whereas Rho family proteins, including RhoA, play important roles in cell migration, the exact role of Rho-associated coiled coil-containing protein kinases (ROCKs in cell migration is controversial and might be cell-type dependent. Here, we report the development of a novel modified scratch assay that was used to observe the collective cell migration of stratified TE-10 cells derived from a human esophageal cancer specimen. RESULTS: Desmosomes were found between the TE-10 cells and microvilli of the surface of the cell sheet. The leading edge of cells in the cell sheet formed a simple layer and moved forward regularly; these rows were followed by the stratified epithelium. ROCK inhibitors and ROCK small interfering RNAs (siRNAs disturbed not only the collective migration of the leading edge of this cell sheet, but also the stratified layer in the rear. In contrast, RhoA siRNA treatment resulted in more rapid migration of the leading rows and disturbed movement of the stratified portion. CONCLUSIONS: The data presented in this study suggest that ROCKs play an important role in mediating the collective migration of TE-10 cell sheets. In addition, differences between the effects of siRNAs targeting either RhoA or ROCKs suggested that distinct mechanisms regulate the collective cell migration in the simple epithelium of the wound edge versus the stratified layer of the epithelium.

  7. Rho Ophiuchi Cloud Core Extinction Map

    Science.gov (United States)

    Gibson, D. J.; Rudolph, A.; Barsony, M.

    1997-12-01

    We present an extinction map of a one square degree region ( ~ 2.2pc square) of the core of the star-forming region rho Ophiuchi derived by the method of star counts. Photometry from the near-infrared J, H, and K band images of Barsony et al. (1997) provided the stellar catalog for this study. From this map an estimate of the mass of the region is made and compared with previous estimates from other methods. Reference Barsony, M., Kenyon, S.J., Lada, E.A., & Teuben, P.J. 1997, ApJS, 112, 109

  8. Podoplanin, ezrin, and Rho-A proteins may have joint participation in tumor invasion of lip cancer.

    Science.gov (United States)

    Assao, Agnes; Nonogaki, Suely; Lauris, José Roberto Pereira; Carvalho, André Lopes; Pinto, Clóvis Antônio Lopes; Soares, Fernando Augusto; Kowalski, Luiz Paulo; Oliveira, Denise Tostes

    2017-06-01

    Podoplanin and ezrin connection through Rho-A phosphorylation have been suggested as part of the activation pathway, in the process of tumor invasion and cell movement in oral squamous cell carcinomas. The aim of this study was to evaluate the correlation among podoplanin, ezrin, and Rho-A immunoexpressions in 91 squamous cells carcinomas of the lower lip and their influence in patient's prognosis. The immunoexpressions of podoplanin, ezrin, and Rho-A were evaluated through a semi-quantitative score method, based on the capture of 10 microscopic fields at the front of tumor invasion. The association and correlation of these proteins with the clinicopathological features were verified by Fischer's exact test and Spearman's test. The prognostic values were analyzed by Kaplan-Meier method and log-rank test. A statistically significant association between strong cytoplasmic podoplanin expression and alcohol (p = 0.024), loco-regional recurrences (p = 0.028), and lymph node metastasis (pN+) (p = 0.010) was found. The membranous (p = 0.000 and r = 0.384) and cytoplasmic (p = 0.000 and r = 0.344) podoplanin expression was statistically correlated with ezrin expression. Also, membranous podoplanin was significantly correlated with Rho-A expression (p = 0.006 and r = 0.282). The expressions of podoplanin, ezrin, and Rho-A were not significant prognostic factors for patients with squamous cell carcinomas of the lower lip. Therefore, our results confirm a correlation among podoplanin, ezrin, and Rho-A expressions in squamous cell carcinoma of the lip suggesting a cooperative participation of these proteins in cell movement and invasion. Furthermore, strong cytoplasmic podoplanin expression could be helpful to identify patients with squamous cell carcinoma of the lip and lower risk of loco-regional recurrences.

  9. The Rho kinases I and II regulate different aspects of myosin II activity

    DEFF Research Database (Denmark)

    Yoneda, Atsuko; Multhaupt, Hinke A B; Couchman, John R

    2005-01-01

    The homologous mammalian rho kinases (ROCK I and II) are assumed to be functionally redundant, based largely on kinase construct overexpression. As downstream effectors of Rho GTPases, their major substrates are myosin light chain and myosin phosphatase. Both kinases are implicated in microfilament...... bundle assembly and smooth muscle contractility. Here, analysis of fibroblast adhesion to fibronectin revealed that although ROCK II was more abundant, its activity was always lower than ROCK I. Specific reduction of ROCK I by siRNA resulted in loss of stress fibers and focal adhesions, despite...

  10. Different roles of the small GTPases Rac1, Cdc42, and RhoG in CALEB/NGC-induced dendritic tree complexity.

    Science.gov (United States)

    Schulz, Jana; Franke, Kristin; Frick, Manfred; Schumacher, Stefan

    2016-10-01

    Rho GTPases play prominent roles in the regulation of cytoskeletal reorganization. Many aspects have been elaborated concerning the individual functions of Rho GTPases in distinct signaling pathways leading to cytoskeletal rearrangements. However, major questions have yet to be answered regarding the integration and the signaling hierarchy of different Rho GTPases in regulating the cytoskeleton in fundamental physiological events like neuronal process differentiation. Here, we investigate the roles of the small GTPases Rac1, Cdc42, and RhoG in defining dendritic tree complexity stimulated by the transmembrane epidermal growth factor family member CALEB/NGC. Combining gain-of-function and loss-of-function analysis in primary hippocampal neurons, we find that Rac1 is essential for CALEB/NGC-mediated dendritic branching. Cdc42 reduces the complexity of dendritic trees. Interestingly, we identify the palmitoylated isoform of Cdc42 to adversely affect dendritic outgrowth and dendritic branching, whereas the prenylated Cdc42 isoform does not. In contrast to Rac1, CALEB/NGC and Cdc42 are not directly interconnected in regulating dendritic tree complexity. Unlike Rac1, the Rac1-related GTPase RhoG reduces the complexity of dendritic trees by acting upstream of CALEB/NGC. Mechanistically, CALEB/NGC activates Rac1, and RhoG reduces the amount of CALEB/NGC that is located at the right site for Rac1 activation at the cell membrane. Thus, Rac1, Cdc42, and RhoG perform very specific and non-redundant functions at different levels of hierarchy in regulating dendritic tree complexity induced by CALEB/NGC. Rho GTPases play a prominent role in dendritic branching. CALEB/NGC is a transmembrane member of the epidermal growth factor (EGF) family that mediates dendritic branching, dependent on Rac1. CALEB/NGC stimulates Rac1 activity. RhoG inhibits CALEB/NGC-mediated dendritic branching by decreasing the amount of CALEB/NGC at the plasma membrane. Palmitoylated, but not prenylated form

  11. Structure of the nucleotide exchange factor eIF2B reveals mechanism of memory-enhancing molecule.

    Science.gov (United States)

    Tsai, Jordan C; Miller-Vedam, Lakshmi E; Anand, Aditya A; Jaishankar, Priyadarshini; Nguyen, Henry C; Renslo, Adam R; Frost, Adam; Walter, Peter

    2018-03-30

    Regulation by the integrated stress response (ISR) converges on the phosphorylation of translation initiation factor eIF2 in response to a variety of stresses. Phosphorylation converts eIF2 from a substrate to a competitive inhibitor of its dedicated guanine nucleotide exchange factor, eIF2B, thereby inhibiting translation. ISRIB, a drug-like eIF2B activator, reverses the effects of eIF2 phosphorylation, and in rodents it enhances cognition and corrects cognitive deficits after brain injury. To determine its mechanism of action, we solved an atomic-resolution structure of ISRIB bound in a deep cleft within decameric human eIF2B by cryo-electron microscopy. Formation of fully active, decameric eIF2B holoenzyme depended on the assembly of two identical tetrameric subcomplexes, and ISRIB promoted this step by cross-bridging a central symmetry interface. Thus, regulation of eIF2B assembly emerges as a rheostat for eIF2B activity that tunes translation during the ISR and that can be further modulated by ISRIB. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. The GC-Rich Mitochondrial and Plastid Genomes of the Green Alga Coccomyxa Give Insight into the Evolution of Organelle DNA Nucleotide Landscape

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David Roy; Burki, Fabien; Yamada, Takashi; Grimwood, Jane; Grigoriev, Igor V.; Van Etten, James L.; Keeling, Patrick J.

    2011-05-13

    Most of the available mitochondrial and plastid genome sequences are biased towards adenine and thymine (AT) over guanine and cytosine (GC). Examples of GC-rich organelle DNAs are limited to a small but eclectic list of species, including certain green algae. Here, to gain insight in the evolution of organelle nucleotide landscape, we present the GC-rich mitochondrial and plastid DNAs from the trebouxiophyte green alga Coccomyxa sp. C-169. We compare these sequences with other GC-rich organelle DNAs and argue that the forces biasing them towards G and C are nonadaptive and linked to the metabolic and/or life history features of this species. The Coccomyxa organelle genomes are also used for phylogenetic analyses, which highlight the complexities in trying to resolve the interrelationships among the core chlorophyte green algae, but ultimately favour a sister relationship between the Ulvophyceae and Chlorophyceae, with the Trebouxiophyceae branching at the base of the chlorophyte crown.

  13. The ionizing radiation inducible gene PARX/ARAP2 participates in Rho and ARF signaling

    International Nuclear Information System (INIS)

    Wong, J.A.; Chen, Z.; Zhao, Y.; Vallis, K.A.; Marignani, P.A.; Randazzo, P.A.

