WorldWideScience

Sample records for rhic cryogenic system

  1. Cryogenic systems for proof of the principle experiment of coherent electron cooling at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuenian; Belomestnykh, Sergey; Brutus, Jean Clifford; Lederle, Dewey; Orfin, Paul; Skaritka, John; Soria, Victor; Tallerico, Thomas; Than, Roberto [Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2014-01-29

    The Coherent electron Cooling (CeC) Proof of Principle (PoP) experiment is proposed to be installed in the Relativistic Heavy Ion Collider (RHIC) to demonstrate proton and ion beam cooling with this new technique that may increase the beam luminosity in certain cases, by as much as tenfold. Within the scope of this project, a 112 MHz, 2MeV Superconducting Radio Frequency (SRF) electron gun and a 704 MHz 20MeV 5-cell SRF cavity will be installed at IP2 in the RHIC ring. The superconducting RF electron gun will be cooled in a liquid helium bath at 4.4 K. The 704 MHz 5-cell SRF cavity will be cooled in a super-fluid helium bath at 2.0 K. This paper discusses the cryogenic systems designed for both cavities. For the 112 MHz cavity cryogenic system, a condenser/boiler heat exchanger is used to isolate the cavity helium bath from pressure pulses and microphonics noise sources. For the 704 MHz 5-cell SRF cavity, a heat exchanger is also used to isolate the SRF cavity helium bath from noise sources in the sub-atmospheric pumping system operating at room temperature. Detailed designs, thermal analyses and discussions for both systems will be presented in this paper.

  2. RHIC beam permit and quench detection communications system

    International Nuclear Information System (INIS)

    Conkling, C.R. Jr.

    1997-01-01

    A beam permit module has been developed to concentrate RHIC, subsystem sensor outputs, permit beam, and initiate emergency shutdowns. The modules accept inputs from the vacuum, cryogenic, power supply, beam loss, and superconducting magnet quench detection systems. Modules are located at equipment locations around the RHIC ring. The modules are connected by three fiberoptic communications links; a beam permit link, and two magnet power supply interlock links. During operation, carrier presence allows beam. If a RHIC subsystem detects a fault, the beam permit carrier terminates - initiating a beam dump. If the fault was a superconducting magnet quench, a power supply interlock carrier terminates - initiating an emergency magnet power dump. In addition, the master module triggers an event to cause remote sensors to log and hold data at the time-of-failure

  3. THE RHIC INJECTION SYSTEM.

    Energy Technology Data Exchange (ETDEWEB)

    FISCHER,W.; GLENN,J.W.; MACKAY,W.W.; PTITSIN,V.; ROBINSON,T.G.; TSOUPAS,N.

    1999-03-29

    The RHIC injection system has to transport beam from the AGS-to-RHIC transfer line onto the closed orbits of the RHIC Blue and Yellow rings. This task can be divided into three problems. First, the beam has to be injected into either ring. Second, once injected the beam needs to be transported around the ring for one turn. Third, the orbit must be closed and coherent beam oscillations around the closed orbit should be minimized. We describe our solutions for these problems and report on system tests conducted during the RHIC Sextant test performed in 1997. The system will be fully commissioned in 1999.

  4. RHIC 10 Hz global orbit feedback system

    International Nuclear Information System (INIS)

    Michnoff, R.; Arnold, L.; Carboni, L.; Cerniglia, P.; Curcio, A.; DeSanto, L.; Folz, C.; Ho, C.; Hoff, L.; Hulsart, R.; Karl, R.; Luo, Y.; Liu, C.; MacKay, W.; Mahler, G.; Meng, W.; Mernick, K.; Minty, M.; Montag, C.; Olsen, R.; Piacentino, J.; Popken, P.; Przybylinski, R.; Ptitsyn, V.; Ritter, J.; Schoenfeld, R.; Thieberger, P.; Tuozzolo, J.; Weston, A.; White, J.; Ziminski, P.; Zimmerman, P.

    2011-01-01

    Vibrations of the cryogenic triplet magnets at the Relativistic Heavy Ion Collider (RHIC) are suspected to be causing the horizontal beam perturbations observed at frequencies around 10 Hz. Several solutions to counteract the effect have been considered in the past, including a local beam feedback system at each of the two experimental areas, reinforcing the magnet base support assembly, and a mechanical servo feedback system. However, the local feedback system was insufficient because perturbation amplitudes outside the experimental areas were still problematic, and the mechanical solutions are very expensive. A global 10 Hz orbit feedback system consisting of 36 beam position monitors (BPMs) and 12 small dedicated dipole corrector magnets in each of the two 3.8 km circumference counter-rotating rings has been developed and commissioned in February 2011. A description of the system architecture and results with beam will be discussed.

  5. The Relativistic Heavy Ion Collider (RHIC) cryogenic system at Brookhaven National Laboratory: Review of the modifications and upgrades since 2002 and planned improvements

    International Nuclear Information System (INIS)

    Than, R.; Tuozzolo, Joseph; Sidi-Yekhlef, Ahmed; Ganni, Venkatarao; Knudsen, Peter; Arenius, Dana

    2008-01-01

    Brookhaven National Laboratory continues its multi-year program to improve the operational efficiency, reliability, and stability of the cryogenic system, which also resulted in an improved beam availability of the Relativistic Heavy Ion Collider (RHIC). This paper summarizes the work and changes made after each phase over the past four years to the present, as well as proposed future improvements. Power usage dropped from an initial 9.4 MW to the present 5.1 MW and is expected to drop below 5 MW after the completion of the remaining proposed improvements. The work proceeded in phases, balancing the Collider's schedule of operation, time required for the modifications and budget constraints. The main changes include process control, compressor oil removal and management, elimination of the use of cold compressors and two liquid-helium storage tanks, insulation of the third liquid-helium storage tank, compressor-bypass flow reduction and the addition of a load turbine (Joule-Thomson)

  6. RHIC BPM System Modifications and Performance

    CERN Document Server

    Satogata, Todd; Cameron, Peter; Cerniglia, Phil; Cupolo, John; Curcio, Anthony J; Dawson, William C; Degen, Christopher; Gullotta, Justin; Mead, Joe; Michnoff, Robert; Russo, Thomas; Sikora, Robert

    2005-01-01

    The RHIC beam position monitor (BPM) system provides independent average orbit and turn-by-turn (TBT) position measurements. In each ring, there are 162 measurement locations per plane (horizontal and vertical) for a total of 648 BPM planes in the RHIC machine. During 2003 and 2004 shutdowns, BPM processing electronics were moved from the RHIC tunnel to controls alcoves to reduce radiation impact, and the analog signal paths of several dozen modules were modified to eliminate gain-switching relays and improve signal stability. This paper presents results of improved system performance, including stability for interaction region and sextupole beam-based alignment efforts. We also summarize performance of improved million-turn TBT acquisition channels for nonlinear dynamics and echo studies.

  7. The RHIC status update

    International Nuclear Information System (INIS)

    Ozaki, S.

    1995-01-01

    The construction of the Relativistic Heavy Ion Collider (RHIC) began in 1991, with the completion date originally scheduled for 1997. Significant reduction of the funding levels in FY 1993 and 1994, and the funding level cap for FY 1995 and later years caused a 19-month stretchout of the construction period to the second quarter of FY 1999, and an increase of the total estimated cost (TEC) to $475 M. The Project, therefore, is now at the halfway mark of the construction period with actual cost and schedule performance tracking close to the DOE-approved baseline. Construction funding through FY 1994 reached close to 60% of the TEC. Incidentally, if one adds the current value of preexisting facilities which will be incorporated into RHIC, such as the injection system (Tandem Van de Graaff - the Booster - the AGS), the esixting 3.8 km tunnel, the 24 kW helium refrigerator, etc., the total value of the RHIC facility, when completed, will reach one billion dollars, if not more. The accelerator lattice design was finalized in 1992 after an intensive study was made to optimize the collider design for performance, operational flexibility, and value engineering. The civil construciton, including the collider enclosure, magnet access ports to the ring tunnel, and six service buildings for accelerator power supplies and cryogenic control boxes was completed

  8. The RHIC real time data link system

    International Nuclear Information System (INIS)

    Hartmann, H.

    1997-01-01

    The RHIC Real Time Data Link (RTDL) System distributes to all locations around the RHIC ring machine parameters of general interest to accelerator systems and users. The system, along with supporting host interface, is centrally located. The RTDL System is comprised of two module types: the Encoder Module (V105) and the Input Module (V106). There is only one V105 module, but many (up to 128) Input Modules. Multiple buffered outputs are provided for use locally or for retransmission to other RHIC equipment locations. Machine parameters are generated from the V115 Waveform Generator Module (WFG) or from machine hardware and coupled directly through a fiber optic serial link to one of the V106 input channels

  9. RHIC sextant test: Accelerator systems and performance

    Energy Technology Data Exchange (ETDEWEB)

    Pilat, F.; Trbojevic, D.; Ahrens, L. [and others

    1997-08-01

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning.

  10. RHIC sextant test: Accelerator systems and performance

    International Nuclear Information System (INIS)

    Pilat, F.; Trbojevic, D.; Ahrens, L.

    1997-01-01

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning

  11. Beam Induced Pressure Rise at RHIC

    CERN Document Server

    Zhang, S Y; Bai, Mei; Blaskiewicz, Michael; Cameron, Peter; Drees, Angelika; Fischer, Wolfram; Gullotta, Justin; He, Ping; Hseuh Hsiao Chaun; Huang, Haixin; Iriso, Ubaldo; Lee, Roger C; Litvinenko, Vladimir N; MacKay, William W; Nicoletti, Tony; Oerter, Brian; Peggs, Steve; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smart, Loralie; Snydstrup, Louis; Thieberger, Peter; Trbojevic, Dejan; Wang, Lanfa; Wei, Jie; Zeno, Keith

    2005-01-01

    Beam induced pressure rise in RHIC warm sections is currently one of the machine intensity and luminosity limits. This pressure rise is mainly due to electron cloud effects. The RHIC warm section electron cloud is associated with longer bunch spacings compared with other machines, and is distributed non-uniformly around the ring. In addition to the countermeasures for normal electron cloud, such as the NEG coated pipe, solenoids, beam scrubbing, bunch gaps, and larger bunch spacing, other studies and beam tests toward the understanding and counteracting RHIC warm electron cloud are of interest. These include the ion desorption studies and the test of anti-grazing ridges. For high bunch intensities and the shortest bunch spacings, pressure rises at certain locations in the cryogenic region have been observed during the past two runs. Beam studies are planned for the current 2005 run and the results will be reported.

  12. THE RELATIVISTIC HEAVY ION COLLIDER (RHIC) CRYOGENIC SYSTEM AT BNL: REVIEW OF THE MODIFICATIONS AND UPGRADES SINCE 2002 AND PLANNED IMPROVEMENTS

    International Nuclear Information System (INIS)

    THAN, Y.R.; TUOZZOLO, J.; SIDI-YAKHLEF, A.; GANNI, V.; KNUDSEN, P.; ARENIUS, D.

    2007-01-01

    Brookhaven National Laboratory continues its multi-year program to improve the operational efficiency, reliability, and stability of the cryogenic system which also resulted in improved beam availability of the Relativistic Heavy Ion Collider (RHIC). This paper summarizes the work and changes made after each phase over the past four years to the present, as well as proposed future improvements. Power usage dropped from an initial 9.4 MW to the present 5.1 MW and is expected to drop below 5 MW after the completion of the remaining proposed improvements. The work proceeded in phases by balancing the Collider's schedule of operation, time required for the modifications and budget constraints. The main changes include process control, compressor oil removal and management, elimination of the use of cold compressors and two liquid helium storage tanks, insulation of the third liquid helium storage tank, compressor bypass flow reduction and the addition of a load turbine (Joule-Thompson expander) with associated heat exchangers at the cold end of the plant. Also, liquid helium pumps used for forced circulation of the sub-cooled helium through the magnet loops were eliminated by an accelerator supply flow reconfiguration. Planned future upgrades include the resizing of expanders 5 and 6 to increase their efficiencies

  13. RHIC Beam Loss Monitor System Initial Operation

    International Nuclear Information System (INIS)

    Witkover, R. L.; Michnoff, R. J.; Geller, J. M.

    1999-01-01

    The RHIC Beam Loss Monitor (BLM) System is designed to prevent beam loss quenching of the superconducting magnets, and acquire loss data. Four hundred ion chambers are located around the rings to detect losses. The required 8-decade range in signal current is compressed using an RC pre-integrator ahead of a low current amplifier. A beam abort may be triggered if fast or slow losses exceed programmable threshold levels. A micro-controller based VME module sets references and gains and reads trip status for up to 64 channels. Results obtained with the detectors in the RHIC Sextant Test and the prototype electronics in the AGS-to-RHIC (AtR) transfer line are presented along with the present status of the system

  14. Preparing accelerator systems for the RHIC sextant commissioning

    International Nuclear Information System (INIS)

    Trbojevic, D.; Pilat, F.; Ahrens, L.

    1997-01-01

    The Relativistic Heavy Ion Collider (RHIC) construction is progressing steadily towards completion in 1999 when beams will circulate in both collider rings. One of the major tests of the RHIC project was the commissioning of the first sextant with gold ion beams in early 1997. This is a report on preparation of the RHIC accelerator systems for the first sextant test. It includes beam position monitors, timing, injection correction through the magnetic septum and kickers, current transformers, flags and the ionization beam profile monitors, beam loss monitors, beam and quench permit link system, power supply controls, and the configuration database system. The software and hardware development and coordination of the different systems before commissioning were regularly checked during bi-weekly, and (later) weekly, progress report meetings

  15. RHIC BEAM ABORT KICKER POWER SUPPLY SYSTEM COMMISSIONING EXPERIENCE AND REMAINING ISSUES

    International Nuclear Information System (INIS)

    ZHANG, W.; AHRENS, L.A.; MI, J.; OERTER, B.; SANDERS, R.; SANDBERG, J.

    2001-01-01

    The RHIC Beam Abort Kicker Power Supply Systems commissioning experience and the remaining issues will be reported in this paper. The RHIC Blue Ring Beam Abort Kicker Power Supply System initial commissioning took place in June 1999. Its identical system in Yellow Ring was brought on line during Spring 2000. Each of the RHIC Beam Abort Kicker Power Supply Systems consists of five high voltage modulators and subsystems. These systems are critical devices for RHIC machine protection and environmental protection. They are required to be effective, reliable and operating with sufficient redundancy to safely abort the beam to its beam dump at the end of accumulation or at any time when they are commanded. To deflect 66 GeV ion beam to the beam absorbers, the RHIC Beam Abort Kicker Power Supply Systems were operated at 22 kV level. The RHIC 2000 commissioning run was very successful

  16. RHIC beam loss monitor system design

    International Nuclear Information System (INIS)

    Witkover, R.; Zitvogel, E.; Michnoff, R.

    1997-01-01

    The Beam Loss Monitor (BLM) System is designed to prevent the quenching of RHIC magnets due to beam loss, provide quantitative loss data, and the loss history in the event of a beam abort. The system uses 400 ion chambers of a modified Tevatron design. To satisfy fast (single turn) and slow (100 msec) loss beam criteria and provide sensitivity for studies measurements, a range of over 8 decades is needed. An RC pre-integrator reduces the dynamic range for a low current amplifier. This is digitized for data logging. The output is also applied to an analog multiplier which compensates the energy dependence, extending the range of the abort comparators. High and low pass filters separate the signal to dual comparators with independent programmable trip levels. Up to 64 channels, on 8 VME boards, are controlled by a micro-controller based VME module, decoupling it from the front-end computer (FEC) for real-time operation. Results with the detectors in the RHIC Sextant Test and the electronics in the AGS-to-RHIC (AtR) transfer line will be presented

  17. RHIC control system

    Energy Technology Data Exchange (ETDEWEB)

    Barton, D.S. E-mail: dsbarton@bnl.gov; Binello, S.; Buxton, W.; Clifford, T.; D' Ottavio, T.; Hartmann, H.; Hoff, L.T.; Katz, R.; Kennell, S.; Kerner, T.; Laster, J.; Lee, R.C.; Marusic, A.; Michnoff, R.; Morris, J.; Oerter, B.R.; Olsen, R.; Piacentino, J.; Skelly, J.F

    2003-03-01

    The RHIC control system architecture is hierarchical and consists of two physical layers with a fiber-optic network connection. The Front-End Level systems consist of VME chassis with processors running a real-time operating system and both VME I/O modules and remote bus interfaces. Accelerator device software interfaces are implemented as objects in C++. The network implementation uses high speed, switched Ethernet technology. Specialized hardware modules were built for waveform control of power supplies, multiplexed signal acquisition, and timing services. The Console Level systems are Unix workstations. A strong emphasis has been given to developing highly reusable, standard software tools for use in building physics and diagnostic application software.

  18. RHIC control system

    International Nuclear Information System (INIS)

    Barton, D.S.; Binello, S.; Buxton, W.; Clifford, T.; D'Ottavio, T.; Hartmann, H.; Hoff, L.T.; Katz, R.; Kennell, S.; Kerner, T.; Laster, J.; Lee, R.C.; Marusic, A.; Michnoff, R.; Morris, J.; Oerter, B.R.; Olsen, R.; Piacentino, J.; Skelly, J.F.

    2003-01-01

    The RHIC control system architecture is hierarchical and consists of two physical layers with a fiber-optic network connection. The Front-End Level systems consist of VME chassis with processors running a real-time operating system and both VME I/O modules and remote bus interfaces. Accelerator device software interfaces are implemented as objects in C++. The network implementation uses high speed, switched Ethernet technology. Specialized hardware modules were built for waveform control of power supplies, multiplexed signal acquisition, and timing services. The Console Level systems are Unix workstations. A strong emphasis has been given to developing highly reusable, standard software tools for use in building physics and diagnostic application software

  19. OVERVIEW OF THE RHIC INSERTION REGION, SEXTUPOLE, AND SNAKE POWER SUPPLY SYSTEMS

    International Nuclear Information System (INIS)

    BRUNO, D.; ENG, W.; GANETIS, G.; LAMBIASE, R.F.; SANDBERG, J.

    2001-01-01

    The Relativistic Heavy Ion Collider (RHIC) was commissioned in 1999 and 2000. RHIC requires power supplies to supply currents to highly inductive superconducting magnets. The RHIC Insertion Region (IR) contains many shunt power supplies to trim the current of different magnet elements in a large superconducting magnet circuit. There are a total of 237 Insertion Region power supplies in both RHIC rings. RHIC also requires sextupole power supplies. One sextupole power supply is connected across 12 sextupole magnets. There are a total of 24 sextupole power supplies in both rings. Snake magnets are also a part of the RHIC ring, and these snake magnets also require power supplies. There shall be a total of 24 snake power supplies in both rings. Power supply technology, connections, control systems and interfacing with the Quench Protection System will be presented

  20. UP-GRADED RHIC INJECTION SYSTEM.

    Energy Technology Data Exchange (ETDEWEB)

    HAHN,H.FISCHER,W.SEMERTZIDIS,Y.K.WARBURTON,D.S.

    2003-05-12

    The design of the RHIC injection systems anticipated the possibility of filling and operating the rings with a 120 bunch pattern, corresponding to 110 bunches after allowing for the abort gap. Beam measurements during the 2002 run confirmed the possibility, although at the expense of severe transverse emittance growth and thus not on an operational basis. An improvement program was initiated with the goal of reducing the kicker rise time from 110 to {approx}95 ns and of minimizing pulse timing jitter and drift. The major components of the injection system are 4 kicker magnets and Blmlein pulsers using thyratron switches. The kicker terminating resistor and operating voltage was increased to reduce the rise time. Timing has been stabilized by using commercial trigger units and extremely stable dc supplies for the thyratron reservoir. A fiber optical connection between control room and the thyratron trigger unit has been provided, thereby allowing the operator to adjust timing individually for each kicker unit. The changes were successfully implemented for use in the RHIC operation.

  1. Machine Protection System for Concurrent Operation of RHIC and BLIP

    CERN Document Server

    Wilinski, Michelle; Glenn, Joseph; Mausner, Leonard; Unger, Kerry

    2005-01-01

    The Brookhaven 200 MeV linac is a multipurpose machine used to inject low intensity polarized protons ultimately ending up in RHIC as well as to inject high intensity protons to BLIP, a medical isotope production facility. If high intensity protons were injected to RHIC by mistake, administrative radiation limits could be exceeded or sensitive electronics could be damaged. In the past, the changeover from polarized proton to high intensity proton operation has been a lengthy process, thereby never allowing the two programs to run simultaneously. To remedy this situation and allow for concurrent operation of RHIC and BLIP, an active interlock system has been designed to monitor current levels in the AGS using two current transformers with fail safe circuitry and associated electronics to inhibit beam to RHIC if high intensity is detected.

  2. SDRC I-DEAS and RHIC (Relativistic Heavy Ion Collider)

    International Nuclear Information System (INIS)

    Goggin, C.M.

    1989-01-01

    In August 1984, Brookhaven National Laboratory submitted a proposal to the Department of Energy (DOE) for the construction of a Relativistic Heavy Ion Collider (RHIC). Since then funding has continued for the detailed design of RHIC. The hardware for RHIC consists of two concentric rings of superconducting magnets in a 2.4 mile circumference with six intersections. Bunches of ions will travel in opposite directions in each of the two rings and eventually collide head on at one of the six intersections. The hardware design involves complicated facilities for liquid helium cryogens, cryostat design, and pipe systems. The greatest challenge however is the ion beam position relative to the geometric center of the rings. There are three hundred and seventy-two dipole magnets that are ten meters long and weigh 4300 Kg (4.5 tons) each. Each dipole must be positioned in the ring to ± 0.5 mm. In addition, there are four hundred and ninety-two quadrupole magnets that must be positioned to ± 0.1 mm which is a total position error. This total position error includes all the surveying and part tolerance. To accomplish this task requires detailed planning and design of the cryostats which contain each magnet and the tunnel assembly throughout the 2.4 mile circumference. The IDEAS' software package provides a way to analyze this large scale problem. 11 figs

  3. Experimental overview on small colliding systems at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Stankus, Paul

    2016-12-15

    Beginning with the observation of ridge/flow-like features in pair correlations measurements in p+Pb, d+Au and high-density p+p events at RHIC and LHC, the last few years have seen a great surge of interest in the question of whether anything like a hot, locally-equilibrated QCD medium is formed in the small systems at collider energies. Many intriguing and suggestive results have been presented, but conclusions about medium formation must be approached with care. This presentation will attempt to summarize the experimental results from small colliding systems measured at RHIC, as part of a careful and objective evaluation of this question.

  4. RHIC beam position monitor assemblies

    International Nuclear Information System (INIS)

    Cameron, P.R.; Grau, M.C.; Ryan, W.A.; Shea, T.J.; Sikora, R.E.

    1993-01-01

    Design calculations, design details, and fabrication techniques for the RHIC BPM Assemblies are discussed. The 69 mm aperture single plane detectors are 23 cm long short-circuited 50 ohm strip transmission lines subtending 80 degrees. They are mounted on the sextupole end of the Corrector-Quadrupole-Sextupole package and operate at liquid helium temperature. The 69 cm aperture was selected to be the same as that of the beampipe in the CQS package, the 23 cm length is a compromise between mechanical stability and electrical sensitivity to the long low-intensity proton and heavy ion bunches to be found in RHIC during commissioning, and the 80 degree subtended angle maximizes linear aperture. The striplines are aligned after brazing to maintain electrical-to-mechanical centers within 0.1 mm radius, eliminating the need for individual calibration. Because the cryogenic feedthrus isolate the UHV beam vacuum only from the HV insulating vacuum, and do not see liquid helium, a replaceable mini-ConFlat design was chosen to simplify fabrication, calibration, and maintenance

  5. RHIC Beam Position Monitor Assemblies

    International Nuclear Information System (INIS)

    Cameron, P.R.; Grau, M.C.; Ryan, W.A.; Shea, T.J.; Sikora, R.E.

    1993-01-01

    Design calculations, design details, and fabrication techniques for the RHIC BPM Assemblies are discussed. The 69 mm aperture single plane detectors are 23 cm long short-circuited 50 ohm strip transmission lines subtending 80 degrees. They are mounted on the sextupole end of the Corrector-Quadrupole-Sextupole package and operate at liquid helium temperature. The 69 cm aperture was selected to be the same as that of the beampipe in the CQS package, dc 23 cm length is a compromise between mechanical stability and electrical sensitivity to the long low-intensity proton and heavy ion bunches to be found in RHIC during commissioning, and the 80 degree subtended angle maximizes linear aperture. The striplines are aligned after brazing to maintain electrical-to-mechanical centers within 0.1 mm radius, eliminating the need for individual calibration. Because the cryogenic feedthrus isolate the UHV beam vacuum only from the HV insulating vacuum, and do not see liquid helium, a replaceable mini-ConFlat design was chosen to simplify fabrication, calibration, and maintenance

  6. MACHINE PROTECTION SYSTEM FOR CONCURRENT OPERATION OF RHIC AND BLIP

    International Nuclear Information System (INIS)

    WILINSKI, M.; BELLAVIA, S.; GLENN, J.W.; MAUSNER, L.F.; UNGER, K.L.

    2005-01-01

    The Brookhaven 200MeV linac is a multipurpose machine used to inject low intensity polarized protons for RHIC (Relativistic Heavy Ion Collider), as well as to inject high intensity protons to BLIP (Brookhaven Linac Isotope Producer), a medical isotope production facility. If high intensity protons were injected to RHIC by mistake, administrative radiation limits could be exceeded or sensitive electronics could be damaged. In the past, the changeover from polarized proton to high intensity proton operation has been a lengthy process, thereby never allowing the two programs to run simultaneously. To remedy this situation and allow concurrent operation of RHIC and BLIP, an active interlock system has been designed to monitor current levels in the AGS using two current transformers with fail safe circuitry and associated electronics to inhibit beam to RHIC if high intensity currents are detected

  7. ADVANCEMENT OF THE RHIC BEAM ABORT KICKER SYSTEM

    International Nuclear Information System (INIS)

    ZHANG, W.; AHRENS, L.; MI, J.; OERTER, B.; SANDBERG, J.; WARBURTON, D.

    2003-01-01

    As one of the most critical system for RHIC operation, the beam abort kicker system has to be highly available, reliable, and stable for the entire operating range. Along with the RHIC commission and operation, consistent efforts have been spend to cope with immediate issues as well as inherited design issues. Major design changes have been implemented to achieve the higher operating voltage, longer high voltage hold-off time, fast retriggering and redundant triggering, and improved system protection, etc. Recent system test has demonstrated for the first time that both blue ring and yellow ring beam abort systems have achieved more than 24 hours hold off time at desired operating voltage. In this paper, we report break down, thyratron reverse arcing, and to build a fast re-trigger system to reduce beam spreading in event of premature discharge

  8. BROOKHAVEN: RHIC installation

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This summer, the first superconducting magnet was installed in 3.8 kilometre tunnel for Brookhaven's RHIC heavy ion collider (October, page 31). Manufactured by Northrop Grumman's Electronics and System Integration Division, the magnet is the first of RHIC's 373 dipoles. In addition to the dipoles, Northrop Grumman will also provide 432 RHIC quadrupoles. The first quadrupole was delivered on 8 April, a month before the first dipole arrived for onsite testing prior to installation. RHIC will need 1,700 superconducting magnets - dipoles, quadrupoles, sextupoles and correcting magnets, 1,200 of which will be built by industry and the rest built at Brookhaven. The 300 sextupoles are being supplied by Everson Electric

  9. RHIC Data Correlation Methodology

    International Nuclear Information System (INIS)

    Michnoff, R.; D'Ottavio, T.; Hoff, L.; MacKay, W.; Satogata, T.

    1999-01-01

    A requirement for RHIC data plotting software and physics analysis is the correlation of data from all accelerator data gathering systems. Data correlation provides the capability for a user to request a plot of multiple data channels vs. time, and to make meaningful time-correlated data comparisons. The task of data correlation for RHIC requires careful consideration because data acquisition triggers are generated from various asynchronous sources including events from the RHIC Event Link, events from the two Beam Sync Links, and other unrelated clocks. In order to correlate data from asynchronous acquisition systems a common time reference is required. The RHIC data correlation methodology will allow all RHIC data to be converted to a common wall clock time, while still preserving native acquisition trigger information. A data correlation task force team, composed of the authors of this paper, has been formed to develop data correlation design details and provide guidelines for software developers. The overall data correlation methodology will be presented in this paper

  10. Power systems for the RHIC first sextant test

    International Nuclear Information System (INIS)

    Schultheiss, C.; Bruno, D.; Feng, P.K.

    1997-01-01

    The first sextant test of the RHIC project is an opportunity to evaluate the many systems that must work together for the accelerator to operate. For the main dipole string, the actual main quadrupole power supply with its DSP regulator and output circuit compartment will be used. Temporary supplies will be used for the main quadrupole string, quadrupole offset, and quadrupole shunt supplies. This will let the authors both measure the performance of the main supply as well as determine the interaction among other power elements in the circuit. Correction elements will also be powered. The actual gamma-T power supplies will be used, as well as temporary supplies for the dipole correctors and sextupole supplies. Some of these units are required for beam to be transported, others are to be operated without beam to measure their performance, and how they interact with their superconducting loads. The power supply equipment, and that of other systems, required an infrastucture of AC power and output cable distribution in the RHIC tunnel, outlying service buildings, and interconnecting the tunnel to the service buildings. This note will describe the performance of the RHIC power supply systems during the sextant test, and the experience gained from this exercise

  11. Fast Automated Decoupling at RHIC

    CERN Document Server

    Beebe-Wang, Joanne

    2005-01-01

    Coupling correction is essential for the operational performance of RHIC. The independence of the transverse degrees of freedom makes diagnostics and tune control easier, and it is advantageous to operate an accelerator close to the coupling resonance to minimize nearby nonlinear sidebands. An automated decoupling application has been developed at RHIC for coupling correction during routine operations. The application decouples RHIC globally by minimizing the tune separation through finding the optimal settings of two orthogonal skew quadrupole families. The program provides options of automatic, semi-automatic and manual decoupling operations. It accesses tune information from all RHIC tune measurement systems: the PLL (Phase Lock Loop), the high frequency Schottky system, and the tune meter. It also supplies tune and skew quadrupole scans, finding the minimum tune separation, display the real time results and interface with the RHIC control system. We summarize the capabilities of the decoupling application...

  12. DESCRIPTION OF THE RHIC SEQUENCER SYSTEM

    International Nuclear Information System (INIS)

    DOTTAVIO, T.; FRAK, B.; MORRIS, J.; SATOGATA, T.; VAN ZEIJTS, J.

    2001-01-01

    The movement of the Relativistic Heavy Ion Collider (RHIC) through its various states (eg. injection, acceleration, storage, collisions) is controlled by an application called the Sequencer. This program orchestrates most magnet and instrumentation systems and is responsible for the coordinated acquisition and saving of data from various systems. The Sequencer system, its software infrastructure, support programs, and the language used to drive it are discussed in this paper. Initial operational experience is also described

  13. FAST AUTOMATED DECOUPLING AT RHIC

    International Nuclear Information System (INIS)

    BEEBE-WANG, J.J.

    2005-01-01

    Coupling correction is essential for the operational performance of RHIC. The independence of the transverse degrees of freedom makes diagnostics and tune control easier, and it is advantageous to operate an accelerator close to the coupling resonance to minimize nearby nonlinear sidebands. An automated coupling correction application iDQmini has been developed for RHIC routine operations. The application decouples RHIC globally by minimizing the tune separation through finding the optimal settings of two orthogonal skew quadrupole families. The program iDQmini provides options of automatic, semi-automatic and manual decoupling operations. It accesses tune information from all RHIC tune measurement systems: the PLL (phase lock loop), the high frequency Schottky system and the tune meter. It also supplies tune and skew quadrupole scans, finding the minimum tune separation, display the real time results and interface with the RHIC control system. We summarize the capabilities of the coupling correction application iDQmini, and discuss the operational protections incorporated in the program

  14. Conceptual design of the Relativistic Heavy Ion Collider: RHIC

    International Nuclear Information System (INIS)

    1986-05-01

    The complete Relativistic Heavy Ion Collider (RHIC) facility will be a complex set of accelerators and beam transfer equipment connecting them. A significant portion of the total facility either exists or is under construction. Two existing Tandem Van de Graaff accelerators will serve for the initial ion acceleration. Ions with a charge of -1 would be accelerated from ground to +15 MV potential, pass through a stripping foil, and accelerate back to ground potential, where they would pass through a second stripping foil. From there the ions will traverse a long transfer line to the AGS tunnel and be injected into the Booster accelerator. The Booster accelerates the ion bunch, and then the ions pass through one more stripper and then enter the Alternating Gradient Synchrotron (AGS), where they are accelerated to the top AGS energy and transferred to the collider. Bending and focusing of ion beams is to be achieved by superconducting magnets. The physics goals behind the RHIC are enumerated, particularly as regards the study of quark matter and the characteristics of high energy nucleus-nucleus collisions. The design of the collider and all its components is described, including the injector, the lattice, magnet system, cryogenic and vacuum systems, beam transfer, injection, and dump, rf system, and beam instrumentation and control system. Also given are cost estimates, construction schedules, and a management plan

  15. The cryogenic control system of EAST

    International Nuclear Information System (INIS)

    Zhuang, M.; Hu, L.B.; Zhow, Z.W.; Xia, G.H.

    2012-01-01

    Highlights: ► A reliable and flexible duplex control system is required for cryogenic system. ► The cryogenic control system is based on Delta-V DCS. ► It has been proved to be an effective way to control cryogenic process. ► It will provide useful experience and inspiration for the development in the cryogenic control engineering. - Abstract: A large scale helium cryogenic system is one of the key components for the EAST tokamak device for the cooling of PF and TF coils, structures, thermal shields, buslines, current leads and cryopumps. Since the cooling scheme of the EAST cryogenic system is fairly complicated, a reliable and flexible control system is required for cryogenic system. The cryogenic control system is based on DeltaV DCS which is the process control software developed by Emerson Company. The EAST cryogenic system has been in operation for four years and has been proved to be safe, stable and energy saving by the past 7 experiments. This paper describes the redundant control network, hardware configuration, software structure, auxiliary system and the new development in the future.

  16. TPC magnet cryogenic system

    International Nuclear Information System (INIS)

    Green, M.A.; Burns, W.A.; Taylor, J.D.; Van Slyke, H.W.

    1980-03-01

    The Time Projection Chamber (TPC) magnet at LBL and its compensation solenoids are adiabatically stable superconducting solenoid magnets. The cryogenic system developed for the TPC magnet is discussed. This system uses forced two-phase tubular cooling with the two cryogens in the system. The liquid helium and liquid nitrogen are delivered through the cooled load by forced tubular flow. The only reservoirs of liquid cryogen exist in the control dewar (for liquid helium) and the conditioner dewar (for liquid nitrogen). The operation o these systems during virtually all phases of system operation are described. Photographs and diagrams of various system components are shown, and cryogenic system data are presented in the following sections: (1) heat leaks into the TPC coil package and the compensation solenoids; (2) heat leaks to various components of the TPC magnet cryogenics system besides the magnets and control dewar; (3) the control dewar and its relationship to the rest of the system; (4) the conditioner system and its role in cooling down the TPC magnet; (5) gas-cooled electrical leads and charging losses; and (6) a summation of the liquid helium and liquid nitrogen requirements for the TPC superconducting magnet system

  17. CEBAF cryogenic system

    International Nuclear Information System (INIS)

    1995-01-01

    The CEBAF cryogenic system consists of 3 refrigeration systems: Cryogenic Test Facility (CTF), Central Helium Liquefier (CHL), and End Station Refrigerator (ESR). CHL is the main cryogenic system for CEBAF, consisting of a 4.8 kW, 2.0 K refrigerator and transfer line system to supply 2.0 K and 12 kW of 50 K shield refrigeration for the Linac cavity cryostats and 10 g/s of liquid for the end stations. This paper describes the 9-year effort to commission these systems, concentrating on CHL with the cold compressors. The cold compressors are a cold vacuum pump with an inlet temperature of 3 K which use magnetic bearings, thereby eliminating the possibility of air leaks into the subatmospheric He

  18. RHIC FY15 pp Run RHIC and AGS polarization analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Adams, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-20

    The polarization information is important for the spin physics program in Relativistic Heavy Ion Collider (RHIC). There are discrepancies between AGS and RHIC polarization measurements. First, the face value of AGS polarization is higher than RHIC ones in general. Second, the measured polarization profile (described by the profile ratio R) is stronger in AGS than in RHIC. This note analyzes the polarization data from FY15 pp run period. The results show that the differences between AGS and RHIC polarization measurements are reasonable, but the R value difference is puzzling. The difference between blue and yellow ring is worth of spin simulation to explain.

  19. Analysis of RHIC beam dump pre-fires

    International Nuclear Information System (INIS)

    Zhang, W.; Ahrens, L.; Fischer, W.; Hahn, H.; Mi, J.; Sandberg, J.; Tan, Y.

    2011-01-01

    It has been speculated that the beam may cause instability of the RHIC Beam Abort Kickers. In this study, we explore the available data of past beam operations, the device history of key modulator components, and the radiation patterns to examine the correlations. The RHIC beam abort kicker system was designed and built in the 90's. Over last decade, we have made many improvements to bring the RHIC beam abort kicker system to a stable operational state. However, the challenge continues. We present the analysis of the pre-fire, an unrequested discharge of kicker, issues which relates to the RHIC machine safety and operational stability.

  20. THE COUPLING CORRECTION SYSTEM AT RHIC: RESULTS FOR THE RUN 2000 AND PLANS FOR 2001

    International Nuclear Information System (INIS)

    Pilat, F.; Fischer, W.; Peggs, S.; Ptitsyn, V.; Tepikian, S.

    2001-01-01

    The RHIC coupling correction system has been commissioned during the Year 2000 run, which marked the successful first year of operation of the machine. The RHIC coupling correction system is described with particular emphasis on its flexibility, which allows using both global and local coupling compensation techniques. Coupling measurements and correction data are presented for the RHIC Blue and Yellow rings, together with the procedure used to reduce the minimum tune separation to 0.001, the typical resolution for tune measurements during run 2000. They further demonstrate how local coupling compensation in the interaction region substantially reduces the strength of the skew quadrupole families used for global coupling compensation

  1. Proceedings of the symposium on RHIC detector R&D

    Energy Technology Data Exchange (ETDEWEB)

    Makdisi, Y.; Stevens, A.J. [eds.

    1991-12-31

    This report contains papers on the following topics: Development of Analog Memories for RHIC Detector Front-end Electronic Systems; Monolithic Circuit Development for RHIC at Oak Ridge National Laboratory; Highly Integrated Electronics for the STAR TPC; Monolithic Readout Circuits for RHIC; New Methods for Trigger Electronics Development; Neurocomputing methods for Pattern Recognition in Nuclear Physics; The Development of a Silicon Multiplicity Detector System; The Vertex Detector for the Lepton/Photon Collaboration; Simulations of Silicon Vertex Tracker for STAR Experiment at RHIC; Calorimeter/Absorber Optimization for a RHIC Dimuon Experiment (RD-10 Project); Applications of the LAHET simulation Code to Relativistic Heavy Ion Detectors; Highly Segmented, High Resolution Time-of-Flight System; Research and Development on a Sub 100 Picosecond Time-of-Flight System Based on Silicon Avalance Diodes; Behavior of TPC`s in a High Particle Flux Environment; Generic R&D on Undoped Cesium Iodide and Lead Fluoride; and A Transition Radiation Detector for RHIC Featuring Accurate Tracking and dE/dx Particle Identification. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  2. Proceedings of the symposium on RHIC detector R ampersand D

    International Nuclear Information System (INIS)

    Makdisi, Y.; Stevens, A.J.

    1991-01-01

    This report contains papers on the following topics: Development of Analog Memories for RHIC Detector Front-end Electronic Systems; Monolithic Circuit Development for RHIC at Oak Ridge National Laboratory; Highly Integrated Electronics for the STAR TPC; Monolithic Readout Circuits for RHIC; New Methods for Trigger Electronics Development; Neurocomputing methods for Pattern Recognition in Nuclear Physics; The Development of a Silicon Multiplicity Detector System; A Transition Radiation Detector for RHIC Featuring Accurate

  3. THE RHIC BEAM ABORT KICKER SYSTEM

    International Nuclear Information System (INIS)

    Hahn, H.

    1999-01-01

    THE ENERGY STORED IN THE RHIC BEAM IS ABOUT 200 KJ PER RING AT DESIGN ENERGY AND INTENSITY. TO PREVENT QUENCHING OF THE SUPERCONDUCTING MAGNETS OR MATERIAL DAMAGE, THE BEAM WILL BE SAFELY DISPOSED OF BY AN INTERNAL BEAM ABORT SYSTEM, WHICH INCLUDES THE KICKER MAGNETS, THE PULSED POWER SUPPLIES, AND THE DUMP ABSORBER. DISPOSAL OF HEAVY IONS, SUCH AS GOLD, IMPOSES DESIGN CONSTRAINTS MORE SEVERE THAN THOSE FOR PROTON BEAMS OF EQUAL INTENSITY. IN ORDER TO MINIMIZE THE THERMAL SHOCK IN THE CARBON-FIBER DUMP BLOCK, THE BUNCHES MUST BE LATERALLY DISPERSED

  4. The RHIC general purpose multiplexed analog to digital converter system

    International Nuclear Information System (INIS)

    Michnoff, R.

    1995-01-01

    A general purpose multiplexed analog to digital converter system is currently under development to support acquisition of analog signals for the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The system consists of a custom intelligent VME based controller module (V113) and a 14-bit 64 channel multiplexed A/D converter module (V114). The design features two independent scan groups, where one scan group is capable of acquiring 64 channels at 60 Hz, concurrently with the second scan group acquiring data at an aggregate rate of up to 80 k samples/second. An interface to the RHIC serially encoded event line is used to synchronize acquisition. Data is stored in a circular static RAM buffer on the controller module, then transferred to a commercial VMEbus CPU board and higher level workstations for plotting, report Generation, analysis and storage

  5. The cryogenic control system of BEPCⅡ

    Institute of Scientific and Technical Information of China (English)

    LI Gang; WANG Ke-Xiang; ZHAO Ji-Jiu; YUE Ke-Juan; DAI Ming-Sui; HUANG Yi-Ling; JIANG Bo

    2008-01-01

    A superconducting cryogenic system has been designed and deployed in the Beijing Electron-Positron Collider Upgrade Project(BEPCⅡ).The system consists of a Siemens PLC(ST-PLC,Programmable Logic Controller)for the compressor control,an Allen Bradley(AB)PLC for the cryogenic equipments,and the Experimental Physics and Industrial Control System(EPICS)that integrates the PLCs.The system fully automates the superconducting cryogenic control with process control,PID(Proportional-Integral-Differential)control loops,real-time data access and data storage,alarm handler and human machine interface.It is capable of automatic recovery as well.This paper describes the BEPCⅡ cryogenic control system,data communication between ST-PLC and EPICS Input/Output Controllers(IOCs),and the integration of the flow control,the low level interlock,the AB-PLC,and EPICS.

  6. Cryogenic systems for inertial fusion energy

    International Nuclear Information System (INIS)

    Chatain, D.; Perin, J.P.; Bonnay, P.; Bouleau, E.; Chichoux, M.; Communal, D.; Manzagol, J.; Viargues, F.; Brisset, D.; Lamaison, V.; Paquignon, G.

    2008-01-01

    The Low Temperatures Laboratory of CEA/Grenoble (France) is involved in the development of cryogenic systems for inertial fusion since a ten of years. A conceptual design for the cryogenic infrastructure of the Laser MegaJoule (LMJ) facility has been proposed. Several prototypes have been designed, built and tested like for example the 1500 bars cryo-compressor for the targets filling, the target positioner and the thermal shroud remover. The HIPER project will necessitate the development of such equipments. The main difference is that this time, the cryogenic targets are direct drive targets. The first phase of HIPER experiments is a single shot period. Based oil the experience gained the last years, not only by our laboratory but also by Omega and G.A teams, we could design the new HIPER equipments for this phase. Some experimental results obtained with the prototypes of the LMJ cryogenic system are given and a first conceptual design for the HIPER single shot cryogenic system is shown. (authors)

  7. A study of RHIC crystal collimation

    International Nuclear Information System (INIS)

    Trbojevic, D.; Harrison, M.; Parker, B.; Thompson, P.; Stevens, A.; Biryukov, V.; Mokhov, N.; Drozhdin, A.

    1998-01-01

    The Relativistic Heavy Ion Collider (RHIC) will experience increasing longitudinal and transverse heavy ion emittances, mostly due to intra-beam scattering (IBS). The experiments in RHIC are expected to not only have reduced luminosities due to IBS but also background caused by beam halo. Primary betatron collimators will be used to remove the large amplitude particles. The efficiency of the primary collimator in RHIC strongly depends on the alignment of the jaws which needs to be within about ten micro-radians for the optimum conditions. As proposed by V. biryukov bent crystals could be used to improve the efficiency of an existing collimation system by installing them upstream of the collimator jaws. Bent crystals have been successfully used in SPS, Protvino and Fermilab for extraction of the beam particles channeled through them. This study examines possible improvements of the primary collimator system for heavy ions at RHIC by use of bent crystals. Bent crystals will reduce the collimator jaws alignment requirement and will increase collimator efficiency thereby reducing detector background

  8. Status of the LBNF Cryogenic System

    CERN Document Server

    Montanari, D; Bremer, J; Delany, M; Diaz, A; Doubnik, R; Haaf, K; Henstchel, S; Norris, B; Voirin, E

    2017-01-01

    The Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An international engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. The expected performance, the functional requirements and the status of the design are also highlighted.

  9. Status of the LBNF Cryogenic System

    Science.gov (United States)

    Montanari, D.; Adamowski, M.; Bremer, J.; Delaney, M.; Diaz, A.; Doubnik, R.; Haaf, K.; Hentschel, S.; Norris, B.; Voirin, E.

    2017-12-01

    The Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An international engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. The expected performance, the functional requirements and the status of the design are also highlighted.

  10. Cryogenic cooling system for HTS cable

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeru [Taiyo Nippon Sanso, Tsukuba (Japan)

    2017-06-15

    Recently, Research and development activity of HTS (High Temperature Superconducting) power application is very progressive worldwide. Especially, HTS cable system and HTSFCL (HTS Fault current limiter) system are proceeding to practical stages. In such system and equipment, cryogenic cooling system, which makes HTS equipment cooled lower than critical temperature, is one of crucial components. In this article, cryogenic cooling system for HTS application, mainly cable, is reviewed. Cryogenic cooling system can be categorized into conduction cooling system and immersion cooling system. In practical HTS power application area, immersion cooling system with sub-cooled liquid nitrogen is preferred. The immersion cooling system is besides grouped into open cycle system and closed cycle system. Turbo-Brayton refrigerator is a key component for closed cycle system. Those two cooling systems are focused in this article. And, each design and component of the cooling system is explained.

  11. Implementation of Ramp Control in RHIC

    International Nuclear Information System (INIS)

    Kewisch, J.

    1999-01-01

    After the injection of beam into RHIC the beam energy is ramped from 10.8 GeV/u to 108 GeV/u and the beta function of the interaction points is reduced from 10 meters to 1 meter. The set points for magnet power supplies and RF cavities is changed during such ramps in concert. A system of Wave Form Generators (WFGs), interconnected by a Real Time Data Link (RTDL) and Event Link is used to control these devices. RHIC ramps use a two level system of WFGs: one transmits the beam energy and a ''pseudo time'' variable as functions of time via RTDL; the other calculates the device set points as functions of these RTDL variables. Energy scaling, saturation correction and the wiring of interaction region quadruples is performed on the second level. This report describes the configuration and implementation of the software, firmware and hardware of the RHIC ramp system

  12. ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    2001-01-01

    The Accelerator Collider Department (CAD) at Brookhaven National Laboratory is operating the Relativistic Heavy Ion Collider (RHIC), which includes the dual-ring, 3.834 km circumference superconducting collider and the venerable AGS as the last part of the RHIC injection chain. CAD is planning on a luminosity upgrade of the machine under the designation RHIC II. One important component of the RHIC II upgrade is electron cooling of RHIC gold ion beams. For this purpose, BNL and the Budker Institute of Nuclear Physics in Novosibirsk entered into a collaboration aimed initially at the development of the electron cooling conceptual design, resolution of technical issues, and finally extend the collaboration towards the construction and commissioning of the cooler. Many of the results presented in this paper are derived from the Electron Cooling for RHIC Design Report [1], produced by the, BINP team within the framework of this collaboration. BNL is also collaborating with Fermi National Laboratory, Thomas Jefferson National Accelerator Facility and the University of Indiana on various aspects of electron cooling

  13. ELECTRON COOLING FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI,I.

    2001-05-13

    The Accelerator Collider Department (CAD) at Brookhaven National Laboratory is operating the Relativistic Heavy Ion Collider (RHIC), which includes the dual-ring, 3.834 km circumference superconducting collider and the venerable AGS as the last part of the RHIC injection chain. CAD is planning on a luminosity upgrade of the machine under the designation RHIC II. One important component of the RHIC II upgrade is electron cooling of RHIC gold ion beams. For this purpose, BNL and the Budker Institute of Nuclear Physics in Novosibirsk entered into a collaboration aimed initially at the development of the electron cooling conceptual design, resolution of technical issues, and finally extend the collaboration towards the construction and commissioning of the cooler. Many of the results presented in this paper are derived from the Electron Cooling for RHIC Design Report [1], produced by the, BINP team within the framework of this collaboration. BNL is also collaborating with Fermi National Laboratory, Thomas Jefferson National Accelerator Facility and the University of Indiana on various aspects of electron cooling.

  14. Polarized proton beam for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    RHIC has provided polarized proton collisions from 31 GeV to 255 GeV in the past decade. To preserve polarization through numerous depolarizing resonances through the whole accelerator chain, harmonic orbit correction, partial snakes, horizontal tune jump system and full snakes have been used. In addition, close attentions have been paid to betatron tune control, orbit control and beam line alignment. The polarization of 60% at 255 GeV has been delivered to experiments with 1.8×1011 bunch intensity. For the eRHIC era, the beam brightness has to be maintained to reach the desired luminosity. Since we only have one hadron ring in the eRHIC era, existing spin rotator and snakes can be converted to six snake configuration for one hadron ring. With properly arranged six snakes, the polarization can be maintained at 70% at 250 GeV. This paper summarizes the effort and plan to reach high polarization with small emittance for eRHIC.

  15. Thermal Stabilization of Cryogenic System in Superconducting Cyclotron

    International Nuclear Information System (INIS)

    Shin, Seung Jae; Kim, Kyung Min; Cho, Hyung Hee; Hong, Bong Hwan; Kang, Joon Sun; Ahn, Dong Hyun

    2011-01-01

    Radiology has some useful applications for medical purpose. For cancer therapy, the superconducting cyclotron should generate heavy ion beams. It radiates heavy ion beams to cancer patients. In order to make cyclotron system stable, the cryogenic system which makes superconducting state should work constantly. However, radiation heat transfer of cryogenic system should be considered because liquid helium's boiling point is extremely low and there is huge temperature difference between the cryogenic system and ambient temperature. Accordingly, thermal analysis should be carried out. In this paper, the numerical analysis of the cryogenic system in practical superconducting cyclotron show temperature distribution and suggest the number of coolers using ANSYS Workbench program

  16. Long-term cryogenic space storage system

    Science.gov (United States)

    Hopkins, R. A.; Chronic, W. L.

    1973-01-01

    Discussion of the design, fabrication and testing of a 225-cu ft spherical cryogenic storage system for long-term subcritical applications under zero-g conditions in storing subcritical cryogens for space vehicle propulsion systems. The insulation system design, the analytical methods used, and the correlation between the performance test results and analytical predictions are described. The best available multilayer insulation materials and state-of-the-art thermal protection concepts were applied in the design, providing a boiloff rate of 0.152 lb/hr, or 0.032% per day, and an overall heat flux of 0.066 Btu/sq ft hr based on a 200 sq ft surface area. A six to eighteen month cryogenic storage is provided by this system for space applications.

  17. Commissioning the cryogenic system of the first LHC sector

    International Nuclear Information System (INIS)

    Millet, F.; Claudet, S.; Ferlin, G.; Perin, A.; Riddone, G.; Serio, L.; Soubiran, M.; Tavian, L.; CERN; Ronayette, L.; GHMFL, Grenoble; Rabehl, R.; Fermilab

    2007-01-01

    The LHC machine, composed of eight sectors with superconducting magnets and accelerating cavities, requires a complex cryogenic system providing high cooling capacities (18 kW equivalent at 4.5 K and 2.4 W at 1.8 K per sector produced in large cold boxes and distributed via 3.3-km cryogenic transfer lines). After individual reception tests of the cryogenic subsystems (cryogen storages, refrigerators, cryogenic transfer lines and distribution boxes) performed since 2000, the commissioning of the cryogenic system of the first LHC sector has been under way since November 2006. After a brief introduction to the LHC cryogenic system and its specificities, the commissioning is reported detailing the preparation phase (pressure and leak tests, circuit conditioning and flushing), the cool-down sequences including the handling of cryogenic fluids, the magnet powering phase and finally the warm-up. Preliminary conclusions on the commissioning of the first LHC sector will be drawn with the review of the critical points already solved or still pending. The last part of the paper reports on the first operational experience of the LHC cryogenic system in the perspective of the commissioning of the remaining LHC sectors and the beam injection test

  18. Heavy nuclei, from RHIC to the cosmos

    International Nuclear Information System (INIS)

    Klein, Spencer R.

    2003-01-01

    Ultra-relativistic heavy ion collisions produce a high-temperature, thermalized system that may mimic the conditions present shortly after the big bang. This writeup will given an overview of early results from the Relativistic Heavy Ion Collider (RHIC), and discuss what we have learned about hot, strongly interacting nuclear systems. The thermal and chemical composition of the system will be discussed, along with observables that are sensitive to the early evolution of the system. I will also discuss the implications of the RHIC results for cosmic ray air showers

  19. Cryogenic system for TRISTAN superconducting RF cavity

    International Nuclear Information System (INIS)

    Hosoyama, K.; Hara, K.; Kabe, A.; Kojima, Yuuji; Ogitsu, T.; Sakamoto, Y.; Kawamura, S.; Ishimaru, Y.

    1990-01-01

    A cryogenic system consisting of a helium refrigerator (4 kW at 4.4 K) and a liquid helium distribution transfer system for TRISTAN 508 MHz 32 x 5-cell superconducting RF cavities was designed and constructed. After the performance test of the cryogenic system, 16 x 5-cell superconducting RF cavities in 8 cryostats were installed in underground TRISTAN electron-positron collider and connected to the helium refrigerator on the ground level through the transfer line (total length about 330 m) and cooled by liquid helium pool boiling in parallel. The cryogenic system and its operation experience are described. (author)

  20. Testing of a cryogenic recooler heat exchanger at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Nicoletti, A.; Wu, K.C.

    1993-01-01

    Brookhaven National Laboratory has tested a recooler heat exchanger intended to be used in the cryogenic system of the Relativistic Heavy Ion Collider. The unit is required to transfer 225 Watts from a supercritical helium stream flowing at 100 g/s to a helium bath boiling at 4.25 K. Measurements made with heat loads of 50 to over 450 Watts on the unit indicate its cooling capacity is greater than 400 Watts, as expected, and it will be suitable for use in the RHIC ring. Presented are the modifications made to BNL's MAGCOOL test facility that were necessary for testing, test procedure, and recooler performance

  1. THE RHIC SEQUENCER

    International Nuclear Information System (INIS)

    VAN ZEIJTS, J.; DOTTAVIO, T.; FRAK, B.; MICHNOFF, R.

    2001-01-01

    The Relativistic Heavy Ion Collider (RHIC) has a high level asynchronous time-line driven by a controlling program called the ''Sequencer''. Most high-level magnet and beam related issues are orchestrated by this system. The system also plays an important task in coordinated data acquisition and saving. We present the program, operator interface, operational impact and experience

  2. A hardware overview of the RHIC LLRF platform

    International Nuclear Information System (INIS)

    Hayes, T.; Smith, K.S.

    2011-01-01

    The RHIC Low Level RF (LLRF) platform is a flexible, modular system designed around a carrier board with six XMC daughter sites. The carrier board features a Xilinx FPGA with an embedded, hard core Power PC that is remotely reconfigurable. It serves as a front end computer (FEC) that interfaces with the RHIC control system. The carrier provides high speed serial data paths to each daughter site and between daughter sites as well as four generic external fiber optic links. It also distributes low noise clocks and serial data links to all daughter sites and monitors temperature, voltage and current. To date, two XMC cards have been designed: a four channel high speed ADC and a four channel high speed DAC. The new LLRF hardware was used to replace the old RHIC LLRF system for the 2009 run. For the 2010 run, the RHIC RF system operation was dramatically changed with the introduction of accelerating both beams in a new, common cavity instead of each ring having independent cavities. The flexibility of the new system was beneficial in allowing the low level system to be adapted to support this new configuration. This hardware was also used in 2009 to provide LLRF for the newly commissioned Electron Beam Ion Source.

