WorldWideScience

Sample records for rhizosphere competence traits

  1. Impact of selection on maize root traits and rhizosphere interactions

    Science.gov (United States)

    Schmidt, J. E.; Gaudin, A. C. M.

    2017-12-01

    Effects of domestication and breeding on maize have been well-characterized aboveground, but impacts on root traits and rhizosphere processes remain unclear. Breeding in high-inorganic-input environments may have negatively affected the ability of modern maize to acquire nutrients through foraging and microbial interactions in marginal and/or organically managed soils. Twelve maize genotypes representing a selection gradient (teosintes, landraces, open-pollinated parents of modern elite germplasm, and modern hybrids released 1934-2015) were grown in three soils varying in intensity of long-term management (unfertilized, organic, conventional) in the greenhouse. Recruitment of rhizosphere microbial communities, nutrient acquisition, and plant productivity were affected by genotype-by-soil interactions. Maize genotypes exhibit significant variation in their ability to obtain nutrients from soils of different management history, indicating the potential for re-integration of beneficial root and rhizosphere traits to increase adaptation to low-input agroecosystems.

  2. Rhizosphere hydrophobicity: A positive trait in the competition for water.

    Science.gov (United States)

    Zeppenfeld, Thorsten; Balkenhol, Niko; Kóvacs, Kristóf; Carminati, Andrea

    2017-01-01

    The ability to acquire water from the soil is a major driver in interspecific plant competition and it depends on several root functional traits. One of these traits is the excretion of gel-like compounds (mucilage) that modify physical soil properties. Mucilage secreted by roots becomes hydrophobic upon drying, impedes the rewetting of the soil close to the root, the so called rhizosphere, and reduces water availability to plants. The function of rhizosphere hydrophobicity is not easily understandable when looking at a single plant, but it may constitute a competitive advantage at the ecosystem level. We hypothesize that by making the top soil hydrophobic, deep-rooted plants avoid competititon with shallow-rooted plants. To test this hypothesis we used an individual-based model to simulate water uptake and growth of two virtual plant species, one deep-rooted plant capable of making the soil hydrophobic and a shallow-rooted plant. We ran scenarios with different precipitation regimes ranging from dry to wet (350, 700, and 1400 mm total annual precipitation) and from high to low precipitation frequencies (1, 7, and 14 days). Plant species abundance and biomass were chosen as indicators for competitiveness of plant species. At constant precipitation frequency mucilage hydrophobicity lead to a benefit in biomass and abundance of the tap-rooted population. Under wet conditions this effect diminished and tap-rooted plants were less productive. Without this trait both species coexisted. The effect of root exudation trait remained constant under different precipitation frequencies. This study shows that mucilage secretion is a competitive trait for the acquisition of water. This advantage is achieved by the modification of the soil hydraulic properties and specifically by inducing water repellency in soil regions which are shared with other species.

  3. Rhizosphere hydrophobicity: A positive trait in the competition for water.

    Directory of Open Access Journals (Sweden)

    Thorsten Zeppenfeld

    Full Text Available The ability to acquire water from the soil is a major driver in interspecific plant competition and it depends on several root functional traits. One of these traits is the excretion of gel-like compounds (mucilage that modify physical soil properties. Mucilage secreted by roots becomes hydrophobic upon drying, impedes the rewetting of the soil close to the root, the so called rhizosphere, and reduces water availability to plants. The function of rhizosphere hydrophobicity is not easily understandable when looking at a single plant, but it may constitute a competitive advantage at the ecosystem level. We hypothesize that by making the top soil hydrophobic, deep-rooted plants avoid competititon with shallow-rooted plants. To test this hypothesis we used an individual-based model to simulate water uptake and growth of two virtual plant species, one deep-rooted plant capable of making the soil hydrophobic and a shallow-rooted plant. We ran scenarios with different precipitation regimes ranging from dry to wet (350, 700, and 1400 mm total annual precipitation and from high to low precipitation frequencies (1, 7, and 14 days. Plant species abundance and biomass were chosen as indicators for competitiveness of plant species. At constant precipitation frequency mucilage hydrophobicity lead to a benefit in biomass and abundance of the tap-rooted population. Under wet conditions this effect diminished and tap-rooted plants were less productive. Without this trait both species coexisted. The effect of root exudation trait remained constant under different precipitation frequencies. This study shows that mucilage secretion is a competitive trait for the acquisition of water. This advantage is achieved by the modification of the soil hydraulic properties and specifically by inducing water repellency in soil regions which are shared with other species.

  4. Soil Type Dependent Rhizosphere Competence and Biocontrol of Two Bacterial Inoculant Strains and Their Effects on the Rhizosphere Microbial Community of Field-Grown Lettuce

    Science.gov (United States)

    Schreiter, Susanne; Sandmann, Martin; Smalla, Kornelia; Grosch, Rita

    2014-01-01

    Rhizosphere competence of bacterial inoculants is assumed to be important for successful biocontrol. Knowledge of factors influencing rhizosphere competence under field conditions is largely lacking. The present study is aimed to unravel the effects of soil types on the rhizosphere competence and biocontrol activity of the two inoculant strains Pseudomonas jessenii RU47 and Serratia plymuthica 3Re4-18 in field-grown lettuce in soils inoculated with Rhizoctonia solani AG1-IB or not. Two independent experiments were carried out in 2011 on an experimental plot system with three soil types sharing the same cropping history and weather conditions for more than 10 years. Rifampicin resistant mutants of the inoculants were used to evaluate their colonization in the rhizosphere of lettuce. The rhizosphere bacterial community structure was analyzed by denaturing gradient gel electrophoresis of 16S rRNA gene fragments amplified from total community DNA to get insights into the effects of the inoculants and R. solani on the indigenous rhizosphere bacterial communities. Both inoculants showed a good colonization ability of the rhizosphere of lettuce with more than 106 colony forming units per g root dry mass two weeks after planting. An effect of the soil type on rhizosphere competence was observed for 3Re4-18 but not for RU47. In both experiments a comparable rhizosphere competence was observed and in the presence of the inoculants disease symptoms were either significantly reduced, or at least a non-significant trend was shown. Disease severity was highest in diluvial sand followed by alluvial loam and loess loam suggesting that the soil types differed in their conduciveness for bottom rot disease. Compared to effect of the soil type of the rhizosphere bacterial communities, the effects of the pathogen and the inoculants were less pronounced. The soil types had a surprisingly low influence on rhizosphere competence and biocontrol activity while they significantly affected

  5. Soil type dependent rhizosphere competence and biocontrol of two bacterial inoculant strains and their effects on the rhizosphere microbial community of field-grown lettuce.

    Directory of Open Access Journals (Sweden)

    Susanne Schreiter

    Full Text Available Rhizosphere competence of bacterial inoculants is assumed to be important for successful biocontrol. Knowledge of factors influencing rhizosphere competence under field conditions is largely lacking. The present study is aimed to unravel the effects of soil types on the rhizosphere competence and biocontrol activity of the two inoculant strains Pseudomonas jessenii RU47 and Serratia plymuthica 3Re4-18 in field-grown lettuce in soils inoculated with Rhizoctonia solani AG1-IB or not. Two independent experiments were carried out in 2011 on an experimental plot system with three soil types sharing the same cropping history and weather conditions for more than 10 years. Rifampicin resistant mutants of the inoculants were used to evaluate their colonization in the rhizosphere of lettuce. The rhizosphere bacterial community structure was analyzed by denaturing gradient gel electrophoresis of 16S rRNA gene fragments amplified from total community DNA to get insights into the effects of the inoculants and R. solani on the indigenous rhizosphere bacterial communities. Both inoculants showed a good colonization ability of the rhizosphere of lettuce with more than 10(6 colony forming units per g root dry mass two weeks after planting. An effect of the soil type on rhizosphere competence was observed for 3Re4-18 but not for RU47. In both experiments a comparable rhizosphere competence was observed and in the presence of the inoculants disease symptoms were either significantly reduced, or at least a non-significant trend was shown. Disease severity was highest in diluvial sand followed by alluvial loam and loess loam suggesting that the soil types differed in their conduciveness for bottom rot disease. Compared to effect of the soil type of the rhizosphere bacterial communities, the effects of the pathogen and the inoculants were less pronounced. The soil types had a surprisingly low influence on rhizosphere competence and biocontrol activity while they

  6. Soil type dependent rhizosphere competence and biocontrol of two bacterial inoculant strains and their effects on the rhizosphere microbial community of field-grown lettuce.

    Science.gov (United States)

    Schreiter, Susanne; Sandmann, Martin; Smalla, Kornelia; Grosch, Rita

    2014-01-01

    Rhizosphere competence of bacterial inoculants is assumed to be important for successful biocontrol. Knowledge of factors influencing rhizosphere competence under field conditions is largely lacking. The present study is aimed to unravel the effects of soil types on the rhizosphere competence and biocontrol activity of the two inoculant strains Pseudomonas jessenii RU47 and Serratia plymuthica 3Re4-18 in field-grown lettuce in soils inoculated with Rhizoctonia solani AG1-IB or not. Two independent experiments were carried out in 2011 on an experimental plot system with three soil types sharing the same cropping history and weather conditions for more than 10 years. Rifampicin resistant mutants of the inoculants were used to evaluate their colonization in the rhizosphere of lettuce. The rhizosphere bacterial community structure was analyzed by denaturing gradient gel electrophoresis of 16S rRNA gene fragments amplified from total community DNA to get insights into the effects of the inoculants and R. solani on the indigenous rhizosphere bacterial communities. Both inoculants showed a good colonization ability of the rhizosphere of lettuce with more than 10(6) colony forming units per g root dry mass two weeks after planting. An effect of the soil type on rhizosphere competence was observed for 3Re4-18 but not for RU47. In both experiments a comparable rhizosphere competence was observed and in the presence of the inoculants disease symptoms were either significantly reduced, or at least a non-significant trend was shown. Disease severity was highest in diluvial sand followed by alluvial loam and loess loam suggesting that the soil types differed in their conduciveness for bottom rot disease. Compared to effect of the soil type of the rhizosphere bacterial communities, the effects of the pathogen and the inoculants were less pronounced. The soil types had a surprisingly low influence on rhizosphere competence and biocontrol activity while they significantly affected

  7. Competitive Traits Are More Important than Stress-Tolerance Traits in a Cadmium-Contaminated Rhizosphere: A Role for Trait Theory in Microbial Ecology.

    Science.gov (United States)

    Wood, Jennifer L; Tang, Caixian; Franks, Ashley E

    2018-01-01

    Understanding how biotic and abiotic factors govern the assembly of rhizosphere-microbial communities is a long-standing goal in microbial ecology. In phytoremediation research, where plants are used to remediate heavy metal-contaminated soils, a deeper understanding of rhizosphere-microbial ecology is needed to fully exploit the potential of microbial-assisted phytoremediation. This study investigated whether Grime's competitor/stress-tolerator/ruderal (CSR) theory could be used to describe the impact of cadmium (Cd) and the presence of a Cd-accumulating plant, Carpobrotus rossii (Haw.) Schwantes, on the assembly of soil-bacterial communities using Illumina 16S rRNA profiling and the predictive metagenomic-profiling program, PICRUSt. Using predictions based on CSR theory, we hypothesized that Cd and the presence of a rhizosphere would affect community assembly. We predicted that the additional resource availability in the rhizosphere would enrich for competitive life strategists, while the presence of Cd would select for stress-tolerators. Traits identified as competitive followed CSR predictions, discriminating between rhizosphere and bulk-soil communities whilst stress-tolerance traits increased with Cd dose, but only in bulk-soil communities. These findings suggest that a bacterium's competitive attributes are critical to its ability to occupy and proliferate in a Cd-contaminated rhizosphere. Ruderal traits, which relate to community re-colonization potential, were synergistically decreased by the presence of the rhizosphere and Cd dose. Taken together this microcosm study suggests that the CSR theory is broadly applicable to microbial communities. Further work toward developing a simplified and robust strategy for microbial CSR classification will provide an ecologically meaningful framework to interpret community-level changes across a range of biomes.

  8. Effect of Azotobacter croococcum on productive traits and microorganisms in sugar beet rhizosphere

    Directory of Open Access Journals (Sweden)

    Kuzevski Janja

    2011-01-01

    Full Text Available The aim of this study was to determine the effects of three different inoculation methods with selected Azotobacter chroococcum strains on productive and technological traits of sugar beet, as well as on the total number of microorganisms and azotobacter in rhizosphere. The results of this two-year study showed that effectiveness of the tested inoculation methods in increasing root yield and sugar content varies greatly, depending on year and azotobacter strains. Effectiveness of inoculation methods was not largely impacted by year on granulated sugar. Achieved granulated sugar yield was significantly higher by using pre-sowing azotobacter application, than by using seed inoculation. A significantly increased number of microorganisms in sugar beet rhizosphere was determined, not only by using pre-sowing azotobacter application but also by using sugar beet seed inoculation. Pre-sowing azotobacter application and inter-row cultivation both caused an equal increase in the number of these bacteria in sugar beet rhizosphere (42.2% and 46.9%. Use of sugar beet seed inoculation caused an increase of 33.7% in the number of azotobacter. In order to achieve higher effectiveness in applying azotobacter on productive and technological traits of sugar beet, and considering determined interaction between a certain year, an inoculation method and a strain, it is necessary for future research to focus on determining efficiency of these strains when they are in a mixture.

  9. Selection rhizosphere-competent microbes for development of microbial products as biocontrol agents

    Science.gov (United States)

    Mashinistova, A. V.; Elchin, A. A.; Gorbunova, N. V.; Muratov, V. S.; Kydralieva, K. A.; Khudaibergenova, B. M.; Shabaev, V. P.; Jorobekova, Sh. J.

    2009-04-01

    Rhizosphere-borne microorganisms reintroduced to the soil-root interface can establish without inducing permanent disturbance in the microbial balance and effectively colonise the rhizosphere due to carbon sources of plant root exudates. A challenge for future development of microbial products for use in agriculture will be selection of rhizosphere-competent microbes that both protect the plant from pathogens and improve crop establishment and persistence. In this study screening, collection, identification and expression of stable and technological microbial strains living in soils and in the rhizosphere of abundant weed - couch-grass Elytrigia repens L. Nevski were conducted. A total of 98 bacteria isolated from the rhizosphere were assessed for biocontrol activity in vitro against phytopathogenic fungi including Fusarium culmorum, Fusarium heterosporum, Fusarium oxysporum, Drechslera teres, Bipolaris sorokiniana, Piricularia oryzae, Botrytis cinerea, Colletothrichum atramentarium and Cladosporium sp., Stagonospora nodorum. Biocontrol activity were performed by the following methods: radial and parallel streaks, "host - pathogen" on the cuts of wheat leaves. A culture collection comprising 64 potential biocontrol agents (BCA) against wheat and barley root diseases has been established. Of these, the most effective were 8 isolates inhibitory to at least 4 out of 5 phytopathogenic fungi tested. The remaining isolates inhibited at least 1 of 5 fungi tested. Growth stimulating activity of proposed rhizobacteria-based preparations was estimated using seedling and vegetative pot techniques. Seeds-inoculation and the tests in laboratory and field conditions were conducted for different agricultural crops - wheat and barley. Intact cells, liquid culture filtrates and crude extracts of the four beneficial bacterial strains isolated from the rhizosphere of weed were studied to stimulate plant growth. As a result, four bacterial strains selected from rhizosphere of weed

  10. Assessment of the rhizosphere competency and pentachlorophenol-metabolizing activity of a pesticide-degrading strain of Trichoderma harzianum introduced into the root zone of corn seedlings.

    Science.gov (United States)

    Rigot, Jerĵme; Matsumura, Fumio

    2002-05-01

    To develop a dependable approach to introduce laboratory selected, pesticide-degrading microorganisms into soil environments for the purpose of in situ bioremediation, we tested the possibility of utilizing plant rhizospheres as the vehicle. We first established the rhizosphere competency of a strain of the soil fungus Trichoderma harzianum, a biocontrol species well studied by plant pathologists to colonize plant rhizosphere in many parts of the world. The strain we chose, T.h.2023 is resistant to many fungicides, and it has been shown to metabolize several pesticides. Second, we found that it readily metabolized pentachlorophenol (PCP), which is quickly and stochiometrically converted to pentachloroanisole (PCA) in liquid culture. Taking advantage of this specific feature, we have developed a sensitive metabolic marker approach that allowed us to monitor for the continuous presence and activity of this fungal strain in the corn rhizosphere soil in situ over time.

  11. Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata Lab.

    Science.gov (United States)

    Fu, Shih-Feng; Sun, Pei-Feng; Lu, Hsueh-Yu; Wei, Jyuan-Yu; Xiao, Hong-Su; Fang, Wei-Ta; Cheng, Bai-You; Chou, Jui-Yu

    2016-03-01

    Microorganisms can promote plant growth through direct and indirect mechanisms. Compared with the use of bacteria and mycorrhizal fungi, the use of yeasts as plant growth-promoting (PGP) agents has not been extensively investigated. In this study, yeast isolates from the phyllosphere and rhizosphere of the medicinally important plant Drosera spatulata Lab. were assessed for their PGP traits. All isolates were tested for indole-3-acetic acid-, ammonia-, and polyamine-producing abilities, calcium phosphate and zinc oxide solubilizing ability, and catalase activity. Furthermore, the activities of siderophore, 1-aminocyclopropane-1-carboxylate deaminase, and fungal cell wall-degrading enzymes were assessed. The antagonistic action of yeasts against pathogenic Glomerella cingulata was evaluated. The cocultivation of Nicotiana benthamiana with yeast isolates enhanced plant growth, indicating a potential yeast-plant interaction. Our study results highlight the potential use of yeasts as plant biofertilizers under controlled and field conditions. Copyright © 2016 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  12. Emotional intelligence predicts peer-rated social competence above and beyond personality traits

    OpenAIRE

    Dorota Szczygieł; Joanna Weber

    2016-01-01

    Background This study investigated the relationship between trait emotional intelligence (EI) and social competences (SC), which determine effective functioning in three types of social situations: intimate situations, situations of social exposure and situations requiring self-assertion. Social competences were assessed using a peer nomination method. It was hypothesized that trait EI predicts SC above and beyond personality traits. Participants and procedure Data were co...

  13. Emotional intelligence predicts peer-rated social competence above and beyond personality traits

    Directory of Open Access Journals (Sweden)

    Dorota Szczygieł

    2016-12-01

    Full Text Available Background This study investigated the relationship between trait emotional intelligence (EI and social competences (SC, which determine effective functioning in three types of social situations: intimate situations, situations of social exposure and situations requiring self-assertion. Social competences were assessed using a peer nomination method. It was hypothesized that trait EI predicts SC above and beyond personality traits. Participants and procedure Data were collected from among 111 adolescents (46.95% girls. The study was conducted among five classes from three public high schools. Participants first completed the Personality Inventory NEO-FFI and the Trait Emotional Intelligence Questionnaire-Short Form (TEIQue-SF. Subsequently, the descriptions of three different persons were presented to the participants. Each description concerned one of the SC: intimate competence, social exposure competence and assertive competence. Participants were asked to nominate three classmates who suited each description best. Results A series of hierarchical regression analyses was performed. Personality traits and trait EI were regressed on each competence. Analyses involved two-step hierarchical regressions, entering personality traits at step 1 and adding trait EI at step 2. The results demonstrated that personality traits explained a substantial portion of the variance in each SC. Beyond these variables, trait EI was significant as a predictor of nominations for each SC, explaining an additional amount of the unique variance. Conclusions The results complement existing evidence that trait EI contributes to successful social functioning. The relationships between trait EI and SC remained statistically significant even after controlling for Big Five variance. The results demonstrate incremental validity of trait EI over and above personality traits.

  14. Effects of nurses' personality traits and their environmental characteristics on their workplace learning and nursing competence.

    Science.gov (United States)

    Takase, Miyuki; Yamamoto, Masako; Sato, Yoko

    2018-04-01

    A good fit between an individual's personality traits and job characteristics motivates employees, and thus enhances their work behavior. However, how nurses' personality traits and their environmental characteristics relate to nurses' engagement in workplace learning, which improves their competence, has not been investigated. The aim of this study was to investigate how nurses' personality traits, environmental characteristics, and workplace learning were related to nursing competence. A cross-sectional survey design was used. Questionnaires were distributed to 1167 Japanese registered nurses. Multiple regression analysis was used to examine the relationships between nurses' personality traits, the environmental characteristics, the nurses' engagement in workplace learning, and their competence. A total of 315 nurses returned questionnaires (i.e., a return rate of 27.0%). The results showed that both the personality traits (extraversion, conscientiousness, openness to experience) and environmental characteristics (autonomy at work and feedback given) were related to workplace learning and self-rated nursing competence. The results also showed that the relationship between extraversion (active, adventurous and ambitious dispositions of an individual) and self-rated nursing competence was moderated by environmental characteristics, and partially mediated by workplace learning. Positive personality traits, such as extraversion, conscientiousness, and openness to experience could enhance workplace learning and nursing competence. Moreover, environmental characteristics that allow nurses to express their personality traits have the potential to improve their learning and competence further. © 2017 Japan Academy of Nursing Science.

  15. Compatible Rhizosphere-Competent Microbial Consortium Adds Value to the Nutritional Quality in Edible Parts of Chickpea.

    Science.gov (United States)

    Yadav, Sudheer K; Singh, Surendra; Singh, Harikesh B; Sarma, Birinchi K

    2017-08-02

    Chickpea is used as a high-energy and protein source in diets of humans and livestock. Moreover, chickpea straw can be used as alternative of forage in ruminant diets. The present study evaluates the effect of beneficial microbial inoculation on enhancing the nutritional values in edible parts of chickpea. Two rhizosphere-competent compatible microbes (Pseudomonas fluorescens OKC and Trichoderma asperellum T42) were selected and applied to seeds either individually or in consortium before sowing. Chickpea seeds treated with the microbes showed enhanced plant growth [88.93% shoot length at 60 days after sowing (DAS)] and biomass accumulation (21.37% at 120 DAS). Notably, the uptake of mineral nutrients, viz., N (90.27, 91.45, and 142.64%), P (14.13, 58.73, and 56.84%), K (20.5, 9.23, and 35.98%), Na (91.98, 101.66, and 36.46%), Ca (16.61, 29.46, and 16%), and organic carbon (28.54, 17.09, and 18.54%), was found in the seed, foliage, and pericarp of the chickpea plants, respectively. Additionally, nutritional quality, viz., total phenolic (59.7, 2.8, and 17.25%), protein (9.78, 18.53, and 7.68%), carbohydrate content (26.22, 30.21, and 26.63%), total flavonoid content (3.11, 9.15, and 7.81%), and reducing power (112.98, 75.42, and 111.75%), was also found in the seed, foliage, and pericarp of the chickpea plants. Most importantly, the microbial-consortium-treated plants showed the maximum increase of nutrient accumulation and enhancement in nutritional quality in all edible parts of chickpea. Nutritional partitioning in different edible parts of chickpea was also evident in the microbial treatments compared to their uninoculated ones. The results thus clearly demonstrated microbe-mediated enhancement in the dietary value of the edible parts of chickpea because seeds are consumed by humans, whereas pericarp and foliage (straw) are used as an alternative of forage and roughage in ruminant diets.

  16. Host Competence: An Organismal Trait to Integrate Immunology and Epidemiology.

    Science.gov (United States)

    Martin, Lynn B; Burgan, S C; Adelman, James S; Gervasi, Stephanie S

    2016-12-01

    The new fields of ecological immunology and disease ecology have begun to merge, and the classic fields of immunology and epidemiology are beginning to blend with them. This merger is occurring because the integrative study of host-parasite interactions is providing insights into disease in ways that traditional methods have not. With the advent of new tools, mathematical and technological, we could be on the verge of developing a unified theory of infectious disease, one that supersedes the barriers of jargon and tradition. Here we argue that a cornerstone of any such synthesis will be host competence, the propensity of an individual host to generate new infections in other susceptible hosts. In the last few years, the emergence of systems immunology has led to novel insight into how hosts control or eliminate pathogens. Most such efforts have stopped short of considering transmission and the requisite behaviors of infected individuals that mediate it, and few have explicitly incorporated ecological and evolutionary principles. Ultimately though, we expect that the use of a systems immunology perspective will help link suborganismal processes (i.e., health of hosts and selection on genes) to superorganismal outcomes (i.e., community-level disease dynamics and host-parasite coevolution). Recently, physiological regulatory networks (PRNs) were cast as whole-organism regulatory systems that mediate homeostasis and hence link suborganismal processes with the fitness of individuals. Here, we use the PRN construct to develop a roadmap for studying host competence, taking guidance from systems immunology and evolutionary ecology research. We argue that PRN variation underlies heterogeneity in individual host competence and hence host-parasite dynamics. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  17. Rhizosphere size

    Science.gov (United States)

    Kuzyakov, Yakov; Razavi, Bahar

    2017-04-01

    Estimation of the soil volume affected by roots - the rhizosphere - is crucial to assess the effects of plants on properties and processes in soils and dynamics of nutrients, water, microorganisms and soil organic matter. The challenges to assess the rhizosphere size are: 1) the continuum of properties between the root surface and root-free soil, 2) differences in the distributions of various properties (carbon, microorganisms and their activities, various nutrients, enzymes, etc.) along and across the roots, 3) temporal changes of properties and processes. Thus, to describe the rhizosphere size and root effects, a holistic approach is necessary. We collected literature and own data on the rhizosphere gradients of a broad range of physico-chemical and biological properties: pH, CO2, oxygen, redox potential, water uptake, various nutrients (C, N, P, K, Ca, Mg, Mn and Fe), organic compounds (glucose, carboxylic acids, amino acids), activities of enzymes of C, N, P and S cycles. The collected data were obtained based on the destructive approaches (thin layer slicing), rhizotron studies and in situ visualization techniques: optodes, zymography, sensitive gels, 14C and neutron imaging. The root effects were pronounced from less than 0.5 mm (nutrients with slow diffusion) up to more than 50 mm (for gases). However, the most common effects were between 1 - 10 mm. Sharp gradients (e.g. for P, carboxylic acids, enzyme activities) allowed to calculate clear rhizosphere boundaries and so, the soil volume affected by roots. The first analyses were done to assess the effects of soil texture and moisture as well as root system and age on these gradients. The most properties can be described by two curve types: exponential saturation and S curve, each with increasing and decreasing concentration profiles from the root surface. The gradient based distribution functions were calculated and used to extrapolate on the whole soil depending on the root density and rooting intensity. We

  18. Unsatisfied relatedness, not competence or autonomy, increases trait anger through the right amygdala.

    Science.gov (United States)

    Wang, Yinan; Kong, Feng; Kong, Xiangzhen; Zhao, Yuanfang; Lin, Danhua; Liu, Jia

    2017-10-01

    Anger is a common negative emotion in social life. Behavioral research suggests that unsatisfied relatedness, autonomy, and competence are related to anger. However, it remains unclear whether these unsatisfied needs all contribute to anger or just a particular unsatisfied need is the main source of anger. In addition, little is known about the neural substrate between unsatisfied needs and anger. To address these two questions, we used voxel-based morphometry (VBM) to explore the neural substrate underlying the relation between unsatisfied needs and trait anger. Behaviorally, we found that although all three unsatisfied needs were correlated with trait anger, unsatisfied relatedness was the only factor that was uniquely related to trait anger. Neurally, the gray matter volume of the right amygdala was correlated with trait anger, which fits nicely with the role of the amygdala as a core region for processing anger. Importantly, the right amygdala mediated the total effect of unsatisfied relatedness on trait anger, even after controlling for general personality dispositions. Our results contribute to the theoretical conceptualization of anger by elucidating the unique role of unsatisfied relatedness in anger and the neural substrate underlying such relation.

  19. Parenting and social competence in school: The role of preadolescents' personality traits.

    Science.gov (United States)

    Lianos, Panayiotis G

    2015-06-01

    In a study of 230 preadolescent students (mean age 11.3 years) from the wider area of Athens, Greece, the role of Big Five personality traits (i.e. Neuroticism, Conscientiousness, Openness to Experience, Agreeableness and Extraversion) in the relation between parenting dimensions (overprotection, emotional warmth, rejection, anxious rearing) and social competence in school was examined. Multiple sets of regression analyses were performed. Main effects of Conscientiousness and Openness to Experience were identified. Limited evidence for moderation and some support of gender-specific parenting was found. Agreeableness and Extraversion interacted with paternal overprotection, whereas Neuroticism interacted with maternal and paternal rejection in predicting social competence. Mean differences in gender and educational grade were reported. The relationship between environmental effects (such as parenting during early adolescence) and social adjustment in school is discussed in terms of the plasticity and malleability of the preadolescents' personality characteristics. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  20. Effectiveness of Mental Immunization Program Training on Social Competency and Personality Traits of Individuals With Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Mohammad Ashoori

    2017-07-01

    Conclusion The results of the present research indicated a significant increase in social competency in adolescents with cerebral palsy. Also, desirable changes were found to be developed in the personality traits of these adolescents. In other words, there was a decreased level of neuroticism and significant increase in positive traits such as extroversion, agreeableness and conscientiousness. The overall results of the present research indicated that mental immunization program training led to improvement in social competency and personality traits of individuals with cerebral palsy. Therefore, paying attention to the mental immunization program training is essential, and planning for providing of psychological immunization program training is of particular importance. Cerebral palsy affects all aspect of an individual’s life and implementing the mental immunization program training has been associated with effective outcomes. Therefore, instructional interventions such as mental immunization program training are required . While a lot of research works have been conducted with regard to the effectiveness of mental immunization program training on social competency and personality traits of normal students, only a few investigations have been carried out for the same in relation to individuals with cerebral palsy. As far as present study used experimental method, could be cautioned in generalization of results . Another limitation of this study is the use of self-reporting questionnaires, wherein individuals do not feel the responsibility to answer correctly and honestly in order to avoid stigma or rejection by the community. It is recommended that the psychological immunization program training, which is very helpful in the instruction  of teenagers with cerebral palsy, be used in primary schools and among various categories of exceptional students.

  1. HapX-Mediated Iron Homeostasis Is Essential for Rhizosphere Competence and Virulence of the Soilborne Pathogen Fusarium oxysporum[C][W][OA

    Science.gov (United States)

    López-Berges, Manuel S.; Capilla, Javier; Turrà, David; Schafferer, Lukas; Matthijs, Sandra; Jöchl, Christoph; Cornelis, Pierre; Guarro, Josep; Haas, Hubertus; Di Pietro, Antonio

    2012-01-01

    Soilborne fungal pathogens cause devastating yield losses and are highly persistent and difficult to control. During the infection process, these organisms must cope with limited availability of iron. Here we show that the bZIP protein HapX functions as a key regulator of iron homeostasis and virulence in the vascular wilt fungus Fusarium oxysporum. Deletion of hapX does not affect iron uptake but causes derepression of genes involved in iron-consuming pathways, leading to impaired growth under iron-depleted conditions. F. oxysporum strains lacking HapX are reduced in their capacity to invade and kill tomato (Solanum lycopersicum) plants and immunodepressed mice. The virulence defect of ΔhapX on tomato plants is exacerbated by coinoculation of roots with a biocontrol strain of Pseudomonas putida, but not with a siderophore-deficient mutant, indicating that HapX contributes to iron competition of F. oxysporum in the tomato rhizosphere. These results establish a conserved role for HapX-mediated iron homeostasis in fungal infection of plants and mammals. PMID:22968717

  2. The Relationships among Attachment Style, Personality Traits, Interpersonal Competency, and Facebook Use

    Science.gov (United States)

    Jenkins-Guarnieri, Michael A.; Wright, Stephen L.; Hudiburgh, Lynette M.

    2012-01-01

    Among emerging adult populations, the increasingly prevalent use of online social media, such as Facebook, and its relationship to individual personality traits and interpersonal relationships are of growing interest to researchers. The current study sought to investigate how attachment style, personality traits based on the Five Factor Model, and…

  3. Competence over Communion: Implicit Evaluations of Personality Traits During Goal Pursuit

    Directory of Open Access Journals (Sweden)

    Roczniewska Marta

    2014-12-01

    Full Text Available Research shows that goal-relevant objects are rated positively, which results from their functionality towards the aim. In previous studies these objects were always external to the agent. However, relevant knowledge of self is also potentially accessible during goal pursuit, as self-esteem is an indicator of aim’s feasibility. In two experimental studies we tested whether goal activation affects temporal changes in automatic evaluations of personality traits related to the dimensions of agency and communion. We administered affect misattribution procedure where participants rated neutral Chinese hexagrams proceeded by words describing traits (75 ms masked presentation. The list of words comprised agentic (e.g. agile and communal (e.g. trustworthy traits. The rating took place twice - before and after introducing a manual task. In the first study, goal activation led to slightly more positive implicit evaluations of agentic and more negative evaluation of communal traits, which is consistent with empirical data on self-perception depending on agentic knowledge rather than communal one. In the second study we showed that goal activation led to changes only for promotion-, but not prevention-oriented individuals, which is explained by motivation strength. The results indicate that valuation of traits changes temporarily along with goal pursuit.

  4. Effect of Azolla feeding on the growth, feed conversion ratio, blood biochemical attributes and immune competence traits of growing turkeys.

    Science.gov (United States)

    Shukla, Mayank; Bhattacharyya, Amitav; Shukla, Pankaj Kumar; Roy, Debashis; Yadav, Brijesh; Sirohi, Rajneesh

    2018-04-01

    In the recent past,few studies have been carried out in chicken to assess the effect of Azolla meal and raw Azolla feeding on the performance of chicken. If turkeys effectively use unconventional feedstuffs like Azolla without reducing the performance, it will increase the profitability of turkey business. Hence, a study was carried out to evaluate the effect of dried Azolla pinnata vis-a-vis raw Azolla as choice feeding on the growth, feed conversion ratio (FCR), blood biochemical attributes, and immune competence traits of growing turkeys under intensive system. A total of 72, 8-week-old grower turkey poults of black variety were randomly distributed into three dietary treatments having three replicates each with eight birds. The birds of the control group (T1) were fed a basal diet (CP - 19.71% and ME - 2789.79 Kcal/kg), while the other group (T2) and choice-feeding group (T3) were fed 5% of basal diet replaced by dry Azolla powder on DM basis and ad libitumAzolla along with basal diet, respectively. There was no significant difference among the different groups in the average weekly weight gain during the entire experiment. FCR was significantly better (pdiet may improve FCR without any adverse effect on blood biochemical attributes and immune competence traits.

  5. Longitudinal tests of competing factor structures for the Rosenberg Self-Esteem Scale: traits, ephemeral artifacts, and stable response styles.

    Science.gov (United States)

    Marsh, Herbert W; Scalas, L Francesca; Nagengast, Benjamin

    2010-06-01

    Self-esteem, typically measured by the Rosenberg Self-Esteem Scale (RSE), is one of the most widely studied constructs in psychology. Nevertheless, there is broad agreement that a simple unidimensional factor model, consistent with the original design and typical application in applied research, does not provide an adequate explanation of RSE responses. However, there is no clear agreement about what alternative model is most appropriate-or even a clear rationale for how to test competing interpretations. Three alternative interpretations exist: (a) 2 substantively important trait factors (positive and negative self-esteem), (b) 1 trait factor and ephemeral method artifacts associated with positively or negatively worded items, or (c) 1 trait factor and stable response-style method factors associated with item wording. We have posited 8 alternative models and structural equation model tests based on longitudinal data (4 waves of data across 8 years with a large, representative sample of adolescents). Longitudinal models provide no support for the unidimensional model, undermine support for the 2-factor model, and clearly refute claims that wording effects are ephemeral, but they provide good support for models positing 1 substantive (self-esteem) factor and response-style method factors that are stable over time. This longitudinal methodological approach has not only resolved these long-standing issues in self-esteem research but also has broad applicability to most psychological assessments based on self-reports with a mix of positively and negatively worded items.

  6. Effect of Azolla feeding on the growth, feed conversion ratio, blood biochemical attributes and immune competence traits of growing turkeys

    Directory of Open Access Journals (Sweden)

    Mayank Shukla

    2018-04-01

    Full Text Available Background and Aim: In the recent past, few studies have been carried out in chicken to assess the effect of Azolla meal and raw Azolla feeding on the performance of chicken. If turkeys effectively use unconventional feedstuffs like Azolla without reducing the performance, it will increase the profitability of turkey business. Hence, a study was carried out to evaluate the effect of dried Azolla pinnata vis-a-vis raw Azolla as choice feeding on the growth, feed conversion ratio (FCR, blood biochemical attributes, and immune competence traits of growing turkeys under intensive system. Materials and Methods: A total of 72, 8-week-old grower turkey poults of black variety were randomly distributed into three dietary treatments having three replicates each with eight birds. The birds of the control group (T1 were fed a basal diet (CP - 19.71% and ME - 2789.79 Kcal/kg, while the other group (T2 and choice-feeding group (T3 were fed 5% of basal diet replaced by dry Azolla powder on DM basis and ad libitum Azolla along with basal diet, respectively. Results: There was no significant difference among the different groups in the average weekly weight gain during the entire experiment. FCR was significantly better (p<0.05 in the choice-feeding group compared to the other two experimental groups during 8-16 weeks of age. There was no significant difference among the treatment groups in any of the blood biochemical indices except plasma uric acid, which was significantly decreased (p<0.01 in T2 compared to T1 at 16 weeks of age. HA and IgM response to 1% sheep red blood cells (log2 titer were numerically better in T2 and T3 compared to the T1. Conclusion: Thus, it may be inferred that choice feeding with Azolla, and basal diet may improve FCR without any adverse effect on blood biochemical attributes and immune competence traits.

  7. rhizosphere and non-rhizosphere soil mycoflora of corchorus olitorius

    African Journals Online (AJOL)

    Olahan et. al

    11.24% (percentage moisture content), 0.29ml/g (water holding ... into two types, namely rhizosphere soil and non-rhizosphere soil. ... α-tocopherol equivalent to vitamin E (Oyedele et al., 2006). The ... Ilorin and stored in a sterile polythene bag prior to use. ... Organic matter content, texture and water holding capacity of soil.

  8. Rhizosphere priming: a nutrient perspective

    Directory of Open Access Journals (Sweden)

    Feike Auke Dijkstra

    2013-07-01

    Full Text Available Rhizosphere priming is the change in decomposition of soil organic matter (SOM caused by root activity. Rhizosphere priming plays a crucial role in soil carbon (C dynamics and their response to global climate change. Rhizosphere priming may be affected by soil nutrient availability, but rhizosphere priming itself can also affect nutrient supply to plants. These interactive effects may be of particular relevance in understanding the sustained increase in plant growth and nutrient supply in response to a rise in atmospheric CO2 concentration. We examined how these interactions were affected by elevated CO2 in two similar semiarid grassland field studies. We found that an increase in rhizosphere priming enhanced the release of nitrogen (N through decomposition of a larger fraction of SOM in one study, but not in the other. We postulate that rhizosphere priming may enhance N supply to plants in systems that are N limited, but that rhizosphere priming may not occur in systems that are phosphorus (P limited. Under P limitation, rhizodeposition may be used for mobilisation of P, rather than for decomposition of SOM. Therefore, with increasing atmospheric CO2 concentrations, rhizosphere priming may play a larger role in affecting C sequestration in N poor than in P poor soils.

  9. Multifarious beneficial traits and plant growth promoting potential of Serratia marcescens KiSII and Enterobacter sp. RNF 267 isolated from the rhizosphere of coconut palms (Cocos nucifera L.).

    Science.gov (United States)

    George, Priya; Gupta, Alka; Gopal, Murali; Thomas, Litty; Thomas, George V

    2013-01-01

    Two plant growth promoting bacteria designated as KiSII and RNF 267 isolated from the rhizosphere of coconut palms were identified as Serratia marcescens and Enterobacter sp. based on their phenotypic features, BIOLOG studies and 16S rRNA gene sequence analysis. Both bacteria exhibited phosphate solubilization, ammonification, and production of indole acetic acid, β-1, 3 glucanase activities and 1-aminocyclopropane-1-carboxylate-deaminase activity. They could also tolerate a range of pH conditions, low temperature and salinity (NaCl). In addition, S. marcescens KiSII exhibited N- fixation potential, chitinase activity, siderophore production and antibiotics production. Seed bacterization with these bacteria increased the growth parameters of test plants such as paddy and cowpea over uninoculated control in green house assay. In coconut seedlings, significant increase in growth and nutrient uptake accompanied with higher populations of plant beneficial microorganisms in their rhizospheres were recorded on inoculation with both the PGPRs. The present study clearly revealed that PGPRs can aid in production of healthy and vigorous seedlings of coconut palm which are hardy perennial crops. They offer a scope to be developed into novel PGPR based bioinoculants for production of elite seedlings that can benefit the coconut farming community and the coconut based ecology.

  10. Antifungal Rhizosphere Bacteria Can increase as Response to the Presence of Saprotrophic Fungi.

    Directory of Open Access Journals (Sweden)

    Wietse de Boer

    Full Text Available Knowledge on the factors that determine the composition of bacterial communities in the vicinity of roots (rhizosphere is essential to understand plant-soil interactions. Plant species identity, plant growth stage and soil properties have been indicated as major determinants of rhizosphere bacterial community composition. Here we show that the presence of saprotrophic fungi can be an additional factor steering rhizosphere bacterial community composition and functioning. We studied the impact of presence of two common fungal rhizosphere inhabitants (Mucor hiemalis and Trichoderma harzianum on the composition of cultivable bacterial communities developing in the rhizosphere of Carex arenaria (sand sedge in sand microcosms. Identification and phenotypic characterization of bacterial isolates revealed clear shifts in the rhizosphere bacterial community composition by the presence of two fungal strains (M. hiemalis BHB1 and T. harzianum PvdG2, whereas another M. hiemalis strain did not show this effect. Presence of both M. hiemalis BHB1 and T. harzianum PvdG2 resulted in a significant increase of chitinolytic and (in vitro antifungal bacteria. The latter was most pronounced for M. hiemalis BHB1, an isolate from Carex roots, which stimulated the development of the bacterial genera Achromobacter and Stenotrophomonas. In vitro tests showed that these genera were strongly antagonistic against M. hiemalis but also against the plant-pathogenic fungus Rhizoctonia solani. The most likely explanation for fungal-induced shifts in the composition of rhizosphere bacteria is that bacteria are being selected which are successful in competing with fungi for root exudates. Based on the results we propose that measures increasing saprotrophic fungi in agricultural soils should be explored as an alternative approach to enhance natural biocontrol against soil-borne plant-pathogenic fungi, namely by stimulating indigenous antifungal rhizosphere bacteria.

  11. Phylogeny, plant species, and plant diversity influence carbon use phenotypes among Fusarium populations in the rhizosphere microbiome

    Science.gov (United States)

    Carbon use by microorganisms in the rhizosphere microbiome has been linked to plant pathogen suppression and increased mineralization of soil nutrients for plant uptake, however factors that influence carbon use traits are poorly understood for most microbial groups. This work characterized the rela...

  12. Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community.

    Directory of Open Access Journals (Sweden)

    Soumitra Paul Chowdhury

    Full Text Available The soil-borne pathogen Rhizoctonia solani is responsible for crop losses on a wide range of important crops worldwide. The lack of effective control strategies and the increasing demand for organically grown food has stimulated research on biological control. The aim of the present study was to evaluate the rhizosphere competence of the commercially available inoculant Bacillus amyloliquefaciens FZB42 on lettuce growth and health together with its impact on the indigenous rhizosphere bacterial community in field and pot experiments. Results of both experiments demonstrated that FZB42 is able to effectively colonize the rhizosphere (7.45 to 6.61 Log 10 CFU g(-1 root dry mass within the growth period of lettuce in the field. The disease severity (DS of bottom rot on lettuce was significantly reduced from severe symptoms with DS category 5 to slight symptom expression with DS category 3 on average through treatment of young plants with FZB42 before and after planting. The 16S rRNA gene based fingerprinting method terminal restriction fragment length polymorphism (T-RFLP showed that the treatment with FZB42 did not have a major impact on the indigenous rhizosphere bacterial community. However, the bacterial community showed a clear temporal shift. The results also indicated that the pathogen R. solani AG1-IB affects the rhizosphere microbial community after inoculation. Thus, we revealed that the inoculant FZB42 could establish itself successfully in the rhizosphere without showing any durable effect on the rhizosphere bacterial community.

  13. Salicornia strobilacea (synonym of Halocnemum strobilaceum Grown Under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    Directory of Open Access Journals (Sweden)

    Ramona Marasco

    2016-08-01

    Full Text Available Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the PGP potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  14. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth.

    Science.gov (United States)

    Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira, Maria J; Fusi, Marco; Bariselli, Paola; Reddy, Muppala; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele

    2016-01-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  15. Salicornia strobilacea (synonym of Halocnemum strobilaceum) Grown Under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona

    2016-04-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the PGP potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  16. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona

    2016-08-22

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  17. Salicornia strobilacea (synonym of Halocnemum strobilaceum) Grown Under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira Santillá n, Marí a José ; Fusi, Marco; Bariselli, Paola; Reddy, Muppala P.; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele

    2016-01-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the PGP potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  18. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira, Maria J.; Fusi, Marco; Bariselli, Paola; Reddy, Muppala P.; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele

    2016-01-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  19. Fate of polycyclic aromatic hydrocarbons (PAH) in the rhizosphere and myco-rhizosphere

    International Nuclear Information System (INIS)

    Leyval, C.; Beguiristain, T.; Corgie, S.; Joner, E.

    2005-01-01

    Organic pollutants such as polycyclic aromatic hydrocarbons (PAH) can reach high concentrations in soils due to man-made pollution related to industrial, agricultural or urban activities. Such concentrations can reach toxic values and create major environmental and health problems. One of the first entry point of pollutants in plant ecosystems is the rhizosphere, defined as the soil under the influence of roots. In the rhizosphere, the plant release root exudates, feeding soil microorganisms, and take up water and nutrients. Among the rhizosphere inhabitants, arbuscular mycorrhizal (AM) fungi are ubiquitous root symbiotic fungi, contributing to plant growth and plant nutrition. In PAH-polluted soils, biodegradation of PAH increases, which is attributed to increased microbial activity in the rhizosphere..We studied the contribution of the rhizosphere of mycorrhizal and non-mycorrhizal plants to the biodegradation of PAH in the rhizosphere, taking into account microbial community structure. Different experiments were performed with industrial contaminated soils and PAH-spiked soils, in pot cultures as well as compartmented devices allowing to analyze rhizosphere processes in consecutive sections as a function of distance to roots. Clover and ryegrass, inoculated or not with the arbuscular mycorrhizal fungus Glomus mosseae were used.. After different time periods, plants were harvested, biomass and mycorrhizal root colonization were estimated. Microbial Density of microbial heterotrophs and of degrading bacteria was estimated by MPN techniques in micro-plates. Microbial community structure was estimated by DNA extraction from the rhizosphere, amplification by PCR and analysed by TGGE (temperature gradient gel electrophoresis), or by PLFA (phospholipid fatty acid analysis). PAH in soil were extracted by Soxhlet and analysed by GC-MS. We showed that the concentration of PAH increased with the distance to roots (Corgie et al, 2003) and was lower in the myco-rhizosphere

  20. Pyrosequencing assessment of rhizosphere fungal communities from a soybean field.

    Science.gov (United States)

    Sugiyama, Akifumi; Ueda, Yoshikatsu; Takase, Hisabumi; Yazaki, Kazufumi

    2014-10-01

    Soil fungal communities play essential roles in soil ecosystems, affecting plant growth and health. Rhizosphere bacterial communities have been shown to undergo dynamic changes during plant growth. This study utilized 454 pyrosequencing to analyze rhizosphere fungal communities during soybean growth. Members of the Ascomycota and Basiodiomycota dominated in all soils. There were no statistically significant changes at the phylum level among growth stages or between bulk and rhizosphere soils. In contrast, the relative abundance of small numbers of operational taxonomic units, 4 during growth and 28 between bulk and rhizosphere soils, differed significantly. Clustering analysis revealed that rhizosphere fungal communities were different from bulk fungal communities during growth stages of soybeans. Taken together, these results suggest that in contrast to rhizosphere bacterial communities, most constituents of rhizosphere fungal communities remained stable during soybean growth.

  1. Plant uptake of radionuclides and rhizosphere factors

    Energy Technology Data Exchange (ETDEWEB)

    Arie, Tsutomu; Gouthu, S.; Ambe, Shizuko; Yamaguchi, Isamu [Institute of Physical and Chemical Research, Wako, Saitama (Japan); Hirata, Hiroaki

    1999-03-01

    Influence of soil factors such as nuclide availability, pH, organic carbon, cation exchange capacity (CEC), exchangeable cations (Ca{sup 2+}, Mg{sup 2+}, and K{sup +}), phosphate absorption coefficient (PAC), physical composition of soil (coarse sand, fine sand, silt, and clay), soil texture, and rhizosphere microbes on uptake of radionuclides by plants are studied. (author)

  2. Volatile-mediated interactions in the rhizosphere

    NARCIS (Netherlands)

    Cordovez da Cunha, Viviane

    2016-01-01

    Plants and microorganisms are constantly engaged in highly dynamic interactions both above- and belowground. Several of these interactions are mediated by volatile organic compounds (VOCs), small carbon-based compounds with high vapor pressure at ambient temperature. In the rhizosphere, VOCs have

  3. Plant uptake of radionuclides and rhizosphere factors

    International Nuclear Information System (INIS)

    Arie, Tsutomu; Gouthu, S.; Ambe, Shizuko; Yamaguchi, Isamu; Hirata, Hiroaki

    1999-01-01

    Influence of soil factors such as nuclide availability, pH, organic carbon, cation exchange capacity (CEC), exchangeable cations (Ca 2+ , Mg 2+ , and K + ), phosphate absorption coefficient (PAC), physical composition of soil (coarse sand, fine sand, silt, and clay), soil texture, and rhizosphere microbes on uptake of radionuclides by plants are studied. (author)

  4. Root phenotypic differences across a historical gradient of wheat genotypes alter soil rhizosphere communities and their impact on nitrogen cycling

    Science.gov (United States)

    Kallenbach, C.; Junaidi, D.; Fonte, S.; Byrne, P. F.; Wallenstein, M. D.

    2017-12-01

    Plants and soil microorganisms can exhibit coevolutionary relationships where, for example, in exchange for root carbon, rhizosphere microbes enhance plant fitness through improved plant nutrient availability. Organic agriculture relies heavily on these interactions to enhance crop nitrogen (N) availability. However, modern agriculture and breeding under high mineral N fertilization may have disrupted these interactions through alterations to belowground carbon inputs and associated impacts on the soil microbiome. As sustainability initiatives lead to a restoration of agricultural soil organic matter, modern crop cultivars may still be constrained by crop roots' ability to effectively support microbial-mediated N mineralization. We investigated how differences in root traits across a historical gradient of spring wheat genotypes influence the rhizosphere microbial community and effects on soil N and wheat yield. Five genotypes, representing wild (Wild), pre-Green Revolution (Old), and modern (Modern) wheat, were grown under greenhouse conditions in soils with and without compost to also compare genotype response to difference in native soil microbiomes and organic resource availability. We analyzed rhizosphere soils for microbial community composition, enzyme activities, inorganic N, and microbial biomass. Root length density, surface area, fine root volume and root:shoot ratio were higher in the Wild and Old genotype (Gypsum) compared to the two Modern genotypes (Psoil inorganic N, compared to Modern genotypes. However, under unamended soils, the microbial community and soil N were not affected by genotypes. We also relate how root traits and N cycling across genotypes correspond to microbial community composition. Our preliminary data suggest that the older wheat genotypes and their root traits are more effective at enhancing microbial N mineralization under organically managed soils. Thus, to optimize crop N availability from organic sources, breeding efforts

  5. Competence is Competence

    DEFF Research Database (Denmark)

    Bramming, Pia

    2004-01-01

    The article will address competence, its' diffusion, application, and the consequence of this application within the field of Human Resource Management (HRM). The concept competence-in-practice will be presented and in conclusion the article will consider implications and possibilities...... of competence-in-practice as an alternative approach to Competence Development within Human Resource Management....

  6. Genetic and functional characterization of culturable plant-beneficial actinobacteria associated with yam rhizosphere.

    Science.gov (United States)

    Arunachalam Palaniyandi, Sasikumar; Yang, Seung Hwan; Damodharan, Karthiyaini; Suh, Joo-Won

    2013-12-01

    Actinobacteria were isolated from the rhizosphere of yam plants from agricultural fields from Yeoju, South Korea and analyzed for their genetic and plant-beneficial functional diversity. A total of 29 highly occurring actinobacterial isolates from the yam rhizosphere were screened for various plant-beneficial traits such as antimicrobial activity on fungi and bacteria; biocontrol traits such as production of siderophore, protease, chitinase, endo-cellulase, and β-glucanase. The isolates were also screened for plant growth-promoting (PGP) traits such as auxin production, phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, and in vitro Arabidopsis growth promotion. 16S rDNA sequence-based phylogenetic analysis was carried out on the actinobacterial isolates to determine their genetic relatedness to known actinobacteria. BOX-PCR analysis revealed high genetic diversity among the isolates. Several isolates were identified to belong to the genus Streptomyces and a few to Kitasatospora. The actinobacterial strains exhibited high diversity in their functionality and were identified as novel and promising candidates for future development into biocontrol and PGP agents. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Metabolic functions of Pseudomonas fluorescens strains from Populus deltoides depend on rhizosphere or endosphere isolation compartment

    Directory of Open Access Journals (Sweden)

    Collin M Timm

    2015-10-01

    Full Text Available The bacterial microbiota of plants is diverse, with 1,000s of operational taxonomic units (OTUs associated with any individual plant. In this work we investigate the differences between 19 sequenced Pseudomonas fluorescens strains, isolated from Populus deltoides rhizosphere and endosphere and which represent a single OTU, using phenotypic analysis, comparative genomics, and metabolic models. While no traits were exclusive to either endosphere or rhizosphere P. fluorescens isolates, multiple pathways relevant for plant-bacterial interactions are enriched in endosphere isolate genomes. Further, growth phenotypes such as phosphate solubilization, protease activity, denitrification and root growth promotion are biased towards endosphere isolates. Endosphere isolates have significantly more metabolic pathways for plant signaling compounds and an increased metabolic range that includes utilization of energy rich nucleotides and sugars, consistent with endosphere colonization. Rhizosphere P. fluorescens have fewer pathways representative of plant-bacterial interactions but show metabolic bias towards chemical substrates often found in root exudates. This work reveals the diverse functions that may contribute to colonization of the endosphere by bacteria and are enriched among closely related isolates.

  8. Distribution of azotobacter in rhizosphere of maize

    International Nuclear Information System (INIS)

    Tahir, M.B.; Baig, M.B.

    1998-01-01

    Azotobacter distribution and species composition were studied under maize rhizosphere at four growth stages and in the uncropped soil (control). The study was conducted in the glazed pots with 10 kg soil in each pot. Soil in the pots was enriched with 20 mg N/kg and 15 mg/P/kg in the form of urea and single super phosphate, respectively. Six plants of maize variety Akbar were grown in 32 pots. Four pots were used as control (check). Sampling was done at four growth stages of 20, 40, 60 and 80 days after the germination of the crop. Results indicated that Azotobacter population increased as the plant growth progressed, reached maximum (1320) cells g/sup -1/ of soil at flowering stage and then declined. A chroococcum was found to be the dominant species in the main rhizosphere. (author)

  9. Soil Minerals: AN Overlooked Mediator of Plant-Microbe Competition for Organic Nitrogen in the Rhizosphere

    Science.gov (United States)

    Grandy, S.; Jilling, A.; Keiluweit, M.

    2016-12-01

    Recent research on the rate limiting steps in soil nitrogen (N) availability have shifted in focus from mineralization to soil organic matter (SOM) depolymerization. To that end, Schimel and Bennett (2004) argued that together with enzymatic breakdown of polymers to monomers, microsite processes and plant-microbial competition collectively drive N cycling. Here we present new conceptual models arguing that while depolymerization is a critical first step, mineral-organic associations may ultimately regulate the provisioning of bioavailable organic N, especially in the rhizosphere. Mineral-associated organic matter (MAOM) is a rich reservoir for N in soils and often holds 5-7x more N than particulate or labile fractions. However, MAOM is considered largely unavailable to plants as a source of N due to the physicochemical forces on mineral surfaces that stabilize organic matter. We argue that in rhizosphere hotspots, MAOM is in fact a potentially mineralizable and important source of nitrogen for plants. Several biochemical strategies enable plants and microbes to compete with mineral-organic interactions and effectively access MAOM. In particular, root-deposited low molecular weight compounds in the form of root exudates facilitate the biotic and abiotic destabilization and subsequent bioavailability of MAOM. We believe that the competitive balance between the potential fates of assimilable organic N — bound to mineral surfaces or dissolved and available for assimilation — depends on the specific interaction between and properties of the clay, soil solution, mineral-bound organic matter, and microbial community. For this reason, the plant-soil-MAOM interplay is enhanced in rhizosphere hotspots relative to non-rhizosphere environments, and likely strongly regulates plant-microbe competition for N. If these hypotheses are true, we need to reconsider potential soil N cycle responses to changes in climate and land use intensity, focusing on the processes by which

  10. Selection and evaluation of phosphate-solubilizing bacteria from grapevine rhizospheres for use as biofertilizers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M.; Liu, X.; Cheng, B.S.; Ma, X.L.; Lyu, X.; Zhao, X.; Ju, Y.; Min, Z.; Fang, Y.

    2016-07-01

    Phosphate-solubilizing bacteria (PSB) have the ability to solubilize insoluble phosphorus (P) and release soluble P. Extensive research has been performed with respect to PSB isolation from the rhizospheres of various plants, but little is known about the prevalence of PSB in the grapevine rhizosphere. In this study, we aimed to isolate and identify PSB from the grapevine rhizosphere in five vineyards of Northwest China, to characterize their plant-growth-promoting (PGP) traits, evaluate the effect of stress on their phosphate-solubilizing activity (PSA), and test their ability to stimulate the growth of Vitis vinifera L. cv. Cabernet Sauvignon. From the vineyard soils, 66 PSB isolates were screened, and 10 strains with high PSA were identified by 16S rRNA sequencing. Sequence analysis revealed that these 10 strains belonged to 4 genera and 5 species: Bacillus aryabhattai, B. megaterium, Klebsiella variicola, Stenotrophomonas rhizophila, and Enterobacter aerogenes. The selected PSB strains JY17 (B. aryabhattai) and JY22 (B. aryabhattai) were positive for multiple PGP traits, including nitrogen fixation and production of indole acetic acid (IAA), siderophores, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, chitinase, and protease. JY17 and JY22 showed strong PSA under stress conditions of high pH, high salt, and high temperature. Therefore, these two isolates can be used as biofertilizers in saline-alkaline soils. The inoculation with PSB significantly facilitated the growth of V. vinifera cv. Cabernet Sauvignon under greenhouse conditions. Use of these PSB as biofertilizers will increase the available P content in soils, minimize P-fertilizer application, reduce environmental pollution, and promote sustainable agriculture.

  11. Selection and evaluation of phosphate-solubilizing bacteria from grapevine rhizospheres for use as biofertilizers

    International Nuclear Information System (INIS)

    Liu, M.; Liu, X.; Cheng, B.S.; Ma, X.L.; Lyu, X.; Zhao, X.; Ju, Y.; Min, Z.; Fang, Y.

    2016-01-01

    Phosphate-solubilizing bacteria (PSB) have the ability to solubilize insoluble phosphorus (P) and release soluble P. Extensive research has been performed with respect to PSB isolation from the rhizospheres of various plants, but little is known about the prevalence of PSB in the grapevine rhizosphere. In this study, we aimed to isolate and identify PSB from the grapevine rhizosphere in five vineyards of Northwest China, to characterize their plant-growth-promoting (PGP) traits, evaluate the effect of stress on their phosphate-solubilizing activity (PSA), and test their ability to stimulate the growth of Vitis vinifera L. cv. Cabernet Sauvignon. From the vineyard soils, 66 PSB isolates were screened, and 10 strains with high PSA were identified by 16S rRNA sequencing. Sequence analysis revealed that these 10 strains belonged to 4 genera and 5 species: Bacillus aryabhattai, B. megaterium, Klebsiella variicola, Stenotrophomonas rhizophila, and Enterobacter aerogenes. The selected PSB strains JY17 (B. aryabhattai) and JY22 (B. aryabhattai) were positive for multiple PGP traits, including nitrogen fixation and production of indole acetic acid (IAA), siderophores, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, chitinase, and protease. JY17 and JY22 showed strong PSA under stress conditions of high pH, high salt, and high temperature. Therefore, these two isolates can be used as biofertilizers in saline-alkaline soils. The inoculation with PSB significantly facilitated the growth of V. vinifera cv. Cabernet Sauvignon under greenhouse conditions. Use of these PSB as biofertilizers will increase the available P content in soils, minimize P-fertilizer application, reduce environmental pollution, and promote sustainable agriculture.

  12. Lettuce and rhizosphere microbiome responses to growth promoting Pseudomonas species under field conditions.

    Science.gov (United States)

    Cipriano, Matheus A P; Lupatini, Manoeli; Lopes-Santos, Lucilene; da Silva, Márcio J; Roesch, Luiz F W; Destéfano, Suzete A L; Freitas, Sueli S; Kuramae, Eiko E

    2016-12-01

    Plant growth promoting rhizobacteria are well described and recommended for several crops worldwide. However, one of the most common problems in research into them is the difficulty in obtaining reproducible results. Furthermore, few studies have evaluated plant growth promotion and soil microbial community composition resulting from bacterial inoculation under field conditions. Here we evaluated the effect of 54 Pseudomonas strains on lettuce (Lactuca sativa) growth. The 12 most promising strains were phylogenetically and physiologically characterized for plant growth-promoting traits, including phosphate solubilization, hormone production and antagonism to pathogen compounds, and their effect on plant growth under farm field conditions. Additionally, the impact of beneficial strains on the rhizospheric bacterial community was evaluated for inoculated plants. The strains IAC-RBcr4 and IAC-RBru1, with different plant growth promoting traits, improved lettuce plant biomass yields up to 30%. These two strains also impacted rhizosphere bacterial groups including Isosphaera and Pirellula (phylum Planctomycetes) and Acidothermus, Pseudolabrys and Singusphaera (phylum Actinobacteria). This is the first study to demonstrate consistent results for the effects of Pseudomonas strains on lettuce growth promotion for seedlings and plants grown under tropical field conditions. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. In vitro screening of selected herbicides on rhizosphere mycoflora ...

    African Journals Online (AJOL)

    In vitro screening of five selected herbicides at different concentrations on rhizosphere mycoflora from yellow pepper (capsicum annum L var. Nsukka yellow) seedlings at Nsukka were investigated. The herbicides employed for this study were Paraquat, Glyphosate, Primextra, Atrazine and Linuron. The isolated rhizosphere ...

  14. The mechanism on rhizosphere phosphorus activation of two wheat ...

    African Journals Online (AJOL)

    The mechanism on rhizosphere phosphorus activation of two wheat genotypes with different phosphorus efficiency. ... genotype would be a potential approach for maintaining wheat yield potential in soils with low P bioavailability. Key words: Wheat, P efficiency, rhizosphere properties, P fractions, phosphates activity.

  15. Bacterial quorum sensing and nitrogen cycling in rhizosphere soil

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, K.M.; Lindow, S.E.; Firestone, M.K.

    2008-10-01

    Plant photosynthate fuels carbon-limited microbial growth and activity, resulting in increased rhizosphere nitrogen (N)-mineralization. Most soil organic N is macromolecular (chitin, protein, nucleotides); enzymatic depolymerization is likely rate-limiting for plant N accumulation. Analyzing Avena (wild oat) planted in microcosms containing sieved field soil, we observed increased rhizosphere chitinase and protease specific activities, bacterial cell densities, and dissolved organic nitrogen (DON) compared to bulk soil. Low-molecular weight DON (<3000 Da) was undetectable in bulk soil but comprised 15% of rhizosphere DON. Extracellular enzyme production in many bacteria requires quorum sensing (QS), cell-density dependent group behavior. Because proteobacteria are considered major rhizosphere colonizers, we assayed the proteobacterial QS signals acyl-homoserine lactones (AHLs), which were significantly increased in the rhizosphere. To investigate the linkage between soil signaling and N cycling, we characterized 533 bacterial isolates from Avena rhizosphere: 24% had chitinase or protease activity and AHL production; disruption of QS in 7 of 8 eight isolates disrupted enzyme activity. Many {alpha}-Proteobacteria were newly found with QS-controlled extracellular enzyme activity. Enhanced specific activities of N-cycling enzymes accompanied by bacterial density-dependent behaviors in rhizosphere soil gives rise to the hypothesis that QS could be a control point in the complex process of rhizosphere N-mineralization.

  16. The mechanism on rhizosphere phosphorus activation of two wheat ...

    African Journals Online (AJOL)

    Yomi

    2012-01-24

    Jan 24, 2012 ... This fact particularly applies to soils with a high iron or aluminum oxide ... phorus stress conditions, the P efficient genotype can take advantage .... In this method, 1-mm thick stainless steel pane was .... amount of root-derived C flow through the rhizosphere ...... rhizosphere carbon flow modelling. Plant Soil.

  17. Arsenic in the rhizosphere soil solution of ferns.

    Science.gov (United States)

    Wei, Chaoyang; Zheng, Huan; Yu, Jiangping

    2012-12-01

    The aim of this study was to explore the evidence of arsenic hyperaccumulation in plant rhizosphere solutions. Six common fern plants were selected and grown in three types of substrate: arsenic (As) -tailings, As-spiked soil, and soil-As-tailing composites. A rhizobox was designed with an in-situ collection of soil solutions to analyze changes in the As concentration and valence as well as the pH, dissolved organic carbon (DOC) and total nitrogen (TN). Arsenite composed less than 20% of the total As, and As depletion was consistent with N depletion in the rhizosphere solutions of the various treatments. The As concentrations in the rhizosphere and non-rhizosphere solutions in the presence of plants were lower than in the respective controls without plants, except for in the As-spiked soils. The DOC concentrations were invariably higher in the rhizosphere versus non-rhizosphere solutions from the various plants; however, no significant increase in the DOC content was observed in Pteris vittata, in which only a slight decrease in pH appeared in the rhizosphere compared to non-rhizosphere solutions. The results showed that As reduction by plant roots was limited, acidification-induced solubilization was not the mechanism for As hyperaccumulation.

  18. Root signals that mediate mutualistic interactions in the rhizosphere.

    Science.gov (United States)

    Rasmann, Sergio; Turlings, Ted Cj

    2016-08-01

    A recent boom in research on belowground ecology is rapidly revealing a multitude of fascinating interactions, in particular in the rhizosphere. Many of these interactions are mediated by photo-assimilates that are excreted by plant roots. Root exudates are not mere waste products, but serve numerous functions to control abiotic and biotic processes. These functions range from changing the chemical and physical properties of the soil, inhibiting the growth of competing plants, combatting herbivores, and regulating the microbial community. Particularly intriguing are root-released compounds that have evolved to serve mutualistic interactions with soil-dwelling organisms. These mutually beneficial plant-mediated signals are not only of fundamental ecological interest, but also exceedingly important from an agronomical perspective. Here, we attempt to provide an overview of the plant-produced compounds that have so far been implicated in mutualistic interactions. We propose that these mutualistic signals may have evolved from chemical defenses and we point out that they can be (mis)used by specialized pathogens and herbivores. We speculate that many more signals and interactions remain to be uncovered and that a good understanding of the mechanisms and ecological implications can be the basis for exploitation and manipulation of the signals for crop improvement and protection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Relevance of extracellular DNA in rhizosphere

    Science.gov (United States)

    Pietramellara, Giacomo; Ascher, Judith; Baraniya, Divyashri; Arfaioli, Paola; Ceccherini, Maria Teresa; Hawes, Martha

    2013-04-01

    One of the most promising areas for future development is the manipulation of the rhizosphere to produce sustainable and efficient agriculture production systems. Using Omics approaches, to define the distinctive features of eDNA systems and structures, will facilitate progress in rhizo-enforcement and biocontrol studies. The relevance of these studies results clear when we consider the plethora of ecological functions in which eDNA is involved. This fraction can be actively extruded by living cells or discharged during cellular lysis and may exert a key role in the stability and variability of the soil bacterial genome, resulting also a source of nitrogen and phosphorus for plants due to the root's capacity to directly uptake short DNA fragments. The adhesive properties of the DNA molecule confer to eDNA the capacity to inhibit or kill pathogenic bacteria by cation limitation induction, and to facilitate formation of biofilm and extracellular traps (ETs), that may protect microorganisms inhabiting biofilm and plant roots against pathogens and allelopathic substances. The ETs are actively extruded by root border cells when they are dispersed in the rhizosphere, conferring to plants the capacity to extend an endogenous pathogen defence system outside the organism. Moreover, eDNA could be involved in rhizoremediation in heavy metal polluted soil acting as a bioflotation reagent.

  20. Colonization of lettuce rhizosphere and roots by tagged Streptomyces

    Directory of Open Access Journals (Sweden)

    Maria eBonaldi

    2015-02-01

    Full Text Available Beneficial microorganisms are increasingly used in agriculture, but their efficacy often fails due to limited knowledge of their interactions with plants and other microorganisms present in rhizosphere. We studied spatio-temporal colonization dynamics of lettuce roots and rhizosphere by genetically modified Streptomyces spp. Five Streptomyces strains, strongly inhibiting in vitro the major soil-borne pathogen of horticultural crops, Sclerotinia sclerotiorum, were transformed with pIJ8641 plasmid harboring an enhanced green fluorescent protein marker and resistance to apramycin. The fitness of transformants was compared to the wild-type strains and all of them grew and sporulated at similar rates and retained the production of enzymes and selected secondary metabolites as well as in vitro inhibition of S. sclerotiorum. The tagged ZEA17I strain was selected to study the dynamics of lettuce roots and rhizosphere colonization in non-sterile growth substrate. The transformed strain was able to colonize soil, developing roots and rhizosphere. When the strain was inoculated directly on the growth substrate, significantly more t-ZEA17I was re-isolated both from the rhizosphere and the roots when compared to the amount obtained after seed coating. The re-isolation from the rhizosphere and the inner tissues of surface-sterilized lettuce roots demonstrated that t-ZEA17I is both rhizospheric and endophytic.

  1. Colonization of lettuce rhizosphere and roots by tagged Streptomyces.

    Science.gov (United States)

    Bonaldi, Maria; Chen, Xiaoyulong; Kunova, Andrea; Pizzatti, Cristina; Saracchi, Marco; Cortesi, Paolo

    2015-01-01

    Beneficial microorganisms are increasingly used in agriculture, but their efficacy often fails due to limited knowledge of their interactions with plants and other microorganisms present in rhizosphere. We studied spatio-temporal colonization dynamics of lettuce roots and rhizosphere by genetically modified Streptomyces spp. Five Streptomyces strains, strongly inhibiting in vitro the major soil-borne pathogen of horticultural crops, Sclerotinia sclerotiorum, were transformed with pIJ8641 plasmid harboring an enhanced green fluorescent protein marker and resistance to apramycin. The fitness of transformants was compared to the wild-type strains and all of them grew and sporulated at similar rates and retained the production of enzymes and selected secondary metabolites as well as in vitro inhibition of S. sclerotiorum. The tagged ZEA17I strain was selected to study the dynamics of lettuce roots and rhizosphere colonization in non-sterile growth substrate. The transformed strain was able to colonize soil, developing roots, and rhizosphere. When the strain was inoculated directly on the growth substrate, significantly more t-ZEA17I was re-isolated both from the rhizosphere and the roots when compared to the amount obtained after seed coating. The re-isolation from the rhizosphere and the inner tissues of surface-sterilized lettuce roots demonstrated that t-ZEA17I is both rhizospheric and endophytic.

  2. Pectin Enhances Bio-Control Efficacy by Inducing Colonization and Secretion of Secondary Metabolites by Bacillus amyloliquefaciens SQY 162 in the Rhizosphere of Tobacco.

