WorldWideScience

Sample records for rhic heavy ion

  1. RHIC heavy ion operations performance

    CERN Document Server

    Satogata, T; Ferrone, R; Pilat, F

    2006-01-01

    The Relativistic Heavy Ion Collider (RHIC) completed its fifth year of operation in 2005, colliding copper ion beams with ps=200 GeV/u and 62.4 GeV/u[1]. Previous heavy ion runs have collided gold ions at ps=130 GeV/u, 200 GeV/u, and 62.4 GeV/u[2], and deuterons and gold ions at ps=200 GeV/u[3]. This paper discusses operational performance statistics of this facility, including Cu- Cu delivered luminosity, availability, calendar time spent in physics stores, and time between physics stores. We summarize the major factors affecting operations efficiency, and characterize machine activities between physics stores.

  2. QCD and Heavy Ions RHIC Overview

    CERN Document Server

    Granier de Cassagnac, Raphael

    2010-01-01

    Nowadays, the most violent heavy ion collisions available to experimental study occur at the Relativistic Heavy Ion Collider (RHIC) of the Brookhaven National Laboratory. There, gold ions collide at psNN = 200 GeV. The early and most striking RHIC results were summarised in 2005 by its four experiments, BRAHMS, PHENIX, PHOBOS and STAR, in their so-called white papers [1, 2, 3, 4] that will be largely referenced thereafter. Beyond and after this, a wealth of data has been collected and analysed, providing additional information about the properties of the matter created at RHIC. It is categorically impossible to give a comprehensive review of these results in a 20 minutes talk or a 7 pages report. Here, I have made a selection of some of the most striking or intriguing signatures: jet quenching in Section 2, quarkonia suppressions in Section 3 and thermal photons in Section 4. A slightly longer and older version of this review can be found in [5]. Some updates are given here, as well as emphasis on new probes ...

  3. Theoretical perspective on RHIC [relativistic heavy ion collider] physics

    International Nuclear Information System (INIS)

    Dover, C.B.

    1990-10-01

    We discuss the status of the relativistic heavy ion collider (RHIC) project at Brookhaven, and assess some key experiments which propose to detect the signatures of a transient quark-gluon plasma (QGP) phase in such collisions. 24 refs

  4. Heavy ion program at BNL: AGS, RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Barton, D.S.

    1987-01-01

    With the recent commissioning of fixed target, heavy ion physics at the AGS, Brookhaven National Laboratory (BNL) has embarked on a long range program in support of relativistic heavy ion research. Acceleration of low mass heavy ions (up to sulfur) to an energy of about 14.5 GeV/nucleon is possible with the direct connection of the BNL Tandem Van de Graaff and AGS accelerators. When completed, the new booster accelerator will provide heavy ions over the full mass range for injection and subsequent acceleration in the AGS. BNL is now engaged in an active R and D program directed toward the proposed Relativistic Heavy Ion Collider (RHIC). The results of the first operation of the low mass heavy ion program will be reviewed, and future expectations discussed. The expected performance for the heavy ion operation of the booster will be described and finally, the current status and outlook for the RHIC facility will be presented

  5. Status of the quadrupoles for RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Thompson, P.A.; Cottingham, J.G.; Garber, M.

    1989-01-01

    The proposed Relativistic Heavy Ion Collider (RHIC) will require 408 regular arc quadrupoles. Two full size prototypes have been constructed and tested. The construction uses the single layer, collarless concept which has been successful in the RHIC dipoles. Both the magnets attained short sample current, which is 60% higher than the operating current. This corresponds to a gradient of 113 T/m with clear bore of 80 mm. The preliminary field measurements are in agreement with the calculations, with the exception of an unexpectedly large show sextupole. 2 refs., 5 figs., 1 tab

  6. Conceptual design of the Relativistic Heavy Ion Collider [RHIC

    International Nuclear Information System (INIS)

    1989-05-01

    In August 1984 Brookhaven National Laboratory submitted a proposal for the construction of a Relativistic Heavy Ion Collider (RHIC) to the US Department of Energy. A Conceptual Design Report for the RHIC facility was completed in May 1986 after detailed reviews of the machine design, and of the requirements of the physics research program. Since that time an extensive R ampersand D program has been initiated and considerable work has been carried out to refine the design and specification of the major accelerator components, as well as the needs for research detectors, and to prepare the project for construction. This document is an update of the Conceptual Design Report, incorporating the results of work carried out since the beginning of Fiscal Year 1987 when a formal R ampersand D program for the RHIC project funded by DOE was initiated

  7. Heavy ion physics at BNL, the AGS and RHIC

    International Nuclear Information System (INIS)

    Lowenstein, D.I.

    1985-01-01

    The advent of heavy ion acceleration with the AGS at Brookhaven National Laboratory in 1986 and the proposed Relativistic Heavy Ion Collider (RHIC) for 1990 brings us into a temperature and density regime well above anything yet produced and into a time domain of the early universe of 10 -13 -10 -6 seconds. The physics of high energy heavy ions range from the more traditional nuclear physics to the formation of new forms of matter. Quantum Chromodynamics (QCD) is the latest, and as of yet, the most successful theory to describe the interaction of quarks and gluons. The nature of the confinement of the quarks and gluons under extremes of temperature and density is one of the compelling reasons for this new physics program at BNL. There are reasons to believe that with collisions of heavy nuclei at energies in the 10 to 100 GeV/amu range a very large volume of approx. 10 fm 3 would be heated to 200-300 MeV and/or acquire a sufficient quark density (5-10 times normal baryon density) so that the entire contents of the volume would be deconfined and the quarks and gluons would form a plasma. The kinematic region for the extant machines and the proposed RHIC are shown. At AGS energies the baryons in colliding nuclei bring each other to rest, yielding fragmentation regions of high baryon density. These are the regions in which supernorvae and neutrons stars exist. For energies much higher, such as in RHIC, nuclei are transparent to each other and one can form a central region of almost zero baryon density, mostly pions, and very high temperature. This is the region of the early universe and the quark-gluon plasma. Design parameters and cost of the RHIC are discussed

  8. Physics at Relativistic Heavy Ion Collider (RHIC)

    International Nuclear Information System (INIS)

    Shuryak, E.V.

    1990-08-01

    This introductory talk contains a brief discussion of future experiments at RHIC related to physics of superdense matter. In particular, we consider the relation between space-time picture of the collision and spectra of the observed secondaries. We discuss where one should look for QGP signals and for possible manifestation of the phase transition. We pay more attention to a rather new topic: hadron modification in the gas phase, which is interesting by itself as a collective phenomenon, and also as a precursor indicating what happens with hadrons near the phase transition. We briefly review current understanding of the photon physics, dilepton production, charm and strangeness and J/ψ suppression. At the end we try to classify all possible experiments. 47 refs., 3 figs

  9. Proceedings of the third workshop on experiments and detectors for a relativistic heavy ion collider (RHIC)

    International Nuclear Information System (INIS)

    Shivakumar, B.; Vincent, P.

    1988-01-01

    This report contains papers on the following topics: the RHIC Project; summary of the working group on calorimetry; J//Psi/ measurements in heavy ion collisions at CERN; QCD jets at RHIC; tracking and particle identification; a 4π tracking spectrometer for RHIC; Bose-Einstein measurements at RHIC in light of new data; summary of working group on read-out electronics; data acquisition for RHIC; summary of the working group on detector simulation; B-physics at RHIC; and CP violation revisited at BNL, B-physics at RHIC

  10. The heavy ion injection scheme for RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Rhoades-Brown, M.J.

    1989-01-01

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven has a multi-component injection system. The Collider requires very heavy ions such as 79 197 Au to be injected fully stripped of atomic electrons, at a kinetic energy of approximately 10 GeV/nucleon. However, the heavy ions are produced initially at a negative ion source and accelerated first in a 15 MV Tandem. These partially stripped ions have a kinetic energy of approximately 1 MeV/nucleon on leaving the Tandem. In order to achieve the injection requirements for RHIC, the partially stripped ions are accelerated in the Booster (currently under construction) and pass through a stripping foil on their way to the Alternating Gradient Synchrotron (AGS), where they are further accelerated before injection into RHIC. Recent theoretical calculations have shown quite convincingly that very heavy ions with 2 electrons in the filled K-shell may be accelerated with negligible loss in the AGS. 13 refs., 3 figs., 3 tabs

  11. SDRC I-DEAS and RHIC (Relativistic Heavy Ion Collider)

    International Nuclear Information System (INIS)

    Goggin, C.M.

    1989-01-01

    In August 1984, Brookhaven National Laboratory submitted a proposal to the Department of Energy (DOE) for the construction of a Relativistic Heavy Ion Collider (RHIC). Since then funding has continued for the detailed design of RHIC. The hardware for RHIC consists of two concentric rings of superconducting magnets in a 2.4 mile circumference with six intersections. Bunches of ions will travel in opposite directions in each of the two rings and eventually collide head on at one of the six intersections. The hardware design involves complicated facilities for liquid helium cryogens, cryostat design, and pipe systems. The greatest challenge however is the ion beam position relative to the geometric center of the rings. There are three hundred and seventy-two dipole magnets that are ten meters long and weigh 4300 Kg (4.5 tons) each. Each dipole must be positioned in the ring to ± 0.5 mm. In addition, there are four hundred and ninety-two quadrupole magnets that must be positioned to ± 0.1 mm which is a total position error. This total position error includes all the surveying and part tolerance. To accomplish this task requires detailed planning and design of the cryostats which contain each magnet and the tunnel assembly throughout the 2.4 mile circumference. The IDEAS' software package provides a way to analyze this large scale problem. 11 figs

  12. Conceptual design of the Relativistic Heavy Ion Collider: RHIC

    International Nuclear Information System (INIS)

    1986-05-01

    The complete Relativistic Heavy Ion Collider (RHIC) facility will be a complex set of accelerators and beam transfer equipment connecting them. A significant portion of the total facility either exists or is under construction. Two existing Tandem Van de Graaff accelerators will serve for the initial ion acceleration. Ions with a charge of -1 would be accelerated from ground to +15 MV potential, pass through a stripping foil, and accelerate back to ground potential, where they would pass through a second stripping foil. From there the ions will traverse a long transfer line to the AGS tunnel and be injected into the Booster accelerator. The Booster accelerates the ion bunch, and then the ions pass through one more stripper and then enter the Alternating Gradient Synchrotron (AGS), where they are accelerated to the top AGS energy and transferred to the collider. Bending and focusing of ion beams is to be achieved by superconducting magnets. The physics goals behind the RHIC are enumerated, particularly as regards the study of quark matter and the characteristics of high energy nucleus-nucleus collisions. The design of the collider and all its components is described, including the injector, the lattice, magnet system, cryogenic and vacuum systems, beam transfer, injection, and dump, rf system, and beam instrumentation and control system. Also given are cost estimates, construction schedules, and a management plan

  13. B factory at RHIC [Relativistic Heavy Ion Collider]?

    International Nuclear Information System (INIS)

    Lockyer, N.S.; Van Berg, R.; Newcomer, F.M.

    1988-01-01

    A dedicated B physics experiment located in the proposed Relativistic Heavy Ion Collider at Brookhaven (RHIC) is considered. The machine may operate in a p-p mode with a luminosity in excess of 10 32 cm/sup /minus/2/ sec/sup /minus/1/ at 250 /times/ 250 GeV. The estimated B/bar B/ cross section at these energies is about 10 μbarns and a run of 10 7 sec would produce roughly 10 10 B/bar B/ pairs. A comparison to similar ideas proposed for the Fermilab Tevatron Upgrade and the SSC are discussed. The most ambitious physics objective of such an experiment would be the study of CP nonconservation. Particular emphasis at this workshop was given to the self tagging mode B → K + π/sup /minus//. Experimental techniques developed during this experiment would be extremely useful for more ambitious projects anticipated at the SSC. 36 refs., 10 figs

  14. Introduction to fluid model for RHIC heavy ion collisions

    International Nuclear Information System (INIS)

    Muraya, Shin

    2007-01-01

    An introductory review of the fluid model which has been looked upon as the promising phenomenological model for the heavy ion scattering experiments at RHIC is presented here. Subjects are especially focused on the fundamental assumptions of the model and the decision process of the phenomenological parameters considering newcomers to hadron physics. Introduction of thermodynamical quantities, 1+1 dimension model, time-space evolution of fluid, correspondence of fluid to particles, initial condition, boundary condition and comparison of the equation of state of fluid model and that of hadron model are described. Limitation of fluid picture and the validity of the model are discussed finally. It is summarized that the present fluid model does not predict much about results in advance but gives interpretation after the event, nevertheless it reproduces much of the experimental results in natural form. It is expected that the parameter of the fluid model is to be used as the intermediate theory to relate experimental results with theory. (S. Funahashi)

  15. Open heavy flavor and quarkonia measurements in heavy-ion collisions at RHIC

    Directory of Open Access Journals (Sweden)

    Bielcik Jaroslav

    2014-04-01

    Full Text Available The properties of the hot and dense nuclear matter produced at RHIC in heavy-ion collisions can be investigated in multiple ways by heavy flavor production. The STAR and PHENIX experiments have excellent capability to study both open heavy flavor and quarkonia. Heavy quarks are produced in early stage of the collisions and the mechanisms of their interaction with nuclear matter are not yet well understood. The open heavy flavor hadrons can be studied using electrons from their semileptonic decays or via direct reconstruction through their hadronic decay channels. The heavy quarkonia production is expected to be sequentially suppressed depending on the temperature of the produced nuclear matter. However, cold nuclear matter effects play an important role and have to be well understood. In this paper we report recent results from the RHIC heavyion program on non-photonic electrons, direct reconstruction of charm mesons, J/ψ as well as ϒ in p+p, d+Au and Au+Au collisions at √sNN = 200 GeV.

  16. Systematics of Charged Particle Production in Heavy-Ion Collisions with the PHOBOS Detector at Rhic

    Science.gov (United States)

    Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Corbo, J.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Henderson, C.; Hicks, D.; Hofman, D.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Rafelski, M.; Rbeiz, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2002-03-01

    The multiplicity of charged particles produced in Au+Au collisions as a function of energy, centrality, rapidity and azimuthal angle has been measured with the PHOBOS detector at RHIC. These results contribute to our understanding of the initial state of heavy ion collisions and provide a means to compare basic features of particle production in nuclear collisions with more elementary systems.

  17. Hydrodynamic modelling for relativistic heavy-ion collisions at RHIC ...

    Indian Academy of Sciences (India)

    model, to describe the microscopic evolution and decoupling of the hadronic ... progress on hydrodynamic modelling, investigation on the flow data and the ... and to describe and predict the soft particle physics in relativistic heavy-ion collisions [4]. It is based on the conservation laws of energy, momentum and net charge ...

  18. The chromatic correction in RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Lee, S.Y.; Dell, G.F.; Hahn, H.; Parzen, G.

    1987-01-01

    The scheme for the correction of chromatic effects in the Relativistic Heavy Ion Collider at BNL is discussed. This scheme uses six families of sextupoles excited by four independent power supplies, and provides adequate control of linear and quadratic terms in the tune vs momentum dependence and reduces the variation of the betatron amplitude, vs momentum

  19. The e+, e- background at Relativistic Heavy Ion Collider (RHIC) generated by beam crossing

    International Nuclear Information System (INIS)

    Rhoades-Brown, M.J.; Ludlam, T.; Wu, J.; Bottcher, C.; Strayer, M.

    1990-01-01

    At the Brookhaven Relativistic Heavy Ion Collider (RHIC), fully stripped heavy ions will circulate in each of two rings up to beam energies of 250 (Z/A) GeV/u. During the beam crossing, the peripheral electromagnetic interaction between the heavy ions is sufficient to induce copious production of di-lepton pairs. These pairs are a potential source of background for the detectors at RHIC. In this paper we discuss the expected number of e + ,e - pairs, given the accepted initial luminosity value L of the collider. More importantly, we also calculate the differential cross sections for the angle, energy, rapidity and momentum distribution of the leptons. Using the luminosity L of the collider, these differential cross sections are normalized to the expected number of leptons per second. We restrict ourselves to e + ,e - production, a discussion of μ + ,μ - and τ + τ - distributions will be published later. The results are presented for the expected worst case, namely 197 Au 79+ ions at a beam kinetic energy of 100 GeV/u. This is forseen to be the heaviest ion for high luminosity experiments at RHIC. We note for a given energy, the cross section for e + ,e - production scales as Z 4 , where Z is the atomic number of the ions

  20. The magnet system of the Relativistic Heavy Ion Collider (RHIC)

    International Nuclear Information System (INIS)

    Greene, A.; Anerella, M.; Cozzolino, J.

    1995-01-01

    The Relativistic Heavy Ion Collider now under construction at Brookhaven National Laboratory (BNL) is a colliding ring accelerator to be completed in 1999. Through collisions of heavy ions it is hoped to observe the creation of matter at extremely high temperatures and densities, similar to what may have occurred in the original ''Big Bang.'' The collider rings will consist of 1740 superconducting magnet elements. Some of elements are being manufactured by industrial partners (Northrop Grumman and Everson Electric). Others are being constructed or assembled at BNL. A description is given of the magnet designs, the plan for manufacturing and test results. In the manufacturing of the magnets, emphasis has been placed on uniformity of their performance and on quality. Results so far indicate that this emphasis has been very successful

  1. Status of the RHIC and BNL/CERN heavy ion programs

    International Nuclear Information System (INIS)

    Ozaki, S.

    1993-01-01

    With the gold beam operation at the Brookhaven AGS started in 1992, and with the lead beam operation at the CERN SPS planned for 1994--1995, investigation of high nucleon density states through high energy heavy ion collisions is becoming a reality. In addition, the Relativistic Heavy Ion Collider (RHIC) at BNL, which is dedicated to the study of ultra-high energy heavy ion collisions, is under construction with a target completion date in 1997. There also is a plan to run the proposed CERN LHC for a few months a year for the heavy ion program. These colliders should provide opportunities to extend our knowledge of nuclear matter to the extraordinary states of extreme high temperature and high density, thus opening the way to the creation and study of quark-gluon plasma. The lattice gauge calculation based on the theory of strong interactions (QCD) predicts that, at such states, quarks and gluons are deconfined from individual nucleons and form a hot plasma. In this paper, the status of heavy ion stationary target programs at the BNL AGS and the CERN SPS, the progress of RHIC construction, and heavy ion research potential at LHC will be presented. The status of the CERN LHC will be covered elsewhere in these Proceedings

  2. RHIC Workshop: experiments for a relativistic heavy ion collider

    International Nuclear Information System (INIS)

    Haustein, P.E.; Woody, C.L.

    1985-01-01

    Separate abstracts were prepared for individual papers in this workshop proceedings, covering such topics as: calorimeter-based experiments, dimuon detection, large magnetic spectrometers, experiments in the fragmentation region, two-photon physics, and theoretical questions relevant to experimental work at the RHIC

  3. Capture from pair production as a beam loss mechanism for heavy ions at RHIC

    International Nuclear Information System (INIS)

    Feinberg, B.; Belkacem, A.; Claytor, N.; Dinneen, T.; Gould, H.

    1997-05-01

    Electron capture from electron-positron pair production is predicted to be a major source of beam loss for the heaviest ions at RHIC. Achieving the highest luminosity thus requires an understanding of the capture process. The authors report measurements of this process at Brookhaven National Laboratory's AGS using 10.8 GeV/nucleon Au 79+ projectiles on Au targets. Capture from pair production is a process in which the very high electromagnetic field involved in the collision of two relativistic heavy ions results in the production of an electron-positron pair with the capture of the electron by one of the ions. There are many theoretical papers published on capture from pair production with discrepancies between predicted cross sections. The experimental results are compared to theory and to previous experiments at 1 GeV/nucleon. The implications of extrapolations to RHIC energies are presented

  4. RHIC and quark matter: proposal for a relativistic heavy ion collider at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    1984-08-01

    This document describes the Brookhaven National Laboratory Proposal for the construction of a Relativistic Heavy Ion Collider (RHIC). The construction of this facility represents the natural continuation of the laboratory's role as a center for nuclear and high-energy physics research and extends and uses the existing AGS, Tandem Van de Graaff and CBA facilities at BNL in a very cost effective manner. The Administration and Congress have approved a project which will provide a link between the Tandem Van de Graaf and the AGS. Completion of this project in 1986 will provide fixed target capabilities at the AGS for heavy ions of about 14 GeV/amu with masses up to approx. 30 (sulfur). The addition of an AGS booster would extend the mass range to the heaviest ions (A approx. 200, e.g., gold); its construction could start in 1986 and be completed in three years. These two new AGS experimental facilities can be combined with the proposed Relativistic Heavy Ion Collider to extend the energy range to 100 x 100 GeV/amu for the heaviest ions. BNL proposes to start construction of RHIC in FY 86 with completion in FY 90 at a total cost of 134 M$

  5. sPHENIX: The next generation heavy ion detector at RHIC

    Science.gov (United States)

    Campbell, Sarah; sPHENIX Collaboration

    2017-04-01

    sPHENIX is a new collaboration and future detector project at Brookhaven National Laboratory’s Relativistic Heavy Ion Collider (RHIC). It seeks to answer fundamental questions on the nature of the quark gluon plasma (QGP), including its coupling strength and temperature dependence, by using a suite of precision jet and upsilon measurements that probe different length scales of the QGP. This is possible with a full acceptance, |η| superconducting magnet. With the increased luminosity afforded by accelerator upgrades, sPHENIX is going to perform high statistics measurements extending the kinematic reach at RHIC to overlap the LHC’s. This overlap is going to facilitate a better understanding of the role of temperature, density and parton virtuality in QGP dynamics and, specifically, jet quenching. This paper focuses on key future measurements and the current state of the sPHENIX project.

  6. Achieving high baryon densities in the fragmentation regions in heavy ion collisions at top RHIC energy

    International Nuclear Information System (INIS)

    Li, Ming; Kapusta, Joseph I.

    2017-01-01

    Heavy ion collisions at extremely high energy, such as the top energy at RHIC, exhibit the property of transparency where there is a clear separation between the almost net-baryon-free central rapidity region and the net-baryon-rich fragmentation region. We calculate the net-baryon rapidity loss and the nuclear excitation energy using the energy-momentum tensor obtained from the McLerran-Venugopalan model. Nuclear compression during the collision is further estimated using a simple space-time picture. The results show that extremely high baryon densities, about twenty times larger than the normal nuclear density, can be achieved in the fragmentation regions. (paper)

  7. Differences in high $p_{t}$ meson production between CERN SPS and RHIC heavy ion collisions

    CERN Document Server

    Papp, G; Barnafoldi, G G; Yi Zhang; Fái, G; Papp, Gabor; Levai, Peter; Barnafoldi, Gergely G.; Zhang, Yi; Fai, George

    2001-01-01

    In this talk we present a perturbative QCD improved parton model calculation for light meson production in high energy heavy ion collisions. In order to describe the experimental data properly, one needs to augment the standard pQCD model by the transverse momentum distribution of partons ("intrinsic k/sub T/"). Proton-nucleus data indicate the presence of nuclear shadowing and multi-scattering effects. Further corrections are needed in nucleus-nucleus collisions to explain the observed reduction of the cross section. We introduce the idea of proton dissociation and compare our calculations with the SPS and RHIC experimental data. (18 refs).

  8. Performance of initial full-length RHIC [Relativistic Heavy Ion Collider] dipoles

    International Nuclear Information System (INIS)

    Dahl, P.; Cottingham, J.; Garber, M.

    1987-01-01

    The first four full-length (9.7 m) R and D dipoles for the proposed Relativistic Heavy Ion Collider (RHIC) have been successfully tested. The magnets reached a quench plateau of approximately 4.5 T with very reasonable training - a field level comfortably above the design field of 3.45 T required for operation with beams of 100 GeV/amu gold nuclei. Measured field multipoles are considered to be quite acceptable for this series of R and D magnets

  9. Universal behavior of charged particle production in heavy ion collisions at RHIC energies

    Science.gov (United States)

    Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Phobos Collaboration

    2003-04-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at √ SNN = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/ overlinepp and e +e - data. / in nuclear collisions at high energy scales with √ s in a similar way as Nch in e +e - collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  10. Strangeness production in heavy ion collisions: What have we learned with the energy increase from SPS to RHIC

    International Nuclear Information System (INIS)

    Odyniec, Grazyna

    2002-01-01

    A review of strange particle production in heavy ion collisions at ultrarelativistic energies is presented. The particle yields and ratios from SPS and RHIC are discussed in view of the newest developments in understanding collision dynamics, and in view of their role in the search for a quark gluon plasma. A strangeness enhancement, most notably observed in CERN Pb-beam results, shows a remarkable two fold global enhancement with a much larger effect seen in the case of multistrange baryons. Hadronic models did fail to explain this pattern. At RHIC energy strangeness assumes a different role, since temperatures are higher and the central rapidity region almost baryon-free. An intriguing question: ''Did RHIC change the way we understand strangeness production in heavy ion collisions ?'' is discussed

  11. Experimental Highlights: Heavy Quark Physics in Heavy-Ion Collisions at RHIC

    Directory of Open Access Journals (Sweden)

    Nouicer Rachid

    2017-01-01

    Full Text Available The discovery at RHIC of large high-pT suppression and flow of electrons from heavy quarks flavors have altered our view of the hot and dense matter formed in central Au + Au collisions at √sNN = 200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. In recent years, the RHIC experiments upgraded the detectors; (1 PHENIX Collaboration installed silicon vertex tracker (VTX at midrapidity region and forward silicon vertex tracker (FVTX at the forward rapidity region, and (2 STAR Collaboration installed the heavy flavor tracker (HFT and the muon telescope detector (MTD both at the mid-rapidity region. The PHENIX experiments established measurements of ψ (1S and ψ (2S production as a function of system size, p + p, p + Al, p + Au, and 3He + Au collisions at √sNN = 200 GeV. In p/3He + A collisions at forward rapidity, we observe no difference in the ψ (2S /ψ (1S ratio relative to p + p collisions. At backward rapidity, where the comoving particle density is higher, we find that the ψ (2S is preferentially suppressed by a factor of two. STAR Collaboration presents the first J/ ψ measurements in the di-muon decay channel in Au + Au at √sNN = 200 GeV at mid-rapidity. We observe a clear J/ψ RAA suppression and qualitatively well described by transport models, including dissociation and regeneration simultaneously.

  12. Transverse energy and charged particle production in heavy-ion collisions: from RHIC to LHC

    International Nuclear Information System (INIS)

    Sahoo, Raghunath; Mishra, Aditya Nath

    2014-01-01

    We study the charged particle and transverse energy production mechanism from AGS, SPS, Relativistic Heavy-Ion Collider (RHIC) to Large Hadron Collider (LHC) energies in the framework of nucleon and quark participants. At RHIC and LHC energies, the number of nucleons-normalized charged particle and transverse energy density in pseudorapidity, which shows a monotonic rise with centrality, turns out to be an almost centrality independent scaling behavior when normalized to the number of participant quarks. A universal function which is a combination of logarithmic and power-law, describes well the charged particle and transverse energy production both at nucleon and quark participant level for the whole range of collision energies. Energy dependent production mechanisms are discussed both for nucleonic and partonic level. Predictions are made for the pseudorapidity densities of transverse energy, charged particle multiplicity and their ratio (the barometric observable, [dE T /dη]/[dN ch /dη] ≡ E T /N ch ) at mid-rapidity for Pb + Pb collisions at √s NN = 5.5 TeV. A comparison with models based on gluon saturation and statistical hadron gas is made for the energy dependence of E T /N ch . (author)

  13. sPHENIX: The next generation heavy ion detector at RHIC

    International Nuclear Information System (INIS)

    Campbell, Sarah

    2017-01-01

    sPHENIX is a new collaboration and future detector project at Brookhaven National Laboratory’s Relativistic Heavy Ion Collider (RHIC). It seeks to answer fundamental questions on the nature of the quark gluon plasma (QGP), including its coupling strength and temperature dependence, by using a suite of precision jet and upsilon measurements that probe different length scales of the QGP. This is possible with a full acceptance, | η | < 1 and 0-2 π in φ , electromagentic and hadronic calorimeters and precision tracking enabled by a 1.5 T superconducting magnet. With the increased luminosity afforded by accelerator upgrades, sPHENIX is going to perform high statistics measurements extending the kinematic reach at RHIC to overlap the LHC’s. This overlap is going to facilitate a better understanding of the role of temperature, density and parton virtuality in QGP dynamics and, specifically, jet quenching. This paper focuses on key future measurements and the current state of the sPHENIX project. (paper)

  14. RF Beam control system for the Brookhaven relativistic heavy ion collider, RHIC

    International Nuclear Information System (INIS)

    Brennan, J.M.; Campbell, A.; Delong, J.; Hayes, T.; Onillon, E.; Rose, J.; Vetter, K.

    1998-01-01

    The Relativistic Heavy Ion Collider, RHIC, is two counter-rotating rings with six interaction points. The RF Beam Control system for each ring will control two 28 MHz cavities for acceleration, and five 197 MHz cavities for preserving the 5 ns bunch length during 10 hour beam stores. Digital technology is used extensively in: Direct Digital Synthesis of rf signals and Digital Signal Processing for, the realization of state-variable feedback loops, real-time calculation of rf frequency, and bunch-by-bunch phase measurement of the 120 bunches. DSP technology enables programming the parameters of the feedback loops in order to obtain closed-loop dynamics that are independent of synchrotron frequency

  15. RF beam control system for the Brookhaven Relativistic Heavy Ion Collider, RHIC

    International Nuclear Information System (INIS)

    Brennan, J.M.; Campbell, A.; DeLong, J.; Hayes, T.; Onillon, E.; Rose, J.; Vetter, K.

    1998-01-01

    The Relativistic Heavy Ion Collider, RHIC, is two counter-rotating rings with six interaction points. The RF Beam Control system for each ring will control two 28 MHz cavities for acceleration, and five 197 MHz cavities for preserving the 5 ns bunch length during 10 hour beam stores. Digital technology is used extensively in: Direct Digital Synthesis of rf signals and Digital Signal Processing for, the realization of state-variable feedback loops, real-time calculation of rf frequency, and bunch-by-bunch phase measurement of the 120 bunches. DSP technology enables programming the parameters of the feedback loops in order to obtain closed-loop dynamics that are independent of synchrotron frequency

  16. Heavy nuclei, from RHIC to the cosmos

    International Nuclear Information System (INIS)

    Klein, Spencer R.

    2003-01-01

    Ultra-relativistic heavy ion collisions produce a high-temperature, thermalized system that may mimic the conditions present shortly after the big bang. This writeup will given an overview of early results from the Relativistic Heavy Ion Collider (RHIC), and discuss what we have learned about hot, strongly interacting nuclear systems. The thermal and chemical composition of the system will be discussed, along with observables that are sensitive to the early evolution of the system. I will also discuss the implications of the RHIC results for cosmic ray air showers

  17. Heavy flavour production at RHIC and LHC

    Directory of Open Access Journals (Sweden)

    Innocenti Gian Michele

    2018-01-01

    Full Text Available In this proceedings, I present selected experimental results on heavy-flavour production at RHIC and at the LHC, which were presented at the Strangeness in Quark Matter 2017 conference. I will present a brief introduction to the heavy-flavour physics in heavy ion collisions and I will focus on recents measurements of in-medium energy loss and and collective properties of heavy-flavour particles, which provided important information on the mechanisms of heavy flavour interaction with the hot and dense medium created in ultra-relativistic heavy-ion collisions.

  18. Probing the Big Bang at the Relativistic Heavy Ion Collider (RHIC) (or Probing the Big Bang 13.7 billion years later)

    International Nuclear Information System (INIS)

    Lee, David M

    2010-01-01

    The Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory in the USA is a variable energy proton-proton and ion-ion collider that is the first accelerator capable of colliding heavy ions. RHIC was designed to do experiments that provide important information about the Standard Model of particle physics, Quantum Chromodynamics (QCD). QCD predicts that in the early part of the Universe just after the Big Bang the world consisted of a Quark Gluon Plasma, a weakly interacting collection of quarks and gluons. At RHIC we can recreate the conditions of the early Universe by colliding heavy ions at 200 GeV. This paper will give a general overview of the physics motivation for studying the QGP, how our experiments are designed to study the QGP, what we have learned over the last 9 years, and what the future holds.

  19. Direct photon production in heavy-ion reactions at SPS and RHIC

    Indian Academy of Sciences (India)

    They are considerably below the heavy-ion results which indicates that a simple scaling of prompt photons as observed in pp is not sufficient to explain the direct photons in central. Pb+Pb reactions. It is also instructive to compare the γ/π0 ratio extracted from heavy-ion data to those from pp and pC in figure 3. The value in ...

  20. Ion optics of RHIC EBIS

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y.; Kuznetsov, G.

    2011-09-10

    RHIC EBIS has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  1. Chemical Potentials of Quarks Extracted from Particle Transverse Momentum Distributions in Heavy Ion Collisions at RHIC Energies

    International Nuclear Information System (INIS)

    Zhao, Hong; Liu, Fu-Hu

    2014-01-01

    In the framework of a multisource thermal model, the transverse momentum distributions of charged particles produced in nucleus-nucleus (A-A) and deuteron-nucleus (d-A) collisions at relativistic heavy ion collider (RHIC) energies are investigated by a two-component revised Boltzmann distribution. The calculated results are in agreement with the PHENIX experimental data. It is found that the source temperature increases obviously with increase of the particle mass and incident energy, but it does not show an obvious change with the collision centrality. Then, the values of chemical potentials for up, down, and strange quarks can be obtained from the antiparticle to particle yield ratios in a wide transverse momentum range. The relationship between the chemical potentials of quarks and the transverse momentum with different centralities is investigated, too

  2. Susceptibilities of conserved quantities in relativistic heavy-ion collisions at RHIC

    International Nuclear Information System (INIS)

    Chatterjee, A.; Nayak, T.K.; Chatterjee, S.; Sahoo, N.R.

    2016-01-01

    The major motivations of heavy-ion collisions at ultra-relativistic energies is to study the formation of new form of matter, called quark-gluon plasma (QGP) and study its basic properties. Susceptibilities of conserved quantities, such as electric charge, baryon number and strangeness are sensitive to the onset of quantum chromodynamics (QCD) phase transition, and provide information on the mater produce in heavy ion collisions. In this work, we have used the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) and the hadron resonance gas (HRG) models to analyzes the 2"n"d order susceptibilities of conserved charges. In experiments, one needs to understand and correct for detector acceptance, efficiency and limited particle identification in order to interpret the results and compare with theoretical calculations. The transverse momentum cutoff dependence of suitably normalized susceptibilities are proposed as useful observables to probe the properties of the medium at freezout

  3. Ultra-peripheral collisions of heavy ions at RHIC and the LHC

    CERN Document Server

    Nystrand, J

    2007-01-01

    This paper deals with so-called Ultra-Peripheral Collisions (UPCs) of heavy ions. These can be defined as collisions in which no hadronic interactions occur because of the large spatial separation between the projectile and target. The interactions are instead mediated by the electromagnetic field. Two types of ultra-peripheral collisions can be distinguished: purely electro-magnetic interactions (two-photon interactions) and photonuclear interactions, in which a photon from the projectile interacts with the hadronic component of the target.

  4. Elliptic Flow, Initial Eccentricity and Elliptic Flow Fluctuations in Heavy Ion Collisions at RHIC

    Science.gov (United States)

    Nouicer, Rachid; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holzman, B.; Iordanova, A.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    2008-12-01

    We present measurements of elliptic flow and event-by-event fluctuations established by the PHOBOS experiment. Elliptic flow scaled by participant eccentricity is found to be similar for both systems when collisions with the same number of participants or the same particle area density are compared. The agreement of elliptic flow between Au+Au and Cu+Cu collisions provides evidence that the matter is created in the initial stage of relativistic heavy ion collisions with transverse granularity similar to that of the participant nucleons. The event-by-event fluctuation results reveal that the initial collision geometry is translated into the final state azimuthal particle distribution, leading to an event-by-event proportionality between the observed elliptic flow and initial eccentricity.

  5. Review of RHIC [Relativistic Heavy Ion Collider] as a B factory

    International Nuclear Information System (INIS)

    Morse, W.M.

    1988-01-01

    A dedicated B physics experiment which was considered at the 1988 RHIC Summer Workshop was discussed. The machine may operate in a p-p mode with a luminosity in excess of 10 32 cm/sup /minus/2/ sec/sup /minus/1/ at 250 /times/ 250 GeV. The most ambitious physics objective of such an experiment would be the study of CP nonconservation. Particular emphasis at the workshop was given to the self tagging mode B → K + ο/sup minus/. Experimental techniques developed during this experiment would be extremely useful for more ambitious projects anticipated at the SSC. 4 figs

  6. Signatures of a new state of the nuclear matter: 'nearly perfect fluid of quarks and gluons' in heavy ion collisions at RHIC energies

    International Nuclear Information System (INIS)

    Nouicer, R.

    2013-01-01

    This thesis for the 'Accreditation to lead research' diploma consists of six chapters. Chapter I provides an overview of my scientific career, including a summary of my research tasks, professional experiences, and scientific output, list of my oral presentations at international conferences and my publications history. Chapter II introduces the background and goals of research in relativistic heavy ion physics, the main axis of research at the RHIC collider facility. Chapter III describes the context of Quarks-Gluon Plasma (QGP) physics including theoretical aspects, experimental aspects, the signatures of deconfinement and the evolution of QGP physics from fixed-target (SPS) to collider (RHIC) beam energies. Chapter IV details my personal contribution to the construction, assembly, installation, operation, evaluation of the signals and the maintenance of (i) the silicon pixel detectors used for the measurements of the charged particles multiplicity in PHOBOS experiment, and also (ii) the silicon vertex tracker (VTX) in PHENIX, with the main goal being to differentiate measurements of the heavy quarks charm and beauty. Chapter V presents my analysis work using the 'hit-counting' method which allows the measurement of the pseudorapidity density distributions of charged particles in PHOBOS at several RHIC energies. This chapter also illustrates my predictions for the LHC as well my publications as principal author and my responsibilities as 'Co-convenor' of the multiplicity group in PHOBOS. Finally, chapter VI presents the highlights of the RHIC results: 'Nearly Perfect Fluid of Quarks and Gluons'. This chapter illustrates a great wealth of scientific discoveries, and some great surprises encountered in the RHIC era which provided new perspectives in quantum chromodynamics (QCD) calculations. At the end of this chapter, I concluded while answering the question about what we have learnt and where we are. (author)

  7. Spin physics: A new twist on heavy-ion experiments at RHIC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1998-01-01

    Operation of RHIC with two beams of highly polarized protons (70%, either longitudinal or transverse) at high luminosity L = 2 · 10 32 cm -2 sec -1 for two months/year will allow high statistics studies of polarization phenomena in the perturbative region of hard scattering where both QCD and ElectroWeak theory make detailed predictions for polarization effects. The collision c.m. energy, √s = 50--500 GeV, represents a new domain for the study of spin. Direct photon production will be used to measure the gluon polarization in the polarized proton. A new twist comes from W-boson production which is expected to be 100% parity violating and will thus allow measurements of flavor separated quark and antiquark (u, anti u, d, anti d) polarization distributions. Searches for parity violation in strong interaction processes such as jet and leading particle production will be a sensitive way to look for new physics beyond the standard model, one possibility being quark substructure

  8. Spin physics at RHIC a new twist on the heavy ion experiments

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1996-01-01

    Operation of RHIC with two beams of highly polarized protons (70%, either longitudinal or transverse) at high luminosity ???? = 2 circ 10 32 cm -2 sec -1 for two months/year will allow high statistics studies of polarization phenomena in the perturbative region of hard scattering where both QCD and ElectroWeak theory make detailed predictions for polarization effects. The collision c.m energy, √s = 200 - 500 GeV, represents a new domain for the study of spin. Direct photon production win be used to measure the gluon polarization in the polarized proton. A new twist comes from W-boson production which is expected to be 100% parity violating and will thus allow measurements of flavor separated quark and antiquark (u, u, d, d) polarization distributions. Searches for parity violation in strong interaction processes such as jet and leading particle production will be a sensitive way to look for new physics beyond the standard model, one possibility being quark substructure

  9. The RHIC polarized H{sup −} ion source

    Energy Technology Data Exchange (ETDEWEB)

    Zelenski, A., E-mail: zelenski@bnl.gov; Atoian, G.; Raparia, D.; Ritter, J.; Steski, D. [Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2016-02-15

    A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H{sup −} ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H{sup −} ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC.

  10. New challenges for HEP computing: RHIC [Relativistic Heavy Ion Collider] and CEBAF [Continuous Electron Beam Accelerator Facility

    International Nuclear Information System (INIS)

    LeVine, M.J.

    1990-01-01

    We will look at two facilities; RHIC and CEBF. CEBF is in the construction phase, RHIC is about to begin construction. For each of them, we examine the kinds of physics measurements that motivated their construction, and the implications of these experiments for computing. Emphasis will be on on-line requirements, driven by the data rates produced by these experiments

  11. [Pion interferometry search for a phase change in hadronic matter in relativistic heavy ion collisions and its application to RHIC: Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Cherney, M.

    1992-05-01

    The purpose of this research is to assist in the investigation of the behavior of hadronic matter under extreme conditions. Specifically, this project intends to actively involve Creighton students and faculty in the search for indications of a phase transition from hadronic to quark matter. It is believed that the conditions necessary for the formation of this quark-gluon plasma include large energy densities over extended volumes. The technique of boson interferometry may prove to be the effective tool in verifying the existence of a quark-gluon plasma. This project continues active collaboration with Department of Energy research centers working on the NA36, NA44, and STAR experiments. It involves the effective development of the hardware, software and analytical skills required for a large relativistic heavy ion facility at Brookhaven National Laboratory (RHIC). Integral to this endeavor are educational opportunities for students at Creighton University.

  12. (Pion interferometry search for a phase change in hadronic matter in relativistic heavy ion collisions and its application to RHIC: Progress report)

    Energy Technology Data Exchange (ETDEWEB)

    Cherney, M.

    1992-01-01

    The purpose of this research is to assist in the investigation of the behavior of hadronic matter under extreme conditions. Specifically, this project intends to actively involve Creighton students and faculty in the search for indications of a phase transition from hadronic to quark matter. It is believed that the conditions necessary for the formation of this quark-gluon plasma include large energy densities over extended volumes. The technique of boson interferometry may prove to be the effective tool in verifying the existence of a quark-gluon plasma. This project continues active collaboration with Department of Energy research centers working on the NA36, NA44, and STAR experiments. It involves the effective development of the hardware, software and analytical skills required for a large relativistic heavy ion facility at Brookhaven National Laboratory (RHIC). Integral to this endeavor are educational opportunities for students at Creighton University.

  13. The Relativistic Heavy Ion Collider (RHIC) cryogenic system at Brookhaven National Laboratory: Review of the modifications and upgrades since 2002 and planned improvements

    International Nuclear Information System (INIS)

    Than, R.; Tuozzolo, Joseph; Sidi-Yekhlef, Ahmed; Ganni, Venkatarao; Knudsen, Peter; Arenius, Dana

    2008-01-01

    Brookhaven National Laboratory continues its multi-year program to improve the operational efficiency, reliability, and stability of the cryogenic system, which also resulted in an improved beam availability of the Relativistic Heavy Ion Collider (RHIC). This paper summarizes the work and changes made after each phase over the past four years to the present, as well as proposed future improvements. Power usage dropped from an initial 9.4 MW to the present 5.1 MW and is expected to drop below 5 MW after the completion of the remaining proposed improvements. The work proceeded in phases, balancing the Collider's schedule of operation, time required for the modifications and budget constraints. The main changes include process control, compressor oil removal and management, elimination of the use of cold compressors and two liquid-helium storage tanks, insulation of the third liquid-helium storage tank, compressor-bypass flow reduction and the addition of a load turbine (Joule-Thomson)

  14. [Pion interferometry search for a phase change in hadronic matter in relativistic heavy ion collisions and its application to RHIC: Progress report

    International Nuclear Information System (INIS)

    Cherney, M.

    1992-01-01

    The purpose of this research is to assist in the investigation of the behavior of hadronic matter under extreme conditions. Specifically, this project intends to actively involve Creighton students and faculty in the search for indications of a phase transition from hadronic to quark matter. It is believed that the conditions necessary for the formation of this quark-gluon plasma include large energy densities over extended volumes. The technique of boson interferometry may prove to be the effective tool in verifying the existence of a quark-gluon plasma. This project continues active collaboration with Department of Energy research centers working on the NA36, NA44, and STAR experiments. It involves the effective development of the hardware, software and analytical skills required for a large relativistic heavy ion facility at Brookhaven National Laboratory (RHIC). Integral to this endeavor are educational opportunities for students at Creighton University

  15. Indication of a Differential Freeze-out in Proton-Proton and Heavy-Ion Collisions at RHIC and LHC energies

    CERN Document Server

    Thakur, Dhananjaya; Garg, Prakhar; Sahoo, Raghunath; Cleymans, Jean

    2016-01-01

    The experimental data from the RHIC and LHC experiments of invariant pT spectra in A+A and p + p collisions are analysed with Tsallis distributions in different approaches. The information about the freeze-out surface in terms of freeze-out volume, temperature, chemical potential and radial flow velocity for different particle species are obtained. Further, these parameters are studied as a function of the mass of the secondary particles. A mass-dependent differential freeze-out is observed which does not seem to distinguish between particles and their antiparticles. Further a mass-hierarchy in the radial flow is observed, meaning heavier particles suffer lower radial flow. Tsallis distribution function at finite chemical potential is used to study the mass dependence of chemical potential. The peripheral heavy-ion and proton-proton collisions at the same energies seem to be equivalent in terms of the extracted thermodynamic parameters.

  16. Open Heavy Flavor and Quarkonia Results at RHIC

    Science.gov (United States)

    Nouicer, Rachid

    2017-12-01

    RHIC experiments carry out a comprehensive physics program which studies open heavy flavor and quarkonium production in relativistic heavy-ion collisions. The discovery at RHIC of large high-pT suppression and flow of electrons from heavy quarks flavors have altered our view of the hot and dense matter formed in central Au + Au collisions at GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. In recent years, the RHIC experiments upgraded the detectors; (1) PHENIX Collaboration installed silicon vertex tracker (VTX) at mid-rapidity region and forward silicon vertex tracker (FVTX) at the forward rapidity region, and (2) STAR Collaboration installed the heavy flavor tracker (HFT) and the muon telescope detector (MTD) both at the mid-rapidity region. With these new upgrades, both experiments have collected large data samples. These new detectors enhance the capability of heavy flavor measurements via precision tracking. The PHENIX experiments established measurements of ψ(1S) and ψ(2S) production as a function of system size, p + p, p + Al, p + Au, and 3He + Au collisions at GeV. In p/3He + A collisions at forward rapidity, we observe no difference in the ψ(2S)/ψ(1S) ratio relative to p + p collisions. At backward rapidity, where the comoving particle density is higher, we find that the ψ(2S) is preferentially suppressed by a factor of two. STAR Collaboration presents the first J/ψ and ϒ measurements in the di-muon decay channel in Au + Au collisions at GeV at mid-rapidity at RHIC. We observe clear J/ψ RAA suppression and qualitatively well described by transport models simultaneously accounting for dissociation and regeneration processes.

  17. Open Heavy Flavor and Quarkonia Results at RHIC

    Directory of Open Access Journals (Sweden)

    Nouicer Rachid

    2017-01-01

    Full Text Available RHIC experiments carry out a comprehensive physics program which studies open heavy flavor and quarkonium production in relativistic heavy-ion collisions. The discovery at RHIC of large high-pT suppression and flow of electrons from heavy quarks flavors have altered our view of the hot and dense matter formed in central Au + Au collisions at SNN=200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. In recent years, the RHIC experiments upgraded the detectors; (1 PHENIX Collaboration installed silicon vertex tracker (VTX at mid-rapidity region and forward silicon vertex tracker (FVTX at the forward rapidity region, and (2 STAR Collaboration installed the heavy flavor tracker (HFT and the muon telescope detector (MTD both at the mid-rapidity region. With these new upgrades, both experiments have collected large data samples. These new detectors enhance the capability of heavy flavor measurements via precision tracking. The PHENIX experiments established measurements of ψ(1S and ψ(2S production as a function of system size, p + p, p + Al, p + Au, and 3He + Au collisions at SNN=200 GeV. In p/3He + A collisions at forward rapidity, we observe no difference in the ψ(2S/ψ(1S ratio relative to p + p collisions. At backward rapidity, where the comoving particle density is higher, we find that the ψ(2S is preferentially suppressed by a factor of two. STAR Collaboration presents the first J/ψ and ϒ measurements in the di-muon decay channel in Au + Au collisions at SNN=200 GeV at mid-rapidity at RHIC. We observe clear J/ψ RAA suppression and qualitatively well described by transport models simultaneously accounting for dissociation and regeneration processes.

  18. Heavy ions

    CERN Multimedia

    CERN. Geneva; Antinori, Federico

    2001-01-01

    Colliding two heavy nuclei at ultrarelativistic energies allows to create in the laboratory a bulk system with huge density, pressure and temperature and to study its properties. It is estimated that in Pb-Pb collisions at CERN-SPS we reach over an appreciable volume an energy density which exceeds by more than a factor 20 that of normal nuclear matter. At such densities, the hadrons are so closely packed that they interpenetrate; novel physics phenomena are expected to appear. QCD predicts that under such conditions a phase transition from a system composed of colourless hadrons to a Quark-Gluon Plasma (QGP) should occur. A rich ultrarelativistic heavy-ion physics programme is under way both at BNL-AGS and at CERN-SPS since 1986. The results obtained so far have led CERN to officially announce evidence for a new state of matter last year. A long-range programme of heavy-ion physics at higher energies is under way (BNL-RHIC) and in preparation (CERN-LHC). These lectures are meant as an introduction to the phy...

  19. Heavy ions

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    Colliding two heavy nuclei at ultrarelativistic energies allows to create in the laboratory a bulk system with huge density, pressure and temperature and to study its properties. It is estimated that in Pb-Pb collisions at CERN-SPS we reach over an appreciable volume an energy density which exceeds by more than a factor 20 that of normal nuclear matter. At such densities, the hadrons are so closely packed that they interpenetrate; novel physics phenomena are expected to appear. QCD predicts that under such conditions a phase transition from a system composed of colourless hadrons to a Quark-Gluon Plasma (QGP) should occur. A rich ultrarelativistic heavy-ion physics programme is under way both at BNL-AGS and at CERN-SPS since 1986. The results obtained so far have led CERN to officially announce evidence for a new state of matter last year. A long-range programme of heavy-ion physics at higher energies is under way (BNL-RHIC) and in preparation (CERN-LHC). These lectures are meant as an introduction to the phy...