  3. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  4. RHIC prefire protection masks

    International Nuclear Information System (INIS)

    Drees, A.; Biscardi, C.; Curcio, T.; Gassner, D.; DeSanto, L.; Fu, W.; Liaw, C. J.; Montag, C.; Thieberger, P.; Yip, K.

    2015-01-01

    The protection of the RHIC experimental detectors from damage due to beam hitting close upstream elements in cases of abort kicker prefires requires some dedicated precautionary measures with two general options: to bring the beam close to a limiting aperture (i.e. the beam pipe wall), as far upstream of the detector components as possible or, alternatively, to bring a limiting aperture close to the circulating beam. Spontaneous and random prefires of abort kicker modules (Pulse Forming Network, PFN) have a history as long as RHIC is being operated. The abort system consist of 5 kickers in per ring, each of them equipped with its own dedicated PFN.

  5. The dipole corrector magnets for the RHIC fast global orbit feedback system

    International Nuclear Information System (INIS)

    Thieberger, P.; Arnold, L.; Folz, C.; Hulsart, R.; Jain, A.; Karl, R.; Mahler, G.; Meng, W.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Ptitsyn, V.; Ritter, J.; Smart, L.; Tuozzolo, J.; White, J.

    2011-01-01

    The recently completed RHIC fast global orbit feedback system uses 24 small 'window-frame' horizontal dipole correctors. Space limitations dictated a very compact design. The magnetic design and modelling of these laminated yoke magnets is described as well as the mechanical implementation, coil winding, vacuum impregnation, etc. Test procedures to determine the field quality and frequency response are described. The results of these measurements are presented and discussed. A small fringe field from each magnet, overlapping the opposite RHIC ring, is compensated by a correction winding placed on the opposite ring's magnet and connected in series with the main winding of the first one. Results from measurements of this compensation scheme are shown and discussed.

  6. Commissioning of cryogenic system for China Spallation Neutron Source

    Science.gov (United States)

    Ye, Bin; He, Chongchao; Li, Na; Ding, Meiying; Wang, Yaqiong; Yu, Zhang; He, Kun

    2017-12-01

    China Spallation Neutron Source(CSNS) cryogenic system provides supercritical cryogenic hydrogen to neutron moderators, including a helium refrigerator, hydrogen loop and hydrogen safety equipment. The helium refrigerator is provided by Linde with cooling capacity of 2200 W at 20 K. Hydrogen loop system mainly includes cryogenic hydrogen pipes, hydrogen circulator cold-box and accumulator cold-box. Cryogenic hydrogen pump, ortho-para convertor, helium-hydrogen heat-exchanger, hydrogen heater and accumulator are integrated in hydrogen circulation cold-box, and accumulator cold-box. Hydrogen safety equipment includes safety valves, rupture disk, hydrogen sensor, flame detector and other equipment to ensure that cryogenic system in dangerous situations will go down, vents, or takes other measures. The cryogenic system commissioning work includes four steps. First, in order to test the refrigerating capacity of refrigerator, when acceptance testing, refrigerator internal heater was used as thermal load. Second, using simulation load as heat load of moderator, hydrogen loop use helium instead of hydrogen, and cooled down to 20 K, then re-warming and test the leak detection of hydrogen loop system. Third, base on the step 2, using hydrogen as working medium, and optimized the control logic. Forth, cryogenic system with the moderators joint commissioning. Now, cryogenic system is connected with the moderators, and the forth step will be carried out in the near future.

  7. Performance of the MAGCOOL-subcooler cryogenic system after SSC quadrupole quenches

    International Nuclear Information System (INIS)

    Wu, K.C.

    1993-01-01

    The subcooler assembly installed in the MAGCOOL magnet test area at Brookhaven National Laboratory has been used for testing SSC dipoles, quadrupoles and a spool piece since 1989. A detailed description of the system, its steady state capacity and the performance after quenches of a 50 mm SSC dipole were given. Subsequent studies on low current quenches of the SSC dipoles and quenches of the RHIC dipoles were also carried out. In this paper, the performance of the subcooler after quenches of the SSC quadrupole QCC404 is presented. Pressures, temperatures and flow rates in the magnet cooling loop after magnet quenches are given as a function of time. The cooling rates and total energy removed by cooling during quench recovery have been calculated for quench currents between 2000 and 7952 amperes. Because the inductance of the quadrupole is about one tenth that of a SSC dipole, the stored energy released is small and the impact on the system is mild. The cooling loop pressure never exceeds 12 atmospheres and the cryogenic system recovers in less than 15 minutes. As in all past studies, the peak pressure and temperature in the magnet cooling loop are linearly proportional to the energy released during a quench and excellent agreement between the total cooling provided and the magnetic stored energy is found

  8. Hypernucleus Production at RHIC and HIRFL-CSR Energy

    International Nuclear Information System (INIS)

    Zhang, S.; Xu, Z.; Chen, J.H.; Ma, Y.G.; Tang, Z.B.

    2010-01-01

    We calculated the hypertriton production at RHIC-STAR and HIRFL-CSR acceptance, with a multi-phase transport model (AMPT) and a relativistic transport model (ART), respectively. In specific, we calculated the Strangeness Population Factor S 3 = Λ 3 H/( 3 H e x Λ/p) at different beam energy. Our results from AGS to RHIC energy indicated that the collision system may change from hadronic phase at AGS energies to partonic phase at RHIC energies. Our calculation at HIRFL-CSR energy supports the proposal to measure hypertriton at HIRFL-CSR.

  9. Cryogenic systems for large superconducting accelerators/storage rings

    International Nuclear Information System (INIS)

    Brown, D.P.

    1981-01-01

    Particle accelerators and storage rings which utilize superconducting magnets have presented cryogenic system designers, as well as magnet designers, with many new challenges. When such accelerators were first proposed, little operational experience existed to guide the design. Two superconducting accelerators, complete with cryogenic systems, have been designed and are now under construction. These are the Fermilab Doubler Project and the Brookhaven National Laboratory ISABELLE Project. The cryogenic systems which developed at these two laboratories share many common characteristics, especially as compared to earlier cryogenic systems. Because of this commonality, these characteristics can be reasonably taken as also being representative of future systems. There are other areas in which the two systems are dissimilar. In those areas, it is not possible to state which, if either, will be chosen by future designers. Some of the design parameters for the two systems are given

  10. CEBAF cryogenic system

    International Nuclear Information System (INIS)

    Brindza, P.; Rode, C.

    1986-01-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) is a standing wave superconducting linear accelerator with a maximum energy of 4 GeV and 200 μA beam current. The 418 Cornell/CEBAF superconducting niobium accelerating cavities are arranged in two 0.5 GeV linacs with magnetic recirculating arcs at each end. These accelerating cavities are arranged in pairs in a cryounit. The ensemble of four cryounits (8 cavities) together with their end caps makes up a complete cryostat called a cryogenic module. The four cryounit helium vessels are cross connected to each other and share a common cryogen supply, radiation shield and insulating vacuum. The cryogenics system for CEBAF consists of a 5kW central helium refrigerator and a transfer line system to supply 2.2 K 2.8 ATM helium to the cavity cryostats, 40 K helium at 3.5 ATM to the radiation shields and 4.5K helium at 2.8 ATM to the superconducting magnetic spectrometers in the experimental halls. Both the 2.2 K and the 4.5 K helium are expanded by Joule-Thompson (JT) valves in the individual cryostats yielding 2.0 K at .031 ATM and 4.4 K at 1.2 ATM respectively. The Central Helium Refrigerator is located in the center of the CEBAF racetrack with the transfer lines located in the linac tunnels

  11. Polarized proton collider at RHIC

    International Nuclear Information System (INIS)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S.Y.; Luccio, A.; MacKay, W.W.; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A.N.

    2003-01-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998, reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to √s=500 GeV

  12. Synchrotron Radiation in eRHIC Interaction Region

    CERN Document Server

    Beebe-Wang, Joanne; Montag, Christoph; Rondeau, Daniel J; Surrow, Bernd

    2005-01-01

    The eRHIC currently under study at BNL consists of an electron storage ring added to the existing RHIC complex. The interaction region of this facility has to provide the required low-beta focusing while accommodating the synchrotron radiation generated by beam separation close to the interaction point. In the current design, the synchrotron radiation caused by 10GeV electrons bent by low-beta triplet magnets will be guided through the interaction region and dumped 5m downstream. However, it is unavoidable to stop a fraction of the photons at the septum where the electron and ion vacuum system are separated. In order to protect the septum and minimize the backward scattering of the synchrotron radiation, an absorber and collimation system will be employed. In this paper, we first present the overview of the current design of the eRHIC interaction region with special emphasis on the synchrotron radiation. Then the initial design of the absorber and collimation system, including their geometrical and physical p...

  13. High-energy high-luminosity electron-ion collider eRHIC

    International Nuclear Information System (INIS)

    Litvinenko, V.N.; Ben-Zvi, I.; Hammons, L.; Hao, Y.; Webb, S.

    2011-01-01

    , electrons from the polarized pre-injector will be accelerated to their top energy by passing six times through two SRF linacs. After colliding with the hadron beam in up to three detectors, the e-beam will be decelerated by the same linacs and dumped. The six-pass magnetic system with small-gap magnets will be installed from the start. We will stage the electron energy from 5 GeV to 30 GeV stepwise by increasing the lengths of the SRF linacs. We discuss details of eRHIC's layout in Section 3. We considered several IR designs for eRHIC. The latest one, with a 10 mrad crossing angle and β* = 5 cm, takes advantage of newly commissioned Nb 3 Sn quadrupoles. Section 4 details the eRHIC lattice and the IR layout. The current eRHIC design focuses on electron-hadron collisions. If justified by the EIC physics, we will add a 30 GeV polarized positron ring with full energy injection from eRHIC ERL. This addition to the eRHIC facility provide for positron-hadron collisions, but at a significantly lower luminosity than those attainable in the electron-hadron mode. As a novel high-luminosity EIC, eRHIC faces many technical challenges, such as generating 50 mA of polarized electron current. eRHIC also will employ coherent electron cooling (CeC) for the hadron beams. Staff at BNL, JLab, and MIT is pursuing vigorously an R and D program for resolving addressing these obstacles. In collaboration with Jlab, BNL plans experimentally to demonstrate CeC at the RHIC. We discuss the structure and the status of the eRHIC R and D in Section 5.

  14. Spin Physics at RHIC

    International Nuclear Information System (INIS)

    Bland, L.C.

    2003-01-01

    The physics goals that will be addressed by colliding polarized protons at the Relativistic Heavy Ion Collider (RHIC) are described. The RHIC spin program provides a new generation of experiments that will unfold the quark, anti-quark and gluon contributions to the proton's spin. In addition to these longer term goals, this paper describes what was learned from the first polarized proton collisions at √(s)=200 GeV. These collisions took place in a five-week run during the second year of RHIC operation

  15. Estimation of collective instabilities in RHIC

    International Nuclear Information System (INIS)

    MacKay, W.W.; Blaskiewicz, M.; Deng, D.; Mane, V.; Peggs, S.; Ratti, A.; Rose, J.; Shea, T.J.; Wei, J.

    1995-01-01

    The authors have estimated the broadband impedance in RHIC to be |Z/n| +79 ions at transition with an estimated 10% growth in emittance for Z/n = 1.5 Ω. They summarize the sources of broad and narrow band impedances in RHIC and investigate the multibunch instability limits throughout the machine cycle. The largest contribution to the broadband impedance comes from the abort and injection kickers. Since RHIC is designed to accelerate fully stripped ions from H + up to Au +79 they give results for both protons and gold ions; other ions should give results somewhere between these two extremes. All ion species are expected to be stable during storage. At lower energies damping systems and chromaticity corrections will limit any growth to acceptable levels during the short time it takes to inject and accelerate the beams

  16. Cryogenics system: strategy to achieve nominal performance and reliable operation

    CERN Document Server

    Bremer, J; Casas, J; Claudet, S; Delikaris, D; Delruelle, N; Ferlin, G; Fluder, C; Perin, A; Perinic, G; Pezzetti, M; Pirotte, O; Tavian, L; Wagner, U

    2012-01-01

    During the LHC operation in 2010 and 2011, the cryogenic system has achieved an availability level fulfilling the overall requirement. To reach this level, the cryogenic system has profited like many other beam-dependent systems from the reduced beam parameters. Therefore, impacts of some failures occurred during the LHC operation were mitigated by using the overcapacity margin, the existing built-in redundancy in between adjacent sector cryogenic plants and the "cannibalization" of spares on two idle cryogenic plants. These two first years of operation were also crucial to identify the weaknesses of the present cryogenic maintenance plan and new issues like SEUs. After the LS1, nominal beam parameters are expected and the mitigated measures will be less effective or not applicable at all. Consequently, a consolidation plan to improve the MTBF and the MTTR of the LHC cryogenic system is under definition. Concerning shutdown periods, the present cryogenic sectorization imposes some restrictions in the type of ...

  17. Status of the Cryogenic System Commissioning at SNS

    CERN Document Server

    Casagrande, Fabio; Campisi, Isidoro E; Creel, Jonathan; Dixon, Kelly; Ganni, Venkatarao; Gurd, Pamela; Hatfield, Daniel; Howell, Matthew; Knudsen, Peter; Stout, Daniel; Strong, William

    2005-01-01

    The Spallation Neutron Source (SNS) is under construction at Oak Ridge National Laboratory. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 Watt cryogenic refrigeration system. The major cryogenic system components include warm helium compressors with associated oil removal and gas management, 4.5K cold box, 7000L liquid helium dewar, 2.1K cold box (consisting of 4 stages of cold compressors), gaseous helium storage, helium purification and gas impurity monitoring system, liquid nitrogen storage and the cryogenic distribution transfer line system. The overall system commissioning strategy and status will be presented.

  18. Cryogenic system operating experience review for fusion applications

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1992-01-01

    This report presents a review of cryogenic system operating experiences, from particle accelerator, fusion experiment, space research, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of cryogenic component failure rates and accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with cryogenic systems are discussed, including ozone formation, effects of spills, and modeling spill behavior. This information should be useful to fusion system designers and safety analysts, such as the team working on the International Thermonuclear Experimental Reactor design

  19. Coupled Cryogenic Thermal and Electrical Models for Transient Analysis of Superconducting Power Devices with Integrated Cryogenic Systems

    Science.gov (United States)

    Satyanarayana, S.; Indrakanti, S.; Kim, J.; Kim, C.; Pamidi, S.

    2017-12-01

    Benefits of an integrated high temperature superconducting (HTS) power system and the associated cryogenic systems on board an electric ship or aircraft are discussed. A versatile modelling methodology developed to assess the cryogenic thermal behavior of the integrated system with multiple HTS devices and the various potential configurations are introduced. The utility and effectiveness of the developed modelling methodology is demonstrated using a case study involving a hypothetical system including an HTS propulsion motor, an HTS generator and an HTS power cable cooled by an integrated cryogenic helium circulation system. Using the methodology, multiple configurations are studied. The required total cooling power and the ability to maintain each HTS device at the required operating temperatures are considered for each configuration and the trade-offs are discussed for each configuration. Transient analysis of temperature evolution in the cryogenic helium circulation loop in case of a system failure is carried out to arrive at the required critical response time. The analysis was also performed for a similar liquid nitrogen circulation for an isobaric condition and the cooling capacity ratio is used to compare the relative merits of the two cryogens.

  20. High luminosity electron-hadron collider eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Ptitsyn, V.; Aschenauer, E.; Bai, M.; Beebe-Wang, J.; Belomestnykh, S.; Ben-Zvi, I.; Blaskiewicz, M..; Calaga, R.; Chang, X.; Fedotov, A.; Gassner, D.; Hammons, L.; Hahn, H.; Hammons, L.; He, P.; Hao, Y.; Jackson, W.; Jain, A.; Johnson, E.C.; Kayran, D.; Kewisch, J.; Litvinenko, V.N.; Luo, Y.; Mahler, G.; McIntyre, G.; Meng, W.; Minty, M.; Parker, B.; Pikin, A.; Rao, T.; Roser, T.; Skaritka, J.; Sheehy, B.; Skaritka, J.; Tepikian, S.; Than, Y.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; Webb, S.; Wu, Q.; Xu, W.; Pozdeyev, E.; Tsentalovich, E.

    2011-03-28

    We present the design of a future high-energy high-luminosity electron-hadron collider at RHIC called eRHIC. We plan on adding 20 (potentially 30) GeV energy recovery linacs to accelerate and to collide polarized and unpolarized electrons with hadrons in RHIC. The center-of-mass energy of eRHIC will range from 30 to 200 GeV. The luminosity exceeding 10{sup 34} cm{sup -2} s{sup -1} can be achieved in eRHIC using the low-beta interaction region with a 10 mrad crab crossing. We report on the progress of important eRHIC R&D such as the high-current polarized electron source, the coherent electron cooling, ERL test facility and the compact magnets for recirculation passes. A natural staging scenario of step-by-step increases of the electron beam energy by building-up of eRHIC's SRF linacs is presented.

  1. Cryogenic system design for a compact tokamak reactor

    International Nuclear Information System (INIS)

    Slack, D.S.; Kerns, J.A.; Miller, J.R.

    1988-01-01

    The International Tokamak Engineering Reactor (ITER) is a program presently underway to design a next-generation tokamak reactor. The cryogenic system for this reactor must meet unusual and new requirements. Unusually high heat loads (100 kW at 4.5 K) must be handled because neutron shielding has been limited to save space in the reactor core. Also, large variations in the cryogenics loads occur over short periods of time because of the pulsed nature of some of the operating scenarios. This paper describes a workable cryogenic system design for a compact tokamak reactor such as ITER. A design analysis is presented dealing with a system that handles transient loads, coil quenches, reactor cool-down and the effect of variations in helium-supply temperatures on the cryogenic stability of the coils. 5 refs., 4 figs., 1 tab

  2. PIP-II Cryogenic System and the evolution of Superfluid Helium Cryogenic Plant Specifications

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarty, Anindya [Fermilab; Rane, Tejas [Fermilab; Klebaner, Arkadiy [Fermilab

    2017-07-06

    The PIP-II cryogenic system consists of a Superfluid Helium Cryogenic Plant (SHCP) and a Cryogenic Distribution System (CDS) connecting the SHCP to the Superconducting (SC) Linac consisting of 25 cryomodules. The dynamic heat load of the SC cavities for continuous wave (CW) as well as pulsed mode of operation has been listed out. The static heat loads of the cavities along with the CDS have also been discussed. Simulation study has been carried out to compute the supercritical helium (SHe) flow requirements for each cryomodule. Comparison between the flow requirements of the cryomodules for the CW and pulsed modes of operation have also been made. From the total computed heat load and pressure drop values in the CDS, the basic specifications for the SHCP, required for cooling the SC Linac, have evolved.

  3. Cryogenics system: strategy to achieve nominal performance and reliable operation

    International Nuclear Information System (INIS)

    Bremer, J.; Brodzinski, K.; Casas, J.; Claudet, S.; Delikaris, D.; Delruelle, N.; Ferlin, G.; Fluder, C.; Perin, A.; Perinic, G.; Pezzetti, M.; Pirotte, O.; Tavian, L.; Wagner, U.

    2012-01-01

    During the LHC operation in 2010 and 2011, the cryogenic system has achieved an availability level fulfilling the overall requirement. To reach this level, the cryogenic system has profited like many other beam-dependent systems from the reduced beam parameters. Therefore, impacts of some failures occurred during the LHC operation were mitigated by using the over-capacity margin, the existing built-in redundancy in between adjacent sector cryogenic plants and the 'cannibalization' of spares on two idle cryogenic plants. These two first years of operation were also crucial to identify the weaknesses of the present cryogenic maintenance plan and new issues like SEUs. After the LS1, nominal beam parameters are expected and the mitigated measures will be less effective or not applicable at all. Consequently, a consolidation plan to improve the MTBF and the MTTR of the LHC cryogenic system is under definition. Concerning shutdown periods, the present cryogenic sectorization imposes some restrictions in the type of interventions (e.g. cryo-magnet removal) which can be done without affecting the operating conditions of the adjacent sector. This creates additional constrains and possible extra down-time in the schedule of the shutdowns including the hardware commissioning. This presentation focuses on the consolidation plan foreseen during the LS1 to improve the performance of the LHC cryogenic system in terms of availability and sectorization. (authors)

  4. Cryogenic system for liquid hydrogen polarimeter

    International Nuclear Information System (INIS)

    Kitami, T.; Chiba, M.; Hirabayashi, H.; Ishii, T.; Kato, S.

    1979-01-01

    A cryogenic system has been constructed for a liquid hydrogen polarimeter in order to measure polarization of high energy proton at the 1.3 GeV electron synchrotron of Institute for Nuclear Study, University of Tokyo. The system principally consists of a cryogenerator with a cryogenic transfer line, a liquid hydrogen cryostat, and a 14.5 l target container of thin aluminum alloy where liquid hydrogen is served for the experiment. The refrigeration capacity is about 54 W at 20.4 K without a target container. (author)

  5. Brookhaven: RHIC magnets

    International Nuclear Information System (INIS)

    Heppelman, Steve

    1990-01-01

    Last year, Brookhaven's proposal for a Relativistic Heavy Ion Collider - RHIC - was scrutinized by the US Department of Energy and deemed to be ready for construction funding. The hope is that the money will be voted soon so that construction can get underway at the start of the new US financial year in October. The 3.8 kilometre RHIC tunnel was completed ten years ago for the doomed Isabelle/CBA proton collider project

  6. DESIGN ISSUES FOR THE RHIC EBIS

    International Nuclear Information System (INIS)

    Beebe, E.; Alessi, J.; Kponou, A.; Pikin, A.; Prelec, K.; Kuznetzov, G.; Tiunov, M.

    2000-01-01

    Promising results are currently being obtained on the BNL Electron Beam Test Stand (EBTS), which is a prototype for the Relativistic Heavy Ion Collider (RHIC) EBIS. Based on the present-results, a proposal has been made regarding the general design of the RHIC EBIS. During the next year experiments will be made to investigate physics issues and beam properties important to the detailed design of the RHIC EBIS. Below we have outlined some of the physics issues to be explored experimentally, beam diagnostics that will be employed, and hardware modifications that are desired to go from the prototype stage to the RHIC EBIS

  7. Cryogenic systems for the HEB accelerator of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Abramovich, S.; Yuecel, A.

    1994-07-01

    This report discusses the following topics related to the Superconducting Super Collider: Cryogenic system -- general requirements; cryogenic system components; heat load budgets and refrigeration plant capacities; flow and thermal characteristics; process descriptions; cryogenic control instrumentation and value engineering trade-offs

  8. Implementation of time synchronized cryogenics control system network architecture for SST-1

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Rakesh J., E-mail: rpatel@ipr.res.in; Mahesuria, Gaurang; Panchal, Pradip; Panchal, Rohit; Sonara, Dasarath; Tanna, Vipul; Pradhan, Subrata

    2016-11-15

    Highlights: • SST-1 cryogenics sub-systems are 1.3 kW HRL, LN2 distribution system, current feeders system and 80 K booster system. • GUI developed in SCADA and control program developed in PLC for automation of the above sub-systems. • Implemented the cryogenics control system network to communicate all systems to InSQL server. • InSQL server configured for real time centralized process data acquisition from all connected sub-systems control nodes. • Acquired the process parameters coming from different systems at same time stamp. - Abstract: Under the SST-1 mission mandate, the several cryogenic sub-systems have been developed, upgraded and procured in prior to the SST-1 operation. New developments include 80 K Bubble type thermal shields, LN2 distribution system, LN2 booster system and current feeders system (CFS).Graphical User Interface (GUI) program developed in Wonderware SCADA and control logic program developed in Schneider make PLC for the above sub-systems. Industrial SQL server (InSQL) configured for centralized storage of real time process data coming from various control nodes of cryogenics sub-systems. The cryogenics control system network for communicating all cryogenics sub-system control nodes to InSQL server for centralized data storage and time synchronization among cryogenic sub-systems with centralized InSQL server is successfully implemented. Due to implemented time synchronization among sub-systems control nodes, it is possible to analyze the process parameters coming from different sub-systems at same time stamp. This paper describes the overview of implemented cryogenics control system network architecture for real time cryogenic process data monitor, storage and retrieval.

  9. Implementation of time synchronized cryogenics control system network architecture for SST-1

    International Nuclear Information System (INIS)

    Patel, Rakesh J.; Mahesuria, Gaurang; Panchal, Pradip; Panchal, Rohit; Sonara, Dasarath; Tanna, Vipul; Pradhan, Subrata

    2016-01-01

    Highlights: • SST-1 cryogenics sub-systems are 1.3 kW HRL, LN2 distribution system, current feeders system and 80 K booster system. • GUI developed in SCADA and control program developed in PLC for automation of the above sub-systems. • Implemented the cryogenics control system network to communicate all systems to InSQL server. • InSQL server configured for real time centralized process data acquisition from all connected sub-systems control nodes. • Acquired the process parameters coming from different systems at same time stamp. - Abstract: Under the SST-1 mission mandate, the several cryogenic sub-systems have been developed, upgraded and procured in prior to the SST-1 operation. New developments include 80 K Bubble type thermal shields, LN2 distribution system, LN2 booster system and current feeders system (CFS).Graphical User Interface (GUI) program developed in Wonderware SCADA and control logic program developed in Schneider make PLC for the above sub-systems. Industrial SQL server (InSQL) configured for centralized storage of real time process data coming from various control nodes of cryogenics sub-systems. The cryogenics control system network for communicating all cryogenics sub-system control nodes to InSQL server for centralized data storage and time synchronization among cryogenic sub-systems with centralized InSQL server is successfully implemented. Due to implemented time synchronization among sub-systems control nodes, it is possible to analyze the process parameters coming from different sub-systems at same time stamp. This paper describes the overview of implemented cryogenics control system network architecture for real time cryogenic process data monitor, storage and retrieval.

  10. The RHIC injection fast kicker

    International Nuclear Information System (INIS)

    Forsyth, E.B.; Pappas, G.C.; Tuozzolo, J.E.; Zhang, W.

    1995-01-01

    The purpose of the injection kicker is to provide the ultimate deflection to the incoming beam from the Alternating Gradient Synchrotron (AGS) into the Relativistic Heavy Ion Collider (RHIC). The beam is kicked in the vertical direction to place it on the equilibrium orbit of RHIC. Each bunch in the AGS is transferred separately, and stacked box-car fashion in the appropriate RHIC rf bucket. In order to achieve the required deflection angle four magnets powered by four pulsers will be used for each ring of RHIC. When the bunches are stacked in RHIC the last few rf buckets are left unfilled in order to provide a gap in the beam to facilitate the ejection or beam abort process. This also means there is not a severe constraint on the fall-time of the injection kicker. One prototype pulser has been built and tested. Much of the development effort has gone into the magnet design. Although lumped ferrite magnets are simpler to build and require less power to reach full field, a transmission line magnet was developed because of the very fast rise-time requirement and the tolerances imposed on the field variation and ripple

  11. MYRRHA cryogenic system study on performances and reliability requirements

    International Nuclear Information System (INIS)

    Junquera, T.; Chevalier, N.R.; Thermeau, J.P.; Medeiros Romao, L.; Vandeplassche, D.

    2015-01-01

    A precise evaluation of the cryogenic requirements for accelerator-driven system such as the MYRRHA project has been performed. In particular, operation temperature, thermal losses, and required cryogenic power have been evaluated. A preliminary architecture of the cryogenic system including all its major components, as well as the principles for the cryogenic fluids distribution has been proposed. A detailed study on the reliability aspects has also been initiated. This study is based on the reliability of large cryogenic systems used for accelerators like HERA, LHC or SNS Linac. The requirements to guarantee good cryogenic system availability can be summarised as follows: 1) Mean Time Between Maintenance (MTBM) should be > 8 000 hours; 2) Valves, heat exchangers and turbines are particularly sensitive elements to impurities (dust, oil, gases), improvements are necessary to keep a minimal level in these components; 3) Redundancy studies for all elements containing moving/vibrating parts (turbines, compressors, including their respective bearings and seal shafts) are necessary; 4) Periodic maintenance is mandatory: oil checks, control of screw compressors every 10.000-15.000 hours, vibration surveillance programme, etc; 5) Special control and maintenance of utilities equipment (supply of cooling water, compressed air and electrical supply) is necessary; 6) Periodic vacuum checks to identify leakage appearance such as insulation vacuum of transfer lines and distribution boxes are necessary; 7) Easily exchangeable cold compressors are required

  12. Cryogenic system for TRISTAN superconducting RF cavities

    International Nuclear Information System (INIS)

    Hosoyama, K.; Hara, K.; Kabe, A.; Kojima, Y.; Ogitsu, T.; Sakamoto, Y.; Kawamura, S.; Matsumoto, K.

    1993-01-01

    A large cryogenic system has been designed, constructed and operated in the TRISTAN electron-positron collider at KEK for 508 MHz, 32x5-cell superconducting RF cavities. A 6.5 kW, 4.4 K helium refrigerator with 5 turbo-expanders on the ground level supplies liquid helium in parallel to the 16 cryostats in the TRISTAN tunnel through about 250 m long multichannel transfer line. Two 5-cell cavities are coupled together, enclosed in a cryostat and cooled by about 830 L pool boiling liquid helium. A liquid nitrogen circulation system with a turbo-expander has been adopted for 80 K radiation shields in the multichannel transfer line and the cryostats to reduce liquid nitrogen consumption and to increase the operation stability of the system. The cryogenic system has a total of about 18 000 hours of operating time from the first cool down test in August 1988 to November 1991. The design principle and outline of the cryogenic system and the operational experience are presented. (orig.)

  13. The Cryogenic Supervision System in NSRRC

    CERN Document Server

    Li, Hsing-Chieh; Chiou, Wen-Song; Hsiao, Feng-Zone; Tsai, Zong-Da

    2005-01-01

    The helium cryogenic system in NSRRC is a fully automatic PLC system using the Siemens SIMATIC 300 controller. Modularization in both hardware and software makes it easy in the program reading, the system modification and the problem debug. Based on the Laview program we had developed a supervision system taking advantage of the Internet technology to get system's real-time information in any place. The functions of this supervision system include the real-time data accessing with more than 300 digital/analog signals, the data restore, the history trend display, and the human machine interface. The data is accessed via a Profibus line connecting the PLC system and the supervision system with a maximum baud rate 1.5 Mbit/s. Due to this supervision system, it is easy to master the status of the cryogenic system within a short time and diagnose the problem.

  14. RHIC STATUS AND PLANS.

    Energy Technology Data Exchange (ETDEWEB)

    PILAT,R.

    2002-06-02

    RHIC ended successfully its second year of operation in January 2002 after a six month run with gold ions and two months of polarized proton collisions. I will review the machine performance and accomplishments, that include reaching design energy (100 GeV/u) and design luminosity during the gold run, and the first high energy (100 GeV) polarized proton collisions. I will also discuss the machine development strategy and the main performance milestones. The goals and plans for the shutdown and the nest run, scheduled to start in November 2002 have been the focus of a RHIC Retreat in March 2002. I will summarize findings and plans for the upcoming run and outline a vision for the nest few years of RHIC operation and upgrades.

  15. RHIC injection kicker impedance

    International Nuclear Information System (INIS)

    Mane, V.; Peggs, S.; Trbojevic, D.; Zhang, W.

    1995-01-01

    The longitudinal impedance of the RHIC injection kicker is measured using the wire method up to a frequency of 3 GHz. The mismatch between the 50 ohm cable and the wire and pipe system is calibrated using the TRL calibration algorithm. Various methods of reducing the impedance, such as coated ceramic pipe and copper strips are investigated

  16. Cryogenic system options for a superconducting aircraft propulsion system

    International Nuclear Information System (INIS)

    Berg, F; Dodds, Graham; Palmer, J; Bertola, L; Miller, Paul

    2015-01-01

    There is a perceived need in the future for a move away from traditional aircraft designs in order to meet ambitious emissions and fuel burn targets. High temperature superconducting distributed propulsion may be an enabler for aircraft designs that have better propulsive efficiency and lower drag. There has been significant work considering the electrical systems required, but less on the cryogenics to enable it. This paper discusses some of the major choices to be faced in cryocooling for aircraft. The likely need for a disposable cryogen to reduce power demand is explained. A set of cryocooling methods are considered in a sensitivity study, which shows that the feasibility of the cryogenic system will depend strongly on the superconducting technology and the aircraft platform. It is argued that all three aspects must be researched and designed in close collaboration to reach a viable solution. (paper)

  17. RESEARCH PLAN FOR SPIN PHYSICS AT RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    AIDALA, C.; BUNCE, G.; ET AL.

    2005-02-01

    In this report we present the research plan for the RHIC spin program. The report covers (1) the science of the RHIC spin program in a world-wide context; (2) the collider performance requirements for the RHIC spin program; (3) the detector upgrades required, including timelines; (4) time evolution of the spin program.

  18. Computer automation of a dilution cryogenic system

    International Nuclear Information System (INIS)

    Nogues, C.

    1992-09-01

    This study has been realized in the framework of studies on developing new technic for low temperature detectors for neutrinos and dark matter. The principles of low temperature physics and helium 4 and dilution cryostats, are first reviewed. The cryogenic system used and the technic for low temperature thermometry and regulation systems are then described. The computer automation of the dilution cryogenic system involves: numerical measurement of the parameter set (pressure, temperature, flow rate); computer assisted operating of the cryostat and the pump bench; numerical regulation of pressure and temperature; operation sequence full automation allowing the system to evolve from a state to another (temperature descent for example)

  19. Overview of the Long-Baseline Neutrino Facility cryogenic system

    CERN Document Server

    Montanari, David; Bremer, Johan; Delaney, Michael; Aurelien, Diaz; Doubnik, Roza; Haaf, Kevin; Hentschel, Steve; Norris, Barry; Voirin, Erik

    2017-01-01

    The Deep Underground Neutrino Experiment (DUNE) collaboration is developing a multi-kiloton Long-Baseline neutrino experiment that will be located one mile underground at the Sanford Underground Research Facility (SURF) in Lead, SD. In the present design, detectors will be located inside four cryostats filled with a total of 68,400 ton of ultrapure liquid argon, at the level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) is developing the conventional facilities and cryogenics infrastructure supporting this experiment. The cryogenics system is composed of several sub-systems: External/Infrastructure, Proximity, and Internal cryogenics. It will be engineered, manufactured, commissioned, and qualified by an international engineering team. This contribution highlights the main features of the LBNF cryogenic system. It presents its performance, functional requirements and modes of operations. It also details the status of the design, ...

  20. Prospects for spin physics at RHIC

    International Nuclear Information System (INIS)

    Robinett, R.W.; Pennsylvania State Univ., University Park, PA

    1995-06-01

    The proposal to perform polarized proton-proton collisions at collider energies at RHIC is reviewed. After a brief reminder of the desirability of high energy spin physics measurements, we discuss the machine parameters and detector features which are taken to define a program of spin physics at RHIC. Some of the many physics processes which can provide information on polarized parton distributions and the spin-dependence of QCD and the electroweak model at RHIC energies are discussed

  1. RHIC Sextant Test -- Physics and performance

    International Nuclear Information System (INIS)

    Wei, J.; Fischer, W.; Ahrens, L.

    1997-01-01

    This paper presents beam physics and machine performance results of the Relativistic Heavy Ion Collider (RHIC) Sextant and AGS-to-RHIC (AtR) transfer line during the Sextant Test in early 1997. Techniques used to measure both machine properties (difference orbits, dispersion, and beamline optics) and beam parameters (energy, intensity, transverse and longitudinal emittances) are described. Good agreement was achieved between measured and design lattice optics. The gold ion beam quality was shown to approach RHIC design requirements

  2. Experience with split transition lattices at RHIC

    International Nuclear Information System (INIS)

    Montag, C.; Tepikian, S.; Blaskiewicz, M.; Brennan, J.M.

    2010-01-01

    During the acceleration process, heavy ion beams in RHIC cross the transition energy. When RHIC was colliding deuterons and gold ions during Run-8, lattices with different integer tunes were used for the two rings. This resulted in the two rings crossing transition at different times, which proved beneficial for the 'Yellow' ring, the RF system of which is slaved to the 'Blue' ring. For the symmetric gold-gold run in FY2010, lattices with different transition energies but equal tunes were implemented. We report the optics design concept as well as operational experience with this configuration.

  3. Cryogenics Vision Workshop for High-Temperature Superconducting Electric Power Systems Proceedings

    International Nuclear Information System (INIS)

    Energetics, Inc.

    2000-01-01

    The US Department of Energy's Superconductivity Program for Electric Systems sponsored the Cryogenics Vision Workshop, which was held on July 27, 1999 in Washington, D.C. This workshop was held in conjunction with the Program's Annual Peer Review meeting. Of the 175 people attending the peer review meeting, 31 were selected in advance to participate in the Cryogenics Vision Workshops discussions. The participants represented cryogenic equipment manufactures, industrial gas manufacturers and distributors, component suppliers, electric power equipment manufacturers (Superconductivity Partnership Initiative participants), electric utilities, federal agencies, national laboratories, and consulting firms. Critical factors were discussed that need to be considered in describing the successful future commercialization of cryogenic systems. Such systems will enable the widespread deployment of high-temperature superconducting (HTS) electric power equipment. Potential research, development, and demonstration (RD and D) activities and partnership opportunities for advancing suitable cryogenic systems were also discussed. The workshop agenda can be found in the following section of this report. Facilitated sessions were held to discuss the following specific focus topics: identifying Critical Factors that need to be included in a Cryogenics Vision for HTS Electric Power Systems (From the HTS equipment end-user perspective) identifying R and D Needs and Partnership Roles (From the cryogenic industry perspective) The findings of the facilitated Cryogenics Vision Workshop were then presented in a plenary session of the Annual Peer Review Meeting. Approximately 120 attendees participated in the afternoon plenary session. This large group heard summary reports from the workshop session leaders and then held a wrap-up session to discuss the findings, cross-cutting themes, and next steps. These summary reports are presented in this document. The ideas and suggestions raised during

  4. Simulation of the High-Pass Filter for 56MHz Cavity for RHIC

    International Nuclear Information System (INIS)

    Wu, Q.; Ben-Zvi, I.

    2010-01-01

    The 56MHz Superconducting RF (SRF) cavity for RHIC places high demands High Order Mode (HOM) damping, as well as requiring a high field at gap with fundamental mode frequency. The damper of 56MHz cavity is designed to extract all modes to the resistance load outside, including the fundamental mode. Therefore, the circuit must incorporate a high-pass filter to reflect back the fundamental mode into the cavity. In this paper, we show the good frequency response map obtained from our filter's design. We extract a circuit diagram from the microwave elements that simulate well the frequency spectrum of the finalized filter. We also demonstrate that the power dissipation on the filter over its frequency range is small enough for cryogenic cooling.

  5. Performance evaluation of various cryogenic energy storage systems

    International Nuclear Information System (INIS)

    Abdo, Rodrigo F.; Pedro, Hugo T.C.; Koury, Ricardo N.N.; Machado, Luiz; Coimbra, Carlos F.M.; Porto, Matheus P.

    2015-01-01

    This work compares various CES (cryogenic energy storage) systems as possible candidates to store energy from renewable sources. Mitigating solar and wind power variability and its direct effect on local grid stability are already a substantial technological bottleneck for increasing market penetration of these technologies. In this context, CES systems represent low-cost solutions for variability that can be used to set critical power ramp rates. We investigate the different thermodynamic and engineering constraints that affect the design of CES systems, presenting theoretical simulations, indicating that optimization is also needed to improve the cryogenic plant performance. - Highlights: • We assessed the performance of cryogenic energy storage systems. • We re-evaluated the Linde–Hampson cycle proposed by Chen. • We proposed the Claude and Collins cycles as alternatives for the Linde–Hampson cycle. • We concluded that Claude cycle is the best alternative for the simulated conditions.

  6. Brookhaven: Ready for RHIC

    International Nuclear Information System (INIS)

    Ludlam, Tom

    1990-01-01

    With its RHIC - Relativistic Heavy Ion Collider - project now part of the budget proposed by US President Bush for fiscal year 1991, Brookhaven is about to start construction of a unique kind of high energy collider. At a time when accelerators handling particles - electrons, protons and their antimatter counterparts - are boosting beam energies for microscopes to probe evershorter distances, RHIC is envisioned as a great pressure-cooker for strongly interacting matter

  7. Brookhaven: Ready for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Ludlam, Tom

    1990-04-15

    With its RHIC - Relativistic Heavy Ion Collider - project now part of the budget proposed by US President Bush for fiscal year 1991, Brookhaven is about to start construction of a unique kind of high energy collider. At a time when accelerators handling particles - electrons, protons and their antimatter counterparts - are boosting beam energies for microscopes to probe evershorter distances, RHIC is envisioned as a great pressure-cooker for strongly interacting matter.

  8. Joining the RHIC Online and Offline Models

    CERN Document Server

    Malitsky, Nikolay; Fedotov, Alexei V; Kewisch, Jorg; Luccio, Alfredo U; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Satogata, Todd; Talman, Richard M; Tepikian, Steven; Wei, Jie

    2005-01-01

    The paper presents an interface encompassing the RHIC online ramp model and the UAL offline simulation framework. The resulting consolidated facility aims to minimize the gap between design and operational data, and to facilitate analysis of RHIC performance and future upgrades in an operational context. The interface is based on the Accelerator Description Exchange Format (ADXF), and represents a snapshot of the RHIC online model which is in turn driven by machine setpoints. This approach is also considered as an intermediate step towards integrating the AGS and RHIC modeling environments to produce a unified online and offline AGS model for operations.

  9. Cryogenic forced convection refrigerating system

    International Nuclear Information System (INIS)

    Klee, D.J.

    1988-01-01

    This patent describes the method of refrigerating products by contact with a refrigerating gas which comprises introducing product into a refrigeration zone, contacting the product with the refrigerating gas for a sufficient time to refrigerate it to the appropriate extent and removing the refrigerated product. The improvement for producing the refrigeration gas from a liquid cryogen such that essentially all of the liquid cryogen is fully vaporized before contacting the product comprises: (a) introducing the liquid cryogen, selected from the group consisting of liquid air and liquid nitrogen, at elevated pressure into an ejector as the motive fluid to accelerate a portion of a warm refrigerating gas through the ejector while mixing the cryogen and gas to effect complete vaporization of the liquid cryogen and substantial cooling of the portion of the refrigerating gas resulting in a cold discharge gas which is above the liquefaction temperature of the cryogen; (b) introducing the cold discharge gas into a forced circulation pathway of refrigerating gas and producing a cold refrigerating gas which contacts and refrigerates product and is then at least partially recirculated; (c) sensing the temperature of the refrigerating gas in the forced circulation pathway and controlling the introduction of liquid cryogen with regard to the sensed temperature to maintain the temperature of the discharge gas above the liquefacton temperature of the cryogen utilized

  10. Progress update on cryogenic system for ARIEL E-linac at TRIUMF

    International Nuclear Information System (INIS)

    Koveshnikov, A.; Bylinskii, I.; Hodgson, G.; Yosifov, D.

    2014-01-01

    TRIUMF is involved in a major upgrade. The Advanced Rare IsotopeE Laboratory (ARIEL) has become a fully funded project in July 2010. A 10 mA 50 MeV SRF electron linac (e-linac) operating CW at 1.3 GHz is the key component of this initiative. This machine will serve as a second independent photo-fission driver for Rare Isotope Beams (RIB) production at TRIUMF's Isotope Separator and Accelerator (ISAC) facility. The cryogens delivery system requirements are driven by the electron accelerator cryomodule design [1, 2]. Since commencement of the project in 2010 the cryogenic system of e-linac has moved from the conceptual design phase into engineering design and procurement stage. The present document summarizes the progress in cryogenic system development and construction. Current status of e-linac cryogenic system including details of LN 2 storage and delivery systems, and helium subatmospheric (SA) system is presented. The first phase of e-linac consisting of two cryomodules, cryogens storage, delivery, and distribution systems, and a 600 W class liquid helium cryoplant is scheduled for installation and commissioning by year 2014

  11. SCHOTTKY MEASUREMENTS DURING RHIC 2000

    International Nuclear Information System (INIS)

    CAMERON, P.; CUPOLO, J.; DEGEN, C.; HAMMONS, L.; KESSELMAN, M.; LEE, R.; MEYER, A.; SIKORA, R.

    2001-01-01

    The 2GHz Schottky system was a powerful diagnostic during RHIC 2000 commissioning. A continuous monitor without beam excitation, it provided betatron tune, chromaticity, momentum spread relative emittance, and synchrotron tune. It was particularly useful during transition studies. In addition, a BPM was resonated at 230MHz for Schottky measurements

  12. Cryogenic system for the HERA magnet measurement facility

    International Nuclear Information System (INIS)

    Barton, H.R. Jr.; Clausen, M.; Kebler, G.

    1986-01-01

    This paper describes the design for a helium, cryogenic distribution system that allows independent operation and testing of superconducting magnets of the HERA project before they are installed in the 6-km ring tunnel. The 820-GeV proton storage ring of HERA will contain approximately 650 magnets having superconducting coils which are clamped by aluminum/stainless-steel collars and surrounded by a yoke of magnetic iron at liquid helium temperature. When the magnets arive at DESY from the manufacture, each magnet will be individually tested at helium operating conditions in the magnet measurement facility to insure the quality of the magnetic characteristics and the cryogenic performance. The capabilities of the cryogenic system and the schedule for magnet testing are discussed

  13. RHIC spin program

    International Nuclear Information System (INIS)

    Bunce, G.

    1995-01-01

    Colliding beams of high energy polarized protons at RHIC is an excellent way to probe the polarization of gluons, u and d quarks in a polarized proton. RHIC is the Relativistic Heavy Ion Collider being built now at Brookhaven in the ISABELLE tunnel. It is designed to collide gold ions on gold ions at 100 GeV/nucleon. Its goal is to discover the quark-gluon plasma, and the first collisions are expected in March, 1999. RHIC will also make an ideal polarized proton collider with high luminosity and 250 GeV x 250 GeV collisions. The RHIC spin physics program is: (1) Use well-understood perturbative QCD probes to study non-perturbative confining dynamics in QCD. We will measure - gluon and sea quark polarization in a polarized proton, polarization of quarks in a transversely polarized proton. (2) Look for additional surprises using the first high energy polarized proton collider. We will - look for the expected maximal parity violation in W and Z boson production, - search for parity violation in other processes, - test parton models with spin. This lecture is organized around a few of the key ideas: Siberian Snakes--What are they? High energy proton-proton collisions are scatters of quarks and leptons, at high x, a polarized proton beam is a beam of polarized u quarks, quark and gluon collisions are very sensitive to spin. We will discuss two reactions: how direct photon production measures gluon polarization, and how W + boson production measures u and d quark polarization

  14. RHIC spin program

    Energy Technology Data Exchange (ETDEWEB)

    Bunce, G.

    1995-12-31

    Colliding beams of high energy polarized protons at RHIC is an excellent way to probe the polarization of gluons, u and d quarks in a polarized proton. RHIC is the Relativistic Heavy Ion Collider being built now at Brookhaven in the ISABELLE tunnel. It is designed to collide gold ions on gold ions at 100 GeV/nucleon. Its goal is to discover the quark-gluon plasma, and the first collisions are expected in March, 1999. RHIC will also make an ideal polarized proton collider with high luminosity and 250 GeV x 250 GeV collisions. The RHIC spin physics program is: (1) Use well-understood perturbative QCD probes to study non-perturbative confining dynamics in QCD. We will measure - gluon and sea quark polarization in a polarized proton, polarization of quarks in a transversely polarized proton. (2) Look for additional surprises using the first high energy polarized proton collider. We will - look for the expected maximal parity violation in W and Z boson production, - search for parity violation in other processes, - test parton models with spin. This lecture is organized around a few of the key ideas: Siberian Snakes--What are they? High energy proton-proton collisions are scatters of quarks and leptons, at high x, a polarized proton beam is a beam of polarized u quarks, quark and gluon collisions are very sensitive to spin. We will discuss two reactions: how direct photon production measures gluon polarization, and how W{sup +} boson production measures u and d quark polarization.

  15. Physics with tagged forward protons at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Yip,K.

    2009-08-30

    The physics reach of the STAR detector at RHIC has been extended to include elastic and inelastic diffraction measurements with tagged forward protons. This program has started at RHIC in p+p collisions with a special optics run of {beta}* {approx} 21 m at STAR, at the center-of-mass energy {radical}s = 200 GeV during the last week of the RHIC 2009 run.

  16. Simulations of silicon vertex tracker for star experiment at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Odyniec, G.; Cebra, D.; Christie, W.; Naudet, C.; Schroeder, L.; Wilson, W. [Lawrence Berkeley Lab., CA (United States); Liko, D. [Institut fur Hochenenergiephysik, Vienna, (Austria); Cramer, J.; Prindle, D.; Trainor, T. [Univ. of Washington, Seattle (United States); Braithwaite, W. [Univ. of Arkansas, Little Rock (United States)

    1991-12-31

    The first computer simulations to optimize the Silicon Vertex Tracker (SVT) designed for the STAR experiment at RHIC are presented. The physics goals and the expected complexity of the events at RHIC dictate the design of a tracking system for the STAR experiment. The proposed tracking system will consist of a silicon vertex tracker (SVT) to locate the primary interaction and secondary decay vertices and to improve the momentum resolution, and a time projection chamber (TPC), positioned inside a solenoidal magnet, for continuous tracking.

  17. Evaluation of Losses Of Cold Energy of Cryogen Products in The Transport Systems

    Science.gov (United States)

    Uglanov, Dmitry; Sarmin, Dmitry; Tsapkova, Alexandra; Burdina, Yana

    2017-12-01

    At present, there are problems of energy saving in various areas of human life and in power complexes of industrial plants. One possible solution to the problem of increasing energy efficiency is the use of liquefied natural gas and its cold energy. Pipelines for fuel or gas supply in cryogen supply systems have different length depending on the mutual position of storage and cryogen consumption devices relatively to a start construction. Cryogen supply and transport systems include a lot of fittings of different assortment. Reservoirs can be installed on different elevation points. To reduce heat inleak and decrease cold energy of cryogen product different kinds of thermal insulation are used. Cryogen pipelines provide required operation conditions of storage and gasifying systems. The aim of the thermal calculation of cryogen transport and supply systems is to define the value of cryogen heat. In this paper it is shown values of cryogen temperature rise due to heat inleaks at cryogen’s transfer along transport systems for ethane, methane, oxygen and nitrogen were calculated. Heat inleaks also due to hydraulic losses were calculated. Specific losses of cold energy of cryogen product for laminar and turbulent flow were calculated. Correspondences of temperature rise, critical pipeline’s length and Reynolds number were defined for nitrogen, argon, methane and oxygen.

  18. The LHC cryogenic system and operational experience from the first three years run

    International Nuclear Information System (INIS)

    Delikaris, Dimitri; Tavian, Laurent

    2014-01-01

    The LHC (Large Hadron Collider) accelerator helium cryogenic system consists of eight cryogenically independent sectors, each 3.3 km long, all cooled and operated at 1.9 K. The overall, entropy equivalent, installed cryogenic capacity totalizes 144 kW (a) 4.5 K including 19.2 kW (a) 1.8 K with an associated helium inventory of 130 ton. The LHC cryogenic system is considered among the most complex and powerful in the world allowing the cooling down to superfluid helium temperature of 1.9 K. of the accelerators' high field superconducting magnets distributed over the 26.7 km underground ring. The present article describes the LHC cryogenic system and its associated cryogen infrastructure. Operational experience, including cryogen management, acquired from the first three years of LHC operation is finally presented. (author)

  19. Commissioning of cryogen delivery system for superconducting cyclotron magnet

    International Nuclear Information System (INIS)

    Pal, G.; Nandi, C.; Bhattacharyya, T.K.; Chaudhuri, J.; Bhandari, R.K.

    2005-01-01

    A K-500 superconducting cyclotron is being constructed at VECC Kolkata. The cryogen delivery system distributes liquid helium and liquid nitrogen to the superconducting cyclotron. Liquid helium is required to cool the cyclotron magnet and cryopanels. Liquid nitrogen is used to reduce the capacity of the helium liquefier. This paper describes the system, the current status and the commissioning experiences of cryogen delivery system for cyclotron magnet. (author)

  20. Validation and Performance of the LHC Cryogenic System through Commissioning of the First Sector

    CERN Document Server

    Serio, L; Casas-Cubillos, J; Chakravarty, A; Claudet, S; Gicquel, F; Gomes, P; Kumar, M; Kush, PK; Millet, F; Perin, A; Rabehl, R; Singh, MR; Soubiran, M; Tavian, L

    2008-01-01

    The cryogenic system [1] for the Large Hadron Collider accelerator is presently in its final phase of commissioning at nominal operating conditions. The refrigeration capacity for the LHC is produced using eight large cryogenic plants and eight 1.8 K refrigeration units installed on five cryogenic islands. Machine cryogenic equipment is installed in a 26.7-km circumference ring deep underground tunnel and are maintained at their nominal operating conditions via a distribution system consisting of transfer lines, cold interconnection boxes at each cryogenic island and a cryogenic distribution line. The functional analysis of the whole system during all operating conditions was established and validated during the first sector commissioning in order to maximize the system availability. Analysis, operating modes, main failure scenarios, results and performance of the cryogenic system are presented.

  1. Design aspects of an electrostatic electron cooler for low-energy RHIC operation

    International Nuclear Information System (INIS)

    Fedotov, A.; Ben-Zvi, I.; Brodowski, J.; Chang, X.Y.; Gassner, D.; Hoff, L.; Kayran, D.; Kewisch, J.; Oerter, B.; Pendzick, A.; Tepikian, S.; Thieberger, P.; Prost, L.; Shemyakin, A.

    2011-01-01

    Electron cooling was proposed to increase the luminosity of the Relativistic Heavy Ion Collider (RHIC) operation for heavy ion beam energies below 10 GeV/nucleon. The electron cooling system needed should be able to deliver an electron beam of adequate quality in a wide range of electron beam energies (0.9-5 MeV). An option of using an electrostatic accelerator to produce electrons for cooling heavy ions in RHIC was evaluated in detail. In this paper, we describe the requirements and options which were considered in the design of such a cooler for RHIC, as well as the associated challenges. The expected luminosity improvement and limitations with such an electron cooling system are also discussed.

  2. Real-Time Model-Based Leak-Through Detection within Cryogenic Flow Systems

    Science.gov (United States)

    Walker, M.; Figueroa, F.

    2015-01-01

    The timely detection of leaks within cryogenic fuel replenishment systems is of significant importance to operators on account of the safety and economic impacts associated with material loss and operational inefficiencies. Associated loss in control of pressure also effects the stability and ability to control the phase of cryogenic fluids during replenishment operations. Current research dedicated to providing Prognostics and Health Management (PHM) coverage of such cryogenic replenishment systems has focused on the detection of leaks to atmosphere involving relatively simple model-based diagnostic approaches that, while effective, are unable to isolate the fault to specific piping system components. The authors have extended this research to focus on the detection of leaks through closed valves that are intended to isolate sections of the piping system from the flow and pressurization of cryogenic fluids. The described approach employs model-based detection of leak-through conditions based on correlations of pressure changes across isolation valves and attempts to isolate the faults to specific valves. Implementation of this capability is enabled by knowledge and information embedded in the domain model of the system. The approach has been used effectively to detect such leak-through faults during cryogenic operational testing at the Cryogenic Testbed at NASA's Kennedy Space Center.

  3. Process simulations for the LCLS-II cryogenic systems

    Science.gov (United States)

    Ravindranath, V.; Bai, H.; Heloin, V.; Fauve, E.; Pflueckhahn, D.; Peterson, T.; Arenius, D.; Bevins, M.; Scanlon, C.; Than, R.; Hays, G.; Ross, M.

    2017-12-01

    Linac Coherent Light Source II (LCLS-II), a 4 GeV continuous-wave (CW) superconducting electron linear accelerator, is to be constructed in the existing two mile Linac facility at the SLAC National Accelerator Laboratory. The first light from the new facility is scheduled to be in 2020. The LCLS-II Linac consists of thirty-five 1.3 GHz and two 3.9 GHz superconducting cryomodules. The Linac cryomodules require cryogenic cooling for the super-conducting niobium cavities at 2.0 K, low temperature thermal intercept at 5.5-7.5 K, and a thermal shield at 35-55 K. The equivalent 4.5 K refrigeration capacity needed for the Linac operations range from a minimum of 11 kW to a maximum of 24 kW. Two cryogenic plants with 18 kW of equivalent 4.5 K refrigeration capacity will be used for supporting the Linac cryogenic cooling requirements. The cryogenic plants are based on the Jefferson Lab’s CHL-II cryogenic plant design which uses the “Floating Pressure” design to support a wide variation in the cooling load. In this paper, the cryogenic process for the integrated LCLS-II cryogenic system and the process simulation for a 4.5 K cryoplant in combination with a 2 K cold compressor box, and the Linac cryomodules are described.

