WorldWideScience

Sample records for rhic arc dipole

  1. RHIC spin flipper AC dipole controller

    Energy Technology Data Exchange (ETDEWEB)

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  2. Iron saturation control in RHIC dipole magnets

    International Nuclear Information System (INIS)

    Thompson, P.A.; Gupta, R.C.; Kahn, S.A.; Hahn, H.; Morgan, G.H.; Wanderer, P.J.; Willen, E.

    1991-01-01

    The Relativistic Heavy Ion Collider (RHIC) will require 360 dipoles of 80 mm bore. This paper discusses the field perturbations produced by the saturation of the yoke iron. Changes have been made to the yoke to reduce these perturbations, in particular, decapole -4 . Measurements and calculations for 6 series of dipole magnets are presented. 2 refs., 2 figs., 1 tab

  3. GLOBAL AND LOCAL COUPLING COMPENSATION EXPERIMENTS IN RHIC USING AC DIPOLES

    International Nuclear Information System (INIS)

    CALAGA, R.; FRANCHI, A., TOMAS, R.; CERN)

    2006-01-01

    Compensation of transverse coupling during the RHIC energy ramp has been proven to be non-trivial and tedious. The lack of accurate knowledge of the coupling sources has initiated several efforts to develop fast techniques using turn-by-turn BPM data to identify and compensate these sources. This paper aims to summarize the beam experiments performed to measure the coupling, matrix and resonance driving terms with the aid of RHIC ac dipoles at injection energy

  4. BROOKHAVEN: RHIC installation

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This summer, the first superconducting magnet was installed in 3.8 kilometre tunnel for Brookhaven's RHIC heavy ion collider (October, page 31). Manufactured by Northrop Grumman's Electronics and System Integration Division, the magnet is the first of RHIC's 373 dipoles. In addition to the dipoles, Northrop Grumman will also provide 432 RHIC quadrupoles. The first quadrupole was delivered on 8 April, a month before the first dipole arrived for onsite testing prior to installation. RHIC will need 1,700 superconducting magnets - dipoles, quadrupoles, sextupoles and correcting magnets, 1,200 of which will be built by industry and the rest built at Brookhaven. The 300 sextupoles are being supplied by Everson Electric

  5. Overview of magnetic nonlinear beam dynamics in the RHIC

    International Nuclear Information System (INIS)

    Luo, Y.; Bai, M.; Beebe-Wang, J.; Bengtsson, J.; Calaga, R.; Fischer, W.; Jain, A.; Pilat, F.; Ptitsyn, V.; Malitsky, N.; Robert-Demolaize, G.; Satogata, T.; Tepikian, S.; Tomas, R.; Trbojevic, D.

    2009-01-01

    In this article we review our studies of nonlinear beam dynamics due to the nonlinear magnetic field errors in the Relativistic Heavy Ion Collider (RHIC). Nonlinear magnetic field errors, including magnetic field errors in interaction regions (IRs), chromatic sextupoles, and sextupole components from arc main dipoles are discussed. Their effects on beam dynamics and beam dynamic aperture are evaluated. The online methods to measure and correct the IR nonlinear field errors, second order chromaticities, and horizontal third order resonance are presented. The overall strategy for nonlinear corrections in RHIC is discussed

  6. Status of the quadrupoles for RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Thompson, P.A.; Cottingham, J.G.; Garber, M.

    1989-01-01

    The proposed Relativistic Heavy Ion Collider (RHIC) will require 408 regular arc quadrupoles. Two full size prototypes have been constructed and tested. The construction uses the single layer, collarless concept which has been successful in the RHIC dipoles. Both the magnets attained short sample current, which is 60% higher than the operating current. This corresponds to a gradient of 113 T/m with clear bore of 80 mm. The preliminary field measurements are in agreement with the calculations, with the exception of an unexpectedly large show sextupole. 2 refs., 5 figs., 1 tab

  7. The dipole corrector magnets for the RHIC fast global orbit feedback system

    International Nuclear Information System (INIS)

    Thieberger, P.; Arnold, L.; Folz, C.; Hulsart, R.; Jain, A.; Karl, R.; Mahler, G.; Meng, W.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Ptitsyn, V.; Ritter, J.; Smart, L.; Tuozzolo, J.; White, J.

    2011-01-01

    The recently completed RHIC fast global orbit feedback system uses 24 small 'window-frame' horizontal dipole correctors. Space limitations dictated a very compact design. The magnetic design and modelling of these laminated yoke magnets is described as well as the mechanical implementation, coil winding, vacuum impregnation, etc. Test procedures to determine the field quality and frequency response are described. The results of these measurements are presented and discussed. A small fringe field from each magnet, overlapping the opposite RHIC ring, is compensated by a correction winding placed on the opposite ring's magnet and connected in series with the main winding of the first one. Results from measurements of this compensation scheme are shown and discussed.

  8. Performance of initial full-length RHIC [Relativistic Heavy Ion Collider] dipoles

    International Nuclear Information System (INIS)

    Dahl, P.; Cottingham, J.; Garber, M.

    1987-01-01

    The first four full-length (9.7 m) R and D dipoles for the proposed Relativistic Heavy Ion Collider (RHIC) have been successfully tested. The magnets reached a quench plateau of approximately 4.5 T with very reasonable training - a field level comfortably above the design field of 3.45 T required for operation with beams of 100 GeV/amu gold nuclei. Measured field multipoles are considered to be quite acceptable for this series of R and D magnets

  9. FAST COMPENSATION OF GLOBAL LINEAR COUPLING IN RHIC USING AC DIPOLES

    International Nuclear Information System (INIS)

    CALAGA, R.; FRANCHI, A., TOMAS, R.; CERN)

    2006-01-01

    Global linear coupling has been extensively studied in accelerators and several methods have been developed to compensate the coupling coefficient C using skew quadrupole families scans. However, scanning techniques can become very time consuming especially during the commissioning of an energy ramp. In this paper they illustrate a new technique to measure and compensate, in a single machine cycle, global linear coupling from turn-by-turn BPM data without the need of a skew quadrupole scan. The algorithm is applied to RHIC BPM data using AC dipoles and compared with traditional methods

  10. FEASIBILITY OF INCREASING THE ENERGY OF RHIC

    International Nuclear Information System (INIS)

    MACKAY, W.W.; JAIN, A.; LUCCIO, A.U.; PILAT, F.; ROSER, T.; TEPIKIAN, S.; TROBOJEVIC, D.

    2001-01-01

    In this paper we discuss the possibility of increasing the energy of beams in RHIC by as much as 30% with a modest trade-off in luminosity. The arc dipoles and quadrupoles were designed with considerable margin. For higher energies (>100 GeV/nucleon) the minimum β* may be required to increase as the interaction region triplets saturate. The separator magnets (DX) have the least margin for increased field, so we consider three scenarios: allowing for a small crossing angle with the present DX magnets, upgrading the DX magnets to higher strength, and permitting a crossing angle of ∼1degree by removing the DX magnets altogether

  11. Real-World Sorting of RHIC Superconducting Magnets

    International Nuclear Information System (INIS)

    Wei, J.; Gupta, R.; Harrison, M.; Jain, A.; Peggs, S.; Thompson, P.; Trbojevic, D.; Wanderer, P.

    1999-01-01

    During the seven-year construction of the Relativistic Heavy Ion Collider (RHIC), more than 1700 superconducting dipoles, quadrupoles, sextupoles, and multi-layer correctors have been constructed and installed. These magnets have been sorted at several production stages to optimize their performance and reliability. For arc magnets, priorities have bene put first on quench performance and operational risk minimization, second on field transfer function and other first-order quantities, and finally on nonlinear field errors which were painstakingly optimized at design. For Interaction-Region (IR) magnets, sorting is applied to select the best possible combination of magnets for the low-β interaction points (IP). This paper summarizes the history of this real-world sorting process

  12. Conceptual design of a quadrupole magnet for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Witte, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    eRHIC is a proposed upgrade to the existing Relativistic Heavy Ion Collider (RHIC) hadron facility at Brookhaven National Laboratory, which would allow collisions of up to 21 GeV polarized electrons with a variety of species from the existing RHIC accelerator. eRHIC employs an Energy Recovery Linac (ERL) and an FFAG lattice for the arcs. The arcs require open-midplane quadrupole magnets of up to 30 T/m gradient of good field quality. In this paper we explore initial quadrupole magnet design concepts based on permanent magnetic material which allow to modify the gradient during operation.

  13. Heat leak testing of a superconducting RHIC dipole magnet at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    DeLalio, J.T.; Brown, D.P.; Sondericker, J.H.

    1993-01-01

    Brookhaven National Laboratory is currently performing heat load tests on a superconducting dipole magnet. The magnet is a prototype of the 360, 8 cm bore, arc dipole magnets that will be used in the Relativistic Heavy Ion Collider (RMC). An accurate measurement of the heat load is needed to eliminate cumulative errors when determining the REUC cryogenic system load requirements. The test setup consists of a dipole positioned between two quadrupoles in a common vacuum tank and heat shield. Piping and instrumentation are arranged to facilitate measurement of the heat load on the primary 4.6 K magnet load and the secondary 55 K heat shield load. Initial results suggest that the primary heat load is well below design allowances. The secondary load was found to be higher than estimated, but remained close to the budgeted amount. Overall, the dipole performed to specifications

  14. High luminosity polarized proton collisions at RHIC

    International Nuclear Information System (INIS)

    Roser, T.

    2001-01-01

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) provides the unique opportunity to collide polarized proton beams at a center-of-mass energy of up to 500 GeV and luminosities of up to 2 x 10 32 cm -2 s -1 . Such high luminosity and high energy polarized proton collisions will open up the possibility of studying spin effects in hard processes. However, the acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. After successful operation of RHIC with gold beams polarized protons from the AGS have been successfully injected into RHIC and accelerated using a full Siberian snakes built from four superconducting helical dipoles. A new high energy proton polarimeter was also successfully commissioned. Operation with two snakes per RHIC ring is planned for next year

  15. Dynamic displacements of the RHIC dipole cold mass with injection molded composite posts during quench conditions

    International Nuclear Information System (INIS)

    Sondericker, J.; Wolf, L.J.

    1991-02-01

    The new design of the RHIC dipole magnets incorporate helium containment bellows having a convolution diameter of only 7.63 inches. The present bellows are 12.80 inches in diameter. The smaller bellows present a substantially reduced pressure area which can be expected to reduce proportionately the end force on the cold mass during a quench. But, the objection was raised that the smaller bellows would present greater obstruction to the helium flow during a quench thereby producing higher pressure differentials. This analysis was undertaken to address these assertions by predicting the dynamic displacements of the cold mass using the latest test data on the stiffness of the IMC posts, pressure-time histories acquired from the recent full cell tests of RHIC magnets, and the dimensions of the new expansion joints. The analysis treated the cold mass as an elastic body having a saggittal curvature. The technique of normal mode expansion of a lumped-parameter system was used to obtain the results and conclusions reported herein

  16. Application of independent component analysis to ac dipole based optics measurement and correction at the Relativistic Heavy Ion Collider

    Directory of Open Access Journals (Sweden)

    X. Shen

    2013-11-01

    Full Text Available Correction of beta-beat is of great importance for performance improvement of high energy accelerators, like the Relativistic Hadron Ion Collider (RHIC. At RHIC, using the independent component analysis method, linear optical functions are extracted from the turn by turn beam position data of the ac dipole driven betatron oscillation. Despite the constraint of a limited number of available quadrupole correctors at RHIC, a global beta-beat correction scheme using a beta-beat response matrix method was developed and experimentally demonstrated. In both rings, a factor of 2 or better reduction of beta-beat was achieved within available beam time. At the same time, a new scheme of using horizontal closed orbit bump at sextupoles to correct beta-beat in the arcs was demonstrated in the Yellow ring of RHIC at beam energy of 255 GeV, and a peak beta-beat of approximately 7% was achieved.