    Directory of Open Access Journals (Sweden)

    Kai Wu

    Full Text Available Bacillus amyloliquefaciens is a plant-beneficial Gram-positive bacterium involved in suppressing soil-borne pathogens through the secretion of secondary metabolites and high rhizosphere competence. Biofilm formation is regarded as a prerequisite for high rhizosphere competence. In this work, we show that plant extracts affect the chemotaxis and biofilm formation of B. amyloliquefaciens SQY 162 (SQY 162. All carbohydrates tested induced the chemotaxis and biofilm formation of the SQY 162 strain; however, the bacterial growth rate was not influenced by the addition of carbohydrates. A strong chemotactic response and biofilm formation of SQY 162 were both induced by pectin through stimulation of surfactin synthesis and transcriptional expression of biofilm formation related matrix genes. These results suggested that pectin might serve as an environmental factor in the stimulation of the biofilm formation of SQY 162. Furthermore, in pot experiments the surfactin production and the population of SQY 162 in the rhizosphere significantly increased with the addition of sucrose or pectin, whereas the abundance of the bacterial pathogen Ralstonia decreased. With increased production of secondary metabolites in the rhizosphere of tobacco by SQY 162 and improved colonization density of SQY 162 in the pectin treatment, the disease incidences of bacterial wilt were efficiently suppressed. The present study revealed that certain plant extracts might serve as energy sources or environmental cues for SQY 162 to enhance the population density on tobacco root and bio-control efficacy of tobacco bacterial wilt.

  3. ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants.

    Science.gov (United States)

    Bal, Himadri Bhusan; Das, Subhasis; Dangar, Tushar K; Adhya, Tapan K

    2013-12-01

    Beneficial plant-associated bacteria play a key role in supporting and/or promoting plant growth and health. Plant growth promoting bacteria present in the rhizosphere of crop plants can directly affect plant metabolism or modulate phytohormone production or degradation. We isolated 355 bacteria from the rhizosphere of rice plants grown in the farmers' fields in the coastal rice field soil from five different locations of the Ganjam district of Odisha, India. Six bacteria producing both ACC deaminase (ranging from 603.94 to 1350.02 nmol α-ketobutyrate mg(-1)  h(-1) ) and indole acetic acid (IAA; ranging from 10.54 to 37.65 μM ml(-1) ) in pure cultures were further identified using polyphasic taxonomy including BIOLOG((R)) , FAME analysis and the 16S rRNA gene sequencing. Phylogenetic analyses of the isolates resulted into five major clusters to include members of the genera Bacillus, Microbacterium, Methylophaga, Agromyces, and Paenibacillus. Seed inoculation of rice (cv. Naveen) by the six individual PGPR isolates had a considerable impact on different growth parameters including root elongation that was positively correlated with ACC deaminase activity and IAA production. The cultures also had other plant growth attributes including ammonia production and at least two isolates produced siderophores. Study indicates that presence of diverse rhizobacteria with effective growth-promoting traits, in the rice rhizosphere, may be exploited for a sustainable crop management under field conditions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Freshwater Biological Traits Database (Traits)

    Science.gov (United States)

    The traits database was compiled for a project on climate change effects on river and stream ecosystems. The traits data, gathered from multiple sources, focused on information published or otherwise well-documented by trustworthy sources.

  5. Effect of Basalin on Cowpea Rhizosphere

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, A.; Palaniappan, S. P. [Department of Agricultural Microbiology, Tamil Nadu Agricultural University Coimbatore - 641 003 (India)

    1981-05-15

    Basalin (5-Propyl-B-(2-chloroethyl) 2,6 dinitro-4-trifluoromethyl aniline) is a selective pre-emergence herbicide used for the control of common weeds in cultivated fields in India. The dehydrogenase activity in a red loamy. soil and in cowpea rhizosphere incorporated with various concentrations of Basalin viz., 0 ppm, 2 ppm, 5 ppm and 10 ppm, over a period of 8 weeks incubation was studied following the method of Klein et al. (1971). There was no significant effect of Basalin on the dehydrogenase activity at the recommended level of application, i.e. 2 ppm. However, there was reduction in dehydrogenase activity at the higher levels of Basalin. This decrease in dehydrogenase activity was found to be correlated with a decrease in bacterial actinomycete and fungal plate counts.

  6. Effect of Basalin on Cowpea Rhizosphere

    International Nuclear Information System (INIS)

    Balasubramanian, A.; Palaniappan, S.P.

    1981-01-01

    Basalin (5-Propyl-B-(2-chloroethyl) 2,6 dinitro-4-trifluoromethyl aniline) is a selective pre-emergence herbicide used for the control of common weeds in cultivated fields in India. The dehydrogenase activity in a red loamy. soil and in cowpea rhizosphere incorporated with various concentrations of Basalin viz., 0 ppm, 2 ppm, 5 ppm and 10 ppm, over a period of 8 weeks incubation was studied following the method of Klein et al. (1971). There was no significant effect of Basalin on the dehydrogenase activity at the recommended level of application, i.e. 2 ppm. However, there was reduction in dehydrogenase activity at the higher levels of Basalin. This decrease in dehydrogenase activity was found to be correlated with a decrease in bacterial actinomycete and fungal plate counts

  7. Exploration of hitherto-uncultured bacteria from the rhizosphere

    NARCIS (Netherlands)

    Rocha, da U.N.; Overbeek, van L.S.; Elsas, van J.D.

    2009-01-01

    The rhizosphere environment selects a particular microbial community that arises from the one present in bulk soil due to the release of particular compounds in exudates and different opportunities for microbial colonization. During plant-microorganism coevolution, microbial functions supporting

  8. Exploration of hitherto-uncultured bacteria from the rhizosphere

    NARCIS (Netherlands)

    da Rocha, Ulisses Nunes; van Overbeek, Leo; van Elsas, Jan Dirk

    The rhizosphere environment selects a particular microbial community that arises from the one present in bulk soil due to the release of particular compounds in exudates and different opportunities for microbial colonization. During plant-microorganism coevolution, microbial functions supporting

  9. Effects of different rhizosphere ventilation treatment on water and ...

    African Journals Online (AJOL)

    user

    2011-02-07

    environment of root soil, it alters rhizo- sphere ventilation, enhances the aerobic respiration, improves water and fertilizer absorption efficiency and redound water and nutrients' utilization. As to the effects of rhizosphere environment on ...

  10. in vitro screening of selected herbicides on rhizosphere mycoflora

    African Journals Online (AJOL)

    PROF. BARTH EKWEME

    inhibited the mycelial growth of the isolated rhizosphere fungi. Growth inhibition of the ... quality of crops but also utilize essential nutrients meant for the crop. ..... Effect of seed-applied pesticide on growth ... soil fungi from oil palm plantation.

  11. Leadership Competences Among Managers

    Directory of Open Access Journals (Sweden)

    Anna Baczynska

    2017-06-01

    Full Text Available Purpose: The aim of this paper is to present the results of a survey conducted among managers (N=38 in the framework of the project “Development of the Bounded Leadership Theory”. The research juxtaposes two types of variables: (1 leadership competencies outlined in Kozminski’s theory (i.e. anticipatory, visionary, value-creating, mobilizing, self-reflection with (2 three psychological predispositions of leaders, such as intelligence, personality and ability to influence others. The tested predispositions represented three groups: non-variable traits, or permanent characteristics (intelligence, partially variable characteristics (personality and variable characteristics (influence tactics. Methodology: A total of 38 middle and senior managers, students of the MBA programme at Kozminski University, took part in the survey. Participants flled out a preliminary version of the Leadership Competence Questionnaire, as well as tests pertaining to intelligence, personality and influence tactics. The hypotheses were tested using Spearman’s rho correlation. The research has brought interesting results relating to the correlation between the fve tested competencies and leadership predispositions. Findings: Permanent and partly stable characteristics do not correlate with leadership competencies, i.e. a high score in leadership competencies is not necessarily synonymous with high intelligence levels or positive personality traits. Correlations have been observed between mobilization skills and influence tactics in the surveyed sample, i.e. legitimacy and personal appeals that leaders have recourse to and, in the case of value-creating competencies, an interesting correlation with legitimacy. Originality: The study constitutes an important contribution to the extant literature, as – first and foremost – it represents a new approach to the understanding of leadership competencies. Secondly, it reveals correlations between complex skills, i

  12. Fungi isolated from the rhizosphere of spring cruciferous plants

    Directory of Open Access Journals (Sweden)

    Barbara Majchrzak

    2013-12-01

    Full Text Available Fungal communities isolated from the rhizosphere of spring cruciferous plants were analysed in the study. It was found that the rhizosphere of crucifers was colonized primarily by fungi of the order Mucorales and of the genus Fusarium. Members of the genus Fusarium dominated in the rhizoplane. The roots of cruciferous plants secrete glucosinolates – secondary metabolites known for their antifungal properties, thus affecting the communities of soil-dwelling fungi.

  13. Colonization of lettuce rhizosphere and roots by tagged Streptomyces

    OpenAIRE

    Maria eBonaldi; Xiaoyulong eChen; Andrea eKunova; Cristina ePizzatti; Marco eSaracchi; Paolo eCortesi

    2015-01-01

    Beneficial microorganisms are increasingly used in agriculture, but their efficacy often fails due to limited knowledge of their interactions with plants and other microorganisms present in rhizosphere. We studied spatio-temporal colonization dynamics of lettuce roots and rhizosphere by genetically modified Streptomyces spp. Five Streptomyces strains, strongly inhibiting in vitro the major soil-borne pathogen of horticultural crops, Sclerotinia sclerotiorum, were transformed with pIJ8641 plas...

  14. Impact of Pore-Scale Wettability on Rhizosphere Rewetting

    Directory of Open Access Journals (Sweden)

    Pascal Benard

    2018-04-01

    Full Text Available Vast amounts of water flow through a thin layer of soil around the roots, the rhizosphere, where high microbial activity takes place—an important hydrological and biological hotspot. The rhizosphere was shown to turn water repellent upon drying, which has been interpreted as the effect of mucilage secreted by roots. The effects of such rhizosphere water dynamics on plant and microbial activity are unclear. Furthermore, our understanding of the biophysical mechanisms controlling the rhizosphere water repellency remains largely speculative. Our hypothesis is that the key to describe the emergence of water repellency lies within the microscopic distribution of wettability on the pore-scale. At a critical mucilage content, a sufficient fraction of pores is blocked and the rhizosphere turns water repellent. Here we tested whether a percolation approach is capable to predict the flow behavior near the critical mucilage content. The wettability of glass beads and sand mixed with chia seed mucilage was quantified by measuring the infiltration rate of water drops. Drop infiltration was simulated using a simple pore-network model in which mucilage was distributed heterogeneously throughout the pore space with a preference for small pores. The model approach proved capable to capture the percolation nature of the process, the sudden transition from wettable to water repellent and the high variability in infiltration rates near the percolation threshold. Our study highlights the importance of pore-scale distribution of mucilage in the emergent flow behavior across the rhizosphere.

  15. Dissipation of 14C chlorpyrifos in the rhizosphere of rice

    International Nuclear Information System (INIS)

    Sharungbam, Geeta Devi; Kapadnis, B.P.; Deopurkar, R.L.; Kale, S.P.

    2004-01-01

    The root exudates from the plants contribute to the biodegradation of insecticides. Although, different mechanisms have been proposed, there is no clear elucidation of any mechanism. This study investigates the dissipation of an organophosphorus insecticide, chlorpyrifos in the rhizospheric soil planted with rice plant. Two sets of experimental tanks were maintained with or without plants using soil spiked with 1 mg kg -1 and 10 mg kg -1 of chlorpyrifos. Experiment was conducted for 180 days till the rice plant starts bearing seeds. The 14 C activity decreased rapidly in the rhizospheric soil as compare to the non-rhizospheric soil. The total culturable microflora were higher in the rhizospheric than the non-rhizospheric soil. The plant extract had given few counts indicating some negligible amount of chlorpyrifos uptake. The 14 C activity in the water was disappeared after 30 days. It was observed that very low amount of residue persisted in soil. This studies revealed that the plants play an important role in the dissipation of the chlorpyrifos from the rice flooded rhizospheric soil. (author)

  16. [Transformation and mobility of arsenic in the rhizosphere and non-rhizosphere soils at different growth stages of rice].

    Science.gov (United States)

    Yang, Wen-Tao; Wang, Ying-Jie; Zhou, Hang; Yi, Kai-Xin; Zeng, Min; Peng, Pei-Qin; Liao, Bo-Han

    2015-02-01

    Speciation and bioavailability of arsenic in the rhizosphere and non-rhizosphere soils at different growth stages (tillering stage, jointing stage, booting stage, filling stage and maturing stage) of rice (Oryza sativa L.) were studied using toxicity characteristic leaching procedure (TCLP) and arsenic speciation analysis. Pot experiments were conducted and the soil samples were taken from a certain paddy soil in Hunan Province contaminated by mining industry. The results showed that: (1) With the extension of rice growth period, pH values and TCLP extractable arsenic levels in the rhizosphere and non-rhizosphere soils increased gradually. Soil pH and TCLP extractable arsenic levels in non-rhizosphere soils were higher than those in the rhizosphere soils at the same growth stage. (2) At the different growth stages of rice, contents of exchangeable arsenic (AE-As) in rhizosphere and non-rhizosphere soils were lower than those before the rice planting, and increased gradually with the extension of the rice growing period. Contents of Al-bound arsenic (Al-As), Fe-bound arsenic (Fe-As) and Ca-bound arsenic (Ca-As) increased gradually after rice planting, but not significantly. Residual arsenic (O-As) and total arsenic (T-As) decreased gradually after rice planting, by 37.30% and 14.69% in the rhizosphere soils and by 31.38% and 8.67% in the non-rhizosphere soils, respectively. (3) At the different growth stages of rice, contents of various forms of arsenic in the soils were in the following order: residual arsenic (O-As) > Fe-bound arsenic ( Fe-As) > Al-bound arsenic (Al-As) > Ca-bound arsenic (Ca-As) > exchangeable arsenic (AE-As). In the pH range of 5.0- 5.8, significant positive linear correlations were found between most forms of arsenic or TCLP extractable arsenic levels and pH values, while the Ca-bound arsenic was poorly correlated with pH values in the rhizosphere soils.

  17. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants.

    Science.gov (United States)

    Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes; del-Val, Ek; Larsen, John

    2016-04-01

    Trichodermaspp. are common soil and root inhabitants that have been widely studied due to their capacity to produce antibiotics, parasitize other fungi and compete with deleterious plant microorganisms. These fungi produce a number of secondary metabolites such as non-ribosomal peptides, terpenoids, pyrones and indolic-derived compounds. In the rhizosphere, the exchange and recognition of signaling molecules byTrichodermaand plants may alter physiological and biochemical aspects in both. For example, severalTrichodermastrains induce root branching and increase shoot biomass as a consequence of cell division, expansion and differentiation by the presence of fungal auxin-like compounds. Furthermore,Trichoderma, in association with plant roots, can trigger systemic resistance and improve plant nutrient uptake. The present review describes the most recent advances in understanding the ecological functions ofTrichodermaspp. in the rhizosphere at biochemical and molecular levels with special emphasis on their associations with plants. Finally, through a synthesis of the current body of work, we present potential future research directions on studies related toTrichodermaspp. and their secondary metabolites in agroecosystems. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Nematode assemblages in the rhizosphere of spring barley (Hordeum vulgare L.) depended on fertilisation and plant growth phase

    DEFF Research Database (Denmark)

    Madsen, Mette Vestergård

    2004-01-01

    rhizosphere; nitrogen and phosphorus fertilisation; nematode assemblages; plant parasites; barley......rhizosphere; nitrogen and phosphorus fertilisation; nematode assemblages; plant parasites; barley...

  19. Dechlorination of PCBs in the rhizosphere of switchgrass and poplar

    International Nuclear Information System (INIS)

    Meggo, Richard E.; Schnoor, Jerald L.; Hu, Dingfei

    2013-01-01

    Polychlorinated biphenyl (PCB) congeners (PCB 52, 77, and 153) singly and in mixture were spiked and aged in soil microcosms and subsequently planted with switchgrass (Panicum virgatum) or poplar (Populus deltoids x nigra DN34). The planted reactors showed significantly greater reductions in PCB parent compounds when compared to unplanted systems after 32 weeks. There was evidence of reductive dechlorination in both planted and unplanted systems, but the planted microcosms with fully developed roots and rhizospheres showed greater biotransformation than the unplanted reactors. These dechlorination products accounted for approximately all of the molar mass of parent compound lost. Based on the transformation products, reductive dechlorination pathways are proposed for rhizospheric biotransformation of PCB 52, 77, and 153. This is the first report of rhizosphere biotransformation pathways for reductive dechlorination in marginally aerobic, intermittently flooded soil as evidenced by a mass balance on transformation products. -- Highlights: •Soil was spiked and aged and then planted with poplar and switchgrass. •Planted microcosms showed significant reductive dechlorination and greater biotransformation than unplanted reactor. •Rhizospheric reductive dechlorination pathways are proposed. -- This study provides insight into rhizospheric transformation of PCBs

  20. The Date Palm Tree Rhizosphere Is a Niche for Plant Growth Promoting Bacteria in the Oasis Ecosystem

    Directory of Open Access Journals (Sweden)

    Raoudha Ferjani

    2015-01-01

    Full Text Available In arid ecosystems environmental factors such as geoclimatic conditions and agricultural practices are of major importance in shaping the diversity and functionality of plant-associated bacterial communities. Assessing the influence of such factors is a key to understand (i the driving forces determining the shape of root-associated bacterial communities and (ii the plant growth promoting (PGP services they provide. Desert oasis environment was chosen as model ecosystem where agriculture is possible by the microclimate determined by the date palm cultivation. The bacterial communities in the soil fractions associated with the root system of date palms cultivated in seven oases in Tunisia were assessed by culture-independent and dependent approaches. According to 16S rRNA gene PCR-DGGE fingerprinting, the shapes of the date palm rhizosphere bacterial communities correlate with geoclimatic features along a north-south aridity transect. Despite the fact that the date palm root bacterial community structure was strongly influenced by macroecological factors, the potential rhizosphere services reflected in the PGP traits of isolates screened in vitro were conserved among the different oases. Such services were exerted by the 83% of the screened isolates. The comparable numbers and types of PGP traits indicate their importance in maintaining the plant functional homeostasis despite the different environmental selection pressures.

  1. The Date Palm Tree Rhizosphere Is a Niche for Plant Growth Promoting Bacteria in the Oasis Ecosystem

    KAUST Repository

    Ferjani, Raoudha

    2015-04-01

    In arid ecosystems environmental factors such as geoclimatic conditions and agricultural practices are of major importance in shaping the diversity and functionality of plant-associated bacterial communities. Assessing the influence of such factors is a key to understand (i) the driving forces determining the shape of root-associated bacterial communities and (ii) the plant growth promoting (PGP) services they provide. Desert oasis environment was chosen as model ecosystem where agriculture is possible by the microclimate determined by the date palm cultivation. The bacterial communities in the soil fractions associated with the root system of date palms cultivated in seven oases in Tunisia were assessed by culture-independent and dependent approaches. According to 16S rRNA gene PCR-DGGE fingerprinting, the shapes of the date palm rhizosphere bacterial communities correlate with geoclimatic features along a north-south aridity transect. Despite the fact that the date palm root bacterial community structure was strongly influenced by macroecological factors, the potential rhizosphere services reflected in the PGP traits of isolates screened in vitro were conserved among the different oases. Such services were exerted by the 83% of the screened isolates. The comparable numbers and types of PGP traits indicate their importance in maintaining the plant functional homeostasis despite the different environmental selection pressures.

  2. The Date Palm Tree Rhizosphere Is a Niche for Plant Growth Promoting Bacteria in the Oasis Ecosystem

    KAUST Repository

    Ferjani, Raoudha; Marasco, Ramona; Rolli, Eleonora; Cherif, Hanene; Cherif, Ameur; Gtari, Maher; Boudabous, Abdellatif; Daffonchio, Daniele; Ouzari, Hadda-Imene

    2015-01-01

    In arid ecosystems environmental factors such as geoclimatic conditions and agricultural practices are of major importance in shaping the diversity and functionality of plant-associated bacterial communities. Assessing the influence of such factors is a key to understand (i) the driving forces determining the shape of root-associated bacterial communities and (ii) the plant growth promoting (PGP) services they provide. Desert oasis environment was chosen as model ecosystem where agriculture is possible by the microclimate determined by the date palm cultivation. The bacterial communities in the soil fractions associated with the root system of date palms cultivated in seven oases in Tunisia were assessed by culture-independent and dependent approaches. According to 16S rRNA gene PCR-DGGE fingerprinting, the shapes of the date palm rhizosphere bacterial communities correlate with geoclimatic features along a north-south aridity transect. Despite the fact that the date palm root bacterial community structure was strongly influenced by macroecological factors, the potential rhizosphere services reflected in the PGP traits of isolates screened in vitro were conserved among the different oases. Such services were exerted by the 83% of the screened isolates. The comparable numbers and types of PGP traits indicate their importance in maintaining the plant functional homeostasis despite the different environmental selection pressures.

  3. Elucidating rhizosphere processes by mass spectrometry – A review

    Energy Technology Data Exchange (ETDEWEB)

    Rugova, Ariana [Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences-BOKU, Vienna (Austria); Puschenreiter, Markus [Department of Forest and Soil Sciences, Rhizosphere Ecology and Biogeochemistry Group, University of Natural Resources and Life Sciences-BOKU, Vienna (Austria); Koellensperger, Gunda [Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna (Austria); Hann, Stephan, E-mail: stephan.hann@boku.ac.at [Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences-BOKU, Vienna (Austria)

    2017-03-01

    The presented review discusses state-of-the-art mass spectrometric methods, which have been developed and applied for investigation of chemical processes in the soil-root interface, the so-called rhizosphere. Rhizosphere soil's physical and chemical characteristics are to a great extent influenced by a complex mixture of compounds released from plant roots, i.e. root exudates, which have a high impact on nutrient and trace element dynamics in the soil-root interface as well as on microbial activities or soil physico-chemical characteristics. Chemical characterization as well as accurate quantification of the compounds present in the rhizosphere is a major prerequisite for a better understanding of rhizosphere processes and requires the development and application of advanced sampling procedures in combination with highly selective and sensitive analytical techniques. During the last years, targeted and non-targeted mass spectrometry-based methods have emerged and their combination with specific separation methods for various elements and compounds of a wide polarity range have been successfully applied in several studies. With this review we critically discuss the work that has been conducted within the last decade in the context of rhizosphere research and elemental or molecular mass spectrometry emphasizing different separation techniques as GC, LC and CE. Moreover, selected applications such as metal detoxification or nutrient acquisition will be discussed regarding the mass spectrometric techniques applied in studies of root exudates in plant-bacteria interactions. Additionally, a more recent isotope probing technique as novel mass spectrometry based application is highlighted. - Highlights: • State-of-the-art mass spectrometry methods developed and applied in rhizosphere research are reviewed. • Elemental and molecular mass spectrometry emphasizing different separation techniques (GC, LC or CE) are discussed. • Case studies on metal detoxification

  4. Elucidating rhizosphere processes by mass spectrometry – A review

    International Nuclear Information System (INIS)

    Rugova, Ariana; Puschenreiter, Markus; Koellensperger, Gunda; Hann, Stephan

    2017-01-01

    The presented review discusses state-of-the-art mass spectrometric methods, which have been developed and applied for investigation of chemical processes in the soil-root interface, the so-called rhizosphere. Rhizosphere soil's physical and chemical characteristics are to a great extent influenced by a complex mixture of compounds released from plant roots, i.e. root exudates, which have a high impact on nutrient and trace element dynamics in the soil-root interface as well as on microbial activities or soil physico-chemical characteristics. Chemical characterization as well as accurate quantification of the compounds present in the rhizosphere is a major prerequisite for a better understanding of rhizosphere processes and requires the development and application of advanced sampling procedures in combination with highly selective and sensitive analytical techniques. During the last years, targeted and non-targeted mass spectrometry-based methods have emerged and their combination with specific separation methods for various elements and compounds of a wide polarity range have been successfully applied in several studies. With this review we critically discuss the work that has been conducted within the last decade in the context of rhizosphere research and elemental or molecular mass spectrometry emphasizing different separation techniques as GC, LC and CE. Moreover, selected applications such as metal detoxification or nutrient acquisition will be discussed regarding the mass spectrometric techniques applied in studies of root exudates in plant-bacteria interactions. Additionally, a more recent isotope probing technique as novel mass spectrometry based application is highlighted. - Highlights: • State-of-the-art mass spectrometry methods developed and applied in rhizosphere research are reviewed. • Elemental and molecular mass spectrometry emphasizing different separation techniques (GC, LC or CE) are discussed. • Case studies on metal detoxification and

  5. Rhizosphere competent Mesorhizobiumloti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris Mesorhizobium loti MP6 rizosférico competente induz encurvamento do pelo daraiz, inibe Sclerotinia sclerotiorum e estimula o crescimento de mostarda indiana (Brassica campestris

    Directory of Open Access Journals (Sweden)

    Shikha Chandra

    2007-03-01

    Full Text Available The bacterial strain Mesorhizobium loti MP6, isolated from root nodules of Mimosa pudica induced growth and yield of Brassica campestris. The isolate MP6 secreted hydroxamate type siderophore in Chrom-Azurol Siderophore (CAS agar medium. Production of hydrocyanic acid (HCN, indole acetic acid (IAA and phosphate solubilizing ability was also recorded under normal growth conditions. Root hair curling was observed through simple glass-slide technique. In vitro study showed a significant increase in population of M. loti MP6 in rhizosphere due to root exudates of B. campestris. In dual culture technique the strain showed a strong antagonistic effect against Sclerotinia sclerotiorum, a white rot pathogen of Brassica campestris. The growth of S. sclerotiorum was inhibited by 75% after prolonged incubation. Efficient root colonization of mustard seedlings was confirmed by using a streptomycin-resistant marker M. loti MP6strep+. The M. loti MP6 coated seeds proved enhanced seed germination, early vegetative growth and grain yield as compared to control. Also, a drastic decline (99% in the incidence of white rot was observed due to application of M. loti MP6.A cepa bacteriana Mesorhizobium loti MP6 isolada de nódulos de raiz de Mimosa pudica induziu o crescimento e o rendimento de Brassica campestris. A cepa MP6 secretou sideróforo do tipo hidroxamato em meio sólido Chrom-Azurol Siderophore (CAS. Em condições normais de crescimento, a cepa foi também capaz de produzir de ácido cianídrico (HCN e acido indolacético (AIA e solubilizar fosfato. O encurvamento do pelo da raiz foi observado usando a simples técnica de lâmina e lamínula. Estudos in vitro mostraram um aumento significativo na população de M. loti MP6 na rizosfera devido aos exsudatos de B. campestris. Empregando-se técnica de co-cultura, a cepa mostrou um grande efeito antagônico contra o fungo Sclerotinia sclerotiorum, o patógeno da podridão branca de Brassica campestris. Ap

  6. From data to knowledge: The future of multi-omics data analysis for the rhizosphere

    Energy Technology Data Exchange (ETDEWEB)

    Allen White, Richard; Borkum, Mark I.; Rivas-Ubach, Albert; Bilbao, Aivett; Wendler, Jason P.; Colby, Sean M.; Köberl, Martina; Jansson, Christer

    2017-06-01

    The rhizosphere is the interface between a plant's roots and its surrounding soil. The rhizosphere microbiome, a complex microbial ecosystem, nourishes the terrestrial biosphere. Integrated multi-omics is a modern approach to systems biology that analyzes and interprets the datasets of multiple -omes of both individual organisms and multi-organism communities and consortia. The successful usage and application of integrated multi-omics to rhizospheric science is predicated upon the availability of rhizosphere-specific data, metadata and software. This review analyzes the availability of multi-omics data, metadata and software for rhizospheric science, identifying potential issues, challenges and opportunities.

  7. Bacterial incorporation of tritiated thymidine and populations of bacteriophagous fauna in the rhizosphere of wheat

    DEFF Research Database (Denmark)

    Christensen, Henrik; Griffiths, Bryan; Christensen, Søren

    1992-01-01

    Bacterial and microfaunal populations, and bacterial productivity measured by tritiated thymidine (3HTdr) incorporation, in the rhizosphere of wheat seedlings were measured. Soil from planted pots was fractionated into rhizosphere and non-rhizosphere (bulk) soil, while unplanted soil was taken from...... pots without plants. Total bacterial counts and biovolume did not differ between fractions but viable (plate) counts were 8 times higher in the rhizosphere compared to bulk and unplanted soil. 3HTdr was incorporated at a constant rate with low variability in bulk or unplanted soil. In rhizosphere soil...... 3HTdr incorporation was lower than in bulk or unplanted soils and showed high variability. The populations of bacterial-feeding protozoa and nematodes indicated that rhizosphere bacterial activity was actually 3–4 times greater in rhizosphere than bulk soil in accordance with the results...

  8. Teacher competencies

    OpenAIRE

    Svatošová, Kateřina

    2012-01-01

    This diploma thesis deals with adult teacher competencies. It describes current situation in adult education and it focuses on measuring quality level of teacher competencies. There is given the main overview of adult education specifics. These are the prerequisites for defining adult teacher competencies. There is given specific adult teacher competencies and related roles which are generally based on teacher's activities during educational courses. Next part describes present conception of ...

  9. AAOHN Competencies.

    Science.gov (United States)

    2015-11-01

    The AAOHN Competency document is one of the core documents that define occupational health nursing practice. This article provides a description of the process used to update the competencies, as well as a description of the new competencies. © 2015 The Author(s).

  10. Selection of rhizosphere local microbial as bioactive inoculant based on irradiated compost

    International Nuclear Information System (INIS)

    Dadang Sudrajat; Nana Mulyana; Arief Adhari

    2014-01-01

    One of the main components of carrier based on irradiation compost for bio organic fertilizer is a potential microbial isolates role in nutrient supply and growth hormone. This research was conducted to obtain microbial isolates from plant root zone (rhizosphere), further isolation and selection in order to obtain potential isolates capable of nitrogen fixation (N 2 ), resulting in growth hormone (Indole Acetic Acid), and phosphate solubilizing. Selected potential isolates used as bioactive microbial inoculants formulation in irradiation compost based. Forty eight (48) rhizosphere samples were collected from different areas of West and Central Java. One hundred sixteen (116) isolates have been characterized for their morphological, cultural, staining and biochemical characteristics. Isolates have been selected for further screening of PGPR traits. Parameters assessed were Indole Acetic Acid (IAA) content analysis with colorimetric methods, dinitrogen fixation using gas chromatography, phosphate solubility test qualitatively (in the media pikovskaya) and quantitative assay of dissolved phosphate (spectrophotometry). Evaluation of the ability of selected isolates on the growth of corn plants were done in pots. The isolates will be used as inoculant consortium base on compost irradiation. The selection obtained eight (8) bacterial isolates identified as Bacillus circulans (3 isolates), Bacillus stearothermophilus (1 isolate), Azotobacter sp (3 isolates), Pseudomonas diminuta (1 isolate). The highest phosphate released (91,21 mg/l) was by BD2 isolate (Bacillus circulan) with a holo zone size (1.32 cm) on Pikovskaya agar medium. Isolate of Pseudomonas diminuta (KACI) was capable to produce the highest IAA hormone (74.34 μg/ml). The highest nitrogen (N 2 ) fixation activity was shown by Azotobacter sp isolates (KDB2) at a rate of 235.05 nmol/hour. The viability test showed that all selected isolates in compost irradiation carrier slightly decreased after 3 months of

  11. A mechanistic model on methane oxidation in the rice rhizosphere

    NARCIS (Netherlands)

    Bodegom, van P.M.; Leffelaar, P.A.; Goudriaan, J.

    2001-01-01

    A mechanistic model is presented on the processes leading to methane oxidation in rice rhizosphere. The model is driven by oxygen release from a rice root into anaerobic rice soil. Oxygen is consumed by heterotrophic and methanotrophic respiration, described by double Monod kinetics, and by iron

  12. Effects of PAH-Contaminated Soil on Rhizosphere Microbial Communities

    DEFF Research Database (Denmark)

    Pritchina, Olga; Ely, Cairn; Smets, Barth F.

    2011-01-01

    Bacterial associations with plant roots are thought to contribute to the success of phytoremediation. We tested the effect of addition of a polycyclic aromatic hydrocarbon contaminated soil on the structure of the rhizosphere microbial communities of wheat (Triticum aestivum), lettuce (Lactuca...

  13. Impact of plant domestication on rhizosphere microbiome assembly and functions

    NARCIS (Netherlands)

    Perez Jaramillo, Juan Esteban; Mendes, Rodrigo; Raaijmakers, Jos

    2016-01-01

    The rhizosphere microbiome is pivotal for plant health and growth, providing defence against pests and diseases, facilitating nutrient acquisition and helping plants to withstand abiotic stresses. Plants can actively recruit members of the soil microbial community for positive feedbacks, but the

  14. Taxonomy of Streptomyces strains isolated from rhizospheres of ...

    African Journals Online (AJOL)

    Taxonomy of Streptomyces strains isolated from rhizospheres of various plant species grown in Taif region, KSA, having antagonistic activities against some microbial tissue ... African Journal of Biotechnology ... Keywords: Taxonomy, Streptomyces, microbial tissue culture contaminants, antagonistic activities, 16S rRNA

  15. Antifungal activity of bacterial strains from the rhizosphere of ...

    African Journals Online (AJOL)

    This study evaluated the antifungal action of biomolecules produced from the secondary metabolism of bacterial strains found in the rhizosphere of semi arid plants against human pathogenic Candida albicans. Crude extracts were obtained using ethyl acetate as an organic solvent and the bioactivity was assessed with a ...

  16. Rhizosphere of rice plants harbor bacteria with multiple plant growth ...

    African Journals Online (AJOL)

    Rhizosphere of rice plants harbor bacteria with multiple plant growth promoting features. ... 45 (39.46%) isolates were capable of producing siderophore, the range of production being 4.50 to 223.26 μg mg-1 protein. Analysis of molecular diversity was made by amplified ribosomal DNA restriction analysis (ARDRA) and ...

  17. Effects of different rhizosphere ventilation treatment on water and ...

    African Journals Online (AJOL)

    The objective of this study was to explore the effects of different rhizosphere ventilation treatment on water and nutrients absorption of maize. The pot experiment was conducted using three methods: no ventilation, two day ventilation and four day ventilation, under conditions of the different levels of irrigation methods.

  18. Heavy Metal Content and Microbial Composition of the Rhizosphere ...

    African Journals Online (AJOL)

    Plant-assisted bioremediation holds promise for in-situ treatment of polluted soil. However, en-hancement of this process for successful phytoremediation processes requires a sound understand-ing of the complex interactions of the rhizosphere. The present study thus investigated the chemi-cal and microbial composition ...

  19. Examining Intercultural Competency through Social Exchange Theory

    Science.gov (United States)

    Pillay, Soma; James, Reynold

    2015-01-01

    Intercultural competency (ICC) has been an extensively researched area within the past decade, given the broad consensus that this trait constitutes one of the key competencies of the 21st century manager. However, somewhat under-explored are aspects including the implications and effects that pedagogies such as blended learning have on the…

  20. Elucidating rhizosphere processes by mass spectrometry - A review.

    Science.gov (United States)

    Rugova, Ariana; Puschenreiter, Markus; Koellensperger, Gunda; Hann, Stephan

    2017-03-01

    The presented review discusses state-of-the-art mass spectrometric methods, which have been developed and applied for investigation of chemical processes in the soil-root interface, the so-called rhizosphere. Rhizosphere soil's physical and chemical characteristics are to a great extent influenced by a complex mixture of compounds released from plant roots, i.e. root exudates, which have a high impact on nutrient and trace element dynamics in the soil-root interface as well as on microbial activities or soil physico-chemical characteristics. Chemical characterization as well as accurate quantification of the compounds present in the rhizosphere is a major prerequisite for a better understanding of rhizosphere processes and requires the development and application of advanced sampling procedures in combination with highly selective and sensitive analytical techniques. During the last years, targeted and non-targeted mass spectrometry-based methods have emerged and their combination with specific separation methods for various elements and compounds of a wide polarity range have been successfully applied in several studies. With this review we critically discuss the work that has been conducted within the last decade in the context of rhizosphere research and elemental or molecular mass spectrometry emphasizing different separation techniques as GC, LC and CE. Moreover, selected applications such as metal detoxification or nutrient acquisition will be discussed regarding the mass spectrometric techniques applied in studies of root exudates in plant-bacteria interactions. Additionally, a more recent isotope probing technique as novel mass spectrometry based application is highlighted. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Rhizosphere Protists Change Metabolite Profiles in Zea mays

    Directory of Open Access Journals (Sweden)

    Anke Kuppardt

    2018-05-01

    Full Text Available Plant growth and productivity depend on the interactions of the plant with the associated rhizosphere microbes. Rhizosphere protists play a significant role in this respect: considerable efforts have been made in the past to reveal the impact of protist-bacteria interactions on the remobilization of essential nutrients for plant uptake, or the grazing induced changes on plant-growth promoting bacteria and the root-architecture. However, the metabolic responses of plants to the presence of protists or to protist-bacteria interactions in the rhizosphere have not yet been analyzed. Here we studied in controlled laboratory experiments the impact of bacterivorous protists in the rhizosphere on maize plant growth parameters and the bacterial community composition. Beyond that we investigated the induction of plant biochemical responses by separately analyzing above- and below-ground metabolite profiles of maize plants incubated either with a soil bacterial inoculum or with a mixture of soil bacteria and bacterivorous protists. Significantly distinct leaf and root metabolite profiles were obtained from plants which grew in the presence of protists. These profiles showed decreased levels of a considerable number of metabolites typical for the plant stress reaction, such as polyols, a number of carbohydrates and metabolites connected to phenolic metabolism. We assume that this decrease in plant stress is connected to the grazing induced shifts in rhizosphere bacterial communities as shown by distinct T-RFLP community profiles. Protist grazing had a clear effect on the overall bacterial community composition, richness and evenness in our microcosms. Given the competition of plant resource allocation to either defense or growth, we propose that a reduction in plant stress levels caused directly or indirectly by protists may be an additional reason for corresponding positive effects on plant growth.

  2. Rhizosphere Protists Change Metabolite Profiles in Zea mays.

    Science.gov (United States)

    Kuppardt, Anke; Fester, Thomas; Härtig, Claus; Chatzinotas, Antonis

    2018-01-01

    Plant growth and productivity depend on the interactions of the plant with the associated rhizosphere microbes. Rhizosphere protists play a significant role in this respect: considerable efforts have been made in the past to reveal the impact of protist-bacteria interactions on the remobilization of essential nutrients for plant uptake, or the grazing induced changes on plant-growth promoting bacteria and the root-architecture. However, the metabolic responses of plants to the presence of protists or to protist-bacteria interactions in the rhizosphere have not yet been analyzed. Here we studied in controlled laboratory experiments the impact of bacterivorous protists in the rhizosphere on maize plant growth parameters and the bacterial community composition. Beyond that we investigated the induction of plant biochemical responses by separately analyzing above- and below-ground metabolite profiles of maize plants incubated either with a soil bacterial inoculum or with a mixture of soil bacteria and bacterivorous protists. Significantly distinct leaf and root metabolite profiles were obtained from plants which grew in the presence of protists. These profiles showed decreased levels of a considerable number of metabolites typical for the plant stress reaction, such as polyols, a number of carbohydrates and metabolites connected to phenolic metabolism. We assume that this decrease in plant stress is connected to the grazing induced shifts in rhizosphere bacterial communities as shown by distinct T-RFLP community profiles. Protist grazing had a clear effect on the overall bacterial community composition, richness and evenness in our microcosms. Given the competition of plant resource allocation to either defense or growth, we propose that a reduction in plant stress levels caused directly or indirectly by protists may be an additional reason for corresponding positive effects on plant growth.

  3. Life on the energetic edge: Iron oxidation by circumneutral lithotrophic bacteria in the wetland plant rhizosphere

    Science.gov (United States)

    Neubauer, S. C.; Emerson, D.; Megonigal, J. P.; Weiss, J. V.

    2002-05-01

    We have discovered a phylogenetically and genotypically coherent group of obligately lithotrophic Fe-oxidizing bacteria that grow at neutral pH and are globally distributed in a range of habitats, from the rhizosphere of freshwater wetlands to deep-sea hydrothermal vents. We have initiated bioreactor studies using pure cultures of these organisms to determine the significance of microbial Fe(II) oxidation at circumneutral pH and identify the biotic and abiotic variables that affect the partitioning between microbial and chemical oxidation. These studies have focused on strain BrT, which was isolated from an iron oxide precipitate in rhizosphere of a wetland plant. In one set of experiments, Fe(II) oxidation rates were measured before and after cultures of strain BrT were poisoned with sodium azide. These experiments indicated that 18 to 53 % of total iron oxidation was due to microbial metabolism. In a second set of experiments, Fe(II) was constantly added to bioreactors inoculated with live cells, killed cells, or no cells. A statistical model fit to the experimental data demonstrated that metabolic Fe(II) oxidation accounted for up to 62 % of total oxidation. Total Fe(II) oxidation rates in these experiments were strongly limited by the rate of Fe(II) delivery to the system, and were also influenced by O2 and total iron concentrations. Additionally, the model suggested that the microbes inhibited rates of abiotic Fe(II) oxidation, perhaps by binding Fe(II) to bacterial exopolymers. The net effect of strain BrT was to accelerate total oxidation rates by up to 18 % versus cell-free treatments. Using two independent techniques, we demonstrated that strain BrT actively metabolizes Fe(II) and can account for up to 50 to 60 % of total Fe(II) oxidation in laboratory cultures. These results suggest that neutrophilic Fe(II)-oxidizing bacteria may compete for limited O2 in the rhizosphere and influence the biogeochemistry of other elements including carbon, phosphorus, and

  4. Rhizosphere-associated Pseudomonas induce systemic resistance to herbivores at the cost of susceptibility to bacterial pathogens.

    Science.gov (United States)

    Haney, Cara H; Wiesmann, Christina L; Shapiro, Lori R; Melnyk, Ryan A; O'Sullivan, Lucy R; Khorasani, Sophie; Xiao, Li; Han, Jiatong; Bush, Jenifer; Carrillo, Juli; Pierce, Naomi E; Ausubel, Frederick M

    2017-10-31

    Plant-associated soil microbes are important mediators of plant defence responses to diverse above-ground pathogen and insect challengers. For example, closely related strains of beneficial rhizosphere Pseudomonas spp. can induce systemic resistance (ISR), systemic susceptibility (ISS) or neither against the bacterial foliar pathogen Pseudomonas syringae pv. tomato DC3000 (Pto DC3000). Using a model system composed of root-associated Pseudomonas spp. strains, the foliar pathogen Pto DC3000 and the herbivore Trichoplusia ni (cabbage looper), we found that rhizosphere-associated Pseudomonas spp. that induce either ISS and ISR against Pto DC3000 all increased resistance to herbivory by T. ni. We found that resistance to T. ni and resistance to Pto DC3000 are quantitative metrics of the jasmonic acid (JA)/salicylic acid (SA) trade-off and distinct strains of rhizosphere-associated Pseudomonas spp. have distinct effects on the JA/SA trade-off. Using genetic analysis and transcriptional profiling, we provide evidence that treatment of Arabidopsis with Pseudomonas sp. CH267, which induces ISS against bacterial pathogens, tips the JA/SA trade-off towards JA-dependent defences against herbivores at the cost of a subset of SA-mediated defences against bacterial pathogens. In contrast, treatment of Arabidopsis with the ISR strain Pseudomonas sp. WCS417 disrupts JA/SA antagonism and simultaneously primes plants for both JA- and SA-mediated defences. Our findings show that ISS against the bacterial foliar pathogens triggered by Pseudomonas sp. CH267, which is a seemingly deleterious phenotype, may in fact be an adaptive consequence of increased resistance to herbivory. Our work shows that pleiotropic effects of microbiome modulation of plant defences are important to consider when using microbes to modify plant traits in agriculture. © 2017 John Wiley & Sons Ltd.

  5. Microbial expression profiles in the rhizosphere of willows depend on soil contamination

    Science.gov (United States)

    Yergeau, Etienne; Sanschagrin, Sylvie; Maynard, Christine; St-Arnaud, Marc; Greer, Charles W

    2014-01-01

    The goal of phytoremediation is to use plants to immobilize, extract or degrade organic and inorganic pollutants. In the case of organic contaminants, plants essentially act indirectly through the stimulation of rhizosphere microorganisms. A detailed understanding of the effect plants have on the activities of rhizosphere microorganisms could help optimize phytoremediation systems and enhance their use. In this study, willows were planted in contaminated and non-contaminated soils in a greenhouse, and the active microbial communities and the expression of functional genes in the rhizosphere and bulk soil were compared. Ion Torrent sequencing of 16S rRNA and Illumina sequencing of mRNA were performed. Genes related to carbon and amino-acid uptake and utilization were upregulated in the willow rhizosphere, providing indirect evidence of the compositional content of the root exudates. Related to this increased nutrient input, several microbial taxa showed a significant increase in activity in the rhizosphere. The extent of the rhizosphere stimulation varied markedly with soil contamination levels. The combined selective pressure of contaminants and rhizosphere resulted in higher expression of genes related to competition (antibiotic resistance and biofilm formation) in the contaminated rhizosphere. Genes related to hydrocarbon degradation were generally more expressed in contaminated soils, but the exact complement of genes induced was different for bulk and rhizosphere soils. Together, these results provide an unprecedented view of microbial gene expression in the plant rhizosphere during phytoremediation. PMID:24067257

  6. Understanding Aquatic Rhizosphere Processes Through Metabolomics and Metagenomics Approach

    Science.gov (United States)

    Lee, Yong Jian; Mynampati, Kalyan; Drautz, Daniela; Arumugam, Krithika; Williams, Rohan; Schuster, Stephan; Kjelleberg, Staffan; Swarup, Sanjay

    2013-04-01

    The aquatic rhizosphere is a region around the roots of aquatic plants. Many studies focusing on terrestrial rhizosphere have led to a good understanding of the interactions between the roots, its exudates and its associated rhizobacteria. The rhizosphere of free-floating roots, however, is a different habitat that poses several additional challenges, including rapid diffusion rates of signals and nutrient molecules, which are further influenced by the hydrodynamic forces. These can lead to rapid diffusion and complicates the studying of diffusible factors from both plant and/or rhizobacterial origins. These plant systems are being increasingly used for self purification of water bodies to provide sustainable solution. A better understanding of these processes will help in improving their performance for ecological engineering of freshwater systems. The same principles can also be used to improve the yield of hydroponic cultures. Novel toolsets and approaches are needed to investigate the processes occurring in the aquatic rhizosphere. We are interested in understanding the interaction between root exudates and the complex microbial communities that are associated with the roots, using a systems biology approach involving metabolomics and metagenomics. With this aim, we have developed a RhizoFlowCell (RFC) system that provides a controlled study of aquatic plants, observed the root biofilms, collect root exudates and subject the rhizosphere system to changes in various chemical or physical perturbations. As proof of concept, we have used RFC to test the response of root exudation patterns of Pandanus amaryllifolius after exposure to the pollutant naphthalene. Complexity of root exudates in the aquatic rhizosphere was captured using this device and analysed using LC-qTOF-MS. The highly complex metabolomic profile allowed us to study the dynamics of the response of roots to varying levels of naphthalene. The metabolic profile changed within 5mins after spiking with

  7. Novel Phl-producing genotypes of finger millet rhizosphere associated pseudomonads and assessment of their functional and genetic diversity.

    Science.gov (United States)

    Sekar, Jegan; Prabavathy, Vaiyapuri Ramalingam

    2014-07-01

    Genetic diversity of phlD gene, an essential gene in the biosynthesis of 2,4-diacetylphloroglucinol, was studied by restriction fragment length polymorphism (RFLP) in 20 Phl-producing pseudomonads isolated from finger millet rhizosphere. RFLP analysis of phlD gene displayed three patterns with HaeIII and TaqI enzymes. phlD gene sequence closely correlated with RFLP results and revealed the existence of three new genotypes G, H and I. Further, the phylogenetic and concatenated sequence analysis of the 16S rRNA, rpoB, gyrB, rpoD genes supported the hypothesis that these genotypes G, H and I were different from reported genotypes A-F. In all phylogenetic studies, the genotype G formed a distant clade from the groups of Pseudomonas putida and P. aeruginosa (sensu strictu), but the groups H and I were closely related to P. aeruginosa/P. stutzeri group. The Phl-producing pseudomonads exhibited antagonistic activity against Pyricularia grisea (TN508), Gaeumannomyces graminis (DSM1463), Fusarium oxysporum (DSM62297), Xanthomonas campestris (DSM3586) and Erwinia persicina (HMGU155). In addition, these strains exhibited various plant growth-promoting traits. In conclusion, this study displays the existence of novel Phl-producing pseudomonads genotypes G, H and I from finger millet rhizosphere, which formed taxonomically outward phylogenetic lineage from the groups of P. putida and P. aeruginosa (sensu strictu). © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Timespacing competence

    DEFF Research Database (Denmark)

    Laursen, Helle Pia; Mogensen, Naja Dahlstrup

    2016-01-01

    -generated activity My linguistic world 2014, they are invited to map and talk about their lived experiences as multiple language users seen in the light of place and movement. By demythifying themselves and their linguistic worlds, the children also raise important questions about the notion of linguistic competence....... By perceiving competences from a subjective child perspective, we learn how children do what we call timespacing competence. On that basis, we suggest paying attention to how children themselves timespace competence by focusing (more consistently) on the subjective, social, spatial and temporal dimensions...

  9. The role of rhizosphere pH in regulating the rhizosphere priming effect and implications for the availability of soil-derived nitrogen to plants.

    Science.gov (United States)

    Wang, Xiaojuan; Tang, Caixian

    2018-01-25

    A comprehensive understanding of the rhizosphere priming effect (RPE) on the decomposition of soil organic carbon (SOC) requires an integration of many factors. It is unclear how N form-induced change in soil pH affects the RPE and SOC sequestration. This study compared the change in the RPE under supply of NO3-N and NH4-N. The effect of the RPE on the mineralization of soil N and hence its availability to plant and microbes was also examined using a 15N-labelled N source. The supply of NH4-N decreased rhizosphere pH by 0.16-0.38 units, and resulted in a decreased or negative RPE. In contrast, NO3-N nutrition increased rhizosphere pH by 0.19-0.78 units, and led to a persistently positive RPE. The amounts of rhizosphere-primed C were positively correlated with rhizosphere pH. Rhizosphere pH affected the RPE mainly through influencing microbial biomass, activity and utilization of root exudates, and the availability of SOC to microbes. Furthermore, the amount of rhizosphere primed C correlated negatively with microbial biomass atom% 15N (R2 0.77-0.98, n = 12), suggesting that microbes in the rhizosphere acted as the immediate sink for N released from enhanced SOC decomposition via the RPE. N form was an important factor affecting the magnitude and direction of the RPE via its effect on rhizosphere pH. Rhizosphere pH needs to be considered in SOC and RPE modelling. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Carbon transfer in soil - plant system. Molecular labelling utilization for determining rhizosphere compounds

    International Nuclear Information System (INIS)

    Leguay, J.J.

    2000-01-01

    The growing up of the bacteria developing in the rhizosphere of plants is dependent on the compounds exudation by plant roots. Even the bacterial genetics use has permitted to identify diverse functions involved in the process of the rhizosphere colonisation ( mobility, heterotrophic bacteria, growing rate, antibiotics production), there is a big delay in vegetal partners. To decrease this delay we tried to characterize the interactions between a plant model, Arabidopsis thaliana and the rhizosphere bacteria. An experimental device has been conceived for measuring the transfer of carbon issued from the photosynthesis to roots and soil. The exudation by roots has been studied. The analysis of rhizospheric compounds in situ pose some methodological problems, especially, the rhizospheric compounds must be extracted from the soil matrix. we suggest an analysis method of rhizospheric compound and of their dynamics. (F.M.)

  11. [Transformation of Cu forms in Cynodon dactylon rhizosphere soil of copper tailings yard].

    Science.gov (United States)

    Wang, You-bao; Huang, Yong-jie; Zhen, Quan; Yan, Mi; Yang, Hong-fei; Liu, Deng-yi

    2007-06-01

    The study on the Cu forms in Cynodon dactylon rhizosphere soil of copper tailings yard in Tongling City, Anhui Province showed that among the test Cu forms, the amount of residual form occupied the majority, while that of exchangeable form was relatively low. Compared with non-rhizosphere soil, rhizosphere soil had a higher organic matter content but a lower pH. With the growth of C. dactylon, the contents of organically combined and exchangeable Cu in rhizosphere soil increased by 7.89% and 5%, respectively, while those of carbonate-combined and Fe-Mn oxides-combined Cu decreased. The growth of C. dactylon accelerated the transformation of Cu forms in rhizosphere soil, and decreased the rhizosphere soil Cu content through its absorption.

  12. Impacts of endophyte infection of ryegrass on rhizosphere metabolome and microbial community

    DEFF Research Database (Denmark)

    Wakelin, S.; Harrison, Scott James; Mander, C.

    2015-01-01

    37, within a genetically uniform breeding line of perennial ryegrass (Lolium perenne cv. Samson 11104) on the rhizosphere metabolome and the composition of the fungal, bacterial, and Pseudomonas communities. There were strong differences in the rhizosphere metabolomes between infested and non......-infested ryegrass strains (P=0.06). These were attributed to shifts in various n-alkane hydrocarbon compounds. The endophyte-associated alteration in rhizosphere metabolome was linked to changes in the total bacterial (P

  13. The Rhizosphere Bacterial Microbiota of Vitis vinifera cv. Pinot Noir in an Integrated Pest Management Vineyard

    OpenAIRE

    Novello, Giorgia; Gamalero, Elisa; Bona, Elisa; Boatti, Lara; Mignone, Flavio; Massa, Nadia; Cesaro, Patrizia; Lingua, Guido; Berta, Graziella

    2017-01-01

    Microorganisms associated with Vitis vinifera (grapevine) can affect its growth, health and grape quality. The aim of this study was to unravel the biodiversity of the bacterial rhizosphere microbiota of grapevine in an integrated pest management vineyard located in Piedmont, Italy. Comparison between the microbial community structure in the bulk and rhizosphere soil (variable: space) were performed. Moreover, the possible shifts of the bulk and rhizosphere soil microbiota according to two ph...

  14. Adjudicative Competence

    Science.gov (United States)

    Dawes, Sharron E.; Palmer, Barton W.; Jeste, Dilip V.

    2008-01-01

    Purpose of review Although the basic standards of adjudicative competence were specified by the U.S. Supreme Court in 1960, there remain a number of complex conceptual and practical issues in interpreting and applying these standards. In this report we provide a brief overview regarding the general concept of adjudicative competence and its assessment, as well as some highlights of recent empirical studies on this topic. Findings Most adjudicative competence assessments are conducted by psychiatrists or psychologists. There are no universal certification requirements, but some states are moving toward required certification of forensic expertise for those conducting such assessments. Recent data indicate inconsistencies in application of the existing standards even among forensic experts, but the recent publication of consensus guidelines may foster improvements in this arena. There are also ongoing efforts to develop and validate structured instruments to aid competency evaluations. Telemedicine-based competency interviews may facilitate evaluation by those with specific expertise for evaluation of complex cases. There is also interest in empirical development of educational methods to enhance adjudicative competence. Summary Adjudicative competence may be difficult to measure accurately, but the assessments and tools available are advancing. More research is needed on methods of enhancing decisional capacity among those with impaired competence. PMID:18650693

  15. Outsourcing competence

    NARCIS (Netherlands)

    Bergstra, J.; Delen, G.; van Vlijmen, B.

    2011-01-01

    The topic of this paper, competences needed for outsourcing, is organized by first providing a generic competence scheme, which is subsequently instantiated to the area of sourcing and outsourcing. Sourcing and outsourcing are positioned as different areas of activity, neither one of which is

  16. Modeling the fate of polynuclear aromatic hydrocarbons in the rhizosphere

    International Nuclear Information System (INIS)

    Santharam, S.K.; Erickson, L.E.; Fan, L.T.

    1994-01-01

    Polynuclear aromatic hydrocarbons (PAHs) are major contaminants associated with wastes from manufactured gas plants, wood treating operations, and petroleum refining; they are potentially carcinogenic and mutagenic. It has been known that vegetation can enhance the rate and extent of degradation of PAHs in contaminated soil. Plant roots release exudates capable of supplying carbon and energy to microflora for degrading PAHs. It has also been well established that the population of microorganisms in the rhizosphere is significantly greater than that in the non-vegetated soil; these microorganisms are apparently responsible for the enhanced biodegradation of PAHs. A model has been derived for describing the rate of disappearance of a non-aqueous phase contaminant in the rhizosphere, which takes into account dissolution, adsorption, desorption and biodegradation of the contaminant, without neglecting the size distribution of the organic-phase droplets; the rate of biodegradation is expressed in terms of the Monod kinetics. The model is validated with the available experimental data for pyrene

  17. Decomposer biomass in the rhizosphere to assess rhizodeposition

    DEFF Research Database (Denmark)

    Christensen, Søren; Bjørnlund, Lisa; Madsen, Mette Vestergård

    2007-01-01

    under sterile conditions give an unrealistic value. Quantifying bacterial production from 3H-thymidine incorporation falls short in the rhizosphere and the use of isotopes does not allow clear distinction between labeled CO2 released from roots or microbes. We reduced rhizodeposition in 3-5 week old...... in the rhizosphere decreased to the level in soil unaffected by roots. This suggests that difference in bacterivore biomass directly reflects variations in rhizodeposition. Rhizodeposition is estimated from plant-induced increases in bacterial and bacterivore biomass, and yield factors, maintenance requirements......, and turnover rates from the literature. We use literature values that maximize requirements for organic carbon and still estimate the total organic rhizodeposition to be as little as 4-6% of the plant-induced respiration belowground....

  18. Systematic design for trait introgression projects

    OpenAIRE

    Cameron, John N.; Han, Ye; Wang, Lizhi; Beavis, William D.

    2017-01-01

    Key message Using an Operations Research approach, we demonstrate design of optimal trait introgression projects with respect to competing objectives. Abstract We demonstrate an innovative approach for designing Trait Introgression (TI) projects based on optimization principles from Operations Research. If the designs of TI projects are based on clear and measurable objectives, they can be translated into mathematical models with decision variables and constraints that can be translated into ...

  19. Competence Building

    DEFF Research Database (Denmark)

    Borrás, Susana; Edquist, Charles

    The main question that guides this paper is how governments are focusing (and must focus) on competence building (education and training) when designing and implementing innovation policies. With this approach, the paper aims at filling the gap between the existing literature on competences...... on the one hand, and the real world of innovation policy-making on the other, typically not speaking to each other. With this purpose in mind, this paper discusses the role of competences and competence-building in the innovation process from a perspective of innovation systems; it examines how governments...... and public agencies in different countries and different times have actually approached the issue of building, maintaining and using competences in their innovation systems; it examines what are the critical and most important issues at stake from the point of view of innovation policy, looking particularly...

  20. Spatial distribution of enzyme activities in the rhizosphere

    Science.gov (United States)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    The rhizosphere, the tiny zone of soil surrounding roots, certainly represents one of the most dynamic habitat and interfaces on Earth. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. That is why there is an urgent need in spatially explicit methods for the determination of the rhizosphere extension and enzyme distribution. Recently, zymography as a new technique based on diffusion of enzymes through the 1 mm gel plate for analysis has been introduced (Spohn & Kuzyakov, 2013). We developed the zymography technique to visualize the enzyme activities with a higher spatial resolution. For the first time, we aimed at quantitative imaging of enzyme activities as a function of distance from the root tip and the root surface in the soil. We visualized the two dimensional distribution of the activity of three enzymes: β-glucosidase, phosphatase and leucine amino peptidase in the rhizosphere of maize using fluorogenically labelled substrates. Spatial-resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography visualized heterogeneity of enzyme activities along the roots. The activity of all enzymes was the highest at the apical parts of individual roots. Across the roots, the enzyme activities were higher at immediate vicinity of the roots (1.5 mm) and gradually decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify spatial distribution of enzyme activities in the rhizosphere hotspots. References Spohn, M., Kuzyakov, Y., 2013. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biology & Biochemistry 61: 69-75

  1. Genetic diversity of siderophore-producing bacteria of tobacco rhizosphere

    OpenAIRE

    Tian, Fang; Ding, Yanqin; Zhu, Hui; Yao, Liangtong; Du, Binghai

    2009-01-01

    The genetic diversity of siderophore-producing bacteria of tobacco rhizosphere was studied by amplified ribosomal DNA restriction analysis (ARDRA), 16S rRNA sequence homology and phylogenetics analysis methods. Studies demonstrated that 85% of the total 354 isolates produced siderophores in iron limited liquid medium. A total of 28 ARDRA patterns were identified among the 299 siderophore-producing bacterial isolates. The 28 ARDRA patterns represented bacteria of 14 different genera belonging ...

  2. The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence.

    Science.gov (United States)

    Mapelli, Francesca; Marasco, Ramona; Fusi, Marco; Scaglia, Barbara; Tsiamis, George; Rolli, Eleonora; Fodelianakis, Stilianos; Bourtzis, Kostas; Ventura, Stefano; Tambone, Fulvia; Adani, Fabrizio; Borin, Sara; Daffonchio, Daniele

    2018-05-01

    In mature soils, plant species and soil type determine the selection of root microbiota. Which of these two factors drives rhizosphere selection in barren substrates of developing desert soils has, however, not yet been established. Chronosequences of glacier forelands provide ideal natural environments to identify primary rhizosphere selection factors along the changing edaphic conditions of a developing soil. Here, we analyze changes in bacterial diversity in bulk soils and rhizospheres of a pioneer plant across a High Arctic glacier chronosequence. We show that the developmental stage of soil strongly modulates rhizosphere community assembly, even though plant-induced selection buffers the effect of changing edaphic factors. Bulk and rhizosphere soils host distinct bacterial communities that differentially vary along the chronosequence. Cation exchange capacity, exchangeable potassium, and metabolite concentration in the soil account for the rhizosphere bacterial diversity. Although the soil fraction (bulk soil and rhizosphere) explains up to 17.2% of the variation in bacterial microbiota, the soil developmental stage explains up to 47.7% of this variation. In addition, the operational taxonomic unit (OTU) co-occurrence network of the rhizosphere, whose complexity increases along the chronosequence, is loosely structured in barren compared with mature soils, corroborating our hypothesis that soil development tunes the rhizosphere effect.

  3. The Impact of Rhizosphere Processes on Water Flow and Root Water Uptake

    Science.gov (United States)

    Schwartz, Nimrod; Kroener, Eva; Carminati, Andrea; Javaux, Mathieu

    2015-04-01

    For many years, the rhizosphere, which is the zone of soil in the vicinity of the roots and which is influenced by the roots, is known as a unique soil environment with different physical, biological and chemical properties than those of the bulk soil. Indeed, in recent studies it has been shown that root exudate and especially mucilage alter the hydraulic properties of the soil, and that drying and wetting cycles of mucilage result in non-equilibrium water dynamics in the rhizosphere. While there are experimental evidences and simplified 1D model for those concepts, an integrated model that considers rhizosphere processes with a detailed model for water and roots flow is absent. Therefore, the objective of this work is to develop a 3D physical model of water flow in the soil-plant continuum that take in consideration root architecture and rhizosphere specific properties. Ultimately, this model will enhance our understanding on the impact of processes occurring in the rhizosphere on water flow and root water uptake. To achieve this objective, we coupled R-SWMS, a detailed 3D model for water flow in soil and root system (Javaux et al 2008), with the rhizosphere model developed by Kroener et al (2014). In the new Rhizo-RSWMS model the rhizosphere hydraulic properties differ from those of the bulk soil, and non-equilibrium dynamics between the rhizosphere water content and pressure head is also considered. We simulated a wetting scenario. The soil was initially dry and it was wetted from the top at a constant flow rate. The model predicts that, after infiltration the water content in the rhizosphere remained lower than in the bulk soil (non-equilibrium), but over time water infiltrated into the rhizosphere and eventually the water content in the rhizosphere became higher than in the bulk soil. These results are in qualitative agreement with the available experimental data on water dynamics in the rhizosphere. Additionally, the results show that rhizosphere processes

  4. The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence

    KAUST Repository

    Mapelli, Francesca

    2018-01-09

    In mature soils, plant species and soil type determine the selection of root microbiota. Which of these two factors drives rhizosphere selection in barren substrates of developing desert soils has, however, not yet been established. Chronosequences of glacier forelands provide ideal natural environments to identify primary rhizosphere selection factors along the changing edaphic conditions of a developing soil. Here, we analyze changes in bacterial diversity in bulk soils and rhizospheres of a pioneer plant across a High Arctic glacier chronosequence. We show that the developmental stage of soil strongly modulates rhizosphere community assembly, even though plant-induced selection buffers the effect of changing edaphic factors. Bulk and rhizosphere soils host distinct bacterial communities that differentially vary along the chronosequence. Cation exchange capacity, exchangeable potassium, and metabolite concentration in the soil account for the rhizosphere bacterial diversity. Although the soil fraction (bulk soil and rhizosphere) explains up to 17.2% of the variation in bacterial microbiota, the soil developmental stage explains up to 47.7% of this variation. In addition, the operational taxonomic unit (OTU) co-occurrence network of the rhizosphere, whose complexity increases along the chronosequence, is loosely structured in barren compared with mature soils, corroborating our hypothesis that soil development tunes the rhizosphere effect.

  5. The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence

    KAUST Repository

    Mapelli, Francesca; Marasco, Ramona; Fusi, Marco; Scaglia, Barbara; Tsiamis, George; Rolli, Eleonora; Fodelianakis, Stylianos; Bourtzis, Kostas; Ventura, Stefano; Tambone, Fulvia; Adani, Fabrizio; Borin, Sara; Daffonchio, Daniele

    2018-01-01

    In mature soils, plant species and soil type determine the selection of root microbiota. Which of these two factors drives rhizosphere selection in barren substrates of developing desert soils has, however, not yet been established. Chronosequences of glacier forelands provide ideal natural environments to identify primary rhizosphere selection factors along the changing edaphic conditions of a developing soil. Here, we analyze changes in bacterial diversity in bulk soils and rhizospheres of a pioneer plant across a High Arctic glacier chronosequence. We show that the developmental stage of soil strongly modulates rhizosphere community assembly, even though plant-induced selection buffers the effect of changing edaphic factors. Bulk and rhizosphere soils host distinct bacterial communities that differentially vary along the chronosequence. Cation exchange capacity, exchangeable potassium, and metabolite concentration in the soil account for the rhizosphere bacterial diversity. Although the soil fraction (bulk soil and rhizosphere) explains up to 17.2% of the variation in bacterial microbiota, the soil developmental stage explains up to 47.7% of this variation. In addition, the operational taxonomic unit (OTU) co-occurrence network of the rhizosphere, whose complexity increases along the chronosequence, is loosely structured in barren compared with mature soils, corroborating our hypothesis that soil development tunes the rhizosphere effect.

  6. Molecular profiling of rhizosphere bacterial communities associated with Prosopis juliflora and Parthenium hysterophorus.

    Science.gov (United States)

    Jothibasu, K; Chinnadurai, C; Sundaram, Sp; Kumar, K; Balachandar, Dananjeyan

    2012-03-01

    Prosopis juliflora and Parthenium hysterophorus are the two arid, exotic weeds of India that are characterized by distinct, profuse growth even in nutritionally poor soils and environmentally stressed conditions. Owing to the exceptional growth nature of these two plants, they are believed to harbor some novel bacterial communities with wide adaptability in their rhizosphere. Hence, in the present study, the bacterial communities associated with the rhizosphere of Prosopis and Parthenium were characterized by clonal 16S rRNA gene sequence analysis. The culturable microbial counts in the rhizosphere of these two plants were higher than bulk soils, possibly influenced by the root exudates of these two plants. The phylogenetic analysis of V1_V2 domains of the 16S rRNA gene indicated a wider range of bacterial communities present in the rhizosphere of these two plants than in bulk soils and the predominant genera included Acidobacteria, Gammaproteobacteria, and Bacteriodetes in the rhizosphere of Prosopis, and Acidobacteria, Betaproteobacteria, and Nitrospirae in the Parthenium rhizosphere. The diversity of bacterial communities was more pronounced in the Parthenium rhizosphere than in the Prosopis rhizosphere. This culture-independent bacterial analysis offered extensive possibilities of unraveling novel microbes in the rhizospheres of Prosopis and Parthenium with genes for diverse functions, which could be exploited for nutrient transformation and stress tolerance in cultivated crops.

  7. Microbial based strategies for assessing rhizosphere-enhanced phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, C M [US Army Cold Regions Research and Engineering Lab., Hanover, NH (United States); Wolf, D C [Arkansas Univ., Fayetteville, AR (United States)

    1999-01-01

    The U.S. Department of Defense has considered phytoremediation to be a feasible technology to clean up contaminated sites in remote, cold regions. In cold regions, contaminated soil treatment rates are reduced by low temperatures and short treatment seasons. One technology that overcomes these limitations is rhizosphere-enhanced biotreatment which is a low-cost, simple technology that stimulates indigenous microorganisms. A study was conducted in which rhizosphere-enhanced treatment was compared to natural attenuation at a petroleum-contaminated site in Fairbanks, Alaska. The effects of vegetation and nutrient additions on remediation of soils contaminated with both diesel and crude oil were examined. Soil total petroleum hydrocarbon (TPH) concentrations in both treatments decreased relative to the initial TPH concentrations. After 640 days of treatment, the rhizosphere treatment had significantly lower TPH concentrations. It was concluded that an improved understanding of the time-dependent relationships between contaminant concentration changes and microbial community changes, along with improved techniques to characterize microbial communities, could provide a useful tool for monitoring the functioning of phytoremediation. 25 refs., 8 figs.

  8. Microbial based strategies for assessing rhizosphere-enhanced phytoremediation

    International Nuclear Information System (INIS)

    Reynolds, C.M.; Wolf, D.C.

    1999-01-01

    The U.S. Department of Defense has considered phytoremediation to be a feasible technology to clean up contaminated sites in remote, cold regions. In cold regions, contaminated soil treatment rates are reduced by low temperatures and short treatment seasons. One technology that overcomes these limitations is rhizosphere-enhanced biotreatment which is a low-cost, simple technology that stimulates indigenous microorganisms. A study was conducted in which rhizosphere-enhanced treatment was compared to natural attenuation at a petroleum-contaminated site in Fairbanks, Alaska. The effects of vegetation and nutrient additions on remediation of soils contaminated with both diesel and crude oil were examined. Soil total petroleum hydrocarbon (TPH) concentrations in both treatments decreased relative to the initial TPH concentrations. After 640 days of treatment, the rhizosphere treatment had significantly lower TPH concentrations. It was concluded that an improved understanding of the time-dependent relationships between contaminant concentration changes and microbial community changes, along with improved techniques to characterize microbial communities, could provide a useful tool for monitoring the functioning of phytoremediation. 25 refs., 8 figs

  9. Coupled Modeling of Rhizosphere and Reactive Transport Processes

    Science.gov (United States)

    Roque-Malo, S.; Kumar, P.