  4. Progress update on cryogenic system for ARIEL E-linac at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Koveshnikov, A.; Bylinskii, I.; Hodgson, G.; Yosifov, D. [TRIUMF, Vancouver, BC, V6T 2A3 (Canada)

    2014-01-29

    TRIUMF is involved in a major upgrade. The Advanced Rare IsotopeE Laboratory (ARIEL) has become a fully funded project in July 2010. A 10 mA 50 MeV SRF electron linac (e-linac) operating CW at 1.3 GHz is the key component of this initiative. This machine will serve as a second independent photo-fission driver for Rare Isotope Beams (RIB) production at TRIUMF's Isotope Separator and Accelerator (ISAC) facility. The cryogens delivery system requirements are driven by the electron accelerator cryomodule design [1, 2]. Since commencement of the project in 2010 the cryogenic system of e-linac has moved from the conceptual design phase into engineering design and procurement stage. The present document summarizes the progress in cryogenic system development and construction. Current status of e-linac cryogenic system including details of LN{sub 2} storage and delivery systems, and helium subatmospheric (SA) system is presented. The first phase of e-linac consisting of two cryomodules, cryogens storage, delivery, and distribution systems, and a 600 W class liquid helium cryoplant is scheduled for installation and commissioning by year 2014.

  5. Results of KEPCO HTS cable system tests and design of hybrid cryogenic system

    International Nuclear Information System (INIS)

    Lim, J.H.; Sohn, S.H.; Yang, H.S.; Hwang, S.D.; Kim, D.L.; Ryoo, H.S.; Choi, H.O.

    2010-01-01

    In order to investigate the compatibility as a power utility facility, Korea Electric Power Corporation (KEPCO) had installed a 22.9 kV, 1250 A, 100 m long high temperature superconducting (HTS) power cable system. Using the HTS cable, various tests have been performed to investigate electrical and thermo-mechanical properties. Since 2005, a series of thermal cycle tests between liquid nitrogen (LN 2 ) and ambient temperatures have been conducted using a vacuum-pump driven open-loop cryogenic system with a capacity of 3 kW. In the tests, although the open-loop cryogenic system was reliable to operate the HTS cable system, it was not effective in economic view point because LN 2 consumption was larger than expected. In order to secure against unexpected emergencies and solve the problem of LN 2 consumption, a hybrid cryogenic system was designed and installed. A stirling cryocooler was employed and combined with the open-loop cryogenic system. Considering the average heat load at rated condition, the cooling capacity of the cryocooler was determined to 4 kW at 77 K. In this paper, results of performance tests and the design of the hybrid cooling system are presented.

  6. StructUre and test results of the Tokamak-7 device cryogenic system

    International Nuclear Information System (INIS)

    Babaev, I.V.; VolobUev, A.N.; Zhul'kin, V.F.

    1982-01-01

    A cryogenic system (CS) of the Tokamak-7 (T-7) installation with the longitudinal field superconducting magnetic system (SMS) is described. The CS is designed for cool-down, cryostatic cooling and heating of the T-7 cryogenic objects and consists of a helium system (HS) and a nitrogen cryogenic system (NCS). The HS consists of:a a heliUm delivery system intended for distributing and controlling the helium flows in the SMS; cryogenic helium units; a 1.25 m 3 volume for storing liquid helium; a compressor compartment using piston compressors at the 3 MPa operating pressure and 140 g/s total capacity; gaseous helium storages (3600 m 3 under normal conditions); helium cleaning and drying systems; a gas holder of 20 m 3 operating volume; cryogenic pipelines and pipe fittings. The NCS operates on delivered nitrogen and includes a 120 m 3 liquid nitrogen storage, evaporators and electric heaters producing up to 230 g/s of gaseous nitrogen at 300 K, a separator, cryogenic pipelines and fittings. It is found that the CS has the necessary cold production reserve, ensures reliable operation of the Tokamak-7 device and permits to carry out practically continuous plasma experiments

  7. Theoretical Status of the RHIC Program

    International Nuclear Information System (INIS)

    Jalilian-Marian, Jamal

    2006-01-01

    Since the beginning of its operation, the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Lab has produced a wealth of exciting and interesting results. I give a brief overview of the theoretical aspects of the main results from the RHIC program

  8. Upgrade of RHIC Vacuum Systems for High Luminosity Operation

    CERN Document Server

    Hseuh Hsiao Chaun; Smart, Loralie; Todd, Robert J; Weiss, Daniel

    2005-01-01

    With increasing ion beam intensity during recent RHIC operations, pressure rises of several decades were observed at most room temperature sections and at a few cold sections. The pressure rises are associated with electron multi-pacting, electron stimulated desorption and beam ion induced desorption and have been one of the major intensity and luminosity limiting factors for RHIC. Improvement of the warm sections has been carried out in the last few years. Extensive in-situ bakes, additional UHV pumping, anti-grazing ridges and beam tube solenoids have been implemented. Several hundred meters of NEG coated beam pipes have been installed and activated. Vacuum monitoring and interlock were enhanced to reduce premature beam aborts. Preliminary measures, such as pumping before cool down to reduce monolayer condensates, were also taken to suppress the pressure rises in the cold sections. The effectiveness of these measures in reducing the pressure rises during machine studies and during physics runs are discussed...

  9. Development of NEG Coating for RHIC Experimental Beamtubes

    CERN Document Server

    Weiss, Daniel; Hseuh Hsiao Chaun; Todd, Robert J

    2005-01-01

    As RHIC beam intensity increases beyond original scope, pressure rises in some regions have been observed. The luminosity limiting pressure rises are associated with electron multi-pacting, electron stimulated desorption and beam induced desorption. Non-Evaporable Getter (NEG) coated beampipes have been proven effective to suppress pressure rise in synchrotron radiation facilities. Standard beampipes have been NEG coated by a vendor and added to many RHIC UHV regions. BNL is developing a cylindrical magnetron sputtering system to NEG coat special beryllium beampipes installed in RHIC experimental regions. It features a hollow, liquid cooled cathode producing power density of 500W/m and deposition rate of 5000 Angstrom/hr on 7.5cm OD beampipe. The cathode, a titanium tube partially covered with zirconium and vanadium ribbons, is oriented for horizontal coating of 4m long chambers. Ribbons and magnets are arranged to provide uniform sputtering distribution and deposited NEG composition. Vacuum performance of NE...

  10. A Model of RHIC Using the Unified Accelerator Libraries

    Energy Technology Data Exchange (ETDEWEB)

    Pilat, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trahern, C. G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Malitsky, N. [Cornell Univ., Ithaca, NY (United States)

    1998-01-01

    The Unified Accelerator Library (UAL) is an object oriented and modular software environment for accelerator physics which comprises an accelerator object model for the description of the machine (SMF, for Standard Machine Format), a collection of Physics Libraries, and a Perl inte,face that provides a homo­geneous shell for integrating and managing these components. Currently available physics libraries include TEAPOT++, a collection of C++ physics modules conceptually derived from TEAPOT, and DNZLIB, a differential algebra package for map generation. This software environment has been used to build a flat model of RHIC which retains the hierarchical lat­tice description while assigning specific characteristics to individual elements, such as measured field har­monics. A first application of the model and of the simulation capabilities of UAL has been the study of RHIC stability in the presence of siberian snakes and spin rotators. The building blocks of RHIC snakes and rotators are helical dipoles, unconventional devices that can not be modeled by traditional accelerator phys­ics codes and have been implemented in UAL as Taylor maps. Section 2 describes the RHIC data stores, Section 3 the RHIC SMF format and Section 4 the RHIC spe­cific Perl interface (RHIC Shell). Section 5 explains how the RHIC SMF and UAL have been used to study the RHIC dynamic behavior and presents detuning and dynamic aperture results. If the reader is not familiar with the motivation and characteristics of UAL, we include in the Appendix an useful overview paper. An example of a complete set of Perl Scripts for RHIC simulation can also be found in the Appendix.

  11. A sub-Kelvin cryogen-free EPR system.

    Science.gov (United States)

    Melhuish, Simon J; Stott, Chloe; Ariciu, Ana-Maria; Martinis, Lorenzo; McCulloch, Mark; Piccirillo, Lucio; Collison, David; Tuna, Floriana; Winpenny, Richard

    2017-09-01

    We present an EPR instrument built for operation at Q band below 1K. Our cryogen-free Dewar integrates with a commercial electro-magnet and bridge. A description of the cryogenic and RF systems is given, along with the adaptations to the standard EPR experiment for operation at sub-Kelvin temperatures. As a first experiment, the EPR spectra of powdered Cr 12 O 9 (OH) 3 [Formula: see text] were measured. The sub-Kelvin EPR spectra agree well with predictions, and the performance of the sub-Kelvin system at 5K is compared to that of a commercial spectrometer. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. EVENT GENERATOR FOR RHIC SPIN PHYSICS

    International Nuclear Information System (INIS)

    SAITO, N.; SCHAEFER, A.

    1999-01-01

    This volume archives the reports from the RIKEN BNL Research Center workshop on ''Event Generator for RHIC Spin Physics II'' held during the week March 15, 1999 at Brookhaven National Laboratory. It was the second meeting on the subject following a first one in last September. This workshop has been initiated to establish a firm collaboration between theorists and experimentalists involved in RHIC spin physics with the aim of developing a reliable, high-precision event generator for RHIC spin physics. Needless to say, adequate event generators are indispensable tools for high energy physics programs in general, especially in the process of: planning the experimental programs; developing algorithms to extract the physics signals of interest; estimating the background in the extracted results, and connecting the final particle kinematics to the fundamental i.e. partonic level processes. Since RHIC is the first polarized collider, dedicated efforts are required to obtain a full-fledged event generator which describes spin dependent reactions in great detail

  13. ANALYSIS OF AVAILABILITY AND RELIABILITY IN RHIC OPERATIONS

    International Nuclear Information System (INIS)

    PILAT, F.; INGRASSIA, P.; MICHNOFF, R.

    2006-01-01

    RHIC has been successfully operated for 5 years as a collider for different species, ranging from heavy ions including gold and copper, to polarized protons. We present a critical analysis of reliability data for RHIC that not only identifies the principal factors limiting availability but also evaluates critical choices at design times and assess their impact on present machine performance. RHIC availability data are typical when compared to similar high-energy colliders. The critical analysis of operations data is the basis for studies and plans to improve RHIC machine availability beyond the 50-60% typical of high-energy colliders

  14. RHIC spin flipper AC dipole controller

    Energy Technology Data Exchange (ETDEWEB)

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  15. Feasibility Study of Cryogenic Cutting Technology by Using a Computer Simulation and Manufacture of Main Components for Cryogenic Cutting System

    International Nuclear Information System (INIS)

    Kim, Sung Kyun; Lee, Dong Gyu; Lee, Kune Woo; Song, Oh Seop

    2009-01-01

    Cryogenic cutting technology is one of the most suitable technologies for dismantling nuclear facilities due to the fact that a secondary waste is not generated during the cutting process. In this paper, the feasibility of cryogenic cutting technology was investigated by using a computer simulation. In the computer simulation, a hybrid method combined with the SPH (smoothed particle hydrodynamics) method and the FE (finite element) method was used. And also, a penetration depth equation, for the design of the cryogenic cutting system, was used and the design variables and operation conditions to cut a 10 mm thickness for steel were determined. Finally, the main components of the cryogenic cutting system were manufactures on the basis of the obtained design variables and operation conditions.

  16. HIGH-CURRENT ERL-BASED ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    BEN-ZVI, I.

    2005-01-01

    The design of an electron cooler must take into account both electron beam dynamics issues as well as the electron cooling physics. Research towards high-energy electron cooling of RHIC is in its 3rd year at Brookhaven National Laboratory. The luminosity upgrade of RHIC calls for electron cooling of various stored ion beams, such as 100 GeV/A gold ions at collision energies. The necessary electron energy of 54 MeV is clearly out of reach for DC accelerator system of any kind. The high energy also necessitates a bunched beam, with a high electron bunch charge, low emittance and small energy spread. The Collider-Accelerator Department adopted the Energy Recovery Linac (ERL) for generating the high-current, high-energy and high-quality electron beam. The RHIC electron cooler ERL will use four Superconducting RF (SRF) 5-cell cavities, designed to operate at ampere-class average currents with high bunch charges. The electron source will be a superconducting, 705.75 MHz laser-photocathode RF gun, followed up by a superconducting Energy Recovery Linac (ERL). An R and D ERL is under construction to demonstrate the ERL at the unprecedented average current of 0.5 amperes. Beam dynamics performance and luminosity enhancement are described for the case of magnetized and non-magnetized electron cooling of RHIC

  17. Experience with IBS-suppression lattice in RHIC

    International Nuclear Information System (INIS)

    Litvinenko, V.N.; Luo, Y.; Ptitsyn, V.; Satogata, T.; Tepikian, S.; Bai, M.; Bruno, D.; Cameron, P.; Connolly, R.; Della Penna, A.; Drees, A.; Fedotov, A.; Ganetis, G.; Hoff, L.; Louie, W.; Malitsky, N.; Marr, G.; Marusic, A.; Montag, C.; Pilat, F.; Roser, T.; Trbojevic, D.; Tsoupas, N.

    2008-01-01

    An intra-beam scattering (IBS) is the limiting factor of the luminosity lifetime for RHIC operating with heavy ions. In order to suppress the IBS we designed and implemented new lattice with higher betatron tunes. This lattice had been developed during last three years and had been used for gold ions in yellow ring of the RHIC during d-Au part of the RHIC Run-8. The use of this lattice allowed both significant increases in the luminosity lifetime and the luminosity levels via reduction of beta-stars in the IPS. In this paper we report on the development, the tests and the performance of IBS-suppression lattice in RHIC, including the resulting increases in the peak and the average luminosity. We also report on our plans for future steps with the IBS suppression

  18. A simulation study of linear coupling effects and their correction in RHIC

    International Nuclear Information System (INIS)

    Parzen, G.

    1992-11-01

    This paper describes a possible skew quadrupole correction system for linear coupling for the RHIC92 lattice. A simulation study has been done for the correction system. Results are given for the performance of the correction system, and the required strength of the skew quadruple correctors. An important effect of linear coupling in RHIC is to shift the tune ν x ν y , sometimes called tune splitting. Most of this tune splitting can be corrected with a two family skew quadrupole correction system. For RHIC92, the same 2 family correction system will work for all likely choices of β*. This was not the case for the RHIC91 lattice where different families of correctors were needed for different β*. The tune splitting described above which is corrected with a 2 family correction system is driven primarily by the ν x - ν y harmonic of the skew quadrupole field given by the field multipole αl. There are several other effects of linear coupling present which are driven primarily by the ν x + ν y harmonics of the skew quadrupole field, αl. These include the following: (1) A higher order residual tune shift that remains after correction with the 2 family correction system. This tune shift is roughly quadratic in αl; (2) Possible large changes in the beta functions; (3) Possible increase in the beam size at injection due to the beta function distortion and the emittance distortion at injection

  19. RHIC off-line computing

    International Nuclear Information System (INIS)

    Featherly, J.; Gibbard, B.; Gould, J.

    1993-01-01

    A report was prepared in Sept 1992, RHIC/DET Note 8, also known as ROCOCO, which estimated the various computing resources which will be required by the RHIC experimental program. A study has now been undertaken to review technical issues associated with supplying these resources. This study, organized by the HEP/NP Computing Group but including other appropriate participants, addresses questions of technologies, manpower, cost and schedule. The following document is an interim summary of this study both in terms of discussions which have occurred and initial conclusions reached

  20. Results from STAR experiment at RHIC

    Indian Academy of Sciences (India)

    We present some of the important experimental results from nucleus–nucleus collision studies carried out by the STAR experiment at Relativistic Heavy Ion Collider (RHIC). The results suggests that central Au+Au collisions at RHIC has produced a dense and rapidly thermalizing matter with initial energy densities above the ...

  1. A high performance DAC/DDS daughter module for the RHIC LLRF platform

    International Nuclear Information System (INIS)

    Hayes, T.; Harvey, M.; Narayan, G.; Severino, F.; Smith, K.S.; Yuan, S.

    2011-01-01

    The RHIC LLRF upgrade is a flexible, modular system. Output signals are generated by a custom designed XMC card with 4 high speed digital to analog (DAC) converters interfaced to a high performance field programmable gate array (FPGA). This paper discusses the hardware details of the XMC DAC board as well as the implementation of a low noise rf synthesizer with digital IQ modulation. This synthesizer also provides injection phase cogging and frequency hop rebucketing capabilities. A new modular RHIC LLRF system was recently designed and commissioned based on custom designed XMC cards. As part of that effort a high speed, four channel DAC board was designed. The board uses Maxim MAX5891 16 bit DACs with a maximum update rate of 600 Msps. Since this module is intended to be used for many different systems throughout the Collider Accelerator complex, it was designed to be as generic as possible. One major application of this DAC card is to implement digital synthesizers to provide drive signals to the various cavities at RHIC. Since RHIC is a storage ring with stores that typically last many hours, extremely low RF noise is a critical requirement. Synchrotron frequencies at RHIC range from a few hertz to several hundred hertz depending on the species and point in the acceleration cycle so close in phase noise is a major concern. The RHIC LLRF system uses the Update Link, a deterministic, high speed data link that broadcasts the revolution frequency and the synchronous phase angle. The digital synthesizers use this data to generate a properly phased analog drive signal. The synthesizers must also provide smooth phase shifts for cogging and support frequency shift rebucketing. One additional feature implemented in the FPGA is a digital waveform generator (WFG) that generates I and Q data pairs based on a user selected amplitude and phase profile as a function of time.

  2. CONTINUOUS ABORT GAP CLEANING AT RHIC

    International Nuclear Information System (INIS)

    DREES, A.; FLILLER, R.III.; FU, W.; MICHNOFF, R.

    2004-01-01

    Since the RHIC Au-Au run in the year 2001 the 200 MHz cavity system was used at storage and a 28 MHz system during injection and acceleration. The rebucketing procedure potentially causes a higher debunching rate of heavy ion beams in addition to amplifying debunching due to other mechanisms. At the end of a four hour store, debunched beam can easily account for more than 50% of the total beam intensity. This effect is even stronger with the achieved high intensities of the RHIC Au-Au run in 2004. A beam abort at the presence of a lot of debunched beam bears the risk of magnet quenching and experimental detector damage due to uncontrolled beam losses. Thus it is desirable to avoid any accumulation of debunched beam from the beginning of each store, in particular to anticipate cases of unscheduled beam aborts due to a system failure. A combination of a fast transverse kickers and the new 2-stage copper collimator system are used to clean the abort gap continuously throughout the store with a repetition rate of 1 Hz. This report gives. an overview of the new gap cleaning procedure and the achieved performance

  3. A VME based cryogenic data acquisition and control system (CRYO-DACS)

    International Nuclear Information System (INIS)

    Antony, Joby; Rajkumar; Datta, T.S.

    2005-01-01

    This report describes a newly developed VME based data acquisition and control system named CRYO-DACS for acquiring and controlling various analog and digital cryogenic parameters from equipment's like beam-line cryostats, Helium compressors, liquefier, cryogenic distribution line etc. A new central control room has been set-up for the remote controls and monitoring. The system monitors various analog parameters like temperature, pressure, vacuum and cryogenic fluid levels inside the cryostats and performs closed loop controls of cryogen valves. The hardware architecture of CRYO-DACS is multi-crate distributed VME, all linked by workstation clients in 100 Mb/s LAN for distributed logging, historical trending, analysis, alarm management and control GUIs. (author)

  4. First results from RHIC-PHENIX

    CERN Document Server

    Ghosh, T K; Adler, S S; Ajitanand, N N; Akiba, Y; Alexander, J; Aphecetche, L; Arai, Y; Aronson, S H; Averbeck, R; Awes, T C; Barish, K N; Barnes, P D; Barrette, J; Bassalleck, B; Bathe, S; Baublis, V; Bazilevsky, A; Belikov, S V; Bellaiche, F G; Belyaev, S T; Bennett, M J; Berdnikov, Yu A; Botelho, S S; Brooks, M L; Brown, D S; Bruner, N L; Bucher, D; Büsching, H; Bunce, G M; Burward-Hoy, J M; Butsyk, S; Carey, T A; Chand, P; Chang, J; Chang, W C; Chavez, L L; Chernichenko, S K; Chi, C Y; Chiba, J; Chiu, M; Choudhury, R K; Christ, T; Chujo, T; Chung, M S; Chung, P; Cianciolo, V; Cole, B A; D'Enterria, D G; Dávid, G; Delagrange, H; Denisov, A; Deshpande, A A; Desmond, E J; Dietzsch, O; Dinesh, B V; Drees, A; Durum, A A; Dutta, D; Ebisu, K; Efremenko, Yu V; Chenawi, K E; En-Yo, H; Esumi, S C; Ewell, L A; Ferdousi, T; Fields, D E; Fokin, S L; Fraenkel, Zeev; Franz, A; Frawley, A D; Fung, S Y; Garpman, S; Ghosh, T K; Glenn, A; Godoi, A L; Goto, Y; Greene, S V; Grosse-Perdekamp, M; Gupta, S K; Guryn, W; Gustafsson, Hans Åke; Haggerty, J S; Hamagaki, H; Hansen, A G; Hara, H; Hartouni, E P; Havano, R; Hayashi, N; He, X; Hemmick, T K; Heuser, J M; Hill, J C; Ho, D S; Homma, K; Hong, B; Hoover, A; Ichihara, T; Imai, K; Ippolitov, M S; Ishihara, M; Jacak, B V; Jang, W Y; Jia, J; Johnson, B M; Johnson, S C; Joo, K S; Kametani, S; Kang, J H; Kann, M; Kapoor, S S; Kelly, S; Khachaturov, B A; Khanzadeev, A V; Kikuchi, J; Kim, D J; Kim, H J; Kim, S Y; Kim, Y G; Kinnison, W W; Kistenev, E P; Kiyomichi, A; Klein-Bösing, C; Klinksiek, S A; Kochenda, L M; Kochetkov, D; Kochetkov, V; Köhler, D; Kohama, T; Kozlov, A; Kroon, P J; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R A; Lajoie, J G; Lauret, J; Lebedev, A; Lee, D M; Leitch, M J; Li, X H; Li, Z; Lim, D J; Liu, M X; Liu, X; Liu, Z; Maguire, C F; Mahon, J; Makdisi, Y I; Man'ko, V I; Mao, Y; Mark, S K; Markacs, S; Martínez, G; Marx, M D; Massaike, A; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E A; Merschmeyer, M; Messer, F; Messer, M; Miake, Y; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Muhlbacher, F; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagasaka, Y; Nagle, J L; Nakada, Y; Nandi, B K; Newby, J; Nikkinen, L; Nilsson, P O; Nishimura, S; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Ono, M; Onuchin, V A; Oskarsson, A; Österman, L; Otterlund, I; Oyama, K; Paffrath, L; Palounek, A P T; Pantuev, V S; Papavassiliou, V; Pate, S F; Peitzmann, Thomas; Petridis, A N; Pinkenburg, C H; Pisani, R P; Pitukhin, P; Plasil, F; Pollack, M E; Pope, K; Purschke, M L; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Rosati, M; Rose, A A; Ryu, S S; Saitô, N; Sakaguchi, A; Sakaguchi, T; Sako, H; Sakuma, T; Samsonov, V; Sangster, T C; Santo, R; Sato, H D; Sato, S; Sawada, S; Schlei, B R; Schutz, Y; Semenov, V; Seto, R; Shea, T K; Shein, I; Shibata, T A; Shigaki, K; Shiina, T; Shin, Y H; Sibiryak, Yu; Silvermyr, D; Sim, K S; Simon-Gillo, J; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sørensen, S; Stankus, P W; Starinsky, N; Steinberg, P; Stenlund, E; Ster, A; Stoll, S P; Sugioka, M; Sugitate, T; Sullivan, J P; Sumi, Y; Sun, Z; Suzuki, M; Takagui, E M; Taketani, A; Tamai, M; Tanaka, Y; Taniguchi, E; Tannenbaum, M J; Thomas, J; Thomas, J H; Thomas, T L; Tian, W; Tojo, J; Torii, H A; Towell, R S; Tserruya, Itzhak; Tsuruoke, H; Tsvetkov, A A; Tuli, S K; Tydesjo, H; Tyurin, N; Ushiroda, T; van Hecke, H; Velissaris, C; Velkovska, J; Velkovsky, M; Vingradov, A A; Volkov, M A; Vorobyov, A A; Vznuzdaev, E A; Wang, H; Watanabe, Y; White, S N; Witzig, C; Wohn, F K; Woody, C L; Xie, W; Yagi, K; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, Z; Zhou, S

    2001-01-01

    The PHENIX experiment consists of a large detector system located at the newly commissioned Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory. The primary goal of the PHENIX experiment is to look for signatures of the QCD prediction of a deconfined high-energy-density phase of nuclear matter and the quark gluon plasma. PHENIX started taking data for Au+Au collisions at square root (s/sub NN/)=130 GeV in June 2000. The signals from the beam-beam counter (BBC) and zero degree calorimeter (ZDC) are used to determine the centrality of the collision. A Glauber model reproduces the ZDC spectrum reasonably well to determine the participants in a collision. The charged particle multiplicity distribution from the first PHENIX paper is compared with the other RHIC experiment and the CERN and SPS results. Transverse momentum of photons are measured in the electro-magnetic calorimeter (EMCal) and preliminary results an presented. Particle identification is made by a time-of-flight (TOF) detecto...

  5. Conceptual design report for the University of Rochester cryogenic target delivery system

    International Nuclear Information System (INIS)

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J.; Bittner, D.N.; Hendricks, C.D.

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester's Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D 2 or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility

  6. Conceptual design report for the University of Rochester cryogenic target delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J. (General Atomics, San Diego, CA (United States)); Bittner, D.N.; Hendricks, C.D. (W.J. Schafer Associates, Livermore, CA (United States))

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester's Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D[sub 2] or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility.

  7. Conceptual design report for the University of Rochester cryogenic target delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J. [General Atomics, San Diego, CA (United States); Bittner, D.N.; Hendricks, C.D. [W.J. Schafer Associates, Livermore, CA (US)

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester`s Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D{sub 2} or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility.

  8. Ion optics of RHIC EBIS

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y.; Kuznetsov, G.

    2011-09-10

    RHIC EBIS has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  9. RHIC Proton Luminosity and Polarization Improvement

    International Nuclear Information System (INIS)

    Zhang, S. Y.

    2014-01-01

    The RHIC proton beam polarization can be improved by raising the Booster scraping, which also helps to reduce the RHIC transverse emittance, and therefore to improve the luminosity. By doing this, the beam-beam effect would be enhanced. Currently, the RHIC working point is constrained between 2/3 and 7/10, the 2/3 resonance would affect intensity and luminosity lifetime, and the working point close to 7/10 would enhance polarization decay in store. Run 2013 shows that average polarization decay is merely 1.8% in 8 hours, and most fills have the luminosity lifetime better than 14 hours, which is not a problem. Therefore, even without beam-beam correction, there is room to improve for RHIC polarization and luminosity. The key to push the Booster scraping is to raise the Booster input intensity; for that, two approaches can be used. The first is to extend the LINAC tank 9 pulse width, which has been successfully applied in run 2006. The second is to raise the source temperature, which has been successfully applied in run 2006 and run 2012.

  10. The DAΦNE cryogenic system

    International Nuclear Information System (INIS)

    Modena, M.

    1997-12-01

    The DAΦNE Project utilises superconductivity technology for a total of six superconducting magnets: the two Experiment magnets (KLOE and FINUDA) and the four Compensator Solenoid magnets needed to compensate the magnetic effect of the Experiment magnets on the electron and positron beams. This effect, on beams of 510 MeV (nominal DAΦNE Energy), is expected to be relevant, especially with the aim of achieving a very high luminosity, which is the main target of the Project. The KLOE superconducting magnet has two possible working positions: the first in the DAΦNE Hall, when the Experiment will be in operation, and the second one in the KLOE Assembly Hall. This second position is the first to be utilised for the KLOE magnet Acceptance Test and magnetic field mapping, prior to the mounting of all the experimental apparatus inside the magnet. This note intends to present the DAΦNE Cryogenic System and how the authors have converged to the definition of a common Cryogenic System compatible with all the six superconducting magnets

  11. Advanced monitoring, fault diagnostics, and maintenance of cryogenic systems

    CERN Document Server

    Girone, Mario; Pezzetti, Marco

    In this Thesis, advanced methods and techniques of monitoring, fault diagnostics, and predictive maintenance for cryogenic processes and systems are described. In particular, in Chapter 1, mainstreams in research on measurement systems for cryogenic processes are reviewed with the aim of dening key current trends and possible future evolutions. Then, in Chapter 2, several innovative methods are proposed. A transducer based on a virtual ow meter is presented for monitoring helium distribution and consumption in cryogenic systems for particle accelerators [1]. Furthermore, a comprehensive metrological analysis of the proposed transducer for verifying the metrological performance and pointing out most critical uncertainty sources is described [2]. A model-based method for fault detection and early-stage isolation, able to work with few records of Frequency Response Function (FRF) on an unfaulty compressor, is then proposed [3]. To enrich the proposal, a distributed diagnostic procedure, based on a micro-genetic...

  12. New capabilities in the HENP grand challenge storage access system and its application at RHIC

    International Nuclear Information System (INIS)

    Bernardo, L.; Gibbard, B.; Malon, D.; Nordberg, H.; Olson, D.; Porter, R.; Shoshani, A.; Sim, A.; Vaniachine, A.; Wenaus, T.; Wu, K.; Zimmerman, D.

    2000-01-01

    The High Energy and Nuclear Physics Data Access Grand Challenge project has developed an optimizing storage access software system that was prototyped at RHIC. It is currently undergoing integration with the STAR experiment in preparation for data taking that starts in mid-2000. The behavior and lessons learned in the RHIC Mock Data Challenge exercises are described as well as the observed performance under conditions designed to characterize scalability. Up to 250 simultaneous queries were tested and up to 10 million events across 7 event components were involved in these queries. The system coordinates the staging of ''bundles'' of files from the HPSS tape system, so that all the needed components of each event are in disk cache when accessed by the application software. The caching policy algorithm for the coordinated bundle staging is described in the paper. The initial prototype implementation interfaced to the Objectivity/DB. In this latest version, it evolved to work with arbitrary files and use CORBA interfaces to the tag database and file catalog services. The interface to the tag database and the MySQL-based file catalog services used by STAR are described along with the planned usage scenarios

  13. On-board cryogenic system for magnetic levitation of trains

    Energy Technology Data Exchange (ETDEWEB)

    Baldus, S A.W.; Kneuer, R; Stephan, A

    1975-02-01

    An experimental car based on electrodynamic levitation with superconducting magnets was developed and manufactured with an on-board cryogenic system. This system has to cope with new conditions and cryogenic tasks. It can be characterized in principle by liquid helium heat exchanger units, compressors, transfer lines, rotable and movable couplings and junctions. All transfer lines and couplings consist of three coaxial ducts for three different streams. Processes and components are discussed, and a brief description of the first results for the whole system under simulation conditions is given.

  14. Remote monitoring system for the cryogenic system of superconducting magnets in the SuperKEKB interaction region

    Science.gov (United States)

    Aoki, K.; Ohuchi, N.; Zong, Z.; Arimoto, Y.; Wang, X.; Yamaoka, H.; Kawai, M.; Kondou, Y.; Makida, Y.; Hirose, M.; Endou, T.; Iwasaki, M.; Nakamura, T.

    2017-12-01

    A remote monitoring system was developed based on the software infrastructure of the Experimental Physics and Industrial Control System (EPICS) for the cryogenic system of superconducting magnets in the interaction region of the SuperKEKB accelerator. The SuperKEKB has been constructed to conduct high-energy physics experiments at KEK. These superconducting magnets consist of three apparatuses, the Belle II detector solenoid, and QCSL and QCSR accelerator magnets. They are each contained in three cryostats cooled by dedicated helium cryogenic systems. The monitoring system was developed to read data of the EX-8000, which is an integrated instrumentation system to control all cryogenic components. The monitoring system uses the I/O control tools of EPICS software for TCP/IP, archiving techniques using a relational database, and easy human-computer interface. Using this monitoring system, it is possible to remotely monitor all real-time data of the superconducting magnets and cryogenic systems. It is also convenient to share data among multiple groups.

  15. Elastic proton-proton scattering at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Yip, K.

    2011-09-03

    Here we describe elastic proton+proton (p+p) scattering measurements at RHIC in p+p collisions with a special optics run of {beta}* {approx} 21 m at STAR, at the center-of-mass energy {radical}s = 200 GeV during the last week of the RHIC 2009 run. We present preliminary results of single and double spin asymmetries.

  16. Laser ion source with long pulse width for RHIC-EBIS

    International Nuclear Information System (INIS)

    Kondo, K.; Kanesue, T.; Okamura, M.

    2011-01-01

    The Electron Beam Ion Source (EBIS) at Brookhaven National Laboratory is a new heavy ion-projector for RHIC and NASA Space Radiation Laboratory. Laser Ion Source (LIS) with solenoid can supply many kinds of ion from solid targets and is suitable for long pulse length with low current as ion provider for RHIC-EBIS. In order to understand a plasma behavior for fringe field of solenoid, we measure current, pulse width and total ion charges by a new ion probe. The experimental result indicates that the solenoid confines the laser ablation plasma transversely. Laser ion source needs long pulse length with limited current as primary ion provider for RHIC-EBIS. New ion probe can measure current distribution for the radial positions along z axis. The beam pulse length is not effected by magnetic field strength. However, the currents and charges decay with the distance from the end of solenoid. These results indicate that solenoid field has important role for plasma confinement not longitudinally but transversely and solenoid is able to have long pulse length with sufficient total ion charges. Moreover, the results are useful for a design of the extraction system for RHIC-EBIS.

  17. Cryogenic systems for detectors and particle accelerators

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1988-01-01

    It's been one hundred years since the first successful experiments were carried out leading to the liquefaction of oxygen which birthed the field of cryogenics and about sixty years since cryogenics went commercial. Originally, cryogenics referred to the technology and art of producing low temperatures but today the definition adopted by the XII Congress of the International Institute of Refrigeration describes cryogenics as the study of phenomena, techniques, and concepts occurring at our pertaining to temperatures below 120 K. Modern acceptance of the importance and use of cryogenic fluids continues to grow. By far, the bulk of cryogenic products are utilized by industry for metal making, agriculture, medicine, food processing and as efficient storage of fuels. Cryogenics has found many uses in the scientific community as well, enabling the development of ultra low noise amplifiers, fast cold electronics, cryopumped ultra high vacuums, the production of intense magnetic fields and low loss power transmission through the sue of cryogenically cooled superconductors. High energy physic research has been and continues to use cryogenic hardware to produce liquids used as detector targets and to produce refrigeration necessary to cool superconducting magnets to design temperature for particle accelerator applications. In fact, today's super accelerators achieve energies that would be impossible to reach with conventional copper magnets, demonstrating that cryogenics has become an indispensable ingredient in today's scientific endeavors

  18. Physics and experiments at RHIC

    International Nuclear Information System (INIS)

    Young, G.R.

    1995-01-01

    The Relativistic Heavy Ion Collider (RHIC), under construction at Brookhaven National Laboratory, will be the site of a series of experiments seeking to discover the quark-gluon plasma and elucidate its properties. Several observables should exhibit characteristic behaviors if a quark-gluon plasma is indeed created in the laboratory. Four experiments are now under construction for RHIC to measure certain of these observables over kinematic ranges where effects due to quark-gluon plasma formation should be manifest

  19. 900-L liquid xenon cryogenic system operation for the MEG experiment

    CERN Document Server

    Haruyama, T; Mihara, S; Hisamatsu, Y; Iawamoto, W; Mori, T; Nishiguchi, H; Otani, W; Sawada, R; Uchiyama, Y; Nishitani, T

    2009-01-01

    A cryogenic system for the MEG (muon rare decay) experiment has started operation at the Paul Sherrer Institute in Zurich. The main part of the MEG detector is the 900-L liquid xenon calorimeter for gamma ray detection, equipped with 850 photo multipliers directly immersed in liquid xenon. A 200 W pulse tube cryocooler enabled LN2-free operation of this calorimeter. A liquid purification system; using a liquid pump and a zero boil-off 1000-L cryogenic buffer dewar is also included in the system. The first entire engineering run was carried out in November-December 2007 and satisfactory cryogenic performances were confirmed.

  20. Cryogenic system for VECC K500 superconducting cyclotron

    CERN Document Server

    Pal, G; Bhattacharyya, T K; Bhandari, R K

    2009-01-01

    VEC Centre, Kolkata in India is at an advanced stage of commissioning a K500 superconducting cyclotron. The superconducting coil of the magnet for cyclotron is cooled by liquid helium. Three liquid helium cooled cryopanels, placed inside the Dees of the radiofrequency system, maintain the vacuum in the acceleration region of the superconducting cyclotron. The cryogenic system for magnet for cyclotron has been tested by cooling the coil and energizing the magnet. The cryogenic system for cryopanels has also been tested. Heater and temperature sensor were placed on the liquid helium cold head for cryopanel. The temperature of the cold head was observed to be below 20 K upto a heat load of 11.7 watt.

  1. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. (China)

    2014-01-29

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  2. RHIC spin physics

    International Nuclear Information System (INIS)

    Bunce, G.

    1994-01-01

    The physics potential of colliding beams of protons, polarized either longitudinally or transversely, at RHIC is remarkable. A luminosity of L = 2 x 10 32 cm -2 with 70% polarized beams will be available with up to 250 GeV energy in each beam. The proposal to collide polarized protons in RHIC was submitted in August 1992 and approved in October 1993. We have funding for R ampersand D on Siberian Snakes, so that RHIC will be able to accelerate polarized protons early in its program. The expected date of the first heavy ion collisions is 1999. The spin physics program includes measurement of gluon and sea quark polarization in the longitudinally polarized proton, measurement and then application of parity violation in W and Z production, measurement of hard scattering parton-parton asymmetries, and quark polarization or transversity in transversely polarized protons. Single spin asymmetries allow sensitive searches for parity violation (longitudinal polarization), and correlations between quark spin and gluons (transverse). Probes include direct photons (to P T = 20 GeV/c), jets (to P T > 50 GeV/c), Drell-Yan pairs to M ell ell = 9 GeV, W ± , Z. This program is described in our Particle World paper. Here we will emphasize the new information included in our Update, given to the Brookhaven PAC this September

  3. RHIC spin physics

    International Nuclear Information System (INIS)

    Bunce, G.

    1993-01-01

    The physics potential of colliding beams of protons, polarized either longitudinally or transversely, at RHIC is remarkable. A luminosity of L = 2 x 10 32 cm -2 sec -1 with 70% polarized beams will be available with up to 250 GeV energy in each beam. The proposal to collide polarized protons in RHIC was submitted in August 1992 and approved in October 1993, just after this workshop. The collaboration has been encouraged to complete R ampersand D on Siberian Snakes, so that RHIC will be able to accelerate polarized protons early in its program. The expected date of the first heavy ion collisions is 1999. The spin physics program includes measurement of gluon and sea quark polarization in the longitudinally polarized proton, measurement and then application of parity violation in W and Z production, measurement of hard scattering parton-parton asymmetries, and quark polarization or transversity in transversely polarized protons. Single spin asymmetries allow sensitive searches for parity violation (longitudinal polarization), and correlations between quark spin and gluons (transverse). Probes include direct photons (to p T = 20 GeV/c), jets (to p T > 50 GeV/c), Drell-Yan pairs (to m ll = 9 GeV), W +/- , Z. Here, the collaboration emphasizes the new information included in the Update, given to the Brookhaven PAC this September

  4. Thermodynamic Vent System for an On-Orbit Cryogenic Reaction Control Engine

    Science.gov (United States)

    Hurlbert, Eric A.; Romig, Kris A.; Jimenez, Rafael; Flores, Sam

    2012-01-01

    A report discusses a cryogenic reaction control system (RCS) that integrates a Joule-Thompson (JT) device (expansion valve) and thermodynamic vent system (TVS) with a cryogenic distribution system to allow fine control of the propellant quality (subcooled liquid) during operation of the device. It enables zero-venting when coupled with an RCS engine. The proper attachment locations and sizing of the orifice are required with the propellant distribution line to facilitate line conditioning. During operations, system instrumentation was strategically installed along the distribution/TVS line assembly, and temperature control bands were identified. A sub-scale run tank, full-scale distribution line, open-loop TVS, and a combination of procured and custom-fabricated cryogenic components were used in the cryogenic RCS build-up. Simulated on-orbit activation and thruster firing profiles were performed to quantify system heat gain and evaluate the TVS s capability to maintain the required propellant conditions at the inlet to the engine valves. Test data determined that a small control valve, such as a piezoelectric, is optimal to provide continuously the required thermal control. The data obtained from testing has also assisted with the development of fluid and thermal models of an RCS to refine integrated cryogenic propulsion system designs. This system allows a liquid oxygenbased main propulsion and reaction control system for a spacecraft, which improves performance, safety, and cost over conventional hypergolic systems due to higher performance, use of nontoxic propellants, potential for integration with life support and power subsystems, and compatibility with in-situ produced propellants.

  5. Helium release rates and ODH calculations from RHIC magnet cooling line failure

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, C.J.; Than, Y.; Tuozzolo, J.

    2011-03-28

    A catastrophic failure of the magnet cooling lines, similar to the LHC superconducting bus failure incident, could discharge cold helium into the RHIC tunnel and cause an Oxygen Deficiency Hazard (ODH) problem. A SINDA/FLUINT{reg_sign} model, which simulated the 4.5K/4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the insulating vacuum volumes and discharging via the reliefs into the RHIC tunnel, had been developed. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces are included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Results, including helium discharge rates, helium inventory loss, and the resulting oxygen concentration in the RHIC tunnel area, are reported. Good agreement had been achieved when comparing the simulation results, a RHIC sector depressurization test measurement, and some simple analytical calculations.

  6. A simulation study of linear coupling effects and their correction in RHIC

    International Nuclear Information System (INIS)

    Parzen, G.

    1993-01-01

    This paper describes a possible skew quadrupole correction system for linear coupling effects for the RHIC92 lattice. A simulation study has been done for this correction system. Results are given for the performance of the correction system and the required strength of the skew quadrupole corrections. The location of the correctors is discussed. For RHIC92, it appears possible to use the same 2 family correction system for all the likely choices of β*. The simulation study gives results for the residual tune splitting that remains after correction with a 2 family correction system. It also gives results for the beta functions before and after correction

  7. Conceptual design of a quadrupole magnet for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Witte, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    eRHIC is a proposed upgrade to the existing Relativistic Heavy Ion Collider (RHIC) hadron facility at Brookhaven National Laboratory, which would allow collisions of up to 21 GeV polarized electrons with a variety of species from the existing RHIC accelerator. eRHIC employs an Energy Recovery Linac (ERL) and an FFAG lattice for the arcs. The arcs require open-midplane quadrupole magnets of up to 30 T/m gradient of good field quality. In this paper we explore initial quadrupole magnet design concepts based on permanent magnetic material which allow to modify the gradient during operation.

  8. Operation of large cryogenic systems

    International Nuclear Information System (INIS)

    Rode, C.H.; Ferry, B.; Fowler, W.B.; Makara, J.; Peterson, T.; Theilacker, J.; Walker, R.

    1985-06-01

    This report is based on the past 12 years of experiments on R and D and operation of the 27 kW Fermilab Tevatron Cryogenic System. In general the comments are applicable for all helium plants larger than 1000W (400 l/hr) and non mass-produced nitrogen plants larger than 50 tons per day. 14 refs., 3 figs., 1 tab

  9. Cryogen Safety Course 8876

    Energy Technology Data Exchange (ETDEWEB)

    Glass, George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-13

    Cryogenics (from the Greek word κρvoζ, meaning frost or icy cold) is the study of the behavior of matter at very cold temperatures. The purpose of this course is to provide trainees with an introduction to cryogen use, the hazards and potential accidents related to cryogen systems, cryogen safety components, and the requirements that govern the design and use of cryogen systems at Los Alamos National Laboratory (LANL). The knowledge you gain will help you keep your workplace safe for yourself and your coworkers.

  10. High luminosity polarized proton collisions at RHIC

    International Nuclear Information System (INIS)

    Roser, T.

    2001-01-01

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) provides the unique opportunity to collide polarized proton beams at a center-of-mass energy of up to 500 GeV and luminosities of up to 2 x 10 32 cm -2 s -1 . Such high luminosity and high energy polarized proton collisions will open up the possibility of studying spin effects in hard processes. However, the acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. After successful operation of RHIC with gold beams polarized protons from the AGS have been successfully injected into RHIC and accelerated using a full Siberian snakes built from four superconducting helical dipoles. A new high energy proton polarimeter was also successfully commissioned. Operation with two snakes per RHIC ring is planned for next year

  11. Design and construction of the SSCL magnet test laboratory cryogenic systems

    International Nuclear Information System (INIS)

    Freeman, M.A.; Kobel, T.A.

    1992-01-01

    The intent of this document is to provide a brief summary of the execution, by Process Systems International, Inc. (PSI), of the Design and Construction of the SSCL Magnet Test Laboratory Cryogenic Systems. This $30 million project requires the expenditure of over 200,000 manhours and the procurement of $17 million in materials within a two year period. SSC magnets will be performance tested at the Magnet Test Laboratory (MTL) and the Accelerator System String Test (ASST) facility under conditions simulating the environment of the SSC main ring. The cryogenic system consists of test stands (five for MTL, one for ASST) and the associated equipment including cryogenic storage, purification, thermal conditioning, and helium refrigeration necessary to support the test program

  12. Design and development of a device management platform for EAST cryogenic system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhiwei, E-mail: zzw@ipp.ac.cn; Lu, Xiaofei, E-mail: xiaofeilu@ipp.ac.cn; Zhuang, Ming, E-mail: zhm@ipp.ac.cn; Hu, Liangbing, E-mail: huliangbing@ipp.ac.cn; Xia, Genhai, E-mail: xgh@ipp.ac.cn

    2014-05-15

    Highlights: • A device management platform for EAST cryogenic system based on DCS is designed. • This platform enhances the integrity and continuity of system device information. • It can help predictive maintenance and device management decision. - Abstract: EAST cryogenic system is one of the critical sub-systems of the EAST tokamak device. It is a large scale helium cryoplant, which adopts distributed control system to realize monitoring and control of the cryogenic process and devices. However, the maintenance and management of most field devices are still in the corrective maintenance or traditional preventive maintenance stage. Under maintained or over maintained problems widely exist, which could cause devices fault and increase operation costs. Therefore, a device management platform is proposed for a safe and steady operation as well as fault diagnosis and predictive maintenance of EAST cryogenic system. This paper presents the function design and architecture design of the cryogenic device management platform. This platform is developed based on DeltaV DCS and acquires monitoring data through OPC protocol. It consists of three pillars, namely device information management, device condition management, and device performance monitoring. The development and implementation of every pillar are illustrated in detail in this paper. Test results and discussions are presented in the end.

  13. Operational present status and reliability analysis of the upgraded EAST cryogenic system

    Science.gov (United States)

    Zhou, Z. W.; Y Zhang, Q.; Lu, X. F.; Hu, L. B.; Zhu, P.

    2017-12-01

    Since the first commissioning in 2005, the cryogenic system for EAST (Experimental Advanced Superconducting Tokamak) has been cooled down and warmed up for thirteen experimental campaigns. In order to promote the refrigeration efficiencies and reliability, the EAST cryogenic system was upgraded gradually with new helium screw compressors and new dynamic gas bearing helium turbine expanders with eddy current brake to improve the original poor mechanical and operational performance from 2012 to 2015. Then the totally upgraded cryogenic system was put into operation in the eleventh cool-down experiment, and has been operated for the latest several experimental campaigns. The upgraded system has successfully coped with various normal operational modes during cool-down and 4.5 K steady-state operation under pulsed heat load from the tokamak as well as the abnormal fault modes including turbines protection stop. In this paper, the upgraded EAST cryogenic system including its functional analysis and new cryogenic control networks will be presented in detail. Also, its operational present status in the latest cool-down experiments will be presented and the system reliability will be analyzed, which shows a high reliability and low fault rate after upgrade. In the end, some future necessary work to meet the higher reliability requirement for future uninterrupted long-term experimental operation will also be proposed.

  14. Cryogenics a textbook

    CERN Document Server

    Thipse, S S

    2013-01-01

    A Textbook covers lucidly various cryogenic applications including cryogenic engines and space and electronic applications. Importance of cryogenic engines in space propulsion, complete thermodynamic analysis of cryogenic systems with special emphasis on cryogenic cycles, Dewar vessels used to store cryogenic fluids and their applications in various industries have also been discussed in detail. Explanation of Superconductivity and its applications with a description of various Cryocoolers used in industry has also been provided with extensive details. Further technical information on cryogens has been specified alongwith the vacuum technology which has been sufficiently described with examples. Science of Cryonics has been elaborated and all aspects of technology related to functioning of cryogenic plants and their construction including valves, pipes has been incorporated in this book.

  15. Elliptic flow and incomplete equilibration at RHIC

    CERN Document Server

    Bhalerao, R S; Borghini, N; Ollitrault, Jean Yves

    2005-01-01

    We argue that RHIC data, in particular those on the anisotropic flow coefficients v_2 and v_4, suggest that the matter produced in the early stages of nucleus-nucleus collisions is incompletely thermalized. We interpret the parameter (1/S)(dN/dy), where S is the transverse area of the collision zone and dN/dy the multiplicity density, as an indicator of the number of collisions per particle at the time when elliptic flow is established, and hence as a measure of the degree of equilibration. This number serves as a control parameter which can be varied experimentally by changing the system size, the centrality or the beam energy. We provide predictions for Cu-Cu collisions at RHIC as well as for Pb-Pb collisions at the LHC.

  16. Nuclear Effects on Heavy Boson Production at RHIC and LHC

    CERN Document Server

    Zhang, X; Zhang, Xiaofei; Fai, George

    2002-01-01

    We predict W and Z transverse momentum distributions from proton-proton and nuclear collisions at RHIC and LHC. A resummation formalism with power corrections to the renormalization group equations is used. The dependence of the resummed QCD results on the non-perturbative input is very weak for the systems considered. Shadowing effects are discussed and found to be unimportant at RHIC, but important for LHC. We study the enhancement of power corrections due to multiple scattering in nuclear collisions and numerically illustrate the weak effects of the dependence on the nuclear mass.

  17. Cryogenic system of steady state superconducting Tokamak SST-1: Operational experience and controls

    International Nuclear Information System (INIS)

    Sarkar, B.; Tank, Jignesh; Panchal, Pradip; Sahu, A.K.; Bhattacharya, Ritendra; Phadke, Gaurang; Gupta, N.C.; Gupta, Girish; Shah, Nitin; Shukla, Pawan; Singh, Manoj; Sonara, Dasarath; Sharma, Rajiv; Saradha, S.; Patel, J.C.; Saxena, Y.C.

    2006-01-01

    The cryogenic system of SST-1 consists of the helium cryogenic system and the nitrogen cryogenic system. The main components of the helium cryogenic system are (a) 1.3 kW helium refrigerator/liquefier (HRL) and (b) warm gas management system (WGM), where as, the nitrogen cryogenic system called as liquid nitrogen (LN 2 ) management system consists of storage tanks and a distribution system. The helium flow distribution and control to different sub-systems is achieved by the integrated flow distribution and control (IFDC) system. The HRL has been commissioned and operated for performing a single toroidal field coil test as well as for the first commissioning of SST-1 superconducting-magnets up to 68 K. Analysis of the results shows that the compressor and turbine parameters of the HRL, namely, the speed and pressure are very stable during operation of the HRL, confirming to the reliability in control of thermo-dynamic parameters of the system. The thermal shield of the SST-1 cryostat consists of ten different types of panels, which have been cooled down to the minimum temperature of 80 K and maintained during the first commissioning of SST-1. The operation and controls of the LN2 management system have been found to be as per the design consideration

  18. Advantages of polarization experiments at RHIC

    International Nuclear Information System (INIS)

    Underwood, D.G.

    1991-01-01

    We point out various spin experiments that could be done if the polarized beam option is pursued at RHIC. The advantages of RHIC for investigating several current and future physics problems are discussed. In particular, the gluon spin dependent structure function of the nucleon could be measured cleanly and systematically. Relevant experience developed in conjunction with the Fermilab Polarized Beam program is also presented

  19. COMMISSIONING CNI PROTON POLARIMETERS IN RHIC

    International Nuclear Information System (INIS)

    HUANG, H.; BRAVAR, A.; LI, Z.; MACKAY, W.W.; MAKDISI, Y.; RESCIA, S.; ROSER, T.; SURROW, B.; BUNCE, G.; DESHPANDE, A.; GOTO, Y.; ET AL

    2002-01-01

    Two polarimeters based on proton carbon elastic scattering in the Coulomb Nuclear Interference (CNI) region have been installed and commissioned in the Blue and Yellow rings of RHIC during the first RHIC polarized proton collider run. Each polarimeter consists of ultra-thin carbon targets and six silicon detectors. With newly developed wave form digitizers, they provide fast and reliable polarization information for both rings

  20. Parity violation experiments at RHIC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1993-01-01

    With longitudinally polarized protons at RHIC, even a 1 month dedicated run utilizing both approved major detectors could produce a significant search for new physics in hadron collisions via parity violation. Additionally, in the energy range of RHIC, large ''conventional'' parity violating effects are predicted due to the direct production of the weak bosons W ± and Z 0 . One can even envision measurements of the spin dependent sea-quark structure functions of nucleons using the single-spin parity violating asymmetry of W ± and Z 0

  1. Online helium inventory monitoring of JLab cryogenic systems

    Science.gov (United States)

    Hasan, N.; Knudsen, P.; Wright, M.

    2017-12-01

    There are five cryogenic plants at Jefferson Lab which support the LINAC, experiment hall end-stations and test facility. The majority of JLab’s helium inventory, which is around 15 tons, is allocated in the LINAC cryo-modules, with the majority of the balance of helium distributed at the cryogenic-plant level mainly as stored gas and liquid for stable operation. Due to the organic evolution of the five plants and independent actions within the experiment halls, the traditional inventory management strategy suffers from rapid identification of potential leaks. This can easily result in losses many times higher than the normally accepted (average) loss rate. A real-time program to quickly identify potential excessive leakage was developed and tested. This program was written in MATLAB© for portability, easy diagnostics and modification. It interfaces directly with EPICS to access the cryogenic system state, and with and NIST REFPROP© for real fluid properties. This program was validated against the actual helium offloaded into the system. The present paper outlines the details of the inventory monitoring program, its validation and a sample of the achieved results.

  2. Cryogenic Liquid Sample Acquisition System for Remote Space Applications

    Science.gov (United States)

    Mahaffy, Paul; Trainer, Melissa; Wegel, Don; Hawk, Douglas; Melek, Tony; Johnson, Christopher; Amato, Michael; Galloway, John

    2013-01-01

    There is a need to acquire autonomously cryogenic hydrocarbon liquid sample from remote planetary locations such as the lakes of Titan for instruments such as mass spectrometers. There are several problems that had to be solved relative to collecting the right amount of cryogenic liquid sample into a warmer spacecraft, such as not allowing the sample to boil off or fractionate too early; controlling the intermediate and final pressures within carefully designed volumes; designing for various particulates and viscosities; designing to thermal, mass, and power-limited spacecraft interfaces; and reducing risk. Prior art inlets for similar instruments in spaceflight were designed primarily for atmospheric gas sampling and are not useful for this front-end application. These cryogenic liquid sample acquisition system designs for remote space applications allow for remote, autonomous, controlled sample collections of a range of challenging cryogenic sample types. The design can control the size of the sample, prevent fractionation, control pressures at various stages, and allow for various liquid sample levels. It is capable of collecting repeated samples autonomously in difficult lowtemperature conditions often found in planetary missions. It is capable of collecting samples for use by instruments from difficult sample types such as cryogenic hydrocarbon (methane, ethane, and propane) mixtures with solid particulates such as found on Titan. The design with a warm actuated valve is compatible with various spacecraft thermal and structural interfaces. The design uses controlled volumes, heaters, inlet and vent tubes, a cryogenic valve seat, inlet screens, temperature and cryogenic liquid sensors, seals, and vents to accomplish its task.

  3. COOLING STAGES OF CRYOGENIC SYSTEMS

    OpenAIRE

    Троценко, А. В.

    2011-01-01

    The formalized definition for cooling stage of low temperature system is done. Based on existing information about the known cryogenic unit cycles the possible types of cooling stages are single out. From analyses of these stages their classification by various characteristics is suggested. The results of thermodynamic optimization of final throttle stage of cooling, which are used as working fluids helium, hydrogen and nitrogen, are shown.

  4. Advantages of polarization experiments at RHIC

    International Nuclear Information System (INIS)

    Underwood, D.G.

    1990-01-01

    We point out various spin experiments that could be done if the polarized beam option is pursued at RHIC. The advantages of RHIC for investigating several current and future physics problems are discussed. In particular, the gluon spin dependent structure function of the nucleon could be measured cleanly and systematically. Relevant experience developed in conjunction with the Fermilab Polarized Beam program is also presented. 8 refs., 2 tabs

  5. First Operational Experience and Performance Optimization of the ATLAS Magnet Cryogenic System

    CERN Document Server

    Delruelle, N; Dudarev, A; Passardi, G; Ten Kate, H H J

    2012-01-01

    The ATLAS magnet system, comprising a superconducting central solenoid and three superconducting toroids, has been successfully ramped up for the first time to the nominal operational current of 20.4 kA on 4th August 2008. Since then, new cryogenic operational challenges have been raised, like the smoothing of steady-state parameters, the enhancing of transient procedures to minimize thermal shocks on the magnet cold masses, the optimization of the complex cryogenic system in order to reduce the compressors electric consumption and finally how to avoid regular clogging of the shield refrigerator by water contamination. This paper presents the heat load identification of the various cryogenic sub-systems done at 4.5 K and how one of these loads was reduced, what was gained - in term of electrical consumption - by tuning the turbines settings of the main refrigerator and finally the first consolidation of the cryogenic system implemented in order to minimize the detector downtime during LHC beam runs.