  17. MEASUREMENT OF TRANSVERSE ECHOES IN RHIC

    International Nuclear Information System (INIS)

    FISCHER, W.; SATOGATA, T.; TOMAS, R.

    2005-01-01

    Beam echoes are a very sensitive method to measure diffusion, and longitudinal echo measurements were performed in a number of machines. In RHIC, for the first time, a transverse beam echo was observed after applying a dipole kick followed by a quadrupole .kick. After application of the dipole kick, the dipole moment decohered completely due to lattice nonlinearities. When a quadrupole kick is applied at time τ after the dipole kick, the beam re-cohered at time 2τ thus showing an echo response. We describe the experimental setup and measurement results. In the measurements the dipole and quadrupole kick amplitudes, amplitude dependent tune shift, and the time between dipole and quadrupole kick were varied. In addition, measurements were taken with gold bunches of different intensities. These should exhibit different transverse diffusion rates due to intra-beam scattering

  18. Helium release rates and ODH calculations from RHIC magnet cooling line failure

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, C.J.; Than, Y.; Tuozzolo, J.

    2011-03-28

    A catastrophic failure of the magnet cooling lines, similar to the LHC superconducting bus failure incident, could discharge cold helium into the RHIC tunnel and cause an Oxygen Deficiency Hazard (ODH) problem. A SINDA/FLUINT{reg_sign} model, which simulated the 4.5K/4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the insulating vacuum volumes and discharging via the reliefs into the RHIC tunnel, had been developed. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces are included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Results, including helium discharge rates, helium inventory loss, and the resulting oxygen concentration in the RHIC tunnel area, are reported. Good agreement had been achieved when comparing the simulation results, a RHIC sector depressurization test measurement, and some simple analytical calculations.

  19. Beam profile measurements on RHIC

    International Nuclear Information System (INIS)

    Connolly, R.; Michnoff, R.; Moore, T.; Shea, T.; Tepikian, S.

    2000-01-01

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab was commissioned during the summer of 1999. Transverse beam profiles on RHIC are measured with ionization profile monitors (IPMs). An IPM measures beam profiles by collecting the electrons liberated by residual gas ionization by the beam. The detector is placed in the gap of a dipole magnet to force the electrons to travel in straight lines from the beamline center to the collector. One IPM was tested and it measured the profiles of a single gold bunch containing 10 8 ions on consecutive turns. We show an example of one of these profiles giving transverse emittance. Also several profiles are combined into a mountain-range plot which shows betatron oscillations at injection

  20. The correction of linear lattice gradient errors using an AC dipole

    Energy Technology Data Exchange (ETDEWEB)

    Wang,G.; Bai, M.; Litvinenko, V.N.; Satogata, T.

    2009-05-04

    Precise measurement of optics from coherent betatron oscillations driven by ac dipoles have been demonstrated at RHIC and the Tevatron. For RHIC, the observed rms beta-beat is about 10%. Reduction of beta-beating is an essential component of performance optimization at high energy colliders. A scheme of optics correction was developed and tested in the RHIC 2008 run, using ac dipole optics for measurement and a few adjustable trim quadruples for correction. In this scheme, we first calculate the phase response matrix from the. measured phase advance, and then apply singular value decomposition (SVD) algorithm to the phase response matrix to find correction quadruple strengths. We present both simulation and some preliminary experimental results of this correction.

  1. Power systems for the RHIC first sextant test

    International Nuclear Information System (INIS)

    Schultheiss, C.; Bruno, D.; Feng, P.K.

    1997-01-01

    The first sextant test of the RHIC project is an opportunity to evaluate the many systems that must work together for the accelerator to operate. For the main dipole string, the actual main quadrupole power supply with its DSP regulator and output circuit compartment will be used. Temporary supplies will be used for the main quadrupole string, quadrupole offset, and quadrupole shunt supplies. This will let the authors both measure the performance of the main supply as well as determine the interaction among other power elements in the circuit. Correction elements will also be powered. The actual gamma-T power supplies will be used, as well as temporary supplies for the dipole correctors and sextupole supplies. Some of these units are required for beam to be transported, others are to be operated without beam to measure their performance, and how they interact with their superconducting loads. The power supply equipment, and that of other systems, required an infrastucture of AC power and output cable distribution in the RHIC tunnel, outlying service buildings, and interconnecting the tunnel to the service buildings. This note will describe the performance of the RHIC power supply systems during the sextant test, and the experience gained from this exercise

  2. FIRST POLARIZED PROTON COLLISIONS AT RHIC

    International Nuclear Information System (INIS)

    ROSER, T.; AHRENS, L.; ALESSI, J.; BAI, M.; BEEBE-WANG, J.; BRENNAN, J.M.; BROWN, K.A.; BUNCE, G.; CAMERON, P.; COURANT, E.D.; DREES, A.; FISCHER, W.; FLILLER, R. III; GLENN, W.; HUANG, H.; LUCCIO, A.U.; MACKAY, W.W.; MAKDISI, Y.; MONTAG, C.; PILAT, F.; PTITSYN, V.; SATOGATA, T.

    2002-01-01

    We successfully injected polarized protons in both RHIC rings and maintained polarization during acceleration up to 100 GeV per ring using two Siberian snakes in each ring. Each snake consists of four helical superconducting dipoles which rotate the polarization by 180 o about a horizontal axis. This is the first time that polarized protons have been accelerated to 100 GeV

  3. Considerations on a Cost Model for High-Field Dipole Arc Magnets for FCC

    CERN Document Server

    AUTHOR|(CDS)2078700; Durante, Maria; Lorin, Clement; Martinez, Teresa; Ruuskanen, Janne; Salmi, Tiina; Sorbi, Massimo; Tommasini, Davide; Toral, Fernando

    2017-01-01

    In the frame of the European Circular Collider (EuroCirCol), a conceptual design study for a post-Large Hadron Collider (LHC) research infrastructure based on an energy-frontier 100 TeV circular hadron collider [1]–[3], a cost model for the high-field dipole arc magnets is being developed. The aim of the cost model in the initial design phase is to provide the basis for sound strategic decisions towards cost effective designs, in particular: (A) the technological choice of superconducting material and its cost, (B) the target performance of Nb$_{3}$Sn superconductor, (C) the choice of operating temperature (D) the relevant design margins and their importance for cost, (E) the nature and extent of grading, and (F) the aperture’s influence on cost. Within the EuroCirCol study three design options for the high field dipole arc magnets are under study: cos − θ [4], block [5], and common-coil [6]. Here, in the advanced design phase, a cost model helps to (1) identify the cost drivers and feed-back this info...

  4. Considerations on a Cost Model for High-Field Dipole Arc Magnets for FCC

    CERN Document Server

    AUTHOR|(CDS)2078700; Durante, Maria; Lorin, Clement; Martinez, Teresa; Ruuskanen, Janne; Salmi, Tiina; Sorbi, Massimo; Tommasini, Davide; Toral, Fernando

    2017-01-01

    In the frame of the European Circular Collider (EuroCirCol), a conceptual design study for a post-Large Hadron Collider (LHC) research infrastructure based on an energy-frontier 100 TeV circular hadron collider [1]–[3], a cost model for the high-field dipole arc magnets is being developed. The aim of the cost model in the initial design phase is to provide the basis for sound strategic decisions towards cost effective designs, in particular: (A) the technological choice of superconducting material and its cost, (B) the target performance of Nb3Sn superconductor, (C) the choice of operating temperature (D) the relevant design margins and their importance for cost, (E) the nature and extent of grading, and (F) the aperture’s influence on cost. Within the EuroCirCol study three design options for the high field dipole arc magnets are under study: cos − θ [4], block [5], and common-coil [6]. Here, in the advanced design phase, a cost model helps to (1) identify the cost drivers and feed-back this informati...

  5. Quench observation using quench antennas on RHIC IR quadrupole magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Terashima, A.; Tsuchiya, K.; Ganetis, G.; Muratore, J.; Wanderer, P.

    1995-01-01

    Quench observation using quench antennas is now being performed routinely on RHIC dipole and quadrupole magnets. Recently, a quench antenna was used on a RHIC IR magnet which is heavily instrumented with voltage taps. It was confirmed that the signals detected in the antenna coils do not contradict the voltage tap signals. The antenna also detects a sign of mechanical disturbance which could be related to a training quench. This paper summarizes signals detected in the antenna and discusses possible causes of these signals

  6. Quench observation using quench antennas on RHIC IR quadrupole magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Terashima, A.; Tsuchiya, K.; Ganetis, G.; Muratore, J.; Wanderer, P.

    1996-01-01

    Quench observation using quench antennas is now being performed routinely on RHIC dipole and quadrupole magnets. Recently, a quench antenna was used on a RHIC IR magnet which is heavily instrumented with voltage taps. It was confirmed that the signals detected in the antenna coils do not contradict the voltage tap signals. The antenna also detects a sign of mechanical disturbance which could be related to a training quench. This paper summarizes signals detected in the antenna and discusses possible causes of these signals

  7. A Model of RHIC Using the Unified Accelerator Libraries

    Energy Technology Data Exchange (ETDEWEB)

    Pilat, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trahern, C. G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Malitsky, N. [Cornell Univ., Ithaca, NY (United States)

    1998-01-01

    The Unified Accelerator Library (UAL) is an object oriented and modular software environment for accelerator physics which comprises an accelerator object model for the description of the machine (SMF, for Standard Machine Format), a collection of Physics Libraries, and a Perl inte,face that provides a homo­geneous shell for integrating and managing these components. Currently available physics libraries include TEAPOT++, a collection of C++ physics modules conceptually derived from TEAPOT, and DNZLIB, a differential algebra package for map generation. This software environment has been used to build a flat model of RHIC which retains the hierarchical lat­tice description while assigning specific characteristics to individual elements, such as measured field har­monics. A first application of the model and of the simulation capabilities of UAL has been the study of RHIC stability in the presence of siberian snakes and spin rotators. The building blocks of RHIC snakes and rotators are helical dipoles, unconventional devices that can not be modeled by traditional accelerator phys­ics codes and have been implemented in UAL as Taylor maps. Section 2 describes the RHIC data stores, Section 3 the RHIC SMF format and Section 4 the RHIC spe­cific Perl interface (RHIC Shell). Section 5 explains how the RHIC SMF and UAL have been used to study the RHIC dynamic behavior and presents detuning and dynamic aperture results. If the reader is not familiar with the motivation and characteristics of UAL, we include in the Appendix an useful overview paper. An example of a complete set of Perl Scripts for RHIC simulation can also be found in the Appendix.

  8. Half-length model of a Siberian Snake magnet for RHIC

    CERN Document Server

    Okamura, M; Kawaguchi, T; Katayama, T; Jain, A; Muratore, J; Morgan, G; Willen, E

    2000-01-01

    For the Relativistic Heavy Ion Collider (RHIC) Spin Project, super-conducting helical dipole magnets are being constructed. These magnets will be used in 'Siberian Snakes' and 'Spin Rotators', which manipulate spin direction of proton beams in RHIC. The dipole field in these magnets rotates 360 deg. and is required to reach a magnetic field strength of more than 4.0 T. The bore radius of the coils and the magnetic length of the magnets are 50 and 2400 mm, respectively. To ascertain the performance of these magnets, which are built using a new 'coil in a slot' technique, a half-length model has been fabricated and tested. The quench performance, field uniformity and rotation angle have been investigated. The measured values in the model magnet agreed well with field calculations. These results demonstrate the adequacy of the fabrication method adopted in the model magnet. (authors)

  9. Industrial production of RHIC magnets

    International Nuclear Information System (INIS)

    Anerella, M.D.; Fisher, D.H.; Sheedy, E.; McGuire, T.