  20. Chemical freeze out condition for central heavy-ion collisions at AGS, SPS, RHIC and LHC energies

    International Nuclear Information System (INIS)

    Chatterjee, Sandeep; Mishra, Debadeepti; Mohanty, Bedangadas; Das, Sabita; Sharma, Natasha; Kumar, Lokesh; Sahoo, Raghunath

    2014-01-01

    As a result of ultrarelativistic collision between two heavy ions, a fireball is expected to form that rapidly thermalized as it expands and hence cools. As the interparticle separation increases the particles cease to interact. The surface of last scattering is the freeze-out surface. It can be of two types: chemical freeze-out (CFO) where inelastic collisions cease and kinetic freeze-out where elastic collisions cease. But in general freeze-out can be a more complicated process in which different types of particles and reactions switch-off at different times giving rise to a series of freeze-out surfaces. Here we will discuss two CFO schemes: 1CFO, in which all hadrons freeze-out together and 2CFO, in which all strange and those with hidden strangeness freeze-out at the same surface and the other non strange hadrons freeze-out at a separate surface

  1. THE RELATIVISTIC HEAVY ION COLLIDER (RHIC) CRYOGENIC SYSTEM AT BNL: REVIEW OF THE MODIFICATIONS AND UPGRADES SINCE 2002 AND PLANNED IMPROVEMENTS

    International Nuclear Information System (INIS)

    THAN, Y.R.; TUOZZOLO, J.; SIDI-YAKHLEF, A.; GANNI, V.; KNUDSEN, P.; ARENIUS, D.

    2007-01-01

    Brookhaven National Laboratory continues its multi-year program to improve the operational efficiency, reliability, and stability of the cryogenic system which also resulted in improved beam availability of the Relativistic Heavy Ion Collider (RHIC). This paper summarizes the work and changes made after each phase over the past four years to the present, as well as proposed future improvements. Power usage dropped from an initial 9.4 MW to the present 5.1 MW and is expected to drop below 5 MW after the completion of the remaining proposed improvements. The work proceeded in phases by balancing the Collider's schedule of operation, time required for the modifications and budget constraints. The main changes include process control, compressor oil removal and management, elimination of the use of cold compressors and two liquid helium storage tanks, insulation of the third liquid helium storage tank, compressor bypass flow reduction and the addition of a load turbine (Joule-Thompson expander) with associated heat exchangers at the cold end of the plant. Also, liquid helium pumps used for forced circulation of the sub-cooled helium through the magnet loops were eliminated by an accelerator supply flow reconfiguration. Planned future upgrades include the resizing of expanders 5 and 6 to increase their efficiencies

  2. Chemical and dynamics properties of heavy ion collisions at RHIC energies by the measurement of the production of the doubly strange baryons in the STAR experiment

    International Nuclear Information System (INIS)

    Estienne, M.

    2005-04-01

    Lattice QCD calculations predict, at μ B ∼ 0, a crossover from ordinary hadronic matter to a Quark Gluon Plasma. Heavy ion collisions have been proposed to recreate it in the laboratory and to study its properties. The Au+Au, d+Au collisions at √(S NN ) = 200 GeV and the Au+Au ones at 62.4 GeV delivered at RHIC have been probed by the measurement of the Ξ particles in the STAR experiment. Their yield evolution with collision energy and system size gives size to the chemical properties of the reaction in the framework of hadronic and statistical models. The Ξ R CP shows: (1) a meson/baryon dependence for 2 pT CP suppression at pT > 3 GeV/c, (3) strong interactions between constituents suggesting the existence of strong collectivity in the medium. The Ξ transverse flow seems to be interesting to probe the early stage the collision with presumably partonic degrees of freedom. (author)

  3. Search for (exotic) strange matter in the Star and Alice experiments with the ultra-relativistic heavy ion colliders RHIC and LHC

    International Nuclear Information System (INIS)

    Vernet, R.

    2006-02-01

    Ultra-relativistic heavy ion collisions offer the possibility to create conditions of temperature and density that could lead nuclear matter to a state of deconfined partons, the quark-gluon plasma. Strange baryon production is one of the essential observables to understand the mechanisms involved in the medium. Furthermore, theories predict a possible production of strange dibaryons, still hypothetical particles, from which one could draw important inferences in nuclear physics and astrophysics. The experiments STAR at RHIC, and, soon, ALICE at LHC, allow one to search for strange baryons and dibaryons. The STAR sensitivity to the metastable dibaryon H 0 in the Λpπ - decay mode was calculated thanks to a dedicated simulation. The search for the H 0 , and for the Ξ - p resonance as well, was performed in the STAR Au+Au data at √(s NN ) = 62.4 and 200 GeV energies. Within the framework of the preparation of ALICE to the first Pb+Pb data, the detector ability to identify strange baryons Λ, Ξ and Ω, was estimated via several simulations. So as to favour the reconstruction efficiency in a large range of transverse momentum while keeping a reasonable S/B ratio, the influence of the geometrical selections and the size of the reconstruction zone was emphasized. The ALICE sensitivities to the metastable strange dibaryons H 0 and (Ξ 0 p) b and to the ΛΛ resonance were calculated as well. (author)

  4. Effect of resonance decays on extracted kinetic freeze-out parameters in heavy ion collisions at RHIC

    International Nuclear Information System (INIS)

    Molnar, Levente; Barannikova, Olga; Wang, Fuqiang

    2006-01-01

    Statistical model fit to particle ratios in Au+Au collisions at RHIC suggests chemical freeze-out near phase transition boundary. Model interpretations of evolution from chemical to kinetic freeze-out vary. Results of the blast-wave fit to the STAR experimental data, where resonance contributions are not accounted for, suggest significant cooling and expansion between the freezeouts for central Au+Au collisions. Other models including resonances, argue for instant single freezeout with temperature close to the phase transition temperature. By combined thermal and blast-wave model parametrization including resonances, we systematically investigate the effect of resonance decays on the extracted kinetic freeze-out parameters. (authors)

  5. Chiral magnetic currents with QGP medium response in heavy-ion collisions at RHIC and LHC energies

    Science.gov (United States)

    She, Duan; Feng, Sheng-Qin; Zhong, Yang; Yin, Zhong-Bao

    2018-03-01

    We calculate the electromagnetic current with a more realistic approach in the RHIC and LHC energy regions in the article. We take the partons formation time as the initial time of the magnetic field response of QGP medium. The maximum electromagnetic current and the time-integrated current are two important characteristics of the chiral magnetic effect (CME), which can characterize the intensity and duration of fluctuations of CME. We consider the finite frequency response of CME to a time-varying magnetic field, find a significant impact from QGP medium feedback, and estimate the generated electromagnetic current as a function of time, beam energy and impact parameter.

  6. What can we learn from the directed flow in heavy-ion collisions at BES RHIC energies?

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Yu.B. [NRC ' ' Kurchatov Institute' ' , National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Moscow Engineering Physics Institute, National Research Nuclear University ' ' MEPhI' ' , Moscow (Russian Federation); Soldatov, A.A. [Moscow Engineering Physics Institute, National Research Nuclear University ' ' MEPhI' ' , Moscow (Russian Federation)

    2016-01-15

    Analysis of directed flow (v{sub 1}) of protons, antiprotons and pions in heavy-ion collisions is performed in the range of collision energies √(s{sub NN}) = 2.7-39 GeV. Simulations have been done within a three-fluid model employing a purely hadronic equation of state (EoS) and two versions of the EoS with deconfinement transitions: a first-order phase transition and a smooth crossover transition. The crossover EoS is unambiguously preferable for the description of the most part of experimental data in this energy range. The directed flow indicates that the crossover deconfinement transition takes place in semicentral Au+Au collisions in a wide range of collision energies 4

  7. Tracking studies on the effects of magnet multipoles on the aperture of the RHIC heavy ion collider

    International Nuclear Information System (INIS)

    Dell, G.F.; Parzen, G.

    1985-01-01

    Tracking studies including the effects of random multipoles resulting from construction errors have been made for RHIC with two independent tracking programs at three different tunes. The studies were made using ten different sets of random errors for each of the programs. The aperture was defined as the worst case, and the results of the two programs are in good agreement. A second set of studies was made for which the number of dipoles was doubled to determine whether doubling the number of independent random errors results in a reduction of the effects or random multipoles. The results for the two cases, one dipole per half cell and two dipoles per half cell, indicate there is little difference in dynamic aperture. 3 refs., 3 figs

  8. Clustering of color sources and the shear viscosity of the QGP in heavy ion collisions at RHIC and LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Dias de Deus, J. [Instituto Superior Tecnico, CENTRA, Lisbon (Portugal); Hirsch, A.S.; Scharenberg, R.P.; Srivastava, B.K. [Purdue University, Department of Physics, West Lafayette, IN (United States); Pajares, C. [Universidale de Santiago de Compostela and Instituto Galego de Fisica de Atlas Enerxias (IGFAE), Departamento de Fisica de Particulas, Santiago, de Compostela (Spain)

    2012-08-15

    We present our results on the shear viscosity to entropy ratio ({eta}/s) in the framework of the clustering of the color sources of the matter produced at RHIC and LHC energies. The onset of de-confinement transition is identified by the spanning percolating cluster in 2D percolation. The relativistic kinetic theory relation for {eta}/s is evaluated using the initial temperature (T) and the mean free path ({lambda}{sub mfp}). The analytic expression for {eta}/s covers a wide temperature range. At T{proportional_to}150 MeV below the hadron to QGP transition temperature of {proportional_to}168 MeV, with increasing temperatures the {eta}/s value drop sharply and reaches a broad minimum {eta}/s{proportional_to}0.20 at T{proportional_to}175-185 MeV. Above this temperature {eta}/s grows slowly. The measured values of {eta}/s are 0.204{+-}0.020 and 0.262{+-}0.026 at the initial temperature of 193.6{+-}3 MeV from central Au+Au collisions at {radical}(s{sub NN})=200{proportional_to}GeV (RHIC) and 262.2{+-}13 MeV in central Pb+Pb collisions at {radical}(s{sub NN})= 2.76{proportional_to}TeV (LHC). These {eta}/s values are 2.5 and 3.3 times the AdS/CFT conjectured lower bound 1/4{pi} but are consistent with theoretical {eta}/s estimates for a strongly coupled QGP. (orig.)

  9. BROOKHAVEN: Looking towards heavy ion physics

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    July 11-22 were busy days at Brookhaven with a two-week Summer Institute on Relativistic Heavy Ion Physics. After an intensive first week designed to introduce young physicists to high energy heavy ion research, the second week was a workshop on detector technology for Brookhaven's proposed Relativistic Heavy Ion Collider (RHIC), attended by some 150 physicists

  10. Central collisions of heavy ions

    International Nuclear Information System (INIS)

    Fung, Sun-yiu.

    1991-10-01

    This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1990 to September 30, 1991. During this period, our program focuses on particle production at AGS energies, and correlation studies at the Bevalac in nucleus central collisions. We participated in the preparation of letters of intent for two RHIC experiments -- the OASIS proposal and the Di-Muon proposal -- and worked on two RHIC R ampersand D efforts -- a silicon strip detector project and a muon-identifier project. A small fraction of time was also devoted to physics programs outside the realm of heavy ion reactions by several individuals

  11. Latest Results of Open Heavy Flavor and Quarkonia from the PHENIX Experiment at RHIC

    International Nuclear Information System (INIS)

    Nouicer, Rachid

    2017-01-01

    The PHENIX Collaboration carries out a comprehensive physics program which studies heavy flavor production in relativistic heavy ion collisions at RHIC. The discovery at RHIC of large high-p T suppression and flow of electrons from heavy quarks flavors have altered our view of the hot and dense matter formed in central Au+Au collisions at GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. In recent years, the PHENIX has installed a silicon vertex tracker both in central rapidity (VTX) and in forward rapidity (FVTX) regions, and has collected large data samples. These two silicon trackers enhance the capability of heavy flavor measurements via precision tracking. This paper summarizes some of the latest PHENIX results concerning open heavy flavor and quarkonia production as a function of rapidity, energy and system size. (paper)

  12. [Relativistic heavy ion research

    International Nuclear Information System (INIS)

    1991-01-01

    The present document describes our second-year application for a continuation grant on relativistic heavy-ion research at Nevis Laboratories, Columbia University, over the two-year period starting from November 15, 1990. The progress during the current budget year is presented. This year, construction of RHIC officially began. As a result, the entire Nevis nuclear physics group has made a coherent effort to create new proposal for an Open Axially Symmetric Ion Spectrometer (OASIS) proposal. Future perspectives and our plans for this proposal are described

  13. Relativistic heavy ion physics

    International Nuclear Information System (INIS)

    Hill, J.C.; Wohn, F.K.

    1993-01-01

    This is a progress report for the period May 1992 through April 1993. The first section, entitled ''Purpose and Trends, gives background on the recent trends in the research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled ''Physics Research Progress'', is divided into four parts: participation in the program to develop a large detector named PHENIX for the RHIC accelerator; joining E864 at the AGS accelerator and the role in that experiment; progress made in the study of electromagnetic dissociation highlight of this endeavor is an experiment carried out with the 197 Au beam from the AGS accelerator in April 1992; progress in completion of the nuclear structure studies. In the final section a list of publications, invited talks, and contributed talks is given

  14. Laser ion source with long pulse width for RHIC-EBIS

    International Nuclear Information System (INIS)

    Kondo, K.; Kanesue, T.; Okamura, M.

    2011-01-01

    The Electron Beam Ion Source (EBIS) at Brookhaven National Laboratory is a new heavy ion-projector for RHIC and NASA Space Radiation Laboratory. Laser Ion Source (LIS) with solenoid can supply many kinds of ion from solid targets and is suitable for long pulse length with low current as ion provider for RHIC-EBIS. In order to understand a plasma behavior for fringe field of solenoid, we measure current, pulse width and total ion charges by a new ion probe. The experimental result indicates that the solenoid confines the laser ablation plasma transversely. Laser ion source needs long pulse length with limited current as primary ion provider for RHIC-EBIS. New ion probe can measure current distribution for the radial positions along z axis. The beam pulse length is not effected by magnetic field strength. However, the currents and charges decay with the distance from the end of solenoid. These results indicate that solenoid field has important role for plasma confinement not longitudinally but transversely and solenoid is able to have long pulse length with sufficient total ion charges. Moreover, the results are useful for a design of the extraction system for RHIC-EBIS.

  15. Relativistic heavy ion physics

    International Nuclear Information System (INIS)

    Hill, J.C.; Wohn, F.K.

    1992-01-01

    In 1992 a proposal by the Iowa State University experimental nuclear physics group entitled ''Relativistic Heavy Ion Physics'' was funded by the US Department of Energy, Office of Energy Research, for a three-year period beginning November 15, 1991. This is a progress report for the first six months of that period but, in order to give a wider perspective, we report here on progress made since the beginning of calendar year 1991. In the first section, entitled ''Purpose and Trends,'' we give some background on the recent trends in our research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled, ''Physics Research Programs,'' is divided into three parts. First, we discuss our participation in the program to develop a large detector named PHENIX for the RHIC accelerator. Second, we outline progress made in the study of electromagnetic dissociation (ED). A highlight of this endeavor is experiments carried out with the 197 Au beam from the AGS accelerator in April 1991. Third, we discuss progress in completion of our nuclear structure studies. In the final section a list of publications, invited talks and contributed talks starting in 1991 is given

  16. Chemical and dynamics properties of heavy ion collisions at RHIC energies by the measurement of the production of the doubly strange baryons in the STAR experiment; Proprietes chimiques et dynamiques des collisions d'ions lourds aux energies du RHIC par la mesure de la production des baryons doublement etranges dans l'experience STAR

    Energy Technology Data Exchange (ETDEWEB)

    Estienne, M

    2005-04-15

    Lattice QCD calculations predict, at {mu}{sub B} {approx} 0, a crossover from ordinary hadronic matter to a Quark Gluon Plasma. Heavy ion collisions have been proposed to recreate it in the laboratory and to study its properties. The Au+Au, d+Au collisions at {radical}(S{sub NN}) = 200 GeV and the Au+Au ones at 62.4 GeV delivered at RHIC have been probed by the measurement of the {xi} particles in the STAR experiment. Their yield evolution with collision energy and system size gives size to the chemical properties of the reaction in the framework of hadronic and statistical models. The {xi} R{sub CP} shows: (1) a meson/baryon dependence for 2 < {sub pT} < 5 GeV/c well reproduced by quark coalescence and recombination models, (2) the formation of a dense matter signed by a R{sub CP} suppression at {sub pT} > 3 GeV/c, (3) strong interactions between constituents suggesting the existence of strong collectivity in the medium. The {xi} transverse flow seems to be interesting to probe the early stage the collision with presumably partonic degrees of freedom. (author)

  17. High-energy high-luminosity electron-ion collider eRHIC

    International Nuclear Information System (INIS)

    Litvinenko, V.N.; Ben-Zvi, I.; Hammons, L.; Hao, Y.; Webb, S.

    2011-01-01

    In this paper, we describe a future electron-ion collider (EIC), based on the existing Relativistic Heavy Ion Collider (RHIC) hadron facility, with two intersecting superconducting rings, each 3.8 km in circumference. The replacement cost of the RHIC facility is about two billion US dollars, and the eRHIC will fully take advantage and utilize this investment. We plan adding a polarized 5-30 GeV electron beam to collide with variety of species in the existing RHIC accelerator complex, from polarized protons with a top energy of 325 GeV, to heavy fully-striped ions with energies up to 130 GeV/u. Brookhaven's innovative design, is based on one of the RHIC's hadron rings and a multi-pass energy-recovery linac (ERL). Using the ERL as the electron accelerator assures high luminosity in the 10 33 -10 34 cm -2 sec -1 range, and for the natural staging of eRHIC, with the ERL located inside the RHIC tunnel. The eRHIC will provide electron-hadron collisions in up to three interaction regions. We detail the eRHIC's performance in Section 2. Since first paper on eRHIC paper in 2000, its design underwent several iterations. Initially, the main eRHIC option (the so-called ring-ring, RR, design) was based on an electron ring, with the linac-ring (LR) option as a backup. In 2004, we published the detailed 'eRHIC 0th Order Design Report' including a cost-estimate for the RR design. After detailed studies, we found that an LR eRHIC has about a 10-fold higher luminosity than the RR. Since 2007, the LR, with its natural staging strategy and full transparency for polarized electrons, became the main choice for eRHIC. In 2009, we completed technical studies of the design and dynamics for MeRHIC with 3-pass 4 GeV ERL. We learned much from this evaluation, completed a bottom-up cost estimate for this $350M machine, but then shelved the design. In the same year, we turned again to considering the cost-effective, all-in-tunnel six-pass ERL for our design of the high-luminosity eRHIC. In it

  18. The energy dependence of pt angular correlations inferred from mean-pt fluctuation scale dependence in heavy ion collisions at the SPS and RHIC

    Czech Academy of Sciences Publication Activity Database

    Adams, J.; Bielčík, J.; Bielčíková, J.; Bysterský, Michal; Chaloupka, Petr; Jakl, P.; Kapitán, J.; Kushpil, Vasilij; Lednický, R.; Pachr, M.; Šumbera, Michal

    2007-01-01

    Roč. 34, č. 3 (2007), s. 451-465 ISSN 0954-3899 R&D Projects: GA ČR GA202/04/0793 Institutional research plan: CEZ:AV0Z10480505 Keywords : RHIC Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.485, year: 2007

  19. Search for (exotic) strange matter in the Star and Alice experiments with the ultra-relativistic heavy ion colliders RHIC and LHC; Recherche de matiere etrange (exotique) dans les experiences STAR et ALICE aupres des collisionneurs d'ions lourds ultra-relativistes RHIC et LHC

    Energy Technology Data Exchange (ETDEWEB)

    Vernet, R

    2006-02-15

    Ultra-relativistic heavy ion collisions offer the possibility to create conditions of temperature and density that could lead nuclear matter to a state of deconfined partons, the quark-gluon plasma. Strange baryon production is one of the essential observables to understand the mechanisms involved in the medium. Furthermore, theories predict a possible production of strange dibaryons, still hypothetical particles, from which one could draw important inferences in nuclear physics and astrophysics. The experiments STAR at RHIC, and, soon, ALICE at LHC, allow one to search for strange baryons and dibaryons. The STAR sensitivity to the metastable dibaryon H{sup 0} in the {lambda}p{pi}{sup -} decay mode was calculated thanks to a dedicated simulation. The search for the H{sup 0}, and for the {xi}{sup -}p resonance as well, was performed in the STAR Au+Au data at {radical}(s{sub NN}) = 62.4 and 200 GeV energies. Within the framework of the preparation of ALICE to the first Pb+Pb data, the detector ability to identify strange baryons {lambda}, {xi} and {omega}, was estimated via several simulations. So as to favour the reconstruction efficiency in a large range of transverse momentum while keeping a reasonable S/B ratio, the influence of the geometrical selections and the size of the reconstruction zone was emphasized. The ALICE sensitivities to the metastable strange dibaryons H{sup 0} and ({xi}{sup 0}p){sub b} and to the {lambda}{lambda} resonance were calculated as well. (author)

  20. Non-perturbative Heavy-Flavor Transport at RHIC and LHC

    Energy Technology Data Exchange (ETDEWEB)

    He, Min, E-mail: mhe@comp.tamu.edu; Fries, Rainer J.; Rapp, Ralf

    2013-08-15

    We calculate open heavy-flavor (HF) transport in relativistic heavy-ion collisions by applying a strong-coupling treatment in both macro- and microscopic dynamics (hydrodynamics and non-perturbative diffusion interactions). The hydrodynamic medium evolution is quantitatively constrained by bulk and multi-strange hadron spectra and elliptic flow. The heavy quark transport coefficient is evaluated from a non-perturbative T-matrix approach in the Quark–Gluon Plasma which, close to the critical temperature, leads to resonance formation and feeds into the recombination of heavy quarks on a hydrodynamic hypersurface. In the hadronic phase, the diffusion of HF mesons is obtained from effective hadronic theory. We compute observables at RHIC and LHC for non-photonic electrons and HF mesons, respectively.

  1. Detectors for relativistic heavy-ion experiments

    International Nuclear Information System (INIS)

    Braun-Munzinger, P.; Cleland, W.; Young, G.R.

    1989-04-01

    We present in some detail an overview of the detectors currently used in relativistic heavy-ion research at the BNL AGS and the CERN SPS. Following that, a detailed list of RandD projects is given, including specific areas of work which need to be addressed in preparation for further experiments at the AGS and SPS for the upcoming experiments at RHIC

  2. Ultrarelativistic heavy ion collisions Theoretical overview

    International Nuclear Information System (INIS)

    Blaizot, Jean-Paul

    2006-01-01

    This is a short review of some theoretical aspects of the physics of ultra-relativistic heavy ion collisions. I review the main properties of the QCD phase diagram and recent developments in the physics of high gluon densities in the hadronic wavefunctions at high energy. Then I comment salient results obtained at RHIC

  3. Observation of the Antimatter Nuclei in Relativistic Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Yoo, I.-K.

    2013-01-01

    Recently antimatter hyper-triton nuclei ( 3 Λ¯ H ¯) and antimatter helium nuclei ( 4 2 He ¯ ) are discovered with the Solenoidal Tracker At RHIC detector in relativistic heavy ion collisions at Relativistic Heavy Ion Collider (RHIC) (STAR Collaboration in Science 328(5974):58-62, 2010; STAR Collaboration in Nature 473:353-356, 2011). In this presentation, discoveries of antimatter particle are historically scanned and the recent observations at RHIC are reported in details as well as potential possibilities of discovery of antimatter nuclei at ALICE. (author)

  4. Reconstruction and study of the multi-strange baryons in ultra-relativistic heavy ion collisions at a center-of-mass energy of 200 GeV, with the Star experiment at RHIC

    International Nuclear Information System (INIS)

    Faivre, J.

    2004-10-01

    The study of strangeness production is essential for the understanding of processes occurring in ultra-relativistic heavy ion collisions. Strangeness production is directly linked to the phase of deconfined partons that followed these collisions: the quark and gluon plasma. STAR, one of the 4 experiments at RHIC collider, is a perfect tool for studying the multi-strange Ξ and Ω particles. We have devised a Ξ and Ω reconstruction program using signals from the STAR time projection chamber. We have worked out a multi-variable selection method for extracting the signals from the combinative background: the linear discriminant analysis. We have applied it to Au-Au collisions at 200 GeV (in the center of mass frame) to improve the accuracy of previous results. The Ω and anti-Ω production rates have been obtained for 3 ranges of centrality as well as their radial flow and their kinetic uncoupling temperatures. The gain on the relative uncertainty is between 15 and 30% according to the variable. The average speed of the radial flow is 0.50 ± 0.02 and the kinetic uncoupling temperature is 132 ± 20 MeV which indicates that multi-strange baryons uncouple in hadronic medium earlier that lighter particles like pions, kaons and protons. However, uncertainty intervals remain too broad to draw strong conclusions. (A.C.)

  5. RHIC FY15 pp Run RHIC and AGS polarization analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Adams, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-20

    The polarization information is important for the spin physics program in Relativistic Heavy Ion Collider (RHIC). There are discrepancies between AGS and RHIC polarization measurements. First, the face value of AGS polarization is higher than RHIC ones in general. Second, the measured polarization profile (described by the profile ratio R) is stronger in AGS than in RHIC. This note analyzes the polarization data from FY15 pp run period. The results show that the differences between AGS and RHIC polarization measurements are reasonable, but the R value difference is puzzling. The difference between blue and yellow ring is worth of spin simulation to explain.

  6. Beam losses in heavy ion drivers

    CERN Document Server

    Mustafin, E R; Hofmann, I; Spiller, P J

    2002-01-01

    While beam loss issues have hardly been considered in detail for heavy ion fusion scenarios, recent heavy ion machine developments in different labs (European Organization for Nuclear Research (CERN), Gesellschaft fur Schwerionenforschung (GSI), Institute for Theoretical and Experimental Physics (ITEP), Relativistic Heavy-Ion Collider (RHIC)) have shown the great importance of beam current limitations due to ion losses. Two aspects of beam losses in heavy ion accelerators are theoretically considered: (1) secondary neutron production due to lost ions, and (2) vacuum pressure instability due to charge exchange losses. Calculations are compared and found to be in good agreement with measured data. The application to a Heavy-Ion Driven Inertial Fusion (HIDIF) scenario is discussed. 12 Refs.

  7. Relativistic heavy ion research

    International Nuclear Information System (INIS)

    1992-01-01

    Experimental work is reported on the following topics: transverse energy production in 10.7-GeV/c/u Au on Au collisions; first results on delta ray production and charged particle multiplicities with the Au beam at 10.7 GeV/c/A; preliminary studies on the feasibility of flow measurement with the E814 participant calorimeter; preliminary results from the E877 telescope; and low-p t baryon distribution in Si+Al, Pb collisions at the AGS. Then the status of the Hadronic Calorimeter project of AGS Experiment E864 (ECOS--Exotic Composite Object Spectrometer) is reviewed. Next, the same is done for work of the STAR RHIC collaboration (Silicon Vertex Tracker (SVT) project evolution and development in FY92, SVT software results from 1992, SVT instrumentation, FY93 SVT pion test beam). The instrumentation section deals with the design and installation of a target rapidity telescope for BNL experiment 814/877 and a repair scheme for the E814/E877 participant calorimeter. Finally, the theory part addresses bosonic kinetics: thermalization of mesons and the pion p perpendicular spectrum in ultrarelativistic heavy-ion collisions and non-equilibrium properties of hadronic mixtures

  8. Heavy flavours in ultra-relativistic heavy ions collisions

    International Nuclear Information System (INIS)

    Rosnet, Ph.

    2008-01-01

    The ultra-relativistic collisions of heavy ions are the today's only means to tackle in laboratory conditions the phase diagram in quantum chromodynamics and the strong interaction. The most recent theoretical studies predict a phase transition between the cold nuclear matter (a hadronic gas) and a plasma of quarks and gluons. Heavy flavour can characterize the nuclear matter produced in a heavy ion collision as well as its spatial-temporal evolution. Their study can be made through their decay into muons. The first part of this work presents the issue of ultra-relativistic heavy ion collisions and the role of heavy flavours. In the second part the author reviews the results of experiments performed at RHIC and particularly presents the analysis of the mass spectrum of dimuons in the Phenix experiment. The third part describes the muon trigger system of the Alice experiment at CERN and the expected performances for the study of di-muons

  9. Energy Loss of Coasting Gold Ions and Deuterons in RHIC

    CERN Document Server

    Abreu, N P; Brown, K; Burkhardt, H; Butler, J; Fischer, W; Harvey, M; Tepikian, S

    2008-01-01

    The total energy loss of coasting gold ion beams at two different energies and deuterons at one energy were measured at RHIC, corresponding to a gamma of 75.2, 107.4 and 108.7 respectively. We describe the experiment and observations and compare the measured total energy loss with expectations from ionization losses at the residual gas, the energy loss due to impedance and synchrotron radiation. We find that the measured energy losses are below what is expected from free space synchrotron radiation. We believe that this shows evidence for suppression of synchrotron radiation which is cut off at long wavelength by the presence of the conducting beam pipe.

  10. The Compact Muon Solenoid Heavy Ion program

    International Nuclear Information System (INIS)

    Yepes, Pablo

    2005-01-01

    The Pb-Pb center of mass energy at the LHC will exceed that of Au-Au collisions at RHIC (Relativistic Heavy Ion Collider) by nearly a factor of 30, providing exciting opportunities for addressing unique physics issues in a completely new energy domain. The interest of the Heavy Ion (HI) Physics at LHC is discussed in more detail in the LHC-USA white paper and the Compact Muon Solenoid (CMS) Heavy Ion proposal. A few highlights are presented in this document. Heavy ion collisions at LHC energies will explore regions of energy and particle density significantly beyond those reachable at RHIC. The energy density of the thermalized matter created at the LHC is estimated to be 20 times higher than at RHIC, implying an initial temperature, which is greater than at RHIC by more than a factor of two. The higher density of produced partons also allows a faster thermalization. As a consequence, the ratio of the quark-gluon plasma lifetime to the thermalization time increases by a factor of 10 over RHIC. Thus the hot, dense systems created in HI collisions at the LHC spend most of the time in a purely partonic state. The longer lifetime of the quark-gluon plasma state widens significantly the time window available to probe it experimentally. RHIC experiments have reported evidence for jet production in HI collisions and for suppression of high p T particle production. Those results open a new field of exploration of hot and dense nuclear matter. Even though RHIC has already broken ground, the production rates for jets with p T > 30 GeV are several orders of magnitude larger at the LHC than at RHIC, allowing for systematic studies with high statistics in a clean kinematic region. High p T quark and gluon jets can be used to study the hot hadronic medium produced in HI interactions. The larger Q 2 causes jets to materialize very soon after the collision. They are thus embedded in and propagate through the dense environment as it forms and evolves. Through their interactions

  11. Brookhaven: RHIC magnets

    International Nuclear Information System (INIS)

    Heppelman, Steve

    1990-01-01

    Last year, Brookhaven's proposal for a Relativistic Heavy Ion Collider - RHIC - was scrutinized by the US Department of Energy and deemed to be ready for construction funding. The hope is that the money will be voted soon so that construction can get underway at the start of the new US financial year in October. The 3.8 kilometre RHIC tunnel was completed ten years ago for the doomed Isabelle/CBA proton collider project

  12. Brookhaven: Ready for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Ludlam, Tom

    1990-04-15

    With its RHIC - Relativistic Heavy Ion Collider - project now part of the budget proposed by US President Bush for fiscal year 1991, Brookhaven is about to start construction of a unique kind of high energy collider. At a time when accelerators handling particles - electrons, protons and their antimatter counterparts - are boosting beam energies for microscopes to probe evershorter distances, RHIC is envisioned as a great pressure-cooker for strongly interacting matter.

  13. Brookhaven: Ready for RHIC

    International Nuclear Information System (INIS)

    Ludlam, Tom

    1990-01-01

    With its RHIC - Relativistic Heavy Ion Collider - project now part of the budget proposed by US President Bush for fiscal year 1991, Brookhaven is about to start construction of a unique kind of high energy collider. At a time when accelerators handling particles - electrons, protons and their antimatter counterparts - are boosting beam energies for microscopes to probe evershorter distances, RHIC is envisioned as a great pressure-cooker for strongly interacting matter

  14. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  15. Jets in heavy ion collisions with CMS

    CERN Document Server

    Salur, Sevil

    2016-01-01

    Jet physics in heavy ion collisions is a rich field which has been rapidly evolving since the first observations of medium interactions at RHIC through back-to-back hadron correlations and at LHC via reconstructed jets. In order to completely characterize the final state via jet-medium interactions and distinguish between competing energy loss mechanisms complementary and robust jet observables are investigated. Latest developments of jet finding techniques and their applications to heavy ion environments are discussed with an emphasis given on experimental results from CMS experiment.

  16. Overview of electromagnetic probe production in ultra-relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Paquet, Jean-François

    2017-01-01

    An introductory overview of electromagnetic probe production in ultra-relativistic heavy ion collisions is provided. Experimental evidence supporting the production of thermal photons and dileptons in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) are reviewed. Thermal electromagnetic probe production from hydrodynamical models of collisions is discussed. (paper)

  17. From many body wee partons dynamics to perfect fluid: a standard model for heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Venugopalan, R.

    2010-07-22

    We discuss a standard model of heavy ion collisions that has emerged both from experimental results of the RHIC program and associated theoretical developments. We comment briefly on the impact of early results of the LHC program on this picture. We consider how this standard model of heavy ion collisions could be solidified or falsified in future experiments at RHIC, the LHC and a future Electro-Ion Collider.

  18. Spin Physics at RHIC

    International Nuclear Information System (INIS)

    Bland, L.C.

    2003-01-01

    The physics goals that will be addressed by colliding polarized protons at the Relativistic Heavy Ion Collider (RHIC) are described. The RHIC spin program provides a new generation of experiments that will unfold the quark, anti-quark and gluon contributions to the proton's spin. In addition to these longer term goals, this paper describes what was learned from the first polarized proton collisions at √(s)=200 GeV. These collisions took place in a five-week run during the second year of RHIC operation

  19. RHIC Sextant Test -- Physics and performance

    International Nuclear Information System (INIS)

    Wei, J.; Fischer, W.; Ahrens, L.

    1997-01-01

    This paper presents beam physics and machine performance results of the Relativistic Heavy Ion Collider (RHIC) Sextant and AGS-to-RHIC (AtR) transfer line during the Sextant Test in early 1997. Techniques used to measure both machine properties (difference orbits, dispersion, and beamline optics) and beam parameters (energy, intensity, transverse and longitudinal emittances) are described. Good agreement was achieved between measured and design lattice optics. The gold ion beam quality was shown to approach RHIC design requirements

  20. Field quality evaluation of the superconducting magnets of the relativistic heavy ion collider

    International Nuclear Information System (INIS)

    Wei, J.; Gupta, R.C.; Jain, A.; Peggs, S.G.; Trahern, C.G.; Trbojevic, D.; Wanderer, P.

    1995-01-01

    In this paper, the authors first present the procedure established to evaluate the field quality, quench performance, and alignment of the superconducting magnets manufactured for the Relativistic Heavy Ion Collider (RHIC), and then discuss the strategies used to improve the field quality and to minimize undesirable effects by sorting the magnets. The field quality of the various RHIC magnets is briefly summarized

  1. Photon and dilepton production in high-energy heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... Photons; dileptons; Relativistic Heavy Ion Collider; Large Hadron Collider; quark ... the collisions produces relatively high pT photons, often referred to ..... energy have been found for identified charged hadrons at RHIC [25].

  2. Intriguing aspects in baryon production at relativistic heavy-ion collider

    Indian Academy of Sciences (India)

    The commencement of the relativistic heavy ion collider (RHIC) operation at Brookhaven ... that an unprecedented high-energy density has been achieved in ... for charged particles and measurement of ionization energy loss (dE/dx) for limited ...

  3. Nuclear research with heavy ions

    International Nuclear Information System (INIS)

    Kaplan, M.

    1991-08-01

    This report discusses the following topics: Asymmetric fission of 149 Tb* from the finite-range, rotating-liquid-drop model: mean total kinetic energies for binary fragmentation; charged-particle evaporation from hot composite nuclei: evidence over a broad Z range for distortions from cold nuclear profiles; the role of reversed kinematics and double kinematic solutions in nuclear reactions studies; production of intermediate-mass-fragments in the reaction 98 Mo + 51 V at an excitation energy E* = 224-MeV; emission of light charged particles in the reaction 344-MeV 28 Si + 121 Sb; continued developments of the statistical evaporation code LILITA N90; and planning for heavy-ion-collision studies at very high energies: the STAR collaboration at RHIC

  4. QCD in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Iancu, Edmond [IPhT, Saclay (France)

    2014-07-01

    These lectures provide a modern introduction to selected topics in the physics of ultrarelativistic heavy ion collisions which shed light on the fundamental theory of strong interactions, the Quantum Chromodynamics. The emphasis is on the partonic forms of QCD matter which exist in the early and intermediate stages of a collision -- the colour glass condensate, the glasma, and the quark-gluon plasma -- and on the effective theories that are used for their description. These theories provide qualitative and even quantitative insight into a wealth of remarkable phenomena observed in nucleus-nucleus or deuteron-nucleus collisions at RHIC and/or the LHC, like the suppression of particle production and of azimuthal correlations at forward rapidities, the energy and centrality dependence of the multiplicities, the ridge effect, the limiting fragmentation, the jet quenching, or the dijet asymmetry.

  5. QCD in heavy ion collisions

    International Nuclear Information System (INIS)

    Iancu, Edmond

    2014-01-01

    These lectures provide a modern introduction to selected topics in the physics of ultrarelativistic heavy ion collisions which shed light on the fundamental theory of strong interactions, the Quantum Chromodynamics. The emphasis is on the partonic forms of QCD matter which exist in the early and intermediate stages of a collision -- the colour glass condensate, the glasma, and the quark-gluon plasma -- and on the effective theories that are used for their description. These theories provide qualitative and even quantitative insight into a wealth of remarkable phenomena observed in nucleus-nucleus or deuteron-nucleus collisions at RHIC and/or the LHC, like the suppression of particle production and of azimuthal correlations at forward rapidities, the energy and centrality dependence of the multiplicities, the ridge effect, the limiting fragmentation, the jet quenching, or the dijet asymmetry

  6. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    Science.gov (United States)

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  7. Nuclear Effects on Heavy Boson Production at RHIC and LHC

    CERN Document Server

    Zhang, X; Zhang, Xiaofei; Fai, George

    2002-01-01

    We predict W and Z transverse momentum distributions from proton-proton and nuclear collisions at RHIC and LHC. A resummation formalism with power corrections to the renormalization group equations is used. The dependence of the resummed QCD results on the non-perturbative input is very weak for the systems considered. Shadowing effects are discussed and found to be unimportant at RHIC, but important for LHC. We study the enhancement of power corrections due to multiple scattering in nuclear collisions and numerically illustrate the weak effects of the dependence on the nuclear mass.

  8. The Relativistic Heavy Ion Collider control system

    International Nuclear Information System (INIS)

    Clifford, T.S.; Barton, D.S.; Oerter, B.R.

    1997-01-01

    The Relativistic Heavy Ion Collider control system has been used in the commissioning of the AGS to RHIC transfer line and in the first RHIC sextant test. Much of the controls infrastructure for networks and links has been installed throughout the collider. All of the controls hardware modules needed to be built for early RHIC operations have been designed and tested. Many of these VME modules are already being used in normal AGS operations. Over 150 VME based front end computers and device controllers will be installed by the Summer of 1998 in order to be ready for Fall of 1998. A few features are being added to the front end computer core software. The bulk of the Accelerator Device Objects (ADOs) which are instantiated in the FECs, have been written and tested in the early commissioning. A configuration database has been designed. Generic control and display of ADO parameters via a spreadsheet like program on the console level computers was provided early on in the control system development. User interface tools that were developed for the AGS control system have been used in RHIC applications. Some of the basic operations programs, like alarm display and save/restore, that are used in the AGS operations have been or will be expanded to support RHIC operations. A model for application programs which involves a console level manager servicing ADOs have been verified with a few RHIC applications. More applications need to be written for the Fall of 1998 commissioning effort. A sequencer for automatic control of the fill is being written with the expectation that it will be useful in early commissioning

  9. Heavy-ion radiography

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Tobias, C.A.; Holley, W.R.; Benton, E.V.; Woodruff, K.H.; MacFarland, E.W.

    1983-01-01

    High energy, heavy-ion beams offer superior discrimination of tissue electron densities at very low radiation doses. This characteristic has potential for diagnostic medical imaging of neoplasms arising in the soft tissues and organs because it can detect smaller inhomogeneities than x rays. Heavy-ion imaging may also increase the accuracy of cancer radiotherapy planning involving use of accelerated charged particles. In the current physics research program of passive heavy-ion imaging, critical modulation transfer function tests are being carried out in heavy-ion projection radiography and heavy-ion computerized tomography. The research goal is to improve the heavy-ion imaging method until it reaches the limits of its theoretical resolution defined by range straggling, multiple scattering, and other factors involved in the beam quality characteristics. Clinical uses of the imaging method include the application of heavy-ion computerized tomography to heavy-ion radiotherapy planning, to the study of brain tumors and other structures of the head, and to low-dose heavy-ion projection mammography, particularly for women with dense breasts where other methods of diagnosis fail. The ions used are primarily 300 to 570 MeV/amu carbon and neon ions accelerated at the Lawrence Berkeley Laboratory Bevalac

  10. Heavy-ion targets

    International Nuclear Information System (INIS)

    Adair, H.L.; Kobisk, E.H.

    1985-01-01

    This chapter examines the characteristics of targets required in heavy-ion accelerator physics experiments. The effects of target parameters on heavy-ion experimental results are reviewed. The target fabrication and characterization techniques used to minimize experimental problems during heavy-ion bombardment are described. Topics considered include target thickness and uniformity, target lifetime, target purity, substrate materials, Doppler shift effects, metal preparations, and target preparation methods

  11. Recent relativistic heavy ion collider results on photon, dilepton and ...

    Indian Academy of Sciences (India)

    sNN ≈ 200. GeV. Table 1 shows a summary of the first eight years of PHENIX data taking, one of the two larger experiments (PHENIX and STAR) among the four experiments. (PHENIX, STAR, BRAHMS and PHOBOS) running at RHIC. Among the observables used to study heavy ion collisions, electromagnetic probes.

  12. Highlights from STAR heavy ion program arXiv

    CERN Document Server

    Okorokov, V.A.

    Recent experimental results obtained in STAR experiment at the Relativistic heavy-ion collider (RHIC) with ion beams will be discussed. Investigations of different nuclear collisions in some recent years focus on two main tasks, namely, detail study of quark-gluon matter properties and exploration of the quantum chromodynamics (QCD) phase diagram. Results at top RHIC energy show clearly the collective behavior of heavy quarks in nucleus-nucleus interactions. Jet and heavy hadron measurements lead to new constraints for energy loss models for various flavors. Heavy-ion collisions are unique tool for the study of topological properties of theory as well as the magneto-hydrodynamics of strongly interacting matter. Experimental results obtained for discrete QCD symmetries at finite temperatures confirm indirectly the topologically non-trivial structure of QCD vacuum. Finite global vorticity observed in non-central Au+Au collisions can be considered as important signature for presence of various chiral effects in ...

  13. BROOKHAVEN: RHIC installation

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This summer, the first superconducting magnet was installed in 3.8 kilometre tunnel for Brookhaven's RHIC heavy ion collider (October, page 31). Manufactured by Northrop Grumman's Electronics and System Integration Division, the magnet is the first of RHIC's 373 dipoles. In addition to the dipoles, Northrop Grumman will also provide 432 RHIC quadrupoles. The first quadrupole was delivered on 8 April, a month before the first dipole arrived for onsite testing prior to installation. RHIC will need 1,700 superconducting magnets - dipoles, quadrupoles, sextupoles and correcting magnets, 1,200 of which will be built by industry and the rest built at Brookhaven. The 300 sextupoles are being supplied by Everson Electric

  14. Strangeness production in heavy ion collisions

    International Nuclear Information System (INIS)

    Redlich, K.

    2001-05-01

    Strangeness production in heavy ion collisions is discussed in a broad energy range from SIS to RHIC. In the whole energy range particle yields are showing high level of chemical equilibration which can be described by the unified freezeout conditions of fixed energy/particle ≅ 1GeV. The statistical model within the canonical formulation of strangeness conservation provides a framework to describe the observed enhancement of (multi)strange particles from p+A to A+A collisions measured at the SPS energy and predicts that this enhancement should be larger for decreasing collision energy. However, only at the SPS and RHIC chemical freezeout temperature is consistent within error with the critical value required for deconfinement and simultaneously strangeness is uncorrelated and distributed in the whole volume of the fireball. (orig.)

  15. Heavy ion fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1986-01-01

    This report on the International Symposium on Heavy Ion Fusion held May 27-29, 1986 summarizes the problems and achievements in the areas of targets, accelerators, focussing, reactor studies, and system studies. The symposium participants recognize that there are large uncertainties in Heavy Ion Fusion but many of them are also optimistic that HIF may ultimately be the best approach to fusion

  16. Heavy ion physics

    International Nuclear Information System (INIS)

    Kalpakchieva, R.; Cherepanov, E.A.

    1993-01-01

    The international school-seminar on heavy ion physics had been organized in Dubna in may of 1993. The scientific program of reports covers the following main topics: synthesis and properties of heavy nuclei; synthesis and investigation of properties of exotic nuclei; experiments with radioactive nuclear beams; interaction between complex nuclei at low and intermediate energies. It also includes reports on laser spectroscopy and exotic nuclear beams, on some application of heavy ion beams for the problems of solid state physics, on construction of multidetector facilities and on developing of heavy ion accelerator complexes. Short communication

  17. THE RHIC SEQUENCER

    International Nuclear Information System (INIS)

    VAN ZEIJTS, J.; DOTTAVIO, T.; FRAK, B.; MICHNOFF, R.

    2001-01-01

    The Relativistic Heavy Ion Collider (RHIC) has a high level asynchronous time-line driven by a controlling program called the ''Sequencer''. Most high-level magnet and beam related issues are orchestrated by this system. The system also plays an important task in coordinated data acquisition and saving. We present the program, operator interface, operational impact and experience

  18. Theoretical Status of the RHIC Program

    International Nuclear Information System (INIS)

    Jalilian-Marian, Jamal

    2006-01-01

    Since the beginning of its operation, the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Lab has produced a wealth of exciting and interesting results. I give a brief overview of the theoretical aspects of the main results from the RHIC program

  19. Results from STAR experiment at RHIC

    Indian Academy of Sciences (India)

    We present some of the important experimental results from nucleus–nucleus collision studies carried out by the STAR experiment at Relativistic Heavy Ion Collider (RHIC). The results suggests that central Au+Au collisions at RHIC has produced a dense and rapidly thermalizing matter with initial energy densities above the ...

  20. Particle production in heavy ion collisions

    International Nuclear Information System (INIS)

    Braun-Munzinger, P.; Redlich, K.; Wroclaw Univ.; Stachel, J.

    2003-04-01

    The status of thermal model descriptions of particle production in heavy ion collisions is presented. We discuss the formulation of statistical models with different implementation of the conservation laws and indicate their applicability in heavy ion and elementary particle collisions. We analyze experimental data on hadronic abundances obtained in ultra-relativistic heavy ion collisions, in a very broad energy range starting from RHIC/BNL (√(s) = 200 A GeV), SPS/CERN (√(s) ≅ 20 A GeV) up to AGS/BNL (√(s) ≅ 5 A GeV) and SIS/GSI (√(s) ≅ 2 A GeV) to test equilibration of the fireball created in the collision. We argue that the statistical approach provides a very satisfactory description of experimental data covering this wide energy range. Any deviations of the model predictions from the data are indicated. We discuss the unified description of particle chemical freeze-out and the excitation functions of different particle species. At SPS and RHIC energy the relation of freeze-out parameters with the QCD phase boundary is analyzed. Furthermore, the application of the extended statistical model to quantitative understanding of open and hidden charm hadron yields is considered. (orig.)

  1. ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    2001-01-01

    The Accelerator Collider Department (CAD) at Brookhaven National Laboratory is operating the Relativistic Heavy Ion Collider (RHIC), which includes the dual-ring, 3.834 km circumference superconducting collider and the venerable AGS as the last part of the RHIC injection chain. CAD is planning on a luminosity upgrade of the machine under the designation RHIC II. One important component of the RHIC II upgrade is electron cooling of RHIC gold ion beams. For this purpose, BNL and the Budker Institute of Nuclear Physics in Novosibirsk entered into a collaboration aimed initially at the development of the electron cooling conceptual design, resolution of technical issues, and finally extend the collaboration towards the construction and commissioning of the cooler. Many of the results presented in this paper are derived from the Electron Cooling for RHIC Design Report [1], produced by the, BINP team within the framework of this collaboration. BNL is also collaborating with Fermi National Laboratory, Thomas Jefferson National Accelerator Facility and the University of Indiana on various aspects of electron cooling

  2. ELECTRON COOLING FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI,I.

    2001-05-13

    The Accelerator Collider Department (CAD) at Brookhaven National Laboratory is operating the Relativistic Heavy Ion Collider (RHIC), which includes the dual-ring, 3.834 km circumference superconducting collider and the venerable AGS as the last part of the RHIC injection chain. CAD is planning on a luminosity upgrade of the machine under the designation RHIC II. One important component of the RHIC II upgrade is electron cooling of RHIC gold ion beams. For this purpose, BNL and the Budker Institute of Nuclear Physics in Novosibirsk entered into a collaboration aimed initially at the development of the electron cooling conceptual design, resolution of technical issues, and finally extend the collaboration towards the construction and commissioning of the cooler. Many of the results presented in this paper are derived from the Electron Cooling for RHIC Design Report [1], produced by the, BINP team within the framework of this collaboration. BNL is also collaborating with Fermi National Laboratory, Thomas Jefferson National Accelerator Facility and the University of Indiana on various aspects of electron cooling.

  3. Heavy-ion dosimetry

    International Nuclear Information System (INIS)

    Schimmerling, W.