    2003-01-01

    Full text: PARX/ARAP2 is a novel protein that we identified in a gene trap screen for ionizing radiation (IR)-regulated genes. It belongs to a recently described family of proteins that link Rho, ADP-ribosilation factor (ARF) and phosphoinositide 3-kinase (PI3-K) signaling. We have cloned the full length human PARX. Domain analysis of the predicted protein revealed a sterile-alpha motif, five pleckstrin homology domains, a RhoGTPase activating domain (RhoGAP) and an ARF activating domain (ARFGAP). PARX is early inducible by IR in a dose-dependent manner in murine ES cells and in several human B-cell lymphoma lines with up to six-fold induction at the mRNA level at 2 hours (10 Gy). Thus, the kinetics of PARX induction follows the pattern of the rapid response typical of many stress-induced immediate-early genes. PARX expression is also induced in response to other cellular stressors including sorbitol and bleomycin. PARX induction is dependent on PI3-K activity and can be suppressed by the PI3-K inhibitor LY294002. Induction of PARX in response to IR has been observed in cell lines that are p53 mutant indicating up-regulation independent of normal p53 function. The role of p53 in PARX induction is currently being studied using cell lines expressing temperature sensitive p53. Biochemical studies reveal that human PARX has in vivo RhoGAP activity for Rac1 and phosphatidylinositol 3,4,5-trisphosphate dependent ARFGAP activity for ARF1, ARF5 and ARF6. Also, temporal changes in PARX cellular localization following IR are currently being investigated using confocal microscopy. PARX is a gene with a potential role in the cellular response to genotoxic stress, and may illuminate the currently unclear role the small GTPases Rho and ARF play in the radiation response

  14. Effect of ionic strength and cationic DNA affinity binders on the DNA sequence selective alkylation of guanine N7-positions by nitrogen mustards

    International Nuclear Information System (INIS)

    Hartley, J.A.; Forrow, S.M.; Souhami, R.L.

    1990-01-01

    Large variations in alkylation intensities exist among guanines in a DNA sequence following treatment with chemotherapeutic alkylating agents such as nitrogen mustards, and the substituent attached to the reactive group can impose a distinct sequence preference for reaction. In order to understand further the structural and electrostatic factors which determine the sequence selectivity of alkylation reactions, the effect of increase ionic strength, the intercalator ethidium bromide, AT-specific minor groove binders distamycin A and netropsin, and the polyamine spermine on guanine N7-alkylation by L-phenylalanine mustard (L-Pam), uracil mustard (UM), and quinacrine mustard (QM) was investigated with a modification of the guanine-specific chemical cleavage technique for DNA sequencing. The result differed with both the nitrogen mustard and the cationic agent used. The effect, which resulted in both enhancement and suppression of alkylation sites, was most striking in the case of netropsin and distamycin A, which differed from each other. DNA footprinting indicated that selective binding to AT sequences in the minor groove of DNA can have long-range effects on the alkylation pattern of DNA in the major groove

  15. Automated quantum chemistry based molecular dynamics simulations of electron ionization induced fragmentations of the nucleobases Uracil, Thymine, Cytosine, and Guanine.

    Science.gov (United States)

    Grimme, Stefan; Bauer, Christopher Alexander

    2015-01-01

    The gas-phase decomposition pathways of electron ionization (EI)-induced radical cations of the nucleobases uracil, thymine, cytosine, and guanine are investigated by means of mixed quantum-classical molecular dynamics. No preconceived fragmentation channels are used in the calculations. The results compare well to a plethora of experimental and theoretical data for these important biomolecules. With our combined stochastic and dynamic approach, one can access in an unbiased way the energetically available decomposition mechanisms. Additionally, we are able to separate the EI mass spectra of different tautomers of cytosine and guanine. Our method (previously termed quantum chemistry electron ionization mass spectra) reproduces free nucleobase experimental mass spectra well and provides detailed mechanistic in-sight into high-energy unimolecular decomposition processes.

  16. Protein Tyrosine Phosphatase-PEST and β8 Integrin Regulate Spatiotemporal Patterns of RhoGDI1 Activation in Migrating Cells

    Science.gov (United States)

    Lee, Hye Shin; Cheerathodi, Mujeeburahiman; Chaki, Sankar P.; Reyes, Steve B.; Zheng, Yanhua; Lu, Zhimin; Paidassi, Helena; DerMardirossian, Celine; Lacy-Hulbert, Adam; Rivera, Gonzalo M.

    2015-01-01

    Directional cell motility is essential for normal development and physiology, although how motile cells spatiotemporally activate signaling events remains largely unknown. Here, we have characterized an adhesion and signaling unit comprised of protein tyrosine phosphatase (PTP)-PEST and the extracellular matrix (ECM) adhesion receptor β8 integrin that plays essential roles in directional cell motility. β8 integrin and PTP-PEST form protein complexes at the leading edge of migrating cells and balance patterns of Rac1 and Cdc42 signaling by controlling the subcellular localization and phosphorylation status of Rho GDP dissociation inhibitor 1 (RhoGDI1). Translocation of Src-phosphorylated RhoGDI1 to the cell's leading edge promotes local activation of Rac1 and Cdc42, whereas dephosphorylation of RhoGDI1 by integrin-bound PTP-PEST promotes RhoGDI1 release from the membrane and sequestration of inactive Rac1/Cdc42 in the cytoplasm. Collectively, these data reveal a finely tuned regulatory mechanism for controlling signaling events at the leading edge of directionally migrating cells. PMID:25666508

  17. RhoA Activation Sensitizes Cells to Proteotoxic Stimuli by Abrogating the HSF1-Dependent Heat Shock Response.

    Directory of Open Access Journals (Sweden)

    Roelien A M Meijering

    Full Text Available The heat shock response (HSR is an ancient and highly conserved program of stress-induced gene expression, aimed at reestablishing protein homeostasis to preserve cellular fitness. Cells that fail to activate or maintain this protective response are hypersensitive to proteotoxic stress. The HSR is mediated by the heat shock transcription factor 1 (HSF1, which binds to conserved heat shock elements (HSE in the promoter region of heat shock genes, resulting in the expression of heat shock proteins (HSP. Recently, we observed that hyperactivation of RhoA conditions cardiomyocytes for the cardiac arrhythmia atrial fibrillation. Also, the HSR is annihilated in atrial fibrillation, and induction of HSR mitigates sensitization of cells to this disease. Therefore, we hypothesized active RhoA to suppress the HSR resulting in sensitization of cells for proteotoxic stimuli.Stimulation of RhoA activity significantly suppressed the proteotoxic stress-induced HSR in HL-1 atrial cardiomyocytes as determined with a luciferase reporter construct driven by the HSF1 regulated human HSP70 (HSPA1A promoter and HSP protein expression by Western Blot analysis. Inversely, RhoA inhibition boosted the proteotoxic stress-induced HSR. While active RhoA did not preclude HSF1 nuclear accumulation, phosphorylation, acetylation, or sumoylation, it did impair binding of HSF1 to the hsp genes promoter element HSE. Impaired binding results in suppression of HSP expression and sensitized cells to proteotoxic stress.These results reveal that active RhoA negatively regulates the HSR via attenuation of the HSF1-HSE binding and thus may play a role in sensitizing cells to proteotoxic stimuli.

  18. A Nucleotide Phosphatase Activity in the Nucleotide Binding Domain of an Orphan Resistance Protein from Rice*

    Science.gov (United States)

    Fenyk, Stepan; de San Eustaquio Campillo, Alba; Pohl, Ehmke; Hussey, Patrick J.; Cann, Martin J.

    2012-01-01

    Plant resistance proteins (R-proteins) are key components of the plant immune system activated in response to a plethora of different pathogens. R-proteins are P-loop NTPase superfamily members, and current models describe their main function as ATPases in defense signaling pathways. Here we show that a subset of R-proteins have evolved a new function to combat pathogen infection. This subset of R-proteins possesses a nucleotide phosphatase activity in the nucleotide-binding domain. Related R-proteins that fall in the same phylogenetic clade all show the same nucleotide phosphatase activity indicating a conserved function within at least a subset of R-proteins. R-protein nucleotide phosphatases catalyze the production of nucleoside from nucleotide with the nucleotide monophosphate as the preferred substrate. Mutation of conserved catalytic residues substantially reduced activity consistent with the biochemistry of P-loop NTPases. Kinetic analysis, analytical gel filtration, and chemical cross-linking demonstrated that the nucleotide-binding domain was active as a multimer. Nuclear magnetic resonance and nucleotide analogues identified the terminal phosphate bond as the target of a reaction that utilized a metal-mediated nucleophilic attack by water on the phosphoester. In conclusion, we have identified a group of R-proteins with a unique function. This biochemical activity appears to have co-evolved with plants in signaling pathways designed to resist pathogen attack. PMID:22157756

  19. A nucleotide phosphatase activity in the nucleotide binding domain of an orphan resistance protein from rice.

    Science.gov (United States)

    Fenyk, Stepan; Campillo, Alba de San Eustaquio; Pohl, Ehmke; Hussey, Patrick J; Cann, Martin J

    2012-02-03

    Plant resistance proteins (R-proteins) are key components of the plant immune system activated in response to a plethora of different pathogens. R-proteins are P-loop NTPase superfamily members, and current models describe their main function as ATPases in defense signaling pathways. Here we show that a subset of R-proteins have evolved a new function to combat pathogen infection. This subset of R-proteins possesses a nucleotide phosphatase activity in the nucleotide-binding domain. Related R-proteins that fall in the same phylogenetic clade all show the same nucleotide phosphatase activity indicating a conserved function within at least a subset of R-proteins. R-protein nucleotide phosphatases catalyze the production of nucleoside from nucleotide with the nucleotide monophosphate as the preferred substrate. Mutation of conserved catalytic residues substantially reduced activity consistent with the biochemistry of P-loop NTPases. Kinetic analysis, analytical gel filtration, and chemical cross-linking demonstrated that the nucleotide-binding domain was active as a multimer. Nuclear magnetic resonance and nucleotide analogues identified the terminal phosphate bond as the target of a reaction that utilized a metal-mediated nucleophilic attack by water on the phosphoester. In conclusion, we have identified a group of R-proteins with a unique function. This biochemical activity appears to have co-evolved with plants in signaling pathways designed to resist pathogen attack.