  6. Installation and commissioning of a cryogen distribution system for the TPS project

    Science.gov (United States)

    Tsai, H. H.; Hsiao, F. Z.; Li, H. C.; Lin, M. C.; Wang, C.; Liao, W. R.; Lin, T. F.; Chiou, W. S.; Chang, S. H.; Chuang, P. S. D.

    2016-07-01

    A cryogen distribution system was installed and commissioned to transfer liquid nitrogen (LN2) and liquid helium (LHe) from storage dewars to superconducting radio-frequency (SRF) cavities for the 3-GeV Taiwan Photon Source (TPS) project. The cryogen distribution system comprises one distribution valve box (DVB), four control valve boxes (CVB) and seven sections of multichannel transfer line (MCL). The DVB distributes the LHe and LN2 to the CVB, and then to the SRF cavities through independent vacuum-jacketed transfer lines. The vaporized GHe and GN2 from the cryomodules are collected via the MCL. The cryogen distribution system was installed and commissioned from October 2014 to the end of March 2015. This paper presents the installation, pre-commissioning and commissioning of the cryogen distribution system, and describes the heat load test. Thermal acoustic oscillation (TAO) was found in the GHe process line; this phenomenon and its solution are also presented and discussed.

  7. Cryogenic system of the nuclotron - a new superconducting synchrotron

    International Nuclear Information System (INIS)

    Baldin, A.M.; Agapov, N.N.; Belushkin, V.A.; D'yachkov, E.I.; Khodzhibagiyan, H.G.; Kovalenko, A.D.; Makarov, L.G.; Matyushevsky, E.A.; Smirnov, A.A.

    1994-01-01

    The superconducting relativistic heavy ion accelerator was commissioned the last week of March in Dubna, and the first deuteron beam was circulated in the ring. The total cold mass of the magnetic system is about 80 tons. The magnet with a open-quotes coldclose quotes iron yoke and a hollow superconductor winding is refrigerated by a two-phase helium flow. All 160 magnets are connected in parallel with supply and return helium headers about 250 meters long. The cryogenic supply system is based on three helium refrigerators with a total capacity of 4.8 kW at 4.5 K. The results on the commissioning of the cryogenic system are presented

  8. On-board cryogenic system for magnetic levitation of trains

    International Nuclear Information System (INIS)

    Asztalos, St.; Baldus, W.; Kneuer, R.; Stephan, A.

    1974-01-01

    An experimental car based on electrodynamic levitation with superconducting magnets has been developed and manufactured by AEG, BBC, Siemens and other partners, together with Linde AG as the firm responsible for the on-board cryogenic system. This system has to cope with new conditions and cryogenic tasks. It can be characterized in principle by liquid helium heat exchanger units, compressors, transfer lines, rotatable and movable couplings and junctions. All transfer lines and couplings consist of three coaxial ducts for three different streams. This paper reports on processes and components. A brief description of the first results for the whole system under simulation conditions is given. (author)

  9. Design of the commissioning software for the AGS to RHIC transfer line

    International Nuclear Information System (INIS)

    Trahern, C.G.; Saltmarsh, C.; Satogata, T.; Kewisch, J.; Sathe, S.; D'ottavio, T.; Tepikian, S.; Shea, D.

    1995-01-01

    RHIC accelerator physicists and engineers have collaboratively specified the control system software for the commissioning of the AGS to RHIC transfer line (ATR) to occur in the fall of 1995. This paper summarizes the design and progress to date. The authors discuss the basic physics/engineering device model that they use to understand process and data flows, and describe the architecture and tools they will use to build the application level software

  10. A cryogenic system design for the international thermonuclear experimental reactor (ITER)

    International Nuclear Information System (INIS)

    Slack, D.S.

    1991-01-01

    A conceptual design for ITER was completed last year. The author developed a suitable cryogenic system for ITER as part of this conceptual design effort. An overview of the design is reported. Emphasis is on the fact that cryogenics is a mature science, and a system supporting ITER needs can be made from time-proven components without loss of efficiency or reliability. Because of the large size of the ITER cryogenic system, large numbers of compressors and expanders must be used. Very high reliability is assured by arranging these components in parallel banks where servicing of individual components can be done without interruption of operations. This and other ideas based on the author's experience with Mirror Fusion Test Facility (MFTF) operations are described. 5 refs., 3 figs

  11. Cryogenic Fluid Management Facility

    Science.gov (United States)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  12. Proposal for a cryogenic magnetic field measurement system for SSC dipole magnets

    International Nuclear Information System (INIS)

    Green, M.I.; Hansen, L.

    1991-03-01

    This proposal describes the research and development required, and the subsequent fabrication of, a system capable of making integrated magnetic multipole measurements of cryogenic 40-mm-bore SSC dipole magnets utilizing a cryogenic probe. Our experience and some preliminary studies indicate that it is highly unlikely that a 16-meter-long probe can be fabricated that will have a twist below several milliradians at cryogenic temperatures. We would anticipate a twist of several milliradians just as a result of cooldown stresses. Consequently, this proposal describes a segmented 16-meter-long probe, for which we intend to calibrate the phase of each segment to within 0.1 milliradians. The data for all segments will be acquired simultaneously, and integrated data will be generated from the vector sums of the individual segments. The calibration techniques and instrumentation required to implement this system will be described. The duration of an integral measurement at one current is expected to be under 10 seconds. The system is based on an extrapolation of the techniques used at LBL to measure cryogenic 1-meter models of SSC magnets with a cryogenic probe. It should be noted that the expansion of the dipole bore from 40 to 50 mm may make a warm-finger device practical at a cost of approximately one quarter of the cryogenic probe. A warm quadrupole measurement system can be based upon the same principles. 5 refs., 9 figs., 1 tab

  13. A compact 3 T all HTS cryogen-free MRI system

    Science.gov (United States)

    Parkinson, B. J.; Bouloukakis, K.; Slade, R. A.

    2017-12-01

    We have designed and built a passively shielded, cryogen-free 3 T 160 mm bore bismuth strontium calcium copper oxide HTS magnet with shielded gradient coils suitable for use in small animal imaging applications. The magnet is cooled to approximately 16 K using a two-stage cryocooler and is operated at 200 A. The magnet has been passively shimmed so as to achieve ±10 parts per million (ppm) homogeneity over a 60 mm diameter imaging volume. We have demonstrated that B 0 temporal stability is fit-for-purpose despite the magnet operating in the driven mode. The system has produced good quality spin-echo and gradient echo images. This compact HTS-MRI system is emerging as a true alternative to conventional low temperature superconductor based cryogen-free MRI systems, with much more efficient cryogenics since it operates entirely from a single phase alternating current electrical supply.

  14. Use of thermal sieve to allow optical testing of cryogenic optical systems.

    Science.gov (United States)

    Kim, Dae Wook; Cai, Wenrui; Burge, James H

    2012-05-21

    Full aperture testing of large cryogenic optical systems has been impractical due to the difficulty of operating a large collimator at cryogenic temperatures. The Thermal Sieve solves this problem by acting as a thermal barrier between an ambient temperature collimator and the cryogenic system under test. The Thermal Sieve uses a set of thermally controlled baffles with array of holes that are lined up to pass the light from the collimator without degrading the wavefront, while attenuating the thermal background by nearly 4 orders of magnitude. This paper provides the theory behind the Thermal Sieve system, evaluates the optimization for its optical and thermal performance, and presents the design and analysis for a specific system.

  15. The color class condensate RHIC and HERA

    CERN Document Server

    McLerran, L

    2002-01-01

    In this talk, I discuss a universal form of matter, the color glass condensate. It is this matter which composes the low x part of all hadronic wavefunctions. The experimental programs at RHIC and HERA, and future programs at LHC and RHIC may allow us to probe and study the properties of this matter. (8 refs).

  16. Design of the beam profile monitor system for the RHIC injection line

    International Nuclear Information System (INIS)

    Witkover, R.L.

    1995-01-01

    A video profile monitor (VPM) system will be used in the AGS-to-RHIC (ATR) transfer line to acquire single bunches transferred at 30 Hz. An array of 12 video cameras will be connected to 4 frame grabbers through a wide-band flux. Fast VME image processing boards will analyze a 120 x 120 subset of the image, generated by a 4 x 4 convolution or an ROI computation and sent over the network during the AGS recycle time. Details of the design, results of lab tests and studies with ion and proton beams will be presented

  17. Cryogenic system of the nuclotron - a new superconducting synchrotron

    International Nuclear Information System (INIS)

    Baldin, A.M.; Agapov, N.N.; Belushkin, V.A.

    1993-01-01

    The superconducting relativistic heavy ion accelerator was commissioned the last week of March in Dubna, and the first deuteron beam was circulated in the ring. The total cold mass of the magnetic system is about 80 tons. The magnet with a 'cold' iron yoke and a hollow superconductor winding is refrigerated by a two-phase helium flow. All 160 magnets are connected in parallel with supply and return helium headers about 250 meters long. The cryogenic supply system is based on three helium refrigerators with a total capacity of 4.8 kW at 4.5 K. The results on the commissioning of the cryogenic system are presented. 11 refs.; 5 figs.; 1 tab

  18. Cryogenics in CEBAF HMS dipole

    International Nuclear Information System (INIS)

    Bogensberger, P.; Ramsauer, F.; Brindza, P.; Wines, R.; Koefler, H.

    1994-01-01

    The paper will report upon the final design, manufacturing and tests of CEBAF's HMS Dipole cryogenic equipment. The liquid nitrogen circuits, the helium circuits and thermal insulation of the magnet will be addressed. The cryogenic reservoir and control module as an integral part of the HMS Dipole magnet will be presented. The construction, manufacturing, tests and final performance of the HMS Dipole cryogenic system will be reported. The LN 2 circuit and the He circuit are tied together by the control system for cool down, normal operation and standby. This system monitors proper temperature differences between both circuits and controls the cryogenic supply to meet the constraints. Implementation of the control features for the cryogenic system into the control system will be reported

  19. Performance of a proximity cryogenic system for the ATLAS central solenoid magnet

    CERN Document Server

    Doi, Y; Makida, Y; Kondo, Y; Kawai, M; Aoki, K; Haruyama, T; Kondo, T; Mizumaki, S; Wachi, Y; Mine, S; Haug, F; Delruelle, N; Passardi, Giorgio; ten Kate, H H J

    2002-01-01

    The ATLAS central solenoid magnet has been designed and constructed as a collaborative work between KEK and CERN for the ATLAS experiment in the LHC project The solenoid provides an axial magnetic field of 2 Tesla at the center of the tracking volume of the ATLAS detector. The solenoid is installed in a common cryostat of a liquid-argon calorimeter in order to minimize the mass of the cryostat wall. The coil is cooled indirectly by using two-phase helium flow in a pair of serpentine cooling line. The cryogen is supplied by the ATLAS cryogenic plant, which also supplies helium to the Toroid magnet systems. The proximity cryogenic system for the solenoid has two major components: a control dewar and a valve unit In addition, a programmable logic controller, PLC, was prepared for the automatic operation and solenoid test in Japan. This paper describes the design of the proximity cryogenic system and results of the performance test. (7 refs).

  20. Towards the conceptual design of the cryogenic system of the Future Circular Collider (FCC)

    Science.gov (United States)

    Chorowski, M.; Correia Rodrigues, H.; Delikaris, D.; Duda, P.; Haberstroh, C.; Holdener, F.; Klöppel, S.; Kotnig, C.; Millet, F.; Polinski, J.; Quack, H.; Tavian, L.

    2017-12-01

    Following the update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study considers several options for very high-energy hadron-hadron, electron-positron and hadron-electron colliders. From the cryogenics point of view, the most challenging option is the hadron-hadron collider (FCC-hh) for which the conceptual design of the cryogenic system is progressing. The FCC-hh cryogenic system will have to produce up to 120 kW at 1.8 K for the superconducting magnet cooling, 6 MW between 40 and 60 K for the beam-screen and thermal-shield cooling as well as 850 g/s between 40 and 290 K for the HTS current-lead cooling. The corresponding total entropic load represents about 1 MW equivalent at 4.5 K and this cryogenic system will be by far the largest ever designed. In addition, the total mass to be cooled down is about 250’000 t and an innovative cool-down process must be proposed. This paper will present the proposed cryogenic layout and architecture, the cooling principles of the main components, the corresponding cooling schemes, as well as the cryogenic plant arrangement and proposed process cycles. The corresponding required development plan for such challenging cryogenic system will be highlighted.

  1. Cryogenic system for the Energy Recovery Linac and vertical test facility at BNL

    International Nuclear Information System (INIS)

    Than, R.; Soria, V.; Lederle, D.; Orfin, P.; Porqueddu, R.; Talty, P.; Zhang, Y.; Tallerico, T.; Masi, L.

    2011-01-01

    A small cryogenic system and warm helium vacuum pumping system provides cooling to either the Energy Recovery Linac's (ERL) cryomodules that consist of a 5-cell cavity and an SRF gun or a large Vertical Test Dewar (VTD) at any given time. The cryogenic system consists of a model 1660S PSI piston plant, a 3800 liter storage dewar, subcooler, a wet expander, a 50 g/s main helium compressor, and a 170 m 3 storage tank. A system description and operating plan of the cryogenic plant and cryomodules is given. The cryogenic system for ERL and the Vertical Test Dewar has a plant that can produce the equivalent of 300W at 4.5K with the addition of a wet expander 350 W at 4.5K. Along with this system, a sub-atmospheric, warm compression system provides pumping to produce 2K at the ERL cryomodules or the Vertical Test Dewar. The cryogenic system for ERL and the Vertical Test Dewar makes use of existing equipment for putting a system together. It can supply either the ERL side or the Vertical Test Dewar side, but not both at the same time. Double valve isolation on the liquid helium supply line allows one side to be warmed to room temperature and worked on while the other side is being held at operating temperature. The cryogenic system maintain the end loads from 4.4K to 2K or colder depending on capacity. Liquid helium storage dewar capacity allows ERL or the VTD to operate above the plant's capacity when required and ERL cryomodules ballast reservoirs and VTD reservoir allows the end loads to operate on full vacuum pump capacity when required.

  2. Cryogenic System for the Cryomodule Test Stand at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    White, Michael J. [Fermilab; Hansen, Benjamin [Fermilab; Klebaner, Arkadiy [Fermilab

    2017-10-09

    This paper describes the cryogenic system for the Cryomodule Test Stand (CMTS) at the new Cryomodule Test Facility (CMTF) located at Fermilab. CMTS is designed for production testing of the 1.3 GHz and 3.9GHz cryomodules to be used in the Linac Coherent Light Source II (LCLSII), which is an upgrade to an existing accelerator at Stanford Linear Accelerator Laboratory (SLAC). This paper will focus on the cryogenic system that extends from the helium refrigeration plant to the CMTS cave. Topics covered will include component design, installation and commissioning progress, and operational plans. The paper will conclude with a description of the heat load measurement plan.

  3. Thermal Design of a Protomodel Space Infrared Cryogenic System

    Directory of Open Access Journals (Sweden)

    Hyung Suk Yang

    2006-06-01

    Full Text Available A Protomodel Space Infrared Cryogenic System (PSICS cooled by a stirling cryocooler has been designed. The PSICS has an IR sensor inside the cold box which is cooled by a stirling cryocooler with refrigeration capacity of 500mW at 80K in a vacuum vessel. It is important to minimize the heat load so that the background thermal noise can be reduced. In order to design the cryogenic system with low heat load and to reduce the remained heat load, we have performed numerical analyses. In this paper, we present the design factors and the results obtained by the thermal analysis of the PSICS.

  4. National Ignition Facility Cryogenic Target Systems Interim Management Plan

    International Nuclear Information System (INIS)

    Warner, B

    2002-01-01

    Restricted availability of funding has had an adverse impact, unforeseen at the time of the original decision to projectize the National Ignition Facility (NIF) Cryogenic Target Handling Systems (NCTS) Program, on the planning and initiation of these efforts. The purpose of this document is to provide an interim project management plan describing the organizational structure and management processes currently in place for NCTS. Preparation of a Program Execution Plan (PEP) for NCTS has been initiated, and a current draft is provided as Attachment 1 to this document. The National Ignition Facility is a multi-megajoule laser facility being constructed at Lawrence Livermore National Laboratory (LLNL) by the National Nuclear Security Administration (NNSA) in the Department of Energy (DOE). Its primary mission is to support the Stockpile Stewardship Program (SSP) by performing experiments studying weapons physics, including fusion ignition. NIF also supports the missions of weapons effects, inertial fusion energy, and basic science in high-energy-density physics. NIF will be operated by LLNL under contract to the University of California (UC) as a national user facility. NIF is a low-hazard, radiological facility, and its operation will meet all applicable federal, state, and local Environmental Safety and Health (ES and H) requirements. The NCTS Interim Management Plan provides a summary of primary design criteria and functional requirements, current organizational structure, tracking and reporting procedures, and current planning estimates of project scope, cost, and schedule. The NIF Director controls the NIF Cryogenic Target Systems Interim Management Plan. Overall scope content and execution schedules for the High Energy Density Physics Campaign (SSP Campaign 10) are currently undergoing rebaselining and will be brought into alignment with resources expected to be available throughout the NNSA Future Years National Security Plan (FYNSP). The revised schedule for

  5. The STAR experiment at RHIC

    International Nuclear Information System (INIS)

    Marx, J.N.

    1994-01-01

    STAR (Solenoidal Tracker at RHIC) will be one of two large, sophisticated experiments ready to take data when the Relativistic Heavy Ion Collider (RHIC) comes on-line in 1999. The design of STAR, its construction and commissioning and the physics program using the detector are the responsibility of a collaboration of over 250 members from 30 institutions, world-wide. The overall approach of the STAR Collaboration to the physics challenge of studying collisions of highly relativistic nuclei is to focus on measurements of the properties of the many hadrons produced in the collisions. The STAR detector is optimized to detect and identify hadrons over a large solid angle so that individual events can be characterized, in detail, based on their hadronic content. The broad capabilities of the STAR detector will permit an examination of a wide variety of proposed signatures for the Quark Gluon Plasma (QGP), using the sample of events which, on an event-by-event basis, appear to come from collisions resulting in a large energy density over a nuclear volume. In order to achieve this goal, the STAR experiment is based on a solenoid geometry with tracking detectors using the time projection chamber approach and covering a large range of pseudo-rapidity so that individual tracks can be seen within the very high track density expected in central collisions at RHIC. STAR also uses particle identification by the dE/dx technique and by time-of-flight. Electromagnetic energy is detected in a large, solid-angle calorimeter. The construction of STAR, which will be located in the Wide Angle Hall at the 6 o'clock position at RHIC, formally began in early 1993

  6. PROGRESS IN TUNE, COUPLING, AND CHROMATICITY MEASUREMENT AND FEEDBACK DURING RHIC RUN 7

    Energy Technology Data Exchange (ETDEWEB)

    CAMERON,P.; DELLAPENNA, A.; HOFF, L.; LUO, Y.; MARUSIC, A.; SCHULTHEISS, C.; TEPIKIAN, S.; ET AL.

    2007-06-25

    Tune feedback was first implemented in RHIC in 2002, as a specialist activity. The transition of the tune feedback system to full operational status was impeded by dynamic range problems, as well as by overall loop instabilities driven by large coupling. The dynamic range problem was solved by the CERN development of the Direct Diode Detection Analog Front End. Continuous measurement of all projections of the betatron eigenmodes made possible the world's first implementation of coupling feedback during beam acceleration, resolving the problem of overall loop instabilities. Simultaneous tune and coupling feedbacks were utilized as specialist activities for ramp development during the 2006 RHIC run. At the beginning of the 2007 RHIC run there remained two obstacles to making these feedbacks fully operational in RHIC - chromaticity measurement and control, and the presence of strong harmonics of the power line frequency in the betatron spectrum. We report on progress in tune, coupling, and chromaticity measurement and feedback, and discuss the relevance of our results to LHC commissioning.

  7. Opportunities for Drell-Yan Physics at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer, E.; Bland, L.; Crawford, H.; Goto, Y.; Eyser, O.; Kang, Z.; Vossen, A.

    2011-05-24

    Drell-Yan (DY) physics gives the unique opportunity to study the parton structure of nucleons in an experimentally and theoretically clean way. With the availability of polarized proton-proton collisions and asymmetric d+Au collisions at the Relativistic Heavy Ion Collider (RHIC), we have the basic (and unique in the world) tools to address several fundamental questions in QCD, including the expected gluon saturation at low partonic momenta and the universality of transverse momentum dependent parton distribution functions. A Drell-Yan program at RHIC is tied closely to the core physics questions of a possible future electron-ion collider, eRHIC. The more than 80 participants of this workshop focused on recent progress in these areas by both theory and experiment, trying to address imminent questions for the near and mid-term future.

  8. The Fermilab CMTF cryogenic distribution remote control system

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.; Theilacker, J.; Klebaner, A.; Martinez, A.; Bossert, R. [Fermi National Accelerator Laboratory Batavia, IL, 60510 (United States)

    2014-01-29

    The Cryomodule Test Facility (CMTF) is able to provide the necessary test bed for measuring the performance of Superconducting Radio Frequency (SRF) cavities in a cryomodule (CM). The CMTF have seven 300 KW screw compressors, two liquid helium refrigerators, and two Cryomodule Test Stands (CMTS). CMTS1 is designed for 1.3 GHz cryomodule operating in a pulsed mode (PM) and CMTS2 is for cryomodule operating in Half-Wave (HW) and Continuous Wave (CW) mode. Based on the design requirement, each subsystem has to be far away from each other and be placed in distant locations. Therefore choosing Siemens Process Control System 7-400, DL205 PLC, Synoptic and Fermilab ACNET are the ideal choices for CMTF cryogenic distribution real-time remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time remote control systems.

  9. JACoW Online analysis for anticipated failure diagnostics of the CERN cryogenic systems

    CERN Document Server

    Gayet, Philippe; Bradu, Benjamin; Cirillo, Roberta

    2018-01-01

    The cryogenic system is one of the most critical component of the CERN Large Hadron Collider (LHC) and its associated experiments ATLAS and CMS. In the past years, the cryogenic team has improved the maintenance plan and the operation procedures and achieved a very high reliability. However, as the recovery time after failure remains the major issue for the cryogenic availability new developments must take place. A new online diagnostic tool is developed to identify and anticipate failures of cryogenics field equipment, based on the acquired knowledge on dynamic simulation for the cryogenic equipment and on previous data analytic studies. After having identified the most critical components, we will develop their associated models together with the signature of their failure modes. The proposed tools will detect deviation between the actual systems and their model or identify preliminary failure signatures. This information will allow the operation team to take early mitigating actions before the failure occu...

  10. The heavy ion injection scheme for RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Rhoades-Brown, M.J.

    1989-01-01

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven has a multi-component injection system. The Collider requires very heavy ions such as 79 197 Au to be injected fully stripped of atomic electrons, at a kinetic energy of approximately 10 GeV/nucleon. However, the heavy ions are produced initially at a negative ion source and accelerated first in a 15 MV Tandem. These partially stripped ions have a kinetic energy of approximately 1 MeV/nucleon on leaving the Tandem. In order to achieve the injection requirements for RHIC, the partially stripped ions are accelerated in the Booster (currently under construction) and pass through a stripping foil on their way to the Alternating Gradient Synchrotron (AGS), where they are further accelerated before injection into RHIC. Recent theoretical calculations have shown quite convincingly that very heavy ions with 2 electrons in the filled K-shell may be accelerated with negligible loss in the AGS. 13 refs., 3 figs., 3 tabs

  11. Dilepton Production at Fermilab and RHIC

    International Nuclear Information System (INIS)

    Peng, J.C.; McGaughey, P.L.; Moss, J.M.

    1999-01-01

    Some recent results from several fixed-target dimuon production experiments at Fermilab are presented. In particular, we discuss the use of Drell-Yan data to determine the flavor structure of the nucleon sea, as well as to deduce the energy-loss of partons traversing nuclear medium. Future dilepton experiments at RHIC could shed more light on the flavor asymmetry and possible charge-symmetry-violation of the nucleon sea. Clear evidence for scaling violation in the Drell-Yan process could also be revealed at RHIC

  12. Modeling RHIC using the standard machine formal accelerator description

    International Nuclear Information System (INIS)

    Pilat, F.; Trahern, C.G.; Wei, J.

    1997-01-01

    The Standard Machine Format (SMF) is a structured description of accelerator lattices which supports both the hierarchy of beam lines and generic lattice objects as well as those deviations (field errors, alignment efforts, etc.) associated with each component of the as-installed machine. In this paper we discuss the use of SMF to describe the Relativistic Heavy Ion Collider (RHIC) as well as the ancillary data structures (such as field quality measurements) that are necessarily incorporated into the RHIC SMF model. Future applications of SMF are outlined, including its use in the RHIC operational environment

  13. RF beam control system for the Brookhaven Relativistic Heavy Ion Collider, RHIC

    International Nuclear Information System (INIS)

    Brennan, J.M.; Campbell, A.; DeLong, J.; Hayes, T.; Onillon, E.; Rose, J.; Vetter, K.

    1998-01-01

    The Relativistic Heavy Ion Collider, RHIC, is two counter-rotating rings with six interaction points. The RF Beam Control system for each ring will control two 28 MHz cavities for acceleration, and five 197 MHz cavities for preserving the 5 ns bunch length during 10 hour beam stores. Digital technology is used extensively in: Direct Digital Synthesis of rf signals and Digital Signal Processing for, the realization of state-variable feedback loops, real-time calculation of rf frequency, and bunch-by-bunch phase measurement of the 120 bunches. DSP technology enables programming the parameters of the feedback loops in order to obtain closed-loop dynamics that are independent of synchrotron frequency

  14. RF Beam control system for the Brookhaven relativistic heavy ion collider, RHIC

    International Nuclear Information System (INIS)

    Brennan, J.M.; Campbell, A.; Delong, J.; Hayes, T.; Onillon, E.; Rose, J.; Vetter, K.

    1998-01-01

    The Relativistic Heavy Ion Collider, RHIC, is two counter-rotating rings with six interaction points. The RF Beam Control system for each ring will control two 28 MHz cavities for acceleration, and five 197 MHz cavities for preserving the 5 ns bunch length during 10 hour beam stores. Digital technology is used extensively in: Direct Digital Synthesis of rf signals and Digital Signal Processing for, the realization of state-variable feedback loops, real-time calculation of rf frequency, and bunch-by-bunch phase measurement of the 120 bunches. DSP technology enables programming the parameters of the feedback loops in order to obtain closed-loop dynamics that are independent of synchrotron frequency

  15. A NEW RELATIVE PROTON POLARIMETER FOR RHIC

    International Nuclear Information System (INIS)

    HUANG, H.; ALEKSEEV, I.; BUNCE, G.; BRUNER, N.; DESHPANDE, A.; GOTO, Y.; FIELDS, D.; IMAI, K.

    2001-01-01

    An innovative polarimeter based on proton carbon elastic scattering in the Coulomb Nuclear Interference (CNI) region has been installed and commissioned in the Blue ring of RHIC during the first RHIC polarized proton commissioning in September, 2000. The polarimeter consists of ultra-thin carbon targets and four silicon detectors. All elements are in a 1.6 meter vacuum chamber. This paper summarizes the polarimeter design issues and recent commissioning results

  16. Open Heavy Flavor and Quarkonia Results at RHIC

    Science.gov (United States)

    Nouicer, Rachid

    2017-12-01

    RHIC experiments carry out a comprehensive physics program which studies open heavy flavor and quarkonium production in relativistic heavy-ion collisions. The discovery at RHIC of large high-pT suppression and flow of electrons from heavy quarks flavors have altered our view of the hot and dense matter formed in central Au + Au collisions at GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. In recent years, the RHIC experiments upgraded the detectors; (1) PHENIX Collaboration installed silicon vertex tracker (VTX) at mid-rapidity region and forward silicon vertex tracker (FVTX) at the forward rapidity region, and (2) STAR Collaboration installed the heavy flavor tracker (HFT) and the muon telescope detector (MTD) both at the mid-rapidity region. With these new upgrades, both experiments have collected large data samples. These new detectors enhance the capability of heavy flavor measurements via precision tracking. The PHENIX experiments established measurements of ψ(1S) and ψ(2S) production as a function of system size, p + p, p + Al, p + Au, and 3He + Au collisions at GeV. In p/3He + A collisions at forward rapidity, we observe no difference in the ψ(2S)/ψ(1S) ratio relative to p + p collisions. At backward rapidity, where the comoving particle density is higher, we find that the ψ(2S) is preferentially suppressed by a factor of two. STAR Collaboration presents the first J/ψ and ϒ measurements in the di-muon decay channel in Au + Au collisions at GeV at mid-rapidity at RHIC. We observe clear J/ψ RAA suppression and qualitatively well described by transport models simultaneously accounting for dissociation and regeneration processes.

  17. Open Heavy Flavor and Quarkonia Results at RHIC

    Directory of Open Access Journals (Sweden)

    Nouicer Rachid

    2017-01-01

    Full Text Available RHIC experiments carry out a comprehensive physics program which studies open heavy flavor and quarkonium production in relativistic heavy-ion collisions. The discovery at RHIC of large high-pT suppression and flow of electrons from heavy quarks flavors have altered our view of the hot and dense matter formed in central Au + Au collisions at SNN=200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. In recent years, the RHIC experiments upgraded the detectors; (1 PHENIX Collaboration installed silicon vertex tracker (VTX at mid-rapidity region and forward silicon vertex tracker (FVTX at the forward rapidity region, and (2 STAR Collaboration installed the heavy flavor tracker (HFT and the muon telescope detector (MTD both at the mid-rapidity region. With these new upgrades, both experiments have collected large data samples. These new detectors enhance the capability of heavy flavor measurements via precision tracking. The PHENIX experiments established measurements of ψ(1S and ψ(2S production as a function of system size, p + p, p + Al, p + Au, and 3He + Au collisions at SNN=200 GeV. In p/3He + A collisions at forward rapidity, we observe no difference in the ψ(2S/ψ(1S ratio relative to p + p collisions. At backward rapidity, where the comoving particle density is higher, we find that the ψ(2S is preferentially suppressed by a factor of two. STAR Collaboration presents the first J/ψ and ϒ measurements in the di-muon decay channel in Au + Au collisions at SNN=200 GeV at mid-rapidity at RHIC. We observe clear J/ψ RAA suppression and qualitatively well described by transport models simultaneously accounting for dissociation and regeneration processes.

  18. Adjusting the IP $\\beta$ Functions in RHIC

    CERN Document Server

    Wittmer, W; Pilat, F; Ptitsyn, V; Van Zeijts, J

    2004-01-01

    The beta functions at the IP can be adjusted without perturbation of other optics functions via several approaches. In this paper we describe a scheme based on a vector knob, which assigns fixed values to the different tuning quadrupoles and scales them by a common multiplier. The values for the knob vector were calculated for a lattice without any errors using MADX. Previous studies for the LHC [1] have shown that this approach can meet the design goals. A specific feature of the RHIC lattice is the nested power supply system. To cope with the resulting problems a detailed response matrix analysis has been carried out and different sets of knobs were calculated and compared. The knobs were tested at RHIC during the 2004 run and preliminary results are discussed. Simultaneously a new approach to measure the beam sizes of both colliding beams at the IP, based on the tunability provided by the knobs, was developed and tested.

  19. Baseline Configuration of the Cryogenic System for the International Linear Collider

    CERN Document Server

    Casas-Cubillos, J; Claudet, S; Ganni, R; Klebaner, A; Parma, V; Peterson, T; Riddone, G; Rode, C; Rousset, B; Serio, L; Tavian, L; Theilacker, J; Vullierme, B; Van Weelderen, R; Weisend, J

    2007-01-01

    The paper discusses the main constraints and boundary conditions and describes the baseline configuration of the International Linear Collider (ILC) cryogenic system. The cryogenic layout, architecture and the cooling principle are presented. The paper addresses a plan for study and development required to demonstrate and improve the performance, to reduce cost and to attain the desired reliability.

  20. Global Decoupling on the RHIC Ramp

    CERN Document Server

    Luo, Yun; Della Penna, Al; Fischer, Wolfram; Laster, Jonathan S; Marusic, Al; Pilat, Fulvia Caterina; Roser, Thomas; Trbojevic, Dejan

    2005-01-01

    The global betatron decoupling on the ramp is an important issue for the operation of the Relativistic Heavy Ion Collider (RHIC). In the polarized proton run, the betatron tunes are required to keep almost constant on the ramp to avoid spin resonance line crossing and the beam polarization loss. Some possible correction schemes on the ramp, like three-ramp correction, the coupling amplitude modulation and the coupling phase modulaxtion, have been found. The principles of these schemes are shortly reviewed and compared. Operational results of their applications on the RHIC ramps are given.

  1. ACCELERATION OF POLARIZED PROTONS AT RHIC

    International Nuclear Information System (INIS)

    HUANG, H.

    2002-01-01

    Relativistic Heavy Ion Collider (RHIC) ended its second year of operation in January 2002 with five weeks of polarized proton collisions. Polarized protons were successfully injected in both RHIC rings and maintained polarization during acceleration up to 100 GeV per ring using two Siberian snakes in each ring. This is the first time that polarized protons have been accelerated to 100 GeV. The machine performance and accomplishments during the polarized proton run will be reviewed. The plans for the next polarized proton run will be outlined

  2. BROOKHAVEN: Major detectors for RHIC under construction

    International Nuclear Information System (INIS)

    Ludlam, Thomas W.

    1994-01-01

    On March 9-10, a cost and schedule review at Brookhaven verified construction readiness for the PHENIX detector (May 1993, page 10). PHENIX thus joins STAR (Solenoidal Tracking at RHIC - November 1991, page 17), whose construction plan was ratified in January 1993, as a major detector to take data when the RHIC heavy ion collider is completed in mid-1999. The goal of both detectors is to search for the transition from ordinary nuclear matter to a new state of matter consisting of (momentarily) unconfined quarks and gluons. This transition to a ''quark-gluon plasma'' (QGP) is predicted to occur under extreme conditions of temperature and energy density, as is likely to be the case in the collision of heavy ions of sufficient energy. RHIC is expected to produce the highest energy densities ever observed on the nuclear scale

  3. A cryogenic system for TIBER II [Tokamak Ignition/Burn Experimental Reactor

    International Nuclear Information System (INIS)

    Slack, D.S.; Kerns, J.A.

    1987-01-01

    Phase II of the Tokamak Ignition/Burn Experimental Reactor (TIBER II) study describes one option for a small, economical, next-generation tokamak [1,2]. Because of its small size, minimum shielding is used between the plasma and the toroidal-field (TF) coils. Consequently, a large cryogenic system (approximately 70 kW at 4.5 K) capable of delivering forced-flow helium is required. This paper describes a cryogenic system that meets this requirement and includes TIBER-II requirements. 3 refs

  4. Conceptual design of the cryogenic system and estimation of the recirculated power for CFETR

    Science.gov (United States)

    Liu, Xiaogang; Qiu, Lilong; Li, Junjun; Wang, Zhaoliang; Ren, Yong; Wang, Xianwei; Li, Guoqiang; Gao, Xiang; Bi, Yanfang

    2017-01-01

    The China Fusion Engineering Test Reactor (CFETR) is the next tokamak in China’s roadmap for realizing commercial fusion energy. The CFETR cryogenic system is crucial to creating and maintaining operational conditions for its superconducting magnet system and thermal shields. The preliminary conceptual design of the CFETR cryogenic system has been carried out with reference to that of ITER. It will provide an average capacity of 75 to 80 kW at 4.5 K and a peak capacity of 1300 kW at 80 K. The electric power consumption of the cryogenic system is estimated to be 24 MW, and the gross building area is about 7000 m2. The relationships among the auxiliary power consumed by the cryogenic system, the fusion power gain and the recirculated power of CFETR are discussed, with the suggestion that about 52% of the electric power produced by CFETR in phase II must be recirculated to run the fusion test reactor.

  5. Design, Construction, Installation and First Commissioning Results of the LHC Cryogenic System

    CERN Document Server

    Claudet, S

    2006-01-01

    The cryogenic system of the Large Hadron Collider (LHC) will be, upon its completion in 2006, the largest in the world in terms of refrigeration capacity with an equivalent to 144 kW at 4.5 K, about 400'000 litres of superfluid helium with 25 km of superconducting magnets below 2 K leading to a cryogen inventory of 100 tons of helium. The challenges involved in the design, construction and installation, as well as the first commissioning results will be addressed in this talk. Particular mention will be made of the problems encountered and how they were or are being solved. Perspectives for LHC will be presented. General considerations for future large cryogenic systems will be briefly proposed.

  6. Cryogenic distribution system for ITER proto-type cryoline test

    International Nuclear Information System (INIS)

    Bhattacharya, R.; Shah, N.; Badgujar, S.; Sarkar, B.

    2012-01-01

    Design validation for ITER cryoline will be carried out by proto-type test on cryoline. The major objectives of the test will be to ensure the mechanical integrity, reliability, thermal stress and heat load as well as checking of assembly and fabrication procedures. The cryogenics system has to satisfy the functional operating scenario of the cryoline. Cryoplant, distribution box (DB) including liquid helium (LHe) tank constitute the cryogenic system for the test. Conceptual system architecture is proposed with a commercially available refrigerator/liquefier and custom designed DB housing cold compressor, cold circulator as well as phase separator with sub-merged heat exchanger. System level optimization, mainly with DB and LHe tank with options, has been studied to minimize the cold power required for the system. Aspen HYSYS is used for the purpose of process simulation. The paper describes the system architecture and the optimized design as well as process simulation with associated results. (author)

  7. ARIEL E-linac Cryogenic System: Commissioning and First Operational Experience

    International Nuclear Information System (INIS)

    Koveshnikov, A; Bylinskii, I; Hodgson, G; Kishi, D; Laxdal, R; Ma, Y; Nagimov, R; Yosifov, D

    2015-01-01

    The Advanced Rare IsotopE Laboratory (ARIEL) is a major expansion of the Isotope Separator and Accelerator (ISAC) facility at TRIUMF. A key part of the ARIEL project is a 10 mA 50 MeV continuous-wave superconducting radiofrequency (SRF) electron linear accelerator (e-linac). The 1.3 GHz SRF cavities are operated at 2 K. HELIAL LL helium liquefier by Air Liquide Advanced Technologies (ALAT) with a tuneable liquid helium (LHe) production was installed and commissioned in Q4’2013 [1]. It provides 4 K liquid helium to one injector and one accelerator cryomodules that were installed and tested in 2014. The 4 K to 2 K liquid helium transition is achieved on-board of each cryomodule. The cryoplant, LHe and LN2 distributions, sub-atmospheric (S/A) system and cryomodules were successfully commissioned and integrated into the e-linac cryogenic system. Required pressure regulation for both 4 K cryoplant in the Dewar and 2 K with the S/A system was achieved under simulated load. Final integration tests confirmed overall stable performance of the cryogenic system with two cryomodules installed. The paper presents details of the cryogenic system commissioning tests as well as highlights of the initial operational experience. (paper)

  8. IMPROVEMENTS TO THE CRYOGENIC CONTROL SYSTEM ON DIII-D

    International Nuclear Information System (INIS)

    HOLTROP, K.L; ANDERSON, P.M; MAUZEY, P.S.

    2004-03-01

    OAK-B135 The cryogenic facility that is part of the DIII-D tokamak system supplies liquid nitrogen and liquid helium to the superconducting magnets used for electron cyclotron heating, the D 2 pellet injection system, cryopumps in the DIII-D vessel, and cryopanels in the neutral beam injection system. The liquid helium is liquefied on site using a Sulzer liquefier that has a 150 l/h liquefaction rate. Control of the cryogenic facility at DIII-D was initially accomplished through the use of three different programmable logic controllers (PLCs). Recently, two of those three PLCs, a Sattcon PLC controlling the Sulzer liquefier and a Westinghouse PLC, were removed and all their control logic was merged into the remaining PLC, a Siemens T1555. This replacement was originally undertaken because the removed PLCs were obsolete and unsupported. However, there have been additional benefits from the replacement. The replacement of the RS-232 serial links between the graphical user interface and the PLCs with a high speed Ethernet link allows for real-time display and historical trending of nearly all the cryosystem's data. this has greatly increased the ability to troubleshoot problems with the system, and has permitted optimization of the cryogenic system's performance because of the increased system integration. To move the control logic of the Sattcon control loops into the T1555, an extensive modification of the basic PID control was required. These modifications allow for better control of the control loops and are now being incorporated in other control loops in the system

  9. Critical examination of RHIC paradigms - mostly high pT

    International Nuclear Information System (INIS)

    Tannenbaum, M.I.

    2009-01-01

    A critical examination of RHIC paradigms is presented. Topics include: search for a critical point with a low energy scan; the lack of understanding of radiative processes in a medium in QCD compared in detail to examples from QED; the reason why some physicists started to measure particles at large p T in the 1960's; a review of the discovery of hard-scattering in p-p collisions in the 1970's via single-inclusive and two-particle correlations and application of these techniques at RHIC. Several paradigms in both soft and hard physics which are popular at RHIC are discussed and challenged.

  10. QCD and Heavy Ions RHIC Overview

    CERN Document Server

    Granier de Cassagnac, Raphael

    2010-01-01

    Nowadays, the most violent heavy ion collisions available to experimental study occur at the Relativistic Heavy Ion Collider (RHIC) of the Brookhaven National Laboratory. There, gold ions collide at psNN = 200 GeV. The early and most striking RHIC results were summarised in 2005 by its four experiments, BRAHMS, PHENIX, PHOBOS and STAR, in their so-called white papers [1, 2, 3, 4] that will be largely referenced thereafter. Beyond and after this, a wealth of data has been collected and analysed, providing additional information about the properties of the matter created at RHIC. It is categorically impossible to give a comprehensive review of these results in a 20 minutes talk or a 7 pages report. Here, I have made a selection of some of the most striking or intriguing signatures: jet quenching in Section 2, quarkonia suppressions in Section 3 and thermal photons in Section 4. A slightly longer and older version of this review can be found in [5]. Some updates are given here, as well as emphasis on new probes ...

  11. Proceedings of the third workshop on experiments and detectors for a relativistic heavy ion collider (RHIC)

    International Nuclear Information System (INIS)

    Shivakumar, B.; Vincent, P.

    1988-01-01

    This report contains papers on the following topics: the RHIC Project; summary of the working group on calorimetry; J//Psi/ measurements in heavy ion collisions at CERN; QCD jets at RHIC; tracking and particle identification; a 4π tracking spectrometer for RHIC; Bose-Einstein measurements at RHIC in light of new data; summary of working group on read-out electronics; data acquisition for RHIC; summary of the working group on detector simulation; B-physics at RHIC; and CP violation revisited at BNL, B-physics at RHIC

  12. The effect and correction of coupling generated by the RHIC triplet quadrupoles

    International Nuclear Information System (INIS)

    Pilat, F.; Peggs, S.; Tepikian, S.; Trbojevic, D.; Wei, J.

    1995-01-01

    This study explores the possibility of operating the nominal RHIC coupling correction system in local decoupling mode, where a subset of skew quadrupoles are independently set by minimizing the coupling as locally measured by beam position monitors. The goal is to establish a correction procedure for the skew quadrupole errors in the interaction region triplets that does not rely on a priori knowledge of the individual errors. After a description of the present coupling correction scheme envisioned for RHIC, the basics of the local decoupling method will be briefly recalled in the context of its implementation in the TEAPOT simulation code as well as operationally. The method is then applied to the RHIC lattice: a series of simple tests establish that single triplet skew quadrupole errors can be corrected by local decoupling. More realistic correction schemes are then studied in order to correct distributed sources of skew quadrupole errors: the machine can be decoupled either by pure local decoupling or by a combination of global (minimum tune separation) and local decoupling. The different correction schemes are successively validated and evaluated by standard RHIC simulation runs with the complete set of errors and corrections. The different solutions and results are finally discussed together with their implications for the hardware

  13. Statistical analysis of RHIC beam position monitors performance

    Science.gov (United States)

    Calaga, R.; Tomás, R.

    2004-04-01

    A detailed statistical analysis of beam position monitors (BPM) performance at RHIC is a critical factor in improving regular operations and future runs. Robust identification of malfunctioning BPMs plays an important role in any orbit or turn-by-turn analysis. Singular value decomposition and Fourier transform methods, which have evolved as powerful numerical techniques in signal processing, will aid in such identification from BPM data. This is the first attempt at RHIC to use a large set of data to statistically enhance the capability of these two techniques and determine BPM performance. A comparison from run 2003 data shows striking agreement between the two methods and hence can be used to improve BPM functioning at RHIC and possibly other accelerators.

  14. Statistical analysis of RHIC beam position monitors performance

    Directory of Open Access Journals (Sweden)

    R. Calaga

    2004-04-01

    Full Text Available A detailed statistical analysis of beam position monitors (BPM performance at RHIC is a critical factor in improving regular operations and future runs. Robust identification of malfunctioning BPMs plays an important role in any orbit or turn-by-turn analysis. Singular value decomposition and Fourier transform methods, which have evolved as powerful numerical techniques in signal processing, will aid in such identification from BPM data. This is the first attempt at RHIC to use a large set of data to statistically enhance the capability of these two techniques and determine BPM performance. A comparison from run 2003 data shows striking agreement between the two methods and hence can be used to improve BPM functioning at RHIC and possibly other accelerators.

  15. Chasing the unicorn: RHIC and the QGP

    International Nuclear Information System (INIS)

    Pisarski, Robert D.; Niels Bohr Institute, Copenhagen; J. W. Goethe Univ., Frankfurt

    2006-01-01

    At nonzero temperature, it is expected that QCD undergoes a phase transition to a deconfined, chirally symmetric phase, the Quark-Gluon Plasma (QGP). I review what we expect theoretically about this possible transition, and what we have learned from heavy ion experiments at RHIC. I argue that while there are unambiguous signals for qualitatively new behavior at RHIC, versus experiments at lower energies, that in detail, no simple theoretical model can explain all salient features of the data. (author)

  16. Chasing the unicorn: RHIC and the QGP

    Energy Technology Data Exchange (ETDEWEB)

    Pisarski, Robert D. [Brookhaven National Lab., Upton, NY (United States). Nuclear Theory and High Energy Theory Nuclear Theory Groups; Niels Bohr Institute, Copenhagen (Denmark); J. W. Goethe Univ., Frankfurt (Germany). Frankfurt Institute for Advanced Study

    2006-03-15

    At nonzero temperature, it is expected that QCD undergoes a phase transition to a deconfined, chirally symmetric phase, the Quark-Gluon Plasma (QGP). I review what we expect theoretically about this possible transition, and what we have learned from heavy ion experiments at RHIC. I argue that while there are unambiguous signals for qualitatively new behavior at RHIC, versus experiments at lower energies, that in detail, no simple theoretical model can explain all salient features of the data. (author)

  17. High-pt and jet physics from RHIC to LHC

    International Nuclear Information System (INIS)

    Estienne, M.

    2008-01-01

    The observation of the strong suppression of high-pt hadrons in heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) at BNL has motivated a large experimental program using hard probes to characterize the deconfined medium created. However, what can be denoted as 'leading particle' physics accessible at RHIC presents some limitations which motivate at higher energy the study of much more penetrating objects: jets. The gain in center-of-mass energy expected at the Large Hadron Collider (LHC) at CERN will definitively improve our understanding on how the energy is lost in the system, opening a major new window of study: the physics of jets on an event-by-event basis. We will concentrate on the expected performance for jet reconstruction in ALICE using the EMCal calorimeter.

  18. Ramp Management in RHIC

    International Nuclear Information System (INIS)

    Kewisch, J.; Van Zeijts, J.; Peggs, S.; Satogata, T.

    1999-01-01

    In RHIC, magnets and RF cavities are controlled by Wave Form Generators (WFGs), simple real time computers which generate the set points. The WFGs are programmed to change set points from one state to another in a synchrotronized way. Such transition is called a ''Ramp'' and consists of a sequence of ''stepping stones'' which contain the set point of every WFG controlled device at a point in time. An appropriate interpolation defines the set points between these stepping stones. This report describes the implementation of the ramp system. The user interface, tools to create and modify ramps, interaction with modeling tools and measurements and correction programs are discussed

  19. Possible origin of RHIC Rout/Rsid HBT results

    International Nuclear Information System (INIS)

    Sandra S. Padula

    2002-01-01

    The effects of opacity of the nuclei together with a blackbody type of emission along the system history are considered as a means to explain the ratio R out =R sid observed by STAR and PHENIX collaborations at RHIC. Within our model, no flow is required to explain the data trend of this ratio for large surface emissivities

  20. Possible origin of RHIC Rout/Rsid HBT results

    International Nuclear Information System (INIS)

    Padula, Sandra S.

    2003-01-01

    The effects of opacity of the nuclei together with a blackbody type of emission along the system history are considered as a means to explain the ratio R out /R sid observed by STAR and PHENIX collaborations at RHIC. Within our model, no flow is required to explain the data trend of this ratio for large surface emissivities

  1. Matter in extremis: Ultrarelativistic nuclear collisions at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Peter; Wang, Xin-Nian

    2004-08-20

    We review the physics of nuclear matter at high energy density and the experimental search for the Quark-Gluon Plasma at the Relativistic Heavy Ion Collider (RHIC). The data obtained in the first three years of the RHIC physics program provide several lines of evidence that a novel state of matter has been created in the most violent, head-on collisions of Au nuclei at {radical}s = 200 GeV. Jet quenching and global measurements show that the initial energy density of the strongly interacting medium generated in the collision is about two orders of magnitude larger than that of cold nuclear matter, well above the critical density for the deconfinement phase transition predicted by lattice QCD. The observed collective flow patterns imply that the system thermalizes early in its evolution, with the dynamics of its expansion consistent with ideal hydrodynamic flow based on a Quark-Gluon Plasma equation of state.

  2. Matter in extremis: Ultrarelativistic nuclear collisions at RHIC

    International Nuclear Information System (INIS)

    Jacobs, Peter; Wang, Xin-Nian

    2004-01-01

    We review the physics of nuclear matter at high energy density and the experimental search for the Quark-Gluon Plasma at the Relativistic Heavy Ion Collider (RHIC). The data obtained in the first three years of the RHIC physics program provide several lines of evidence that a novel state of matter has been created in the most violent, head-on collisions of Au nuclei at √s = 200 GeV. Jet quenching and global measurements show that the initial energy density of the strongly interacting medium generated in the collision is about two orders of magnitude larger than that of cold nuclear matter, well above the critical density for the deconfinement phase transition predicted by lattice QCD. The observed collective flow patterns imply that the system thermalizes early in its evolution, with the dynamics of its expansion consistent with ideal hydrodynamic flow based on a Quark-Gluon Plasma equation of state

  3. Economics of Large Helium Cryogenic Systems experience from Recent Projects at CERN

    CERN Document Server

    Claudet, S; Lebrun, P; Tavian, L; Wagner, U

    1999-01-01

    Large projects based on applied superconductivity, such as particle accelerators, tokamaks or SMES, require powerful and complex helium cryogenic systems, the cost of which represents a significant, if not dominant fraction of the total capital and operational expenditure. It is therefore important to establish guidelines and scaling laws for costing such systems, based on synthetic estimators of their size and performance. Although such data has already been published for many years, the experience recently gathered at CERN with the LEP and LHC projects, which have de facto turned the laboratory into a major world cryogenic center, can be exploited to update this information and broaden the range of application of the scaling laws. We report on the economics of 4.5 K and 1.8 K refrigeration, cryogen distribution and storage systems, and indicate paths towards their cost-to-performance optimisation.

  4. Summary of the RHIC Retreat 2008

    International Nuclear Information System (INIS)

    Pilat, F.; Brennan, M.; Brown, K.; Fischer, W.; Montag, C.

    2008-01-01

    The main goal of the RHIC Retreat is to review last run's performance and prepare for the next. As always though we also discussed the longer term goals and plans for the facility to put the work in perspective and in the right priority. A straw-man plan for the facility was prepared for the DOE that assumes 30 cryoweek and running 2 species per year. The plan outlines RHIC operations for 2008-2012 and integrates well accelerator and detector upgrades to optimize the physics output with high luminosities. The plans includes guidance from the PAC and has been reviewed by DOE

  5. SIMULATION OF PARTICLE SPECTRA AT RHIC

    International Nuclear Information System (INIS)

    KAHANA, D.E.; KAHANA, S.H.

    2001-01-01

    A purely hadronic simulation is performed of the recently reported data from PHOBOS at energies of √s = 56, 130 GeV using the relativistic heavy ion cascade LUCIFER which had previously given a good description of the NA49 inclusive spectra at √s = 17.2 GeV/A. The results compare well with these early measurements at RHIC and indeed successfully predict the increase in multiplicity now seen by PHOBOS and the other RHIC detectors at the nominal maximum energy of √s = 200 GeV/A, suggesting that evidence for quark-gluon matter remains elusive

  6. Cryogenic system for the 45 Tesla hybrid magnet

    International Nuclear Information System (INIS)

    Van Sciver, S.W.; Miller, J.R.; Welton, S.; Schneider-Muntau, H.J.; McIntosh, G.E.

    1994-01-01

    The 45 Tesla hybrid magnet system will consist of a 14 Tesla superconducting outsert magnet and a 31 Tesla water cooled insert. The magnet is planned for operation in early 1995 at the National High Magnetic Field Laboratory. Its purpose is to provide the highest DC magnetic fields for the materials research community. The present paper discusses the overall design of the cryogenic system for the superconducting magnet. Unique features of this system include static 1.8 K pressurized He II as a coolant for the magnet and a refrigerated structural support system for load transfer during fault conditions. The system will consist of two connected cryostats. The magnet is contained within one cryostat which has a clear warm bore of 616 mm and is designed to be free of system interfaces and therefore minimize interference with the magnet user. A second supply cryostat provides the connections to the refrigeration system and magnet power supply. The magnet and supply cryostats are connected to each other through a horizontal services duct section. Issues to be discussed in the present paper include design and thermal analysis of the magnet system during cooldown and in steady state operation and overall cryogenic system design

  7. Cryogenic systems for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Slack, D.S.; Nelson, R.L.; Chronis, W.C.

    1985-08-01

    This paper includes an in-depth discussion of the design, fabrication, and operation of the Mirror Fusion Test Facility (MFTF) cryogenic system located at Lawrence Livermore National Laboratory (LLNL). Each subsystem discussed to present a basic composite of the entire facility. The following subsystems are included: 500kW nitrogen reliquefier, subcoolers, and distribution system; 15kW helium refrigerator/liquefier and distribution system; helium recovery and storage system; rough vacuum and high vacuum systems

  8. Control System For Cryogenic THD Layering At The National Ignition Facility

    International Nuclear Information System (INIS)

    Fedorov, M.; Blubaugh, J.; Edwards, O.; Mauvais, M.; Sanchez, R.; Wilson, B.

    2011-01-01

    The National Ignition Facility (NIF) is the world largest and most energetic laser system for Inertial Confinement Fusion (ICF). In 2010, NIF began ignition experiments using cryogenically cooled targets containing layers of the tritium-hydrogen-deuterium (THD) fuel. The 75 (micro)m thick layer is formed inside of the 2 mm target capsule at temperatures of approximately 18 K. The ICF target designs require sub-micron smoothness of the THD ice layers. Formation of such layers is still an active research area, requiring a flexible control system capable of executing the evolving layering protocols. This task is performed by the Cryogenic Target Subsystem (CTS) of the NIF Integrated Computer Control System (ICCS). The CTS provides cryogenic temperature control with the 1 mK resolution required for beta-layering and for the thermal gradient fill of the capsule. The CTS also includes a 3-axis x-ray radiography engine for phase contrast imaging of the ice layers inside of the plastic and beryllium capsules. In addition to automatic control engines, CTS is integrated with the Matlab interactive programming environment to allow flexibility in experimental layering protocols. The CTS Layering Matlab Toolbox provides the tools for layer image analysis, system characterization and cryogenic control. The CTS Layering Report tool generates qualification metrics of the layers, such as concentricity of the layer and roughness of the growth boundary grooves. The CTS activities are automatically coordinated with other NIF controls in the carefully orchestrated NIF Shot Sequence.