    1996-01-01

    RHIC 8 cm aperture dipole magnets and quadrupole cold masses are being built for Brookhaven National Laboratory (BNL) by Northrop Grumman Corporation at a production rate of one dipole magnet and two quadrupole cold masses per day. This work was preceded by a lengthy Technology Transfer effort which is described elsewhere. This paper describes the tooling which is being used for the construction effort, the production operations at each workstation, and also the use of trend plots of critical construction parameters as a tool for monitoring performance in production. A report on the improvements to production labor since the start of the programs is also provided. The magnet and cold mass designs, and magnetic test results are described in more detail in a separate paper

  10. SDRC I-DEAS and RHIC (Relativistic Heavy Ion Collider)

    International Nuclear Information System (INIS)

    Goggin, C.M.

    1989-01-01

    In August 1984, Brookhaven National Laboratory submitted a proposal to the Department of Energy (DOE) for the construction of a Relativistic Heavy Ion Collider (RHIC). Since then funding has continued for the detailed design of RHIC. The hardware for RHIC consists of two concentric rings of superconducting magnets in a 2.4 mile circumference with six intersections. Bunches of ions will travel in opposite directions in each of the two rings and eventually collide head on at one of the six intersections. The hardware design involves complicated facilities for liquid helium cryogens, cryostat design, and pipe systems. The greatest challenge however is the ion beam position relative to the geometric center of the rings. There are three hundred and seventy-two dipole magnets that are ten meters long and weigh 4300 Kg (4.5 tons) each. Each dipole must be positioned in the ring to ± 0.5 mm. In addition, there are four hundred and ninety-two quadrupole magnets that must be positioned to ± 0.1 mm which is a total position error. This total position error includes all the surveying and part tolerance. To accomplish this task requires detailed planning and design of the cryostats which contain each magnet and the tunnel assembly throughout the 2.4 mile circumference. The IDEAS' software package provides a way to analyze this large scale problem. 11 figs

  11. BEAM-BASED MEASUREMENTS OF PERSISTENT CURRENT DECAY IN RHIC

    International Nuclear Information System (INIS)

    FISCHER, W.; JAIN, A.; TEPIKIAN, S.

    2001-01-01

    The two RHIC rings are equipped with superconducting dipole magnets. At injection, induced persistent currents in these magnets lead to a sextupole component. As the persistent currents decay with time, the horizontal and vertical chromaticities change. From magnet measurements of persistent current decays, chromaticity changes in the machine are estimated and compared with chromaticity measurements

  12. The effects of betatron phase advances on beam-beam and its compensation in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y.; Fischer, W.; Gu, X.; Tepikian, S.; Trbojevic, D.

    2011-03-28

    In this article we perform simulation studies to investigate the effects of betatron phase advances between the beam-beam interaction points on half-integer resonance driving term, second order chromaticty and dynamic aperture in RHIC. The betatron phase advances are adjusted with artificial matrices inserted in the middle of arcs. The lattices for the 2011 RHIC polarized proton (p-p) run and 2010 RHIC Au-Au runs are used in this study. We also scan the betatron phase advances between IP8 and the electron lens for the proposed Blue ring lattice with head-on beam-beam compensation.

  13. Quadrupole beam-based alignment in the RHIC interaction regions

    International Nuclear Information System (INIS)

    Ziegler, J.; Satogata, T.

    2011-01-01

    Continued beam-based alignment (BBA) efforts have provided significant benefit to both heavy ion and polarized proton operations at RHIC. Recent studies demonstrated previously unknown systematic beam position monitor (BPM) offset errors and produced accurate measurements of individual BPM offsets in the experiment interaction regions. Here we describe the algorithm used to collect and analyze data during the 2010 and early 2011 RHIC runs and the results of these measurements. BBA data has been collected over the past two runs for all three of the active experimental IRs at RHIC, updating results from the 2005 run which were taken with incorrectly installed offsets. The technique was successfully applied to expose a systematic misuse of the BPM survey offsets in the control system. This is likely to benefit polarized proton operations as polarization transmission through acceleration ramps depends on RMS orbit control in the arcs, but a quantitative understanding of its impact is still under active investigation. Data taking is ongoing as are refinements to the BBA technique aimed at reducing systematic errors and properly accounting for dispersive effects. Further development may focus on non-triplet BPMs such as those located near snakes, or arc quadrupoles that do not have individually shunted power supplies (a prerequisite for the current method) and as such, will require a modified procedure.

  14. RHIC susceptibility to variations in systematic magnetic harmonic errors

    International Nuclear Information System (INIS)

    Dell, G.F.; Peggs, S.; Pilat, F.; Satogata, T.; Tepikian, S.; Trbojevic, D.; Wei, J.

    1994-01-01

    Results of a study to determine the sensitivity of tune to uncertainties of the systematic magnetic harmonic errors in the 8 cm dipoles of RHIC are reported. Tolerances specified to the manufacturer for tooling and fabrication can result in systematic harmonics different from the expected values. Limits on the range of systematic harmonics have been established from magnet calculations, and the impact on tune from such harmonics has been established

  15. ADVANCEMENT OF THE RHIC BEAM ABORT KICKER SYSTEM

    International Nuclear Information System (INIS)

    ZHANG, W.; AHRENS, L.; MI, J.; OERTER, B.; SANDBERG, J.; WARBURTON, D.

    2003-01-01

    As one of the most critical system for RHIC operation, the beam abort kicker system has to be highly available, reliable, and stable for the entire operating range. Along with the RHIC commission and operation, consistent efforts have been spend to cope with immediate issues as well as inherited design issues. Major design changes have been implemented to achieve the higher operating voltage, longer high voltage hold-off time, fast retriggering and redundant triggering, and improved system protection, etc. Recent system test has demonstrated for the first time that both blue ring and yellow ring beam abort systems have achieved more than 24 hours hold off time at desired operating voltage. In this paper, we report break down, thyratron reverse arcing, and to build a fast re-trigger system to reduce beam spreading in event of premature discharge

  16. RHIC FY15 pp Run RHIC and AGS polarization analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Adams, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-20

    The polarization information is important for the spin physics program in Relativistic Heavy Ion Collider (RHIC). There are discrepancies between AGS and RHIC polarization measurements. First, the face value of AGS polarization is higher than RHIC ones in general. Second, the measured polarization profile (described by the profile ratio R) is stronger in AGS than in RHIC. This note analyzes the polarization data from FY15 pp run period. The results show that the differences between AGS and RHIC polarization measurements are reasonable, but the R value difference is puzzling. The difference between blue and yellow ring is worth of spin simulation to explain.

  17. RHIC SPIN PROGRAM: MACHINE ASPECTS AND RECENT PROGRESS

    International Nuclear Information System (INIS)

    ROSER, T.

    1999-01-01

    High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes. However, the acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian Snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. Full Siberian Snakes and polarimeters are being developed for RHIC to make the acceleration of polarized protons to 250 GeV possible

  18. Wiggler as spin rotators for RHIC

    International Nuclear Information System (INIS)

    Luccio, A.; Conte, M.

    1993-01-01

    The spin of a polarized particle in a circular accelerator can be rotated with an arrangement of dipoles with field mutually perpendicular and perpendicular to the orbit. To achieve spin rotation, a given field integral value is required. The device must be designed in a way that the particle orbit is distorted as little as possible. It is shown that wigglers with many periods are suitable to achieve spin rotation with minimum orbit distortions. Wigglers are also more compact than more established structures and will use less electric power. Additional advantages include their use for non distructive beam diagnostics. Results are given for the Relativistic Heavy Ion Collider (RHIC) in the polarized proton mode

  19. TRANSVERSE OPTICS IMPROVEMENTS FOR RHIC RUN 4.

    Energy Technology Data Exchange (ETDEWEB)

    VAN ZEIJTS,J.

    2004-07-05

    The magnetic settings in RHIC are driven by an on-line model, and the quality of the resulting lattice functions depend on the correctness of the settings, and knowledge of the magnet transfer-functions. Here we first present the different inputs into the model, including dipole sextupole components, used to set tunes and chromaticities along the ramp. Based on an analysis of measured tunes along the FY03 polarized proton ramp, we present predictions for quadrupole transfer-function changes which have been implemented for the FY04 Au ramp. We show the improved model agreement for tunes along the ramp, and measured transverse phase-advance at store.

  20. Low-loss wire design for the DiSCoRaP dipole

    CERN Document Server

    Volpini, G; Bellomo, G; Sorbi, M; Fabbricatore, P; Farinon, S; Musenich, R; Gambardella, U; Kaugerts, J; Moritz, G; Wilson, M N

    2009-01-01

    The SIS-300 synchrotron of the new FAIR facility at GSI (Germany) will use fast-cycled superconducting magnets. Its dipoles will be pulsed at 1 T/s; for comparison, LHC is ramped at 0.007 T/s and RHIC at 0.042 T/s. Within the frame of a collaboration between INFN and GSI, INFN has funded the project DISCORAP (DIpoli SuperCOnduttori RApidamente Pulsati, or Fast Pulsed Superconducting Dipoles) whose goal is to design, construct and test a half-length (4 m), curved, model of one lattice dipole. This paper focuses on the low loss superconducting wire design, and in particular to the transverse resistivity calculations and the dynamic stability verification.

  1. How robust will the RHIC lattice be during commissioning?

    International Nuclear Information System (INIS)

    Ohnuma, S.

    1991-09-01

    The question raised here is whether the RHIC lattice is robust enough to make all these commissioning manipulations possible. There are of course many factors involved in answering this question in a definitive manner. The purpose of this note is to see if there are any fundamental and serious shortcomings basic to the lattice. The lattice considered here is the one presented to the workshop by Steve Tepikian and called RHIC91. More specifically, we fix nine quadrupole parameters in all insertions except in the 6 o'clock insertion where the independent parameters is sixteen. The so-called perfect matching may require fourteen parameters instead of nine but the difference is insignificant. On the other hand, if the number of parameters is reduced from sixteen to nine in the 6 o'clock insertion, the mismatch in the arc beta function becomes non-trivial. For example, the horizontal beta may vary between 40m to 60m at QF locations

  2. The characterization and selection of superconductor wire and cable for RHIC

    International Nuclear Information System (INIS)

    Greene, A.F.; Garber, M.; Ghosh, A.K.; McChesney, D.; Morgillo, A.

    1992-01-01

    This report describes the procedures used to select a single vendor for superconductor cable for the RHIC 80 mm dipole and quadrupole magnets, and some insertion dipoles with 110 mm aperture. Experience gained at BNL through involvement with the HERA and SSC Projects provided valuable Teaming experiences for this work. A performance specification was prepared and three qualified vendors were selected to complete a preproduction lot of 63,000 ft. of cable (approximately five multifilament billets). Samples were sent to BNL from every wire spool and from every continuous cable length. Mechanical, electrical and magnetization measurements were made to characterize the material. A data base was used to collect information, to compare BNL and vendor measurements and to study uniformity. Results are presented without specific identification of the vendors involved

  3. New coil end design for the RHIC Arc dipole

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, G.H.; Morgillo, A.; Power, K.; Thompson, P.