    1980-03-01

    This lecture deals with some of the more important physical characteristics of relativistic heavy ions and their measurement, with beam delivery and beam monitoring, and with conventional radiation dosimetry as used in the operation of the BEVALAC biomedical facility for high energy heavy ions (Lyman and Howard, 1977; BEVALAC, 1977). Even so, many fundamental aspects of the interaction of relativistic heavy ions with matter, including important atomic physics and radiation chemical considerations, are not discussed beyond the reminder that such additional understanding is required before an adequte perspective of the problem can be attained

  4. Polarized proton collider at RHIC

    International Nuclear Information System (INIS)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S.Y.; Luccio, A.; MacKay, W.W.; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A.N.

    2003-01-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998, reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to √s=500 GeV

  5. Photon and dilepton production in high-energy heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... The recent results on direct photons and dileptons in high-energy heavy-ion collisions, obtained particularly at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) are reviewed. The results are new not only in terms of the probes, but also in terms of the precision. We shall discuss the ...

  6. Physics and experiments at RHIC

    International Nuclear Information System (INIS)

    Young, G.R.

    1995-01-01

    The Relativistic Heavy Ion Collider (RHIC), under construction at Brookhaven National Laboratory, will be the site of a series of experiments seeking to discover the quark-gluon plasma and elucidate its properties. Several observables should exhibit characteristic behaviors if a quark-gluon plasma is indeed created in the laboratory. Four experiments are now under construction for RHIC to measure certain of these observables over kinematic ranges where effects due to quark-gluon plasma formation should be manifest

  7. Discovery of hydrodynamic behavior in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Hamagaki, Hideki

    2010-01-01

    The objective of high energy heavy ion collision experiments is creating high temperature and high density states to investigate hadron matter properties in such extreme conditions. Since the start of heavy ion collision experiments with BEVALAC, knowledge of the space-time evolution of collision has become indispensable for understanding the hadronic matter properties. This problem is reviewed here from the hydrodynamics view point. Although its importance has been generally recognized since the time of BEVALAC, the hydrodynamic description has not been successful because the hydrodynamic model assuming non-viscous or small fluid had not been considered to be enough to properly describe the space-time evolution of hadron-hadron collisions until the RHIC experiments. Items of the following titles are picked up and reviewed here: Development of heavy ion accelerations; Space-time evolution of hadron collision process and hydrodynamic model; Chemical freezing and kinematical freezing, including transverse momentum spectra at proton-proton collisions and particle spectra in heavy ion collisions; Elliptical azimuthal angle anisotropy; Discovery of hydrodynamic flow at BEVALAC; Problems of incident beam dependence of v2; Elliptic azimuthal angle anisotropy at RHIC; What is it that carries the elliptic anisotropy? Discussion of attainment of thermodynamical equilibrium state at RHIC; and finally investigations of fluid properties other than azimuthal anisotropy, such as, Fluid properties probed by heavy quarks and Observing QCD fluid responses. (S. Funahashi)

  8. Heavy ion accelerators

    International Nuclear Information System (INIS)

    Schmelzer, C.

    1974-01-01

    This review of the present state of work on heavy-ion accelerators pays particular attention to the requirements for nuclear research. It is divided into the following sections: single-particle versus collective acceleration, heavy-ion accelerators, beam quality, and a status report on the UNILAC facility. Among the topics considered are the recycling cyclotron, linacs with superconducting resonators, and acceleration to the GeV/nucleon range. (8 figures, 2 tables) (U.S.)

  9. DESIGN ISSUES FOR THE RHIC EBIS

    International Nuclear Information System (INIS)

    Beebe, E.; Alessi, J.; Kponou, A.; Pikin, A.; Prelec, K.; Kuznetzov, G.; Tiunov, M.

    2000-01-01

    Promising results are currently being obtained on the BNL Electron Beam Test Stand (EBTS), which is a prototype for the Relativistic Heavy Ion Collider (RHIC) EBIS. Based on the present-results, a proposal has been made regarding the general design of the RHIC EBIS. During the next year experiments will be made to investigate physics issues and beam properties important to the detailed design of the RHIC EBIS. Below we have outlined some of the physics issues to be explored experimentally, beam diagnostics that will be employed, and hardware modifications that are desired to go from the prototype stage to the RHIC EBIS

  10. Viscous photons in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Dion, Maxime; Paquet, Jean-Francois; Young, Clint; Jeon, Sangyong; Gale, Charles; Schenke, Bjoern

    2011-01-01

    Theoretical studies of the production of real thermal photons in relativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) are performed. The space-time evolution of the colliding system is modelled using music, a 3+1D relativistic hydrodynamic simulation, using both its ideal and viscous versions. The inclusive spectrum and its azimuthal angular anisotropy are studied separately, and the relative contributions of the different photon sources are highlighted. It is shown that the photon v 2 coefficient is especially sensitive to the details of the microscopic dynamics like the equation of state, the ratio of shear viscosity over entropy density, η/s, and to the morphology of the initial state.

  11. HIGH DENSITY QCD WITH HEAVY-IONS

    CERN Multimedia

    The Addendum 1 to Volume 2 of the CMS Physics TDR has been published The Heavy-Ion analysis group completed the writing of a TDR summarizing the CMS plans in using heavy ion collisions to study high density QCD. The document was submitted to the LHCC in March and presented in the Open Session of the LHCC on May 9th. The study of heavy-ion physics at the LHC is promising to be very exciting. LHC will open a new energy frontier in ultra-relativistic heavy-ion physics. The collision energy of heavy nuclei at sNN = 5.5 TeV will be thirty times larger than what is presently available at RHIC. We will certainly probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research programme is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). Such studies, with impressive experimental and theoretical advances in recent years thanks to the wealth of high-qua...

  12. Advanced composite materials and processes for the manufacture of SSC (Superconducting Super Collider) and RHIC (Relativistic Heavy Ion Collider) superconducting magnets used at cryogenic temperatures in a high radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Sondericker, J.H.

    1989-01-01

    Presently, BNL work on superconducting magnets centers mainly on the development of 17 meter length dipoles for the Superconducting Super Collider Project, approved for construction at Waxahatchie, Texas and 9.7 meter dipoles and quadrupoles for the Relativistic Heavy Ion Collider, a BNL project to start construction next year. This paper will discuss the role of composites in the manufacture of magnets, their operational requirements in cryogenic and radiation environments, and the benefits derived from their use. 13 figs.

  13. Advanced composite materials and processes for the manufacture of SSC [Superconducting Super Collider] and RHIC [Relativistic Heavy Ion Collider] superconducting magnets used at cryogenic temperatures in a high radiation environment

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1989-01-01

    Presently, BNL work on superconducting magnets centers mainly on the development of 17 meter length dipoles for the Superconducting Super Collider Project, approved for construction at Waxahatchie, Texas and 9.7 meter dipoles and quadrupoles for the Relativistic Heavy Ion Collider, a BNL project to start construction next year. This paper will discuss the role of composites in the manufacture of magnets, their operational requirements in cryogenic and radiation environments, and the benefits derived from their use. 13 figs

  14. Exploring new frontiers in nuclear and particle physics with the STAR detector at RHIC

    International Nuclear Information System (INIS)

    Hallman, T.J.

    1996-01-01

    The Solenoidal Tracker At RHIC (STAR) is a large acceptance collider detector scheduled to begin operation at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory in the fall of 1999. In the sections which follow, details of the STAR detector and physics program, as well as the status of the RHIC construction project will be presented

  15. Heavy ion acceleration at the AGS

    International Nuclear Information System (INIS)

    Lee, Y.Y.

    1989-01-01

    The Brookhaven AGS is alternating gradient synchrotron, 807 meters in circumference, which was originally designed for only protons. Using the 15 MV Brookhaven Tandem Van de Graaff as an injector, the AGS started to accelerate heavy ions of mass lighter than sulfur. Because of the relatively poor vacuum (∼10 -8 Torr), the AGS is not able to accelerate heavier ions which could not be fully stripped of electrons at the Tandem energy. When the AGS Booster, which is under construction, is completed the operation will be extended to all species of heavy ions including gold and uranium. Because ultra-high vacuum (∼10 -11 Torr) is planned, the Booster can accelerate partially stripped elements. The operational experience, the parameters, and scheme of heavy ion acceleration will be presented in detail from injection to extraction, as well as future injection into the new Relativistic Heavy Ion Collider (RHIC). A future plan to improve intensity of the accelerator will also be presented. 5 figs., 4 tabs

  16. Formation of heavy quarks in ultrarelativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Schneider, S.M.; Greiner, W.; Soff, G.

    1992-02-01

    We investigate the production of heavy quarks in continuum and bound states in nuclear collisions. Creation for free banti b and tanti t quark pairs and for bottomonium and toponium in the ground state are computed at RHIC, LHC and SSC energies. Central and peripheral heavy-ion collisions are discussed. For top quark creation we assumed a mass range of 90 GeV ≤ m t ≤ 250 GeV. The creation rate for top quarks on peripheral collisions is estimated to be by a factor 40 to 130 smaller compared with corresponding central collisions. For m t = 130 GeV we calculated a creation rate of about 4760 top quark pairs per day at the LHC (3.5 TeV/u) for Pb-Pb collisions. (orig.)

  17. PROPOSAL FOR AN EBIS BASED RHIC PREINJECTOR.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI,J.G.; BEEBE,E.; KPONOU,A.; PIKIN,A.; PRELEC,K.; RAPARIA,D.; RITTER,J.; ZHANG,S.Y.

    2000-11-06

    A proposed new heavy ion preinjector for RHIC is described. The progress made at BNL on the development of an Electron Beam Ion Source (EBIS) has increased our confidence that one can build a preinjector meeting RHIC requirements using an EBIS producing intermediate charge state heavy ions. A new RFQ and Linac will be required to accelerate beams from this source to an energy sufficient for injection into the AGS Booster. These are both straightforward devices, very similar to ones already in operation at other laboratories. Injection into the Booster will occur at the same location as the existing heavy ion injection from the Tandem Van de Graaff.

  18. Strange particle correlations measured by the Star experiment in ultra-relativistic heavy ion collisions a RHIC; Etude des correlations de particules etranges mesurees par l'experience STAR dans les collisions d'ions lourds ultra-relativistes au RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Renault, G

    2004-09-01

    Non-identical correlation functions allow to study the space-time evolution of the source of particles formed in ultra-relativistic heavy ion collisions. The STAR experiment is dedicated to probe the formation of a new state of nuclear matter called Quark Gluon Plasma. The proton - lambda correlation function is supposed to be more sensitive to bigger source sizes than the proton - proton because of the absence of the final state Coulomb interaction. In this thesis, proton - lambda, anti-proton - anti-lambda, anti-proton - lambda and proton - anti-lambda correlation functions are studied in Au+Au collisions at {radical}S{sub NN} = 200 GeV using an analytical model. The proton - lambda and anti-proton - anti-lambda correlation functions exhibit the same behavior as in previous measurements. The anti-proton - lambda and proton - anti-lambda correlation functions, measured for the first time, show a very strong signal corresponding to the baryon - anti-baryon annihilation channel. Parameterizing the correlation functions has allowed to characterize final state interactions. (author)

  19. Heavy ion physics at the LHC

    International Nuclear Information System (INIS)

    Vogt, R.

    2004-01-01

    The ion-ion center of mass energies at the LHC will exceed that at RHIC by nearly a factor of 30, providing exciting opportunities for addressing unique physics issues in a completely new energy domain. Some highlights of this new physics domain are presented here. We briefly describe how these collisions will provide new insights into the high density, low momentum gluon content of the nucleus expected to dominate the dynamics of the early state of the system. We then discuss how the dense initial state of the nucleus affects the lifetime and temperature of the produced system. Finally, we explain how the high energy domain of the LHC allows abundant production of ''rare'' processes, hard probes calculable in perturbative quantum chromodynamics, QCD. At the LHC, high momentum jets and b(bar b) bound states, the Υ family, will be produced with high statistics for the first time in heavy ion collisions

  20. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Friedman, A.

    1991-01-01

    This report describes the research status in the following areas of research in the field of heavy ion inertial fusion: (1) RF accelerators, storage rings, and synchrotrons; (2) induction linacs; (3) recirculation induction accelerator approach; (4) a new accelerator concept, the ''Mirrortron''; (5) general issues of transport, including beam merging, production of short, fat quadrupoles with nearly linear focusing, calculations of beam behaviour in image fields; 3-D electrostatic codes on drift compression with misalignments and transport around bends; (6) injectors, ion sources and RFQs, a.o., on the development of a 27 MHz RFQ to be used for the low energy portion of a new injector for all ions up to Uranium, and the development of a 2 MV carbon ion injector to provide 16 C + beams of 0.5 A each for ILSE; (7) beam transport from accelerator to target, reporting, a.o., the feasibility to suppress third-order aberrations; while Particle-in-Cell simulations on the propagation of a non-neutral ion beam in a low density gas identified photo-ionization by thermal X-rays from the target as an important source of defocusing; (9) heavy ion target studies; (10) reviewing experience with laser drivers; (11) ion cluster stopping and muon catalyzed fusion; (12) heavy ion systems, including the option of a fusion-fission burner. 1 tab

  1. Beam-beam observations in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Laboratory (BNL), Upton, NY (United States); White, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  2. Heavy-ion radiography

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Tobias, C.A.; Holley, W.R.; Benton, E.V.

    1981-01-01

    Heavy-particle radiography has clinical potential as a newly developed noninvasive low-dose imaging procedure that provides increased resolution of minute density differences in soft tissues of the body. The method utilizes accelerated high-energy ions, primarily carbon and neon, at the Bevalac accelerator at the Lawrence Berkeley Laboratory. The research program for medicine utilizes heavy-ion radiography for low-dose mammography, for treatment planning for cancer patients, and for imaging and accurate densitometry of skeletal structures, brain and spinal neoplasms, and the heart. The potential of heavy-ion imaging, and particularly reconstruction tomography, is now proving to be an adjunct to existing diagnostic imaging procedures in medicine, both for applications to the diagnosis, management and treatment of clinical cancer in man, and for the early detection of small soft-tissue tumors at low radiation dose

  3. Heavy ion storage rings

    International Nuclear Information System (INIS)

    Schuch, R.

    1987-01-01

    A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented. 35 refs

  4. [Relativistic heavy ion research

    International Nuclear Information System (INIS)

    1990-01-01

    At Brookhaven National Laboratory, participation in the E802 Experiment, which is the first major heavy-ion experiment at the BNL-AGS, was the main focus of the group during the past four years. The emphases of the E802 experiment were on (a) accurate particle identification and measurements of spectra over a wide kinematical domain (5 degree LAB < 55 degree, p < 20 GeV/c); and (b) measurements of small-angle two-particle correlations, with event characterization tools: multiplicity array, forward and large-angle calorimeters. This experiment and other heavy ion collision experiments are discussed in this report

  5. Heavy ion collisions

    International Nuclear Information System (INIS)

    Jacak, B.V.

    1994-01-01

    Heavy ion collisions at very high energies provide an opportunity to recreate in the laboratory the conditions which existed very early in the universe, just after the big bang. We prepare matter at very high energy density and search for evidence that the quarks and gluons are deconfined. I describe the kinds of observables that are experimentally accessible to characterize the system and to search for evidence of new physics. A wealth of information is now available from CERN and BNL heavy ion experiments. I discuss recent results on two particle correlations, strangeness production, and dilepton and direct photon distributions

  6. HEAVY ION LINEAR ACCELERATOR

    Science.gov (United States)

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  7. Strange and heavy hadrons production from coalescence plus fragmentation in AA collisions at RHIC and LHC

    Science.gov (United States)

    Plumari, Salvatore; Minissale, Vincenzo; Das, Santosh K.; Scardina, Francesco; Greco, Vincenzo

    2018-02-01

    In a coalescence plus fragmentation approach we study the pT spectra of charmed hadrons D0, Ds up to about 10 GeV and the Λ+c /D0 ratio from RHIC to LHC energies. In this study we have included the contribution from decays of heavy hadron resonances and also that due to fragmentation of heavy quarks that are left in the system after coalescence. The pT dependence of the heavy baryon/meson ratios is found to be sensitive to the heavy quark mass. In particular we found that the Λc/D0 is much flatter than the one for light baryon/meson ratio like p/π and Λ/K.

  8. Heavy Ion Physics with the ATLAS Detector at the LHC

    International Nuclear Information System (INIS)

    Trzupek, A.

    2009-01-01

    The heavy-ion program at LHC will be pursued by three experiments including ATLAS, a multipurpose detector to study p + p collisions. A report on the potential of the ATLAS detector to uncover new physics in Pb + Pb collisions at energies thirty times larger than energy available at RHIC will be presented. Key aspects of the heavy-ion program of the ATLAS experiment, implied by measurements at RHIC, will be discussed. They include measurement capability of high-p T hadronic and electromagnetic probes, quarkonia as well as elliptic flow and other bulk phenomena. Measurements by the ATLAS experiment will provide crucial information about the formation of a quark-gluon plasma at the new energy scale accessible at the LHC. (author)

  9. Heavy ion accelerator GANIL

    International Nuclear Information System (INIS)

    1975-04-01

    This article presents GANIL, a large national heavy ion accelerator. The broad problems of nuclear physics, atomic physics, astrophysics and physics of condensed media which can be approached and studied with this machine are discussed first, after which the final construction project is described. The project comprises a circular injector, a separated sector cyclotron up beam stripper, and a second separated cyclotron downstream [fr

  10. Heavy-ion microscopy

    International Nuclear Information System (INIS)

    Kraft, G.; Yang, T.C.H.; Richards, T.; Tobias, C.A.

    1980-01-01

    This chapter briefly describes the techniques of optical microscopy, scanning and transmission electron microscopy, soft x-ray microscopy and compares these latter techniques with heavy-ion microscopy. The resolution obtained with these various types of microscopy are compared and the influence of the etching procedure on total resolution is discussed. Several micrographs of mammalian cells are included

  11. Relativisitic heavy ion collisions

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1987-01-01

    Some of the objectives and observables of Relativistic Heavy Ion Physics are presented. The first experimental results from oxygen interactions at CERN, 200 GeV/c per nucleon, and BNL, 14.5 GeV/c per nucleon are shown. The data indicate more energy emission than was originally predicted. 25 refs., 19 figs

  12. Evaluating results from the Relativistic Heavy Ion Collider with perturbative QCD and hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J.; Nonaka, C.

    2011-07-01

    We review the basic concepts of perturbative quantum chromodynamics (QCD) and relativistic hydrodynamics, and their applications to hadron production in high energy nuclear collisions. We discuss results from the Relativistic Heavy Ion Collider (RHIC) in light of these theoretical approaches. Perturbative QCD and hydrodynamics together explain a large amount of experimental data gathered during the first decade of RHIC running, although some questions remain open. We focus primarily on practical aspects of the calculations, covering basic topics like perturbation theory, initial state nuclear effects, jet quenching models, ideal hydrodynamics, dissipative corrections, freeze-out and initial conditions. We conclude by comparing key results from RHIC to calculations.

  13. Beam energy dependence of elliptic flow in heavy-ion collision

    International Nuclear Information System (INIS)

    Otuka, Naohiko; Isse, Masatsugu; Ohnishi, Akira; Pradip Kumar Sahu; Nara, Yasushi

    2002-01-01

    We study radial flow and elliptic flow in relativistic heavy-ion collisions at energies from GSI-SIS to BNL-RHIC energies using hadronic cascade model JAM. The excitation function of radial flow shows the softening of hadronic matter from BNL-AGS to CERN-SPS energies. JAM model reproduces transverse mass spectra at BNL-AGS, CERN-SPS at BNL-RHIC energies as well as elliptic flow upto CERN-SPS. For elliptic flow at BNL-RHIC energy (√s=130 GeV), while JAM gives the enough flow at fragment region, it fails at mid rapidity. (author)

  14. Heavy-ion radiography and heavy-ion computed tomography

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Holley, W.R.; McFarland, E.W.; Tobias, C.a.

    1982-02-01

    Heavy-ion projection and CT radiography is being developed into a safe, low-dose, noninvasive radiological procedure that can quantitate and image small density differences in human tissues. The applications to heavy-ion mammography and heavy-ion CT imaging of the brain in clinical patients suggest their potential value in cancer diagnosis

  15. An overview of heavy quark energy loss puzzle at RHIC

    International Nuclear Information System (INIS)

    Djordjevic, Magdalena

    2006-01-01

    We give a theoretical overview of the heavy quark tomography puzzle posed by recent non-photonic single electron data from central Au+Au collisions at √s = 200A GeV. We show that radiative energy loss mechanisms alone are not able to explain large single electron suppression data, as long as realistic parameter values are assumed. We argue that a combined collisional and radiative pQCD approach can solve a substantial part of the non-photonic single electron puzzle

  16. FY2014 Parameters for Helions and Gold Ions in Booster, AGS, and RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-08-15

    The nominal parameters for helions (helion is the bound state of two protons and one neutron, the nucleus of a helium-3 atom) and gold ions in Booster, AGS, and RHIC are given for the FY2014 running period. The parameters are found using various formulas to derive mass, helion anomalous g-factor, kinetic parameters, RF parameters, ring parameters, etc..

  17. Status of the relativistic heavy ion collider

    International Nuclear Information System (INIS)

    Karl, F.

    1999-01-01

    At the present time, commissioning of the 3.8 kilometer Relativistic Heavy Ion Collider (RHIC) is in full swing. On July 16, 1999, the commissioners were successful in circulating a Gold Ion Beam for the first time, in the Blue Ring, as power supplies were being checked out for beam into the Yellow Ring. The commissioning schedule is to accelerate beam in the Blue Ring, then spiral and accelerate beam in the Yellow Ring, then if all goes well, obtain some collisions, all before a fast approaching shutdown in mid-August. The four experimental regions, Star, Phenix, Brahms and Phobos are gearing up for their maiden beam runs and much effort is being spent to make the thirst glimpse of the beam an exciting one. Our Alignment Group has been working closely with the experimenters in these areas, mostly with MANCAT type component pre-surveys and in the near future installing and locating these various components relative to the RHIC Beam Line. (author)

  18. Elastic and radiative heavy quark interactions in ultra-relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Uphoff, Jan; Fochler, Oliver; Xu, Zhe; Greiner, Carsten

    2015-01-01

    Elastic and radiative heavy quark interactions with light partons are studied with the partonic transport model named the Boltzmann approach to multiparton scatterings (BAMPSs). After calculating the cross section of radiative processes for finite masses in the improved Gunion–Bertsch approximation and verifying this calculation by comparing to the exact result, we study elastic and radiative heavy quark energy loss in a static medium of quarks and gluons. Furthermore, the full 3 + 1D space–time evolution of gluons, light quarks, and heavy quarks in ultra-relativistic heavy-ion collisions at the BNL Relativistic Heavy-Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC) are calculated with BAMPS including elastic and radiative heavy flavor interactions. Treating light and heavy particles on the same footing in the same framework, we find that the experimentally measured nuclear modification factor of charged hadrons and D mesons at the LHC can be simultaneously described. In addition, we calculate the heavy flavor evolution with an improved screening procedure from hard-thermal-loop calculations and confront the results with experimental data of the nuclear modification factor and the elliptic flow of heavy flavor particles at the RHIC and the LHC. (paper)

  19. Heavy ion transfer reactions

    International Nuclear Information System (INIS)

    Weisser, D.C.

    1977-06-01

    To complement discussions on the role of γ rays in heavy ion induced reactions, the author discusses the role played by particle detection. Transfer reactions are part of this subject and are among those in which one infers the properties of the residual nucleus in a reaction by observing the emerging light nucleus. Inelastic scattering ought not be excluded from this subject, although no particles are transferred, because of the role it plays in multistep reactions and in fixing O.M. parameters describing the entrance channel of the reaction. Heavy ion transfer reaction studies have been under study for some years and yet this research is still in its infancy. The experimental techniques are difficult and the demands on theory rigorous. One of the main products of heavy ion research has been the thrust to re-examine the assumptions of reaction theory and now include many effects neglected for light ion analysis. This research has spurred the addition of multistep processes to simple direct processes and coupled channel calculations. (J.R.)

  20. Heavy ion fusion

    International Nuclear Information System (INIS)

    Hofmann, Ingo

    1993-01-01

    With controlled thermonuclear fusion holding out the possibility of a prolific and clean new source of energy, the goal remains elusive after many years of continual effort. While the conventional Tokamak route with magnetic confinement continues to hit the headlines, other alternatives are now becoming competitive. One possible solution is to confine the thermonuclear fuel pellet by high power beams. Current research and perspectives for future work in such inertial confinement was the subject of the 'Prospects for Heavy Ion Fusion' European Research Conference held in Aghia Pelaghia, Crete, last year. Its main focus was on the potential of heavy ion accelerators as well as recent advances in target physics with high power lasers and light ion beams. Carlo Rubbia declared that high energy accelerators, with their high efficiency, are the most promising approach to economical fusion energy production. However the need for cost saving in the driver accelerator requires new ideas in target design tailored to the particularities of heavy ion beams, which need to be pushed to the limits of high current and phase space density at the same time

  1. High density matter at RHIC

    Indian Academy of Sciences (India)

    QCD predicts a phase transition between hadronic matter and a quark-gluon plasma at high energy density. The relativistic heavy ion collider (RHIC) at Brookhaven National Laboratory is a new facility dedicated to the experimental study of matter under extreme conditions. Already the first round of experimental results at ...

  2. RHIC electron lenses upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Gu, X. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Altinbas, Z. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Bruno, D. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Binello, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Costanzo, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Drees, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Gassner, D. M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Hock, J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Hock, K. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Harvey, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Mi, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Mernick, K. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Michnoff, R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Miller, T. A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Pikin, A. I. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Samms, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Shrey, T. C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Schoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Tan, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Thieberger, P. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; White, S. M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    In the Relativistic Heavy Ion Collider (RHIC) 100 GeV polarized proton run in 2015, two electron lenses were used to partially compensate for the head-on beam-beam effect for the first time. Here, we describe the design of the current electron lens, detailing the hardware modifications made after the 2014 commissioning run with heavy ions. A new electron gun with 15-mm diameter cathode is characterized. The electron beam transverse profile was measured using a YAG screen and fitted with a Gaussian distribution. During operation, the overlap of the electron and proton beams was achieved using the electron backscattering detector in conjunction with an automated orbit control program.

  3. Status of superconducting magnet development (SSC, RHIC, LHC)

    International Nuclear Information System (INIS)

    Wanderer, P.

    1993-01-01

    This paper summarize recent superconducting accelerator magnet construction and test activities at the Superconducting Super Collider Laboratory (SSC), the Large Hadron Collider at CERN (LHC), and the Relativistic Heavy Ion Collider at Brookhaven (RHIC). Future plan are also presented

  4. Status of superconducting magnet development (SSC, RHIC, LHC)

    International Nuclear Information System (INIS)

    Wanderer, P.

    1993-01-01

    This paper summarizes recent superconducting accelerator magnet construction and test activities at the Superconducting Super Collider Laboratory (SSC), the Large Hardon Collider at CERN (LHC), and the Relativistic Heavy Ion Collider at Brookhaven (RHIC). Future plans are also presented

  5. Studies of relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Madansky, L.

    1989-01-01

    This report presents the progress in our program of Relativistic Heavy Ion studies. The first phase of experiments on lepton pairs is almost complete and the results from the initial part of this program are presented in copies of three publications. It appears that the origin of lepton pairs is the annihilation of pions. The evidence for this seems to be the shape of the dilepton mass spectrum, the cross-section as a function of energy which seems to scale with pion production, and the general kinematic behavior of the lepton pairs themselves. We present progress on the development of Ring Imaging Cerenkov counters for dilepton observations in general, and a short report on a high resolution method counter proposal that could be adapted to RHIC counters in general. Publication of results on hyperon polarization with incident polarized proton beams is also presented. These results use the phenomenological approach that could be useful in understanding hyperon production in heavy ion collisions. In this connection, a proposal for studying high density nuclear matter with incident antiprotons is presented. Progress on the TPC detectors developed by the BNL group for heavy ion research is reported, along with recent analysis of polarization with incident silicon beams. Finally, the most recent results on subthreshold antiproton production is presented. These latter results are several orders of magnitude more than expected and they point to some kind of coherent hadronic phenomena even at extremely low energies

  6. Heavy Ion Physics with the ATLAS Detector

    CERN Document Server

    Nevski, P

    2006-01-01

    The ATLAS experiment at the LHC plans to study the bulk matter formed in heavy ion collisions, already being studied at RHIC, as well as crucial reference data from p+p and p+A collisions. ATLAS is designed to perform optimally at the nominal machine luminosity of 10^34 cm-2s-1. It has a finely segmented electromagnetic and hadronic calorimeters covering 10 units of rapidity, allowing the study of jets and fragmentation functions in detail in tandem with the inner tracking system. Preliminary studies also indicate that it will be possible to tag b-jets in the heavy ion environment. Upsilon and J/Psi can be reconstructed through the di-muon decay channel. There is also an important "day 1" program planned, that will use the data provided by both p+p and A+A collisions to study bulk features of the collision dynamics. We discuss the current status of simulation studies and plans of the heavy ion physics program with the ATLAS detector during the A+A and p+A runs.

  7. Heavy ion fusion III

    International Nuclear Information System (INIS)

    Hammer, D.; Max, C.; Perkins, F.; Rosenbluth, M.

    1987-03-01

    This report updates Heavy Ion Fusion, JSR-82-302, dated January, 1983. During the last four years, program management and direction has been changed and the overall Inertial Confinement Program has been reviewed. This report therefore concentrates on accelerator physics issues, how the program has addressed those issues during the last four years, and how it will be addressing them in the future. 8 refs., 3 figs

  8. Relativistic heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brink, D M

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.

  9. Relativistic heavy ion physics

    International Nuclear Information System (INIS)

    Hansen, O.

    1985-01-01

    In the fall of 1986 beams of heavy ions up to A ∼ 40 at total energies up to E ∼ 225 GeV/-nucleon will become available for experiments at CERN (60 and 225 GeV/nucleon) and at Brookhaven (15.5 GeV/nucleon). Are these energies interesting in relation to the ideas of creating quark deconfinement? An energy consideration of the planned experiments is presented, as well as a description of the experimental arrangement. (Auth.)

  10. Relativistic heavy ion reactions

    International Nuclear Information System (INIS)

    Brink, D.M.

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs

  11. Pion correlations in relativistic heavy ion collisions at Heavy Ion Spectrometer Systems (HISS)

    International Nuclear Information System (INIS)

    Christie, W.B. Jr.

    1990-05-01

    This thesis contains the setup, analysis and results of experiment E684H ''Multi-Pion Correlations in Relativistic Heavy Ion Collisions''. The goals of the original proposal were: (1) To initiate the use of the HISS facility in the study of central Relativistic Heavy Ion Collisions (RHIC). (2) To perform a second generation experiment for the detailed study of the pion source in RHIC. The first generation experiments, implied by the second goal above, refer to pion correlation studies which the Riverside group had performed at the LBL streamer chamber. The major advantage offered by moving the pion correlation studies to HISS is that, being an electronic detector system, as opposed to the Streamer Chamber which is a visual detector, one can greatly increase the statistics for a study of this sort. An additional advantage is that once one has written the necessary detector and physics analysis code to do a particular type of study, the study may be extended to investigate the systematics, with much less effort and in a relatively short time. This paper discusses the Physics motivation for this experiment, the experimental setup and detectors used, the pion correlation analysis, the results, and the conclusions possible future directions for pion studies at HISS. If one is not interested in all the details of the experiment, I believe that by reading the sections on intensity interferometry, the section the fitting of the correlation function and the systematic corrections applied, and the results section, one will get a fairly complete synopsis of the experiment

  12. Thermal and prompt photons at RHIC and the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Paquet, Jean-François [Department of Physics & Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A2T8 (Canada); Shen, Chun [Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A2T8 (Canada); Denicol, Gabriel [Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A2T8 (Canada); Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Luzum, Matthew [Universidade de Santiago de Compostela, E-15706 Santiago de Compostela, Galicia-Spain (Spain); Universidade de São Paulo, Rua do Matão Travessa R, no. 187, 05508-090, Cidade Universitária, São Paulo (Brazil); Schenke, Björn [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Jeon, Sangyong; Gale, Charles [Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A2T8 (Canada)

    2016-12-15

    Thermal and prompt photon production in heavy ion collisions is evaluated and compared with measurements from both RHIC and the LHC. An event-by-event hydrodynamical model of heavy ion collisions that includes shear and bulk viscosities is used, along with up-to-date photon emission rates. Larger tension with measurements is observed at RHIC than at the LHC. The center-of-mass energy and centrality dependence of thermal and prompt photons is investigated.

  13. Probing properties of hot and dense QCD matter with heavy flavor in the PHENIX experiment at RHIC

    Directory of Open Access Journals (Sweden)

    Nouicer Rachid

    2015-01-01

    Full Text Available Hadrons carrying heavy quarks, i.e. charm or bottom, are important probes of the hot and dense medium created in relativistic heavy ion collisions. Heavy quarkantiquark pairs are mainly produced in initial hard scattering processes of partons. While some of the produced pairs form bound quarkonia, the vast majority hadronize into particles carrying open heavy flavor. Heavy quark production has been studied by the PHENIX experiment at RHIC via measurements of single leptons from semi-leptonic decays in both the electron channel at mid-rapidity and in the muon channel at forward rapidity. A large suppression and azimuthal anisotropy of single electrons have been observed in Au + Au collisions at 200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. The PHENIX experiment has also measured J/ψ production at 200 GeV in p + p, d + Au, Cu + Cu and Au + Au collisions, both at mid- and forward-rapidities, and additionally Cu + Au and U + U at forward-rapidities. In the most energetic collisions, more suppression is observed at forward rapidity than at central rapidity. This can be interpreted either as a sign of quark recombination, or as a hint of additional cold nuclear matter effects. The centrality dependence of nuclear modification factor, RAA(pT, for J/ψ in U + U collisions at √sNN = 193 GeV shows a similar trend to the lighter systems, Au + Au and Cu + Cu, at similar energy 200 GeV.

  14. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Sessler, A.M.

    1980-01-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion-source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at. (Auth.)

  15. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Sessler, A.M.

    1980-07-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at

  16. Strange Particles and Heavy Ion Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bassalleck, Bernd [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy; Fields, Douglas [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy

    2016-04-28

    This very long-running grant has supported many experiments in nuclear and particle physics by a group from the University of New Mexico. The gamut of these experiments runs from many aspects of Strangeness Nuclear Physics, to rare Kaon decays, to searches for exotic Hadrons such as Pentaquark or H-Dibaryon, and finally to Spin Physics within the PHENIX collaboration at RHIC. These experiments were performed at a number of laboratories worldwide: first and foremost at Brookhaven National Lab (BNL), but also at CERN, KEK, and most recently at J-PARC. In this Final Technical Report we summarize progress and achievements for this award since our last Progress Report, i.e. for the period of fall 2013 until the award’s termination on November 30, 2015. The report consists of two parts, representing our two most recent experimental efforts, participation in the Nucleon Spin Physics program of the PHENIX experiment at RHIC, the Relativistic Heavy Ion Collider at BNL – Task 1, led by Douglas Fields; and participation in several Strangeness Nuclear Physics experiments at J-PARC, the Japan Proton Accelerator Research Center in Tokai-mura, Japan – Task 2, led by Bernd Bassalleck.

  17. Nuclei at HERA and heavy ion physics

    International Nuclear Information System (INIS)

    Gavin, S.; Strikman, M.

    1995-01-01

    Copies of 16 viewgraph sets from a workshop held at Brookhaven National Laboratory, 17-18 November, 1995. Titles of talks: HERA: The Present; HERA: Potential with Nuclei; Review of Hadron-Lepton Nucleus Data; Fermilab E665: results in muon scattering; Interactions of Quarks and Gluons with Nuclear Matter; Rescattering in Nuclear Targets for Photoproduction and DIS; Structure Functions and Nuclear Effect at PHENIX; Probing Spin-Averaged and Spin-Dependent Parton Distributions Using the Solenoidal Tracker at RHIC (STAR); Jet Quenching in eA, pA, AA; Nuclear Gluon Shadowing via Continuum Lepton Pairs; What can we learn from HERA with a colliding heavy ion beam? The limiting curve of leading particles at infinite A; Coherent Production of Vector Mesons off Light Nuclei in DIS; A Model of High Parton Densities in PQCD; Gluon Production for Weizaecker-Williams Field in Nucleus-Nucleus Collisions; Summary Talk

  18. Chasing the unicorn: RHIC and the QGP

    International Nuclear Information System (INIS)

    Pisarski, Robert D.; Niels Bohr Institute, Copenhagen; J. W. Goethe Univ., Frankfurt

    2006-01-01

    At nonzero temperature, it is expected that QCD undergoes a phase transition to a deconfined, chirally symmetric phase, the Quark-Gluon Plasma (QGP). I review what we expect theoretically about this possible transition, and what we have learned from heavy ion experiments at RHIC. I argue that while there are unambiguous signals for qualitatively new behavior at RHIC, versus experiments at lower energies, that in detail, no simple theoretical model can explain all salient features of the data. (author)

  19. Chasing the unicorn: RHIC and the QGP

    Energy Technology Data Exchange (ETDEWEB)

    Pisarski, Robert D. [Brookhaven National Lab., Upton, NY (United States). Nuclear Theory and High Energy Theory Nuclear Theory Groups; Niels Bohr Institute, Copenhagen (Denmark); J. W. Goethe Univ., Frankfurt (Germany). Frankfurt Institute for Advanced Study

    2006-03-15

    At nonzero temperature, it is expected that QCD undergoes a phase transition to a deconfined, chirally symmetric phase, the Quark-Gluon Plasma (QGP). I review what we expect theoretically about this possible transition, and what we have learned from heavy ion experiments at RHIC. I argue that while there are unambiguous signals for qualitatively new behavior at RHIC, versus experiments at lower energies, that in detail, no simple theoretical model can explain all salient features of the data. (author)

  20. Elliptic flow and energy loss of heavy quarks in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Uphoff, Jan; Fochler, Oliver; Greiner, Carsten; Xu, Zhe

    2011-01-01

    The space-time propagation of heavy quarks in ultrarelativistic heavy ion collisions is studied within the partonic transport model Boltzmann approach of multiparton scatterings (BAMPS). In this model heavy quarks interact with the partonic medium via binary scatterings. The cross sections for these interactions are calculated with leading-order perturbative QCD, but feature a more precise Debye screening derived within the hard thermal loop approximation and obey the running of the coupling. Within this framework the elliptic flow and the nuclear modification factor of heavy quarks are computed for the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC) energies and compared to available experimental data. It is found that binary scatterings alone cannot reproduce the data and therefore radiative corrections have to be taken into account.

  1. Relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Barz, H.W.; Kaempfer, B.; Schulz, H.

    1984-12-01

    An elementary introduction is given into the scenario of relativistic heavy ion collisions. It deals with relativistic kinematics and estimates of energy densities, extrapolations of the present knowledge of hadron-hadron and hadron-nuleus to nucleus-nucleus collisions, the properties of the quark-gluon plasma and the formation of the plasma and possible experimental signatures. Comments are made on a cosmic ray experiment which could be interpreted as a first indication of the quark-gluon phase of the matter. (author)

  2. A heavy load for heavy ions

    CERN Multimedia

    2003-01-01

    On 25 September, the two large coils for the dipole magnet of ALICE, the LHC experiment dedicated to heavy ions, arrived at Point 2 on two heavy load trucks after a 1200 km journey from their assembly in Vannes, France.

  3. ANALYSIS OF AVAILABILITY AND RELIABILITY IN RHIC OPERATIONS

    International Nuclear Information System (INIS)

    PILAT, F.; INGRASSIA, P.; MICHNOFF, R.

    2006-01-01

    RHIC has been successfully operated for 5 years as a collider for different species, ranging from heavy ions including gold and copper, to polarized protons. We present a critical analysis of reliability data for RHIC that not only identifies the principal factors limiting availability but also evaluates critical choices at design times and assess their impact on present machine performance. RHIC availability data are typical when compared to similar high-energy colliders. The critical analysis of operations data is the basis for studies and plans to improve RHIC machine availability beyond the 50-60% typical of high-energy colliders

  4. Conceptual design of a quadrupole magnet for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Witte, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    eRHIC is a proposed upgrade to the existing Relativistic Heavy Ion Collider (RHIC) hadron facility at Brookhaven National Laboratory, which would allow collisions of up to 21 GeV polarized electrons with a variety of species from the existing RHIC accelerator. eRHIC employs an Energy Recovery Linac (ERL) and an FFAG lattice for the arcs. The arcs require open-midplane quadrupole magnets of up to 30 T/m gradient of good field quality. In this paper we explore initial quadrupole magnet design concepts based on permanent magnetic material which allow to modify the gradient during operation.

  5. Relativistic heavy-ion physics

    CERN Document Server

    Herrera Corral, G

    2010-01-01

    The study of relativistic heavy-ion collisions is an important part of the LHC research programme at CERN. This emerging field of research focuses on the study of matter under extreme conditions of temperature, density, and pressure. Here we present an introduction to the general aspects of relativistic heavy-ion physics. Afterwards we give an overview of the accelerator facility at CERN and then a quick look at the ALICE project as a dedicated experiment for heavy-ion collisions.

  6. Heavy ion fusion

    International Nuclear Information System (INIS)

    Bock, R.

    1983-01-01

    Two accelerator scenarios for heavy ion fusion are considered as driver candidates for an ICF power plant: the RF linac with storage rings and the induction linac. The necessary beam intensity and beam quality requirements are already believed to be achievable in the long run; repetition rate and accelerator efficiency are not critical issues. Conceptual design studies have indicated that the technical problems of the ICF concept with a heavy ion driver can be solved and that the economical aspects are not prohibitive as compared to other ICF concepts. Nevertheless, many open problems still exist, and some new ones have exhibited themselves, and it has become evident that most of them cannot be investigated with existing facilities and at the present level of effort. The first section of this paper deals with current conceptual design studies and focuses on the interface between the accelerator and the reactor. The second section summarizes the present research programs and recommends that their scope should be expanded and intensified in the areas of accelerator physics and beam-target interaction and target physics. In the third section the author calls for a dedicated facility and reports on the plans and ideas for such a facility. Schematics of two proposed accelerator driver systems--the driver for HIBALL (5 MJ/pulse) and a single-pass four-beam induction linac (3 MJ/pulse)--are provided

  7. Heavy ion accelerating structure

    International Nuclear Information System (INIS)

    Pottier, Jacques.

    1977-01-01

    The heavy ion accelerating structure concerned in this invention is of the kind that have a resonance cavity inside which are located at least two longitudinal conducting supports electrically connected to the cavity by one of their ends in such a way that they are in quarter-wavelength resonance and in phase opposition. Slide tubes are electrically connected alternatively to one or the other of the two supports, they being electrically connected respectively to one or the other end of the side wall of the cavity. The feature of the structure is that it includes two pairs of supports symmetrically placed with respect to the centre line of the cavity, the supports of one pair fitted overhanging being placed symmetrically with respect to the centre line of the cavity, each slide tube being connected to the two supports of one pair. These support are connected to the slide wall of the cavity by an insulator located at their electrically free end. The accelerator structure composed of several structures placed end to end, the last one of which is fed by a high frequency field of adjustable amplitude and phase, enables a heavy ion linear accelerator to be built [fr

  8. Large solid angle tracking of Monte Carlo events of heavy ion collisions in TPC magnetic spectrometers

    International Nuclear Information System (INIS)

    Lindenbaum, S.J.; Etkin, A.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C.; Asoka-Kumar, P.P.V.; Chan, C.S.; Kramer, M.A.

    1987-01-01

    The BNL/CCNY collaboration has for some time had as its goal the development and use of ≅ 4π solid angle magnetic spectrometer tracking of charged particles produced in heavy ion collision experiments at AGS, and eventually RHIC. (orig./HSI)

  9. PROPOSAL FOR AN EBIS-BASED RHIC PREINJECTOR

    International Nuclear Information System (INIS)

    ALESSI, J.G.; BEEBE, E.; KPONOU, A.; PIKIN, A.; PRELEC, K.; RAPARIA, D.; RITTER, J.; ZHANG, S.Y.

    2000-01-01

    A proposed new heavy ion preinjector for RHIC is described. The progress made at BNL on the development of an Electron Beam Ion Source (EBIS) has increased our confidence that one can build a preinjector meeting RHIC requirements using an EBIS producing intermediate charge state heavy ions. A new RFQ and Linac will be required to accelerate beams from this source to an energy sufficient for injection into the AGS Booster. These are both straightforward devices, very similar to ones already in operation at other laboratories. Injection into the Booster will occur at the same location as the existing heavy ion injection from the Tandem Van de Graaff

  10. Heavy ion beam probing

    International Nuclear Information System (INIS)

    Hickok, R.L.

    1980-07-01

    This report consists of the notes distributed to the participants at the IEEE Mini-Course on Modern Plasma Diagnostics that was held in Madison, Wisconsin in May 1980. It presents an overview of Heavy Ion Beam Probing that briefly describes the principles and discuss the types of measurements that can be made. The problems associated with implementing beam probes are noted, possible variations are described, estimated costs of present day systems, and the scaling requirements for large plasma devices are presented. The final chapter illustrates typical results that have been obtained on a variety of plasma devices. No detailed calculations are included in the report, but a list of references that will provide more detailed information is included

  11. Ultrarelativistic heavy ions

    International Nuclear Information System (INIS)

    Pugh, H.G.

    1980-12-01

    Studies with ultrarelativistic heavy ions combine aspects of cosmic ray physics, particle physics, nuclear physics, astrophysics and cosmogenesis. The leading theoretical concerns are the behavior of matter at very high-energy density and flux, the general behavior of space time in collisions, relativistic nuclear theory, and quantum chromodynamics. The field has developed over a period of more than thirty years, since the first observation of heavy nuclei in cosmic rays and the major developments of understanding of high-energy collisions made by Fermi and Landau in the early fifties. In the late sixties the discovery of the parton content of nucleons was rapidly followed by a great extension of high-energy collision phenomenology at the CERN ISR and subsequent confirmation of the QCD theory. In parallel the study of p-nucleus and nucleus-nucleus collisions at very high energies, especially at the CERN PS, Fermilab and the Bevalac, and in cosmic rays demonstrated that studies involving the nucleus opened up a new dimension in studies of the hadronic interaction. It is now at a high level of interest on an international scale, with major new accelerators being proposed to dedicate to this kind of study

  12. Heavy-ion superconducting linacs

    International Nuclear Information System (INIS)

    Delayen, J.R.

    1989-01-01

    This paper reviews the status of the superconducting heavy-ion accelerators. Most of them are linacs used as boosters for tandem electrostatic accelerators, although the technology is being extended to very low velocity to eliminate the need for an injector. The characteristics and features of the various superconducting heavy-ion accelerators are discussed. 45 refs

  13. Heavy-ion superconducting linacs

    Energy Technology Data Exchange (ETDEWEB)

    Delayen, J.R.

    1989-01-01

    This paper reviews the status of the superconducting heavy-ion accelerators. Most of them are linacs used as boosters for tandem electrostatic accelerators, although the technology is being extended to very low velocity to eliminate the need for an injector. The characteristics and features of the various superconducting heavy-ion accelerators are discussed. 45 refs.

  14. Heavy Flavor Physics in Heavy-Ion Collisions with STAR Heavy Flavor Tracker

    International Nuclear Information System (INIS)

    Yifei Zhang

    2010-01-01

    Heavy quarks are a unique tool to probe the strongly interacting matter created in relativistic heavy-ion collisions at RHIC energies. Due to their large mass, energetic heavy quarks are predicted to lose less energy than light quarks by gluon radiation when they traverse a Quark-Gluon Plasma. In contrast, recent measurements of non-photonic electrons from heavy quark decays at high transverse momentum (p T ) show a jet quenching level similar to that of the light hadrons. Heavy quark are produced mainly at early stage in heavy-ion collisions, thus they are proposed to probe the QCD medium and to be sensitive to bulk medium properties. Ultimately, their flow behavior may help establish whether light quarks thermalize. But due to the absence of the measurement of B-mesons and precise measurement of D-mesons, it is difficult to separate bottom and charm contributions experimentally in current non-photonic electron measurements for both spectra and elliptic flow v 2 . Therefore, topological reconstruction of D-mesons and identification of electrons from charm and bottom decays are crucial to understand the heavy flavor production and their in medium properties. The Heavy Flavor Tracker (HFT) is a micro-vertex detector utilizing active pixel sensors and silicon strip technology. The HFT will significantly extend the physics reach of the STAR experiment for precise measurement of charmed and bottom hadrons. We present a study on the open charm nuclear modification factor, elliptic flow v 2 and λ c measurement as well as the measurement of bottom mesons via a semi-leptonic decay. (author)

  15. Heavy ion therapy: Bevalac epoch

    International Nuclear Information System (INIS)

    Castro, J.R.

    1993-10-01

    An overview of heavy ion therapy at the Bevelac complex (SuperHILac linear accelerator + Bevatron) is given. Treatment planning, clinical results with helium ions on the skull base and uveal melanoma, clinical results with high-LET charged particles, neon radiotherapy of prostate cancer, heavy charged particle irradiation for unfavorable soft tissue sarcoma, preliminary results in heavy charged particle irradiation of bone sarcoma, and irradiation of bile duct carcinoma with charged particles and-or photons are all covered

  16. PHOBOS at RHIC 2000

    International Nuclear Information System (INIS)

    Garcia, E.; Baum, R.; Bindel, R.; Mignerey, A.; Shea, J.; Back, B.B.; Betts, R.R.; George, N.; Wuosmaa, A.H.; Baker, M.D.; Barton, D.S.; Carroll, A.; Ceglia, M.; Gushue, S.; Heintzelman, G.A.; Kraner, H.; Olszewski, A.; Pak, R.; Remsberg, L.P.; Scaduto, J.; Sinacore, J.; Steinberg, P.; Sukhanov, A.; Bogucki, W.; Budzanowski, A.; Coghen, T.; Dabrowski, B.; Despet, M.; Galuszka, K.; Godlewski, J.; Halik, J.; Holynski, R.; Kita, W.; Kotula, J.; Lemler, M.; Ligocki, J.; Michalowski, J.; Sawicki, P.; Straczek, A.; Stodulski, M.; Strek, M.; Stopa, Z.; Trzupek, A.; Wosiek, B.; Wozniak, K.; Zychowski, P.; Bialas, A.; Czyz, W.; Zalewski, K.; Basilev, S.; Bates, B.D.; Busza, W.; Decowski, M.P.; Fita, P.; Fitch, J.; Friedl, M.; Gomes, C.; Griesmayer, E.; Gulbrandsen, K.; Haridas, P.; Henderson, C.; Kane, J.; Katzy, J.; Kulinich, P.; Law, C.; Mulmenstadt, J.; Neal, M.; Patel, M.; Pernegger, H.; Plesko, M.; Reed, C.; Roland, C.; Roland, G.; Ross, D.; Rosenberg, L.; Ryan, J.; Sarin, P.; Steadman, S.G.; Stephans, G.S.F.; Surowiecka, K.; Vale, C.M.; Van Nieuwenhuizen, G.J.; Verdier, R.; Wadsworth, B.; Wyslouch, B.; Chang, Y.H.; Chen, A.E.; Lin, W.T.; Tang, J.L.; Conner, C.; Ganz, R.; Halliwell, C.; Hollis, R.; Holzman, B.; Kucewicz, W.; McLeod, D.; Nouicer, R.; Reuter, M.; Hayes, A.; Johnson, E.; Manly, S.; Park, I.C.; Skulski, W.; Teng, R.; Wolfs, F.L.H.; Sanzgiri, A.