  9. Assessment of the cryogenic distillation system in Cernavoda tritium removal facility

    International Nuclear Information System (INIS)

    Pasca, Gheorghe; Draghia, Mirela; Porcariu, Florina; Ana, George

    2010-01-01

    Full text: This paper aims at presenting an assessment of the Cryogenic Distillation system (CD) in the Cernavoda Tritium Removal Facility (CTRF). The cryogenic distillation system is one of the key components of the CTRF which comprises other systems as: the liquid phase catalytic exchange system, designed to transfer tritium from heavy water to a deuterium stream to be fed into the CD system; the atmosphere detritiation system; the tritium recovery system; the tritium/hydrogen monitoring system; the central interlocking system; the tritium extraction and storage system. Thus, the need to build a tritium separation and recovery system results from economic opportunities offered both by heavy water reuse and tritium production, but, at the same time, it offers an alternative for the storage of tritiated heavy water as radioactive waste. (authors)

  10. Beam profile measurements on RHIC

    International Nuclear Information System (INIS)

    Connolly, R.; Michnoff, R.; Moore, T.; Shea, T.; Tepikian, S.

    2000-01-01

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab was commissioned during the summer of 1999. Transverse beam profiles on RHIC are measured with ionization profile monitors (IPMs). An IPM measures beam profiles by collecting the electrons liberated by residual gas ionization by the beam. The detector is placed in the gap of a dipole magnet to force the electrons to travel in straight lines from the beamline center to the collector. One IPM was tested and it measured the profiles of a single gold bunch containing 10 8 ions on consecutive turns. We show an example of one of these profiles giving transverse emittance. Also several profiles are combined into a mountain-range plot which shows betatron oscillations at injection

  11. Cryogenic systems for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Slack, D.S.; Chronis, W.C.; Nelson, R.L.

    1986-01-01

    This paper will include an in-depth discussion of the design, fabrication, and operation of the Mirror Fusion Test Facility (MFTF) cryogenic system located at Lawrence Livermore National Laboratory (LLNL). Each subsystem will be discussed to present a basic composite of the entire facility

  12. Recent RHIC in-situ coating technology developments

    CERN Document Server

    Hershcovitch, A.; Brennan, J.M.; Chawla, A.; Fischer, W.; Liaw, C-J; Meng, W.; Todd, R.; Custer, A.; Erickson, M.; Jamshidi, N.; Kobrin, P.; Laping, R.; Poole, H.J.; Jimenez, J.M.; Neupert, H.; Taborelli, M.; Yin-Vallgren, C.; Sochugov, N.

    2013-04-22

    To rectify the problems of electron clouds observed in RHIC and unacceptable ohmic heating for superconducting magnets that can limit future machine upgrades, we started developing a robotic plasma deposition technique for $in-situ$ coating of the RHIC 316LN stainless steel cold bore tubes based on staged magnetrons mounted on a mobile mole for deposition of Cu followed by amorphous carbon (a-C) coating. The Cu coating reduces wall resistivity, while a-C has low SEY that suppresses electron cloud formation. Recent RF resistivity computations indicate that 10 {\\mu}m of Cu coating thickness is needed. But, Cu coatings thicker than 2 {\\mu}m can have grain structures that might have lower SEY like gold black. A 15-cm Cu cathode magnetron was designed and fabricated, after which, 30 cm long samples of RHIC cold bore tubes were coated with various OFHC copper thicknesses; room temperature RF resistivity measured. Rectangular stainless steel and SS discs were Cu coated. SEY of rectangular samples were measured at ro...

  13. Transverse impedance measurement in RHIC and the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Biancacci, Nicolo [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Mernick, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; White, S. M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-05-12

    The RHIC luminosity upgrade program aims for an increase of the polarized proton luminosity by a factor 2. To achieve this goal a significant increase in the beam intensity is foreseen. The beam coupling impedance could therefore represent a source of detrimental effects for beam quality and stability at high bunch intensities. For this reason it is essential to quantify the accelerator impedance budget and the major impedance sources, and possibly cure them. In this MD note we summarize the results of the 2013 transverse impedance measurements in the AGS and RHIC. The studies have been performed measuring the tune shift as a function of bunch intensity and deriving the total accelerator machine transverse impedance. For RHIC, we could obtain first promising results of impedance localization measurements as well.

  14. Operations and Performance of RHIC as a Cu-Cu Collider

    CERN Document Server

    Pilat, Fulvia Caterina; Bai, Mei; Barton, Donald; Beebe-Wang, Joanne; Blaskiewicz, Michael; Brennan, Joseph M; Bruno, Donald; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Harvey, Margaret; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Lee, Roger C; Litvinenko, Vladimir N; Luo, Yun; MacKay, William W; Marr, Gregory J; Marusic, Al; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oerter, Brian; Ptitsyn, Vadim; Roser, Thomas; Russo, Thomas; Sandberg, Jon; Satogata, Todd; Schultheiss, Carl; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Zaltsman, Alex; Zeno, Keith; Zhang, S Y; Zhang, Wu

    2005-01-01

    The 5th year of RHIC operations, started in November 2004 and expected to last till June 2005, consists of a physics run with Cu-Cu collisions at 100 GeV/u followed by one with polarized protons at 100 GeV. We will address here overall performance of the RHIC complex used for the first time as a Cu-Cu collider, and compare it with previous operational experience with Au, PP and asymmetric d-Au collisions. We will also discuss operational improvements, such as a ?* squeeze to 85cm in the high luminosity interaction regions from the design value of 1m, system improvements and machine performance limitations, such as vacuum pressure rise, intra-beam scattering, and beam beam interaction.

  15. Commissioning of the LHC Cryogenic System Subsystems Cold Commissioning in Preparation of Full Sector Tests

    CERN Document Server

    Serio, L; Ferlin, G; Gilbert, N; Gruehagen, Henning; Knoops, S; Parente, C; Sanmartí, M

    2006-01-01

    The cryogenic system for the Large Hadron Collider accelerator is presently in its final phase of installation and commissioning at nominal operating temperatures. The refrigeration capacity for the LHC will be produced using eight large cryogenic plants installed on five technical sites and distributed around the 26.7-km circumference ring located in a deep underground tunnel. The status of the cryogenic system commissioning is presented together with the experience gained in operating and commissioning it.

  16. The PHOBOS perspective on discoveries at RHIC

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N. K.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C. M.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zhang, J.; Phobos Collaboration

    2005-08-01

    This paper describes the conclusions that can be drawn from the data taken thus far with the PHOBOS detector at RHIC. In the most central Au + Au collisions at the highest beam energy, evidence is found for the formation of a very high energy density system whose description in terms of simple hadronic degrees of freedom is inappropriate. Furthermore, the constituents of this novel system are found to undergo a significant level of interaction. The properties of particle production at RHIC energies are shown to follow a number of simple scaling behaviors, some of which continue trends found at lower energies or in simpler systems. As a function of centrality, the total number of charged particles scales with the number of participating nucleons. When comparing Au + Au at different centralities, the dependence of the yield on the number of participants at higher p ( ˜4 GeV/c) is very similar to that at low transverse momentum. The measured values of charged particle pseudorapidity density and elliptic flow were found to be independent of energy over a broad range of pseudorapidities when effectively viewed in the rest frame of one of the colliding nuclei, a property we describe as "extended longitudinal scaling". Finally, the centrality and energy dependences of several observables were found to factorize to a surprising degree.

  17. Comparison of the Window-Frame RHIC-abort kicker with C-type Kicker

    International Nuclear Information System (INIS)

    Tsoupas, N.; McMahan, Brandon

    2014-01-01

    The high intensity proton bunches (~2.5x10 11 p/bunch ) circulating in RHIC increase the temperature of the ferrite-made RHIC-abort-kickers above the Curie point; as a result, the kickers cannot provide the required field to abort the beam at the beam dump. A team of experts in the CAD department worked on modifying the design of the window-frame RHIC-abort kicker to minimize the hysteresis losses responsible for the increase of the ferrite's temperature. In this technical note we report some results from the study of two possible modifications of the window-frame RHIC-abort kicker, and we compare these results with those of a propose C-type RHIC-abort kicker. We also include an Appendix where we describe a method which may further reduce the hysteresis losses of the window-frame kicker.

  18. Dynamics of cold helium flow inside a cryoline used for large cryogenic distribution system

    International Nuclear Information System (INIS)

    Kumar, Uday; Jadon, Mohit; Choukekar, Ketan; Shukla, Vinit; Patel, Pratik; Kapoor, Himanshu; Shah, Nitin; Muralidhara, Srinivasa; Sarkar, Biswanath

    2015-01-01

    The Cryolines, which by definition transfers cryogens from the source, normally a cryogenic plant, to several systems requiring cooling at cryogenic temperature to the level of 4 K and 80 K. The operations of cryolines are normally assumed to be steady state following a cool down from room temperature to the cryogenic temperature. It is to be noted that in a distributed cryogenic system, especially in a nuclear facility such as ITER having confinement definition due to the regulatory requirements, do also attract the attention in the system design that the release from safety valves cannot be allowed inside a building. Therefore, all safety valves need to be discharged inside a confined space, which is a specific space requiring fulfillment of definition for a cryogenic line. The specificity in such cases is that such cryogenic lines will realize dynamic conditions for each release of safety valves or a combination of safety valves in terms of pressure, temperature and flow, leading to unexpected failures. Such operating scenarios also lead to serious impact on fatigue with a question mark on the reliability. Therefore, one can define such cryolines as Relief Collection Header (RCH) which collects discharged helium and transport it to the appropriate place as defined in the system design. The discharges of cold helium from safety relief discharge ports of equipment can result into significantly unsteady and compressible flow in RCH. The proper design of the RCH has to be supported by detailed dynamic of expected flow phenomena for specific cases. The paper presents the dynamics of cold helium flow inside the typical RCH that has been performed to investigate the variation in flow parameters (pressure, temperature, velocity and density) along the axis of RCH and predictions on its reliability. (author)

  19. ATLAS magnet common cryogenic, vacuum, electrical and control systems

    CERN Document Server

    Miele, P; Delruelle, N; Geich-Gimbel, C; Haug, F; Olesen, G; Pengo, R; Sbrissa, E; Tyrvainen, H; ten Kate, H H J

    2004-01-01

    The superconducting Magnet System for the ATLAS detector at the LHC at CERN comprises a Barrel Toroid, two End Cap Toroids and a Central Solenoid with overall dimensions of 20 m diameter by 26 m length and a stored energy of 1.6 GJ. Common proximity cryogenic and electrical systems for the toroids are implemented. The Cryogenic System provides the cooling power for the 3 toroid magnets considered as a single cold mass (600 tons) and for the CS. The 21 kA toroid and the 8 kA solenoid electrical circuits comprise both a switch-mode power supply, two circuit breakers, water cooled bus bars, He cooled current leads and the diode resistor ramp-down unit. The Vacuum System consists of a group of primary rotary pumps and sets of high vacuum diffusion pumps connected to each individual cryostat. The Magnet Safety System guarantees the magnet protection and human safety through slow and fast dump treatment. The Magnet Control System ensures control, regulation and monitoring of the operation of the magnets. The update...

  20. Flow in Au+Au collisions at RHIC

    Science.gov (United States)

    Belt Tonjes, Marguerite; the PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2004-08-01

    The study of flow can provide information on the initial state dynamics and the degree of equilibration attained in heavy-ion collisions. This contribution presents results for both elliptic and directed flow as determined from data recorded by the PHOBOS experiment in Au+Au runs at RHIC at \\sqrt{sNN} = 19.6, 130 and 200 GeV. The PHOBOS detector provides a unique coverage in pseudorapidity for measuring flow at RHIC. The systematic dependence of flow on pseudorapidity, transverse momentum, centrality and energy is discussed.

  1. Polarization simulations in the RHIC run 15 lattice

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; White, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    RHIC polarized proton Run 15 uses a new acceleration ramp optics, compared to RHIC Run 13 and earlier runs, in relation with electron-lens beam-beam compensation developments. The new optics induces different strengths in the depolarizing snake resonance sequence, from injection to top energy. As a consequence, polarization transport along the new ramp has been investigated, based on spin tracking simulations. Sample results are reported and discussed.

  2. Proceedings of RIKEN BNL Research Center workwhop on RHIC spin

    Energy Technology Data Exchange (ETDEWEB)

    SOFFER,J.

    1999-10-06

    This RHIC Spin Workshop is the 1999 annual meeting of the RHIC Spin Collaboration, and the second to be hosted at Brookhaven and sponsored by the RIKEN BNL Research Center. The previous meetings were at Brookhaven (1998), Marseille (1996), MIT in 1995, Argonne 1994, Tucson in 1991, and the Polarized Collider Workshop at Penn State in 1990. As noted last year, the Center provides a home for combined work on spin by theorists, experimenters, and accelerator physicists. This proceedings, as last year, is a compilation of 1 page summaries and 5 selected transparencies for each speaker. It is designed to be available soon after the workshop is completed. Speakers are welcome to include web or other references for additional material. The RHIC spin program and RHIC are rapidly becoming reality. RHIC has completed its first commissioning run, as described here by Steve Peggs. The first Siberian Snake for spin has been completed and is being installed in RHIC. A new polarized source from KEK and Triumf with over 1 milliampere of polarized H{sup minus} is being installed, described by Anatoli Zelenski. They have had a successful test of a new polarimeter for RHIC, described by Kazu Kurita and Haixin Huang. Spin commissioning is expected next spring (2000), and the first physics run for spin is anticipated for spring 2001. The purpose of the workshop is to get everyone together about once per year and discuss goals of the spin program, progress, problems, and new ideas. They also have many separate regular forums on spin. There are spin discussion sessions every Tuesday, now organized by Naohito Saito and Werner Vogelsang. The spin discussion schedule and copies of presentations are posted on http://riksg01.rhic.bnl.gov/rsc. Speakers and other spinners are encouraged to come to BNL and to lead a discussion on your favorite idea. They also have regular polarimeter and snake meetings on alternate Thursdays, led by Bill McGahern, the lead engineer for the accelerator spin

  3. Proceedings of RIKEN BNL Research Center workshop on RHIC spin

    International Nuclear Information System (INIS)

    Soffer, J.

    1999-01-01

    This RHIC Spin Workshop is the 1999 annual meeting of the RHIC Spin Collaboration, and the second to be hosted at Brookhaven and sponsored by the RIKEN BNL Research Center. The previous meetings were at Brookhaven (1998), Marseille (1996), MIT in 1995, Argonne 1994, Tucson in 1991, and the Polarized Collider Workshop at Penn State in 1990. As noted last year, the Center provides a home for combined work on spin by theorists, experimenters, and accelerator physicists. This proceedings, as last year, is a compilation of 1 page summaries and 5 selected transparencies for each speaker. It is designed to be available soon after the workshop is completed. Speakers are welcome to include web or other references for additional material. The RHIC spin program and RHIC are rapidly becoming reality. RHIC has completed its first commissioning run, as described here by Steve Peggs. The first Siberian Snake for spin has been completed and is being installed in RHIC. A new polarized source from KEK and Triumf with over 1 milliampere of polarized H minus is being installed, described by Anatoli Zelenski. They have had a successful test of a new polarimeter for RHIC, described by Kazu Kurita and Haixin Huang. Spin commissioning is expected next spring (2000), and the first physics run for spin is anticipated for spring 2001. The purpose of the workshop is to get everyone together about once per year and discuss goals of the spin program, progress, problems, and new ideas. They also have many separate regular forums on spin. There are spin discussion sessions every Tuesday, now organized by Naohito Saito and Werner Vogelsang. The spin discussion schedule and copies of presentations are posted on http://riksg01.rhic.bnl.gov/rsc. Speakers and other spinners are encouraged to come to BNL and to lead a discussion on your favorite idea. They also have regular polarimeter and snake meetings on alternate Thursdays, led by Bill McGahern, the lead engineer for the accelerator spin effort

  4. The RHIC transfer line cable database

    International Nuclear Information System (INIS)

    Scholl, E.H.; Satogata, T.

    1995-01-01

    A cable database was created to facilitate and document installation of cables and wiring in the RHIC project, as well as to provide a data source to track possible wiring and signal problems. The eight tables of this relational database, currently implemented in Sybase, contain information ranging from cable routing to attenuation of individual wires. This database was created in a hierarchical scheme under the assumption that cables contain wires -- each instance of a cable has one to many wires associated with it. This scheme allows entry of information pertinent to individual wires while only requiring single entries for each cable. Relationships to other RHIC databases are also discussed

  5. Summary of the RHIC Retreat 2008

    Energy Technology Data Exchange (ETDEWEB)

    Pilat,F.; Brennan, M.; Brown, K.; Fischer, W.; Montag, C.

    2008-08-01

    The main goal of the RHIC Retreat is to review last run's performance and prepare for the next. As always though we also discussed the longer term goals and plans for the facility to put the work in perspective and in the right priority. A straw-man plan for the facility was prepared for the DOE that assumes 30 cryoweek and running 2 species per year. The plan outlines RHIC operations for 2008-2012 and integrates well accelerator and detector upgrades to optimize the physics output with high luminosities. The plans includes guidance from the PAC and has been reviewed by DOE.

  6. The DIII-D cryogenic system upgrade

    International Nuclear Information System (INIS)

    Schaubel, K.M.; Laughon, G.J.; Campbell, G.L.; Langhorn, A.R.; Stevens, N.C.; Tupper, M.L.

    1993-10-01

    The original DIII-D cryogenic system was commissioned in 1981 and was used to cool the cryopanel arrays for three hydrogen neutral beam injectors. Since then, new demands for liquid helium have arisen including: a fourth neutral beam injector, ten superconducting magnets for the electron cyclotron heating gyrotrons, and more recently, the advanced diverter cryopump which resides inside the tokamak vacuum vessel. The original cryosystem could not meet these demands. Consequently, the cryosystem was upgraded in several phases to increase capacity, improve reliability, and reduce maintenance. The majority of the original system has been replaced with superior equipment. The capacity now exists to support present as well as future demands for liquid helium at DIII-D including a hydrogen pellet injector, which is being constructed by Oak Ridge National Laboratory. Upgrades to the cryosystem include: a recently commissioned 150 ell/hr helium liquefier, two 55 g/sec helium screw compressors, a fully automated 20-valve cryogen distribution box, a high efficiency helium wet expander, and the conversion of equipment from manual or pneumatic to programmable logic controller (PLC) control. The distribution box was designed and constructed for compactness due to limited space availability. Overall system efficiency was significantly improved by replacing the existing neutral beam reliquefier Joule-Thomson valve with a reciprocating wet expander. The implementation of a PLC-based automatic control system has resulted in increased efficiency and reliability. This paper will describe the cryosystem design with emphasis on newly added equipment. In addition, performance and operational experience will be discussed

  7. The DIII-D cryogenic system upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Schaubel, K.M.; Laughon, G.J.; Campbell, G.L.; Langhorn, A.R.; Stevens, N.C.; Tupper, M.L.

    1993-10-01

    The original DIII-D cryogenic system was commissioned in 1981 and was used to cool the cryopanel arrays for three hydrogen neutral beam injectors. Since then, new demands for liquid helium have arisen including: a fourth neutral beam injector, ten superconducting magnets for the electron cyclotron heating gyrotrons, and more recently, the advanced diverter cryopump which resides inside the tokamak vacuum vessel. The original cryosystem could not meet these demands. Consequently, the cryosystem was upgraded in several phases to increase capacity, improve reliability, and reduce maintenance. The majority of the original system has been replaced with superior equipment. The capacity now exists to support present as well as future demands for liquid helium at DIII-D including a hydrogen pellet injector, which is being constructed by Oak Ridge National Laboratory. Upgrades to the cryosystem include: a recently commissioned 150 {ell}/hr helium liquefier, two 55 g/sec helium screw compressors, a fully automated 20-valve cryogen distribution box, a high efficiency helium wet expander, and the conversion of equipment from manual or pneumatic to programmable logic controller (PLC) control. The distribution box was designed and constructed for compactness due to limited space availability. Overall system efficiency was significantly improved by replacing the existing neutral beam reliquefier Joule-Thomson valve with a reciprocating wet expander. The implementation of a PLC-based automatic control system has resulted in increased efficiency and reliability. This paper will describe the cryosystem design with emphasis on newly added equipment. In addition, performance and operational experience will be discussed.

  8. ERL-BASED LEPTON-HADRON COLLIDERS: eRHIC AND LHeC

    CERN Document Server

    Zimmermann, F

    2013-01-01

    Two hadron-ERL colliders are being proposed. The Large Hadron electron Collider (LHeC) plans to collide the high-energy protons and heavy ions in the Large Hadron Collider (LHC) at CERN with 60-GeV polarized electrons or positrons. The baseline scheme for this facility adds to the LHC a separate recirculating superconducting (SC) lepton linac with energy recovery, delivering a lepton current of 6.4mA. The electron-hadron collider project eRHIC aims to collide polarized (and unpolarized) electrons with a current of 50 (220) mA and energies in the range 5–30 GeV with a variety of hadron beams— heavy ions as well as polarized light ions— stored in the existing Relativistic Heavy Ion Collider (RHIC) at BNL. The eRHIC electron beam will be generated in an energy recovery linac (ERL) installed inside the RHIC tunnel.

  9. PHOBOS at RHIC 2000

    International Nuclear Information System (INIS)

    Garcia, E.; Baum, R.; Bindel, R.; Mignerey, A.; Shea, J.; Back, B.B.; Betts, R.R.; George, N.; Wuosmaa, A.H.; Baker, M.D.; Barton, D.S.; Carroll, A.; Ceglia, M.; Gushue, S.; Heintzelman, G.A.; Kraner, H.; Olszewski, A.; Pak, R.; Remsberg, L.P.; Scaduto, J.; Sinacore, J.; Steinberg, P.; Sukhanov, A.; Bogucki, W.; Budzanowski, A.; Coghen, T.; Dabrowski, B.; Despet, M.; Galuszka, K.; Godlewski, J.; Halik, J.; Holynski, R.; Kita, W.; Kotula, J.; Lemler, M.; Ligocki, J.; Michalowski, J.; Sawicki, P.; Straczek, A.; Stodulski, M.; Strek, M.; Stopa, Z.; Trzupek, A.; Wosiek, B.; Wozniak, K.; Zychowski, P.; Bialas, A.; Czyz, W.; Zalewski, K.; Basilev, S.; Bates, B.D.; Busza, W.; Decowski, M.P.; Fita, P.; Fitch, J.; Friedl, M.; Gomes, C.; Griesmayer, E.; Gulbrandsen, K.; Haridas, P.; Henderson, C.; Kane, J.; Katzy, J.; Kulinich, P.; Law, C.; Mulmenstadt, J.; Neal, M.; Patel, M.; Pernegger, H.; Plesko, M.; Reed, C.; Roland, C.; Roland, G.; Ross, D.; Rosenberg, L.; Ryan, J.; Sarin, P.; Steadman, S.G.; Stephans, G.S.F.; Surowiecka, K.; Vale, C.M.; Van Nieuwenhuizen, G.J.; Verdier, R.; Wadsworth, B.; Wyslouch, B.; Chang, Y.H.; Chen, A.E.; Lin, W.T.; Tang, J.L.; Conner, C.; Ganz, R.; Halliwell, C.; Hollis, R.; Holzman, B.; Kucewicz, W.; McLeod, D.; Nouicer, R.; Reuter, M.; Hayes, A.; Johnson, E.; Manly, S.; Park, I.C.; Skulski, W.; Teng, R.; Wolfs, F.L.H.; Sanzgiri, A.

    2001-01-01

    The relativistic heavy ion collider (RHIC) at Brookhaven national laboratory delivered in June 2000 the first collisions between Au nuclei at the highest center-of-mass energies achieved in a controlled environment to date. PHOBOS is one of the four experiments installed during this phase of RHIC running. This paper will describe the PHOBOS experiment, and discuss the results of the first physics measurement, thc pseudo rapidity densities of primary charged particles near mid rapidity in central Au + Au collisions at two different energies, √ S NN = 56 and 130 GeV. The observed densities are higher than those previously observed in any collisions, and the rate of increase between the two energies is larger than that for nucleon-nucleon collisions at comparable beam energies. This talk will describe the PHOBOS experiment, discuss the first physics measurement, and conclude with the present status of the experiment, the physics analysis and the perspectives fi the future. (Author)

  10. Advances in Cryogenic Principles

    Science.gov (United States)

    Barron, R. F.

    During the past 50 years, the use of digital computers has significantly influenced the design and analysis of cryogenic systems. At the time when the first Cryogenic Engineering Conference was held, thermodynamic data were presented in graphical or tabular form (the "steam table" format), whereas thermodynamic data for cryogenic system design is computer generated today. The thermal analysis of cryogenic systems in the 1950s involved analytical solutions, graphical solutions, and relatively simple finite-difference approaches. These approaches have been supplanted by finite-element numerical programs which readily solve complicated thermal problems that could not be solved easily using the methods of the 1950s. In distillation column design, the use of the McCabe-Thiele graphical method for determination of the number of theoretical plates has been replaced by numerical methods that allow consideration of several different components in the feed and product streams.

  11. Spin tune dependence on closed orbit in RHIC

    International Nuclear Information System (INIS)

    Ptitsyn, V.; Bai, M.; Roser, T.

    2010-01-01

    Polarized proton beams are accelerated in RHIC to 250 GeV energy with the help of Siberian Snakes. The pair of Siberian Snakes in each RHIC ring holds the design spin tune at 1/2 to avoid polarization loss during acceleration. However, in the presence of closed orbit errors, the actual spin tune can be shifted away from the exact 1/2 value. It leads to a corresponding shift of locations of higher-order ('snake') resonances and limits the available betatron tune space. The largest closed orbit effect on the spin tune comes from the horizontal orbit angle between the two snakes. During RHIC Run in 2009 dedicated measurements with polarized proton beams were taken to verify the dependence of the spin tune on the local orbits at the Snakes. The experimental results are presented along with the comparison with analytical predictions.

  12. Polarization response of RHIC electron lens lattices

    Directory of Open Access Journals (Sweden)

    V. H. Ranjbar

    2016-10-01

    Full Text Available Depolarization response for a system of two orthogonal snakes at irrational tunes is studied in depth using lattice independent spin integration. In particular we consider the effect of overlapping spin resonances in this system, to understand the impact of phase, tune, relative location and threshold strengths of the spin resonances. These results are benchmarked and compared to two dimensional direct tracking results for the RHIC e-lens lattice and the standard lattice. Finally we consider the effect of longitudinal motion via chromatic scans using direct six dimensional lattice tracking.

  13. Polarization response of RHIC electron lens lattices

    International Nuclear Information System (INIS)

    Ranjbar, V. H.; Méot, F.; Bai, M.; Abell, D. T.; Meiser, D.

    2016-01-01

    Depolarization response for a system of two orthogonal snakes at irrational tunes is studied in depth using lattice independent spin integration. Particularly, we consider the effect of overlapping spin resonances in this system, to understand the impact of phase, tune, relative location and threshold strengths of the spin resonances. Furthermore, these results are benchmarked and compared to two dimensional direct tracking results for the RHIC e-lens lattice and the standard lattice. We then consider the effect of longitudinal motion via chromatic scans using direct six dimensional lattice tracking.

  14. Quadrupole beam-based alignment in the RHIC interaction regions

    International Nuclear Information System (INIS)

    Ziegler, J.; Satogata, T.

    2011-01-01

    Continued beam-based alignment (BBA) efforts have provided significant benefit to both heavy ion and polarized proton operations at RHIC. Recent studies demonstrated previously unknown systematic beam position monitor (BPM) offset errors and produced accurate measurements of individual BPM offsets in the experiment interaction regions. Here we describe the algorithm used to collect and analyze data during the 2010 and early 2011 RHIC runs and the results of these measurements. BBA data has been collected over the past two runs for all three of the active experimental IRs at RHIC, updating results from the 2005 run which were taken with incorrectly installed offsets. The technique was successfully applied to expose a systematic misuse of the BPM survey offsets in the control system. This is likely to benefit polarized proton operations as polarization transmission through acceleration ramps depends on RMS orbit control in the arcs, but a quantitative understanding of its impact is still under active investigation. Data taking is ongoing as are refinements to the BBA technique aimed at reducing systematic errors and properly accounting for dispersive effects. Further development may focus on non-triplet BPMs such as those located near snakes, or arc quadrupoles that do not have individually shunted power supplies (a prerequisite for the current method) and as such, will require a modified procedure.

  15. Cryogenic Propellant Feed System Analytical Tool Development

    Science.gov (United States)

    Lusby, Brian S.; Miranda, Bruno M.; Collins, Jacob A.

    2011-01-01

    The Propulsion Systems Branch at NASA s Lyndon B. Johnson Space Center (JSC) has developed a parametric analytical tool to address the need to rapidly predict heat leak into propellant distribution lines based on insulation type, installation technique, line supports, penetrations, and instrumentation. The Propellant Feed System Analytical Tool (PFSAT) will also determine the optimum orifice diameter for an optional thermodynamic vent system (TVS) to counteract heat leak into the feed line and ensure temperature constraints at the end of the feed line are met. PFSAT was developed primarily using Fortran 90 code because of its number crunching power and the capability to directly access real fluid property subroutines in the Reference Fluid Thermodynamic and Transport Properties (REFPROP) Database developed by NIST. A Microsoft Excel front end user interface was implemented to provide convenient portability of PFSAT among a wide variety of potential users and its ability to utilize a user-friendly graphical user interface (GUI) developed in Visual Basic for Applications (VBA). The focus of PFSAT is on-orbit reaction control systems and orbital maneuvering systems, but it may be used to predict heat leak into ground-based transfer lines as well. PFSAT is expected to be used for rapid initial design of cryogenic propellant distribution lines and thermodynamic vent systems. Once validated, PFSAT will support concept trades for a variety of cryogenic fluid transfer systems on spacecraft, including planetary landers, transfer vehicles, and propellant depots, as well as surface-based transfer systems. The details of the development of PFSAT, its user interface, and the program structure will be presented.

  16. First operation of the XFEL linac with the 2 K cryogenic system

    Science.gov (United States)

    Paetzold, T.; Petersen, B.; Schnautz, T.; Ueresin, C.; Zajac, J.

    2017-12-01

    The RF operation of the about 800 superconducting 1.3 GHz 9-cell cavities of the XFEL linac requires helium II bath cooling at 2 K, corresponding to a vapor pressure of 3100 Pa. After the first cool-down of the XFEL linac to 4 K in December, 27th 2016 the operation of the 2 K cryogenic system was started in January, 2nd 2017. The 2 K cryogenic system consist of a 4-stage set of cold compressors to compress helium vapor at a mass flow of up to 100 g/s from 2400 Pa to about 110 kPa and a full flow bypass with an arrangement of heat exchangers and control valves. This paper describes the XFEL refrigerating plant, especially the 2 K cryogenic system, the tuning of the cold compressor regulation to adapt to the XFEL linac static and dynamic heat loads and experience of about 6 months of operation.

  17. Recommendations for a cryogenic system for ITER [International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Slack, D.S.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a new tokamak design project with joint participation from Japan, the European Community, the Soviet Union, and the United States. ITER will be a large machine requiring up to 100 kW of refrigeration at 4.5 K to cool its superconducting magnets. Unlike earlier fusion experiments, the ITER cryogenic system must handle pulse loads constituting a large percentage of the total load. These come from neutron heating during a fusion burn and from ac losses during ramping of current in the PF (poloidal field) coils. This paper presents a conceptual design for a cryogenic system that meets ITER requirements. It describes a system with the following features: Only time-proven components are used. The system obtains a high efficiency without use of cold pumps or other developmental components. High reliability is achieved by paralleling compressors and expanders and by using adequate isolation valving. The problem of load fluctuations is solved by a simple load-leveling device. The cryogenic system can be housed in a separate building located at a considerable distance from the ITER core, if desired. The paper also summarizes physical plant size, cost estimates, and means of handling vented helium during magnet quench. 4 refs., 4 figs., 3 tabs

  18. Cryogenic systems for the SSC and the status of their development

    International Nuclear Information System (INIS)

    Fietz, W.A.; Ganni, V.; Abramovich, S.; Niehaus, T.

    1993-07-01

    The Superconducting Super Collider (SSC) consists of two parallel magnet rings, each 87,120 m in circumference, constructed in a tunnel 25 to 74 m underground. Protons are injected into these ring from the high energy booster (HEB), which contains a separate magnet ring 10,800 m in circumference constructed in a tunnel 14 m above the collider tunnel. The magnets will be operated at a controlled low temperature in order to maintain the windings in the superconducting state. Therefore the magnet cryostat is designed with a high vacuum insulating chamber, multilayer insulation (MLI), and thermal shields at 84 K and 20 K nominal temperatures. The major portion of the heat load is from thermal radiation and conduction through the supports, and is intercepted and absorbed by the shields. The cryogenic system for the machine is divided into sectors of nominally equal length: ten for the collider and two for the HEB. Each sector has a dedicated cryogenic system (SCS) as well as some level of redundancy from the neighboring SCS. The helium refrigeration plants will be installed at the midpoint of each sector. Each cryogenic sector in the collider is divided into four strings, two upper and two lower, about 4000 m long. Each string is subdivided into sections of about 1080 m, the smallest modules that can be isolated for maintenance, or for warmup and cooldown. Each section is subdivided into cells and half cells. The half cell, containing six main magnets and a spool piece is 90 m long. The SSC cryogenic system for each sector consists of a sector refrigerator surface system (SRS) and a sector refrigerator tunnel system (SRT). Proposals for the SRS systems' are presently in review for vendor selection. In this paper the SRT subsystems requirements and their status will be reviewed

  19. The Development of the Control System for the Cryogenics in the LHC Tunnel

    CERN Document Server

    Fluder, C; Casas-Cubillos, J; Dubert, P; Gomes, P; Pezzetti, M; Tovar-Gonzalez, A; Zwalinski, L

    2011-01-01

    The Large Hadron Collider (LHC) was commissioned at CERN and started operation with beams in 2008. The LHC makes extensive use of superconductors, in magnets, electrical feed boxes and accelerating cavities, which are operated at cryogenic temperatures. The process automation for the cryogenic distribution around the 27 km accelerator circumference is based on 18 Programmable Logic Controllers (PLCs); overall, they handle 4 000 control loops and 8 000 alarms and interlocks; 16 000 cryogenic sensors and actuators are accessed through industrial field networks. This paper reviews the control system architecture and the main hardware and software components; presents the hardware commissioning and software production methodologies; and illustrates some of the problems faced during development, commissioning and nominal cryogenics operation, together with the solutions applied.

  20. OVERVIEW AND STATUS OF THE STAR DETECTOR AT RHIC

    International Nuclear Information System (INIS)

    CHRISTIE, W.B.

    1999-01-01

    Presented here is the current status of the STAR Detector. STAR is one of the four detectors being constructed at the RHIC collider facility. The STAR detector is scheduled to have its first engineering run with the RHIC beams about six months from the date of this conference. The STAR project is on schedule and expects to recomplete on time

  1. First Assessment of Reliability Data for the LHC Accelerator and Detector Cryogenic System Components

    CERN Document Server

    Perinic, G; Alonso-Canella, I; Balle, C; Barth, K; Bel, J F; Benda, V; Bremer, J; Brodzinski, K; Casas-Cubillos, J; Cuccuru, G; Cugnet, M; Delikaris, D; Delruelle, N; Dufay-Chanat, L; Fabre, C; Ferlin, G; Fluder, C; Gavard, E; Girardot, R; Haug, F; Herblin, L; Junker, S; Klabi , T; Knoops, S; Lamboy, J P; Legrand, D; Metselaar, J; Park, A; Perin, A; Pezzetti, M; Penacoba-Fernandez, G; Pirotte, O; Rogez, E; Suraci, A; Stewart, L; Tavian, L J; Tovar-Gonzalez, A; Van Weelderen, R; Vauthier, N; Vullierme, B; Wagner, U

    2012-01-01

    The Large Hadron Collider (LHC) cryogenic system comprises eight independent refrigeration and distribution systems that supply the eight 3.3 km long accelerator sectors with cryogenic refrigeration power as well as four refrigeration systems for the needs of the detectors ATLAS and CMS. In order to ensure the highest possible reliability of the installations, it is important to apply a reliability centred approach for the maintenance. Even though large scale cryogenic refrigeration exists since the mid 20th century, very little third party reliability data is available today. CERN has started to collect data with its computer aided maintenance management system (CAMMS) in 2009, when the accelerator has gone into normal operation. This paper presents the reliability observations from the operation and the maintenance side, as well as statistical data collected by the means of the CAMMS system.

  2. Tracking studies in eRHIC energy-recovery recirculator

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-07-13

    Beam and polarization tracking studies in eRHIC energy recovery electron recirculator are presented, based on a very preliminary design of the FFAG lattice. These simulations provide examples of some of the beam and spin optics aspects of the linear FFAG lattice concept and its application in eRHIC, they provide code benchmarking for synchrotron radiation and spin diffusion in addition, and pave the way towards end-to-end 6-D(phasespace)+3D(spin) tracking simulations.

  3. Cryogenic system for production testing and measurement of Fermilab energy saver superconducting magnets

    International Nuclear Information System (INIS)

    Cooper, W.E.; Barger, R.K.; Bianchi, A.J.; Cooper, W.E.; Johnson, F.B.; McGuire, K.J.; Pinyan, K.D.; Wilson, F.R.

    1983-01-01

    The cryogenic system of the Fermilab Magnet Test Facility has been used to provide cooling for the testing of approximately 1200 Energy Saver superconducting magnets. The system provides liquid helium, liquid nitrogen, gas purification, and vacuum support for six magnet test stands. It provides for simultaneous high current testing of two superconducting magnets and nonhigh current cold testing of two additional magnets. The cryogenic system has been in operation for about 32000 hours. The 1200 magnets have taken slightly more than three years to test

  4. Cryogenic system for production testing and measurement of Fermilab energy saver superconducting magnets

    International Nuclear Information System (INIS)

    Cooper, W.E.; Bianchi, A.J.; Barger, R.K.; Johnson, F.B.; McGuire, K.J.; Pinyan, K.D.; Wilson, F.R.

    1983-03-01

    The cryogenic system of the Fermilab Magnet Test Facility has been used to provide cooling for the testing of approximately 1200 Energy Saver superconducting magnets. The system provides liquid helium, liquid nitrogen, gas purification, and vacuum support for six magnet test stands. It provides for simultaneous high current testing of two superconducting magnets and non-high current cold testing of two additional magnets. The cryogenic system has been in operation for about 32000 hours. The 1200 magnets have taken slightly more than three years to test

  5. RHIC: What We Have Learned So Far (434th Brookhaven Lecture)

    International Nuclear Information System (INIS)

    O'Brien, Edward

    2008-01-01

    One of the world's premiere nuclear research facilities, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab is just completing its eighth year of physics operation. During the past eight years, RHIC's primary physics program has emphasized the creation, observation and explanation of nuclear matter created at temperatures and densities that last existed in the universe some 13.7 billion years ago. RHIC was built to study the strong force, which holds quarks and gluons together within the nucleus of an atom, with the goal of observing a plasma of quarks and gluons freed from the atomic nucleus. The new state of matter that was created, however, was quite different. Dr. O'Brien will discuss what RHIC scientists expected versus what they discovered, and how this finding both challenges existing theory and provides an opportunity to understand the strong force better.

  6. Infrared detectors and test technology of cryogenic camera

    Science.gov (United States)

    Yang, Xiaole; Liu, Xingxin; Xing, Mailing; Ling, Long

    2016-10-01

    Cryogenic camera which is widely used in deep space detection cools down optical system and support structure by cryogenic refrigeration technology, thereby improving the sensitivity. Discussing the characteristics and design points of infrared detector combined with camera's characteristics. At the same time, cryogenic background test systems of chip and detector assembly are established. Chip test system is based on variable cryogenic and multilayer Dewar, and assembly test system is based on target and background simulator in the thermal vacuum environment. The core of test is to establish cryogenic background. Non-uniformity, ratio of dead pixels and noise of test result are given finally. The establishment of test system supports for the design and calculation of infrared systems.

  7. QCD and RHIC

    International Nuclear Information System (INIS)

    Kharzeev, D.

    2004-01-01

    In this talk I discuss recent advances in Quantum Chromo-Dynamics, in particular the progress in understanding the collective dynamics of the theory. I emphasise the significance of the RHIC program for establishing the properties of hot and dense QCD matter and for understanding the dynamics of the theory at the high parton density, strong color field frontier. Hopes and expectations for the future are discussed as well

  8. SYNTHESIZER CONTROLLED BEAM TRANSFER FROM THE AGS TO RHIC

    International Nuclear Information System (INIS)

    DELONG, J.; BRENNAN, J.M.; FISCHER, W.; HAYES, T.; SMITH, K.; VALENTINO, S.

    2001-01-01

    To ensure minimal losses and to preserve longitudinal emittance, beam is transferred from the AGS to the RHIC bunch to bucket. This requires precision frequency and phase control for synchronization and kicker timing. The required precision is realized with a set of Direct Digital Synthesizers. Each synthesizer can be frequency and phase modulated to align the AGS bunch to the target bucket in the RHIC phase

  9. A prototype ionization profile monitor for RHIC

    International Nuclear Information System (INIS)

    Connolly, R.; Cameron, P.; Ryan, W.

    1997-01-01

    Transverse beam profiles in the Relativistic Heavy-Ion Collider (RHIC) will be measured with ionization profile monitors (IPM's). Each IPM collects and measures the distribution of electrons in the beamline resulting from residual gas ionization during bunch passage. The electrons are swept transversely from the beamline and collected on strip anodes oriented parallel to the beam axis. At each bunch passage the charge pulses are amplified, integrated, and digitized for display as a profile histogram. A prototype detector was tested in the injection line during the RHIC Sextant Test. This paper describes the detector and gives results from the beam tests

  10. A prototype ionization profile monitor for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, R.; Cameron, P.; Ryan, W. [and others

    1997-07-01

    Transverse beam profiles in the Relativistic Heavy-Ion Collider (RHIC) will be measured with ionization profile monitors (IPM`s). Each IPM collects and measures the distribution of electrons in the beamline resulting from residual gas ionization during bunch passage. The electrons are swept transversely from the beamline and collected on strip anodes oriented parallel to the beam axis. At each bunch passage the charge pulses are amplified, integrated, and digitized for display as a profile histogram. A prototype detector was tested in the injection line during the RHIC Sextant Test. This paper describes the detector and gives results from the beam tests.

  11. Renovation of the Sissi cryogenic system

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    SISSI (high current superconductor secondary ion source) involved a cryo-generator operating in a close circuit when the whole system was put in service in 1994. Since then the cryo-generator has proved to be insufficiently reliable. A new cryogenic system based on an external liquid helium supply has been designed. The helium transfer lines are surrounded by a shield at liquid nitrogen temperature and numerous layers of super-insulators in order to have minimum thermal losses. The installation was integrated to SISSI in summer 1998 and after the first operating period some improvements concerning the cooling procedure have to be considered. (A.C.)

  12. The development of a cryogenic integrated system with the working temperature of 100K

    Science.gov (United States)

    Liu, En'guang; Wu, Yi'nong; Wang, Yueming; Wen, Jiajia; Lv, Gang; Li, Chunlai; Hou, Jia; Yuan, Liyin

    2016-05-01

    In the infrared system, cooling down the optic components' temperature is a better choice to decrease the background radiation and maximize the sensitivity. This paper presented a 100K cryogenic optical system, for which an integrated designation of mechanical cooler, flexible thermal link and optical bench was developed. The whole infrared optic components which were assembled in a vacuum box were cooled down to 100K by two mechanical coolers. Low thermal conductivity supports and low emissivity multi-layers were used to reduce the cryogenic optical system's heat loss. The experiment results showed that in about eight hours, the temperature of the optical components reached 100K from room temperature, and the vibration from the mechanical coolers nearly have no affection to the imaging process by using of thermal links. Some experimental results of this cryogenic system will be discussed in this paper.

  13. Dynamic simulations of the cryogenic system of a tokamak

    International Nuclear Information System (INIS)

    Cirillo, R.; Hoa, C.; Michel, F.; Rousset, B.; Poncet, J.M.

    2015-01-01

    In a tokamak plasma confinement is achieved through high magnetic fields generated by superconductive coils that need to be cooled down to 4.4 K with a forced flow of supercritical Helium. Tokamak's coil system works cyclically and so it is subject to pulsed heat loads which have to be handled by the refrigerator. This latter has to be sized on the average power value and not according to the peak to limit investment and operation costs and hence the heat load needs to be smoothed. CEA Grenoble is in charge of providing the cryogenic system for the Japanese tokamak JT60-SA, currently under construction in Naka (Japan). Hence, in order to model and study the smoothing strategies, an experimental set up: HELIOS (Helium Loop for high load smoothing) has been built. This is a scaled down model (1:20) of the helium distribution system whose main components are a saturated helium bath and a supercritical helium loop. This large installation can reproduce conditions of pressure, temperature and transport times, similar to those expected in the cooling circuits of the central solenoid superconducting magnets of JT-60SA. The peak loads representative of the tokamak operation have been reproduced and smoothed before they arrive in the refrigerator, by means of a saturated helium bath (thermal reservoir). A dynamic modelling of the cryogenic system is presented, with results on the pulsed load scenarios. All the simulations have been performed with EcosimPro software developed and the cryogenic library: CRYOLIB. This document is made up of an abstract and the slides of the presentation

  14. Parton-hadron cascade approach at SPS and RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Nara, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-07-01

    A parton-hadron cascade model which is the extension of hadronic cascade model incorporating hard partonic scattering based on HIJING is presented to describe the space-time evolution of parton/hadron system produced by ultra-relativistic nuclear collisions. Hadron yield, baryon stopping and transverse momentum distribution are calculated and compared with HIJING and VNI. Baryon density, energy density and temperature for RHIC are calculated within this model. (author)

  15. PHOBOS at RHIC 2000

    Energy Technology Data Exchange (ETDEWEB)

    Back, B. B [Argonne National Laboratory (United States)] (and others)

    2001-12-01

    The relativistic heavy ion collider (RHIC) at Brookhaven national laboratory delivered in June 2000 the first collisions between Au nuclei at the highest center-of-mass energies achieved in a controlled environment to date. PHOBOS is one of the four experiments installed during this phase of RHIC running. This paper will describe the PHOBOS experiment, and discuss the results of the first physics measurement, the pseudo rapidity densities of primary charged particles near mid rapidity in central Au+Au collisions at two different energies, S{sub N}N{sup .}5=56 and 130 GeV. The observed densities are higher than those previously observed in any collisions, and the rate of increase between the two energies is larger than that for nucleon-nucleon collisions at comparable beam energies. This talk will describe the PHOBOS experiment, discuss the first physics measurement, and conclude with the present status of the experiment, the physics analysis and the perspectives for the future. [Spanish] El elativistic heavy ion collider (RHIC) en Brookhaven national laboratory produjo por primera vez colisiones de nucleos de oro (Au) a las energias mas altas alcanzadas en un medio ambiente controlado. PHOBOS es uno de los cuatro experimentos presentes en DIC durante su fase inicial. Este articulo describe en detalle a PHOBOS y discute los primeros resultados publicados acerca de la fisica de DIC, esto es la densidad de particulas primarias a id rapidity en colisiones centrales de Au+Au a dos diferentes energias S{sub N}N{sup .}5 =56 y 130 GeV. Las densidades observadas son mas altas que en cualquier otra experimento anterior, las densidades obtenidas son tambien mas altas que las encontradas en colisiones proton-proton a energias comparables. Este articulo tambien discute el estado actual del experimento asi como los planes para el futuro.

  16. The RHIC polarized H{sup −} ion source

    Energy Technology Data Exchange (ETDEWEB)

    Zelenski, A., E-mail: zelenski@bnl.gov; Atoian, G.; Raparia, D.; Ritter, J.; Steski, D. [Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2016-02-15

    A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H{sup −} ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H{sup −} ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC.

  17. Integrated cryogenic sensors

    International Nuclear Information System (INIS)

    Juanarena, D.B.; Rao, M.G.

    1991-01-01

    Integrated cryogenic pressure-temperature, level-temperature, and flow-temperature sensors have several advantages over the conventional single parameter sensors. Such integrated sensors were not available until recently. Pressure Systems, Inc. (PSI) of Hampton, Virginia, has introduced precalibrated precision cryogenic pressure sensors at the Los Angeles Cryogenic Engineering Conference in 1989. Recently, PSI has successfully completed the development of integrated pressure-temperature and level-temperature sensors for use in the temperature range 1.5-375K. In this paper, performance characteristics of these integrated sensors are presented. Further, the effects of irradiation and magnetic fields on these integrated sensors are also reviewed

  18. Observations of Snake Resonance in RHIC

    CERN Document Server

    Bai, Mei; Lee, Shyh-Yuan; Lin, Fanglei; MacKay, William; Ptitsyn, Vadim; Roser, Thomas; Tepikian, Steven

    2005-01-01

    Siberian snakes now become essential in the polarized proton acceleration. With proper configuration of Siberian snakes, the spin precession tune of the beam becomes $\\frac{1}{2}$ which avoids all the spin depolarizing resonance. However, the enhancement of the perturbations on the spin motion can still occur when the betatron tune is near some low order fractional numbers, called snake resonances, and the beam can be depolarized when passing through the resonance. The snake resonances have been confirmed in the spin tracking calculations, and observed in RHIC with polarized proton beam. Equipped with two full Siberian snakes in each ring, RHIC provides us a perfect facility for snake resonance studies. This paper presents latest experimental results. New insights are also discussed.

  19. Automatic Management Systems for the Operation of the Cryogenic Test Facilities for LHC Series Superconducting Magnets

    CERN Document Server

    Tovar-Gonzalez, A; Herblin, L; Lamboy, J P; Vullierme, B

    2006-01-01

    Prior to their final preparation before installation in the tunnel, the ~1800 series superconducting magnets of the LHC machine shall be entirely tested at reception on modular test facilities. The operation 24 hours per day of the cryogenic test facilities is conducted in turn by 3-operator teams, assisted in real time by the use of the Test Bench Priorities Handling System, a process control application enforcing the optimum use of cryogenic utilities and of the "Tasks Tracking System", a web-based e-traveller application handling 12 parallel 38-task test sequences. This paper describes how such computer-based management systems can be used to optimize operation of concurrent test benches within technical boundary conditions given by the cryogenic capacity, and how they can be used to study the efficiency of the automatic steering of all individual cryogenic sub-systems. Finally, this paper presents the overall performance of the cryomagnet test station for the first complete year of operation at high produ...

  20. Polarized proton parameters for the 2015 PP-on-Au setup in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-08-25

    Values are given for RHIC circumference shifts due to snakes for various situations. Relevant parameters are tabulated for polarized protons (PP) in the booster and in AGS and RHIC for PP-on-Au stores.

  1. Polarized proton parameters for the 2015 PP-on-Aluminum setup in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-10-02

    Values are given for RHIC circumference shifts due to snakes for various situations. Relevant parameters are tabulated for polarized protons (PP) in the booster and in AGS and RHIC for PP-on-Aluminum stores.

  2. Experts dismiss doomsday scenarios for RHIC

    CERN Multimedia

    Levi, B G

    2000-01-01

    A panel of particle physicists examining the possibility that operation of RHIC could generate blackholes or 'strangelets' which would consume ordinary matter, have declared that such scenarios are 'firmly excluded' (1 p).

  3. Conceptual design of the Relativistic Heavy Ion Collider [RHIC

    International Nuclear Information System (INIS)

    1989-05-01

    In August 1984 Brookhaven National Laboratory submitted a proposal for the construction of a Relativistic Heavy Ion Collider (RHIC) to the US Department of Energy. A Conceptual Design Report for the RHIC facility was completed in May 1986 after detailed reviews of the machine design, and of the requirements of the physics research program. Since that time an extensive R ampersand D program has been initiated and considerable work has been carried out to refine the design and specification of the major accelerator components, as well as the needs for research detectors, and to prepare the project for construction. This document is an update of the Conceptual Design Report, incorporating the results of work carried out since the beginning of Fiscal Year 1987 when a formal R ampersand D program for the RHIC project funded by DOE was initiated

  4. The RHIC/AGS Online Model Environment: Design and Overview

    International Nuclear Information System (INIS)

    Satogata, T.; Brown, K.; Pilat, F.; Tafti Alai, A.; Tepikian, S.; Vanzeijtz

    1999-01-01

    An integrated online modeling environment is currently under development for use by AGS and RHIC physicists and commissioners. This environment combines the modeling efforts of both groups in a CDEV[1] client-server design, providing access to expected machine optics and physics parameters based on live and design machine settings. An abstract modeling interface has been designed as a set of adapters[2] around core computational modeling engines such as MAD and UAL/Teapot++[3]. This approach allows us to leverage existing survey, lattice, and magnet infrastructure, as well as easily incorporate new model engine developments. This paper describes the architecture of the RHIC/AGS modeling environment, including the application interface through CDEV and general tools for graphical interaction with the model using Tcl/Tk. Separate papers at this conference address the specifics of implementation and modeling experience for AGS and RHIC

  5. Opportunities for Polarized He-3 in RHIC and EIC

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer E.; Deshpande, A.; Fischer, W.; Derbenev, S.; Milner, R.; Roser, T.; Zelenski, A.

    2011-10-01

    The workshop on opportunities for polarized He-3 in RHIC and EIC was targeted at finding practical ways of implementing and using polarized He-3 beams. Polarized He-3 beams will provide the unique opportunity for first measurements, i.e, to a full quark flavor separation measuring single spin asymmetries for p{sup +}, p{sup -} and p{sup 0} in hadron-hadron collisions. In electron ion collisions the combination of data recorded with polarized electron proton/He-3 beams allows to determine the quark flavor separated helicity and transverse momentum distributions. The workshop had sessions on polarized He-3 sources, the physics of colliding polarized He-3 beams, polarimetry, and beam acceleration in the AGS Booster, AGS, RHIC, and ELIC. The material presented at the workshop will allow making plans for the implementation of polarized He-3 beams in RHIC.

  6. Construction and commissioning of a hydrogen cryogenic distillation system for tritium recovery at ICIT Rm. Valcea

    Energy Technology Data Exchange (ETDEWEB)

    Ana, George, E-mail: george.ana@icsi.ro [Institute for Cryogenic and Isotopic Technologies, Rm. Valcea (Romania); Cristescu, Ion [Karlsruhe Istitute for Technologies, Tritium Laboratory, Eggenstein-Leopoldshaffen (Germany); Draghia, Mirela [ISTECH, Timisoara (Romania); Bucur, Ciprian; Balteanu, Ovidiu; Vijulie, Mihai; Popescu, Gheorghe; Costeanu, Claudiu; Sofilca, Nicolae; Stefan, Iulia; Daramus, Robert; Niculescu, Alina; Oubraham, Anisoara; Spiridon, Ionut; Vasut, Felicia; Moraru, Carmen; Brad, Sebastian [Institute for Cryogenic and Isotopic Technologies, Rm. Valcea (Romania); Pasca, Gheorghe [ISTECH, Timisoara (Romania)

    2016-05-15

    Highlights: • Cryogenic distillation (CD) process is being employed for tritium separation from tritiated hydrogen mixtures. • Process control and safety phylosophy with the detritiation plant from Rm. Vâlcea. • Tests undertaken prior to commissioning of the CD system from Rm. Vâlcea. • Preliminary experiments with the CD system (non-radiological). - Abstract: Cryogenic distillation (CD) of hydrogen in combination with Liquid Phase Catalytic Exchange (LPCE) or Combined Electrolytic Catalytic Exchange (CECE) process is used for tritium removal/recovery from tritiated water. Tritiated water is being obtained after long time operation of CANDU reactors, or in case of ITER mainly by the Detritiation System (DS). The cryogenic distillation system (CDS) used to remove/recover tritium from a hydrogen stream consists of a cascade of cryogenic distillation columns and a refrigeration unit which provides the cooling capacity for the condensers of CD columns. The columns, together with the condensers and the process heat-exchangers are accommodated in a vacuumed cold box. In the particularly case of the ICIT Plant, the cryogenic distillation cascade consists of four columns with diameters between 100–7 mm and it has been designed to process up to 10 mc/h of tritiated deuterium. This paper will present the steps undertaken for construction and commissioning of a pilot plant for tritium removal/recovery by cryogenic distillation of hydrogen. The paper will show besides preliminary data obtained during commissioning, also general characteristics of the plant and its equipments.

  7. PROPOSAL FOR AN EBIS BASED RHIC PREINJECTOR.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI,J.G.; BEEBE,E.; KPONOU,A.; PIKIN,A.; PRELEC,K.; RAPARIA,D.; RITTER,J.; ZHANG,S.Y.

    2000-11-06

    A proposed new heavy ion preinjector for RHIC is described. The progress made at BNL on the development of an Electron Beam Ion Source (EBIS) has increased our confidence that one can build a preinjector meeting RHIC requirements using an EBIS producing intermediate charge state heavy ions. A new RFQ and Linac will be required to accelerate beams from this source to an energy sufficient for injection into the AGS Booster. These are both straightforward devices, very similar to ones already in operation at other laboratories. Injection into the Booster will occur at the same location as the existing heavy ion injection from the Tandem Van de Graaff.

  8. PROPOSAL FOR AN EBIS-BASED RHIC PREINJECTOR

    International Nuclear Information System (INIS)

    ALESSI, J.G.; BEEBE, E.; KPONOU, A.; PIKIN, A.; PRELEC, K.; RAPARIA, D.; RITTER, J.; ZHANG, S.Y.