    1994-06-01

    To simplify production, the number of parts in the ends, about 64 in each coil end, was reduced by using thicker spacers between the turns, to about 23. A new computer program was written which gives a description of each turn closely resembling the turn as made. The output of this program is processed by newly written computer programs which change the parts descriptions into forms which are used by a computer-controlled, 5-axis milling machine. The solid spacers replace spacers assembled from laminations and improve the fit as well. The parts will be molded during production. The calculated harmonic content of the ends is compared with measurements on the first magnets built with the new ends.

  4. New coil end design for the RHIC Arc dipole

    International Nuclear Information System (INIS)

    Morgan, G.H.; Morgillo, A.; Power, K.; Thompson, P.

    1994-01-01

    To simplify production, the number of parts in the ends, about 64 in each coil end, was reduced by using thicker spacers between the turns, to about 23. A new computer program was written which gives a description of each turn closely resembling the turn as made. The output of this program is processed by newly written computer programs which change the parts descriptions into forms which are used by a computer-controlled, 5-axis milling machine. The solid spacers replace spacers assembled from laminations and improve the fit as well. The parts will be molded during production. The calculated harmonic content of the ends is compared with measurements on the first magnets built with the new ends

  5. Tracking studies on the effects of magnet multipoles on the aperture of the RHIC heavy ion collider

    International Nuclear Information System (INIS)

    Dell, G.F.; Parzen, G.

    1985-01-01

    Tracking studies including the effects of random multipoles resulting from construction errors have been made for RHIC with two independent tracking programs at three different tunes. The studies were made using ten different sets of random errors for each of the programs. The aperture was defined as the worst case, and the results of the two programs are in good agreement. A second set of studies was made for which the number of dipoles was doubled to determine whether doubling the number of independent random errors results in a reduction of the effects or random multipoles. The results for the two cases, one dipole per half cell and two dipoles per half cell, indicate there is little difference in dynamic aperture. 3 refs., 3 figs

  6. ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    2001-01-01

    The Accelerator Collider Department (CAD) at Brookhaven National Laboratory is operating the Relativistic Heavy Ion Collider (RHIC), which includes the dual-ring, 3.834 km circumference superconducting collider and the venerable AGS as the last part of the RHIC injection chain. CAD is planning on a luminosity upgrade of the machine under the designation RHIC II. One important component of the RHIC II upgrade is electron cooling of RHIC gold ion beams. For this purpose, BNL and the Budker Institute of Nuclear Physics in Novosibirsk entered into a collaboration aimed initially at the development of the electron cooling conceptual design, resolution of technical issues, and finally extend the collaboration towards the construction and commissioning of the cooler. Many of the results presented in this paper are derived from the Electron Cooling for RHIC Design Report [1], produced by the, BINP team within the framework of this collaboration. BNL is also collaborating with Fermi National Laboratory, Thomas Jefferson National Accelerator Facility and the University of Indiana on various aspects of electron cooling

  7. ELECTRON COOLING FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI,I.

    2001-05-13

    The Accelerator Collider Department (CAD) at Brookhaven National Laboratory is operating the Relativistic Heavy Ion Collider (RHIC), which includes the dual-ring, 3.834 km circumference superconducting collider and the venerable AGS as the last part of the RHIC injection chain. CAD is planning on a luminosity upgrade of the machine under the designation RHIC II. One important component of the RHIC II upgrade is electron cooling of RHIC gold ion beams. For this purpose, BNL and the Budker Institute of Nuclear Physics in Novosibirsk entered into a collaboration aimed initially at the development of the electron cooling conceptual design, resolution of technical issues, and finally extend the collaboration towards the construction and commissioning of the cooler. Many of the results presented in this paper are derived from the Electron Cooling for RHIC Design Report [1], produced by the, BINP team within the framework of this collaboration. BNL is also collaborating with Fermi National Laboratory, Thomas Jefferson National Accelerator Facility and the University of Indiana on various aspects of electron cooling.

  8. Direct photons and dileptons via color dipoles

    International Nuclear Information System (INIS)

    Kopeliovich, B.Z.; Rezaeian, A.H.; Pirner, H.J.; Schmidt, Ivan

    2007-01-01

    Drell-Yan dilepton pair production and inclusive direct photon production can be described within a unified framework in the color dipole approach. The inclusion of non-perturbative primordial transverse momenta and DGLAP evolution is studied. We successfully describe data for dilepton spectra from 800-GeV pp collisions, inclusive direct photon spectra for pp collisions at RHIC energies √(s)=200 GeV, and for pp-bar collisions at tevatron energies √(s)=1.8 TeV, in a formalism that is free from any extra parameters

  9. THE RHIC INJECTION SYSTEM.

    Energy Technology Data Exchange (ETDEWEB)

    FISCHER,W.; GLENN,J.W.; MACKAY,W.W.; PTITSIN,V.; ROBINSON,T.G.; TSOUPAS,N.

    1999-03-29

    The RHIC injection system has to transport beam from the AGS-to-RHIC transfer line onto the closed orbits of the RHIC Blue and Yellow rings. This task can be divided into three problems. First, the beam has to be injected into either ring. Second, once injected the beam needs to be transported around the ring for one turn. Third, the orbit must be closed and coherent beam oscillations around the closed orbit should be minimized. We describe our solutions for these problems and report on system tests conducted during the RHIC Sextant test performed in 1997. The system will be fully commissioned in 1999.

  10. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER, VOLUME 37, RHIC SPIN COLLABORATION MEETING VI (PART 2)

    International Nuclear Information System (INIS)

    Bland, L.; Saito, N.

    2001-01-01

    The second part of the sixth RHIC Spin Collaboration (RSC) meeting was held on November 15, 2001 at Brookhaven National Laboratory. Previous meetings have elaborated on the new generation of proton spin-structure studies (e.g. gluon polarization and flavor separation of q and bar q polarizations via real W ± production) enabled by studying polarized proton collisions at energies and momentum transfers where perturbative QCD models are expected to be applicable. The focus of this meeting was on many of the experimental issues that must be resolved to achieve these physics goals. This summary is written with the benefit of hindsight following the completion of the first-ever run of a polarized proton collider. This first run can be considered as a successfully completed milestone of the RHIC Spin Collaboration. Other milestones remain important. Long term machine items were identified in Waldo Mackay's talk, the most important being the completion of the spin rotator magnets that will be installed in 2002 to allow the flexible orientation of the proton beam polarization at the PHENM and STAR experiments. At the meeting Waldo discussed a stronger partial snake magnet for the AGS as a means of producing highly polarized proton beams to inject into RHIC. Developments subsequent to this meeting suggest that a superconducting helical dipole magnet may be feasible for the AGS, and is likely to be needed to achieve the 70% beam polarization in RHIC. Longer term items were also presented, including potential increases in luminosity by the addition of electron cooling to RHIC and the possibility of increasing the collision energy by ∼20% by replacement of the DX magnets. These items could be considered for a second generation of RHIC spin experiments. The other topics covered at the meeting were related to polarimetry and to the absolute calibration of the proton beam polarization in RHIC. These topics were divided into short- and long-term solutions to polarimetry issues

  11. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER, VOLUME 37, RHIC SPIN COLLABORATION MEETING VI (PART 2).

    Energy Technology Data Exchange (ETDEWEB)

    BLAND, L.; SAITO, N.

    2001-11-15

    The second part of the sixth RHIC Spin Collaboration (RSC) meeting was held on November 15, 2001 at Brookhaven National Laboratory. Previous meetings have elaborated on the new generation of proton spin-structure studies (e.g. gluon polarization and flavor separation of q and {bar q} polarizations via real W{sup {+-}} production) enabled by studying polarized proton collisions at energies and momentum transfers where perturbative QCD models are expected to be applicable. The focus of this meeting was on many of the experimental issues that must be resolved to achieve these physics goals. This summary is written with the benefit of hindsight following the completion of the first-ever run of a polarized proton collider. This first run can be considered as a successfully completed milestone of the RHIC Spin Collaboration. Other milestones remain important. Long term machine items were identified in Waldo Mackay's talk, the most important being the completion of the spin rotator magnets that will be installed in 2002 to allow the flexible orientation of the proton beam polarization at the PHENM and STAR experiments. At the meeting Waldo discussed a stronger partial snake magnet for the AGS as a means of producing highly polarized proton beams to inject into RHIC. Developments subsequent to this meeting suggest that a superconducting helical dipole magnet may be feasible for the AGS, and is likely to be needed to achieve the 70% beam polarization in RHIC. Longer term items were also presented, including potential increases in luminosity by the addition of electron cooling to RHIC and the possibility of increasing the collision energy by {approx}20% by replacement of the DX magnets. These items could be considered for a second generation of RHIC spin experiments. The other topics covered at the meeting were related to polarimetry and to the absolute calibration of the proton beam polarization in RHIC. These topics were divided into short- and long-term solutions to

  12. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  13. RHIC Data Correlation Methodology

    International Nuclear Information System (INIS)

    Michnoff, R.; D'Ottavio, T.; Hoff, L.; MacKay, W.; Satogata, T.

    1999-01-01

    A requirement for RHIC data plotting software and physics analysis is the correlation of data from all accelerator data gathering systems. Data correlation provides the capability for a user to request a plot of multiple data channels vs. time, and to make meaningful time-correlated data comparisons. The task of data correlation for RHIC requires careful consideration because data acquisition triggers are generated from various asynchronous sources including events from the RHIC Event Link, events from the two Beam Sync Links, and other unrelated clocks. In order to correlate data from asynchronous acquisition systems a common time reference is required. The RHIC data correlation methodology will allow all RHIC data to be converted to a common wall clock time, while still preserving native acquisition trigger information. A data correlation task force team, composed of the authors of this paper, has been formed to develop data correlation design details and provide guidelines for software developers. The overall data correlation methodology will be presented in this paper

  14. Use of an elliptical aperture to control saturation in closely-coupled, cold iron, superconducting dipole magnets

    International Nuclear Information System (INIS)

    Morgan, G.

    1985-01-01

    The high fields permitted by superconducting windings result in saturation of closely-coupled iron in dipole and quadrupole beam transport magnets. Coupland suggested using a triangular cutout at the poles to reduce the change in the sextupole (b 2 ) term due to saturation. The use of an elliptical aperture in a close-coupled dipole for the Relativistic Heavy Ion Collider (RHIC) has been studied using the BNL computer program MDP (a version of GFUN). The ellipse aspect ratio was varied while holding the horizontal (minor) radius constant. The proper aspect ratio gives no shift in b 2 sue to saturation, and a reduction in the b 4 shift. A modification of the ellipse also reduces b 4 . The elliptical aperture introduces a large b 2 term at low field which must be compensated for by the coil design. A practical coil design which does this for the RHIC magnet is presented. 5 refs., 2 figs., 3 tabs

  15. TEST RESULTS FOR LHC INSERTION REGION DEPOLE MAGNETS

    International Nuclear Information System (INIS)

    MURATORE, J.; JAIN, A.; ANERELLA, M.; COSSOLINO, J.

    2005-01-01

    The Superconducting Magnet Division at Brookhaven National Laboratory (BNL) has made 20 insertion region dipoles for the Large Hadron Collider (LHC) at CERN. These 9.45 m-long, 8 cm aperture magnets have the same coil design as the arc dipoles now operating in the Relativistic Heavy Ion Collider (RHIC) at BNL and are of single aperture, twin aperture, and double cold mass configurations. They are required to produce fields up to 4.14 T for operation at 7.56 TeV. Eighteen of these magnets have been tested at 4.5 K using either forced flow supercritical helium or liquid helium. The testing was especially important for the twin aperture models, whose construction was very different from the RHIC dipoles, except for the coil design. This paper reports on the results of these tests, including spontaneous quench performance, verification of quench protection heater operation, and magnetic field quality

  16. Polarized proton collider at RHIC

    International Nuclear Information System (INIS)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S.Y.; Luccio, A.; MacKay, W.W.; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A.N.