  20. RhoB mediates antitumor synergy of combined ixabepilone and sunitinib in human ovarian serous cancer.

    Science.gov (United States)

    Vishnu, Prakash; Colon-Otero, Gerardo; Kennedy, Gregory T; Marlow, Laura A; Kennedy, William P; Wu, Kevin J; Santoso, Joseph T; Copland, John A

    2012-03-01

    The aim was to evaluate antitumor activity of the combination of ixabepilone and sunitinib in pre-clinical models of chemotherapy naïve and refractory epithelial ovarian tumors, and to investigate the mechanism of synergy of such drug combination. HOVTAX2 cell line was derived from a metastatic serous papillary epithelial ovarian tumor (EOC) and a paclitaxel-resistant derivative was established. Dose response curves for ixabepilone and sunitinib were generated and synergy was determined using combination indexes. The molecular mechanism of antitumor synergy was examined using shRNA silencing. The combination of ixabepilone and sunitinib demonstrated robust antitumor synergy in naïve and paclitaxel-resistant HOVTAX2 cell lines due to increased apoptosis. The GTPase, RhoB, was synergistically upregulated in cells treated with ixabepilone and sunitinib. Using shRNA, RhoB was demonstrated to mediate antitumor synergy. These results were validated in two other EOC cell lines. Ixabepilone plus sunitinib demonstrated antitumor synergy via RhoB in naïve and paclitaxel-resistant cells resulting in apoptosis. This study demonstrates a novel mechanism of action leading to antitumor synergy and provides 'proof-of-principle' for combining molecular targeted agents with cytotoxic chemotherapy to improve antitumor efficacy. RhoB could be envisioned as an early biomarker of response to therapy in a planned Phase II clinical trial to assess the efficacy of ixabepilone combined with a receptor tyrosine kinase inhibitor such as sunitinib. To the best of our knowledge, this is the first demonstration of antitumor synergy between these two classes of drugs in EOC and the pivotal role of RhoB in this synergy. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Aging-associated oxidative stress leads to decrease in IAS tone via RhoA/ROCK downregulation.

    Science.gov (United States)

    Singh, Jagmohan; Kumar, Sumit; Krishna, Chadalavada Vijay; Rattan, Satish

    2014-06-01

    Internal anal sphincter (IAS) tone plays an important role in rectoanal incontinence (RI). IAS tone may be compromised during aging, leading to RI in certain patients. We examined the influence of oxidative stress in the aging-associated decrease in IAS tone (AADI). Using adult (4-6 mo old) and aging (24-30 mo old) rats, we determined the effect of oxidative stress on IAS tone and the regulatory RhoA/ROCK signal transduction cascade. We determined the effect of the oxidative stress inducer LY83583, which produces superoxide anions (O2 (·-)), on basal and stimulated IAS tone before and after treatment of intact smooth muscle strips and smooth muscle cells with the O2 (·-) scavenger SOD. Our data showed that AADI was associated with a decrease in RhoA/ROCK expression at the transcriptional and translational levels. Oxidative stress with a LY83583-mediated decrease in IAS tone and relaxation of IAS smooth muscle cells was associated with a decrease in RhoA/ROCK signal transduction, which was reversible by SOD. In addition, LY83583 caused a significant decrease in IAS contraction produced by the RhoA activator and a known RhoA/ROCK agonist, U46619, that was also reversible by SOD. The inhibitory effects of LY83583 and the ROCK inhibitor Y27632 on the U46619-induced increase in IAS tone were similar. We conclude that an increase in oxidative stress plays an important role in AADI in the elderly and may be one of the underlying mechanisms of RI in certain aging patients. Copyright © 2014 the American Physiological Society.

  2. Lipid peroxidation regulates podocyte migration and cytoskeletal structure through redox sensitive RhoA signaling

    Directory of Open Access Journals (Sweden)

    Claudia Kruger

    2018-06-01

    Full Text Available Early podocyte loss is characteristic of chronic kidney diseases (CKD in obesity and diabetes. Since treatments for hyperglycemia and hypertension do not prevent podocyte loss, there must be additional factors causing podocyte depletion. The role of oxidative stress has been implicated in CKD but it is not known how exactly free radicals affect podocyte physiology. To assess this relationship, we investigated the effects of lipid radicals on podocytes, as lipid peroxidation is a major form of oxidative stress in diabetes. We found that lipid radicals govern changes in podocyte homeostasis through redox sensitive RhoA signaling: lipid radicals inhibit migration and cause loss of F-actin fibers. These effects were prevented by mutating the redox sensitive cysteines of RhoA. We therefore suggest that in diseases associated with increased lipid peroxidation, lipid radicals can determine podocyte function with potentially pathogenic consequences for kidney physiology. Keywords: Lipid peroxidation, Reactive lipids, Podocyte, RhoA, Cysteine, Chronic kidney disease

  3. RhoA/ROCK signaling regulates smooth muscle phenotypic modulation and vascular remodeling via the JNK pathway and vimentin cytoskeleton.

    Science.gov (United States)

    Tang, Lian; Dai, Fan; Liu, Yan; Yu, Xiaoqiang; Huang, Chao; Wang, Yuqin; Yao, Wenjuan

    2018-05-20

    The RhoA/ROCK signaling pathway regulates cell morphology, adhesion, proliferation, and migration. In this study, we investigated the regulatory role of RhoA/ROCK signaling on PDGF-BB-mediated smooth muscle phenotypic modulation and vascular remodeling and clarified the molecular mechanisms behind these effects. PDGF-BB treatment induced the activation of RhoA, ROCK, PDGF-Rβ, and the expression of PDGF-Rβ in HA-VSMCs (human aortic vascular smooth muscle cells). PDGF-Rβ inhibition and RhoA suppression blocked PDGF-BB-induced RhoA activation and ROCK induction. In addition, PDGF-BB-mediated cell proliferation and migration were suppressed by PDGF-Rβ inhibition, RhoA suppression, and ROCK inhibition, suggesting that PDGF-BB promotes phenotypic modulation of HA-VSMCs by activating the RhoA/ROCK pathway via the PDGF receptor. Moreover, suppressing both ROCK1 and ROCK2 blocked cell cycle progression from G0/G1 to S phase by decreasing the transcription and protein expression of cyclin D1, CDK2, and CDK4 via JNK/c-Jun pathway, thus reducing cell proliferation in PDGF-BB-treated HA-VSMCs. ROCK1 deletion, rather than ROCK2 suppression, significantly inhibited PDGF-BB-induced migration by reducing the expression of vimentin and preventing the remodeling of vimentin and phospho-vimentin. Furthermore, ROCK1 deletion suppressed vimentin by inhibiting the phosphorylation of Smad2/3 and the nuclear translocation of Smad4. These findings suggested that ROCK1 and ROCK2 might play different roles in PDGF-BB-mediated cell proliferation and migration in HA-VSMCs. In addition, PDGF-BB and its receptor participated in neointima formation and vascular remodeling by promoting cell cycle protein expression via the JNK pathway and enhancing vimentin expression in a rat balloon injury model; effects that were inhibited by treatment with fasudil. Together, the results of this study reveal a novel mechanism through which RhoA/ROCK signaling regulates smooth muscle phenotypic modulation and

  4. Color transparency in incoherent electroproduction of {rho} mesons off nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nemchik, J. [Institute of Experimental Physics SAS, Watsonova 47, 04001 Kosice, Slovakia and Czech Technical University, FNSPE, Brehova 7, 11519 Praque (Czech Republic); Kopeliovich, B. Z.; Potashnikova, I. K. [Departamento de Fisica y Centro de Estudios Subatomicos, Universidad Tecnica Federico Santa Maria, Casilla 110-V, Valparaiso (Chile)

    2013-04-15

    Color transparency (CT) phenomena in elastic electroproduction of vector mesons off nuclei are usually infected by the onset of coherence length (CL) effects. However, at low energies corresponding to the CLAS experiment at Jefferson Lab (JLab), one can study practically the net CT effects, since CL is much shorter than the nuclear radius. We investigate various manifestations of CT effects using rigorous quantum mechanical approach based on the path integral technique. We include also the effects of {rho} meson decay inside the nucleus leading to a rise of the nuclear suppression towards small values of Q{sup 2}. Motivated by the last CLAS data we predict the A, Q{sup 2} and l{sub c} dependence of nuclear transparency for {rho}{sup 0} mesons produced incoherently off nuclei. We also perform predictions for expected signal of CT corresponding to the planned JLab upgrade to 12 GeV electron beam.

  5. Differentially expressed proteins in ER+ MCF7 and ER- MDA- MB-231 human breast cancer cells by RhoGDI-α silencing and overexpression.

    Science.gov (United States)

    Hooshmand, Somayeh; Ghaderi, Abbas; Yusoff, Khatijah; Thilakavathy, Karuppiah; Rosli, Rozita; Mojtahedi, Zahra

    2014-01-01

    The consequence of Rho GDP dissociation inhibitor alpha (RhoGDIα) activity on migration and invasion of estrogen receptor positive (ER+) and negative (ER-) breast cancer cells has not been studied using the proteomic approach. Changes in expression of RhoGDIα and other proteins interacting directly or indirectly with RhoGDIα in MCF7 and MDA-MB-231, with different metastatic potentials is of particular interest. ER+ MCF7 and ER- MDA-MB-231 cell lines were subjected to two-dimensional electrophoresis (2-DE) and spots of interest were identified by matrix-assisted laser desorption/ionization time of- flight/time- of-flight (MALDI-TOF/TOF) mass spectrometry (MS) analysis after downregulation of RhoGDIα using short interfering RNA (siRNA) and upregulated using GFP-tagged ORF clone of RhoGDIα. The results showed a total of 35 proteins that were either up- or down-regulated in these cells. Here we identifed 9 and 15 proteins differentially expressed with silencing of RhoGDIα in MCF-7 and the MDA-MB-231 cells, respectively. In addition, 10 proteins were differentially expressed in the upregulation of RhoGDIα in MCF7, while only one protein was identified in the upregulation of RhoGDIα in MDA-MB-231. Based on the biological functions of these proteins, the results revealed that proteins involved in cell migration are more strongly altered with RhoGDI-α activity. Although several of these proteins have been previously indicated in tumorigenesis and invasiveness of breast cancer cells, some ohave not been previously reported to be involved in breast cancer migration. Hence, these proteins may serve as useful candidate biomarkers for tumorigenesis and invasiveness of breast cancer cells. Future studies are needed to determine the mechanisms by which these proteins regulate cell migration. The combination of RhoGDIα with other potential biomarkers may be a more promising approach in the inhibition of breast cancer cell migration.