    2000-01-01

    A proposed new heavy ion preinjector for RHIC is described. The progress made at BNL on the development of an Electron Beam Ion Source (EBIS) has increased our confidence that one can build a preinjector meeting RHIC requirements using an EBIS producing intermediate charge state heavy ions. A new RFQ and Linac will be required to accelerate beams from this source to an energy sufficient for injection into the AGS Booster. These are both straightforward devices, very similar to ones already in operation at other laboratories. Injection into the Booster will occur at the same location as the existing heavy ion injection from the Tandem Van de Graaff

  9. Mechanical design of 56 MHz superconducting RF cavity for RHIC collider

    Energy Technology Data Exchange (ETDEWEB)

    Pai, C.; Ben-Zvi, I.; Burrill, A.; Chang, X.; McIntyre, G.; Than, Y.; Tuozzolo, J.; Wu, Q.

    2011-03-28

    A 56 MHz Superconducting RF Cavity operating at 4.4K is being constructed for the RHIC collider. This cavity is a quarter wave resonator with beam transmission along the centerline. This cavity will increase collision luminosity by providing a large longitudinal bucket for stored bunches of RHIC ion beam. The major components of this assembly are the niobium cavity with the mechanical tuner, its titanium helium vessel and vacuum cryostat, the support system, and the ports for HOM and fundamental dampers. The cavity and its helium vessel must meet equivalent safety with the ASME pressure vessel code and it must not be sensitive to frequency shift due to pressure fluctuations from the helium supply system. Frequency tuning achieved by a two stage mechanical tuner is required to meet performance parameters. This tuner mechanism pushes and pulls the tuning plate in the gap of niobium cavity. The tuner mechanism has two separate drive systems to provide both coarse and fine tuning capabilities. This paper discusses the design detail and how the design requirements are met.

  10. Thermal and prompt photons at RHIC and the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Paquet, Jean-François [Department of Physics & Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A2T8 (Canada); Shen, Chun [Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A2T8 (Canada); Denicol, Gabriel [Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A2T8 (Canada); Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Luzum, Matthew [Universidade de Santiago de Compostela, E-15706 Santiago de Compostela, Galicia-Spain (Spain); Universidade de São Paulo, Rua do Matão Travessa R, no. 187, 05508-090, Cidade Universitária, São Paulo (Brazil); Schenke, Björn [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Jeon, Sangyong; Gale, Charles [Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A2T8 (Canada)

    2016-12-15

    Thermal and prompt photon production in heavy ion collisions is evaluated and compared with measurements from both RHIC and the LHC. An event-by-event hydrodynamical model of heavy ion collisions that includes shear and bulk viscosities is used, along with up-to-date photon emission rates. Larger tension with measurements is observed at RHIC than at the LHC. The center-of-mass energy and centrality dependence of thermal and prompt photons is investigated.

  11. Beam-beam collisions and crossing angles in RHIC

    International Nuclear Information System (INIS)

    Peggs, S.

    1999-01-01

    This paper evaluates the strength of head on and parasitic beam-beam collisions in RHIC when the crossing angle is zero. A non-zero crossing angle is not required in normal operation with 120 bunches, thanks to the early separation of the two beams. The RHIC lattice is shown to easily accommodate even conservatively large crossing angles, for example in beam dynamics studies, or in future operational upgrades to as many as 360 bunches per ring. A modest loss in luminosity is incurred when gold ions collide at an angle after 10 hours of storage

  12. Kodak AMSD Cryogenic Test Plans

    Science.gov (United States)

    Matthews, Gary; Hammon, John; Barrett, David; Russell, Kevin (Technical Monitor)

    2002-01-01

    NGST will be an IR based optical system that will operate at cryogenic temperatures. As part of the AMSD program, Kodak must demonstrate the ability of our system to perform at these very cold temperatures. Kodak will discuss the test approach that will be used for cryogenic testing at MSFC's XRCF.

  13. Detectors for low energy electron cooling in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, F. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-15

    Low-energy operation of RHIC is of particular interest to study the location of a possible critical point in the QCD phase diagram. The performance of RHIC at energies equal to or lower than 10 GV/nucleon is limited by nonlinearities, Intra-BeamScattering (IBS) processes and space-charge effects. To successfully address the luminosity and ion store lifetime limitations imposed by IBS, the method of electron cooling has been envisaged. During electron cooling processes electrons are injected along with the ion beam at the nominal ion bunch velocities. The velocity spread of the ion beam is reduced in all planes through Coulomb interactions between the cold electron beam and the ion beam. The electron cooling system proposed for RHIC will be the first of its kind to use bunched beams for the delivery of the electron bunches, and will therefore be accompanied by the necessary challenges. The designed electron cooler will be located in IP2. The electron bunches will be accelerated by a linac before being injected along side the ion beams. Thirty consecutive electron bunches will be injected to overlap with a single ion bunch. They will first cool the yellow beam before being extracted, turned by 180-degrees, and reinjected into the blue beam for cooling. As such, both the yellow and blue beams will be cooled by the same ion bunches. This will pose considerable challenges to ensure proper electron beam quality to cool the second ion beam. Furthermore, no ondulator will be used in the electron cooler so radiative recombination between the ions and the electrons will occur.

  14. Exploring new frontiers in nuclear and particle physics with the STAR detector at RHIC

    International Nuclear Information System (INIS)

    Hallman, T.J.

    1996-01-01

    The Solenoidal Tracker At RHIC (STAR) is a large acceptance collider detector scheduled to begin operation at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory in the fall of 1999. In the sections which follow, details of the STAR detector and physics program, as well as the status of the RHIC construction project will be presented

  15. Performance of a cryogenic system prototype for the XENON1T detector

    International Nuclear Information System (INIS)

    Aprile, E; Budnik, R; Choi, B; Contreras, H A; Giboni, K L; Goetzke, L W; Lang, R F; Lim, K E; Melgarejo, A J; Plante, G; Rizzo, A; Shagin, P

    2012-01-01

    We have developed an efficient cryogenic system with heat exchange and associated gas purification system as a prototype for the XENON1T experiment. The XENON1T detector will use about 3 tons of liquid xenon (LXe) at a temperature of 175K as target and detection medium for a dark matter search. In this paper we report results on the cryogenic system performance focusing on the dynamics of the gas circulation-purification through a heated getter, at flow rates above 50 Standard Liter per Minute (SLPM). A maximum flow of 114 SLPM has been achieved, and using two heat exchangers in series, a heat exchange efficiency better than 96% has been measured.

  16. Cryogenics for LHC experiments

    CERN Multimedia

    2001-01-01

    Cryogenic systems will be used by LHC experiments to maximize their performance. Institutes around the world are collaborating with CERN in the construction of these very low temperature systems. The cryogenic test facility in hall 180 for ATLAS magnets. High Energy Physics experiments have frequently adopted cryogenic versions of their apparatus to achieve optimal performance, and those for the LHC will be no exception. The two largest experiments for CERN's new flagship accelerator, ATLAS and CMS, will both use large superconducting magnets operated at 4.5 Kelvin - almost 270 degrees below the freezing point of water. ATLAS also includes calorimeters filled with liquid argon at 87 Kelvin. For the magnets, the choice of a cryogenic version was dictated by a combination economy and transparency to emerging particles. For the calorimeters, liquid argon was selected as the fluid best suited to the experiment's physics requirements. High Energy Physics experiments are the result of worldwide collaborations and...

  17. CERN experience and strategy for the maintenance of cryogenic plants and distribution systems

    CERN Document Server

    Serio, L; Claudet, S; Delikaris, D; Ferlin, G; Pezzetti, M; Pirotte, O; Tavian, L; Wagner, U

    2015-01-01

    CERN operates and maintains the world largest cryogenic infrastructure ranging from ageing installations feeding detectors, test facilities and general services, to the state-of-the-art cryogenic system serving the flagship LHC machine complex. After several years of exploitation of a wide range of cryogenic installations and in particular following the last two years major shutdown to maintain and consolidate the LHC machine, we have analysed and reviewed the maintenance activities to implement an efficient and reliable exploitation of the installations. We report the results, statistics and lessons learned on the maintenance activities performed and in particular the required consolidations and major overhauling, the organization, management and methodologies implemented.

  18. CERN experience and strategy for the maintenance of cryogenic plants and distribution systems

    International Nuclear Information System (INIS)

    Serio, L; Bremer, J; Claudet, S; Delikaris, D; Ferlin, G; Pezzetti, M; Pirotte, O; Tavian, L; Wagner, U

    2015-01-01

    CERN operates and maintains the world largest cryogenic infrastructure ranging from ageing installations feeding detectors, test facilities and general services, to the state-of-the-art cryogenic system serving the flagship LHC machine complex. After several years of exploitation of a wide range of cryogenic installations and in particular following the last two years major shutdown to maintain and consolidate the LHC machine, we have analysed and reviewed the maintenance activities to implement an efficient and reliable exploitation of the installations. We report the results, statistics and lessons learned on the maintenance activities performed and in particular the required consolidations and major overhauling, the organization, management and methodologies implemented. (paper)

  19. Recent Results from PHOBOS at Rhic

    Science.gov (United States)

    Garcia, Edmundo; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; Garcia, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    The PHOBOS detector is one of four heavy-ion experiments at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. In this paper we will review some of the results of PHOBOS from the data collected in p+p, d+Au and Au+Au collisions at nucleon-nucleon center-of-mass energies up to 200 GeV. In the most central Au+Au collisions at the highest energy, evidence is found for the formation of a very high energy density and highly interactive system, which can not be described in terms of hadrons, and which has a relatively low baryon density.

  20. Initial performance of upgraded Tevatron cryogenic systems

    International Nuclear Information System (INIS)

    Norris, B.L.

    1996-09-01

    Fermilab began operating a re-designed satellite refrigerator systems in November 1993. Upgrades were installed to operate the Tevatron at a magnet temperature of 3.5 K, approximately 1K lower than the original design. Refrigerator upgrades included new valve boxes, larger reciprocating expanders, the installation of cold vapor compressors, new sub-atmospheric instrumentation and an entirely new distributed controls system. Cryogenic system reliability data for Colliding Physics Run 1B is presented emphasizing a failure analysis for each aspect of the upgrade. Comparison to data for Colliding Physics Run 1A (previous to upgrade) is presented to show the impact of a major system overhaul. New operational problems and their solutions are presented in detail

  1. Report of the stochastic cooling subgroup of the RHIC workshop

    International Nuclear Information System (INIS)

    Boussard, D.; Claus, J.; DiMassa, G.; Marriner, J.; Milutinovic, J.; Shafer, R.

    1988-01-01

    We have considered the possibility of stochastic cooling of beams for the RHIC collider. Similar studies have been carried out previously for RHIC and other bunched beam proton machines. The major motivation for cooling at RHIC is to stabilize the growth from intrabeam scattering. We find that cooling rates of the order of 500 sec are theoretically possible for beams of gold ions with γ = 100 if a cooling bandwidth of 10 GHz is used. However, the amount of microwave power which is required is large for momentum cooling and probably not practical. Considerably less power is required for slower rates. We believe that cooling times of 5000 sec for momentum cooling and 1000 sec for betatron cooling might be possible. 5 refs

  2. Cryogen free low temperature sample environment for neutron scattering experiments

    International Nuclear Information System (INIS)

    Kirichek, O; Evans, B E; Down, R B E; Bowden, Z A

    2009-01-01

    Recent increase in liquid helium cost caused by global helium supply problems rose significant concern about affordability of conventional cryogenic equipment. Luckily the progress in cryo-cooler technology offers a new generation of cryogenic systems with significantly reduced consumption and in some cases nearly complete elimination of cryogens. These cryogen-free systems also offer the advantage of operational simplicity and require less space than conventional cryogen-cooled systems. The ISIS facility carries on an internal development program intended to substitute gradually all conventional cryogenic systems with cryogen free systems preferably based on pulse tube refrigerators. A unique feature of this cryo-cooler is the absence of cold moving parts. This considerably reduces vibrations and increases the reliability of the cold head. The program includes few development projects which are aiming to deliver range of cryogen free equipment including top-loading cryostat, superconducting magnets and dilution refrigerators. Here we are going to describe the design of these systems and discuss the results of prototypes testing.

  3. POSSIBLE ORIGIN OF RHIC R OUT/R SID HBT RESULTS

    International Nuclear Information System (INIS)

    PADULA, S.S.

    2002-01-01

    The effects of opacity of the nuclei together with a blackbody type of emission along the system history are considered as a means to explain the ratio R out /R sid observed by STAR and PHENIX collaborations at RHIC. Within our model, no flow is required to explain the data trend of this ratio for large surface emissivities

  4. POSSIBLE ORIGIN OF RHIC R OUT / R SID HBT RESULTS

    International Nuclear Information System (INIS)

    PADULA, S.

    2002-01-01

    The effects of opacity of the nuclei together with a blackbody type of emission along the system history are considered as a means to explain the ratio R out /R sid observed by STAR and PHENIX collaborations at RHIC. Within our model, no flow is required to explain the data trend of this ratio for large surface emissivities

  5. Gas gap heat switch for a cryogen-free magnet system

    International Nuclear Information System (INIS)

    Barreto, J; De Sousa, P Borges; Martins, D; Bonfait, G; Catarino, I; Kar, S

    2015-01-01

    Cryogen-free superconducting magnet systems (CFMS) have become popular over the last two decades for the simple reason that the use of liquid helium is rather cumbersome and that helium is a scarce resource. Some available CFMS use a mechanical cryocooler as the magnet's cold source. However, the variable temperature insert (VTI) for some existing CFMS are not strictly cryogen-free as they are still based on helium gas circulation through the sample space. We designed a prototype of a gas gap heat switch (GGHS) that allows a thermal management of a completely cryogen-free magnet system, with no helium losses. The idea relies on a parallel cooling path to a variable temperature insert (VTI) of a magnetic properties measurement system under development at Inter-University Accelerator Centre. A Gifford-McMahon cryocooler (1.5 W @ 4.2 K) would serve primarily as the cold source of the superconducting magnet, dedicating 1 W to this cooling, under quite conservative safety factors. The remaining cooling power (0.5 W) is to be diverted towards a VTI through a controlled GGHS that was designed and built with a 80 μm gap width. The built GGHS thermal performance was measured at 4 K, using helium as the exchange gas, and its conductance is compared both with a previously developed analytical model and a finite element method. Lessons learned lead to a new and more functional prototype yet to be reported. (paper)

  6. First turn around strategy for RHIC

    International Nuclear Information System (INIS)

    Milutinovic, J.; Ruggiero, A.G.

    1991-01-01

    The authors present a strategy for achieving the so-called first turn around in RHIC. The strategy is based on the same method proposed to correct a distorted closed orbit in RHIC, i.e. on a generalization of the local three-bump method. They found out that the method is very effective in passing the beam through a non-ideal, insufficiently known, machine. The perturbed lattice was generated by the code PATRIS, which was also adapted to control the newly developed software. In ten distributions of errors the software was capable of passing the beam through in 2-3 injection attempts, at full sextupole strength. It was also determined that once the beam makes the first turn around and all the correctors are energized, it stays in the machine for at least several hundred turns

  7. A deterministic, gigabit serial timing, synchronization and data link for the RHIC LLRF

    International Nuclear Information System (INIS)

    Hayes, T.; Smith, K.S.; Severino, F.

    2011-01-01

    A critical capability of the new RHIC low level rf (LLRF) system is the ability to synchronize signals across multiple locations. The 'Update Link' provides this functionality. The 'Update Link' is a deterministic serial data link based on the Xilinx RocketIO protocol that is broadcast over fiber optic cable at 1 gigabit per second (Gbps). The link provides timing events and data packets as well as time stamp information for synchronizing diagnostic data from multiple sources. The new RHIC LLRF was designed to be a flexible, modular system. The system is constructed of numerous independent RF Controller chassis. To provide synchronization among all of these chassis, the Update Link system was designed. The Update Link system provides a low latency, deterministic data path to broadcast information to all receivers in the system. The Update Link system is based on a central hub, the Update Link Master (ULM), which generates the data stream that is distributed via fiber optic links. Downstream chassis have non-deterministic connections back to the ULM that allow any chassis to provide data that is broadcast globally.

  8. Fermilab Muon Campus g-2 Cryogenic Distribution Remote Control System

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.; Theilacker, J.; Klebaner, A.; Soyars, W.; Bossert, R.

    2015-11-05

    The Muon Campus (MC) is able to measure Muon g-2 with high precision and comparing its value to the theoretical prediction. The MC has four 300 KW screw compressors and four liquid helium refrigerators. The centerpiece of the Muon g-2 experiment at Fermilab is a large, 50-foot-diameter superconducting muon storage ring. This one-of-a-kind ring, made of steel, aluminum and superconducting wire, was built for the previous g-2 experiment at Brookhaven. Due to each subsystem has to be far away from each other and be placed in the distant location, therefore, Siemens Process Control System PCS7-400, Automation Direct DL205 & DL05 PLC, Synoptic and Fermilab ACNET HMI are the ideal choices as the MC g-2 cryogenic distribution real-time and on-Line remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time and On-Line remote control systems.

  9. ERL with non-scaling fixed field alternating gradient lattice for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hao, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Thieberger, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The proposed eRHIC electron-hadron collider uses a "non-scaling FFAG" (NS-FFAG) lattice to recirculate 16 turns of different energy through just two beam lines located in the RHIC tunnel. This paper presents lattices for these two FFAGs that are optimized for low magnet field and to minimize total synchrotron radiation across the energy range. The higher number of recirculations in the FFAG allows a shorter linac (1.322GeV) to be used, drastically reducing cost, while still achieving a 21.2 GeV maximum energy to collide with one of the existing RHIC hadron rings at up to 250GeV. eRHIC uses many cost-saving measures in addition to the FFAG: the linac operates in energy recovery mode, so the beams also decelerate via the same FFAG loops and energy is recovered from the interacted beam. All magnets will be constructed from NdFeB permanent magnet material, meaning chillers and large magnet power supplies are not needed. This paper also describes a small prototype ERL-FFAG accelerator that will test all of these technologies in combination to reduce technical risk for eRHIC.

  10. Workshop on the RHIC performance

    Energy Technology Data Exchange (ETDEWEB)

    Khiari, F.; Milutinovic, J.; Ratti, A.; Rhoades-Brown, M.J. (eds.)

    1988-07-01

    The most recent conceptual design manual for the Relativistic Heavy Ion Collider (RHIC) at Brookhaven was published in May 1986 (BNL 51932). The purpose of this workshop was to review the design specifications in this RHIC reference manual, and to discuss in detail possible improvements in machine performance by addressing four main areas. These areas are beam-beam interactions, stochastic cooling, rf and bunch instabilities. The contents of this proceedings are as follows. Following an overview of the workshop, in which the motivation and goals are discussed in detail, transcripts of the first day talks are given. Many of these transcripts are copies of the original transparencies presented at the meeting. The following four sections contain contributed papers, that resulted from discussions at the workshop within each of the four working groups. In addition, there is a group summary for each of the four working groups at the beginning of each section. Finally, a list of participants is given.

  11. Tau electron atoms at RHIC

    International Nuclear Information System (INIS)

    Weiss, M.S.

    1985-01-01

    An amusement ancillary to the proposed quark-gluon plasma production hypothesized from a relativistic heavy ion collider (RHIC is a sufficient quantity of tau electrons to potentially admit the study of its exotic atoms. In this paper the given wealth of nuclear phenomena is derived from muonic atoms assume a tau atom is more forthcoming of information due to the lower orbits entirely contained within the nucleus. It is the purpose of this brief note to discuss the production mechanism at a RHIC and to delineate some of the more obvious properties of the tau atom. As in the case of the mu, more exotic phenomena derived from resonance ''accidents'' with nuclear transitions takes place, but it would be presumptions to discuss them at this time. Given the complete containment in nuclear matter of the tau lepton in its innermost atomic orbits. An experiment performed with such an exotic species results in the measurement of its lifetime

  12. Elmo Bumpy Torus proof of principle, Phase II: Title 1 report. Volume VII. Cryogenic system

    International Nuclear Information System (INIS)

    Poteat, T.J.

    1982-01-01

    This document, Volume VII EBT-P Cryogenic System Title I Design Report, describes the system that resulted from the Title I Preliminary Design effort. It is a self-contained document that can be read apart from the other Volumes comprising the EBT-P Title I Report. This document is a contract deliverable item and provides the detail necessary to support the Cryogenic System design contained in the EBT-P Baseline Design Data Book

  13. Performance of the JT-60SA cryogenic system under pulsed heat loads during acceptance tests

    Science.gov (United States)

    Hoa, C.; Bonne, F.; Roussel, P.; Lamaison, V.; Girard, S.; Fejoz, P.; Goncalves, R.; Vallet, J. C.; Legrand, J.; Fabre, Y.; Pudys, V.; Wanner, M.; Cardella, A.; Di Pietro, E.; Kamiya, K.; Natsume, K.; Ohtsu, K.; Oishi, M.; Honda, A.; Kashiwa, Y.; Kizu, K.

    2017-12-01

    The JT-60SA cryogenic system a superconducting tokamak currently under assembly at Naka, Japan. After one year of commissioning, the acceptance tests were successfully completed in October 2016 in close collaboration with Air Liquide Advanced Technologies (ALaT), the French atomic and alternative energies commission (CEA), Fusion for Energy (F4E) and the Quantum Radiological Science and Technology (QST). The cryogenic system has several cryogenic users at various temperatures: the superconducting magnets at 4.4 K, the current leads at 50 K, the thermal shields at 80 K and the divertor cryo-pumps at 3.7 K. The cryogenic system has an equivalent refrigeration power of about 9.5 kW at 4.5 K, with peak loads caused by the nuclear heating, the eddy currents in the structures and the AC losses in the magnets during cyclic plasma operation. The main results of the acceptance tests will be reported, with emphasis on the management of the challenging pulsed load operation using a liquid helium volume of 7 m3 as a thermal damper.

  14. ABORT GAP CLEANING IN RHIC

    International Nuclear Information System (INIS)

    DREES, A.; AHRENS, L.; III FLILLER, R.; GASSNER, D.; MCINTYRE, G.T.; MICHNOFF, R.; TRBOJEVIC, D.

    2002-01-01

    During the RHIC Au-run in 2001 the 200 MHz storage cavity system was used for the first time. The rebucketing procedure caused significant beam debunching in addition to amplifying debunching due to other mechanisms. At the end of a four hour store, debunched beam could account for approximately 30%-40% of the total beam intensity. Some of it will be in the abort gap. In order to minimize the risk of magnet quenching due to uncontrolled beam losses at the time of a beam dump, a combination of a fast transverse kicker and copper collimators were used to clean the abort gap. This report gives an overview of the gap cleaning procedure and the achieved performance

  15. Polarized proton acceleration program at the AGS and RHIC

    International Nuclear Information System (INIS)

    Lee, Y.Y.

    1995-01-01

    Presented is an overview of the program for acceleration of polarized protons in the AGS and their injection into the RHIC collider. The problem of depolarizing resonances in strong focusing circulator accelerators is discussed. The intrinsic resonances are jumped over by the fast tune jump, and a partial Siberian Snake is used to compensate for over forty imperfection resonances in the AGS. Two sets of full Siberian Snake and spin rotators will be employed in RHIC

  16. A new architecture for Fermilab's cryogenic control system

    International Nuclear Information System (INIS)

    Smolucha, J.; Frank, A.; Seino, K.; Lackey, S.

    1992-01-01

    In order to achieve design energy in the Tevatron, the magnet system will be operated at lower temperatures. The increased requirements of operating the Tevatron at lower temperatures necessitated a major upgrade to the both the hardware and software components of the cryogenic control system. The new architecture is based on a distributed topology which couples Fermilab designed I/O subsystems to high performance, 80386 execution processors via a variety of networks including: Arcnet, iPSB, and token ring. (author)

  17. Cryogenic system of the prototype of the superconducting magnet for a deuteron cyclotron-1

    International Nuclear Information System (INIS)

    Alenitskij, Yu.G.; Buzdavin, A.P.; Vasilenko, A.T.

    1987-01-01

    The results achieved in developing a cryogenic system for the superconducting magnet of the deuteron cyclotron are described. The cryogenic system consists of a liquefier-refrigerator with the output 40 l.h, or 150 W of power taken off at 4.5 K, a satellite refrigerator, a cryostat of the superconductiong magnet coil and vessels for liquid nitrogen and helium. Now auxiliary equipment is being mounted and the main parts of the magnet are being manufatured

  18. RHIC ABORT KICKER WITH REDUCED COUPLING IMPEDANCE

    International Nuclear Information System (INIS)

    HAHN, H.; DAVINO, D.

    2002-01-01

    Kicker magnets typically represent the most important contributors to the transverse impedance budget of accelerators and storage rings. Methods of reducing the impedance value of the SNS extraction kicker presently under construction and, in view of a future performance upgrade, that of the RHIC abort kicker have been thoroughly studied at this laboratory. In this paper, the investigation of a potential improvement from using ferrite different from the BNL standard CMD5005 is reported. Permeability measurements of several ferrite types have been performed. Measurements on two kicker magnets using CMD5005 and C2050 suggest that the impedance of a magnet without external resistive damping, such as the RHIC abort kicker, would benefit

  19. Main Consolidations and Improvements of the Control System and Instrumentation for the LHC Cryogenics

    CERN Document Server

    Fluder, C; Bremer, J; Bremer, K; Ivens, B; Casas-Cubillos, J; Claudet, S; Gomes, P; Ivens, B; Perin, A; Pezzetti, M; Tovar-Gonzalez, A; Vauthier, N

    2013-01-01

    Operation of the LHC during 2010 and 2011 with 3.5 TeV beam energy and luminosity up to 3.65x1033 cm-2 s-1, led to radiation-induced failures of micro-electronic devices used in the cryogenic control system. Mitigating actions addressed equipment relocation and corrective patches on electronics and software. Driven by the technical requirements and by feedback from the cryogenic operation team, numerous consolidations and improvements were implemented on-the-fly, enhancing availability and operability of the LHC cryogenics. Furthermore, additional diagnostic tools, test benches, technical procedures and trainings have been provided to strengthen first line support services.

  20. The Control System for the Cryogenics in the LHC Tunnel

    CERN Document Server

    Gomes, P; Antoniotti, F; Avramidou, R; Balle, Ch; Blanco-Viñuela, E; Carminati, Ch; Casas-Cubillos, J; Ciechanowski, M; Dragoneas, A; Dubert, P; Fampris, X; Fluder, C; Fortescue, E; Gaj, W; Gousiou, E; Jeanmonod, N; Jodłowski, P; Karagiannis, F; Klisch, M; López, A; Macuda, P; Malinowski, P; Molina, E; Paiva, S; Patsouli, A; Penacoba, G; Sosin, M; Soubiran, M; Suraci, A; Tovar, A; Vauthier, N; Wolak, T; Zwalinski, L

    2009-01-01

    The Large Hadron Collider makes extensive use of superconductors, in magnets for bending and focusing the particles, and in RF cavities for accelerating them, which are operated at 1.9 K and 4.5 K. The process automation for the cryogenic distribution around the accelerator circumference is based on 16 Programmable Logic Controllers, each running 250 control loops, 500 alarms and interlocks, and a phase sequencer. Spread along 27 km and under ionizing radiation, 15 000 cryogenic sensors and actuators are accessed through industrial field networks. We describe the main hardware and software components of the control system, their deployment and commissioning, together with the project organization, challenges faced, and solutions found.

  1. Report on EBIS studies for a RHIC preinjector

    International Nuclear Information System (INIS)

    Beebe, E.; Hershcovitch, A.; Kponou, A.; Prelec, K.; Alessi, J.

    1995-01-01

    Bookhaven, an Electron Beam Ion Source (EBIS) is now operational. This source is being used as a test bed to answer questions relevant to the eventual design of an EBIS-based heavy ion injector for RHIC. Such a source can easily produce ions such as Au 43+ but the challenge lies in reaching intensities of interest for RHIC (3 x 10 9 particles/pulse). The source studies are planned to address issues such as scaling of the electron beam to 10 A, possible onset (and control) of instabilities, ion injection, and parametric studies of output emittance

  2. High density matter at RHIC

    Indian Academy of Sciences (India)

    QCD predicts a phase transition between hadronic matter and a quark-gluon plasma at high energy density. The relativistic heavy ion collider (RHIC) at Brookhaven National Laboratory is a new facility dedicated to the experimental study of matter under extreme conditions. Already the first round of experimental results at ...

  3. Vent System Analysis for the Cryogenic Propellant Storage Transfer Ground Test Article

    Science.gov (United States)

    Hedayat, A

    2013-01-01

    To test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots, NASA is leading the efforts to develop and design the Cryogenic Propellant Storage and Transfer (CPST) Cryogenic Fluid Management (CFM) payload. The primary objectives of CPST payload are to demonstrate: 1) in-space storage of cryogenic propellants for long duration applications; and 2) in-space transfer of cryogenic propellants. The Ground Test Article (GTA) is a technology development version of the CPST payload. The GTA consists of flight-sized and flight-like storage and transfer tanks, liquid acquisition devices, transfer, and pressurization systems with all of the CPST functionality. The GTA is designed to perform integrated passive and active thermal storage and transfer performance testing with liquid hydrogen (LH2) in a vacuum environment. The GTA storage tank is designed to store liquid hydrogen and the transfer tank is designed to be 5% of the storage tank volume. The LH2 transfer subsystem is designed to transfer propellant from one tank to the other utilizing pressure or a pump. The LH2 vent subsystem is designed to prevent over-pressurization of the storage and transfer tanks. An in-house general-purpose computer program was utilized to model and simulate the vent subsystem operation. The modeling, analysis, and the results will be presented in the final paper.

  4. A dynamic model for beam tube vacuum effects on the SSC cryogenic system

    International Nuclear Information System (INIS)

    Carcagno, R.H.; Schiesser, W.E.; Shih, H.J.; Xu, X.; Yuecel, A.

    1992-01-01

    The dynamic interaction between the beam-gas scattering induced energy deposition and the SSC cryogenic system is studied by integrating a cryogenic system dynamic simulator with an adsorption model and a beam-gas scattering and energy deposition model. Simulation results are obtained for a 1km long SSC arc section where the beam tube pressure in one of the dipoles is increased up to 150 times its nominal operating pressure. The beam-gas scattering induced heat loads arising from such high pressure perturbations can be very high locally but do not overload the cryogenic system. They are more likely to induce a magnet quench as they result in coil temperatures that largely exceed the desired operating limit. Simulations are also carried out for the case where a large external heat load of 1W/m is imposed on the coldmass of a half-cell in the section. Results show that the coldmass temperatures rise significantly with the added heat load but the energy deposition in the cold mass due to beam-gas scattering remains low despite the increase in the beam tube temperature

  5. A dynamic model for beam tube vacuum effects on the SSC cryogenic system

    International Nuclear Information System (INIS)

    Carcagno, R.H.; Schiesser, W.E.; Shih, H.J.; Xu, X.; Yuecel, A.

    1992-03-01

    The dynamic interaction between the beam-gas scattering induced energy deposition and the SSC cryogenic system is studied by integrating a cryogenic system dynamic simulator with an adsorption model and a beam-gas scattering and energy deposition model. Simulation results are obtained for a 1 km long SSC arc section where the beam tube pressure in one of the dipoles in increased up to 150 times its nominal operating pressure. The beam-gas scattering induced heat loads arising from such high pressure perturbations can be very locally but do not overload the cryogenic system. They are more likely to induce a magnet quench as they result in coil temperatures that largely exceed the desired operating limit. Simulations are also carried out for the case where a large external heat load of 1 W/m is imposed on the coldmass of a half-cell in the section. Results show that the coldmass temperatures rise significantly with the added heat load but the energy deposition in the coldmass due to beam-gas scattering remains low despite the increase in the beam tube temperature

  6. SEARCH FOR A RELIABLE STORAGE ARCHITECTURE FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BINELLO,S.; KATZ, R.A.; MORRIS, J.T.

    2007-10-15

    Software used to operate the Relativistic Heavy Ion Collider (RHIC) resides on one operational RAID storage system. This storage system is also used to store data that reflects the status and recent history of accelerator operations. Failure of this system interrupts the operation of the accelerator as backup systems are brought online. In order to increase the reliability of this critical control system component, the storage system architecture has been upgraded to use Storage Area Network (SAN) technology and to introduce redundant components and redundant storage paths. This paper describes the evolution of the storage system, the contributions to reliability that each additional feature has provided, further improvements that are being considered, and real-life experience with the current system.

  7. SEARCH FOR A RELIABLE STORAGE ARCHITECTURE FOR RHIC

    International Nuclear Information System (INIS)

    BINELLO, S.; KATZ, R.A.; MORRIS, J.T.

    2007-01-01

    Software used to operate the Relativistic Heavy Ion Collider (RHIC) resides on one operational RAID storage system. This storage system is also used to store data that reflects the status and recent history of accelerator operations. Failure of this system interrupts the operation of the accelerator as backup systems are brought online. In order to increase the reliability of this critical control system component, the storage system architecture has been upgraded to use Storage Area Network (SAN) technology and to introduce redundant components and redundant storage paths. This paper describes the evolution of the storage system, the contributions to reliability that each additional feature has provided, further improvements that are being considered, and real-life experience with the current system

  8. NUMERICAL STUDIES OF THE FRICTION FORCE FOR THE RHIC ELECTRON COOLER

    International Nuclear Information System (INIS)

    FEDOTOV, A.V.; BEN-ZVI, I.; LITVINENKO, V.

    2005-01-01

    Accurate calculation of electron cooling times requires an accurate description of the dynamical friction force. The proposed RHIC cooler will require ∼55 MeV electrons, which must be obtained from an RF linac, leading to very high transverse electron temperatures. A strong solenoid will be used to magnetize the electrons and suppress the transverse temperature, but the achievable magnetized cooling logarithm will not be large. In this paper, we explore the magnetized friction force for parameters of the RHIC cooler, using the VORPAL code [l]. VORPAL can simulate dynamical friction and diffusion coefficients directly from first principles [2]. Various aspects of the fiction force are addressed for the problem of high-energy electron cooling in the RHIC regime

  9. Illuminating RHIC matter with the multi-purpose direct photon

    International Nuclear Information System (INIS)

    Frantz, Justin

    2007-01-01

    In the RHIC era, the use of direct photon physics to probe heavy ion collisions has developed beyond its original scope. I make evaluations of the current state of several measurements by RHIC experiments and their associated physics implications, with a focus on their current and desired precision. At low p T , thermal photon theory is still not well constrained by the data, but improvements are on the way. At higher p T , we have been able to gain important insights, now with regards to the proposed 'jet-medium' photon sources (Fries, Muller and Srivastava 2003 Phys. Rev. Lett. 90 132301 (Preprint nucl-th/0208001); Zakharov 2004 JETP Lett. 80 617). Such predictions, as they currently exist, seem to be disfavoured by the PHENIX data; however, the idea is probably not ruled out. Finally, direct γ-jet correlations have been measured for the first time at RHIC and already show hints of medium modification

  10. MEASURING LOCAL GRADIENT AND SKEW QUADRUPOLE ERRORS IN RHIC IRS

    International Nuclear Information System (INIS)

    CARDONA, J.; PEGGS, S.; PILAT, R.; PTITSYN, V.

    2004-01-01

    The measurement of local linear errors at RHIC interaction regions using an ''action and phase'' analysis of difference orbits has already been presented [2]. This paper evaluates the accuracy of this technique using difference orbits that were taken when known gradient errors and skew quadrupole errors were intentionally introduced. It also presents action and phase analysis of simulated orbits when controlled errors are intentionally placed in a RHIC simulation model

  11. The performance of a piezoelectric-sensor-based SHM system under a combined cryogenic temperature and vibration environment

    International Nuclear Information System (INIS)

    Qing, Xinlin P; Beard, Shawn J; Kumar, Amrita; Sullivan, Kevin; Aguilar, Robert; Merchant, Munir; Taniguchi, Mike

    2008-01-01

    A series of tests have been conducted to determine the survivability and functionality of a piezoelectric-sensor-based active structural health monitoring (SHM) SMART Tape system under the operating conditions of typical liquid rocket engines such as cryogenic temperature and vibration loads. The performance of different piezoelectric sensors and a low temperature adhesive under cryogenic temperature was first investigated. The active SHM system for liquid rocket engines was exposed to flight vibration and shock environments on a simulated large booster LOX-H 2 engine propellant duct conditioned to cryogenic temperatures to evaluate the physical robustness of the built-in sensor network as well as operational survivability and functionality. Test results demonstrated that the developed SMART Tape system can withstand operational levels of vibration and shock energy on a representative rocket engine duct assembly, and is functional under the combined cryogenic temperature and vibration environment

  12. Cryogenics Testbed Laboratory Flange Baseline Configuration

    Science.gov (United States)

    Acuna, Marie Lei Ysabel D.

    2013-01-01

    As an intern at Kennedy Space Center (KSC), I was involved in research for the Fluids and Propulsion Division of the NASA Engineering (NE) Directorate. I was immersed in the Integrated Ground Operations Demonstration Units (IGODU) project for the majority of my time at KSC, primarily with the Ground Operations Demonstration Unit Liquid Oxygen (GODU L02) branch of IGODU. This project was established to develop advancements in cryogenic systems as a part of KSC's Advanced Exploration Systems (AES) program. The vision of AES is to develop new approaches for human exploration, and operations in and beyond low Earth orbit. Advanced cryogenic systems are crucial to minimize the consumable losses of cryogenic propellants, develop higher performance launch vehicles, and decrease operations cost for future launch programs. During my internship, I conducted a flange torque tracking study that established a baseline configuration for the flanges in the Simulated Propellant Loading System (SPLS) at the KSC Cryogenics Test Laboratory (CTL) - the testing environment for GODU L02.

  13. The Forward GEM Tracker of STAR at RHIC

    OpenAIRE

    Simon, F.; Balewski, J.; Fatemi, R.; Hasell, D.; Kelsey, J.; Majka, R.; Page, B.; Plesko, M.; Underwood, D.; Smirnov, N.; Sowinski, J.; Spinka, H.; Surrow, B.; Visser, G.

    2008-01-01

    The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) is in the process of designing and constructing a forward tracking system based on triple GEM technology. This upgrade is necessary to give STAR the capability to reconstruct and identify the charge sign of W bosons over an extended rapidity range through their leptonic decay mode into an electron (positron) and a neutrino. This will allow a detailed study of the flavor-separated spin str...

  14. Model approach for simulating the thermodynamic behavior of the MFTF cryogenic cooling systems - a status report

    International Nuclear Information System (INIS)

    Sutton, S.B.; Stein, W.; Reitter, T.A.; Hindmarsh, A.C.

    1983-01-01

    A numerical model for calculating the thermodynamic behavior of the MFTF-B cryogenic cooling system is described. Nine component types are discussed with governing equations given. The algorithm for solving the coupled set of algebraic and ordinary differential equations is described. The model and its application to the MFTF-B cryogenic cooling system has not been possible due to lack of funding

  15. FRIB Cryogenic Plant Status

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Kelly D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ganni, Venkatarao [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Knudsen, Peter N. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Casagranda, Fabio [Michigan State Univ., East Lansing, MI (United States)

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  16. Installation and pre-commissioning of the cryogenic system of JT-60SA tokamak

    Science.gov (United States)

    Hoa, C.; Michel, F.; Roussel, P.; Fejoz, P.; Girard, S.; Goncalves, R.; Lamaison, V.; Natsume, K.; Kizu, K.; Koide, Y.; Yoshida, K.; Cardella, A.; Portone, A.; Verrecchia, M.; Wanner, M.; Beauvisage, J.; Bertholat, F.; Gaillard, G.; Heloin, V.; Langevin, B.; Legrand, J.; Maire, S.; Perrier, J. M.; Pudys, V.

    2017-02-01

    The cryogenic system for the superconducting tokamak JT-60SA is currently being commissioned in Naka, Japan and shall be ready for operation in summer 2016. This contribution is part of the Broader Approach agreement between Japan and Europe. With an equivalent refrigeration capacity of about 9.5 kW at 4.5 K the cryogenic system will supply cryo-pump panels at 3.7 K, superconducting magnets and their structures at 4.4 K, high temperature superconducting current leads at 50 K and thermal shields between 80 K and 100 K. The system has been specifically designed to handle large pulse loads at 4.4 K during plasma operation. The mechanical and electrical assembly of the cryogenic system has been achieved within six months by October 2015. The main contractor Air Liquide Advanced Technology (AL-aT) have supplied eight parallel working screw compressors with a common oil removal and dryer system, a Refrigeration Cold Box and an Auxiliary Cold box with cold rotating machines. F4E has provided six GHe storage vessels and QST has provided the complete infrastructure and the facilities for the utilities. The paper gives an overview of the main design features, the infrastructure and the status of installation and pre-commissioning.

  17. Helical spin rotators and snakes for RHIC

    International Nuclear Information System (INIS)

    Ptitsin, V.I.; Shatunov, Yu.M.; Peggs, S.

    1995-01-01

    The RHIC collider, now under construction at BNL, will have the possibility of polarized proton-proton collisions up to a beam energy of 250 Gev. Polarized proton beams of such high energy can be only obtained with the use of siberian snakes, a special kind of spin rotator that rotates the particle spin by 180 degree around an axis lying in the horizontal plane. Siberian snakes help to preserve the beam polarization while numerous spin depolarizing resonances are crossed, during acceleration. In order to collide longitudinally polarized beams, it is also planned to install spin rotators around two interaction regions. This paper discusses snake and spin rotator designs based on sequences of four helical magnets. The schemes that were chosen to be applied at RHIC are presented

  18. Construction of cryogenic testing system and tensile deformation behavior of AISI 300 series stainless steels at cryogenic temperatures

    International Nuclear Information System (INIS)

    Lee, H.M.; Nahm, S.H.; Huh, Y.H.; Lee, J.J.; Bahng, G.W.

    1990-01-01

    For practical application of cryogenic engineering, development and characterization of structural materials for use at low temperatures are essential. For these purposes, a system for mechanical testing at liquid helium temperatures was developed and it was shown that the precision and accuracy of the system met the requirements of standards for materials testing machines. Using this system, tensile deformation behavior of AISI 304,316 and 310S austenitic stainless steels at cryogenic temperatures was investigated. Tests were conducted on round, tensile specimens having a 6.25mm diameter at 4,77, and 295 K and loading rate was 0.5mm/min. Serrations were observed in all alloys at 4 K. The stress-displacement curves at 77 and 4 K showed different tendency from those at 298 K. As the testing temperature decreased, ultimate strengths of 304 and 316 were largely increased compared to the increase of yield strengths, but the increase of ultimate strength of 310S was almost the same to that of yield strength. Type 310S had the highest yield strength and the lowest tensile strength at all temperatutes. These tensile characteristics were considered to be strongly affected by austenite stability.(Author)

  19. Cryogenic System for a High-Temperature Superconducting Power Transmission Cable

    International Nuclear Information System (INIS)

    Demko, J.A.; Gouge, M.J.; Hughey, R.L.; Lue, J.W.; Martin, R.; Sinha, U.; Stovall, J.P.

    1999-01-01

    High-temperature superconducting (HTS) cable systems for power transmission are under development that will use pressurized liquid nitrogen to provide cooling of the cable and termination hardware. Southwire Company and Oak Ridge National Laboratory have been operating a prototype HTS cable system that contains many of the typical components needed for a commercial power transmission application. It is being used to conduct research in the development of components and systems for eventual commercial deployment. The cryogenic system was built by Air Products and Chemicals, Allentown, Pennsylvania, and can circulate up to 0.35 kg/s of liquid nitrogen at temperatures as low as 67 K at pressures of 1 to 10 bars. Sufficient cooling is provided for testing a 5-m-long HTS transmission cable system that includes the terminations required for room temperature electrical connections. Testing of the 5-m HTS transmission cable has been conducted at the design ac conditions of 1250 A and 7.5 kV line to ground. This paper contains a description of the essential features of the HTS cable cryogenic system and performance results obtained during operation of the system. The salient features of the operation that are important in large commercial HTS cable applications will be discussed

  20. Approach to modeling of the fast energy discharge in cryogenic systems in the form of an electric arc

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Superconducting magnets are supplied with a few kA of electric current and can store a large amount of energy. Therefore, cryogenic systems which are comprised of such magnets are subject to the risk of fast energy discharge from the magnets themselves in the form of an electric arc. The arcing can be a result of failure in the insulation of an electric circuit or in the connection between the magnet and its current lead. During the discharge, energy can be partially dissipated into the cryogen and partially into the cryogenic system metallic structure. The part of the energy that is transferred to the metallic structure will strongly heat up the metal surface, which can lead to material burning. In this case, the cryogen will flow through the perforation to the insulation vacuum space, which can trigger a rapid increase in pressure in the vacuum enclosure. However, the discharged energy that has been stored in the cryogen also causes a rapid increase in cryogenic pressure. Hence, the proper estimation of the...

  1. Dynamic modeling and simulation of the superconducting super collider cryogenic helium system

    International Nuclear Information System (INIS)

    Hartzog, D.G.; Fox, V.G.; Mathias, P.M.; Nahmias, D.; McAshan, M.; Carcagno, R.

    1989-01-01

    To study the operation of the Superconducting Super Collider (SSC) cryogenic system during transient operating conditions, they have developed and programmed in FORTRAN, a time-dependent, nonlinear, homogeneous, lumped-parameter simulation model of the SSC cryogenic system. This dynamic simulator has a modular structure so that process flowsheet modifications can be easily accommodated with minimal recoding. It uses the LSODES integration package to advance the solution in time. For helium properties it uses Air Products implementation of the standard thermodynamic model developed by the NBS. Two additional simplified helium thermodynamic models developed by Air Products are available as options to reduce computation time. To facilitate the interpretation of output, they have linked the simulator to the speakeasy conversational language. The authors present a flowsheet of the process simulated, and the material and energy balances used in the engineering models. They then show simulation results for three transient operating scenarios: startup of the refrigeration system from standby to full load; the loss of 4K refrigeration caused by the tripping of one of two parallel compressors in a sector; and a full-field quench of a single magnet half-cell. They discuss the response of the fluid within the cryogenic circuits during these scenarios. 14 refs., 19 figs., 2 tabs

  2. Verification of the high temperature phase by the electron pair measurement at RHIC

    International Nuclear Information System (INIS)

    Akiba, Yasuyuki

    2013-01-01

    At the high energy nuclear collisions of the RHIC accelerator, the high density parton materials are created. If the matter is the quark gluon plasma (QGP) in the high temperature phase of the QCD, thermal photons are expected to be to be radiated there. The direct photon production from the gold + gold collision reactions at RHIC has been measured by using the 'virtual photon method'. In the gold + gold collisions, very many photons are produced compared with the p + p collisions. The production of the excess direct photons approximately agrees with the theoretical prediction of the thermal photon production from the initial temperature from 300 to 600 MeV QGP. In the present explanatory text, the direct photon measurements at the RHENIX experiments of RHIC are described starting from the discovery of high density matter by RHIC. The photon measurements which give direct evidence of the high temperature state and the virtual photon measurement method are reported briefly. The measurements of the direct photons and the estimation of the initial temperature at RHIC are described in detail with illustrations. Finally, some recent results are added and the ALICE experiments of LHC are referred. (S. Funahashi)

  3. Re-visiting RHIC snakes: OPERA fields, n0 dance

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gupta, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-09-22

    In this Tech. Note RHIC snakes and stable spin direction $\\vector{n}$0(s) are re-visited, based on OPERA-computed field maps of the former. The numerical simulations so undertaken provide various outcomes regarding RHIC optics and spin dynamics, in relation with orbital and focusing effects resulting from the use of this realistic 3-D representation of the snakes.

  4. Overview of magnetic nonlinear beam dynamics in the RHIC

    International Nuclear Information System (INIS)

    Luo, Y.; Bai, M.; Beebe-Wang, J.; Bengtsson, J.; Calaga, R.; Fischer, W.; Jain, A.; Pilat, F.; Ptitsyn, V.; Malitsky, N.; Robert-Demolaize, G.; Satogata, T.; Tepikian, S.; Tomas, R.; Trbojevic, D.

    2009-01-01

    In this article we review our studies of nonlinear beam dynamics due to the nonlinear magnetic field errors in the Relativistic Heavy Ion Collider (RHIC). Nonlinear magnetic field errors, including magnetic field errors in interaction regions (IRs), chromatic sextupoles, and sextupole components from arc main dipoles are discussed. Their effects on beam dynamics and beam dynamic aperture are evaluated. The online methods to measure and correct the IR nonlinear field errors, second order chromaticities, and horizontal third order resonance are presented. The overall strategy for nonlinear corrections in RHIC is discussed

  5. The Mirror Fusion Test Facility cryogenic system: Performance, management approach, and present equipment status

    International Nuclear Information System (INIS)

    Slack, D.S.; Chronis, W.C.

    1987-01-01

    The cryogenic system for the Mirror Fusion Test Facility (MFTF) is a 14-kW, 4.35-K helium refrigeration system that proved to be highly successful and cost-effective. All operating objectives were met, while remaining within a few percent of initial cost and schedule plans. The management approach used in MFTF allowed decisions to be made quickly and effectively, and it helped keep costs down. Manpower levels, extent and type of industrial participation, key aspects of subcontractor specifications, and subcontractor interactions are reviewed, as well as highlights of the system tests, operation, and present equipment status. Organizations planning large, high-technology systems may benefit from this experience with the MFTF cryogenic system

  6. The detector calibration system for the CUORE cryogenic bolometer array

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, Jeremy S., E-mail: jeremy.cushman@yale.edu [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Dally, Adam [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Davis, Christopher J. [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Ejzak, Larissa; Lenz, Daniel [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Lim, Kyungeun E. [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Heeger, Karsten M., E-mail: karsten.heeger@yale.edu [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Maruyama, Reina H. [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Nucciotti, Angelo [Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126 (Italy); INFN – Sezione di Milano Bicocca, Milano I-20126 (Italy); Sangiorgio, Samuele [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Wise, Thomas [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2017-02-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of {sup 130}Te and other rare events. The CUORE detector consists of 988 TeO{sub 2} bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires the placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. This paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.

  7. Use of PROFIBUS for cryogenic instrumentation at XFEL

    Science.gov (United States)

    Boeckmann, T.; Bolte, J.; Bozhko, Y.; Clausen, M.; Escherich, K.; Korth, O.; Penning, J.; Rickens, H.; Schnautz, T.; Schoeneburg, B.; Zhirnov, A.

    2017-12-01

    The European X-ray Free Electron Laser (XFEL) is a research facility and since December 2016 under commissioning at DESY in Hamburg. The XFEL superconducting accelerator is 1.5 km long and contains 96 superconducting accelerator modules. The control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the XFEL cryogenic system consisting of the XFEL refrigerator, cryogenic distribution systems and the XFEL accelerator. The PROFIBUS fieldbus technology is the key technology of the cryogenic instrumentation and the link to the control system. More than 650 PROFIBUS nodes are implemented in the different parts of the XFEL cryogenic facilities. The presentation will give an overview of PROFIBUS installation in these facilities regarding engineering, possibilities of diagnostics, commissioning and the first operating experience.

  8. Production of quarkonia at RHIC

    Czech Academy of Sciences Publication Activity Database

    Vértési, Robert

    2016-01-01

    Roč. 31, 28-29 (2016), č. článku 1645036. ISSN 0217-751X R&D Projects: GA ČR GA13-20841S Institutional support: RVO:61389005 Keywords : Brookhaven RHIC Coll * quark onium: heavy * quark onium: production * quark gluon: plasma Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.597, year: 2016

  9. Cryogenic system for a superconducting spectrometer

    International Nuclear Information System (INIS)

    Porter, J.

    1983-03-01

    The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable, pool boiling design to provide a maximum particle bending field of 3 tesla. This paper describes the cryogenic facility including helium refrigeration, gas management, liquid nitrogen system, and the overall control strategy. The system normally operates with a 4 K heat load of 150 watts; the LN 2 circuits absorb an additional 4000 watts. 80K intercept control is by an LSI 11 computer. Total available refrigeration at 4K is 400 watts using reciprocating expanders at the 20K and 4K level. The minicomputer has the capability of optimizing overall utility input cost by varying operating points. A hybrid of pneumatic, analog, and digital control is successful in providing full time unattended operation. The 7m diameter magnet/cryostat assembly is rotatable through 180 degrees to provide a variety of spectrometer orientations

  10. Current measurement system utilizing cryogenic techniques for the absolute measurement of the magnetic flux quantum

    International Nuclear Information System (INIS)

    Endo, T.; Murayama, Y.; Sakamoto, Y.; Sakuraba, T.; Shiota, F.

    1989-01-01

    A series of systems composed of cryogenic devices such as a Josephson potentiometer and a cryogenic current comparator has been proposed and developed to precisely measure a current with any value up to 1 A. These systems will be used to measure the injected electrical energy with an uncertainty of the order of 0.01 ppm or less in the absolute measurement of the magnetic flux quantum by superconducting magnetic levitation. Some preliminary experiments are described

  11. Analysis and Design of the Cryogenic System of the Future Circular Collider

    CERN Document Server

    Kotnig, Claudio; Brenn, Günter

    Particle colliders are today's most advanced tools to perform particle physics experiments and penetrate the mysteries of matter. The largest existing particle collider, the LHC, is about to reach its technical limits and the particle physics society has to decide which future machine will enable the successful research to gain new knowledge. One option is the superconducting Future Circular Collider (FCC), which would exceed the LHC's size and generated particle energies by far. The enormous particle energies call for high magnetic fields, which only can be created reliably and economically by special superconducting materials at cryogenic temperature level. The intelligent design of the cryogenic distribution and discharge system to sustain the thermodynamic state of the superconducting electromagnets is the basis for an efficient and functional refrigeration and consequently for the physics experiments themselves. Several requirements and constraints limit the technical possibilities and the cryogenic syst...

  12. Elliptic flow in Au+Au collisions at RHIC

    Science.gov (United States)

    Vale, Carla M.; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Ngyuen, M.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wyslouch, B.

    2005-04-01

    Elliptic flow is an interesting probe of the dynamical evolution of the dense system formed in the ultrarelativistic heavy ion collisions at the relativistic heavy ion collider (RHIC). The elliptic flow dependences on transverse momentum, centrality and pseudorapidity were measured using data collected by the PHOBOS detector, which offers a unique opportunity to study the azimuthal anisotropies of charged particles over a wide range of pseudorapidity. These measurements are presented, together with an overview of the analysis methods and a discussion of the results.

  13. Design of the advanced divertor pump cryogenic system for DIII-D

    International Nuclear Information System (INIS)

    Schaubel, K.M.; Baxi, C.B.; Campbell, G.L.; Gootgeld, A.M.; Langhorn, A.R.; Laughon, G.J.; Smith, J.P.; Anderson, P.M.; Menon, M.M.

    1991-11-01

    The design of the cryogenic system for the D3-D advanced divertor cryocondensation pump is presented. The advanced divertor incorporates a baffle chamber and bias ring located near the bottom of the D3-D vacuum vessel. A 50,000 l/s cryocondensation pump will be installed underneath the baffle for plasma particle exhaust. The pump consists of a liquid helium cooled tube operating at 4.3 degrees K and a liquid nitrogen cooled radiation shield. Liquid helium is fed by forced flow through the cryopump. Compressed helium gas flowing through the high pressure side of a heat exchanger is regeneratively cooled by the two-phase helium leaving the pump. The cooled high pressure gaseous helium is than liquefied by a Joule-Thomson expansion valve. The liquid is returned to a storage dewar. The liquid nitrogen for the radiation shield is supplied by forced flow from a bulk storage system. Control of the cryogenic system is accomplished by a programmable logic controller

  14. Operation of the cryogenic system for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Chronis, W.C.; Slack, D.S.

    1987-01-01

    The cryogenic system for the Mirror Fusion Test Facility (MFTF) at Lawrence Livermore National Laboratory (LLNL) was designed to cool the entire MFTF-B system from ambient to operating temperature in less than 10 days. The system was successfully operated in the recent plant and capital equipment (PACE) acceptance tests, and results from these tests helped us correct problem areas and improve the system

  15. CRYOGENIC AND VACUUM TECHNOLOGICAL ASPECTS OF THE LOW-ENERGY ELECTROSTATIC CRYOGENIC STORAGE RING

    International Nuclear Information System (INIS)

    Orlov, D. A.; Lange, M.; Froese, M.; Hahn, R. von; Grieser, M.; Mallinger, V.; Sieber, T.; Weber, T.; Wolf, A.; Rappaport, M.

    2008-01-01

    The cryogenic and vacuum concepts for the electrostatic Cryogenic ion Storage Ring (CSR), under construction at the Max-Planck-Institut fuer Kernphysik in Heidelberg, is presented. The ring will operate in a broad temperature range from 2 to 300 K and is required to be bakeable up to 600 K. Extremely high vacuum and low temperatures are necessary to achieve long lifetimes of the molecular ions stored in the ring so that the ions will have enough time to cool by radiation to their vibrational and rotational ground states. To test cryogenic and vacuum technological aspects of the CSR, a prototype is being built and will be connected to the commercial cryogenic refrigerator recently installed, including a specialized 2-K connection system. The first results and the status of current work with the prototype are also presented

  16. Cryogenic systems advanced monitoring, fault diagnostics, and predictive maintenance

    CERN Document Server

    Arpaia, Pasquale; Inglese, Vitaliano; Pezzetti, Marco

    2018-01-01

    Cryogenics, the study and technology of materials and systems at very low temperature, is widely used for sensors and instruments requiring very highly precise measurements with low electrical resistance, especially for measurements of materials and energies at a very small scale. Thus, the need to understand how instruments operate and perform over time at temperatures below -2920 F (-1800 C) is critical, for applications from Magnetic Resonance Imaging (MRI) to Nuclear Magnetic Resonance Spectroscopy to instrumentation for particle accelerators of all kinds. This book brings to the reader guidance learned from work at the European Laboratory for Nuclear Research (CERN), and its large scale particle accelerator in Switzerland to help engineers and technicians implement best practices in instrumentation at cryogenic temperatures, including a better understanding of fault detection and predictive maintenance. Special problems with devices like flow meters, pressure gauges, and temperature gauges when operating...