    2003-01-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998, reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to √s=500 GeV

  17. Spin-flipping a stored polarized proton beam with an rf dipole

    International Nuclear Information System (INIS)

    Blinov, B.B.; Derbenev, Ya.S.; Kageya, T.; Kantsyrev, D.Yu.; Krisch, A.D.; Morozov, V.S.; Sivers, D.W.; Wong, V.K.; Anferov, V.A.; Schwandt, P.; Przewoski, B. von

    2000-01-01

    Frequent polarization reversals, or spin-flips, of a stored polarized high-energy beam may greatly reduce systematic errors of spin asymmetry measurements in a scattering asymmetry experiment. We studied the spin-flipping of a 120 MeV horizontally-polarized proton beam stored in the IUCF Cooler Ring by ramping an rf-dipole magnet's frequency through an rf-induced depolarizing resonance in the presence of a nearly-full Siberian snake. After optimizing the frequency ramp parameters, we used multiple spin-flips to measure a spin-flip efficiency of 86.5±0.5%. The spin-flip efficiency was apparently limited by the rf-dipole's field strength. This result indicates that an efficient spin-flipping a stored polarized beam should be possible in high energy rings such as RHIC and HERA where Siberian snakes are certainly needed and only dipole rf-flipper-magnets are practical

  18. Parton saturation effects to the Drell-Yan process in the color dipole picture

    International Nuclear Information System (INIS)

    Betemps, M.A.; Gay Ducati, M.B.; Machado, M.V.T.

    2003-01-01

    We report on the results obtained in the study of the parton saturation effects, taken into account through the multi-scattering Glauber-Mueller approach applied to the Drell-Yan (DY) process described in the color dipole picture. As a main result, one shows that those effects play an important role on the estimates of the DY differential cross section at RHIC energies. (author)

  19. Spin Physics at RHIC

    International Nuclear Information System (INIS)

    Bland, L.C.

    2003-01-01

    The physics goals that will be addressed by colliding polarized protons at the Relativistic Heavy Ion Collider (RHIC) are described. The RHIC spin program provides a new generation of experiments that will unfold the quark, anti-quark and gluon contributions to the proton's spin. In addition to these longer term goals, this paper describes what was learned from the first polarized proton collisions at √(s)=200 GeV. These collisions took place in a five-week run during the second year of RHIC operation

  20. Fast Automated Decoupling at RHIC

    CERN Document Server

    Beebe-Wang, Joanne

    2005-01-01

    Coupling correction is essential for the operational performance of RHIC. The independence of the transverse degrees of freedom makes diagnostics and tune control easier, and it is advantageous to operate an accelerator close to the coupling resonance to minimize nearby nonlinear sidebands. An automated decoupling application has been developed at RHIC for coupling correction during routine operations. The application decouples RHIC globally by minimizing the tune separation through finding the optimal settings of two orthogonal skew quadrupole families. The program provides options of automatic, semi-automatic and manual decoupling operations. It accesses tune information from all RHIC tune measurement systems: the PLL (Phase Lock Loop), the high frequency Schottky system, and the tune meter. It also supplies tune and skew quadrupole scans, finding the minimum tune separation, display the real time results and interface with the RHIC control system. We summarize the capabilities of the decoupling application...

  1. Noise estimation of beam position monitors at RHIC

    International Nuclear Information System (INIS)

    Shen, X.; Bai, M.

    2014-01-01

    Beam position monitors (BPM) are used to record the average orbits and transverse turn-by-turn displacements of the beam centroid motion. The Relativistic Hadron Ion Collider (RHIC) has 160 BPMs for each plane in each of the Blue and Yellow rings: 72 dual-plane BPMs in the insertion regions (IR) and 176 single-plane modules in the arcs. Each BPM is able to acquire 1024 or 4096 consecutive turn-by-turn beam positions. Inevitably, there are broadband noisy signals in the turn-by-turn data due to BPM electronics as well as other sources. A detailed study of the BPM noise performance is critical for reliable optics measurement and beam dynamics analysis based on turn-by-turn data.

  2. RHIC 10 Hz global orbit feedback system

    International Nuclear Information System (INIS)

    Michnoff, R.; Arnold, L.; Carboni, L.; Cerniglia, P.; Curcio, A.; DeSanto, L.; Folz, C.; Ho, C.; Hoff, L.; Hulsart, R.; Karl, R.; Luo, Y.; Liu, C.; MacKay, W.; Mahler, G.; Meng, W.; Mernick, K.; Minty, M.; Montag, C.; Olsen, R.; Piacentino, J.; Popken, P.; Przybylinski, R.; Ptitsyn, V.; Ritter, J.; Schoenfeld, R.; Thieberger, P.; Tuozzolo, J.; Weston, A.; White, J.; Ziminski, P.; Zimmerman, P.

    2011-01-01

    Vibrations of the cryogenic triplet magnets at the Relativistic Heavy Ion Collider (RHIC) are suspected to be causing the horizontal beam perturbations observed at frequencies around 10 Hz. Several solutions to counteract the effect have been considered in the past, including a local beam feedback system at each of the two experimental areas, reinforcing the magnet base support assembly, and a mechanical servo feedback system. However, the local feedback system was insufficient because perturbation amplitudes outside the experimental areas were still problematic, and the mechanical solutions are very expensive. A global 10 Hz orbit feedback system consisting of 36 beam position monitors (BPMs) and 12 small dedicated dipole corrector magnets in each of the two 3.8 km circumference counter-rotating rings has been developed and commissioned in February 2011. A description of the system architecture and results with beam will be discussed.

  3. FAST AUTOMATED DECOUPLING AT RHIC

    International Nuclear Information System (INIS)

    BEEBE-WANG, J.J.

    2005-01-01

    Coupling correction is essential for the operational performance of RHIC. The independence of the transverse degrees of freedom makes diagnostics and tune control easier, and it is advantageous to operate an accelerator close to the coupling resonance to minimize nearby nonlinear sidebands. An automated coupling correction application iDQmini has been developed for RHIC routine operations. The application decouples RHIC globally by minimizing the tune separation through finding the optimal settings of two orthogonal skew quadrupole families. The program iDQmini provides options of automatic, semi-automatic and manual decoupling operations. It accesses tune information from all RHIC tune measurement systems: the PLL (phase lock loop), the high frequency Schottky system and the tune meter. It also supplies tune and skew quadrupole scans, finding the minimum tune separation, display the real time results and interface with the RHIC control system. We summarize the capabilities of the coupling correction application iDQmini, and discuss the operational protections incorporated in the program

  4. Achieving 99.9% proton spin-flip efficiency at higher energy with a small rf dipole

    CERN Document Server

    Leonova, M A; Gebel, R; Hinterberger, F; Krisch, A D; Lehrach, A; Lorentz, B; Maier, R; Morozov, V S; Prasuhn, D; Raymond, R S; Schnase, A; Stockhorst, H; Ulbrich, K; Wong, V K; 10.1103/PhysRevLett.93.224801

    2004-01-01

    We recently used a new ferrite rf dipole to study spin flipping of a 2.1 GeV/c vertically polarized proton beam stored in the COSY Cooler Synchrotron in Julich, Germany. We swept the rf dipole's frequency through an rf-induced spin resonance to flip the beam's polarization direction. After determining the resonance's frequency, we varied the frequency range, frequency ramp time, and number of flips. At the rf dipole's maximum strength and optimum frequency range and ramp time, we measured a spin-flip efficiency of 99.92+or-0.04%. This result, along with a similar 0.49 GeV/c IUCF result, indicates that, due to the Lorentz invariance of an rf dipole's transverse integral Bdl and the weak energy dependence of its spin-resonance strength, an only 35% stronger rf dipole should allow efficient spin flipping in the 100 GeV BNL RHIC Collider or even the 7 TeV CERN Large Hadron Collider.

  5. High luminosity electron-hadron collider eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Ptitsyn, V.; Aschenauer, E.; Bai, M.; Beebe-Wang, J.; Belomestnykh, S.; Ben-Zvi, I.; Blaskiewicz, M..; Calaga, R.; Chang, X.; Fedotov, A.; Gassner, D.; Hammons, L.; Hahn, H.; Hammons, L.; He, P.; Hao, Y.; Jackson, W.; Jain, A.; Johnson, E.C.; Kayran, D.; Kewisch, J.; Litvinenko, V.N.; Luo, Y.; Mahler, G.; McIntyre, G.; Meng, W.; Minty, M.; Parker, B.; Pikin, A.; Rao, T.; Roser, T.; Skaritka, J.; Sheehy, B.; Skaritka, J.; Tepikian, S.; Than, Y.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; Webb, S.; Wu, Q.; Xu, W.; Pozdeyev, E.; Tsentalovich, E.

    2011-03-28

    We present the design of a future high-energy high-luminosity electron-hadron collider at RHIC called eRHIC. We plan on adding 20 (potentially 30) GeV energy recovery linacs to accelerate and to collide polarized and unpolarized electrons with hadrons in RHIC. The center-of-mass energy of eRHIC will range from 30 to 200 GeV. The luminosity exceeding 10{sup 34} cm{sup -2} s{sup -1} can be achieved in eRHIC using the low-beta interaction region with a 10 mrad crab crossing. We report on the progress of important eRHIC R&D such as the high-current polarized electron source, the coherent electron cooling, ERL test facility and the compact magnets for recirculation passes. A natural staging scenario of step-by-step increases of the electron beam energy by building-up of eRHIC's SRF linacs is presented.

  6. Closed orbit analysis for RHIC

    International Nuclear Information System (INIS)

    Milutinovic, J.; Ruggiero, A.G.

    1989-01-01

    We examine the effects of four types of errors in the RHIC dipoles and quadrupoles on the on-momentum closed orbit in the machine. We use PATRIS both to handle statistically the effects of kick-modeled errors and to check the performance of the Fermilab correcting scheme in a framework of a more realistic modeling. On the basis of the accepted rms values of the lattice errors, we conclude that in about 40% of all studied cases the lattice must be to some extent pre-corrected in the framework of the so-called ''first turn around strategy,'' in order to get a closed orbit within the aperture limitations at all and, furthermore, for approximately 2/3 of the remaining cases we find that a single pass algorithm of the Fermilab scheme is not sufficient to bring closed orbit distortions down to acceptable levels. We have modified the scheme and have allowed repeated applications of the otherwise unchanged three bump method and in doing so we have been able to correct the orbit in a satisfactory manner. 4 refs., 2 figs., 3 tabs

  7. Brookhaven: RHIC magnets

    International Nuclear Information System (INIS)

    Heppelman, Steve

    1990-01-01

    Last year, Brookhaven's proposal for a Relativistic Heavy Ion Collider - RHIC - was scrutinized by the US Department of Energy and deemed to be ready for construction funding. The hope is that the money will be voted soon so that construction can get underway at the start of the new US financial year in October. The 3.8 kilometre RHIC tunnel was completed ten years ago for the doomed Isabelle/CBA proton collider project

  8. DESIGN ISSUES FOR THE RHIC EBIS

    International Nuclear Information System (INIS)

    Beebe, E.; Alessi, J.; Kponou, A.; Pikin, A.; Prelec, K.; Kuznetzov, G.; Tiunov, M.