    2001-01-01

    The relativistic heavy ion collider (RHIC) at Brookhaven national laboratory delivered in June 2000 the first collisions between Au nuclei at the highest center-of-mass energies achieved in a controlled environment to date. PHOBOS is one of the four experiments installed during this phase of RHIC running. This paper will describe the PHOBOS experiment, and discuss the results of the first physics measurement, thc pseudo rapidity densities of primary charged particles near mid rapidity in central Au + Au collisions at two different energies, √ S NN = 56 and 130 GeV. The observed densities are higher than those previously observed in any collisions, and the rate of increase between the two energies is larger than that for nucleon-nucleon collisions at comparable beam energies. This talk will describe the PHOBOS experiment, discuss the first physics measurement, and conclude with the present status of the experiment, the physics analysis and the perspectives fi the future. (Author)

  17. Heavy ion medical accelerator, HIMAC

    International Nuclear Information System (INIS)

    Yamada, Satoru

    1993-01-01

    The heavy ion beam is undoutedly suitable for the cancer treatment. The supriority of the heavy ions over the conventional radiations including protons and neutrons comes mainly from physical characteristics of a heavy particle with multiple charges. A straggling angle due to a multiple Coulomb scattering process in a human body is small for heavy ions, and the small scattering angle results in a good dose localization in a transverse direction. An ionization ratio of the heavy ion beam makes a very sharp peak at the ends of their range. The height of the peak is higher for the heavier ions and shows excellent biomedical effects around Ne ions. In order to apply heavy ion beams to cancer treatment, Heavy Ion Medical Accelerator in Chiba (HIMAC) has been constructed at National Institute of Radiological Sciences. The accelerator complex consists of two ion sources, two successive linac tanks, a pair of synchrotron rings, a beam transport system and an irradiation system. An operation frequency is 100 MHz for two linacs, and the ion energy is 6.0 MeV/u at the output end of the linac. The other four experimental rooms are prepared for basic experiments. The synchrotron accelerates ions up to 800 MeV/u for a charge to mass ratio of 1/2. The long beam transport line provides two vertical beams in addition with two horizontal beams for the treatment. The three treatment rooms are prepared one of which is equipped with both horizontal and vertical beam lines. The whole facility will be open for all scientists who have interests in the heavy ion science as well as the biophysics. The conceptual design study of HIMAC started in 1984, and the construction of the accelerator complex was begun in March 1988. The beam acceleration tests of the injector system was successfully completed in March of this year, and tests of the whole system will be finished throughout this fyscal year. (author)

  18. Heavy Ion Collisions at the LHC - Last Call for Predictions

    Energy Technology Data Exchange (ETDEWEB)

    Armesto, N; Borghini, N; Jeon, S; Wiedemann, U A; Abreu, S; Akkelin, V; Alam, J; Albacete, J L; Andronic, A; Antonuv, D; Arleo, F; Armesto, N; Arsene, I C; Barnafoldi, G G; Barrette, J; Bauchle, B; Becattini, F; Betz, B; Bleicher, M; Bluhm, M; Boer, D; Bopp, F W; Braun-Munzinger, P; Bravina, L; Busza, W; Cacciari, M; Capella, A; Casalderrey-Solana, J; Chatterjee, R; Chen, L; Cleymans, J; Cole, B A; delValle, Z C; Csernai, L P; Cunqueiro, L; Dainese, A; de Deus, J D; Ding, H; Djordjevic, M; Drescher, H; Dremin, I M; Dumitru, A; El, A; Engel, R; d' Enterria, D; Eskola, K J; Fai, G; Ferreiro, E G; Fries, R J; Frodermann, E; Fujii, H; Gale, C; Gelis, F; Goncalves, V P; Greco, V; Gyulassy, M; van Hees, H; Heinz, U; Honkanen, H; Horowitz, W A; Iancu, E; Ingelman, G; Jalilian-Marian, J; Jeon, S; Kaidalov, A B; Kampfer, B; Kang, Z; Karpenko, I A; Kestin, G; Kharzeev, D; Ko, C M; Koch, B; Kopeliovich, B; Kozlov, M; Kraus, I; Kuznetsova, I; Lee, S H; Lednicky, R; Letessier, J; Levin, E; Li, B; Lin, Z; Liu, H; Liu, W; Loizides, C; Lokhtin, I P; Machado, M T; Malinina, L V; Managadze, A M; Mangano, M L; Mannarelli, M; Manuel, C; Martinez, G; Milhano, J G; Mocsy, A; Molnar, D; Nardi, M; Nayak, J K; Niemi, H; Oeschler, H; Ollitrault, J; Paic, G; Pajares, C; Pantuev, V S; Papp, G; Peressounko, D; Petreczky, P; Petrushanko, S V; Piccinini, F; Pierog, T; Pirner, H J; Porteboeuf, S; Potashnikova, I; Qin, G Y; Qiu, J; Rafelski, J; Rajagopal, K; Ranft, J; Rapp, R; Rasanen, S S; Rathsman, J; Rau, P; Redlich, K; Renk, T; Rezaeian, A H; Rischke, D; Roesler, S; Ruppert, J; Ruuskanen, P V; Salgado, C A; Sapeta, S; Sarcevic, I; Sarkar, S; Sarycheva, L I; Schmidt, I; Shoski, A I; Sinha, B; Sinyukov, Y M; Snigirev, A M; Srivastava, D K; Stachel, J; Stasto, A; Stocker, H; Teplov, C Y; Thews, R L; Torrieri, G; Pop, V T; Triantafyllopoulos, D N; Tuchin, K L; Turbide, S; Tywoniuk, K; Utermann, A; Venugopalan, R; Vitev, I; Vogt, R; Wang, E; Wang, X N; Werner, K; Wessels, E; Wheaton, S; Wicks, S; Wiedemann, U A; Wolschin, G; Xiao, B; Xu, Z; Yasui, S; Zabrodin, E; Zapp, K; Zhang, B

    2008-02-25

    In August 2006, the CERN Theory Unit announced to restructure its visitor program and to create a 'CERN Theory Institute', where 1-3 month long specific programs can take place. The first such Institute was held from 14 May to 10 June 2007, focusing on 'Heavy Ion Collisions at the LHC - Last Call for Predictions'. It brought together close to 100 scientists working on the theory of ultra-relativistic heavy ion collisions. The aim of this workshop was to review and document the status of expectations and predictions for the heavy ion program at the Large Hadron Collider LHC before its start. LHC will explore heavy ion collisions at {approx} 30 times higher center of mass energy than explored previously at the Relativistic Heavy Ion Collider RHIC. So, on the one hand, the charge of this workshop provided a natural forum for the exchange of the most recent ideas, and allowed to monitor how the understanding of heavy ion collisions has evolved in recent years with the data from RHIC, and with the preparation of the LHC experimental program. On the other hand, the workshop aimed at a documentation which helps to distinguish pre- from post-dictions. An analogous documentation of the 'Last Call for Predictions' [1] was prepared prior to the start of the heavy-ion program at the Relativistic Heavy Ion Collider RHIC, and it proved useful in the subsequent discussion and interpretation of RHIC data. The present write-up is the documentation of predictions for the LHC heavy ion program, received or presented during the CERN TH Institute. The set-up of the CERN TH Institute allowed us to aim for the wide-most coverage of predictions. There were more than 100 presentations and discussions during the workshop. Moreover, those unable to attend could still participate by submitting predictions in written form during the workshop. This followed the spirit that everybody interested in making a prediction had the right to be heard. To arrive at a concise

  19. Pion correlations in relativistic heavy ion collisions at Heavy Ion Spectrometer Systems (HISS)

    Energy Technology Data Exchange (ETDEWEB)

    Christie, W.B. Jr.

    1990-05-01

    This thesis contains the setup, analysis and results of experiment E684H Multi-Pion Correlations in Relativistic Heavy Ion Collisions''. The goals of the original proposal were: (1) To initiate the use of the HISS facility in the study of central Relativistic Heavy Ion Collisions (RHIC). (2) To perform a second generation experiment for the detailed study of the pion source in RHIC. The first generation experiments, implied by the second goal above, refer to pion correlation studies which the Riverside group had performed at the LBL streamer chamber. The major advantage offered by moving the pion correlation studies to HISS is that, being an electronic detector system, as opposed to the Streamer Chamber which is a visual detector, one can greatly increase the statistics for a study of this sort. An additional advantage is that once one has written the necessary detector and physics analysis code to do a particular type of study, the study may be extended to investigate the systematics, with much less effort and in a relatively short time. This paper discusses the Physics motivation for this experiment, the experimental setup and detectors used, the pion correlation analysis, the results, and the conclusions possible future directions for pion studies at HISS. If one is not interested in all the details of the experiment, I believe that by reading the sections on intensity interferometry, the section the fitting of the correlation function and the systematic corrections applied, and the results section, one will get a fairly complete synopsis of the experiment.

  20. Fourth workshop on experiments and detectors for a relativistic heavy ion collider

    International Nuclear Information System (INIS)

    Fatyga, M.; Moskowitz, B.

    1990-01-01

    This report contains papers on the following topics: physics at RHIC; flavor flow from quark-gluon plasma; space-time quark-gluon cascade; jets in relativistic heavy ion collisions; parton distributions in hard nuclear collisions; experimental working groups, two-arm electron/photon spectrometer collaboration; total and elastic pp cross sections; a 4π tracking TPC magnetic spectrometer; hadron spectroscopy; efficiency and background simulations for J/ψ detection in the RHIC dimuon experiment; the collision regions beam crossing geometries; Monte Carlo simulations of interactions and detectors; proton-nucleus interactions; the physics of strong electromagnetic fields in collisions of relativistic heavy ions; a real time expert system for experimental high energy/nuclear physics; the development of silicon multiplicity detectors; a pad readout detector for CRID/tracking; RHIC TPC R ampersand D progress and goals; development of analog memories for RHIC detector front-end electronic systems; calorimeter/absorber optimization for a RHIC dimuon experiment; construction of a highly segmented high resolution TOF system; progress report on a fast, particle-identifying trigger based on ring-imaging and highly integrated electronics for a TPC detector

  1. Fourth workshop on experiments and detectors for a relativistic heavy ion collider

    Energy Technology Data Exchange (ETDEWEB)

    Fatyga, M.; Moskowitz, B. (eds.)

    1990-01-01

    This report contains papers on the following topics: physics at RHIC; flavor flow from quark-gluon plasma; space-time quark-gluon cascade; jets in relativistic heavy ion collisions; parton distributions in hard nuclear collisions; experimental working groups, two-arm electron/photon spectrometer collaboration; total and elastic pp cross sections; a 4{pi} tracking TPC magnetic spectrometer; hadron spectroscopy; efficiency and background simulations for J/{psi} detection in the RHIC dimuon experiment; the collision regions beam crossing geometries; Monte Carlo simulations of interactions and detectors; proton-nucleus interactions; the physics of strong electromagnetic fields in collisions of relativistic heavy ions; a real time expert system for experimental high energy/nuclear physics; the development of silicon multiplicity detectors; a pad readout detector for CRID/tracking; RHIC TPC R D progress and goals; development of analog memories for RHIC detector front-end electronic systems; calorimeter/absorber optimization for a RHIC dimuon experiment; construction of a highly segmented high resolution TOF system; progress report on a fast, particle-identifying trigger based on ring-imaging and highly integrated electronics for a TPC detector.

  2. Heavy ion fusion sources

    International Nuclear Information System (INIS)

    Grote, D.P.; Kwan, J.; Westenskow, G.

    2003-01-01

    In Heavy-Fusion and in other applications, there is a need for high brightness sources with both high current and low emittance. The traditional design with a single monolithic source, while very successful, has significant constraints on it when going to higher currents. With the Child-Langmuir current-density limit, geometric aberration limits, and voltage breakdown limits, the area of the source becomes a high power of the current, A ∼ I 8/3 . We are examining a multi-beamlet source, avoiding the constraints by having many beamlets each with low current and small area. The beamlets are created and initially accelerated separately and then merged to form a single beam. This design offers a number of potential advantages over a monolithic source, such as a smaller transverse footprint, more control over the shaping and aiming of the beam, and more flexibility in the choice of ion sources. A potential drawback, however, is the emittance that results from the merging of the beamlets. We have designed injectors using simulation that have acceptably low emittance and are beginning to examine them experimentally

  3. Heavy ion elastic scatterings

    International Nuclear Information System (INIS)

    Mermaz, M.C.

    1984-01-01

    Diffraction and refraction play an important role in particle elastic scattering. The optical model treats correctly and simultaneously both phenomena but without disentangling them. Semi-classical discussions in terms of trajectories emphasize the refractive aspect due to the real part of the optical potential. The separation due to to R.C. Fuller of the quantal cross section into two components coming from opposite side of the target nucleus allows to understand better the refractive phenomenon and the origin of the observed oscillations in the elastic scattering angular distributions. We shall see that the real part of the potential is responsible of a Coulomb and a nuclear rainbow which allows to determine better the nuclear potential in the interior region near the nuclear surface since the volume absorption eliminates any effect of the real part of the potential for the internal partial scattering waves. Resonance phenomena seen in heavy ion scattering will be discussed in terms of optical model potential and Regge pole analysis. Compound nucleus resonances or quasi-molecular states can be indeed the more correct and fundamental alternative

  4. New insights from 3D simulations of heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Denicol, Gabriel [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Monnai, Akihiko [RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973 (United States); Ryu, Sangwook [Department of Physics, McGill University, 3600 rue University, Montreal, Quebec H3A 2T8 (Canada); Schenke, Björn [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-12-15

    Viscous relativistic hydrodynamics in 3+1 dimensions is applied to describe heavy ion collisions at RHIC and LHC. We present calculations of observables that are sensitive to the longitudinal structure of the created system. In particular we present pseudo-rapidity correlations and demonstrate their dependence on both the initial state and short range correlations introduced via a microscopic transport description. We further demonstrate the effect of a varying temperature dependence of the shear viscosity to entropy density ratio on rapidity dependent flow harmonics.

  5. Universal pion freeze-out in heavy-ion collisions

    CERN Document Server

    Adamova, D; Appelshäuser, H; Belaga, V; Braun-Munzinger, P; Castillo, A; Cherlin, A; Damjanovic, S; Dietel, T; Dietrich, L; Drees, A; Esumi, S I; Filimonov, K; Fomenko, K; Fraenkel, Zeev; Garabatos, C; Glässel, P; Hering, G; Holeczek, J; Kushpil, V; Lenkeit, B C; Ludolphs, W; Maas, A; Marin, A; Milosevic, J; Milov, A; Miskowiec, D; Panebratsev, Yu A; Petchenova, O Yu; Petracek, V; Pfeiffer, A; Rak, J; Ravinovich, I; Rehak, P; Sako, H; Schükraft, Jürgen; Sedykh, S; Shimansky, S S; Slivova, J; Specht, H J; Stachel, J; Sumbera, M; Tilsner, H; Tserruya, Itzhak; Wessels, J P; Wienold, T; Windelband, B; Wurm, J P; Xie, W; Yurevich, S; Yurevich, V; Schmitz, W

    2003-01-01

    Based on an evaluation of recent systematic data on two-pion interferometry and on measured particle yields at mid-rapidity, we propose a universal condition for thermal freeze-out of pions in heavy-ion collisions. We show that freeze-out occurs when the mean free path of pions lambda_f reaches a value of approximately 2.5 fm, which is much smaller than the spatial extent of the system at freeze-out. This critical mean free path is independent of the centrality of the collision and its value is constant at all currently available beam energies from AGS to RHIC.

  6. RHIC spin program

    International Nuclear Information System (INIS)

    Bunce, G.

    1995-01-01

    Colliding beams of high energy polarized protons at RHIC is an excellent way to probe the polarization of gluons, u and d quarks in a polarized proton. RHIC is the Relativistic Heavy Ion Collider being built now at Brookhaven in the ISABELLE tunnel. It is designed to collide gold ions on gold ions at 100 GeV/nucleon. Its goal is to discover the quark-gluon plasma, and the first collisions are expected in March, 1999. RHIC will also make an ideal polarized proton collider with high luminosity and 250 GeV x 250 GeV collisions. The RHIC spin physics program is: (1) Use well-understood perturbative QCD probes to study non-perturbative confining dynamics in QCD. We will measure - gluon and sea quark polarization in a polarized proton, polarization of quarks in a transversely polarized proton. (2) Look for additional surprises using the first high energy polarized proton collider. We will - look for the expected maximal parity violation in W and Z boson production, - search for parity violation in other processes, - test parton models with spin. This lecture is organized around a few of the key ideas: Siberian Snakes--What are they? High energy proton-proton collisions are scatters of quarks and leptons, at high x, a polarized proton beam is a beam of polarized u quarks, quark and gluon collisions are very sensitive to spin. We will discuss two reactions: how direct photon production measures gluon polarization, and how W + boson production measures u and d quark polarization

  7. RHIC spin program

    Energy Technology Data Exchange (ETDEWEB)

    Bunce, G.

    1995-12-31

    Colliding beams of high energy polarized protons at RHIC is an excellent way to probe the polarization of gluons, u and d quarks in a polarized proton. RHIC is the Relativistic Heavy Ion Collider being built now at Brookhaven in the ISABELLE tunnel. It is designed to collide gold ions on gold ions at 100 GeV/nucleon. Its goal is to discover the quark-gluon plasma, and the first collisions are expected in March, 1999. RHIC will also make an ideal polarized proton collider with high luminosity and 250 GeV x 250 GeV collisions. The RHIC spin physics program is: (1) Use well-understood perturbative QCD probes to study non-perturbative confining dynamics in QCD. We will measure - gluon and sea quark polarization in a polarized proton, polarization of quarks in a transversely polarized proton. (2) Look for additional surprises using the first high energy polarized proton collider. We will - look for the expected maximal parity violation in W and Z boson production, - search for parity violation in other processes, - test parton models with spin. This lecture is organized around a few of the key ideas: Siberian Snakes--What are they? High energy proton-proton collisions are scatters of quarks and leptons, at high x, a polarized proton beam is a beam of polarized u quarks, quark and gluon collisions are very sensitive to spin. We will discuss two reactions: how direct photon production measures gluon polarization, and how W{sup +} boson production measures u and d quark polarization.

  8. Results of heavy ion radiotherapy

    International Nuclear Information System (INIS)

    Castro, J.R.

    1994-04-01

    The potential of heavy ion therapy for clinical use in cancer therapy stems from the biological parameters of heavy charged particles, and their precise dose localization. Biologically, carbon, neon and other heavy ion beams (up to about silicon) are clinically useful in overcoming the radioresistance of hypoxic tumors, thus increasing biological effectiveness relative to low-LET x-ray or electron beams. Cells irradiated by heavy ions show less variation in cell-cycle related radiosensitivity and decreased repair of radiation injury. The physical parameters of these heavy charged particles allow precise delivery of high radiation doses to tumors while minimizing irradiation of normal tissues. Clinical use requires close interaction between radiation oncologists, medical physicists, accelerator physicists, engineers, computer scientists and radiation biologists

  9. BROOKHAVEN: Major detectors for RHIC under construction

    International Nuclear Information System (INIS)

    Ludlam, Thomas W.

    1994-01-01

    On March 9-10, a cost and schedule review at Brookhaven verified construction readiness for the PHENIX detector (May 1993, page 10). PHENIX thus joins STAR (Solenoidal Tracking at RHIC - November 1991, page 17), whose construction plan was ratified in January 1993, as a major detector to take data when the RHIC heavy ion collider is completed in mid-1999. The goal of both detectors is to search for the transition from ordinary nuclear matter to a new state of matter consisting of (momentarily) unconfined quarks and gluons. This transition to a ''quark-gluon plasma'' (QGP) is predicted to occur under extreme conditions of temperature and energy density, as is likely to be the case in the collision of heavy ions of sufficient energy. RHIC is expected to produce the highest energy densities ever observed on the nuclear scale

  10. Heavy Ion Physics at LHC

    CERN Document Server

    Valenti, G.

    2002-01-01

    The study of heavy ion interactions constitutes an important part of the experimental program outlined for the Large Hadron Collider under construction at CERN and expected to be operational by 2006. ALICE 1 is the single detector having the capabilities to explore at the same time most of the characteristics of high energy heavy ion interactions. Specific studies of jet quenching and quarkonia production, essentially related to µ detection are also planned by CMS 2 .

  11. BNL heavy ion fusion program

    International Nuclear Information System (INIS)

    Maschke, A.W.

    1978-01-01

    A principal attraction of heavy ion fusion is that existing accelerator technology and theory are sufficiently advanced to allow one to commence the design of a machine capable of igniting thermonuclear explosions. There are, however, a number of features which are not found in existing accelerators built for other purposes. The main thrust of the BNL Heavy Ion Fusion program has been to explore these features. Longitudinal beam bunching, very low velocity acceleration, and space charge neutralization are briefly discussed

  12. The RHIC injection fast kicker

    International Nuclear Information System (INIS)

    Forsyth, E.B.; Pappas, G.C.; Tuozzolo, J.E.; Zhang, W.

    1995-01-01

    The purpose of the injection kicker is to provide the ultimate deflection to the incoming beam from the Alternating Gradient Synchrotron (AGS) into the Relativistic Heavy Ion Collider (RHIC). The beam is kicked in the vertical direction to place it on the equilibrium orbit of RHIC. Each bunch in the AGS is transferred separately, and stacked box-car fashion in the appropriate RHIC rf bucket. In order to achieve the required deflection angle four magnets powered by four pulsers will be used for each ring of RHIC. When the bunches are stacked in RHIC the last few rf buckets are left unfilled in order to provide a gap in the beam to facilitate the ejection or beam abort process. This also means there is not a severe constraint on the fall-time of the injection kicker. One prototype pulser has been built and tested. Much of the development effort has gone into the magnet design. Although lumped ferrite magnets are simpler to build and require less power to reach full field, a transmission line magnet was developed because of the very fast rise-time requirement and the tolerances imposed on the field variation and ripple

  13. Recoil ion spectroscopy with heavy ions

    International Nuclear Information System (INIS)

    Beyer, H.F.; Mann, R.

    1984-01-01

    This chapter examines the production of very high charge state ions in single ion-atom collisions. Topics considered include some aspects of highly ionized atoms, experimental approaches, the production of highly charged target ions (monoatomic targets, recoil energy distribution, molecular fragmentation, outer-shell rearrangement, lifetime measurements, a comparison of projectile-, target-, and plasma-ion stripping), and secondary collision experiments (selective electron capture, potential applications). The heavy-ion beams for the described experiments were provided by accelerators such as tandem Van de Graaff facility and the UNILAC

  14. The status of RandD for the relativistic heavy ion collider at Brookhaven

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, E.B.

    1989-01-01

    Formal development of the Relativistic Heavy Ion Collider (RHIC) has been funded for the past three years. Prototype superconducting magnets and cryostats have been tested. Detailed designs have been prepared for the arc sections, the insertion regions and injection and ejection systems. The rf system has undergone significant revisions in order to enhance the experimental capability of RHIC. Progress has been made with the design of detectors. We are putting in place a management information system in anticipation of an expeditious start of construction. 20 refs., 2 figs., 3 tabs.

  15. The status of RandD for the relativistic heavy ion collider at Brookhaven

    International Nuclear Information System (INIS)

    Forsyth, E.B.

    1989-01-01

    Formal development of the Relativistic Heavy Ion Collider (RHIC) has been funded for the past three years. Prototype superconducting magnets and cryostats have been tested. Detailed designs have been prepared for the arc sections, the insertion regions and injection and ejection systems. The rf system has undergone significant revisions in order to enhance the experimental capability of RHIC. Progress has been made with the design of detectors. We are putting in place a management information system in anticipation of an expeditious start of construction. 20 refs., 2 figs., 3 tabs

  16. Azimuthal anisotropy at the relativistic heavy ion collider: the first and fourth harmonics.

    Science.gov (United States)

    Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhaskar, P; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Ganti, M S; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grigoriev, V; Gronstal, S; Grosnick, D; Guedon, M; Guertin, S M; Gupta, A; Gushin, E; Gutierrez, T D; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Jiang, H; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; LeVine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, D A; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; de Toledo, A Szanto; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trivedi, M D; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasiliev, A N; Vasiliev, M; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Waggoner, W; Wang, F; Wang, G; Wang, X L; Wang, Z M; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zhang, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N

    2004-02-13

    We report the first observations of the first harmonic (directed flow, v(1)) and the fourth harmonic (v(4)), in the azimuthal distribution of particles with respect to the reaction plane in Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC). Both measurements were done taking advantage of the large elliptic flow (v(2)) generated at RHIC. From the correlation of v(2) with v(1) it is determined that v(2) is positive, or in-plane. The integrated v(4) is about a factor of 10 smaller than v(2). For the sixth (v(6)) and eighth (v(8)) harmonics upper limits on the magnitudes are reported.

  17. Transverse energy production at RHIC

    International Nuclear Information System (INIS)

    Sahoo, Raghunath

    2006-01-01

    The quest for understanding of the possible formation and existence of the quark-gluon plasma (Qp), the deconfined phase of quarks and gluons, has been a major area of research in high energy nuclear physics. High energy nuclear collisions at the Relativistic Heavy Ion Collider (RHIC) has opened a new domain for the exploration of strongly interacting matter at very high energy density and temperature

  18. Iron saturation control in RHIC dipole magnets

    International Nuclear Information System (INIS)

    Thompson, P.A.; Gupta, R.C.; Kahn, S.A.; Hahn, H.; Morgan, G.H.; Wanderer, P.J.; Willen, E.

    1991-01-01

    The Relativistic Heavy Ion Collider (RHIC) will require 360 dipoles of 80 mm bore. This paper discusses the field perturbations produced by the saturation of the yoke iron. Changes have been made to the yoke to reduce these perturbations, in particular, decapole -4 . Measurements and calculations for 6 series of dipole magnets are presented. 2 refs., 2 figs., 1 tab

  19. INTENSITY DEPENDENT EFFECTS IN RHIC

    International Nuclear Information System (INIS)

    WEI, J.

    1999-01-01

    The Relativistic Heavy Ion Collider (RHIC) is currently under commissioning after a seven-year construction cycle. Unlike conventional hadron colliders, this machine accelerates, stores, and collides heavy ion beams of various combinations of species. The dominant intensity dependent effects are intra-beam scattering at both injection and storage, and complications caused by crossing transition at a slow ramp rate. In this paper, the authors present theoretical formalisms that have been used for the study, and discuss mechanisms, impacts, and compensation methods including beam cooling and transition jump schemes. Effects of space charge, beam-beam, and ring impedances are also summarized

  20. Charged Hadron Multiplicity Distribution at Relativistic Heavy-Ion Colliders

    Directory of Open Access Journals (Sweden)

    Ashwini Kumar

    2013-01-01

    Full Text Available The present paper reviews facts and problems concerning charge hadron production in high energy collisions. Main emphasis is laid on the qualitative and quantitative description of general characteristics and properties observed for charged hadrons produced in such high energy collisions. Various features of available experimental data, for example, the variations of charged hadron multiplicity and pseudorapidity density with the mass number of colliding nuclei, center-of-mass energies, and the collision centrality obtained from heavy-ion collider experiments, are interpreted in the context of various theoretical concepts and their implications. Finally, several important scaling features observed in the measurements mainly at RHIC and LHC experiments are highlighted in the view of these models to draw some insight regarding the particle production mechanism in heavy-ion collisions.

  1. Universal behavior of charged particle production in heavy ion collisions

    Science.gov (United States)

    Phobos Collaboration; Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at sqrt(s_NN) = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/pbar-p and e+e- data. N_tot/(N_part/2) in nuclear collisions at high energy scales with sqrt(s) in a similar way as N_tot in e+e- collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  2. Experience with split transition lattices at RHIC

    International Nuclear Information System (INIS)

    Montag, C.; Tepikian, S.; Blaskiewicz, M.; Brennan, J.M.

    2010-01-01

    During the acceleration process, heavy ion beams in RHIC cross the transition energy. When RHIC was colliding deuterons and gold ions during Run-8, lattices with different integer tunes were used for the two rings. This resulted in the two rings crossing transition at different times, which proved beneficial for the 'Yellow' ring, the RF system of which is slaved to the 'Blue' ring. For the symmetric gold-gold run in FY2010, lattices with different transition energies but equal tunes were implemented. We report the optics design concept as well as operational experience with this configuration.

  3. Heavy flavours in ultra-relativistic heavy ions collisions; Les saveurs lourdes dans les collisions d'ions lourds ultra-relativistes

    Energy Technology Data Exchange (ETDEWEB)

    Rosnet, Ph

    2008-01-15

    The ultra-relativistic collisions of heavy ions are the today's only means to tackle in laboratory conditions the phase diagram in quantum chromodynamics and the strong interaction. The most recent theoretical studies predict a phase transition between the cold nuclear matter (a hadronic gas) and a plasma of quarks and gluons. Heavy flavour can characterize the nuclear matter produced in a heavy ion collision as well as its spatial-temporal evolution. Their study can be made through their decay into muons. The first part of this work presents the issue of ultra-relativistic heavy ion collisions and the role of heavy flavours. In the second part the author reviews the results of experiments performed at RHIC and particularly presents the analysis of the mass spectrum of dimuons in the Phenix experiment. The third part describes the muon trigger system of the Alice experiment at CERN and the expected performances for the study of di-muons.

  4. Ion sources for heavy ion fusion

    International Nuclear Information System (INIS)

    Yu, S.S.; Eylon, S.; Chupp, W.

    1995-09-01

    The development of ion sources for heavy ion fusion will be reported with particular emphasis on a recently built 2 MV injector. The new injector is based on an electrostatic quadrupole configuration, and has produced pulsed K + ions of 950 mA peak from a 6.7 inch curved alumino silicate source. The ion beam has reached 2.3 MV with an energy flatness of ±0.2% over 1 micros. The measured normalized edge emittance of less than 1 π mm-mr is close to the source temperature limit. The design, construction, performance, and comparisons with three-dimensional particle-in-cell simulations will be described

  5. RHIC spin physics

    International Nuclear Information System (INIS)

    Bunce, G.

    1994-01-01

    The physics potential of colliding beams of protons, polarized either longitudinally or transversely, at RHIC is remarkable. A luminosity of L = 2 x 10 32 cm -2 with 70% polarized beams will be available with up to 250 GeV energy in each beam. The proposal to collide polarized protons in RHIC was submitted in August 1992 and approved in October 1993. We have funding for R ampersand D on Siberian Snakes, so that RHIC will be able to accelerate polarized protons early in its program. The expected date of the first heavy ion collisions is 1999. The spin physics program includes measurement of gluon and sea quark polarization in the longitudinally polarized proton, measurement and then application of parity violation in W and Z production, measurement of hard scattering parton-parton asymmetries, and quark polarization or transversity in transversely polarized protons. Single spin asymmetries allow sensitive searches for parity violation (longitudinal polarization), and correlations between quark spin and gluons (transverse). Probes include direct photons (to P T = 20 GeV/c), jets (to P T > 50 GeV/c), Drell-Yan pairs to M ell ell = 9 GeV, W ± , Z. This program is described in our Particle World paper. Here we will emphasize the new information included in our Update, given to the Brookhaven PAC this September

  6. The RHIC status update

    International Nuclear Information System (INIS)

    Ozaki, S.

    1995-01-01

    The construction of the Relativistic Heavy Ion Collider (RHIC) began in 1991, with the completion date originally scheduled for 1997. Significant reduction of the funding levels in FY 1993 and 1994, and the funding level cap for FY 1995 and later years caused a 19-month stretchout of the construction period to the second quarter of FY 1999, and an increase of the total estimated cost (TEC) to $475 M. The Project, therefore, is now at the halfway mark of the construction period with actual cost and schedule performance tracking close to the DOE-approved baseline. Construction funding through FY 1994 reached close to 60% of the TEC. Incidentally, if one adds the current value of preexisting facilities which will be incorporated into RHIC, such as the injection system (Tandem Van de Graaff - the Booster - the AGS), the esixting 3.8 km tunnel, the 24 kW helium refrigerator, etc., the total value of the RHIC facility, when completed, will reach one billion dollars, if not more. The accelerator lattice design was finalized in 1992 after an intensive study was made to optimize the collider design for performance, operational flexibility, and value engineering. The civil construciton, including the collider enclosure, magnet access ports to the ring tunnel, and six service buildings for accelerator power supplies and cryogenic control boxes was completed

  7. RHIC spin physics

    International Nuclear Information System (INIS)

    Bunce, G.

    1993-01-01

    The physics potential of colliding beams of protons, polarized either longitudinally or transversely, at RHIC is remarkable. A luminosity of L = 2 x 10 32 cm -2 sec -1 with 70% polarized beams will be available with up to 250 GeV energy in each beam. The proposal to collide polarized protons in RHIC was submitted in August 1992 and approved in October 1993, just after this workshop. The collaboration has been encouraged to complete R ampersand D on Siberian Snakes, so that RHIC will be able to accelerate polarized protons early in its program. The expected date of the first heavy ion collisions is 1999. The spin physics program includes measurement of gluon and sea quark polarization in the longitudinally polarized proton, measurement and then application of parity violation in W and Z production, measurement of hard scattering parton-parton asymmetries, and quark polarization or transversity in transversely polarized protons. Single spin asymmetries allow sensitive searches for parity violation (longitudinal polarization), and correlations between quark spin and gluons (transverse). Probes include direct photons (to p T = 20 GeV/c), jets (to p T > 50 GeV/c), Drell-Yan pairs (to m ll = 9 GeV), W +/- , Z. Here, the collaboration emphasizes the new information included in the Update, given to the Brookhaven PAC this September

  8. Heavy ion fusion- Using heavy ions to make electricity

    International Nuclear Information System (INIS)

    Celata, C.M.

    2004-01-01

    The idea of using nuclear fusion as a source of commercial electrical power has been pursued worldwide since the 1950s. Two approaches, using magnetic and inertial confinement of the reactants, are under study. This paper describes the difference between the two approaches, and discusses in more detail the heavy-ion-driven inertial fusion concept. A multibeam induction linear accelerator would be used to bring ∼100 heavy ion beams to a few GeV. The beams would then heat and compress a target of solid D-T. This approach is unique among fusion concepts in its ability to protect the reaction chamber wall from neutrons and debris

  9. Heavy ion collisions and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Floerchinger, Stefan

    2016-12-15

    There are interesting parallels between the physics of heavy ion collisions and cosmology. Both systems are out-of-equilibrium and relativistic fluid dynamics plays an important role for their theoretical description. From a comparison one can draw interesting conclusions for both sides. For heavy ion physics it could be rewarding to attempt a theoretical description of fluid perturbations similar to cosmological perturbation theory. In the context of late time cosmology, it could be interesting to study dissipative properties such as shear and bulk viscosity and corresponding relaxation times in more detail. Knowledge and experience from heavy ion physics could help to constrain the microscopic properties of dark matter from observational knowledge of the cosmological fluid properties.

  10. Swift Heavy Ions in Matter

    Science.gov (United States)

    Rothard, Hermann; Severin, Daniel; Trautmann, Christina

    2015-12-01

    The present volume contains the proceedings of the Ninth International Symposium on Swift Heavy Ions in Matter (SHIM). This conference was held in Darmstadt, from 18 to 21 May 2015. SHIM is a triennial series, which started about 25 years ago by a joint initiative of CIRIL - Caen and GSI - Darmstadt, with the aim of promoting fundamental and applied interdisciplinary research in the field of high-energy, heavy-ion interaction processes with matter. SHIM was successively organized in Caen (1989), Bensheim (1992), Caen (1995), Berlin (1998), Catania (2002), Aschaffenburg (2005), Lyon (2008), and Kyoto (2012). The conference attracts scientists from many different fields using high-energy heavy ions delivered by large accelerator facilities and characterized by strong and short electronic excitations.

  11. Accelerators for heavy ion fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1985-10-01

    Large fusion devices will almost certainly produce net energy. However, a successful commercial fusion energy system must also satisfy important engineering and economic constraints. Inertial confinement fusion power plants driven by multi-stage, heavy-ion accelerators appear capable of meeting these constraints. The reasons behind this promising outlook for heavy-ion fusion are given in this report. This report is based on the transcript of a talk presented at the Symposium on Lasers and Particle Beams for Fusion and Strategic Defense at the University of Rochester on April 17-19, 1985

  12. Relativistic heavy ion facilities: worldwide

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1986-05-01

    A review of relativistic heavy ion facilities which exist, are in a construction phase, or are on the drawing boards as proposals is presented. These facilities span the energy range from fixed target machines in the 1 to 2 GeV/nucleon regime, up to heavy ion colliders of 100 GeV/nucleon on 100 GeV/nucleon. In addition to specifying the general features of such machines, an outline of the central physics themes to be carried out at these facilities is given, along with a sampling of the detectors which will be used to extract the physics. 22 refs., 17 figs., 3 tabs

  13. PHOBOS at RHIC 2000

    Energy Technology Data Exchange (ETDEWEB)

    Back, B. B [Argonne National Laboratory (United States)] (and others)

    2001-12-01

    The relativistic heavy ion collider (RHIC) at Brookhaven national laboratory delivered in June 2000 the first collisions between Au nuclei at the highest center-of-mass energies achieved in a controlled environment to date. PHOBOS is one of the four experiments installed during this phase of RHIC running. This paper will describe the PHOBOS experiment, and discuss the results of the first physics measurement, the pseudo rapidity densities of primary charged particles near mid rapidity in central Au+Au collisions at two different energies, S{sub N}N{sup .}5=56 and 130 GeV. The observed densities are higher than those previously observed in any collisions, and the rate of increase between the two energies is larger than that for nucleon-nucleon collisions at comparable beam energies. This talk will describe the PHOBOS experiment, discuss the first physics measurement, and conclude with the present status of the experiment, the physics analysis and the perspectives for the future. [Spanish] El elativistic heavy ion collider (RHIC) en Brookhaven national laboratory produjo por primera vez colisiones de nucleos de oro (Au) a las energias mas altas alcanzadas en un medio ambiente controlado. PHOBOS es uno de los cuatro experimentos presentes en DIC durante su fase inicial. Este articulo describe en detalle a PHOBOS y discute los primeros resultados publicados acerca de la fisica de DIC, esto es la densidad de particulas primarias a id rapidity en colisiones centrales de Au+Au a dos diferentes energias S{sub N}N{sup .}5 =56 y 130 GeV. Las densidades observadas son mas altas que en cualquier otra experimento anterior, las densidades obtenidas son tambien mas altas que las encontradas en colisiones proton-proton a energias comparables. Este articulo tambien discute el estado actual del experimento asi como los planes para el futuro.

  14. Modeling RHIC using the standard machine formal accelerator description

    International Nuclear Information System (INIS)

    Pilat, F.; Trahern, C.G.; Wei, J.

    1997-01-01

    The Standard Machine Format (SMF) is a structured description of accelerator lattices which supports both the hierarchy of beam lines and generic lattice objects as well as those deviations (field errors, alignment efforts, etc.) associated with each component of the as-installed machine. In this paper we discuss the use of SMF to describe the Relativistic Heavy Ion Collider (RHIC) as well as the ancillary data structures (such as field quality measurements) that are necessarily incorporated into the RHIC SMF model. Future applications of SMF are outlined, including its use in the RHIC operational environment

  15. Beam profile measurements on RHIC

    International Nuclear Information System (INIS)

    Connolly, R.; Michnoff, R.; Moore, T.; Shea, T.; Tepikian, S.

    2000-01-01

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab was commissioned during the summer of 1999. Transverse beam profiles on RHIC are measured with ionization profile monitors (IPMs). An IPM measures beam profiles by collecting the electrons liberated by residual gas ionization by the beam. The detector is placed in the gap of a dipole magnet to force the electrons to travel in straight lines from the beamline center to the collector. One IPM was tested and it measured the profiles of a single gold bunch containing 10 8 ions on consecutive turns. We show an example of one of these profiles giving transverse emittance. Also several profiles are combined into a mountain-range plot which shows betatron oscillations at injection

  16. High energy heavy ion collisions: Lessons from relativistic heavy ion ...

    Indian Academy of Sciences (India)

    select events which respond to the observables correlated to the centrality of the collisions. .... pared to 130 GeV and is independent of centrality. Similar ..... observations, therefore coming out of these exclusive observables at RHIC directs.

  17. Radiation from heavy ion collisions

    International Nuclear Information System (INIS)

    Kast, J.R.; Lee, Y.K.

    1975-01-01

    A study of x rays produced in heavy ion collisions has led to a search for molecular orbital x rays, concentrating on 35 Cl ions on Al, NaCl, and C targets. Preliminary analysis of the angular dependence of continuum x rays has tentatively identified quasi-molecular K x rays. Other work completed and in progress is discussed. (3 figures) (U.S.)

  18. A study of RHIC crystal collimation

    International Nuclear Information System (INIS)

    Trbojevic, D.; Harrison, M.; Parker, B.; Thompson, P.; Stevens, A.; Biryukov, V.; Mokhov, N.; Drozhdin, A.

    1998-01-01

    The Relativistic Heavy Ion Collider (RHIC) will experience increasing longitudinal and transverse heavy ion emittances, mostly due to intra-beam scattering (IBS). The experiments in RHIC are expected to not only have reduced luminosities due to IBS but also background caused by beam halo. Primary betatron collimators will be used to remove the large amplitude particles. The efficiency of the primary collimator in RHIC strongly depends on the alignment of the jaws which needs to be within about ten micro-radians for the optimum conditions. As proposed by V. biryukov bent crystals could be used to improve the efficiency of an existing collimation system by installing them upstream of the collimator jaws. Bent crystals have been successfully used in SPS, Protvino and Fermilab for extraction of the beam particles channeled through them. This study examines possible improvements of the primary collimator system for heavy ions at RHIC by use of bent crystals. Bent crystals will reduce the collimator jaws alignment requirement and will increase collimator efficiency thereby reducing detector background

  19. Exploring the QCD Phase Structure with Beam Energy Scan in Heavy-ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xiaofeng, E-mail: xfluo@mail.ccnu.edu.cn

    2016-12-15

    Beam energy scan programs in heavy-ion collisions aim to explore the QCD phase structure at high baryon density. Sensitive observables are applied to probe the signatures of the QCD phase transition and critical point in heavy-ion collisions at RHIC and SPS. Intriguing structures, such as dip, peak and oscillation, have been observed in the energy dependence of various observables. In this paper, an overview is given and corresponding physics implications will be discussed for the experimental highlights from the beam energy scan programs at the STAR, PHENIX and NA61/SHINE experiments. Furthermore, the beam energy scan phase II at RHIC (2019–2020) and other future experimental facilities for studying the physics at low energies will be also discussed.

  20. Future relativistic heavy ion experiments

    International Nuclear Information System (INIS)

    Pugh, H.G.

    1980-12-01

    Equations of state for nuclear matter and ongoing experimental studies are discussed. Relativistic heavy ion physics is the only opportunity to study in the laboratory the properties of extended multiquark systems under conditions such that quarks might run together into new arrangements previously unobserved. Several lines of further study are mentioned

  1. Summary of heavy ion theory

    International Nuclear Information System (INIS)

    Gavin, S.

    1994-09-01

    Can we study hot QCD using nuclear collisions? Can we learn about metallic hydrogen from the impact of comet Shoemaker-Levy 9 on Jupiter? The answer to both questions may surprise you exclamation point I summarize progress in relativistic heavy ion theory reported at DPF '94 in the parallel sessions

  2. Heavy-ion radiation chemistry

    International Nuclear Information System (INIS)

    Imamura, Masashi

    1975-01-01

    New aspect of heavy ion radiation chemistry is reviewed. Experiment has been carried out with carbon ions and nitrogen ions accelerated by a 160 cm cyclotron of the Institute of Physical and Chemical Research. The results of experiments are discussed, taking into consideration the effects of core radius depending on heavy ion energy and of the branch tracks of secondary electrons outside the core on chemical reaction and the yield of products. The effect of core size on chemical reaction was not able to be observed, because the incident energy of heavy ions was only several tens of MeV. Regarding high radical density, attention must be given to the production of oxygen in the core. It is possible to produce O 2 in the core in case of high linear energy transfer (LET), while no production of O 2 in case of low LET radiation. This may be one of study problems in future. LET effects on the yield of decomposed products were examined on acetone, methyl-ethyl-ketone and diethyl ketone, using heavy ions (C and N) as well as gamma radiation and helium ions. These three ketones showed that the LET change of two gaseous products, H 2 and CO, was THF type. There are peaks at 50-70 eV/A in the yield of both products. The peaks suggest the occurrence of ''saturation'' in decomposition. Attention was drawn to acetone containing a small amount (2 wt.%) of H 2 O. H 2 O and CO produced from this system differ from those in the pure system. The hydrogen connection formed by such a small amount of H 2 O may mediate the energy transfer. Sodium acetate tri-hydrate produces CH 3 radical selectively by gamma-ray irradiation at 77 K. In this case, the production of CH 2 COO - increases with the increase of LET of radiation. This phenomenon may be an important study problem. (Iwakiri, K.)

  3. A prototype ionization profile monitor for RHIC

    International Nuclear Information System (INIS)

    Connolly, R.; Cameron, P.; Ryan, W.

    1997-01-01

    Transverse beam profiles in the Relativistic Heavy-Ion Collider (RHIC) will be measured with ionization profile monitors (IPM's). Each IPM collects and measures the distribution of electrons in the beamline resulting from residual gas ionization during bunch passage. The electrons are swept transversely from the beamline and collected on strip anodes oriented parallel to the beam axis. At each bunch passage the charge pulses are amplified, integrated, and digitized for display as a profile histogram. A prototype detector was tested in the injection line during the RHIC Sextant Test. This paper describes the detector and gives results from the beam tests

  4. ACCELERATION OF POLARIZED PROTONS AT RHIC

    International Nuclear Information System (INIS)

    HUANG, H.

    2002-01-01

    Relativistic Heavy Ion Collider (RHIC) ended its second year of operation in January 2002 with five weeks of polarized proton collisions. Polarized protons were successfully injected in both RHIC rings and maintained polarization during acceleration up to 100 GeV per ring using two Siberian snakes in each ring. This is the first time that polarized protons have been accelerated to 100 GeV. The machine performance and accomplishments during the polarized proton run will be reviewed. The plans for the next polarized proton run will be outlined

  5. Global Decoupling on the RHIC Ramp

    CERN Document Server

    Luo, Yun; Della Penna, Al; Fischer, Wolfram; Laster, Jonathan S; Marusic, Al; Pilat, Fulvia Caterina; Roser, Thomas; Trbojevic, Dejan

    2005-01-01

    The global betatron decoupling on the ramp is an important issue for the operation of the Relativistic Heavy Ion Collider (RHIC). In the polarized proton run, the betatron tunes are required to keep almost constant on the ramp to avoid spin resonance line crossing and the beam polarization loss. Some possible correction schemes on the ramp, like three-ramp correction, the coupling amplitude modulation and the coupling phase modulaxtion, have been found. The principles of these schemes are shortly reviewed and compared. Operational results of their applications on the RHIC ramps are given.

  6. SIMULATION OF PARTICLE SPECTRA AT RHIC

    International Nuclear Information System (INIS)

    KAHANA, D.E.; KAHANA, S.H.

    2001-01-01

    A purely hadronic simulation is performed of the recently reported data from PHOBOS at energies of √s = 56, 130 GeV using the relativistic heavy ion cascade LUCIFER which had previously given a good description of the NA49 inclusive spectra at √s = 17.2 GeV/A. The results compare well with these early measurements at RHIC and indeed successfully predict the increase in multiplicity now seen by PHOBOS and the other RHIC detectors at the nominal maximum energy of √s = 200 GeV/A, suggesting that evidence for quark-gluon matter remains elusive

  7. A prototype ionization profile monitor for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, R.; Cameron, P.; Ryan, W. [and others

    1997-07-01

    Transverse beam profiles in the Relativistic Heavy-Ion Collider (RHIC) will be measured with ionization profile monitors (IPM`s). Each IPM collects and measures the distribution of electrons in the beamline resulting from residual gas ionization during bunch passage. The electrons are swept transversely from the beamline and collected on strip anodes oriented parallel to the beam axis. At each bunch passage the charge pulses are amplified, integrated, and digitized for display as a profile histogram. A prototype detector was tested in the injection line during the RHIC Sextant Test. This paper describes the detector and gives results from the beam tests.

  8. Report on EBIS studies for a RHIC preinjector

    International Nuclear Information System (INIS)

    Beebe, E.; Hershcovitch, A.; Kponou, A.; Prelec, K.; Alessi, J.

    1995-01-01

    Bookhaven, an Electron Beam Ion Source (EBIS) is now operational. This source is being used as a test bed to answer questions relevant to the eventual design of an EBIS-based heavy ion injector for RHIC. Such a source can easily produce ions such as Au 43+ but the challenge lies in reaching intensities of interest for RHIC (3 x 10 9 particles/pulse). The source studies are planned to address issues such as scaling of the electron beam to 10 A, possible onset (and control) of instabilities, ion injection, and parametric studies of output emittance

  9. Pair production with electron capture in peripheral collisions of relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Bertulani, C.A.C.A. E-mail: bertu@if.ufrj.br; Dolci, D.D. E-mail: dolci@if.ufrj.br

    2001-02-26

    The production of electron-positron pairs with the capture of the electron in an atomic orbital is investigated for the conditions of the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Dirac wave functions for the leptons are used, taking corrections to orders of Z{alpha} into account. The dependence on the transverse momentum transfer is studied and the accuracy of the equivalent photon approximation is discussed as a function of the nuclear charge.