  17. Instrumentation, Field Network and Process Automation for the Cryogenic System of the LHC Test String

    CERN Document Server

    Suraci, A; Balle, C; Blanco-Viñuela, E; Casas-Cubillos, J; Gomes, P; Pelletier, S; Serio, L; Vauthier, N; Balle, Ch.

    2001-01-01

    CERN is now setting up String 2, a full-size prototype of a regular cell of the LHC arc. It is composed of two quadrupole, six dipole magnets, and a separate cryogenic distribution line (QRL) for the supply and recovery of the cryogen. An electrical feed box (DFB), with up to 38 High Temperature Superconducting (HTS) leads, powers the magnets. About 700 sensors and actuators are distributed along four Profibus DP and two Profibus PA field buses. The process automation is handled by two controllers, running 126 Closed Control Loops (CCL). This paper describes the cryogenic control system, associated instrumentation, and their commissioning.

  18. Cryogenics

    International Nuclear Information System (INIS)

    Fradkov, A.B.

    1991-01-01

    The application of cryogenics in various areas of science and technology is related in a popular way. Utilization of cryogenics in the following production processes is described: separation of air, gas mixtures; production of helium; separation of hydrogen isotopes; production of deuterium. Applications of cryogenics in refrigerating engineering, superconductivity and high-energy physics, controlled thermonuclear fusion, superconducting electric motors and electric energy storages are considered

  19. Ferrite HOM Absorber for the RHIC ERL

    Energy Technology Data Exchange (ETDEWEB)

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  20. The integration of cryogenic cooling systems with superconducting electronic systems

    International Nuclear Information System (INIS)

    Green, Michael A.

    2003-01-01

    The need for cryogenic cooling has been critical issue that has kept superconducting electronic devices from reaching the market place. Even though the performance of the superconducting circuit is superior to silicon electronics, the requirement for cryogenic cooling has put the superconducting devices at a disadvantage. This report will talk about the various methods for refrigerating superconducting devices. Cryocooler types will be compared for vibration, efficiency, and cost. Some solutions to specific problems of integrating cryocoolers to superconducting devices are presented.

  1. Development of distortion measurement system for large deployable antenna via photogrammetry in vacuum and cryogenic environment

    Science.gov (United States)

    Zhang, Pengsong; Jiang, Shanping; Yang, Linhua; Zhang, Bolun

    2018-01-01

    In order to meet the requirement of high precision thermal distortion measurement foraΦ4.2m deployable mesh antenna of satellite in vacuum and cryogenic environment, based on Digital Close-range Photogrammetry and Space Environment Test Technology of Spacecraft, a large scale antenna distortion measurement system under vacuum and cryogenic environment is developed in this paper. The antenna Distortion measurement system (ADMS) is the first domestic independently developed thermal distortion measurement system for large antenna, which has successfully solved non-contact high precision distortion measurement problem in large spacecraft structure under vacuum and cryogenic environment. The measurement accuracy of ADMS is better than 50 μm/5m, which has reached international advanced level. The experimental results show that the measurement system has great advantages in large structural measurement of spacecrafts, and also has broad application prospects in space or other related fields.

  2. Relativistic nucleus-nucleus collisions: from the BEVALAC to RHIC

    International Nuclear Information System (INIS)

    Stock, Reinhard

    2004-01-01

    I briefly describe the initial goals of relativistic nuclear collision research, focusing on the LBL Bevatron/Bevalac facility in the 1970s. An early concept of high hadronic density fireball formation, and subsequent isentropic decay (preserving information of the high-density stage), led to an outline of physics observables that could determine the nuclear matter equation of state at several times the nuclear ground state matter density. With the advent of QCD the goal of locating and characterizing the hadron-parton deconfinement phase transformation suggested the need for higher √s, the research thus shifting to the BNL AGS and CERN SPS, and finally to RHIC at BNL. A set of physics observables is discussed where present data span the entire √s domain, from Bevalac and SIS at GSI, to high RHIC energy. Referring, selectively, to data concerning bulk hadron production, the overall √s evolution of directed and radial flow observables, and of pion pair Bose-Einstein correlation is discussed. The hadronization process is studied in the grand canonical statistical model. The resulting hadronization points in the plane T versus μ B converge onto the parton-hadron phase boundary predicted by finite μ B lattice QCD, from high SPS to RHIC energy. At lower SPS and high AGS energy a steep strangeness maximum occurs at which the Wroblewski parameter λ s ∼ 0.6; a possible connection to the QCD critical point is discussed. Finally the unique new RHIC physics is addressed: high-p T hadron suppression and jet 'tomography'

  3. Estimation of the energy efficiency of cryogenic filled tank use in different systems and devices

    International Nuclear Information System (INIS)

    Blagin, E.V.; Dovgyallo, A.I.; Nekrasova, S.O.; Sarmin, D.V.; Uglanov, D.A.

    2016-01-01

    Highlights: • The cryogenic fueling tank is a device for storage and gasification of working fluid. • Potential energy of pressure can be converted to electricity by circuit of turbines. • It is possible to compensate up to 8% of energy consumed for liquefaction. - Abstract: This article presents a device for storage and gasification of cryogenic working fluid. This device is called cryogenic fueling tank. Working fluid pressure increases during the gasification and potential energy of this pressure can be used in different ways. The ways of integrating the cryogenic fueling tank into existing energy plants are described in this article. The estimation of the cryogenic fueling tank application in the gasification facility as well as in the onboard power system was carried out. This estimation shows that application of such tank as well as a circuit of turbines allows generating up to near 8% of energy which was consumed during gas liquefaction. The estimation of the additionally generated electric energy value was also carried out for each of the cases.

  4. Electromagnetic radiation from nuclear collisions at RHIC energies

    CERN Document Server

    Turbide, Simon; Frodermann, Evan; Heinz, Ulrich

    2008-01-01

    The hot and dense strongly interacting matter created in collisions of heavy nuclei at RHIC energies is modeled with relativistic hydrodynamics, and the spectra of real and virtual photons produced at mid-rapidity in these events are calculated. Several different sources are considered, and their relative importance is compared. Specifically, we include jet fragmentation, jet-plasma interactions, the emission of radiation from the thermal medium and from primordial hard collisions. Our calculations consistently take into account jet energy loss, as evaluated in the AMY formalism. We obtain results for the spectra, the nuclear modification factor (R_AA), and the azimuthal anisotropy (v_2) that agree with the photon measurements performed by the PHENIX collaboration at RHIC.

  5. Chromatic analysis and possible local chromatic correction in RHIC

    International Nuclear Information System (INIS)

    Luo, Y.; Fischer, W.; Gu, X.; Trbojevic, D.

    2011-01-01

    In this article we will answer the following questions for the RHIC polarized proton (p-p) and Au-Au run lattices: (1) what are the sources of second order chromaticities? (2) what is the dependence of second order chromaticity on the on-momentum β-beat? (3) what is the dependence of second order chromaticity on β* at IP6 and IP8? To answer these questions, we use the perturbation theory to numerically calculate the contributions of each quadrupole and sextupole to the first, second, and third order chromaticities. Possible local methods to reduce chromatic effects in RHIC ring are shortly discussed.

  6. Silicon drift-chamber studies for possible use at RHIC

    International Nuclear Information System (INIS)

    Humanic, T.J.

    1990-01-01

    It is proposed to continue the program now underway at the University of Pittsburgh to study the feasibility of using silicon drift-chambers as particle tracking devices at RHIC. We are currently testing a UA6-type detector obtained from BNL and plan to also study a new device that will become available this year: a cylindrical geometry detector designed for NA45 (CERN). In addition we propose to fabricate and study a detector to be used in vertex determination for the RHIC OASIS experiment. The two-year budget for this proposal is $246.962. 5 refs., 12 figs

  7. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER, VOLUME 37, RHIC SPIN COLLABORATION MEETING VI (PART 2)

    International Nuclear Information System (INIS)

    Bland, L.; Saito, N.

    2001-01-01

    The second part of the sixth RHIC Spin Collaboration (RSC) meeting was held on November 15, 2001 at Brookhaven National Laboratory. Previous meetings have elaborated on the new generation of proton spin-structure studies (e.g. gluon polarization and flavor separation of q and bar q polarizations via real W ± production) enabled by studying polarized proton collisions at energies and momentum transfers where perturbative QCD models are expected to be applicable. The focus of this meeting was on many of the experimental issues that must be resolved to achieve these physics goals. This summary is written with the benefit of hindsight following the completion of the first-ever run of a polarized proton collider. This first run can be considered as a successfully completed milestone of the RHIC Spin Collaboration. Other milestones remain important. Long term machine items were identified in Waldo Mackay's talk, the most important being the completion of the spin rotator magnets that will be installed in 2002 to allow the flexible orientation of the proton beam polarization at the PHENM and STAR experiments. At the meeting Waldo discussed a stronger partial snake magnet for the AGS as a means of producing highly polarized proton beams to inject into RHIC. Developments subsequent to this meeting suggest that a superconducting helical dipole magnet may be feasible for the AGS, and is likely to be needed to achieve the 70% beam polarization in RHIC. Longer term items were also presented, including potential increases in luminosity by the addition of electron cooling to RHIC and the possibility of increasing the collision energy by ∼20% by replacement of the DX magnets. These items could be considered for a second generation of RHIC spin experiments. The other topics covered at the meeting were related to polarimetry and to the absolute calibration of the proton beam polarization in RHIC. These topics were divided into short- and long-term solutions to polarimetry issues

  8. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER, VOLUME 37, RHIC SPIN COLLABORATION MEETING VI (PART 2).

    Energy Technology Data Exchange (ETDEWEB)

    BLAND, L.; SAITO, N.

    2001-11-15

    The second part of the sixth RHIC Spin Collaboration (RSC) meeting was held on November 15, 2001 at Brookhaven National Laboratory. Previous meetings have elaborated on the new generation of proton spin-structure studies (e.g. gluon polarization and flavor separation of q and {bar q} polarizations via real W{sup {+-}} production) enabled by studying polarized proton collisions at energies and momentum transfers where perturbative QCD models are expected to be applicable. The focus of this meeting was on many of the experimental issues that must be resolved to achieve these physics goals. This summary is written with the benefit of hindsight following the completion of the first-ever run of a polarized proton collider. This first run can be considered as a successfully completed milestone of the RHIC Spin Collaboration. Other milestones remain important. Long term machine items were identified in Waldo Mackay's talk, the most important being the completion of the spin rotator magnets that will be installed in 2002 to allow the flexible orientation of the proton beam polarization at the PHENM and STAR experiments. At the meeting Waldo discussed a stronger partial snake magnet for the AGS as a means of producing highly polarized proton beams to inject into RHIC. Developments subsequent to this meeting suggest that a superconducting helical dipole magnet may be feasible for the AGS, and is likely to be needed to achieve the 70% beam polarization in RHIC. Longer term items were also presented, including potential increases in luminosity by the addition of electron cooling to RHIC and the possibility of increasing the collision energy by {approx}20% by replacement of the DX magnets. These items could be considered for a second generation of RHIC spin experiments. The other topics covered at the meeting were related to polarimetry and to the absolute calibration of the proton beam polarization in RHIC. These topics were divided into short- and long-term solutions to

  9. Heat switch technology for cryogenic thermal management

    Science.gov (United States)

    Shu, Q. S.; Demko, J. A.; E Fesmire, J.

    2017-12-01

    Systematic review is given of development of novel heat switches at cryogenic temperatures that alternatively provide high thermal connection or ideal thermal isolation to the cold mass. These cryogenic heat switches are widely applied in a variety of unique superconducting systems and critical space applications. The following types of heat switch devices are discussed: 1) magnetic levitation suspension, 2) shape memory alloys, 3) differential thermal expansion, 4) helium or hydrogen gap-gap, 5) superconducting, 6) piezoelectric, 7) cryogenic diode, 8) magneto-resistive, and 9) mechanical demountable connections. Advantages and limitations of different cryogenic heat switches are examined along with the outlook for future thermal management solutions in materials and cryogenic designs.

  10. Cryogenics safety

    International Nuclear Information System (INIS)

    Reider, R.

    1977-01-01

    The safety hazards associated with handling cryogenic fluids are discussed in detail. These hazards include pressure buildup when a cryogenic fluid is heated and becomes a gas, potential damage to body tissues due to surface contact, toxic risk from breathing air altered by cryogenic fluids, dangers of air solidification, and hazards of combustible cryogens such as liquified oxygen, hydrogen, or natural gas or of combustible mixtures. Safe operating procedures and emergency planning are described

  11. RAPIDE 0.0 RHIC Accelerator Physics Intrepid Development Environment

    Energy Technology Data Exchange (ETDEWEB)

    Satogata, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Saltmarsh, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Peggs, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    1993-08-01

    This document is a guide to the common environmental features of computing in (and around) the RHIC Accelerator Physics.sectio on the 'zoo' cluster of UNJX workstations, in RAPIDE, the RHIC Accelerator Physics Intrepid Development Environment It is hoped tliat later revisions of this document will approach a more professional 'style guide', beyond the convenient collection of pointers and hints presented here. RAP does two kinds of computing, "controls" and "general", addressed in sections 2 and 3 of this document For general computing, efficient system administration requires cooperation in using a common environment There is a much stronger need to define - and adhere to - a commonly agreed set of styles (or rules) in developing controls software. Right now, these rules have been set "de facto". Future improvements to the controls environment, particularly in response to the opinions of users, depends on broad knowledge of what the rules are. There are environmental issues that are basic to both controls and general computing, and that are so fundamental that they are (almost) unarguable. They are described immediately below, in the next section.

  12. The strongly coupled quark-gluon plasma created at RHIC

    International Nuclear Information System (INIS)

    Heinz, Ulrich

    2009-01-01

    The relativistic heavy-ion collider (RHIC) was built to re-create and study in the laboratory the extremely hot and dense matter that filled our entire universe during its first few microseconds. Its operation since June 2000 has been extremely successful, and the four large RHIC experiments have produced an impressive body of data which indeed provide compelling evidence for the formation of thermally equilibrated matter at unprecedented temperatures and energy densities-a 'quark-gluon plasma (QGP)'. A surprise has been the discovery that this plasma behaves like an almost perfect fluid, with extremely low viscosity. Theorists had expected a weakly interacting gas of quarks and gluons, but instead we seem to have created a strongly coupled plasma liquid. The experimental evidence strongly relies on a feature called 'elliptic flow' in off-central collisions, with additional support from other observations. This paper explains how we probe the strongly coupled QGP, describes the ideas and measurements which led to the conclusion that the QGP is an almost perfect liquid, and shows how they tie relativistic heavy-ion physics into other burgeoning fields of modern physics, such as strongly coupled Coulomb plasmas, ultracold systems of trapped atoms and superstring theory

  13. Quench observation using quench antennas on RHIC IR quadrupole magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Terashima, A.; Tsuchiya, K.; Ganetis, G.; Muratore, J.; Wanderer, P.

    1995-01-01

    Quench observation using quench antennas is now being performed routinely on RHIC dipole and quadrupole magnets. Recently, a quench antenna was used on a RHIC IR magnet which is heavily instrumented with voltage taps. It was confirmed that the signals detected in the antenna coils do not contradict the voltage tap signals. The antenna also detects a sign of mechanical disturbance which could be related to a training quench. This paper summarizes signals detected in the antenna and discusses possible causes of these signals

  14. Quench observation using quench antennas on RHIC IR quadrupole magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Terashima, A.; Tsuchiya, K.; Ganetis, G.; Muratore, J.; Wanderer, P.

    1996-01-01

    Quench observation using quench antennas is now being performed routinely on RHIC dipole and quadrupole magnets. Recently, a quench antenna was used on a RHIC IR magnet which is heavily instrumented with voltage taps. It was confirmed that the signals detected in the antenna coils do not contradict the voltage tap signals. The antenna also detects a sign of mechanical disturbance which could be related to a training quench. This paper summarizes signals detected in the antenna and discusses possible causes of these signals

  15. Low cryogen inventory, forced flow Ne cooling system with room temperature compression stage and heat recuperation

    CERN Document Server

    Shornikov, A; Wolf, A

    2014-01-01

    We present design and commissioning results of a forced flow cooling system utilizing neon at 30 K. The cryogen is pumped through the system by a room-temperature compression stage. To decouple the cold zone from the compression stage a recuperating counterflow tube-in-tube heat exchanger is used. Commissioning demonstrated successful condensation of neon and transfer of up to 30 W cooling power to the load at 30 K using only 30 g of the cryogen circulating in the system at pressures below 170 kPa.

  16. Design and development of graphite/epoxy feed line for use of cryogenic propulsion systems

    International Nuclear Information System (INIS)

    Kremer, J.S.; Kreiner, J.H.; Mosallam, A.S.

    1998-01-01

    The development of lightweight composite cryogenic ines is a critical technology for single-stage-to-orbit launch vehicles such as the Reusable Launch Vehicle (RLV). To achieve weight goals, a significant effort will be required to develop feed line designs that can reliably replace today's stainless steel configurations. A number of technical problems exist, including the large coefficient of thermal expansion (CTE) differential between the composite and interfacing metallic materials and the ability to seal against composite materials in a cryogenic environment. This paper reports the results of a development efforts undertaken to design, build, and test a graphite/epoxy propellant feed line to carry liquid hydrogen (-423 degree F). The design incorporates a reusable cryogenic insulation system and a secondarily bonded/co-cured splice joint

  17. Intra-beam Scattering Theory and RHIC Experiments

    International Nuclear Information System (INIS)

    Wei, J.; Fedotov, A.; Fischer, W.; Malitsky, N.; Parzen, G.; Qiang, J.

    2005-01-01

    Intra-beam scattering is the leading mechanism limiting the luminosity in heavy-ion storage rings like the Relativistic Heavy Ion Collider (RHIC). The multiple Coulomb scattering among the charged particles causes transverse emittance growth and longitudinal beam de-bunching and beam loss, compromising machine performance during collision. Theoretically, the original theories developed by Piwinski, Bjorken, and Mtingwa only describe the rms beam size growth of an unbounded Gaussian distribution. Equations based on the Fokker-Planck approach are developed to further describe the beam density profile evolution and beam loss. During the 2004 RHIC heavy-ion operation, dedicated IBS experiments were performed to bench-mark the rms beam size growth, beam loss, and profile evolution both for a Gaussian-like and a longitudinal hollow beam. This paper summarizes the IBS theory and discusses the experimental bench-marking results

  18. Operational and troubleshooting experiences in the SST-1 cryogenic system

    Science.gov (United States)

    Mahesuria, G.; Panchal, P.; Panchal, R.; Patel, R.; Sonara, D.; Gupta, N. C.; Srikanth, G. L. N.; Christian, D.; Garg, A.; Bairagi, N.; Patel, K.; Shah, P.; Nimavat, H.; Sharma, R.; Patel, J. C.; Tank, J.; Tanna, V. L.; Pradhan, S.

    2014-01-01

    Recently, the cooldown and current charging campaign have been carried out towards the demonstration of the first successful plasma discharge in the steady state superconducting Tokomak (SST-1). The SST-1 machine consists of cable-in-conduit wound superconducting toroidal as well as poloidal coils, cooled using 1.3 kW at 4.5 K helium refrigerator -cum- liquefier (HRL) system. The cryo system provides the two-phase helium at 0.13 MPa at 4.5 K as well as forced-flow pressurized helium at 0.4 MPa and in addition to 7 g-s-1 liquefaction capacity required for the current leads and other cold mass at 4.5 K. The entire integrated cold masses having different thermo hydraulic resistances cooled with the SST-1 HRL in optimised process parameters. In order to maintain different levels of temperatures and to facilitate smooth and reliable cooldown, warm-up, normal operations as well as to handle abnormal events such as, quench or utilities failures etc., exergy efficient process are adopted for the helium refrigerator-cum-liquefier (HRL) with an installed equivalent capacity of 1.3 kW at 4.5 K. Using the HRL, the cold mass of about 40 tons is being routinely cooled down from ambient temperature to 4.5 K with an average cooldown rate of 0.75 - 1 K-h-1. Long-term cryogenic stable conditions were obtained within 15 days in the superconducting coils and their connecting feeders. Afterwards, all of the cold mass is warmed-up in a controlled manner to ambient temperature. In this paper, we report the recent operational results of the cryogenic system during the first plasma discharge in SST-1 as well as the troubleshooting experiences of the cryogenic plant related hardware.

  19. CEBAF cryogenic system design

    International Nuclear Information System (INIS)

    Rode, C.; Brindza, P.

    1986-01-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) is a standing wave superconducting linear accelerator with a maximum energy of 4 GeV and 200 μA beam current. The 418 Cornell/CEBAF superconducting niobium accelerating cavities are arranged in two 0.5 GeV linacs with magnetic recirculating arcs at each end. There is one recirculating arc for each energy beam that is circulating and any three of the four correlated energies may be supplied to any of the three experimental halls. The cryogenics system for CEBAF consists of a 5kW central helium refrigerator and a transfer line system to supply 2.2 K 2.8 ATM helium to the cavity cryostats, 40 K helium at 3.5 ATM to the radiation shields and 4.5K helium at 2.8 ATM to the superconducting magnetic spectrometers in the experimental halls. Both the 2.2K and the 4.5K helium are expanded by Joule-Thompson (JT) valves in the individual cryostats yielding 2.0K at .031 ATM and 4.4K at 1.2 ATM respectively. The Central Helium Refrigerator is located in the center of the CEBAF racetrack with the transfer lines located in the linac tunnels

  20. The Future with Cryogenic Fluid Dynamics

    Science.gov (United States)

    Scurlock, R. G.

    The applications of cryogenic systems have expanded over the past 50 years into many areas of our lives. During this time, the impact of the common features of Cryogenic Fluid Dynamics, CryoFD, on the economic design of these cryogenic systems, has grown out of a long series of experimental studies carried out by teams of postgraduate students at Southampton University.These studies have sought to understand the heat transfer and convective behavior of cryogenic liquids and vapors, but they have only skimmed over the many findings made, on the strong convective motions of fluids at low temperatures. The convection takes place in temperature gradients up to 10,000 K per meter, and density gradients of 1000% per meter and more, with rapid temperature and spatially dependent changes in physical properties like viscosity and surface tension, making software development and empirical correlations almost impossible to achieve. These temperature and density gradients are far larger than those met in other convecting systems at ambient temperatures, and there is little similarity. The paper will discuss the likely impact of CryoFD on future cryogenic systems, and hopefully inspire further research to support and expand the use of existing findings, and to improve the economy of present-day systems even more effectively. Particular examples to be mentioned include the following. Doubling the cooling power of cryo-coolers by a simple use of CryoFD. Reducing the boil-off rate of liquid helium stored at the South Pole, such that liquid helium availability is now all-the-year-round. Helping to develop the 15 kA current leads for the LHC superconducting magnets at CERN, with much reduced refrigeration loads. Improving the heat transfer capability of boiling heat transfer surfaces by 10 to 100 fold. This paper is an edited text of an invited plenary presentation at ICEC25/ICMC2014 by Professor Scurlock on the occasion of his being presented with the ICEC Mendelssohn Award for his

  1. GLOBAL AND LOCAL COUPLING COMPENSATION EXPERIMENTS IN RHIC USING AC DIPOLES

    International Nuclear Information System (INIS)

    CALAGA, R.; FRANCHI, A., TOMAS, R.; CERN)

    2006-01-01

    Compensation of transverse coupling during the RHIC energy ramp has been proven to be non-trivial and tedious. The lack of accurate knowledge of the coupling sources has initiated several efforts to develop fast techniques using turn-by-turn BPM data to identify and compensate these sources. This paper aims to summarize the beam experiments performed to measure the coupling, matrix and resonance driving terms with the aid of RHIC ac dipoles at injection energy

  2. A method to measure internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures

    Science.gov (United States)

    Tian, Qijie; Chang, Songtao; Li, Zhou; He, Fengyun; Qiao, Yanfeng

    2017-03-01

    The suppression level of internal stray radiation is a key criterion for infrared imaging systems, especially for high-precision cryogenic infrared imaging systems. To achieve accurate measurement for internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures, a measurement method, which is based on radiometric calibration, is presented in this paper. First of all, the calibration formula is deduced considering the integration time, and the effect of ambient temperature on internal stray radiation is further analyzed in detail. Then, an approach is proposed to measure the internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures. By calibrating the system under two ambient temperatures, the quantitative relation between the internal stray radiation and the ambient temperature can be acquired, and then the internal stray radiation of the cryogenic infrared imaging system under various ambient temperatures can be calculated. Finally, several experiments are performed in a chamber with controllable inside temperatures to evaluate the effectiveness of the proposed method. Experimental results indicate that the proposed method can be used to measure internal stray radiation with high accuracy at various ambient temperatures and integration times. The proposed method has some advantages, such as simple implementation and the capability of high-precision measurement. The measurement results can be used to guide the stray radiation suppression and to test whether the internal stray radiation suppression performance meets the requirement or not.

  3. Transverse energy production at RHIC

    International Nuclear Information System (INIS)

    Sahoo, Raghunath

    2006-01-01

    The quest for understanding of the possible formation and existence of the quark-gluon plasma (Qp), the deconfined phase of quarks and gluons, has been a major area of research in high energy nuclear physics. High energy nuclear collisions at the Relativistic Heavy Ion Collider (RHIC) has opened a new domain for the exploration of strongly interacting matter at very high energy density and temperature

  4. Comparison of cryogenic low-pass filters

    Science.gov (United States)

    Thalmann, M.; Pernau, H.-F.; Strunk, C.; Scheer, E.; Pietsch, T.

    2017-11-01

    Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.

  5. Comparison of cryogenic low-pass filters.

    Science.gov (United States)

    Thalmann, M; Pernau, H-F; Strunk, C; Scheer, E; Pietsch, T

    2017-11-01

    Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.

  6. Cryogenics

    International Nuclear Information System (INIS)

    Shukla, R.K.

    1990-01-01

    Cryogenics refers to the coldest area known in nature. This temperature range has an upper limit arbitrarily defined as -100 degrees C (-250 degrees C by some) and a lower limit of absolute zero. These limits separate it from the temperature range generally used in refrigerating engineering. One important application of cryogenics is the separation ad purification of air into its various components (oxygen, nitrogen, argon, and the rare gases). Other important developments have been the large-scale production of liquid hydrogen; helium extraction from natural gas; storage and transport of liquefied gases such as oxygen, argon, nitrogen, helium, neon, xenon, and hydrogen; liquefaction of natural gas for ocean transport and peak shaving; and many new types of cryogenic refrigeration devices. This paper introduces the topic of cryogenic engineering. Cryogenic processes generally range from ambient conditions to the boiling point of the cryogenic fluid. Cryogenic cycles also incorporate two or more pressure levels. These properties must also cover the vapor, vapor-liquid, and sometimes the solid regions. Therefore, the physical properties of fluids over a great range of temperatures and pressures must be known. Solubility of contaminants must be known in order to design for their removal. The main physical properties for design purposes are those usually used in unit operations, such as fluid flow, heat transfer, and the like, in addition to those directly related to the Joule-Thomson effect and expansion work. Properties such as density, viscosity, thermal conductivity, heat capacity, enthalpy, entropy, vapor pressure, and vapor-liquid equilibriums are generally obtained in graphical, tabular, or equation form, as a function of temperature and pressure

  7. Helium cryogenics

    CERN Document Server

    Van Sciver, Steven W

    2012-01-01

    Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspe...

  8. Status of the quadrupoles for RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Thompson, P.A.; Cottingham, J.G.; Garber, M.

    1989-01-01

    The proposed Relativistic Heavy Ion Collider (RHIC) will require 408 regular arc quadrupoles. Two full size prototypes have been constructed and tested. The construction uses the single layer, collarless concept which has been successful in the RHIC dipoles. Both the magnets attained short sample current, which is 60% higher than the operating current. This corresponds to a gradient of 113 T/m with clear bore of 80 mm. The preliminary field measurements are in agreement with the calculations, with the exception of an unexpectedly large show sextupole. 2 refs., 5 figs., 1 tab

  9. Cold matter effects and quarkonium production at RHIC and LHC

    Energy Technology Data Exchange (ETDEWEB)

    Dos Santos, G. S.; Mariotto, C. B. [Instituto de Matematica, Estatistica e Fisica, Universidade Federal do Rio Grande, Caixa Postal 474, CEP 96203-900, Rio Grande, RS (Brazil); Goncalves, V. P. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-090, Pelotas, RS (Brazil)

    2013-03-25

    In this work we investigate two cold matter effects in J/{Psi} and {Upsilon} production in nuclear collisions at RHIC and LHC, namely the shadowing effect and nuclear absorption. We characterize these effects by estimating the rapidity dependence of some nuclear ratios in pA and AA collisions at RHIC and LHC, R{sub pA} = d{sigma}{sub pA}(J/{Psi},{Upsilon})/Ad{sigma}{sub pp}(J/{Psi},{Upsilon}) and R{sub AA} = d{sigma}{sub AA}(J/{Psi},{Upsilon})/A{sup 2}d{sigma}{sub pp}(J/{Psi},{Upsilon}).

  10. Azimuthal anisotropy at RHIC: The first and fourth harmonics

    International Nuclear Information System (INIS)

    Adams, J.; Adler, C.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Badyal, S.K.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellwied, R.; Berger, J.; Bezverkhny, B.I.; Bhardwaj, S.; Bhaskar, P.; Bhati, A.K.; Bichsel, H.; Billmeier, A.; Bland, L.C.; Blyth, C.O.; Bonner, B.E.; Botje, M.; Boucham, A.; Brandin, A.; Bravar, A.; Cadman, R.V.; Cai, X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Carroll, J.; Castillo, J.; Castro, M.; Cebra, D.; Chaloupka, P.; Chattopadhyay, S.; Chen, H.F.; Chen, Y.; Chernenko, S.P.; Cherney, M.; Chikanian, A.; Choi, B.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cramer, J.G.; Crawford, H.J.; Das, D.; Das, S.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dubey, A.K.; Dunin, V.B.; Dunlop, J.C.; Dutta Majumdar, M.R.; Eckardt, V.; Efimov, L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faine, V.; Faivre, J.; Fatemi, R.; Filimonov, K.; Filip, P.; Finch, E.; Fisyak, Y.; Flierl, D.; Foley, K.J.; Fu, J.; Gagliardi, C.A.; Gagunashvili, N.; Gans, J.; Ganti, M.S.; Gaudichet, L.; Germain, M.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.E.; Grachov, O.; Grigoriev, V.; Gronstal, S.; Drosnick, D.; Guedon, M.; Guertin, S.M.; Gupta, A.; Gushin, E.; Hallman, T.J.; Hardtke, D.; Harris, J.W.; Heinz, M.; Henry, T.W.; Heppelmann, S.; Herston, T.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G.W.; Horsley, M.; Huang, H.Z.; Huang, S.L.; Humanic, T.J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W.W.; Janik, M.; Jiang, H.; Johnson, I.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kaneta, M.; Kaplan, M.; Keane, D.; Khodyrev, V.Yu.; Kiryluk, J.; Kisiel, A.; Klay, J.; Klein, S.R.; Klyachko, A.; Koetke, D.D.; Kollegger, T.; Kopytine, S.M.; Kotchenda, L.; Kovalenko, A.D.; Kramer, M.; Kravtsov, P.; Krueger, K.; Kuhn, C.; Kulikov, A.I.; Kumar, A.; et al.

    2004-01-01

    We report the first observations of the first harmonic (directed flow, v 1 ), and the fourth harmonic (v 4 ), in the azimuthal distribution of particles with respect to the reaction plane in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). Both measurements were done taking advantage of the large elliptic flow (v 2 ) generated at RHIC. From the correlation of v 2 with v 1 it is determined that v 2 is positive, or in-plane. The integrated v 4 is about a factor of 10 smaller than v 2 . For the sixth (v 6 ) and eighth (v 8 ) harmonics upper limits on the magnitudes are reported

  11. High-pT hadron spectra at RHIC: an overview

    International Nuclear Information System (INIS)

    Klay, Jennifer L

    2005-01-01

    Recent results on high transverse momentum (p T ) hadron production in p+p, d+Au and Au+Au collisions at the relativistic heavy-ion collider (RHIC) are reviewed. Comparison of the nuclear modification factors, R dAu (p T ) and R AA (p T ), demonstrates that the large suppression in central Au+Au collisions is due to strong final-state effects. Theoretical models which incorporate jet quenching via gluon bremsstrahlung in the dense partonic medium that is expected in central Au+Au collisions at ultra-relativistic energies are shown to reproduce the shape and magnitude of the observed suppression over the range of collision energies so far studied at RHIC

  12. Design and development of a direct injection system for cryogenic engines

    Science.gov (United States)

    Mutumba, Angela; Cheeseman, Kevin; Clarke, Henry; Wen, Dongsheng

    2018-04-01

    The cryogenic engine has received increasing attention due to its promising potential as a zero-emission engine. In this study, a new robust liquid nitrogen injection system was commissioned and set up to perform high-pressure injections into an open vessel. The system is used for quasi-steady flow tests used for the characterisation of the direct injection process for cryogenic engines. An electro-hydraulic valve actuator provides intricate control of the valve lift, with a minimum cycle time of 3 ms and a frequency of up to 20 Hz. With additional sub-cooling, liquid phase injections from 14 to 94 bar were achieved. Results showed an increase in the injected mass with the increase in pressure, and decrease in temperature. The injected mass was also observed to increases linearly with the valve lift. Better control of the injection process, minimises the number of variables, providing more comparable and repeatable sets of data. Implications of the results on the engine performance were also discussed.

  13. Numerical Studies of the Friction Force for the RHIC Electron Cooler

    CERN Document Server

    Fedotov, Alexei V; Ben-Zvi, Ilan; Bruhwiler, David L; Busby, Richard; Litvinenko, Vladimir N; Schoessow, Paul

    2005-01-01

    Accurate calculation of electron cooling times requires an accurate description of the dynamical friction force. The proposed RHIC cooler will require ~55 MeV electrons, which must be obtained from an RF linac, leading to very high transverse electron temperatures. A strong solenoid will be used to magnetize the electrons and suppress the transverse temperature, but the achievable magnetized cooling logarithm will not be large. Available formulas for magnetized dynamical friction are derived in the logarithmic approximation, which is questionable in this regime. In this paper, we explore the magnetized friction force for parameters of the RHIC cooler, using the VORPAL code.* VORPAL can simulate dynamical friction and diffusion coefficients directly from first principles.** Various aspects of the friction force, such as dependence on magnetic field, scaling with ion charge number and others, are addressed for the problem of high-energy electron cooling in the RHIC regime.

  14. The effects of betatron phase advances on beam-beam and its compensation in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y.; Fischer, W.; Gu, X.; Tepikian, S.; Trbojevic, D.

    2011-03-28

    In this article we perform simulation studies to investigate the effects of betatron phase advances between the beam-beam interaction points on half-integer resonance driving term, second order chromaticty and dynamic aperture in RHIC. The betatron phase advances are adjusted with artificial matrices inserted in the middle of arcs. The lattices for the 2011 RHIC polarized proton (p-p) run and 2010 RHIC Au-Au runs are used in this study. We also scan the betatron phase advances between IP8 and the electron lens for the proposed Blue ring lattice with head-on beam-beam compensation.

  15. Cryogenic exciter

    Science.gov (United States)

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  16. RHIC detector electronics R and D proposal (number-sign RH-8) - development of analog memories for RHIC detector front-end electronic systems

    International Nuclear Information System (INIS)

    Konstantinidis, A.; Ledoux, R.; Steadman, S.; Stephans, G.; Wadsworth, B.

    1990-01-01

    Detectors for colliding beam experiments at RHIC will provide 4pi coverage and are expected to contain from 10**5 to 10**6 channels. As the 2 to 5usec required to generate first-level triggers is long compared with RHIC's 114nsec beam crossing interval, there will be a need not only to deal with signals from a great number of channels but also to store and tag these signals over many beam crossings. The authors are concentrating their efforts on developing the switched-capacitor (SC) analog memory as the generic mechanism for storing detector signals. Switched-capacitor circuits can be implemented using metaloxide-semiconductor (MOS) technology; and, for development work, they have relatively easy access to a number of foundries running different MOS processes the choice of which would depend on the exact nature of their application. In terms of memory applications, several MOS-based designs have been reported in the literature. MOS technology is generally considered to have advantages over charge-coupled devices in terms of lower power dissipation, lower noise, better linearity, better radiation hardness, and lower cost: all desirable characteristics for a device to be used in a particle detector. However, the authors have recently learned of new developments in CCD technology at MIT's Lincoln Laboratory, and they find that the advantage of MOS technology over CCD technology, at least in terms of the parameters mentioned above, may not be as marked as once thought. Since CCD's have some interesting features which make them potentially useful for pipeline trigger applications, if not for the more general storage applications they are considering here, they intend to keep in close contact with this work

  17. Monolithic readout circuits for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, P.; Harder, J. [Brookhaven National Laboratory, Upton, NY (United States)

    1991-12-31

    Several CMOS ASICs have been developed for a proposed RHIC experiment. This paper discusses why ASIC implementation was chosen for certain functions, circuit specifications and the design techniques used to meet them, and results of simulations and early prototypes. By working closely together from an early stage in the planning process, in-house ASIC designers and detector and data acquisition experimenters can achieve optimal use of this important technology.

  18. Monolithic readout circuits for RHIC

    International Nuclear Information System (INIS)

    O'Connor, P.; Harder, J.; Sippach, W.

    1991-10-01

    Several CMOS ASICs have been developed for a proposed RHIC experiment. This paper discusses why ASIC implementation was chosen for certain functions, circuit specifications and the design techniques used to meet them, and results of simulations and early prototypes. By working closely together from an early stage in the planning process, in-house ASIC designers and detector and data acquisition experimenters can achieve optimal use of this important technology

  19. Theoretical calculation of cryogenic distillation for two-component hydrogen isotope system

    International Nuclear Information System (INIS)

    Xia Xiulong; Luo Yangming; Wang Heyi; Fu Zhonghua; Liu Jun; Han Jun; Gu Mei

    2005-10-01

    Cryogenic distillation model for single column was built to simulating hydrogen isotope separation system. Three two-component system H 2 /HD, H 2 /HT and D 2 /DT was studied. Both temperature and concentration distribution was obtained and the results show a clear separation characteristics. H 2 /HT has the best separation performance while D 2 /DT was the most difficult to separate. (authors)

  20. Thermal and structural analysis of a cryogenic conduction cooling system for a HTS NMR magnet

    Energy Technology Data Exchange (ETDEWEB)

    In, Se Hwan; Hong, Yong Jun; Yeom, Han Kil; Ko, Hyo Bong; Park, Seong Je [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2016-03-15

    The superconducting NMR magnets have used cryogen such as liquid helium for their cooling. The conduction cooling method using cryocoolers, however, makes the cryogenic cooling system for NMR magnets more compact and user-friendly than the cryogen cooling method. This paper describes the thermal and structural analysis of a cryogenic conduction cooling system for a 400 MHz HTS NMR magnet, focusing on the magnet assembly. The highly thermo-conductive cooling plates between HTS double pancake coils are used to transfer the heat generated in coils, namely Joule heating at lap splice joints, to thermal link blocks and finally the cryocooler. The conduction cooling structure of the HTS magnet assembly preliminarily designed is verified by thermal and structural analysis. The orthotropic thermal properties of the HTS coil, thermal contact resistance and radiation heat load are considered in the thermal analysis. The thermal analysis confirms the uniform temperature distribution for the present thermal design of the NMR magnet within 0.2 K. The mechanical stress and the displacement by the electromagnetic force and the thermal contraction are checked to verify structural stability. The structural analysis indicates that the mechanical stress on each component of the magnet is less than its material yield strength and the displacement is acceptable in comparison with the magnet dimension.

  1. Possible origin of RHIC R{sub out}/R{sub sid} HBT results

    Energy Technology Data Exchange (ETDEWEB)

    Padula, Sandra S

    2003-03-10

    The effects of opacity of the nuclei together with a blackbody type of emission along the system history are considered as a means to explain the ratio R{sub out}/R{sub sid} observed by STAR and PHENIX collaborations at RHIC. Within our model, no flow is required to explain the data trend of this ratio for large surface emissivities.

  2. Process instrumentation and control for cryogenic system of VECC

    International Nuclear Information System (INIS)

    Pal, Sandip

    2017-01-01

    Superconducting Cyclotron, which comprises of superconducting main magnet and cryopanels operating at 4.3 K, are operational at VECC in three phases starting from 2005; finally without interruption from July, 2010 to November, 2016. Cryogenic loads of the Cyclotron are catered by any of the two helium liquefiers/refrigerators (250W and 415W @ 4.5K) and associated cryogen distribution system with extensive helium gas management system. The system also consists of 31 K liters of liquid Nitrogen (LN_2) storage and delivery system, necessary of radiation shield. EPICS (Experimental Physics and Industrial Control System) architecture is open source, flexible and has unlimited tags as compared to the commercial Supervisory control and data acquisition (SCADA) packages. Hence, it has been adopted to design the SCADA module. The EPICS Input Output Controller (IOC) communicates with four PLCs over Ethernet based control LAN to control/monitor 618 numbers of field Inputs/ Outputs (I/O). The control system is fully automated and does not require any human intervention for routine operation. Since these two liquefiers share the same high pressure (HP) and low pressure (LP) pipelines, any pressure fluctuation due to rapid change in flow sometimes causes trip of the liquefiers. Few modifications are made in the control scheme in HP and LP zones to avoid liquefier trip. The plant is running very reliably round the clock and the historical data of important parameters during plant operation are archived for plant maintenance, easy diagnosis and future modifications. Total pure helium cycle gas inventory is monitored through EPICS for early detection of helium loss from its trend

  3. A Reference Guide for Cryogenic Properties of Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weisend, John G

    2003-09-16

    A thorough knowledge of the behavior of materials at cryogenic temperatures is critical for the design of successful cryogenic systems. Over the past 50 years, a tremendous amount of material properties at cryogenic temperatures have been measured and published. This guide lists resources for finding these properties. It covers online databases, computer codes, conference proceedings, journals, handbooks, overviews and monographs. It includes references for finding reports issued by government laboratories and agencies. Most common solids and fluids used in cryogenics are covered.

  4. Heavy ion physics at BNL, the AGS and RHIC

    International Nuclear Information System (INIS)

    Lowenstein, D.I.

    1985-01-01

    The advent of heavy ion acceleration with the AGS at Brookhaven National Laboratory in 1986 and the proposed Relativistic Heavy Ion Collider (RHIC) for 1990 brings us into a temperature and density regime well above anything yet produced and into a time domain of the early universe of 10 -13 -10 -6 seconds. The physics of high energy heavy ions range from the more traditional nuclear physics to the formation of new forms of matter. Quantum Chromodynamics (QCD) is the latest, and as of yet, the most successful theory to describe the interaction of quarks and gluons. The nature of the confinement of the quarks and gluons under extremes of temperature and density is one of the compelling reasons for this new physics program at BNL. There are reasons to believe that with collisions of heavy nuclei at energies in the 10 to 100 GeV/amu range a very large volume of approx. 10 fm 3 would be heated to 200-300 MeV and/or acquire a sufficient quark density (5-10 times normal baryon density) so that the entire contents of the volume would be deconfined and the quarks and gluons would form a plasma. The kinematic region for the extant machines and the proposed RHIC are shown. At AGS energies the baryons in colliding nuclei bring each other to rest, yielding fragmentation regions of high baryon density. These are the regions in which supernorvae and neutrons stars exist. For energies much higher, such as in RHIC, nuclei are transparent to each other and one can form a central region of almost zero baryon density, mostly pions, and very high temperature. This is the region of the early universe and the quark-gluon plasma. Design parameters and cost of the RHIC are discussed

  5. PROCEEDINGS FROM RIKEN-BNL RESEARCH CENTER WORKSHOP: PARITY-VIOLATING SPIN ASYMMETRIES AT RHIC

    International Nuclear Information System (INIS)

    VOGELSANG, W.; PERDEKAMP, M.; SURROW, B.

    2007-01-01

    The RHIC spin program is now fully underway. Several runs have been successfully completed and are producing exciting first results. Luminosity and polarization have improved remarkably and promising advances toward the higher RHIC energy of √s = 500 GeV have been made. At this energy in particular, it will become possible to perform measurements of parity-violating spin asymmetries. Parity violation occurs in weak interactions, and in combination with the unique polarization capabilities at RHIC fascinating new opportunities arise. In particular, parity-violating single- and double-spin asymmetries give new insights into nucleon structure by allowing probes of up and down sea and anti-quark polarizations. Such measurements at RHIC are a DOE performance milestone for the year 2013 and are also supported by a very large effort from RIKEN. With transverse polarization, charged-current interactions may be sensitive to the Sivers effect. Parity-violating effects at RHIC have been proposed even as probes of physics beyond the Standard Model. With the era of measurements of parity-violating spin asymmetries at RHIC now rapidly approaching, we had proposed a small workshop that would bring together the main experts in both theory and experiment. We are very happy that this worked out. The whole workshop contained 17 formal talks, both experiment (10) and theory (7), and many fruitful discussions. The physics motivations for, the planned measurements were reviewed first. The RHIC machine prospects regarding polarized 500 GeV running were discussed, as well as the plans by the RHIC experiments for the vital upgrades of their detectors needed for the W physics program. We also had several talks on the topic of ''semi-inclusive deep-inelastic scattering'', which provides different access to related physics observables. On the theory side, new calculations were presented, for example in terms of QCD all-order resummations of perturbation theory. Also, new observables, such

  6. Status of the R and D Towards Electron Cooling of RHIC

    International Nuclear Information System (INIS)

    A. Favale; D. Holmes; J.J. Sredniawski; Hans Bluem; M.D. Cole; J. Rathke; T. Schultheiss; A.M.M. Todd; V.V. Parkhomchuk; V.B. Reva; J. Alduino; D.S. Barton; Dana Richard Beavis; I. Ben-Zvi; Michael Blaskiewicz; J.M. Brennan; Andrew Burrill; Rama Calaga; P. Cameron; X. Chang; K.A. Drees; A.V. Fedotov; W. Fischer; G. Ganetis; D.M. Gassner; J.G. Grimes; Hartmut Hahn; L.R. Hammons; A. Hershcovitch; H.C. Hseuh; D. Kayran; J. Kewisch; R.F. Lambiase; D.L. Lederle; Vladimir Litvinenko; C. Longo; W.W. MacKay; G.J. Mahler; G.T. McIntyre; W. Meng; B. Oerter; C. Pai; George Parzen; D. Pate; D. Phillips; S.R. Plate; Eduard Pozdeyev; Triveni Rao; J. Reich; Thomas Roser; A.G. Ruggiero; T. Russo; C. Schultheiss; Z. Segalov; J. Smedley; K. Smith; T. Tallerico; S. Tepikian; R. Than; R.J. Todd; Dejan Trbojevic; J.E. Tuozzolo; P. Wanderer; G. WANG; D. Weiss; Q. Wu; Kin Yip; A. Zaltsman; A. Burov; S. Nagaitsev; L.R. Prost; A.O. Sidorin; A.V. Smirnov; Yaroslav Derbenev; Peter Kneisel; John Mammosser; H. Phillips; Joseph Preble; Charles Reece; Robert Rimmer; Jeffrey Saunders; Mircea Stirbet; Haipeng Wang; A.V. Aleksandrov; D.L. Douglas; Y.W. Kang; D.T. Abell; G.I. Bell; David L. Bruhwiler; R. Busby; John R. Cary; D.A. Dimitrov; P. Messmer; Vahid Houston Ranjbar; D.S. Smithe; A.V. Sobol; P. Stoltz

    2007-01-01

    The physics interest in a luminosity upgrade of RHIC requires the development of a cooling-frontier facility. Detailed cooling calculations have been made to determine the efficacy of electron cooling of the stored RHIC beams. This has been followed by beam dynamics simulations to establish the feasibility of creating the necessary electron beam. Electron cooling of RHIC at collisions requires electron beam energy up to about 54 MeV at an average current of between 50 to 100 mA and a particularly bright electron beam. The accelerator chosen to generate this electron beam is a superconducting Energy Recovery Linac (ERL) with a superconducting RF gun with a laser-photocathode. An intensive experimental R and D program engages the various elements of the accelerator: Photocathodes of novel design, superconducting RF electron gun of a particularly high current and low emittance, a very high-current ERL cavity and a demonstration ERL using these components

  7. Optimization of the Phase Advance Between RHIC Interaction Points

    CERN Document Server

    Tomas, Rogelio

    2005-01-01

    We consider the scenario of having two identical Interaction Points (IPs) in the Relativistic Heavy Ion Collider (RHIC). The strengths of beam-beam resonances strongly depend on the phase advance between these two IPs and therefore certain phase advances could improve beam lifetime and luminosity. We compute the dynamic aperture as function of the phase advance between these IPs to find the optimum settings. The beam-beam interaction is treated in the weak-strong approximation and a complete non-linear model of the lattice is used. For the current RHIC proton working point (0.69,0.685) the design lattice is found to have the optimum phase advance. However this is not the case for other working points.

  8. Exergy Analysis of the Cryogenic Helium Distribution System for the Large Hadron Collider (LHC)

    CERN Document Server

    Claudet, S; Tavian, L; Wagner, U

    2010-01-01

    The Large Hadron Collider (LHC) at CERN features the world’s largest helium cryogenic system, spreading over the 26.7 km circumference of the superconducting accelerator. With a total equivalent capacity of 145 kW at 4.5 K including 18 kW at 1.8 K, the LHC refrigerators produce an unprecedented exergetic load, which must be distributed efficiently to the magnets in the tunnel over the 3.3 km length of each of the eight independent sectors of the machine. We recall the main features of the LHC cryogenic helium distribution system at different temperature levels and present its exergy analysis, thus enabling to qualify second-principle efficiency and identify main remaining sources of irreversibility..

  9. EXERGY ANALYSIS OF THE CRYOGENIC HELIUM DISTRIBUTION SYSTEM FOR THE LARGE HADRON COLLIDER (LHC)

    International Nuclear Information System (INIS)

    Claudet, S.; Lebrun, Ph.; Tavian, L.; Wagner, U.

    2010-01-01

    The Large Hadron Collider (LHC) at CERN features the world's largest helium cryogenic system, spreading over the 26.7 km circumference of the superconducting accelerator. With a total equivalent capacity of 145 kW at 4.5 K including 18 kW at 1.8 K, the LHC refrigerators produce an unprecedented exergetic load, which must be distributed efficiently to the magnets in the tunnel over the 3.3 km length of each of the eight independent sectors of the machine. We recall the main features of the LHC cryogenic helium distribution system at different temperature levels and present its exergy analysis, thus enabling to qualify second-principle efficiency and identify main remaining sources of irreversibility.

  10. The cryogenic system for the superconducting solenoid magnet of the CMS experiment

    CERN Document Server

    Delikaris, D; Passardi, Giorgio; Lottin, J C; Lottin, J P; Lyraud, C

    1998-01-01

    The design concept of the CMS experiment, foreseen for the Large Hadron Collider (LHC) project at CERN, is based on a superconducting solenoid magnet. The large coil will be made of a four layers winding generating the 4 T uniform magnetic induction required by the detector. The length of the solenoid is 13 m with an inner diameter of 5.9 m. The mass kept at liquid helium temperature totals 220 t and the electromagnetic stored energy is 2.7 GJ. The windings are indirectly cooled with a liquid helium flow driven by a thermosyphon effect. The external cryogenic system consists of a 1.5 kW at 4.5 K (entropy equivalent) cryoplant including an additional liquid nitrogen precooling unit and a 5000 litre liquid helium buffer. The whole magnet and cryogenic system will be tested at the surface by 2003 before final installation in the underground area of LHC.

  11. A p-Carbon CNI Polarimeter for RHIC

    International Nuclear Information System (INIS)

    Huang, H.; Bai, M.; Bunce, G.; Makdisi, Y.; Roser, T.; Imai, K.; Nakamura, M.; Tojo, J.; Yamamoto, K.; Zhu, L.; Bassalleck, B.; Eilerts, S.; Fields, D.E.; Lewis, B.; Smith, B.; Thomas, T. L.; Wolfe, D.; Goto, Y.; Hayoshi, N.; Ishihara, M.; Kurita, K.; Okamura, M.; Saito, N.; Taketani, A.; Doskow, J.; Kwiatkowski, K.; Lozowski, B.; Meyer, H.O.; Przewoski, B. V.; Rinckel, T.; Nurushev, S. B.; Strikhanov, M. N.; Runtzo, M. F.; Alekseev, I. G.; Svirida, D. N.; Deshpande, A.; Hughes, V.

    1999-01-01

    The RHIC spin program requires excellent polarimetry so that the knowledge of the beam polarization does not limit the errors on the experimental measurements. However, polarimetry of proton beams with energies higher than about 30 GeV poses a difficult challenge. For polarization monitoring during operation, a fast and reliable polarimeter is required that produces a polarization measurement with a 10% relative error within a few minutes. The p-Carbon elastic scattering in the Coulomb-Nuclear-Scattering (CNI) region has a calculable and large analyzing power, but detecting the recoil carbon needs sophisticated detector system and a very thin target. Experiment has been planned in the AGS. This paper describes the experimental setup in the AGS

  12. Boomerang project: structural calculations and verifications of mechanical support of space cryogenic system

    International Nuclear Information System (INIS)

    Zucchini, A.; Orsi, R.

    1995-12-01

    The Boomerang (Ballon Observations of Millimetric Extragalactic radiation ANd Geophysics) experiment is an international effort to measure the Cosmic Microwave Background anisotropy on angular scales of 20' to 4x, with unprecedent sensitivity, sky and spectral coverage. The telescope will be flown from Antarctica by NASA-NSBF with a long duration stratospheric balloon (1-3 weeks), and is scheduled for flight in 1996. Space cryogenic systems need adeguate mechanical support to survive the large accelerations and vibrations induced during launch and landing. Static and modal analyses were carried out in order to assist the design of the mechanical support of the space cryogenic system. This report describes the models and the results of the FEM analyses carried out for different design solutions (kevlar cords or fiber-glass cylinders) of the cryostat support structure

  13. Soft x-ray backlighting of cryogenic implosions using a narrowband crystal imaging system (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Stoeckl, C., E-mail: csto@lle.rochester.edu; Bedzyk, M.; Brent, G.; Epstein, R.; Fiksel, G.; Guy, D.; Goncharov, V. N.; Hu, S. X.; Ingraham, S.; Jacobs-Perkins, D. W.; Jungquist, R. K.; Marshall, F. J.; Mileham, C.; Nilson, P. M.; Sangster, T. C.; Shoup, M. J.; Theobald, W. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-11-15

    A high-performance cryogenic DT inertial confinement fusion implosion experiment is an especially challenging backlighting configuration because of the high self-emission of the core at stagnation and the low opacity of the DT shell. High-energy petawatt lasers such as OMEGA EP promise significantly improved backlighting capabilities by generating high x-ray intensities and short emission times. A narrowband x-ray imager with an astigmatism-corrected bent quartz crystal for the Si He{sub α} line at ∼1.86 keV was developed to record backlit images of cryogenic direct-drive implosions. A time-gated recording system minimized the self-emission of the imploding target. A fast target-insertion system capable of moving the backlighter target ∼7 cm in ∼100 ms was developed to avoid interference with the cryogenic shroud system. With backlighter laser energies of ∼1.25 kJ at a 10-ps pulse duration, the radiographic images show a high signal-to-background ratio of >100:1 and a spatial resolution of the order of 10 μm. The backlit images can be used to assess the symmetry of the implosions close to stagnation and the mix of ablator material into the dense shell.

  14. A large-stroke cryogenic imaging FTS system for SPICA-Safari

    Science.gov (United States)

    Jellema, Willem; van Loon, Dennis; Naylor, David; Roelfsema, Peter

    2014-08-01

    The scientific goals of the far-infrared astronomy mission SPICA challenge the design of a large-stroke imaging FTS for Safari, inviting for the development of a new generation of cryogenic actuators with very low dissipation. In this paper we present the Fourier Transform Spectrometer (FTS) system concept, as foreseen for SPICA-Safari, and we discuss the technical developments required to satisfy the instrument performance.

  15. FIRST POLARIZED PROTON COLLISIONS AT RHIC

    International Nuclear Information System (INIS)

    ROSER, T.; AHRENS, L.; ALESSI, J.; BAI, M.; BEEBE-WANG, J.; BRENNAN, J.M.; BROWN, K.A.; BUNCE, G.; CAMERON, P.; COURANT, E.D.; DREES, A.; FISCHER, W.; FLILLER, R. III; GLENN, W.; HUANG, H.; LUCCIO, A.U.; MACKAY, W.W.; MAKDISI, Y.; MONTAG, C.; PILAT, F.; PTITSYN, V.; SATOGATA, T.