    2000-01-01

    Promising results are currently being obtained on the BNL Electron Beam Test Stand (EBTS), which is a prototype for the Relativistic Heavy Ion Collider (RHIC) EBIS. Based on the present-results, a proposal has been made regarding the general design of the RHIC EBIS. During the next year experiments will be made to investigate physics issues and beam properties important to the detailed design of the RHIC EBIS. Below we have outlined some of the physics issues to be explored experimentally, beam diagnostics that will be employed, and hardware modifications that are desired to go from the prototype stage to the RHIC EBIS

  9. An FFAG-ERL at Cornell University for eRHIC prototyping and bright-beam applications

    Energy Technology Data Exchange (ETDEWEB)

    Hoffstaetter, Georg [Cornell University, Ithaca, NY (United States)

    2016-07-01

    Cornell University has prototyped technology essential for any high-brightness electron ERL. This includes a DC gun and an SRF injector Linac with world-record current and normalized brightness in a bunch train, a high-current CW cryomodule for 70 MeV energy gain, a high-power beam stop, and several diagnostics tools for high-current and high-brightness beams, e.g. slid measurements for 6-D phase-space densities, a fast wire scanner for beam profiles, and beam loos diagnostics. All these are now available to equip a one-cryomodule ERL, and laboratory space has been cleared out and is radiation shielded to install this ERL at Cornell. BNL has designed a multi-turn ERL for eRHIC, where beam is transported more than 20 times around the RHIC tunnel. The number of transport lines is minimized by using two non-scaling (NS) FFAG arcs. A collaboration between BNL and Cornell has been formed to investigate the new NS-FFAG optics and the multi-turn eRHIC ERL design by building a 4-turn, one-cryomodule ERL at Cornell. It has a NS-FFAG return loop built with permanent magnets and is meant to accelerate 40 mA beam to 250 MeV.

  10. Helium pressures in RHIC vacuum cryostats and relief valve requirements from magnet cooling line failure

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, C.J.; Than, Y.; Tuozzolo, J.

    2011-03-28

    A catastrophic failure of the RHIC magnet cooling lines, similar to the LHC superconducting bus failure incident, would pressurize the insulating vacuum in the magnet and transfer line cryostats. Insufficient relief valves on the cryostats could cause a structural failure. A SINDA/FLUINT{reg_sign} model, which simulated the 4.5K/4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the vacuum cryostat and discharging via the reliefs into the RHIC tunnel, had been developed to calculate the helium pressure inside the cryostat. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces were included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Existing relief valve sizes were reviewed to make sure that the maximum stresses, caused by the calculated maximum pressures inside the cryostats, did not exceed the allowable stresses, based on the ASME Code B31.3 and ANSYS results. The conclusions are as follows: (1) The S/F simulation results show that the highest internal pressure in the cryostats, due to the magnet line failure, is {approx}37 psig (255115 Pa); (2) Based on the simulation, the temperature on the cryostat chamber, INJ Q8-Q9, could drop to 228 K, which is lower than the material minimum design temperature allowed by the Code; (3) Based on the ASME Code and ANSYS results, the reliefs on all the cryostats inside the RHIC tunnel are adequate to protect the vacuum chambers when the magnet cooling lines fail; and (4) In addition to the pressure loading, the thermal deformations, due to the temperature decrease on the cryostat chambers, could also cause a high stress on the chamber, if not properly supported.

  11. Helium pressures in RHIC vacuum cryostats and relief valve requirements from magnet cooling line failure

    International Nuclear Information System (INIS)

    Liaw, C.J.; Than, Y.; Tuozzolo, J.

    2011-01-01

    A catastrophic failure of the RHIC magnet cooling lines, similar to the LHC superconducting bus failure incident, would pressurize the insulating vacuum in the magnet and transfer line cryostats. Insufficient relief valves on the cryostats could cause a structural failure. A SINDA/FLUINT(reg s ign) model, which simulated the 4.5K/4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the vacuum cryostat and discharging via the reliefs into the RHIC tunnel, had been developed to calculate the helium pressure inside the cryostat. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces were included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Existing relief valve sizes were reviewed to make sure that the maximum stresses, caused by the calculated maximum pressures inside the cryostats, did not exceed the allowable stresses, based on the ASME Code B31.3 and ANSYS results. The conclusions are as follows: (1) The S/F simulation results show that the highest internal pressure in the cryostats, due to the magnet line failure, is ∼37 psig (255115 Pa); (2) Based on the simulation, the temperature on the cryostat chamber, INJ Q8-Q9, could drop to 228 K, which is lower than the material minimum design temperature allowed by the Code; (3) Based on the ASME Code and ANSYS results, the reliefs on all the cryostats inside the RHIC tunnel are adequate to protect the vacuum chambers when the magnet cooling lines fail; and (4) In addition to the pressure loading, the thermal deformations, due to the temperature decrease on the cryostat chambers, could also cause a high stress on the chamber, if not properly supported.

  12. The RHIC injection fast kicker

    International Nuclear Information System (INIS)

    Forsyth, E.B.; Pappas, G.C.; Tuozzolo, J.E.; Zhang, W.

    1995-01-01

    The purpose of the injection kicker is to provide the ultimate deflection to the incoming beam from the Alternating Gradient Synchrotron (AGS) into the Relativistic Heavy Ion Collider (RHIC). The beam is kicked in the vertical direction to place it on the equilibrium orbit of RHIC. Each bunch in the AGS is transferred separately, and stacked box-car fashion in the appropriate RHIC rf bucket. In order to achieve the required deflection angle four magnets powered by four pulsers will be used for each ring of RHIC. When the bunches are stacked in RHIC the last few rf buckets are left unfilled in order to provide a gap in the beam to facilitate the ejection or beam abort process. This also means there is not a severe constraint on the fall-time of the injection kicker. One prototype pulser has been built and tested. Much of the development effort has gone into the magnet design. Although lumped ferrite magnets are simpler to build and require less power to reach full field, a transmission line magnet was developed because of the very fast rise-time requirement and the tolerances imposed on the field variation and ripple

  13. RHIC STATUS AND PLANS.

    Energy Technology Data Exchange (ETDEWEB)

    PILAT,R.

    2002-06-02

    RHIC ended successfully its second year of operation in January 2002 after a six month run with gold ions and two months of polarized proton collisions. I will review the machine performance and accomplishments, that include reaching design energy (100 GeV/u) and design luminosity during the gold run, and the first high energy (100 GeV) polarized proton collisions. I will also discuss the machine development strategy and the main performance milestones. The goals and plans for the shutdown and the nest run, scheduled to start in November 2002 have been the focus of a RHIC Retreat in March 2002. I will summarize findings and plans for the upcoming run and outline a vision for the nest few years of RHIC operation and upgrades.

  14. High-energy high-luminosity electron-ion collider eRHIC

    International Nuclear Information System (INIS)

    Litvinenko, V.N.; Ben-Zvi, I.; Hammons, L.; Hao, Y.; Webb, S.

    2011-01-01

    In this paper, we describe a future electron-ion collider (EIC), based on the existing Relativistic Heavy Ion Collider (RHIC) hadron facility, with two intersecting superconducting rings, each 3.8 km in circumference. The replacement cost of the RHIC facility is about two billion US dollars, and the eRHIC will fully take advantage and utilize this investment. We plan adding a polarized 5-30 GeV electron beam to collide with variety of species in the existing RHIC accelerator complex, from polarized protons with a top energy of 325 GeV, to heavy fully-striped ions with energies up to 130 GeV/u. Brookhaven's innovative design, is based on one of the RHIC's hadron rings and a multi-pass energy-recovery linac (ERL). Using the ERL as the electron accelerator assures high luminosity in the 10 33 -10 34 cm -2 sec -1 range, and for the natural staging of eRHIC, with the ERL located inside the RHIC tunnel. The eRHIC will provide electron-hadron collisions in up to three interaction regions. We detail the eRHIC's performance in Section 2. Since first paper on eRHIC paper in 2000, its design underwent several iterations. Initially, the main eRHIC option (the so-called ring-ring, RR, design) was based on an electron ring, with the linac-ring (LR) option as a backup. In 2004, we published the detailed 'eRHIC 0th Order Design Report' including a cost-estimate for the RR design. After detailed studies, we found that an LR eRHIC has about a 10-fold higher luminosity than the RR. Since 2007, the LR, with its natural staging strategy and full transparency for polarized electrons, became the main choice for eRHIC. In 2009, we completed technical studies of the design and dynamics for MeRHIC with 3-pass 4 GeV ERL. We learned much from this evaluation, completed a bottom-up cost estimate for this $350M machine, but then shelved the design. In the same year, we turned again to considering the cost-effective, all-in-tunnel six-pass ERL for our design of the high-luminosity eRHIC. In it

  15. RESEARCH PLAN FOR SPIN PHYSICS AT RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    AIDALA, C.; BUNCE, G.; ET AL.

    2005-02-01

    In this report we present the research plan for the RHIC spin program. The report covers (1) the science of the RHIC spin program in a world-wide context; (2) the collider performance requirements for the RHIC spin program; (3) the detector upgrades required, including timelines; (4) time evolution of the spin program.

  16. Prospects for spin physics at RHIC

    International Nuclear Information System (INIS)

    Robinett, R.W.; Pennsylvania State Univ., University Park, PA

    1995-06-01

    The proposal to perform polarized proton-proton collisions at collider energies at RHIC is reviewed. After a brief reminder of the desirability of high energy spin physics measurements, we discuss the machine parameters and detector features which are taken to define a program of spin physics at RHIC. Some of the many physics processes which can provide information on polarized parton distributions and the spin-dependence of QCD and the electroweak model at RHIC energies are discussed

  17. RHIC Sextant Test -- Physics and performance

    International Nuclear Information System (INIS)

    Wei, J.; Fischer, W.; Ahrens, L.

    1997-01-01

    This paper presents beam physics and machine performance results of the Relativistic Heavy Ion Collider (RHIC) Sextant and AGS-to-RHIC (AtR) transfer line during the Sextant Test in early 1997. Techniques used to measure both machine properties (difference orbits, dispersion, and beamline optics) and beam parameters (energy, intensity, transverse and longitudinal emittances) are described. Good agreement was achieved between measured and design lattice optics. The gold ion beam quality was shown to approach RHIC design requirements

  18. Brookhaven: Ready for RHIC

    International Nuclear Information System (INIS)

    Ludlam, Tom

    1990-01-01

    With its RHIC - Relativistic Heavy Ion Collider - project now part of the budget proposed by US President Bush for fiscal year 1991, Brookhaven is about to start construction of a unique kind of high energy collider. At a time when accelerators handling particles - electrons, protons and their antimatter counterparts - are boosting beam energies for microscopes to probe evershorter distances, RHIC is envisioned as a great pressure-cooker for strongly interacting matter

  19. Brookhaven: Ready for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Ludlam, Tom

    1990-04-15

    With its RHIC - Relativistic Heavy Ion Collider - project now part of the budget proposed by US President Bush for fiscal year 1991, Brookhaven is about to start construction of a unique kind of high energy collider. At a time when accelerators handling particles - electrons, protons and their antimatter counterparts - are boosting beam energies for microscopes to probe evershorter distances, RHIC is envisioned as a great pressure-cooker for strongly interacting matter.

  20. Joining the RHIC Online and Offline Models

    CERN Document Server

    Malitsky, Nikolay; Fedotov, Alexei V; Kewisch, Jorg; Luccio, Alfredo U; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Satogata, Todd; Talman, Richard M; Tepikian, Steven; Wei, Jie

    2005-01-01

    The paper presents an interface encompassing the RHIC online ramp model and the UAL offline simulation framework. The resulting consolidated facility aims to minimize the gap between design and operational data, and to facilitate analysis of RHIC performance and future upgrades in an operational context. The interface is based on the Accelerator Description Exchange Format (ADXF), and represents a snapshot of the RHIC online model which is in turn driven by machine setpoints. This approach is also considered as an intermediate step towards integrating the AGS and RHIC modeling environments to produce a unified online and offline AGS model for operations.