    2017-12-01

    The rhizosphere, as a bio-diverse plant root-soil interface, hosts many hydrologic and biochemical processes, including nutrient cycling, hydraulic redistribution, and soil carbon dynamics among others. The biogeochemical function of root networks, including the facilitation of nutrient cycling through absorption and rhizodeposition, interaction with micro-organisms and fungi, contribution to biomass, etc., plays an important role in myriad Critical Zone processes. Despite this knowledge, the role of the rhizosphere on watershed-scale ecohydrologic functions in the Critical Zone has not been fully characterized, and specifically, the extensive capabilities of reactive transport models (RTMs) have not been applied to these hydrobiogeochemical dynamics. This study uniquely links rhizospheric processes with reactive transport modeling to couple soil biogeochemistry, biological processes, hydrologic flow, hydraulic redistribution, and vegetation dynamics. Key factors in the novel modeling approach are: (i) bi-directional effects of root-soil interaction, such as simultaneous root exudation and nutrient absorption; (ii) multi-state biomass fractions in soil (i.e. living, dormant, and dead biological and root materials); (iii) expression of three-dimensional fluxes to represent both vertical and lateral interconnected flows and processes; and (iv) the potential to include the influence of non-stationary external forcing and climatic factors. We anticipate that the resulting model will demonstrate the extensive effects of plant root dynamics on ecohydrologic functions at the watershed scale and will ultimately contribute to a better characterization of efflux from both agricultural and natural systems.

  10. Pyrosequencing Reveals Fungal Communities in the Rhizosphere of Xinjiang Jujube

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2015-01-01

    Full Text Available Fungi are important soil components as both decomposers and plant symbionts and play a major role in ecological and biogeochemical processes. However, little is known about the richness and structure of fungal communities. DNA sequencing technologies allow for the direct estimation of microbial community diversity, avoiding culture-based biases. We therefore used 454 pyrosequencing to investigate the fungal communities in the rhizosphere of Xinjiang jujube. We obtained no less than 40,488 internal transcribed spacer (ITS rDNA reads, the number of each sample was 6943, 6647, 6584, 6550, 6860, and 6904, and we used bioinformatics and multivariate statistics to analyze the results. The index of diversity showed greater richness in the rhizosphere fungal community of a 3-year-old jujube than in that of an 8-year-old jujube. Most operational taxonomic units belonged to Ascomycota, and taxonomic analyses identified Hypocreales as the dominant fungal order. Our results demonstrated that the fungal orders are present in different proportions in different sampling areas. Redundancy analysis (RDA revealed a significant correlation between soil properties and the abundance of fungal phyla. Our results indicated lower fungal diversity in the rhizosphere of Xinjiang jujube than that reported in other studies, and we hope our findings provide a reference for future research.

  11. Probing the rhizosphere to define mineral organic relationships

    Science.gov (United States)

    Schulz, M. S.; Dohnalkova, A.; Stonestrom, D. A.

    2016-12-01

    Soil organic matter (SOM) accumulation and stabilization over time is an important process as soils are a large carbon reservoir in which feedbacks under changing climates are unclear. The association of SOM with poorly crystalline or short-range-ordered secondary minerals has been shown to be important for carbon stabilization. Commonly used soil extraction techniques display correlations of SOM with secondary phases but do not show causation. The fate of root exudates in soils and processes controlling exudate associations with mineral phases are as yet structurally undefined. Sub-micron exploration of in-situ relations provides valuable information on SOM-mineral interactions. Soils of the Santa Cruz (California) marine terrace chronosequence are used to illustrate changes in deep (> 1 m) rhizosphere through time. Cracks and soil ped faces are sites of high root density and organic matter (biofilm or mucilage) deposition. We employ a variety of scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) techniques for high resolution imaging and elemental analyses of deep rhizosphere and associated carbon mineral interactions. In these coastal prairie soils microscopy reveals secondary clay minerals associated with and possibly forming from organic-rich mucilage that occurs along the aforementioned rooting networks on fracture surfaces. We hypothesize that the production of secondary clays in the rhizosphere is an important mode of C incorporation into secondary minerals.

  12. Biodegradation of polycyclic aromatic hydrocarbons in rhizosphere soil

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, A.P.; Banks, M.K.; Arunachalam, M. [Kansas State Univ., Manhattan, KS (United States)

    1995-12-31

    Increased contaminant biodegradation in soil in the presence of plants has been demonstrated for several classes of organic compounds. Although enhanced dissipation of polycyclic aromatic hydrocarbons (PAHs) was observed previously in the rhizosphere of several plant species, the mechanism of this effect has not been assessed. A laboratory experiment was conducted to test the importance of cometabolism and the presence of common rhizosphere organic acids on the loss of PAHs (pyrene and phenanthrene) from soil. The role of cometabolism in the mineralization of pyrene was tested by observing the impact of adding phenanthrene to soil containing {sup 14}C-pyrene and observing the effects on {sup 14}CO{sub 2} generation. Adding phenanthrene apparently induced cometabolism of pyrene, particularly in the presence of organic acids. In a subsequent experiment, mineralization of pyrene to {sup 14}CO{sub 2} was significantly greater in soil from the rhizospheres of warm-season grasses, sorghum (Sorghum bicolor L.) and bermuda grass (Cynodon dactylon L.), compared to soil from alfalfa (Medicago sativa L.), which did not differ from sterilized control soil. A highly branched, fine root system appears to be more effective in enhancing biodegradation than taproots, and the presence of organic acids increases rates of PAH mineralization.

  13. Rhizosphere pseudomonads as probiotics improving plant health.

    Science.gov (United States)

    Kim, Young Cheol; Anderson, Anne J

    2018-04-20

    Many root-colonizing microbes are multifaceted in traits that improve plant health. Although isolates designated as biological control agents directly reduce pathogen growth, many exert additional beneficial features that parallel changes induced in animal and other hosts by health-promoting microbes termed probiotics. Both animal and plant probiotics cause direct antagonism of pathogens and induce systemic immunity in the host to pathogens and other stresses. They also alter host development, and improve host nutrition. The probiotic root-colonizing pseudomonads are generalists in terms of plant hosts, soil habitats and the array of stress responses that are ameliorated in the plant. This review illustrates how the probiotic pseudomonads, nurtured by the C and N sources released by the plant in root exudates, form protective biofilms on the root surface and produce the metabolites or enzymes to boost plant health. The findings reveal the multifunctional nature of many of the microbial metabolites in the plant-probiotic interplay. The beneficial effects of probiotics on plant function can contribute to sustainable yield and quality in agricultural production. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.

  14. Soil solution Zn and pH dynamics in non-rhizosphere soil and in the rhizosphere of Thlaspi caerulescens grown in a Zn/Cd-contaminated soil.

    Science.gov (United States)

    Luo, Y M; Christie, P; Baker, A J

    2000-07-01

    Temporal changes in soil solution properties and metal speciation were studied in non-rhizosphere soil and in the rhizosphere of the hyperaccumulator Thlaspi caerulescens J. & C. Presl (population from Prayon, Belgium) grown in a Zn- and Cd-contaminated soil. This paper focuses on soil solution Zn and pH dynamics during phytoextraction. The concentration of Zn in both non-rhizosphere and rhizosphere soil solutions decreased from 23 mg/l at the beginning to 2 mg/l at the end of the experiment (84 days after transplanting of seedlings), mainly due to chemical sorption. There was no significant difference in overall Zn concentration between the planted and the unplanted soil solutions (P > 0.05). Soil solution pH decreased initially and then increased slightly in both planted and unplanted soil zones. From 60 to 84 days after transplanting, the pH of the rhizosphere soil solution was higher than that of non-rhizosphere soil solution (P<0.05). Zn uptake by the hyperaccumulator plants was 8.8 mg per pot (each containing 1 kg oven-dry soil) on average. The data indicate that the potential of T. caerulescens to remove Zn from contaminated soil may not be related to acidification of the rhizosphere.

  15. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere.

    Directory of Open Access Journals (Sweden)

    Andrew L Neal

    Full Text Available Benzoxazinoids, such as 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H-one (DIMBOA, are secondary metabolites in grasses. In addition to their function in plant defence against pests and diseases above-ground, benzoxazinoids (BXs have also been implicated in defence below-ground, where they can exert allelochemical or antimicrobial activities. We have studied the impact of BXs on the interaction between maize and Pseudomonas putida KT2440, a competitive coloniser of the maize rhizosphere with plant-beneficial traits. Chromatographic analyses revealed that DIMBOA is the main BX compound in root exudates of maize. In vitro analysis of DIMBOA stability indicated that KT2440 tolerance of DIMBOA is based on metabolism-dependent breakdown of this BX compound. Transcriptome analysis of DIMBOA-exposed P. putida identified increased transcription of genes controlling benzoate catabolism and chemotaxis. Chemotaxis assays confirmed motility of P. putida towards DIMBOA. Moreover, colonisation essays in soil with Green Fluorescent Protein (GFP-expressing P. putida showed that DIMBOA-producing roots of wild-type maize attract significantly higher numbers of P. putida cells than roots of the DIMBOA-deficient bx1 mutant. Our results demonstrate a central role for DIMBOA as a below-ground semiochemical for recruitment of plant-beneficial rhizobacteria during the relatively young and vulnerable growth stages of maize.

  16. Potential biocontrol actinobacteria: Rhizospheric isolates from the Argentine Pampas lowlands legumes.

    Science.gov (United States)

    Solans, Mariana; Scervino, Jose Martin; Messuti, María Inés; Vobis, Gernot; Wall, Luis Gabriel

    2016-11-01

    Control of fungal plant diseases by using naturally occurring non-pathogenic microorganisms represents a promising approach to biocontrol agents. This study reports the isolation, characterization, and fungal antagonistic activity of actinobacteria from forage soils in the Flooding Pampa, Argentina. A total of 32 saprophytic strains of actinobacteria were obtained by different isolation methods from rhizospheric soil of Lotus tenuis growing in the Salado River Basin. Based on physiological traits, eight isolates were selected for their biocontrol-related activities such as production of lytic extracellular enzymes, siderophores, hydrogen cyanide (HCN), and antagonistic activity against Cercospora sojina, Macrophomia phaseolina, Phomopsis sp., Fusarium oxysporum, and Fusarium verticilloides. These actinobacteria strains were characterized morphologically, physiologically, and identified by using molecular techniques. The characterization of biocontrol-related activities in vitro showed positive results for exoprotease, phospholipase, fungal growth inhibition, and siderophore production. However, none of the strains was positive for the production of hydrogen cyanide (HCN). Streptomyces sp. MM140 presented the highest index for biocontrol, and appear to be promising pathogenic fungi biocontrol agents. These results show the potential capacity of actinobacteria isolated from forage soils in the Argentine Pampas lowlands as promising biocontrol agents, and their future agronomic applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Investigations into rhizosphere microflora. IV. Fungal association in different root regions of some rainy-season crops

    Directory of Open Access Journals (Sweden)

    V. B. Srivastava

    2015-01-01

    Full Text Available Non-rhizosphere, rhizosphere and rhizoplane microflora of the crown and distal regions of Echinochloa crusgalli (L. Beauv. and Paspalum scrobiculatum L. were studied from seedling stage to the harvest. The variation in bacterial and fungal flora in relation to host species, stage of development and żonę of the rhizosphere were studied. The differences between fungal and bacterial flora are described. The relation between rhizosphere microflora and roots exudates is described.

  18. Cucumber rhizosphere microbial community response to biocontrol agent Bacillus subtilis B068150

    Science.gov (United States)

    Gram-positive bacteria Bacillus subtilis B068150 has been used as a biocontrol agent against the pathogen Fusarium oxysporum f. sp. Cucumerinum. However, their survival ability in cucumber rhizosphere and non-rhizosphere as well as their influence on native microbial communities has not been fully i...

  19. Biofilm Formation and Indole-3-Acetic Acid Production by Two Rhizospheric Unicellular Cyanobacteria

    NARCIS (Netherlands)

    Ahmed, M.; Stal, L.J.; Hasnain, S.

    2014-01-01

    Microorganisms that live in the rhizosphere play a pivotal role in the functioning and maintenance of soil ecosystems. The study of rhizospheric cyanobacteria has been hampered by the difficulty to culture and maintain them in the laboratory. The present work investigated the production of the plant

  20. Biofilm formation and indole-3-acetic acid production by two rhizospheric unicellular cyanobacteria

    NARCIS (Netherlands)

    Ahmed, M.; Stal, L.J.; Hasnain, S.

    2014-01-01

    Microorganisms that live in the rhizosphere play a pivotal role in the functioning and maintenance of soil ecosystems. The study of rhizospheric cyanobacteria has been hampered by the difficulty to culture and maintain them in the laboratory. The present work investigated the production of the plant

  1. Going back to the roots: the microbial ecology of the rhizosphere

    NARCIS (Netherlands)

    Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; Van der Putten, W.H.

    2013-01-01

    The rhizosphere is the interface between plant roots and soil where interactions among a myriad of microorganisms and invertebrates affect biogeochemical cycling, plant growth and tolerance to biotic and abiotic stress. The rhizosphere is intriguingly complex and dynamic, and understanding its

  2. Antifungal rhizosphere bacteria can increase as response to the presence of saprotrophic fungi

    NARCIS (Netherlands)

    Boer, de W.; Hundscheid, M.P.J.; Klein Gunnewiek, P.J.A.; Ridder-Duine, De A.S.; Thion, C.; Veen, van J.A.; Wal, van der Annemieke

    2015-01-01

    Knowledge on the factors that determine the composition of bacterial communities in the vicinity of roots (rhizosphere) is essential to understand plant-soil interactions. Plant species identity, plant growth stage and soil properties have been indicated as major determinants of rhizosphere

  3. Rhizosphere microbiome metagenomics of gray mangroves (Avicennia marina) in the Red Sea

    KAUST Repository

    Alzubaidy, Hanin S.; Essack, Magbubah; Malas, Tareq Majed Yasin; Bokhari, Ameerah; Motwalli, Olaa Amin; Kamanu, Frederick Kinyua; Jamhor, Suhaiza; Mokhtar, Noor Azlin; Antunes, Andre; Simoes, Marta; Alam, Intikhab; Bougouffa, Salim; Lafi, Feras Fawzi; Bajic, Vladimir B.; Archer, John A.C.

    2015-01-01

    To our knowledge, this is the first metagenomic study on the microbiome of mangroves in the Red Sea, and the first application of unbiased 454-pyrosequencing to study the rhizosphere microbiome associated with A. marina. Our results provide the first insights into the range of functions and microbial diversity in the rhizosphere and soil sediments of gray mangrove (A. marina) in the Red Sea.

  4. Rice rhizosphere soil and root surface bacterial community response to water management changes

    Science.gov (United States)

    Different water management practices could affect microbial populations in the rice rhizosphere. A field-scale study was conducted to evaluate microbial populations in the root plaque and rhizosphere of rice in response to continuous and intermittent flooding conditions. Microbial populations in rhi...

  5. Transient nature of rhizosphere carbon elucidated by supercritical freon-22 extraction and 13C NMR analysis

    Science.gov (United States)

    Filipe G. Sanchez; Maurice M. Bursey

    2002-01-01

    The region immediately adjacent to established roots of mature trees has been termed the "reoccurring rhizosphere" and it has been hypothesized that organic matter input from fine root turnover, root exudates and sloughing may result in a build up of the soil carbon in this region. The "reoccurring rhizosphere" for first-, second- and third-order...

  6. Bacterial diversity of Taxus rhizosphere: culture-independent and culture-dependent approaches.

    Science.gov (United States)

    Hao, Da Cheng; Ge, Guang Bo; Yang, Ling

    2008-07-01

    The regional variability of Taxus rhizosphere bacterial community composition and diversity was studied by comparative analysis of three large 16S rRNA gene clone libraries from the Taxus rhizosphere in different regions of China (subtropical and temperate regions). One hundred and forty-six clones were screened for three libraries. Phylogenetic analysis of 16S rRNA gene sequences demonstrated that the abundance of sequences affiliated with Gammaproteobacteria, Betaproteobacteria, and Actinobacteria was higher in the library from the T. xmedia rhizosphere of the temperate region compared with the subtropical Taxus mairei rhizosphere. On the other hand, Acidobacteria was more abundant in libraries from the subtropical Taxus mairei rhizosphere. Richness estimates and diversity indices of three libraries revealed major differences, indicating a higher richness in the Taxus rhizosphere bacterial communities of the subtropical region and considerable variability in the bacterial community composition within this region. By enrichment culture, a novel Actinobacteria strain DICP16 was isolated from the T. xmedia rhizosphere of the temperate region and was identified as Leifsonia shinshuensis sp. via 16S rRNA gene and gyrase B sequence analyses. DICP16 was able to remove the xylosyl group from 7-xylosyl-10-deacetylbaccatin III and 7-xylosyl-10-deacetylpaclitaxel, thereby making the xylosyltaxanes available as sources of 10-deacetylbaccatin III and the anticancer drug paclitaxel. Taken together, the present studies provide, for the first time, the knowledge of the biodiversity of microorganisms populating Taxus rhizospheres.

  7. Is rhizosphere remediation sufficient for sustainable revegetation of mine tailings?

    Science.gov (United States)

    Huang, Longbin; Baumgartl, Thomas; Mulligan, David

    2012-01-01

    Background Revegetation of mine tailings (fine-grained waste material) starts with the reconstruction of root zones, consisting of a rhizosphere horizon (mostly topsoil and/or amended tailings) and the support horizon beneath (i.e. equivalent to subsoil – mostly tailings), which must be physically and hydro-geochemically stable. This review aims to discuss key processes involved in the development of functional root zones within the context of direct revegetation of tailings and introduces a conceptual process of rehabilitating structure and function in the root zones based on a state transition model. Scope Field studies on the revegetation of tailings (from processing base metal ore and bauxite residues) are reviewed. Particular focus is given to tailings' properties that limit remediation effectiveness. Aspects of root zone reconstruction and vegetation responses are also discussed. Conclusions When reconstructing a root zone system, it is critical to restore physical structure and hydraulic functions across the whole root zone system. Only effective and holistically restored systems can control hydro-geochemical mobility of acutely and chronically toxic factors from the underlying horizon and maintain hydro-geochemical stability in the rhizosphere. Thereafter, soil biological capacity and ecological linkages (i.e. carbon and nutrient cycling) may be rehabilitated to integrate the root zones with revegetated plant communities into sustainable plant ecosystems. A conceptual framework of system transitions between the critical states of root zone development has been proposed. This will illustrate the rehabilitation process in root zone reconstruction and development for direct revegetation with sustainable plant communities. Sustainable phytostabilization of tailings requires the systematic consideration of hydro-geochemical interactions between the rhizosphere and the underlying supporting horizon. It further requires effective remediation strategies to

  8. Is rhizosphere remediation sufficient for sustainable revegetation of mine tailings?

    Science.gov (United States)

    Huang, Longbin; Baumgartl, Thomas; Mulligan, David

    2012-07-01

    Revegetation of mine tailings (fine-grained waste material) starts with the reconstruction of root zones, consisting of a rhizosphere horizon (mostly topsoil and/or amended tailings) and the support horizon beneath (i.e. equivalent to subsoil - mostly tailings), which must be physically and hydro-geochemically stable. This review aims to discuss key processes involved in the development of functional root zones within the context of direct revegetation of tailings and introduces a conceptual process of rehabilitating structure and function in the root zones based on a state transition model. Field studies on the revegetation of tailings (from processing base metal ore and bauxite residues) are reviewed. Particular focus is given to tailings' properties that limit remediation effectiveness. Aspects of root zone reconstruction and vegetation responses are also discussed. When reconstructing a root zone system, it is critical to restore physical structure and hydraulic functions across the whole root zone system. Only effective and holistically restored systems can control hydro-geochemical mobility of acutely and chronically toxic factors from the underlying horizon and maintain hydro-geochemical stability in the rhizosphere. Thereafter, soil biological capacity and ecological linkages (i.e. carbon and nutrient cycling) may be rehabilitated to integrate the root zones with revegetated plant communities into sustainable plant ecosystems. A conceptual framework of system transitions between the critical states of root zone development has been proposed. This will illustrate the rehabilitation process in root zone reconstruction and development for direct revegetation with sustainable plant communities. Sustainable phytostabilization of tailings requires the systematic consideration of hydro-geochemical interactions between the rhizosphere and the underlying supporting horizon. It further requires effective remediation strategies to develop hydro-geochemically stable

  9. Surgical competence.

    Science.gov (United States)

    Patil, Nivritti G; Cheng, Stephen W K; Wong, John

    2003-08-01

    Recent high-profile cases have heightened the need for a formal structure to monitor achievement and maintenance of surgical competence. Logbooks, morbidity and mortality meetings, videos and direct observation of operations using a checklist, motion analysis devices, and virtual reality simulators are effective tools for teaching and evaluating surgical skills. As the operating theater is also a place for training, there must be protocols and guidelines, including mandatory standards for supervision, to ensure that patient care is not compromised. Patients appreciate frank communication and honesty from surgeons regarding their expertise and level of competence. To ensure that surgical competence is maintained and keeps pace with technologic advances, professional registration bodies have been promoting programs for recertification. They evaluate performance in practice, professional standing, and commitment to ongoing education.

  10. Can aquatic macrophytes mobilize technetium by oxidizing their rhizosphere?

    International Nuclear Information System (INIS)

    Sheppard, S.C.; Evenden, W.G.

    1991-01-01

    Technetium (Tc) is very mobile in aerated surface environments, but is essentially immobile and biologically unavailable in anaerobic sediments. Aquatic macrophyte roots penetrate anaerobic sediments, carrying O 2 downward and frequently creating oxidizing conditions in their rhizosphere. The authors hypothesized that this process could mobilize otherwise unavailable Tc, possibly leading to incorporation of Tc into human or animal foods. Through experiments with rice (Oryza sativa L.), and with a novel artificial macrophyte root, they concluded that this pathway is unlikely to be important for annual plants, especially in soils with a high biological oxygen demand. The relatively slow oxidation of Tc limited its mobilization by short-lived root systems

  11. Genetic Diversity of Nitrogen-Fixing and Plant Growth Promoting Pseudomonas Species Isolated from Sugarcane Rhizosphere.

    Science.gov (United States)

    Li, Hai-Bi; Singh, Rajesh K; Singh, Pratiksha; Song, Qi-Qi; Xing, Yong-Xiu; Yang, Li-Tao; Li, Yang-Rui

    2017-01-01

    The study was designed to isolate and characterize Pseudomonas spp. from sugarcane rhizosphere, and to evaluate their plant- growth- promoting (PGP) traits and nitrogenase activity. A biological nitrogen-fixing microbe has great potential to replace chemical fertilizers and be used as a targeted biofertilizer in a plant. A total of 100 isolates from sugarcane rhizosphere, belonging to different species, were isolated; from these, 30 isolates were selected on the basis of preliminary screening, for in vitro antagonistic activities against sugarcane pathogens and for various PGP traits, as well as nitrogenase activity. The production of IAA varied from 312.07 to 13.12 μg mL -1 in tryptophan supplemented medium, with higher production in AN15 and lower in CN20 strain. The estimation of ACC deaminase activity, strains CY4 and BA2 produced maximum and minimum activity of 77.0 and 15.13 μmoL mg -1 h -1 . For nitrogenase activity among the studied strains, CoA6 fixed higher and AY1 fixed lower in amounts (108.30 and 6.16 μmoL C 2 H 2 h -1 mL -1 ). All the strains were identified on the basis of 16S rRNA gene sequencing, and the phylogenetic diversity of the strains was analyzed. The results identified all strains as being similar to Pseudomonas spp. Polymerase chain reaction (PCR) amplification of nifH and antibiotic genes was suggestive that the amplified strains had the capability to fix nitrogen and possessed biocontrol activities. Genotypic comparisons of the strains were determined by BOX, ERIC, and REP PCR profile analysis. Out of all the screened isolates, CY4 ( Pseudomonas koreensis ) and CN11 ( Pseudomonas entomophila ) showed the most prominent PGP traits, as well as nitrogenase activity. Therefore, only these two strains were selected for further studies; Biolog profiling; colonization through green fluorescent protein (GFP)-tagged bacteria; and nifH gene expression using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The Biolog

  12. Plant traits related to nitrogen uptake influence plant-microbe competition.

    Science.gov (United States)

    Moreau, Delphine; Pivato, Barbara; Bru, David; Busset, Hugues; Deau, Florence; Faivre, Céline; Matejicek, Annick; Strbik, Florence; Philippot, Laurent; Mougel, Christophe

    2015-08-01

    Plant species are important drivers of soil microbial communities. However, how plant functional traits are shaping these communities has received less attention though linking plant and microbial traits is crucial for better understanding plant-microbe interactions. Our objective was to determine how plant-microbe interactions were affected by plant traits. Specifically we analyzed how interactions between plant species and microbes involved in nitrogen cycling were affected by plant traits related to 'nitrogen nutrition in interaction with soil nitrogen availability. Eleven plant species, selected along an oligotrophic-nitrophilic gradient, were grown individually in a nitrogen-poor soil with two levels of nitrate availability. Plant traits for both carbon and nitrogen nutrition were measured and the genetic structure and abundance of rhizosphere. microbial communities, in particular the ammonia oxidizer and nitrate reducer guilds, were analyzed. The structure of the bacterial community in the rhizosphere differed significantly between plant species and these differences depended on nitrogen availability. The results suggest that the rate of nitrogen uptake per unit of root biomass and per day is a key plant trait, explaining why the effect of nitrogen availability on the structure of the bacterial community depends on the plant species. We also showed that the abundance of nitrate reducing bacteria always decreased with increasing nitrogen uptake per unit of root biomass per day, indicating that there was competition for nitrate between plants and nitrate reducing bacteria. This study demonstrates that nitrate-reducing microorganisms may be adversely affected by plants with a high nitrogen uptake rate. Our work puts forward the role of traits related to nitrogen in plant-microbe interactions, whereas carbon is commonly considered as the main driver. It also suggests that plant traits related to ecophysiological processes, such as nitrogen uptake rates, are more

  13. Biological Control of Lettuce Drop and Host Plant Colonization by Rhizospheric and Endophytic Streptomycetes

    Science.gov (United States)

    Chen, Xiaoyulong; Pizzatti, Cristina; Bonaldi, Maria; Saracchi, Marco; Erlacher, Armin; Kunova, Andrea; Berg, Gabriele; Cortesi, Paolo

    2016-01-01

    Lettuce drop, caused by the soil borne pathogen Sclerotinia sclerotiorum, is one of the most common and serious diseases of lettuce worldwide. Increased concerns about the side effects of chemical pesticides have resulted in greater interest in developing biocontrol strategies against S. sclerotiorum. However, relatively little is known about the mechanisms of Streptomyces spp. as biological control agents against S. sclerotiorum on lettuce. Two Streptomyces isolates, S. exfoliatus FT05W and S. cyaneus ZEA17I, inhibit mycelial growth of Sclerotinia sclerotiorum by more than 75% in vitro. We evaluated their biocontrol activity against S. sclerotiorum in vivo, and compared them to Streptomyces lydicus WYEC 108, isolated from Actinovate®. When Streptomyces spp. (106 CFU/mL) were applied to S. sclerotiorum inoculated substrate in a growth chamber 1 week prior lettuce sowing, they significantly reduced the risk of lettuce drop disease, compared to the inoculated control. Interestingly, under field conditions, S. exfoliatus FT05W and S. cyaneus ZEA17I protected lettuce from drop by 40 and 10% respectively, whereas S. lydicus WYEC 108 did not show any protection. We further labeled S. exfoliatus FT05W and S. cyaneus ZEA17I with the enhanced GFP (EGFP) marker to investigate their rhizosphere competence and ability to colonize lettuce roots using confocal laser scanning microscopy (CLSM). The abundant colonization of young lettuce seedlings by both strains demonstrated Streptomyces' capability to interact with the host from early stages of seed germination and root development. Moreover, the two strains were detected also on 2-week-old roots, indicating their potential of long-term interactions with lettuce. Additionally, scanning electron microscopy (SEM) observations showed EGFP-S. exfoliatus FT05W endophytic colonization of lettuce root cortex tissues. Finally, we determined its viability and persistence in the rhizosphere and endorhiza up to 3 weeks by quantifying its

  14. Biological control of lettuce drop and host plant colonization by rhizospheric and endophytic streptomycetes

    Directory of Open Access Journals (Sweden)

    Xiaoyulong eChen

    2016-05-01

    Full Text Available Lettuce drop, caused by the soil borne pathogen Sclerotinia sclerotiorum, is one of the most common and serious diseases of lettuce worldwide. Increased concerns about the side effects of chemical pesticides have resulted in greater interest in developing biocontrol strategies against S. sclerotiorum. However, relatively little is known about the mechanisms of Streptomyces spp. as biological control agents against S. sclerotiorum on lettuce. Two Streptomyces isolates, S. exfoliatus FT05W and S. cyaneus ZEA17I, inhibit mycelial growth of Sclerotinia sclerotiorum by more than 75% in vitro. We evaluated their biocontrol activity against S. sclerotiorum in vivo, and compared them to Streptomyces lydicus WYEC 108, isolated from Actinovate®. When Streptomyces spp. (106 CFU/mL were applied to S. sclerotiorum inoculated substrate in a growth chamber one week prior lettuce sowing, they significantly reduced the risk of lettuce drop disease, compared to the inoculated control. Interestingly, under field conditions, S. exfoliatus FT05W and S. cyaneus ZEA17I protected lettuce from drop by 40% and 10% respectively, whereas S. lydicus WYEC 108 did not show any protection. We further labeled S. exfoliatus FT05W and S. cyaneus ZEA17I with the enhanced GFP (EGFP marker to investigate their rhizosphere competence and ability to colonize lettuce roots using confocal laser scanning microscopy (CLSM. The abundant colonization of young lettuce seedlings by both strains demonstrated Streptomyces’ capability to interact with the host from early stages of seed germination and root development. Moreover, the two strains were detected also on two-week-old roots, indicating their potential of long-term interactions with lettuce. Additionally, scanning electron microscopy (SEM observations showed EGFP-S. exfoliatus FT05W endophytic colonization of lettuce root cortex tissues. Finally, we determined its viability and persistence in the rhizosphere and endorhiza up to

  15. Plasticity of rhizosphere hydraulic properties as a key for efficient utilization of scarce resources

    Science.gov (United States)

    Carminati, Andrea; Vetterlein, Doris

    2013-01-01

    Background It is known that the soil near roots, the so-called rhizosphere, has physical and chemical properties different from those of the bulk soil. Rhizosphere properties are the result of several processes: root and soil shrinking/swelling during drying/wetting cycles, soil compaction by root growth, mucilage exuded by root caps, interaction of mucilage with soil particles, mucilage shrinking/swelling and mucilage biodegradation. These processes may lead to variable rhizosphere properties, i.e. the presence of air-filled gaps between soil and roots; water repellence in the rhizosphere caused by drying of mucilage around the soil particles; or water accumulation in the rhizosphere due to the high water-holding capacity of mucilage. The resulting properties are not constant in time but they change as a function of soil condition, root growth rate and mucilage age. Scope We consider such a variability as an expression of rhizosphere plasticity, which may be a strategy for plants to control which part of the root system will have a facilitated access to water and which roots will be disconnected from the soil, for instance by air-filled gaps or by rhizosphere hydrophobicity. To describe such a dualism, we suggest classifying rhizosphere into two categories: class A refers to a rhizosphere covered with hydrated mucilage that optimally connects roots to soil and facilitates water uptake from dry soils. Class B refers to the case of air-filled gaps and/or hydrophobic rhizosphere, which isolate roots from the soil and may limit water uptake from the soil as well water loss to the soil. The main function of roots covered by class B will be long-distance transport of water. Outlook This concept has implications for soil and plant water relations at the plant scale. Root water uptake in dry conditions is expected to shift to regions covered with rhizosphere class A. On the other hand, hydraulic lift may be limited in regions covered with rhizosphere class B. New

  16. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere.

    Science.gov (United States)

    Berg, Gabriele; Smalla, Kornelia

    2009-04-01

    The rhizosphere is of central importance not only for plant nutrition, health and quality but also for microorganism-driven carbon sequestration, ecosystem functioning and nutrient cycling in terrestrial ecosystems. A multitude of biotic and abiotic factors are assumed to influence the structural and functional diversity of microbial communities in the rhizosphere. In this review, recent studies on the influence of the two factors, plant species and soil type, on rhizosphere-associated microbial communities are discussed. Root exudates and the response of microorganisms to the latter as well as to root morphology were shown to shape rhizosphere microbial communities. All studies revealed that soil is the main reservoir for rhizosphere microorganisms. Many secrets of microbial life in the rhizosphere were recently uncovered due to the enormous progress in molecular and microscopic tools. Physiological and molecular data on the factors that drive selection processes in the rhizosphere are presented here. Furthermore, implications for agriculture, nature conservation and biotechnology will also be discussed.

  17. Characterization of Bacteria Isolation of Bacteria from Pinyon Rhizosphere,

    Science.gov (United States)

    2016-01-01

    Two hundred and fifty bacterial strains were isolated from pinyon rhizosphere and screened for biosurfactants production. Among them, six bacterial strains were selected for their potential to produce biosurfactants using two low cost wastes, crude glycerol and lactoserum, as raw material. Both wastes were useful for producing biosurfactants because of their high content in fat and carbohydrates. The six strains were identified by 16S rDNA with an identity percentage higher than 95%, three strains belonged to Enterobacter sp., Pseudomonas aeruginosa, Bacillus pumilus and Rhizobium sp. All strains assayed were able to grow and showed halos around the colonies as evidence of biosurfactants production on Cetyl Trimethyl Ammonium Bromide agar with crude glycerol and lactoserum as substrate. In a mineral salt liquid medium enriched with both wastes, the biosurfactants were produced and collected from free cell medium after 72 h incubation. The biosurfactants produced reduced the surface tension from 69 to 30 mN/m with an emulsification index of diesel at approximately 60%. The results suggest that biosurfactants produced by rhizosphere bacteria from pinyon have promising environmental applications.

  18. Root phenotyping: from component trait in the lab to breeding.

    Science.gov (United States)

    Kuijken, René C P; van Eeuwijk, Fred A; Marcelis, Leo F M; Bouwmeester, Harro J

    2015-09-01

    In the last decade cheaper and faster sequencing methods have resulted in an enormous increase in genomic data. High throughput genotyping, genotyping by sequencing and genomic breeding are becoming a standard in plant breeding. As a result, the collection of phenotypic data is increasingly becoming a limiting factor in plant breeding. Genetic studies on root traits are being hampered by the complexity of these traits and the inaccessibility of the rhizosphere. With an increasing interest in phenotyping, breeders and scientists try to overcome these limitations, resulting in impressive developments in automated phenotyping platforms. Recently, many such platforms have been thoroughly described, yet their efficiency to increase genetic gain often remains undiscussed. This efficiency depends on the heritability of the phenotyped traits as well as the correlation of these traits with agronomically relevant breeding targets. This review provides an overview of the latest developments in root phenotyping and describes the environmental and genetic factors influencing root phenotype and heritability. It also intends to give direction to future phenotyping and breeding strategies for optimizing root system functioning. A quantitative framework to determine the efficiency of phenotyping platforms for genetic gain is described. By increasing heritability, managing effects caused by interactions between genotype and environment and by quantifying the genetic relation between traits phenotyped in platforms and ultimate breeding targets, phenotyping platforms can be utilized to their maximum potential. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil

    International Nuclear Information System (INIS)

    Wenzel, W.W.; Bunkowski, M.; Puschenreiter, M.; Horak, O.

    2003-01-01

    Field study reinforces that root exudates may contribute to nickel hyperaccumulation in Thlaspi goesingense Halacsy. - The role of rhizosphere processes in metal hyperaccumulation is largely unexplored and a matter of debate, related field data are virtually not available. We conducted a field survey of rhizosphere characteristics beneath the Ni hyperaccumulator Thlaspi goesingense Halacsy and the metal-excluder species Silene vulgaris L. and Rumex acetosella L. growing natively on the same serpentine site. Relative to bulk soil and to the rhizosphere of the excluder species, we found significantly increased DOC and Ni concentrations in water extracts of T. goesingense rhizosphere, whereas exchangeable Ni was depleted due to excessive uptake of Ni. Chemical speciation analysis using the MINTEQA2 software package revealed that enhanced Ni solubility in Thlaspi rhizosphere is driven by the formation of Ni-organic complexes. Moreover, ligand-induced dissolution of Ni-bearing minerals is likely to contribute to enhanced Ni solubility. Increased Mg and Ca concentrations and pH in Thlaspi rhizosphere are consistent with ligand-induced dissolution of orthosilicates such as forsterite (Mg 2 SiO 4 ). Our field data reinforce the hypothesis that exudation of organic ligands may contribute to enhanced solubility and replenishment of metals in the rhizosphere of hyperaccumulating species

  20. Occurrence of perchlorate in groundwater, paired farmland soil, lettuce, and rhizosphere soil from Chengdu, China.

    Science.gov (United States)

    Tang, Yulu; Zhong, Bifeng; Qu, Bing; Feng, Shujin; Ding, Sanglan; Su, Shijun; Li, Zhi; Gan, Zhiwei

    2017-05-24

    A total of 28 groundwater, paired farmland soil, lettuce, and its rhizosphere soil samples were collected from Chengdu, China to detect perchlorate levels and to evaluate the relationships of perchlorate concentrations among these matrices. The perchlorate concentrations in the groundwater, farmland soil, lettuce, and rhizosphere soil samples ranged from below detection limit to 60.2 μg L -1 , from below detection limit to 249 μg kg -1 dry weight (dw), from 2.07 to 1010 μg kg -1 wet weight, and from below detection limit to 314 μg kg -1 dw, respectively. Significant correlation was found in the perchlorate levels among the farmland soil, lettuce, and rhizosphere soil, suggesting that they have common pollution sources, or perchlorate might transfer from farmland soil-rhizosphere soil-plant. However, there is no significant correlation between groundwater and the other three matrices, indicating that infiltration from perchlorate contaminated farmland soil was not the predominant source for groundwater pollution in Chengdu. The perchlorate concentrations in the farmland soil and lettuce samples were significantly higher than those in the rhizosphere soil, primarily due to uptake of perchlorate through the rhizosphere micro-environment by lettuce, or accelerated degradation by rhizospheric microorganisms, which contributed more needs further investigation.

  1. Changes in the bacterial community of soybean rhizospheres during growth in the field.

    Science.gov (United States)

    Sugiyama, Akifumi; Ueda, Yoshikatsu; Zushi, Takahiro; Takase, Hisabumi; Yazaki, Kazufumi

    2014-01-01

    Highly diverse communities of bacteria inhabiting soybean rhizospheres play pivotal roles in plant growth and crop production; however, little is known about the changes that occur in these communities during growth. We used both culture-dependent physiological profiling and culture independent DNA-based approaches to characterize the bacterial communities of the soybean rhizosphere during growth in the field. The physiological properties of the bacterial communities were analyzed by a community-level substrate utilization assay with BioLog Eco plates, and the composition of the communities was assessed by gene pyrosequencing. Higher metabolic capabilities were found in rhizosphere soil than in bulk soil during all stages of the BioLog assay. Pyrosequencing analysis revealed that differences between the bacterial communities of rhizosphere and bulk soils at the phylum level; i.e., Proteobacteria were increased, while Acidobacteria and Firmicutes were decreased in rhizosphere soil during growth. Analysis of operational taxonomic units showed that the bacterial communities of the rhizosphere changed significantly during growth, with a higher abundance of potential plant growth promoting rhizobacteria, including Bacillus, Bradyrhizobium, and Rhizobium, in a stage-specific manner. These findings demonstrated that rhizosphere bacterial communities were changed during soybean growth in the field.

  2. Changes of organic acid exudation and rhizosphere pH in rice plants under chromium stress

    International Nuclear Information System (INIS)

    Zeng Fanrong; Chen Song; Miao Ying; Wu Feibo; Zhang Guoping

    2008-01-01

    The effect of chromium (Cr) stress on the changes of rhizosphere pH, organic acid exudation, and Cr accumulation in plants was studied using two rice genotypes differing in grain Cr accumulation. The results showed that rhizosphere pH increased with increasing level of Cr in the culture solution and with an extended time of Cr exposure. Among the six organic acids examined in this experiment, oxalic and malic acid contents were relatively higher, and had a significant positive correlation with the rhizosphere pH, indicating that they play an important role in changing rhizosphere pH. The Cr content in roots was significantly higher than that in stems and leaves. Cr accumulation in plants was significantly and positively correlated with rhizosphere pH, and the exudation of oxalic, malic and citric acids, suggesting that an increase in rhizosphere pH, and exudation of oxalic, malic and citric acid enhances Cr accumulation in rice plants. - Rhizosphere pH and organic acid exudation of rice roots are markedly affected by chromium level in culture solution

  3. Interactions between selected PAHs and the microbial community in rhizosphere of a paddy soil.

    Science.gov (United States)

    Su, Yu H; Yang, Xue Y

    2009-01-15

    This study investigated the interaction of three polycyclic aromatic hydrocarbons (PAHs), i.e., naphthalene (NAP), phenanthrene (PHN), and pyrene (PYR), with the microbial community in the rhizosphere of a paddy soil and the influence of the rice (Oryza sativa) rhizosphere on the microbial community structure. A range of initial NAP, PHN and PYR levels in soil (50-200, 18-72, and 6.6-26.6 mg kg(-1), respectively) were prepared and the soil samples were then aged for 4 months (to yield PAH concentrations at 1.02-1.42, 1.32-4.77, and 2.98-18.5 mg kg(-)(1), respectively) before the soil samples were planted with rice seedlings. The microbial phospholipid-fatty-acid (PLFA) patterns in PAH-contaminated soils were analyzed to elucidate the changes of the microbial biomass and community composition. Results indicated that at the applied concentrations the PAHs were not toxic to rice seedlings, as evidenced by no growth inhibition during the 8-week planting period. However, the microbial biomass, as revealed by PLFAs, decreased significantly with increasing PAH concentration in both rhizospheric and non-rhizospheric soils. The PAHs in soils were obviously toxic to microorganisms, and the toxicity of PHN was greater than PYR due likely to the higher PHN bioavailability. Total PLFAs in rhizospheric soils were profoundly higher than those in non-rhizospheric soils, suggesting that the inhibitive effect of PAHs on microbial activities was alleviated by the rice roots. The principal component analysis (PCA) of the PLFA signatures revealed pronounced changes in PLFA pattern in rhizospheric and non-rhizospheric soils with or without spiked PAHs. Using the PLFA patterns as a biomarker, it was found that Gram-positive bacteria were more sensitive to PAHs than Gram-negative bacteria, and the rhizosphere of rice roots stimulated the growth of aerobic bacteria.

  4. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce.

    Science.gov (United States)

    Schreiter, Susanne; Ding, Guo-Chun; Heuer, Holger; Neumann, Günter; Sandmann, Martin; Grosch, Rita; Kropf, Siegfried; Smalla, Kornelia

    2014-01-01

    The complex and enormous diversity of microorganisms associated with plant roots is important for plant health and growth and is shaped by numerous factors. This study aimed to unravel the effects of the soil type on bacterial communities in the rhizosphere of field-grown lettuce. We used an experimental plot system with three different soil types that were stored at the same site for 10 years under the same agricultural management to reveal differences directly linked to the soil type and not influenced by other factors such as climate or cropping history. Bulk soil and rhizosphere samples were collected 3 and 7 weeks after planting. The analysis of 16S rRNA gene fragments amplified from total community DNA by denaturing gradient gel electrophoresis and pyrosequencing revealed soil type dependent differences in the bacterial community structure of the bulk soils and the corresponding rhizospheres. The rhizosphere effect differed depending on the soil type and the plant growth developmental stage. Despite the soil type dependent differences in the bacterial community composition several genera such as Sphingomonas, Rhizobium, Pseudomonas, and Variovorax were significantly increased in the rhizosphere of lettuce grown in all three soils. The number of rhizosphere responders was highest 3 weeks after planting. Interestingly, in the soil with the highest numbers of responders the highest shoot dry weights were observed. Heatmap analysis revealed that many dominant operational taxonomic units were shared among rhizosphere samples of lettuce grown in diluvial sand, alluvial loam, and loess loam and that only a subset was increased in relative abundance in the rhizosphere compared to the corresponding bulk soil. The findings of the study provide insights into the effect of soil types on the rhizosphere microbiome of lettuce.

  5. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce

    Directory of Open Access Journals (Sweden)

    Susanne eSchreiter

    2014-04-01

    Full Text Available The complex and enormous diversity of microorganisms associated with plant roots is important for plant health and growth and is shaped by numerous factors. This study aimed to unravel the effects of the soil type on bacterial communities in the rhizosphere of field-grown lettuce. We used an experimental plot system with three different soil types that were stored at the same site for ten years under the same agricultural management to reveal differences directly linked to the soil type and not influenced by other factors such as climate or cropping history. Bulk soil and rhizosphere samples were collected three and seven weeks after planting. The analysis of 16S rRNA gene fragments amplified from total community DNA by denaturing gradient gel electrophoresis and pyrosequencing revealed soil type-dependent differences in the bacterial community structure of the bulk soils and the corresponding rhizospheres. The rhizosphere effect differed depending on the soil type and the plant growth developmental stage. Despite the soil type-dependent differences in the bacterial community composition several genera such as Sphingomonas, Rhizobium, Pseudomonas and Variovorax were significantly increased in the rhizosphere of lettuce grown in all three different soils. The number of rhizosphere responders was highest three weeks after planting. Interestingly, in the soil with the highest numbers of responders the highest shoot dry weights were observed. Heatmap analysis revealed that many dominant operational taxonomic units were shared among rhizosphere samples of lettuce grown in diluvial sand, alluvial loam, and loess loam and that only a subset was increased in relative abundance in the rhizosphere compared to the corresponding bulk soil. The findings of the study provide insights into the effect of soil types on the rhizosphere microbiome of lettuce.

  6. Distributions and compositions of old and emerging flame retardants in the rhizosphere and non-rhizosphere soil in an e-waste contaminated area of South China

    International Nuclear Information System (INIS)

    Wang, Shaorui; Wang, Yan; Song, Mengke; Luo, Chunling; Li, Jun; Zhang, Gan

    2016-01-01

    We investigated rhizosphere effects on the distributions and compositions of polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), and dechlorane plus (DPs) in rhizosphere soils (RS) and non-rhizosphere soils (NRS) in an e-waste recycling area in South China. The concentrations of PBDEs, NBFRs, and DPs ranged from 13.9 to 351, 11.6 to 70.8, and 0.64 to 8.74 ng g −1 in RS and 7.56 to 127, 8.98 to 144, and 0.38 to 8.45 ng g −1 in NRS, respectively. BDE-209 and DBDPE were the dominant congeners of PBDEs and NBFRs, respectively. PBDEs, NBFRs, and DPs were more enriched in RS than NRS in most vegetables species. Further analysis suggested that the differentiation of the rhizosphere effect on halogenated flame retardants (HFRs) was not solely controlled by the octanol-water coefficients. This difference was also reflected by the correlations between total organic carbon (TOC) and PBDEs, NBFRs, or DPs, which indicated that organic carbon was a more pivotal controlling factor for PBDEs and DPs than for NBFRs in soil. We also found significant positive correlations between PBDEs and their replacement products, which indicated a similar emission pattern and environmental behaviour. - Highlights: • Most flame retardants were enriched in rhizosphere soils compared to bulk soils. • Rhizosphere effects were more significant for NBFRs than for PBDEs. • PBDEs were significantly correlated with the total organic carbon in soils. • Result suggested that PBDEs have not been replaced by other BFRs in the e-waste. - The influences of rhizosphere effects on the distributions of PBDEs, NBFRs, and DPs in soils were different.

  7. Microbial degradation of trichloroethylene in the rhizosphere: Potential application to biological remediation of waste sites

    International Nuclear Information System (INIS)

    Walton, B.T.; Anderson, T.A.

    1990-01-01

    The possibility that vegetation may be used to actively promote microbial restoration of chemically contaminated soils was tested by using rhizosphere and nonvegetated soils collected from a trichloroethylene (TCE)-contaminated field site. Biomass determinations, disappearance of TCE from the headspace of spiked soil slurries, and mineralization of [14C]TCE to 14CO2 all showed that microbial activity is greater in rhizosphere soils and that TCE degradation occurs faster in the rhizosphere than in the edaphosphere. Thus, vegetation may be an important variable in the biological restoration of surface and near-surface soils

  8. Increased acidification in the rhizosphere of cactus seedlings induced by Azospirillum brasilense

    Science.gov (United States)

    Carrillo, Angel; Li, Ching; Bashan, Yoav

    2002-08-01

    Acidification of the rhizosphere of cactus seedlings (giant cardon, Pachycereus pringlei) after inoculation with the plant growth-promoting bacterium Azospirillum brasilense Cd, in the presence or absence of ammonium and nitrate, was studied to understand how to increase growth of cardon seedlings in poor desert soils. While ammonium enhanced rhizosphere and liquid culture acidification, inoculation with the bacteria enhanced it further. On the other hand, nitrate increased pH of the rhizosphere, but combined with the bacterial inoculation, increase in pH was significantly smaller. Bacterial inoculation with ammonium enhanced plant growth.

  9. Is trait-emotional intelligence simply or more than just a trait?

    NARCIS (Netherlands)

    van der Zee, K; Wabeke, R

    The present study examined the usefulness of trait-Emotional Intelligence (EI) among a sample of 1186 top managers who filled out questionnaires for Emotional Intelligence and the Big Five and were evaluated by a consultant on their competencies. Three higher-order factors were found to underlie the

  10. Characterization of Petroleum Hydrocarbon Decomposing Fungi Isolated from Mangrove Rhizosphere

    Directory of Open Access Journals (Sweden)

    Nuni Gofar

    2011-01-01

    Full Text Available The research was done to obtain the isolates of soil borne fungi isolated from mangrove rhizosphere which were capable of degrading petroleum hydrocarbon compounds. The soil samples were collected from South Sumatra mangrove forest which was contaminated by petroleum. The isolates obtained were selected based on their ability to survive, to grow and to degrade polycyclic aromatic hydrocarbons in medium containing petroleum residue. There were 3 isolates of soil borne hydrocarbonoclastic fungi which were able to degrade petroleum in vitro. The 3 isolates were identified as Aspergillus fumigates, A. parasiticus, and Chrysonilia sitophila. C. sitophila was the best isolate to decrease total petroleum hydrocarbon (TPH from medium containing 5-20% petroleum residue.

  11. Isotopic techniques for measuring the biological activity in plant rhizosphere

    International Nuclear Information System (INIS)

    Warembourg, F.R.

    1975-01-01

    The use of 14 C made it possible to separate root respired CO 2 and microbial CO 2 resulting from exudates utilisation by the rhizosphere microflora. Measurements were done after wheat plants grown under axenic and non axenic conditions were placed during short period of time in an atmosphere contaning 14 CO 2 . Under axenic conditions evolution of 14 CO 2 follows a bell shaped curve due to the brief appearance of labelled compounds translocated from the aerial part of the plants to the roots. In the presence of microorganisms, the maximum of activity due to root respiration is identical but immediately followed by a second peak of 14 CO 2 evolution that was attributed to the decomposition of labelled exudates by the microflora. The same observations resulted from the labelling of a grassland vegetation sampled with its soil and placed in the laboratory. Preliminary results obtained using this method of short term labelling of plants are presented here [fr

  12. PHOSPHATE-SOLUBILISING RHIZOBACTERIA ASSOCIATED WITH PHASEOLUS COCCINEUS L. RHIZOSPHERE

    Directory of Open Access Journals (Sweden)

    Marius Stefan

    2012-10-01

    Full Text Available Native phosphate solubilizing bacteria were isolated from runner bean rhizosphere in order to study their effect on releases of soluble phosphorus from inorganic P sources. 34.37% of the rhizobacteria isolates solubilized CaHPO4 in the qualitative P-solubilization plate method after seven days of incubation. The best PSB isolates were selected for further study concerning P-solubilization in liquid culture. All these isolates showed higher potential for solubilization of inorganic P as indicated by the increase of P amount in the RPAM medium. Our results showed that PSB strains play a significant role in the acidification of the medium facilitating the P solubilization probably due to organic acid production.

  13. Culture-Independent Molecular Tools for Soil and Rhizosphere Microbiology

    Directory of Open Access Journals (Sweden)

    Peer M. Schenk

    2013-08-01

    Full Text Available Soil microbial communities play an important role in plant health and soil quality. Researchers have developed a wide range of methods for studying the structure, diversity, and activity of microbes to better understand soil biology and plant-microbe interactions. Functional microbiological analyses of the rhizosphere have given new insights into the role of microbial communities in plant nutrition and plant protection against diseases. In this review, we present the most commonly used traditional as well as new culture-independent molecular methods to assess the diversity and function of soil microbial communities. Furthermore, we discuss advantages and disadvantages of these techniques and provide a perspective on emerging technologies for soil microbial community profiling.

  14. Biodegradation of propargite by Pseudomonas putida, isolated from tea rhizosphere.

    Science.gov (United States)

    Sarkar, Soumik; Seenivasan, Subbiah; Asir, Robert Premkumar Samuel

    2010-02-15

    Biodegradation of miticide propargite was carried out in vitro by selected Pseudomonas strains isolated from tea rhizosphere. A total number of 13 strains were isolated and further screened based on their tolerance level to different concentrations of propargite. Five best strains were selected and further tested for their nutritional requirements. Among the different carbon sources tested glucose exhibited the highest growth promoting capacity and among nitrogen sources ammonium nitrate supported the growth to the maximum. The five selected Pseudomonas strain exhibited a range of degradation capabilities. Mineral salts medium (MSM) amended with glucose provided better environment for degradation with the highest degradation potential in strain SPR 13 followed by SPR 8 (71.9% and 69.0% respectively).

  15. Biofilm formation is determinant in tomato rhizosphere colonization by Bacillus velezensis FZB42.

    Science.gov (United States)

    Al-Ali, Ameen; Deravel, Jovana; Krier, François; Béchet, Max; Ongena, Marc; Jacques, Philippe

    2017-10-23

    In this work, the behavior in tomato rhizosphere of Bacillus velezensis FZB42 was analyzed taking into account the surfactin production, the use of tomato roots exudate as substrates, and the biofilm formation. B. velezensis FZB42 and B. amyloliquefaciens S499 have a similar capability to colonize tomato rhizosphere. Little difference in this colonization was observed with surfactin non producing B. velezensis FZB42 mutant strains. B. velezensis is able to grow in the presence of root exudate and used preferentially sucrose, maltose, glutamic, and malic acids as carbon sources. A mutant enable to produce exopolysaccharide (EPS - ) was constructed to demonstrate the main importance of biofilm formation on rhizosphere colonization. This mutant had completely lost its ability to form biofilm whatever the substrate present in the culture medium and was unable to efficiently colonize tomato rhizosphere.

  16. Rhizospheric fungi of Panax notoginseng: diversity and antagonism to host phytopathogens

    Directory of Open Access Journals (Sweden)

    Cui-Ping Miao

    2016-04-01

    Conclusion: Our results suggest that diverse fungi including potential pathogenic ones exist in the rhizosphere soil of 2-yr-old P. notoginseng and that antagonistic isolates may be useful for biological control of pathogens.

  17. Atmospheric dinitrogen fixation in the flooded rhizosphere as determined by the N-15 isotope technique

    International Nuclear Information System (INIS)

    Yoshida, Tomio; Yoneyama, Tadakatsu.

    1980-01-01

    Atmospheric nitrogen fixation in the rice rhizosphere was determined under in situ conditions of growing flooded rice using the N-15 isotope method. The whole plant growing in a pot at a reproductive stage was placed in a specially designed glass container and exposed to a 15 N 2 atmosphere. The amounts of total nitrogen fixed in the rice rhizosphere under the experimental conditions were 1366, 592, 878, and 698 μg per pot containing 0.4 kg of soil during 15 N 2 exposure for 7 to 13 days in the four experiments conducted in this study. It was also found that the nitrogen fixed in the rice rhizosphere was translocated into other plant parts. Nineteen to 25% of the total atmospheric nitrogen fixed in the rice rhizosphere was found in the roots, leaves and stems, and ears of the rice plants during the 15 N 2 exposure period. (author)

  18. Rhizosphere Biological Processes of Legume//Cereal Intercropping Systems: A Review

    Directory of Open Access Journals (Sweden)

    JIANG Yuan-yuan

    2016-09-01

    Full Text Available Intercropping, a sustainable planting pattern, was widely used in the wordwide. It not only has the advantages of yield and nutrient acquisition, but also can ensure food security and reduce the risk of crop failures. The majority of intercropping systems involve legume//cereal combinations because of interspecific facilitation or complementarity. The rhizosphere is the interface between plants and soil where there are interactions among a myriad of microorganisms and affect the uptake of nutrients, water and harmful substances. The rhizosphere biologi-cal processes not only determine the amount of nutrients and the availability of nutrients, but also affect crop productivity and nutrient use efficiency. Hence, this paper summarized the progress made on root morphology, rhizosphere microorganisms, root exudates and ecological ef-fect in the perspective of the rhizosphere biological process,which would provide theoretical basis for improving nutrient availability, remov-ing heavy metals, and plant genetic improvements.

  19. Molecular responses in root-associative rhizospheric bacteria to variations in plant exudates

    Science.gov (United States)

    Abdoun, Hamid; McMillan, Mary; Pereg, Lily

    2015-04-01

    Plant exudates are a major factor in the interface of plant-soil-microbe interactions and it is well documented that the microbial community structure in the rhizosphere is largely influenced by the particular exudates excreted by various plants. Azospirillum brasilense is a plant growth promoting rhizobacterium that is known to interact with a large number of plants, including important food crops. The regulatory gene flcA has an important role in this interaction as it controls morphological differentiation of the bacterium that is essential for attachment to root surfaces. Being a response regulatory gene, flcA mediates the response of the bacterial cell to signals from the surrounding rhizosphere. This makes this regulatory gene a good candidate for analysis of the response of bacteria to rhizospheric alterations, in this case, variations in root exudates. We will report on our studies on the response of Azospirillum, an ecologically, scientifically and agriculturally important bacterial genus, to variations in the rhizosphere.

  20. Dynamics of Panax ginseng Rhizospheric Soil Microbial Community and Their Metabolic Function

    Directory of Open Access Journals (Sweden)

    Yong Li

    2014-01-01

    Full Text Available The bacterial communities of 1- to 6-year ginseng rhizosphere soils were characterized by culture-independent approaches, random amplified polymorphic DNA (RAPD, and amplified ribosomal DNA restriction analysis (ARDRA. Culture-dependent method (Biolog was used to investigate the metabolic function variance of microbe living in rhizosphere soil. Results showed that significant genetic and metabolic function variance were detected among soils, and, with the increasing of cultivating years, genetic diversity of bacterial communities in ginseng rhizosphere soil tended to be decreased. Also we found that Verrucomicrobia, Acidobacteria, and Proteobacteria were the dominants in rhizosphere soils, but, with the increasing of cultivating years, plant disease prevention or plant growth promoting bacteria, such as Pseudomonas, Burkholderia, and Bacillus, tended to be rare.

  1. Rhizosphere acidification of faba bean, soybean and maize

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, L.L. [College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant and Soil Interactions, Ministry of Education, Beijing, 100094 (China); Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100094 (China); Cao, J. [School of Life Science, Key Laboratory of Arid and Grassland Ecology, Lanzhou University, Lanzhou 730000 (China); Zhang, F.S. [College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant and Soil Interactions, Ministry of Education, Beijing, 100094 (China); Li, L., E-mail: lilong@cau.edu.cn [College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant and Soil Interactions, Ministry of Education, Beijing, 100094 (China)

    2009-07-01

    Interspecific facilitation on phosphorus uptake was observed in faba bean/maize intercropping systems in previous studies. The mechanism behind this, however, remained unknown. Under nitrate supply, the difference in rhizosphere acidification potential was studied by directly measuring pH of the solution and by visualizing and quantifying proton efflux of roots between faba bean (Vicia faba L. cv. Lincan No.5), soybean (Glycine max L. cv. Zhonghuang No. 17) and maize (Zea mays L. cv. Zhongdan No.2) in monoculture and intercrop, supplied without or with 0.2 mmol L{sup -1} P as KH{sub 2}PO{sub 4}. The pH of the nutrient solution grown faba bean was lower than initial pH of 6.0 from day 1 to day 22 under P deficiency, whereas the pH of the solution with maize was declined from day 13 after treatment. Growing soybean increased solution pH irrespective of P supply. Under P deficiency, the proton efflux of faba bean both total (315.25 nmol h{sup -1} plant{sup -1}) and specific proton efflux (0.47 nmol h{sup -1} cm{sup -1}) was greater than that those of soybean (21.80 nmol h{sup -1} plant{sup -1} and 0.05 nmol h{sup -1} cm{sup -1}, respectively). Faba bean had much more ability of rhizosphere acidification than soybean and maize. The result can explain partly why faba bean utilizes sparingly soluble P more effectively than soybean and maize do, and has an important implication in understanding the mechanism behind interspecific facilitation on P uptake by intercropped species.

  2. Rhizosphere Microbiomes Modulated by Pre-crops Assisted Plants in Defense Against Plant-Parasitic Nematodes

    Directory of Open Access Journals (Sweden)

    Ahmed Elhady

    2018-06-01

    Full Text Available Plant-parasitic nematodes cause considerable damage to crop plants. The rhizosphere microbiome can affect invasion and reproductive success of plant-parasitic nematodes, thus affecting plant damage. In this study, we investigated how the transplanted rhizosphere microbiome from different crops affect plant-parasitic nematodes on soybean or tomato, and whether the plant’s own microbiome from the rhizosphere protects it better than the microbiome from fallow soil. Soybean plants growing in sterilized substrate were inoculated with the microbiome extracted from the rhizosphere of soybean, maize, or tomato. Controls were inoculated with extracts from bulk soil, or not inoculated. After the microbiome was established, the root lesion nematode Pratylenchus penetrans was added. Root invasion of P. penetrans was significantly reduced on soybean plants inoculated with the microbiome from maize or soybean compared to tomato or bulk soil, or the uninoculated control. In the analogous experiment with tomato plants inoculated with either P. penetrans or the root knot nematode Meloidogyne incognita, the rhizosphere microbiomes of maize and tomato reduced root invasion by P. penetrans and M. incognita compared to microbiomes from soybean or bulk soil. Reproduction of M. incognita on tomato followed the same trend, and it was best suppressed by the tomato rhizosphere microbiome. In split-root experiments with soybean and tomato plants, a systemic effect of the inoculated rhizosphere microbiomes on root invasion of P. penetrans was shown. Furthermore, some transplanted microbiomes slightly enhanced plant growth compared to uninoculated plants. The microbiomes from maize rhizosphere and bulk soil increased the fresh weights of roots and shoots of soybean plants, and microbiomes from soybean rhizosphere and bulk soil increased the fresh weights of roots and shoots of tomato plants. Nematode invasion did not affect plant growth in these short-term experiments. In

  3. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles.

    Directory of Open Access Journals (Sweden)

    Salme Timmusk

    Full Text Available Water is the key resource limiting world agricultural production. Although an impressive number of research reports have been published on plant drought tolerance enhancement via genetic modifications during the last few years, progress has been slower than expected. We suggest a feasible alternative strategy by application of rhizospheric bacteria coevolved with plant roots in harsh environments over millions of years, and harboring adaptive traits improving plant fitness under biotic and abiotic stresses. We show the effect of bacterial priming on wheat drought stress tolerance enhancement, resulting in up to 78% greater plant biomass and five-fold higher survivorship under severe drought. We monitored emissions of seven stress-related volatiles from bacterially-primed drought-stressed wheat seedlings, and demonstrated that three of these volatiles are likely promising candidates for a rapid non-invasive technique to assess crop drought stress and its mitigation in early phases of stress development. We conclude that gauging stress by elicited volatiles provides an effectual platform for rapid screening of potent bacterial strains and that priming with isolates of rhizospheric bacteria from harsh environments is a promising, novel way to improve plant water use efficiency. These new advancements importantly contribute towards solving food security issues in changing climates.

  4. Molecular Identification of Microorganisms Associated to the Rhizosphere of Vanilla Plants in Colombia

    OpenAIRE

    Claudia Lucía Álvarez López; Nelson Walter Osorio Vega; Mauricio Alejandro Marín Montoya

    2013-01-01

    The cultivation of vanilla (Vanilla planifolia) is highly promising in Colombia, but more research is needed on its agronomical management and beneficial microorganisms that grow associated to its rhizosphere, on which the plant depends for its nutrition and growth. This study involved the identification of microorganisms associated to the rhizosphere of vanilla plants in a crop located in Sopetrán, Colombia. The microbes were isolated in selective media for functional groups such as cellulol...

  5. Microbial expression profiles in the rhizosphere of willows depend on soil contamination

    OpenAIRE

    Yergeau, Etienne; Sanschagrin, Sylvie; Maynard, Christine; St-Arnaud, Marc; Greer, Charles W

    2013-01-01

    The goal of phytoremediation is to use plants to immobilize, extract or degrade organic and inorganic pollutants. In the case of organic contaminants, plants essentially act indirectly through the stimulation of rhizosphere microorganisms. A detailed understanding of the effect plants have on the activities of rhizosphere microorganisms could help optimize phytoremediation systems and enhance their use. In this study, willows were planted in contaminated and non-contaminated soils in a greenh...

  6. Soil nutritional status and biogeography influence rhizosphere microbial communities associated with the invasive tree Acacia dealbata.

    Science.gov (United States)

    Kamutando, Casper N; Vikram, Surendra; Kamgan-Nkuekam, Gilbert; Makhalanyane, Thulani P; Greve, Michelle; Roux, Johannes J Le; Richardson, David M; Cowan, Don; Valverde, Angel

    2017-07-26

    Invasiveness and the impacts of introduced plants are known to be mediated by plant-microbe interactions. Yet, the microbial communities associated with invasive plants are generally poorly understood. Here we report on the first comprehensive investigation of the bacterial and fungal communities inhabiting the rhizosphere and the surrounding bulk soil of a widespread invasive tree, Acacia dealbata. Amplicon sequencing data indicated that rhizospheric microbial communities differed significantly in structure and composition from those of the bulk soil. Two bacterial (Alphaproteobacteria and Gammaproteobacteria) and two fungal (Pezizomycetes and Agaricomycetes) classes were enriched in the rhizosphere compared with bulk soils. Changes in nutritional status, possibly induced by A. dealbata, primarily shaped rhizosphere soil communities. Despite a high degree of geographic variability in the diversity and composition of microbial communities, invasive A. dealbata populations shared a core of bacterial and fungal taxa, some of which are known to be involved in N and P cycling, while others are regarded as plant pathogens. Shotgun metagenomic analysis also showed that several functional genes related to plant growth promotion were overrepresented in the rhizospheres of A. dealbata. Overall, results suggest that rhizosphere microbes may contribute to the widespread success of this invader in novel environments.

  7. Cucumber Rhizosphere Microbial Community Response to Biocontrol Agent Bacillus subtilis B068150

    Directory of Open Access Journals (Sweden)

    Lihua Li

    2015-12-01

    Full Text Available Gram-positive bacteria Bacillus subtilis B068150 has been used as a biocontrol agent against the pathogen Fusarium oxysporum cucumerinum. Cucumber was grown in three soils with strain B068150 inoculated in a greenhouse for 90 days, and the colonization ability of strain B068150 in cucumber rhizosphere and non-rhizosphere soils was determined. Changes in total bacteria and fungi community composition and structures using denaturing gradient gel electrophoresis (DGGE and sequencing were determined. Colony counts showed that B068150 colonization in the rhizosphere was significantly higher (p < 0.001 than in non-rhizosphere soils. Based on our data, the introduction of B. bacillus B068150 did not change the diversity of microbial communities significantly in the rhizosphere of three soils. Our data showed that population density of B068150 in clay soil had a significant negative correlation on bacterial diversity in cucumber rhizosphere in comparison to loam and sandy soils, suggesting that the impact of B068150 might be soil specific.

  8. New understanding of rhizosphere processes enabled by advances in molecular and spatially resolved techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Nancy J.; Paša-Tolić, Ljiljana; Bailey, Vanessa L.; Dohnalkova, Alice C.

    2017-06-01

    Understanding the role played by microorganisms within soil systems is challenged by the unique intersection of physics, chemistry, mineralogy and biology in fostering habitat for soil microbial communities. To address these challenges will require observations across multiple spatial and temporal scales to capture the dynamics and emergent behavior from complex and interdependent processes. The heterogeneity and complexity of the rhizosphere require advanced techniques that press the simultaneous frontiers of spatial resolution, analyte sensitivity and specificity, reproducibility, large dynamic range, and high throughput. Fortunately many exciting technical advancements are now available to inform and guide the development of new hypotheses. The aim of this Special issue is to provide a holistic view of the rhizosphere in the perspective of modern molecular biology methodologies that enabled a highly-focused, detailed view on the processes in the rhizosphere, including numerous, strong and complex interactions between plant roots, soil constituents and microorganisms. We discuss the current rhizosphere research challenges and knowledge gaps, as well as perspectives and approaches using newly available state-of-the-art toolboxes. These new approaches and methodologies allow the study of rhizosphere processes and properties, and rhizosphere as a central component of ecosystems and biogeochemical cycles.

  9. Rhizosphere microbiome metagenomics of gray mangroves (Avicennia marina) in the Red Sea

    KAUST Repository

    Alzubaidy, Hanin S.

    2015-11-10

    Mangroves are unique, and endangered, coastal ecosystems that play a vital role in the tropical and subtropical environments. A comprehensive description of the microbial communities in these ecosystems is currently lacking, and additional studies are required to have a complete understanding of the functioning and resilience of mangroves worldwide. In this work, we carried out a metagenomic study by comparing the microbial community of mangrove sediment with the rhizosphere microbiome of Avicennia marina, in northern Red Sea mangroves, along the coast of Saudi Arabia. Our results revealed that rhizosphere samples presented similar profiles at the taxonomic and functional levels and differentiated from the microbiome of bulk soil controls. Overall, samples showed predominance by Proteobacteria, Bacteroidetes and Firmicutes, with high abundance of sulfate reducers and methanogens, although specific groups were selectively enriched in the rhizosphere. Functional analysis showed significant enrichment in ‘metabolism of aromatic compounds’, ‘mobile genetic elements’, ‘potassium metabolism’ and ‘pathways that utilize osmolytes’ in the rhizosphere microbiomes. To our knowledge, this is the first metagenomic study on the microbiome of mangroves in the Red Sea, and the first application of unbiased 454-pyrosequencing to study the rhizosphere microbiome associated with A. marina. Our results provide the first insights into the range of functions and microbial diversity in the rhizosphere and soil sediments of gray mangrove (A. marina) in the Red Sea.

  10. Coupling of the chemical niche and microbiome in the rhizosphere: implications from watermelon grafting

    Directory of Open Access Journals (Sweden)

    Yang SONG,Chen ZHU,Waseem RAZA,Dongsheng WANG,Qiwei HUANG,Shiwei GUO,Ning LING,Qirong SHEN

    2016-09-01

    Full Text Available Grafting is commonly used to overcome soil-borne diseases. However, its effects on the rhizodeposits as well as the linkages between the rhizosphere chemical niche and microbiome remained unknown. In this paper, significant negative correlations between the bacterial alpha diversity and both the disease incidence (r = -0.832, P = 0.005 and pathogen population (r = - 0.786, P = 0.012 were detected. Moreover, our results showed that the chemical diversity not only predicts bacterial alpha diversity but also can impact on overall microbial community structure (beta diversity in the rhizosphere. Furthermore, some anti-fungal compounds including heptadecane and hexadecane were identified in the rhizosphere of grafted watermelon. We concluded that grafted watermelon can form a distinct rhizosphere chemical niche and thus recruit microbial communities with high diversity. Furthermore, the diverse bacteria and the antifungal compounds in the rhizosphere can potentially serve as biological and chemical barriers, respectively, to hinder pathogen invasion. These results not only lead us toward broadening the view of disease resistance mechanism of grafting, but also provide clues to control the microbial composition by manipulating the rhizosphere chemical niche.