    2002-01-01

    We successfully injected polarized protons in both RHIC rings and maintained polarization during acceleration up to 100 GeV per ring using two Siberian snakes in each ring. Each snake consists of four helical superconducting dipoles which rotate the polarization by 180 o about a horizontal axis. This is the first time that polarized protons have been accelerated to 100 GeV

  16. The DFBX cryogenic distribution boxes for the LHC straight sections

    International Nuclear Information System (INIS)

    Zbasnik, Jon P.; Corradi, Carol A.; Green, Michael A.; Kajiyama, Y.; Knolls, Michael J.; LaMantia, Roberto F.; Rasson, Joseph E.; Reavill, Dulie; Turner, William C.

    2002-01-01

    The DFBX distribution boxes are designed to connect the LHC cryogenic distribution system to the interaction region quadrupoles [1] and dipoles for the Large Hadron Collider (LHC). The DFBX distribution boxes also have the current leads for the superconducting interaction region magnets and the LHC interaction region correction coils. The DFBX boxes also connect the magnet and cryogenic instrumentation to the CERN data collection system. The DFBX boxes serve as the cryogenic circulation center and the nerve center for four of the LHC straight sections. This report describes primarily the cryogenic function of the DFBXs

  17. Generalized z-scaling and pp collisions at RHIC

    International Nuclear Information System (INIS)

    Tokarev, Mikhail; Zborovsky, Imrich

    2007-01-01

    New generalization of the z-scaling in inclusive particle production is proposed. The scaling variable z is expressed in terms of the momentum fractions x 1 and x 2 of the incoming protons. Explicit dependence of z on the momentum fractions y a and y b of the scattered and recoil constituents carried by the inclusive particle and recoil object is included. The scaling function Ψ (z) for charged and identified hadrons produced in proton-proton collisions is constructed. The scheme allows unique description of data on inclusive cross sections of charged hadrons, pions, kaons, antiprotons and lambdas produced at RHIC energies. The obtained results suggest that the z-scaling may be used as a tool for searching for new physics phenomena of particle production in high transverse momentum and high multiplicity region at proton-proton colliders RHIC and LHC. (author)

  18. Below-Ambient and Cryogenic Thermal Testing

    Science.gov (United States)

    Fesmire, James E.

    2016-01-01

    Thermal insulation systems operating in below-ambient temperature conditions are inherently susceptible to moisture intrusion and vapor drive toward the cold side. The subsequent effects may include condensation, icing, cracking, corrosion, and other problems. Methods and apparatus for real-world thermal performance testing of below-ambient systems have been developed based on cryogenic boiloff calorimetry. New ASTM International standards on cryogenic testing and their extension to future standards for below-ambient testing of pipe insulation are reviewed.

  19. Latest Results of Open Heavy Flavor and Quarkonia from the PHENIX Experiment at RHIC

    International Nuclear Information System (INIS)

    Nouicer, Rachid

    2017-01-01

    The PHENIX Collaboration carries out a comprehensive physics program which studies heavy flavor production in relativistic heavy ion collisions at RHIC. The discovery at RHIC of large high-p T suppression and flow of electrons from heavy quarks flavors have altered our view of the hot and dense matter formed in central Au+Au collisions at GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. In recent years, the PHENIX has installed a silicon vertex tracker both in central rapidity (VTX) and in forward rapidity (FVTX) regions, and has collected large data samples. These two silicon trackers enhance the capability of heavy flavor measurements via precision tracking. This paper summarizes some of the latest PHENIX results concerning open heavy flavor and quarkonia production as a function of rapidity, energy and system size. (paper)

  20. Status of superconducting magnet development (SSC, RHIC, LHC)

    International Nuclear Information System (INIS)

    Wanderer, P.

    1993-01-01

    This paper summarizes recent superconducting accelerator magnet construction and test activities at the Superconducting Super Collider Laboratory (SSC), the Large Hardon Collider at CERN (LHC), and the Relativistic Heavy Ion Collider at Brookhaven (RHIC). Future plans are also presented

  1. Status of superconducting magnet development (SSC, RHIC, LHC)

    International Nuclear Information System (INIS)

    Wanderer, P.

    1993-01-01

    This paper summarize recent superconducting accelerator magnet construction and test activities at the Superconducting Super Collider Laboratory (SSC), the Large Hadron Collider at CERN (LHC), and the Relativistic Heavy Ion Collider at Brookhaven (RHIC). Future plan are also presented

  2. Cryogenic refrigeration. (Latest citations from the Aerospace database). Published Search

    International Nuclear Information System (INIS)

    1993-09-01

    The bibliography contains citations concerning cryogenic refrigeration or cryocooling. Design, development, testing, and evaluation of cryogenic cooling systems are discussed. Design applications in spacecraft, magnet cooling, superconductors, liquid fuel storage, radioastronomy, and medicine are presented. Material properties at cryogenic temperatures and cryogenic rocket propellants are considered in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  3. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  4. Energy Efficiency of large Cryogenic Systems: the LHC Case and Beyond

    CERN Document Server

    Claudet, S; Ferlin, G; Lebrun, P; Tavian, L; Wagner, U

    2013-01-01

    Research infrastructures for high-energy and nuclear physics, nuclear fusion and production of high magnetic fields are increasingly based on applied superconductivity and associated cryogenics in their quest for scientific breakthroughs at affordable capital and operation costs, a condition for their acceptance and sustained funding by society. The thermodynamic penalty for operating at low temperature makes energy efficiency a key requirement for their large cryogenic systems, from conceptual design to procurement, construction and operation. Meeting this requirement takes a combined approach on several fronts in parallel: management of heat loads and sizing of cooling duties, distribution of cooling power matching the needs of the superconducting devices, efficient production of refrigeration, optimal control resting on precise instrumentation and diagnostics, as well as a targeted industrial procurement policy. The case of the Large Hadron Collider (LHC) at CERN is presented. Potential improvements for fu...

  5. Cryogenic support member

    International Nuclear Information System (INIS)

    Niemann, R.C.; Gonczy, J.D.; Nicol, T.H.

    1987-01-01

    A cryogenic support member is described for restraining a cryogenic system comprising; a rod having a depression at a first end. The rod is made of non-metallic material. The non-metallic material has an effectively low thermal conductivity; a metallic plug; and a metallic sleeve. The plug and the sleeve are shrink-fitted to the depression in the rod and assembled thereto such that the plug is disposed inside the depression of the rod. The sleeve is disposed over the depression in the rod and the rod is clamped therebetween. The shrink-fit clamping the rod is generated between the metallic plug and the metallic sleeve

  6. Surface emission of quark gluon plasma at RHIC and LHC

    International Nuclear Information System (INIS)

    Xiang Wenchang; Wan Renzhou; Zhou Daicui

    2008-01-01

    Within the framework of a factorization model, we study the behaviour of nuclear modification factor in Au-Au collisions at RHIC and Pb-Pb collisions at LHC. We find that the nuclear modification factor is inversely proportional to the radius of the quark-gluon plasma and is dominated by the surface emission of hard jets. We predict the nuclear modification factor P AALHS ∼0.15 in central Pb-Pb collisions at LHC. The study shows that the factorization model can be used to describe the centrality dependence of nuclear modification factor of the high transverse momentum particles produced in heavy ion collisions at both RHIC and LHC. (authors)

  7. MEASURED TRANSVERSE COUPLING IMPEDANCE OF RHIC INJECTION AND ABORT KICKERS

    International Nuclear Information System (INIS)

    HAHN, H.; DAVINO, D.

    2001-01-01

    Concerns regarding possible transverse instabilities in RHIC and the SNS pointed to the need for measurements of the transverse coupling impedance of ring components. The impedance of the RHIC injection and abort kicker was measured using the conventional method based on the S 21 forward transmission coefficient. A commercial 450 Ω twin-wire Lecher line were used and the data was interpreted via the log-formula. All measurements, were performed in test stands fully representing operational conditions including pulsed power supplies and connecting cables. The measured values for the transverse coupling impedance in kick direction and perpendicular to it are comparable in magnitude, but differ from Handbook predictions

  8. Gaseous Helium storage and management in the cryogenic system for the LHC

    CERN Document Server

    Barranco-Luque, M

    2000-01-01

    The Large Hadron Collider (LHC) is presently under construction at CERN. Its main components are superconducting magnets which will operate in superfluid helium requiring cryogenics on a length of about 24 km around the machine ring with a total helium inventory of about 100 tonnes. As no permanent liquid helium storage is foreseen and for reasons of investment costs, only half of the total helium content can be stored in gaseous form in medium pressure vessels. During the LHC operation part of these vessels will be used as helium buffer in the case of multiple magnet quenches. This paper describes the storage, distribution and management of the helium, the layout and the connection to the surface and underground equipment of the cryogenic system.

  9. Scientific articles of the RBRC/CCAST Symposium on Spin Physics Lattice QCD and RHIC Physics

    International Nuclear Information System (INIS)

    2003-01-01

    This volume comprises scientific articles of the symposium on spin physics, lattice QCD and RHIC physics organized by RIKEN BNL research center (RBRC) and China center of advanced science and technology (CCAST). The talks were discussing the spin structure of nucleons and other problems of RHIC physics

  10. The evolution of cryogenic safety at Fermilab

    International Nuclear Information System (INIS)

    Stanek, R.; Kilmer, J.

    1992-12-01

    Over the past twenty-five years, Fermilab has been involved in cryogenic technology as it relates to pursuing experimentation in high energy physics. The Laboratory has instituted a strong cryogenic safety program and has maintained a very positive safety record. The solid commitment of management and the cryogenic community to incorporating safety into the system life cycle has led to policies that set requirements and help establish consistency for the purchase and installation of equipment and the safety analysis and documentation

  11. Cryogenic immersion microscope

    Science.gov (United States)

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  12. Commissioning results of CERN HIE-ISOLDE and INFN ALPI cryogenic control systems

    Science.gov (United States)

    Inglese, V.; Pezzetti, M.; Calore, A.; Modanese, P.; Pengo, R.

    2017-02-01

    The cryogenic systems of both accelerators, namely HIE ISOLDE (High Intensity and Energy Isotope Separator On Line DEvice) at CERN and ALPI (Acceleratore Lineare Per Ioni) at LNL, have been refurbished. HIE ISOLDE is a major upgrade of the existing ISOLDE facilities, which required the construction of a superconducting linear accelerator consisting of six cryomodules, each containing five superconductive RF cavities and superconducting solenoids. The ALPI linear accelerator, similar to HIE ISOLDE, is located at Legnaro National Laboratories (LNL) and became operational in the early 90’s. It is composed of 74 superconducting RF cavities, assembled inside 22 cryostats. The new control systems are equipped with PLC, developed on the CERN UNICOS framework, which include Schneider and Siemens PLCs and various fieldbuses (Profibus DP and PA, WorldFIP). The control systems were developed in synergy between CERN and LNL in order to build, effectively and with an optimized use of resources, control systems allowing to enhance ease of operation, maintainability, and long-term availability. This paper describes (i) the cryogenic systems, with special focus on the design of the control systems hardware and software, (ii) the strategy adopted in order to achieve a synergic approach, and (iii) the commissioning results after the cool-down to 4.5 K of the cryomodules.

  13. Development status of the cryogenic distillation system in Cernavoda Tritium Removal Facility

    International Nuclear Information System (INIS)

    Draghia, Mirela; Ana, George; Pasca, Gheorghe; Porcariu, Florina

    2009-01-01

    Full text: The reference design technology for the heavy water detritiation plant of Cernavoda CANDU station is based on combination of Liquid Phase Catalytic Exchange (LPCE) and Cryogenic Distillation (CD) processes. Based on this technology, tritium is transferred from the heavy water to a deuterium stream in the catalyzed isotopic exchange process, LPCE, followed by a final enrichment within the cryogenic distillation cascade. The final step is the tritium storage on metallic hydride. The basic function of the Cryogenic Distillation System (CDS) is the separation of tritium from the tritiated deuterium coming from the LPCE column in the following conditions: - the final product has to be tritium with a concentration of at least 99%; - it must be provided a detritiation factor of at least 100 (the ration between the tritium concentration in the deuterium stream fed to the CD system and the tritium concentration in the returned stream to the LPCE); - the deuterium must be enriched up to 99.995%, by removing the protium; - provisions for safe discharge of the entire inventory of the CD cascade into buffer vessels shall be implemented. To summarize, the present status of the project consists of technical documentation for all the components of CDS, including the P and ID (Pipping and Instrumentation Diagram), preliminary data sheets, technical specifications, drawings for the major components as the buffer vessels, coldbox, etc, and 3D models as well for almost all the components. (authors)

  14. Cryogenic Insulation Standard Data and Methodologies Project

    Science.gov (United States)

    Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Fesmire, James; Swanger, Adam

    2015-01-01

    Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of foam insulation materials was performed by NASA Kennedy Space Center and LeTourneau University. The initial focus was ambient pressure cryogenic boil off testing using the Cryostat-400 flat-plate instrument. Completion of a test facility at LETU has enabled direct, comparative testing, using identical cryostat instruments and methods, and the production of standard thermal data sets for a number of materials under sub-ambient conditions. The two sets of measurements were analyzed and indicate there is reasonable agreement between the two laboratories. Based on cryogenic boiloff calorimetry, new equipment and methods for testing thermal insulation systems have been successfully developed. These boiloff instruments (or cryostats) include both flat plate and cylindrical models and are applicable to a wide range of different materials under a wide range of test conditions. Test measurements are generally made at large temperature difference (boundary temperatures of 293 K and 78 K are typical) and include the full vacuum pressure range. Results are generally reported in effective thermal conductivity (ke) and mean heat flux (q) through the insulation system. The new cryostat instruments provide an effective and reliable way to characterize the thermal performance of materials under subambient conditions. Proven in through thousands of tests of hundreds of material systems, they have supported a wide range of aerospace, industry, and research projects. Boiloff testing technology is not just for cryogenic testing but is a cost effective, field-representative methodology to test any material or system for applications at sub-ambient temperatures. This technology, when adequately coupled with a technical standards basis, can provide a cost-effective, field-representative methodology to test any material or system

  15. Brahms Experiment at RHIC Day-1 Physics

    International Nuclear Information System (INIS)

    Videbaek, Flemming

    1999-01-01

    The BRAHMS experiment is designed to measure semi-inclusive spectra of charged hadron over a wide range of rapidity. It will yield information on particle production, both at central rapidity and in the baryon rich fragmentation region. The physics plans for measurements in the first year of running at RHIC are discussed

  16. First turn around strategy for RHIC

    International Nuclear Information System (INIS)

    Milutinovic, J.; Ruggiero, A.G.

    1991-06-01

    We present a strategy for achieving the so-called first turn around in RHIC. The strategy is based on the same method we had proposed to correct a distorted closed orbit in RHIC, i.e., on a generalization of the local three-bump method. We found out that the method is very effective in passing the beam through a non-ideal, insufficiently known, machine. We tested that software on ten different Gaussian distributions of dominant orbit distorting lattice imperfections. The perturbed lattice was generated by the code PATRIS, which was also adapted to control the newly developed software. In all of the ten distributions the software was capable of passing the beam through in 2--3 injection attempts, at full sextupole strength. It was also determined that once the beam makes the first turn around and all the correctors are energized, it stays in the machine for at least several hundred turns that we had checked. The quality of the orbit, that was established in this way, was also found to be very good, i.e., the residual distortions at the places of large beta function were much less than one millimeter. With one or two monitors/correctors broken, the software established a first turn around without any extra difficulties. The quality of such orbit was, of course, somewhat degraded, especially around the broken devices. It was also observed that, in the process of actual closing, the beam develops free betatron oscillations in the amplitude range of 1--5 mm, which can be reduced either by changing the injection conditions to better match the actual closed orbit or by an appropriate damping device. The hardware proposed for RHIC is more than sufficient to meet the demands of the first turn controlling software. The maximum kick angle to be applied to the beam would require less than 2/3 of the corrector's top strength even at the top magnetic rigidity Bρ = 850 T·m, which means that the correctors will be performing an easy task at injection

  17. Options for the Cryogenic System for the BESSY-FEL

    International Nuclear Information System (INIS)

    Kutzschbach, A.; Quack, H.; Haberstroh, Ch.; Knobloch, J.; Anders, W.; Pflueckhahn, D.

    2004-01-01

    The Berliner Elektronenspeicherring-Gesellschaft fuer Synchrotronstrahlung (BESSY GmbH), in January 1999, started operation of BESSY II, a third-generation synchrotron light source delivering world-class, high-brilliance photon beams in the VUV to XUV spectral range. Based on this experience, BESSY has recently proposed the construction of a free-electron laser (FEL), covering a photon-energy range from 20 eV to 1 keV.To reduce the development time and cost, BESSY intends to use proven cavity and cryostat technology developed for the TESLA linear collider. However, the cryogenic load per cavity is approximately 15 to 20 times higher than that anticipated for the (pulsed) TESLA operation. This paper describes possible modifications of the cryostat design to accommodate these additional losses.Superconducting RF cavities are the basis of the FEL accelerator providing the driving electron beam with 2.25 GeV. The accelerator consists of five cold sections separated by warm sections reserved for bunch compression and beam extraction. The total refrigeration load will be covered by a single refrigerator. Several possible layouts of the cryogenic system are described and their advantages and disadvantages are discussed

  18. Cryogenic Fluid Management Technology for Moon and Mars Missions

    Science.gov (United States)

    Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.

    2010-01-01

    In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.

  19. Overview of results from PHOBOS experiment at RHIC

    Science.gov (United States)

    Olszewski, Andrzej; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Corbo, J.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Henderson, C.; Hicks, D.; Hofman, D. J.; Holzman, B.; Hollis, R. S.; Hoyński, R.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michaowski, J.; Mignerey, A. C.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Rafelski, M.; Rbeiz, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J. L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysouch, B.

    2002-07-01

    An overview of results for interactions of Au+Au ions at centre-of-mass energies of √sNN = 56, 130 and 200 GeV obtained by the PHOBOS collaboration at RHIC is given. Measurements of primary charged particle density near mid-rapidity indicate that particle production grows logarithmically with collision energy and faster than linearly with the number of interacting nucleons. Elliptic flow is found to be much stronger at RHIC than at SPS energy. The effect is strongest in peripheral events and decreases for more central collisions and emission angles |η| > 1. The measured anti-particle to particle ratios of production rates for pions, kaons and protons in central Au+Au interactions at √sNN = 130 GeV are compatible with the statistical model of particle production, showing an increasingly baryon-free region in mid-rapidity with the increase of collision energy.

  20. FRIB Cryogenic Distribution System and Status

    Energy Technology Data Exchange (ETDEWEB)

    Ganni, Venkatarao [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Dixon, Kelly D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Laverdure, Nathaniel A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Yang, Shuo [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Nellis, Timothy [Michigan State Univ., East Lansing, MI (United States); Jones, S. [Michigan State Univ., East Lansing, MI (United States); Casagrande, Fabio [Michigan State Univ., East Lansing, MI (United States)

    2015-12-01

    The MSU-FRIB cryogenic distribution system supports the 2 K primary, 4 K primary, and 35 - 55 K shield operation of more than 70 loads in the accelerator and the experimental areas. It is based on JLab and SNS experience with bayonet-type disconnects between the loads and the distribution system for phased commissioning and maintenance. The linac transfer line, which features three separate transfer line segments for additional independence during phased commissioning at 4 K and 2 K, connects the folded arrangement of 49 cryomodules and 4 superconducting dipole magnets and a fourth transfer line supports the separator area cryo loads. The pressure reliefs for the transfer line process lines, located in the refrigeration room outside the tunnel/accelerator area, are piped to be vented outdoors. The transfer line designs integrate supply and return flow paths into a combined vacuum space. The main linac distribution segments are produced in a small number of standard configurations; a prototype of one such configuration has been fabricated at Jefferson Lab and has been installed at MSU to support testing of a prototype FRIB cryomodule.

  1. Event generator for RHIC spin physics. Proceedings of RIKEN BNL Research Center workshop: Volume 11

    International Nuclear Information System (INIS)

    1998-01-01

    A major objective of the workshop was to establish a firm collaboration to develop suitable event generators for the spin physics program at RHIC. With the completion of the Relativistic Heavy Ion Collider (RHIC) as a polarized collider a completely new domain of high-energy spin physics will be opened. The planned studies address the spin structure of the nucleon, tests of the standard model, and transverse spin effects in initial and final states. RHIC offers the unique opportunity to pursue these studies because of its high and variable energy, 50 ≤ √s ≤ 500 GeV, high polarization, 70%, and high luminosity, 2 x 10 32 cm -2 sec -1 or more at 500 GeV. To maximize the output from the spin program at RHIC, the understanding of both experimental and theoretical systematic errors is crucial. It will require full-fledged event generators, to simulate the processes of interest in great detail. The history of event generators shows that their development and improvement are ongoing processes taking place in parallel to the physics analysis by various experimental groups. The number of processes included in the generators has been increasing and the precision of their predictions is being improved continuously. This workshop aims at getting this process well under way for the spin physics program at RHIC, based on the first development in this direction, SPHINX

  2. Measuring two-particle Bose-Einstein correlations with PHOBOS at sign RHIC

    International Nuclear Information System (INIS)

    Betts, R.; Barton, D.; Carroll, A.

    1995-01-01

    We present results of a simulation of the measurement of two-particle Bose-Einstein correlations in central Au-Au collisions with the PHOBOS detector at RHIC. This measurement is expected to yield information on the relevant time and distance scales in these collisions. As the space-time scale is directly connected with the equation of state governing the evolution of the particle source, this information will be essential in understanding the physics of nucleus-nucleus collisions at RHIC energies. We demonstrate that the PHOBOS detector has sufficient resolution and acceptance to distinguish a variety of physics scenarios

  3. Detecting the anti-hypertriton and anti-helium-4 from the RHIC

    Directory of Open Access Journals (Sweden)

    Ma Yu-Gang

    2014-03-01

    Full Text Available Recent progress on the dectection of antimatter particles at RHIC is briefly reviewed. The observations of the anti-hypertriton (H¯⊼3${}_ \\mathbin{\\buildrel\\relbar \\over{\\smash{\\scriptstyle\\wedge}\\vphantom{_x}}} ^3\\overline {\\rm{H}} $and anti-helium-4 nuclei ( (4He¯, or α¯$\\left( {^4\\overline {{\\rm{He}}} ,\\,{\\rm{or}}\\,\\overline {\\rm{\\alpha }} } \\right$, or ᾱ from the RHIC-STAR Collaboration are highlighted. In addition, preliminary lifetime measurement of H¯Λ3${}_\\Lambda ^3\\overline {\\rm{H}} $ and energy dependence of strangeness population factor are presented. The mechanism of light antinuclei production is also discussed.

  4. COUPLING MEASUREMENT AND CORRECTION AT RHIC

    International Nuclear Information System (INIS)

    PILAT, F.; BEEBE-WANG, J.; FISCHER, W.; PTITSYN, V.; SATOGATA, T.

    2002-01-01

    Coupling correction at RHIC has been operationally achieved through a two-step process: using local triplet skew quadrupoles to compensate coupling corn rolled low-beta triplet quadrupoles, and minimizing the tune separation and residual coupling with orthogonal global skew quadrupole families. An application has been developed for global correction that allows skew quadrupole tuning and tune display with a choice of different tune measurement techniques, including tune-meter, Schottky and phase lock loop (PLL). Coupling effects have been analyzed by using 1024-turn (TBT) information from the beam position monitor (BPM) system. These data allow the reconstruction of the off-diagonal terms of the transfer matrix, a measure of global coupling. At both injection and storage energies, coordination of tune meter kicks with TBT acquisition at 322 BPW's in each ring allows the measurement of local coupling at all BPM locations

  5. A Prototype Ionization Profile Monitor for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cameron, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ryan, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Shea, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sikora, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    1997-03-17

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab will accelerate and store beams of ions ranging from protons to gold nuclei. Transverse beam profiles will be obtained by measuring the distribution of free electrons formed by beam ionization of the residual gas. The electrons are swept from the beamline by a transverse electric field, amplified by a microchannel plate (MCP), and collected on a circuit board with strip anodes oriented parallel to the beam axis. A uniform magnetic field,parallel to the sweep electric field, counters the defocusing effects of space charge and recoil momentum. A single-plane prototype ionization profile montor (IPM) was installed near the end of the AGS-to-RHIC transfer line (ATR) and tested during the sextant commissioning rung. It measured vertical profiles of single bunches of Au nuclei with intensities of 0.6-1.0 x 108 particles. These profiles are compared to profiles on a fluorescent screen (WF3) located 2m downstream from the IPM. This paper describes the detector and gives results from the beam test.

  6. A Cryogenic Fluid System Simulation in Support of Integrated Systems Health Management

    Science.gov (United States)

    Barber, John P.; Johnston, Kyle B.; Daigle, Matthew

    2013-01-01

    Simulations serve as important tools throughout the design and operation of engineering systems. In the context of sys-tems health management, simulations serve many uses. For one, the underlying physical models can be used by model-based health management tools to develop diagnostic and prognostic models. These simulations should incorporate both nominal and faulty behavior with the ability to inject various faults into the system. Such simulations can there-fore be used for operator training, for both nominal and faulty situations, as well as for developing and prototyping health management algorithms. In this paper, we describe a methodology for building such simulations. We discuss the design decisions and tools used to build a simulation of a cryogenic fluid test bed, and how it serves as a core technology for systems health management development and maturation.

  7. Cryogenic testing of the TPC superconducting solenoid

    International Nuclear Information System (INIS)

    Green, M.A.; Smits, R.G.; Taylor, J.D.

    1983-06-01

    This report describes the results of a series of tests on the TPC superconducting magnet cryogenic system which occurred during the winter and spring of 1983. The tests occurred at interaction region 2 of the PEP colliding beam facility at the Stanford Linear Accelerator Center (SLAC). The TPC Magnet Cryogenic System which was tested includes the following major components: a remote helium compressor with a full flow liquid nitrogen purification station, 400 meters of high pressure supply and low pressure return lines; and locally a CTi Model 2800 refrigerator with two Sulzer gas bearing turbines, the TPC magnet control dewar, 70 meters of transfer lines, and the TPC thin superconducting solenoid magnet. In addition, there is a conditioner (liquid nitrogen heat exchangers and gas heaters) system for cooldown and warmup of the magnet. This report describes the local cryogenic system and describes the various steps in the cooldown and operation of the TPC magnet. The tests were successful in that they showed that the TPC magnet could be cooled down in 24 hours and the magnet could be operated on the refrigerator or a helium pump with adequate cooling margin. The tests identified problems with the cryogenic system and the 2800 refrigerator. Procedures for successful operation and quenching of the superconducting magnet were developed. 19 references

  8. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, RHIC SPIN COLLABORATION MEETING VI, VOLUME 36

    International Nuclear Information System (INIS)

    BLAND, L.; SAITO, N.

    2001-01-01

    The sixth meeting of the RHIC Spin Collaboration (RSC) took place on October 1, 2001 at Brookhaven National Laboratory. RHIC is now in its second year of operation for physics production and the first polarized proton collision run at √s=200 GeV is expected to start in eight weeks. The RSC has developed a plan for this coming run through two previous meetings, RHIC Spin Physics III (August 3, 2000) and IV (October 13-14, 2000). We requested the following: two weeks of polarized proton studies in AGS, three weeks of polarized collider commissioning, and five weeks of polarized proton physics run. As a result, we have obtained all we asked and the above plans are implemented in the current operation schedule. The focus of the present meeting was to bring all involved in the RHIC Spin activities up-to-date on the progress of machine development, theory issues, and experimental issues. This meeting was right after the Program Advisory Committee (PAC) meeting and it started with the comments on the PAC discussion by Gerry Bunce, who was informed about the PAC deliberations by Tom Kirk. The PAC was fully supportive to complete the proposed spin program within the currently available budget for RHIC run 2 operations. Gerry further explained the expected luminosity to be ∫ Ldt = 0.5 pb -1 per week, reflecting the current machine status. The introductory session also had a talk from Werner Vogelsang that reviewed the progress in perturbative QCD theory focused on spin effects

  9. The PHENIX experiment at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Tonse, S.R.; Thomas, J.H.

    1993-12-15

    Later this decade the Relativistic Heavy Ion Collider (RHIC) will be built at Brookhaven National Laboratory. Its goal will be to accelerate and collide Au beams at 100 GeV/c in an attempt to create a Quark Gluon Plasma (QGP). The PHENIX detector aims to detect the QGP through its leptonic and hadronic signatures. We describe here its physics capabilities and the details of the apparatus designed to pick out rare leptonic signatures from among hadronic multiplicities of up to 1500 particles per unit of rapidity.

  10. Hydrodynamic analysis of anisotropic transverse flow at RHIC

    International Nuclear Information System (INIS)

    Hirano, Tetsufumi; Tsuda, Keiichi; Kajimoto, Kohei

    2001-01-01

    By using a (3+1)-dimensional relativistic hydrodynamic model, we estimate the magnitude of (differential) elliptic flow parameter υ 2 at the BNL-RHIC energy. We compare the centrality and the transverse momentum dependence of υ 2 with the experimental data observed by the STAR Collaboration. (author)

  11. Advances in cryogenic engineering. Volume 27 - Proceedings of the Cryogenic Engineering Conference, San Diego, CA, August 11-14, 1981

    Science.gov (United States)

    Fast, R. W.

    Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar. For individual items see A83-43221 to A83-43250

  12. A Piezoelectric Cryogenic Heat Switch

    Science.gov (United States)

    Jahromi, Amir E.; Sullivan, Dan F.

    2014-01-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.

  13. Overview of results from PHOBOS experiment at RHIC

    CERN Document Server

    Olszewski, A; Baker, M D; Barton, D S; Betts, R R; Bindel, R; Budzanowski, A; Busza, W; Carroll, A; Corbo, J; Decowski, M P; García, E; George, N; Gulbrandsen, K H; Gushue, S; Halliwell, C; Hamblen, J; Henderson, C; Hicks, D; Hofman, D J; Holzman, B; Hollis, R S; Holynski, R; Iordanova, A; Johnson, E; Kane, J L; Katzy, J; Khan, N; Kucewicz, W; Kulinich, P A; Kuo, C M; Lin, W T; Manly, S L; McLeod, D; Michalowski, J; Mignerey, A C; Mülmenstädt, J; Nouicer, R; Olszewski, A; Pak, R; Park, I C; Pernegger, H; Rafelski, M; Rbeiz, M; Reed, C; Remsberg, L P; Reuter, M; Roland, C; Roland, G; Rosenberg, L J; Sagerer, J; Sarin, P; Sawicki, P; Skulski, W; Steadman, S G; Steinberg, P; Stephans, G S F; Stodulski, M; Sukhanov, A; Tang, J L; Teng, R; Trzupek, A; Vale, C; van Nieuwenhuizen, G J; Verdier, R; Wadsworth, B; Wolfs, F L H; Wosiek, B; Wozniak, K; Wuosmaa, A H; Wyslouch, B

    2002-01-01

    An overview of results for interactions of Au+Au ions at centre-of- mass energies of square root s/sub NN/=56, 130 and 200 GeV obtained by the PHOBOS collaboration at RHIC is given. Measurements of the primary charged particle density near mid-rapidity indicate that particle production grows logarithmically with collision energy and faster than linearly with the number of interacting nucleons. Elliptic flow is found to be much stronger at RHIC than at SPS energy. The effect is strongest in peripheral events and decreases for more central collisions and emission angles $\\beta >1$. The measured anti-particle to particle ratios of production rates for pions, kaons and protons in central Au+Au interactions at square root s/sub NN/=130 GeV are compatible with the statistical model of particle production, showing an increasingly baryon-free region in mid-rapidity with the increase of collision energy. (16 refs).

  14. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    Energy Technology Data Exchange (ETDEWEB)

    Chu, X. X.; Zhang, D. X.; Qian, Y.; Liu, W. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 (China); Zhang, M. M.; Xu, D. [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 (China)

    2014-01-29

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H{sub 2} from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H{sub 2} in helium recycle gas are less than 1 ppb.

  15. ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    BEN-ZVI, I.; AHRENS, L.; BRENNAN, M.; HARRISON, M.; KEWISCH, J.; MACKAY, W.; PEGGS, S.; ROSER, T.; SATOGATA, T.; TRBOJEVIC, D.; YAKIMENKO, V.

    2001-01-01

    We introduce plans for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This project has a number of new features as electron coolers go: It will cool 100 GeV/nucleon ions with 50 MeV electrons; it will be the first attempt to cool a collider at storage-energy; and it will be the first cooler to use a bunched beam and a linear accelerator as the electron source. The linac will be superconducting with energy recovery. The electron source will be based on a photocathode gun. The project is carried out by the Collider-Accelerator Department at BNL in collaboration with the Budker Institute of Nuclear Physics

  16. RHIC electron lenses upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Gu, X. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Altinbas, Z. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Bruno, D. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Binello, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Costanzo, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Drees, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Gassner, D. M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Hock, J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Hock, K. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Harvey, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Mi, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Mernick, K. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Michnoff, R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Miller, T. A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Pikin, A. I. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Samms, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Shrey, T. C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Schoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Tan, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Thieberger, P. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; White, S. M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    In the Relativistic Heavy Ion Collider (RHIC) 100 GeV polarized proton run in 2015, two electron lenses were used to partially compensate for the head-on beam-beam effect for the first time. Here, we describe the design of the current electron lens, detailing the hardware modifications made after the 2014 commissioning run with heavy ions. A new electron gun with 15-mm diameter cathode is characterized. The electron beam transverse profile was measured using a YAG screen and fitted with a Gaussian distribution. During operation, the overlap of the electron and proton beams was achieved using the electron backscattering detector in conjunction with an automated orbit control program.

  17. Theoretical perspective on RHIC [relativistic heavy ion collider] physics

    International Nuclear Information System (INIS)

    Dover, C.B.

    1990-10-01

    We discuss the status of the relativistic heavy ion collider (RHIC) project at Brookhaven, and assess some key experiments which propose to detect the signatures of a transient quark-gluon plasma (QGP) phase in such collisions. 24 refs

  18. Mirror fusion test facility cryogenic system - performance, management approach, and present equipment status

    International Nuclear Information System (INIS)

    Slack, D.S.; Chronis, W.C.

    1988-01-01

    The cryogenic system for the MFTF is a helium refrigeration system that proved to be successful and cost effective. All operating objectives were met while remaining within a few percent of the initial cost and schedule plans. The management approach used at MFTF is assessed. Manpower levels, extent and type of industrial participation, and subcontractor specifications and interactions are reviewed along with highlights of system testing, documentation, and operation

  19. Proceedings of RIKEN BNL Research Center Workshop: Progress in High-pT Physics at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Bazilevsky, A.; Bland, L.; Vogelsang, W.

    2010-03-17

    This volume archives the presentations at the RIKEN BNL Research Center workshop 'Progress in High-PT Physics at RHIC', held at BNL in March 2010. Much has been learned from high-p{sub T} physics after 10 years of RHIC operations for heavy-ion collisions, polarized proton collisions and d+Au collisions. The workshop focused on recent progress in these areas by both theory and experiment. The first morning saw review talks on the theory of RHIC high-p{sub T} physics by G. Sterman and J. Soffer, and on the experimental results by M. Tannenbaum. One of the most exciting recent results from the RHIC spin program is the first observation of W bosons and their associated single-spin asymmetry. The new preliminary data were reported on the first day of our workshop, along with a theoretical perspective. There also were detailed discussions on the global analysis of polarized parton distributions, including the knowledge on gluon polarization and the impact of the W-data. The main topic of the second workshop day were single-transverse spin asymmetries and their analysis in terms of transverse-momentum dependent parton distributions. There is currently much interest in a future Drell-Yan program at RHIC, thanks to the exciting physics opportunities this would offer. This was addressed in some of the talks. There also were presentations on the latest results on transverse-spin physics from HERMES and BELLE. On the final day of the workshop, the focus shifted toward forward and small-x physics at RHIC, which has become a cornerstone of the whole RHIC program. Exciting new data were presented and discussed in terms of their possible implications for our understanding of strong color-field phenomena in QCD. In the afternoon, there were discussions of nuclear parton distributions and jet observables, among them fragmentation. The workshop was concluded with outlooks toward the near-term (LHC, JLab) and longer-term (EIC) future. The workshop has been a great success

  20. eRHIC ERL modeling in Zgoubi

    International Nuclear Information System (INIS)

    Meot, F.; Brooks, S.; Hao, Y.; Jing, Y.; Ptitsyn, V.; Trbojevic, D.; Tsoupas, N.

    2016-01-01

    This Note discusses on-going work regarding the modeling of eRHIC ERL in the ray-tracing code Zgoubi. The various pieces of the recirculator puzzle, their optical properties and their assemblage into an operational input data file in are addressed. The Note reports in particular on preparatory stages toward extensive end-to-end 6D polarized electron bunch transport simulations, which yield methods, as well a series of preliminary qualitative outcomes, discussed as well.

  1. Technology transfer for industrial production of superconducting magnets for the RHIC project at BNL

    International Nuclear Information System (INIS)

    Wanderer, P.; Anerella, M.D.; Greene, A.F.; Kelly, E.; Willen, E.

    1994-01-01

    Industrial production of superconducting magnets for the Relativistic Heavy Ion Collider (RHIC) has begun. The R ampersand D for the magnets was carried out at BNL. Following the award of built-to-print contracts, staff from the laboratory and the vendors worked toward transferring both design principles and practical details to an industrial framework for cost effective production. All magnets made thus far have been acceptable for use in RHIC

  2. Temperature lowering in cryogenic chemical-synthesis techniques and system

    International Nuclear Information System (INIS)

    Martinez, H.E.; Nelson, T.O.; Vikdal, L.N.

    1993-01-01

    When evaluating a chemical synthesis process for a reaction that occurs on the cryogenically cooled walls, it is sometimes necessary to reduce the wall temperatures to enhance the chemical process. To evaluate the chemical process at lower than atmospheric boiling of liquid nitrogen, we built a system and used it to reduce the temperature of the liquid nitrogen. The technique of lowering the liquid nitrogen temperature by reducing the pressure of the boil-off is established knowledge. This paper presents the engineering aspects of the system, design features, equipment requirements, methods of control, and results of the chemical synthesis. The heat input to the system was ∼400 watts, placing a relatively large demand on the pumping system. Our system is a scale-up of the small laboratory experiment, and it provides the information needed to design an effective system. The major problem encountered was the large quantity of liquid escaping the system during the processing, placing a large gas load on the vacuum system

  3. Iron saturation control in RHIC dipole magnets

    International Nuclear Information System (INIS)

    Thompson, P.A.; Gupta, R.C.; Kahn, S.A.; Hahn, H.; Morgan, G.H.; Wanderer, P.J.; Willen, E.

    1991-01-01

    The Relativistic Heavy Ion Collider (RHIC) will require 360 dipoles of 80 mm bore. This paper discusses the field perturbations produced by the saturation of the yoke iron. Changes have been made to the yoke to reduce these perturbations, in particular, decapole -4 . Measurements and calculations for 6 series of dipole magnets are presented. 2 refs., 2 figs., 1 tab

  4. The Local Helium Compound Transfer Lines for the Large Hadron Collider Cryogenic System

    CERN Document Server

    Parente, C; Munday, A; Wiggins, P

    2006-01-01

    The cryogenic system for the Large Hadron Collider (LHC) under construction at CERN will include twelve new local helium transfer lines distributed among five LHC points in underground caverns. These lines, being manufactured and installed by industry, will connect the cold boxes of the 4.5-K refrigerators and the 1.8-K refrigeration units to the cryogenic interconnection boxes. The lines have a maximum of 30-m length and may possess either small or large re-distribution units to allow connection to the interface ports. Due to space restrictions the lines may have complex routings and require several elbowed sections. The lines consist of a vacuum jacket, a thermal shield and either three or four helium process pipes. Specific internal and external supporting and compensation systems were designed for each line to allow for thermal contraction of the process pipes (or vacuum jacket, in case of a break in the insulation vacuum) and to minimise the forces applied to the interface equipment. Whenever possible, f...

  5. Lessons Learned During Cryogenic Optical Testing of the Advanced Mirror System Demonstrators (AMSDs)

    Science.gov (United States)

    Hadaway, James; Reardon, Patrick; Geary, Joseph; Robinson, Brian; Stahl, Philip; Eng, Ron; Kegley, Jeff

    2004-01-01

    Optical testing in a cryogenic environment presents a host of challenges above and beyond those encountered during room temperature testing. The Advanced Mirror System Demonstrators (AMSDs) are 1.4 m diameter, ultra light-weight (mA2), off-axis parabolic segments. They are required to have 250 nm PV & 50 nm RMS surface figure error or less at 35 K. An optical testing system, consisting of an Instantaneous Phase Interferometer (PI), a diffractive null corrector (DNC), and an Absolute Distance Meter (ADM), was used to measure the surface figure & radius-of-curvature of these mirrors at the operational temperature within the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The Ah4SD program was designed to improve the technology related to the design, fabrication, & testing of such mirrors in support of NASA s James Webb Space Telescope (JWST). This paper will describe the lessons learned during preparation & cryogenic testing of the AMSDs.

  6. Some General Principles in Cryogenic Design, Implementation, and Testing

    Science.gov (United States)

    Dipirro, Michael James

    2015-01-01

    Brief Course Description: In 2 hours only the most basic principles of cryogenics can be presented. I will concentrate on the differences between a room temperature thermal analysis and cryogenic thermal analysis, namely temperature dependent properties. I will talk about practical materials for thermal contact and isolation. I will finish by describing the verification process and instrumentation used that is unique to cryogenic (in general less than 100K) systems.

  7. RHIC Workshop: experiments for a relativistic heavy ion collider

    International Nuclear Information System (INIS)

    Haustein, P.E.; Woody, C.L.

    1985-01-01

    Separate abstracts were prepared for individual papers in this workshop proceedings, covering such topics as: calorimeter-based experiments, dimuon detection, large magnetic spectrometers, experiments in the fragmentation region, two-photon physics, and theoretical questions relevant to experimental work at the RHIC

  8. LEPTON AND PHOTON PHYSICS AT RHIC

    International Nuclear Information System (INIS)

    TANNENBAUM, M.J.

    2003-01-01

    Results on physics at RHIC using outgoing leptons and photons will be presented from Au+Au collisions at nucleon-nucleon c.m. energies √(sNN) = 130 GeV and 200 GeV, and from p-p collisions at √(sNN) = 200 GeV. Introduction and motivation will be presented both from the theoretical and experimental perspectives. Topics include open charm production via single e ± , J/Ψ → e + + e - , μ + + μ - and inclusive photon production

  9. EPICS based control system for cryogenic plant at VECC

    International Nuclear Information System (INIS)

    Panda, Umashankar; Pal, Sandip; Mandal, Anupam; Dey, Ranadhir

    2012-01-01

    Cryogenic Plant of Variable Energy Cyclotron Centre consists of two Helium refrigerators (250W and 415W at the rate 4.5K), valve box with sub-cooler and associated sub systems like pure gas storage, helium purifier and impure gas recovery etc. The system also consists of 3.1K liters of liquid Nitrogen (LN 2 ) storage and delivery system. Many of the systems are procured from different suppliers and some are also developed in house. Due to the variety of systems and suppliers the control philosophy, communication protocols and component is also different. So the Supervisory control and data acquisition (SCADA) module has to be such that it can take care of the variance and bring everything into a common control platform. To solve this purpose EPICS (Experimental Physics and Industrial Control System) architecture has been adopted. EPICS is having the advantage of being open source, flexible and unlimited as compared to the commercial SCADA packages. (author)

  10. Overview of the Liquid Argon Cryogenics for the Short Baseline Neutrino Program (SBN) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Barry [Fermilab; Bremer, Johan [CERN; Chalifour, Michel [Fermilab; Delaney, Mike [Fermilab; Dinnon, Mike [Fermilab; Doubnik, Roza [Fermilab; Geynisman, Michael [Fermilab; Hentschel, Steve [Fermilab; Kim, Min Jeong [Fermilab; Stefanik, Andy [Fermilab; Tillman, Justin [Fermilab; Zuckerbrot, Mike [Fermilab

    2017-01-01

    The Short-Baseline Neutrino (SBN) physics program will involve three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. The Program will be composed of an existing and operational detector known as Micro Boone (170 ton LAr mass) plus two new experiments known as the SBN Near Detector (SBND, ~ 260 ton) and the SBN Far Detector (SBN-FD, ~ 600 tons). Fermilab is now building two new facilities to house the experiments and incorporate all cryogenic and process systems to operate these detectors beginning in the 2018-2019 time frame. The SBN cryogenics are a collaborative effort between Fermilab and CERN. The SBN cryogenic systems for both detectors are composed of several sub-systems: External/Infrastructure (or LN2), Proximity (or LAr), and internal cryogenics. For each detector the External/Infrastructure cryogenics includes the equipment used to store and the cryogenic fluids needed for the operation of the Proximity cryogenics, including the LN2 and LAr storage facilities. The Proximity cryogenics consists of all the systems that take the cryogenic fluids from the external/infrastructure cryogenics and deliver them to the internal at the required pressure, temperature, purity and mass flow rate. It includes the condensers, the LAr and GAr purification systems, the LN2 and LAr phase separators, and the interconnecting piping. The Internal cryogenics is comprised of all the cryogenic equipment located within the cryostats themselves, including the GAr and LAr distribution piping and the piping required to cool down the cryostats and the detectors. These cryogenic systems will be engineered, manufactured, commissioned, and

  11. SEU tests performed on the digital communication system for LHC cryogenic instrumentation

    International Nuclear Information System (INIS)

    Casas-Cubillos, J.; Faccio, F.; Gomes, P.; Martin, M.A.; Rodriguez-Ruiz, M.A.

    2002-01-01

    The future LHC particle accelerator will use a large number of cryogenic sensors and actuators, most of which are located inside the machine tunnel and therefore in a radiation environment. These elements will communicate through a fieldbus. This paper reports the irradiation study carried out on WorldFIP fieldbus communication system. A digital communication system based on WorldFIP fieldbus protocol has been implemented and single event effects and total ionizing dose radiation tests have been performed on it

  12. Detection of AE signals from a HTS tape during quenching in a solid cryogen-cooling system

    International Nuclear Information System (INIS)

    Kim, K.J.; Song, J.B.; Kim, J.H.; Lee, J.H.; Kim, H.M.; Kim, W.S.; Na, J.B.; Ko, T.K.; Lee, H.G.

    2010-01-01

    The acoustic emission (AE) technique is suitable for detecting the presence of thermal and mechanical stress in superconductors, which have adverse effects on the stability of their application systems. However, the detection of AE signals from a HTS tape in a bath of liquid cryogen (such as liquid nitrogen, LN 2 ) has not been reported because of its low signal to noise ratio due to the noise from the boiling liquid cryogen. In order to obtain the AE signals from the HTS tapes during quenching, this study carried out repetitive quench tests for YBCO coated conductor (CC) tapes in a cooling system using solid nitrogen (SN 2 ). This paper examined the performance of the AE sensor in terms of the amplitudes of the AE signals in the SN 2 cooling system.

  13. Designs of pulsed power cryogenic transformers

    International Nuclear Information System (INIS)

    Singh, S.K.; Heyne, C.J.; Hackowrth, D.T.; Shestak, E.J.; Eckels, P.W.; Rogers, J.D.

    1988-01-01

    The Westinghouse Electric Corporation has completed designs of three pulsed power cryogenic transformers of three pulsed power cryogenic transformers for the Los Alamos National Laboratory. These transformers will be configured to transfer their stored energy sequentially to an electro-magnetic launcher and form a three-stage power supply. The pulse transformers will act as two winding energy storage solenoids which provide a high current and energy pulse compression by transforming a 50 kA power supply into a megamp level power supply more appropriate for the electromagnetic launcher duty. This system differs from more traditional transformer applications in that significant current levels do not exists simultaneously in the two windings of the pulse transformer. This paper describes the designs of the pulsed power cryogenic transformers

  14. Design and test of the RHIC CMD10 abort kicker

    International Nuclear Information System (INIS)

    Hahn, H.; Blaskiewicz, M.; Drees, A.; Fischer, W.; Mi, J.; Meng, W.; Montag, C.; Pai, C.; Sandberg, J.; Tsoupas, N.; Tuozzolo, J. E.; Zhang, W.

    2015-01-01

    In recent RHIC operational runs, planned and unplanned pre-fire triggered beam aborts have been observed that resulted in quenches of SC main ring magnets, indicating a weakened magnet kick strength due to beam-induced ferrite heating. An improvement program was initiated to reduce the longitudinal coupling impedance with changes to the ferrite material and the eddy-current strip geometry. Results of the impedance measurements and of magnet heating tests with CMD10 ferrite up to 190°C are reported. All 10 abort kickers in the tunnel have been modified and were provided with a cooling system for the RUN 15.

  15. RHIC polarized proton-proton operation at 100 GeV in Run 15

    International Nuclear Information System (INIS)

    Schoefer, V.; Aschenauer, E. C.; Atoian, G.; Blaskiewicz, M.; Brown, K. A.; Bruno, D.; Connolly, R.; D Ottavio, T.; Drees, K. A.; Dutheil, Y.; Fischer, W.; Gardner, C.; Gu, X.; Hayes, T.; Huang, H.; Laster, J.; Liu, C.; Luo, Y.; Makdisi, Y.; Marr, G.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R.; Marusic, A.; Minty, M.; Montag, C.; Morris, J.; Narayan, G.; Nemesure, S.; Pile, P.; Poblaguev, A.; Ranjbar, V.; Robert-Demolaize, G.; Roser, T.; Schmidke, W. B.; Severino, F.; Shrey, T.; Smith, K.; Steski, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; White, S.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S. Y.

    2015-01-01

    The first part of RHIC Run 15 consisted of ten weeks of polarized proton on proton collisions at a beam energy of 100 GeV at two interaction points. In this paper we discuss several of the upgrades to the collider complex that allowed for improved performance. The largest effort consisted in commissioning of the electron lenses, one in each ring, which are designed to compensate one of the two beam-beam interactions experienced by the proton bunches. The e-lenses raise the per bunch intensity at which luminosity becomes beam-beam limited. A new lattice was designed to create the phase advances necessary for a beam-beam compensation with the e-lens, which also has an improved off-momentum dynamic aperture relative to previous runs. In order to take advantage of the new, higher intensity limit without suffering intensity driven emittance deterioration, other features were commissioned including a continuous transverse bunch-by-bunch damper in RHIC and a double harmonic RF cature scheme in the Booster. Other high intensity protections include improvements to the abort system and the installation of masks to intercept beam lost due to abort kicker pre-fires.

  16. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 65, RHIC SPIN COLLABORATION MEETINGS XXVII, XXVIII, and XXX

    International Nuclear Information System (INIS)

    OGAWA, A.

    2004-01-01

    The RIKEN BNL Research Center (RSRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the 'Rikagaku Kenkyusho' (RIKEN, The Institute of Physical and Chemical Research) of Japan. The Center is dedicated to the study of strong interactions, including spin physics, lattice QCD, and RHIC physics through the nurturing of a new generation of young physicists. The RBRC has both a theory and experimental component. At present the theoretical group has 4 Fellows and 3 Research Associates as well as 11 RHIC Physics/University Fellows (academic year 2003-2004). To date there are approximately 30 graduates from the program of which 13 have attained tenure positions at major institutions worldwide. The experimental group is smaller and has 2 Fellows and 3 RHIC Physics/University Fellows and 3 Research Associates, and historically 6 individuals have attained permanent positions. Beginning in 2001 a new RIKEN Spin Program (RSP) category was implemented at RBRC. These appointments are joint positions of RBRC and RIKEN and include the following positions in theory and experiment: RSP Researchers, RSP Research Associates, and Young Researchers, who are mentored by senior RBRC Scientists, A number of RIKEN Jr. Research Associates and Visiting Scientists also contribute to the physics program at the Center. RBRC has an active workshop program on strong interaction physics with each workshop focused on a specific physics problem. Each workshop speaker is encouraged to select a few of the most important transparencies from his or her presentation, accompanied by a page of explanation. This material is collected at the end of the workshop by the organizer to form proceedings, which can therefore be available within a short time. To date there are sixty nine proceedings volumes available. The construction of a 0.6 teraflops parallel processor, dedicated to lattice QCD, begun at the Center on February 19, 1998, was completed on August 28, 1998 and is still

  17. Spiral 2 cryogenic system overview: Design, construction and performance test

    Energy Technology Data Exchange (ETDEWEB)

    Deschildre, C.; Bernhardt, J.; Flavien, G.; Crispel, S. [Air Liquide Advanced Technologies, Sassenage (France); Souli, M. [GANIL, Caen (France); Commeaux, C. [IPN, Orsay (France)

    2014-01-29

    The new particle accelerator project Spiral 2 at GANIL (“Grand Accélérateur d’Ions Lourds, i.e. National Large Heavy Ion Accelerator) in Caen (France) is a very large installation, intended to serve fundamental research in nuclear physics. The heart of the future machine features a superconductor linear accelerator, delivering a beam until 20Mev/A, which are then used to bombard a matter target. The resulting reactions, such as fission, transfer, fusion, etc. will generate billions of exotic nuclei. To achieve acceleration of the beam, 26 cavities which are placed inside cryomodules at helium cryogenic temperature will be used. AL-AT (Air Liquide Advanced Technologies) takes part to the project by supplying cryogenic plant. The plant includes the liquefier associated to its compressor station, a large dewar, a storage tank for helium gas and transfer lines. In addition, a helium recovery system composed of recovery compressor, high pressure storage and external purifier has been supplied. Customized HELIAL LF has been designed, manufactured and tested by AL-AT to match the refrigeration power need for the Spiral 2 project which is around 1300 W equivalent at 4.5 K.

  18. Cryogenics for the MuCool Test Area (MTA)

    International Nuclear Information System (INIS)

    Darve, Christine; Norris, Barry; Pei, Liujin

    2006-01-01

    MuCool Test Area (MTA) is a complex of buildings at Fermi National Accelerator Laboratory, which are dedicated to operate components of a cooling cell to be used for Muon Collider and Neutrino Factory R and D. The long-term goal of this facility is to test ionization cooling principles by operating a 25-liter liquid hydrogen (LH2) absorber embedded in a 5 Tesla superconducting solenoid magnet. The MTA solenoid magnet will be used with RF cavities exposed to a high intensity beam. Cryogens used at the MTA include LHe, LN2 and LH2. The latter dictates stringent system design for hazardous locations. The cryogenic plant is a modified Tevatron refrigerator based on the Claude cycle. The implementation of an in-house refrigerator system and two 300 kilowatt screw compressors is under development. The helium refrigeration capacity is 500 W at 14 K. In addition the MTA solenoid magnet will be batch-filled with LHe every 2 days using the same cryo-plant. This paper reviews cryogenic systems used to support the Muon Collider and Neutrino Factory R and D programs and emphasizes the feasibility of handling cryogenic equipment at MTA in a safe manner

  19. How can the odderon be detected at RHIC and LHC?

    Energy Technology Data Exchange (ETDEWEB)

    Avila, R.F.; Gauron, P.; Nicolescu, B. [CNRS, Paris (France); Pierre et Marie Curie Univ., Paris (FR). Lab. de Physique Nucleaire et des Hautes Energies (LPNHE)

    2007-01-15

    The odderon remains an elusive object, 33 years after its invention. The odderon is now a fundamental object in QCD and it has to be found experimentally if QCD is right. In the present paper, we show how to find it at RHIC and LHC. The most spectacular signature of the odderon is the predicted difference between the differential cross-sections for proton-proton and antiproton-proton at high s and moderate t. This experiment can be done by using the STAR detector at RHIC and by combining these future data with the already present UA4/2 data. The odderon could also be found by the ATLAS experiment at LHC by performing a high-precision measurement of the real part of the hadron elastic scattering amplitude at small t. (orig.)

  20. Production and Innovative Applications of Cryogenic Solid Pellets

    International Nuclear Information System (INIS)

    Baylor, L.R.; Combs, S.K.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Gouge, M.J.; Milora, S.L.

    1999-01-01

    For over two decades Oak Ridge National Laboratory has been developing cryogenic pellet injectors for fueling hot, magnetic fusion plasmas. Cryogenic solid pellets of all three hydrogen isotopes have been produced in a size range of 1- to 10-mm diameter and accelerated to speeds from <100 to ∼3000 m/s. The pellets have been formed discretely by cryocondensation in gun barrels and also by extrusion of cryogenic solids at mass flow rates up to ∼0.26 g/s and production rates up to ten pellets per second. The pellets traverse the hot plasma in a fraction of a millisecond and continuously ablate, providing fresh hydrogenic fuel to the interior of the plasma. From this initial application, uses of this technology have expanded to include (1) cryogenic xenon drops or solids for use as a debris-less target in a laser plasma source of X-rays for advanced lithography systems, (2) solid argon and carbon dioxide pellets for surface cleaning or decontamination, and (3) methane pellets in a liquid hydrogen bath for use as an innovative moderator of cold neutrons. Methods of production and acceleration/transport of these cryogenic solids will be described, and examples will be given of their use in prototype systems