  10. Langevin dynamics of heavy flavors in relativistic heavy-ion collisions

    CERN Document Server

    Alberico, W M; De Pace, A; Molinari, A; Monteno, M; Nardi, M; Prino, F

    2011-01-01

    We study the stochastic dynamics of c and b quarks, produced in hard initial processes, in the hot medium created after the collision of two relativistic heavy ions. This is done through the numerical solution of the relativistic Langevin equation. The latter requires the knowledge of the friction and diffusion coefficients, whose microscopic evaluation is performed treating separately the contribution of soft and hard collisions. The evolution of the background medium is described by ideal/viscous hydrodynamics. Below the critical temperature the heavy quarks are converted into hadrons, whose semileptonic decays provide single-electron spectra to be compared with the current experimental data measured at RHIC. We focus on the nuclear modification factor R_AA and on the elliptic-flow coefficient v_2, getting, for sufficiently large p_T, a reasonable agreement.

  11. Heavy ion accelerators at GSI

    International Nuclear Information System (INIS)

    Angert, N.

    1984-01-01

    The status of the Unilac heavy ion linear accelerator at GSI, Darmstadt is given. A schematic overall plan view of the Unilac is shown and its systems are described. List of isotopes and intensities accelerated at the Unilac is presented. The experimental possibilities at GSI should be considerably extended by a heavy ion synchrotron (SIS 18) in combination with an experimental storage ring (ESR). A prototype of the rf-accelerating system of the synchrotron has been built and tested. Prototypes for the quadrupole and dipole magnets for the ring are being constructed. The SIS 18 is desigmed for a maximum magnetic rigidity of 18Tm so that neon can be accelerated to 2 GeV/W and uranium to 1 GeV/u. The design allows also the acceleration of protons up to 4.5 GeV. The ESR permits to storage fully stripped uranium ions up to an energy of approximately R50 MeV/u

  12. Searching for squeezed particle-antiparticle correlations in high-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Padula, Sandra S.; Socolowski, O. Jr.

    2010-01-01

    Squeezed correlations of particle-antiparticle pairs were predicted to exist if the hadron masses were modified in the hot and dense medium formed in high-energy heavy-ion collisions. Although well-established theoretically, they have not yet been observed experimentally. We suggest here a clear method to search for such a signal by analyzing the squeezed correlation functions in terms of measurable quantities. We illustrate this suggestion for simulated φφ pairs at the Relativistic Heavy Ion Collider (RHIC) energies.

  13. Introduction to the experimental study of hadronic matter in heavy ion collisions. The Quark Gluon Plasma

    International Nuclear Information System (INIS)

    Martinez, G.

    2006-12-01

    In the last 20 years, heavy ion collisions have been an unique way to study the hadronic matter in the laboratory. The phase diagram of hadronic matter remains unknown, although many experimental and theoretical studies have been done in the last decade, aiming at studying its phase transitions. After a general introduction, two phases transition of the hadronic matter, liquid-gas and the transition to the Quark Gluon Plasma, are addressed. A general view about the experimental methods to study these phase transitions is presented in chapter three. The most important results of the heavy ion program in the RHIC collider at BNL (Upton, N.Y., Usa) are presented in chapter four. The last three chapters are devoted to the heavy ion program in the future large hadron collider (LHC) at CERN (Geneva, Switzerland). In particular, the unique LHC experiment specially designed for heavy ion physics, ALICE and its muon spectrometer are presented. (author)

  14. Little band at big accelerators: Heavy ion physics from AGS to LHC

    International Nuclear Information System (INIS)

    Schukraft, J.

    2001-01-01

    The field of ultra-relativistic heavy ion physics, which started some 10 years ago at the Brookhaven AGS and the CERN SPS with fixed target experiments, has entering today a new era with the recent (July 2000) start-up of the Relativistic Heavy Ion Collider RHIC and preparations well under way for a new large heavy ion experiment at the Large Hadron Collider LHC. This overview, which is the combined write-up of talks given at this conference [1] and in [2], will sketch a rough picture of the heavy ion program at current and future machines and concentrate on a few important topics, in particular the question if current results show any of the signs predicted for the phase transition between normal hadronic matter and the Quark-Gluon Plasma

  15. Nuclear physics with heavy ions. 1

    International Nuclear Information System (INIS)

    Reif, R.; Schmidt, R.

    1981-01-01

    Some results obtained in nuclear physics with heavy ions in the energy range up to 10 MeV/nucleon are summarized. A short review of the tendencies in the development of heavy ion accelerators is followed by a classification of the mechanisms observed in heavy ion interactions. The characteristics of the various types of reactions are presented. Applications of heavy ion beams in other branches of sciences are discussed. (author)

  16. ERL-BASED LEPTON-HADRON COLLIDERS: eRHIC AND LHeC

    CERN Document Server

    Zimmermann, F

    2013-01-01

    Two hadron-ERL colliders are being proposed. The Large Hadron electron Collider (LHeC) plans to collide the high-energy protons and heavy ions in the Large Hadron Collider (LHC) at CERN with 60-GeV polarized electrons or positrons. The baseline scheme for this facility adds to the LHC a separate recirculating superconducting (SC) lepton linac with energy recovery, delivering a lepton current of 6.4mA. The electron-hadron collider project eRHIC aims to collide polarized (and unpolarized) electrons with a current of 50 (220) mA and energies in the range 5–30 GeV with a variety of hadron beams— heavy ions as well as polarized light ions— stored in the existing Relativistic Heavy Ion Collider (RHIC) at BNL. The eRHIC electron beam will be generated in an energy recovery linac (ERL) installed inside the RHIC tunnel.

  17. The Shape and Flow of Heavy Ion Collisions (490th Brookhaven Lecture)

    Energy Technology Data Exchange (ETDEWEB)

    Schenke, Bjoern [BNL Physics Department

    2014-12-18

    The sun can’t do it, but colossal machines like the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab and Large Hadron Collider (LHC) in Europe sure can. Quarks and gluons make up protons and neutrons found in the nucleus of every atom in the universe. At heavy ion colliders like RHIC and the LHC, scientists can create matter more than 100,000 times hotter than the center of the sun—so hot that protons and neutrons melt into a plasma of quarks and gluons. The particle collisions and emerging quark-gluon plasma hold keys to understanding how these fundamental particles interact with each other, which helps explain how everything is held together—from atomic nuclei to human beings to the biggest stars—how all matter has mass, and what the universe looked like microseconds after the Big Bang. Dr. Schenke discusses theory that details the shape and structure of heavy ion collisions. He will also explain how this theory and data from experiments at RHIC and the LHC are being used to determine properties of the quark-gluon plasma.

  18. Therapy tumor with the heavy ions beam

    International Nuclear Information System (INIS)

    Dang Bingrong; Wei Zengquan; Li Wenjian

    2002-01-01

    As physical characteristic of heavy ions Bragg peak, therapy tumor with heavy ions is becoming advanced technology. So, many countries have developed the technology and used to treat tumor, the societal and economic effects are beneficial to people. The authors show the development, present situation and information of research in world of advanced radiotherapy with heavy ions

  19. Spectroscopy of heavy few-electron ions

    International Nuclear Information System (INIS)

    Mokler, P.H.

    1986-07-01

    In this paper we ask first, why is it interesting to investigate heavy-few electron ions. Then the various accelerator-based methods to produce heavy few-electron ions are discussed. In the main part an overview on available heavy few-electron ion data and current experiments is given. The summary will end up with future aspects in this field. (orig.)

  20. Polarization phenomena in heavy-ion reactions

    International Nuclear Information System (INIS)

    Sugimoto, K.; Ishihara, M.; Takahashi, N.

    1984-01-01

    This chapter presents a few key experiments which provide direct evidence of the polarization phenomena in heavy-ion reactions. The theory of polarization observables and measurements is given with the necessary formulae. The polarization phenomena is described and studies of product nuclear polarization in heavy-ion reactions are discussed. Studies of heavy-ion reactions induced by polarized beams are examined

  1. Heavy ion driver technology

    International Nuclear Information System (INIS)

    Keefe, D.

    1988-09-01

    Major differences between fusion drivers and traditional accelerators include the following. The final beam current needed (/approximately/20 kA in a short pulse) is very much larger for a driver; such beams are dominated by repulsive space-charge effects since, even at 10 GeV, the ions are non-relativistic (v/c = 0.3). Also, the optical quality of the beams (called emittance by accelerator people) must be extremely good to ensure a suitably small focal spot at the pellet. Two schemes, one with a rf linac and storage rings, the other with a single-pass current-amplifying induction linac, are under study, the latter exclusively in the US. The induction linac approach lends itself to an examination in a sequence of scaled-down laboratory experiments since the most difficulties are expected to occur at the low energy end. Experiments and simulation have centered on a study of the transverse and longitudinal control of space-charge-dominated beams which are best described in terms of a non-neutral plasma rather than the traditional single-particle dynamics picture. An understanding of the high-current instability limits is required for arriving at a safe driver design. The final on-target beam current is so high that it must be carried in 16 separate focusing channels leading into the combustion chamber. While the energy deposition of the ions is expected to be entirely classical, there is a wealth of plasma physics phenomena to be explored (by theory and simulation) in the final propagation of these beams through the low-density gas in the chamber and in the environment of the hot target; it is important that none of these could result in a significant portion of the beam missing the focal spot. 13 refs., 9 figs., 1 tab

  2. Heavy ions: Report from Relativistic Heavy Ion Collider

    Indian Academy of Sciences (India)

    2012-10-12

    Oct 12, 2012 ... Experiments using ultrarelativistic heavy-ion collisions study nuclear matter under ... sN N = 10 GeV for Pb+Pb collisions, corresponding to an initial .... quenching through systematic comparisons of data to models, and .... the RdAu and RCP = (0−20%)/(60−80%) factors for the J/ψ production in d+Au col-.

  3. OVERVIEW OF THE RHIC INSERTION REGION, SEXTUPOLE, AND SNAKE POWER SUPPLY SYSTEMS

    International Nuclear Information System (INIS)

    BRUNO, D.; ENG, W.; GANETIS, G.; LAMBIASE, R.F.; SANDBERG, J.

    2001-01-01

    The Relativistic Heavy Ion Collider (RHIC) was commissioned in 1999 and 2000. RHIC requires power supplies to supply currents to highly inductive superconducting magnets. The RHIC Insertion Region (IR) contains many shunt power supplies to trim the current of different magnet elements in a large superconducting magnet circuit. There are a total of 237 Insertion Region power supplies in both RHIC rings. RHIC also requires sextupole power supplies. One sextupole power supply is connected across 12 sextupole magnets. There are a total of 24 sextupole power supplies in both rings. Snake magnets are also a part of the RHIC ring, and these snake magnets also require power supplies. There shall be a total of 24 snake power supplies in both rings. Power supply technology, connections, control systems and interfacing with the Quench Protection System will be presented

  4. ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    BEN-ZVI, I.; AHRENS, L.; BRENNAN, M.; HARRISON, M.; KEWISCH, J.; MACKAY, W.; PEGGS, S.; ROSER, T.; SATOGATA, T.; TRBOJEVIC, D.; YAKIMENKO, V.

    2001-01-01

    We introduce plans for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This project has a number of new features as electron coolers go: It will cool 100 GeV/nucleon ions with 50 MeV electrons; it will be the first attempt to cool a collider at storage-energy; and it will be the first cooler to use a bunched beam and a linear accelerator as the electron source. The linac will be superconducting with energy recovery. The electron source will be based on a photocathode gun. The project is carried out by the Collider-Accelerator Department at BNL in collaboration with the Budker Institute of Nuclear Physics

  5. Experience with IBS-suppression lattice in RHIC

    International Nuclear Information System (INIS)

    Litvinenko, V.N.; Luo, Y.; Ptitsyn, V.; Satogata, T.; Tepikian, S.; Bai, M.; Bruno, D.; Cameron, P.; Connolly, R.; Della Penna, A.; Drees, A.; Fedotov, A.; Ganetis, G.; Hoff, L.; Louie, W.; Malitsky, N.; Marr, G.; Marusic, A.; Montag, C.; Pilat, F.; Roser, T.; Trbojevic, D.; Tsoupas, N.

    2008-01-01

    An intra-beam scattering (IBS) is the limiting factor of the luminosity lifetime for RHIC operating with heavy ions. In order to suppress the IBS we designed and implemented new lattice with higher betatron tunes. This lattice had been developed during last three years and had been used for gold ions in yellow ring of the RHIC during d-Au part of the RHIC Run-8. The use of this lattice allowed both significant increases in the luminosity lifetime and the luminosity levels via reduction of beta-stars in the IPS. In this paper we report on the development, the tests and the performance of IBS-suppression lattice in RHIC, including the resulting increases in the peak and the average luminosity. We also report on our plans for future steps with the IBS suppression

  6. Heavy ion activation analysis

    International Nuclear Information System (INIS)

    Lass, B.D.; Roche, N.G.; Sanni, A.O.; Schweikert, E.A.; Ojo, J.F.

    1982-01-01

    A report on radioactivation with ion beams of 3 6 Li and 14 N is presented with some analytical applications: the determination of C via 12 C( 6 Li,αn) 13 N; the determination of Li and Be, using 14 N activation. Next, examples, with limitations in selectivity. The detection limits using a 1 μA h of activation irradiation are 5 ppm for C and 1 ppm for Li or Be. With 9 Be suitable for analytical applications are: sup(10,11)B( 9 Be,xn) 18 F and 14 N( 9 Be,αn) 18 F. Assuming a 1 μA h irradiation the detection limits for N and B are 1.5 ng and 0.5 ng, respectively, using a 7.8 MeV 9 Be beam. For activation with 12 C, experimental results with 12 MeV 12 C beam demonstrate that the beam is best suited for 7 Li analysis by the reaction 7 Li( 12 C,n) 18 F. The detection limit for a 1 μA h irradiation is 1 ng and the only other low Z elements activated are B and C. Finally, 12 C radioactivation was further combined with autoradiography for positional analysis. The spatial resolution of the technique was estimated to be 40 μm for an exposure corresponding to 6x10 5 disintegrations. As low as 10 -12 g of Li was readily detected by autoradiography. (author)

  7. Chemical equilibration in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Brown, Gerald E.; Lee, Chang-Hwan; Rho, Mannque

    2005-01-01

    In the hadronic sector of relativistic heavy ion physics, the ρ<-2π reaction is the strongest one, strong enough to equilibrate the ρ with the pions throughout the region from chemical freezeout to thermal freezeout when free-particle interactions (with no medium-dependent effects) are employed. Above the chiral restoration temperature, only ρ's and π's are present, in that the chirally restored A1 is equivalent to the ρ and the mesons have an SU(4) symmetry, with no dependence on isospin and negligible dependence on spin. In the same sense the σ and π are 'equivalent' scalars. Thus the chirally restored ρ<-2π exhaust the interspecies transitions. We evaluate this reaction at Tc and find it to be much larger than below Tc, certainly strong enough to equilibrate the chirally restored mesons just above Tc. When emitted just below Tc the mesons remain in the Tc+ε freezeout distribution, at least in the chiral limit because of the Harada-Yamawaki 'vector manifestation' that requires that mesonic coupling constants go to zero (in the chiral limit) as T goes to Tc from below. Our estimates in the chiral limit give deviations in some particle ratios from the standard scenario (of equilibrium in the hadronic sector just below Tc) of about double those indicated experimentally. This may be due to the neglect of explicit chiral symmetry breaking in our estimates. We also show that the instanton molecules present above Tc are the giant multipole vibrations found by Asakawa, Hatsuda and Nakahara and of Wetzorke et al. in lattice gauge calculations. Thus, the matter formed by RHIC can equivalently be called: chirally restored mesons, instanton molecules, or giant collective vibrations. It is a strongly interacting liquid

  8. Calorimetric cryodetectors for heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Egelhof, P; Henning, W; Kienlin, A v; Meier, J; Truebenbacher, V [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany, F.R.) Mainz Univ. (Germany, F.R.). Inst. fuer Physik; Azgui, F [CDTN, Algiers (Algeria); Shepard, K [Argonne National Lab., IL (USA)

    1990-01-01

    Status and first test results are reported for a project to develop calorimetric cryodetectors for heavy ions. The special conditions for the detection of energetic heavy ions are discussed. Presently the investigations are focussed on semiconductor bolometers and aluminium-strip superconducting phase-transition thermometers that are cooled with liquid {sup 4}He and operate in the temperature range 1.3-4.2 K. For a germanium bolometer the temperature dependence of the resistance, voltage-current curves, the time response to heating by voltage pulses and the response to ionizing {alpha}-radiation are reported. First tests on phase transition thermometers using thin aluminum strips yield a transition width of {Delta}T=8.6 mK at T{sub c}=1.467 K. (orig.).

  9. Physics of Ultrarelativistic Heavy Ions

    International Nuclear Information System (INIS)

    Giubellino, P.

    1996-01-01

    This paper is devoted to a general presentation of the physics of Ultrarelativistic Heavy Ions, as seen from the experimentalist close-quote s point of view. The aim of this research is the study of nuclear matter under extreme conditions of temperature and pressure, extending in this way our understanding of the strong interactions in general, and of colour confinement in particular. This young field of Physics has been growing rapidly in the past years, and any attempt to cover it in few pages will be rather sketchy and many important aspects will have to be left out. I will mainly try to cover the general motivations to undertake this study, and just mention the experimental challenges to be faced, the results from the experiments at CERN and BNL, and finally the fascinating program ahead of us, with a glimpse at the CERN LHC used as a heavy-ion collider. copyright 1996 American Institute of Physics

  10. Mutation induction by heavy ions

    Science.gov (United States)

    Kiefer, J.; Stoll, U.; Schneider, E.

    1994-10-01

    Mutation induction by heavy ions is compared in yeast and mammalian cells. Since mutants can only be recovered in survivors the influence of inactivation cross sections has to be taken into account. It is shown that both the size of the sensitive cellular site as well as track structure play an important role. Another parameter which influences the probability of mutation induction is repair: Contrary to naive assumptions primary radiation damage does not directly lead to mutations but requires modification to reconstitute the genetic machinery so that mutants can survive. The molecular structure of mutations was analyzed after exposure to deuterons by amplification with the aid of polymerase chain reaction. The results-although preliminary-demonstrate that even with densely ionizing particles a large fraction does not carry big deletions which suggests that point mutations may also be induced by heavy ions.

  11. Semiholography for heavy ion collisions

    CERN Document Server

    Mukhopadhyay, Ayan

    2017-01-01

    The formation of QGP in heavy ion collisions gives us a great opportunity for learning about nonperturbative dynamics of QCD. Semiholography provides a new consistent framework to combine perturbative and non-perturbative effects in a coherent way and can be applied to obtain an effective description for heavy ion collisions. In particular, it allows us to include nonperturbative effects in existing glasma effective theory and QCD kinetic theory for the weakly coupled saturated degrees of freedom liberated by the collisions in the initial stages in a consistent manner. We argue why the full framework should be able to confront experiments with only a few phenomenological parameters and present feasibility tests for the necessary numerical computations. Furthermore, we discuss that semiholography leads to a new description of collective flow in the form of a generalised non-Newtonian fluid. We discuss some open questions which we hope to answer in the near future.

  12. Results from the first heavy ion run at the LHC

    CERN Document Server

    Schukraft, J

    2012-01-01

    Early November 2010, the LHC collided for the first time heavy ions, Pb on Pb, at a centre-of-mass energy of 2.76 TeV/nucleon. This date marked both the end of almost 20 years of preparing for nuclear collisions at the LHC, as well as the start of a new era in ultra-relativistic heavy ion physics at energies exceeding previous machines by more than an order of magnitude. This contribution summarizes some of the early results from all three experiments participating in the LHC heavy ion program (ALICE, ATLAS, and CMS), which show that the high density matter created at the LHC, while much hotter and larger, still behaves like the very strongly interacting, almost perfect liquid discovered at RHIC. Some surprising and even puzzling results are seen in particle ratios, jet-quenching, and Quarkonia suppression observables. The overall experimental conditions at the LHC, together with its set of powerful and state-of-the-art detectors, should allow for precision measurements of quark-gluon-plasma parameters like v...

  13. Heavy-ion-spectrometer system

    International Nuclear Information System (INIS)

    1982-05-01

    LBL safety policy (Pub 300 Appendix E) states that every research operation with a Class A risk potential (DOE 5484.1) should identify potentially hazardous procedures associated with the operation and develop methods for accomplishing the operation safely without personnel injury or property damage. The rules and practices that management deems to be minimally necessary for the safe operations of the Heavy Ion Spectrometer System (HISS) in the Bevatron Experimental Hall (51B) are set forth in this Operation Safety Procedures

  14. Experiments with stored heavy ions

    International Nuclear Information System (INIS)

    Fick, D.; Habs, D.; Jaeschke, E.

    1985-02-01

    The success of newly-developed methods of phase space cooling in proton and antiproton storage rings was sufficient for an examination of whether these methods could also be applied in storage rings for heavy ions. An expansion of these methods to heavy ion beams seems attractive for all sorts of reasons. Recently, this area was extensively discussed in a series of working meetings with the result that heavy ion storage rings are to be built for use in atomic and nuclear physics, with integrated radiation cooling and stochastic cooling, but primarily electron cooling. The current state of research and planning for the storage experiment is described. It is not intended to be a structural specification worked out in detail. The general design of the ring, however, has been established, and experimental details have deliberately been kept flexible, to thereby allow very different sorts of experiments to be conducted. The ring described with a maximum magnetic rigidity of Bp = 1.5 Tm, is designed in quadripartite symmetry. The total circumference is approximately 35 m, and there are four straight sections each 3.5 m long for the electron cooling sections, the experimental equipment, as well as HF system and injection. One of the most desirable properties of the reservoir is the multi-charge mode, which will significantly improve the operation which heavy ion beams, which reverse charge in electron cooling sections, target and residual vacuum. Initial considerations are presented with regard to stochastic and electron cooling. A review of possible classes of experiments is given and the schedule and financing of the project is outlined. 46 refs

  15. Heavy-ion-spectrometer system

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    LBL safety policy (Pub 300 Appendix E) states that every research operation with a Class A risk potential (DOE 5484.1) should identify potentially hazardous procedures associated with the operation and develop methods for accomplishing the operation safely without personnel injury or property damage. The rules and practices that management deems to be minimally necessary for the safe operations of the Heavy Ion Spectrometer System (HISS) in the Bevatron Experimental Hall (51B) are set forth in this Operation Safety Procedures (OSP).

  16. Tau electron atoms at RHIC

    International Nuclear Information System (INIS)

    Weiss, M.S.

    1985-01-01

    An amusement ancillary to the proposed quark-gluon plasma production hypothesized from a relativistic heavy ion collider (RHIC is a sufficient quantity of tau electrons to potentially admit the study of its exotic atoms. In this paper the given wealth of nuclear phenomena is derived from muonic atoms assume a tau atom is more forthcoming of information due to the lower orbits entirely contained within the nucleus. It is the purpose of this brief note to discuss the production mechanism at a RHIC and to delineate some of the more obvious properties of the tau atom. As in the case of the mu, more exotic phenomena derived from resonance ''accidents'' with nuclear transitions takes place, but it would be presumptions to discuss them at this time. Given the complete containment in nuclear matter of the tau lepton in its innermost atomic orbits. An experiment performed with such an exotic species results in the measurement of its lifetime

  17. Workshop on the RHIC performance

    Energy Technology Data Exchange (ETDEWEB)

    Khiari, F.; Milutinovic, J.; Ratti, A.; Rhoades-Brown, M.J. (eds.)

    1988-07-01

    The most recent conceptual design manual for the Relativistic Heavy Ion Collider (RHIC) at Brookhaven was published in May 1986 (BNL 51932). The purpose of this workshop was to review the design specifications in this RHIC reference manual, and to discuss in detail possible improvements in machine performance by addressing four main areas. These areas are beam-beam interactions, stochastic cooling, rf and bunch instabilities. The contents of this proceedings are as follows. Following an overview of the workshop, in which the motivation and goals are discussed in detail, transcripts of the first day talks are given. Many of these transcripts are copies of the original transparencies presented at the meeting. The following four sections contain contributed papers, that resulted from discussions at the workshop within each of the four working groups. In addition, there is a group summary for each of the four working groups at the beginning of each section. Finally, a list of participants is given.

  18. Progress Toward Heavy Ion IFE

    International Nuclear Information System (INIS)

    Meier, W.R.; Logan, B.G.; Waldron, W.L.; Sabbi, G.L.; Callahan-Miller, D.A.; Peterson, P.F.; Goodin, D.T.

    2002-01-01

    Successful development of Heavy Ion Fusion (HIF) will require scientific and technology advances in areas of targets, drivers and chambers. Design work on heavy ion targets indicates that high gain (60-130) may be possible with a -3-6 MJ driver depending on the ability to focus the beams to small spot sizes. Significant improvements have been made on key components of heavy ion drivers, including sources, injectors, insulators and ferromagnetic materials for long-pulse induction accelerator cells, solid-state pulsers, and superconducting quadrupole magnets. The leading chamber concept for HIF is the thick-liquid-wall HYLEE-II design, which uses an array of flibe jets to protect chamber structures from x-ray, debris, and neutron damage. Significant progress has been made in demonstrating the ability to create and control the types of flow needed to form the protective liquid blanket. Progress has also been made on neutron shielding for the final focus magnet arrays with predicted lifetimes now exceeding the life of the power plant. Safety analyses have been completed for the HYLEE-II design using state-of-the-art codes. Work also continues on target fabrication and injection for HE. A target injector experiment capable of > 5 Hz operation has been designed and construction will start in 2002. Methods for mass production of hohlraum targets are being evaluated with small-scale experiments and analyses. Progress in these areas will be reviewed

  19. Beam modulation for heavy ion radiotherapy

    International Nuclear Information System (INIS)

    Kanai, T.; Minohara, S.; Sudou, M.

    1993-01-01

    The first clinical trial of heavy ion radiation therapy is scheduled in 1994 by using the heavy ion medical accelerator in Chiba (HIMAC). In order to start the clinical trial, first, it is necessary to know the physical characteristics of high energy heavy ions in human bodies, for example, dose and linear energy transfer (LET) distribution. Also the knowledge on the biological effectiveness of heavy ions is required. Based on these biophysical properties of heavy ions, monoenergetic heavy ion beam should be modulated so as to make the spread Bragg peak suitable to heavy ion radiation therapy. In order to establish a methodology to obtain the most effective spread Bragg peak for heavy ion radiation therapy, a heavy ion irradiation port at the RIKEN ring cyclotron facility was constructed. By using a 135 MeV/u carbon beam, the biophysical properties of the heavy ions were investigated, and a range modulator was designed to have uniform biological response in the spread Bragg peak. The physical and biological rationality of the spread Bragg peak were investigated. The dose, LET and biological effect of a monoenergetic heavy ion beam, the design of the range modulator, and the distributions of LET and biological dose for the spread Bragg peak are reported. (K.I.)

  20. Medical heavy ion accelerator proposals

    International Nuclear Information System (INIS)

    Gough, R.A.

    1985-05-01

    For several decades, accelerators designed primarily for research in nuclear and high energy physics have been adapted for biomedical research including radiotherapeutic treatment of human diseases such as pituitary disorders, cancer, and more recently, arteriovascular malformations. The particles used in these treatments include pions, protons and heavier ions such as carbon, neon, silicon and argon. Maximum beam energies must be available to penetrate into an equivalent of about 30 cm of water, requiring treatment beams of 250 to 1000 MeV/nucleon. Certain special treatments of superficial melanoma, however, require that beam energies as low as 70 MeV/nucleon also be available. Intensities must be adequate to complete a 100 rad treatment fraction in about 1 minute. For most heavy ion treatments, this corresponds to 10 7 -10 9 ions/second at the patient. Because this research is best conducted in a dedicated, hospital-based facility, and because of the clinical need for ultra-high reliability, the construction of new and dedicated facilities has been proposed. Heavy ion accelerators can provide a variety of ions and energies, permitting treatment plans that exploit the properties of the ion best suited to each individual treatment, and that employ radioactive beams (such as 11 C and 19 Ne) to precisely confirm the dose localization. The favored technical approach in these proposals utilizes a conventional, strong-focusing synchrotron capable of fast switching between ions and energies, and servicing multiple treatment rooms. Specialized techniques for shaping the dose to conform to irregularly-shaped target volumes, while simultaneously sparing surrounding, healthy tissue and critical structures, are employed in each treatment room, together with the sophisticated dosimetry necessary for verification, monitoring, and patient safety. 3 refs., 8 figs

  1. Sorting chromatic sextupoles for easily and effectively correcting second order chromaticity in the Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Luo, Y.; Tepikian, S.; Fischer, W.; Robert-Demolaize, G.; Trbojevic, D.

    2009-01-01

    Based on the contributions of the chromatic sextupole families to the half-integer resonance driving terms, we discuss how to sort the chromatic sextupoles in the arcs of the Relativistic Heavy Ion Collider (RHIC) to easily and effectively correct the second order chromaticities. We propose a method with 4 knobs corresponding to 4 pairs of chromatic sextupole families to online correct the second order chromaticities. Numerical simulation justifies this method, showing that this method reduces the unbalance in the correction strengths of sextupole families and avoids the reversal of sextupole polarities. Therefore, this method yields larger dynamic apertures for the proposed RHIC 2009 100GeV polarized proton run lattices

  2. Heavy ion physics at CERN

    International Nuclear Information System (INIS)

    Vesztergombi, G.

    1991-01-01

    A summary of the present status and future plans for heavy ion experiments at CERN-SPS and CERN-LHC accelerators is given. The planned three phases give possibilities to study the properties of the quark-gluon-plasma (QGP). At the present stage the feasibility of high energy ion-ion experiments with their very abundant secondary hadron production, shows that there is a chance to obtain high densities, and to look for the onset of new, collective phenomena. In a second phase, there should be a chance to obtain more conclusive evidence for the onset of quark deconfinement. In the third stage, the average energy densities rise above the deconfinement threshold, so that a study of the properties of QGP should become possible. (G.P.)

  3. INFN what next ultra-relativistic heavy-ion collisions

    CERN Document Server

    Dainese, A.; Usai, G.; Antonioli, P.; Arnaldi, R.; Beraudo, A.; Bruna, E.; Bruno, G.E.; Bufalino, S.; Di Nezza, P.; Lombardo, M.P.; Nania, R.; Noferini, F.; Oppedisano, C.; Piano, S.; Prino, F.; Rossi, A.; Agnello, M.; Alberico, W.M.; Alessandro, B.; Alici, A.; Andronico, G.; Antinori, F.; Arcelli, S.; Badala, A.; Barbano, A.M.; Barbera, R.; Barile, F.; Basile, M.; Becattini, F.; Bedda, C.; Bellini, F.; Beole, S.; Bianchi, L.; Bianchin, C.; Bonati, C.; Bossu, F.; Botta, E.; Caffarri, D.; Camerini, P.; Carnesecchi, F.; Casula, E.; Cerello, P.; Cicalo, C.; Cifarelli, M.L.; Cindolo, F.; Colamaria, F.; Colella, D.; Colocci, M.; Corrales Morales, Y.; Cortese, P.; De Caro, A.; De Cataldo, G.; De Falco, A.; De Gruttola, D.; D'Elia, M.; De Marco, N.; De Pasquale, S.; Di Bari, D.; Elia, D.; Fantoni, A.; Feliciello, A.; Ferretti, A.; Festanti, A.; Fionda, F.; Fiorenza, G.; Fragiacomo, E.; Fronze, G.G.; Girard, M. Fusco; Gagliardi, M.; Gallio, M.; Garg, K.; Giubellino, P.; Greco, V.; Grossi, E.; Guerzoni, B.; Hatzifotiadou, D.; Incani, E.; Innocenti, G.M.; Jacazio, N.; Das, S. Kumar; La Rocca, P.; Lea, R.; Leardini, L.; Leoncino, M.; Lunardon, M.; Luparello, G.; Mantovani Sarti, V.; Manzari, V.; Marchisone, M.; Margagliotti, G.V.; Masera, M.; Masoni, A.; Mastroserio, A.; Mazzilli, M.; Mazzoni, M.A.; Meninno, E.; Mesiti, M.; Milano, L.; Moretto, S.; Muccifora, V.; Nappi, E.; Nardi, M.; Nicassio, M.; Pagano, P.; Pappalardo, G.S.; Pastore, C.; Paul, B.; Petta, C.; Pinazza, O.; Plumari, S.; Preghenella, R.; Puccio, M.; Puddu, G.; Ramello, L.; Ratti, C.; Ravasenga, I.; Riggi, F.; Ronchetti, F.; Rucci, A.; Ruggieri, M.; Rui, R.; Sakai, S.; Scapparone, E.; Scardina, F.; Scarlassara, F.; Scioli, G.; Siddhanta, S.; Sitta, M.; Soramel, F.; Suljic, M.; Terrevoli, C.; Trogolo, S.; Trombetta, G.; Turrisi, R.; Vercellin, E.; Vino, G.; Virgili, T.; Volpe, G.; Williams, M.C.S.; Zampolli, C.

    2016-01-01

    This document was prepared by the community that is active in Italy, within INFN (Istituto Nazionale di Fisica Nucleare), in the field of ultra-relativistic heavy-ion collisions. The experimental study of the phase diagram of strongly-interacting matter and of the Quark-Gluon Plasma (QGP) deconfined state will proceed, in the next 10-15 years, along two directions: the high-energy regime at RHIC and at the LHC, and the low-energy regime at FAIR, NICA, SPS and RHIC. The Italian community is strongly involved in the present and future programme of the ALICE experiment, the upgrade of which will open, in the 2020s, a new phase of high-precision characterisation of the QGP properties at the LHC. As a complement of this main activity, there is a growing interest in a possible future experiment at the SPS, which would target the search for the onset of deconfinement using dimuon measurements. On a longer timescale, the community looks with interest at the ongoing studies and discussions on a possible fixed-target p...

  4. High $p_{T}$ physics in the heavy ion era

    CERN Document Server

    AUTHOR|(CDS)2069922

    2013-01-01

    Aimed at graduate students and researchers in the field of high-energy nuclear physics, this book provides an overview of the basic concepts of large transverse momentum particle physics, with a focus on pQCD phenomena. It examines high $p_{T}$ probes of relativistic heavy-ion collisions and will serve as a handbook for those working on RHIC and LHC data analyses. Starting with an introduction and review of the field, the authors look at basic observables and experimental techniques, concentrating on relativistic particle kinematics, before moving onto a discussion about the origins of high $p_{T}$ physics. The main features of high $p_{T}$ physics are placed within a historical context and the authors adopt an experimental outlook, highlighting the most important discoveries leading up to the foundation of modern QCD theory. Advanced methods are described in detail, making this book especially useful for newcomers to the field.

  5. Heavy Ion Collisions at the dawn of the LHC era

    CERN Document Server

    Takahashi, J.

    2013-06-27

    This is a proceeding of the CERN Latin American School of High-Energy physics that took place in the beautiful city of Natal, northern Brazil, in March 2011. In this paper I present a review of the main topics associated with the study of Heavy Ion Collisions, intended for students starting or interested in the field. It is impossible to summarize in a few pages the large amount of information that is available today, after a decade of operations of the RHIC accelerator and the beginning of the LHC operations. Thus, I had to choose some of the results and theories in order to present the main ideas and goals. All results presented here are from publicly available references, but some of the discussions and opinions are my personal view, where I have made that clear in the text.

  6. The Strongly Interacting Quark Gluon Plasma at RHIC and LHC

    Directory of Open Access Journals (Sweden)

    Tserruya Itzhak

    2014-04-01

    Full Text Available The study of heavy-ion collisions has currently unprecedented opportunities with two first class facilities, the Relativistic Heavy Ion Collider (RHIC at BNL and the Large Hadron Collider (LHC at CERN, and five large experiments ALICE, ATLAS, CMS, PHENIX and STAR producing a wealth of high quality data. Selected results recently obtained are presented on the study of flow, energy loss and direct photons.

  7. Recent heavy-ion results from the LHC and future perspectives

    CERN Document Server

    Mischke, Andre

    2016-01-01

    Strongly interacting matter at high densities and temperatures can be created in high-energy collisions of heavy atomic nuclei. Since 2010, the Large Hadron Collider at CERN provides proton-proton, proton-lead and lead-lead collisions at an unprecedented energy to study the so-called quark-gluon plasma (QGP) state. Several experimental probes have been proposed to determine the properties of the QGP. In this contribution, a selection of recent results from the heavy-ion programme at RHIC and the LHC are reviewed and discussed.

  8. Detector issues for relativistic heavy ion experimentation

    International Nuclear Information System (INIS)

    Gordon, H.

    1986-04-01

    Several aspects of experiments using relativistic heavy ion beams are discussed. The problems that the current generation of light ion experiments would face in using gold beams are noted. A brief review of colliding beam experiments for heavy ion beams is contrasted with requirements for SSC detectors. 11 refs., 13 figs

  9. MACHINE PROTECTION SYSTEM FOR CONCURRENT OPERATION OF RHIC AND BLIP

    International Nuclear Information System (INIS)

    WILINSKI, M.; BELLAVIA, S.; GLENN, J.W.; MAUSNER, L.F.; UNGER, K.L.

    2005-01-01

    The Brookhaven 200MeV linac is a multipurpose machine used to inject low intensity polarized protons for RHIC (Relativistic Heavy Ion Collider), as well as to inject high intensity protons to BLIP (Brookhaven Linac Isotope Producer), a medical isotope production facility. If high intensity protons were injected to RHIC by mistake, administrative radiation limits could be exceeded or sensitive electronics could be damaged. In the past, the changeover from polarized proton to high intensity proton operation has been a lengthy process, thereby never allowing the two programs to run simultaneously. To remedy this situation and allow concurrent operation of RHIC and BLIP, an active interlock system has been designed to monitor current levels in the AGS using two current transformers with fail safe circuitry and associated electronics to inhibit beam to RHIC if high intensity currents are detected

  10. Superconducting heavy-ion linacs

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1977-01-01

    A summary is given of plans developed by four different groups for the construction of small superconducting linacs to boost the energy of heavy ions from existing tandem electrostatic accelerators. The projects considered are the linac under construction at Argonne and the design efforts at Karlsruhe, at Stanford, and by a Cal Tech-Stony Brook collaboration. The intended uses of the accelerator systems are stated. Beam dynamics of linacs formed of short independently-phased resonators are reviewed, and the implications for performance are discussed. The main parameters of the four linacs are compared, and a brief analysis of accelerating structures is given

  11. The PHENIX experiment at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Tonse, S.R.; Thomas, J.H.

    1993-12-15

    Later this decade the Relativistic Heavy Ion Collider (RHIC) will be built at Brookhaven National Laboratory. Its goal will be to accelerate and collide Au beams at 100 GeV/c in an attempt to create a Quark Gluon Plasma (QGP). The PHENIX detector aims to detect the QGP through its leptonic and hadronic signatures. We describe here its physics capabilities and the details of the apparatus designed to pick out rare leptonic signatures from among hadronic multiplicities of up to 1500 particles per unit of rapidity.

  12. DESCRIPTION OF THE RHIC SEQUENCER SYSTEM

    International Nuclear Information System (INIS)

    DOTTAVIO, T.; FRAK, B.; MORRIS, J.; SATOGATA, T.; VAN ZEIJTS, J.

    2001-01-01

    The movement of the Relativistic Heavy Ion Collider (RHIC) through its various states (eg. injection, acceleration, storage, collisions) is controlled by an application called the Sequencer. This program orchestrates most magnet and instrumentation systems and is responsible for the coordinated acquisition and saving of data from various systems. The Sequencer system, its software infrastructure, support programs, and the language used to drive it are discussed in this paper. Initial operational experience is also described

  13. Recent Results from PHOBOS at Rhic

    Science.gov (United States)

    Garcia, Edmundo; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; Garcia, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    The PHOBOS detector is one of four heavy-ion experiments at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. In this paper we will review some of the results of PHOBOS from the data collected in p+p, d+Au and Au+Au collisions at nucleon-nucleon center-of-mass energies up to 200 GeV. In the most central Au+Au collisions at the highest energy, evidence is found for the formation of a very high energy density and highly interactive system, which can not be described in terms of hadrons, and which has a relatively low baryon density.

  14. Summary of the relativistic heavy ion sessions

    International Nuclear Information System (INIS)

    Harris, J.W.

    1988-01-01

    The topics covered in the Relativistic Heavy Ion Sessions span four orders of magnitude in energy in the laboratory and a few more in theory. In the two years since the last Intersections conference, experiments in the field of very high energy heavy ion research have begun at CERN and Brookhaven. The prime motivation for these experiments is the possibility of forming quark matter. This paper is a review of the topics covered in the Relativistic Heavy Ion Sessions

  15. International cooperation in heavy-ion research

    International Nuclear Information System (INIS)

    Tobias, C.A.

    1980-01-01

    The rapidly growing research applications of heavy ions in basic biology and medicine have stimulated interest in this field in many countries. LBL, with its unique facilities and its scientific programs, is the focal point of interest. Plans are underway in several countries, including France, Japan, West Germany, and Canada, to build heavy-ion facilities, and to collaborate with our staff at LBL in heavy-ion research in physics, biology, and medicine

  16. Probing medium-induced jet splitting and energy loss in heavy-ion collisions

    Science.gov (United States)

    Chang, Ning-Bo; Cao, Shanshan; Qin, Guang-You

    2018-06-01

    The nuclear modification of jet splitting in relativistic heavy-ion collisions at RHIC and the LHC energies is studied based on the higher twist formalism. Assuming coherent energy loss for the two splitted subjets, a non-monotonic jet energy dependence is found for the nuclear modification of jet splitting function: strongest modification at intermediate jet energies whereas weaker modification for larger or smaller jet energies. Combined with the smaller size and lower density of the QGP medium at RHIC than at the LHC, this helps to understand the groomed jet measurements from CMS and STAR Collaborations: strong modification of the momentum sharing zg distribution at the LHC and no obvious modification of zg distribution at RHIC. In addition, the observed nuclear modification pattern of the groomed jet zg distribution cannot be explained solely by independent energy loss of the two subjets. Our result may be tested in future measurements of groomed jets with lower jet energies at the LHC and larger jet energies at RHIC, for different angular separations between the two subjets.

  17. Heavy Ion Physics at CMS

    CERN Document Server

    Veres, Gabor

    2017-01-01

    In the present proceedings recent heavy ion results from the Compact Muon Solenoid collaboration at the LHC are presented. These contain comparisons between small and large collision systems, as well as studies of energy evolution, thus include data collected in proton-proton collisions at 13 TeV (2015 and 2016), proton-proton and lead-lead collisions at 5 TeV (2015), and proton-lead collisions at 5 TeV and 8 TeV (2016) center-of-mass energy per nucleon pair. They provide new insights into the properties of the extremely high density and high temperature matter created in heavy ion collisions, while pointing out similarities and differences in comparison to smaller collision systems. These include gluon distribution functions in the lead nucleus; the azimuthal anisotropy of final state particle distributions in all the three different collision systems; charge separation signals from proton-lead collisions and consequences for the Chiral Magnetic Effect; new studies of parton energy loss and its dependence on...

  18. Lawrence Livermore Laboratory heavy ion fusion program

    International Nuclear Information System (INIS)

    Bangerter, R.O.; Lee, E.P.; Monsler, M.J.; Yu, S.S.

    1978-01-01

    Target design at LLL for heavy ion fusion power production is discussed, including target development and beam-target interaction. The energy conversion chamber design, which utilizes a liquid lithium blanket, is described. Ion beam transport theory is discussed

  19. Elastic and inelastic heavy ion scattering

    International Nuclear Information System (INIS)

    Toepffer, C.; University of the Witwatersrand, Johannesburg; Richter, A.

    1977-02-01

    In the field of elastic and inelastic heavy ion scattering, the following issues are dealt with: semiclassical descriptive approximations, optical potentials, barriers, critical radii and angular momenta, excitation functions and the application to superheavy ions and high energies. (WL) [de

  20. From heavy ions to exotic atoms

    OpenAIRE

    Indelicato, Paul; Trassinelli, Martino

    2005-01-01

    We review a number of experiments and theoretical calculations on heavy ions and exotic atoms, which aim at providing informations on fundamental interactions. Among those are propositions of experiments for parity violation measurements in heavy ions and high-precision mesurements of He-like transition energies in highly charged ions. We also describe recent experiments on pionic atoms, that make use of highly-charged ion transitions to obtain accurate measurements of strong interaction shif...

  1. Giant resonances in heavy-ion reactions

    International Nuclear Information System (INIS)

    Hussein, M.S.

    1982-11-01

    The several roles of multipole giant resonances in heavy-ion reactions are discussed. In particular, the modifications in the effective ion-ion potencial due to the virtual excitation of giant resonances at low energies, are considered and estimated for several systems. Real excitation of giant resonances in heavy-ion reactions at intermediate energies are then discussed and their importance in the approach phase of deeply inelastic processes in emphasized. Several demonstrative examples are given. (Author) [pt

  2. Recombinant Science: The Birth of the Relativistic Heavy Ion Collider (431st Brookhaven Lecture)

    International Nuclear Information System (INIS)

    Crease, Robert P.

    2007-01-01

    As part of the celebration of Brookhaven Lab's 60th anniversary, Robert P. Crease, the Chair of the Philosophy Department at Stony Brook University and BNL's historian, will present the second of two talks on the Lab's history. In 'Recombinant Science: The Birth of the Relativistic Heavy Ion Collider,' Dr. Crease will focus on the creation of the world's most powerful colliding accelerator for nuclear physics. Known as RHIC, the collider, as Dr. Crease will recount, was formally proposed in 1984, received initial construction funding from the U.S. Department of Energy in 1991, and started operating in 2000. In 2005, the discovery at RHIC of the world's most perfect liquid, a state of matter that last existed just moments after the Big Bang, was announced, and, since then, this perfect liquid of quarks and gluons has been the subject of intense study.

  3. Progress in Heavy Ion Fusion

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1988-09-01

    The progress of the field of Heavy Ion Fusion has been documented in the proceedings of the series of International Symposia that, in recent years, have occurred every second year. The latest of these conferences was hosted by Gesellshaft fuer Schwerionenforshung (GSI) in Darmstadt, West Germany, June 28-30, 1988. For this report, a few highlights from the conference are selected, stressing experimental progress and prospects for future advances. A little extra time is devoted to report on the developments at the Lawrence Berkeley Laboratory (LBL) which is the center for most of the HIFAR program. The Director of the HIFAR program at LBL is Denis Keefe, who presented the HIF report at the last two of the meetings in this series, and in whose place the author is appearing now. 4 refs., 1 fig

  4. RELATIVISTIC HEAVY ION COLLISIONS: EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Friedlander, Erwin M.; Heckman, Harry H.

    1982-04-01

    Relativistic heavy ion physics began as a 'no man's land' between particle and nuclear physics, with both sides frowning upon it as 'unclean', because on one hand, hadronic interactions and particle production cloud nuclear structure effects, while on the other, the baryonic environment complicates the interpretation of production experiments. They have attempted to review here the experimental evidence on RHI collisions from the point of view that it represents a new endeavor in the understanding of strong interaction physics. Such an approach appears increasingly justified; first, by the accumulation of data and observations of new features of hadronic interactions that could not have been detected outside a baryonic environment; second, by the maturation of the field owing to the advances made over the past several years in experimental inquiries on particle production by RHI, including pions, kaons, hyperons, and searches for antiprotons; and third, by the steady and progressive increase in the energy and mass ranges of light nuclear beams that have become available to the experiment; indeed the energy range has widened from the {approx} 0.2 to 2 AGeV at the Bevalac to {approx}4 AGeV at Dubna and recently, to the quantum jump in energies to {approx} 1000 equivalent AGeV at the CERN PS-ISR. Accompanying these expansions in the energy frontier are the immediate prospects for very heavy ion beams at the Bevalac up to, and including, 1 AGeV {sup 238}U, thereby extending the 'mass frontier' to its ultimate extent.

  5. Relativistic heavy ion research at Berkeley

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The project of a superconducting synchrotron for heavy ions with 1 TeV/amu is described. In this connection the physics is discussed which can be studied by this accelerator. Furthermore, the HISS-heavy ion spectrometer system and the Plastic Ball detector are described. (HSI).

  6. Highlights of the heavy ion fusion symposium

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-01-01

    The current status and prospects for inertial confinement fusion based on the use of intense beams of heavy ions will be described in the light of results presented at the International Symposium on Heavy Ion Fusion, (Washington, DC, May 27-29, 1986)

  7. Highlights of the heavy ion fusion symposium

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    The current status and prospects for inertial confinement fusion based on the use of intense beams of heavy ions will be described in the light of results presented at the International Symposium on Heavy Ion Fusion, (Washington, DC, May 27-29, 1986)

  8. Heavy ion reactions at high energies

    International Nuclear Information System (INIS)

    Jakobsson, Bo.

    1977-01-01

    A review on heavy ion experiments at energies >0.1GeV/nucleon is presented. Reaction cross-sections, isotope production cross-sections and pion production in nucleus-nucleus collisions are discussed. Some recent models for heavy ion reactions like the abrasion-ablation model, the fireball model and the different shock-wave models are also presented

  9. 7th high energy heavy ion study

    International Nuclear Information System (INIS)

    Bock, R.; Gutbrod, H.H.; Stock, R.

    1985-03-01

    These proceedings contain the articles presented at the named conference. They deal with relativistic heavy ion reactions, the expansion and freeze-out of nuclear matter, anomalon experiments, and multifragmentation and particle correlations in heavy ion reactions. See hints under the relevant topics. (HSI)

  10. Searching for Jets in Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Salur, Sevil

    2008-01-01

    Jet quenching measurements using leading particles and their correlations suffer from known biases, which can be removed via direct reconstruction of jets in central heavy ion collisions. In this talk, we discuss several modern jet reconstruction algorithms and background subtraction techniques that are appropriate to heavy ion collisions

  11. Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration

    2017-10-01

    We present measurements of bulk properties of the matter produced in Au+Au collisions at √{sN N}=7.7 ,11.5 ,19.6 ,27 , and 39 GeV using identified hadrons (π±, K±, p , and p ¯) from the STAR experiment in the Beam Energy Scan (BES) Program at the Relativistic Heavy Ion Collider (RHIC). Midrapidity (|y |<0.1 ) results for multiplicity densities d N /d y , average transverse momenta 〈pT〉 , and particle ratios are presented. The chemical and kinetic freeze-out dynamics at these energies are discussed and presented as a function of collision centrality and energy. These results constitute the systematic measurements of bulk properties of matter formed in heavy-ion collisions over a broad range of energy (or baryon chemical potential) at RHIC.