  11. Rhizosphere Colonization and Control of Meloidogyne spp. by Nematode-trapping Fungi

    Science.gov (United States)

    Persson, Christina; Jansson, Hans-Börje

    1999-01-01

    The ability of nematode-trapping fungi to colonize the rhizosphere of crop plants has been suggested to be an important factor in biological control of root-infecting nematodes. In this study, rhizosphere colonization was evaluated for 38 isolates of nematode-trapping fungi representing 11 species. In an initial screen, Arthrobotrys dactyloides, A. superba, and Monacrosporium ellipsosporum were most frequently detected in the tomato rhizosphere. In subsequent pot experiments these fungi and the non-root colonizing M. geophyropagum were introduced to soil in a sodium alginate matrix, and further tested both for establishment in the tomato rhizosphere and suppression of root-knot nematodes. The knob-forming M. ellipsosporum showed a high capacity to colonize the rhizosphere both in the initial screen and the pot experiments, with more than twice as many fungal propagules in the rhizosphere as in the root-free soil. However, neither this fungus nor the other nematode-trapping fungi tested reduced nematode damage to tomato plants. PMID:19270886

  12. Microbial Growth and Carbon Use Efficiency in the Rhizosphere and Root-Free Soil

    Science.gov (United States)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Anderson, Traute-Heidi; Kuzyakov, Yakov

    2014-01-01

    Plant-microbial interactions alter C and N balance in the rhizosphere and affect the microbial carbon use efficiency (CUE)–the fundamental characteristic of microbial metabolism. Estimation of CUE in microbial hotspots with high dynamics of activity and changes of microbial physiological state from dormancy to activity is a challenge in soil microbiology. We analyzed respiratory activity, microbial DNA content and CUE by manipulation the C and nutrients availability in the soil under Beta vulgaris. All measurements were done in root-free and rhizosphere soil under steady-state conditions and during microbial growth induced by addition of glucose. Microorganisms in the rhizosphere and root-free soil differed in their CUE dynamics due to varying time delays between respiration burst and DNA increase. Constant CUE in an exponentially-growing microbial community in rhizosphere demonstrated the balanced growth. In contrast, the CUE in the root-free soil increased more than three times at the end of exponential growth and was 1.5 times higher than in the rhizosphere. Plants alter the dynamics of microbial CUE by balancing the catabolic and anabolic processes, which were decoupled in the root-free soil. The effects of N and C availability on CUE in rhizosphere and root-free soil are discussed. PMID:24722409

  13. Diazotrophic diversity in the rhizosphere of two exotic weed plants, Prosopis juliflora and Parthenium hysterophorus.

    Science.gov (United States)

    Cibichakravarthy, B; Preetha, R; Sundaram, S P; Kumar, K; Balachandar, D

    2012-02-01

    This study is aimed at assessing culturable diazotrophic bacterial diversity in the rhizosphere of Prosopis juliflora and Parthenium hysterophorus, which grow profusely in nutritionally-poor soils and environmentally-stress conditions so as to identify some novel strains for bioinoculant technology. Diazotrophic isolates from Prosopis and Parthenium rhizosphere were characterized for nitrogenase activity by Acetylene Reduction Assay (ARA) and 16S rRNA gene sequencing. Further, the culture-independent quantitative PCR (qPCR) was performed to compare the abundance of diazotrophs in rhizosphere with bulk soils. The proportion of diazotrophs in total heterotrophs was higher in rhizosphere than bulk soils and 32 putative diazotrophs from rhizosphere of two plants were identified by nifH gene amplification. The ARA activity of the isolates ranged from 40 to 95 nmol ethylene h(-1) mg protein(-1). The 16S rRNA gene analysis identified the isolates to be members of alpha, beta and gamma Proteobacteria and firmicutes. The qPCR assay also confirmed that abundance of nif gene in rhizosphere of these two plants was 10-fold higher than bulk soil.

  14. The state of rhizospheric science in the era of multi-omics: A practical guide to omics technologies

    Energy Technology Data Exchange (ETDEWEB)

    White, Richard Allen; Rivas-Ubach, Albert; Borkum, Mark I.; Köberl, Martina; Bilbao, Aivett; Colby, Sean M.; Hoyt, David W.; Bingol, Kerem; Kim, Young-Mo; Wendler, Jason P.; Hixson, Kim K.; Jansson, Christer

    2017-06-01

    Over the past century, the significance of the rhizosphere as a complex, biological system, comprised of vast, interconnected networks of microbial organisms that interact directly with their plant hosts (e.g., archæa, bacteria, fungi, eukaryotes, and viruses) has been increasingly recognized by the scientific community. Providing a nutritional base to the terrestrial biosphere, the rhizosphere is integral to plant growth, crop production and ecosystem health. Lack of mechanistic understanding of the rhizosphere constitutes a critical knowledge gap, inhibiting our ability to predict and control the terrestrial ecosystem in order to achieve desirable outcomes (e.g., bioenergy production, crop yield maximization, and soilbased carbon sequestration). Application of multi-omics has the potential to significantly advance our knowledge of rhizospheric science. This review covers: cutting- and bleeding-edge, multi-omic techniques and technologies; methods and protocols for specific rhizospheric science questions; and, challenges to be addressed during this century of rhizospheric science.

  15. Analysis of diversity of diazotrophic bacteria associated with the rhizosphere of a tropical Arbor, Melastoma malabathricum L.

    Science.gov (United States)

    Sato, Atsuya; Watanabe, Toshihiro; Unno, Yusuke; Purnomo, Erry; Osaki, Mitsuru; Shinano, Takuro

    2009-01-01

    The diversity of diazotrophic bacteria in the rhizosphere of Melastoma malabathricum L. was investigated by cloning-sequencing of the nifH gene directly amplified from DNA extracted from soil. Samples were obtained from the rhizosphere and bulk soil of M. malabathricum growing in three different soil types (acid sulfate, peat and sandy clay soils) located very close to each other in south Kalimantan, Indonesia. Six clone libraries were constructed, generated from bulk and rhizosphere soil samples, and 300 nifH clones were produced, then assembled into 29 operational taxonomic units (OTUs) based on percent identity values. Our results suggested that nifH gene diversity is mainly dependent on soil properties, and did not differ remarkably between the rhizosphere and bulk soil of M. malabathricum except in acid sulfate soil. In acid sulfate soil, as the Shannon diversity index was lower in rhizosphere than in bulk soil, it is suggested that particular bacterial species might accumulate in the rhizosphere.

  16. Whole Trait Theory

    Science.gov (United States)

    Fleeson, William; Jayawickreme, Eranda

    2014-01-01

    Personality researchers should modify models of traits to include mechanisms of differential reaction to situations. Whole Trait Theory does so via five main points. First, the descriptive side of traits should be conceptualized as density distributions of states. Second, it is important to provide an explanatory account of the Big 5 traits. Third, adding an explanatory account to the Big 5 creates two parts to traits, an explanatory part and a descriptive part, and these two parts should be recognized as separate entities that are joined into whole traits. Fourth, Whole Trait Theory proposes that the explanatory side of traits consists of social-cognitive mechanisms. Fifth, social-cognitive mechanisms that produce Big-5 states should be identified. PMID:26097268

  17. Traits traded off

    NARCIS (Netherlands)

    Rueffler, Claus

    2006-01-01

    The course of evolution is restricted by constraints. A special type of constraint is a trade-off where different traits are negatively correlated. In this situation a mutant type that shows an improvement in one trait suffers from a decreased performance through another trait. In a fixed fitness

  18. Preliminary investigations of the rhizosphere nature of hydroponically grown lettuces

    Science.gov (United States)

    Antunes, Inês; Paille, Christel; Lasseur, Christophe

    Due to capabilities of current launchers, future manned exploration beyond the Earth orbit will imply long journeys and extended stays on planet surfaces. For this reason, it is of a great importance to develop a Regenerative Life Support System that enables the crew to be, to a very large extent, metabolic consumables self-sufficient. In this context, the European Space Agency, associated with a scientific and engineering con-sortium, initiated in 1989 the Micro-Ecological Life Support System Alternative (MELiSSA) project. This concept, inspired on a terrestrial ecosystem (i.e. a lake), comprises five intercon-nected compartments inhabited by micro-organisms and higher-plants aiming to produce food, fresh water, and oxygen from organic waste, carbon dioxide, and minerals. Given the important role of the higher-plant compartment for the consumption of carbon dioxide and the production of oxygen, potable water, and food, it was decided to study the microbial communities present in the root zone of the plants (i.e. the rhizosphere), and their synergistic and antagonistic influences in the plant growth. This understanding is important for later investigations concerning the technology involved in the higher plant compartment, since the final goal is to integrate this compartment inside the MELiSSA loop and to guarantee a healthy and controlled environment for the plants to grow under reduced-gravity conditions. To perform a preliminary assessment of the microbial populations of the root zone, lettuces were grown in a hydroponic system and their growth was characterized in terms of nutrient uptake, plant diameter, and plant wet and dry weights. In parallel, the microbial population, bacteria and fungi, present in the hydroponic medium and also inside and outside the roots were analyzed in terms of quantity and nature. The goal of this presentation is to give a preliminary review in the plant root zone of the micro-organisms communities and as well their proportions

  19. Contrasting the microbiomes from forest rhizosphere and deeper bulk soil from an Amazon rainforest reserve.

    Science.gov (United States)

    Fonseca, Jose Pedro; Hoffmann, Luisa; Cabral, Bianca Catarina Azeredo; Dias, Victor Hugo Giordano; Miranda, Marcio Rodrigues; de Azevedo Martins, Allan Cezar; Boschiero, Clarissa; Bastos, Wanderley Rodrigues; Silva, Rosane

    2018-02-05

    Pristine forest ecosystems provide a unique perspective for the study of plant-associated microbiota since they host a great microbial diversity. Although the Amazon forest is one of the hotspots of biodiversity around the world, few metagenomic studies described its microbial community diversity thus far. Understanding the environmental factors that can cause shifts in microbial profiles is key to improving soil health and biogeochemical cycles. Here we report a taxonomic and functional characterization of the microbiome from the rhizosphere of Brosimum guianense (Snakewood), a native tree, and bulk soil samples from a pristine Brazilian Amazon forest reserve (Cuniã), for the first time by the shotgun approach. We identified several fungi and bacteria taxon significantly enriched in forest rhizosphere compared to bulk soil samples. For archaea, the trend was the opposite, with many archaeal phylum and families being considerably more enriched in bulk soil compared to forest rhizosphere. Several fungal and bacterial decomposers like Postia placenta and Catenulispora acidiphila which help maintain healthy forest ecosystems were found enriched in our samples. Other bacterial species involved in nitrogen (Nitrobacter hamburgensis and Rhodopseudomonas palustris) and carbon cycling (Oligotropha carboxidovorans) were overrepresented in our samples indicating the importance of these metabolic pathways for the Amazon rainforest reserve soil health. Hierarchical clustering based on taxonomic similar microbial profiles grouped the forest rhizosphere samples in a distinct clade separated from bulk soil samples. Principal coordinate analysis of our samples with publicly available metagenomes from the Amazon region showed grouping into specific rhizosphere and bulk soil clusters, further indicating distinct microbial community profiles. In this work, we reported significant shifts in microbial community structure between forest rhizosphere and bulk soil samples from an Amazon

  20. Seasonal induced changes in spinach rhizosphere microbial community structure with varying salinity and drought.

    Science.gov (United States)

    Mark Ibekwe, A; Ors, Selda; Ferreira, Jorge F S; Liu, Xuan; Suarez, Donald L

    2017-02-01

    Salinity is a common problem under irrigated agriculture, especially in low rainfall and high evaporative demand areas of southwestern United States and other semi-arid regions around the world. However, studies on salinity effects on soil microbial communities are relatively few while the effects of irrigation-induced salinity on soil chemical and physical properties and plant growth are well documented. In this study, we examined the effects of salinity, temperature, and temporal variability on soil and rhizosphere microbial communities in sand tanks irrigated with prepared solutions designed to simulate saline wastewater. Three sets of experiments with spinach (Spinacia oleracea L., cv. Racoon) were conducted under saline water during different time periods (early winter, late spring, and early summer). Bacterial 16S V4 rDNA region was amplified utilizing fusion primers designed against the surrounding conserved regions using MiSeq® Illumina sequencing platform. Across the two sample types, bacteria were relatively dominant among three phyla-the Proteobacteria, Cyanobacteria, and Bacteroidetes-accounted for 77.1% of taxa detected in the rhizosphere, while Proteobacteria, Bacteroidetes, and Actinobacteria accounted for 55.1% of taxa detected in soil. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity, abundance, community structure, and specific bacterial groups in soil and rhizosphere samples. Permutational analysis of variance (PERMANOVA) analysis showed that soil temperature (P=0.001), rhizosphere temperature (P=0.001), rhizosphere salinity (P=0.032), and evapotranspiration (P=0.002) significantly affected beta diversity of soil and rhizosphere microbial communities. Furthermore, salinity had marginal effects (P=0.078) on soil beta diversity. However, temporal variability differentially affected rhizosphere microbial communities irrigated with saline wastewater. Therefore, microbial communities in

  1. Bioremediation of polyaromatic hydrocarbons (PAHs using rhizosphere technology

    Directory of Open Access Journals (Sweden)

    Sandeep Bisht

    2015-03-01

    Full Text Available The remediation of polluted sites has become a priority for society because of increase in quality of life standards and the awareness of environmental issues. Over the past few decades there has been avid interest in developing in situ strategies for remediation of environmental contaminants, because of the high economic cost of physicochemical strategies, the biological tools for remediation of these persistent pollutants is the better option. Major foci have been considered on persistent organic chemicals i.e.polyaromatic hydrocarbons (PAHs due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity. Rhizoremediation, a specific type of phytoremediation that involves both plants and their associated rhizospheric microbes is the creative biotechnological approach that has been explored in this review. Moreover, in this review we showed the significance of rhizoremediation of PAHs from other bioremediation strategies i.e. natural attenuation, bioaugmentation and phytoremediation and also analyze certain environmental factor that may influence the rhizoremediation technique. Numerous bacterial species were reported to degrade variety of PAHs and most of them are isolated from contaminated soil, however few reports are available from non contaminated soil. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Finally, exploring the molecular communication between plants and microbes, and exploiting this communication to achieve better results in the elimination of contaminants, is a fascinating area of research for future perspective.

  2. Different Ancestries of R Tailocins in Rhizospheric Pseudomonas Isolates

    Science.gov (United States)

    Ghequire, Maarten G.K.; Dillen, Yörg; Lambrichts, Ivo; Proost, Paul; Wattiez, Ruddy; De Mot, René

    2015-01-01

    Bacterial genomes accommodate a variety of mobile genetic elements, including bacteriophage-related clusters that encode phage tail-like protein complexes playing a role in interactions with eukaryotic or prokaryotic cells. Such tailocins are unable to replicate inside target cells due to the lack of a phage head with associated DNA. A subset of tailocins mediate antagonistic activities with bacteriocin-like specificity. Functional characterization of bactericidal tailocins of two Pseudomonas putida rhizosphere isolates revealed not only extensive similarity with the tail assembly module of the Pseudomonas aeruginosa R-type pyocins but also differences in genomic integration site, regulatory genes, and lytic release modules. Conversely, these three features are quite similar between strains of the P. putida and Pseudomonas fluorescens clades, although phylogenetic analysis of tail genes suggests them to have evolved separately. Unlike P. aeruginosa R pyocin elements, the tailocin gene clusters of other pseudomonads frequently carry cargo genes, including bacteriocins. Compared with P. aeruginosa, the tailocin tail fiber sequences that act as specificity determinants have diverged much more extensively among the other pseudomonad species, mostly isolates from soil and plant environments. Activity of the P. putida antibacterial particles requires a functional lipopolysaccharide layer on target cells, but contrary to R pyocins from P. aeruginosa, strain susceptibilities surpass species boundaries. PMID:26412856

  3. Anti-Quorum Sensing Potential of Potato Rhizospheric Bacteria

    Directory of Open Access Journals (Sweden)

    Adeleh Sobhanipour

    2017-01-01

    Full Text Available The occurrence of antibiotic-resistant pathogenic bacteria is becoming a serious problem. The rise of multiresistance strains has forced the pharmaceutical industry to come up with new generation of more effective and potent antibiotics, therefore creating development of antivirulence compounds. Due to extensive usage of cell-to-cell bacterial communication (QS systems to monitor the production of virulence factors, disruption of QS system results in creation of a promising strategy for the control of bacterial infection. Numerous natural quorum quenching (QQ agents have been identified. In addition, many microorganisms are capable of producing smaller molecular QS inhibitors and/or macromolecular QQ enzymes. In present survey, anti QS activity of 1280 rhizosphere bacteria was assessed using the Pectobacterium carotovorum as AHL-donor and Chromobacterium violaceum CV026 as biosensor system. The results showed that 61 strains had highly AHL-degrading activity. Both Lux I and Lux R activity were affected by some isolates, suggesting that the rhizobacteria target both QS signal and receptor. These soil microorganisms with their anti-QS activity have the potential to be novel therapeutic agents for reducing virulence and pathogenicity of antibiotic resistant bacteria.

  4. Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology

    Science.gov (United States)

    Bisht, Sandeep; Pandey, Piyush; Bhargava, Bhavya; Sharma, Shivesh; Kumar, Vivek; Sharma, Krishan D.

    2015-01-01

    The remediation of polluted sites has become a priority for society because of increase in quality of life standards and the awareness of environmental issues. Over the past few decades there has been avid interest in developing in situ strategies for remediation of environmental contaminants, because of the high economic cost of physicochemical strategies, the biological tools for remediation of these persistent pollutants is the better option. Major foci have been considered on persistent organic chemicals i.e. polyaromatic hydrocarbons (PAHs) due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity. Rhizoremediation, a specific type of phytoremediation that involves both plants and their associated rhizospheric microbes is the creative biotechnological approach that has been explored in this review. Moreover, in this review we showed the significance of rhizoremediation of PAHs from other bioremediation strategies i.e. natural attenuation, bioaugmentation and phytoremediation and also analyze certain environmental factor that may influence the rhizoremediation technique. Numerous bacterial species were reported to degrade variety of PAHs and most of them are isolated from contaminated soil, however few reports are available from non contaminated soil. Pseudomonas aeruginosa , Pseudomons fluoresens , Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Finally, exploring the molecular communication between plants and microbes, and exploiting this communication to achieve better results in the elimination of contaminants, is a fascinating area of research for future perspective. PMID:26221084

  5. Rhizosphere bacterial diversity and heavy metal accumulation in Nymphaea pubescens in aid of phytoremediation potential

    Directory of Open Access Journals (Sweden)

    RAISA KABEER

    2014-04-01

    Full Text Available The present work aims to characterize the bacterial diversity of the rhizosphere system of Nymphaea pubescens and the sediment system where it grows naturally. Heavy metal content in the sediment and Nymphea plant from the selected wetland system were also studied. Results of the current study showed that the concentration of copper, zinc and lead in the sediment ranged from 43 to 182 mg/Kg, from 331 to 1382 mg/Kg and from 121 to 1253 mg/Kg, respectively. Cadmium concentration in sediment samples was found to be zero and the order of abundance of heavy metals in the sediment samples was Zn>Pb>Cu>Cd. The abundance patterns of heavy metals in leaf, petiole and root were Cd>Cu>Pb>Zn. Microbial load in rhizosphere of Nymphea pubescens ranged from 93×102 to 69×103 and that of sediment was 62×102 to 125×103. Bacterial load in rhizosphere was higher than that of growing sediment. Four bacterial genera were identified from the rhizosphere of Nymphaea pubescens which include Acinetobacter, Alcaligens, Listeria and Staphylococcus. Acinetobacter, Alcaligens and Listeria are the three bacterial genera isolated from sediment samples. Copper resistance studies of the 14 bacterial isolates from rhizosphere and 7 strains from sediment samples revealed that most of them showed low resistance (<100 μg/ml and very few isolates showed high resistance of 400-500 μg/ml.

  6. Effects of preconditioning the rhizosphere of different plant species on biotic methane oxidation kinetics.

    Science.gov (United States)

    Ndanga, Éliane M; Lopera, Carolina B; Bradley, Robert L; Cabral, Alexandre R

    2016-09-01

    The rhizosphere is known as the most active biogeochemical layer of the soil. Therefore, it could be a beneficial environment for biotic methane oxidation. The aim of this study was to document - by means of batch incubation tests - the kinetics of CH4 oxidation in rhizosphere soils that were previously exposed to methane. Soils from three pre-exposure to CH4 zones were sampled: the never-before pre-exposed (NEX), the moderately pre-exposed (MEX) and the very pre-exposed (VEX). For each pre-exposure zone, the rhizosphere of several plant species was collected, pre-incubated, placed in glass vials and submitted to CH4 concentrations varying from 0.5% to 10%. The time to the beginning of CH4 consumption and the CH4 oxidation rate were recorded. The results showed that the fastest CH4 consumption occurred for the very pre-exposed rhizosphere. Specifically, a statistically significant difference in CH4 oxidation half-life was found between the rhizosphere of the VEX vegetated with a mixture of different plants and the NEX vegetated with ryegrass. This difference was attributed to the combined effect of the preconditioning level and plant species as well as to the organic matter content. Regardless of the preconditioning level, the oxidation rate values obtained in this study were comparable to those reported in the reviewed literature for mature compost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A Greenhouse Assay on the Effect of Applied Urea Amount on the Rhizospheric Soil Bacterial Communities.

    Science.gov (United States)

    Shang, Shuanghua; Yi, Yanli

    2015-12-01

    The rhizospheric bacteria play key role in plant nutrition and growth promotion. The effects of increased nitrogen inputs on plant rhizospheric soils also have impacted on whole soil microbial communities. In this study, we analyzed the effects of applied nitrogen (urea) on rhizospheric bacterial composition and diversity in a greenhouse assay using the high-throughput sequencing technique. To explore the environmental factors driving the abundance, diversity and composition of soil bacterial communities, the relationship between soil variables and the bacterial communities were also analyzed using the mantel test as well as the redundancy analysis. The results revealed significant bacterial diversity changes at different amounts of applied urea, especially between the control treatment and the N fertilized treatments. Mantel tests showed that the bacterial communities were significantly correlated with the soil nitrate nitrogen, available nitrogen, soil pH, ammonium nitrogen and total organic carbon. The present study deepened the understanding about the rhizospheric soil microbial communities under different amounts of applied urea in greenhouse conditions, and our work revealed the environmental factors affecting the abundance, diversity and composition of rhizospheric bacterial communities.

  8. Emergent macrophytes modify the abundance and community composition of ammonia oxidizers in their rhizosphere sediments.

    Science.gov (United States)

    Zhao, Dayong; He, Xiaowei; Huang, Rui; Yan, Wenming; Yu, Zhongbo

    2017-07-01

    Ammonia oxidation is a crucial process in global nitrogen cycling, which is catalyzed by the ammonia oxidizers. Emergent plants play important roles in the freshwater ecosystem. Therefore, it is meaningful to investigate the effects of emergent macrophytes on the abundance and community composition of ammonia oxidizers. In the present study, two commonly found emergent macrophytes (Zizania caduciflora and Phragmitas communis) were obtained from freshwater lakes and the abundance and community composition of the ammonia-oxidizing prokaryotes in the rhizosphere sediments of these emergent macrophytes were investigated. The abundance of the bacterial amoA gene was higher in the rhizosphere sediments of the emergent macrophytes than those of bulk sediments. Significant positive correlation was found between the potential nitrification rates (PNRs) and the abundance of bacterial amoA gene, suggesting that ammonia-oxidizing bacteria (AOB) might play an important role in the nitrification process of the rhizosphere sediments of emergent macrophytes. The Nitrosotalea cluster is the dominant ammonia-oxidizing archaea (AOA) group in all the sediment samples. Analysis of AOB group showed that the N. europaeal cluster dominated the rhizosphere sediments of Z. caduciflora and the bulk sediments, whereas the Nitrosospira cluster was the dominant AOB group in the rhizosphere sediments of P. communis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Rhizospheric microbial communities associated with wild and cultivated frankincense producing Boswellia sacra tree.

    Directory of Open Access Journals (Sweden)

    Abdul Latif Khan

    Full Text Available Boswellia sacra, a frankincense producing endemic tree, has been well known for its cultural, religious and economic values. However, the tree has been least explored for the associated microsymbiota in the rhizosphere. The current study elucidates the fungal and bacterial communities of the rhizospheric regions of the wild and cultivated B. sacra tree populations through next generation sequencing. The sequence analysis showed the existence of 1006±8.9 and 60.6±3.1 operational taxonomic unit (OTUs for bacterial and fungal communities respectively. In fungal communities, five major phyla were found with significantly higher abundance of Ascomycota (60.3% in wild population and Basidiomycota (52% in cultivated tree rhizospheres. Among bacterial communities, 31 major phyla were found, with significant distribution of Actinobacteria in wild tree rhizospheres, whereas Proteobacteria and Acidobacteria were highly abundant in cultivated trees. The diversity and abundance of microbiome varied significantly depending upon soil characteristics of the three different populations. In addition, significantly higher glucosidases, cellulases and indole-3-acetic acid were found in cultivated tree's rhizospheres as compared to wild tree populations. for these plants to survive the harsh arid-land environmental conditions. The current study is a first comprehensive work and advances our knowledge about the core fungal and bacterial microbial microbiome associated with this economically important tree.

  10. Decrease of labile Zn and Cd in the rhizosphere of hyperaccumulating Thlaspi caerulescens with time

    Energy Technology Data Exchange (ETDEWEB)

    Dessureault-Rompre, Jacynthe, E-mail: dessureaultromj@agr.gc.c [Institute of Terrestrial Ecosystems (ITES), ETH Zurich, Universitaetstrasse 16, CH-8092 Zuerich (Switzerland); Luster, Joerg, E-mail: joerg.luster@wsl.c [Swiss Federal Institute for Forest, Snow, and Landscape Research (WSL), Zuercherstrasse 111, CH-8903 Birmensdorf (Switzerland); Schulin, Rainer, E-mail: rainer.schulin@env.ethz.c [Institute of Terrestrial Ecosystems (ITES), ETH Zurich, Universitaetstrasse 16, CH-8092 Zuerich (Switzerland); Tercier-Waeber, Mary-Lou, E-mail: marie-louise.tercier@unige.c [CABE, Department of Inorganic and Analytical Chemistry, Sciences II, University of Geneva, 30 quai Ernest Ansermet, CH-1211 Geneva 4 (Switzerland); Nowack, Bernd, E-mail: bernd.nowack@empa.c [Institute of Terrestrial Ecosystems (ITES), ETH Zurich, Universitaetstrasse 16, CH-8092 Zuerich (Switzerland); Empa - Swiss Federal Laboratories for Materials Testing and Research, Lerchenfeldstrasse 5, CH-9014 St. Gallen (Switzerland)

    2010-05-15

    By using a rhizobox micro-suction cup technique we studied in-situ mobilization and complexation of Zn and Cd in the rhizosphere of non-hyperaccumulating Thlaspi perfoliatum and two different Thlaspi caerulescens ecotypes, one of them hyperaccumulating Zn, the other Zn and Cd. The dynamic fraction (free metal ions and small labile complexes) of Zn and Cd decreased with time in the rhizosphere solution of the respective hyperaccumulating T. caerulescens ecotypes, and at the end of the experiment, it was significantly smaller than in the other treatments. Furthermore, the rhizosphere solutions of the T. caerulescens ecotypes exhibited a higher UV absorptivity than the solution of the T. perfoliatum rhizosphere and the plant-free soil. Based on our findings we suggest that mobile and labile metal-dissolved soil organic matter complexes play a key role in the rapid replenishment of available metal pools in the rhizosphere of hyperaccumulating T. caerulescens ecotypes, postulated earlier. - A mechanism that explains the rapid replenishment of metal pools accessible by hyperaccumulator plants for phytoextraction is proposed.

  11. Rhizosphere bacteriome of the medicinal plant Sapindus saponaria L. revealed by pyrosequencing.

    Science.gov (United States)

    Garcia, A; Polonio, J C; Polli, A D; Santos, C M; Rhoden, S A; Quecine, M C; Azevedo, J L; Pamphile, J A

    2016-11-03

    Sapindus saponaria L. of Sapindaceae family is popularly known as soldier soap and is found in Central and South America. A study of such medicinal plants might reveal a more complex diversity of microorganisms as compared to non-medicinal plants, considering their metabolic potential and the chemical communication between their natural microbiota. Rhizosphere is a highly diverse microbial habitat with respect to both the diversity of species and the size of the community. Rhizosphere bacteriome associated with medicinal plant S. saponaria is still poorly known. The objective of this study was to assess the rhizosphere microbiome of the medicinal plant S. saponaria using pyrosequencing, a culture-independent approach that is increasingly being used to estimate the number of bacterial species present in different environments. In their rhizosphere microbiome, 26 phyla were identified from 5089 sequences of 16S rRNA gene, with a predominance of Actinobacteria (33.54%), Acidobacteria (22.62%), and Proteobacteria (24.72%). The rarefaction curve showed a linear increase, with 2660 operational taxonomic units at 3% distance sequence dissimilarity, indicating that the rhizosphere microbiome associated with S. saponaria was highly diverse with groups of bacteria important for soil management, which could be further exploited for agricultural and biotechnological purposes.

  12. Separating rhizosphere respiration from total soil respiration in two larch plantations in northeastern China.

    Science.gov (United States)

    Jiang, Lifen; Shi, Fuchen; Li, Bo; Luo, Yiqi; Chen, Jiquan; Chen, Jiakuan

    2005-09-01

    The potential capacity of soil to sequester carbon in response to global warming is strongly regulated by the ratio of rhizosphere respiration to respiration by soil microbial decomposers, because of their different temperature sensitivities. To quantify relative contributions of rhizosphere respiration to total soil respiration as influenced by forest stand development, we conducted a trenching study in two larch (Larix gmelini (Rupr.) Rupr.) plantations, aged 17 and 31 years, in northeastern China. Four plots in each plantation were randomly selected and trenched in early May 2001. Soil surface CO2 effluxes both inside and outside the plots were measured from May 2001 to August 2002. Soil respiration (i.e., the CO2 effluxes outside the trenched plots) varied similarly in the two plantations from 0.8 micromol m(-2) s(-1) in winter to 6.0 micromol m(-2) s(-1) in summer. Rhizosphere respiration (i.e., CO2 efflux outside the trenched plots minus that inside the plots) varied from 0.2 to 2.0 micromol m(-2) s(-1) in the old forest and from 0.3 to 4.0 micromol m(-2) s(-1) in the young forest over the seasons. Rhizosphere respiration, on average, accounted for 25% of soil respiration in the old forest and 65% in the young forest. Rhizosphere and soil respiration were significantly correlated with soil temperature but not with soil water content. We conclude that the role forests play in regulating climate change may depend on their age.

  13. [Effects of different organic fertilizers on the microbes in rhizospheric soil of flue-cured tobacco].

    Science.gov (United States)

    Zhang, Yun-Wei; Xu, Zhi; Tang, Li; Li, Yan-Hong; Song, Jian-Qun; Xu, Jian-Qin

    2013-09-01

    A field experiment was conducted to study the effects of applying different organic fertilizers (refined organic fertilizer and bio-organic fertilizer) and their combination with 20% reduced chemical fertilizers on the microbes in rhizospheric soil of flue-cured tobacco, the resistance of the tobacco against bacterial wilt, and the tobacco yield and quality. As compared with conventional chemical fertilization (CK), applying refined organic fertilizer (ROF) or bio-organic fertilizer (BIO) in combining with 20% reduced chemical fertilization increased the bacterial number and the total microbial number in the rhizospheric soil significantly. Applying BIO in combining with 20% reduced chemical fertilization also increased the actinomyces number in the rhizospheric soil significantly, with an increment of 44.3% as compared with that under the application of ROF in combining with 20% reduced chemical fertilization, but decreased the fungal number. As compared with CK, the ROF and BIO increased the carbon use capacity of rhizospheric microbes significantly, and the BIO also increased the capacity of rhizospheric microbes in using phenols significantly. Under the application of ROF and BIO, the disease incidence and the disease index of bacterial wilt were decreased by 4% and 8%, and 23% and 15.9%, and the proportions of high grade tobacco leaves increased significantly by 10.5% and 9.7%, respectively, as compared with those in CK. BIO increased the tobacco yield and its output value by 17.1% and 18.9% , respectively, as compared with ROF.

  14. Water management impacts on arsenic speciation and iron-reducing bacteria in contrasting rice-rhizosphere compartments.

    Science.gov (United States)

    Somenahally, Anil C; Hollister, Emily B; Yan, Wengui; Gentry, Terry J; Loeppert, Richard H

    2011-10-01

    Rice cultivated on arsenic (As) contaminated-soils will accumulate variable grain-As concentrations, as impacted by varietal differences, soil variables, and crop management. A field-scale experiment was conducted to study the impact of intermittent and continuous flooding on As speciation and microbial populations in rice rhizosphere compartments of soils that were either historically amended with As pesticide or unamended with As. Rhizosphere-soil, root-plaque, pore-water and grain As were quantified and speciated, and microbial populations in rhizosphere soil and root-plaque were characterized. Total-As concentrations in rhizosphere and grain were significantly lower in intermittently flooded compared to the continuously flooded plots (86% lower in pore-water, 55% lower in root-plaque and 41% lower in grain samples). iAs(V), iAs(III), and DMAs(V) were the predominant As species detected in rhizosphere-soil and root-plaque, pore-water and grain samples, respectively. Relative proportions of Archaea and iron-reducing bacteria (FeRB) were higher in rhizosphere soil compared to root-plaque. In rhizosphere soil, the relative abundance of FeRB was lower in intermittently flooded compared to continuously flooded plots, but there were no differences between root-plaque samples. This study has demonstrated that reductions in dissolved As concentrations in the rhizosphere and subsequent decreases in grain-As concentration can be attained through water management.

  15. Personality traits affect teaching performance of attending physicians: results of a multi-center observational study

    NARCIS (Netherlands)

    Scheepers, Renée A.; Lombarts, Kiki M. J. M. H.; van Aken, Marcel A. G.; Heineman, Maas Jan; Arah, Onyebuchi A.

    2014-01-01

    Worldwide, attending physicians train residents to become competent providers of patient care. To assess adequate training, attending physicians are increasingly evaluated on their teaching performance. Research suggests that personality traits affect teaching performance, consistent with studied

  16. Purple Phototrophic Bacterium Enhances Stevioside Yield by Stevia rebaudiana Bertoni via Foliar Spray and Rhizosphere Irrigation

    Science.gov (United States)

    Wu, Jing; Wang, Yiming; Lin, Xiangui

    2013-01-01

    This study was conducted to compare the effects of foliar spray and rhizosphere irrigation with purple phototrophic bacteria (PPB) on growth and stevioside (ST) yield of Stevia. rebaudiana. The S. rebaudiana plants were treated by foliar spray, rhizosphere irrigation, and spray plus irrigation with PPB for 10 days, respectively. All treatments enhanced growth of S. rebaudiana, and the foliar method was more efficient than irrigation. Spraying combined with irrigation increased the ST yield plant -1 by 69.2% as compared to the control. The soil dehydrogenase activity, S. rebaudiana shoot biomass, chlorophyll content in new leaves, and soluble sugar in old leaves were affected significantly by S+I treatment, too. The PPB probably works in the rhizosphere by activating the metabolic activity of soil bacteria, and on leaves by excreting phytohormones or enhancing the activity of phyllosphere microorganisms. PMID:23825677

  17. Rhizospheric metagenome of the terrestrial mangrove fern Acrostichum from Indian Sunderbans

    Directory of Open Access Journals (Sweden)

    Sayak Ganguli

    2017-12-01

    Full Text Available This study reports the analyses of the rhizospheric microbiome of the terrestrial mangrove fern Acrostichum aureum Linn. from the Indian Sunderbans. Samples were collected using standard protocols and 16S rRNA gene V3–V4 region amplicon sequencing was performed to identify the microbial communities prevalent in the rhizosphere. A total of 1,931,252 quality checked reads were assembled into 204,818 contigs and were analysed using QIIME to reveal the abundance of Proteobacteria, Acidobacteria and Planctomycetes. The data is available at the NCBI - Sequence Read Archive with accession number: SRX2660456. This is the first report of the rhizospheric microbiome belonging to a fern species.

  18. Ammonia-oxidizing Bacteria and Archaea in the Rhizosphere of Freshwater Macrophytes

    DEFF Research Database (Denmark)

    Herrmann, Martina; Schramm, Andreas

    2007-01-01

    AMMONIA-OXIDIZING ARCHAEA AND BACTERIA IN THE RHIZOSPHERE OF FRESHWATER MACROPHYTES Martina Herrmann and Andreas Schramm Department of Biological Sciences, Microbiology, University of Aarhus, Denmark Aquatic macrophytes such as Littorella uniflora and Lobelia dortmanna release oxygen from...... their roots and thereby stimulate nitrification and coupled nitrification-denitrification in their rhizosphere. However, oxygen release and inorganic nitrogen concentrations differ markedly between macrophyte species. We therefore propose (i) that the rhizosphere of freshwater macrophytes harbours a species......-specific microbial community distinct from that of unvegetated sediment and (ii) that aquatic macrophytes have an impact on abundance and activity of nitrifying and denitrifying bacteria in freshwater sediment. The goal of this study was to test these hypotheses for the key functional group for coupled nitrification...

  19. Molecular identification of microorganisms associated to the rhizosphere of vanilla plants in Colombia

    International Nuclear Information System (INIS)

    Alvarez Lopez, Claudia Lucia; Osorio Vega, Nelson Walter; Marin Montoya, Mauricio Alejandro

    2013-01-01

    The cultivation of vanilla (Vanilla planifolia) is highly promising in Colombia, but more research is needed on its agronomical management and beneficial microorganisms that grow associated to its rhizosphere, on which the plant depends for its nutrition and growth. This study involved the identification of microorganisms associated to the rhizosphere of vanilla plants in a crop located in Sopetran, Colombia. The microbes were isolated in selective media for functional groups such as cellulolytic, proteolytic, inorganic and organic phosphate (phytate) solubilizers, and asymbiotic nitrogen fixing bacteria. After isolation and purification, 109 microbial isolates were obtained. DNA was extracted from 52 selected isolates for molecular identification based on its and 16s RDNA sequencing, for fungi and bacteria, respectively. The diversity of rhizosphere microorganisms found was significant. Bacteria such as Bacillus Megaterium, Pseudomonas koreensis and Acinetobacter sp., and the Fungus Plectosphaerella sp., may have a high potential to be used as biofertilizers to improve vanilla plant nutrition and growth.

  20. [Effects of tobacco garlic crop rotation and intercropping on tobacco yield and rhizosphere soil phosphorus fractions].

    Science.gov (United States)

    Tang, Biao; Zhang, Xi-zhou; Yang, Xian-bin

    2015-07-01

    A field plot experiment was conducted to investigate the tobacco yield and different forms of soil phosphorus under tobacco garlic crop rotation and intercropping patterns. The results showed that compared with tobacco monoculture, the tobacco yield and proportion of middle/high class of tobacco leaves to total leaves were significantly increased in tobacco garlic crop rotation and intercropping, and the rhizosphere soil available phosphorus contents were 1.3 and 1.7 times as high as that of tobacco monoculture at mature stage of lower leaf. For the inorganic phosphorus in rhizosphere and non-rhizosphere soil in different treatments, the contents of O-P and Fe-P were the highest, followed by Ca2-P and Al-P, and Ca8-P and Ca10-P were the lowest. Compared with tobacco monoculture and tobacco garlic crop intercropping, the Ca2-P concentration in rhizosphere soil under tobacco garlic crop rotation at mature stage of upper leaf, the Ca8-P concentration at mature stage of lower leaf, and the Ca10-P concentration at mature stage of middle leaf were lowest. The Al-P concentrations under tobacco garlic crop rotation and intercropping were 1.6 and 1.9 times, and 1.2 and 1.9 times as much as that under tobacco monoculture in rhizosphere soil at mature stages of lower leaf and middle leaf, respectively. The O-P concentrations in rhizosphere soil under tobacco garlic crop rotation and intercropping were significantly lower than that under tobacco monoculture. Compared with tobacco garlic crop intercropping, the tobacco garlic crop rotation could better improve tobacco yield and the proportion of high and middle class leaf by activating O-P, Ca10-P and resistant organic phosphorus in soil.

  1. [Effects of transgenic Bt + CpTI cotton on rhizosphere bacteria and ammonia oxidizing bacteria population].

    Science.gov (United States)

    Dong, Lianhua; Meng, Ying; Wang, Jing

    2014-03-04

    The effect of transgenic cotton on the rhizosphere bacteria can be important to the risk assessment for the genetically modified crops. We studied the rhizosphere microbial community with cultivating genetically modified cotton. The effects of transgenic Bt + CpTI Cotton (SGK321) and its receptor cotton (SY321) on rhizosphere total bacteria and ammonia oxidizing bacteria population size were studied by using droplet digital PCR. We collected rhizosphere soil before cotton planting and along with the cotton growth stage (squaring stage, flowering stage, belling stage and boll opening stage). There was no significant change on the total bacterial population between the transgenic cotton and the receptor cotton along with the growth stage. However, the abundance of ammonia oxidizing bacteria (AOB) in both type of cottons showed significant difference between different growth stages, and the variation tendency was different. In squaring stage, the numbers of AOB in rhizosphere of SY321 and SGK321 increased 4 and 2 times, respectively. In flowering stage, AOB number in rhizosphere of SY321 significantly decreased to be 5.96 x 10(5) copies/g dry soil, however, that of SGK321 increased to be 1.25 x 10(6) copies/g dry soil. In belling stage, AOB number of SY321 greatly increased to be 1.49 x 10(6) copies/g dry soil, but no significant change was observed for AOB number of SGK321. In boll opening stage, both AOB number of SY321 and SGK321 clearly decreased and they were significantly different from each other. Compared to the non-genetically modified cotton, the change in abundance of ammonia oxidizing bacteria was slightly smooth in the transgenic cotton. Not only the cotton growth stage but also the cotton type caused this difference. The transgenic cotton can slow down the speed of ammonia transformation through impacting the number of AOB, which is advantageous for plant growth.

  2. Fungal Communities in Rhizosphere Soil under Conservation Tillage Shift in Response to Plant Growth

    Directory of Open Access Journals (Sweden)

    Ziting Wang

    2017-07-01

    Full Text Available Conservation tillage is an extensively used agricultural practice in northern China that alters soil texture and nutrient conditions, causing changes in the soil microbial community. However, how conservation tillage affects rhizosphere and bulk soil fungal communities during plant growth remains unclear. The present study investigated the effect of long-term (6 years conservation (chisel plow, zero and conventional (plow tillage during wheat growth on the rhizosphere fungal community, using high-throughput sequencing of the internal transcribed spacer (ITS gene and quantitative PCR. During tillering, fungal alpha diversity in both rhizosphere and bulk soil were significantly higher under zero tillage compared to other methods. Although tillage had no significant effect during the flowering stage, fungal alpha diversity at this stage was significantly different between rhizosphere and bulk soils, with bulk soil presenting the highest diversity. This was also reflected in the phylogenetic structure of the communities, as rhizosphere soil communities underwent a greater shift from tillering to flowering compared to bulk soil communities. In general, less variation in community structure was observed under zero tillage compared to plow and chisel plow treatments. Changes in the relative abundance of the fungal orders Capnodiales, Pleosporales, and Xylariales contributed the highest to the dissimilarities observed. Structural equation models revealed that the soil fungal communities under the three tillage regimes were likely influenced by the changes in soil properties associated with plant growth. This study suggested that: (1 differences in nutrient resources between rhizosphere and bulk soils can select for different types of fungi thereby increasing community variation during plant growth; (2 tillage can alter fungal communities' variability, with zero tillage promoting more stable communities. This work suggests that long-term changes in

  3. Bioavailability enhanced rhizosphere remediation of petroleum hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Marchenko, A.; Vorobyov, A.; Zharikov, G.; Ermolenko, Z.; Dyadishchev, N.; Borovick, R.; Sokolov, M.; Ortega-Calvo, J.J.

    2005-01-01

    Aliphatic, aromatic and polycyclic aromatic oil hydrocarbons are structurally complicated man-caused pollutants that are constantly brought into biosphere. Oil production in Russia, so as all over the world, is connected with pollution of biotopes, ecosystems and agro-landscapes. Presently large funds are allocated either for oil leak prevention or for discharged oil gathering. At the same time, in spite of large necessity in technologies for efficient reconstruction of soil bio-productivity, reliable regional systems of their remediation in situ have not been developed yet. One such method is rhizosphere remediation, a biotechnology, based on the functioning of plant-microbial complexes. Little is known about bioavailability in phyto-remediation systems. Specific bioavailability-promoting mechanisms, operating in soil with hydrocarbon-degrading populations, may be responsible for increased rates of pollutant transformation (increased bacterial adherence to the pollutants, production of bio-surfactants by bacteria or by plants, possible role of chemotaxis). In the course of work collection of 42 chemo-tactically active bio-surfactant producing strain-degraders of petroleum hydrocarbons including polycyclic aromatic hydrocarbons (PAHs) was created. Two representative strains were selected for detailed chemotaxis studies with PAHs (naphthalene, phenanthrene, anthracene, and pyrene), bacterial lipopolysaccharide and root exudates from seven different plants. These strains are produce the bio-surfactants (rhamno-lipid). The chemotactic response was quantified with a capillary and densitometric chemotaxis assay. Surface tension of cultural liquid was measured after cultivation of strains in the presence of hexadecane or phenanthrene with the use of a ring tensiometer. Before measuring of surface tension microbial cells were collected from liquid culture by centrifugation. Total petroleum Hydrocarbons (TPH) in soil were analyzed by infra-red spectroscopy method. PAHs

  4. Bioavailability enhanced rhizosphere remediation of petroleum hydrocarbon contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Marchenko, A.; Vorobyov, A.; Zharikov, G.; Ermolenko, Z.; Dyadishchev, N.; Borovick, R.; Sokolov, M. [Research Centre for Toxicology and Hygienic Regulation of Biopreparations, Moscow region (Russian Federation); Ortega-Calvo, J.J. [Instituto de Recursos Naturales y Agrobiologia, CSIC, Sevilla (Spain)

    2005-07-01

    Aliphatic, aromatic and polycyclic aromatic oil hydrocarbons are structurally complicated man-caused pollutants that are constantly brought into biosphere. Oil production in Russia, so as all over the world, is connected with pollution of biotopes, ecosystems and agro-landscapes. Presently large funds are allocated either for oil leak prevention or for discharged oil gathering. At the same time, in spite of large necessity in technologies for efficient reconstruction of soil bio-productivity, reliable regional systems of their remediation in situ have not been developed yet. One such method is rhizosphere remediation, a biotechnology, based on the functioning of plant-microbial complexes. Little is known about bioavailability in phyto-remediation systems. Specific bioavailability-promoting mechanisms, operating in soil with hydrocarbon-degrading populations, may be responsible for increased rates of pollutant transformation (increased bacterial adherence to the pollutants, production of bio-surfactants by bacteria or by plants, possible role of chemotaxis). In the course of work collection of 42 chemo-tactically active bio-surfactant producing strain-degraders of petroleum hydrocarbons including polycyclic aromatic hydrocarbons (PAHs) was created. Two representative strains were selected for detailed chemotaxis studies with PAHs (naphthalene, phenanthrene, anthracene, and pyrene), bacterial lipopolysaccharide and root exudates from seven different plants. These strains are produce the bio-surfactants (rhamno-lipid). The chemotactic response was quantified with a capillary and densitometric chemotaxis assay. Surface tension of cultural liquid was measured after cultivation of strains in the presence of hexadecane or phenanthrene with the use of a ring tensiometer. Before measuring of surface tension microbial cells were collected from liquid culture by centrifugation. Total petroleum Hydrocarbons (TPH) in soil were analyzed by infra-red spectroscopy method. PAHs

  5. Community composition and activity of anaerobic ammonium oxidation bacteria in the rhizosphere of salt-marsh grass Spartina alterniflora.

    Science.gov (United States)

    Zheng, Yanling; Hou, Lijun; Liu, Min; Yin, Guoyu; Gao, Juan; Jiang, Xiaofen; Lin, Xianbiao; Li, Xiaofei; Yu, Chendi; Wang, Rong

    2016-09-01

    Anaerobic ammonium oxidation (anammox) as an important nitrogen removal pathway has been investigated in intertidal marshes. However, the rhizosphere-driven anammox process in these ecosystems is largely overlooked so far. In this study, the community dynamics and activities of anammox bacteria in the rhizosphere and non-rhizosphere sediments of salt-marsh grass Spartina alterniflora (a widely distributed plant in estuaries and intertidal ecosystems) were investigated using clone library analysis, quantitative PCR assay, and isotope-tracing technique. Phylogenetic analysis showed that anammox bacterial diversity was higher in the non-rhizosphere sediments (Scalindua and Kuenenia) compared with the rhizosphere zone (only Scalindua genus). Higher abundance of anammox bacteria was detected in the rhizosphere (6.46 × 10(6)-1.56 × 10(7) copies g(-1)), which was about 1.5-fold higher in comparison with that in the non-rhizosphere zone (4.22 × 10(6)-1.12 × 10(7) copies g(-1)). Nitrogen isotope-tracing experiments indicated that the anammox process in the rhizosphere contributed to 12-14 % N2 generation with rates of 0.43-1.58 nmol N g(-1) h(-1), while anammox activity in the non-rhizosphere zone contributed to only 4-7 % N2 production with significantly lower activities (0.28-0.83 nmol N g(-1) h(-1)). Overall, we propose that the rhizosphere microenvironment in intertidal marshes might provide a favorable niche for anammox bacteria and thus plays an important role in nitrogen cycling.

  6. Roseomonas oryzae sp. nov., isolated from paddy rhizosphere soil.

    Science.gov (United States)

    Ramaprasad, E V V; Sasikala, Ch; Ramana, Ch V

    2015-10-01

    A non-motile, coccus-shaped, pale-pink-pigmented bacterium, designated strain JC288T, was isolated from a paddy rhizosphere soil collected from Western Ghats, Kankumbi, Karnataka, India. Cells were found to be Gram-stain-negative, and catalase- and oxidase-positive; the major fatty acids were C16 : 0, C16 : 1ω7c/C16 : 1ω6c, C18 : 1ω7c/C18 : 1ω6c and C18 : 1 2-OH. The predominant respiratory quinone was Q-10 and the genomic DNA G+C content was 67.5 mol%. Strain JC288T contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, four unidentified aminolipids, three unidentified phospholipids, two unidentified lipids, an aminophospholipid and a glycolipid. Hydroxyspirilloxanthin was the major carotenoid of strain JC288T. 16S rRNA gene sequence comparisons indicated that strain JC288T represents a member of the genus Roseomonas within the family Acetobacteraceae of the phylum Proteobacteria. Strain JC288T shared the highest 16S rRNA gene sequence similarity with Roseomonas rhizosphaerae YW11T (97.3 %), Roseomonas aestuarii JC17T (97.1 %), Roseomonas cervicalis CIP 104027T (95.9 %) and other members of the genus Roseomonas ( < 95.5 %). The distinct genomic difference and morphological, physiological and chemotaxonomic differences from the previously described taxa support the classification of strain JC288T as a representative of a novel species of the genus Roseomonas, for which the name Roseomonas oryzae sp. nov. is proposed. The type strain is JC288T ( = KCTC 42542T = LMG 28711T).

  7. Biological control of potato black scurf by rhizosphere associated bacteria

    Directory of Open Access Journals (Sweden)

    Mohsin Tariq

    2010-06-01

    Full Text Available The present work was carried out to study the potential of plant rhizosphere associated bacteria for the biocontrol of potato black scurf disease caused by Rhizoctonia solani Khun AG-3. A total of twenty-eight bacteria isolated from diseased and healthy potato plants grown in the soil of Naran and Faisalabad, Pakistan were evaluated for their antagonistic potential. Nine bacterial strains were found to be antagonistic in vitro, reduced the fungal growth and caused the lysis of sclerotia of R. solani in dual culture assay as well as in extracellular metabolite efficacy test. The selected antagonistic strains were further tested for the production and efficacy of volatile and diffusible antibiotics, lytic enzymes and siderophores against R. solani. Selected antagonistic bacteria were also characterized for growth promoting attributes i.e., phosphate solubilization, nitrogen fixation and indole acetic acid production. Biocontrol efficacy and percent yield increase by these antagonists was estimated in greenhouse experiment. Statistical analysis showed that two Pseudomonas spp. StT2 and StS3 were the most effective with 65.1 and 73.9 percent biocontrol efficacy, as well as 87.3 and 98.3 percent yield increase, respectively. Potential antagonistic bacterial strain StS3 showed maximum homology to Pseudomonas sp. as determined by 16S rRNA gene sequencing. These results suggest that bacterial isolates StS3 and StT2 have excellent potential to be used as effective biocontrol agents promoting plant growth with reduced disease incidence.

  8. Unleashing Natural Competence in Lactococcus lactis by Induction of the Competence Regulator ComX

    Science.gov (United States)

    Mulder, Joyce; Wels, Michiel; Kuipers, Oscar P.; Bron, Peter A.

    2017-01-01

    ABSTRACT In biotechnological workhorses like Streptococcus thermophilus and Bacillus subtilis, natural competence can be induced, which facilitates genetic manipulation of these microbes. However, in strains of the important dairy starter Lactococcus lactis, natural competence has not been established to date. However, in silico analysis of the complete genome sequences of 43 L. lactis strains revealed complete late competence gene sets in 2 L. lactis subsp. cremoris strains (KW2 and KW10) and at least 10 L. lactis subsp. lactis strains, including the model strain IL1403 and the plant-derived strain KF147. The remainder of the strains, including all dairy isolates, displayed genomic decay in one or more of the late competence genes. Nisin-controlled expression of the competence regulator comX in L. lactis subsp. lactis KF147 resulted in the induction of expression of the canonical competence regulon and elicited a state of natural competence in this strain. In contrast, comX expression in L. lactis NZ9000, which was predicted to encode an incomplete competence gene set, failed to induce natural competence. Moreover, mutagenesis of the comEA-EC operon in strain KF147 abolished the comX-driven natural competence, underlining the involvement of the competence machinery. Finally, introduction of nisin-inducible comX expression into nisRK-harboring derivatives of strains IL1403 and KW2 allowed the induction of natural competence in these strains also, expanding this phenotype to other L. lactis strains of both subspecies. IMPORTANCE Specific bacterial species are able to enter a state of natural competence in which DNA is taken up from the environment, allowing the introduction of novel traits. Strains of the species Lactococcus lactis are very important starter cultures for the fermentation of milk in the cheese production process, where these bacteria contribute to the flavor and texture of the end product. The activation of natural competence in this industrially

  9. Degradation of polychlorinated biphenyls in the rhizosphere of rape, Brassica napus L.

    Science.gov (United States)

    Javorská, Hana; Tlustos, Pavel; Kaliszová, Regina

    2009-06-01

    The objective of this study was to investigate the rhizosphere effect of rape plants on polychlorinated biphenyls (PCB) dissipation in soils spiked with seven indicator congeners. Depletion of PCB in the rhizosphere was significantly higher in the soil with lower organic matter content. While in the Chernozem soil, 87% of PCB related to bulk soil were found in the 1st mm from roots, only 62%-69% were found in the Fluvisol soil with no significant influence of increased initial PCB concentration. Further from the roots, the concentration of lower chlorinated congeners decreased, which indicates their greater biodegradation in comparison with more chlorinated ones.

  10. Trait emotional intelligence influences on academic achievement and school behaviour.

    Science.gov (United States)

    Mavroveli, Stella; Sánchez-Ruiz, María José

    2011-03-01

    BACKGROUND. Trait emotional intelligence (trait EI or trait emotional self-efficacy) refers to individuals' emotion-related self-perceptions (Petrides, Furnham, & Mavroveli, 2007). The children's trait EI sampling domain provides comprehensive coverage of their affective personality. Preliminary evidence shows that the construct has important implications for children's psychological and behavioural adjustment. AIMS. This study investigates the associations between trait EI and school outcomes, such as performance in reading, writing, and maths, peer-rated behaviour and social competence, and self-reported bullying behaviours in a sample of primary school children. It also examines whether trait EI scores differentiate between children with and without special educational needs (SEN). SAMPLE. The sample comprised 565 children (274 boys and 286 girls) between the ages of 7 and 12 (M((age)) = 9.12 years, SD= 1.27 years) attending three English state primary schools. METHOD. Pupils completed the Trait Emotional Intelligence Questionnaire-Child Form (TEIQue-CF), the Guess Who peer assessment, the Peer-Victimization Scale, and the Bullying Behaviour Scale. Additional data on achievement and SEN were collected from the school archives. RESULTS. As predicted by trait EI theory, associations between trait EI and academic achievement were modest and limited to Year 3 children. Higher trait EI scores were related to more nominations from peers for prosocial behaviours and fewer nominations for antisocial behaviour as well as lower scores on self-reported bulling behaviours. Furthermore, SEN students scored lower on trait EI compared to students without SEN. CONCLUSIONS. Trait EI holds important and multifaceted implications for the socialization of primary schoolchildren. ©2010 The British Psychological Society.

  11. Effect of soil water content on spatial distribution of root exudates and mucilage in the rhizosphere

    Science.gov (United States)

    Holz, Maire; Zarebanadkouki, Mohsen; Kuzyakov, Yakov; Carminati, Andrea

    2016-04-01

    Water and nutrients are expected to become the major factors limiting food production. Plant roots employ various mechanisms to increase the access to these limited soil resources. Low molecular root exudates released into the rhizosphere increase nutrient availability, while mucilage improves water availability under low moisture conditions. However, studies on the spatial distribution and quantification of exudates in soil are scarce. Our aim was therefore to quantify and visualize root exudates and mucilage distribution around growing roots using neutron radiography and 14C imaging at different levels of water stress. Maize plants were grown in rhizotrons filled with a silty soil and were exposed to varying soil conditions, from optimal to dry. Mucilage distribution around the roots was estimated from the profiles of water content in the rhizosphere - note that mucilage increases the soil water content. The profiles of water content around different root types and root ages were measured with neutron radiography. Rhizosphere extension was approx. 0.7 mm and did not differ between wet and dry treatments. However, water content (i.e. mucilage concentration) in the rhizosphere of plants grown in dry soils was higher than for plants grown under optimal conditions. This effect was particularly pronounced near the tips of lateral roots. The higher water contents near the root are explained as the water retained by mucilage. 14C imaging of root after 14CO2 labeling of shoots (Pausch and Kuzyakov 2011) was used to estimate the distribution of all rhizodeposits. Two days after labelling, 14C distribution was measured using phosphor-imaging. To quantify 14C in the rhizosphere a calibration was carried out by adding given amounts of 14C-glucose to soil. Plants grown in wet soil transported a higher percentage of 14C to the roots (14Croot/14Cshoot), compared to plants grown under dry conditions (46 vs. 36 %). However, the percentage of 14C allocated from roots to

  12. Mammographer personality traits – elements of the optimal ...

    African Journals Online (AJOL)

    2014-11-07

    Nov 7, 2014 ... competency, good communication skills and the ability to limit patient anxiety and ... personality traits in mammographers in order of importance .... 1 (trust) is high, with a Cronbach's alpha of 0.911 and inter- item reliability ...

  13. [Effects of short-term elevated CO2 concentration and drought stress on the rhizosphere effects of soil carbon, nitrogen and microbes of Bothriochloa ischaemum.

    Science.gov (United States)

    Xiao, Lie; Liu, Guo Bin; Li, Peng; Xue, Sha

    2017-10-01

    A water control pot experiment was conducted in climate controlled chambers to study soil carbon, nitrogen and microbial community structure and their rhizosphere effects in the rhizosphere and non rhizosphere soil of Bothriochloa ischaemum at elevated CO2 concentrations (800 μmol·mol -1 ) under three water regimes, i.e., well watered (75%-80% of field capacity, FC), moderate drought stress (55%-60% of FC), and severe drought stress (35%-40% of FC). The results showed that elevated CO2 concentration and drought stress did not have significant impacts on the content of soil organic carbon, total nitrogen or dissolved organic carbon (DOC) in the rhizosphere and bulk soils or their rhizosphere effects. Elevated CO2 concentration significantly decreased dissolved organic nitrogen (DON) content in the rhizosphere soil under moderate drought stress, increased DOC/DON, and significantly increased the negative rhizosphere effect of DON and positive rhizosphere effect of DOC/DON. Drought stress and elevated CO2 concentration did not have significant impacts on the rhizosphere effect of total and bacterial phospholipid fatty acids (PLFA). Drought stress under elevated CO2 concentration significantly increased the G + /G - PLFA in the rhizosphere soil and decreased the G + /G - PLFA in the bulk soil, so its rhizosphere effect significantly increased, indicating that the soil microbial community changed from chemoautotroph microbes to heterotrophic microbes.

  14. Sphingomonas rhizophila sp. nov., isolated from rhizosphere of Hibiscus syriacus.

    Science.gov (United States)

    Yan, Zheng-Fei; Lin, Pei; Won, Kyung-Hwa; Li, Chang-Tian; Park, GyungSoo; Chin, ByungSun; Kook, MooChang; Wang, Qi-Jun; Yi, Tae-Hoo

    2018-02-01

    A Gram-stain-negative, aerobic, non-motile, rod-shaped, catalase-positive and oxidase-positive bacteria (THG-T61 T ), was isolated from rhizosphere of Hibiscus syriacus. Growth occurred at 10-37 °C (optimum 25-30 °C), at pH 5.0-9.0 (optimum 7.0) and in the presence of 0-2.0 % NaCl (optimum without NaCl supplement). Based on 16S rRNA gene sequence analysis, the nearest phylogenetic neighbours of strain THG-T61 T were identified as Sphingomonas ginsengisoli KCTC 12630 T (97.9 %), Sphingomonas jaspsi DSM 18422 T (97.8 %), Sphingomonas astaxanthinifaciens NBRC 102146 T (97.4 %), Sphingomonassediminicola KCTC 12629 T (97.2 %), 'Sphingomonas swuensis' KCTC 12336 (97.1 %) and Sphingomonas daechungensis KCTC 23718 T (96.9 %). The isoprenoid quinone was ubiquinone-10 (Q-10). The major fatty acids were C16 : 0, C17 : 1ω6c, summed feature 4 (iso-C15 : 0 2-OH and/or C16 : 1ω7c) and summed feature 7 (C18 : 1ω7c, C18 : 1ω9t and/or C18 : 1ω12t). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, sphingoglycolipid, one unidentified lipid, one unidentified phospholipid, one unidentified glycolipid and one unidentified phosphoglycolipid. The polyamine was homospermidine. The DNA G+C content of strain THG-T61 T was 65.6 mol%. The DNA-DNA relatedness values between strain THG-T61 T and its closest reference strains were less than 49.2 %, which is lower than the threshold value of 70 %. Therefore, strain THG-T61 T represents a novel species of the genus Sphingomonas, for which the name Sphingomonas rhizophila sp. nov. is proposed. The type strain is THG-T61 T (=KACC 19189 T =CCTCC AB 2016245 T ).

  15. Bacteriocins from the rhizosphere microbiome – from an agriculture perspective

    Directory of Open Access Journals (Sweden)

    Sowmyalakshmi eSubramanian

    2015-10-01

    Cl stress, and was most effective at 100 mM NaCl. The 48 h post germination proteome suggested efficient and speedier partitioning of storage proteins, activation of carbon, nitrogen and energy metabolisms in Th17 treated seeds both under optimal and 100 mM NaCl. This review focuses on the bacteriocins produced by plant-rhizosphere colonizers and plant-pathogenic bacteria, that might have uses in agriculture, veterinary and human medicine.

  16. Nutrient depletion from rhizosphere solution by maize grown in soil with long-term compost amendment

    Science.gov (United States)

    Improved understanding of rhizosphere chemistry will enhance our ability to model nutrient dynamics and on a broader scale, to develop effective management strategies for applied plant nutrients. With a controlled-climate study, we evaluated in situ changes in macro-nutrient concentrations in the rh...

  17. Survival of Potentially Pathogenic Human-Associated Bacteria in the Rhizosphere of Hydroponically Grown Wheat

    Science.gov (United States)

    Morales, Anabelle; Garland, Jay L.; Lim, Daniel V.

    1996-01-01

    Plants may serve as reservoirs for human-associated bacteria (H-AB) in long-term space missions containing bioregenerative life support systems. The current study examined the abilities of five human-associated potential pathogens, Pseudomonas aeruginosa, Pseudomonas cepacia, Staphylococcus aureus, Streptococcus pyogenes, and Escherichia coli, to colonize and grow in the rhizosphere of hydroponically grown wheat, a candidate crop for life support. All of these bacteria have been recovered from past NASA missions and present potential problems for future missions. The abilities of these organisms to adhere to the roots of axenic five-day-old wheat (Triticum aestivum L. cv. Yecora rojo) were evaluated by enumeration of the attached organisms after a one hour incubation of roots in a suspension (approximately 10(exp 8 cu/ml)) of the H-AB. Results showed that a greater percentage of P. aeruginosa cells adhered to the wheat roots than the other four H-AB. Similarly incubated seedlings were also grown under attempted axenic conditions for seven days to examine the potential of each organism to proliferate in the rhizosphere (root colonization capacity). P. cepacia and P. aeruginosa showed considerable growth. E. coli and S. aureus showed no significant growth, and S. pyogenes died off in the wheat rhizosphere. Studies examining the effects of competition on the survival of these microorganisms indicated that P. aeruginosa was the only organism that survived in the rhizosphere of hydroponically grown wheat in the presence of different levels of microbial competition.

  18. Plant growth and phenolic compounds in the rhizosphere soil of wild oat (Avena fatua L.

    Directory of Open Access Journals (Sweden)

    Anna eIannucci

    2013-12-01

    Full Text Available The objectives of this study were to determine the pattern of dry matter (DM accumulation and the evolution of phenolic compounds in the rhizosphere soil from tillering to the ripe seed stages of wild oat (Avena fatua L., a widespread annual grassy weed. Plants were grown under controlled conditions and harvested 13 times during the growing season. At each harvest, shoot and root DM and phenolic compounds in the rhizosphere soil were determined. The maximum DM production (12.6 g/plant was recorded at 122 days after sowing (DAS; kernel hard stage. The increase in total aerial DM with age coincided with reductions in the leaf/stem and source/sink ratios, and an increase in the shoot/root ratio. HPLC analysis shows production of seven phenolic compounds in the rhizosphere soil of wild oat, in order of their decreasing levels: syringic acid, vanillin, 4-hydroxybenzoic acid, syringaldehyde, ferulic acid, p-cumaric acid and vanillic acid. The seasonal distribution for the total phenolic compounds showed two peaks of maximum concentrations, at the stem elongation stage (0.71 μg/kg; 82 DAS and at the heading stage (0.70 μg/kg; 98 DAS. Thus wild oat roots exude allelopathic compounds, and the levels of these phenolics in the rhizosphere soil vary according to plant maturity.

  19. The Rhizosphere Bacterial Microbiota of Vitis vinifera cv. Pinot Noir in an Integrated Pest Management Vineyard.

    Science.gov (United States)

    Novello, Giorgia; Gamalero, Elisa; Bona, Elisa; Boatti, Lara; Mignone, Flavio; Massa, Nadia; Cesaro, Patrizia; Lingua, Guido; Berta, Graziella

    2017-01-01

    Microorganisms associated with Vitis vinifera (grapevine) can affect its growth, health and grape quality. The aim of this study was to unravel the biodiversity of the bacterial rhizosphere microbiota of grapevine in an integrated pest management vineyard located in Piedmont, Italy. Comparison between the microbial community structure in the bulk and rhizosphere soil (variable: space) were performed. Moreover, the possible shifts of the bulk and rhizosphere soil microbiota according to two phenological stages such as flowering and early fruit development (variable: time) were characterized. The grapevine microbiota was identified using metagenomics and next-generation sequencing. Biodiversity was higher in the rhizosphere than in the bulk soil, independent of the phenological stage. Actinobacteria were the dominant class with frequencies ≥ 50% in all the soil samples, followed by Proteobacteria, Gemmatimonadetes, and Bacteroidetes. While Actinobacteria and Proteobacteria are well-known as being dominant in soil, this is the first time the presence of Gemmatimonadetes has been observed in vineyard soils. Gaiella was the dominant genus of Actinobacteria in all the samples. Finally, the microbiota associated with grapevine differed from the bulk soil microbiota and these variations were independent of the phenological stage of the plant.

  20. The Rhizosphere Bacterial Microbiota of Vitis vinifera cv. Pinot Noir in an Integrated Pest Management Vineyard

    Directory of Open Access Journals (Sweden)

    Giorgia Novello

    2017-08-01

    Full Text Available Microorganisms associated with Vitis vinifera (grapevine can affect its growth, health and grape quality. The aim of this study was to unravel the biodiversity of the bacterial rhizosphere microbiota of grapevine in an integrated pest management vineyard located in Piedmont, Italy. Comparison between the microbial community structure in the bulk and rhizosphere soil (variable: space were performed. Moreover, the possible shifts of the bulk and rhizosphere soil microbiota according to two phenological stages such as flowering and early fruit development (variable: time were characterized. The grapevine microbiota was identified using metagenomics and next-generation sequencing. Biodiversity was higher in the rhizosphere than in the bulk soil, independent of the phenological stage. Actinobacteria were the dominant class with frequencies ≥ 50% in all the soil samples, followed by Proteobacteria, Gemmatimonadetes, and Bacteroidetes. While Actinobacteria and Proteobacteria are well-known as being dominant in soil, this is the first time the presence of Gemmatimonadetes has been observed in vineyard soils. Gaiella was the dominant genus of Actinobacteria in all the samples. Finally, the microbiota associated with grapevine differed from the bulk soil microbiota and these variations were independent of the phenological stage of the plant.

  1. Screening of endoglucanase-producing bacteria in the saline rhizosphere of Rhizophora mangle

    Directory of Open Access Journals (Sweden)

    André Luís Braghini Sá

    2014-01-01

    Full Text Available In screening the culturable endoglucanase-producing bacteria in the rhizosphere of Rhizophora mangle, we found a prevalence of genera Bacillus and Paenibacillus. These bacteria revealed different activities in endoglucolysis and biofilm formation when exposed to specific NaCl concentrations, indicating modulated growth under natural variations in mangrove salinity.

  2. Community Composition and Abundance of Anammox Bacteria in Cattail Rhizosphere Sediments at Three Phenological Stages.

    Science.gov (United States)

    Zhou, Xiaohong; Zhang, Jinping; Wen, Chunzi

    2017-11-01

    The distribution of anammox bacteria in rhizosphere sediments of cattail (Typha orientalis) at different phenological stages was investigated. Results showed that the number of 16S rRNA gene copies of the anammox bacteria was considerably higher in the rhizosphere sediment than in the nonrhizosphere sediment and control sediment. The abundances of the anammox bacteria exhibited striking temporal variations in the three different cattail phenological stages. In addition, the Chao1 and Shannon H indexes of the anammox bacteria in cattail rhizosphere sediments had evident spatial and temporal variations at different phenological stages. Four anammox genera (Brocadia, Kuenenia, Jettenia, and a new cluster) were detected and had proportions of 34.18, 45.57, 0.63, and 19.62%, respectively. The CCA analysis results indicated that Cu, TN, Pb, and Zn were pivotal factors that affect anammox bacteria composition. The PCoA analysis results indicated that the community structure at the rhizosphere and nonrhizosphere sediments collected on July was relatively specific and was different from sediments collected on other months, suggesting that cattail can influence the community structures of the anammox bacteria at the maturity stage.

  3. Diversity and activity of biosurfactant-producing Pseudomonas in the rhizosphere of black pepper in Vietnam

    NARCIS (Netherlands)

    Tran, H.; Kruijt, M.; Raaijmakers, J.M.