  6. 1α,25-Dihydroxyvitamin D3 Ameliorates Seawater Aspiration-Induced Lung Injury By Inhibiting The Translocation Of NF-κB and RhoA.

    Science.gov (United States)

    Zhang, Minlong; Jin, Faguang

    2017-06-01

    Our previous study have reported that 1α,25-Dihydroxyvitamin D3 (calcitriol) suppresses seawater aspiration-induced ALI in vitro and in vivo. We also have confirmed that treatment with calcitriol ameliorates seawater aspiration-induced inflammation and pulmonary edema via the inhibition of NF-κB and RhoA/Rho kinase pathway activation. In our further work, we investigated the effect of calcitriol on nuclear translocation of NF-κB and membrane translocation of RhoA in vitro. A549 cells and rat pulmonary microvascular endothelial cells (RPMVECs) were cultured with calcitriol or not for 48 h and then stimulated with 25% seawater for 40 min. After these treatments, cells were collected and performed with immunofluorescent staining to observe the translocation of NF-κB and RhoA and the cytoskeleton remodeling. In vitro, seawater stimulation activates nuclear translocation of NF-κB and membrane translocation of RhoA in A549 cells. In addition, seawater administration also induced cytoskeleton remodeling in A549 cells and RPMVECs. However, pretreatment with calcitriol significantly inhibited the activation of NF-κB and RhoA/Rho kinase pathways, as demonstrated by the reduced nuclear translocation of NF-κB and membrane translocation of RhoA in A549 cells. Meanwhile, treatment of calcitriol also regulated the cytoskeleton remodeling in both A549 cells and RPMVECs. These results demonstrated that treatment with calcitriol ameliorates seawater aspiration-induced ALI via inhibition of nuclear translocation of NF-κB and membrane translocation of RhoA and protection of alveolar epithelial and pulmonary microvascular endothelial barrier.

  7. Restoration of uridine 5′-triphosphate-suppressed delayed rectifying K+ currents by an NO activator KMUP-1 involves RhoA/Rho kinase signaling in pulmonary artery smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Zen-Kong Dai

    2016-12-01

    Full Text Available We have demonstrated that KMUP-1 (7-[2-[4-(2-chlorobenzenepiperazinyl]ethyl]-1,3-dimethylxanthine blunts monocrotaline-induced pulmonary arterial hypertension by altering Ca2+ sensitivity, K+-channel function, endothelial nitric oxide synthase activity, and RhoA/Rho kinase (ROCK expression. This study further investigated whether KMUP-1 impedes uridine 5′-triphosphate (UTP-inhibited delayed rectifying K+ (KDR current in rat pulmonary arteries involved the RhoA/ROCK signaling. Pulmonary artery smooth muscle cells (PASMCs were enzymatically dissociated from rat pulmonary arteries. KMUP-1 (30μM attenuated UTP (30μM-mediated membrane depolarization and abolished UTP-enhanced cytosolic Ca2+ concentration. Whole-cell patch-clamp electrophysiology was used to monitor KDR currents. A voltage-dependent KDR current was isolated and shown to consist of a 4-aminopyridine (5mM-sensitive component and an insensitive component. The 4-aminopyridine sensitive KDR current was suppressed by UTP (30μM. The ROCK inhibitor Y27632 (30μM abolished the ability of UTP to inhibit the KDR current. Like Y27632, KMUP-1 (30μM similarly abolished UTP-inhibited KDR currents. Superfused protein kinase A and protein kinase G inhibitors (KT5720, 300nM and KT5823, 300nM did not affect UTP-inhibited KDR currents, but the currents were restored by adding KMUP-1 (30μM to the superfusate. KMUP-1 reversal of KDR current inhibition by UTP predominantly involves the ROCK inhibition. The results indicate that the RhoA/ROCK signaling pathway plays a key role in eliciting PASMCs depolarization caused by UTP, which would result in pulmonary artery constriction. KMUP-1 blocks UTP-mediated PASMCs depolarization, suggesting that it would prevent abnormal pulmonary vasoconstriction.

  8. Tetraspanin CD9 regulates cell contraction and actin arrangement via RhoA in human vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Michael J Herr

    Full Text Available The most prevalent cardiovascular diseases arise from alterations in vascular smooth muscle cell (VSMC morphology and function. Tetraspanin CD9 has been previously implicated in regulating vascular pathologies; however, insight into how CD9 may regulate adverse VSMC phenotypes has not been provided. We utilized a human model of aortic smooth muscle cells to understand the consequences of CD9 deficiency on VSMC phenotypes. Upon knocking down CD9, the cells developed an abnormally small and rounded morphology. We determined that this morphological change was due to a lack of typical parallel actin arrangement. We also found similar total RhoA but decreased GTP-bound (active RhoA levels in CD9 deficient cells. As a result, cells lacking a full complement of CD9 were less contractile than their control treated counterparts. Upon restoration of RhoA activity in the CD9 deficient cells, the phenotype was reversed and cell contraction was restored. Conversely, inhibition of RhoA activity in the control cells mimicked the CD9-deficient cell phenotype. Thus, alteration in CD9 expression was sufficient to profoundly disrupt cellular actin arrangement and endogenous cell contraction by interfering with RhoA signaling. This study provides insight into how CD9 may regulate previously described vascular smooth muscle cell pathophysiology.

  9. Diffractive Electroproduction of rho and phi Mesons at HERA

    CERN Document Server

    Aaron, F.D.; Alexa, C.; Andreev, V.; Antunovic, B.; Asmone, A.; Backovic, S.; Baghdasaryan, A.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Belousov, A.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eliseev, A.; Elsen, E.; Falkiewicz, A.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jonsson, L.; Jung, A.W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kluge, T.; Knutsson, A.; Kogler, R.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, M.U.; Mudrinic, M.; Muller, K.; Murin, P.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Pejchal, O.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Povh, B.; Preda, T.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rurikova, Z.; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shaw-West, R.N.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, I.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; von den Driesch, M.; Wegener, D.; Wissing, Ch.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.; Zus, R.

    2010-01-01

    Diffractive electroproduction of rho and phi mesons is measured at HERA with the H1 detector in the elastic and proton dissociative channels. The data correspond to an integrated luminosity of 51 pb^-1. About 10500 rho and 2000 phi events are analysed in the kinematic range of squared photon virtuality 2.5 < Q^2 < 60 GeV^2, photon-proton centre of mass energy 35 < W < 180 GeV and squared four-momentum transfer to the proton |t| < 3 GeV^2. The total, longitudinal and transverse cross sections are measured as a function of Q^2, W and |t|. The measurements show a transition to a dominantly "hard" behaviour, typical of high gluon densities and small q\\bar{q} dipoles, for Q^2 larger than 10 to 20 GeV^2. They support flavour independence of the diffractive exchange, expressed in terms of the scaling variable (Q^2 + M_V^2)/4, and proton vertex factorisation. The spin density matrix elements are measured as a function of kinematic variables. The ratio of the longitudinal to transverse cross sections, t...

  10. Study of Branching Fractions and CP-Violating Asymmetries in B Meson Decays to Rho And Pion Final State with the BABAR Detector

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jinwei; /Wisconsin U., Madison

    2006-03-22

    We present measurements of branching fractions and CP-violating asymmetries in B-meson decays to {rho}{sup +}{pi}{sup 0}, {rho}{sup 0}{pi}{sup +} and {rho}{sup 0}{pi}{sup 0}. The data sample comprises 89 x 10{sup 6} {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We find the charge-averaged branching fractions {Beta}(B{sup +} {yields} {rho}{sup +}{pi}{sup 0}) = (10.9 {+-} 1.9(stat) {+-} 1.9(syst)) x 10{sup -6} and {Beta}(B{sup 0} {yields} {rho}{sup 0}{pi}{sup +}) = (9.5 {+-} 1.1 {+-} 0.9) x 10{sup -6}, and we set a 90% confidence-level upper limit {Beta}(B{sup 0} {yields} {rho}{sup 0}{pi}{sup 0}) < 2.9 x 10{sup -6}. We measure the charge asymmetries A{sub CP}{rho}{sup +}{pi}{sup 0} = 0.24 {+-} 0.16 {+-} 0.06 and {Alpha}{sub CP}{sup {rho}{sup 0}{pi}{sup +}} = -0.19 {+-} 0.11 {+-} 0.02. We also present the preliminary measurement of CP-violating asymmetries in B{sup 0} {yields} ({rho}{pi}){sup 0} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup 0} decays using a time-dependent Dalitz plot analysis. The results are obtained from a data sample of 213 million {Upsilon}(4S) {yields} B{bar B} decays, collected by the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. This analysis extends the narrow-{rho} quasi-two-body approximation used in the previous analysis, by taking into account the interference between the {rho} resonances of the three charges. We measure 16 coefficients of the bilinear form factor terms occurring in the time-dependent decay rate of the B{sup 0} meson with the use of a maximum-likelihood fit. We derive the physically relevant quantities from these coefficients. We measure the direct CP-violation parameters {Alpha}{sub {rho}{pi}} = -0.088 {+-} 0.049 {+-} 0.013 and C = 0.34 {+-} 0.11 {+-} 0.05, where the first errors are statistical and the second systematic. For the mixing-induced CP-violation parameter we find S = -0.10 {+-} 0.14 {+-} 0.04, and for the dilution and

  11. Activation of RhoA, but Not Rac1, Mediates Early Stages of S1P-Induced Endothelial Barrier Enhancement.

    Science.gov (United States)

    Zhang, Xun E; Adderley, Shaquria P; Breslin, Jerome W

    2016-01-01

    Compromised endothelial barrier function is a hallmark of inflammation. Rho family GTPases are critical in regulating endothelial barrier function, yet their precise roles, particularly in sphingosine-1-phosphate (S1P)-induced endothelial barrier enhancement, remain elusive. Confluent cultures of human umbilical vein endothelial cells (HUVEC) or human dermal microvascular endothelial cells (HDMEC) were used to model the endothelial barrier. Barrier function was assessed by determining the transendothelial electrical resistance (TER) using an electrical cell-substrate impedance sensor (ECIS). The roles of Rac1 and RhoA were tested in S1P-induced barrier enhancement. The results show that pharmacologic inhibition of Rac1 with Z62954982 failed to block S1P-induced barrier enhancement. Likewise, expression of a dominant negative form of Rac1, or knockdown of native Rac1 with siRNA, failed to block S1P-induced elevations in TER. In contrast, blockade of RhoA with the combination of the inhibitors Rhosin and Y16 significantly reduced S1P-induced increases in TER. Assessment of RhoA activation in real time using a fluorescence resonance energy transfer (FRET) biosensor showed that S1P increased RhoA activation primarily at the edges of cells, near junctions. This was complemented by myosin light chain-2 phosphorylation at cell edges, and increased F-actin and vinculin near intercellular junctions, which could all be blocked with pharmacologic inhibition of RhoA. The results suggest that S1P causes activation of RhoA at the cell periphery, stimulating local activation of the actin cytoskeleton and focal adhesions, and resulting in endothelial barrier enhancement. S1P-induced Rac1 activation, however, does not appear to have a significant role in this process.