  12. Dynamical limitations to heavy ion fusion

    International Nuclear Information System (INIS)

    Back, B.B.

    1983-01-01

    Dynamical limitations to heavy ion fusion reaction are considered. The experimental signatures and the importance of a quasi-fission process are examined. The anaular distributions of fission fragments for the 32 S+ 208 Pb and 16 O+ 238 U systems are presented. It is shown that the observations of quasi-fission for even rather ''light'' heavy ions poeess severe limitations on the fusion process. This result may consequently be responsible for the lack of success of the search for super heavy elements in heavy ion fusion reactions

  13. Technology transfer for industrial production of superconducting magnets for the RHIC project at BNL

    International Nuclear Information System (INIS)

    Wanderer, P.; Anerella, M.D.; Greene, A.F.; Kelly, E.; Willen, E.

    1994-01-01

    Industrial production of superconducting magnets for the Relativistic Heavy Ion Collider (RHIC) has begun. The R ampersand D for the magnets was carried out at BNL. Following the award of built-to-print contracts, staff from the laboratory and the vendors worked toward transferring both design principles and practical details to an industrial framework for cost effective production. All magnets made thus far have been acceptable for use in RHIC

  14. [Heavy ion nuclear physics research

    International Nuclear Information System (INIS)

    Liu, X.T.; Petitt, G.A.; Zhang, Ziyang.

    1992-01-01

    We have continued working on essentially the same projects during the period 1991--92 as reported on in our previous progress report. That is, R ampersand D work on a dimuon detector for RHIC and work with the group at LANL on neutron induced fission measurements using the white neutron source at LAMPF. Our work has included participation in the RD-10 experiment at the AGS to study calorimeter/absorber optimization for a RHIC experiment. We have actively participated in the setup of the apparatus, the data-taking and the subsequent data analysis. We have used the Vax computer system in our department and the eight-processor Silicon Graphics system in the GSU computer center for most of the data analysis work. We have also continued our work on Monte Carlo simulations of various configurations of absorber/calorimeters for detection of electrons and muons in RHIC experiments. We have made increasing use of the Silicon Graphics computer for our work. Each processor has approximately the same power as a Decstation 5000 and we usually have essentially exclusive simultaneous use of three of the processors. We have installed GEANT 315 and PAW on this system. Since our Vaxstation was purchased before DECWINDOWS was a standard part of the Vax software we have been unable to use the Silicon Graphics computer for doing graphics with PAW and GEANT. We are attempting to solve this problem by installing X-Windows software on our 386SX system which is connected to the campus network. Our work at Los Alamos has consisted of participation in the LAMPF run during the summer of 1991 including constructing and setting up two new neutron detectors for the experiment. These projects are discussed in further detail in this paper

  15. Heavy Ion Fusion Accelerator Research (HIFAR)

    International Nuclear Information System (INIS)

    1991-04-01

    This report discusses the following topics: emittance variations in current-amplifying ion induction lina; transverse emittance studies of an induction accelerator of heavy ions; drift compression experiments on MBE-4 and related emittance; low emittance uniform- density C s + sources for heavy ion fusion accelerator studies; survey of alignment of MBE-4; time-of-flight dependence on the MBE-4 quadrupole voltage; high order calculation of the multiple content of three dimensional electrostatic geometries; an induction linac injector for scaled experiments; induction accelerator test module for HIF; longitudinal instability in HIF beams; and analysis of resonant longitudinal instability in a heavy ion induction linac

  16. Intra-beam Scattering Theory and RHIC Experiments

    International Nuclear Information System (INIS)

    Wei, J.; Fedotov, A.; Fischer, W.; Malitsky, N.; Parzen, G.; Qiang, J.

    2005-01-01

    Intra-beam scattering is the leading mechanism limiting the luminosity in heavy-ion storage rings like the Relativistic Heavy Ion Collider (RHIC). The multiple Coulomb scattering among the charged particles causes transverse emittance growth and longitudinal beam de-bunching and beam loss, compromising machine performance during collision. Theoretically, the original theories developed by Piwinski, Bjorken, and Mtingwa only describe the rms beam size growth of an unbounded Gaussian distribution. Equations based on the Fokker-Planck approach are developed to further describe the beam density profile evolution and beam loss. During the 2004 RHIC heavy-ion operation, dedicated IBS experiments were performed to bench-mark the rms beam size growth, beam loss, and profile evolution both for a Gaussian-like and a longitudinal hollow beam. This paper summarizes the IBS theory and discusses the experimental bench-marking results

  17. The STAR experiment at RHIC

    International Nuclear Information System (INIS)

    Marx, J.N.

    1994-01-01

    STAR (Solenoidal Tracker at RHIC) will be one of two large, sophisticated experiments ready to take data when the Relativistic Heavy Ion Collider (RHIC) comes on-line in 1999. The design of STAR, its construction and commissioning and the physics program using the detector are the responsibility of a collaboration of over 250 members from 30 institutions, world-wide. The overall approach of the STAR Collaboration to the physics challenge of studying collisions of highly relativistic nuclei is to focus on measurements of the properties of the many hadrons produced in the collisions. The STAR detector is optimized to detect and identify hadrons over a large solid angle so that individual events can be characterized, in detail, based on their hadronic content. The broad capabilities of the STAR detector will permit an examination of a wide variety of proposed signatures for the Quark Gluon Plasma (QGP), using the sample of events which, on an event-by-event basis, appear to come from collisions resulting in a large energy density over a nuclear volume. In order to achieve this goal, the STAR experiment is based on a solenoid geometry with tracking detectors using the time projection chamber approach and covering a large range of pseudo-rapidity so that individual tracks can be seen within the very high track density expected in central collisions at RHIC. STAR also uses particle identification by the dE/dx technique and by time-of-flight. Electromagnetic energy is detected in a large, solid-angle calorimeter. The construction of STAR, which will be located in the Wide Angle Hall at the 6 o'clock position at RHIC, formally began in early 1993

  18. Cellular radiobiology of heavy-ion beams

    International Nuclear Information System (INIS)

    Tobias, C.A.; Blakely, E.A.; Ngo, F.Q.H.; Roots, R.J.; Yang, T.C.

    1981-01-01

    Progress is reported in the following areas of this research program: relative biological effectiveness and oxygen enhancement ratio of silicon ion beams; heavy ion effects on the cell cycle; the potentiation effect (2 doses of high LET heavy-ion radiations separated by 2 to 3 hours); potentially lethal damage in actively growing cells and plateau growth cells; radiation induced macromolecular lesions and cellular radiation chemistry; lethal effects of dual radiation; and the development of a biophysical repair/misrepair model

  19. Design aspects of an electrostatic electron cooler for low-energy RHIC operation

    International Nuclear Information System (INIS)

    Fedotov, A.; Ben-Zvi, I.; Brodowski, J.; Chang, X.Y.; Gassner, D.; Hoff, L.; Kayran, D.; Kewisch, J.; Oerter, B.; Pendzick, A.; Tepikian, S.; Thieberger, P.; Prost, L.; Shemyakin, A.

    2011-01-01

    Electron cooling was proposed to increase the luminosity of the Relativistic Heavy Ion Collider (RHIC) operation for heavy ion beam energies below 10 GeV/nucleon. The electron cooling system needed should be able to deliver an electron beam of adequate quality in a wide range of electron beam energies (0.9-5 MeV). An option of using an electrostatic accelerator to produce electrons for cooling heavy ions in RHIC was evaluated in detail. In this paper, we describe the requirements and options which were considered in the design of such a cooler for RHIC, as well as the associated challenges. The expected luminosity improvement and limitations with such an electron cooling system are also discussed.

  20. Proceedings of RIKEN BNL Research Center Workshop entitled Hydrodynamics in Heavy Ion Collisions and QCD Equation of State (Volume 88)

    Energy Technology Data Exchange (ETDEWEB)

    Karsch,F.; Kharzeev, D.; Molnar, K.; Petreczky, P.; Teaney, D.

    2008-04-21

    The interpretation of relativistic heavy-ion collisions at RHIC energies with thermal concepts is largely based on the relative success of ideal (nondissipative) hydrodynamics. This approach can describe basic observables at RHIC, such as particle spectra and momentum anisotropies, fairly well. On the other hand, recent theoretical efforts indicate that dissipation can play a significant role. Ideally viscous hydrodynamic simulations would extract, if not only the equation of state, but also transport coefficients from RHIC data. There has been a lot of progress with solving relativistic viscous hydrodynamics. There are already large uncertainties in ideal hydrodynamics calculations, e.g., uncertainties associated with initial conditions, freezeout, and the simplified equations of state typically utilized. One of the most sensitive observables to the equation of state is the baryon momentum anisotropy, which is also affected by freezeout assumptions. Up-to-date results from lattice quantum chromodynamics on the transition temperature and equation of state with realistic quark masses are currently available. However, these have not yet been incorporated into the hydrodynamic calculations. Therefore, the RBRC workshop 'Hydrodynamics in Heavy Ion Collisions and QCD Equation of State' aimed at getting a better understanding of the theoretical frameworks for dissipation and near-equilibrium dynamics in heavy-ion collisions. The topics discussed during the workshop included techniques to solve the dynamical equations and examine the role of initial conditions and decoupling, as well as the role of the equation of state and transport coefficients in current simulations.

  1. Opportunities for Drell-Yan Physics at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer, E.; Bland, L.; Crawford, H.; Goto, Y.; Eyser, O.; Kang, Z.; Vossen, A.

    2011-05-24

    Drell-Yan (DY) physics gives the unique opportunity to study the parton structure of nucleons in an experimentally and theoretically clean way. With the availability of polarized proton-proton collisions and asymmetric d+Au collisions at the Relativistic Heavy Ion Collider (RHIC), we have the basic (and unique in the world) tools to address several fundamental questions in QCD, including the expected gluon saturation at low partonic momenta and the universality of transverse momentum dependent parton distribution functions. A Drell-Yan program at RHIC is tied closely to the core physics questions of a possible future electron-ion collider, eRHIC. The more than 80 participants of this workshop focused on recent progress in these areas by both theory and experiment, trying to address imminent questions for the near and mid-term future.

  2. Preparing accelerator systems for the RHIC sextant commissioning

    International Nuclear Information System (INIS)

    Trbojevic, D.; Pilat, F.; Ahrens, L.

    1997-01-01

    The Relativistic Heavy Ion Collider (RHIC) construction is progressing steadily towards completion in 1999 when beams will circulate in both collider rings. One of the major tests of the RHIC project was the commissioning of the first sextant with gold ion beams in early 1997. This is a report on preparation of the RHIC accelerator systems for the first sextant test. It includes beam position monitors, timing, injection correction through the magnetic septum and kickers, current transformers, flags and the ionization beam profile monitors, beam loss monitors, beam and quench permit link system, power supply controls, and the configuration database system. The software and hardware development and coordination of the different systems before commissioning were regularly checked during bi-weekly, and (later) weekly, progress report meetings

  3. Accelerator development for heavy ion fusion

    International Nuclear Information System (INIS)

    Talbert, W.L. Jr.; Sawyer, G.A.

    1980-01-01

    Accelerator technology development is presented for heavy ion drivers used in inertial confinement fusion. The program includes construction of low-velocity ''test bed'' accelerator facilities, development of analytical and experimental techniques to characterize ion beam behavior, and the study of ion beam energy deposition

  4. Heavy-ion mammography and breast cancer

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Tobias, C.A.; Capp, M.P.; Holley, W.R.; Woodruff, K.H.; Sickles, E.A.

    1980-01-01

    Heavy-ion radiography is a new diagnostic imaging technique developed in our laboratory that produces superior density resolution at low radiation doses. Heavy-ion mammography has now emerged as a low-dose, safe, reliable, noninvasive diagnostic radiological procedure that can quantitate and image very small differences in soft tissue densities in the breast tissues of patients with clinical breast disease. The improved density resolution of heavy-ion mammography over conventional X-ray mammography and breast xerography provides the potential of detecting small breast cancers of less than 1 cm diameter. The radiation dose to the breast from carbon-ion mammorgraphy is about 50 mrad or less, and can potentially be only a fraction of this level. The results of the present clinical trial in progress of heavy-ion mammography in 37 patients, thus far studied, are extremely encouraging, and warrant continued study for application to the early diagnosis of breast cancer in women

  5. Proceedings of the symposium on RHIC detector R&D

    Energy Technology Data Exchange (ETDEWEB)

    Makdisi, Y.; Stevens, A.J. [eds.

    1991-12-31

    This report contains papers on the following topics: Development of Analog Memories for RHIC Detector Front-end Electronic Systems; Monolithic Circuit Development for RHIC at Oak Ridge National Laboratory; Highly Integrated Electronics for the STAR TPC; Monolithic Readout Circuits for RHIC; New Methods for Trigger Electronics Development; Neurocomputing methods for Pattern Recognition in Nuclear Physics; The Development of a Silicon Multiplicity Detector System; The Vertex Detector for the Lepton/Photon Collaboration; Simulations of Silicon Vertex Tracker for STAR Experiment at RHIC; Calorimeter/Absorber Optimization for a RHIC Dimuon Experiment (RD-10 Project); Applications of the LAHET simulation Code to Relativistic Heavy Ion Detectors; Highly Segmented, High Resolution Time-of-Flight System; Research and Development on a Sub 100 Picosecond Time-of-Flight System Based on Silicon Avalance Diodes; Behavior of TPC`s in a High Particle Flux Environment; Generic R&D on Undoped Cesium Iodide and Lead Fluoride; and A Transition Radiation Detector for RHIC Featuring Accurate Tracking and dE/dx Particle Identification. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  6. Re-hardening of hadron transverse mass spectra in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Ohnishi, A.; Otuka, N.; Sahu, P.K.; Isse, M.; Nara, Y.

    2001-01-01

    We analyze the spectra of pions and protons in heavy-ion collisions at relativistic energies from 2 A GeV to 65 + 65 A GeV by using a jet-implemented hadron-string cascade model. In this energy region, hadron transverse mass spectra first show softening until SPS energies, and re-hardening may emerge at RHIC energies. Since hadronic matter is expected to show only softening at higher energy densities, this re-hardening of spectra can be interpreted as a good signature of the quark-gluon plasma formation. (author)

  7. Development of a Time Projection Chamber using CF4 gas for relativistic heavy ion experiments

    International Nuclear Information System (INIS)

    Isobe, T.; Hamagaki, H.; Ozawa, K.; Inuzuka, M.; Sakaguchi, T.; Matsumoto, T.; Kametani, S.; Kajihara, F.; Gunji, T.; Kurihara, N.; Oda, S.X.; Yamaguchi, Y.L.

    2006-01-01

    A prototype Time Projection Chamber (TPC) using pure CF 4 gas was developed for possible use in heavy ion experiments. Basic characteristics such as gain, drift velocity, longitudinal diffusion and attenuation length of produced electrons were measured with the TPC. At an electric field of 900V/cm, the drift velocity and longitudinal diffusion for 1cm drift were obtained as 10cm/μs and 60μm, respectively. The relatively large gain fluctuation is explained to be due to the electron attachment process in CF 4 . These characteristics are encouraging for the measurement of the charged particle trajectories under high multiplicity conditions at RHIC

  8. Ultra-relativistic heavy-ion collisions - a hot cocktail of hydrodynamics, resonances and jets

    Directory of Open Access Journals (Sweden)

    Zabrodin E.

    2015-01-01

    Full Text Available Ultra-relativistic heavy-ion collisions at energies of RHIC and LHC are considered. For comparison with data the HYDJET++ model, which contains the treatment of both soft and hard processes, is employed. The study focuses mainly on the interplay of ideal hydrodynamics, final state interactions and jets, and its influence on the development of harmonics of the anisotropic flow. It is shown that jets are responsible for violation of the number-of-constituent-quark (NCQ scaling at LHC energies. The interplay between elliptic and triangular flows and their contribution to higher flow harmonics and dihadron angular correlations, including ridge, is also discussed.

  9. Overview of magnetic nonlinear beam dynamics in the RHIC

    International Nuclear Information System (INIS)

    Luo, Y.; Bai, M.; Beebe-Wang, J.; Bengtsson, J.; Calaga, R.; Fischer, W.; Jain, A.; Pilat, F.; Ptitsyn, V.; Malitsky, N.; Robert-Demolaize, G.; Satogata, T.; Tepikian, S.; Tomas, R.; Trbojevic, D.

    2009-01-01

    In this article we review our studies of nonlinear beam dynamics due to the nonlinear magnetic field errors in the Relativistic Heavy Ion Collider (RHIC). Nonlinear magnetic field errors, including magnetic field errors in interaction regions (IRs), chromatic sextupoles, and sextupole components from arc main dipoles are discussed. Their effects on beam dynamics and beam dynamic aperture are evaluated. The online methods to measure and correct the IR nonlinear field errors, second order chromaticities, and horizontal third order resonance are presented. The overall strategy for nonlinear corrections in RHIC is discussed

  10. Azimuthal anisotropy at RHIC: The first and fourth harmonics

    International Nuclear Information System (INIS)

    Adams, J.; Adler, C.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Badyal, S.K.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellwied, R.; Berger, J.; Bezverkhny, B.I.; Bhardwaj, S.; Bhaskar, P.; Bhati, A.K.; Bichsel, H.; Billmeier, A.; Bland, L.C.; Blyth, C.O.; Bonner, B.E.; Botje, M.; Boucham, A.; Brandin, A.; Bravar, A.; Cadman, R.V.; Cai, X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Carroll, J.; Castillo, J.; Castro, M.; Cebra, D.; Chaloupka, P.; Chattopadhyay, S.; Chen, H.F.; Chen, Y.; Chernenko, S.P.; Cherney, M.; Chikanian, A.; Choi, B.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cramer, J.G.; Crawford, H.J.; Das, D.; Das, S.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dubey, A.K.; Dunin, V.B.; Dunlop, J.C.; Dutta Majumdar, M.R.; Eckardt, V.; Efimov, L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faine, V.; Faivre, J.; Fatemi, R.; Filimonov, K.; Filip, P.; Finch, E.; Fisyak, Y.; Flierl, D.; Foley, K.J.; Fu, J.; Gagliardi, C.A.; Gagunashvili, N.; Gans, J.; Ganti, M.S.; Gaudichet, L.; Germain, M.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.E.; Grachov, O.; Grigoriev, V.; Gronstal, S.; Drosnick, D.; Guedon, M.; Guertin, S.M.; Gupta, A.; Gushin, E.; Hallman, T.J.; Hardtke, D.; Harris, J.W.; Heinz, M.; Henry, T.W.; Heppelmann, S.; Herston, T.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G.W.; Horsley, M.; Huang, H.Z.; Huang, S.L.; Humanic, T.J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W.W.; Janik, M.; Jiang, H.; Johnson, I.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kaneta, M.; Kaplan, M.; Keane, D.; Khodyrev, V.Yu.; Kiryluk, J.; Kisiel, A.; Klay, J.; Klein, S.R.; Klyachko, A.; Koetke, D.D.; Kollegger, T.; Kopytine, S.M.; Kotchenda, L.; Kovalenko, A.D.; Kramer, M.; Kravtsov, P.; Krueger, K.; Kuhn, C.; Kulikov, A.I.; Kumar, A.; et al.

    2004-01-01

    We report the first observations of the first harmonic (directed flow, v 1 ), and the fourth harmonic (v 4 ), in the azimuthal distribution of particles with respect to the reaction plane in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). Both measurements were done taking advantage of the large elliptic flow (v 2 ) generated at RHIC. From the correlation of v 2 with v 1 it is determined that v 2 is positive, or in-plane. The integrated v 4 is about a factor of 10 smaller than v 2 . For the sixth (v 6 ) and eighth (v 8 ) harmonics upper limits on the magnitudes are reported

  11. Flow in Au+Au collisions at RHIC

    Science.gov (United States)

    Belt Tonjes, Marguerite; the PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2004-08-01

    The study of flow can provide information on the initial state dynamics and the degree of equilibration attained in heavy-ion collisions. This contribution presents results for both elliptic and directed flow as determined from data recorded by the PHOBOS experiment in Au+Au runs at RHIC at \\sqrt{sNN} = 19.6, 130 and 200 GeV. The PHOBOS detector provides a unique coverage in pseudorapidity for measuring flow at RHIC. The systematic dependence of flow on pseudorapidity, transverse momentum, centrality and energy is discussed.

  12. Hard and soft physics of relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Tywoniuk, Konrad

    2008-01-01

    Already over thirty years ago [ 174] it was suggested that it would be interesting to explore new phenomena 'by distributing high energy or high nucleon density over a relatively large volume:' It was soon realized that colliding heavy ions at high energies would provide such conditions. The conditions at RHIC and LHC correspond to the early universe 1 μ after the Big Bang. But does the mini Big Bang created in the laboratory really resemble the cosmological 'bigger brother'? Are the timescales long enough for the particles to 'dissolve' into their smaller constituents? What are the intermediate stages, before the 'dissolving' and also after, when particles are formed? At which energy (or energy density) does this 'melting' happen? More fundamentally, what is the difference between proton-proton and nucleus-nucleus collisions at very high energies? At the LHC one expects that the plasma phase will live much longer than at RHIC. What will be the signatures of this super-QGP? One should be able to answer all of this questions, but, unfortunately, at the present moment we are not. It is therefore very important to understand what the relevant degrees of freedom are in theses extreme situations. Investigation of deep inelastic scattering at very high energies and, in particular, low-x shadowing effects on nuclei can give important information on properties of dense quark-gluon systems. By comparing data at different energies on both proton-nucleus and nucleus-nucleus collisions and interpret them in a comprehensive framework, we hope to learn more about the dynamics leading to the features we see in the data. The thesis consists of two parts. In the first part we will give a short introduction to topics relevant to high-energy collisions while the second part contains the papers written during the thesis work. In Chapter 2 we give a brief account of the main experimental results from heavy-ion experiments. The choice of topics and interpretation of the results is

  13. Heavy quarks thermalization in heavy-ion ultrarelativistic collisions: elastic or radiative?

    International Nuclear Information System (INIS)

    Gossiaux, Pol Bernard; Guiho, Vincent; Aichelin, Joerg

    2006-01-01

    We present a dynamical model of heavy quark evolution in the quark-gluon plasma (QGP) based on the Fokker-Planck equation. We then apply this model to the case of ultrarelativistic nucleus-nucleus collisions performed at RHIC in order to investigate which experimental observables might help to discriminate the fundamental process leading to thermalization

  14. High luminosity polarized proton collisions at RHIC

    International Nuclear Information System (INIS)

    Roser, T.

    2001-01-01

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) provides the unique opportunity to collide polarized proton beams at a center-of-mass energy of up to 500 GeV and luminosities of up to 2 x 10 32 cm -2 s -1 . Such high luminosity and high energy polarized proton collisions will open up the possibility of studying spin effects in hard processes. However, the acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. After successful operation of RHIC with gold beams polarized protons from the AGS have been successfully injected into RHIC and accelerated using a full Siberian snakes built from four superconducting helical dipoles. A new high energy proton polarimeter was also successfully commissioned. Operation with two snakes per RHIC ring is planned for next year

  15. Potential of stochastic cooling of heavy ions in the LHC

    CERN Document Server

    Schaumann, M; Blaskiewicz, M

    2013-01-01

    The dynamics of the high intensity lead beams in the LHC are strongly influenced by intra-beam scattering (IBS), leading to significant emittance growth and particle losses at all energies. Particle losses during collisions are dominated by nuclear electromagnetic processes and the debunching effect arising from the influence of IBS, resulting in a non-exponential intensity decay during the fill and short luminosity lifetimes. In the LHC heavy ion runs, 3 experiments will be taking data and the average fill duration will be rather short as a consequence of the high burn-off rate. The achievements with stochastic cooling at RHIC suggest that such a system at LHC could substantially reduce the emittance growth and the debunching component during injection and collisions. The luminosity lifetime and fill length could be improved to optimize the use of the limited run time of 4 weeks per year. This paper discusses the first results of a feasibility study to use stochastic cooling on the lead ion beams in the LHC....

  16. Energy straggling of heavy ions in solids

    International Nuclear Information System (INIS)

    Cowern, N.E.B.

    1979-08-01

    The energy-loss straggling of heavy ions has been studied, principally in the Born Approximation region v > zv 0 . Measurements were made with 5.486 MeV α particles, 5 - 48 MeV 16 0 ions, and 3 - 36 MeV 12 C ions, incident on thin uniform Al foils. The thickness uniformity of the foils was studied with a proton microbeam and a surface profiler, and their homogeneity, purity and isotropy were investigated by electron microscope, proton backscattering, and X-ray diffraction studies. Using the Bethe theory of energy loss the charge-exchange model of energy straggling for heavy ions is confirmed. (author)

  17. Development of heavy ion linear accelerators

    International Nuclear Information System (INIS)

    Bomko, V.A.; Khizhnyak, N.A.

    1981-01-01

    A review of the known heavy ion accelerators is given. It is stated that cyclic and linear accelerators are the most perspective ones in the energy range up to 10 MeV/nucleon according to universality in respect with the possibility of ion acceleration of the wide mass range. However, according to the accelerated beam intensity of the heavier ions the linear accelerators have considerable advantages over any other types of accelerators. The review of the known heavy ion linac structures permits to make the conclusion that a new modification of an accelerating structure of opposite pins excited on a H-wave is the most perspective one [ru

  18. Heavy ion facility for radiation therapy

    International Nuclear Information System (INIS)

    Leemann, C.; Alonso, J.; Clark, D.; Grunder, H.; Hoyer, E.; Lou, K.; Staples, J.; Voelker, F.

    1977-03-01

    The accelerator requirements of particle radiation therapy are reviewed and a preliminary design of a heavy ion synchrotron for hospital installation is presented. Beam delivery systems and multi-treatment room arrangements are outlined

  19. Historical aspects of heavy ion radiotherapy

    International Nuclear Information System (INIS)

    Raju, M.R.

    1995-01-01

    This paper presents historical developments of heavy-ion radiotherapy including discussion of HILAC and HIMAC and discussion of cooperation between Japan and the United States, along with personal reflections

  20. Phenomenological approaches of dissipative heavy ion collisions

    International Nuclear Information System (INIS)

    Ngo, C.

    1983-09-01

    These lectures describe the properties of dissipative heavy ion collisions observed in low bombarding energy heavy ion reactions. These dissipative collisions are of two different types: fusion and deep inelastic reactions. Their main experimental properties are described on selected examples. It is shown how it is possible to give a simple interpretation to the data. A large number of phenomenological models have been developped to understand dissipative heavy ion collisions. The most important are those describing the collision by classical mechanics and friction forces, the diffusion models, and transport theories which merge both preceding approaches. A special emphasis has been done on two phenomena observed in dissipative heavy ion collisions: charge equilibratium for which we can show the existence of quantum fluctuations, and fast fission which appears as an intermediate mechanism between deep inelastic reactions and compound nucleus formation [fr

  1. Scattering and transfer reactions with heavy ions

    International Nuclear Information System (INIS)

    Hussein, M.S.

    From the elastic scattering analysis the input parameters are found for the inelastic scattering analysis and the transfer reactions of the heavy ion reactions. The main theme reported is the likeness and conection among these processes. (L.C.) [pt

  2. Proceedings of the heavy ion fusion workshop

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, R C [ed.

    1978-01-01

    These proceedings contain reviews of current laboratory programs dealing with inertial fusion driven by beams of heavy ions, as well as several individually abstracted invited talks, workshop reports and contributed papers.

  3. Heavy-Ion Fusion Accelerator Research, 1991

    International Nuclear Information System (INIS)

    1992-03-01

    This report discusses the following topics: research with multiple- beam experiment MBE-4; induction linac systems experiments; and long- range research and development of heavy-ion fusion accelerators

  4. Radiobiological comparison of pions and heavy ions

    International Nuclear Information System (INIS)

    Raju, M.R.

    1981-01-01

    The physical and radiobiological differences between some aspects of pions and heavy ions are discussed, followed by a discussion of acute and late effects of high LET radiations compared to low LET radiations

  5. Working group report: Heavy ion physics

    Indian Academy of Sciences (India)

    The 8th workshop on high energy physics phenomenology (WHEPP-8) was ... by two plenary talks on experimental overview of heavy ion collisions and ... charge. At low temperature and density the quarks and gluons are confined within.

  6. Modeling and Analysis of Ultrarelativistic Heavy Ion Collisions

    Science.gov (United States)

    McCormack, William; Pratt, Scott

    2014-09-01

    High-energy collisions of heavy ions, such as gold, copper, or uranium serve as an important means of studying quantum chromodynamic matter. When relativistic nuclei collide, a hot, energetic fireball of dissociated partonic matter is created; this super-hadronic matter is believed to be the quark gluon plasma (QGP), which is theorized to have comprised the universe immediately following the big bang. As the fireball expands and cools, it reaches freeze-out temperatures, and quarks hadronize into baryons and mesons. To characterize this super-hadronic matter, one can use balance functions, a means of studying correlations due to local charge conservation. In particular, the simple model used in this research assumed two waves of localized charge-anticharge production, with an abrupt transition from the QGP stage to hadronization. Balance functions were constructed as the sum of these two charge production components, and four parameters were manipulated to match the model's output with experimental data taken from the STAR Collaboration at RHIC. Results show that the chemical composition of the super-hadronic matter are consistent with that of a thermally equilibrated QGP. High-energy collisions of heavy ions, such as gold, copper, or uranium serve as an important means of studying quantum chromodynamic matter. When relativistic nuclei collide, a hot, energetic fireball of dissociated partonic matter is created; this super-hadronic matter is believed to be the quark gluon plasma (QGP), which is theorized to have comprised the universe immediately following the big bang. As the fireball expands and cools, it reaches freeze-out temperatures, and quarks hadronize into baryons and mesons. To characterize this super-hadronic matter, one can use balance functions, a means of studying correlations due to local charge conservation. In particular, the simple model used in this research assumed two waves of localized charge-anticharge production, with an abrupt transition

  7. Jet-Underlying Event Separation Method for Heavy Ion Collisions at the Relativistic Heavy Ion Collider

    OpenAIRE

    Hanks, J. A.; Sickles, A. M.; Cole, B. A.; Franz, A.; McCumber, M. P.; Morrison, D. P.; Nagle, J. L.; Pinkenburg, C. H.; Sahlmueller, B.; Steinberg, P.; von Steinkirch, M.; Stone, M.

    2012-01-01

    Reconstructed jets in heavy ion collisions are a crucial tool for understanding the quark-gluon plasma. The separation of jets from the underlying event is necessary particularly in central heavy ion reactions in order to quantify medium modifications of the parton shower and the response of the surrounding medium itself. There have been many methods proposed and implemented for studying the underlying event substructure in proton-proton and heavy ion collisions. In this paper, we detail a me...

  8. Relativistic heavy ions from the BNL [Brookhaven National Laboratory] booster medical research and technological applications

    International Nuclear Information System (INIS)

    Thieberger, P.

    1990-05-01

    The BNL Booster, now nearing completion, was designed to inject protons and heavy ions into the Alternating Gradient Synchrotron (AGS) for further acceleration. In the future, ion beams from the AGS will in turn be further accelerated in the Relativistic Heavy Ion Collider (RHIC). Given the wide range of ion masses, energies and beam intensities the Booster will generate, other important applications should be considered. Dedicated use of the Booster for such applications may be possible during limited periods. However shared use would be preferable from the points of view of availability, affordability and efficiency. While heavy ions of a given isotope are injected into the AGS, the same or other ion species from the Booster could be simultaneously delivered to a new irradiation area for treatment of patients, testing of electronic devices or other applications and research. To generate two different beam species, ion sources on both Tandem accelerators would be used; one for AGS injection and the other one for a time-sharing application. Since the beam transport from the Tandems to the Booster can not be rapidly adjusted, it will be necessary to select beams of identical magnetic rigidity. The present study was performed to determine to what extent this compatibility requirement imposes limitations on the available ion species, energies and/or intensities

  9. Heavy-ion-linac post-accelerators

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1979-01-01

    The main features of the tandem-linac system for heavy-ion acceleration are reviewed and illustrated in terms of the technology and performance of the superconducting heavy-ion energy booster at Argonne. This technology is compared briefly with the corresponding technologies of the superconducting linac at Stony Brook and the room-temperature linac at Heidelberg. The performance possibilities for the near-term future are illustrated in terms of the proposed extension of the Argonne booster to form ATLAS

  10. Heavy ion collisions with the ATLAS detector

    International Nuclear Information System (INIS)

    Nevski, Pavel

    2004-01-01

    The ATLAS detector is designed to study high-p T physics in proton-proton collisions at the LHC design luminosity. The detector capabilities for heavy-ion physics are now being evaluated. This paper reports on a preliminary assessment of the baseline ATLAS detector potential for heavy-ion physics. The ATLAS sensitivity to some of the expected signatures from the quark-gluon plasma (e.g. jet quenching, Υ suppression) is discussed. (orig.)

  11. Jets in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Wang, Xin-Nian; Gyulassy, M.

    1990-09-01

    Several aspects of hard and semihard QCD jets in relativistic heavy ion collisions are discussed, including multiproduction of minijets and the interaction of a jet with dense nuclear matter. The reduction of jet quenching effect in deconfined phase of nuclear matter is speculated to provide a signature of the formation of quark gluon plasma. HIJING Monte Carlo program which can simulate events of jets production and quenching in heavy ion collisions is briefly described. 35 refs., 13 figs

  12. Heavy ion drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Keefe, D.

    1983-01-01

    The advantages of heavy ion beams as a way of delivering the needed energy and power to an inertial fusion target are surveyed. The existing broad technology base of particle accelerators provides an important foundation for designing, costing, and evaluating proposed systems. The sequence of steps needed for the verification of the heavy ion approach is described; recent research results are even more encouraging than had been assumed hitherto

  13. Heavy ion drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Keefe, D.

    1983-12-01

    The advantages of heavy ion beams as a way of delivering the needed energy and power to an inertial fusion target are surveyed. The existing broad technology base of particle accelerators provides an important foundation for designing, costing, and evaluating proposed systems. The sequence of steps needed for the verification of the heavy ion approach is described; recent research results are even more encouraging than had been assumed hitherto

  14. Validating PHITS for heavy ion fragmentation reactions

    International Nuclear Information System (INIS)

    Ronningen, Reginald M.

    2015-01-01

    The performance of the Monte Carlo code system PHITS is validated for heavy-ion transport capabilities by performing simulations and comparing results against experimental data from heavy-ion reactions of benchmark quality. These data are from measurements of isotope yields produced in the fragmentation of a 140 MeV/u "4"8Ca beam on a beryllium target and on a tantalum target. The results of this study show that PHITS performs reliably. (authors)

  15. Beam dynamics in heavy ion induction LINACS

    International Nuclear Information System (INIS)

    Smith, L.

    1981-10-01

    Interest in the use of an induction linac to accelerate heavy ions for the purpose of providing the energy required to initiate an inertially confined fusion reaction has stimulated a theoretical effort to investigate various beam dynamical effects associated with high intensity heavy ion beams. This paper presents a summary of the work that has been done so far; transverse, longitudinal and coupled longitudinal transverse effects are discussed

  16. Localization effects in heavy ion collisions

    International Nuclear Information System (INIS)

    Donangelo, R.J.

    1984-01-01

    Radial and angular localization in heavy ion reactions on deformed nuclei is discussed. A theoretical method appropriate to study these localization effects is briefly described and then applied to the determination of deformed heavy ion potentials from inclastic scattering data. It is argued that one-and two-nucleon transfer reactions on deformed nuclei can provide a probe of nuclear structure in high angular momentum states and be at least qualitatively analyzed in the light of these localization concepts. (Author) [pt

  17. Now day methods for heavy ion monitoring

    International Nuclear Information System (INIS)

    Luk'yanov, S.M.; Penionzhkevich, Yu.Eh.; Chubaryan, G.G.

    1984-01-01

    Up-to-date methods for identification of products yield as a result of heavy ion interaction with nuclei are described. Monitoring of total ionization has been realized by gas-filled ionization chambers semiconductor detectors, scintillators. A method for specific ionization loss monitoring and time-of-flight technique for heavy-ion mass identification are considered. Advantages of the method for identification of nuclear reaction prodUcts by means of a magnetic analyzer are displayed

  18. Review of heavy ion reaction mechanisms

    International Nuclear Information System (INIS)

    Ngo, C.

    1986-04-01

    We review some of the many aspects of heavy-ion reaction mechanisms observed at bombarding energies smaller than approximately 50 MeV/u that is to say in what is called the low bombarding energy domain and the intermediate bombarding energy domain. We emphasize the results concerning the use of very heavy projectiles which has led to the observation of new mechanisms

  19. Physics with heavy ions at LHC

    International Nuclear Information System (INIS)

    Safarik, K.

    2004-01-01

    We discuss the motivation to study heavy ion collisions at LHC, and the experimental conditions under which detectors will have to operate. A short description of the detectors under construction is given. Physics performance is illustrated in two examples, which will become accessible at LHC energies, jet quenching and heavy-flavor production. (author)

  20. Plasma focus as an heavy ion source in the problem of heavy ion fusion

    International Nuclear Information System (INIS)

    Gribkov, V.A.; Dubrovskij, A.V.; Kalachev, N.V.; Krokhin, O.N.; Silin, P.V.; Nikulin, V.Ya.; Cheblukov, Yu.N.

    1984-01-01

    Results of experiments on the ion flux formation in a plasma focus (PF) to develop a multicharged ion source for thermonuclear facility driver are presented. In plasma focus accelerating section copper ions were injected. Advantages of the suggested method of ion beam formation are demonstrated. Beam emittance equalling < 0.1 cmxmrad is obtained. Plasma focus ion energy exceeds 1 MeV. Plasma focus in combination with a neodymium laser is thought to be a perspective ion source for heavy ion fusion

  1. Cyclotron method for heavy ion acceleration

    International Nuclear Information System (INIS)

    Gikal, B.N.; Gul'bekyan, G.G.; Kutner, V.B.; Oganesyan, R.Ts.

    1984-01-01

    Studies on heavy ion beams in a wide range of masses (up to uranium) and energies disclose essential potential opportunities for solution of both fundamental scientific and significant economical problems. A cyclotron method for heavy ion acceleration is considered. Development of low and medium energy heavy ion accelerators is revealed. The design of a complex comprising two isochronous cyclotrons which is planned to be constrdcted 1n the JINR is described. The cyclotron complex includes the U-400 and the U-400 M cyclotrons and it is intended for acceleration of both 35-20 MeV/nucleon superheavy ions such as Xe-U and 120 MeV/nucleon light ions. Certain systems of the accelerators are described. Prospects of the U-400 and the U-400 M development are displayed

  2. P and CP violation and new thermalization scenario in heavy ion collisions

    International Nuclear Information System (INIS)

    Zhitnitsky, Ariel R.

    2011-01-01

    The violation of local P and CP invariance in QCD has been a subject of intense discussions for the last couple of years as a result of very interesting ongoing results coming from RHIC. Separately, a new thermalization scenario for heavy ion collisions through the event horizon as a manifestation of the Unruh effect, has been also suggested. In this paper we argue that these two, naively unrelated phenomena, are actually two sides of the same coin as they are deeply rooted into the same fundamental physics related to some very nontrivial topological features of QCD. We formulate the universality conjecture for P and CP odd effects in heavy ion collisions analogous to the universal thermal behaviour observed in all other high energy interactions.

  3. Heavy ion acceleration strategies in the AGS accelerator complex -- 1994 Status report

    International Nuclear Information System (INIS)

    Ahrens, L.A.; Benjamin, J.; Blaskiewicz, M.

    1995-01-01

    The strategies invoked to satisfy the injected beam specifications for the Brookhaven Relativistic Heavy Ion Collider (RHIC) continue to evolve, in the context of the yearly AGS fixed target heavy ion physics runs. The primary challenge is simply producing the required intensity. The acceleration flexibility available particularly in the Booster main magnet power supply and rf accelerating systems, together with variations in the charge state delivered from the Tandem van de Graaff, and accommodation by the AGS main magnet and rf systems allow the possibility for a wide range of options. The yearly physics run provides the opportunity for exploration of these options with the resulting significant evolution in the acceleration plan. This was particularly true in 1994 with strategies involving three different charge states and low and high acceleration rates employed in the Booster. The present status of this work will be presented

  4. The Smallest Drops of the Hottest Matter? New Investigations at the Relativistic Heavy Ion Collider (493rd Brookhaven Lecture)

    Energy Technology Data Exchange (ETDEWEB)

    Sickles, Anne [BNL Physics Department

    2014-03-19

    Pool sharks at the billiards hall know that sometimes you aim to rocket the cue ball for a head-on collision, and other times, a mere glance will do. Physicists need to know more than a thing or two about collision geometry too, as they sift through data from the billions of ions that smash together at the Relativistic Heavy Ion Collider (RHIC). Determining whether ions crash head-on or just glance is crucial for the physicists analyzing data to study quark-gluon plasma—the ultra-hot, "perfect" liquid of quarks and gluons that existed more than 13 billion years ago, before the first protons and neutrons formed. For these physicists, collision geometry data provides insights about quark-gluon plasma's extremely low viscosity and other unusual properties, which are essential for understanding more about the "strong force" that holds together the nucleus, protons, and neutrons of every atom in the universe. Dr. Sickles explains how physicists use data collected at house-sized detectors like PHENIX and STAR to determine what happens before, during, and after individual particle collisions among billions at RHIC. She also explains how the ability to collide different "species" of nuclei at RHIC—including protons and gold ions today and possibly more with a proposed future electron-ion collider upgrade (eRHIC)—enables physicists to probe deeper into the mysteries of quark-gluon plasma and the strong force.

  5. Respectives of heavy ion physics in JINR

    International Nuclear Information System (INIS)

    Flerov, G.N.

    1983-01-01

    Perspectives of heavy ion physics in JINR are discussed. The main attention is paid to directions that are connected with the application of intensive beams of U-400 cyclotron. Experiments into studying stability limits of heavy atomic nuclei are considered. The possibility of using beams of heavy ions in applied fields, particularly for the production of very thin nuclear filters is noted. Prospects of synthesis of superheavy elements (SHE) and SHE search in nature are also considered. The data on the events of spontaneous fission found in meteorite and hydrotherms and the data on lengths of tracks in olivines from meteorite prove the possibility of obtaining evidences of SHE existence in nature

  6. Optics measurement and correction during beam acceleration in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-09-09

    To minimize operational complexities, setup of collisions in high energy circular colliders typically involves acceleration with near constant β-functions followed by application of strong focusing quadrupoles at the interaction points (IPs) for the final beta-squeeze. At the Relativistic Heavy Ion Collider (RHIC) beam acceleration and optics squeeze are performed simultaneously. In the past, beam optics correction at RHIC has taken place at injection and at final energy with some interpolation of corrections into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats which if corrected could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoidance of higher-order multipole fields sampled by particles within the bunch. In this report the methodology now operational at RHIC for beam optics corrections during acceleration with simultaneous beta-squeeze will be presented together with measurements which conclusively demonstrate the superior beam control. As a valuable by-product, the corrections have minimized the beta-beat at the profile monitors so reducing the dominant error in and providing more precise measurements of the evolution of the beam emittances during acceleration.

  7. Modeling and Analysis of Ultra-Relativistic Heavy-Ion Collisions. Final Report

    International Nuclear Information System (INIS)

    Bass, Steffen A.

    2008-01-01

    Hadronic, i.e. strongly interacting, matter is described by the theory of quantum chromodynamics (QCD). The basic constituents of QCD, quarks and gluons, are normally confined to hadrons, but it is believed that under extreme conditions, such as shortly after the creation of the universe, quarks and gluons can exist as independent particles in a new state of matter, called a quark-gluon plasma (QGP). Due to the rapid expansion of the universe, this plasma went through a phase transition to form hadrons - most importantly nucleons - which constitute the building blocks of matter as we know it today. The investigation of the QGP under laboratory conditions will yield important novel insights into the development of the early universe and the behavior of matter under extreme conditions. This study is presently the subject of the physics program of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. First data from the √s NN = 130 GeV and √s NN = 200 GeV Au+Au runs at RHIC have yielded many interesting and sometimes surprising results. While many theoretical predictions have been confirmed, some of the experimental results have brought surprises and indicate that RHIC is, indeed, probing a new physics regime of QCD matter.

  8. Nuclear research with heavy ions

    International Nuclear Information System (INIS)

    Kaplan, M.

    1992-08-01

    This report discusses the following topics; studies of light-charged-particle emission from fission and er reactions in the system 344-MeV 28 Si+ 121 Sb → 149 Tb; the role of reversed kinematics and double kinematic solutions in nuclear reactions studies; improvements in interactive data analysis and graphical representations; studies of the reaction 856-MeV 98 Mo + 51 V→ 149 Tb(E*=224-MeV): emission of intermediate-mass fragments; particle-particle correlations in compound nucleus reactions: preliminary consideration of lifetime estimates from small angle data; light particle emission studies using a new scintillator array; statistical evaporation calculations: developments with the computer codes LILITA-N90 and CASCADE; star collaboration studies: simulations for the conceptual design of the STAR detector system at RHIC; asymmetric fission of 149Tb* from the finite-range, rotating-liquid-drop model: mean total kinetic energies for binary fragmentation; and charged-particle evaporation from hot composite nuclei: evidence over a broad z range for distortions from cold nuclear profiles

  9. Resolving key heavy-ion fusion target issues with relativistic heavy-ion research accelerators

    International Nuclear Information System (INIS)

    Arnold, R.C.

    1988-01-01

    Heavy-ion accelerators designed for relativistic nuclear research experiments can also be adapted for target research in heavy-ion driver inertial fusion. Needle-shaped plasmas can be created that are adequate for studying basic properties of matter at high energy density. Although the ion range is very long, the specific deposited power nevertheless increases with kinetic energy, as the focus spot can be made smaller and more ions can be accumulated in larger rings

  10. Heavy-ion fusion accelerator research, 1989

    International Nuclear Information System (INIS)

    1990-06-01

    This report discusses the following topics on heavy-ion fusion accelerator research: MBE-4: the induction-linac approach; transverse beam dynamics and current amplification; scaling up the results; through ILSE to a driver; ion-source and injector development; and accelerator component research and development

  11. Heavy ion induced mutation in arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Tano, Shigemitsu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Heavy ions, He, C, Ar and Ne were irradiated to the seeds of Arabidopsis thaliana for inducing the new mutants. In the irradiated generation (M{sub 1}), germination and survival rate were observed to estimate the relative biological effectiveness in relation to the LET including the inactivation cross section. Mutation frequencies were compared by using three kinds of genetic loci after irradiation with C ions and electrons. Several interesting new mutants were selected in the selfed progenies of heavy ion irradiated seeds. (author)

  12. Improvement of herbage by heavy ion beams

    International Nuclear Information System (INIS)

    Xie Hongmei; Hao Jifang; Wei Zengquan; Xie Zhongkui; Li Fengqin; Wang Yajun

    2004-01-01

    Herbage seeds of legume and grass were irradiated in penetration by 80 MeV/u 20 Ne 10+ ions. The results of field tests and observations of the root-tip cells showed that growth of the seedling was obviously weakened with increasing doses. Frequencies of chromosomal aberration and micronucleus increased significantly with increasing doses. According to the field growth tests, radiation sensitivity of grass herbage to the heavy ion beams was much higher than leguminous herbage, and suitable dose of the heavy ion irradiation for the grass and leguminous herbage is 20-30 Gy and 150 Gy, respectively

  13. Heavy ion medical accelerator in chiba

    International Nuclear Information System (INIS)

    Hirao, Y.; Ogawa, H.; Yamada, S.

    1992-12-01

    The HIMAC (Heavy Ion Medical Accelerator in Chiba) construction project has been promoted by NIRS (National Institute of Radiological Sciences) as one of the projects of 'Comprehensive 10 year Strategy for Cancer Control' HIMAC is the first heavy-ion accelerator dedicated to medicine in the world, and its design parameters are based on the radiological requirements. It consists of two types of ion sources, an RFQ and an Alvarez linacs, dual synchrotron rings, high energy beam transport lines, and irradiation facilities for treatment and experiments. This report mainly describes the outline of the structure and performance of each HIMAC subsystem. (J.P.N.)

  14. Heavy-ion driver design and scaling

    International Nuclear Information System (INIS)

    Bieri, R.; Monsler, M.; Meier, W.; Stewart, L.

    1992-01-01

    Parametric models for scaling heavy-ion driver designs are described. Scaling of target performance and driver cost is done for driver parameters including driver energy, number of beams, type of superconductor used in focusing magnets, maximum magnetic field allowed at the superconducting windings, linear quadrupole array packing fraction mass, and ion charge state. The cumulative accelerator voltage and beam currents are determined from the Maschke limits on beam current for each choice of driver energy and post-acceleration pulse duration. The heavy-ion driver is optimized over the large available driver parameter space. Parametric studies and the choice of a base driver model are described in a companion paper

  15. Nuclear fission induced by heavy ions

    International Nuclear Information System (INIS)

    Newton, J.O.