    2008-01-01

    Aims: Phytophthora capsici is a major pathogen of black pepper and zoospores play an important role in the infection process. Fluorescent pseudomonads that produce biosurfactants with zoosporicidal activities were isolated from the black pepper rhizosphere in Vietnam, and their genotypic diversity

  4. Evaluation of dissipation gradients of polycyclic aromatic hydrocarbons in rice rhizosphere utilizing a sequential extraction procedure

    International Nuclear Information System (INIS)

    Ma Bin; Wang Jiaojiao; Xu Minmin; He Yan; Wang Haizhen; Wu Laosheng; Xu Jianming

    2012-01-01

    The aim of this study was to evaluate the spatial dissipation gradient of PAHs, including phenanthrene, pyrene, and benzo[a]pyrene, with various bioavailability represented with sequential extraction. Dissipation rates of PAHs in the rhizosphere were greater than those in the bulk soil. The n-butanol extracted fraction showed a general trend of dissipation during phytoremediation. Moreover, the formation of bound PAH residues was inhibited in the rhizosphere. While concerning the PAH toxicity, the reduction rates of PAH toxicity were significantly greater than total soil PAH concentrations. Microbial biomass was the highest at four mm away from the root surface. However, the PAH dissipation rates were the highest at one mm and two mm away from the root surface in high and low PAH treatments, respectively. These results suggest that rhizoremediation with rice is a useful approach to reduce the toxicity of PAHs in soil. - Highlights: ► Dissipation gradients were different in soils spiked with different PAHs concentrations. ► Butanol extracted fraction indicated the remediation in rhizosphere. ► Toxicity of PAHs was more efficiently reduced than total concentration. ► Promotion of PAHs degraders was not synchronized with microbial biomass. - Stimulation of PAH degradation in rice rhizosphere was not simultaneous with microbial biomass.

  5. The Antimicrobial Volatile Power of the Rhizospheric Isolate Pseudomonas donghuensis P482.

    NARCIS (Netherlands)

    Ossowicki, A.; Jafra, S.; Garbeva, P.V.

    2017-01-01

    Soil and rhizosphere bacteria produce an array of secondary metabolites including a wide range of volatile organic compounds (VOCs). These compounds play an important role in the long-distance interactions and communication between (micro)organisms. Furthermore, bacterial VOCs are involved in plant

  6. Soil and Cultivar Type Shape the Bacterial Community in the Potato Rhizosphere

    NARCIS (Netherlands)

    Inceoglu, Ozgul; Salles, Joana Falcao; van Elsas, Jan Dirk

    The rhizospheres of five different potato cultivars (including a genetically modified cultivar) obtained from a loamy sand soil and two from a sandy peat soil, next to corresponding bulk soils, were studied with respect to their community structures and potential function. For the former analyses,

  7. Microbial electricity generation in rice paddy fields: recent advances and perspectives in rhizosphere microbial fuel cells.

    Science.gov (United States)

    Kouzuma, Atsushi; Kaku, Nobuo; Watanabe, Kazuya

    2014-12-01

    Microbial fuel cells (MFCs) are devices that use living microbes for the conversion of organic matter into electricity. MFC systems can be applied to the generation of electricity at water/sediment interfaces in the environment, such as bay areas, wetlands, and rice paddy fields. Using these systems, electricity generation in paddy fields as high as ∼80 mW m(-2) (based on the projected anode area) has been demonstrated, and evidence suggests that rhizosphere microbes preferentially utilize organic exudates from rice roots for generating electricity. Phylogenetic and metagenomic analyses have been conducted to identify the microbial species and catabolic pathways that are involved in the conversion of root exudates into electricity, suggesting the importance of syntrophic interactions. In parallel, pot cultures of rice and other aquatic plants have been used for rhizosphere MFC experiments under controlled laboratory conditions. The findings from these studies have demonstrated the potential of electricity generation for mitigating methane emission from the rhizosphere. Notably, however, the presence of large amounts of organics in the rhizosphere drastically reduces the effect of electricity generation on methane production. Further studies are necessary to evaluate the potential of these systems for mitigating methane emission from rice paddy fields. We suggest that paddy-field MFCs represent a promising approach for harvesting latent energy of the natural world.

  8. Screening of endoglucanase-producing bacteria in the saline rhizosphere of Rhizophora mangle

    Science.gov (United States)

    Sá, André Luís Braghini; Dias, Armando Cavalcante Franco; Quecine, Maria Carolina; Cotta, Simone Raposo; Fasanella, Cristiane Cipola; Andreote, Fernando Dini; de Melo, Itamar Soares

    2014-01-01

    In screening the culturable endoglucanase-producing bacteria in the rhizosphere of Rhizophora mangle, we found a prevalence of genera Bacillus and Paenibacillus. These bacteria revealed different activities in endoglucolysis and biofilm formation when exposed to specific NaCl concentrations, indicating modulated growth under natural variations in mangrove salinity. PMID:24948930

  9. How genetic modification of roots affects rhizosphere processes and plant performance

    NARCIS (Netherlands)

    Kabouw, P.; Van Dam, N.M.; Van der Putten, W.H.; Biere, A.

    2012-01-01

    Genetic modification of plants has become common practice. However, root-specific genetic modifications have only recently been advocated. Here, a review is presented regarding how root-specific modifications can have both plant internal and rhizosphere-mediated effects on aboveground plant

  10. Potential rates of ammonium oxidation, nitrite oxidation, nitrate reduction and denitrification in the young barley rhizosphere

    DEFF Research Database (Denmark)

    Højberg, Ole; Binnerup, S. J.; Sørensen, Jan

    1996-01-01

    Potential activities (enzyme contents) of ammonium (NH4+) oxidizing, nitrite (NO2-) oxidizing, nitrate (NO3-) reducing and denitrifying bacteria were measured in bulk and rhizosphere soil obtained from young barley plants in the field. The activities as well as pools of inorganic N (NH4+, NO2...

  11. Effect of nematodes on rhizosphere colonization by seed-applied bacteria.

    Science.gov (United States)

    Knox, Oliver G G; Killham, Ken; Artz, Rebekka R E; Mullins, Chris; Wilson, Michael

    2004-08-01

    There is much interest in the use of seed-applied bacteria for biocontrol and biofertilization, and several commercial products are available. However, many attempts to use this strategy fail because the seed-applied bacteria do not colonize the rhizosphere. Mechanisms of rhizosphere colonization may involve active bacterial movement or passive transport by percolating water or plant roots. Transport by other soil biota is likely to occur, but this area has not been well studied. We hypothesized that interactions with soil nematodes may enhance colonization. To test this hypothesis, a series of microcosm experiments was carried out using two contrasting soils maintained under well-defined physical conditions where transport by mass water flow could not occur. Seed-applied Pseudomonas fluorescens SBW25 was capable of rhizosphere colonization at matric potentials of -10 and -40 kPa in soil without nematodes, but colonization levels were substantially increased by the presence of nematodes. Our results suggest that nematodes can have an important role in rhizosphere colonization by bacteria in soil.

  12. Experimental evidence of two mechanisms coupling leaf-level C assimilation to rhizosphere CO2 release

    Science.gov (United States)

    Zachary Kayler; Claudia Keitel; Kirstin Jansen; Arthur Gessler

    2017-01-01

    The time span needed for carbon fixed by plants to induce belowground responses of root and rhizosphere microbial metabolic processing is of high importance for quantifying the coupling between plant canopy physiology and soil biogeochemistry, but recent observations of a rapid link cannot be explained by new assimilate transport by phloem mass flow alone. We performed...

  13. Rhizosphere biodegradation of xenobiotics: Microbiological study of a rice field polluted by oil refinery residues

    Energy Technology Data Exchange (ETDEWEB)

    Rasolomanana, J.L.; Balandreau, J.

    1987-07-01

    A rice field had been studied in which the disposal of oil residues from a refinery plant seemed to improve rice growth and soil N content. To check the hypothesis that nitrogen fixation by oil-adapted bacteria could explain this observation we isolated and studied dominant diazotrophic bacteria from the rhizosphere of an actively N/sub 2/-fixing rice plant growing on the polluted soil; for this purpose we used an axenic plant as an enrichment step. The rhizosphere did not contain more than 10/sup 5/ N/sub 2/-fixing bacteria per g dry soil, essentially Bacillus polymyxa; one of the isolates, strain R3 could grow and reduce C/sub 2/H/sub 2/ on oil residues only in the presence of glucose or of exudates from an axenic plant (spermosphere model); the presence of R3 diminished the inhibition of rice growth due to the oil residues; R3 nitrogenase activity in the rhizosphere of rice was increased in the presence of these residues. This cometabolism of oil residues in the presence of exudates and their stimulating effect on N/sub 2/ fixation provide a likely explanation for observed positive effects of the disposal of oil residues on arable lands, and are conducive to the hypothesis that rhizosphere cometabolism could greatly enhance soil organic matter turn over and humification rates.

  14. Positive feedback between acidification and organic phosphate mineralization in the rhizosphere of maize (Zea mays L.).

    NARCIS (Netherlands)

    Ding, X.; Fu, L.; Liu, C.; Chen, F.; Hoffland, E.; Shen, J.; Zhang, F.; Feng, G.

    2011-01-01

    Abstract To test the hypothesis that rhizosphere acidification would enhance the hydrolyzation of organic phosphates by increasing phosphatase activity. A Petri dish experiment with sterile agar and a pot experiment with a low P soil were used. In the Petri dish experiment, roots of each plant were

  15. Salt tolerant SUV3 overexpressing transgenic rice plants conserve physicochemical properties and microbial communities of rhizosphere.

    Science.gov (United States)

    Sahoo, Ranjan K; Ansari, Mohammad W; Tuteja, Renu; Tuteja, Narendra

    2015-01-01

    Key concerns in the ecological evaluation of GM crops are undesirably spread, gene flow, other environmental impacts, and consequences on soil microorganism's biodiversity. Numerous reports have highlighted the effects of transgenic plants on the physiology of non-targeted rhizospheric microbes and the food chain via causing adverse effects. Therefore, there is an urgent need to develop transgenics with insignificant toxic on environmental health. In the present study, SUV3 overexpressing salt tolerant transgenic rice evaluated in New Delhi and Cuttack soil conditions for their effects on physicochemical and biological properties of rhizosphere. Its cultivation does not affect soil properties viz., pH, Eh, organic C, P, K, N, Ca, Mg, S, Na and Fe(2+). Additionally, SUV3 rice plants do not cause any change in the phenotype, species characteristics and antibiotic sensitivity of rhizospheric bacteria. The population and/or number of soil organisms such as bacteria, fungi and nematodes were unchanged in the soil. Also, the activity of bacterial enzymes viz., dehydrogenase, invertase, phenol oxidases, acid phosphatases, ureases and proteases was not significantly affected. Further, plant growth promotion (PGP) functions of bacteria such as siderophore, HCN, salicylic acid, IAA, GA, zeatin, ABA, NH3, phosphorus metabolism, ACC deaminase and iron tolerance were, considerably, not influenced. The present findings suggest ecologically pertinent of salt tolerant SUV3 rice to sustain the health and usual functions of the rhizospheric organisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Analysis of the community compositions of rhizosphere fungi in soybeans continuous cropping fields.

    Science.gov (United States)

    Bai, Li; Cui, Jiaqi; Jie, Weiguang; Cai, Baiyan

    2015-11-01

    We used rhizosphere soil sampled from one field during zero year and two years of continuous cropping of high-protein soybean to analyze the taxonomic community compositions of fungi during periods of high-incidence of root rot. Our objectives were to identify the dominant pathogens in order to provide a theoretical basis for the study of pathogenesis as well as control tactics for soybean root rot induced by continuous cropping. A total of 17,801 modified internal transcribed spacer (ITS) sequences were obtained from three different soybean rhizosphere soil samples after zero year and 1 or 2 years of continuous cropping using 454 high-throughput sequencing. The dominant eumycote fungal were identified to be Ascomycota and Basidiomycota in the three soil samples. Continuous cropping of soybean affected the diversity of fungi in rhizosphere soils and increased the abundance of Thelebolus and Mortierellales significantly. Thanatephorus, Fusarium, and Alternaria were identified to be the dominant pathogenic fungal genera in rhizosphere soil from continuously cropped soybean fields. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Rhizosphere microorganisms affected by soil solarization and cover cropping in Capsicum annuum and Phaseolus lunatus agroecosystems

    Science.gov (United States)

    Field experiments were conducted to evaluate the effects of soil solarization or cover cropping on bell pepper (Capsicum annuum) and lima bean (Phaseolus lunatus, L.) rhizosphere microorganisms. In Experiment I, flat surface solarization (FSS), raised bed solarization (RBS), cowpea (Vigna unguiculat...

  18. Diversity of Paenibacillus polymyxa strains isolated from the rhizosphere of maize planted in Cerrado soil

    NARCIS (Netherlands)

    Weid, von der I.; Paiva, E.; Nobrega, A.; Elsas, van J.D.; Seldin, L.

    2000-01-01

    Paenibacillus polymyxa populations present in the rhizosphere of maize (cultivar BR-201) planted in Cerrado soil were investigated in order to assess their diversity at four stages of plant growth. A total of 67 strains were isolated and all strains were identified as P. polymyxa by classical

  19. Phyto-bioconversion of hard coal in the Cynodon dactylon/coal rhizosphere.

    Science.gov (United States)

    Igbinigie, Eric E; Mutambanengwe, Cecil C Z; Rose, Peter D

    2010-03-01

    Fundamental processes involved in the microbial degradation of coal and its derivatives have been well documented. A mutualistic interaction between plant roots and certain microorganisms to aid growth of plants such as Cynodon dactylon (Bermuda grass) on hard coal dumps has recently been suggested. In the present study coal bioconversion activity of nonmycorrhizal fungi was investigated in the C. dactylon/coal rhizosphere. Fungal growth on 2% Duff-agar, gutation formation on nitric acid treated coal and submerged culture activity in nitrogen-rich and -deficient broth formed part of the screening and selection of the fungi. The selected fungal isolates were confirmed to be found in pristine C. dactylon/coal rhizosphere. To simulate bioconversion, a fungal aliquot of this rhizosphere was used as inoculum for a Perfusate fixed bed bioreactor, packed with coal. The results demonstrate an enhanced coal bioconversion facilitated by low molecular weight organics and the bioconversion of coal may be initiated by an introduction of nitrogen moieties to the coal substrate. These findings suggest a phyto-bioconversion of hard coal involving plant and microbes occurring in the rhizosphere to promote the growth of C. dactylon. An understanding of this relationship can serve as a benchmark for coal dumps rehabilitation as well as for the industrial scale bioprocessing of hard coal.

  20. [Correlation between distribution of rhizospheric microorganisms and contents of steroidal saponins of Paris polyphylla var. yunnanensis].

    Science.gov (United States)

    Zhou, Nong; Qi, Wen-hua; Xiao, Guo-sheng; Ding, Bo; Zhang, Hua; Guo, Dong-qin; Shen, Wei

    2015-03-01

    In this paper, the varying pattern of the amount of rhizospheric microorganisms, including bacteria, actinomycetes and fungus, was observed during the cultivation of Paris polyphylla var. yunnanensis. And the correlations between number of rhizospheric microorganisms and the quality of P. polyphylla var. yunnanensis were also studied. The results showed that the rhizospheric microorganism source of P. polyphylla var. yunnanensis was rich. The distribution of rhizospheric microorganisms (soil bacteria, fungus, actinomycetes, potassium-solubilizing bacteria, inorganic phosphorus-solubilizing bacteria, organic phosphorus-solubilizing bacteria) collected from different origin places existed significant difference (P the amount of actinomycetes > the amount of fungus. The medicinal quality of P. polyphylla var. yunnanensis was influenced by their habits, and the increase of cultivation years caused the obvious decrease of the quality of P. polyphylla var. yunnanensis. Therefore, the increase of cultivation years will cause the variation of the soil micro-ecology flora, and decrease the nutrient absorption and the utilization of P. polyphylla var. yunnanensis, which will make the decrease of the medical quality of P. polyphylla var. yunnanensis.

  1. Enhanced degradation of Herbicide Isoproturon in wheat rhizosphere by salicylic acid.

    Science.gov (United States)

    Lu, Yi Chen; Zhang, Shuang; Miao, Shan Shan; Jiang, Chen; Huang, Meng Tian; Liu, Ying; Yang, Hong

    2015-01-14

    This study investigated the herbicide isoproturon (IPU) residues in soil, where wheat was cultivated and sprayed with salicylic acid (SA). Provision of SA led to a lower level of IPU residues in rhizosphere soil compared to IPU treatment alone. Root exudation of tartaric acid, malic acid, and oxalic acids was enhanced in rhizosphere soil with SA-treated wheat. We examined the microbial population (e.g., biomass and phospholipid fatty acid), microbial structure, and soil enzyme (catalase, phenol oxidase, and dehydrogenase) activities, all of which are associated with soil activity and were activated in rhizosphere soil of SA-treated wheat roots. We further assessed the correlation matrix and principal component to figure out the association between the IPU degradation and soil activity. Finally, six IPU degraded products (derivatives) in rhizosphere soil were characterized using ultraperformance liquid chromatography with a quadrupole-time-of-flight tandem mass spectrometer (UPLC/Q-TOF-MS/MS). A relatively higher level of IPU derivatives was identified in soil with SA-treated wheat than in soil without SA-treated wheat plants.

  2. Growth rates of rhizosphere microorganisms depend on competitive abilities of plants for nitrogen

    Science.gov (United States)

    Blagodatskaya, Evgenia; Littschwager, Johanna; Lauerer, Marianna; Kuzyakov, Yakov

    2010-05-01

    Rhizosphere - one of the most important ‘hot spots' in soil - is characterized not only by accelerated turnover of microbial biomass and nutrients but also by strong intra- and inter-specific competition. Intra-specific competition occurs between individual plants of the same species, while inter-specific competition can occur both at population level (plant species-specific, microbial species-specific interactions) and at community level (plant - microbial interactions). Such plant - microbial interactions are mainly governed by competition for available N sources, since N is one of the main growth limiting nutrients in natural ecosystems. Functional structure and activity of microbial community in rhizosphere is not uniform and is dependent on quantity and quality of root exudates which are plant specific. It is still unclear how microbial growth and turnover in the rhizosphere are dependent on the features and competitive abilities of plants for N. Depending on C and N availability, acceleration and even retardation of microbial activity and carbon mineralization can be expected in the rhizosphere of plants with high competitive abilities for N. We hypothesized slower microbial growth rates in the rhizosphere of plants with smaller roots, as they usually produce less exudates compared to plants with small shoot-to-root ratio. As the first hypothesis is based solely on C availability, we also expected the greater effect of N availability on microbial growth in rhizosphere of plants with smaller root mass. These hypothesis were tested for two plant species of strawberry: Fragaria vesca L. (native species), and Duchesnea indica (Andrews) Focke (an invasive plant in central Europe) growing in intraspecific and interspecific competition. Microbial biomass and the kinetic parameters of microbial growth in the rhizosphere were estimated by dynamics of CO2 emission from the soil amended with glucose and nutrients. Specific growth rate (µ) of soil microorganisms was

  3. Draft Genome Sequence of the Antagonistic Rhizosphere Bacterium Serratia plymuthica Strain PRI-2C

    NARCIS (Netherlands)

    Garbeva, P.; van Elsas, J.D.; de Boer, W.

    Serratia plymuthica strain PRI-2C is a rhizosphere bacterial strain with antagonistic activity against different plant pathogens. Here we present the 5.39-Mb (G+C content, 55.67%) draft genome sequence of S. plymuthica strain PRI-2C with the aim of providing insight into the genomic basis of its

  4. SAP Nuclear Competence Centre

    International Nuclear Information System (INIS)

    Andrlova, Z.

    2009-01-01

    In this issue we continue and introduce the SAP Nuclear Competence Centre and its head Mr. Igor Dzama. SAP Nuclear Competence Centrum is one of the fi rst competence centres outside ENEL headquarters. It should operate in Slovakia and should have competencies within the whole Enel group. We are currently dealing with the issues of organisation and funding. We are trying to balance the accountability to the NPP directors and to the management of the competence centres at Enel headquarters; we are looking at the relations between the competence centres within the group and defining the services that we will provide for the NPPs. author)

  5. Assessment of Innovation Competency

    DEFF Research Database (Denmark)

    Nielsen, Jan Alexis

    2015-01-01

    competency, and communication competency) as well as assessment criteria for a number of skills relevant to these subcompetencies. These assessment criteria, it is argued, largely resonate with existing literature and they provide a detailed glimpse into how assessment of innovation competency could...... of the recorded talk in interaction that occurred in teacher group discussion sessions at 5 upper secondary schools. Based on the analysis, it was possible to extrapolate assessment criteria for 5 subcompetencies relevant to innovation (creative competency, collaboration competency, navigation competency, action...

  6. Mycological composition in the rhizosphere of winter wheat in different crop production systems

    Science.gov (United States)

    Frac, Magdalena; Lipiec, Jerzy; Usowicz, Boguslaw

    2010-05-01

    Fungi play an important role in the soil ecosystem as decomposers of plant residues, releasing nutrients that sustain and stimulate processes of plant growth. Some fungi possess antagonistic properties towards plant pathogens. The structure of plant and soil communities is influenced by the interactions among its component species and also by anthropogenic pressure. In the study of soil fungi, particular attention is given to the rhizosphere. Knowledge of the structure and diversity of the fungal community in the rhizosphere lead to the better understanding of pathogen-antagonist interactions. The aim of this study was to evaluate the mycological composition of the winter wheat rhizosphere in two different crop production systems. The study was based on a field experiment established in 1994 year at the Experimental Station in South-East Poland. The experiment was conducted on grey-brown podzolic soil. In this experiment winter wheat were grown in two crop production systems: ecological and conventional - monoculture. The research of fungi composition was conducted in 15th year of experiment. Rhizosphere was collected two times during growing season, in different development stage: shooting phase and full ripeness phase. Martin medium and the dilutions 10-3 and 10-4 were used to calculate the total number cfu (colony forming units) of fungi occurring in the rhizosphere of winter wheat. The fungi were identified using Czapeka-Doxa medium for Penicillium, potato dextrose agar for all fungi and agar Nirenberga (SNA) for Fusarium. High number of antagonistic fungi (Penicillium sp., Trichoderma sp.) was recorded in the rhizosphere of wheat in ecological system. The presence of these fungi can testify to considerable biological activity, which contributes to the improvement of the phytosanitary condition of the soil. However, the decrease of the antagonistic microorganism number in the crop wheat in monoculture can be responsible for appearance higher number of the

  7. Effects of plant growth stage on the bioavailability of cesium and strontium in rhizosphere soil

    International Nuclear Information System (INIS)

    Nakamaru, Yasuo

    2006-01-01

    The effects of plant growth stage on the bioavailability of Cs and Sr in rhizosphere soil were studied by soybean pot experiments. Soybean seeds were sown into 12 pots and the plants were grown in a greenhouse for 84 d. Three pots were kept unplanted. The concentrations of Mg, K, Ca, Sr and Cs in plants and in soil solutions at different growth periods were measured. The mass flow of the elements from soil solution to the root surface was calculated from the concentrations in the soil solution and daily transpiration of the soybean plant. The concentrations of elements in the soil solution decreased as the soybean plants grew. The decrease of Mg, K, Ca, and Sr was high in planted pots. The differences in Mg, K, Ca, and Sr concentrations between the planted and the unplanted pots indicated that the active uptake of these elements by the soybean plants caused the drop in their concentrations. However, no obvious difference in Cs concentrations was seen between the planted and the unplanted ports. Although the ratio of mass flow to actual uptake of Cs was 1.4 for the vegetative growth stage, it increased to 4.2 for the podding stage. This meant that the Cs mass flow was in excess of what was absorbed by the plants, so the Cs uptake was inhibited near the roots for the podding stage. It was assumed that the increase of Cs sorption due to the K concentration decrease in soil solution decreased the Cs bioavailability in the rhizosphere soil. The bioavailability of Cs and Sr in the rhizosphere was examined in a small-scale pot experiment. The soil-soil solution distribution coefficients (K d ) of Cs and Sr were observed as an index of their sorption level. K d of Cs increased in the rhizosphere soil after cultivation. The decrease of bioavailable fraction of soil Cs was also observed. The exchangeable Cs in the rhizosphere soil clearly decreased. On the other hand, no specific rhizosphere effect was observed for Sr bioavailability. These results showed that the Cs

  8. [Effects of nitrogen application rate on faba bean fusarium wilt and rhizospheric microbial metabolic functional diversity].

    Science.gov (United States)

    Dong, Yan; Yang, Zhi-xian; Dong, Kun; Tang, Li; Zheng, Yi; Hu, Guo-bin

    2013-04-01

    A field plot experiment was conducted to study the effects of different nitrogen (N) application rates on the microbial functional diversity in faba bean rhizosphere and the relationships between the microbial functional diversity and the occurrence of faba bean fusarium wilt. Four nitrogen application rates were installed, i. e. , N0(0 kg hm-2 , N1 (56. 25 kg hm-2) , N2(112. 5 kg hm-2), and N3 (168.75 kg hm-2), and Biolog microbial analysis system was applied to study the damage of faba bean fusarium wilt and the rhizospheric microbial metabolic functional diversity. Applying N (N1 N2, and N3) decreased the disease index of faba bean fusarium wilt and the quantity of Fusarium oxysporum significantly, and increased the quantities of bacteria and actinomyces and the ratios of bacteria/fungi and actinomyces/fungi significantly, with the peak values of bacteria and actinomyces, bacteria/fungi, and actinomyces/fungi, and the lowest disease index and F. oxysporum density in N2. As compared with N0, applying N increased the AWCD value significantly, but the effects of different N application rates on the ability of rhizospheric microbes in utilizing six types of carbon sources had definite differences. Under the application of N, the utilization rates of carbohydrates, carboxylic acids, and amino acids by the rhizospheric microbes were higher. Principal component analysis demonstrated that applying N changed the rhizospheric microbial community composition obviously, and the carbohydrates, carboxylic acids, and amino acids were the sensitive carbon sources differentiating the changes of the microbial community induced by N application. Applying N inhibited the utilization of carbohydrates and carboxylic acids but improved the utilization of amino acids and phenolic acids by the rhizospheric microbes, which could be one of the main reasons of applying N being able to reduce the harm of faba bean fusarium wilt. It was suggested that rationally applying N could increase the

  9. Systematic design for trait introgression projects.

    Science.gov (United States)

    Cameron, John N; Han, Ye; Wang, Lizhi; Beavis, William D

    2017-10-01

    Using an Operations Research approach, we demonstrate design of optimal trait introgression projects with respect to competing objectives. We demonstrate an innovative approach for designing Trait Introgression (TI) projects based on optimization principles from Operations Research. If the designs of TI projects are based on clear and measurable objectives, they can be translated into mathematical models with decision variables and constraints that can be translated into Pareto optimality plots associated with any arbitrary selection strategy. The Pareto plots can be used to make rational decisions concerning the trade-offs between maximizing the probability of success while minimizing costs and time. The systematic rigor associated with a cost, time and probability of success (CTP) framework is well suited to designing TI projects that require dynamic decision making. The CTP framework also revealed that previously identified 'best' strategies can be improved to be at least twice as effective without increasing time or expenses.

  10. The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome.

    Science.gov (United States)

    Pii, Youry; Borruso, Luigimaria; Brusetti, Lorenzo; Crecchio, Carmine; Cesco, Stefano; Mimmo, Tanja

    2016-02-01

    Plant-associated microorganisms can stimulate plants growth and influence both crops yield and quality by nutrient mobilization and transport. Therefore, rhizosphere microbiome appears to be one of the key determinants of plant health and productivity. The roots of plants have the ability to influence its surrounding microbiology, the rhizosphere microbiome, through the creation of specific chemical niches in the soil mediated by the release of phytochemicals (i.e. root exudates) that depends on several factors, such as plants genotype, soil properties, plant nutritional status, climatic conditions. In the present research, two different crop species, namely barley and tomato, characterized by different strategies for Fe acquisition, have been grown in the RHIZOtest system using either complete or Fe-free nutrient solution to induce Fe starvation. Afterward, plants were cultivated for 6 days on two different calcareous soils. Total DNA was extracted from rhizosphere and bulk soil and 454 pyrosequencing technology was applied to V1-V3 16S rRNA gene region. Approximately 5000 sequences were obtained for each sample. The analysis of the bacterial population confirmed that the two bulk soils showed a different microbial community. The presence of the two plant species, as well as the nutritional status (Fe-deficiency and Fe-sufficiency), could promote a differentiation of the rhizosphere microbiome, as highlighted by non-metric multidimensional scaling (NMDS) analysis. Alphaproteobacteria, Actinobacteria, Chloracidobacteria, Thermoleophilia, Betaproteobacteria, Saprospirae, Gemmatimonadetes, Gammaproteobacteria, Acidobacteria were the most represented classes in all the samples analyzed even though their relative abundance changed as a function of the soil, plant species and nutritional status. To our knowledge, this research demonstrate for the first time that different plants species with a diverse nutritional status can promote the development of a peculiar

  11. Image-based modelling of nutrient movement in and around the rhizosphere.

    Science.gov (United States)

    Daly, Keith R; Keyes, Samuel D; Masum, Shakil; Roose, Tiina

    2016-02-01

    In this study, we developed a spatially explicit model for nutrient uptake by root hairs based on X-ray computed tomography images of the rhizosphere soil structure. This work extends our previous work to larger domains and hence is valid for longer times. Unlike the model used previously, which considered only a small region of soil about the root, we considered an effectively infinite volume of bulk soil about the rhizosphere. We asked the question: At what distance away from root surfaces do the specific structural features of root-hair and soil aggregate morphology not matter because average properties start dominating the nutrient transport? The resulting model was used to capture bulk and rhizosphere soil properties by considering representative volumes of soil far from the root and adjacent to the root, respectively. By increasing the size of the volumes that we considered, the diffusive impedance of the bulk soil and root uptake were seen to converge. We did this for two different values of water content. We found that the size of region for which the nutrient uptake properties converged to a fixed value was dependent on the water saturation. In the fully saturated case, the region of soil we needed to consider was only of radius 1.1mm for poorly soil-mobile species such as phosphate. However, in the case of a partially saturated medium (relative saturation 0.3), we found that a radius of 1.4mm was necessary. This suggests that, in addition to the geometrical properties of the rhizosphere, there is an additional effect of soil moisture properties, which extends further from the root and may relate to other chemical changes in the rhizosphere. The latter were not explicitly included in our model. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Inorganic Nitrogen Application Affects Both Taxonomical and Predicted Functional Structure of Wheat Rhizosphere Bacterial Communities

    Directory of Open Access Journals (Sweden)

    Vanessa N. Kavamura

    2018-05-01

    Full Text Available The effects of fertilizer regime on bulk soil microbial communities have been well studied, but this is not the case for the rhizosphere microbiome. The aim of this work was to assess the impact of fertilization regime on wheat rhizosphere microbiome assembly and 16S rRNA gene-predicted functions with soil from the long term Broadbalk experiment at Rothamsted Research. Soil from four N fertilization regimes (organic N, zero N, medium inorganic N and high inorganic N was sown with seeds of Triticum aestivum cv. Cadenza. 16S rRNA gene amplicon sequencing was performed with the Illumina platform on bulk soil and rhizosphere samples of 4-week-old and flowering plants (10 weeks. Phylogenetic and 16S rRNA gene-predicted functional analyses were performed. Fertilization regime affected the structure and composition of wheat rhizosphere bacterial communities. Acidobacteria and Planctomycetes were significantly depleted in treatments receiving inorganic N, whereas the addition of high levels of inorganic N enriched members of the phylum Bacteroidetes, especially after 10 weeks. Bacterial richness and diversity decreased with inorganic nitrogen inputs and was highest after organic treatment (FYM. In general, high levels of inorganic nitrogen fertilizers negatively affect bacterial richness and diversity, leading to a less stable bacterial community structure over time, whereas, more stable bacterial communities are provided by organic amendments. 16S rRNA gene-predicted functional structure was more affected by growth stage than by fertilizer treatment, although, some functions related to energy metabolism and metabolism of terpenoids and polyketides were enriched in samples not receiving any inorganic N, whereas inorganic N addition enriched predicted functions related to metabolism of other amino acids and carbohydrates. Understanding the impact of different fertilizers on the structure and dynamics of the rhizosphere microbiome is an important step

  13. Iron mineralogy and uranium-binding environment in the rhizosphere of a wetland soil

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel I., E-mail: daniel.kaplan@srnl.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Kukkadapu, Ravi [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Seaman, John C. [Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802 (United States); Arey, Bruce W.; Dohnalkova, Alice C. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Buettner, Shea [Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802 (United States); Li, Dien [Savannah River National Laboratory, Aiken, SC 29808 (United States); Varga, Tamas [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Scheckel, Kirk G. [US Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH 45224 (United States); Jaffé, Peter R. [Princeton University, Princeton, NJ 08540 (United States)

    2016-11-01

    Wetlands mitigate the migration of groundwater contaminants through a series of biogeochemical gradients that enhance multiple contaminant-binding processes. The hypothesis of this study was that wetland plant roots contribute organic carbon and release O{sub 2} within the rhizosphere (plant-impact soil zone) that promote the formation of Fe(III)-(oxyhydr)oxides. In turn, these Fe(III)-(oxyhydr)oxides stabilize organic matter that together contribute to contaminant immobilization. Mineralogy and U binding environments of the rhizosphere were evaluated in samples collected from contaminated and non-contaminated areas of a wetland on the Savannah River Site in South Carolina. Based on Mössbauer spectroscopy, rhizosphere soil was greatly enriched with nanogoethite, ferrihydrite-like nanoparticulates, and hematite, with negligible Fe(II) present. X-ray computed tomography and various microscopy techniques showed that root plaques were tens-of-microns thick and consisted of highly oriented Fe-nanoparticles, suggesting that the roots were involved in creating the biogeochemical conditions conducive to the nanoparticle formation. XAS showed that a majority of the U in the bulk wetland soil was in the + 6 oxidation state and was not well correlated spatially to Fe concentrations. SEM/EDS confirm that U was enriched on root plaques, where it was always found in association with P. Together these findings support our hypothesis and suggest that plants can alter mineralogical conditions that may be conducive to contaminant immobilization in wetlands. - Highlights: • Uranium concentrated in wetland environments • Hypothesized that plant roots change mineralogy and contaminant binding environment, promoting contaminant immobilization • Field study showed sharp dissolved U concentration profiles over the centimeter scale. • Spectroscopy identified unique mineralogy in rhizosphere compared to non-rhizosphere soil. • Uranium concentrated in root plaques in the + 6

  14. Iron mineralogy and uranium-binding environment in the rhizosphere of a wetland soil

    International Nuclear Information System (INIS)

    Kaplan, Daniel I.; Kukkadapu, Ravi; Seaman, John C.; Arey, Bruce W.; Dohnalkova, Alice C.; Buettner, Shea; Li, Dien; Varga, Tamas; Scheckel, Kirk G.; Jaffé, Peter R.

    2016-01-01

    Wetlands mitigate the migration of groundwater contaminants through a series of biogeochemical gradients that enhance multiple contaminant-binding processes. The hypothesis of this study was that wetland plant roots contribute organic carbon and release O_2 within the rhizosphere (plant-impact soil zone) that promote the formation of Fe(III)-(oxyhydr)oxides. In turn, these Fe(III)-(oxyhydr)oxides stabilize organic matter that together contribute to contaminant immobilization. Mineralogy and U binding environments of the rhizosphere were evaluated in samples collected from contaminated and non-contaminated areas of a wetland on the Savannah River Site in South Carolina. Based on Mössbauer spectroscopy, rhizosphere soil was greatly enriched with nanogoethite, ferrihydrite-like nanoparticulates, and hematite, with negligible Fe(II) present. X-ray computed tomography and various microscopy techniques showed that root plaques were tens-of-microns thick and consisted of highly oriented Fe-nanoparticles, suggesting that the roots were involved in creating the biogeochemical conditions conducive to the nanoparticle formation. XAS showed that a majority of the U in the bulk wetland soil was in the + 6 oxidation state and was not well correlated spatially to Fe concentrations. SEM/EDS confirm that U was enriched on root plaques, where it was always found in association with P. Together these findings support our hypothesis and suggest that plants can alter mineralogical conditions that may be conducive to contaminant immobilization in wetlands. - Highlights: • Uranium concentrated in wetland environments • Hypothesized that plant roots change mineralogy and contaminant binding environment, promoting contaminant immobilization • Field study showed sharp dissolved U concentration profiles over the centimeter scale. • Spectroscopy identified unique mineralogy in rhizosphere compared to non-rhizosphere soil. • Uranium concentrated in root plaques in the + 6 oxidation

  15. Developing Leadership Traits.

    Science.gov (United States)

    Hall, Susan King

    1980-01-01

    Defines six leadership traits that are necessary to and fostered by editing a college newspaper: delegating authority, developing subordinates, motivating others, being approachable, commanding respect, and bringing out optimum performances in others. (TJ)

  16. Developing mathematical modelling competence

    DEFF Research Database (Denmark)

    Blomhøj, Morten; Jensen, Tomas Højgaard

    2003-01-01

    In this paper we introduce the concept of mathematical modelling competence, by which we mean being able to carry through a whole mathematical modelling process in a certain context. Analysing the structure of this process, six sub-competences are identified. Mathematical modelling competence...... cannot be reduced to these six sub-competences, but they are necessary elements in the development of mathematical modelling competence. Experience from the development of a modelling course is used to illustrate how the different nature of the sub-competences can be used as a tool for finding...... the balance between different kinds of activities in a particular educational setting. Obstacles of social, cognitive and affective nature for the students' development of mathematical modelling competence are reported and discussed in relation to the sub-competences....

  17. Competence and Professional Expertise

    NARCIS (Netherlands)

    Evers, A.T.; Heijden, B.I.J.M. van der; Mulder, M.

    2017-01-01

    Theoretical and empirical controversies exist about the understanding and potentials of the concepts of competence and professional expertise. In this chapter, both concepts will be thoroughly conceptualised and discussed. Competence and professional expertise are important as all professionals need

  18. Competence and Professional Expertise

    NARCIS (Netherlands)

    Evers, Arnoud; Van der Heijden, Beatrice

    2018-01-01

    Theoretical and empirical controversies exist about the understanding and potentials of the concepts competence and professional expertise. In this chapter, both concepts will be thoroughly conceptualised and discussed. Competence and professional expertise are important as all professionals need to

  19. Can soil microbial diversity influence plant metabolites and life history traits of a rhizophagous insect? A demonstration in oilseed rape.

    Science.gov (United States)

    Lachaise, Tom; Ourry, Morgane; Lebreton, Lionel; Guillerm-Erckelboudt, Anne-Yvonne; Linglin, Juliette; Paty, Chrystelle; Chaminade, Valérie; Marnet, Nathalie; Aubert, Julie; Poinsot, Denis; Cortesero, Anne-Marie; Mougel, Christophe

    2017-12-01

    Interactions between plants and phytophagous insects play an important part in shaping the biochemical composition of plants. Reciprocally plant metabolites can influence major life history traits in these insects and largely contribute to their fitness. Plant rhizospheric microorganisms are an important biotic factor modulating plant metabolites and adaptation to stress. While plant-insects or plant-microorganisms interactions and their consequences on the plant metabolite signature are well-documented, the impact of soil microbial communities on plant defenses against phytophagous insects remains poorly known. In this study, we used oilseed rape (Brassica napus) and the cabbage root fly (Delia radicum) as biological models to tackle this question. Even though D. radicum is a belowground herbivore as a larva, its adult life history traits depend on aboveground signals. We therefore tested whether soil microbial diversity influenced emergence rate and fitness but also fly oviposition behavior, and tried to link possible effects to modifications in leaf and root metabolites. Through a removal-recolonization experiment, 3 soil microbial modalities ("high," "medium," "low") were established and assessed through amplicon sequencing of 16S and 18S ribosomal RNA genes. The "medium" modality in the rhizosphere significantly improved insect development traits. Plant-microorganism interactions were marginally associated to modulations of root metabolites profiles, which could partly explain these results. We highlighted the potential role of plant-microbial interaction in plant defenses against Delia radicum. Rhizospheric microbial communities must be taken into account when analyzing plant defenses against herbivores, being either below or aboveground. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  20. Same Traits, Different Variance

    Directory of Open Access Journals (Sweden)

    Jamie S. Churchyard

    2014-02-01

    Full Text Available Personality trait questionnaires are regularly used in individual differences research to examine personality scores between participants, although trait researchers tend to place little value on intra-individual variation in item ratings within a measured trait. The few studies that examine variability indices have not considered how they are related to a selection of psychological outcomes, so we recruited 160 participants (age M = 24.16, SD = 9.54 who completed the IPIP-HEXACO personality questionnaire and several outcome measures. Heterogenous within-subject differences in item ratings were found for every trait/facet measured, with measurement error that remained stable across the questionnaire. Within-subject standard deviations, calculated as measures of individual variation in specific item ratings within a trait/facet, were related to outcomes including life satisfaction and depression. This suggests these indices represent valid constructs of variability, and that researchers administering behavior statement trait questionnaires with outcome measures should also apply item-level variability indices.

  1. Building Project Competence

    DEFF Research Database (Denmark)

    Pemsel, Sofia; Wiewiora, Anna

    This research investigates the development of project competence, and particularly, three related dynamic capabilities (shifting, adapting, leveraging) that contribute to project competence development. In doing so, we make use of the emerging literature on knowledge governance and theorize how...... of dynamic capability building promoting project competence development....

  2. Athletic Coaching Competencies.

    Science.gov (United States)

    Nathanson, Stephen J.

    1979-01-01

    This article describes a study conducted to identify the competencies appropriate for an athletic coach and to incorporate those competencies into a competency based coaching education program for the four-year colleges and universities within the New York state systems. (JMF)

  3. Competence for Contract and Competence to Consent to Treatment

    OpenAIRE

    前田, 泰

    2008-01-01

    This paper analyzes assessing competence to consent to treatment. It focuses on problems of competence for contract and competence to consent to treatment. Finally, it discusses the degree of assessing competence to consent to treatment.

  4. Power and Autistic Traits

    Directory of Open Access Journals (Sweden)

    Geir Overskeid

    2016-08-01

    Full Text Available Autistic traits can help people gain and sustain power, and has probably done so throughout history, says the present paper. A number of testable claims follow from this assumption. First, the powerful should have more autistic traits than others – which they do appear to have. Among other things, powerful people, and those with many autistic traits, tend to prefer solitary activities and are often aloof. Moreover, they are often rigid and socially insensitive, low on empathy and with low scores on the trait of agreeableness -- and as a rule they do not have many friends. Both groups are also more self-centered than others, more honest, less submissive, more sensitive to slights, and with a stronger tendency to engage in abstract thinking. They tend to behave in bossy or dominant ways, and their moral judgment is more based on rules than on feelings. In addition to experimental evidence, I cite biographies showing that a surprising number of presidents, prime ministers and other powerful people seem to have had traits like those in question – and interestingly, in animals, leaders are often rigid and insensitive to group members’ needs and feelings, mostly acting the way they are themselves inclined to, not responding much to others. Problem solving is important in leadership, and people with many autistic traits appear often to be better thinkers than typical subjects with similar IQs. However, these and other congruities could be coincidences. Hence the question of whether traits the two groups have in common also have a common cause constitutes a strong test of the paper’s thesis – and a common cause does appear to exist, in the form of testosterone’s effects on the central nervous system. Finally, there is evidence that, other things equal, powerful men have more reproductive success than others. If men wielding power do indeed have more autistic traits than those less powerful, this will lead to, other things equal, such traits

  5. Power and Autistic Traits

    Science.gov (United States)

    Overskeid, Geir

    2016-01-01

    Autistic traits can help people gain and sustain power, and has probably done so throughout history, says the present paper. A number of testable claims follow from this assumption. First, the powerful should have more autistic traits than others – which they do appear to have. Among other things, powerful people, and those with many autistic traits, tend to prefer solitary activities and are often aloof. Moreover, they are often rigid and socially insensitive, low on empathy and with low scores on the trait of agreeableness – and as a rule they do not have many friends. Both groups are also more self-centered than others, more honest, less submissive, more sensitive to slights, and with a stronger tendency to engage in abstract thinking. They tend to behave in bossy or dominant ways, and their moral judgment is more based on rules than on feelings. In addition to experimental evidence, I cite biographies showing that a surprising number of presidents, prime ministers and other powerful people seem to have had traits like those in question – and interestingly, in animals, leaders are often rigid and insensitive to group members’ needs and feelings, mostly acting the way they are themselves inclined to, not responding much to others. Problem solving is important in leadership, and people with many autistic traits appear often to be better thinkers than typical subjects with similar IQs. However, these and other congruities could be coincidences. Hence the question of whether traits the two groups have in common also have a common cause constitutes a strong test of the paper’s thesis – and a common cause does appear to exist, in the form of testosterone’s effects on the central nervous system. Finally, there is evidence that, other things equal, powerful men have more reproductive success than others. If men wielding power do indeed have more autistic traits than those less powerful, this will lead to, other things equal, such traits becoming more

  6. Data on rhizosphere pH, phosphorus uptake and wheat growth responses upon TiO2 nanoparticles application

    Directory of Open Access Journals (Sweden)

    Rafia Rafique

    2018-04-01

    Full Text Available In this study, the data sets and analyses provided the information on the characterization of titanium dioxide nanoparticles (TiO2 NPs, and their impacts on rhizosphere pH, and soil-bound phosphorus (P availability to plants together with relevant parameters. For this purpose, wheat (Triticum aestivum L. was cultivated in the TiO2 NPs amended soil over a period of 60 days. After harvesting, the soil and plants were analyzed to examine the rhizosphere pH, P availability in rhizosphere soil, uptake in roots and shoots, biomass produced, chlorophyll content and translocation to different plant parts monitored by SEM and EDX techniques in response to different dosages of TiO2 NPs. The strong relationship can be found among TiO2 NPs application, P availability, and plant growth. Keywords: Rhizosphere pH, TiO2 NPs nanoparticles, Wheat, Phosphorus, Uptake

  7. Influence of introduced potential biocontrol agents on maize seedling growth and bacterial community structure in the rhizosphere

    NARCIS (Netherlands)

    Kozdroj, J; Trevors, JT; van Elsas, JD

    Two species of Pseudomonas chromosomally tagged with gfp, which had shown antagonistic activity against the tomato pathogen Ralstonia solanacearum in a previous study, were assessed for their impact in the rhizosphere of maize. Plant growth characteristics, numbers of indigenous heterotrophic

  8. [Allelopathy autotoxicity effects of aquatic extracts from rhizospheric soil on rooting and growth of stem cuttings in Pogostemon cablin].

    Science.gov (United States)

    Tang, Kun; Li, Ming; Dong, Shan; Li, Yun-qi; Huang, Jie-wen; Li, Long-ming

    2014-06-01

    To study the allelopathy effects of aquatic extracts from rhizospheric soil on the rooting and growth of stem cutting in Pogostemon cablin, and to reveal its mechanism initially. The changes of rhizogenesis characteristics and physic-biochemical during cutting seedlings were observed when using different concentration of aquatic extracts from rhizospheric soil. Aquatic extracts from rhizospheric soil had significant inhibitory effects on rooting rate, root number, root length, root activity, growth rate of cutting with increasing concentrations of tissue extracts; The chlorophyll content of cutting seedlings were decreased, but content of MDA were increased, and activities of POD, PPO and IAAO in cutting seedlings were affected. Aquatic extracts from rhizospheric soil of Pogostemon cablin have varying degrees of inhibitory effects on the normal rooting and growth of stem cuttings.

  9. Understanding Listening Competency: A Systematic Review of Research Scales

    Science.gov (United States)

    Fontana, Peter C.; Cohen, Steven D.; Wolvin, Andrew D.

    2015-01-01

    To better understand what constitutes listening competency, we perform a systematic review of listening scales. Our goal was twofold: to determine the most commonly appearing listening traits and to determine if listening scales are similar to one other. As part of our analysis, we identified 53 relevant scales and analyzed the scales…

  10. Incarcerated Adolescent Girls: Personality, Social Competence, and Delinquency.

    Science.gov (United States)

    Ter Laak, Jan; de Goede, Martijn; Aleva, Liesbeth; Brugman, Gerard; van Leuven, Miranda; Hussmann, Judith

    2003-01-01

    Study investigated personality traits and social competence as predictors of delinquency in adolescent girls. Agreeableness did not correlate with the overall delinquency score. The more crimes reported, the less conscientious, more neurotic, and more open the girls were. Correlation between delinquency and extroversion was not statistically…

  11. Root carbon inputs to the rhizosphere stimulate extracellular enzyme activity and increase nitrogen availability in temperate forest soils

    Science.gov (United States)

    Brzostek, E. R.; Phillips, R.; Dragoni, D.; Drake, J. E.; Finzi, A. C.

    2011-12-01

    The mobilization of nitrogen (N) from soil organic matter in temperate forest soils is controlled by the microbial production and activity of extracellular enzymes. The exudation of carbon (C) by tree roots into the rhizosphere may subsidize the microbial production of extracellular enzymes in the rhizosphere and increase the access of roots to N. The objective of this research was to investigate whether rates of root exudation and the resulting stimulation of extracellular enzyme activity in the rhizosphere (i.e., rhizosphere effect) differs between tree species that form associations with ectomycorrhizal (ECM) or arbuscular mycorrhizal (AM) fungi. This research was conducted at two temperate forest sites, the Harvard Forest (HF) in Central MA and the Morgan Monroe State Forest (MMSF) in Southern IN. At the HF, we measured rates of root exudation and the rhizosphere effects on enzyme activity, N cycling, and C mineralization in AM and ECM soils. At the MMSF, we recently girdled AM and ECM dominated plots to examine the impact of severing belowground C allocation on rhizosphere processes. At both sites, the rhizosphere effect on proteolytic, chitinolytic and ligninolytic enzyme activities was greater in ECM soils than in AM soils. In particular, higher rates of proteolytic enzyme activity increased the availability of amino acid-N in ECM rhizospheres relative to the bulk soils. Further, this stimulation of enzyme activity was directly correlated with higher rates of C mineralization in the rhizosphere than in the bulk soil. Although not significantly different between species, root exudation of C comprised 3-10% of annual gross primary production at the HF. At the MMSF, experimental girdling led to a larger decline in soil respiration and enzyme activity in ECM plots than in AM plots. In both ECM and AM soils, however, girdling resulted in equivalent rates of enzyme activity in rhizosphere and corresponding bulk soils. The results of this study contribute to the

  12. Plant growth promotion properties of bacterial strains isolated from the rhizosphere of the Jerusalem artichoke (Helianthus tuberosus L.) adapted to saline-alkaline soils and their effect on wheat growth.

    Science.gov (United States)

    Liu, Xiaolin; Li, Xiangyue; Li, Yan; Li, Runzhi; Xie, Zhihong

    2017-03-01

    The Jerusalem artichoke (JA; Helianthus tuberosus), known to be tolerant to saline-alkaline soil conditions, has been cultivated for many years in the Yellow River delta, Shandong Province coastal zone, in China. The aim of our study was to isolate nitrogen-fixing bacteria colonizing the rhizosphere of JA and to characterize other plant growth promotion properties. The ultimate goal was to identify isolates that could be used as inoculants benefiting an economic crop, in particular for improving wheat growth production in the Yellow River delta. Bacterial strains were isolated from the rhizosphere soil of JA on the basis of growth on nitrogen-free Ashby medium. Identification and phylogenetic analysis was performed after nucleotide sequencing of 16S rRNA gene. Plant-growth-promoting traits, such as nitrogen fixation activity, phosphate solubilization activity, indole-3-acetic acid production, were determined using conventional methods. Eleven strains were isolated and 6 of them were further examined for their level of salt tolerance and their effect on plant growth promotion. Inoculation of Enterobacter sp. strain N10 on JA and wheat led to significant increases in both root and shoot dry mass and shoot height. Enterobacter sp. strain N10 appeared to be the best plant-growth-promoting rhizobacteria to increase wheat productivity in future field applications.

  13. Intercultural Competence: Concepts, Challenges, Evaluations. Intercultural Studies and Foreign Language Learning. Volume 10

    Science.gov (United States)

    Witte, Arnd, Ed.; Harden, Theo, Ed.

    2011-01-01

    This book explores the idea of "intercultural competence", which, despite its current popularity across various discourses, has remained a vague and oscillating concept. Interculture lacks a universal definition and "competence" is not only a cognitive construct but also includes psychological traits such as attitudes,…

  14. Effect of clonal integration on nitrogen cycling in rhizosphere of rhizomatous clonal plant, Phyllostachys bissetii, under heterogeneous light.

    Science.gov (United States)

    Li, Yang; Chen, Jing-Song; Xue, Ge; Peng, Yuanying; Song, Hui-Xing

    2018-07-01

    Clonal integration plays an important role in clonal plant adapting to heterogeneous habitats. It was postulated that clonal integration could exhibit positive effects on nitrogen cycling in the rhizosphere of clonal plant subjected to heterogeneous light conditions. An in-situ experiment was conducted using clonal fragments of Phyllostachys bissetii with two successive ramets. Shading treatments were applied to offspring or mother ramets, respectively, whereas counterparts were treated to full sunlight. Rhizomes between two successive ramets were either severed or connected. Extracellular enzyme activities and nitrogen turnover were measured, as well as soil properties. Abundance of functional genes (archaeal or bacterial amoA, nifH) in the rhizosphere of shaded, offspring or mother ramets were determined using quantitative polymerase chain reaction. Carbon or nitrogen availabilities were significantly influenced by clonal integration in the rhizosphere of shaded ramets. Clonal integration significantly increased extracellular enzyme activities and abundance of functional genes in the rhizosphere of shaded ramets. When rhizomes were connected, higher nitrogen turnover (nitrogen mineralization or nitrification rates) was exhibited in the rhizosphere of shaded offspring ramets. However, nitrogen turnover was significantly decreased by clonal integration in the rhizosphere of shaded mother ramets. Path analysis indicated that nitrogen turnover in the rhizosphere of shaded, offspring or mother ramets were primarily driven by the response of soil microorganisms to dissolved organic carbon or nitrogen. This unique in-situ experiment provided insights into the mechanism of nutrient recycling mediated by clonal integration. It was suggested that effects of clonal integration on the rhizosphere microbial processes were dependent on direction of photosynthates transport in clonal plant subjected to heterogeneous light conditions. Copyright © 2018 Elsevier B.V. All rights

  15. [HUMAN RESOURCES MANAGEMENT BASED ON COMPETENCIES].

    Science.gov (United States)

    Larumbe Andueza, Ma Carmen; De Mendoza Cánton, Juana Hermoso

    2016-05-01

    We are living in a time with a lot of changes in which health organizations have more challenges to face. One of them is to recognize, strengthen, develop and retain the talent they have. Competency-based human resources management is emerging as a tool that contributes to achieve that aim. Competencies from the generic or characteristic perspective: personality traits, values and motivations, which are deeply rooted in the person. Through elaborating a competencies map for the organization, and identifying the job competencies profile, above all in key jobs, the employees know what it is going to expect from them. After, detect and cover the learning needs, it is possible to achieve better adjust between worker-job. The nursing unit manager is a key job because it is a link between management team and nursing team. The way that it is performed, it will have impact on the quality of care and its team motivation. So, the most adequate person who covers this job would have a part of knowledge, skills, attitudes and compatible interests with her job. Competency-based management helps identify both the potential and learning needs to performing this job.

  16. Bacterial communities in the rhizosphere of amilaceous maize (Zea mays L. as assessed by pyrosequencing

    Directory of Open Access Journals (Sweden)

    David Correa-Galeote

    2016-07-01

    Full Text Available Maize (Zea mays L. is the staple diet of the native peasants in the Quechua region of the Peruvian Andes who continue growing it in small plots called chacras following ancestral traditions. The abundance and structure of bacterial communities associated with the roots of amilaceous maize has not been studied in Andean chacras. Accordingly, the main objective of this study was to describe the rhizospheric bacterial diversity of amilaceous maize grown either in the presence or the absence of bur clover cultivated in soils from the Quechua maize belt. Three 16S rRNA gene libraries, one corresponding to sequences of bacteria from bulk soil of a chacra maintained under fallow conditions, the second from the rhizosphere of maize-cultivated soils, and the third prepared from rhizospheric soil of maize cultivated in intercropping with bur clover were examined using pyrosequencing tags spanning the V4 and V5 hypervariable regions of the gene. A total of 26031 sequences were found that grouped into 5955 distinct operational taxonomic units which distributed in 309 genera. The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from bulk soil. One hundred ninety seven genera were found in the bulk soil library and 234 and 203 were in those from the maize and maize/bur clover-cultivated soils. Sixteen out of the 309 genera had a relative abundance higher than 0.5% and the were (in decreasing order of abundance Gp4, Gp6, Flavobacterium, Subdivision3 genera incertae sedis of the Verrucomicrobia phylum, Gemmatimonas, Dechloromonas, Ohtaekwangia, Rhodoferax, Gaiella, Opitutus, Gp7, Spartobacteria genera incertae sedis, Terrimonas, Gp5, Steroidobacter and Parcubacteria genera incertae sedis. Genera Gp4 and Gp6 of the Acidobacteria, Gemmatimonas and Rhodoferax were the most abundant in bulk soil, whereas Flavobacterium, Dechloromonas and Ohtaekwangia were the main genera in the rhizosphere

  17. Influence of humic substances on plant-microbes interactions in the rhizosphere

    Science.gov (United States)

    Puglisi, Edoardo; Pascazio, Silvia; Spaccini, Riccardo; Crecchio, Carmine; Trevisan, Marco; Piccolo, Alessandro

    2013-04-01

    Humic substances are known to play a wide range of effects on the physiology of plant and microbes. This is of particular relevance in the rhizosphere of terrestrial environments, where the reciprocal interactions between plants roots, soil constituents and microorganisms strongly influence the plants acquisition of nutrients. Chemical advances are constantly improving our knowledge on humic substances: their supra-molecular architecture, as well as the moltitude of their chemical constituents, many of which are biologically active. An approach for linking the structure of humic substances with their biological activity in the rhizosphere is the use of rhizoboxes, which allow applying a treatment (e.g., an amendment with humic substances) in an upper soil-plant compartment and take measurements in a lower isolated rhizosphere compartment that can be sampled at desired distances from the rhizoplane. This approach can be adopted to assess the effects of several humic substances, as well as composted materials, on maize plants rhizodeposition of carbon, and in turn on the structure and activity of rhizosphere microbial communities. In order to gain a complete understanding of processes occurring in the complex soil-plant-microorganisms tripartite system, rhizobox experiments can be coupled with bacterial biosensors for the detection and quantification of bioavailable nutrients, chemical analyses of main rhizodeposits constituents, advanced chemical characterizations of humic substances, DNA-fingerprinting of microbial communities, and multivariate statistical approaches to manage the dataset produced and to infer general conclusions. By such an approach it was found that humic substances are significantly affecting the amount of carbon deposited by plant roots. This induction effect is more evident for substances with more hydrophobic and complex structure, thus supporting the scientific hypothesis of the "microbial loop model", which assumes that plants feed

  18. Sustaining diversity in trait-based models of phytoplankton communities

    Directory of Open Access Journals (Sweden)

    Agostino eMerico

    2014-10-01

    Full Text Available It is well-established that when equilibrium is attained for two species competing for the same limiting resource in a stable, uniform environment, one species will eliminate the other due to competitive exclusion. While competitive exclusion is observed in laboratory experiments and ecological models, the phenomenon seems less common in nature, where static equilibrium is prevented by the fluctuating physical environment and by other factors that constantly change species abundances and the nature of competitive interactions. Trait-based models of phytoplankton communities appear to be useful tools for describing the evolution of large assemblages of species with aggregate group properties such as total biomass, mean trait, and trait variance, the latter representing the functional diversity of the community. Such an approach, however, is limited by the tendency of the trait variance to unrealistically decline to zero over time. This tendency to lose diversity, and therefore adaptive capacity, is typically solved by fixing the variance or by considering exogenous processes such as immigration. Exogenous processes, however, cannot explain the maintenance of adaptive capacity often observed in the closed environment of chemostat experiments. Here we present a new method to sustain diversity in adaptive trait-based models of phytoplankton communities based on a mechanism of trait diffusion through subsequent generations. Our modeling approach can therefore account for endogenous processes such as rapid evolution or transgenerational trait plasticity.

  19. Indigenous Pseudomonas spp. Strains from the Olive (Olea europaea L.) Rhizosphere as Effective Biocontrol Agents against Verticillium dahliae: From the Host Roots to the Bacterial Genomes

    Science.gov (United States)

    Gómez-Lama Cabanás, Carmen; Legarda, Garikoitz; Ruano-Rosa, David; Pizarro-Tobías, Paloma; Valverde-Corredor, Antonio; Niqui, José L.; Triviño, Juan C.; Roca, Amalia; Mercado-Blanco, Jesús

    2018-01-01

    The use of biological control agents (BCA), alone or in combination with other management measures, has gained attention over the past decades, driven by the need to seek for sustainable and eco-friendly alternatives to confront plant pathogens. The rhizosphere of olive (Olea europaea L.) plants is a source of bacteria with potential as biocontrol tools against Verticillium wilt of olive (VWO) caused by Verticillium dahliae Kleb. A collection of bacterial isolates from healthy nursery-produced olive (cultivar Picual, susceptible to VWO) plants was generated based on morphological, biochemical and metabolic characteristics, chemical sensitivities, and on their in vitro antagonistic activity against several olive pathogens. Three strains (PIC25, PIC105, and PICF141) showing high in vitro inhibition ability of pathogens' growth, particularly against V. dahliae, were eventually selected. Their effectiveness against VWO caused by the defoliating pathotype of V. dahliae was also demonstrated, strain PICF141 being the rhizobacteria showing the best performance as BCA. Genotypic and phenotypic traits traditionally associated with plant growth promotion and/or biocontrol abilities were evaluated as well (e.g., phytase, xylanase, catalase, cellulase, chitinase, glucanase activities, and siderophore and HCN production). Multi-locus sequence analyses of conserved genes enabled the identification of these strains as Pseudomonas spp. Strain PICF141 was affiliated to the “Pseudomonas mandelii subgroup,” within the “Pseudomonas fluorescens group,” Pseudomonas lini being the closest species. Strains PIC25 and PIC105 were affiliated to the “Pseudomonas aeruginosa group,” Pseudomonas indica being the closest relative. Moreover, we identified P. indica (PIC105) for the first time as a BCA. Genome sequencing and in silico analyses allowed the identification of traits commonly associated with plant-bacteria interactions. Finally, the root colonization ability of these olive

  20. Cerebellum and personality traits.

    Science.gov (United States)

    Petrosini, Laura; Cutuli, Debora; Picerni, Eleonora; Laricchiuta, Daniela

    2015-02-01

    Personality traits are multidimensional traits comprising cognitive, emotional, and behavioral characteristics, and a wide array of cerebral structures mediate individual variability. Differences in personality traits covary with brain morphometry in specific brain regions. A cerebellar role in emotional and affective processing and on personality characteristics has been suggested. In a large sample of healthy subjects of both sexes and differently aged, the macro- and micro-structural variations of the cerebellum were correlated with the scores obtained in the Temperament and Character Inventory (TCI) by Cloninger. Cerebellar volumes were associated positively with Novelty Seeking scores and negatively with Harm Avoidance scores. Given the cerebellar contribution in personality traits and emotional processing, we investigated the cerebellar involvement even in alexithymia, construct of personality characterized by impairment in cognitive, emotional, and affective processing. Interestingly, the subjects with high alexithymic traits had larger volumes in the bilateral Crus 1. The cerebellar substrate for some personality dimensions extends the relationship between personality and brain areas to a structure up to now thought to be involved mainly in motor and cognitive functions, much less in emotional processes and even less in personality individual differences. The enlarged volumes of Crus 1 in novelty seekers and alexithymics support the tendency to action featuring both personality constructs. In fact, Novelty Seeking and alexithymia are rooted in behavior and inescapably have a strong action component, resulting in stronger responses in the structures more focused on action and embodiment, as the cerebellum is.

  1. Cadmium uptake and speciation changes in the rhizosphere of cadmium accumulator and non-accumulator oilseed rape varieties

    Institute of Scientific and Technical Information of China (English)

    SU Dechun; XING Jianping; JIAO Weiping; WONG Woonchung

    2009-01-01

    Characteristics of cadmium (Cd) uptake kinetics and distribution of Cd speciation in the rhizosphere for Cd accumulator and non-accumulator oilseed rape varieties were investigated under nutrient solution and rhizobox soil culture conditions.The results showed that the maximal influx (Vmax) for Cd2+ and Km were significantly different for the two oilseed rape varieties.The value of Vmax for Cd accumulator oilseed rape Zhucang Huazi was two-fold greater than that for oilseed rape Chuangyou II-93.The exchangeable Cd concentration in the rhizosphere was significantly lower than in non-rhizospheric soils supplemented with Cd as CdSO4 for both the varieties.Carbonate-bound Cd in the rhizosphere of Cd accumulator oilseed rape was significantly higher than that in the rhizosphere of non-accumulator oilseed rape and non-rhizospheric soil.Cd accumulator oilseed rape had a higher Cd2+ affinity and more ability to uptake insoluble Cd in the soil than the non-accumulator oilseed rape.

  2. Rhizosphere bacterial communities of dominant steppe plants shift in response to a gradient of simulated nitrogen deposition

    Directory of Open Access Journals (Sweden)

    An eYang

    2015-08-01

    Full Text Available We evaluated effects of 9-year simulation of simulated nitrogen (N deposition on microbial composition and diversity in the rhizosphere of two dominant temperate grassland species: grass Stipa krylovii and forb Artemisia frigida. Microbiomes in S. krylovii and A.frigida rhizosphere differed, but changed consistently along the N gradient. These changes were correlated to N-induced shifts to plant community. Hence, as plant biomass changed, so did bacterial rhizosphere communities, a result consistent with the role that N fertilizer has been shown to play in altering plant-microbial mutualisms. A total of 23 bacterial phyla were detected in the two rhizospheric soils by pyrosequencing, with Proteobacteria, Acidobacteria and Bacteroidetes dominating the sequences of all samples. Bacterioidetes and Proteobacteria tended to increase, while Acidobacteria declined with increase in N addition rates. TM7 increased >5-fold in the high N addition rates, especially in S. krylovii rhizosphere. Nitrogen addition also decreased diversity of OTUs (operational taxonomic units, Shannon and Chao1 indices of rhizospheric microbes regardless of plant species. These results suggest that there were both similar but also specific changes in microbial communities of temperate steppes due to N deposition.

  3. Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples.

    Science.gov (United States)

    Pires, Ana C C; Cleary, Daniel F R; Almeida, Adelaide; Cunha, Angela; Dealtry, Simone; Mendonça-Hagler, Leda C S; Smalla, Kornelia; Gomes, Newton C M

    2012-08-01

    Mangroves are complex ecosystems that regulate nutrient and sediment fluxes to the open sea. The importance of bacteria and fungi in regulating nutrient cycles has led to an interest in their diversity and composition in mangroves. However, very few studies have assessed Archaea in mangroves, and virtually nothing is known about whether mangrove rhizospheres affect archaeal diversity and composition. Here, we studied the diversity and composition of Archaea in mangrove bulk sediment and the rhizospheres of two mangrove trees, Rhizophora mangle and Laguncularia racemosa, using denaturing gradient gel electrophoresis (DGGE) and pyrosequencing of archaeal 16S rRNA genes with a nested-amplification approach. DGGE profiles revealed significant structural differences between bulk sediment and rhizosphere samples, suggesting that roots of both mangrove species influence the sediment archaeal community. Nearly all of the detected sequences obtained with pyrosequencing were identified as Archaea, but most were unclassified at the level of phylum or below. Archaeal richness was, furthermore, the highest in the L. racemosa rhizosphere, intermediate in bulk sediment, and the lowest in the R. mangle rhizosphere. This study shows that rhizosphere microhabitats of R. mangle and L. racemosa, common plants in subtropical mangroves located in Rio de Janeiro, Brazil, hosted distinct archaeal assemblages.

  4. Nontarget effects of chemical pesticides and biological pesticide on rhizospheric microbial community structure and function in Vigna radiata.

    Science.gov (United States)

    Singh, Sunil; Gupta, Rashi; Kumari, Madhu; Sharma, Shilpi

    2015-08-01

    Intensive agriculture has resulted in an indiscriminate use of pesticides, which demands in-depth analysis of their impact on indigenous rhizospheric microbial community structure and function. Hence, the objective of the present work was to study the impact of two chemical pesticides (chlorpyrifos and cypermethrin) and one biological pesticide (azadirachtin) at two dosages on the microbial community structure using cultivation-dependent approach and on rhizospheric bacterial communities involved in nitrogen cycle in Vigna radiata rhizosphere through cultivation-independent technique of real-time PCR. Cultivation-dependent study highlighted the adverse effects of both chemical pesticide and biopesticide on rhizospheric bacterial and fungal communities at different plant growth stages. Also, an adverse effect on number of genes and transcripts of nifH (nitrogen fixation); amoA (nitrification); and narG, nirK, and nirS (denitrification) was observed. The results from the present study highlighted two points, firstly that nontarget effects of pesticides are significantly detrimental to soil microflora, and despite being of biological origin, azadirachtin exerted negative impact on rhizospheric microbial community of V. radiata behaving similar to chemical pesticides. Hence, such nontarget effects of chemical pesticide and biopesticide in plants' rhizosphere, which bring out the larger picture in terms of their ecotoxicological effect, demand a proper risk assessment before application of pesticides as agricultural amendments.

  5. Rhizosphere microbial communities from resistant and susceptible watermelon cultivars showed different response to fusarium oxysporum f. sp. niveum inoculation

    International Nuclear Information System (INIS)

    Zhi, W.F.; Can, C.S.; Ling, C.; Hui, X.W.

    2015-01-01

    Fusarium oxysporum f. sp. niveum (FON), a soil-borne pathogen of watermelon (Citrullus lanatus), can cause substantial production losses worldwide. In this study, plate culture and PCR-denaturing gradient gel electrophoresis (DGGE) methods were used to evaluate the effects of inoculation of Fusarium oxysporum f.sp. niveum on rhizosphere microbial communities of different watermelon cultivars to FON. Two methods indicated that the effects of watermelon rhizosphere microbial community of different resistance cultivars to FON were much different. Populations of culturable bacteria and actinomycetes in the rhizosphere of susceptible watermelon cultivar were significantly lower than in the resistant cultivar after inoculation (P<0.05), but the opposite result was observed for fungi. Principal component analysis of bacterial and fungal community structure also showed that the cultivar of FON-inoculated soil treatment were separated from the non-inoculated controls after inoculation, and there was clear discrimination between the susceptible cultivars and the resistant cultivars. Sequence analysis of specific bands from DGGE profiles showed that specific rhizosphere bacterial and fungal groups differed between watermelon cultivars after inoculation . Both methods demonstrated that different resistant watermelon cultivars occupied different rhizosphere microbial communities, and and disease suppression might be correlated with high microbial diversity. F. oxysporum f. sp. Niveum alters the structure and functional diversity of microbial communities associated with watermelon rhizosphere. (author)

  6. Mapping the Centimeter-Scale Spatial Variability of PAHs and Microbial Populations in the Rhizosphere of Two Plants.

    Directory of Open Access Journals (Sweden)

    Amélia Bourceret

    Full Text Available Rhizoremediation uses root development and exudation to favor microbial activity. Thus it can enhance polycyclic aromatic hydrocarbon (PAH biodegradation in contaminated soils. Spatial heterogeneity of rhizosphere processes, mainly linked to the root development stage and to the plant species, could explain the contrasted rhizoremediation efficiency levels reported in the literature. Aim of the present study was to test if spatial variability in the whole plant rhizosphere, explored at the centimetre-scale, would influence the abundance of microorganisms (bacteria and fungi, and the abundance and activity of PAH-degrading bacteria, leading to spatial variability in PAH concentrations. Two contrasted rhizospheres were compared after 37 days of alfalfa or ryegrass growth in independent rhizotron devices. Almost all spiked PAHs were degraded, and the density of the PAH-degrading bacterial populations increased in both rhizospheres during the incubation period. Mapping of multiparametric data through geostatistical estimation (kriging revealed that although root biomass was spatially structured, PAH distribution was not. However a greater variability of the PAH content was observed in the rhizosphere of alfalfa. Yet, in the ryegrass-planted rhizotron, the Gram-positive PAH-degraders followed a reverse depth gradient to root biomass, but were positively correlated to the soil pH and carbohydrate concentrations. The two rhizospheres structured the microbial community differently: a fungus-to-bacterium depth gradient similar to the root biomass gradient only formed in the alfalfa rhizotron.