  12. Activation of RhoA, but Not Rac1, Mediates Early Stages of S1P-Induced Endothelial Barrier Enhancement.

    Directory of Open Access Journals (Sweden)

    Xun E Zhang

    Full Text Available Compromised endothelial barrier function is a hallmark of inflammation. Rho family GTPases are critical in regulating endothelial barrier function, yet their precise roles, particularly in sphingosine-1-phosphate (S1P-induced endothelial barrier enhancement, remain elusive. Confluent cultures of human umbilical vein endothelial cells (HUVEC or human dermal microvascular endothelial cells (HDMEC were used to model the endothelial barrier. Barrier function was assessed by determining the transendothelial electrical resistance (TER using an electrical cell-substrate impedance sensor (ECIS. The roles of Rac1 and RhoA were tested in S1P-induced barrier enhancement. The results show that pharmacologic inhibition of Rac1 with Z62954982 failed to block S1P-induced barrier enhancement. Likewise, expression of a dominant negative form of Rac1, or knockdown of native Rac1 with siRNA, failed to block S1P-induced elevations in TER. In contrast, blockade of RhoA with the combination of the inhibitors Rhosin and Y16 significantly reduced S1P-induced increases in TER. Assessment of RhoA activation in real time using a fluorescence resonance energy transfer (FRET biosensor showed that S1P increased RhoA activation primarily at the edges of cells, near junctions. This was complemented by myosin light chain-2 phosphorylation at cell edges, and increased F-actin and vinculin near intercellular junctions, which could all be blocked with pharmacologic inhibition of RhoA. The results suggest that S1P causes activation of RhoA at the cell periphery, stimulating local activation of the actin cytoskeleton and focal adhesions, and resulting in endothelial barrier enhancement. S1P-induced Rac1 activation, however, does not appear to have a significant role in this process.

  13. Meniscal T1rho and T2 measured with 3.0T MRI increases directly after running a marathon

    Energy Technology Data Exchange (ETDEWEB)

    Stehling, Christoph [University of California, Musculoskeletal and Quantitative Imaging Group (MQIR), Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); University of Muenster, Department of Clinical Radiology, Muenster (Germany); Luke, Anthony [University of California, Department of Orthopedic Surgery, San Francisco, CA (United States); Stahl, Robert [University of California, Musculoskeletal and Quantitative Imaging Group (MQIR), Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Ludwig Maximilians University of Munich, Department of Clinical Radiology, Munich (Germany); Baum, Thomas; Joseph, Gabby; Pan, Judong; Link, Thomas M. [University of California, Musculoskeletal and Quantitative Imaging Group (MQIR), Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)

    2011-06-15

    To prospectively evaluate changes in T1rho and T2 relaxation time in the meniscus using 3.0 T MRI in asymptomatic knees of marathon runners and to compare these findings with those of age-matched healthy subjects. Thirteen marathon runners underwent 3.0 T MRI including T1rho and T2 mapping sequences before, 48-72 h after, and 3 months after competition. Ten controls were examined at baseline and after 3 months. All images were analyzed by two musculoskeletal radiologists identifying and grading cartilage, meniscal, ligamentous. and other knee abnormalities with WORMS scores. Meniscal segmentation was performed to generate T1rho and T2 maps in six compartments. No differences in morphological knee abnormalities were found before and after the marathon. However, all marathon runners showed a significant increase in T1rho and T2 values after competition in all meniscus compartments (p < 0.0001), which may indicate changes in the biochemical composition of meniscal tissue. While T2 values decreased after 3 months T1rho values remained at a high level, indicating persisting changes in the meniscal matrix composition after a marathon. T2 values in menisci have the potential to be used as biomarkers for identifying reversible meniscus matrix changes indicating potential tissue damage. T1rho values need further study, but may be a valuable marker for diagnosing early, degenerative changes in the menisci following exercise. (orig.)

  14. The small GTPase RhoA is required to maintain spinal cord neuroepithelium organization and the neural stem cell pool

    DEFF Research Database (Denmark)

    Herzog, Dominik; Loetscher, Pirmin; van Hengel, Jolanda

    2011-01-01

    ablation. We show that, in the spinal cord neuroepithelium, RhoA is essential to localize N-cadherin and ß-catenin to AJs and maintain apical-basal polarity of neural progenitor cells. Ablation of RhoA caused the loss of AJs and severe abnormalities in the organization of cells within the neuroepithelium......Dia1), does not localize to apical AJs in which it likely stabilizes intracellular adhesion by promoting local actin polymerization and microtubule organization. Furthermore, expressing a dominant-negative form of mDia1 in neural stem/progenitor cells results in a similar phenotype compared...... with that of the RhoA conditional knock-out, namely the loss of AJs and apical polarity. Together, our data show that RhoA signaling is necessary for AJ regulation and for the maintenance of mammalian neuroepithelium organization preventing precocious cell-cycle exit and differentiation....

  15. Hydrostatic pressure promotes the proliferation and osteogenic/chondrogenic differentiation of mesenchymal stem cells: The roles of RhoA and Rac1

    Directory of Open Access Journals (Sweden)

    Yin-Hua Zhao

    2015-05-01

    Full Text Available Our previous studies have shown that hydrostatic pressure can serve as an active regulator for bone marrow mesenchymal stem cells (BMSCs. The current work further investigates the roles of cytoskeletal regulatory proteins Ras homolog gene family member A (RhoA and Ras-related C3 botulinum toxin substrate 1 (Rac1 in hydrostatic pressure-related effects on BMSCs. Flow cytometry assays showed that the hydrostatic pressure promoted cell cycle initiation in a RhoA- and Rac1-dependent manner. Furthermore, fluorescence assays confirmed that RhoA played a positive and Rac1 displayed a negative role in the hydrostatic pressure-induced F-actin stress fiber assembly. Western blots suggested that RhoA and Rac1 play central roles in the pressure-inhibited ERK phosphorylation, and Rac1 but not RhoA was involved in the pressure-promoted JNK phosphorylation. Finally, real-time polymerase chain reaction (PCR experiments showed that pressure promoted the expression of osteogenic marker genes in BMSCs at an early stage of osteogenic differentiation through the up-regulation of RhoA activity. Additionally, the PCR results showed that pressure enhanced the expression of chondrogenic marker genes in BMSCs during chondrogenic differentiation via the up-regulation of Rac1 activity. Collectively, our results suggested that RhoA and Rac1 are critical to the pressure-induced proliferation and differentiation, the stress fiber assembly, and MAPK activation in BMSCs.

  16. Hydrostatic pressure promotes the proliferation and osteogenic/chondrogenic differentiation of mesenchymal stem cells: The roles of RhoA and Rac1.

    Science.gov (United States)

    Zhao, Yin-Hua; Lv, Xin; Liu, Yan-Li; Zhao, Ying; Li, Qiang; Chen, Yong-Jin; Zhang, Min

    2015-05-01

    Our previous studies have shown that hydrostatic pressure can serve as an active regulator for bone marrow mesenchymal stem cells (BMSCs). The current work further investigates the roles of cytoskeletal regulatory proteins Ras homolog gene family member A (RhoA) and Ras-related C3 botulinum toxin substrate 1 (Rac1) in hydrostatic pressure-related effects on BMSCs. Flow cytometry assays showed that the hydrostatic pressure promoted cell cycle initiation in a RhoA- and Rac1-dependent manner. Furthermore, fluorescence assays confirmed that RhoA played a positive and Rac1 displayed a negative role in the hydrostatic pressure-induced F-actin stress fiber assembly. Western blots suggested that RhoA and Rac1 play central roles in the pressure-inhibited ERK phosphorylation, and Rac1 but not RhoA was involved in the pressure-promoted JNK phosphorylation. Finally, real-time polymerase chain reaction (PCR) experiments showed that pressure promoted the expression of osteogenic marker genes in BMSCs at an early stage of osteogenic differentiation through the up-regulation of RhoA activity. Additionally, the PCR results showed that pressure enhanced the expression of chondrogenic marker genes in BMSCs during chondrogenic differentiation via the up-regulation of Rac1 activity. Collectively, our results suggested that RhoA and Rac1 are critical to the pressure-induced proliferation and differentiation, the stress fiber assembly, and MAPK activation in BMSCs. Copyright © 2015. Published by Elsevier B.V.