    1988-09-01

    Because the accelerators of the 50's and 60's mostly provided beams of light ions, well suited for studying individual quantum states of low angular momentum or reactions involving the transfer of one or two nucleons, the study of fission, being an example of large-scale collective motion, has until recently been outside of the mainstream of nuclear research. This situation has changed in recent years, due to the new generation of accelerators capable of producing beams of heavy ions with energies high enough to overcome the Coulomb barriers of all stable nuclei. These have made possible the study of new examples of large-scale collective motions, involving major rearrangements of nuclear matter, such as deep-inelastic collisions and heavy-ion fusion. Perhaps the most exciting development in the past few years is the discovery that dissipative effects (nuclear viscosity) play an important role in fission induced by heavy ions, contrary to earlier assumptions that the viscosity involved in fission was very weak and played only a minor role. This review will be mainly concerned with developments in heavy-ion induced fission during the last few years and have an emphasis on the very recent results on dissipative effects. Since heavy-ion bombardment usually results in compound systems with high excitation energies and angular momenta, shell effects might be expected to be small, and the subject of low energy fission, where they are important, will not be addressed. 285 refs., 58 figs

  16. Illuminating RHIC matter with the multi-purpose direct photon

    International Nuclear Information System (INIS)

    Frantz, Justin

    2007-01-01

    In the RHIC era, the use of direct photon physics to probe heavy ion collisions has developed beyond its original scope. I make evaluations of the current state of several measurements by RHIC experiments and their associated physics implications, with a focus on their current and desired precision. At low p T , thermal photon theory is still not well constrained by the data, but improvements are on the way. At higher p T , we have been able to gain important insights, now with regards to the proposed 'jet-medium' photon sources (Fries, Muller and Srivastava 2003 Phys. Rev. Lett. 90 132301 (Preprint nucl-th/0208001); Zakharov 2004 JETP Lett. 80 617). Such predictions, as they currently exist, seem to be disfavoured by the PHENIX data; however, the idea is probably not ruled out. Finally, direct γ-jet correlations have been measured for the first time at RHIC and already show hints of medium modification

  17. High energy heavy ions: techniques and applications

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1985-04-01

    Pioneering work at the Bevalac has given significant insight into the field of relativistic heavy ions, both in the development of techniques for acceleration and delivery of these beams as well as in many novel areas of applications. This paper will outline our experiences at the Bevalac; ion sources, low velocity acceleration, matching to the synchrotron booster, and beam delivery. Applications discussed will include the observation of new effects in central nuclear collisions, production of beams of exotic short-lived (down to 1 μsec) isotopes through peripheral nuclear collisions, atomic physics with hydrogen-like uranium ions, effects of heavy ''cosmic rays'' on satellite equipment, and an ongoing cancer radiotherapy program with heavy ions. 39 refs., 6 figs., 1 tab

  18. Production of highly ionized recoil ions in heavy ion impact

    International Nuclear Information System (INIS)

    Tawara, H.; Tonuma, T.; Be, S.H.; Shibata, H.; Kase, M.; Kambara, T.; Kumagai, H.; Kohno, I.

    1985-01-01

    The production mechanisms of highly ionized recoil ions in energetic, highly charged heavy ion impact are compared with those in photon and electron impact. In addition to the innershell ionization processes which are important in photon and electron impact, the electron transfer processes are found to play a key role in heavy ion impact. In molecular targets are also observed highly ionized monoatomic ions which are believed to be produced through production of highly ionized molecular ions followed by prompt dissociation. The observed N 6+ ions produced in 1.05MeV/amu Ar 12+ ions on N 2 molecules are produced through, for example, N 2 12+ *→N 6+ +N 6+ process. (author)

  19. SYSTEMATIC STUDIES OF HEAVY ION COLLISIONS TO SEARCH FOR QUARK-GLUON PLASMA

    International Nuclear Information System (INIS)

    Wang, Fuqiang

    2007-01-01

    This is the final technical report for DOE Outstanding Junior Investigator (OJI) Award, 'Systematic Studies of Heavy Ion Collisions to Search for Quark-Gluon Plasma', grant DE-FG02-02ER41219, Principal Investigator (PI) Fuqiang Wang. The research under the grant was divided into two phases. The first concentrated on systematic studies of soft hadron production at low transverse momentum (p T ), in particular the production of (anti-)baryon and strangeness in heavy ion collisions at RHIC energies. The second concentrated on measurements of di-hadron and multi-hadron jet-correlations and investigations of medium response to jets. The research was conducted at the Relativistic Heavy-Ion Collider (RHIC) at BNL with the Solenoidal Tracker At RHIC (STAR) experiment. The total grant is $214,000. The grant established a PC farm solely used for this research. The PC farm consists of 8 nodes with a total of 16 CPUs and 3 disk servers of total 2 TB shared storage. The current balance of the grant is $19,985. The positive balance is because an initial purchase of $22,600 for the PC farm came out of the PI's start-up fund due to the lateness of the award. The PC farm is an integral part of the Purdue Physics Department's computer cluster. The grant supported two Ph.D. graduate students. Levente Molnar was supported from July 2002 to December 2003, and worked on soft hadron production. His thesis title is Systematics of Identified Particle Production in pp, d-Au and Au-Au Collisions at RHIC Energies. He graduated in 2006 and now is a Postdoctoral fellow at INFN Sezione di Bari, Italy working on the ALICE experiment at the LHC. Jason Ulery was supported from January 2004 to July 2007. His thesis title is Two- and Three-Particle Jet-Like Correlations. He defended his thesis in October 2007 and is moving to Frankfurt University, Germany to work on the ALICE experiment at the LHC. The research by this grant resulted in 7 journal publications (2 PRL, 1 PLB, 1 PRC, 2 submitted and 1

  20. CERN Heavy-Ion Facility design report

    International Nuclear Information System (INIS)

    Warner, D.; Angert, N.; Bourgarel, M.P.; Brouzet, E.; Cappi, R.; Dekkers, D.; Evans, J.; Gelato, G.; Haseroth, H.; Hill, C.E.; Hutter, G.; Knott, J.; Kugler, H.; Lombardi, A.; Lustig, H.; Malwitz, E.; Nitsch, F.; Parisi, G.; Pisent, A.; Raich, U.; Ratzinger, U.; Riccati, L.; Schempp, A.; Schindl, K.; Schoenauer, H.; Tetu, P.; Umstaetter, H.H.; Rooij, M. van; Weiss, M.

    1993-01-01

    The design of the CERN Heavy-Ion Facility is described. This facility will be based on a new ion linear accelerator (Linac 3), together with improvements to the other accelerators of the CERN complex to allow them to cope with heavy ions, i.e. to the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS) and the Super Proton Synchrotron (SPS). For this reference design, the pure isotope of lead, 208 Pb, is considered. The bulk of the report describes Linac 3, a purpose-built heavy-ion linac mainly designed and constructed in collaboration with several CERN member state laboratories, but also with contributions from non-member states. Modifications and improvements to existing CERN accelerators essentially concern the RF acceleration, beam control and beam monitoring (all machines), beam kickers and septa at the input and output of the PSB, and major vacuum improvements, aiming to reduce the pressure by factors of at least seven and three in the PSB and PS respectively. After injection from the Electron Cyclotron Resonance source at 2.5 keV/u the partially stripped heavy-ion beam is accelerated successively by a Radio Frequency Quadrupole and an Interdigital-H linac to 4.2 MeV/u. After stripping to 208 Pb 53+ , the beam is again accelerated, firstly in the PSB (to 98.5 MeV/u), then in the PS (to 4.25 GeV/u). The final stage of acceleration in the SPS takes the fully stripped 208 Pb 82+ ions to 177 GeV/u, delivering a beam of 4.10 8 ions per SPS supercycle (15.2 s) to the experiments. The first physics run with lead ions is scheduled for the end of 1994. Finally, some requirements for carrying out heavy-ion physics at the Large Hadron Collider are mentioned. (orig.)

  1. PREVENTING POLLUTION USING ISO 14001 AT A PARTICLE ACCELERATOR THE RELATIVISTIC HEAVY ION COLLIDER PROJECT

    International Nuclear Information System (INIS)

    BRIGGS, S.L.K.; MUSOLINO, S.V.

    2001-01-01

    In early 1997 Brookhaven National Laboratory (BNL) discovered that the spent fuel pool of their High Flux Beam Reactor was leaking tritium into the groundwater. Community members, activist groups, politicians and regulators were outraged with the poor environmental management practices at BNL. The reactor was shut down and the Department of Energy (DOE) terminated the contract with the existing Management Company. At this same time, a major new scientific facility, the Relativistic Heavy Ion Collider (RHIC), was nearing the end of construction and readying for commissioning. Although environmental considerations had been incorporated into the design of the facility; some interested parties were skeptical that this new facility would not cause significant environmental impacts. RHIC management recognized that the future of its operation was dependent on preventing pollution and allaying concerns of its stakeholders. Although never done at a DOE National Laboratory before Brookhaven Science Associates, the new management firm, committed to implementing an Environmental Management System (EMS) and RHIC managers volunteered to deploy it within their facility on an extremely aggressive schedule. Several of these IS0 requirements contribute directly to preventing pollution, an area where particular emphasis was placed. This paper describes how Brookhaven used the following key IS0 14001 elements to institutionalize Pollution Prevention concepts: Environmental Policy, Aspects, Objectives and Targets, Environmental Management Program, Structure and Responsibility, Operational Controls, Training, and Management Review. In addition, examples of implementation at the RHIC Project illustrate how BNL's premiere facility was able to demonstrate to interested parties that care had been taken to implement technological and administrative controls to minimize environmental impacts, while at the same time reduce the applicability of regulatory requirements to their operations

  2. Heavy quark photoproduction in ultraperipheral heavy ion collisions

    International Nuclear Information System (INIS)

    Klein, Spencer R.; Nystrand, Joakim; Vogt, Ramona

    2002-01-01

    Heavy quarks are copiously produced in ultraperipheral heavy ion collisions. In the strong electromagnetic fields, cc-bar and bb-bar are produced by photonuclear and two-photon interactions. Hadroproduction can also occur in grazing interactions. We calculate the total cross sections and the quark transverse momentum and rapidity distributions, as well as the QQ-bar invariant mass spectra from the three production channels. We consider AA and pA collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider. We discuss techniques for separating the three processes and describe how the AA to pA production ratios might be measured accurately enough to study nuclear shadowing

  3. Transverse energy per charged particle in heavy-ion collisions: Role of collective flow

    Science.gov (United States)

    Kumar Tiwari, Swatantra; Sahoo, Raghunath

    2018-03-01

    The ratio of (pseudo)rapidity density of transverse energy and the (pseudo)rapidity density of charged particles, which is a measure of the mean transverse energy per particle, is an important observable in high energy heavy-ion collisions. This ratio reveals information about the mechanism of particle production and the freeze-out criteria. Its collision energy and centrality dependence is almost similar to the chemical freeze-out temperature until top Relativistic Heavy-Ion Collider (RHIC) energy. The Large Hadron Collider (LHC) measurement at √{s_{NN}} = 2.76 TeV brings up new challenges towards understanding the phenomena like gluon saturation and role of collective flow, etc. being prevalent at high energies, which could contribute to the above observable. Statistical Hadron Gas Model (SHGM) with a static fireball approximation has been successful in describing both the centrality and energy dependence until top RHIC energies. However, the SHGM predictions for higher energies lie well below the LHC data. In order to understand this, we have incorporated collective flow in an excluded-volume SHGM (EV-SHGM). Our studies suggest that the collective flow plays an important role in describing E T/ N ch and it could be one of the possible parameters to explain the rise observed in E T/ N ch from RHIC to LHC energies. Predictions are made for E T/ N ch , participant pair normalized-transverse energy per unit rapidity and the Bjorken energy density for Pb+Pb collisions at √{s_{NN}} = 5.02 TeV at the Large Hadron Collider.

  4. RHIC STATUS AND PLANS.

    Energy Technology Data Exchange (ETDEWEB)

    PILAT,R.

    2002-06-02

    RHIC ended successfully its second year of operation in January 2002 after a six month run with gold ions and two months of polarized proton collisions. I will review the machine performance and accomplishments, that include reaching design energy (100 GeV/u) and design luminosity during the gold run, and the first high energy (100 GeV) polarized proton collisions. I will also discuss the machine development strategy and the main performance milestones. The goals and plans for the shutdown and the nest run, scheduled to start in November 2002 have been the focus of a RHIC Retreat in March 2002. I will summarize findings and plans for the upcoming run and outline a vision for the nest few years of RHIC operation and upgrades.

  5. Targets for heavy ion fusion

    International Nuclear Information System (INIS)

    Clauser, M.J.

    1978-01-01

    This paper describes some of the basic principles of fusion target implosions, using some simple targets designed for irradiation by ion beams. Present estimates are that ion beams with 1-5 MJ, and 100-500 TW will be required to ignite high gain targets. (orig.) [de

  6. Data acquisition for the HILI [Heavy Ion Light Ion] detector

    International Nuclear Information System (INIS)

    Teh, K.M.; Shapira, D.; McConnell, J.W.; Kim, H.; Novotny, R.

    1987-01-01

    A large acceptance, multi-segmented detector system capable of the simultaneous detection of heavy and light ions has been constructed. The heavy ions are detected with a segmented gas ionization chamber and a multiwire proportional counter while the light ions are detected with a 192 element plastic phoswich hodoscope. Processing the large number of signals is accomplished through a combination of CAMAC and FASTBUS modules and preprocessors, and a Host minicomputer. Details of the data acquisition system and the reasons for adopting a dual standards system are discussed. In addition, a technique for processing signals from an individual hodoscope detector is presented. 4 refs., 3 figs

  7. Study on broad beam heavy ion CT

    International Nuclear Information System (INIS)

    Ohno, Yumiko; Kohno, Toshiyuki; Sasaki, Hitomi; Nanbu, S.; Kanai, Tatsuaki

    2003-01-01

    To achieve the heavy ion radiotherapy more precisely, it is important to know the distribution of the electron density in a human body, which is highly related to the range of charged particles. From a heavy ion CT image, we can directly obtain the 2-D distribution of the electron density in a sample. For this purpose, we have developed a broad beam heavy ion CT system. The electron density was obtained using some kinds of solutions targets. Also the dependence of the spatial resolution on the target size and the kinds of beams was estimated in this work using cylinders targets of 40, 60 and 80 mm in diameter, each of them has a hole of 10 mm in diameter at the center of it. (author)

  8. Heavy ion induction linacs for fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.; Ho, D.D.M.

    1991-01-01

    In 1976 Denis Keefe proposed the heavy ion induction linac as a driver for inertial confinement fusion (ICF) power plants. Subsequent research has established that heavy ion fusion (HIF) is potentially an attractive energy source and has identified the issues that must be resolved to make HIF a reality. The principal accelerator issues are achieving adequately low transverse and longitudinal emittance and acceptable cost. Results from the single and multiple beam experiments at LBL on transverse emittance are encouraging. A predicted high current longitudinal instability that can affect longitudinal emittance is currently being studied. This paper presents an overview of economics and ICF target requirements and their relationship to accelerator design. It also presents a summary of the status of heavy ion induction linac research. It concludes with a discussion of research plans, including plans for the proposed Induction Linac Systems Experiments (ILSE)

  9. Synchrotrons for heavy ions: Bevalac experience

    International Nuclear Information System (INIS)

    Grunder, H.A.; Gough, R.A.; Alonso, J.R.

    1980-10-01

    The Bevalac should be viewed not as a model of accelerator hardware - a modern heavy ion complex will look quite different, but as a model for an operating versatile multifaceted, multiuser heavy ion facility. Of value to the planning of a new accelerator such as MARIA is the knowledge of operating modes peculiar to heavy ions and specific hardware requirements to carry out its mission with the mandated flexibility and reliability. This paper starts with a discussion of parameters and machine characteristics most suitable for medical and nuclear science applications. It then covers experience in interleaving these two research programs, and finally, concentrates on accelerator configuratin questions; injectors, repetition rate, vacuum systems and cost criteria which will be relevant to the design of MARIA

  10. Specific gene mutations induced by heavy ions

    International Nuclear Information System (INIS)

    Freeling, M.; Karoly, C.W.; Cheng, D.S.K.

    1980-01-01

    This report summarizes our heavy-ion research rationale, progress, and plans for the near future. The major project involves selecting a group of maize Adh1 mutants induced by heavy ions and correlating their altered behavior with altered DNA nucleotide sequences and sequence arrangements. This research requires merging the techniques of classical genetics and recombinant DNA technology. Our secondary projects involve (1) the use of the Adh gene in the fruit fly, Drosophila melanogaster, as a second system with which to quantify the sort of specific gene mutants induced by heavy ions as compared to x rays, and (2) the development of a maize Adh1 pollen in situ monitor for environmental mutagens

  11. High-pt and jet physics from RHIC to LHC

    International Nuclear Information System (INIS)

    Estienne, M.

    2008-01-01

    The observation of the strong suppression of high-pt hadrons in heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) at BNL has motivated a large experimental program using hard probes to characterize the deconfined medium created. However, what can be denoted as 'leading particle' physics accessible at RHIC presents some limitations which motivate at higher energy the study of much more penetrating objects: jets. The gain in center-of-mass energy expected at the Large Hadron Collider (LHC) at CERN will definitively improve our understanding on how the energy is lost in the system, opening a major new window of study: the physics of jets on an event-by-event basis. We will concentrate on the expected performance for jet reconstruction in ALICE using the EMCal calorimeter.

  12. Review of recent heavy flavor measurements in STAR

    Directory of Open Access Journals (Sweden)

    Lomnitz Michael R.

    2017-01-01

    Full Text Available Heavy-ion collisions at RHIC provide a unique environment to study the behavior of nuclear matter under extreme conditions. In particular, heavy quarks, which are produced during the early stages of a collision, provide an exceptional probe in understanding the hot and dense medium created in such collisions. The Heavy Flavor Tracker and Muon Telescope Detector at the STAR experiment at RHIC have been successfully installed since early 2014 and have significantly improved the experimental capabilities in measuring both open and hidden heavy flavor hadrons in heavy-ion collisions. We present an overview of recent heavy flavor results obtained at STAR using these two dedicated detectors.

  13. Review of recent heavy flavor measurements in STAR

    Science.gov (United States)

    Lomnitz, Michael R.

    2017-12-01

    Heavy-ion collisions at RHIC provide a unique environment to study the behavior of nuclear matter under extreme conditions. In particular, heavy quarks, which are produced during the early stages of a collision, provide an exceptional probe in understanding the hot and dense medium created in such collisions. The Heavy Flavor Tracker and Muon Telescope Detector at the STAR experiment at RHIC have been successfully installed since early 2014 and have significantly improved the experimental capabilities in measuring both open and hidden heavy flavor hadrons in heavy-ion collisions. We present an overview of recent heavy flavor results obtained at STAR using these two dedicated detectors.

  14. Electron Cooling of RHIC

    CERN Document Server

    Ben-Zvi, Ilan; Barton, Donald; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Bruhwiler, David L; Burger, Al; Burov, Alexey; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Derbenev, Yaroslav S; Eidelman, Yury I; Favale, Anthony; Fedotov, Alexei V; Fischer, Wolfram; Funk, L W; Gassner, David M; Hahn, Harald; Harrison, Michael; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Koop, Ivan; Lambiase, Robert; Litvinenko, Vladimir N; MacKay, William W; Mahler, George; Malitsky, Nikolay; McIntyre, Gary; Meng, Wuzheng; Merminga, Lia; Meshkov, Igor; Mirabella, Kerry; Montag, Christoph; Nagaitsev, Sergei; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Parkhomchuk, Vasily; Parzen, George; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Sekutowicz, Jacek; Shatunov, Yuri; Sidorin, Anatoly O; Skrinsky, Aleksander Nikolayevich; Smirnov, Alexander V; Smith, Kevin T; Todd, Alan M M; Trbojevic, Dejan; Troubnikov, Grigory; Wang, Gang; Wei, Jie; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Zaltsman, Alex; Zhao, Yongxiang; ain, Animesh K

    2005-01-01

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.ags...

  15. Highlights from the heavy-ion program in STAR

    Directory of Open Access Journals (Sweden)

    Chaloupka Petr

    2017-01-01

    STAR collaboration has successfully completed the Beam Energy Scan, program focused on searching for the onset of the QGP signatures and studying the nature of the phase transition, indicating that the region of interests for critical point and the first-order phase transition is within the reach of RHIC experiments. Moreover, with its two newly installed detector upgrades, STAR has launched a comprehensive heavy-flavor program which allows high precision measurements of the properties of the partonic matter.

  16. RHIC beam position monitor assemblies

    International Nuclear Information System (INIS)

    Cameron, P.R.; Grau, M.C.; Ryan, W.A.; Shea, T.J.; Sikora, R.E.

    1993-01-01

    Design calculations, design details, and fabrication techniques for the RHIC BPM Assemblies are discussed. The 69 mm aperture single plane detectors are 23 cm long short-circuited 50 ohm strip transmission lines subtending 80 degrees. They are mounted on the sextupole end of the Corrector-Quadrupole-Sextupole package and operate at liquid helium temperature. The 69 cm aperture was selected to be the same as that of the beampipe in the CQS package, the 23 cm length is a compromise between mechanical stability and electrical sensitivity to the long low-intensity proton and heavy ion bunches to be found in RHIC during commissioning, and the 80 degree subtended angle maximizes linear aperture. The striplines are aligned after brazing to maintain electrical-to-mechanical centers within 0.1 mm radius, eliminating the need for individual calibration. Because the cryogenic feedthrus isolate the UHV beam vacuum only from the HV insulating vacuum, and do not see liquid helium, a replaceable mini-ConFlat design was chosen to simplify fabrication, calibration, and maintenance

  17. RHIC Beam Position Monitor Assemblies

    International Nuclear Information System (INIS)

    Cameron, P.R.; Grau, M.C.; Ryan, W.A.; Shea, T.J.; Sikora, R.E.

    1993-01-01

    Design calculations, design details, and fabrication techniques for the RHIC BPM Assemblies are discussed. The 69 mm aperture single plane detectors are 23 cm long short-circuited 50 ohm strip transmission lines subtending 80 degrees. They are mounted on the sextupole end of the Corrector-Quadrupole-Sextupole package and operate at liquid helium temperature. The 69 cm aperture was selected to be the same as that of the beampipe in the CQS package, dc 23 cm length is a compromise between mechanical stability and electrical sensitivity to the long low-intensity proton and heavy ion bunches to be found in RHIC during commissioning, and the 80 degree subtended angle maximizes linear aperture. The striplines are aligned after brazing to maintain electrical-to-mechanical centers within 0.1 mm radius, eliminating the need for individual calibration. Because the cryogenic feedthrus isolate the UHV beam vacuum only from the HV insulating vacuum, and do not see liquid helium, a replaceable mini-ConFlat design was chosen to simplify fabrication, calibration, and maintenance

  18. HIGH PT MEASUREMENT AT RHIC

    International Nuclear Information System (INIS)

    MIODUSZEWSKI, S.

    2003-01-01

    We present recent high transverse momentum measurements in Au+Au and p+p collisions at the Relativistic Heavy Ion Collider (RHIC). We define and show the nuclear modification factor for neutral pions and charged hadrons and discuss the particle species dependence. By means of the nuclear modification factor, we observe a suppression factor at high p T of 5-6 for neutral pions and 3-4 for charged hadrons in central Au+Au collisions relative to the binary-scaled yields in p+p (or peripheral) collisions. Finally we present strong evidence for the observation of jets in Au+Au collisions and the disappearance of the away-side jet in central Au+Au collisions

  19. Induction linacs for heavy ion fusion

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-11-01

    Experimental progress to date has strengthened our belief in the soundness and attractiveness of the heavy ion method for fusion. What surprises that have shown up in the laboratory (e.g., in SBTE) have all been of the pleasant kind so far. The systems assessment has supported the view that the heavy ion approach can lead to economically attractive electric power and that a wide variety of options exists in all parameters. The systems work has also been of great help in pointing the way for the research and development activities

  20. Penetration of relativistic heavy ions through matter

    International Nuclear Information System (INIS)

    Scheidenberger, C.; Geissel, H.

    1997-07-01

    New heavy-ion accelerators covering the relativistic and ultra-relativistic energy regime allow to study atomic collisions with bare and few-electron projectiles. High-resolution magnetic spectrometers are used for precise stopping-power and energy-loss straggling measurements. Refined theories beyond the Born approximation have been developed and are confirmed by experiments. This paper summarizes the large progress in the understanding of relativistic heavy-ion penetration through matter, which has been achieved in the last few years. (orig.)

  1. Next generation of relativistic heavy ion accelerators

    International Nuclear Information System (INIS)

    Grunder, H.; Leemann, C.; Selph, F.

    1978-06-01

    Results are presented of exploratory and preliminary studies of a next generation of heavy ion accelerators. The conclusion is reached that useful luminosities are feasible in a colliding beam facility for relativistic heavy ions. Such an accelerator complex may be laid out in such a way as to provide extractebeams for fixed target operation, therefore allowing experimentation in an energy region overlapping with that presently available. These dual goals seem achievable without undue complications, or penalties with respect to cost and/or performance

  2. Heavy ion and hadron reactions in emulsion

    International Nuclear Information System (INIS)

    Otterlund, I.

    1979-04-01

    Recent results from heavy ion and hadron reactions in emulsion are reviewed. General properties of hadron-reaction multiplicities and their correlation to the production of recoiling protons are given. Properties of pseudo-rapidity distributions of shower-particles especially the particle production in the central region of pseudo-rapidity will be discussed. Non-peripheral heavy ion reactions are compared to recent participant-spectator model calculations. Very energetic cosmic ray events will be examined in the light of recent results from hadron-nucleus reactions. (author)

  3. European heavy ion ICF driver development

    CERN Document Server

    Plass, Günther

    1996-01-01

    Approaches in Europe to heavy ion induced Inertial Confinement Fusion are oriented toward the linac-plus- storage ring technique. Despite the very limited support of this work, technical pro gress was achieved in some important areas. For the immediate future, a substantial intensity upgrade of the GSI accelerator facilities at Darmstadt is being implemented, leading to specific energy depositions of the order of 100 kJ/g and plasma temperatures of 10 to 20 eV. For the longer term, a conceptual design study of a heavy ion based Ignition Facility is being initiated.

  4. Review of BNL heavy ion physics

    International Nuclear Information System (INIS)

    Miake, Yasuo.

    1990-01-01

    With an intent to search for a new state of matter, a relativistic heavy ion program was started in 1986 at BNL. Several interesting features have been reported from BNL-AGS heavy ion experiments, among which are: the enhanced K + /π + ratio and the larger left-angle m t right-angle for K + and proton. Comparisons between ∼pp, pA and SiA collisions are discussed for m t and dn/dy distributions. 33 refs., 9 figs., 1 tab

  5. Bremsstrahlung from relativistic heavy ions in matter

    DEFF Research Database (Denmark)

    Sørensen, Allan Hvidkjær

    2010-01-01

    The emission of electromagnetic radiation by relativistic bare heavy ions penetrating ordinary matter is investigated. Our main aim is to determine the bremsstrahlung which we define as the radiation emitted when the projectile does not break up. It pertains to collisions without nuclear contact....... As a result of its relative softness, bremsstrahlung never dominates the energy-loss process for heavy ions. As to the emission of electromagnetic radiation in collisions with nuclear break-up, it appears modest when pertaining to incoherent action of the projectile nucleons in noncontact collisions...

  6. Hadron chemistry in heavy ion collisions

    International Nuclear Information System (INIS)

    Montvay, I.; Zimanyi, J.

    1978-06-01

    In the models for energetic heavy ion reactions it is assumed that during the reaction a hot and dense nuclear matter, a fireball is formed from all or a part of nucleons of the target and projectile nuclei. The process is similar to the chemical processes leading to dynamical equilibrium. The relaxation times necessary to establish ''chemical'' equilibrium among different hadrons in hot, dense hadronic matter is deducted in a statistical model. Consequences for heavy ion collisions are discussed. The possibility of Bose-Einstein pion condensation around the break-up time of the nuclear fireball is pointed out. (D.P.)

  7. New developments in heavy ion fusion

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1984-01-01

    Beginning in 1984, the US Department of Energy plans a program aimed at determining the feasibility of using heavy ion accelerators as pellet drivers for Inertial Confinement Fusion (ICF). This paper will describe the events in the field of Heavy Ion Fusion (HIF) that have occurred in the three years since the Lausanne Conference in this series. The emphasis will be on the events leading towards the energy oriented program. In addition to providing an overview of progress in HIF, such a discussion may prove useful for promoters of any ''emerging'' energy technology. (orig.) [de

  8. RHIC: What We Have Learned So Far (434th Brookhaven Lecture)

    International Nuclear Information System (INIS)

    O'Brien, Edward

    2008-01-01

    One of the world's premiere nuclear research facilities, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab is just completing its eighth year of physics operation. During the past eight years, RHIC's primary physics program has emphasized the creation, observation and explanation of nuclear matter created at temperatures and densities that last existed in the universe some 13.7 billion years ago. RHIC was built to study the strong force, which holds quarks and gluons together within the nucleus of an atom, with the goal of observing a plasma of quarks and gluons freed from the atomic nucleus. The new state of matter that was created, however, was quite different. Dr. O'Brien will discuss what RHIC scientists expected versus what they discovered, and how this finding both challenges existing theory and provides an opportunity to understand the strong force better.

  9. High current vacuum arc ion source for heavy ion fusion

    International Nuclear Information System (INIS)

    Qi, N.; Schein, J.; Gensler, S.; Prasad, R.R.; Krishnan, M.; Brown, I.

    1999-01-01

    Heavy Ion fusion (HIF) is one of the approaches for the controlled thermonuclear power production. A source of heavy ions with charge states 1+ to 2+, in ∼0.5 A current beams with ∼20 micros pulse widths and ∼10 Hz repetition rates are required. Thermionic sources have been the workhorse for the HIF program to date, but suffer from sloe turn-on, heating problems for large areas, are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states, in short and long pulse bursts, with low emittance and high beam currents. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications is investigated. An existing ion source at LBNL was modified to produce ∼0.5 A, ∼60 keV Gd (A∼158) ion beams. The experimental effort concentrated on beam noise reduction, pulse-to-pulse reproducibility and achieving low beam emittance at 0.5 A ion current level. Details of the source development will be reported

  10. THE RHIC BEAM ABORT KICKER SYSTEM

    International Nuclear Information System (INIS)

    Hahn, H.

    1999-01-01

    THE ENERGY STORED IN THE RHIC BEAM IS ABOUT 200 KJ PER RING AT DESIGN ENERGY AND INTENSITY. TO PREVENT QUENCHING OF THE SUPERCONDUCTING MAGNETS OR MATERIAL DAMAGE, THE BEAM WILL BE SAFELY DISPOSED OF BY AN INTERNAL BEAM ABORT SYSTEM, WHICH INCLUDES THE KICKER MAGNETS, THE PULSED POWER SUPPLIES, AND THE DUMP ABSORBER. DISPOSAL OF HEAVY IONS, SUCH AS GOLD, IMPOSES DESIGN CONSTRAINTS MORE SEVERE THAN THOSE FOR PROTON BEAMS OF EQUAL INTENSITY. IN ORDER TO MINIMIZE THE THERMAL SHOCK IN THE CARBON-FIBER DUMP BLOCK, THE BUNCHES MUST BE LATERALLY DISPERSED

  11. Ion Colliders

    CERN Document Server

    Fischer, W

    2014-01-01

    High-energy ion colliders are large research tools in nuclear physics to study the Quark-Gluon-Plasma (QGP). The range of collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead and uranium. Asymmetric collision combinations (e.g. protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders, the Relativistic Heavy Ion Collider (RHIC) at BNL, and the Large Hadron Collider (LHC) at CERN.

  12. Computing for Heavy Ion Physics

    International Nuclear Information System (INIS)

    Martinez, G.; Schiff, D.; Hristov, P.; Menaud, J.M.; Hrivnacova, I.; Poizat, P.; Chabratova, G.; Albin-Amiot, H.; Carminati, F.; Peters, A.; Schutz, Y.; Safarik, K.; Ollitrault, J.Y.; Hrivnacova, I.; Morsch, A.; Gheata, A.; Morsch, A.; Vande Vyvre, P.; Lauret, J.; Nief, J.Y.; Pereira, H.; Kaczmarek, O.; Conesa Del Valle, Z.; Guernane, R.; Stocco, D.; Gruwe, M.; Betev, L.; Baldisseri, A.; Vilakazi, Z.; Rapp, B.; Masoni, A.; Stoicea, G.; Brun, R.

    2005-01-01

    This workshop was devoted to the computational technologies needed for the heavy quarkonia and open flavor production study at LHC (large hadron collider) experiments. These requirements are huge: peta-bytes of data will be generated each year. Analysing this will require the equivalent of a few thousands of today's fastest PC processors. The new developments in terms of dedicated software has been addressed. This document gathers the transparencies that were presented at the workshop

  13. Computing for Heavy Ion Physics

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, G.; Schiff, D.; Hristov, P.; Menaud, J.M.; Hrivnacova, I.; Poizat, P.; Chabratova, G.; Albin-Amiot, H.; Carminati, F.; Peters, A.; Schutz, Y.; Safarik, K.; Ollitrault, J.Y.; Hrivnacova, I.; Morsch, A.; Gheata, A.; Morsch, A.; Vande Vyvre, P.; Lauret, J.; Nief, J.Y.; Pereira, H.; Kaczmarek, O.; Conesa Del Valle, Z.; Guernane, R.; Stocco, D.; Gruwe, M.; Betev, L.; Baldisseri, A.; Vilakazi, Z.; Rapp, B.; Masoni, A.; Stoicea, G.; Brun, R

    2005-07-01

    This workshop was devoted to the computational technologies needed for the heavy quarkonia and open flavor production study at LHC (large hadron collider) experiments. These requirements are huge: peta-bytes of data will be generated each year. Analysing this will require the equivalent of a few thousands of today's fastest PC processors. The new developments in terms of dedicated software has been addressed. This document gathers the transparencies that were presented at the workshop.

  14. Computing for Heavy Ion Physics

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, G; Schiff, D; Hristov, P; Menaud, J M; Hrivnacova, I; Poizat, P; Chabratova, G; Albin-Amiot, H; Carminati, F; Peters, A; Schutz, Y; Safarik, K; Ollitrault, J Y; Hrivnacova, I; Morsch, A; Gheata, A; Morsch, A; Vande Vyvre, P; Lauret, J; Nief, J Y; Pereira, H; Kaczmarek, O; Conesa Del Valle, Z; Guernane, R; Stocco, D; Gruwe, M; Betev, L; Baldisseri, A; Vilakazi, Z; Rapp, B; Masoni, A; Stoicea, G; Brun, R

    2005-07-01

    This workshop was devoted to the computational technologies needed for the heavy quarkonia and open flavor production study at LHC (large hadron collider) experiments. These requirements are huge: peta-bytes of data will be generated each year. Analysing this will require the equivalent of a few thousands of today's fastest PC processors. The new developments in terms of dedicated software has been addressed. This document gathers the transparencies that were presented at the workshop.

  15. The Forward GEM Tracker of STAR at RHIC

    OpenAIRE

    Simon, F.; Balewski, J.; Fatemi, R.; Hasell, D.; Kelsey, J.; Majka, R.; Page, B.; Plesko, M.; Underwood, D.; Smirnov, N.; Sowinski, J.; Spinka, H.; Surrow, B.; Visser, G.

    2008-01-01

    The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) is in the process of designing and constructing a forward tracking system based on triple GEM technology. This upgrade is necessary to give STAR the capability to reconstruct and identify the charge sign of W bosons over an extended rapidity range through their leptonic decay mode into an electron (positron) and a neutrino. This will allow a detailed study of the flavor-separated spin str...

  16. Heavy Flavor Production in Heavy Ion Collisions at CMS

    CERN Document Server

    Sun, Jian

    2016-01-01

    Studies of Heavy flavor production are of great interest in heavy ion collisions. In the produced medium, the binding potential between a quark and antiquark in quarkonium is screened by surrounding light quarks and antiquarks. Thus, the various quarkonium states are expected to be melt at different temperatures depending on their binding energies, which allows us to characterize the QCD phase transition. In addition, open heavy flavor production are relevant for flavor-dependence of the in-medium parton energy loss. In QCD, gluons are expected to lose more energy compared to quarks when passing through the QGP due to the larger color charge. Compared to light quarks, heavy quarks are expected to lose less radiative energy because gluon radiation is suppressed at angles smaller than the ratio of the quark mass to its energy. This dead cone effect (and its disappearance at high transverse momentum) can be studied using open heavy flavor mesons and heavy flavor tagged jets. With CMS detector, quarkonia, open he...

  17. Multiparticle production at RHIC and LHC: a classical point of view

    International Nuclear Information System (INIS)

    Krasnitz, A.; Venugopalan, R.

    2000-01-01

    We report results of our ongoing nonperturbative numerical study of a classical effective theory describing low-x partons in the central region of a heavy-ion collision. In particular, we give estimates of the initial transverse energies and multiplicities for a wide range of collision regimes, including those at RHIC and at LHC

  18. Observation of Global Hyperon Polarization in Ultrarelativistic Heavy-Ion Collisions

    Science.gov (United States)

    Upsal, Isaac; STAR Collaboration

    2017-11-01

    Collisions between heavy nuclei at ultra-relativistic energies form a color-deconfined state of matter known as the quark-gluon plasma. This state is well described by hydrodynamics, and non-central collisions are expected to produce a fluid characterized by strong vorticity in the presence of strong external magnetic fields. The STAR Collaboration at Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC) has measured collisions between gold nuclei at center of mass energies √{sNN} = 7.7- 200 GeV. We report the first observation of globally polarized Λ and Λ bar hyperons, aligned with the angular momentum of the colliding system. These measurements provide important information on partonic spin-orbit coupling, the vorticity of the quark-gluon plasma, and the magnetic field generated in the collision.

  19. Design status of heavy ion injector program

    International Nuclear Information System (INIS)

    Ballard, E.O.; Meyer, E.A.; Rutkowski, H.L.; Shurter, R.P.; Van Haaften, F.W.; Riepe, K.B.

    1985-01-01

    Design and development of a sixteen beam, heavy ion injector is in progress at Los Alamos National Laboratory (LANL) to demonstrate the injector technology for the High Temperature Experiment (HTE) proposed by Lawrence Livermore Laboratory (LBL). The injector design provides for individual ion sources mounted to a support plate defining the sixteen beam array. The beamlets are electrostatically accelerated through a series of electrodes inside an evacuated (10 -7 torr) high voltage (HV) accelerating column

  20. Heavy ion fusion experiments at LLNL

    International Nuclear Information System (INIS)

    Barnard, J.J.; Cable, M.D.; Callahan, D.A.

    1996-01-01

    We review the status of the experimental campaign being carried out at Lawrence Livermore National Laboratory, involving scaled investigations of the acceleration and transport of space-charge dominated heavy ion beams. The ultimate goal of these experiments is to help lay the groundwork for a larger scale ion driven inertial fusion reactor, the purpose of which is to produce inexpensive and clean electric power

  1. High resolution spectrometry for relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Gabor, G; Schimmerling, W; Greiner, D; Bieser, F; Lindstrom, P [California Univ., Berkeley (USA). Lawrence Berkeley Lab.

    1975-12-01

    Several techniques are discussed for velocity and energy spectrometry of relativistic heavy ions with good resolution. A foil telescope with chevron channel plate detectors is described. A test of this telescope was performed using 2.1 GeV/A C/sup 6 +/ ions, and a time-of-flight resolution of 160 ps was measured. Qualitative information on the effect of foil thickness was also obtained.

  2. Faster Heavy Ion Transport for HZETRN

    Science.gov (United States)

    Slaba, Tony C.

    2013-01-01

    The deterministic particle transport code HZETRN was developed to enable fast and accurate space radiation transport through materials. As more complex transport solutions are implemented for neutrons, light ions (Z heavy ion (Z > 2) transport algorithm in HZETRN is reviewed, and a simple modification is shown to provide an approximate 5x decrease in execution time for galactic cosmic ray transport. Convergence tests and other comparisons are carried out to verify that numerical accuracy is maintained in the new algorithm.

  3. Jets as a probe of dense matter at RHIC

    International Nuclear Information System (INIS)

    Filimonov, Kirill

    2004-01-01

    Jet quenching in the matter created in high energy nucleus-nucleus collisions provides a tomographic tool to probe the medium properties. Recent experimental results on jet production at the Relativistic Heavy-Ion Collider (RHIC) are reviewed. Jet properties in p+p and d+Au collisions have been measured, establishing the baseline for studying jet modification in heavy-ion collisions. Current progress on detailed studies of high transverse momentum production in Au+Au collisions is discussed, with an emphasis on dihadron correlation measurements

  4. Simulation of jet quenching at RHIC and LHC

    International Nuclear Information System (INIS)

    Lokhtin, I P; Snigirev, A M

    2007-01-01

    A model to simulate the jet quenching effect in ultrarelativistic heavy ion collisions is presented. The model is the fast Monte Carlo tool implemented to modify a standard PYTHIA jet event. The model has been generalized to the case of the 'full' heavy ion event (the superposition of soft, hydro-type state and hard multi-jets) using a simple and fast simulation procedure for soft particle production. The model is capable of reproducing the main features of the jet quenching pattern at RHIC and is applied to analyse novel jet quenching features at LHC

  5. Direct Photons and Dileptons in PHENIX at RHIC

    International Nuclear Information System (INIS)

    David, G.

    2009-01-01

    Direct photons and dileptons are penetrating probes of relativistic heavy ion collisions. Generated throughout the entire history of the collision and then emerging without further interaction they give insight into basic processes that are otherwise not directly accessible experimentally. One of the main objectives and strengths of the PHENIX experiment at RHIC is the measurement of both types of electromagnetic probes in the same apparatus and in the widest p T range in nucleon-nucleon and heavy ion collisions. The experimental results and recent developments of theory started to change our perception of high transverse momentum photons from A+A collisions.

  6. Elliptic flow in Au+Au collisions at RHIC

    Science.gov (United States)

    Vale, Carla M.; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Ngyuen, M.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wyslouch, B.

    2005-04-01

    Elliptic flow is an interesting probe of the dynamical evolution of the dense system formed in the ultrarelativistic heavy ion collisions at the relativistic heavy ion collider (RHIC). The elliptic flow dependences on transverse momentum, centrality and pseudorapidity were measured using data collected by the PHOBOS detector, which offers a unique opportunity to study the azimuthal anisotropies of charged particles over a wide range of pseudorapidity. These measurements are presented, together with an overview of the analysis methods and a discussion of the results.

  7. Observations of Heavy Ions in the Magnetosphere

    Science.gov (United States)

    Kistler, L. M.

    2017-12-01

    There are two sources for the hot ions in the magnetosphere: the solar wind and the ionosphere. The solar wind is predominantly protons, with about 4% He++ and less than 1% other high charge state heavy ions. The ionospheric outflow is also predominantly H+, but can contain a significant fraction of heavy ions including O+, N+, He+, O++, and molecular ions (NO+, N2+, O2+). The ionospheric outflow composition varies significantly both with geomagnetic activity and with solar EUV. The variability in the contribution of the two sources, the variability in the ionospheric source itself, and the transport paths of the different species are all important in determining the ion composition at a given location in the magnetosphere. In addition to the source variations, loss processes within the magnetosphere can be mass dependent, changing the composition. In particular, charge exchange is strongly species dependent, and can lead to heavy ion dominance at some energies in the inner magnetosphere. In this talk we will review the current state of our understanding of the composition of the magnetosphere and the processes that determine it.

  8. Heavy ion driven LMF design concept

    International Nuclear Information System (INIS)

    Lee, E.P.

    1991-08-01

    The USA Department of Energy has conducted a multi-year study of the requirements, designs and costs for a Laboratory Microfusion Facility (LMF). The primary purpose of the LMF would be testing of weapons physics and effects simulation using the output from microexplosions of inertial fusion pellets. It does not need a high repetition rate, efficient driver system as required by an electrical generating plant. However there would be so many features in common that the design, construction and operation of an LMF would considerably advance the application of inertial confinement fusion to energy production. The DOE study has concentrated particularly on the LMF driver, with design and component development undertaken at several national laboratories. Principally, these are LLNL (Solid State Laser), LANL (Gas Laser), and SNLA (Light Ions). Heavy Ions, although considered a possible LMF driver did not receive attention until the final stages of this study since its program management was through the Office of Energy Research rather than Defense Programs. During preparation of a summary report for the study it was decided that some account of heavy ions was needed for a complete survey of the driver candidates. A conceptual heavy ion LMF driver design was created for the DOE report which is titled LMC Phase II Design Concepts. The heavy ion driver did not receive the level of scrutiny of the other concepts and, unlike the others, no costs analysis by an independent contractor was performed. Since much of heavy ion driver design lore was brought together in this exercise it is worthwhile to make it available as an independent report. This is reproduced here as it appears in the DOE report

  9. Prospects for high energy heavy ion accelerators

    International Nuclear Information System (INIS)

    Leemann, C.

    1979-03-01

    The acceleration of heavy ions to relativistic energies (T greater than or equal to 1 GeV/amu) at the beam intensities required for fundamental research falls clearly in the domain of synchrotons. Up to date, such beams have been obtained from machines originally designed as proton acccelerators by means of modified RF-programs, improved vacuum and, most importantly, altered or entirely new injector systems. Similarly, for the future, substantial changes in synchrotron design itself are not foreseen, but rather the judicious application and development of presently known principles and technologies and a choice of parameters optimized with respect to the peculiarities of heavy ions. The low charge to mass ratio, q/A, of very heavy ions demands that superconducting magnets be considered in the interest of the highest energies for a given machine size. Injector brightness will continue to be of highest importance, and although space charge effects such as tune shifts will be increased by a factor q 2 /A compared with protons, advances in linac current and brightness, rather than substantially higher energies are required to best utilize a given synchrotron acceptance. However, high yeilds of fully stripped, very heavy ions demand energies of a few hundred MeV/amu, thus indicating the need for a booster synchrotron, although for entirely different reasons than in proton facilities. Finally, should we consider colliding beams, the high charge of heavy ions will impose severe current limitations and put high demands on system design with regard to such quantities as e.g., wall impedances or the ion induced gas desorption rate, and advanced concepts such as low β insertions with suppressed dispersion and very small crossing angles will be essential to the achievement of useful luminosities

  10. Heavy ion irradiation of astrophysical ice analogs

    International Nuclear Information System (INIS)

    Duarte, Eduardo Seperuelo; Domaracka, Alicja; Boduch, Philippe; Rothard, Hermann; Balanzat, Emmanuel; Dartois, Emmanuel; Pilling, Sergio; Farenzena, Lucio; Frota da Silveira, Enio

    2009-01-01

    Icy grain mantles consist of small molecules containing hydrogen, carbon, oxygen and nitrogen atoms (e.g. H 2 O, GO, CO 2 , NH 3 ). Such ices, present in different astrophysical environments (giant planets satellites, comets, dense clouds, and protoplanetary disks), are subjected to irradiation of different energetic particles: UV radiation, ion bombardment (solar and stellar wind as well as galactic cosmic rays), and secondary electrons due to cosmic ray ionization of H 2 . The interaction of these particles with astrophysical ice analogs has been the object of research over the last decades. However, there is a lack of information on the effects induced by the heavy ion component of cosmic rays in the electronic energy loss regime. The aim of the present work is to simulate of the astrophysical environment where ice mantles are exposed to the heavy ion cosmic ray irradiation. Sample ice films at 13 K were irradiated by nickel ions with energies in the 1-10 MeV/u range and analyzed by means of FTIR spectrometry. Nickel ions were used because their energy deposition is similar to that deposited by iron ions, which are particularly abundant cosmic rays amongst the heaviest ones. In this work the effects caused by nickel ions on condensed gases are studied (destruction and production of molecules as well as associated cross sections, sputtering yields) and compared with respective values for light ions and UV photons. (authors)

  11. rf linac approach to heavy ion fusion

    International Nuclear Information System (INIS)

    Swenson, D.A.

    1979-01-01

    The necessary properties of funneling particle beams from multiple accelerators into combined beams having higher current are outlined, and methods are proposed which maximize the efficiency of this process. A heavy ion fusion driver system example is presented which shows the large advantages in system efficiency to be gained by proper funneling

  12. New generation of heavy ion facilities

    International Nuclear Information System (INIS)

    Ball, J.B.

    1977-01-01

    A report is given on the status of major heavy ion accelerator projects that are funded and under construction and a few still in the proposal state. New facilities that are expected to become operational between now and the mid-1980's are reviewed. The major directions being pursued by this next generation of machines and new features being introduced are discussed

  13. Prospects for Heavy Ion Physics with LHCb

    Energy Technology Data Exchange (ETDEWEB)

    Manca, Giulia

    2016-12-15

    We will discuss the potential of the LHCb experiment in the field of Heavy Ion physics. We will analyse three different scenarios which can be explored by the experiment, namely collisions of protons with lead, lead with lead and proton or lead beams with a gas injected in the interaction region. We will also show results in some of these configurations.

  14. Heavy ion measurements at ATLAS and CMS

    CERN Document Server

    Chapon, Emilien

    2018-01-01

    We present an overview of recent results from the ATLAS and CMS collaborations on heavy ion physics. Using data from proton-proton, proton-lead and lead-lead collisions at the LHC, these results help to shed light on the properties of nuclear matter.

  15. Exotic phenomena in collisions of heavy ions

    International Nuclear Information System (INIS)

    Soff, G.; Schramm, S.; Reus, T. de; Mehler, G.; Reinhardt, J.; Mueller, B.; Greiner, W.; Mueller, U.

    1985-08-01

    To exemplify current theoretical investigations we discuss three different topics. After a presentation of the underlying theoretical framework for ionization processes we will sketch the possibility to employ delta-electron emission as a clock to measure nuclear reaction times in intermediate energy collisions of very heavy ions. Besides the phenomenon of vacuum decay into a new twofold negatively charged stable vacuum ground state, electron excitation in heavy ion collisions may be employed for the determination of delay and deceleration times on the nuclear time scale, i.e. offering an atomic clock, operating in the range 10 -21 -10 -24 s. In deep-inelastic heavy ion collisions this provides a test for classical nuclear reaction models. In collisions at intermediate energies an independent measurement of the deceleration time is of interest for comparison, e.g., with the results of the pion bremsstrahlung model. After that we investigate the influence of one or more pockets in the ion scattering potential on the energy distribution of emitted positrons within a quantum mechanical framework. Finally we very briefly consider some phenomenological corrections to the Dirac equation and its consequences on electron binding energies in heavy and superheavy atoms. (orig./HSI)

  16. Jet Tomography in Heavy Ion Collisions

    CERN Document Server

    Wiedemann, Urs Achim

    2003-01-01

    We review recent calculations of the probability that a hard parton radiates an additional energy fraction due to scattering in spatially extended matter, and we discuss their application to the suppression of leading hadron spectra in heavy ion collisions at collider energies.

  17. Recirculating induction accelerators for heavy ion fusion

    International Nuclear Information System (INIS)

    Barnard, J.J.; Deadrick, F.; Bangerter, R.O.

    1993-01-01

    We have recently completed a two-year study of recirculating induction heavy-ion accelerators (recirculators) as low-cost drivers for inertial-fusion-energy power plants. We present here a summary of that study and other recent work on recirculators

  18. Heavy ion elastic scattering of code : OPTHI

    International Nuclear Information System (INIS)

    Ismail, M.; Divatia, A.S.