  7. [Effect of grafting on rhizosphere soil environment and its relationship with disease resistance and yield of pepper.

    Science.gov (United States)

    Duan, Xi; Bi, Huan Gai; Wei, You Ying; Li, Ting; Wang, Hong Tao; Ai, Xi Zhen

    2016-11-18

    We investigated the effect of grafting on the root rhizosphere soil microorganisms, physical properties, nutrient content, soil-borne disease and yield of pepper, using 'Weishi' (WS) and 'Buyeding' (BYD) as rootstocks, the cultivar pepper 'Xinfeng 2' (XF) as scion, and the own-root (XF/XF) pepper as the control. The results indicated that XF/WS and XF/BYD significantly increased the populations of fungi and actinomycetes and the percentage of actinomycetes. 60 days after transplanting, the activities of catalase (CAT) and peroxidase (POD) were much higher in root rhizosphere soil of grafted pepper. 90 days after transplanting, the activities of phosphatase, invertase, urease, and nitrate reductase (NR) were much higher in root rhizosphere soil of XF/WS. In addition, The XF/WS and XF/BYD also highly increased hydrocarbon compounds in soil extraction, slightly increased electric conductivity (EC) but lowered nitrogen, phosphorus and potassium contents in root rhizosphere soil. Higher pH in root rhizosphere soil was found in XF/WS but not in XF/BYD. These data indicated that grafting could optimize the rhizosphere soil environment of pepper and enhance the resistance of soil-borne diseases. The yields of XF/WS and XF/BYD were increased by 40.8% and 28.7%, respectively.

  8. Business education and social skills to leadership competencies

    Directory of Open Access Journals (Sweden)

    Čukanović-Karavidić Marija

    2016-01-01

    Full Text Available Encouraged by the fact that the leadership has become sought and highly valued ability in this paper we want to show the importance of education in developing leadership competencies. The creative power of the leaders is in the knowledge-intellectual potential, which have become a key factor of productivity, competitiveness and economic success. Leadership is a process of selection, and then transform those choices into actions - creative thinking through the acquisition of knowledge, values and build social skills. Personality traits and abilities may be to some extent inherited, but only with the education and continuous learning is possible to develop the necessary competencies of a true leader. The paper proves that the structure of leadership competence consists of numerous knowledge, skills, social skills and personality traits which are unavoidable.

  9. Rhizosphere competence of wild-type and genetically-engineered Pseudomonas brassicacearum is affected by the crop species

    Science.gov (United States)

    2,4-diacetylphloroglucinol (2,4-DAPG)-producing Pseudomonas brassicacearum Q8r1-96 is a highly effective biocontrol agent of take-all disease of wheat. Strain Z30-97, a recombinant derivative of Q8r1-96 containing the phzABCDEFG operon from P. synxantha (formerly P. fluorescens) 2-79 inserted into ...

  10. Hydrophobins contribute to root colonization and stress responses in the rhizosphere-competent insect pathogenic fungus Beauveria bassiana.

    Science.gov (United States)

    Moonjely, Soumya; Keyhani, Nemat O; Bidochka, Michael J

    2018-04-01

    The hyd1/hyd2 hydrophobins are important constituents of the conidial cell wall of the insect pathogenic fungus Beauveria bassiana. This fungus can also form intimate associations with several plant species. Here, we show that inactivation of two Class I hydrophobin genes, hyd1 or hyd2, significantly decreases the interaction of B. bassiana with bean roots. Curiously, the ∆hyd1/∆hyd2 double mutant was less impaired in root association than Δhyd1 or Δhyd2. Loss of hyd genes affected growth rate, conidiation ability and oosporein production. Expression patterns for genes involved in conidiation, cell wall integrity, insect virulence, signal transduction, adhesion, hydrophobicity and oosporein production were screened in the deletion mutants grown in different conditions. Repression of the major MAP-Kinase signal transduction pathways (Slt2 MAPK pathway) was observed that was more pronounced in the single versus double hyd mutants under certain conditions. The ∆hyd1/∆hyd2 double mutant showed up-regulation of the Hog1 MAPK and the Msn2 transcription factor under certain conditions when compared to the wild-type or single hyd mutants. The expression of the bad2 adhesin and the oosporein polyketide synthase 9 gene was severely reduced in all of the mutants. On the other hand, fewer changes were observed in the expression of key conidiation and cell wall integrity genes in hyd mutants compared to wild-type. Taken together, the data from this study indicated pleiotropic consequences of deletion of hyd1 and hyd2 on signalling and stress pathways as well as the ability of the fungus to form stable associations with plant roots.

  11. Nature, Nurture and Evolution of Intra-Species Variation in Mosquito Arbovirus Transmission Competence

    OpenAIRE

    Tabachnick, Walter J.

    2013-01-01

    Mosquitoes vary in their competence or ability to transmit arthropod-borne viruses (arboviruses). Many arboviruses cause disease in humans and animals. Identifying the environmental and genetic causes of variation in mosquito competence for arboviruses is one of the great challenges in public health. Progress identifying genetic (nature) and environmental (nurture) factors influencing mosquito competence for arboviruses is reviewed. There is great complexity in the various traits that compris...

  12. Importance of PGPR application and its effect on microbial activity in maize rhizosphere

    Directory of Open Access Journals (Sweden)

    Mrkovački Nastasija

    2012-01-01

    Full Text Available Microorganisms are involved in the formation of soil fertility, both potential and effective. They facilitate the processes of humification and dehumification and play a key role in the cycling of nutrients - macro and microelements. Rhizosphere is the soil in direct contact with plant roots and influenced by plant exudates. Root exudates of maize significantly affect the composition and abundance of microorganisms in the rhizosphere. Bio-fertilizers are microbial fertilizers composed of highly effective strains of bacteria, algae and fungi isolated from soil. Their application activates microbial processes that secure a better and steadier supply of plants with nitrogen, phosphorus, potassium and some micronutrients. The application of PGPR-containing biofertilizers reduces the need for expensive nitrogen fertilizers, facilitates phosphorus uptake by plants and affects the direction and dynamics of microbial processes.

  13. Photosynthate consumption and carbon turnover in the rhizosphere depending on plant species and growth conditions

    International Nuclear Information System (INIS)

    Sauerbeck, D.R.; Helal, H.M.; Nonnen, S.; Allard, J.-l.

    1982-01-01

    The root tissue which can be isolated from soils represents only part of the total plant carbon incorporation. Between 20 and 40% of the photosynthetic production of plants is expended for root growth and root metabolism. This indicates a striking turnover of energy in the rhizosphere, because relatively litle root-derived organic matter remains there until harvest time. Plant species and variety, soil conditions and temperature were shown to be the most decisive factors governing the assimilate consumption of plant root systems. A special technique is described which enables to study how this extensive turnover affects the surrounding soil depending on its proximity to the roots. Plant-derived carbon can be detected up to 20mm away from the roots. A priming effect has been found on the decomposition of soil organic matter. This explains why, in spite of the rhizo-deposition mentioned, no net-accumulation of carbon in the rhizosphere has been found. (Author) [pt

  14. Microgradients of microbial oxygen consumption in a barley rhizosphere model system

    DEFF Research Database (Denmark)

    Højberg, Ole; Sorensen, J.

    1993-01-01

    A microelectrode technique was used to map the radial distribution of oxygen concentrations and oxygen consumption rates around single roots of 7- day-old barley seedlings. The seedlings were grown in gel-stabilized medium containing a nutrient solution, a soil extract, and an inert polymer. Oxygen...... consumption by microbial respiration in the rhizosphere (30 mm from the root) was determined by using Fick's laws of diffusion and an analytical approach with curve fitting to measured microprofiles of oxygen concentration. A marked increase of microbial respiration...... was observed in the inner 0- to 3-mm-thick, concentric zone around the root (rhizosphere). The volume-specific oxygen consumption rate (specific activity) was thus 30 to 60 times higher in the innermost 0 to 0.01 mm (rhizoplane) than in the bulk medium. The oxygen consumption rate in the root tissue...

  15. Abiotic/biotic coupling in the rhizosphere: a reactive transport modeling analysis

    Science.gov (United States)

    Lawrence, Corey R.; Steefel, Carl; Maher, Kate

    2014-01-01

    A new generation of models is needed to adequately simulate patterns of soil biogeochemical cycling in response changing global environmental drivers. For example, predicting the influence of climate change on soil organic matter storage and stability requires models capable of addressing complex biotic/abiotic interactions of rhizosphere and weathering processes. Reactive transport modeling provides a powerful framework simulating these interactions and the resulting influence on soil physical and chemical characteristics. Incorporation of organic reactions in an existing reactive transport model framework has yielded novel insights into soil weathering and development but much more work is required to adequately capture root and microbial dynamics in the rhizosphere. This endeavor provides many advantages over traditional soil biogeochemical models but also many challenges.

  16. ECOTOXICITY AND PHYTOTOXICITY OF PLANT PROTECTION PRODUCTS TO RHIZOSPHERE FUNGI AND WINTER WHEAT SEEDLINGS

    Directory of Open Access Journals (Sweden)

    Anna Daria Stasiulewicz-Paluch

    2015-11-01

    Full Text Available Registration of plant protection products involves the analysis of their effects on soil microorganisms. The residues of plant protection products penetrate the soil, but their impact on fungi remains scarcely researched. In this study, the influence of selected plant protection products on the abundance of rhizosphere-dwelling fungi and the growth of winter wheat seedlings was evaluated under greenhouse conditions. The analysed plant protection products had an inhibitory effect on the growth of filamentous fungi in the rhizosphere, whereas yeasts were resistant to those products applied to soil. Tebuconazole exerted the strongest suppressive effect on the growth of filamentous fungi, and propiconazole was characterized by the greatest phytotoxic activity against winter wheat seedlings. Azoxystrobin had the weakest ecotoxic and phytotoxic effects, and its application to soil usually led to a rapid increase in the counts of fungi of the genus Acremonium.

  17. Application of a redox gradostat reactor for assessing rhizosphere microorganism activity on lambda-cyhalothrin.

    Science.gov (United States)

    Peacock, T J; Mikell, A T; Moore, M T; Smith, S

    2014-03-01

    Bacterial activity on pesticides can lead to decreased toxicity or persistence in aquatic systems. Rhizosphere activity is difficult to measure in situ. To mimic rhizosphere properties of the soft rush, Juncus effusus, a single-stage gradostat reactor was developed to study cycling of lambda-cyhalothrin by rhizobacteria and the effects of Fe(III) and citrate, both common in wetland soil, on lambda-cyhalothrin degradation. Redox gradient changes, greater than ± 10 mV, were apparent within days 5-15 both in the presence and absence of ferric citrate. Through the production of a redox gradient (p < 0.05) by rhizobacteria and the ability to measure pesticide loss over time (p < 0.05), reactors were useful in expanding knowledge on this active environment.

  18. LC-MS/MS quantitative analysis of reducing carbohydrates in soil solutions extracted from crop rhizospheres.

    Science.gov (United States)

    McRae, G; Monreal, C M

    2011-06-01

    A simple, sensitive, and specific analytical method has been developed for the quantitative determination of 15 reducing carbohydrates in the soil solution of crop rhizosphere. Reducing carbohydrates were derivatized with 1-phenyl-3-methyl-5-pyrazolone, separated by reversed-phase high-performance liquid chromatography and detected by electrospray ionization tandem mass spectrometry. Lower limits of quantitation of 2 ng/mL were achieved for all carbohydrates. Quantitation was performed using peak area ratios (analyte/internal standard) and a calibration curve spiked in water with glucose-d(2) as the internal standard. Calibration curves showed excellent linearity over the range 2-100 ng/mL (10-1,000 ng/mL for glucose). The method has been tested with quality control samples spiked in water and soil solution samples obtained from the rhizosphere of wheat and canola and has been found to provide accurate and precise results.

  19. Safe-site effects on rhizosphere bacterial communities in a high-altitude alpine environment.

    Science.gov (United States)

    Ciccazzo, Sonia; Esposito, Alfonso; Rolli, Eleonora; Zerbe, Stefan; Daffonchio, Daniele; Brusetti, Lorenzo

    2014-01-01

    The rhizosphere effect on bacterial communities associated with three floristic communities (RW, FI, and M sites) which differed for the developmental stages was studied in a high-altitude alpine ecosystem. RW site was an early developmental stage, FI was an intermediate stage, M was a later more matured stage. The N and C contents in the soils confirmed a different developmental stage with a kind of gradient from the unvegetated bare soil (BS) site through RW, FI up to M site. The floristic communities were composed of 21 pioneer plants belonging to 14 species. Automated ribosomal intergenic spacer analysis showed different bacterial genetic structures per each floristic consortium which differed also from the BS site. When plants of the same species occurred within the same site, almost all their bacterial communities clustered together exhibiting a plant species effect. Unifrac significance value (P floristic communities rhizospheres on their soil bacterial communities.

  20. Stimulation of bacteria and protists in rhizosphere of glyphosate-treated barley

    DEFF Research Database (Denmark)

    Imparato, Valentina; Santos, Susana; Johansen, Anders

    2016-01-01

    and protist communities to foliar application of glyphosate, we measured bacterial and protist abundance, diversity and physiological status, as well as soil organic carbon. Foliar application of glyphosate doubled bacterial abundance of the culturable fraction present in the rhizosphere compared to the other...... treatments with no effect on total abundance. Also the abundance of culturable protists increased as an effect of glyphosate and the bacterial genetic diversity as revealed by 16S rDNA DGGE analysis was affected. Overall, the results indicate that when barley leaves are treated with glyphosate......, the availability of organic carbon in the rhizosphere of the dying roots is altered, which in turn may alter the bacterial and protist communities and their interactions. This can have implications for general soil carbon turnover processes and CO2 release in arable systems....

  1. Nitrogen mineralization in a simulated rhizosphere as influenced by low molecular weight organic substances

    OpenAIRE

    Begum, Shamim Ara; Kader, MD Abdul; Sleutel, Steven; De Neve, Stefaan

    2012-01-01

    Rhizodeposits consist of over 200 organic compounds, mainly low-molecular-weight organic substances (LMWOS) such as amino acids (AA), carbohydrates (CH) and carboxylic acids (CA), lipids and phenols. Those LMWOS influence nutrient turnover, particularly N turnover. However, the exact influence of these organic substances on nitrogen mineralization is yet unknown. Therefore, the stimulatory effects of low molecular weight organic substances on nitrogen mineralization in the rhizosphere of a si...

  2. Biofilm formation and indole-3-acetic acid production by two rhizospheric unicellular cyanobacteria.

    Science.gov (United States)

    Ahmed, Mehboob; Stal, Lucas J; Hasnain, Shahida

    2014-08-01

    Microorganisms that live in the rhizosphere play a pivotal role in the functioning and maintenance of soil ecosystems. The study of rhizospheric cyanobacteria has been hampered by the difficulty to culture and maintain them in the laboratory. The present work investigated the production of the plant hormone indole-3-acetic acid (IAA) and the potential of biofilm formation on the rhizoplane of pea plants by two cyanobacterial strains, isolated from rice rhizosphere. The unicellular cyanobacteria Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 that were isolated from a rice rhizosphere, were investigated. Production of IAA by Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 was measured under experimental conditions (pH and light). The bioactivity of the cyanobacterial auxin was demonstrated through the alteration of the rooting pattern of Pisum sativum seedlings. The increase in the concentration of L-tryptophan and the time that this amino acid was present in the medium resulted in a significant enhancement of the synthesis of IAA (r > 0.900 at p = 0.01). There was also a significant correlation between the concentration of IAA in the supernatant of the cyanobacteria cultures and the root length and number of the pea seedlings. Observations made by confocal laser scanning microscopy revealed the presence of cyanobacteria on the surface of the roots and also provided evidence for the penetration of the cyanobacteria in the endorhizosphere. We show that the synthesis of IAA by Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 occurs under different environmental conditions and that the auxin is important for the development of the seedling roots and for establishing an intimate symbiosis between cyanobacteria and host plants.

  3. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce

    OpenAIRE

    Schreiter, Susanne; Ding, Guo-Chun; Heuer, Holger; Neumann, Günter; Sandmann, Martin; Grosch, Rita; Kropf, Siegfried; Smalla, Kornelia

    2014-01-01

    The complex and enormous diversity of microorganisms associated with plant roots is important for plant health and growth and is shaped by numerous factors. This study aimed to unravel the effects of the soil type on bacterial communities in the rhizosphere of field-grown lettuce. We used an experimental plot system with three different soil types that were stored at the same site for 10 years under the same agricultural management to reveal differences directly linked to the soil type and no...

  4. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce

    OpenAIRE

    Susanne eSchreiter; Susanne eSchreiter; Guo-chun eDing; Guo-chun eDing; Holger eHeuer; Günter eNeumann; Martin eSandmann; Rita eGrosch; Siegfried eKropf; Kornelia eSmalla

    2014-01-01

    The complex and enormous diversity of microorganisms associated with plant roots is important for plant health and growth and is shaped by numerous factors. This study aimed to unravel the effects of the soil type on bacterial communities in the rhizosphere of field-grown lettuce. We used an experimental plot system with three different soil types that were stored at the same site for ten years under the same agricultural management to reveal differences directly linked to the soil type and n...

  5. Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments

    Directory of Open Access Journals (Sweden)

    François eThomas

    2014-06-01

    Full Text Available Salt marshes are highly productive ecosystems hosting an intense sulfur (S cycle, yet little is known about S-oxidizing microorganisms in these ecosystems. Here, we studied the diversity and transcriptional activity of S-oxidizers in salt marsh sediments colonized by the plant Spartina alterniflora, and assessed variations with sediment depth and small-scale compartments within the rhizosphere. We combined next-generation amplicon sequencing of 16S rDNA and rRNA libraries with phylogenetic analyses of marker genes for two S-oxidation pathways (soxB and rdsrAB. Gene and transcript numbers of soxB and rdsrAB phylotypes were quantified simultaneously, using newly designed (RT-qPCR assays. We identified a diverse assemblage of S-oxidizers, with Chromatiales and Thiotrichales being dominant. The detection of transcripts from S-oxidizers was mostly confined to the upper 5 cm sediments, following the expected distribution of root biomass. A common pool of species dominated by Gammaproteobacteria transcribed S-oxidation genes across roots, rhizosphere, and surrounding sediment compartments, with rdsrAB transcripts prevailing over soxB. However, the root environment fine-tuned the abundance and transcriptional activity of the S-oxidizing community. In particular, the global transcription of soxB was higher on the roots compared to mix and rhizosphere samples. Furthermore, the contribution of Epsilonproteobacteria-related S-oxidizers tended to increase on Spartina roots compared to surrounding sediments. These data shed light on the under-studied oxidative part of the sulfur cycle in salt marsh sediments and indicate small-scale heterogeneities are important factors shaping abundance and potential activity of S-oxidizers in the rhizosphere.

  6. Diversity and Structure of Diazotrophic Communities in Mangrove Rhizosphere, Revealed by High-Throughput Sequencing.

    Science.gov (United States)

    Zhang, Yanying; Yang, Qingsong; Ling, Juan; Van Nostrand, Joy D; Shi, Zhou; Zhou, Jizhong; Dong, Junde

    2017-01-01

    Diazotrophic communities make an essential contribution to the productivity through providing new nitrogen. However, knowledge of the roles that both mangrove tree species and geochemical parameters play in shaping mangove rhizosphere diazotrophic communities is still elusive. Here, a comprehensive examination of the diversity and structure of microbial communities in the rhizospheres of three mangrove species, Rhizophora apiculata , Avicennia marina , and Ceriops tagal , was undertaken using high - throughput sequencing of the 16S rRNA and nifH genes. Our results revealed a great diversity of both the total microbial composition and the diazotrophic composition specifically in the mangrove rhizosphere. Deltaproteobacteria and Gammaproteobacteria were both ubiquitous and dominant, comprising an average of 45.87 and 86.66% of total microbial and diazotrophic communities, respectively. Sulfate-reducing bacteria belonging to the Desulfobacteraceae and Desulfovibrionaceae were the dominant diazotrophs. Community statistical analyses suggested that both mangrove tree species and additional environmental variables played important roles in shaping total microbial and potential diazotroph communities in mangrove rhizospheres. In contrast to the total microbial community investigated by analysis of 16S rRNA gene sequences, most of the dominant diazotrophic groups identified by nifH gene sequences were significantly different among mangrove species. The dominant diazotrophs of the family Desulfobacteraceae were positively correlated with total phosphorus, but negatively correlated with the nitrogen to phosphorus ratio. The Pseudomonadaceae were positively correlated with the concentration of available potassium, suggesting that diazotrophs potentially play an important role in biogeochemical cycles, such as those of nitrogen, phosphorus, sulfur, and potassium, in the mangrove ecosystem.

  7. Diversity and Structure of Diazotrophic Communities in Mangrove Rhizosphere, Revealed by High-Throughput Sequencing

    Directory of Open Access Journals (Sweden)

    Yanying Zhang

    2017-10-01

    Full Text Available Diazotrophic communities make an essential contribution to the productivity through providing new nitrogen. However, knowledge of the roles that both mangrove tree species and geochemical parameters play in shaping mangove rhizosphere diazotrophic communities is still elusive. Here, a comprehensive examination of the diversity and structure of microbial communities in the rhizospheres of three mangrove species, Rhizophora apiculata, Avicennia marina, and Ceriops tagal, was undertaken using high-throughput sequencing of the 16S rRNA and nifH genes. Our results revealed a great diversity of both the total microbial composition and the diazotrophic composition specifically in the mangrove rhizosphere. Deltaproteobacteria and Gammaproteobacteria were both ubiquitous and dominant, comprising an average of 45.87 and 86.66% of total microbial and diazotrophic communities, respectively. Sulfate-reducing bacteria belonging to the Desulfobacteraceae and Desulfovibrionaceae were the dominant diazotrophs. Community statistical analyses suggested that both mangrove tree species and additional environmental variables played important roles in shaping total microbial and potential diazotroph communities in mangrove rhizospheres. In contrast to the total microbial community investigated by analysis of 16S rRNA gene sequences, most of the dominant diazotrophic groups identified by nifH gene sequences were significantly different among mangrove species. The dominant diazotrophs of the family Desulfobacteraceae were positively correlated with total phosphorus, but negatively correlated with the nitrogen to phosphorus ratio. The Pseudomonadaceae were positively correlated with the concentration of available potassium, suggesting that diazotrophs potentially play an important role in biogeochemical cycles, such as those of nitrogen, phosphorus, sulfur, and potassium, in the mangrove ecosystem.

  8. Rhizosphere soil microbial index of tree species in a coal mining ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, S.; Masto, R.E.; Ram, L.C.; Selvi, V.A.; Srivastava, N.K.; Tripathi, R.C.; George, J. [Central Institute of Mining & Fuel Research, Dhanbad (India)

    2009-09-15

    Microbial characterization of the tree rhizosphere provides important information relating to the screening of tree species for re-vegetation of degraded land. Rhizosphere soil samples collected from a few predominant tree species growing in the coal mining ecosystem of Dhanbad, India, were analyzed for soil organic carbon (SOC), mineralizable N, microbial biomass carbon (MBC), active microbial biomass carbon (AMBC), basal soil respiration (BSR), and soil enzyme activities (dehydrogenase, urease, catalase, phenol oxidase, and peroxidase). Principal component analysis was employed to derive a rhizosphere soil microbial index (RSMI) and accordingly, dehydrogenase, BSR/MBC, MBC/SOC, EC, phenol oxidase and AMBC were found to be the most critical properties. The observed values for the above properties were converted into a unitless score (0-1.00) and the scores were integrated into RSMI. The tree species could be arranged in decreasing order of the RSMI as: A. marmelos (0.718), A. indica (0.715), Bauhinia bauhinia (0.693), B. monosperma (0.611), E. jambolana (0.601), Moringa oleifera (0.565), Dalbergia sissoo (0.498), T indica (0.488), Morus alba (0.415), F religiosa (0.291), Eucalyptus sp. (0.232) and T grandis (0.181). It was concluded that tree species in coal mining areas had diverse effects on their respective rhizosphere microbial processes, which could directly or indirectly determine the survival and performance of the planted tree species in degraded coal mining areas. Tree species with higher RSMI values could be recommended for re-vegetation of degraded coal mining area.

  9. Bacterial interactions in the rhizosphere of seagrass communities in shallow coastal lagoons.

    Science.gov (United States)

    Donnelly, A P; Herbert, R A

    1998-12-01

    Rooted phanerogam communities in the shallow intertidal and subtidal coastal zone represent productive and healthy ecosystems. Inorganic nutrients are assimilated into seagrass biomass. Much of the organic matter resulting from moribund seagrass is rapidly mineralized, principally by bacteria. The microbial community of the rhizosphere is also highly active due to the supply of organic matter released during photosynthesis. This active sediment community plays an important role through carbon, nitrogen and phosphorous cycling in maintaining the stability and productivity of seagrass meadows. Over the last two decades, however, seagrass meadows in European coastal areas have declined due to increasing pollution. As eutrophication advances a trasition occurs from rooted phanerogram dominated communities to planktonic algal blooms and/or cyanobacterial blooms. Such changes represent the decline of a stable, high biodiversity habitat to an unstable one dominated by a few species. These changes of community structure can occur rapidly once the internal nutrient and organic matter control cycles are exceeded. A field investigation was undertaken to establish the spatial distribution of bacterial populations of Zostera noltii colonized and uncolonized sediment in the Bassin d'Arcachon, France. Bacteria were enumerated using both plate count and MPN techniques for different functional groups as well as determining the total bacterial populations present. Nitrogen fixation, ammonification, sulphate reduction rates, as well as alkaline phosphatase activity were also determined. Colonization of the Z. noltii roots and rhizomes was studied by light and scanning electron microscopy. Results confirmed that higher bacterial populations were present in the rhizosphere of Z. noltii compared to uncolonized sediments. Furthermore, electron microscopy identified the rhizome as the main site of colonization for a diverse range of morphological groups of bacteria. Sulphate reducing

  10. Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named Fire Phoenix.

    Science.gov (United States)

    Liu, Rui; Xiao, Nan; Wei, Shuhe; Zhao, Lixing; An, Jing

    2014-03-01

    The rhizosphere effect of a special phytoremediating species known as Fire Phoenix on the degradation of polycyclic aromatic hydrocarbons (PAHs) was investigated, including changes of the enzymatic activity and microbial communities in rhizosphere soil. The study showed that the degradation rate of Σ8PAHs by Fire Phoenix was up to 99.40% after a 150-day culture. The activity of dehydrogenase (DHO), peroxidase (POD) and catalase (CAT) increased greatly, especially after a 60-day culture, followed by a gradual reduction with an increase in the planting time. The activity of these enzymes was strongly correlated to the higher degradation performance of Fire Phoenix growing in PAH-contaminated soils, although it was also affected by the basic characteristics of the plant species itself, such as the excessive, fibrous root systems, strong disease resistance, drought resistance, heat resistance, and resistance to barren soil. The activity of polyphenoloxidase (PPO) decreased during the whole growing period in this study, and the degradation rate of Σ8PAHs in the rhizosphere soil after having planted Fire Phoenix plants had a significant (R(2)=0.947) negative correlation with the change in the activity of PPO. Using an analysis of the microbial communities, the results indicated that the structure of microorganisms in the rhizosphere soil could be changed by planting Fire Phoenix plants, namely, there was an increase in microbial diversity compared with the unplanted soil. In addition, the primary advantage of Fire Phoenix was to promote the growth of flora genus Gordonia sp. as the major bacteria that can effectively degrade PAHs. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  11. Influence of the sunflower rhizosphere on the biodegradation of PAHs in soil

    OpenAIRE

    Tejeda Agredano, M. C.; Gallego, Sara; Vila, Joaquim; Ortega Calvo, J. J.; Cantos, Manuel

    2013-01-01

    Reduced bioavailability to soil microorganisms is probably the most limiting factor in the bioremediation of polycyclic aromatic hydrocarbons PAH-polluted soils. We used sunflowers planted in pots containing soil to determine the influence of the rhizosphere on the ability of soil microbiota to reduce PAH levels. The concentration of total PAHs decreased by 93% in 90 days when the contaminated soil was cultivated with sunflowers, representing an improvement of 16% compared to contaminated soi...

  12. Nature, Nurture and Evolution of Intra-Species Variation in Mosquito Arbovirus Transmission Competence

    Directory of Open Access Journals (Sweden)

    Walter J. Tabachnick

    2013-01-01

    Full Text Available Mosquitoes vary in their competence or ability to transmit arthropod-borne viruses (arboviruses. Many arboviruses cause disease in humans and animals. Identifying the environmental and genetic causes of variation in mosquito competence for arboviruses is one of the great challenges in public health. Progress identifying genetic (nature and environmental (nurture factors influencing mosquito competence for arboviruses is reviewed. There is great complexity in the various traits that comprise mosquito competence. The complex interactions between environmental and genetic factors controlling these traits and the factors shaping variation in Nature are largely unknown. The norms of reaction of specific genes influencing competence, their distributions in natural populations and the effects of genetic polymorphism on phenotypic variation need to be determined. Mechanisms influencing competence are not likely due to natural selection because of the direct effects of the arbovirus on mosquito fitness. More likely the traits for mosquito competence for arboviruses are the effects of adaptations for other functions of these competence mechanisms. Determining these other functions is essential to understand the evolution and distributions of competence for arboviruses. This information is needed to assess risk from mosquito-borne disease, predict new mosquito-arbovirus systems, and provide novel strategies to mitigate mosquito-borne arbovirus transmission.

  13. Nature, Nurture and Evolution of Intra-Species Variation in Mosquito Arbovirus Transmission Competence

    Science.gov (United States)

    Tabachnick, Walter J.

    2013-01-01

    Mosquitoes vary in their competence or ability to transmit arthropod-borne viruses (arboviruses). Many arboviruses cause disease in humans and animals. Identifying the environmental and genetic causes of variation in mosquito competence for arboviruses is one of the great challenges in public health. Progress identifying genetic (nature) and environmental (nurture) factors influencing mosquito competence for arboviruses is reviewed. There is great complexity in the various traits that comprise mosquito competence. The complex interactions between environmental and genetic factors controlling these traits and the factors shaping variation in Nature are largely unknown. The norms of reaction of specific genes influencing competence, their distributions in natural populations and the effects of genetic polymorphism on phenotypic variation need to be determined. Mechanisms influencing competence are not likely due to natural selection because of the direct effects of the arbovirus on mosquito fitness. More likely the traits for mosquito competence for arboviruses are the effects of adaptations for other functions of these competence mechanisms. Determining these other functions is essential to understand the evolution and distributions of competence for arboviruses. This information is needed to assess risk from mosquito-borne disease, predict new mosquito-arbovirus systems, and provide novel strategies to mitigate mosquito-borne arbovirus transmission. PMID:23343982

  14. Nature, nurture and evolution of intra-species variation in mosquito arbovirus transmission competence.

    Science.gov (United States)

    Tabachnick, Walter J

    2013-01-11

    Mosquitoes vary in their competence or ability to transmit arthropod-borne viruses (arboviruses). Many arboviruses cause disease in humans and animals. Identifying the environmental and genetic causes of variation in mosquito competence for arboviruses is one of the great challenges in public health. Progress identifying genetic (nature) and environmental (nurture) factors influencing mosquito competence for arboviruses is reviewed. There is great complexity in the various traits that comprise mosquito competence. The complex interactions between environmental and genetic factors controlling these traits and the factors shaping variation in Nature are largely unknown. The norms of reaction of specific genes influencing competence, their distributions in natural populations and the effects of genetic polymorphism on phenotypic variation need to be determined. Mechanisms influencing competence are not likely due to natural selection because of the direct effects of the arbovirus on mosquito fitness. More likely the traits for mosquito competence for arboviruses are the effects of adaptations for other functions of these competence mechanisms. Determining these other functions is essential to understand the evolution and distributions of competence for arboviruses. This information is needed to assess risk from mosquito-borne disease, predict new mosquito-arbovirus systems, and provide novel strategies to mitigate mosquito-borne arbovirus transmission.

  15. ESTCP Cost and Performance Report: Field Demonstration of Rhizosphere-Enhanced Treatment of Organics-Contaminated Soils on Native American Lands with Application to Northern FUD Sites

    National Research Council Canada - National Science Library

    Reynolds, C. M

    2004-01-01

    ... can be used in other situations dealing with surface soil contamination. This project included field demonstrations of rhizosphere-enhanced bioremediation of petroleum, oils, and lubricants (POLs...

  16. The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum

    Science.gov (United States)

    Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto

    2013-01-01

    The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. PMID:24311557

  17. Diversity of Rhizosphere Soil Arbuscular Mycorrhizal Fungi in Various Soybean Cultivars under Different Continuous Cropping Regimes

    Science.gov (United States)

    Jie, Weiguang; Liu, Xiaorui; Cai, Baiyan

    2013-01-01

    Recent studies have shown that continuous cropping in soybean causes substantial changes to the microbial community in rhizosphere soil. In this study, we investigated the effects of continuous cropping for various time periods on the diversity of rhizosphere soil arbuscular mycorrhizal (AM) fungi in various soybean cultivars at the branching stage. The soybean cultivars Heinong 37 (an intermediate cultivar), Heinong 44 (a high-fat cultivar) and Heinong 48 (a high-protein cultivar) were seeded in a field and continuously cropped for two or three years. We analyzed the diversity of rhizosphere soil AM fungi of these soybean plants at the branching stage using morphological and denaturing gradient gel electrophoresis (DGGE) techniques. The clustering analysis of unweighted pair-group method with arithmetic averages (UPGMA) was then used to investigate the AM fungal community shifts. The results showed that increasing the number of years of continuous cropping can improve the colonization rate of AM fungi in different soybean cultivars at the branching stage. The dominant AM fungi in the experimental fields were Funneliformismosseae and Glomus spp. The number of years of continuous cropping and the soybean cultivar both had obvious effects on the diversity of AM fungi, which was consistent with the results of colonization rate analysis. This study establishes a basis for screening dominant AM fungi of soybean. In addition, the results of this study may be useful for the development of AM fungal inoculants. PMID:23977368

  18. Dissipation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere: Synthesis through meta-analysis

    International Nuclear Information System (INIS)

    Ma Bin; He Yan; Chen Huaihai; Xu Jianming; Rengel, Zed

    2010-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread and persistent organic pollutants with high carcinogenic effect and toxicity; their behavior and fate in the soil-plant system have been widely investigated. In the present paper, meta-analysis was used to explore the interaction between plant growth and dissipation of PAHs in soil based on the large body of published literature. Plants have a promoting effect on PAH dissipation in soils. There was no difference in PAH dissipation between soils contaminated with single and mixed PAHs. However, plants had a more obvious effect on PAH dissipation in freshly-spiked soils than in long-term field-polluted soils. Additionally, a positive effect of the number of microbial populations capable of degrading PAHs was observed in the rhizosphere compared with the bulk soil. Our meta-analysis established the importance of the rhizosphere effect on PAH dissipation in variety of the soil-plant systems. - The meta-analysis provides the first quantitative evidence of the positive effect of rhizosphere processes on PAH dissipation.

  19. Genetic diversity of culturable bacteria in oil-contaminated rhizosphere of Galega orientalis

    International Nuclear Information System (INIS)

    Jussila, Minna M.; Jurgens, German; Lindstroem, Kristina; Suominen, Leena

    2006-01-01

    A collection of 50 indigenous meta-toluate tolerating bacteria isolated from oil-contaminated rhizosphere of Galega orientalis on selective medium was characterized and identified by classical and molecular methods. 16S rDNA partial sequencing showed the presence of five major lineages of the Bacteria domain. Gram-positive Rhodococcus, Bacillus and Arthrobacter and gram-negative Pseudomonas were the most abundant genera. Only one-fifth of the strains that tolerated m-toluate also degraded m-toluate. The inoculum Pseudomonas putida PaW85 was not found in the rhizosphere samples. The ability to degrade m-toluate by the TOL plasmid was detected only in species of the genus Pseudomonas. However, a few Rhodococcus erythropolis strains were found which were able to degrade m-toluate. A new finding was that Pseudomonas migulae strains and a few P. oryzihabitans strains were able to grow on m-toluate and most likely contained the TOL plasmid. Because strain specific differences in degradation abilities were found for P. oryzihabitans, separation at the strain level was important. For strain specific separation (GTG) 5 fingerprinting was the best method. A combination of the single locus ribotyping and the whole genomic fingerprinting techniques with the selective partial sequencing formed a practical molecular toolbox for studying genetic diversity of culturable bacteria in oil-contaminated rhizosphere. - Bacterial diversity during rhizoremediation in oil-contaminated soil is characterized by a combination of molecular methods

  20. Microbial abundance in rhizosphere of medicinal and aromatic plant species in conventional and organic growing systems

    Directory of Open Access Journals (Sweden)

    Adamović Dušan

    2015-01-01

    Full Text Available This study was aimed at comparing the abundance of microorganisms in the rhizosphere of four different medicinal and aromatic plant species (basil, mint, dill and marigold grown under both conventional and organic management on the chernozem soil at the experimental field of Bački Petrovac (Institute of Field and Vegetable Crops, Novi Sad, Serbia. Two sampling terms (June 1 and July 18, 2012 were performed to collect samples for microbiological analyses. The microbial abundance was higher in organic than in conventional system while at the same time significant differences were obtained only with dill rhizosphere. The differences in number of microorganisms belonging to different groups relied upon both plant species and sampling term. Thus, in mint, the recorded number of azotobacters and fungi was significantly higher whereas the number of ammonifiers was significantly lower. The present results indicate that organic growing system affected the abundance of microorganisms in rhizosphere of species investigated, especially in the second term of sampling.

  1. Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere

    Directory of Open Access Journals (Sweden)

    Bo eYang

    2015-09-01

    Full Text Available The endophytic fungus Phomopsis liquidambari performs an important ecosystem service by assisting its host with acquiring soil nitrogen (N, but little is known regarding how this fungus influences soil N nutrient properties and microbial communities. In this study, we investigated the impact of P. liquidambari on N dynamics,the abundance and composition of N cycling genes in rhizosphere soil treated with three levels of N (urea. Ammonia-oxidizing archaea (AOA, ammonia-oxidizing bacteria (AOB and diazotrophs were assayed using quantitative real-time polymerase chain reaction and denaturing gradient gel electrophoresis at four rice growing stages (S0: before planting, S1: tillering stage, S2: grain filling stage, and S3: ripening stage. A significant increase in the available nitrate and ammonium contents was found in the rhizosphere soil of endophyte-infected rice under low N conditions. Moreover, P. liquidambari significantly increased the potential nitrification rates (PNR, affected the abundance and community structure of AOA, AOB and diazotrophs under low N conditions in the S1 and S2 stages. The root exudates were determined due to their important role in rhizosphere interactions. P. liquidambari colonization altered the exudation of organic compounds by rice roots and P. liquidambari increased the concentration of soluble saccharides, total free amino acids and organic acids

  2. Diversity of rhizosphere soil arbuscular mycorrhizal fungi in various soybean cultivars under different continuous cropping regimes.

    Science.gov (United States)

    Jie, Weiguang; Liu, Xiaorui; Cai, Baiyan

    2013-01-01

    Recent studies have shown that continuous cropping in soybean causes substantial changes to the microbial community in rhizosphere soil. In this study, we investigated the effects of continuous cropping for various time periods on the diversity of rhizosphere soil arbuscular mycorrhizal (AM) fungi in various soybean cultivars at the branching stage. The soybean cultivars Heinong 37 (an intermediate cultivar), Heinong 44 (a high-fat cultivar) and Heinong 48 (a high-protein cultivar) were seeded in a field and continuously cropped for two or three years. We analyzed the diversity of rhizosphere soil AM fungi of these soybean plants at the branching stage using morphological and denaturing gradient gel electrophoresis (DGGE) techniques. The clustering analysis of unweighted pair-group method with arithmetic averages (UPGMA) was then used to investigate the AM fungal community shifts. The results showed that increasing the number of years of continuous cropping can improve the colonization rate of AM fungi in different soybean cultivars at the branching stage. The dominant AM fungi in the experimental fields were Funneliformismosseae and Glomus spp. The number of years of continuous cropping and the soybean cultivar both had obvious effects on the diversity of AM fungi, which was consistent with the results of colonization rate analysis. This study establishes a basis for screening dominant AM fungi of soybean. In addition, the results of this study may be useful for the development of AM fungal inoculants.

  3. The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum.

    Science.gov (United States)

    Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto

    2013-12-01

    The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. © 2013 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  4. Plant-microbe rhizosphere interactions mediated by Rehmannia glutinosa root exudates under consecutive monoculture

    Science.gov (United States)

    Wu, Linkun; Wang, Juanying; Huang, Weimin; Wu, Hongmiao; Chen, Jun; Yang, Yanqiu; Zhang, Zhongyi; Lin, Wenxiong

    2015-10-01

    Under consecutive monoculture, the biomass and quality of Rehmannia glutinosa declines significantly. Consecutive monoculture of R. glutinosa in a four-year field trial led to significant growth inhibition. Most phenolic acids in root exudates had cumulative effects over time under sterile conditions, but these effects were not observed in the rhizosphere under monoculture conditions. It suggested soil microbes might be involved in the degradation and conversion of phenolic acids from the monocultured plants. T-RFLP and qPCR analysis demonstrated differences in both soil bacterial and fungal communities during monoculture. Prolonged monoculture significantly increased levels of Fusarium oxysporum, but decreased levels of Pseudomonas spp. Abundance of beneficial Pseudomonas spp. with antagonistic activity against F. oxysporum was lower in extended monoculture soils. Phenolic acid mixture at a ratio similar to that found in the rhizosphere could promote mycelial growth, sporulation, and toxin (3-Acetyldeoxynivalenol, 15-O-Acetyl-4-deoxynivalenol) production of pathogenic F. oxysporum while inhibiting growth of the beneficial Pseudomonas sp. W12. This study demonstrates that extended monoculture can alter the microbial community of the rhizosphere, leading to relatively fewer beneficial microorganisms and relatively more pathogenic and toxin-producing microorganisms, which is mediated by the root exudates.

  5. Removal of Copper by Eichhornia crassipes and the Characterization of Associated Bacteria of the Rhizosphere System

    Directory of Open Access Journals (Sweden)

    Raisa Kabeer

    2014-06-01

    Full Text Available Excess doses of trace element contamination make conventional water treatment methods less effective and more expensive, where in alternative biotechnological applications open up new opportunities with their reduced cost and lesser impacts to the environment. In the present investigation, effectiveness of aquatic macrophyte Eichhornia crassipes was tested for the removal of copper in laboratory conditions. Water samples were collected from macrophytes natural habitat and water tubs used for growing E. crassipes and analysed along with plant tissues for Cu content. The work also characterized the associated microbiota of the rhizosphere system of the E. crassipes as well as the wetland system of its occurrence. Copper concentration of the wetland water samples ranged from 0.009 to 0.03ppm. Six bacterial genera (Acinetobacter, Alcaligenes, Bacillus, Kurthia, Listeria and Chromobacterium were represented in rhizosphere of E.crassipes and 4 bacterial genera (Acinetobacter, Bacillus, Listeria and Chromobacterium were recorded in wetland water samples. Copper resistance studies of the bacterial isolates showed that out of 26 isolates from rhizosphere and 19 strains from water samples,12 of them showed low resistance (80% of copper during 15 days experiment. Copper accumulation was found to be high in the root followed by leaf and petiole. Results of the present study concluded that E. crassipes is an efficient plant for the removal of copper.

  6. Anthropogenic impact on diazotrophic diversity in the mangrove rhizosphere revealed by nifH pyrosequencing.

    Science.gov (United States)

    Jing, Hongmei; Xia, Xiaomin; Liu, Hongbin; Zhou, Zhi; Wu, Chen; Nagarajan, Sanjay

    2015-01-01

    Diazotrophs in the mangrove rhizosphere play a major role in providing new nitrogen to the mangrove ecosystem and their composition and activity are strongly influenced by anthropogenic activity and ecological conditions. In this study, the diversity of the diazotroph communities in the rhizosphere sediment of five tropical mangrove sites with different levels of pollution along the north and south coastline of Singapore were studied by pyrosequencing of the nifH gene. Bioinformatics analysis revealed that in all the studied locations, the diazotroph communities comprised mainly of members of the diazotrophic cluster I and cluster III. The detected cluster III diazotrophs, which were composed entirely of sulfate-reducing bacteria, were more abundant in the less polluted locations. The metabolic capacities of these diazotrophs indicate the potential for bioremediation and resiliency of the ecosystem to anthropogenic impact. In heavily polluted locations, the diazotrophic community structures were markedly different and the diversity of species was significantly reduced when compared with those in a pristine location. This, together with the increased abundance of Marinobacterium, which is a bioindicator of pollution, suggests that anthropogenic activity has a negative impact on the genetic diversity of diazotrophs in the mangrove rhizosphere.

  7. Thallium contamination of soils/vegetation as affected by sphalerite weathering: a model rhizospheric experiment.

    Science.gov (United States)

    Vaněk, Aleš; Grösslová, Zuzana; Mihaljevič, Martin; Ettler, Vojtěch; Chrastný, Vladislav; Komárek, Michael; Tejnecký, Václav; Drábek, Ondřej; Penížek, Vít; Galušková, Ivana; Vaněčková, Barbora; Pavlů, Lenka; Ash, Christopher

    2015-01-01

    The environmental stability of Tl-rich sphalerite in two contrasting soils was studied. Rhizospheric conditions were simulated to assess the risk associated with sulfide microparticles entering agricultural (top)soils. The data presented here clearly demonstrate a significant effect of 500 μM citric acid, a model rhizospheric solution, on ZnS alteration followed by enhanced Tl and Zn release. The relative ZnS mass loss after 28 days of citrate incubation reached 0.05 and 0.03 wt.% in Cambisol and Leptosol samples respectively, and was up to 4 times higher, compared to H2O treatments. Incongruent (i.e., substantially increased) mobilization of Tl from ZnS was observed during the incubation time. Generally higher (long-term) stability of ZnS with lower Tl release is predicted for soils enriched in carbonates. Furthermore, the important role of silicates (mainly illite) in the stabilization of mobilized Tl, linked with structural (inter)layer Tl-K exchange, is suggested. Thallium was highly bioavailable, as indicated by its uptake by white mustard; maximum Tl amounts were detected in biomass grown on the acidic Cambisol. Despite the fact that sulfides are thought as relatively stable phases in soil environments, enhanced sulfide dissolution and Tl/trace element release (and bioaccumulation) can be assumed in rhizosphere systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. RHIZOtest: A plant-based biotest to account for rhizosphere processes when assessing copper bioavailability

    Energy Technology Data Exchange (ETDEWEB)

    Bravin, Matthieu N., E-mail: matthieu.bravin@cirad.f [INRA, UMR 1222 Eco and Sols (INRA-IRD-SupAgro), Place Viala, F-34060 Montpellier (France); Michaud, Aurelia M.; Larabi, Bourane; Hinsinger, Philippe [INRA, UMR 1222 Eco and Sols (INRA-IRD-SupAgro), Place Viala, F-34060 Montpellier (France)

    2010-10-15

    The ability of the free ion activity model (FIAM), the terrestrial biotic ligand model (TBLM), the diffusive gradients in thin films (DGT) technique and a plant-based biotest, the RHIZOtest, to predict root copper (Cu) concentration in field-grown durum wheat (Triticum turgidum durum L.) was assessed on 44 soils varying in pH (3.9-7.8) and total Cu (32-184 mg kg{sup -1}). None of the methods adequately predicted root Cu concentration, which was mainly correlated with total soil Cu. Results from DGT measurements and even more so FIAM prediction were negatively correlated with soil pH and over-estimated root Cu concentration in acidic soils. TBLM implementation improved numerically FIAM prediction but still failed to predict adequately root Cu concentration as the TBLM formalism did not considered the rhizosphere alkalisation as observed in situ. In contrast, RHIZOtest measurements accounted for rhizosphere alkalisation and were mainly correlated with total soil Cu. - In contrast with physico-chemical methods, RHIZOtest measurement accounted for the rhizosphere alkalisation altering Cu bioavailability to wheat as observed in situ.

  9. Cry1Ab protein from Bt transgenic rice does not residue in rhizosphere soil

    International Nuclear Information System (INIS)

    Wang Haiyan; Ye Qingfu; Wang Wei; Wu Licheng; Wu Weixiang

    2006-01-01

    Expression of Cry1Ab protein in Bt transgenic rice (KMD) and its residue in the rhizosphere soil during the whole growth in field, as well as degradation of the protein from KMD straw in five soils under laboratory incubation were studied. The residue of Cry1Ab protein in KMD rhizosphere soil was undetectable (below the limit of 0.5 ng/g air-dried soil). The Cry1Ab protein contents in the shoot and root of KMD were 3.23-8.22 and 0.68-0.89 μg/g (fresh weight), respectively. The half-lives of the Cry1Ab protein in the soils amended with KMD straw (4%, w/w) ranged from 11.5 to 34.3 d. The residence time of the protein varied significantly in a Fluvio-marine yellow loamy soil amended with KMD straw at the rate of 3, 4 and 7%, with half-lives of 9.9, 13.8 and 18 d, respectively. In addition, an extraction method for Cry1Ab protein in soil was developed, with extraction efficiencies of 46.4-82.3%. - Cry1Ab protein was not detected in the rhizosphere soil of field-grown Bt transgenic rice

  10. Diversity and activity of biosurfactant-producing Pseudomonas in the rhizosphere of black pepper in Vietnam.

    Science.gov (United States)

    Tran, H; Kruijt, M; Raaijmakers, J M

    2008-03-01

    Phytophthora capsici is a major pathogen of black pepper and zoospores play an important role in the infection process. Fluorescent pseudomonads that produce biosurfactants with zoosporicidal activities were isolated from the black pepper rhizosphere in Vietnam, and their genotypic diversity and potential to control Phy. capsici root rot was determined. Biosurfactant-producing pseudomonads were genotypically and biochemically characterized by BOX-polymerase chain reaction (PCR), 16S-rDNA sequencing, reverse-phase-high-performance liquid chromatography and liquid chromatography-mass spectrometry analyses. Biosurfactant-producing fluorescent pseudomonads make up c. 1.3% of the culturable Pseudomonas population in the rhizosphere of black pepper. Although BOX-PCR revealed substantial genotypic diversity, the isolates were shown to produce the same biosurfactants and were all identified as Pseudomonas putida. When applied to black pepper stem cuttings, several of the biosurfactant-producing strains provided significant disease control. In absence of the disease, several of the bacterial strains promoted shoot and root growth of black pepper stem cuttings. Biosurfactant-producing pseudomonads indigenous to the rhizosphere of black pepper plants are genotypically diverse and provide a novel resource for the control of Phy. capsici root rot and growth promotion of black pepper stem cuttings. The results of this study provide a strong basis for further development of supplementary strategies with antagonistic bacteria to control foot and root rot of black pepper and to promote plant growth.

  11. Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response.

    Science.gov (United States)

    Van Puyvelde, Sandra; Cloots, Lore; Engelen, Kristof; Das, Frederik; Marchal, Kathleen; Vanderleyden, Jos; Spaepen, Stijn

    2011-05-01

    The rhizosphere bacterium Azospirillum brasilense produces the auxin indole-3-acetic acid (IAA) through the indole-3-pyruvate pathway. As we previously demonstrated that transcription of the indole-3-pyruvate decarboxylase (ipdC) gene is positively regulated by IAA, produced by A. brasilense itself or added exogenously, we performed a microarray analysis to study the overall effects of IAA on the transcriptome of A. brasilense. The transcriptomes of A. brasilense wild-type and the ipdC knockout mutant, both cultured in the absence and presence of exogenously added IAA, were compared.Interfering with the IAA biosynthesis/homeostasis in A. brasilense through inactivation of the ipdC gene or IAA addition results in much broader transcriptional changes than anticipated. Based on the multitude of changes observed by comparing the different transcriptomes, we can conclude that IAA is a signaling molecule in A. brasilense. It appears that the bacterium, when exposed to IAA, adapts itself to the plant rhizosphere, by changing its arsenal of transport proteins and cell surface proteins. A striking example of adaptation to IAA exposure, as happens in the rhizosphere, is the upregulation of a type VI secretion system (T6SS) in the presence of IAA. The T6SS is described as specifically involved in bacterium-eukaryotic host interactions. Additionally, many transcription factors show an altered regulation as well, indicating that the regulatory machinery of the bacterium is changing.

  12. [Nutrient Characteristics and Nitrogen Forms of Rhizosphere Soils Under Four Typical Plants in the Littoral Zone of TGR].

    Science.gov (United States)

    Wang, Xiao-feng; Yuan, Xing-zhong; Liu, Hong; Zhang, Lei; Yu, Jian-jun; Yue, Jun-sheng

    2015-10-01

    The Three Gorges Reservoir (TGR), which is the largest water conservancy project ever built in tne world, produced a drawdown area of about 348.93 km2 because of water level control. The biological geochemical cycle of the soil in the drawdown zone has been changed as the result of long-term winter flooding and summer drought and vegetation covering. The loss of soil nitrogen in the drawdown zone poses a threat to the water environmental in TGR. Pengxi river, is an important anabranch, which has the largest drawdown area has been selected in the present study. The four typical vegetation, contained Cynodon dactylon, Cyperus rotundus, Anthium sibiricum and Zea mays L. as the control, were studied to measure nutrient characteristics and nitrogen forms of rhizosphere and non-rhizosphere soils in three distribution areas with different soil types (paddy soil, purple soil and fluvo-aquic soils). The variables measured included organic matter (OM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), hydrolysis N, available P and available K, pH, ion-exchangeable N (IEE-N), weak acid extractable N (CF-N) , iron-manganese oxides N (IMOF-N), organic matter sulfide N (OSF-N), added up four N forms for total transferable N (TF-N) and TN minus TF-N for non-transferable N (NTF-N). The results showed: (1) pH of rhizosphere soil was generally lower than that of non-rhizosphere soil under different vegetation in different type soils because the possible organic acid and H+ released form plant roots and cation absorption differences, and the OM, TP, TN and hydrolysis N of rhizosphere soil were generally higher than those of non-rhizosphere soil, and that the enrichment ratio (ER) of all the four nutrient indicators showed Cyperus rotundus > Cynodon dactylon > Zea mays L. > Anthium sibiricum. Available P showed enrichment in the rhizosphere of three natural vegetations but lose under corn, and available K, TK showed different ER in different conditions. (2) IEF-N CF

  13. Quantitative Trait Loci Affecting Calving Traits in Danish Holstein Cattle

    DEFF Research Database (Denmark)

    Thomasen, J R; Guldbrandtsen, B; Sørensen, P

    2008-01-01

    The objectives of this study were 1) to detect quantitative trait loci (QTL) affecting direct and maternal calving traits at first calving in the Danish Holstein population, 2) to distinguish between pleiotropic and linked QTL for chromosome regions affecting more than one trait, and 3) to detect...

  14. Quantitative trait loci for behavioural traits in chicken

    NARCIS (Netherlands)

    Buitenhuis, A.J.; Rodenburg, T.B.; Siwek, M.Z.; Cornelissen, S.J.B.; Nieuwland, M.G.B.; Crooijmans, R.P.M.A.; Groenen, M.A.M.; Koene, P.; Bovenhuis, H.; Poel, van der J.J.

    2005-01-01

    The detection of quantitative trait loci (QTL) of behavioural traits has mainly been focussed on mouse and rat. With the rapid development of molecular genetics and the statistical tools, QTL mapping for behavioural traits in farm animals is developing. In chicken, a total of 30 QTL involved in

  15. The effects of radial oxygen loss on arsenic tolerance and uptake in rice and on its rhizosphere

    International Nuclear Information System (INIS)

    Mei, X.Q.; Wong, M.H.; Yang, Y.; Dong, H.Y.; Qiu, R.L.; Ye, Z.H.

    2012-01-01

    Understanding the complex biotic and abiotic interactions invoked by the rice root system in oxygen-depleted soil is an important step in screening genotypes for low toxic metal or metalloid accumulation. A hydroponic and a rhizobox experiment have been conducted to explore the effects of varying root oxygen release on chemical changes, As fractionation in rhizosphere soil and Fe plaque formation, As uptake and tolerance by different rice genotypes. The results showed that rice genotypes with higher rates of radial oxygen loss (ROL) and at the bolting stage, tended to have greater effects on rhizosphere Eh, pH, Fe 3+ /Fe 2+ quotients, As fractionation and mobility and also on Fe plaque formation compared to those with lower ROL and at the tillering stage. Genotypes with higher ROL have a strong ability to reduce As accumulation in shoots and increase As tolerance by reducing As mobilization in the rhizosphere and by limiting As translocation. - Highlights: ► We investigate the effects of ROL on As tolerance, uptake, and changes in rhizosphere of rice genotypes and their correlation. ► Indices of As tolerance of genotypes are positively correlated with their rates of ROL. ► Genotypes with higher rates of ROL have greater effects on rhizosphere. ► Genotypes with higher rates of ROL have a strong ability to reduce As uptake by immobilizing As on roots and in rhizosphere. - Rice genotypes with high ROL and at the bolting stage have greater effects on their rhizosphere than others with lower ROL and at tillering stage and also have lower shoot As and higher As tolerance.

  16. Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome.

    Science.gov (United States)

    Zhang, Yunzeng; Xu, Jin; Riera, Nadia; Jin, Tao; Li, Jinyun; Wang, Nian

    2017-08-10

    Roots are the primary site for plant-microbe interactions. Among the three root-associated layers (i.e., rhizosphere, rhizoplane, and endorhiza), the rhizoplane is a key component serving a critical gating role that controls microbial entry into plant roots. The microbial communities colonizing the three layers are believed to be gradually enriched from the bulk soil inoculum. However, it is unknown how this enrichment process, particularly the rhizosphere to rhizoplane step, is affected by biotic stresses, such as disease. In this study, we address this question using the citrus root-associated microbiome as a model. We identified the rhizosphere-to-rhizoplane-enriched taxonomic and functional properties of the citrus root-associated microbiome and determined how they were affected by Huanglongbing (HLB), a severe systemic disease caused by Candidatus Liberibacter asiaticus, using metagenomic and metatranscriptomic approaches. Multiple rhizoplane-enriched genera were identified, with Bradyrhizobium and Burkholderia being the most dominant. Plant-derived carbon sources are an important driving force for the enrichment process. The enrichment of functional attributes, such as motility, chemotaxis, secretion systems, and lipopolysaccharide (LPS) synthesis, demonstrated more active microbe-plant interactions on the rhizoplane than the rhizosphere. We observed that HLB impaired the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome in three ways: (1) by decreasing the relative abundance of most rhizoplane-enriched genera; (2) by reducing the relative abundance and/or expression activity of the functional attributes involved in microbe-plant interactions; and (3) by recruiting more functional features involved in autotrophic life cycle adaptation, such as carbon fixation and nitrogen nitrification in the HLB rhizoplane microbiome. Finally, our data showed that inoculation of Burkholderia strains isolated from the healthy citrus root

  17. Trait Emotional Intelligence and Personality

    OpenAIRE

    Siegling, Alexander B.; Furnham, Adrian; Petrides, K. V.

    2015-01-01

    This study investigated if the linkages between trait emotional intelligence (trait EI) and the Five-Factor Model of personality were invariant between men and women. Five English-speaking samples (N = 307-685) of mostly undergraduate students each completed a different measure of the Big Five personality traits and either the full form or short form of the Trait Emotional Intelligence Questionnaire (TEIQue). Across samples, models predicting global TEIQue scores from the Big Five were invari...

  18. The Trait Lady Speaks Up

    Science.gov (United States)

    Culham, Ruth

    2006-01-01

    The acknowledged expert on the 6+1 traits of writing explains what the traits are and what they are not: The traits are not a curriculum; they are part and parcel of the writing process; they are a model, not a program; they are not a prepackaged replacement for teaching writing; and they are the language of the writing workshop. The author…

  19. Isolation and identification of plant growth promoting rhizobacteria from maize (Zea mays L. rhizosphere and their plant growth promoting effect on rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Karnwal Arun

    2017-06-01

    Full Text Available The use of plant growth promoting rhizobacteria is increasing in agriculture and gives an appealing manner to replace chemical fertilizers, pesticides, and dietary supplements. The objective of our research was to access the plant growth promotion traits of Pseudomonas aeruginosa, P. fluorescens and Bacillus subtilis isolated from the maize (Zea mays L. rhizosphere. In vitro studies showed that isolates have the potential to produce indole acetic acid (IAA, hydrogen cyanide, phosphate solubilisation, and siderophore. RNA analysis revealed that two isolates were 97% identical to P. aeruginosa strain DSM 50071 and P. aeruginosa strain NBRC 12689 (AK20 and AK31, while two others were 98% identical to P. fluorescens strain ATCC 13525, P. fluorescens strain IAM 12022 (AK18 and AK45 and one other was 99% identical to B. subtilis strain NCDO 1769 (AK38. Our gnotobiotic study showed significant differences in plant growth variables under control and inoculated conditions. In the present research, it was observed that the isolated strains had good plant growth promoting effects on rice.

  20. Cultural Competence Revisited

    Science.gov (United States)

    Garran, Ann Marie; Werkmeister Rozas, Lisa

    2013-01-01

    In 2001, the National Association of Social Workers (NASW) adopted 10 discrete standards of culturally competent practice which undergird our commitment to diversity and social justice. The concept of intersectionality is newly emerging in social work, though, causing us to reflect on our current conceptualizations of cultural competence.…

  1. Financing Competency Based Programs.

    Science.gov (United States)

    Daniel, Annette

    Literature on the background, causes, and current prevalence of competency based programs is synthesized in this report. According to one analysis of the actual and probable costs of minimum competency testing, estimated costs for test development, test administration, bureaucratic structures, and remedial programs for students who cannot pass the…

  2. Competencies and Their Assessment

    Science.gov (United States)

    Drisko, James W.

    2014-01-01

    This article explores competencies and methods for their assessment in higher education and in social work's accreditation standards. Many contemporary policy and educational accreditation efforts employ the model of competency assessment. The current emphasis on accountability in higher education, including the Council on Social Work…

  3. Developing Clinical Competence

    NARCIS (Netherlands)

    P.F. Wimmers (Paul)

    2006-01-01

    textabstractThe development of clinical competence is the main purpose of medical education. The long road to become clinically competent starts on the first day of medical school, and every institution strives to select the best students. The responsibility of medical schools is to train

  4. [Effects of phosphorus sources on phosphorus fractions in rhizosphere soil of wild barley genotypes with high phosphorus utilization efficiency].

    Science.gov (United States)

    Cai, Qiu-Yan; Zhang, Xi-Zhou; Li, Ting-Xuan; Chen, Guang-Deng

    2014-11-01

    High P-efficiency (IS-22-30, IS-22-25) and low P-efficiency (IS-07-07) wild barley cultivars were chosen to evaluate characteristics of phosphorus uptake and utilization, and properties of phosphorus fractions in rhizosphere and non-rhizosphere in a pot experiment with 0 (CK) and 30 mg P · kg(-1) supplied as only Pi (KH2PO4), only Po (phytate) or Pi + Po (KH2PO4+ phytate). The results showed that dry matter and phosphorus accumulation of wild barley in the different treatments was ranked as Pi > Pi + Po > Po > CK. In addition, dry matter yield and phosphorus uptake of wild barley with high P-efficiency exhibited significantly greater than that with low P-efficiency. The concentration of soil available phosphorus was significantly different after application of different phosphorus sources, which was presented as Pi > Pi + Po > Po. The concentration of soil available phosphorus in high P-efficiency wild barley was significantly higher than that of low P-efficiency in the rhizosphere soil. There was a deficit in rhizosphere available phosphorus of high P-efficiency wild barley, especially in Pi and Pi+Po treatments. The inorganic phosphorus fractions increased with the increasing Pi treatment, and the concentrations of inorganic phosphorus fractions in soil were sorted as follows: Ca10-P > O-P > Fe-P > Al-P > Ca2-P > Ca8-P. The contents of Ca2-P and Ca8-P for high P-efficiency wild barley showed deficits in rhizosphere soil under each phosphorus source treatment. In addition, enrichment of Al-P and Fe-P was observed in Pi treatment in rhizosphere soil. The concentrations of organic phosphorus fractions in soil were sorted as follows: moderate labile organic phosphorus > moderate resistant, resistant organic phosphorus > labile organic phosphorus. The labile and moderate labile organic phosphorus enriched in rhizosphere soil and the greatest enrichment appeared in Pi treatment. Furthermore, the concentrations of moderate resistant organic phosphorus and resistant

  5. Tricalcium phosphate solubilization and nitrogen fixation by newly isolated Aneurinibacillus aneurinilyticus CKMV1 from rhizosphere of Valeriana jatamansi and its growth promotional effect

    Directory of Open Access Journals (Sweden)

    Anjali Chauhan

    Full Text Available Abstract Aneurinibacillus aneurinilyticus strain CKMV1 was isolated from rhizosphere of Valeriana jatamansi and possessed multiple plant growth promoting traits like production of phosphate solubilization (260 mg/L, nitrogen fixation (202.91 nmol ethylene mL-1 h-1, indole-3-acetic acid (IAA (8.1 µg/mL, siderophores (61.60%, HCN (hydrogen cyanide production and antifungal activity. We investigated the ability of isolate CKMV1 to solubilize insoluble P via mechanism of organic acid production. High-performance liquid chromatography (HPLC study showed that isolate CKMV1 produced mainly gluconic (1.34% and oxalic acids. However, genetic evidences for nitrogen fixation and phosphate solubilization by organic acid production have been reported first time for A. aneurinilyticus strain CKMV1. A unique combination of glucose dehydrogenase (gdh gene and pyrroloquinoline quinone synthase (pqq gene, a cofactor of gdh involved in phosphate solubilization has been elucidated. Nitrogenase (nif H gene for nitrogen fixation was reported from A. aneurinilyticus. It was notable that isolate CKMV1 exhibited highest antifungal against Sclerotium rolfsii (93.58% followed by Fusarium oxysporum (64.3%, Dematophora necatrix (52.71%, Rhizoctonia solani (91.58%, Alternaria sp. (71.08% and Phytophthora sp. (71.37%. Remarkable increase was observed in seed germination (27.07%, shoot length (42.33%, root length (52.6%, shoot dry weight (62.01% and root dry weight (45.7% along with NPK (0.74, 0.36, 1.82% content of tomato under net house condition. Isolate CKMV1 possessed traits related to plant growth promotion, therefore, could be a potential candidate for the development of biofertiliser or biocontrol agent and this is the first study to include the Aneurinibacillus as PGPR.

  6. Tricalcium phosphate solubilization and nitrogen fixation by newly isolated Aneurinibacillus aneurinilyticus CKMV1 from rhizosphere of Valeriana jatamansi and its growth promotional effect.

    Science.gov (United States)

    Chauhan, Anjali; Guleria, Shiwani; Balgir, Praveen P; Walia, Abhishek; Mahajan, Rishi; Mehta, Preeti; Shirkot, Chand Karan

    Aneurinibacillus aneurinilyticus strain CKMV1 was isolated from rhizosphere of Valeriana jatamansi and possessed multiple plant growth promoting traits like production of phosphate solubilization (260mg/L), nitrogen fixation (202.91nmolethylenemL -1 h -1 ), indole-3-acetic acid (IAA) (8.1μg/mL), siderophores (61.60%), HCN (hydrogen cyanide) production and antifungal activity. We investigated the ability of isolate CKMV1 to solubilize insoluble P via mechanism of organic acid production. High-performance liquid chromatography (HPLC) study showed that isolate CKMV1 produced mainly gluconic (1.34%) and oxalic acids. However, genetic evidences for nitrogen fixation and phosphate solubilization by organic acid production have been reported first time for A. aneurinilyticus strain CKMV1. A unique combination of glucose dehydrogenase (gdh) gene and pyrroloquinoline quinone synthase (pqq) gene, a cofactor of gdh involved in phosphate solubilization has been elucidated. Nitrogenase (nif H) gene for nitrogen fixation was reported from A. aneurinilyticus. It was notable that isolate CKMV1 exhibited highest antifungal against Sclerotium rolfsii (93.58%) followed by Fusarium oxysporum (64.3%), Dematophora necatrix (52.71%), Rhizoctonia solani (91.58%), Alternaria sp. (71.08%) and Phytophthora sp. (71.37%). Remarkable increase was observed in seed germination (27.07%), shoot length (42.33%), root length (52.6%), shoot dry weight (62.01%) and root dry weight (45.7%) along with NPK (0.74, 0.36, 1.82%) content of tomato under net house condition. Isolate CKMV1 possessed traits related to plant growth promotion, therefore, could be a potential candidate for the development of biofertiliser or biocontrol agent and this is the first study to include the Aneurinibacillus as PGPR. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  7. Ten-Competence: Life-Long Competence Development and Learning

    NARCIS (Netherlands)

    Koper, Rob; Specht, Marcus

    2006-01-01

    Koper, R., & Specht, M. (2008). Ten-Competence: Life-Long Competence Development and Learning. In M-A. Cicilia (Ed.), Competencies in Organizational e-learning: concepts and tools (pp. 234-252). Hershey: IGI-Global.

  8. Rhizospheric fungi and their link with the nitrogen-fixing Frankia harbored in host plant Hippophae rhamnoides L.

    Science.gov (United States)

    Zhou, Xue; Tian, Lei; Zhang, Jianfeng; Ma, Lina; Li, Xiujun; Tian, Chunjie

    2017-12-01

    Sea buckthorn (Hippophae rhamnoides L.) is a pioneer plant used for land reclamation and an appropriate material for studying the interactions of symbiotic microorganisms because of its nitrogen-fixing root nodules and mycorrhiza. We used high-throughput sequencing to reveal the diversities and community structures of rhizospheric fungi and their link with nitrogen-fixing Frankia harbored in sea buckthorn collected along an altitude gradient from the Qinghai Tibet Plateau to interior areas. We found that the fungal diversities and compositions varied between different sites. Ascomycota, Basidiomycota, and Zygomycota were the dominant phyla. The distribution of sea buckthorn rhizospheric fungi was driven by both environmental factors and the geographic distance. Among all examined soil characteristics, altitude, AP, and pH were found to have significant (p < 0.05) effect on the rhizospheric fungal community. The rhizospheric fungal communities became more distinct as the distance increased. Moreover, co-inertia analysis identified significant co-structures between Frankia and AMF communities in the rhizosphere of sea buckthorn. We conclude that at the large scale, there are certain linkages between nitrogen-fixing bacteria and the AMF expressed in the distributional pattern. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Influence of plant genotype on the cultivable fungi associated to tomato rhizosphere and roots in different soils.

    Science.gov (United States)

    Poli, Anna; Lazzari, Alexandra; Prigione, Valeria; Voyron, Samuele; Spadaro, Davide; Varese, Giovanna Cristina

    2016-01-01

    Rhizosphere and root-associated microbiota are crucial in determining plant health and in increasing productivity of agricultural crops. To date, research has mainly focused on the bacterial dimension of the microbiota. However, interest in the mycobiota is increasing, since fungi play a key role in soil ecosystems. We examined the effect of plant genotype, soil, and of Fusarium oxysporum f. sp. lycopersici (Fol) on the cultivable component of rhizosphere and root-associated mycobiota of tomato. Resistant and susceptible varieties were cultivated on two different soils (A and B), under glasshouse conditions. Isolated fungi were identified by morphological and molecular approaches. Differences were found between the rhizosphere and the roots, which in general displayed a lower number of species. The structure of the mycobiota was significantly affected by the soil type in the rhizosphere as well as by the plant genotype within the roots (NPERMANOVA, p fungi. Overall, the results indicated that i) soil type and plant genotype affect the fungal communities; ii) plant roots select few species from the rhizosphere; and iii) the fungal community structure is influenced by Fol. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  10. Microbial diversity and metagenomic analysis of the rhizosphere of para grass (Urochloa mutica) growing under saline conditions

    International Nuclear Information System (INIS)

    Mukhtar, S.; Awan, H. A.; Maqbool, A.; Mehnaz, S.; Malik, K. A.