  17. Longitudinal assessment of bone marrow edema-like lesions and cartilage degeneration in osteoarthritis using 3 T MR T1rho quantification

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jian [University of California, San Francisco (UCSF), Musculoskeletal and Quantitative Imaging Research (MQIR) Group, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Radiology Department of The Third Hospital of Hebei Medical University, Shijiazhuang (China); Li, Xiaojuan [University of California, San Francisco (UCSF), Musculoskeletal and Quantitative Imaging Research (MQIR) Group, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); University of California at San Francisco, Department of Radiology, San Francisco, CA (United States); Bolbos, Radu I.; Link, Thomas M.; Majumdar, Sharmila [University of California, San Francisco (UCSF), Musculoskeletal and Quantitative Imaging Research (MQIR) Group, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)

    2010-06-15

    To quantitatively assess the relationship between bone marrow edema-like lesions (BMELs) and the associated cartilage in knee osteoarthritis (OA) using T{sub 1{rho}} quantification at 3 T MRI. Twenty-four patients with knee OA and 14 control subjects underwent 3 T MRI. Nineteen patients and all control subjects had 1-year follow-up studies. The volume and signal intensity difference of BMELs were calculated. Cartilage degeneration was graded using the cartilage subscore of Whole-Organ MRI Score (WORMS) analysis. Cartilage T{sub 1{rho}} values were calculated in each compartment as well as in cartilage overlying BMELs (OC) and surrounding cartilage (SC). At baseline, 25 BMELs were found in 16 out of 24 patients. The overall T{sub 1{rho}} values were significantly higher in patients with BMELs than in those without BMELs. At baseline and follow-up, both T{sub 1{rho}} values and WORMS cartilage subscore grading were significantly higher in OC than SC. Cartilage T{sub 1{rho}} increase from baseline to follow-up in OC was significantly higher than that in SC. An increase in T{sub 1{rho}} values in OC was correlated with signal intensity of BMEL at both baseline and follow-up, but was not correlated with BMEL volume. The results of this study suggest a local spatial correlation between BMELs and more advanced and accelerated cartilage degeneration. MRI T{sub 1{rho}} quantification in cartilage provides a sensitive tool for evaluating such correlations. (orig.)

  18. ORF Alignment: NT_033779 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available rEMBL::g2674107:GUANINE NUCLEOTIDE-EXCHANGE ... PROTEIN. organism:BOS TAURUS (BOVINE). dbxref:GenBank...; ... AF023451; g2674107; -.'', species:''BOS TAURUS ... Length = 185 ... Query: 586 METGIELFNRKP

  19. NADPH oxidase complex-derived reactive oxygen species, the actin cytoskeleton, and rho GTPases in cell migration

    DEFF Research Database (Denmark)

    Stanley, Alanna; Thompson, Kerry; Hynes, Ailish

    2014-01-01

    Abstract Significance: Rho GTPases are historically known to be central regulators of actin cytoskeleton reorganization. This affects many processes including cell migration. In addition, members of the Rac subfamily are known to be involved in reactive oxygen species (ROS) production through...... mediating cytoskeletal reorganization. Critical Issues: The role of the actin cytoskeleton in providing a scaffold for components of the Nox complex needs to be examined in the light of these new advances. During cell migration, Rho GTPases, ROS, and cytoskeletal organization appear to function as a complex...... compartments. This in conjunction with the analysis of tissues lacking specific Rho GTPases, and Nox components will facilitate a detailed examination of the interactions of these structures with the actin cytoskeleton. In combination with the analysis of ROS production, including its subcellular location...

  20. Solo and keratin filaments regulate epithelial tubule morphology.

    Science.gov (United States)

    Nishimura, Ryosuke; Kato, Kagayaki; Fujiwara, Sachiko; Ohashi, Kazumasa; Mizuno, Kensaku

    2018-04-28

    Epithelial tubules, consisting of the epithelial cell sheet with a central lumen, are the basic structure of many organs. Mechanical forces play an important role in epithelial tubulogenesis; however, little is known about the mechanisms controlling the mechanical forces during epithelial tubule morphogenesis. Solo (also known as ARHGEF40) is a RhoA-targeting guanine-nucleotide exchange factor that is involved in mechanical force-induced RhoA activation and stress fiber formation. Solo binds to keratin-8/keratin-18 (K8/K18) filaments, and this interaction plays a crucial role in mechanotransduction. In this study, we examined the roles of Solo and K8/K18 filaments in epithelial tubulogenesis using MDCK cells cultured in 3D collagen gels. Knockdown of either Solo or K18 resulted in rounder tubules with increased lumen size, indicating that Solo and K8/K18 filaments play critical roles in forming the elongated morphology of epithelial tubules. Moreover, knockdown of Solo or K18 decreased the level of diphosphorylated myosin light chain (a marker of contractile force) at the luminal and outer surfaces of tubules, suggesting that Solo and K8/K18 filaments are involved in the generation of the myosin II-mediated contractile force during epithelial tubule morphogenesis. In addition, K18 filaments were normally oriented along the long axis of the tubule, but knockdown of Solo perturbed their orientation. These results suggest that Solo plays crucial roles in forming the elongated morphology of epithelial tubules and in regulating myosin II activity and K18 filament organization during epithelial tubule formation.

  1. Phosphorylation of Rac1 T108 by Extracellular Signal-Regulated Kinase in Response to Epidermal Growth Factor: a Novel Mechanism To Regulate Rac1 Function

    Science.gov (United States)

    Tong, Junfeng; Li, Laiji; Ballermann, Barbara

    2013-01-01

    Accumulating evidence has implicated Rho GTPases, including Rac1, in many aspects of cancer development. Recent findings suggest that phosphorylation might further contribute to the tight regulation of Rho GTPases. Interestingly, sequence analysis of Rac1 shows that Rac1 T108 within the 106PNTP109 motif is likely an extracellular signal-regulated kinase (ERK) phosphorylation site and that Rac1 also has an ERK docking site, 183KKRKRKCLLL192 (D site), at the C terminus. Indeed, we show here that both transfected and endogenous Rac1 interacts with ERK and that this interaction is mediated by its D site. Green fluorescent protein (GFP)-Rac1 is threonine (T) phosphorylated in response to epidermal growth factor (EGF), and EGF-induced Rac1 threonine phosphorylation is dependent on the activation of ERK. Moreover, mutant Rac1 with the mutation of T108 to alanine (A) is not threonine phosphorylated in response to EGF. In vitro ERK kinase assay further shows that pure active ERK phosphorylates purified Rac1 but not mutant Rac1 T108A. We also show that Rac1 T108 phosphorylation decreases Rac1 activity, partially due to inhibiting its interaction with phospholipase C-γ1 (PLC-γ1). T108 phosphorylation targets Rac1 to the nucleus, which isolates Rac1 from other guanine nucleotide exchange factors (GEFs) and hinders Rac1's role in cell migration. We conclude that Rac1 T108 is phosphorylated by ERK in response to EGF, which plays an important role in regulating Rac1. PMID:24043306

  2. Removal of oxygen free-radical-induced 5′,8-purine cyclodeoxynucleosides from DNA by the nucleotide excision-repair pathway in human cells

    Science.gov (United States)

    Kuraoka, Isao; Bender, Christina; Romieu, Anthony; Cadet, Jean; Wood, Richard D.; Lindahl, Tomas

    2000-01-01

    Exposure of cellular DNA to reactive oxygen species generates several classes of base lesions, many of which are removed by the base excision-repair pathway. However, the lesions include purine cyclodeoxynucleoside formation by intramolecular crosslinking between the C-8 position of adenine or guanine and the 5′ position of 2-deoxyribose. This distorting form of DNA damage, in which the purine is attached by two covalent bonds to the sugar-phosphate backbone, occurs as distinct diastereoisomers. It was observed here that both diastereoisomers block primer extension by mammalian and microbial replicative DNA polymerases, using DNA with a site-specific purine cyclodeoxynucleoside residue as template, and consequently appear to be cytotoxic lesions. Plasmid DNA containing either the 5′R or 5′S form of 5′,8-cyclo-2-deoxyadenosine was a substrate for the human nucleotide excision-repair enzyme complex. The R diastereoisomer was more efficiently repaired than the S isomer. No correction of the lesion by direct damage reversal or base excision repair was detected. Dual incision around the lesion depended on the core nucleotide excision-repair protein XPA. In contrast to several other types of oxidative DNA damage, purine cyclodeoxynucleosides are chemically stable and would be expected to accumulate at a slow rate over many years in the DNA of nonregenerating cells from xeroderma pigmentosum patients. High levels of this form of DNA damage might explain the progressive neurodegeneration seen in XPA individuals. PMID:10759556

  3. RhoA/ROCK pathway is the major molecular determinant of basal tone in intact human internal anal sphincter.

    Science.gov (United States)

    Rattan, Satish; Singh, Jagmohan

    2012-04-01

    The knowledge of molecular control mechanisms underlying the basal tone in the intact human internal anal sphincter (IAS) is critical for the pathophysiology and rational therapy for a number of debilitating rectoanal motility disorders. We determined the role of RhoA/ROCK and PKC pathways by comparing the effects of ROCK- and PKC-selective inhibitors Y 27632 and Gö 6850 (10(-8) to 10(-4) M), respectively, on the basal tone in the IAS vs. the rectal smooth muscle (RSM). Western blot studies were performed to determine the levels of RhoA/ROCK II, PKC-α, MYPT1, CPI-17, and MLC(20) in the unphosphorylated and phosphorylated forms, in the IAS vs. RSM. Confocal microscopic studies validated the membrane distribution of ROCK II. Finally, to confirm a direct relationship, we examined the enzymatic activities and changes in the basal IAS tone and p-MYPT1, p-CPI-17, and p-MLC(20), before and after Y 27632 and Gö 6850. Data show higher levels of RhoA/ROCK II and related downstream signal transduction proteins in the IAS vs. RSM. In addition, data show a significant correlation between the active RhoA/ROCK levels, ROCK enzymatic activity, downstream proteins, and basal IAS tone, before and after ROCK inhibitor. From these data we conclude 1) RhoA/ROCK and downstream signaling are constitutively active in the IAS, and this pathway (in contrast with PKC) is the critical determinant of the basal tone in intact human IAS; and 2) RhoA and ROCK are potential therapeutic targets for a number of rectoanal motility disorders for which currently there is no satisfactory treatment.

  4. The arabidopsis cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara Elizabeth; Meier, Stuart Kurt; Gehring, Christoph A

    2016-01-01

    Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms

  5. Distinctive G Protein-Dependent Signaling by Protease-Activated Receptor 2 (PAR2 in Smooth Muscle: Feedback Inhibition of RhoA by cAMP-Independent PKA.