    1982-01-01

    A computer code, OPTHI has been designed to calculate nuclear optical model elastic cross sections for the scattering of heavy ions. The program has been designed to be utilitarian rather than capable of giving an exact description of elastic scattering. Input format is described and the program listing is given. (M.G.B.)

  19. RELATIVISTIC HEAVY ION PHYSICS: A THEORETICAL OVERVIEW.

    Energy Technology Data Exchange (ETDEWEB)

    KHARZEEV,D.

    2004-03-28

    This is a mini-review of recent theoretical work in the field of relativistic heavy ion physics. The following topics are discussed initial conditions and the Color Glass Condensate; approach to thermalization and the hydrodynamic evolution; hard probes and the properties of the Quark-Gluon Plasma. Some of the unsolved problems and potentially promising directions for future research are listed as well.

  20. Beginnings and advances in heavy ion research

    International Nuclear Information System (INIS)

    Brix, P.

    1979-01-01

    The very important field of heavy ion research is briefly reviewed from the beginnings up to the present time. The article was intended to be a scientific lecture for the general public read on the occasion of the 70th birthday of Prof. Schmelzer. (KBE)

  1. The technology of heavy-ion fusion

    International Nuclear Information System (INIS)

    Lawson, J.D.

    1980-09-01

    The concept of inertial confinement fusion using heavy ion beams as a driver is surveyed, with reference to parameters which might ultimately be suitable for a commercial power station. Particular attention is drawn to the parameters associated with the final focusing of the beam on the target. (author)

  2. Experiments on very high energy heavy ions

    International Nuclear Information System (INIS)

    Willis, W.J.

    1981-01-01

    In this paper I describe experimental techniques which could be used to investigate central collision of very high energy heavy ions. For my purposes, the energy range is defined by the number of pions produced, Nsub(π) >> 100, and consequently Nsub(π) >> Nsub(nucleon). In this regime we may expect that new phenomena will appear. (orig.)

  3. Summary of the Relativistic Heavy Ion Sessions

    International Nuclear Information System (INIS)

    Harris, J.W.

    1988-07-01

    This paper briefly discusses the topics covered in the relativistic heavy ion in sessions. The prime motivation for these investigations is the possibility of forming quark matter, therefore the formation of a quark-gluon plasma. Topics on suppression of J//psi/ production, th equation of state of nuclear matter, transverse energy distributions and two pion interferometry techniques are discussed. 38 refs

  4. Research in heavy-ion nuclear physics

    International Nuclear Information System (INIS)

    Sanders, S.J.; Prosser, F.W.

    1992-01-01

    This report discusses the following topics: Fusion-fission in light nuclear systems; High-resolution Q-value measurement for the 24 Mg+ 24 Mg reaction; Heavy-ion reactions and limits to fusion; and Hybrid MWPC-Bragg curve detector development

  5. Heavy ion fragmentation in high energy

    International Nuclear Information System (INIS)

    Nemes, M.C.

    1985-01-01

    A review is made on the theoretical aspects of heavy ion collisions at high energies. A comparison with several experimental data obtained in a large variety of experiments is present. An emphasis is given on the basis of Glauber's theory of scattering. (L.C.) [pt

  6. Sigma meson in heavy ion collision

    International Nuclear Information System (INIS)

    Cristian, Ivan; Fuchs, Christian

    2004-01-01

    We want to present a short theoretical prediction of the behaviour of the sigma meson in heavy ion collisions. It is considered that the sigma meson is a pion-pion correlation, resulting from the decay of the N*(1440) resonance. There will be presented some QMD simulations. (authors)

  7. Heavy ion reactions at low energies

    International Nuclear Information System (INIS)

    Nemes, M.C.

    1985-01-01

    Some general features of the heavy ion reactions at low energies are presented. Some kinds of processes are studied, such as: elastic scattering, peripherical reactions, deep inelastic collisions and fusion. Both, theoretical and experimental perspectives on this field are discussed. (L.C.) [pt

  8. Review of heavy ion collider proposals

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1985-01-01

    In this paper we review proposals for heavy-ion colliders generated during the last few years for several national laboratories. The proposals span over a large range of energy and luminosity to accommodate the experimental needs of both the nuclear and the high-energy physicists. We report also briefly efforts in the same field happening in Europe

  9. Study of heavy ion collisions with TAPS

    NARCIS (Netherlands)

    Löhner, H.

    The photon spectrometer TAPS is a versatile instrument to measure nuclear bremsstrahlung and neutral mesons via their gamma decay. The formation and evolution of compressed nuclear matter is studied in heavy ion collisions at relativistic energies by analyzing the yield and spectral distribution of

  10. The heavy ion therapy project at GSI

    International Nuclear Information System (INIS)

    Kraft, G.; Becher, W.; Blasche, K.; Boehne, D.; Fischer, B.; Geissel, H.; Haberer, T.; Klabunde, J.; Kraft-Weyrather, W.; Langenbeck, G.; Muenzenberg, G.; Ritter, S.; Roesch, W.; Schardt, D.; Stelzer, H.; Schwab, T.; Gademann, G.

    1991-03-01

    The use of heavy charged particles in radiotherapy has two major advantages: Firstly, particle beams exhibit a superior dose distribution because of reduced lateral scattering, the finite range of the particles and the increased dose deposition towards the end of the particle track. Secondly, heavy ions exhibit an increased biological efficiency in the region of the increased energy deposition. This diminishes the differences in the radio response between well oxygenated and hypoxic cells as well as differences between fast and slowly proliferating cells. In addition, with high values for relative biological efficiencies, the repair capacity of cells in the tumor are selectively reduced. Both effects, the high energy deposition and the increased RBE values at the end of the particle tracks, are due to the different interaction mechanism of heavy ions with the target material and open a new field of precision and efficiency in radiotherapy. (orig.)

  11. Jason: heavy-ion-driven inertial fusion

    International Nuclear Information System (INIS)

    Callan, C.G. Jr.; Dashen, R.F.; Garwin, R.L.; Muller, R.A.; Richter, B.; Rosenbluth, M.N.

    1978-02-01

    A few of the problems in heavy-ion-driven inertial-fusion systems are reviewed. Nothing was found within the scope of this study that would in principle bar such systems from delivering the energy and peak power required to ignite the fuel pellet. Indeed, ion-fusion seems to show great promise, but the conceptual design of ion-fusion systems is still in a primitive state. A great deal of work, mostly theoretical, remains to be done before proceeding with massive hardware development. Conclusions are given about the state of the work

  12. The Relativistic Heavy Ion Collider at Brookhaven

    International Nuclear Information System (INIS)

    Hahn, H.

    1989-01-01

    The conceptual design of a collider capable of accelerating and colliding heavy ions and to be constructed in the existing 3.8 km tunnel at Brookhaven has been developed. The collider has been designed to provide collisions of gold ions at six intersection points with a luminosity of about 2 x 10 26 cm -2 sec -1 at an energy per nucleon of 100 GeV in each beam. Collisions with different ion species, including protons, will be possible. The salient design features and the reasons for major design choices of the proposed machine are discussed in this paper. 28 refs., 2 figs., 1 tab

  13. Multiple Electron Stripping of Heavy Ion Beams

    International Nuclear Information System (INIS)

    Mueller, D.; Grisham, L.; Kaganovich, I.; Watson, R. L.; Horvat, V.; Zaharakis, K. E.; Peng, Y.

    2002-01-01

    One approach being explored as a route to practical fusion energy uses heavy ion beams focused on an indirect drive target. Such beams will lose electrons while passing through background gas in the target chamber, and therefore it is necessary to assess the rate at which the charge state of the incident beam evolves on the way to the target. Accelerators designed primarily for nuclear physics or high energy physics experiments utilize ion sources that generate highly stripped ions in order to achieve high energies economically. As a result, accelerators capable of producing heavy ion beams of 10 to 40 Mev/amu with charge state 1 currently do not exist. Hence, the stripping cross-sections used to model the performance of heavy ion fusion driver beams have, up to now, been based upon theoretical calculations. We have investigated experimentally the stripping of 3.4 Mev/amu Kr 7+ and Xe +11 in N2; 10.2 MeV/amu Ar +6 in He, N2, Ar and Xe; 19 MeV/amu Ar +8 in He, N2, Ar and Xe; 30 MeV He 1 + in He, N2, Ar and Xe; and 38 MeV/amu N +6 in He, N2, Ar and Xe. The results of these measurements are compared with the theoretical calculations to assess their applicability over a wide range of parameters

  14. Heavy-ion dominance near Cluster perigees

    Science.gov (United States)

    Ferradas, C. P.; Zhang, J.-C.; Kistler, L. M.; Spence, H. E.

    2015-12-01

    Time periods in which heavy ions dominate over H+ in the energy range of 1-40 keV were observed by the Cluster Ion Spectrometry (CIS)/COmposition DIstribution Function (CODIF) instrument onboard Cluster Spacecraft 4 at L values less than 4. The characteristic feature is a narrow flux peak at around 10 keV that extends into low L values, with He+ and/or O+ dominating. In the present work we perform a statistical study of these events and examine their temporal occurrence and spatial distribution. The observed features, both the narrow energy range and the heavy-ion dominance, can be interpreted using a model of ion drift from the plasma sheet, subject to charge exchange losses. The narrow energy range corresponds to the only energy range that has direct drift access from the plasma sheet during quiet times. The drift time to these locations from the plasma sheet is > 30 h, so that charge exchange has a significant impact on the population. We show that a simple drift/loss model can explain the dependence on L shell and MLT of these heavy-ion-dominant time periods.

  15. Jets in heavy ion collisions

    International Nuclear Information System (INIS)

    Nattrass, Christine

    2017-01-01

    High energy collisions of heavy nuclei permit the study of nuclear matter at temperatures and energy densities so high that the fundamental theory for strong interactions, QCD, predicts a phase transition to a plasma of quarks and gluons. This matter, called a Quark Gluon Plasma (QGP), has been studied experimentally for the last decade and has been observed to be a strongly interacting liquid with a low viscosity. High energy partons created early in the collision interact with the QGP and provide unique probes of its properties. Hard partons fragment into collimated sprays of particles called jets and have been studied through measurements of single particles, correlations between particles, and measurements of fully reconstructed jets. These measurements demonstrate partonic energy loss in the QGP and constrain the QGP’s properties. Measurements of the jet structure give insight into the mechanism of this energy loss. The information we have learned from studies of jets and challenges for the field will be reviewed. (paper)

  16. Target design for heavy ion beam fusion

    International Nuclear Information System (INIS)

    Meyer-ter-Vehn, J.; Metzler, N.

    1981-07-01

    Target design for Heavy Ion Beam Fusion and related physics are discussed. First, a modified version of the Kidder-Bodner model for pellet gain is presented and is used to define the working point (Esub(beam) = 4.8 MJ, Gain 83) for a reactor size target. Secondly, stopping of heavy ions in hot dense plasma is investigated and numerical results for stopping powers and ranges of 10 GeV Bi-ions in Pb, Li, and PbLi-alloy are given. Finally, results of an explicit implosion calculation, using the 1-D code MINIHY, are discussed in detail. The hydrodynamic efficiency is found to be about 5%. Special attention is given to the shock sequence leading to the ignition configuration. Also the growth of Rayleigh-Taylor instability at the absorber-pusher interface is estimated. (orig.)

  17. Heavy ion inertial fusion - an overview

    International Nuclear Information System (INIS)

    Lawson, J.D.

    1983-09-01

    Energetic heavy ions represent an alternative to laser light and light ions as ''drivers'' for supplying energy for inertial confinement fusion. To induce ignition of targets containing thermonuclear fuel, an energy of several megajoules has to be focused on to a target with radius a few millimetres in a time of some tens of nanoseconds. Serious study of the use of heavy ion drivers for producing useful power in this way has been underway for seven years, though funding has been at a low level. In this paper the requirements for targets, accelerator, and reactor vessel for containing the thermonuclear explosion are surveyed, and some of the problems to be solved before the construction of a power station can realistically be contemplated are discussed. (author)

  18. Coupled channels effects in heavy ion elastic scattering

    International Nuclear Information System (INIS)

    Bond, P.D.

    1977-01-01

    The effects of inelastic excitation on the elastic scattering of heavy ions are considered within a coupled channels framework. Both Coulomb and nuclear excitation results are applied to 18 O + 184 W and other heavy ion reactions

  19. Cooled heavy ion beams at the ESR

    International Nuclear Information System (INIS)

    Steck, M.; Beckert, K.; Bosch, F.; Eickhoff, H.; Franzke, B.; Klepper, O.; Nolden, F.; Reich, H.; Schlitt, B.; Spaedtke, P.; Winkler, T.

    1996-01-01

    The storage ring ESR has been used in various operational modes for experiments with electron cooled heavy ion beams. Besides the standard storage mode including injection and beam accumulation the deceleration of highly charged ions has been demonstrated. Beams of highly charged ions have been injected and accumulated and finally decelerated to a minimum energy of 50 MeV/u. An ultraslow extraction method using charge changing processes is now also available for cooled beams of highly charged ions. For in ring experiments the internal gas jet and the cold electron beam of the cooling system are applied as targets. High precision mass spectrometry by Schottky noise detection has been demonstrated. Operation at transition energy has been achieved with cooled beams opening the field for experiments which require an isochronous revolution of the ions. (orig.)

  20. RADIATION PROTECTION FOR THE RELATIVISTIC HEAVY ION-COLLIDER AT THE BROOKHAVEN NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    Musolino, S.V.; Stevens, A.J.

    1999-01-01

    The Relativistic Heavy Ion Collider (RHIC) is a high energy particle accelerator built to study basic nuclear physics. It consists of two counter-rotating beams of fully stripped gold ions that are accelerated in two rings to an energy of 100 GeV/nucleon. The rings consist of a circular lattice of superconducting magnets 3.8 km in circumference. The beams can be stored for a period of five to ten hours and brought into collision for experiments during that time. The first major physics objective when the facility goes into operation is to recreate a state of matter, the quark-gluon plasma, that has been predicted to have existed at a short time after the creation of the universe. There are only a few other high energy particle accelerators like RHIC in the world. The rules promulgated in the Code of Federal Regulations under the Atomic Energy Act do not cover prompt radiation from accelerators, nor are there any State regulations that govern the design and operation of a superconducting collider. Special design criteria for prompt radiation were developed to provide guidance for the design of radiation shielding

  1. Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Quarkonium Production in Elementary and Heavy Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Dumitru, A.; Lourenco, C.; Petreczky, P.; Qiu, J., Ruan, L.

    2011-08-03

    Understanding the structure of the hadron is of fundamental importance in subatomic physics. Production of heavy quarkonia is arguably one of the most fascinating subjects in strong interaction physics. It offers unique perspectives into the formation of QCD bound states. Heavy quarkonia are among the most studied particles both theoretically and experimentally. They have been, and continue to be, the focus of measurements in all high energy colliders around the world. Because of their distinct multiple mass scales, heavy quarkonia were suggested as a probe of the hot quark-gluon matter produced in heavy-ion collisions; and their production has been one of the main subjects of the experimental heavy-ion programs at the SPS and RHIC. However, since the discovery of J/psi at Brookhaven National Laboratory and SLAC National Accelerator Laboratory over 36 years ago, theorists still have not been able to fully understand the production mechanism of heavy quarkonia, although major progresses have been made in recent years. With this in mind, a two-week program on quarkonium production was organized at BNL on June 6-17, 2011. Many new experimental data from LHC and from RHIC were presented during the program, including results from the LHC heavy ion run. To analyze and correctly interpret these measurements, and in order to quantify properties of the hot matter produced in heavy-ion collisions, it is necessary to improve our theoretical understanding of quarkonium production. Therefore, a wide range of theoretical aspects on the production mechanism in the vacuum as well as in cold nuclear and hot quark-gluon medium were discussed during the program from the controlled calculations in QCD and its effective theories such as NRQCD to various models, and to the first principle lattice calculation. The scientific program was divided into three major scientific parts: basic production mechanism for heavy quarkonium in vacuum or in high energy elementary collisions; the

  2. Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Quarkonium Production in Elementary and Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Dumitru, A.; Lourenco, C.; Petreczky, P.; Qiu, J.; Ruan, L.

    2011-01-01

    Understanding the structure of the hadron is of fundamental importance in subatomic physics. Production of heavy quarkonia is arguably one of the most fascinating subjects in strong interaction physics. It offers unique perspectives into the formation of QCD bound states. Heavy quarkonia are among the most studied particles both theoretically and experimentally. They have been, and continue to be, the focus of measurements in all high energy colliders around the world. Because of their distinct multiple mass scales, heavy quarkonia were suggested as a probe of the hot quark-gluon matter produced in heavy-ion collisions; and their production has been one of the main subjects of the experimental heavy-ion programs at the SPS and RHIC. However, since the discovery of J/psi at Brookhaven National Laboratory and SLAC National Accelerator Laboratory over 36 years ago, theorists still have not been able to fully understand the production mechanism of heavy quarkonia, although major progresses have been made in recent years. With this in mind, a two-week program on quarkonium production was organized at BNL on June 6-17, 2011. Many new experimental data from LHC and from RHIC were presented during the program, including results from the LHC heavy ion run. To analyze and correctly interpret these measurements, and in order to quantify properties of the hot matter produced in heavy-ion collisions, it is necessary to improve our theoretical understanding of quarkonium production. Therefore, a wide range of theoretical aspects on the production mechanism in the vacuum as well as in cold nuclear and hot quark-gluon medium were discussed during the program from the controlled calculations in QCD and its effective theories such as NRQCD to various models, and to the first principle lattice calculation. The scientific program was divided into three major scientific parts: basic production mechanism for heavy quarkonium in vacuum or in high energy elementary collisions; the

  3. Transport of heavy ions through matter within ion optical systems

    International Nuclear Information System (INIS)

    Schwab, T.

    1991-04-01

    In this thesis for the first time higher-order ion-optical calculations were connected with the whole phase-space changes of the heavy ions in passing through matter. With the developed programs and the newly proposed analytical methods atomic and nuclear interactions of the heavy ions within ion optical systems can be described realistically. The results of this thesis were applied to the conception of the fragment separator (FRS) and to the planning and preparation of experiments at the new GSI accelerator facility. Especially for the description of the ion-optical combination of FRS and the storage ring ESR the developed programs and methods proved to be necessary. A part of the applied theories on the atomic stopping could be confirmed in the framework of this thesis in an experiment with the high-resolving spectrometer SPEC at GANIL. The method of the isotopically pure separation of projectile fragments by means of magnetic analysis and the electronic energy loss could be also experimentally successfully tested at several energies (60-400 MeV/u). Furthermore in this thesis also application-related problems regarding a tumor therapy with heavy ions were solved. A concept for a medical separator (BMS) was developed, which separates light diagnosis beams isotopically purely and beyond improves the energy sharpness by means of an especially shaped (monoenergetic) stopper so that an in-situ range determination is possible with an accuracy of about one millimeter. (orig./HSI) [de

  4. Radiobiological experiments with heavy ions

    International Nuclear Information System (INIS)

    Kraft, G.

    1988-11-01

    In experiments, performed at the Unilac, Bevalac, and Ganil a large body of radiobiological data, cross sections for cell inactivation and mutation, induction of both, chromosome aberrations, and strand breaks of DNA have been measured for different atomic numbers, from helium (Z=2) to uranium (Z=92), and at an LET range from 10 to 16000 keV/μm. These data exhibit a common feature: At LET values below 100 keV/μm all data points of one specific effect form one single curve as a function of LET, independent from the atomic number of the ion. In this LET range, the biological effects are independ from the particle energy or track structure and depend only on the energy transfer. Therefore, LET is a good parameter in this regime. For LET values greater than 100 keV/μm, the curves for the different ions separate from the common curve in order of increasing atomic numbers. In this regime LET is no longer a good parameter and the physical parameters of the formation of particle tracks are important. The similarity of the σ-LET curves for different endpoints shows that the 'hook-structure' is produced by physical and chemical effects which occur before the biologically relevant lesions are formed. For this part of the reaction chain only a very limited amount of data are available. (orig./MG)

  5. RHIC spin flipper AC dipole controller

    Energy Technology Data Exchange (ETDEWEB)

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  6. Dynamical limitations to heavy-ion fusion

    International Nuclear Information System (INIS)

    Back, B.B.

    1983-01-01

    In spite of the many attempts to synthesize superheavy elements in recent years, these efforts have not yet been successful. Recent improved theoretical models of heavy-ion fusion reactions suggest that the formation of super-heavy elements is hindered by the dynamics of the process. Several recent experiments lend support to these theories. The necessity of an excess radial velocity (extra push) over the Coulomb barrier in order to induce fusion is observed experimentally as predicted by the theory. So is a new reaction mechanism, called quasi-fission which tend to exhaust the part of the reaction cross section, which would otherwise lead to fusion. The present study shows that the angular distribution of fragments from quasi-fission processes are very sensitive to the occurrence of this reaction mechanism. A slight modification of one parameter in the theory demanded by the observation of quasi-fission for lighter projectiles via the angular distributions, has the consequence of posing even more-stringent limitations on heavy-ion-fusion reactions. This reduces even further the possibility for synthesizing and identifying superheavy elements in heavy-ion-fusion reactions

  7. Intense pulsed heavy ion beam technology

    International Nuclear Information System (INIS)

    Masugata, Katsumi; Ito, Hiroaki

    2010-01-01

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm 2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm 2 was obtained. The beam consists of aluminum ions (Al (1-3)+ ) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89%. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were successively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm 2 was observed in the cathode, which suggests the bipolar pulse acceleration. (author)

  8. Heavy ion fusion physics issues

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1984-01-01

    A simple systems model has been used to determine the sensitivity of the cost of electricity and the total cost of a power plant to the various uncertainties expressed in the following six issues. (1) can, at reasonable cost, an accelerator be built that puts more than 1 MJ of energy into a small 6-D phase space volume. (2) Can the beam be focused over a distance of several meters onto a small target in a reaction chamber. (3) Do present calculations adequately describe ion energy deposition. (4) Do current numerical simulations adequately describe the hydrodynamic and thermonuclear behavior of targets. (5) Can targets be cheaply mass produced. (6) Can an economical, tritium-breeding reactor be built

  9. Radiation therapy using high-energy heavy-ion

    International Nuclear Information System (INIS)

    Kanai, Tatsuaki

    1995-01-01

    The clinical trial of the heavy-ion radiotherapy was started at June 1994 after pre-clinical experiments using 290 MeV/u carbon beam. In this paper, an irradiation system for the heavy-ion radiotherapy installed at HIMAC (Heavy Ion Medical Accelerator in Chiba) and the physical characteristics of the therapeutic beam were discussed. (author)

  10. Science and art in heavy-ion collisions

    International Nuclear Information System (INIS)

    Weiss, M.S.

    1982-01-01

    One of the more intriguing phenomena discovered in heavy-ion physics is the seeming appearance of high energy structure in the excitation spectra of inelastically scattered heavy ions. For reasons illustrated, these may well be a phenomena unique to heavy ions and their explanation perhaps unique to TDHF

  11. Inertial fusion with heavy ion beams

    International Nuclear Information System (INIS)

    Bock, R.; Hofmann, I.; Arnold, R.

    1984-01-01

    The underlying principle of inertial confinement is the irradiation of a small pellet filled with DT-fuel by laser or particle beams in order to compress the fuel and ignite it. As 'drivers' for this process large laser installations and light-ion devices have been built since then and the results obtained during the past few years have increased our confidence, that the ignition conditions might be reached. Further conditions, however, have to be fulfilled for operating a power plant. In particular, the driver needs to have enough efficiency to be economical, and for a continuous energy production a high repetition rate and availability is required. It is less than ten years since it was realized that heavy ion beams might be a promising candidate for achieving inertial confinement fusion (ICF). Due to the evolution of high-energy and heavy-ion physics during the past 25 years, accelerators have attained a high technical and technological standard and an excellent operational reliability. Nevertheless, the heavy ion driver for a fusion power plant requires beam specifications exceeding those of existing accelerators considerably. (Auth.)

  12. Heavy flavour production at CMS in heavy ion collisions

    CERN Document Server

    Nguyen, Matthew

    2015-01-01

    We review recent results relating to beauty production in heavy-ion collisions, in both the closed and open heavy flavor sectors, from the CMS experiment at the LHC. The sequential suppression of the ° states in PbPb collisions is thought to be evidence of the dissociation of quarkonia bound states in deconfined matter. Data from pPb collisions demonstrate that while cold nuclear effects appear to be subdominant in minimum bias collisions, there exists a non-trivial dependence on collision multiplicity that remains to be understood. The suppression of high p T particles in heavy-ion collisions, relative to the expectation from pp collisions, is typically interpreted in terms of energy loss of hard scattered parton in the dense nuclear medium. The flavor dependence of the energy loss may be accessed via measurements of b hadrons and b-tagged jets. Measurement of B mesons, via non-prompt J = y , at relatively low p T indicate a smaller suppression factor than D meson or inclusive charged hadrons. Data on b jet...

  13. Rescattering effects on intensity interferometry and initial conditions in relativistic heavy ion collisions

    Science.gov (United States)

    Li, Yang

    The properties of the quark-gluon plasma are being thoroughly studied by utilizing relativistic heavy ion collisions. After its invention in astronomy in the 1950s, intensity interferometry was found to be a robust method to probe the spatial and temporal information of the nuclear collisions also. Although rescattering effects are negligible in elementary particle collisions, it may be very important for heavy ion collisions at RHIC and in the future LHC. Rescattering after production will modify the measured correlation function and make it harder to extract the dynamical information from data. To better understand the data which are dimmed by this final state process, we derive a general formula for intensity interferometry which can calculate rescattering effects easily. The formula can be used both non-relativistically and relativistically. Numerically, we found that rescattering effects on kaon interferometry for RHIC experiments can modify the measured ratio of the outward radius to the sideward radius, which is a sensitive probe to the equation of state, by as large as 15%. It is a nontrivial contribution which should be included to understand the data more accurately. The second part of this thesis is on the initial conditions in relativistic heavy ion collisions. Although relativistic hydrodynamics is successful in explaining many aspects of the data, it is only valid after some finite time after nuclear contact. The results depend on the choice of initial conditions which, so far, have been very uncertain. I describe a formula based on the McLerran-Venugopalan model to compute the initial energy density. The soft gluon fields produced immediately after the overlap of the nuclei can be expanded as a power series of the proper time t. Solving Yang-Mills equations with color current conservation can give us the analytical formulas for the fields. The local color charges on the transverse plane are stochastic variables and have to be taken care of by random

  14. Baryon-antibaryon dynamics in relativistic heavy-ion collisions

    Science.gov (United States)

    Seifert, E.; Cassing, W.

    2018-04-01

    The dynamics of baryon-antibaryon annihilation and reproduction (B B ¯↔3 M ) is studied within the Parton-Hadron-String Dynamics (PHSD) transport approach for Pb+Pb and Au+Au collisions as a function of centrality from lower Super Proton Synchrotron (SPS) up to Large Hadron Collider (LHC) energies on the basis of the quark rearrangement model. At Relativistic Heavy-Ion Collider (RHIC) energies we find a small net reduction of baryon-antibaryon (B B ¯ ) pairs while for the LHC energy of √{sN N}=2.76 TeV a small net enhancement is found relative to calculations without annihilation (and reproduction) channels. Accordingly, the sizable difference between data and statistical calculations in Pb+Pb collisions at √{sN N}=2.76 TeV for proton and antiproton yields [ALICE Collaboration, B. Abelev et al., Phys. Rev. C 88, 044910 (2013), 10.1103/PhysRevC.88.044910], where a deviation of 2.7 σ was claimed by the ALICE Collaboration, should not be attributed to a net antiproton annihilation. This is in line with the observation that no substantial deviation between the data and statistical hadronization model (SHM) calculations is seen for antihyperons, since according to the PHSD analysis the antihyperons should be modified by the same amount as antiprotons. As the PHSD results for particle ratios are in line with the ALICE data (within error bars) this might point towards a deviation from statistical equilibrium in the hadronization (at least for protons and antiprotons). Furthermore, we find that the B B ¯↔3 M reactions are more effective at lower SPS energies where a net suppression for antiprotons and antihyperons up to a factor of 2-2.5 can be extracted from the PHSD calculations for central Au+Au collisions.

  15. Electron spectroscopy with fast heavy ions

    International Nuclear Information System (INIS)

    Schneider, D.

    1983-01-01

    Since about 1970 the spectroscopy of Auger-electrons and characteristic x-rays following energetic ion-atom collisions has received a great deal of attention. An increasing number of accelerators, capable of providing a large number of projectile ion species over a wide range of projectile energies, became available for studying ion-atom collision phenomena. Many charged particles from protons up to heavy ions like uranium can be accelerated to energies ranging over six orders of magnitude. This allows us to study systematically a great variety of effects accompanied by dynamic excitation processes of the atomic shells in either the projectile- or target-atoms. The studies yield fundamental information regarding the excitation mechanism (e.g., Coulomb and quasi-molecular excitation) and allow sensitive tests of atomic structure theories. This information in turn is valuable to other fields in physics like plasma-, astro-, or solid-state (surface) physics. It is a characteristic feature of fast heavy-ion accelerators that they can produce highly stripped ion species which have in turn the capability to highly ionize neutral target atoms or molecules in a single collision. The ionization process, mainly due to the strong electrical fields that are involved, allows us to study few-electron atoms with high atomic numbers Z. High resolution spectroscopy performed with these atoms allows a particularly good test of relativistic and QED effects. The probability of producing these few electron systems is determined by the charge state and the velocity of the projectile ions. In this contribution the possibilities of using electron spectroscopy as a tool to investigate fast ion-atom collisions is discussed and demonstrated with a few examples. 30 references

  16. Current status of PHOBOS at sign RHIC

    International Nuclear Information System (INIS)

    Betts, R.R.; Univ. of Illinois, Chicago, IL

    1996-01-01

    Four experiments are currently approved for the first measurements with colliding heavy ion beams from the Relativistic Heavy Ion Collider (RHIC) which is scheduled to come into operation in Spring 1999. These experiments are named STAR, Phoenix, PHOBOS and Brahms. It is expected that central collisions of 100 GeV/u Au + Au at RHIC will lead to energy densities far above any so far attained in the laboratory and it is suspected and hoped that this situation will lead to qualitatively new physics perhaps associated with the creation of a large volume containing a plasma of deconfined quarks and gluons. All four experiments attempt to search for signatures of new physics through combinations of measurements of quantities such as the multiplicity of produced particles, the average transverse momentum of these particles, fluctuations in their multiplicity distribution, their flavor composition, the size scales of the volume from which they are emitted, mass shifts and changes in the decay widths of resonances which decay inside the high energy density volume etc. The PHOBOS detector addresses these issues with a Multiplicity Array which covers the pseudo-rapidity region -5.3 ≤ η ≤ 5.3 with a coverage of 85% of 4π and also incorporates a Vertex Detector. The Multiplicity Array is complemented by two Multi-Particle Spectrometers, each of which cover the range 0.5 ≤ η ≤ 1.5 and azimuthal angle range Δφ = 11 degree. Various trigger and monitor detectors complete PHOBOS

  17. Beam analysis spectrometer for relativistic heavy ions

    International Nuclear Information System (INIS)

    Schimmerling, W.; Subramanian, T.S.; McDonald, W.J.; Kaplan, S.N.; Sadoff, A.; Gabor, G.

    1983-01-01

    A versatile spectrometer useful for measuring the mass, charge, energy, fluence and angular distribution of primaries and fragments associated with relativistic heavy ion beams is described. The apparatus is designed to provide accurate physical data for biology experiments and medical therapy planning as a function of depth in tissue. The spectrometer can also be used to measure W, the average energy to produce an ion pair, range-energy, dE/dx, and removal cross section data of interest in nuclear physics. (orig.)

  18. 3-megajoule heavy-ion fusion driver

    International Nuclear Information System (INIS)

    Faltens, A.; Hoyer, E.; Keefe, D.

    1981-06-01

    The initiation of inertial confinement fusion reactions with a heavy ion particle beam has been under intensive study since 1976, and the progress of this study is principally documented in the proceedings of annual workshops held by US National Laboratories. At this time a 3MJ, 150 TW, ion beam is a good choice to initiate microexplosions with energy gain of 100. The Lawrence Berkeley Laboratory has made systems studies based on a Linear Induction Accelerator to meet the beam requirements. The accelerator system, expected performance and cost, and technical problems to be addressed in the near future are discussed

  19. Multiparticle production in heavy-ion reactions

    International Nuclear Information System (INIS)

    Pelte, D.

    1980-01-01

    This lecture is concerned with the question how many particles and what kind of them are produced in heavy-ion collisions at energies about 10 MeV/n. We tend to assume that heavy-ion reactions at this energy are binary reactions. The experimental set consisting of two large ionization chambers serving to detection, in coincidence, the reaction fragments is described. With this set-up a number of reactions induced on 27 Al, 28 Si and 40 Ca by the 32 S beam of 135 and 190 MeV energy has been studied. Two-fragments inclusive and exclusive reactions were investigated. The assumption of a sequential statistical decay gives the best agreement with the data for all analyzed cases. (H.M.)

  20. HBT measurements in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Zajc, W.A.

    1990-01-01

    The correlations in relative momentum between identical bosons are determined, in part, by the geometrical properties of the boson source. This fact was first exploited in hadron physics by Goldhaber, Goldhaber, Lee and Pais (GGLP) in 1960. In the intervening three decades, this approach has been applied to lepton-lepton, lepton-hadron, hadron-hadron, and heavy-ion collisions. A word about nomenclature: The correlations in relative momentum between identical mesons arise from Bose statistics. Even previous to GGLP, this fact was applied by Hanbury-Brown and Twiss to measure stellar radii via two-photon interferometry. Thus an alternative name for the GGLP effect is the HBT effect. An informal introduction to Hanbury-Brown-Twiss measurements in heavy ion collisions is presented. The systematic effects in interpreting such data are emphasized, rather than the implications of any single experiment

  1. Working group report: heavy ion physics

    International Nuclear Information System (INIS)

    Alam, Jan-E; Chattopadhyay, S.; Assamagan, K.; Gavai, R.; Gupta, Sourendra; Mukherjee, S.; Ray, R.; Layek, B.; Srivastava, A.; Roy, Pradip K.

    2004-01-01

    The 8th workshop on high energy physics phenomenology (WHEPP-8) was held at the Indian Institute of Technology, Mumbai, India during January 5-16, 2004. One of the four working groups, group III was dedicated to QCD and heavy ion physics (HIC). The present manuscript gives a summary of the activities of group III during the workshop. The activities of group III were focused to understand the collective behaviours of the system formed after the collisions of two nuclei at ultra-relativistic energies from the interactions of the elementary degrees of freedom, i.e. quarks and gluons, governed by non-Abelian gauge theory, i.e. QCD. This was initiated by two plenary talks on experimental overview of heavy ion collisions and lattice QCD and several working group talks and discussions. (author)

  2. Chamber propagation physics for heavy ion fusion

    International Nuclear Information System (INIS)

    Callahan, D.A.

    1995-01-01

    Chamber transport is an important area of study for heavy ion fusion. Final focus and chamber-transport are high leverage areas providing opportunities to significantly decrease the cost of electricity from a heavy ion fusion power plant. Chamber transport in two basic regimes is under consideration. In the low chamber density regime (approx-lt 0.003 torr), ballistic or nearly-ballistic transport is used. Partial beam neutralization has been studied to offset the effects of beam stripping. In the high chamber density regime (approx-gt.1 torr), two transport modes (pinched transport and channel transport) are under investigation. Both involve focusing the beam outside the chamber then transporting it at small radius (∼ 2 mm). Both high chamber density modes relax the constraints on the beam quality needed from the accelerator which will reduce the driver cost and the cost of electricity

  3. Dynamical processes in heavy ion reactions

    International Nuclear Information System (INIS)

    Blann, M.; Remington, B.A.

    1988-01-01

    In this report I review the physical assumptions of the Boltzmann Master Equation (BME). Comparisons of the model with experimental neutron spectra gated on evaporation residues for a range of incident projectile energies and masses are presented; next, I compare n spectra gated on projectile-like fragments, followed by comparisons with ungated, inclusive proton spectra. I will then consider secondary effects from the nucleon-nucleon processes involved in the heavy ion relaxation processes, specifically the high energy γ-rays which have been observed at energies up to 140 MeV in collisions of heavy ions of 20/endash/84 MeV/μ. Another secondary effect, subthreshold pion production, was covered in the XVII School and will not be repeated. 39 refs., 16 figs

  4. Review of high energy heavy ion experiments

    International Nuclear Information System (INIS)

    Miake, Yasuo

    2000-01-01

    It has been proposed that in high energy heavy ion collisions a physical conditions similar to the early stage of the Universe can be established in the laboratory. New phase of matter expected to be created is called the quark gluon plasma (QGP). Based on the motivation to create the QGP in the laboratory, heavy ion beams have been accelerated at AGS of Brookhaven National Laboratory and also at CERN-SPS. Several interesting features of the data have been reported, among which are: the suppression of J/ψ production in Pb+Pb collisions, the enhancement of low mass lepton pairs, and the collective behavior of hadron production. These features are reviewed under the key words of Deconfinement, Chiral Restoration and Collectivity in the lecture. (author)

  5. Chamber propagation physics for heavy ion fusion

    International Nuclear Information System (INIS)

    Callahan, D.A.

    1996-01-01

    Chamber transport is a key area of study for heavy ion fusion. Final focus and chamber transport are high leverage areas providing opportunities to decrease significantly the cost of electricity from a heavy ion fusion power plant. Chamber transport in two basic regimes is under consideration. In the low chamber density regime (below about 0.003 Torr), ballistic or nearly ballistic transport is used. Partial beam neutralization has been studied to offset the effects of beam stripping. In the high chamber density regime (above about 0.1 Torr), two transport modes (pinched transport and channel transport) are under investigation. Both involve focusing the beam outside the chamber and then transporting it at small radius (about 2 mm). Both high chamber density modes relax the constraints on the beam quality needed from the accelerator which will reduce the driver cost and the cost of electricity. (orig.)

  6. Some aspects of heavy ion macrophysics

    International Nuclear Information System (INIS)

    Ngo, C.

    1984-07-01

    In these notes we review, in a schematic way, some aspect of the physics with heavy ions. In the first lecture we review how is possible to describe the dissipative phenomena observed above the Coulomb barrier, up to 10-15 MeV/u, using transport theories. The second lecture is devoted to the question of fusion and the appearance of a new mechanism: fast fission. It is shown that one can now have a global understanding of these phenomena within single picture. The third lecture presents, in a simplified way, some results obtained recently with heavy ions in the range of 30-50 MeV/u at GANIL and SARA

  7. Chemical freeze-out study in proton-proton collisions at RHIC and LHC energies

    International Nuclear Information System (INIS)

    Das, Sabita; Mishra, Debadeepti; Mohanty, Bedangadas; Chatterjee, Sandeep

    2016-01-01

    Particle multiplicities measured at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) facilities can be used to understand the chemical freeze-out dynamics. At chemical freeze-out (CFO), inelastic collisions cease and the freeze-out parameters can be determined using measured particle multiplicities within the framework of a statistical model. The statistical model has proven to be quite successful in describing the particle production from elementary p-p and e"+e"- collisions up to heavy-ion collisions. It helps to do a systematic study of the centrality and energy dependence of freeze-out parameters in heavy-ion collisions from lower SPS to higher LHC energies. The new data at LHC along with the RHIC data can be used to do such a systematic study in proton-proton collisions

  8. An integrated Boltzmann+hydrodynamics approach to heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Hannah

    2009-04-22

    In this thesis the first fully integrated Boltzmann+hydrodynamics approach to relativistic heavy ion reactions has been developed. After a short introduction that motivates the study of heavy ion reactions as the tool to get insights about the QCD phase diagram, the most important theoretical approaches to describe the system are reviewed. The hadron-string transport approach that this work is based on is the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) approach. Predictions for the charged particle multiplicities at LHC energies are made. The next step is the development of a new framework to calculate the baryon number density in a transport approach. Time evolutions of the net baryon number and the quark density have been calculated at AGS, SPS and RHIC energies. Studies of phase diagram trajectories using hydrodynamics are performed. The hybrid approach that has been developed as the main part of this thesis is based on the UrQMD transport approach with an intermediate hydrodynamical evolution for the hot and dense stage of the collision. The full (3+1) dimensional ideal relativistic one fluid dynamics evolution is solved using the SHASTA algorithm. Three different equations of state have been used, namely a hadron gas equation of state without a QGP phase transition, a chiral EoS and a bag model EoS including a strong first order phase transition. For the freeze-out transition from hydrodynamics to the cascade calculation two different set-ups are employed. The parameter dependences of the model are investigated and the time evolution of different quantities is explored. The hybrid model calculation is able to reproduce the experimentally measured integrated as well as transverse momentum dependent v{sub 2} values for charged particles. The multiplicity and mean transverse mass excitation function is calculated for pions, protons and kaons in the energy range from E{sub lab}=2-160 A GeV. The HBT correlation of the negatively charged pion source

  9. An integrated Boltzmann+hydrodynamics approach to heavy ion collisions

    International Nuclear Information System (INIS)

    Petersen, Hannah

    2009-01-01

    In this thesis the first fully integrated Boltzmann+hydrodynamics approach to relativistic heavy ion reactions has been developed. After a short introduction that motivates the study of heavy ion reactions as the tool to get insights about the QCD phase diagram, the most important theoretical approaches to describe the system are reviewed. The hadron-string transport approach that this work is based on is the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) approach. Predictions for the charged particle multiplicities at LHC energies are made. The next step is the development of a new framework to calculate the baryon number density in a transport approach. Time evolutions of the net baryon number and the quark density have been calculated at AGS, SPS and RHIC energies. Studies of phase diagram trajectories using hydrodynamics are performed. The hybrid approach that has been developed as the main part of this thesis is based on the UrQMD transport approach with an intermediate hydrodynamical evolution for the hot and dense stage of the collision. The full (3+1) dimensional ideal relativistic one fluid dynamics evolution is solved using the SHASTA algorithm. Three different equations of state have been used, namely a hadron gas equation of state without a QGP phase transition, a chiral EoS and a bag model EoS including a strong first order phase transition. For the freeze-out transition from hydrodynamics to the cascade calculation two different set-ups are employed. The parameter dependences of the model are investigated and the time evolution of different quantities is explored. The hybrid model calculation is able to reproduce the experimentally measured integrated as well as transverse momentum dependent v 2 values for charged particles. The multiplicity and mean transverse mass excitation function is calculated for pions, protons and kaons in the energy range from E lab =2-160 A GeV. The HBT correlation of the negatively charged pion source created in

  10. A Review on ϕ Meson Production in Heavy-Ion Collision

    Directory of Open Access Journals (Sweden)

    Md. Nasim

    2015-01-01

    Full Text Available The main aim of the relativistic heavy-ion experiment is to create extremely hot and dense matter and study the QCD phase structure. With this motivation, experimental program started in the early 1990s at the Brookhaven Alternating Gradient Synchrotron (AGS and the CERN Super Proton Synchrotron (SPS followed by Relativistic Heavy Ion Collider (RHIC at Brookhaven and recently at Large Hadron Collider (LHC at CERN. These experiments allowed us to study the QCD matter from center-of-mass energies (sNN 4.75 GeV to 2.76 TeV. The ϕ meson, due to its unique properties, is considered as a good probe to study the QCD matter created in relativistic collisions. In this paper we present a review on the measurements of ϕ meson production in heavy-ion experiments. Mainly, we discuss the energy dependence of ϕ meson invariant yield and the production mechanism, strangeness enhancement, parton energy loss, and partonic collectivity in nucleus-nucleus collisions. Effect of later stage hadronic rescattering on elliptic flow (v2 of proton is also discussed relative to corresponding effect on ϕ meson v2.

  11. Event-by-event gluon multiplicity, energy density, and eccentricities in ultrarelativistic heavy-ion collisions

    Science.gov (United States)

    Schenke, Björn; Tribedy, Prithwish; Venugopalan, Raju

    2012-09-01

    The event-by-event multiplicity distribution, the energy densities and energy density weighted eccentricity moments ɛn (up to n=6) at early times in heavy-ion collisions at both the BNL Relativistic Heavy Ion Collider (RHIC) (s=200GeV) and the CERN Large Hardron Collider (LHC) (s=2.76TeV) are computed in the IP-Glasma model. This framework combines the impact parameter dependent saturation model (IP-Sat) for nucleon parton distributions (constrained by HERA deeply inelastic scattering data) with an event-by-event classical Yang-Mills description of early-time gluon fields in heavy-ion collisions. The model produces multiplicity distributions that are convolutions of negative binomial distributions without further assumptions or parameters. In the limit of large dense systems, the n-particle gluon distribution predicted by the Glasma-flux tube model is demonstrated to be nonperturbatively robust. In the general case, the effect of additional geometrical fluctuations is quantified. The eccentricity moments are compared to the MC-KLN model; a noteworthy feature is that fluctuation dominated odd moments are consistently larger than in the MC-KLN model.

  12. Studies of relativistic heavy ion collisions. Final report, July 16, 1987-December 31, 1997

    International Nuclear Information System (INIS)

    Madansky, L.

    1997-01-01

    As a member of the DLS collaboration, the Hopkins group participated in all aspects of the experiment and the analysis of the results. The recent work involved measurements of dielectrons from p-p, p-d collisions as well as heavy ion Ca-Ca collisions at high densities. These results show the expected effects of bremsstrahlung vector meson decay and Dalitz decay but still show that some varieties of the low mass cross-sections disagree with various theoretical estimates, which could indicate other effects of high nuclear density. The Hopkins group has also been an initial member of the STAR collaboration and helped initiate the proposal for jet searches in the heavy ion experiments at RHIC. The group was instrumental in initiating the first stage of an electro-magnetic calorimeter for these experiments. The group also joined (E896) the Ho experiment. This work was primarily devoted to finding the existence of an elementary system containing strange quarks. An initial experiment was done recently at which Hopkins provided various beam counters. The final work is expected to commence in the fall of '98. Finally, the group has contributed to a number of experiments involving polarization effects in nuclear collisions, searching for production of antimatter, and other aspects of relativistic collisions of heavy ions using the facilities at Brookhaven National Laboratory (BNL)

  13. Heavy ion studies with CMS HF calorimeter

    International Nuclear Information System (INIS)

    Damgov, I.; Genchev, V.; Kolosov, V.A.; Lokhtin, I.P.; Petrushanko, S.V.; Sarycheva, L.I.; Teplov, S.Yu.; Shmatov, S.V.; Zarubin, P.I.

    2001-01-01

    The capability of the very forward (HF) calorimeter of the CMS detector at LHC to be applied to specific studies with heavy ion beams is discussed. The simulated responses of the HF calorimeter to nucleus-nucleus collisions are used for the analysis of different problems: reconstruction of the total energy flow in the forward rapidity region, accuracy of determination of the impact parameter of collision, study of fluctuations of the hadronic-to-electromagnetic energy ratio, fast inelastic event selection

  14. The upgraded Munich linear heavy ion postaccelerator

    International Nuclear Information System (INIS)

    Ratzinger, U.; Nolte, E.; Geier, R.; Gartner, N.; Morinaga, H.

    1987-01-01

    The Munich heavy ion postaccelerator was extended, consisting of two cavities with an interdigital H-type structure now. The frequency is doubled in the second section. A special kind of beam dynamics for O 0 -synchronous particle structures was developed, which results in good particle transmission though only one compact quadrupole-doublet is installed over the length of both linacs. Beamtime experience confirms the transport calculations

  15. Linear induction accelerator for heavy ions

    International Nuclear Information System (INIS)

    Keefe, D.

    1976-01-01

    There is considerable recent interest in the use of high energy heavy ions to irradiate deuterium-tritium pellets in a reactor vessel to constitute a power source at the level of 1 GW or more. Various accelerator configurations involving storage rings have been suggested. This paper discusses how the technology of linear induction accelerators - well known to be matched to high current and short pulse length - may offer significant advantages for this application. (author)

  16. Heavy ion fusion 2 MV injector

    International Nuclear Information System (INIS)

    Yu, S.; Eylon, S.; Henestroza, E.

    1995-04-01

    A heavy-ion-fusion driver-scale injector has been constructed and operated at Lawrence Berkeley Laboratory. The injector has produced 2.3 MV and 950 mA of K + , 15% above original design goals in energy and current. Normalized edge emittance of less than 1 π mm-mr was measured over a broad range of parameters. The head-to-tail energy flatness is less than ± 0.2% over the 1 micros pulse

  17. Holifield Heavy Ion Research Facility: Users handbook

    International Nuclear Information System (INIS)

    Auble, R.L.

    1987-01-01

    The primary objective of this handbook is to provide information for those who plan to carry out research programs at the Holifield Heavy Ion Research Facility (HHIRF) at Oak Ridge National Laboratory. The accelerator systems and experimental apparatus available are described. The mechanism for obtaining accelerator time and the responsibilities of those users who are granted accelerator time are described. The names and phone numbers of ORNL personnel to call for information about specific areas are given

  18. Heavy ion reactions in the transition region

    International Nuclear Information System (INIS)

    Hendrie, D.L.

    1977-11-01

    Evidence is given for a serious and systematic failure of the DWBA to predict the cross sections for single nucleon transfers induced by heavy ions above about 10 MeV/Nucleon beam energies. This is perhaps related to a coherent coupling to an increasing cross section to the quasi-elastic continuum, which also shows an anomalous energy dependence at about the same energy

  19. Status of the Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1990-01-01

    Accelerator Physics issues, such as the dynamical aperture, the beam lifetime and the current--intensity limitation are carefully studied for the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. The single layer superconducting magnets, of 8 cm coil inner diameter, satisfying the beam stability requirements have also been successfully tested. The proposal has generated wide spread interest in the particle and nuclear physics. 1 ref., 4 figs., 3 tabs

  20. Heavy-ion-driven electronuclear process

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Sosnin, A.N.; Filinova, V.P.

    1996-01-01

    Results of Monte Carlo mathematical experiments with electronuclear process in uranium and thorium homo- and heterogeneous targets irradiated by protons and heavy ions are presented. It is shown that neutron yield is the highest while using the deuteron beam and sharply decreases in case of heavier projectiles. Time dependent non-linear effects stipulated by an accumulation of fissile nuclides are discussed. 8 refs., 4 figs., 3 tab