    2016-01-01

    Para grass is a salt tolerant plant, grown on salt affected soils of Punjab, Pakistan. The aim of this study was to investigate the distribution of culturable and non-culturable bacteria in the rhizosphere, rhizoplane and histoplane of para grass, growing under saline conditions. A total of seventy four, bacterial strains were isolated and characterized. Among these, thirty two from rhizosphere, twenty two from rhizoplane and twenty were from the histoplane. Cultureable bacteria were characterized by biochemical tests and 16S rRNA gene sequence analysis. Non-culturable bacteria were identified by PCR amplification of 16S rRNA gene, using metagenomic approach. Seventy seven percent bacterial isolates from rhizosphere and rhizoplane fractions were identified as member of Proteobacteria. Twenty five percent isolates of histoplane fraction were members of firmicutes while 68.75 percent were of Proteobacteria. Of total isolates, 50 percent could grow in nitrogen free medium and 21.67 percent on halophilic medium. Nitrogen fixers and halophilic bacteria were more abundant in the rhizosphere as compared to roots. 16S rRNA gene clone library analysis showed that out of 48 clones, 14 were uncultured, classified; eighteen un-cultured un-classified, while others related to 16 different known cultured groups of bacteria. Results for cultured and uncultured bacteria revealed a wide diversity of bacterial population present in the rhizosphere of para grass. (author)

  11. Population densities of indigenous Acidobacteria change in the presence of plant growth promoting rhizobacteria (PGPR) in rhizosphere.

    Science.gov (United States)

    Kalam, Sadaf; Das, Subha Narayan; Basu, Anirban; Podile, Appa Rao

    2017-05-01

    Rhizosphere microbial community has diverse metabolic capabilities and plays a crucial role in maintaining plant health. Oligotrophic plant growth promoting rhizobacteria (PGPR), along with difficult-to-culture microbial fractions, might be involved synergistically in microbe-microbe and plant-microbe interactions in the rhizosphere. Among the difficult-to-culture microbial fractions, Acidobacteria constitutes the most dominant phylum thriving in rhizospheric soils. We selected effective PGPR for tomato and black gram and studied their effect on population densities of acidobacterial members. Three facultatively oligotrophic PGPR were identified through 16S rRNA gene sequencing as Sphingobacterium sp. (P3), Variovorax sp. (P4), and Roseomonas sp. (A2); the latter being a new report of PGPR. In presence of selected PGPR strains, the changes in population densities of Acidobacteria were monitored in metagenomic DNA extracted from bulk and rhizospheric soils of tomato and black gram using real time qPCR. A gradual increase in equivalent cell numbers of Acidobacteria members was observed over time along with a simultaneous increase in plant growth promotion by test PGPR. We report characterization of three effective PGPR strains and their effects on indigenous, underexplored difficult-to-culture phylum-Acidobacteria. We suggest that putative interactions between these two bacterial groups thriving in rhizospheric soils could be beneficial for plant growth. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Influence of indian mustard (Brassica juncea) on rhizosphere soil solution chemistry in long-term contaminated soils: a rhizobox study.

    Science.gov (United States)

    Kim, Kwon-Rae; Owens, Gary; Kwon, Soon-lk

    2010-01-01

    This study investigated the influence of Indian mustard (Brassica juncea) root exudation on soil solution properties (pH, dissolved organic carbon (DOC), metal solubility) in the rhizosphere using a rhizobox. Measurement was conducted following the cultivation of Indian mustard in the rhizobox filled four different types of heavy metal contaminated soils (two alkaline soils and two acidic soils). The growth of Indian mustard resulted in a significant increase (by 0.6 pH units) in rhizosphere soil solution pH of acidic soils and only a slight increase (soil solution varied considerably amongst different soils, resulting in significant changes to soil solution metals in the rhizosphere. For example, the soil solution Cd, Cu, Pb, and Zn concentrations increased in the rhizosphere of alkaline soils compared to bulk soil following plant cultivation. In contrast, the soluble concentrations of Cd, Pb, and Zn in acidic soils decreased in rhizosphere soil when compared to bulk soils. Besides the influence of pH and DOC on metal solubility, the increase of heavy metal concentration having high stability constant such as Cu and Pb resulted in a release of Cd and Zn from solid phase to liquid phase.

  13. Contributions of available substrates and activities of trophic microbial community to methanogenesis in vegetative and reproductive rice rhizospheric soil.

    Science.gov (United States)

    Chawanakul, Sansanee; Chaiprasert, Pawinee; Towprayoon, Sirintornthep; Tanticharoen, Morakot

    2009-01-01

    Potential of methane production and trophic microbial activities at rhizospheric soil during rice cv. Supanbunri 1 cultivation were determined by laboratory anaerobic diluents vials. The methane production was higher from rhizospheric than non-rhizospheric soil, with the noticeable peaks during reproductive phase (RP) than vegetative phase (VP). Glucose, ethanol and acetate were the dominant available substrates found in rhizospheric soil during methane production at both phases. The predominance activities of trophic microbial consortium in methanogenesis, namely fermentative bacteria (FB), acetogenic bacteria (AGB), acetate utilizing bacteria (AB) and acetoclastic methanogens (AM) were also determined. At RP, these microbial groups were enhanced in the higher of methane production than VP. This correlates with our finding that methane production was greater at the rhizospheric soil with the noticeable peaks during RP (1,150 +/- 60 nmol g dw(-1) d(-1)) compared with VP (510 +/- 30 nmol g dw(-1) d(-1)). The high number of AM showed the abundant (1.1x10(4) cell g dw(-1)) with its high activity at RP, compared to the less activity with AM number at VP (9.8x10(2) cell g dw(-1)). Levels of AM are low in the total microbial population, being less than 1% of AB. These evidences revealed that the microbial consortium of these two phases were different.

  14. Rhizosphere C flux from tree roots to soil: spatial and temporal differences between sugar maple and yellow birch saplings

    Science.gov (United States)

    Phillips, R. P.; Fahey, T. J.

    2003-12-01

    Rhizosphere carbon flux (RCF) has rarely been measured for intact root-soil systems. We measured RCF for eight year-old saplings of sugar maple (Acer saccharum) and yellow birch (Betula allegheniensis) collected from Hubbard Brook Experimental Forest and transplanted into 35 cm diameter pots with native soil horizons intact. We hypothesized birch roots which support ectomycorrhizal fungi would release more C to the rhizosphere than sugar maple roots which support vesicular-arbuscular mycorrhizal fungi. Saplings (n=5) were pulse-labeled with 13CO2 at ambient CO2 concentrations for 4-6 hours, and the label was chased through rhizosphere and bulk soil pools in organic and mineral horizons for 7 days. We observed immediate appearance of the label in rhizosphere soil, and there was a striking difference in the temporal pattern of 13C concentration between species. In maple, peak concentration of the label appeared at day 1 and declined over time whereas in birch the label increased in concentration over the 7 day chase period. As a result, total RCF was 2-3 times greater from birch roots. We estimate at least 5% and 10% of NPP may be released from this flux pathway in sugar maple and yellow birch saplings respectively. These results suggest that rhizosphere C flux likely represents a substantial proportion of NPP in northern hardwood forests, and may be influenced by trees species and mycorrhizal association.

  15. Environment and geographic distance differ in relative importance for determining fungal community of rhizosphere and bulk soil.

    Science.gov (United States)

    Zhang, Kaoping; Adams, Jonathan M; Shi, Yu; Yang, Teng; Sun, Ruibo; He, Dan; Ni, Yingying; Chu, Haiyan

    2017-09-01

    Rhizospheric fungi play major roles in both natural and agricultural ecosystems. However, little is known about the determinants of their diversity and biogeographic patterns. Here, we compared fungal communities in rhizosphere and bulk soils of wheat fields in the North China Plain. The rhizosphere had a lower fungal diversity (observed OTUs and Chao1) than bulk soil, and a distinct fungal community structure in rhizosphere compared with bulk soil. The relative importance of environmental factors and geographic distance for fungal distribution differed between rhizosphere and bulk soil. Environmental factors were the primary cause of variations in total fungal community and major fungal phyla in bulk soil. By contrast, fungal communities in soils loosely attached to roots were predictable from both environmental factors and influences of geographic distance. Communities in soils tightly attached to roots were mainly determined by geographic distance. Our results suggest that both contemporary environment processes (present-day abiotic and biotic environment characters) and historical processes (spatial isolation, dispersal limitation occurred in the past) dominate variations of fungal communities in wheat fields, but their relative importance of all these processes depends on the proximity of fungal community to the plant roots. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. State and Trait Effects on Individual Differences in Children's Mathematical Development

    Science.gov (United States)

    Bailey, Drew H.; Watts, Tyler W.; Littlefield, Andrew K.; Geary, David C.

    2015-01-01

    Substantial longitudinal relations between children's early mathematics achievement and their much later mathematics achievement are firmly established. These findings are seemingly at odds with studies showing that early educational interventions have diminishing effects on children's mathematics achievement across time. We hypothesized that individual differences in children's later mathematical knowledge are more an indicator of stable, underlying characteristics related to mathematics learning throughout development than of direct effects of early mathematical competency on later mathematical competency. We tested this hypothesis in two longitudinal data sets, by simultaneously modeling effects of latent traits (stable characteristics that influence learning across time) and states (e.g., prior knowledge) on children's mathematics achievement over time. Latent trait effects on children's mathematical development were substantially larger than state effects. Approximately 60% of the variance in trait mathematics achievement was accounted for by commonly used control variables, such as working memory, but residual trait effects remained larger than state effects. Implications for research and practice are discussed. PMID:25231900

  17. Quantitative traits and diversification.

    Science.gov (United States)

    FitzJohn, Richard G

    2010-12-01

    Quantitative traits have long been hypothesized to affect speciation and extinction rates. For example, smaller body size or increased specialization may be associated with increased rates of diversification. Here, I present a phylogenetic likelihood-based method (quantitative state speciation and extinction [QuaSSE]) that can be used to test such hypotheses using extant character distributions. This approach assumes that diversification follows a birth-death process where speciation and extinction rates may vary with one or more traits that evolve under a diffusion model. Speciation and extinction rates may be arbitrary functions of the character state, allowing much flexibility in testing models of trait-dependent diversification. I test the approach using simulated phylogenies and show that a known relationship between speciation and a quantitative character could be recovered in up to 80% of the cases on large trees (500 species). Consistent with other approaches, detecting shifts in diversification due to differences in extinction rates was harder than when due to differences in speciation rates. Finally, I demonstrate the application of QuaSSE to investigate the correlation between body size and diversification in primates, concluding that clade-specific differences in diversification may be more important than size-dependent diversification in shaping the patterns of diversity within this group.

  18. Bleeding-Heart Liberals and Hard-Hearted Conservatives: Subtle Political Dehumanization Through Differential Attributions of Human Nature and Human Uniqueness Traits

    Directory of Open Access Journals (Sweden)

    Jarret T. Crawford

    2013-10-01

    Full Text Available This research demonstrated that human nature (HN and human uniqueness (HU traits capture the content of Americans’ stereotypes about liberals and conservatives, respectively. Consistent with expectations derived from dehumanization theory, people more strongly associated HN traits with liberals than with conservatives, and more strongly associated HU traits with conservatives than with liberals. A trait × target ideology × perceiver ideology × trait valence interaction suggested that both liberals and conservatives more strongly associated their ingroup with stereotype-consistent positive traits, and their outgroup with stereotype-consistent negative traits. Mediation analyses revealed that outgroup antipathy, but not ingroup liking, explained the relationship between ideology and political outgroup dehumanization. Finally, humanness traits captured subtle differences in political stereotype content not captured with the warmth and competence dimensions derived from the stereotype content model. Together, these results indicate that differential attributions of HN and HU traits capture political stereotype content and function to subtly dehumanize one’s political opponents.

  19. Trait Emotional Intelligence and Personality

    Science.gov (United States)

    Furnham, Adrian; Petrides, K. V.

    2015-01-01

    This study investigated if the linkages between trait emotional intelligence (trait EI) and the Five-Factor Model of personality were invariant between men and women. Five English-speaking samples (N = 307-685) of mostly undergraduate students each completed a different measure of the Big Five personality traits and either the full form or short form of the Trait Emotional Intelligence Questionnaire (TEIQue). Across samples, models predicting global TEIQue scores from the Big Five were invariant between genders, with Neuroticism and Extraversion being the strongest trait EI correlates, followed by Conscientiousness, Agreeableness, and Openness. However, there was some evidence indicating that the gender-specific contributions of the Big Five to trait EI vary depending on the personality measure used, being more consistent for women. Discussion focuses on the validity of the TEIQue as a measure of trait EI and its psychometric properties, more generally. PMID:25866439

  20. On Verbal Competence

    Directory of Open Access Journals (Sweden)

    Zhongxin Dai

    2014-04-01

    Full Text Available This paper explored a new concept, verbal competence, to present a challenge to Chomsky’s linguistic competence and Hymes’ communicative competence. It is generally acknowledged that Chomsky concerned himself only with the syntactic/grammatical structures, and viewed the speaker’s generation and transformation of syntactic structures as the production of language. Hymes challenged Chomsky’s conception of linguistic competence and argued for an ethnographic or sociolinguistic concept, communicative competence, but his concept is too broad to be adequately grasped and followed in such fields as linguistics and second language acquisition. Communicative competence can include abilities to communicate with nonverbal behaviors, e.g. gestures, postures or even silence. The concept of verbal competence concerns itself with the mental and psychological processes of verbal production in communication. These processes originate from the speaker’s personal experience, in a certain situation of human communication, and with the sudden appearance of the intentional notion, shape up as the meaning images and end up in the verbal expression.

  1. ACCP Clinical Pharmacist Competencies.

    Science.gov (United States)

    Saseen, Joseph J; Ripley, Toni L; Bondi, Deborah; Burke, John M; Cohen, Lawrence J; McBane, Sarah; McConnell, Karen J; Sackey, Bryan; Sanoski, Cynthia; Simonyan, Anahit; Taylor, Jodi; Vande Griend, Joseph P

    2017-05-01

    The purpose of the American College of Clinical Pharmacy (ACCP) is to advance human health by extending the frontiers of clinical pharmacy. Consistent with this mission and its core values, ACCP is committed to ensuring that clinical pharmacists possess the knowledge, skills, attitudes, and behaviors necessary to deliver comprehensive medication management (CMM) in team-based, direct patient care environments. These components form the basis for the core competencies of a clinical pharmacist and reflect the competencies of other direct patient care providers. This paper is an update to a previous ACCP document and includes the expectation that clinical pharmacists be competent in six essential domains: direct patient care, pharmacotherapy knowledge, systems-based care and population health, communication, professionalism, and continuing professional development. Although these domains align with the competencies of physician providers, they are specifically designed to better reflect the clinical pharmacy expertise required to provide CMM in patient-centered, team-based settings. Clinical pharmacists must be prepared to complete the education and training needed to achieve these competencies and must commit to ongoing efforts to maintain competence through ongoing professional development. Collaboration among stakeholders will be needed to ensure that these competencies guide clinical pharmacists' professional development and evaluation by educational institutions, postgraduate training programs, professional societies, and employers. © 2017 Pharmacotherapy Publications, Inc.

  2. Immobilization of Lead Migrating from Contaminated Soil in Rhizosphere Soil of Barley (Hordeum vulgare L.) and Hairy Vetch (Vicia villosa) Using Hydroxyapatite.

    Science.gov (United States)

    Katoh, Masahiko; Risky, Elsya; Sato, Takeshi

    2017-10-23

    This study conducted plant growth tests using a rhizobox system to quantitatively determine the distance of immobilization lead migrating from contaminated soil into uncontaminated rhizosphere soil, and to assess the lead phases accumulated in rhizosphere soil by sequential extraction. Without the hydroxyapatite, exchangeable lead fractions increased as the rhizosphere soil got closer to the contaminated soil. Exchangeable lead fractions were higher even in the rhizosphere soil that shares a boundary with the root surface than in the soil before being planted. Thus, plant growth of hairy vetch was lower in the soil without the hydroxyapatite than in the soil with the hydroxyapatite. The presence of hydroxyapatite may immobilize the majority of lead migrating from contaminated soil into the rhizosphere soil within 1 mm from the contaminated soil. The dominant lead fraction in the rhizosphere soil with the hydroxyapatite was residual. Thus, plant growth was not suppressed and the lead concentration of the plant shoot remained at the background level. These results indicate that the presence of hydroxyapatite in the rhizosphere soil at 5% wt may immobilize most of the lead migrating into the rhizosphere soil within 1 mm from the contaminated soil, resulting in the prevention of lead migration toward the root surface.

  3. Diversity of nifH gene pools in the rhizosphere of two cultivars of sorghum (Sorghum bicolor) treated with contrasting levels of nitrogen fertilizer

    NARCIS (Netherlands)

    Coelho, M.R.R.; Vos, de M.; Carneiro, N.P.; Marriel, I.E.; Paiva, E.; Seldin, L.

    2008-01-01

    The diversity of nitrogen-fixing bacteria was assessed in the rhizospheres of two cultivars of sorghum (IS 5322-C and IPA 1011) sown in Cerrado soil amended with two levels of nitrogen fertilizer (12 and 120 kg ha(-1)). The nifH gene was amplified directly from DNA extracted from the rhizospheres,

  4. Modeling of Nonlinear Dynamics and Synchronized Oscillations of Microbial Populations, Carbon and Oxygen Concentrations, Induced by Root Exudation in the Rhizosphere

    Science.gov (United States)

    Molz, F. J.; Faybishenko, B.; Jenkins, E. W.

    2012-12-01

    Mass and energy fluxes within the soil-plant-atmosphere continuum are highly coupled and inherently nonlinear. The main focus of this presentation is to demonstrate the results of numerical modeling of a system of 4 coupled, nonlinear ordinary differential equations (ODEs), which are used to describe the long-term, rhizosphere processes of soil microbial dynamics, including the competition between nitrogen-fixing bacteria and those unable to fix nitrogen, along with substrate concentration (nutrient supply) and oxygen concentration. Modeling results demonstrate the synchronized patterns of temporal oscillations of competing microbial populations, which are affected by carbon and oxygen concentrations. The temporal dynamics and amplitude of the root exudation process serve as a driving force for microbial and geochemical phenomena, and lead to the development of the Gompetzian dynamics, synchronized oscillations, and phase-space attractors of microbial populations and carbon and oxygen concentrations. The nonlinear dynamic analysis of time series concentrations from the solution of the ODEs was used to identify several types of phase-space attractors, which appear to be dependent on the parameters of the exudation function and Monod kinetic parameters. This phase space analysis was conducted by means of assessing the global and local embedding dimensions, correlation time, capacity and correlation dimensions, and Lyapunov exponents of the calculated model variables defining the phase space. Such results can be used for planning experimental and theoretical studies of biogeochemical processes in the fields of plant nutrition, phyto- and bio-remediation, and other ecological areas.

  5. Competence development in UAS

    DEFF Research Database (Denmark)

    Thorslund, Jørgen; Brodersen, Anne Mygind

    As a University of Applied Science (UAS) University College Lillebaelt in Denmark is addressing education, knowledge production and professional development in perspective of life-long and life-wide learning. It is our basic assumption that that internal competence development ? individually...... and organizationally - among UAS educators should be based on same learning concepts as used in professional development to avoid parallelism. Do for yourself, what you preach for others. Second, competence development of faculty is a central element in transformation of our institutions from schools of higher...... education to universities of applied science (UAS). Competence development strategies should thus include objectives for the institutions ability to contribute to knowledge production....

  6. Competency profile of Fitness Instructor

    OpenAIRE

    Peterová, Marta

    2011-01-01

    Title: COMPETENCY PROFILE OF FITNESS INSTRUCTOR Objectives: The aim of this work is to find out competencies of fitness instructor and make a competency profile, containing competencies, which are important for excellent fitness instructor. Methods: I applied the method of interview and the method of research in my thesis. The interview was used to make a list of competencies of fitness instructor. The research was applied in the final part of making competency profile, for an attestation of ...

  7. O-2 dynamics in the rhizosphere of young rice plants (Oryza sativa L.) as studied by planar optodes

    DEFF Research Database (Denmark)

    Larsen, Morten; Santner, Jakob; Oburger, Eva

    2015-01-01

    dynamics in the rice rhizosphere. Applying high-resolution planar optode imaging, we investigated the O-2 dynamics of plants grown in water saturated soil, as a function of ambient O-2 level, irradiance and plant development, for submerged and emerged plants. O-2 leakage was heterogeneously distributed...... with zones of intense leakage around roots tips and young developing roots. While the majority of roots exhibited high ROL others remained surrounded by anoxic soil. ROL was affected by ambient O-2 levels around the plant, as well as irradiance, indicating a direct influence of photosynthetic activity on ROL...... of the rhizosphere. The work documents that spatio-temporal measurements are important to fully understand and account for the highly variable O-2 dynamics and associated biogeochemical processes and pathways in the rice rhizosphere....

  8. Quality of college students' same-sex friendships as a function of personality and interpersonal competence.

    Science.gov (United States)

    Festa, Candice C; Barry, Carolyn McNamara; Sherman, Martin F; Grover, Rachel L

    2012-02-01

    The aim of the current study was to investigate personality traits and interpersonal competencies as predictors of the quality of same-sex friendships in young adulthood. Undergraduate students (N = 176), who attended a mid-Atlantic U.S., medium-sized university, completed self-report surveys on their personality, interpersonal competence, and friendship quality. Sex, class status, extraversion, agreeableness, and interpersonal competencies were associated with higher friendship quality, but only the interpersonal competence of self-disclosure significantly predicted friendship quality after controlling for sex, class status, and the five personality factors.

  9. Microbial respiration and kinetics of extracellular enzymes activities through rhizosphere and detritusphere at agricultural site

    Science.gov (United States)

    Löppmann, Sebastian; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2014-05-01

    Rhizosphere and detritusphere are soil microsites with very high resource availability for microorganisms affecting their biomass, composition and functions. In the rhizosphere low molecular compounds occur with root exudates and low available polymeric compounds, as belowground plant senescence. In detritusphere the substrate for decomposition is mainly a polymeric material of low availability. We hypothesized that microorganisms adapted to contrasting quality and availability of substrates in the rhizosphere and detritusphere are strongly different in affinity of hydrolytic enzymes responsible for decomposition of organic compounds. According to common ecological principles easily available substrates are quickly consumed by microorganisms with enzymes of low substrate affinity (i.e. r-strategists). The slow-growing K-strategists with enzymes of high substrate affinity are better adapted for growth on substrates of low availability. Estimation of affinity of enzyme systems to the substrate is based on Michaelis-Menten kinetics, reflecting the dependency of decomposition rates on substrate amount. As enzymes-mediated reactions are substrate-dependent, we further hypothesized that the largest differences in hydrolytic activity between the rhizosphere and detritusphere occur at substrate saturation and that these differences are smoothed with increasing limitation of substrate. Affected by substrate limitation, microbial species follow a certain adaptation strategy. To achieve different depth gradients of substrate availability 12 plots on an agricultural field were established in the north-west of Göttingen, Germany: 1) 4 plots planted with maize, reflecting lower substrate availability with depth; 2) 4 unplanted plots with maize litter input (0.8 kg m-2 dry maize residues), corresponding to detritusphere; 3) 4 bare fallow plots as control. Maize litter was grubbed homogenously into the soil at the first 5 cm to ensure comparable conditions for the herbivore and

  10. Amino acid fingerprint in the rhizosphere of Pisum sativum in response to water stress

    Science.gov (United States)

    Bobille, Hélène; Fustec, Joëlle; Robins, Richard J.; Cukier, Caroline; Limami, Anis M.

    2017-04-01

    In cropping systems, legumes release substantial amounts of nitrogen (N) into the soil, via rhizodeposition, and constitute a sustainable source of N, instead of synthetic N fertilisers (Fustec et al. 2010). More frequent or/and intense droughts and floodings, due to climate change and intensification of agriculture, may affect N rhizodeposition (Preece & Peñuelas 2016). However, the effects of water stress on this process are poorly documented. A part of N derived from root exudates, mainly in amino acids (AAs) form, is suspected shape and regulate rhizosphere microbial community, thus playing a potential role in maintaining plant health in case of abiotic stress (Moe 2013). We hypothesized that root AA exudation could change significantly, according to water availability, and would help to understand N metabolism changes in plant-rhizosphere interactions. Because studying exudation from plant grown in unsterilized soil is challenging (Oburger et al. 2013), we have measured the rhizosphere AA fingerprint (RAAF), as the result of interactions between AA exudation and rhizospheric environment. In addition, plants were stem-labeled (cotton-wick) with 15N-urea for 72 h to provide direct evidence of a link between root AA and exudation in the soil. The RAAF was measured in Pisum sativum rhizosphere, under either a water deficit or a water excess for 72 h. Water deficit decreases biomass accumulation in shoots but not in roots. Then, water deficit had no significant effect on total AAs released into the rhizosphere but, it significantly modified the composition of RAAF, with a preferential increase of proline, alanine and glutamate and a rise in isotopic enrichment of AAs derived from oxaloacetate in tricarboxylic acidic cycle (asparagine, aspartate, threonine and isoleucine). These results support the idea that, under the early stages of water deficit, recently assimilated N is rapidly translocated to the roots, and part of it is exudated in AAs. Most of the exudated

  11. Micro-Food Web Structure Shapes Rhizosphere Microbial Communities and Growth in Oak

    Directory of Open Access Journals (Sweden)

    Hazel R. Maboreke

    2018-03-01

    Full Text Available The multitrophic interactions in the rhizosphere impose significant impacts on microbial community structure and function, affecting nutrient mineralisation and consequently plant performance. However, particularly for long-lived plants such as forest trees, the mechanisms by which trophic structure of the micro-food web governs rhizosphere microorganisms are still poorly understood. This study addresses the role of nematodes, as a major component of the soil micro-food web, in influencing the microbial abundance and community structure as well as tree growth. In a greenhouse experiment with Pedunculate Oak seedlings were grown in soil, where the nematode trophic structure was manipulated by altering the proportion of functional groups (i.e., bacterial, fungal, and plant feeders in a full factorial design. The influence on the rhizosphere microbial community, the ectomycorrhizal symbiont Piloderma croceum, and oak growth, was assessed. Soil phospholipid fatty acids were employed to determine changes in the microbial communities. Increased density of singular nematode functional groups showed minor impact by increasing the biomass of single microbial groups (e.g., plant feeders that of Gram-negative bacteria, except fungal feeders, which resulted in a decline of all microorganisms in the soil. In contrast, inoculation of two or three nematode groups promoted microbial biomass and altered the community structure in favour of bacteria, thereby counteracting negative impact of single groups. These findings highlight that the collective action of trophic groups in the soil micro-food web can result in microbial community changes promoting the fitness of the tree, thereby alleviating the negative effects of individual functional groups.

  12. Prokaryotic Diversity in the Rhizosphere of Organic, Intensive, and Transitional Coffee Farms in Brazil.

    Science.gov (United States)

    Caldwell, Adam Collins; Silva, Lívia Carneiro Fidéles; da Silva, Cynthia Canêdo; Ouverney, Cleber Costa

    2015-01-01

    Despite a continuous rise in consumption of coffee over the past 60 years and recent studies showing positive benefits linked to human health, intensive coffee farming practices have been associated with environmental damage, risks to human health, and reductions in biodiversity. In contrast, organic farming has become an increasingly popular alternative, with both environmental and health benefits. This study aimed to characterize and determine the differences in the prokaryotic soil microbiology of three Brazilian coffee farms: one practicing intensive farming, one practicing organic farming, and one undergoing a transition from intensive to organic practices. Soil samples were collected from 20 coffee plant rhizospheres (soil directly influenced by the plant root exudates) and 10 control sites (soil 5 m away from the coffee plantation) at each of the three farms for a total of 90 samples. Profiling of 16S rRNA gene V4 regions revealed high levels of prokaryotic diversity in all three farms, with thousands of species level operational taxonomic units identified in each farm. Additionally, a statistically significant difference was found between each farm's coffee rhizosphere microbiome, as well as between coffee rhizosphere soils and control soils. Two groups of prokaryotes associated with the nitrogen cycle, the archaeal genus Candidatus Nitrososphaera and the bacterial order Rhizobiales were found to be abundant and statistically different in composition between the three farms and in inverse relationship to each other. Many of the nitrogen-fixing genera known to enhance plant growth were found in low numbers (e.g. Rhizobium, Agrobacter, Acetobacter, Rhodospirillum, Azospirillum), but the families in which they belong had some of the highest relative abundance in the dataset, suggesting many new groups may exist in these samples that can be further studied as potential plant growth-promoting bacteria to improve coffee production while diminishing negative

  13. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status.

    Science.gov (United States)

    Yang, C H; Crowley, D E

    2000-01-01

    Root exudate composition and quantity vary in relation to plant nutritional status, but the impact of the differences on rhizosphere microbial communities is not known. To examine this question, we performed an experiment with barley (Hordeum vulgare) plants under iron-limiting and iron-sufficient growth conditions. Plants were grown in an iron-limiting soil in root box microcosms. One-half of the plants were treated with foliar iron every day to inhibit phytosiderophore production and to alter root exudate composition. After 30 days, the bacterial communities associated with different root zones, including the primary root tips, nonelongating secondary root tips, sites of lateral root emergence, and older roots distal from the tip, were characterized by using 16S ribosomal DNA (rDNA) fingerprints generated by PCR-denaturing gradient gel electrophoresis (DGGE). Our results showed that the microbial communities associated with the different root locations produced many common 16S rDNA bands but that the communities could be distinguished by using correspondence analysis. Approximately 40% of the variation between communities could be attributed to plant iron nutritional status. A sequence analysis of clones generated from a single 16S rDNA band obtained at all of the root locations revealed that there were taxonomically different species in the same band, suggesting that the resolving power of DGGE for characterization of community structure at the species level is limited. Our results suggest that the bacterial communities in the rhizosphere are substantially different in different root zones and that a rhizosphere community may be altered by changes in root exudate composition caused by changes in plant iron nutritional status.

  14. Composition and function of the microbial community related with the nitrogen cycling on the potato rhizosphere

    International Nuclear Information System (INIS)

    Florez Zapata, Nathalia; Garcia, Juan Carlos; Del Portillo, Patricia; Restrepo, Silvia; Uribe Velez, Daniel

    2013-01-01

    In the S. tuberosum group phureja crops, mineral fertilizer and organic amendments are applied to meet the plants nutritional demands, however the effect of such practices on the associated rizospheric microbial communities are still unknown. Nitrogen plays an important role in agricultural production, and a great diversity of microorganisms regulates its transformation in the soil, affecting its availability for the plant. The aim of this study was to assess the structure of microbial communities related with the N cycle of S. tuberosum group phureja rizospheric soil samples, with contrasting physical-chemical properties and fertilization strategy. Few significant differences between the community compositions at the phylum level were found, only Planctomycetes phylum was different between samples of different soil type and fertilization strategy. However, the analysis of nitrogen-associated functional groups made by ribotyping characterization, grouped soils in terms of such variables in a similar way to the physical-chemical properties. Major differences between soil samples were typified by higher percentages of the ribotypes from nitrite oxidation, nitrogen fixation and denitrification on organic amendment soils. Our results suggest that, the dominant rhizosphere microbial composition is very similar between soils, possibly as a result of population's selection mediated by the rhizosphere effect. However, agricultural management practices in addition to edaphic properties of sampled areas appear to affect some functional groups associated with the nitrogen cycling, due to differences found on soil's physicalchemical properties, like the concentration of ammonium that seems to have an effect regulating the distribution and activity of nitrogen related functional groups in the S. tuberosum rhizosphere.

  15. Speciation of arsenic in bulk and rhizosphere soils from artisanal cooperative mines in Bolivia.

    Science.gov (United States)

    Acosta, Jose A; Arocena, Joselito M; Faz, Angel

    2015-11-01

    Soils near artisanal and small-scale gold mines (ASGM) have high arsenic (As) contents due to the presence of arsenopyrite in gold ores and accelerated accumulations due to mine wastes disposal practices and other mining activities. We determined the content and speciation to understand the fate and environmental risks of As accumulations in 24 bulk and 12 rhizosphere soil samples collected in the Virgen Del Rosario and the Rayo Rojo cooperative mines in the highlands of Bolivia. Mean total As contents in bulk and rhizosphere soils ranged from 13 to 64 mg kg(-1) and exceeded the soil environmental quality guidelines of Canada. Rhizosphere soils always contained at least twice the As contents in the bulk soil. Elemental mapping using 4×5 μm synchrotron-generated X-ray micro-beam revealed As accumulations in areas enriched with Fe. Results of As-X-ray Absorption Near Edge Spectroscopy (As-XANES) showed that only As(V) species was detectable in all samples regardless of As contents, size fractions and types of vegetation. Although the toxicity of As(V) is less than As(III), we suggest that As uptake of commonly-grazed vegetation by alpaca and llama must be determined to fully understand the environmental risks of high As in soils near ASGM in Bolivia. In addition, knowledge on the speciation of the As bio-accessible fraction will provide another useful information to better understand the fate and transfer of As from soils into the food chain in environments associated with the ASGM in Bolivia and other parts of the world. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica.

    Science.gov (United States)

    Teixeira, Lia C R S; Peixoto, Raquel S; Cury, Juliano C; Sul, Woo Jun; Pellizari, Vivian H; Tiedje, James; Rosado, Alexandre S

    2010-08-01

    The Antarctic is a pristine environment that contributes to the maintenance of the global climate equilibrium. The harsh conditions of this habitat are fundamental to selecting those organisms able to survive in such an extreme habitat and able to support the relatively simple ecosystems. The DNA of the microbial community associated with the rhizospheres of Deschampsia antarctica Desv (Poaceae) and Colobanthus quitensis (Kunth) BartI (Caryophyllaceae), the only two native vascular plants that are found in Antarctic ecosystems, was evaluated using a 16S rRNA multiplex 454 pyrosequencing approach. This analysis revealed similar patterns of bacterial diversity between the two plant species from different locations, arguing against the hypothesis that there would be differences between the rhizosphere communities of different plants. Furthermore, the phylum distribution presented a peculiar pattern, with a bacterial community structure different from those reported of many other soils. Firmicutes was the most abundant phylum in almost all the analyzed samples, and there were high levels of anaerobic representatives. Also, some phyla that are dominant in most temperate and tropical soils, such as Acidobacteria, were rarely found in the analyzed samples. Analyzing all the sample libraries together, the predominant genera found were Bifidobacterium (phylum Actinobacteria), Arcobacter (phylum Proteobacteria) and Faecalibacterium (phylum Firmicutes). To the best of our knowledge, this is the first major bacterial sequencing effort of this kind of soil, and it revealed more than expected diversity within these rhizospheres of both maritime Antarctica vascular plants in Admiralty Bay, King George Island, which is part of the South Shetlands archipelago.

  17. Enhanced nitrogen availability in karst ecosystems by oxalic acid release in the rhizosphere

    Directory of Open Access Journals (Sweden)

    Fujing ePan

    2016-05-01

    Full Text Available In karst ecosystems, a high level of CaCO3 enhances the stabilization of soil organic matter (SOM and causes nitrogen (N and/or phosphorus (P limitation in plants. Oxalic acid has been suggested to be involved in the nutrient-acquisition strategy of plants because its addition can temporarily relieve nutrient limitation. Therefore, understanding how oxalic acid drives N availability may help support successful vegetation restoration in the karst ecosystems of southwest China. We tested a model suggested by Clarholm et al. (2015 where oxalate reacts with Ca bridges in SOM, thus exposing previously protected areas to enzymatic attacks in a way that releases N for local uptake. We studied the effects of oxalic acid, microbial biomass C (MBC, and β-1,4-N-acetylglucosaminidase (NAG on potential N mineralization rates in rhizosphere soils of four plant species (two shrubs and two trees in karst areas. The results showed that rhizosphere soils of shrubs grown on formerly deforested land had significantly lower oxalic acid concentrations and NAG activity than that of trees in a 200-year-old forest. The levels of MBC in rhizosphere soils of shrubs were significantly lower than those of trees in the growing season, but the measure of shrubs and trees were similar in the non-growing season; the potential N mineralization rates showed a reverse pattern. Positive relationships were found among oxalic acid, MBC, NAG activity, and potential N mineralization rates for both shrubs and trees. This indicated that oxalic acid, microbes, and NAG may enhance N availability for acquisition by plants. Path analysis showed that oxalic acid enhanced potential N mineralization rates indirectly through inducing microbes and NAG activities. We found that the exudation of oxalic acid clearly provides an important mechanism that allows plants to enhance nutrient acquisition in karst ecosystems.

  18. COMPOSITION AND FUNCTION OF THE MICROBIAL COMMUNITY RELATED WITH THE NITROGEN CYCLING ON THE POTATO RHIZOSPHERE

    Directory of Open Access Journals (Sweden)

    Nathalia Maria Vanesa Florez Zapata

    2013-09-01

    Full Text Available In the S. tuberosum group phureja crops, mineral fertilizer and organic amendments are applied to meet the plants’ nutritional demands, however the effect of such practices on the associated rizospheric microbial communities are still unknown. Nitrogen plays an important role in agricultural production, and a great diversity of microorganisms regulates its transformation in the soil, affecting its availability for the plant. The aim of this study was to assess the structure of microbal[trm1]  communities related with the N cycle of S. tuberosum group phureja  rizospheric soil samples, with contrasting physical-chemical properties and fertilization strategy.  Few significant differences between the community composition at the phylum level were found, only Planctomycetes phylum was different between samples of different soil type and fertilization strategy. However, the analysis of nitrogen-associated functional groups made by ribotyping characterization, grouped soils in terms of such variables in a similar way to the physical-chemical properties. Major differences between soil samples were typified by higher percentages of the ribotypes from nitrite oxidation, nitrogen fixation and denitrification on organic amendment soils. Our results suggest that, the dominant rhizosphere microbial composition is very similar between soils, possibly as a result of population’s selection mediated by the rhizosphere effect. However, agricultural management practices in addition to edaphic properties of sampled areas, appear to affect some functional groups associated with the nitrogen cycling, due to differences found on soil’s physical-chemical properties, like the concentration of ammonium that seems to have an effect regulating the distribution and activity of nitrogen related functional groups in the S. tuberosum rhizosphere.

  19. Effect of immobilized rhizobacteria and organic amendment in bulk and rhizospheric soil of Cistus albidus L.

    Science.gov (United States)

    Mengual, Carmen Maria; del Mar Alguacil, Maria; Roldan, Antonio; Schoebitz, Mauricio

    2013-04-01

    A field experiment was carried out to assess the effectiveness of the immobilized microbial inoculant and the addition of organic olive residue. The microbial inoculant contained two rhizobacterial species identified as Azospirillum brasilense and Pantoea dispersa immobilized in a natural inert support. Bacterial population densities were 3.5×109 and 4.1×109 CFU g-1 of A. brasilense M3 and P. dispersa C3, respectively. The amendment used was the organic fraction extracted with KOH from composted "alperujo". The raw material was collected from an olive-mill and mixed with fresh cow bedding as bulking agent for composting. The inoculation of rhizobacteria and the addition of organic residue were employed for plant growth promotion of Cistus albidus L. and enhancement of soil physicochemical, biochemical and biological properties in a degraded semiarid Mediterranean area. One year after planting, the available phosphorus and potassium content in the amended soils was about 100 and 70% respectively higher than in the non-amended soil. Microbial inoculant and their interaction with organic residue increased the aggregate stability of the rhizosphere soil of C. albidus (by 12% with respect to control soil) while the organic residue alone not increased the aggregate stability of the rhizosphere of C. albidus. Microbial biomass C content and enzyme activities (dehydrogenase, urease, protease-BAA and alkaline phosphatase) of the rhizosphere of C. albidus were increased by microbial inoculant and organic residue interaction but not by microbial inoculation alone. The microbial inoculant and organic residue interaction were the most effective treatment for stimulating the roots dry weight of C. albidus (by 133% with respect to control plants) and microbial inoculant was the most effective treatment for increase the shoot dry weigh of plants (by 106% with respect to control plants). The combined treatment, involving microbial inoculant and addition of the organic residue

  20. Rhizospheric Bacterial Community of Endemic Rhododendron arboreum Sm. Ssp. delavayi along Eastern Himalayan Slope in Tawang

    Directory of Open Access Journals (Sweden)

    Rajal Debnath

    2016-09-01

    Full Text Available Information on rhizosphere micobiome of endemic plants from high mountain ecosystems against those of cultivated plantations is inadequate. Comparative bacterial profiles of endemic medicinal plant R. arboreum Sm. subsp. delavayi rhizosphere pertaining to four altitudinal zonation Pankang-Thang (PTSO, Nagula, Y-junction and Bum La (Indo-China border (in triplicates each along cold adapted Eastern slope of Himalayan Tawang region, India is described here. Significant differences in DGGE profile between below ground bulk vs rhizospheric community profile associated with the plant was identified. Tagged 16S amplicon sequencing from PTSO (3912m to Bum La (4509 m, revealed that soil pH, total nitrogen (TN, organic matter (OM significantly influenced the underlying bacterial community structure at different altitudes. The relative abundance of Acidobacteria was inversely related to pH, as opposed to TN which was positively correlated to Acidobacteria and Proteobacteria abundance. TN was also the significant predictor for less abundant taxonomic groups Chloroflexi, Gemmatimonadetes and Nitrospirae. Bum La soil harbored less bacterial diversity compared to other sites at lower altitudes. The most abundant phyla at 3% genetic difference were Acidobacteria, Actinobacteria and Proteobacteria amongst others. Analysis of similarity indicated greater similarity within lower altitudinal than higher altitudinal group (ANOSIM, R = 0.287, p = 0.02. Constraining the ordination with the edaphic factor explained 83.13% of variation. Unique phylotypes of Bradyrhizobium and uncultured Rhizobiales were found in significant proportions at the four regions. With over 1% relative abundance Actinobacteria (42.6%, Acidobacteria (24.02%, Proteobacteria (16.00%, AD3 (9.23%, WPS-2 (5.1% and Chloroflexi (1.48% dominated the core microbiome.

  1. Assessing the influence of the rhizosphere on soil hydraulic properties using X-ray computed tomography and numerical modelling.

    Science.gov (United States)

    Daly, Keith R; Mooney, Sacha J; Bennett, Malcolm J; Crout, Neil M J; Roose, Tiina; Tracy, Saoirse R

    2015-04-01

    Understanding the dynamics of water distribution in soil is crucial for enhancing our knowledge of managing soil and water resources. The application of X-ray computed tomography (CT) to the plant and soil sciences is now well established. However, few studies have utilized the technique for visualizing water in soil pore spaces. Here this method is utilized to visualize the water in soil in situ and in three-dimensions at successive reductive matric potentials in bulk and rhizosphere soil. The measurements are combined with numerical modelling to determine the unsaturated hydraulic conductivity, providing a complete picture of the hydraulic properties of the soil. The technique was performed on soil cores that were sampled adjacent to established roots (rhizosphere soil) and from soil that had not been influenced by roots (bulk soil). A water release curve was obtained for the different soil types using measurements of their pore geometries derived from CT imaging and verified using conventional methods, such as pressure plates. The water, soil, and air phases from the images were segmented and quantified using image analysis. The water release characteristics obtained for the contrasting soils showed clear differences in hydraulic properties between rhizosphere and bulk soil, especially in clay soil. The data suggest that soils influenced by roots (rhizosphere soil) are less porous due to increased aggregation when compared with bulk soil. The information and insights obtained on the hydraulic properties of rhizosphere and bulk soil will enhance our understanding of rhizosphere biophysics and improve current water uptake models. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Variation of Bacterial Community Diversity in Rhizosphere Soil of Sole-Cropped versus Intercropped Wheat Field after Harvest.

    Directory of Open Access Journals (Sweden)

    Zhenping Yang

    Full Text Available As the major crops in north China, spring crops are usually planted from April through May every spring and harvested in fall. Wheat is also a very common crop traditionally planted in fall or spring and harvested in summer year by year. This continuous cropping system exhibited the disadvantages of reducing the fertility of soil through decreasing microbial diversity. Thus, management of microbial diversity in the rhizosphere plays a vital role in sustainable crop production. In this study, ten common spring crops in north China were chosen sole-cropped and four were chosen intercropped with peanut in wheat fields after harvest. Denaturing gradient gel electrophoresis (DGGE and DNA sequencing of one 16S rDNA fragment were used to analyze the bacterial diversity and species identification. DGGE profiles showed the bacterial community diversity in rhizosphere soil samples varied among various crops under different cropping systems, more diverse under intercropping system than under sole-cropping. Some intercropping-specific bands in DGGE profiles suggested that several bacterial species were stimulated by intercropping systems specifically. Furthermore, the identification of these dominant and functional bacteria by DNA sequencing indicated that intercropping systems are more beneficial to improve soil fertility. Compared to intercropping systems, we also observed changes in microbial community of rhizosphere soil under sole-crops. The rhizosphere bacterial community structure in spring crops showed a strong crop species-specific pattern. More importantly, Empedobacter brevis, a typical plant pathogen, was only found in the carrot rhizosphere, suggesting carrot should be sown prudently. In conclusion, our study demonstrated that crop species and cropping systems had significant effects on bacterial community diversity in the rhizosphere soils. We strongly suggest sorghum, glutinous millet and buckwheat could be taken into account as intercropping

  3. Variation of Bacterial Community Diversity in Rhizosphere Soil of Sole-Cropped versus Intercropped Wheat Field after Harvest.

    Science.gov (United States)

    Yang, Zhenping; Yang, Wenping; Li, Shengcai; Hao, Jiaomin; Su, Zhifeng; Sun, Min; Gao, Zhiqiang; Zhang, Chunlai

    2016-01-01

    As the major crops in north China, spring crops are usually planted from April through May every spring and harvested in fall. Wheat is also a very common crop traditionally planted in fall or spring and harvested in summer year by year. This continuous cropping system exhibited the disadvantages of reducing the fertility of soil through decreasing microbial diversity. Thus, management of microbial diversity in the rhizosphere plays a vital role in sustainable crop production. In this study, ten common spring crops in north China were chosen sole-cropped and four were chosen intercropped with peanut in wheat fields after harvest. Denaturing gradient gel electrophoresis (DGGE) and DNA sequencing of one 16S rDNA fragment were used to analyze the bacterial diversity and species identification. DGGE profiles showed the bacterial community diversity in rhizosphere soil samples varied among various crops under different cropping systems, more diverse under intercropping system than under sole-cropping. Some intercropping-specific bands in DGGE profiles suggested that several bacterial species were stimulated by intercropping systems specifically. Furthermore, the identification of these dominant and functional bacteria by DNA sequencing indicated that intercropping systems are more beneficial to improve soil fertility. Compared to intercropping systems, we also observed changes in microbial community of rhizosphere soil under sole-crops. The rhizosphere bacterial community structure in spring crops showed a strong crop species-specific pattern. More importantly, Empedobacter brevis, a typical plant pathogen, was only found in the carrot rhizosphere, suggesting carrot should be sown prudently. In conclusion, our study demonstrated that crop species and cropping systems had significant effects on bacterial community diversity in the rhizosphere soils. We strongly suggest sorghum, glutinous millet and buckwheat could be taken into account as intercropping crops with peanut

  4. Elevated atmospheric CO2 affected photosynthetic products in wheat seedlings and biological activity in rhizosphere soil under cadmium stress.

    Science.gov (United States)

    Jia, Xia; Liu, Tuo; Zhao, Yonghua; He, Yunhua; Yang, Mingyan

    2016-01-01

    The objective of this study was to investigate the effects of elevated CO2 (700 ± 23 μmol mol(-1)) on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated CO2 was associated with decreased quantities of reducing sugars, starch, and soluble amino acids, and with increased quantities of soluble sugars, total sugars, and soluble proteins in wheat seedlings under Cd stress. The contents of total soluble sugars, total free amino acids, total soluble phenolic acids, and total organic acids in the rhizosphere soil under Cd stress were improved by elevated CO2. Compared to Cd stress alone, the activity of amylase, phenol oxidase, urease, L-asparaginase, β-glucosidase, neutral phosphatase, and fluorescein diacetate increased under elevated CO2 in combination with Cd stress; only cellulase activity decreased. Bacterial abundance in rhizosphere soil was stimulated by elevated CO2 at low Cd concentrations (1.31-5.31 mg Cd kg(-1) dry soil). Actinomycetes, total microbial abundance, and fungi decreased under the combined conditions at 5.31-10.31 mg Cd kg(-1) dry soil. In conclusion, increased production of soluble sugars, total sugars, and proteins in wheat seedlings under elevated CO2 + Cd stress led to greater quantities of organic compounds in the rhizosphere soil relative to seedlings grown under Cd stress only. Elevated CO2 concentrations could moderate the effects of heavy metal pollution on enzyme activity and microorganism abundance in rhizosphere soils, thus improving soil fertility and the microecological rhizosphere environment of wheat under Cd stress.

  5. Effects of cadmium amendments on low-molecular-weight organic acid exudates in rhizosphere soils of tobacco and sunflower.

    Science.gov (United States)

    Chiang, Po-Neng; Wang, Ming Kuang; Chiu, Chih Yu; Chou, Shu-Yen

    2006-10-01

    To recognize physiological response of plants to cadmium (Cd) toxicity in rhizosphere of plants, the pot experiments were employed to investigate how low-molecular-weight organic acids (LMWOAs) were exudated from tobacco and sunflower roots of Cd-amended soils. The aims of this study were to assess the effect of LMWOAs on uptake of Cd by tobacco and sunflower under pot experiments, thus comparing the ability of tobacco and sunflower for phytoremediation. Surface soils (0-20 cm) were collected from Taichung Experiment Station (TC) (silty loam). Cadmium chloride (CdCl(2)) was amended into TC soil, giving Cd concentrations of 1, 5, 10 mg kg(-1) soil. Soils with different concentrations of Cd were put into 12 cm (i.d.) pots for incubation, and then 2-week-old tobacco and sunflower seedlings were transplanted into the pots. Tobacco and sunflower were grown in greenhouse for 50 days, respectively. The rhizosphere and bulk soils, and fresh plant tissues were collected after harvest. The Cd concentrations in the plant and transfer factor values in the sunflower were higher than that in the tobacco. No LMWOAs were detected by gas chromatograph in bulk soils, and low amounts of LMWOAs were found in uncontaminated rhizosphere soils. Acetic, lactic, glycolic, malic, maleic, and succinic acids were found in the tobacco and sunflower rhizosphere soils. Concentrations of LMWOAs increased with increasing amendment of Cd concentrations in tobacco and sunflower rhizosphere soils. Correlation coefficient (r) of concentrations of Cd amendment versus LMWOAs exudates of tobacco and sunflower were 0.85 and 0.98, respectively. These results suggest that the different levels of LMWOAs present in the rhizosphere soil play an important role in the solubilization of Cd that bound with soil particle into soil solution and then uptake by plants.

  6. TENCompetence Competence Observatory

    NARCIS (Netherlands)

    Vervenne, Luk

    2010-01-01

    Vervenne, L. (2007) TENCompetence Competence Observatory. Sources available http://tencompetence.cvs.sourceforge.net/viewvc/tencompetence/wp8/org.tencompetence.co/. Available under the three clause BSD license, copyright TENCompetence Foundation.

  7. Presumptions respecting mental competence.

    Science.gov (United States)

    Madigan, K V; Checkland, D; Silberfeld, M

    1994-04-01

    This paper addresses the role(s) played by presumptions regarding mental competence in the context of clinical assessment of decision-making capacity. In particular, the issue of whether or not the usual common law presumption of competence is appropriate and applicable in cases of reassessment of persons previously found incompetent is discussed. Arguments can be made for either retaining a presumption of competence or adopting a presumption of incompetence in reassessment cases. In addressing the issue and the arguments, the authors conclude that the question is really a public policy issue which requires legislative resolution. In writing this paper, the authors have drawn on their joint clinical experience at the Baycrest Competency Clinic. Though the authors' jurisdiction is the province of Ontario, their intent is to raise awareness and to prompt consideration of this issue both inside and outside Ontario.

  8. Adult educators' core competences

    DEFF Research Database (Denmark)

    Wahlgren, Bjarne

    2016-01-01

    ” requirements, organising them into four thematic subcategories: (1) communicating subject knowledge; (2) taking students’ prior learning into account; (3) supporting a learning environment; and (4) the adult educator’s reflection on his or her own performance. At the end of his analysis of different competence......Abstract Which competences do professional adult educators need? This research note discusses the topic from a comparative perspective, finding that adult educators’ required competences are wide-ranging, heterogeneous and complex. They are subject to context in terms of national and cultural...... environment as well as the kind of adult education concerned (e.g. basic education, work-related education etc.). However, it seems that it is possible to identify certain competence requirements which transcend national, cultural and functional boundaries. This research note summarises these common or “core...

  9. Developing Leadership Competencies.

    Science.gov (United States)

    Croft, Lucy; Seemiller, Corey

    2017-12-01

    This chapter provides an overview of leadership competencies including the history of emergence, contemporary uses, common frameworks, challenges, benefits, and future implications. © 2017 Wiley Periodicals, Inc., A Wiley Company.

  10. Managing Regulatory Body Competence

    International Nuclear Information System (INIS)

    2013-01-01

    In 2001, the IAEA published TECDOC 1254, which examined the way in which the recognized functions of a regulatory body for nuclear facilities results in competence needs. Using the systematic approach to training (SAT), TECDOC 1254 provided a framework for regulatory bodies for managing training and developing and their maintaining their competence. It has been successfully used by many regulators. The IAEA has also introduced a methodology and an assessment tool - Guidelines for Systematic Assessment of Regulatory Competence Needs (SARCoN) - which provides practical guidance on analysing the training and development needs of a regulatory body and, through a gap analysis, guidance on establishing competence needs and how to meet them. In 2009, the IAEA established a steering committee (supported by a bureau) with the mission to advise the IAEA on how it could best assist Member States to develop suitable competence management systems for their regulatory bodies. The committee recommended the development of a safety report on managing staff competence as an integral part of a regulatory body's management system. This Safety Report was developed in response to this request. It supersedes TECDOC 1254, broadens its application to regulatory bodies for all facilities and activities, and builds upon the experience gained through the application of TECDOC 1254 and SARCoN and the feedback received from Member States. This Safety Report applies to the management of adequate competence as needs change, and as such is equally applicable to the needs of States 'embarking' on a nuclear power programme. It also deals with the special case of building up the competence of regulatory bodies as part of the overall process of establishing an 'embarking' State's regulatory system

  11. Competence within Maintenance

    OpenAIRE

    Nerland, Annette Smørholm

    2010-01-01

    Maintenance can be a contributing factor to unwanted events, as well as desired events and states. Human competence can be defined as the ability to perform a specific task, action or function successfully, and is therefore a key factor to proper execution of maintenance tasks. Hence,maintenance will have negative consequences if done wrong, and give positive results when done right. The purpose of this report is to study the many aspects of maintenance competence. Endeavoring to improve ...

  12. Designing for competences

    DEFF Research Database (Denmark)

    Christiansen, Rene B; Gundersen, Peter Bukovica

    2014-01-01

    of these professionals has changed - and has become more cross-professional, more complex and analytic and reflective competencies have entered the policy papers of these human-professions as central, important forms of knowledge. These bachelor degrees in Denmark within the field of education (teaching and preschool...... and generating solutions in the form of design principles when moving from a focus of knowledge to a focus of competences....

  13. Soil Rhizosphere Microbial Communities and Enzyme Activities under Organic Farming in Alabama

    Directory of Open Access Journals (Sweden)

    Zachary Senwo

    2011-07-01

    Full Text Available Evaluation of the soil rhizosphere has been limited by the lack of robust assessments that can explore the vast complex structure and diversity of soil microbial communities. Our objective was to combine fatty acid methyl ester (FAME and pyrosequencing techniques to evaluate soil microbial community structure and diversity. In addition, we evaluated biogeochemical functionality of the microbial communities via enzymatic activities of nutrient cycling. Samples were taken from a silt loam at 0–10 and 10–20 cm in an organic farm under lettuce (Lactuca sativa, potato (Solanum tuberosum, onion (Allium cepa L, broccoli (Brassica oleracea var. botrytis and Tall fescue pasture grass (Festuca arundinacea. Several FAMEs (a15:0, i15:0, i15:1, i16:0, a17:0, i17:0, 10Me17:0, cy17:0, 16:1ω5c and 18:1ω9c varied among the crop rhizospheres. FAME profiles of the soil microbial community under pasture showed a higher fungal:bacterial ratio compared to the soil under lettuce, potato, onion, and broccoli. Soil under potato showed higher sum of fungal FAME indicators compared to broccoli, onion and lettuce. Microbial biomass C and enzyme activities associated with pasture and potato were higher than the other rhizospheres. The lowest soil microbial biomass C and enzyme activities were found under onion. Pyrosequencing revealed significant differences regarding the maximum operational taxonomic units (OTU at 3% dissimilarity level (roughly corresponding to the bacterial species level at 0–10 cm (581.7–770.0 compared to 10–20 cm (563.3–727.7 soil depths. The lowest OTUs detected at 0–10 cm were under broccoli (581.7; whereas the lowest OTUs found at 10–20 cm were under potato (563.3. The predominant phyla (85% in this soil at both depths were Bacteroidetes (i.e., Flavobacteria, Sphingobacteria, and Proteobacteria. Flavobacteriaceae and Xanthomonadaceae were predominant under broccoli. Rhizobiaceae, Hyphomicrobiaceae, and Acidobacteriaceae were more

  14. Aggregation of the rhizospheric bacterium Azospirillum brasilense in response to oxygen

    Science.gov (United States)

    Abdoun, Hamid; McMillan, Mary; Pereg, Lily

    2016-04-01

    Azospirillum brasilense spp. have ecological, scientific and agricultural importance. As model plant growth promoting rhizobacteria they interact with a large variety of plants, including important food and cash crops. Azospirillum strains are known for their production of plant growth hormones that enhance root systems and for their ability to fix nitrogen. Azospirillum cells transform in response to environmental cues. The production of exopolysaccharides and cell aggregation during cellular transformation are important steps in the attachment of Azospirillum to roots. We investigate signals that induce cellular transformation and aggregation in the Azospirillum and report on the importance of oxygen to the process of aggregation in this rhizospheric bacterium.

  15. Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere

    DEFF Research Database (Denmark)

    Steidle, A.; Sigl, K.; Schuhegger, R.

    2001-01-01

    developed and characterized novel Gfp-based monitor strains that allow in situ visualization of AHL-mediated communication between individual cells in the plant rhizosphere. For this purpose, three Gfp-based AHL sensor plasmids that respond to different spectra of AHL molecules were transferred into AHL......-negative derivatives of Pseudomonas putida IsoF and Serratia liquefaciens MG1, two strains that are capable of colonizing tomato roots. These AHL monitor strains were used to visualize communication between defined bacterial populations in the rhizosphere of axenically grown tomato plants. Furthermore, we integrated...

  16. Phenotypic plasticity in the developmental integration of morphological trade-offs and secondary sexual trait compensation.

    Science.gov (United States)

    Tomkins, Joseph L; Kotiaho, Janne S; Lebas, Natasha R

    2005-03-07

    Trait exaggeration through sexual selection will tale place alongside other changes in phenotype. Exaggerated morphology might be compensated by parallel changes in traits that support, enhance or facilitate exaggeration: 'secondary sexual trait compensation' (SSTC). Alternatively, exaggeration might be realized at the expense of other traits through morphological trade-offs. For the most part, SSTC has only been examined interspecifically. For these phenomena to be important intraspecifically, the sexual trait must be developmentally integrated with the compensatory or competing trait. We studied developmental integration in two species with different development: the holometabolous beetle Onthophagus taurus and the hemimetabolous earwig Forficula auricularia. Male-dimorphic variation in trait exaggeration was exploited to expose both trade-offs and SSTC. We found evidence for morphological trade-offs in O. taurus, but no F. auricularia, supporting the notion that trade-offs are more likely in closed developmetal systems. However, we found these trade-offs were not limited solely to traits growing close together. Developmental integration of structures involved in SSTC were detected in both species. The developmental integration of SSTC was phenotypically plastic, such that the compensation for relatively larger sexual traits was greater in the exasperated male morphs. Evidence of intraspecific SSTC demands studies of the selective, genetic and developmental architecture of phenotypic integration.

  17. Strategies for developing competency models.

    Science.gov (United States)

    Marrelli, Anne F; Tondora, Janis; Hoge, Michael A

    2005-01-01

    There is an emerging trend within healthcare to introduce competency-based approaches in the training, assessment, and development of the workforce. The trend is evident in various disciplines and specialty areas within the field of behavioral health. This article is designed to inform those efforts by presenting a step-by-step process for developing a competency model. An introductory overview of competencies, competency models, and the legal implications of competency development is followed by a description of the seven steps involved in creating a competency model for a specific function, role, or position. This modeling process is drawn from advanced work on competencies in business and industry.

  18. Quantitative trait loci (QTL) mapping for inflorescence length traits in ...

    African Journals Online (AJOL)

    Lablab purpureus (L.) sweet is an ancient legume species whose immature pods serve as a vegetable in south and south-east Asia. The objective of this study is to identify quantitative trait loci (QTLs) associated with quantitative traits such as inflorescence length, peduncle length from branch to axil, peduncle length from ...

  19. Associations between animal traits, carcass traits and carcass ...

    African Journals Online (AJOL)

    In this study the associations between animal traits, carcass traits and carcass classification within cattle, sheep and pigs slaughtered in a high throughput abattoir were determined. Classes of carcasses from cattle, sheep and pigs delivered for slaughter at this abattoir were recorded and analysed. Significant associations ...

  20. Bacterial Rhizosphere Biodiversity from Several Pioneer Desert Sand Plants Near Jizan, Saudi Arabia

    KAUST Repository

    Osman, Jorge R.; Zelicourt, Axel de; Bisseling, Ton; Geurts, Rene; Hirt, Heribert; DuBow, Michael S.

    2016-01-01

    Life in arid regions and, in particular, hot deserts is often limited due to their harsh environmental conditions, such as large temperature fluctuations and low amounts of water. These extreme environments can influence the microbial community present on the surface sands and any rhizosphere members surrounding desert plant roots. The Jizan desert area, located in Saudi Arabia, supports particular vegetation that grows in the large sandy flat terrain. We examined five different samples, four from the rhizosphere of pioneer plants plus a surface sand sample, and used pyrosequencing of PCR-amplified V1-V3 regions of 16S rDNA genes from total extracted DNA to reveal and compare the bacterial population diversity of the samples. The results showed a total of 3,530 OTUs in the five samples, calculated using ≥ 97% sequence similarity levels. The Chao1 estimation of the bacterial diversity fluctuated from 637 to 2,026 OTUs for a given sample. The most abundant members found in the samples belong to the Bacteroidetes, Firmicutes and Proteobacteria phyla. This work shows that the Jizan desert area of Saudi Arabia can contain a diverse bacterial community on the sand and surrounding the roots of pioneer desert plants. It also shows that desert sand microbiomes can vary depending on conditions, with broad implications for sandstone monument bacterial communities

  1. Pesticide dissipation and microbial community changes in a biopurification system: influence of the rhizosphere.

    Science.gov (United States)

    Diez, M C; Elgueta, S; Rubilar, O; Tortella, G R; Schalchli, H; Bornhardt, C; Gallardo, F

    2017-12-01

    The dissipation of atrazine, chlorpyrifos and iprodione in a biopurification system and changes in the microbial and some biological parameters influenced by the rhizosphere of Lolium perenne were studied in a column system packed with an organic biomixture. Three column depths were analyzed for residual pesticides, peroxidase, fluorescein diacetate activity and microbial communities. Fungal colonization was analyzed by confocal laser scanning microscopy to assess the extent of its proliferation in wheat straw. The L. perenne rhizosphere enhanced pesticide dissipation and negligible pesticide residues were detected at 20-30 cm column depth. Atrazine, chlorpyrifos and iprodione removal was 82, 89 and 74% respectively in the first 10 cm depth for columns with vegetal cover. The presence of L. perenne in contaminated columns stimulated peroxidase activity in all three column depth sections. Fluorescein diacetate activity decreased over time in all column sections with the highest values in biomixtures with vegetal cover. Microbial communities, analyzed by PCR-DGGE, were not affected by the pesticide mixture application, presenting high values of similarity (>65%) with and without vegetal cover. Microbial abundance of Actinobacteria varied according to treatment and no clear link was observed. However, bacterial abundance increased over time and was similar with and without vegetal cover. On the other hand, fungal abundance decreased in all sections of columns after 40 days, but an increase was observed in response to pesticide application. Fungal colonization and straw degradation during pesticide dissipation were verified by monitoring the lignin autofluorescence loss.

  2. Exploring the Potentiality of Novel Rhizospheric Bacterial Strains against the Rice Blast Fungus Magnaporthe oryzae

    Science.gov (United States)

    Amruta, Narayanappa; Prasanna Kumar, M. K.; Puneeth, M. E.; Sarika, Gowdiperu; Kandikattu, Hemanth Kumar; Vishwanath, K.; Narayanaswamy, Sonnappa

    2018-01-01

    Rice blast caused by Magnaporthe oryzae is a major disease. In the present study, we aimed to identify and evaluate the novel bacterial isolates from rice rhizosphere for biocontrol of M. oryzae pathogen. Sixty bacterial strains from the rice plant’s rhizosphere were tested for their biocontrol activity against M. oryzae under in vitro and in vivo. Among them, B. amyloliquefaciens had significant high activity against the pathogen. The least disease severity and highest germination were recorded in seeds treated with B. amyloliquefaciens UASBR9 (0.96 and 98.00%) compared to untreated control (3.43 and 95.00%, respectively) under in vivo condition. These isolates had high activity of enzymes in relation to growth promoting activity upon challenge inoculation of the pathogen. The potential strains were identified based on 16S rRNA gene sequencing and dominance of these particular genes were associated in Bacillus strains. These strains were also confirmed for the presence of antimicrobial peptide biosynthetic genes viz., srfAA (surfactin), fenD (fengycin), spaS (subtilin), and ituC (iturin) related to secondary metabolite production (e.g., AMPs). Overall, the results suggested that application of potential bacterial strains like B. amyloliquefaciens UASBR9 not only helps in control of the biological suppression of one of the most devastating rice pathogens, M. grisea but also increases plant growth along with a reduction in application of toxic chemical pesticides. PMID:29628819

  3. Effect of rhizosphere pH condition on cadmium movement in a soybean plant

    International Nuclear Information System (INIS)

    Ohya, T.; Tanoi, K.; Iikura, H.; Rai, H.; Nakanishi, T.M.

    2008-01-01

    To study the effect of rhizosphere pH condition on the cadmium uptake movement, 109 Cd, was applied as a radioisotope tracer to a soybean plant grown in a water culture at pH 4.5 or pH 6.5. The distribution of 109 Cd in the soybean plant was observed radiographically with an imaging plate (IP). The amount of Cd transported from the root to the upper part of the plant at pH 4.5 was approximately two times higher than that at pH 6.5. However, the movement of Cd in the upper part of the plant was similar under both pH conditions. The distribution of Cd inside the internodes at pH 4.5 also showed similar pattern to that at pH 6.5, suggesting that once Cd reached to the vessel of the root, the movement of Cd was not dependent on rhizosphere pH conditions. (author)

  4. Rhizospheric Microflora Escalating Aroma Constituents and Yield Attributes in Ocimum tenuiflorum (L. cv. CIM-Ayu

    Directory of Open Access Journals (Sweden)

    Shilpi Khare Saikia

    2014-01-01

    Full Text Available The exploration of rhizospheric microbial flora for crop yield enhancement is well established. Rhizospheric microbes influence the plant physiology by imparting several beneficial effects, namely, Nitrogen fixation, increased nutrient uptake, and secondary metabolites production on their host plants. The present study investigates the response of Bacillus megaterium ATCC No. 13525, Pseudomonas fluorescens ATCC No. 14581, and Trichoderma viride MTCC No. 167 in alone and combined treatments for their effect on growth and yield parameters in a commercially important Ocimum tenuiflorum L. cv. CIM-Ayu. The plant is therapeutically important for its essential oil constituents, namely, eugenol, β-caryophyllene, and various monoterpenes. The combination treatments, T7 (B. megaterium + P. fluorescens and T8 (B. megaterium + P. fluorescens + T. viride, showed maximum enhancement (27.27% of percentage essential oil as compared to untreated control. Nutrient uptake especially N2 content was significantly increased (43% with the treatment T8 (B. megaterium + P. fluorescens + T. viride. Amongst major essential oil constituents, eugenol content was maximally increased by 58.5% as compared to 42.9% (control indicating a cumulative role of microbial inoculants for crop yield boost-up.

  5. Remediation aspect of microbial changes of plant rhizosphere in mercury contaminated soil.

    Science.gov (United States)

    Sas-Nowosielska, Aleksandra; Galimska-Stypa, Regina; Kucharski, Rafał; Zielonka, Urszula; Małkowski, Eugeniusz; Gray, Laymon

    2008-02-01

    Phytoremediation, an approach that uses plants to remediate contaminated soil through degradation, stabilization or accumulation, may provide an efficient solution to some mercury contamination problems. This paper presents growth chamber experiments that tested the ability of plant species to stabilize mercury in soil. Several indigenous herbaceous species and Salix viminalis were grown in soil collected from a mercury-contaminated site in southern Poland. The uptake and distribution of mercury by these plants were investigated, and the growth and vitality of the plants through a part of one vegetative cycle were assessed. The highest concentrations of mercury were found at the roots, but translocation to the aerial part also occurred. Most of the plant species tested displayed good growth on mercury contaminated soil and sustained a rich microbial population in the rhizosphere. The microbial populations of root-free soil and rhizosphere soil from all species were also examined. An inverse correlation between the number of sulfur amino acid decomposing bacteria and root mercury content was observed. These results indicate the potential for using some species of plants to treat mercury contaminated soil through stabilization rather than extraction. The present investigation proposes a practical cost-effective temporary solution for phytostabilization of soil with moderate mercury contamination as well as the basis for plant selection.

  6. Interactions between plant and rhizosphere microbial communities in a metalliferous soil

    International Nuclear Information System (INIS)

    Epelde, Lur; Becerril, Jose M.; Barrutia, Oihana; Gonzalez-Oreja, Jose A.; Garbisu, Carlos

    2010-01-01

    In the present work, the relationships between plant consortia, consisting of 1-4 metallicolous pseudometallophytes with different metal-tolerance strategies (Thlaspi caerulescens: hyperaccumulator; Jasione montana: accumulator; Rumex acetosa: indicator; Festuca rubra: excluder), and their rhizosphere microbial communities were studied in a mine soil polluted with high levels of Cd, Pb and Zn. Physiological response and phytoremediation potential of the studied pseudometallophytes were also investigated. The studied metallicolous populations are tolerant to metal pollution and offer potential for the development of phytoextraction and phytostabilization technologies. T. caerulescens appears very tolerant to metal stress and most suitable for metal phytoextraction; the other three species enhance soil functionality. Soil microbial properties had a stronger effect on plant biomass rather than the other way around (35.2% versus 14.9%). An ecological understanding of how contaminants, ecosystem functions and biological communities interact in the long-term is needed for proper management of these fragile metalliferous ecosystems. - Rhizosphere microbial communities in highly polluted mine soils are determinant for the growth of pseudometallophytes.

  7. Safe-Site Effects on Rhizosphere Bacterial Communities in a High-Altitude Alpine Environment

    Directory of Open Access Journals (Sweden)

    Sonia Ciccazzo

    2014-01-01

    Full Text Available The rhizosphere effect on bacterial communities associated with three floristic communities (RW, FI, and M sites which differed for the developmental stages was studied in a high-altitude alpine ecosystem. RW site was an early developmental stage, FI was an intermediate stage, M was a later more matured stage. The N and C contents in the soils confirmed a different developmental stage with a kind of gradient from the unvegetated bare soil (BS site through RW, FI up to M site. The floristic communities were composed of 21 pioneer plants belonging to 14 species. Automated ribosomal intergenic spacer analysis showed different bacterial genetic structures per each floristic consortium which differed also from the BS site. When plants of the same species occurred within the same site, almost all their bacterial communities clustered together exhibiting a plant species effect. Unifrac significance value (P<0.05 on 16S rRNA gene diversity revealed significant differences (P<0.05 between BS site and the vegetated sites with a weak similarity to the RW site. The intermediate plant colonization stage FI did not differ significantly from the RW and the M vegetated sites. These results pointed out the effect of different floristic communities rhizospheres on their soil bacterial communities.