    Directory of Open Access Journals (Sweden)

    Wimolpak Sriwai

    Full Text Available We examined expression of protease-activated receptors 2 (PAR2 and characterized their signaling pathways in rabbit gastric muscle cells. The PAR2 activating peptide SLIGRL (PAR2-AP stimulated Gq, G13, Gi1, PI hydrolysis, and Rho kinase activity, and inhibited cAMP formation. Stimulation of PI hydrolysis was partly inhibited in cells expressing PAR2 siRNA, Gaq or Gai minigene and in cells treated with pertussis toxin, and augmented by expression of dominant negative regulator of G protein signaling (RGS4(N88S. Stimulation of Rho kinase activity was abolished by PAR-2 or Ga13 siRNA, and by Ga13 minigene. PAR2-AP induced a biphasic contraction; initial contraction was selectively blocked by the inhibitor of PI hydrolysis (U73122 or MLC kinase (ML-9, whereas sustained contraction was selectively blocked by the Rho kinase inhibitor (Y27632. PAR2-AP induced phosphorylation of MLC20, MYPT1 but not CPI-17. PAR2-AP also caused a decrease in the association of NF-kB and PKA catalytic subunit: the effect of PAR2-AP was blocked by PAR2 siRNA or phosphorylation-deficient RhoA (RhoA(S188A. PAR2-AP-induced degradation of IkBa and activation of NF-kB were abolished by the blockade of RhoA activity by Clostridium botulinum C3 exoenzyme suggesting RhoA-dependent activation of NF-kB. PAR2-AP-stimulated Rho kinase activity was significantly augmented by the inhibitors of PKA (myristoylated PKI, IKK2 (IKKIV or NF-kB (MG132, and in cells expressing dominant negative mutants of IKK (IKK(K44A, IkBa (IkBa (S32A/S36A or RhoA(S188A, suggesting feedback inhibition of Rho kinase activity via PKA derived from NF-kB pathway. PAR2-AP induced phosphorylation of RhoA and the phosphorylation was attenuated in cells expressing phosphorylation-deficient RhoA(S188A. Our results identified signaling pathways activated by PAR2 to mediate smooth muscle contraction and a novel pathway for feedback inhibition of PAR2-stimulated RhoA. The pathway involves activation of the NF-kB to

  6. Formation of diastereomeric benzo[a]pyrene diol epoxide-guanine adducts in p53 gene-derived DNA sequences.

    Science.gov (United States)

    Matter, Brock; Wang, Gang; Jones, Roger; Tretyakova, Natalia

    2004-06-01

    G --> T transversion mutations in the p53 tumor suppressor gene are characteristic of smoking-related lung tumors, suggesting that these genetic changes may result from exposure to tobacco carcinogens. It has been previously demonstrated that the diol epoxide metabolites of bay region polycyclic aromatic hydrocarbons present in tobacco smoke, e.g., benzo[a]pyrene diol epoxide (BPDE), preferentially bind to the most frequently mutated guanine nucleotides within p53 codons 157, 158, 248, and 273 [Denissenko, M. F., Pao, A., Tang, M., and Pfeifer, G. P. (1996) Science 274, 430-432]. However, the methodology used in that work (ligation-mediated polymerase chain reaction in combination with the UvrABC endonuclease incision assay) cannot establish the chemical structures and stereochemical identities of BPDE-guanine lesions. In the present study, we employ a stable isotope-labeling HPLC-MS/MS approach [Tretyakova, N., Matter, B., Jones, R., and Shallop, A. (2002) Biochemistry 41, 9535-9544] to analyze the formation of diastereomeric N(2)-BPDE-dG lesions within double-stranded oligodeoxynucleotides representing p53 lung cancer mutational hotspots and their surrounding DNA sequences. (15)N-labeled dG was placed at defined positions within DNA duplexes containing 5-methylcytosine at all physiologically methylated sites, followed by (+/-)-anti-BPDE treatment and enzymatic hydrolysis of the adducted DNA to 2'-deoxynucleosides. Capillary HPLC-ESI(+)-MS/MS was used to establish the amounts of (-)-trans-N(2)-BPDE-dG, (+)-cis-N(2)-BPDE-dG, (-)-cis-N(2)-BPDE-dG, and (+)-trans-N(2)-BPDE-dG originating from the (15)N-labeled bases. We found that all four N(2)-BPDE-dG diastereomers were formed preferentially at the methylated CG dinucleotides, including the frequently mutated p53 codons 157, 158, 245, 248, and 273. The contributions of individual diastereomers to the total adducts number at a given site varied between 70.8 and 92.9% for (+)-trans-N(2)-BPDE-dG, 5.6 and 16.7% for

  7. The Rho GTPase Effector ROCK Regulates Cyclin A, Cyclin D1, and p27Kip1 Levels by Distinct Mechanisms

    OpenAIRE

    Croft, Daniel R.; Olson, Michael F.

    2006-01-01

    The members of the Rho GTPase family are well known for their regulation of actin cytoskeletal structures. In addition, they influence progression through the cell cycle. The RhoA and RhoC proteins regulate numerous effector proteins, with a central and vital signaling role mediated by the ROCK I and ROCK II serine/threonine kinases. The requirement for ROCK function in the proliferation of numerous cell types has been revealed by studies utilizing ROCK-selective inhibitors such as Y-27632. H...

  8. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions

    Science.gov (United States)

    Coari, Kristin M.; Martin, Rebecca C.; Jain, Kopal; McGown, Linda B.

    2017-09-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  9. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions.

    Science.gov (United States)

    Coari, Kristin M; Martin, Rebecca C; Jain, Kopal; McGown, Linda B

    2017-09-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  10. A critical discussion of the extraction of the {rho} - parameter at high energy hadron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Nicolescu, B. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1996-12-31

    A new and general method is proposed for the extraction of the semi theoretical {rho}-parameter from the raw dN/dt data. By using this method it is shown that the exponential form of the hadron amplitude in the diffraction peak at high energy is doubtful and that the value {rho} = 0.135 {+-} 0.015, extracted from the very precise UA4/2 dN/dt data at {radical}s 541 GeV, is probably wrong. (author) 4 refs.

  11. Electron attachment to the guanine-cytosine nucleic acid base pair and the effects of monohydration and proton transfer.

    Science.gov (United States)

    Gupta, Ashutosh; Jaeger, Heather M; Compaan, Katherine R; Schaefer, Henry F

    2012-05-17

    The guanine-cytosine (GC) radical anion and its interaction with a single water molecule is studied using ab initio and density functional methods. Z-averaged second-order perturbation theory (ZAPT2) was applied to GC radical anion for the first time. Predicted spin densities show that the radical character is localized on cytosine. The Watson-Crick monohydrated GC anion is compared to neutral GC·H2O, as well as to the proton-transferred analogue on the basis of structural and energetic properties. In all three systems, local minima are identified that correspond to water positioned in the major and minor grooves of macromolecular DNA. On the anionic surface, two novel structures have water positioned above or below the GC plane. On the neutral and anionic surfaces, the global minimum can be described as water interacting with the minor groove. These structures are predicted to have hydration energies of 9.7 and 11.8 kcal mol(-1), respectively. Upon interbase proton-transfer (PT), the anionic global minimum has water positioned in the major groove, and the hydration energy increases to 13.4 kcal mol(-1). PT GC·H2O(•-) has distonic character; the radical character resides on cytosine, while the negative charge is localized on guanine. The effects of proton transfer are further investigated through the computed adiabatic electron affinities (AEA) of GC and monohydrated GC, and the vertical detachment energies (VDE) of the corresponding anions. Monohydration increases the AEAs and VDEs by only 0.1 eV, while proton-transfer increases the VDEs substantially (0.8 eV). The molecular charge distribution of monohydrated guanine-cytosine radical anion depends heavily on interbase proton transfer.

  12. A computational study of a recreated G protein-GEF reaction intermediate competent for nucleotide exchange: fate of the Mg ion.

    Directory of Open Access Journals (Sweden)

    Mériam Ben Hamida-Rebaï

    Full Text Available Small G-proteins of the superfamily Ras function as molecular switches, interacting with different cellular partners according to their activation state. G-protein activation involves the dissociation of bound GDP and its replacement by GTP, in an exchange reaction that is accelerated and regulated in the cell by guanine-nucleotide exchange factors (GEFs. Large conformational changes accompany the exchange reaction, and our understanding of the mechanism is correspondingly incomplete. However, much knowledge has been derived from structural studies of blocked or inactive mutant GEFs, which presumably closely represent intermediates in the exchange reaction and yet which are by design incompetent for carrying out the nucleotide exchange reaction. In this study we have used comparative modelling to recreate an exchange-competent form of a late, pre-GDP-ejection intermediate species in Arf1, a well-characterized small G-protein. We extensively characterized three distinct models of this intermediate using molecular dynamics simulations, allowing us to address ambiguities related to the mutant structural studies. We observed in particular the unfavorable nature of Mg2+ associated forms of the complex and the establishment of closer Arf1-GEF contacts in its absence. The results of this study shed light on GEF-mediated activation of this small G protein and on predicting the fate of the Mg ion at a critical point in the exchange reaction. The structural models themselves furnish additional targets for interfacial inhibitor design, a promising direction for exploring potentially druggable targets with high biological specificity.