  1. Numerical studies of Siberian snakes and spin rotators for RHIC

    International Nuclear Information System (INIS)

    Luccio, A.

    1995-01-01

    For the program of polarized protons in RHIC, two Siberian snakes and four spin rotators per ring will be used. The Snakes will produce a complete spin flip. Spin Rotators, in pairs, will rotate the spin from the vertical direction to the horizontal plane at a given insertion, and back to the vertical after the insertion. Snakes, 180 degrees apart and with their axis of spin precession at 90 degrees to each other, are an effective means to avoid depolarization of the proton beam in traversing resonances. Classical snakes and rotators are made with magnetic solenoids or with a sequence of magnetic dipoles with fields alternately directed in the radial and vertical direction. Another possibility is to use helical magnets, essentially twisted dipoles, in which the field, transverse the axis of the magnet, continuously rotates as the particles proceed along it. After some comparative studies, the authors decided to adopt for RHIC an elegant solution with four helical magnets both for the snakes and the rotators proposed by Shatunov and Ptitsin. In order to simplify the construction of the magnets and to minimize cost, four identical super conducting helical modules will be used for each device. Snakes will be built with four right-handed helices. Spin rotators with two right-handed and two left-handed helices. The maximum field will be limited to 4 Tesla. While small bore helical undulators have been built for free electron lasers, large super conducting helical magnets have not been built yet. In spite of this difficulty, this choice is dictated by some distinctive advantages of helical over more conventional transverse snakes/rotators: (i) the devices are modular, they can be built with arrangements of identical modules, (ii) the maximum orbit excursion in the magnet is smaller, (iii) orbit excursion is independent from the separation between adjacent magnets, (iv) they allow an easier control of the spin rotation and the orientation of the spin precession axis

  2. Beam Based Measurements of Field Multipoles in the RHIC Low Beta Insertions and Extrapolation of the Method to the LHC

    CERN Document Server

    Koutchouk, Jean-Pierre; Ptitsyn, V I

    2001-01-01

    The multipolar content of the dipoles and quadrupoles is known to limit the stability of the beam dynamics in super-conducting machines like RHIC and even more in LHC. The low-beta quadrupoles are thus equipped with correcting coils up to the dodecapole order. The correction is planned to rely on magnetic measurements. We show that a relatively simple method allows an accurate measurement of the multipolar field aberrations using the beam. The principle is to displace the beam in the non-linear fields by local closed orbit bumps and to measure the variation of sensitive beam observable. The resolution and robustness of the method are found appropriate. Experimentation at RHIC showed clearly the presence of normal and skew sextupolar field components in addition to a skew quadrupolar component in the interaction regions. Higher-order components up to decapole order appear as well.

  3. RHIC spin program

    International Nuclear Information System (INIS)

    Bunce, G.

    1995-01-01

    Colliding beams of high energy polarized protons at RHIC is an excellent way to probe the polarization of gluons, u and d quarks in a polarized proton. RHIC is the Relativistic Heavy Ion Collider being built now at Brookhaven in the ISABELLE tunnel. It is designed to collide gold ions on gold ions at 100 GeV/nucleon. Its goal is to discover the quark-gluon plasma, and the first collisions are expected in March, 1999. RHIC will also make an ideal polarized proton collider with high luminosity and 250 GeV x 250 GeV collisions. The RHIC spin physics program is: (1) Use well-understood perturbative QCD probes to study non-perturbative confining dynamics in QCD. We will measure - gluon and sea quark polarization in a polarized proton, polarization of quarks in a transversely polarized proton. (2) Look for additional surprises using the first high energy polarized proton collider. We will - look for the expected maximal parity violation in W and Z boson production, - search for parity violation in other processes, - test parton models with spin. This lecture is organized around a few of the key ideas: Siberian Snakes--What are they? High energy proton-proton collisions are scatters of quarks and leptons, at high x, a polarized proton beam is a beam of polarized u quarks, quark and gluon collisions are very sensitive to spin. We will discuss two reactions: how direct photon production measures gluon polarization, and how W + boson production measures u and d quark polarization

  4. RHIC spin program

    Energy Technology Data Exchange (ETDEWEB)

    Bunce, G.

    1995-12-31

    Colliding beams of high energy polarized protons at RHIC is an excellent way to probe the polarization of gluons, u and d quarks in a polarized proton. RHIC is the Relativistic Heavy Ion Collider being built now at Brookhaven in the ISABELLE tunnel. It is designed to collide gold ions on gold ions at 100 GeV/nucleon. Its goal is to discover the quark-gluon plasma, and the first collisions are expected in March, 1999. RHIC will also make an ideal polarized proton collider with high luminosity and 250 GeV x 250 GeV collisions. The RHIC spin physics program is: (1) Use well-understood perturbative QCD probes to study non-perturbative confining dynamics in QCD. We will measure - gluon and sea quark polarization in a polarized proton, polarization of quarks in a transversely polarized proton. (2) Look for additional surprises using the first high energy polarized proton collider. We will - look for the expected maximal parity violation in W and Z boson production, - search for parity violation in other processes, - test parton models with spin. This lecture is organized around a few of the key ideas: Siberian Snakes--What are they? High energy proton-proton collisions are scatters of quarks and leptons, at high x, a polarized proton beam is a beam of polarized u quarks, quark and gluon collisions are very sensitive to spin. We will discuss two reactions: how direct photon production measures gluon polarization, and how W{sup +} boson production measures u and d quark polarization.

  5. Analysis of RHIC beam dump pre-fires

    International Nuclear Information System (INIS)

    Zhang, W.; Ahrens, L.; Fischer, W.; Hahn, H.; Mi, J.; Sandberg, J.; Tan, Y.

    2011-01-01

    It has been speculated that the beam may cause instability of the RHIC Beam Abort Kickers. In this study, we explore the available data of past beam operations, the device history of key modulator components, and the radiation patterns to examine the correlations. The RHIC beam abort kicker system was designed and built in the 90's. Over last decade, we have made many improvements to bring the RHIC beam abort kicker system to a stable operational state. However, the challenge continues. We present the analysis of the pre-fire, an unrequested discharge of kicker, issues which relates to the RHIC machine safety and operational stability.

  6. Physics with tagged forward protons at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Yip,K.

    2009-08-30

    The physics reach of the STAR detector at RHIC has been extended to include elastic and inelastic diffraction measurements with tagged forward protons. This program has started at RHIC in p+p collisions with a special optics run of {beta}* {approx} 21 m at STAR, at the center-of-mass energy {radical}s = 200 GeV during the last week of the RHIC 2009 run.

  7. Linear beam dynamics and ampere class superconducting RF cavities at RHIC

    Science.gov (United States)

    Calaga, Rama R.

    The Relativistic Heavy Ion Collider (RHIC) is a hadron collider designed to collide a range of ions from protons to gold. RHIC operations began in 2000 and has successfully completed five physics runs with several species including gold, deuteron, copper, and polarized protons. Linear optics and coupling are fundamental issues affecting the collider performance. Measurement and correction of optics and coupling are important to maximize the luminosity and sustain stable operation. A numerical approach, first developed at SLAC, was implemented to measure linear optics from coherent betatron oscillations generated by ac dipoles and recorded at multiple beam position monitors (BPMs) distributed around the collider. The approach is extended to a fully coupled 2D case and equivalence relationships between Hamiltonian and matrix formalisms are derived. Detailed measurements of the transverse coupling terms are carried out at RHIC and correction strategies are applied to compensate coupling both locally and globally. A statistical approach to determine BPM reliability and performance over the past three runs and future improvements also discussed. Aiming at a ten-fold increase in the average heavy-ion luminosity, electron cooling is the enabling technology for the next luminosity upgrade (RHIC II). Cooling gold ion beams at 100 GeV/nucleon requires an electron beam of approximately 54 MeV and a high average current in the range of 50-200 mA. All existing e-Coolers are based on low energy DC accelerators. The only viable option to generate high current, high energy, low emittance CW electron beam is through a superconducting energy-recovery linac (SC-ERL). In this option, an electron beam from a superconducting injector gun is accelerated using a high gradient (˜ 20 MV/m) superconducting RF (SRF) cavity. The electrons are returned back to the cavity with a 180° phase shift to recover the energy back into the cavity before being dumped. A design and development of a half

  8. Theoretical Status of the RHIC Program

    International Nuclear Information System (INIS)

    Jalilian-Marian, Jamal

    2006-01-01

    Since the beginning of its operation, the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Lab has produced a wealth of exciting and interesting results. I give a brief overview of the theoretical aspects of the main results from the RHIC program

  9. Polarized proton beam for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    RHIC has provided polarized proton collisions from 31 GeV to 255 GeV in the past decade. To preserve polarization through numerous depolarizing resonances through the whole accelerator chain, harmonic orbit correction, partial snakes, horizontal tune jump system and full snakes have been used. In addition, close attentions have been paid to betatron tune control, orbit control and beam line alignment. The polarization of 60% at 255 GeV has been delivered to experiments with 1.8×1011 bunch intensity. For the eRHIC era, the beam brightness has to be maintained to reach the desired luminosity. Since we only have one hadron ring in the eRHIC era, existing spin rotator and snakes can be converted to six snake configuration for one hadron ring. With properly arranged six snakes, the polarization can be maintained at 70% at 250 GeV. This paper summarizes the effort and plan to reach high polarization with small emittance for eRHIC.

  10. EVENT GENERATOR FOR RHIC SPIN PHYSICS

    International Nuclear Information System (INIS)

    SAITO, N.; SCHAEFER, A.

    1999-01-01

    This volume archives the reports from the RIKEN BNL Research Center workshop on ''Event Generator for RHIC Spin Physics II'' held during the week March 15, 1999 at Brookhaven National Laboratory. It was the second meeting on the subject following a first one in last September. This workshop has been initiated to establish a firm collaboration between theorists and experimentalists involved in RHIC spin physics with the aim of developing a reliable, high-precision event generator for RHIC spin physics. Needless to say, adequate event generators are indispensable tools for high energy physics programs in general, especially in the process of: planning the experimental programs; developing algorithms to extract the physics signals of interest; estimating the background in the extracted results, and connecting the final particle kinematics to the fundamental i.e. partonic level processes. Since RHIC is the first polarized collider, dedicated efforts are required to obtain a full-fledged event generator which describes spin dependent reactions in great detail

  11. ANALYSIS OF AVAILABILITY AND RELIABILITY IN RHIC OPERATIONS

    International Nuclear Information System (INIS)

    PILAT, F.; INGRASSIA, P.; MICHNOFF, R.

    2006-01-01

    RHIC has been successfully operated for 5 years as a collider for different species, ranging from heavy ions including gold and copper, to polarized protons. We present a critical analysis of reliability data for RHIC that not only identifies the principal factors limiting availability but also evaluates critical choices at design times and assess their impact on present machine performance. RHIC availability data are typical when compared to similar high-energy colliders. The critical analysis of operations data is the basis for studies and plans to improve RHIC machine availability beyond the 50-60% typical of high-energy colliders

  12. Experience with IBS-suppression lattice in RHIC

    International Nuclear Information System (INIS)

    Litvinenko, V.N.; Luo, Y.; Ptitsyn, V.; Satogata, T.; Tepikian, S.; Bai, M.; Bruno, D.; Cameron, P.; Connolly, R.; Della Penna, A.; Drees, A.; Fedotov, A.; Ganetis, G.; Hoff, L.; Louie, W.; Malitsky, N.; Marr, G.; Marusic, A.; Montag, C.; Pilat, F.; Roser, T.; Trbojevic, D.; Tsoupas, N.