  8. Mass spectrometry imaging: Towards mapping the elemental and molecular composition of the rhizosphere

    Energy Technology Data Exchange (ETDEWEB)

    Veličković, Dušan; Anderton, Christopher R.

    2017-06-01

    This short review will discuss and provide perspective into the utilization of mass spectrometry imaging (MSI) in studying the rhizosphere. It also serves to compliment the multi-omic focused review by White et al. in this journal issue, as MSI is capable of elucidating chemical distributions within samples of interest in an in situ fashions, and thus can provide spatial context to MS omics data in complementary experimental endeavors. The majority of reported MSI-based studies of plant-microbe interactions have focused on the phyllosphere and ‘associated rhizosphere’ (e.g., material that is not removed during harvesting), as sample preparation for these in situ analyses tends to be a limiting factor. These studies have provided valuable insight into the spatial arrangement of proteins, peptides, lipids, and other metabolites within these systems. We intend for this short review to be a primer about the history of MSI and its role in plant-microbe analysis. Along the way we reference many comprehensive reviews for the interested reader. Lastly, we offer a perspective on the future of MSI and its use in understanding the molecular transformations beyond what we coined as the ‘associated rhizosphere’ to the rest of rhizosphere zone and into the bulk soil.

  9. Identification and characterization of rhizospheric microbial diversity by 16S ribosomal RNA gene sequencing

    Directory of Open Access Journals (Sweden)

    Muhammad Naveed

    2014-09-01

    Full Text Available In the present study, samples of rhizosphere and root nodules were collected from different areas of Pakistan to isolate plant growth promoting rhizobacteria. Identification of bacterial isolates was made by 16S rRNA gene sequence analysis and taxonomical confirmation on EzTaxon Server. The identified bacterial strains were belonged to 5 genera i.e. Ensifer, Bacillus, Pseudomona, Leclercia and Rhizobium. Phylogenetic analysis inferred from 16S rRNA gene sequences showed the evolutionary relationship of bacterial strains with the respective genera. Based on phylogenetic analysis, some candidate novel species were also identified. The bacterial strains were also characterized for morphological, physiological, biochemical tests and glucose dehydrogenase (gdh gene that involved in the phosphate solublization using cofactor pyrroloquinolone quinone (PQQ. Seven rhizoshperic and 3 root nodulating stains are positive for gdh gene. Furthermore, this study confirms a novel association between microbes and their hosts like field grown crops, leguminous and non-leguminous plants. It was concluded that a diverse group of bacterial population exist in the rhizosphere and root nodules that might be useful in evaluating the mechanisms behind plant microbial interactions and strains QAU-63 and QAU-68 have sequence similarity of 97 and 95% which might be declared as novel after further taxonomic characterization.

  10. Bacterial Rhizosphere Biodiversity from Several Pioneer Desert Sand Plants Near Jizan, Saudi Arabia

    KAUST Repository

    Osman, Jorge R.

    2016-04-08

    Life in arid regions and, in particular, hot deserts is often limited due to their harsh environmental conditions, such as large temperature fluctuations and low amounts of water. These extreme environments can influence the microbial community present on the surface sands and any rhizosphere members surrounding desert plant roots. The Jizan desert area, located in Saudi Arabia, supports particular vegetation that grows in the large sandy flat terrain. We examined five different samples, four from the rhizosphere of pioneer plants plus a surface sand sample, and used pyrosequencing of PCR-amplified V1-V3 regions of 16S rDNA genes from total extracted DNA to reveal and compare the bacterial population diversity of the samples. The results showed a total of 3,530 OTUs in the five samples, calculated using ≥ 97% sequence similarity levels. The Chao1 estimation of the bacterial diversity fluctuated from 637 to 2,026 OTUs for a given sample. The most abundant members found in the samples belong to the Bacteroidetes, Firmicutes and Proteobacteria phyla. This work shows that the Jizan desert area of Saudi Arabia can contain a diverse bacterial community on the sand and surrounding the roots of pioneer desert plants. It also shows that desert sand microbiomes can vary depending on conditions, with broad implications for sandstone monument bacterial communities

  11. Characterization of rhizosphere bacteria for control of phytopathogenic fungi of tomato.

    Science.gov (United States)

    Pastor, Nicolás; Carlier, Evelin; Andrés, Javier; Rosas, Susana B; Rovera, Marisa

    2012-03-01

    Fluorescent Pseudomonas spp., isolated from rhizosphere soil of tomato and pepper plants, were evaluated in vitro as potential antagonists of fungal pathogens. Strains were characterized using the API 20NE biochemical system, and tested against the causal agents of stem canker and leaf blight (Alternaria alternata f. sp. lycopersici), southern blight (Sclerotium rolfsii Sacc.), and root rot (Fusarium solani). To this end, dual culture antagonism assays were carried out on 25% Tryptic Soy Agar, King B medium, and Potato Dextrose Agar to determine the effect of the strains on mycelial growth of the pathogens. The effect of two concentrations of FeCl(3) on antagonism against Alternaria alternata f. sp. lycopersici was also tested. In addition, strains were screened for ability to produce exoenzymes and siderophores. Finally, the selected Pseudomonas strain, PCI2, was evaluated for effect on tomato seedling development and as a potential candidate for controlling tomato damping-off caused by Sclerotium rolfsii Sacc., under growth chamber conditions. All strains significantly inhibited Alternaria alternata f. sp. lycopersici, particularly in 25% TSA medium. Antagonistic effect on Sclerotium rolfsii Sacc. and Fusarium solani was greater on King B medium. Protease was produced by 30% of the strains, but no strains produced cellulase or chitinase. Growth chamber studies resulted in significant increases in plant stand as well as in root dry weight. PCI2 was able to establish and survive in tomato plants rhizosphere after 40 days following planting of bacterized seeds. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Using Raman spectroscopy and SERS for in situ studies of rhizosphere bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Mohseni, Hooman; Agahi, Massoud H.; Razeghi, Manijeh; Polisetti, Sneha; Baig, Nameera; Bible, Amber; Morrell-Falvey, Jennifer; Doktycz, Mitchel; Bohn, Paul W.

    2015-08-21

    Bacteria colonize plant roots to form a symbiotic relationship with the plant and can play in important role in promoting plant growth. Raman spectroscopy is a useful technique to study these bacterial systems and the chemical signals they utilize to interact with the plant. We present a Raman study of Pantoea YR343 that was isolated from the rhizosphere of Populus deltoides (Eastern Cottonwood). Pantoea sp. YR343 produce yellowish carotenoid pigment that play a role in protection against UV radiation, in the anti-oxidative pathways and in membrane fluidity. Raman spectroscopy is used to non-invasively characterize the membrane bound carotenoids. The spectra collected from a mutant strain created by knocking out the crtB gene that encodes a phytoene synthase responsible for early stage of carotenoid biosynthesis, lack the carotenoid peaks. Surface Enhanced Raman Spectroscopy is being employed to detect the plant phytoharmone indoleacetic acid that is synthesized by the bacteria. This work describes our recent progress towards utilizing Raman spectroscopy as a label free, non-destructive method of studying plant-bacteria interactions in the rhizosphere.

  13. Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense.

    Science.gov (United States)

    Fibach-Paldi, Sharon; Burdman, Saul; Okon, Yaacov

    2012-01-01

    Azospirillum brasilense is a plant growth promoting rhizobacterium (PGPR) that is being increasingly used in agriculture in a commercial scale. Recent research has elucidated key properties of A. brasilense that contribute to its ability to adapt to the rhizosphere habitat and to promote plant growth. They include synthesis of the auxin indole-3-acetic acid, nitric oxide, carotenoids, and a range of cell surface components as well as the ability to undergo phenotypic variation. Storage and utilization of polybetahydroxyalkanoate polymers are important for the shelf life of the bacteria in production of inoculants, products containing bacterial cells in a suitable carrier for agricultural use. Azospirillum brasilense is able to fix nitrogen, but despite some controversy, as judging from most systems evaluated so far, contribution of fixed nitrogen by this bacterium does not seem to play a major role in plant growth promotion. In this review, we focus on recent advances in the understanding of physiological properties of A. brasilense that are important for rhizosphere performance and successful interactions with plant roots. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Oxidation of rhizosphere sediments by Alternanthera philoxeroides : roots to quicker petroleum degradation?

    International Nuclear Information System (INIS)

    LaRiviere, D.; Autenrieth, R.L.; Bonner, J.

    2002-01-01

    Environments contaminated with organic compounds and metals can be treated using an emerging technology based on phytoremediation. The oxidation of surficial sediments through plant roots is an important feature of phytoremediation, but there is very little data available on this subject. A geochemical study conducted at the San Jacinto Wetland Research Facility (SJWRF) in Texas has shown that Alternanthera philoxeroides is a particular plant that provides oxygen to sediments. Densely vegetated areas generally exhibit redox potentials from 100 to 350 mV and are more oxidized than sparsely vegetated areas where redox potentials are often less than 0 mV. In addition, phytoremediation can accelerate bioremediation of organic compounds in surface soils by releasing enzymes and sugars that catalyze degradation or raise microbial activity. The study examined the oxidation of the rhizosphere in saturated environments such as shoreline remediation projects where oxygen is generally limited. The rate of petroleum degradation observed in studies conducted in the intertidal zone of the SJWRF is comparable to rates that have been computed for other studies, suggesting that rhizosphere has a great capacity to oxidize natural organic matter in addition to petroleum hydrocarbons. 33 refs., 2 tabs., 4 figs

  15. [Bacillus isolates from rhizosphere of cacti improve germination and bloom in Mammillaria spp. (Cactaceae)].

    Science.gov (United States)

    Chávez-Ambriz, Lluvia A; Hernández-Morales, Alejandro; Cabrera-Luna, José A; Luna-Martínez, Laura; Pacheco-Aguilar, Juan R

    Cacti are the most representative vegetation of arid zones in Mexico where rainfall is scarce, evapotranspiration is high and soil fertility is low. Plants have developed physiological strategies such as the association with microorganisms in the rhizosphere zone to increase nutrient uptake. In the present work, four bacterial isolates from the rhizosphere of Mammillaria magnimamma and Coryphantha radians were obtained and named as QAP3, QAP19, QAP22 and QAP24, and were genetically identified as belonging to the genus Bacillus, exhibiting in vitro biochemical properties such as phosphate solubilization, indoleacetic acid production and ACC deaminase activity related to plant growth promotion, which was tested by inoculating M. magnimamma seeds. It was found that all isolates increased germination from 17 to 34.3% with respect to the uninoculated control seeds, being QAP24 the one having the greatest effect, accomplishing the germination of viable seeds (84.7%) three days before the control seeds. Subsequently, the inoculation of Mammillari zeilmanniana plants with this isolate showed a positive effect on bloom, registering during two months from a one year period, an increase of up to 31.0% in the number of flowering plants compared to control plants. The characterized Bacillus spp. isolates have potential to be used in conservation programs of plant species from arid zones. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Application of rice rhizosphere microflora for hydrogen production from apple pomace

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Tetsuya [Institute for Sustainable Agro-ecosystem Services (ISAS), Graduate School of Agriculture and Life Sciences, The University of Tokyo, Nishitokyo, Tokyo 188-0002 (Japan); Nishihara Environment Technology Inc., Tokyo 108-0023 (Japan); Matsumoto, Hisami [Nishihara Environment Technology Inc., Tokyo 108-0023 (Japan); Abe, Jun [AE-Bio, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657 (Japan); Morita, Shigenori [Institute for Sustainable Agro-ecosystem Services (ISAS), Graduate School of Agriculture and Life Sciences, The University of Tokyo, Nishitokyo, Tokyo 188-0002 (Japan)

    2010-07-15

    The combination of substrate materials and bacteria is an important factor affecting conversion technology for biological hydrogen production. We performed anaerobic hydrogen fermentation of apple pomace wastes using rhizosphere bacterial microflora of rice as the parent inoculum. In the vial test, the optimal condition for hydrogen fermentation was initial pH 6.0, 35 C, and 73.4 g pomace per liter of medium (equivalent to 10 g-hexose/L). In the batch experiment (pH 6.0, temperature 35 C) the hydrogen yield reached 2.3 mol-H{sub 2}/mol-hexose. The time course of biogas production and PCR-DGGE analysis suggest that Clostridium spp. decomposed degradable carbohydrates rapidly and a part of the refractory carbohydrate (e.g. pectin) gradually in the apple pomace slurry. In addition to hydrogen, volatile fatty acids (VFAs) were produced in the anaerobic fermentation of apple pomace, which can be a substrate for methane fermentation. The rice rhizosphere can be a promising source of inoculum bacteria for hydrogen fermentation in combination with plant material waste like apple pomace. (author)

  17. Nitrogen mediates CO2-induced changes in rhizosphere priming effects in an aggrading forest (Invited)

    Science.gov (United States)

    Phillips, R.; Bernhardt, E. S.; Finzi, A.

    2009-12-01

    Root-induced changes in soil organic matter (SOM) decomposition are likely to provide an important feedback to carbon storage in terrestrial ecosystems but to date, there have been few measurements of such “priming effects” in forest soils. Our goal was to estimate the potential magnitude of SOM priming in a 28 year-old loblolly pine stand exposed to elevated atmospheric CO2 (ambient + 200 ppm) and nitrogen fertilization (11 g m-2 yr-1) at the Duke Forest FACE site, NC. We hypothesized that CO2- and nitrogen-induced changes in carbon supply to soil via root exudation would mediate the magnitude and timing of priming effects. Over a two-year period, trees exposed to CO2 enrichment increased dissolved carbon supply to soil by ~50% in nutrient-poor soils, resulting in a doubling of microbial biomass in the rhizosphere in the upper 10 cm of mineral soil (p proteolytic extracellular enzymes involved in SOM depolymerization, with the greatest changes occurring in non-fertilized soils. We interpret the enhanced microbial and enzyme activities in the rhizosphere as evidence of root-induced priming effects. Collectively, our results suggest that although increased carbon flux from to roots to soil may provide a mechanism for trees to accelerate soil nitrogen cycling under elevated CO2, such inputs may also accelerate SOM decomposition and thus reduce storage in the longest lived, most stable pools of carbon in aggrading forests.

  18. Interactions between plant and rhizosphere microbial communities in a metalliferous soil

    Energy Technology Data Exchange (ETDEWEB)

    Epelde, Lur [NEIKER-Tecnalia, Department of Ecosystems, c/Berreaga 1, E-48160 Derio (Spain); Becerril, Jose M.; Barrutia, Oihana [Department of Plant Biology and Ecology, University of the Basque Country, UPV/EHU, P.O. Box 644, E-48080 Bilbao (Spain); Gonzalez-Oreja, Jose A. [NEIKER-Tecnalia, Department of Ecosystems, c/Berreaga 1, E-48160 Derio (Spain); Garbisu, Carlos, E-mail: cgarbisu@neiker.ne [NEIKER-Tecnalia, Department of Ecosystems, c/Berreaga 1, E-48160 Derio (Spain)

    2010-05-15

    In the present work, the relationships between plant consortia, consisting of 1-4 metallicolous pseudometallophytes with different metal-tolerance strategies (Thlaspi caerulescens: hyperaccumulator; Jasione montana: accumulator; Rumex acetosa: indicator; Festuca rubra: excluder), and their rhizosphere microbial communities were studied in a mine soil polluted with high levels of Cd, Pb and Zn. Physiological response and phytoremediation potential of the studied pseudometallophytes were also investigated. The studied metallicolous populations are tolerant to metal pollution and offer potential for the development of phytoextraction and phytostabilization technologies. T. caerulescens appears very tolerant to metal stress and most suitable for metal phytoextraction; the other three species enhance soil functionality. Soil microbial properties had a stronger effect on plant biomass rather than the other way around (35.2% versus 14.9%). An ecological understanding of how contaminants, ecosystem functions and biological communities interact in the long-term is needed for proper management of these fragile metalliferous ecosystems. - Rhizosphere microbial communities in highly polluted mine soils are determinant for the growth of pseudometallophytes.

  19. Effect of Rhizosphere Enzymes on Phytoremediation in PAH-Contaminated Soil Using Five Plant Species

    Science.gov (United States)

    Liu, Rui; Dai, Yuanyuan; Sun, Libo

    2015-01-01

    A pot experiment was performed to study the effectiveness of remediation using different plant species and the enzyme response involved in remediating PAH-contaminated soil. The study indicated that species Echinacea purpurea, Festuca arundinacea Schred, Fire Phoenix (a combined F. arundinacea), and Medicago sativa L. possess the potential for remediation in PAH-contaminated soils. The study also determined that enzymatic reactions of polyphenol oxidase (except Fire Phoenix), dehydrogenase (except Fire Phoenix), and urease (except Medicago sativa L.) were more prominent over cultivation periods of 60d and 120d than 150d. Urease activity of the tested species exhibited prominently linear negative correlations with alkali-hydrolyzable nitrogen content after the tested plants were cultivated for 150d (R2 = 0.9592). The experiment also indicated that alkaline phosphatase activity in four of the five tested species (Echinacea purpurea, Callistephus chinensis, Festuca arundinacea Schred and Fire Phoenix) was inhibited during the cultivation process (at 60d and 120d). At the same time, the study determined that the linear relationship between alkaline phosphatase activity and effective phosphorus content in plant rhizosphere soil exhibited a negative correlation after a growing period of 120d (R2 = 0.665). Phytoremediation of organic contaminants in the soil was closely related to specific characteristics of particular plant species, and the catalyzed reactions were the result of the action of multiple enzymes in the plant rhizosphere soil. PMID:25822167

  20. Students' communicative competence

    Directory of Open Access Journals (Sweden)

    Šafranj Jelisaveta

    2009-01-01

    Full Text Available Communicative competence is the ability to send messages which promote attainment of goals while maintaining social acceptability. Competent communicators attempt to align themselves with each others goals and methods to produce a smooth, productive and often enjoyable dialogue. The aim of this research was to investigate self-perceived communicative competence (SPCC of students of Engineering Management in General English and English for Specific Purposes (ESP. A longitudinal study was carried out starting with the first year students at the Faculty of Technical Sciences in Novi Sad and was repeated with the same sample of students during their second and third year of study. Participation was voluntary and took place during regular class time. The measure of communicative competence employed was the Self-perceived Communication Competence Scale. The results of the study indicated that differences in SPCC between the years do exist. The SPCC gradually improved between the first, the second and the third year. The research was also motivated by gaining better overview of the teaching activity. An anonymous questionnaire provided many useful hints and ideas for further work and thus, language teacher made a thorough analysis of the overall teaching procedure. However, it is essential to get some feedback and talk to students in order to evaluate both them and ourselves as well as the teaching syllabus.

  1. Enhanced phytoextraction of germanium and rare earth elements - a rhizosphere-based approach

    Science.gov (United States)

    Wiche, Oliver

    2016-04-01

    Germanium (Ge) and rare earth elements (REEs) are economically valuable raw materials that have become an integral part of our modern high tech society. While most of these elements are not actually rare in terms of general amounts in the earth's crust, they are rarely found in sufficient abundances in single locations for their mining to be economically viable. The average concentration of Ge in soils is estimated at 1.6 μg g-1. The REEs comprise a group of 16 elements including La, the group of lanthanides and Y that are abundant in the earth crust with concentrations varying from 35 μg g-1 (La), 40 μg g-1 (Nd), 6 μg g-1 (Gd) and 3.5 μg g-1 (Er) to 0.5 μg g-1 in Tm. Thus, a promising chance to improve supply of these elements could be phytomining. Unfortunately, bioavailability of Ge and REEs in soils appears to be low, in particular in neutral or alkaline soils. A sequential dissolution analysis of 120 soil samples taken from the A-horizons of soils in the area of Freiberg (Saxony, Germany) revealed that only 0.2% of total Ge and about 0.5% of La, Nd, Gd and Er of bulk concentrations were easily accessible by leaching with NH4-acetate (pH 7). Most of the investigated elements were bound to Fe-/Mn-oxides and silicates and were therefore only poorly available for plant uptake. Here we report an environmentally friendly approach for enhanced phytoextraction of Ge and REEs from soils using mixed cultures of plant species with efficient mechanisms for the acquisition of nutrients in the rhizosphere. The rhizosphere is characterized as the zone in soil sourrounding a plant root that consists of a gradient in chemical, physical and biological soil properties driven by rhizodeposits like carboxylates and protons. Some species like white lupin (Lupinus albus) are able to excrete large amounts of organic acid anions(predominantly citrate and malate) and show a particularly high potential for the acidification of the rhizosphere. In our experiments, mixed cultures

  2. Distribution of root exudates and mucilage in the rhizosphere: combining 14C imaging with neutron radiography

    Science.gov (United States)

    Holz, Maire; Carminati, Andrea; Kuzyakov, Yakov

    2015-04-01

    Water and nutrients will be the major factors limiting food production in future. Plant roots employ various mechanisms to increase the access to limited soil resources. Low molecular weight organic substances released by roots into the rhizosphere increase nutrient availability by interactions with microorganisms, while mucilage improves water availability under low moisture conditions. Though composition and quality of these substances have intensively been investigated, studies on the spatial distribution and quantification of exudates in soil are scarce. Our aim was to quantify and visualize root exudates and mucilage distribution around growing roots using neutron radiography and 14C imaging depending on drought stress. Plants were grown in rhizotrons well suited for neutron radiography and 14C imaging. Plants were exposed to various soil water contents experiencing different levels of drought stress. The water content in the rhizosphere was imaged during several drying/wetting cycles by neutron radiography. The radiographs taken a few hours after irrigation showed a wet region around the root tips showing the allocation and distribution of mucilage. The increased water content in the rhizosphere of the young root segments was related to mucilage concentrations by parameterization described in Kroener et al. (2014). In parallel 14C imaging of root after 14CO2 labeling of shoots (Pausch and Kuzyakov 2011) showed distribution of rhizodeposits including mucilage. Three days after setting the water content, plants were labeled in 14CO2 atmosphere. Two days later 14C distribution in soil was imaged by placing a phosphor-imaging plate on the rhizobox. To quantify rhizodeposition, 14C activity on the image was related to the absolute 14C activity in the soil and root after destructive sampling. By comparing the amounts of mucilage (neutron radiography) with the amount of total root derived C (14C imaging), we were able to differentiate between mucilage and root

  3. Influence of soil type, cultivar and Verticillium dahliae on the structure of the root and rhizosphere soil fungal microbiome of strawberry.

    Science.gov (United States)

    Nallanchakravarthula, Srivathsa; Mahmood, Shahid; Alström, Sadhna; Finlay, Roger D

    2014-01-01

    Sustainable management of crop productivity and health necessitates improved understanding of the ways in which rhizosphere microbial populations interact with each other, with plant roots and their abiotic environment. In this study we examined the effects of different soils and cultivars, and the presence of a soil-borne fungal pathogen, Verticillium dahliae, on the fungal microbiome of the rhizosphere soil and roots of strawberry plants, using high-throughput pyrosequencing. Fungal communities of the roots of two cultivars, Honeoye and Florence, were statistically distinct from those in the rhizosphere soil of the same plants, with little overlap. Roots of plants growing in two contrasting field soils had high relative abundance of Leptodontidium sp. C2 BESC 319 g whereas rhizosphere soil was characterised by high relative abundance of Trichosporon dulcitum or Cryptococcus terreus, depending upon the soil type. Differences between different cultivars were not as clear. Inoculation with the pathogen V. dahliae had a significant influence on community structure, generally decreasing the number of rhizosphere soil- and root-inhabiting fungi. Leptodontidium sp. C2 BESC 319 g was the dominant fungus responding positively to inoculation with V. dahliae. The results suggest that 1) plant roots select microorganisms from the wider rhizosphere pool, 2) that both rhizosphere soil and root inhabiting fungal communities are influenced by V. dahliae and 3) that soil type has a stronger influence on both of these communities than cultivar.

  4. Elevated CO2 benefits the soil microenvironment in the rhizosphere of Robinia pseudoacacia L. seedlings in Cd- and Pb-contaminated soils.

    Science.gov (United States)

    Huang, Shuping; Jia, Xia; Zhao, Yonghua; Bai, Bo; Chang, Yafei

    2017-02-01

    Soil contamination by heavy metals in combination with elevated atmospheric CO 2 has important effects on the rhizosphere microenvironment by influencing plant growth. Here, we investigated the response of the R. pseudoacacia rhizosphere microenvironment to elevated CO 2 in combination with cadmium (Cd)- and lead (Pb)-contamination. Organic compounds (total soluble sugars, soluble phenolic acids, free amino acids, and organic acids), microbial abundance and activity, and enzyme activity (urease, dehydrogenase, invertase, and β-glucosidase) in rhizosphere soils increased significantly (p soil microbial community in the rhizosphere. Heavy metals alone resulted in an increase in total soluble sugars, free amino acids, and organic acids, a decrease in phenolic acids, microbial populations and biomass, and enzyme activity, and a change in microbial community in rhizosphere soils. Elevated CO 2 led to an increase in organic compounds, microbial populations, biomass, and activity, and enzyme activity (except for l-asparaginase), and changes in microbial community under Cd, Pb, or Cd + Pb treatments relative to ambient CO 2 . In addition, elevated CO 2 significantly (p soils. Overall, elevated CO 2 benefited the rhizosphere microenvironment of R. pseudoacacia seedlings under heavy metal stress, which suggests that increased atmospheric CO 2 concentrations could have positive effects on soil fertility and rhizosphere microenvironment under heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Language competence in movement

    DEFF Research Database (Denmark)

    Laursen, Helle Pia; Mogensen, Naja Dahlstrup

    2016-01-01

    multilingual children's language and literacy acquisition processes, we direct our focus to a single child's active exploration of what it means to know a language. Through analysis of interviews and researcher generated activities, we see how this child both describes and does language competence......This article examines how, in a multilingual perspective, language competence is experienced, talked about and practiced by language users themselves. By viewing children as active co-creators of the spaces in which language is used, this article contributes to a research tradition in which focus...... is shifted from viewing the individual's language competence as a mental linguistic or communicative property, to viewing language as a series of social and spatial practices. Looking at data from the research project Tegn på Sprog (in the following referred to as Signs of Language), which examines...

  6. The importance of aboveground–belowground interactions on the evolution and maintenance of variation in plant defense traits

    Science.gov (United States)

    van Geem, Moniek; Gols, Rieta; van Dam, Nicole M.; van der Putten, Wim H.; Fortuna, Taiadjana; Harvey, Jeffrey A.

    2013-01-01

    Over the past two decades a growing body of empirical research has shown that many ecological processes are mediated by a complex array of indirect interactions occurring between rhizosphere-inhabiting organisms and those found on aboveground plant parts. Aboveground–belowground studies have thus far focused on elucidating processes and underlying mechanisms that mediate the behavior and performance of invertebrates in opposite ecosystem compartments. Less is known about genetic variation in plant traits such as defense as that may be driven by above- and belowground trophic interactions. For instance, although our understanding of genetic variation in aboveground plant traits and its effects on community-level interactions is well developed, little is known about the importance of aboveground–belowground interactions in driving this variation. Plant traits may have evolved in response to selection pressures from above- and below-ground interactions from antagonists and mutualists. Here, we discuss gaps in our understanding of genetic variation in plant-related traits as they relate to aboveground and belowground multitrophic interactions. When metabolic resources are limiting, multiple attacks by antagonists in both domains may lead to trade-offs. In nature, these trade-offs may critically depend upon their effects on plant fitness. Natural enemies of herbivores may also influence selection for different traits via top–down control. At larger scales these interactions may generate evolutionary “hotspots” where the expression of various plant traits is the result of strong reciprocal selection via direct and indirect interactions. The role of abiotic factors in driving genetic variation in plant traits is also discussed. PMID:24348484

  7. Draft Genome Sequence of Bacillus velezensis Lzh-a42, a Plant Growth-Promoting Rhizobacterium Isolated from Tomato Rhizosphere.

    Science.gov (United States)

    Li, Zhenghua; Chen, Mei; Ran, Kun; Wang, Jihua; Zeng, Qiangcheng; Song, Feng

    2018-03-22

    The plant growth-promoting rhizobacterium Bacillus velezensis strain Lzh-a42, which has antimicrobial activity, was isolated from tomato rhizosphere. Here, we report its genome sequence, which includes several predicted functional genes related to secondary metabolite biosynthesis, antimicrobial activity, and biofilm synthesis. Copyright © 2018 Li et al.

  8. Rhizosphere effect of colonizer plant species on the development of soil microbial community during primary succession on postmining sites

    Czech Academy of Sciences Publication Activity Database

    Elhottová, Dana; Krištůfek, Václav; Malý, S.; Frouz, Jan

    2009-01-01

    Roč. 40, 1-6 (2009), s. 758-770 ISSN 0010-3624 R&D Projects: GA MŠk LC06066; GA ČR GA526/03/1259 Institutional research plan: CEZ:AV0Z60660521 Keywords : colonizer plant * colliery spoil substrate * rhizosphere effect Subject RIV: EH - Ecology, Behaviour Impact factor: 0.397, year: 2009

  9. Pseudomonas community structure and antagonistic potential in the rhizosphere : insights gained by combining phylogenetic and functional gene-based analyses

    NARCIS (Netherlands)

    Costa, Rodrigo; Gomes, Newton C. M.; Kroegerrecklenfort, Ellen; Opelt, Katja; Berg, Gabriele; Smalla, Kornelia

    The Pseudomonas community structure and antagonistic potential in the rhizospheres of strawberry and oilseed rape (host plants of the fungal phytopathogen Verticillium dahliae) were assessed. The use of a new PCR-DGGE system, designed to target Pseudomonas-specific gacA gene fragments in

  10. Effects of jasmonic acid, ethylene, and salicylic acid signaling on the rhizosphere bacterial community of Arabidopsis thaliana.

    Science.gov (United States)

    Doornbos, Rogier F; Geraats, Bart P J; Kuramae, Eiko E; Van Loon, L C; Bakker, Peter A H M

    2011-04-01

    Systemically induced resistance is a promising strategy to control plant diseases, as it affects numerous pathogens. However, since induced resistance reduces one or both growth and activity of plant pathogens, the indigenous microflora may also be affected by an enhanced defensive state of the plant. The aim of this study was to elucidate how much the bacterial rhizosphere microflora of Arabidopsis is affected by induced systemic resistance (ISR) or systemic acquired resistance (SAR). Therefore, the bacterial microflora of wild-type plants and plants affected in their defense signaling was compared. Additionally, ISR was induced by application of methyl jasmonate and SAR by treatment with salicylic acid or benzothiadiazole. As a comparative model, we also used wild type and ethylene-insensitive tobacco. Some of the Arabidopsis genotypes affected in defense signaling showed altered numbers of culturable bacteria in their rhizospheres; however, effects were dependent on soil type. Effects of plant genotype on rhizosphere bacterial community structure could not be related to plant defense because chemical activation of ISR or SAR had no significant effects on density and structure of the rhizosphere bacterial community. These findings support the notion that control of plant diseases by elicitation of systemic resistance will not significantly affect the resident soil bacterial microflora.

  11. Water-limiting conditions alter the structure and biofilm-forming ability of bacterial multispecies communities in the alfalfa rhizosphere.

    Directory of Open Access Journals (Sweden)

    Pablo Bogino

    Full Text Available Biofilms are microbial communities that adhere to biotic or abiotic surfaces and are enclosed in a protective matrix of extracellular compounds. An important advantage of the biofilm lifestyle for soil bacteria (rhizobacteria is protection against water deprivation (desiccation or osmotic effect. The rhizosphere is a crucial microhabitat for ecological, interactive, and agricultural production processes. The composition and functions of bacterial biofilms in soil microniches are poorly understood. We studied multibacterial communities established as biofilm-like structures in the rhizosphere of Medicago sativa (alfalfa exposed to 3 experimental conditions of water limitation. The whole biofilm-forming ability (WBFA for rhizospheric communities exposed to desiccation was higher than that of communities exposed to saline or nonstressful conditions. A culture-dependent ribotyping analysis indicated that communities exposed to desiccation or saline conditions were more diverse than those under the nonstressful condition. 16S rRNA gene sequencing of selected strains showed that the rhizospheric communities consisted primarily of members of the Actinobacteria and α- and γ-Proteobacteria, regardless of the water-limiting condition. Our findings contribute to improved understanding of the effects of environmental stress factors on plant-bacteria interaction processes and have potential application to agricultural management practices.

  12. Plants influence on arsenic availability and speciation in the rhizosphere, roots and shoots of three different vegetables

    International Nuclear Information System (INIS)

    Bergqvist, Claes; Herbert, Roger; Persson, Ingmar; Greger, Maria

    2014-01-01

    The toxicity of arsenic (As) in the environment is controlled by its concentration, availability and speciation. The aims of the study were to evaluate the accumulation and speciation of As in carrot, lettuce and spinach cultivated in soils with various As concentrations and to estimate the concomitant health risks associated with the consumption of the vegetables. Arsenic concentration and speciation in plant tissues and soils was analysed by HPLC, AAS and XANES spectroscopy. To estimate the plants influence in the rhizosphere, organic acids in lettuce root exudates were analysed by ion chromatography. The results showed that the As accumulation was higher in plants cultivated in soil with higher As extractability. Arsenate predominated in the soils, rhizosphere and root exudates of lettuce. Succinic acid was the major organic acid in lettuce root exudates. Ingestion of the tested vegetables may result in an intake of elevated levels of inorganic As. -- Highlights: • In soils with higher arsenic extractability, accumulation in plants was higher. • Arsenate predominated in the soils, rhizosphere and root exudates of lettuce. • Arsenite predominated in the shoots of healthy looking vegetables. -- Regardless of the initial level of extractable As in the soil, the plants almost doubled the extractable As in the rhizosphere soil

  13. Effect of Genetically Modified Pseudomonas putida WCS358r on the Fungal Rhizosphere Microflora of Field-Grown Wheat

    NARCIS (Netherlands)

    Glandorf, D.C.M.; Verheggen, Patrick; Jansen, Timo; Jorritsma, J.-W.; Smit, Eric; Leeflang, Paula; Wernars, Karel; Thomashow, L.S.; Laureijs, Eric; Thomas-Oates, J.E.; Bakker, P.A.H.M.; Loon, L.C. van

    2001-01-01

    We released genetically modified Pseudomonas putida WCS358r into the rhizospheres of wheat plants. The two genetically modified derivatives, genetically modified microorganism (GMM) 2 and GMM 8, carried the phz biosynthetic gene locus of strain P. fluorescens 2-79 and constitutively produced the

  14. The diversity and abundance of phytase genes (beta-propeller phytases) in bacterial communities of the maize rhizosphere

    NARCIS (Netherlands)

    Cotta, S.R.; Cavalcante Franco Dias, A.; Seldin, L.; Andreote, F. D.; van Elsas, J. D.

    The ecology of microbial communities associated with organic phosphorus (P) mineralization in soils is still understudied. Here, we assessed the abundance and diversity of bacteria harbouring genes encoding beta-propeller phytases (BPP) in the rhizosphere of traditional and transgenic maize

  15. Metagenomic assessment of the potential microbial nitrogen pathways in the rhizosphere of a mediterranean forest after a wildfire.

    Science.gov (United States)

    Cobo-Díaz, José F; Fernández-González, Antonio J; Villadas, Pablo J; Robles, Ana B; Toro, Nicolás; Fernández-López, Manuel

    2015-05-01

    Wildfires are frequent in the forests of the Mediterranean Basin and have greatly influenced this ecosystem. Changes to the physical and chemical properties of the soil, due to fire and post-fire conditions, result in alterations of both the bacterial communities and the nitrogen cycle. We explored the effects of a holm oak forest wildfire on the rhizospheric bacterial communities involved in the nitrogen cycle. Metagenomic data of the genes involved in the nitrogen cycle showed that both the undisturbed and burned rhizospheres had a conservative nitrogen cycle with a larger number of sequences related to the nitrogen incorporation pathways and a lower number for nitrogen output. However, the burned rhizosphere showed a statistically significant increase in the number of sequences for nitrogen incorporation (allantoin utilization and nitrogen fixation) and a significantly lower number of sequences for denitrification and dissimilatory nitrite reductase subsystems, possibly in order to compensate for nitrogen loss from the soil after burning. The genetic potential for nitrogen incorporation into the ecosystem was assessed through the diversity of the nitrogenase reductase enzyme, which is encoded by the nifH gene. We found that nifH gene diversity and richness were lower in burned than in undisturbed rhizospheric soils. The structure of the bacterial communities involved in the nitrogen cycle showed a statistically significant increase of Actinobacteria and Firmicutes phyla after the wildfire. Both approaches showed the important role of gram-positive bacteria in the ecosystem after a wildfire.

  16. Temporal dynamics of microbial communities in the rhizosphere of two genetically modified (GM) maize hybrids in tropical agrosystems

    NARCIS (Netherlands)

    Cotta, Simone Raposo; Franco Dias, Armando Cavalcante; Marriel, Ivanildo Evodio; Gomes, Eliane Aparecida; van Elsas, Jan Dirk; Seldin, Lucy

    The use of genetically modified (GM) plants still raises concerns about their environmental impact. The present study aimed to evaluate the possible effects of GM maize, in comparison to the parental line, on the structure and abundance of microbial communities in the rhizosphere. Moreover, the

  17. Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity

    NARCIS (Netherlands)

    Perneel, M.; Heyrman, J.; Adiobo, A.; Maeyer, de K.; Raaijmakers, J.M.; Vos, de P.; Höfte, M.

    2007-01-01

    Aim: To screen for novel antagonistic Pseudomonas strains producing both phenazines and biosurfactants that are as effective as Pseudomonas aeruginosa PNA1 in the biocontrol of cocoyam root rot caused by Pythium myriotylum. Material and Results: Forty pseudomonads were isolated from the rhizosphere

  18. Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression

    NARCIS (Netherlands)

    Voort, van der M.; Kempenaar, Marcel; Driel, van Marc; Raaijmakers, Jos M.; Mendes, Rodrigo

    2016-01-01

    The rhizosphere microbiome offers a range of ecosystem services to the plant, including nutrient acquisition and tolerance to (a)biotic stress. Here, analysing the data by Mendes et al. (2011), we show that short heat disturbances (50 or 80 °C, 1 h) of a soil suppressive to the root pathogenic

  19. Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression

    NARCIS (Netherlands)

    van der Voort, M.; Kempenaar, M.; van Driel, M.; Raaijmakers, J.M.; Mendes, R.

    2016-01-01

    The rhizosphere microbiome offers a range of ecosystem services to the plant, including nutrient acquisition and tolerance to (a)biotic stress. Here, analysing the data by Mendes et al. (2011), we show that short heat disturbances (50 or 80 °C, 1 h) of a soil suppressive to the root pathogenic

  20. Paenibacillus brasilensis sp nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil

    NARCIS (Netherlands)

    Weid, von der I.; Duarte, G.F.; Elsas, van J.D.; Seldin, L.

    2002-01-01

    Sixteen nitrogen-fixing strains isolated from the rhizosphere of maize planted in Cerrado soil, Brazil, which showed morphological and biochemical characteristics similar to the gas-forming Paenibacillus spp., were phenotypically and genetically characterized. Their identification as members of the

  1. Comparison of the rhizosphere bacterial communities of Zigongdongdou soybean and a high-methionine transgenic line of this cultivar.

    Directory of Open Access Journals (Sweden)

    Jingang Liang

    Full Text Available Previous studies have shown that methionine from root exudates affects the rhizosphere bacterial population involved in soil nitrogen fixation. A transgenic line of Zigongdongdou soybean cultivar (ZD91 that expresses Arabidopsis cystathionine γ-synthase resulting in an increased methionine production was examined for its influence to the rhizosphere bacterial population. Using 16S rRNA gene-based pyrosequencing analysis of the V4 region and DNA extracted from bacterial consortia collected from the rhizosphere of soybean plants grown in an agricultural field at the pod-setting stage, we characterized the populational structure of the bacterial community involved. In total, 87,267 sequences (approximately 10,908 per sample were analyzed. We found that Acidobacteria, Proteobacteria, Bacteroidetes, Actinobacteria, Chloroflexi, Planctomycetes, Gemmatimonadetes, Firmicutes, and Verrucomicrobia constitute the dominant taxonomic groups in either the ZD91 transgenic line or parental cultivar ZD, and that there was no statistically significant difference in the rhizosphere bacterial community structure between the two cultivars.

  2. The rhizosphere and PAH amendment mediate impacts on functional and structural bacterial diversity in sandy peat soil

    International Nuclear Information System (INIS)

    Yrjaelae, Kim; Keskinen, Anna-Kaisa; Akerman, Marja-Leena; Fortelius, Carola; Sipilae, Timo P.

    2010-01-01

    To reveal the degradation capacity of bacteria in PAH polluted soil and rhizosphere we combined bacterial extradiol ring-cleavage dioxygenase and 16S rRNA analysis in Betula pubescens rhizoremediation. Characterisation of the functional bacterial community by RFLP revealed novel environmental dioxygenases, and their putative hosts were studied by 16S rRNA amplification. Plant rhizosphere and PAH amendment effects were detected by the RFLP/T-RFLP analysis. Functional species richness increased in the birch rhizosphere and PAH amendment impacted the compositional diversity of the dioxygenases and the structural 16S rRNA community. A shift from an Acidobacteria and Verrucomicrobia dominated to an Alpha- and Betaproteobacteria dominated community structure was detected in polluted soil. Clone sequence analysis indicated catabolic significance of Burkholderia in PAH polluted soil. These results advance our understanding of rhizoremediation and unveil the extent of uncharacterized functional bacteria to benefit bioremediation by facilitating the development of the molecular tool box to monitor bacterial populations in biodegradation. - The bacterial community analysis using 16S rRNA and extradiol dioxygenase marker genes in rhizoremediation revealed both a rhizosphere and a PAH-pollution effect.

  3. Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots.

    Science.gov (United States)

    Bressan, Mélanie; Roncato, Marie-Anne; Bellvert, Floriant; Comte, Gilles; Haichar, Feth Zahar; Achouak, Wafa; Berge, Odile

    2009-11-01

    A specificity of Brassicaceous plants is the production of sulphur secondary metabolites called glucosinolates that can be hydrolysed into glucose and biocidal products. Among them, isothiocyanates are toxic to a wide range of microorganisms and particularly soil-borne pathogens. The aim of this study was to investigate the role of glucosinolates and their breakdown products as a factor of selection on rhizosphere microbial community associated with living Brassicaceae. We used a DNA-stable isotope probing approach to focus on the active microbial populations involved in root exudates degradation in rhizosphere. A transgenic Arabidopsis thaliana line producing an exogenous glucosinolate and the associated wild-type plant associated were grown under an enriched (13)CO(2) atmosphere in natural soil. DNA from the rhizospheric soil was separated by density gradient centrifugation. Bacterial (Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Acidobacteria), Archaea and fungal community structures were analysed by DGGE fingerprints of amplified 16S and 18S rRNA gene sequences. Specific populations were characterized by sequencing DGGE fragments. Roots of the transgenic plant line presented an altered profile of glucosinolates and other minor additional modifications. These modifications significantly influenced microbial community on roots and active populations in the rhizosphere. Alphaproteobacteria, particularly Rhizobiaceae, and fungal communities were mainly impacted by these Brassicaceous metabolites, in both structure and composition. Our results showed that even a minor modification in plant root could have important repercussions for soil microbial communities.

  4. Bacterial Structure and Characterization of Plant Growth Promoting and Oil Degrading Bacteria from the Rhizospheres of Mangrove Plants

    NARCIS (Netherlands)

    do Carmo, Flavia Lima; dos Santos, Henrique Fragoso; Martins, Edir Ferreira; van Elsas, Jan Dirk; Rosado, Alexandre Soares; Peixoto, Raquel Silva

    Most oil from oceanic spills converges on coastal ecosystems, such as mangrove forests, which are threatened with worldwide disappearance. Particular bacteria that inhabit the rhizosphere of local plant species can stimulate plant development through various mechanisms; it would be advantageous if

  5. Fractal Feature of Particle-Size Distribution in the Rhizospheres and Bulk Soils during Natural Recovery on the Loess Plateau, China

    Science.gov (United States)

    Song, Zilin; Zhang, Chao; Liu, Guobin; Qu, Dong; Xue, Sha

    2015-01-01

    The application of fractal geometry to describe soil structure is an increasingly useful tool for better understanding the performance of soil systems. Only a few studies, however, have focused on the structure of rhizospheric zones, where energy flow and nutrient recycling most frequently occur. We used fractal dimensions to investigate the characteristics of particle-size distribution (PSD) in the rhizospheres and bulk soils of six croplands abandoned for 1, 5, 10, 15, 20, and 30 years on the Loess Plateau of China and evaluated the changes over successional time. The PSDs of the rhizospheres and the fractal dimensions between rhizosphere soil and bulk soils during the natural succession differed significantly due to the influence of plant roots. The rhizospheres had higher sand (0.05–1.00 mm) contents, lower silt (soils during the early and intermediate successional stages (1–15 years). The fractal dimensions of the rhizosphere soil and bulk soil ranged from 2.102 to 2.441 and from 2.214 to 2.459, respectively, during the 30-year restoration. Rhizospheric clay and silt contents and fractal dimension tended to be higher and sand content tended to be lower as abandonment age increased, but the bulk soils had the opposite trend. Linear regression analysis indicated that the fractal dimensions of both the rhizospheres and bulk soils were significantly linearly correlated with clay, sand, organic-carbon, and total-nitrogen contents, with R 2 ranging from 0.526 to 0.752 (Psoil and bulk soil. The fractal dimension was a sensitive and useful index for quantifying changes in the properties of the different soil zones. This study will greatly aid the application of the fractal method for describing soil structure and nutrient status and the understanding of the performance of rhizospheric zones during ecological restoration. PMID:26368339

  6. Do the Big-Five Personality Traits Predict Empathic Listening and Assertive Communication?

    Science.gov (United States)

    Sims, Ceri M.

    2017-01-01

    As personality traits can influence important social outcomes, the current research investigated whether the Big-Five had predictive influences on communication competences of active-empathic listening (AEL) and assertiveness. A sample of 245 adults of various ages completed the self-report scales. Both Agreeableness and Openness uniquely…

  7. Quantitative trait loci for fertility traits in Finnish Ayrshire cattle

    Directory of Open Access Journals (Sweden)

    Viitala Sirja M

    2008-03-01

    Full Text Available Abstract A whole genome scan was carried out to detect quantitative trait loci (QTL for fertility traits in Finnish Ayrshire cattle. The mapping population consisted of 12 bulls and 493 sons. Estimated breeding values for days open, fertility treatments, maternal calf mortality and paternal non-return rate were used as phenotypic data. In a granddaughter design, 171 markers were typed on all 29 bovine autosomes. Associations between markers and traits were analysed by multiple marker regression. Multi-trait analyses were carried out with a variance component based approach for the chromosomes and trait combinations, which were observed significant in the regression method. Twenty-two chromosome-wise significant QTL were detected. Several of the detected QTL areas were overlapping with milk production QTL previously identified in the same population. Multi-trait QTL analyses were carried out to test if these effects were due to a pleiotropic QTL affecting fertility and milk yield traits or to linked QTL causing the effects. This distinction could only be made with confidence on BTA1 where a QTL affecting milk yield is linked to a pleiotropic QTL affecting days open and fertility treatments.

  8. Effects of Intercropping with Potato Onion on the Growth of Tomato and Rhizosphere Alkaline Phosphatase Genes Diversity.

    Science.gov (United States)

    Wu, Xia; Wu, Fengzhi; Zhou, Xingang; Fu, Xuepeng; Tao, Yue; Xu, Weihui; Pan, Kai; Liu, Shouwei

    2016-01-01

    In China, excessive fertilization has resulted in phosphorus (P) accumulation in most greenhouse soils. Intercropping can improve the efficiency of nutrient utilization in crop production. In this study, pot experiments were performed to investigate the effects of intercropping with potato onion (Allium cepa L. var. aggregatum G. Don) on tomato (Solanum lycopersicum L.) seedlings growth and P uptake, the diversity of rhizosphere phosphobacteria and alkaline phosphatase (ALP) genes in phosphorus-rich soil. The experiment included three treatments, namely tomato monoculture (TM), potato onion monoculture (OM), and tomato/potato onion intercropping (TI-tomato intercropping and OI-potato onion intercropping). The growth and P uptake of tomato and potato onion seedlings were evaluated. The dilution plating method was used to determine the population of phosphate-solubilizing bacteria (PSB) and phosphate-mineralizing bacteria (PMB). The genomic DNAs of PSB and PMB in the rhizosphere of tomato and potato onions were extracted and purified, and then, with the primer set of 338f /518r, the PCR amplification of partial bacterial 16S rDNA sequence was performed and sequenced to determine the diversities of PSB and PMB. After extracting the total genomic DNAs from the rhizosphere, the copy numbers and diversities of ALP genes were investigated using real-time PCR and PCR-DGGE, respectively. Intercropping with potato onion promoted the growth and P uptake of tomato seedlings, but inhibited those of potato onion. After 37 days of transplanting, compared to the rhizosphere of TM, the soil pH increased, while the electrolytic conductivity and Olsen P content decreased (p onion promoted the growth and P uptake of tomato in phosphorus-rich soil and affected the community structure and function of phosphobacteria in tomato rhizosphere. Intercropping with potato onion also improved soil quality by lowering levels of soil acidification and salinization.

  9. Entrepreneurial Competencies: SMEs Performance Factor in the Challenging Nigerian Economy

    Directory of Open Access Journals (Sweden)

    Uzairu Muhammad Gwadabe

    2017-12-01

    Full Text Available Myriad of challenges engulfed the Nigerian business milieu. Business activities become more complex and competitive which renders the environment not only difficult for business success but resulting to the increasing failure of SMEs in the country. However, entrepreneurs need to develop strategies to survive in the dwindling economy. It is the duty of the entrepreneurs to interact with the external environmental dynamisms, which require them to be competent in many dimensions. This review proposes a set of competencies that can equip the entrepreneurs with necessary skills and tactics to excel in a challenging economy like that of Nigeria. The paper highlights the conceptualization and synergy between competencies and entrepreneurship on SMEs performance through three distinct paths: entrepreneurial traits, innovation and entrepreneurial marketing.

  10. Intercultural Conflicts: Causes and the Role of Competences

    Directory of Open Access Journals (Sweden)

    Valdas Pruskus

    2013-10-01

    Full Text Available The article discusses the origins of intercultural conflicts and their causes. It discloses the working mechanism of intercultural conflicts. The author demonstrates that in real life conflicts are caused by the socializing individuals themselves, who are different by their character traits as well as the cultural and intellectual level. Additionally, possibilities of conflict solution are discussed and the conception of competence is presented as explained in works of foreign and Lithuanian authors. The article also reveals the relationship between the constituent elements of the intercultural competence. It shows that proper attention to the acquisition of intercultural competences (linguistic, cultural and communication can be an effective assumption for depreciation of cross-cultural conflicts and thus promote communication and collaboration between the full range of cultures.

  11. Quantitative Trait Loci in Inbred Lines

    NARCIS (Netherlands)

    Jansen, R.C.

    2001-01-01

    Quantitative traits result from the influence of multiple genes (quantitative trait loci) and environmental factors. Detecting and mapping the individual genes underlying such 'complex' traits is a difficult task. Fortunately, populations obtained from crosses between inbred lines are relatively

  12. Eating before competing.

    Science.gov (United States)

    Clark, N

    1998-09-01

    Many casual exercisers and competitive athletes believe they should avoid food for several hours before they exercise or compete. Others wonder if they should snack, perhaps on an energy bar before a soccer game. And a few are so nervous that even the thought of food is nauseating.

  13. Competence and the Workplace

    NARCIS (Netherlands)

    Van Yperen, Nico W.; Elliot, Andrew J.; Dweck, Carol S.; Yeager, David S.

    2017-01-01

    The focus of this chapter on competence at the workplace is on workers’ willingness to perform, which is defined as individuals’ psychological characteristics that affect the degree to which they are inclined to perform their tasks. People may be motivated by either the positive, appetitive

  14. Developing professional competence

    DEFF Research Database (Denmark)

    Wahlgren, Bjarne

    2015-01-01

    The purpose of university programs for professionals is to qualify the students to act competently in a subsequent job situation. Practical experiences as well as comprehensive research studies have shown that only a limited part of what is learned during the coursework is applied in the subsequent...

  15. Classical competing risks

    CERN Document Server

    Crowder, Martin J

    2001-01-01

    If something can fail, it can often fail in one of several ways and sometimes in more than one way at a time. There is always some cause of failure, and almost always, more than one possible cause. In one sense, then, survival analysis is a lost cause. The methods of Competing Risks have often been neglected in the survival analysis literature. Written by a leading statistician, Classical Competing Risks thoroughly examines the probability framework and statistical analysis of data of Competing Risks. The author explores both the theory of the subject and the practicalities of fitting the models to data. In a coherent, self-contained, and sequential account, the treatment moves from the bare bones of the Competing Risks setup and the associated likelihood functions through survival analysis using hazard functions. It examines discrete failure times and the difficulties of identifiability, and concludes with an introduction to the counting-process approach and the associated martingale theory.With a dearth of ...

  16. Assessing cataract surgical competency

    NARCIS (Netherlands)

    Lee, Andrew G.; Greenlee, Emily; Oetting, Thomas A.; Beaver, Hilary A.; Johnson, A. Tim; Boldt, H. Culver; Abramoff, Michael; Olson, Richard; Carter, Keith

    2007-01-01

    The Accreditation Council for Graduate Medical Education has mandated that all residency training programs teach and assess 6 general competencies.1 A.G. Lee and K.D. Carter, Managing the new mandate in resident education: A blueprint for translating a national mandate into local compliance,

  17. Assessing Culturally Competent Scholarship.

    Science.gov (United States)

    Mendias, Elnora P.; Guevara, Edilma B.

    2001-01-01

    Eight criteria for culturally competent scholarship (contextuality, relevance, communication styles, awareness of identity and power differences, disclosure, reciprocation, empowerment, time) were applied to an international education/research nursing program. Appropriate measures for each were developed and ways to improve the program were…

  18. Evolution of subsidiary competences

    DEFF Research Database (Denmark)

    Geisler Asmussen, Christian; Pedersen, Torben; Dhanaraj, Charles

    of competitive advantage of nations, we hypothesize the contingencies under which heterogeneity in host environments influences subsidiary competence configuration. We test our model with data from more than 2,000 subsidiaries in seven Western European countries. Our results provide new insights on the evolution...

  19. Promoting Intercultural Competencies

    Energy Technology Data Exchange (ETDEWEB)

    Bachner, Katherine M., E-mail: kbachner@bnl.gov [Brookhaven National Laboratory (United States)

    2014-07-01

    What is culture? • Culture is the acquired knowledge people use to interpret experience and generate behavior. • It is the way of life a people pass down from one generation to the next through learning. • It is the rules for living and functioning in society that come from growing up in a specific society, and it is a set of acquired skills, habits and society-specific training that gives a group of people its identity. What is intercultural competency? • Cultures can have widely varying perspectives. • These perspectives influence the way that a person develops relationships, responds to situations, and operates in a professional setting. • Intercultural competency is the ability to comprehend and navigate the ways that culture can influence behavior, relationships, and the results of collaboration and interaction. What does becoming interculturally competent entail? • Intercultural preparedness is not merely travelling, learning a foreign language, or being exposed to other cultures. • Developing competency requires thinking about the challenges posed to our work by a multi-cultural workforce in a way that prepares employees and staff for potential incidents or misunderstandings. • It is impossible to avoid all intercultural misunderstandings, but learning to anticipate them and deal with them is key to developing any training program on culture.

  20. Promoting Intercultural Competencies

    International Nuclear Information System (INIS)

    Bachner, Katherine M.

    2014-01-01

    What is culture? • Culture is the acquired knowledge people use to interpret experience and generate behavior. • It is the way of life a people pass down from one generation to the next through learning. • It is the rules for living and functioning in society that come from growing up in a specific society, and it is a set of acquired skills, habits and society-specific training that gives a group of people its identity. What is intercultural competency? • Cultures can have widely varying perspectives. • These perspectives influence the way that a person develops relationships, responds to situations, and operates in a professional setting. • Intercultural competency is the ability to comprehend and navigate the ways that culture can influence behavior, relationships, and the results of collaboration and interaction. What does becoming interculturally competent entail? • Intercultural preparedness is not merely travelling, learning a foreign language, or being exposed to other cultures. • Developing competency requires thinking about the challenges posed to our work by a multi-cultural workforce in a way that prepares employees and staff for potential incidents or misunderstandings. • It is impossible to avoid all intercultural misunderstandings, but learning to anticipate them and deal with them is key to developing any training program on culture

  1. Competence preservation through education

    International Nuclear Information System (INIS)

    Ham, U.; Koessler, M.

    2013-01-01

    For fulfilling their tasks GNS depends on personnel with specific knowledge and competence. GNS answers to these challenges by various measures for education and training in order to have skilled personnel available nowadays and in the future. By these measures and the internal organisation regarding responsibilities in radiation protection requirements resulting from the expected Euratom Basic Safety Standards (BSS) are met. (orig.)

  2. Intercultural competence @ SMEs

    NARCIS (Netherlands)

    van der Poel, Marcel H.

    2015-01-01

    The experiences with intercultural competence training at the Hanze International Business School Groningen may serve as a blueprint for augmenting professional intercultural behaviour at the SME work floor. The set-up of the training is based on current intercultural communication theory and

  3. Nursing Informatics Competency Program

    Science.gov (United States)

    Dunn, Kristina

    2017-01-01

    Currently, C Hospital lacks a standardized nursing informatics competency program to validate nurses' skills and knowledge in using electronic medical records (EMRs). At the study locale, the organization is about to embark on the implementation of a new, more comprehensive EMR system. All departments will be required to use the new EMR, unlike…

  4. Assessment Mathematics Teacher's Competencies

    Science.gov (United States)

    Alnoor, A. G.; Yuanxiang, Guo; Abudhuim, F. S.

    2007-01-01

    This paper aimed to identifying the professional efficiencies for the intermediate schools mathematics teachers and tries to know at what level the math teachers experience those competencies. The researcher used a descriptive research approach, the study data collected from specialist educators and teacher's experts and previous studies to…

  5. Adult educators' core competences

    Science.gov (United States)

    Wahlgren, Bjarne

    2016-06-01

    Which competences do professional adult educators need? This research note discusses the topic from a comparative perspective, finding that adult educators' required competences are wide-ranging, heterogeneous and complex. They are subject to context in terms of national and cultural environment as well as the kind of adult education concerned (e.g. basic education, work-related education etc.). However, it seems that it is possible to identify certain competence requirements which transcend national, cultural and functional boundaries. This research note summarises these common or "core" requirements, organising them into four thematic subcategories: (1) communicating subject knowledge; (2) taking students' prior learning into account; (3) supporting a learning environment; and (4) the adult educator's reflection on his or her own performance. At the end of his analysis of different competence profiles, the author notes that adult educators' ability to train adult learners in a way which then enables them to apply and use what they have learned in practice (thus performing knowledge transfer) still seems to be overlooked.

  6. Skills and Competencies

    Directory of Open Access Journals (Sweden)

    Nasios Orinos

    2013-07-01

    Full Text Available This article presents the results of a study aimed to investigate the requirements of the business sector in light of the skills and competencies students should have in order to be recruited. In this fashion, the study intended to measure the importance of the skills and competencies sought by the business world, revealing ways through which students can develop such skills. This project portrayed that, some of the required classes will certainly give students a strong theoretical background but they will neither completely prepare this student with all possible skills or competencies nor provide the student with any practical experience that will enable him/her to be more competitive when entering the business market. In some classes, however, like Public Speaking, which is designed to teach presentation skills, successful students are able to build good communication and interpersonal skills. Additionally, an English writing class will certainly attempt to provide them with strong writing skills, and a business class will possibly demand reading skills. Moreover, a calculus and a statistics class will provide basic arithmetic/mathematical skills. However, through this project it is proven that all of these classes will neglect the indoctrination of creative thinking in students, or make students believe in their own self-worth (self-esteem skills; the courses will also fail to develop the sense of urgency, drive and determination that students should possess not just to compete but also to survive in a business world.

  7. [Children and motor competence].

    Science.gov (United States)

    Sigmundsson, H; Haga, M

    2000-10-20

    Recently, the topic of motor competence has figured prominently in the media. The claims made are many, but the research that support the statements is seldom cited. The aim of this review article is to address that deficiency by documenting what is really known about the motor competence of children. Motor competence not only allows children to carry out everyday practical tasks, but it is also an important determinant of their level of self-esteem and of their popularity and status in their peer group. While many studies have shown a significant correlation between motor problems and other problems in the social sphere, it has been difficult to establish causal relationships with any degree of confidence, as there appear to be several interactions which need to be taken into account. Research has shown that 6-10% of Norwegian children in the 7 to 10 year age group have a motor competence well below the norm. It is unusual for motor problems to simply disappear over time. In the absence of intervention the syndrome is likely to continue to manifest itself. More recent research points to some of the circularity in this causal network, children with motor problems having been shown to be less physically active than their peers. In a larger health perspective this in itself can have very serious consequences for the child.

  8. Competing Auctions of Skills

    DEFF Research Database (Denmark)

    Kennes, John; le Maire, Christian Daniel

    The model of competing sellers McAfee (1993) is applied to a labor market environment with heterogeneous workers, who differ by outside option and skill type, and heterogeneous firms, who differ by the amount of output produced when matched to each possible worker tyoe. We derive both a static...

  9. Competencies in the Heartland

    Science.gov (United States)

    Cejda, Brent

    2012-01-01

    Although many of the issues facing community colleges are similar, rural community colleges face additional leadership challenges due to limited resources, geographic isolation, and static economies. This chapter focuses on the impact of location on the interpretation and development of the leadership competencies. The chapter concludes with…

  10. Teacher Educator Technology Competencies

    Science.gov (United States)

    Foulger, Teresa S.; Graziano, Kevin J.; Schmidt-Crawford, Denise A.; Slykhuis, David A.

    2017-01-01

    The U.S. National Educational Technology Plan recommends the need to have a common set of technology competencies specifically for teacher educators who prepare teacher candidates to teach with technology (U.S. Department of Education, Office of Educational Technology, 2017). This study facilitated the co-creation of the Teacher Educator…

  11. Competencies, skills and assessment

    DEFF Research Database (Denmark)

    Højgaard, Tomas

    2009-01-01

    This paper is an analysis of the challenge of assessing student learning and how that is affected by using descriptions of competencies as a core element when describing the aims of the learning process. Assessment is modelled as a three step process; characterising, identifying and judging, to a...

  12. Childhood personality as a harbinger of competence and resilience in adulthood.

    Science.gov (United States)

    Shiner, Rebecca L; Masten, Ann S

    2012-05-01

    This study examined the significance of childhood Big Five personality traits for competence and resilience in early adulthood. Resilience was defined in terms of adaptive success in age-salient developmental tasks despite significant adversity throughout childhood/adolescence. The Project Competence Longitudinal Study tracked 205 young people from childhood (around age 10) to emerging adulthood (EA, age 20) and young adulthood (YA, age 30; 90% retention). Multimethod composites were created for personality traits, adversity exposure, and adult outcomes of academic achievement, work, rule-abiding conduct, friendship, and romantic relationships. Regressions showed significant main effects of childhood personality predicting adult outcomes, controlling for adversity, with few interaction effects. In person-focused analyses, the resilient group in EA and YA (high competence, high adversity) showed higher childhood conscientiousness, agreeableness, and openness and lower neuroticism than the maladaptive group (low competence, high adversity). The competent (high competence, low adversity) and resilient groups showed similar childhood traits. Turnaround cases, who changed from the maladaptive group in EA to the resilient group in YA, exhibited higher childhood conscientiousness than persistently maladaptive peers. Findings suggest that children on pathways to success in adulthood, whether facing low or high adversity, have capacities for emotion regulation, empathy and connection, dedication to schoolwork, and mastery and exploration.

  13. Cultural effects on the association between election outcomes and face-based trait inferences.

    Directory of Open Access Journals (Sweden)

    Chujun Lin

    Full Text Available How competent a politician looks, as assessed in the laboratory, is correlated with whether the politician wins in real elections. This finding has led many to investigate whether the association between candidate appearances and election outcomes transcends cultures. However, these studies have largely focused on European countries and Caucasian candidates. To the best of our knowledge, there are only four cross-cultural studies that have directly investigated how face-based trait inferences correlate with election outcomes across Caucasian and Asian cultures. These prior studies have provided some initial evidence regarding cultural differences, but methodological problems and inconsistent findings have complicated our understanding of how culture mediates the effects of candidate appearances on election outcomes. Additionally, these four past studies have focused on positive traits, with a relative neglect of negative traits, resulting in an incomplete picture of how culture may impact a broader range of trait inferences. To study Caucasian-Asian cultural effects with a more balanced experimental design, and to explore a more complete profile of traits, here we compared how Caucasian and Korean participants' inferences of positive and negative traits correlated with U.S. and Korean election outcomes. Contrary to previous reports, we found that inferences of competence (made by participants from both cultures correlated with both U.S. and Korean election outcomes. Inferences of open-mindedness and threat, two traits neglected in previous cross-cultural studies, were correlated with Korean but not U.S. election outcomes. This differential effect was found in trait judgments made by both Caucasian and Korean participants. Interestingly, the faster the participants made face-based trait inferences, the more strongly those inferences were correlated with real election outcomes. These findings provide new insights into cultural effects and the

  14. Cultural effects on the association between election outcomes and face-based trait inferences.

    Science.gov (United States)

    Lin, Chujun; Adolphs, Ralph; Alvarez, R Michael

    2017-01-01

    How competent a politician looks, as assessed in the laboratory, is correlated with whether the politician wins in real elections. This finding has led many to investigate whether the association between candidate appearances and election outcomes transcends cultures. However, these studies have largely focused on European countries and Caucasian candidates. To the best of our knowledge, there are only four cross-cultural studies that have directly investigated how face-based trait inferences correlate with election outcomes across Caucasian and Asian cultures. These prior studies have provided some initial evidence regarding cultural differences, but methodological problems and inconsistent findings have complicated our understanding of how culture mediates the effects of candidate appearances on election outcomes. Additionally, these four past studies have focused on positive traits, with a relative neglect of negative traits, resulting in an incomplete picture of how culture may impact a broader range of trait inferences. To study Caucasian-Asian cultural effects with a more balanced experimental design, and to explore a more complete profile of traits, here we compared how Caucasian and Korean participants' inferences of positive and negative traits correlated with U.S. and Korean election outcomes. Contrary to previous reports, we found that inferences of competence (made by participants from both cultures) correlated with both U.S. and Korean election outcomes. Inferences of open-mindedness and threat, two traits neglected in previous cross-cultural studies, were correlated with Korean but not U.S. election outcomes. This differential effect was found in trait judgments made by both Caucasian and Korean participants. Interestingly, the faster the participants made face-based trait inferences, the more strongly those inferences were correlated with real election outcomes. These findings provide new insights into cultural effects and the difficult question of

  15. Cultural effects on the association between election outcomes and face-based trait inferences

    Science.gov (United States)

    Adolphs, Ralph; Alvarez, R. Michael

    2017-01-01

    How competent a politician looks, as assessed in the laboratory, is correlated with whether the politician wins in real elections. This finding has led many to investigate whether the association between candidate appearances and election outcomes transcends cultures. However, these studies have largely focused on European countries and Caucasian candidates. To the best of our knowledge, there are only four cross-cultural studies that have directly investigated how face-based trait inferences correlate with election outcomes across Caucasian and Asian cultures. These prior studies have provided some initial evidence regarding cultural differences, but methodological problems and inconsistent findings have complicated our understanding of how culture mediates the effects of candidate appearances on election outcomes. Additionally, these four past studies have focused on positive traits, with a relative neglect of negative traits, resulting in an incomplete picture of how culture may impact a broader range of trait inferences. To study Caucasian-Asian cultural effects with a more balanced experimental design, and to explore a more complete profile of traits, here we compared how Caucasian and Korean participants’ inferences of positive and negative traits correlated with U.S. and Korean election outcomes. Contrary to previous reports, we found that inferences of competence (made by participants from both cultures) correlated with both U.S. and Korean election outcomes. Inferences of open-mindedness and threat, two traits neglected in previous cross-cultural studies, were correlated with Korean but not U.S. election outcomes. This differential effect was found in trait judgments made by both Caucasian and Korean participants. Interestingly, the faster the participants made face-based trait inferences, the more strongly those inferences were correlated with real election outcomes. These findings provide new insights into cultural effects and the difficult question of

  16. Quantitative Trait Loci for Fertility Traits in Finnish Ayrshire Cattle

    DEFF Research Database (Denmark)

    Schulman, Nina F; Sahana, Goutam; Lund, Mogens S

    2008-01-01

    A whole genome scan was carried out to detect quantitative trait loci (QTL) for fertility traits in Finnish Ayrshire cattle. The mapping population consisted of 12 bulls and 493 sons. Estimated breeding values for days open, fertility treatments, maternal calf mortality and paternal non-return rate...... combinations, which were observed significant in the regression method. Twenty-two chromosome-wise significant QTL were detected. Several of the detected QTL areas were overlapping with milk production QTL previously identified in the same population. Multi-trait QTL analyses were carried out to test...... if these effects were due to a pleiotropic QTL affecting fertility and milk yield traits or to linked QTL causing the effects. This distinction could only be made with confidence on BTA1 where a QTL affecting milk yield is linked to a pleiotropic QTL affecting days open and fertility treatments...

  17. Quantitative trait loci mapping for stomatal traits in interspecific ...

    Indian Academy of Sciences (India)

    M. Sumathi

    2018-02-23

    Feb 23, 2018 ... Journal of Genetics, Vol. ... QTL analysis was carried out to identify the chromosomal regions affecting ... Keywords. linkage map; quantitative trait loci; stomata; stress ..... of India for providing financial support for the project.

  18. Coping skills: role of trait sport confidence and trait anxiety.

    Science.gov (United States)

    Cresswell, Scott; Hodge, Ken

    2004-04-01

    The current research assesses relationships among coping skills, trait sport confidence, and trait anxiety. Two samples (n=47 and n=77) of international competitors from surf life saving (M=23.7 yr.) and touch rugby (M=26.2 yr.) completed the Athletic Coping Skills Inventory, Trait Sport Confidence Inventory, and Sport Anxiety Scale. Analysis yielded significant correlations amongst trait anxiety, sport confidence, and coping. Specifically confidence scores were positively associated with coping with adversity scores and anxiety scores were negatively associated. These findings support the inclusion of the personality characteristics of confidence and anxiety within the coping model presented by Hardy, Jones, and Gould, Researchers should be aware that confidence and anxiety may influence the coping processes of athletes.

  19. The Interrelations between Competences for Sustainable Development and Research Competences

    Science.gov (United States)

    Lambrechts, Wim; Van Petegem, Peter

    2016-01-01

    Purpose: The purpose of this paper is to explore how competences for sustainable development and research interrelate within a context of competence-based higher education. Specific focus is oriented towards strengthening research competences for sustainability. Design/methodology/approach: Following a hermeneutic-interpretive methodology, this…

  20. Competency Analytics Tool: Analyzing Curriculum Using Course Competencies

    Science.gov (United States)

    Gottipati, Swapna; Shankararaman, Venky

    2018-01-01

    The applications of learning outcomes and competency frameworks have brought better clarity to engineering programs in many universities. Several frameworks have been proposed to integrate outcomes and competencies into course design, delivery and assessment. However, in many cases, competencies are course-specific and their overall impact on the…