  13. Structure variations of TBA G-quadruplex induced by 2'-O-methyl nucleotide in K+ and Ca2+ environments.

    Science.gov (United States)

    Zhao, Xiaoyang; Liu, Bo; Yan, Jing; Yuan, Ying; An, Liwen; Guan, Yifu

    2014-10-01

    Thrombin binding aptamer (TBA), a 15-mer oligonucleotide of d(GGTTGGTGTGGTTGG) sequence, folds into a chair-type antiparallel G-quadruplex in the K(+) environment, and each of two G-tetrads is characterized by a syn-anti-syn-anti glycosidic conformation arrangement. To explore its folding topology and structural stability, 2'-O-methyl nucleotide (OMe) with the C3'-endo sugar pucker conformation and anti glycosidic angle was used to selectively substitute for the guanine residues of G-tetrads of TBA, and these substituted TBAs were characterized using a circular dichroism spectrum, thermally differential spectrum, ultraviolet stability analysis, electrophoresis mobility shift assay, and thermodynamic analysis in K(+) and Ca(2+) environments. Results showed that single substitutions for syn-dG residues destabilized the G-quadruplex structure, while single substitutions for anti-dG residues could preserve the G-quadruplex in the K(+) environment. When one or two G-tetrads were modified with OMe, TBA became unstructured. In contrast, in Ca(2+) environment, the native TBA appeared to be unstructured. When two G-tetrads were substituted with OMe, TBA seemed to become a more stable parallel G-4 structure. Further thermodynamic data suggested that OMe-substitutions were an enthalpy-driven event. The results in this study enrich our understanding about the effects of nucleotide derivatives on the G-quadruplex structure stability in different ionic environments, which will help to design G-quadruplex for biological and medical applications. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  14. Effect of copper nanoparticles exposure in the physiology of the common carp (Cyprinus carpio: Biochemical, histological and proteomic approaches

    Directory of Open Access Journals (Sweden)

    Yugantak Raj Gupta

    2016-12-01

    Full Text Available Copper nanoparticles (Cu-NPs are serious water pollutants but their impact in teleosts performance remains poorly understood. In the present study, we have exposed juvenile carps (Cyprinus carpio, a freshwater teleost edible in India to two different doses (20 and 100 μg/L of Cu-NPs for seven days. The doses selected were eco-relevant considering the contamination levels of certain water resources. The results indicated that the activity oxidative stress enzymes catalase, superoxide dismutase, and glutathione-S-transferase were significantly increased in the kidney, liver and gills of the treated groups when compared to control. Histological analysis revealed that after exposure, disruption of the secondary lamellae of gills, liver damage with pyknotic nuclei and structural disarray of the kidney occurred. Proteomic analysis of the liver showed down-regulation of several proteins including the ferritin heavy chain, rho guanine nucleotide exchange factor 17-like, cytoglobin-1 and up-regulation of diphosphomevalonate decarboxylase and selenide & water dikinase-1. Taken together, the results of suggest that short-term exposure of juvenile carp to Cu-NPs causes oxidative stress and impart serious deleterious effects in the tissues which may affect fish growth and development.

  15. CED-10/Rac1 regulates endocytic recycling through the RAB-5 GAP TBC-2.

    Directory of Open Access Journals (Sweden)

    Lin Sun

    Full Text Available Rac1 is a founding member of the Rho-GTPase family and a key regulator of membrane remodeling. In the context of apoptotic cell corpse engulfment, CED-10/Rac1 acts with its bipartite guanine nucleotide exchange factor, CED-5/Dock180-CED-12/ELMO, in an evolutionarily conserved pathway to promote phagocytosis. Here we show that in the context of the Caenorhabditis elegans intestinal epithelium CED-10/Rac1, CED-5/Dock180, and CED-12/ELMO promote basolateral recycling. Furthermore, we show that CED-10 binds to the RAB-5 GTPase activating protein TBC-2, that CED-10 contributes to recruitment of TBC-2 to endosomes, and that recycling cargo is trapped in recycling endosomes in ced-12, ced-10, and tbc-2 mutants. Expression of GTPase defective RAB-5(Q78L also traps recycling cargo. Our results indicate that down-regulation of early endosome regulator RAB-5/Rab5 by a CED-5, CED-12, CED-10, TBC-2 cascade is an important step in the transport of cargo through the basolateral recycling endosome for delivery to the plasma membrane.

  16. Measurements of B Meson Decays to omega K* and omega rho

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.

    2005-02-14

    We describe searches for B meson decays to the charmless vector-vector final states {omega}K* and {omega}{rho} in 89 million B{bar B} pairs produced in e{sup +}e{sup -} annihilation at {radical}s = 10.58 GeV.

  17. Distinctive and selective route of PI3K/PKCα-PKCδ/RhoA-Rac1 signaling in osteoclastic cell migration.

    Science.gov (United States)

    Kim, Jin-Man; Kim, Mi Yeong; Lee, Kyunghee; Jeong, Daewon

    2016-12-05

    Cell migration during specialized stages of osteoclast precursors, mononuclear preosteoclasts, and multinucleated mature osteoclasts remain uncertain. M-CSF- and osteopontin-induced osteoclastic cell migration was inhibited by function-blocking monoclonal antibodies specific to the integrin αv and β3 subunits, suggesting that integrin αvβ3 mediates migratory signaling induced by M-CSF and osteopontin. M-CSF and osteopontin stimulation was shown to regulate two branched signaling processes, PI3K/PKCα/RhoA axis and PI3K/PKCδ/Rac1 axis. Interestingly, inactivation of RhoA or Rac1 blocked preosteoclast and mature osteoclast migration but not osteoclast precursor migration in a transwell-based cell migration assay. Moreover, the inhibitory effect on preosteoclast and mature osteoclast migration induced by Rac1 inactivation was more effective than that by RhoA inactivation. Collectively, our findings suggest that osteoclast precursor migration depends on PI3K/PKCα-PKCδ signaling mediated via integrin αvβ3 bypassing RhoA and Rac1, whereas preosteoclast and mature osteoclast migration relies on PI3K/PKCα-PKCδ/RhoA-Rac1 axis signaling mediated via integrin αvβ3 with increased dependency on PKCδ/Rac1 signaling route as differentiation progresses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Opposing roles for RhoH GTPase during T-cell migration and activation

    Science.gov (United States)

    Baker, Christina M.; Comrie, William A.; Hyun, Young-Min; Chung, Hung-Li; Fedorchuk, Christine A.; Lim, Kihong; Brakebusch, Cord; McGrath, James L.; Waugh, Richard E.; Meier-Schellersheim, Martin; Kim, Minsoo

    2012-01-01

    T cells spend the majority of their time perusing lymphoid organs in search of cognate antigen presented by antigen presenting cells (APCs) and then quickly recirculate through the bloodstream to another lymph node. Therefore, regulation of a T-cell response is dependent upon the ability of cells to arrive in the correct location following chemokine gradients (“go” signal) as well as to receive appropriate T-cell receptor (TCR) activation signals upon cognate antigen recognition (“stop” signal). However, the mechanisms by which T cells regulate these go and stop signals remain unclear. We found that overexpression of the hematopoietic-specific RhoH protein in the presence of chemokine signals resulted in decreased Rap1–GTP and LFA-1 adhesiveness to ICAM-1, thus impairing T-cell chemotaxis; while in the presence of TCR signals, there were enhanced and sustained Rap1–GTP and LFA-1 activation as well as prolonged T:APC conjugates. RT-PCR analyses of activated CD4+ T cells and live images of T-cell migration and immunological synapse (IS) formation revealed that functions of RhoH took place primarily at the levels of transcription and intracellular distribution. Thus, we conclude that RhoH expression provides a key molecular determinant that allows T cells to switch between sensing chemokine-mediated go signals and TCR-dependent stop signals. PMID:22689994

  19. Rho Kinase ROCK2 Mediates Acid-Induced NADPH Oxidase NOX5-S Expression in Human Esophageal Adenocarcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Jie Hong

    Full Text Available Mechanisms of the progression from Barrett's esophagus (BE to esophageal adenocarcinoma (EA are not fully understood. We have shown that NOX5-S may be involved in this progression. However, how acid upregulates NOX5-S is not well known. We found that acid-induced increase in NOX5-S expression was significantly decreased by the Rho kinase (ROCK inhibitor Y27632 in BE mucosal biopsies and FLO-1 EA cells. In addition, acid treatment significantly increased the Rho kinase activity in FLO-1 cells. The acid-induced increase in NOX5-S expression and H2O2 production was significantly decreased by knockdown of Rho kinase ROCK2, but not by knockdown of ROCK1. Conversely, the overexpression of the constitutively active ROCK2, but not the constitutively active ROCK1, significantly enhanced the NOX5-S expression and H2O2 production. Moreover, the acid-induced increase in Rho kinase activity and in NOX5-S mRNA expression was blocked by the removal of calcium in both FLO-1 and OE33 cells. The calcium ionophore A23187 significantly increased the Rho kinase activity and NOX5-S mRNA expression. We conclude that acid-induced increase in NOX5-S expression and H2O2 production may depend on the activation of ROCK2, but not ROCK1, in EA cells. The acid-induced activation of Rho kinase may be mediated by the intracellular calcium increase. It is possible that persistent acid reflux present in BE patients may increase the intracellular calcium, activate ROCK2 and thereby upregulate NOX5-S. High levels of reactive oxygen species derived from NOX5-S may cause DNA damage and thereby contribute to the progression from BE to EA.

  20. Inactivation of the small GTP binding protein Rho induces multinucleate cell formation and apoptosis in murine T lymphoma EL4.

    Science.gov (United States)

    Moorman, J P; Bobak, D A; Hahn, C S

    1996-06-01

    The small G-protein Rho regulates the actin microfilament-dependent cytoskeleton. Exoenzyme C3 of Clostridium botulinum ADP-ribosylates Rho at Asn41, a modification that functionally inactivates Rho. Using a Sindbis virus-based transient gene expression system, we studied the role of Rho in murine EL4 T lymphoma cells. We generated a double subgenomic infectious Sindbis virus (dsSIN:C3) recombinant which expressed C3 in >95% of EL4 cells. This intracellular C3 resulted in modification and inactivation of virtually all endogenous Rho. dsSIN:C3 infection led to the formation of multinucleate cells, likely by inhibiting the actin microfilament-dependent step of cytokinesis. Intriguingly, in spite of the inhibition of cytokinesis, karyokinesis continued, with the result that cells containing a nuclear DNA content as high as 16N (eight nuclei) were observed. In addition, dsSIN:C3-mediated inactivation of Rho was a potent activator of apoptosis in EL4 cells. To discern whether the formation of multinucleate cells was responsible for the activation of apoptosis, 5-fluorouracil (5-FUra) was used to induce cell cycle arrest. As expected, EL4 cells treated with 5-FUra were prevented from forming multinucleate cells upon infection with dsSIN:C3. dsSIN:C3 infection, however, still caused marked apoptosis in 5-FUra-treated cells, indicating that this activation of apoptosis was independent of multinucleate cell formation.