    2008-01-01

    An intra-beam scattering (IBS) is the limiting factor of the luminosity lifetime for RHIC operating with heavy ions. In order to suppress the IBS we designed and implemented new lattice with higher betatron tunes. This lattice had been developed during last three years and had been used for gold ions in yellow ring of the RHIC during d-Au part of the RHIC Run-8. The use of this lattice allowed both significant increases in the luminosity lifetime and the luminosity levels via reduction of beta-stars in the IPS. In this paper we report on the development, the tests and the performance of IBS-suppression lattice in RHIC, including the resulting increases in the peak and the average luminosity. We also report on our plans for future steps with the IBS suppression

  13. RHIC off-line computing

    International Nuclear Information System (INIS)

    Featherly, J.; Gibbard, B.; Gould, J.

    1993-01-01

    A report was prepared in Sept 1992, RHIC/DET Note 8, also known as ROCOCO, which estimated the various computing resources which will be required by the RHIC experimental program. A study has now been undertaken to review technical issues associated with supplying these resources. This study, organized by the HEP/NP Computing Group but including other appropriate participants, addresses questions of technologies, manpower, cost and schedule. The following document is an interim summary of this study both in terms of discussions which have occurred and initial conclusions reached

  14. Results from STAR experiment at RHIC

    Indian Academy of Sciences (India)

    We present some of the important experimental results from nucleus–nucleus collision studies carried out by the STAR experiment at Relativistic Heavy Ion Collider (RHIC). The results suggests that central Au+Au collisions at RHIC has produced a dense and rapidly thermalizing matter with initial energy densities above the ...

  15. Recent Test Results of the Fast-Pulsed 4 T COS$\\Theta$ Dipole GSI 001

    CERN Document Server

    Moritz, G; Escallier, John; Ganetis, George; Jain, Animesh K; Marone, Andrew; Muratore, Joseph F; Thomas, Richard A; Wanderer, Peter; Auchmann, Bernard; de Maria, Riccardo; Wilson, Martin N; Russenschuck, Stephan

    2005-01-01

    For the FAIR-project at GSI a model dipole was built at BNL with the nominal field of 4 T and a nominal ramp rate of 1 T/s. The magnet design was similar to the RHIC dipole with some changes for loss reduction and better cooling. The magnet was already successfully tested in a vertical cryostat with good training behaviour. Cryogenic losses were measured and first results of field harmonics were published. However, for a better understanding of the cooling process quench currents at several ramp rates were investigated. Detailed measurements of the field harmonics at different ramp rates and at several cycles were performed. To separate the effects of the coil and the iron yoke the magnet was disassembled and tested as collared coil only. Recent test results will be presented.

  16. Ion optics of RHIC EBIS

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y.; Kuznetsov, G.

    2011-09-10

    RHIC EBIS has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  17. A study of RHIC crystal collimation

    International Nuclear Information System (INIS)

    Trbojevic, D.; Harrison, M.; Parker, B.; Thompson, P.; Stevens, A.; Biryukov, V.; Mokhov, N.; Drozhdin, A.

    1998-01-01

    The Relativistic Heavy Ion Collider (RHIC) will experience increasing longitudinal and transverse heavy ion emittances, mostly due to intra-beam scattering (IBS). The experiments in RHIC are expected to not only have reduced luminosities due to IBS but also background caused by beam halo. Primary betatron collimators will be used to remove the large amplitude particles. The efficiency of the primary collimator in RHIC strongly depends on the alignment of the jaws which needs to be within about ten micro-radians for the optimum conditions. As proposed by V. biryukov bent crystals could be used to improve the efficiency of an existing collimation system by installing them upstream of the collimator jaws. Bent crystals have been successfully used in SPS, Protvino and Fermilab for extraction of the beam particles channeled through them. This study examines possible improvements of the primary collimator system for heavy ions at RHIC by use of bent crystals. Bent crystals will reduce the collimator jaws alignment requirement and will increase collimator efficiency thereby reducing detector background

  18. RHIC Proton Luminosity and Polarization Improvement

    International Nuclear Information System (INIS)

    Zhang, S. Y.

    2014-01-01

    The RHIC proton beam polarization can be improved by raising the Booster scraping, which also helps to reduce the RHIC transverse emittance, and therefore to improve the luminosity. By doing this, the beam-beam effect would be enhanced. Currently, the RHIC working point is constrained between 2/3 and 7/10, the 2/3 resonance would affect intensity and luminosity lifetime, and the working point close to 7/10 would enhance polarization decay in store. Run 2013 shows that average polarization decay is merely 1.8% in 8 hours, and most fills have the luminosity lifetime better than 14 hours, which is not a problem. Therefore, even without beam-beam correction, there is room to improve for RHIC polarization and luminosity. The key to push the Booster scraping is to raise the Booster input intensity; for that, two approaches can be used. The first is to extend the LINAC tank 9 pulse width, which has been successfully applied in run 2006. The second is to raise the source temperature, which has been successfully applied in run 2006 and run 2012.

  19. RHIC BPM System Modifications and Performance

    CERN Document Server

    Satogata, Todd; Cameron, Peter; Cerniglia, Phil; Cupolo, John; Curcio, Anthony J; Dawson, William C; Degen, Christopher; Gullotta, Justin; Mead, Joe; Michnoff, Robert; Russo, Thomas; Sikora, Robert

    2005-01-01

    The RHIC beam position monitor (BPM) system provides independent average orbit and turn-by-turn (TBT) position measurements. In each ring, there are 162 measurement locations per plane (horizontal and vertical) for a total of 648 BPM planes in the RHIC machine. During 2003 and 2004 shutdowns, BPM processing electronics were moved from the RHIC tunnel to controls alcoves to reduce radiation impact, and the analog signal paths of several dozen modules were modified to eliminate gain-switching relays and improve signal stability. This paper presents results of improved system performance, including stability for interaction region and sextupole beam-based alignment efforts. We also summarize performance of improved million-turn TBT acquisition channels for nonlinear dynamics and echo studies.

  20. Elastic proton-proton scattering at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Yip, K.

    2011-09-03

    Here we describe elastic proton+proton (p+p) scattering measurements at RHIC in p+p collisions with a special optics run of {beta}* {approx} 21 m at STAR, at the center-of-mass energy {radical}s = 200 GeV during the last week of the RHIC 2009 run. We present preliminary results of single and double spin asymmetries.

  1. Proceedings of the symposium on RHIC detector R ampersand D

    International Nuclear Information System (INIS)

    Makdisi, Y.; Stevens, A.J.

    1991-01-01

    This report contains papers on the following topics: Development of Analog Memories for RHIC Detector Front-end Electronic Systems; Monolithic Circuit Development for RHIC at Oak Ridge National Laboratory; Highly Integrated Electronics for the STAR TPC; Monolithic Readout Circuits for RHIC; New Methods for Trigger Electronics Development; Neurocomputing methods for Pattern Recognition in Nuclear Physics; The Development of a Silicon Multiplicity Detector System; A Transition Radiation Detector for RHIC Featuring Accurate

  2. Physics and experiments at RHIC

    International Nuclear Information System (INIS)

    Young, G.R.

    1995-01-01

    The Relativistic Heavy Ion Collider (RHIC), under construction at Brookhaven National Laboratory, will be the site of a series of experiments seeking to discover the quark-gluon plasma and elucidate its properties. Several observables should exhibit characteristic behaviors if a quark-gluon plasma is indeed created in the laboratory. Four experiments are now under construction for RHIC to measure certain of these observables over kinematic ranges where effects due to quark-gluon plasma formation should be manifest

  3. Proceedings of the symposium on RHIC detector R&D

    Energy Technology Data Exchange (ETDEWEB)

    Makdisi, Y.; Stevens, A.J. [eds.

    1991-12-31

    This report contains papers on the following topics: Development of Analog Memories for RHIC Detector Front-end Electronic Systems; Monolithic Circuit Development for RHIC at Oak Ridge National Laboratory; Highly Integrated Electronics for the STAR TPC; Monolithic Readout Circuits for RHIC; New Methods for Trigger Electronics Development; Neurocomputing methods for Pattern Recognition in Nuclear Physics; The Development of a Silicon Multiplicity Detector System; The Vertex Detector for the Lepton/Photon Collaboration; Simulations of Silicon Vertex Tracker for STAR Experiment at RHIC; Calorimeter/Absorber Optimization for a RHIC Dimuon Experiment (RD-10 Project); Applications of the LAHET simulation Code to Relativistic Heavy Ion Detectors; Highly Segmented, High Resolution Time-of-Flight System; Research and Development on a Sub 100 Picosecond Time-of-Flight System Based on Silicon Avalance Diodes; Behavior of TPC`s in a High Particle Flux Environment; Generic R&D on Undoped Cesium Iodide and Lead Fluoride; and A Transition Radiation Detector for RHIC Featuring Accurate Tracking and dE/dx Particle Identification. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  4. Tolerable systematic errors in Really Large Hadron Collider dipoles

    International Nuclear Information System (INIS)

    Peggs, S.; Dell, F.

    1996-01-01

    Maximum allowable systematic harmonics for arc dipoles in a Really Large Hadron Collider are derived. The possibility of half cell lengths much greater than 100 meters is justified. A convenient analytical model evaluating horizontal tune shifts is developed, and tested against a sample high field collider

  5. RHIC spin physics

    International Nuclear Information System (INIS)

    Bunce, G.

    1994-01-01

    The physics potential of colliding beams of protons, polarized either longitudinally or transversely, at RHIC is remarkable. A luminosity of L = 2 x 10 32 cm -2 with 70% polarized beams will be available with up to 250 GeV energy in each beam. The proposal to collide polarized protons in RHIC was submitted in August 1992 and approved in October 1993. We have funding for R ampersand D on Siberian Snakes, so that RHIC will be able to accelerate polarized protons early in its program. The expected date of the first heavy ion collisions is 1999. The spin physics program includes measurement of gluon and sea quark polarization in the longitudinally polarized proton, measurement and then application of parity violation in W and Z production, measurement of hard scattering parton-parton asymmetries, and quark polarization or transversity in transversely polarized protons. Single spin asymmetries allow sensitive searches for parity violation (longitudinal polarization), and correlations between quark spin and gluons (transverse). Probes include direct photons (to P T = 20 GeV/c), jets (to P T > 50 GeV/c), Drell-Yan pairs to M ell ell = 9 GeV, W ± , Z. This program is described in our Particle World paper. Here we will emphasize the new information included in our Update, given to the Brookhaven PAC this September

  6. RHIC spin physics

    International Nuclear Information System (INIS)

    Bunce, G.

    1993-01-01

    The physics potential of colliding beams of protons, polarized either longitudinally or transversely, at RHIC is remarkable. A luminosity of L = 2 x 10 32 cm -2 sec -1 with 70% polarized beams will be available with up to 250 GeV energy in each beam. The proposal to collide polarized protons in RHIC was submitted in August 1992 and approved in October 1993, just after this workshop. The collaboration has been encouraged to complete R ampersand D on Siberian Snakes, so that RHIC will be able to accelerate polarized protons early in its program. The expected date of the first heavy ion collisions is 1999. The spin physics program includes measurement of gluon and sea quark polarization in the longitudinally polarized proton, measurement and then application of parity violation in W and Z production, measurement of hard scattering parton-parton asymmetries, and quark polarization or transversity in transversely polarized protons. Single spin asymmetries allow sensitive searches for parity violation (longitudinal polarization), and correlations between quark spin and gluons (transverse). Probes include direct photons (to p T = 20 GeV/c), jets (to p T > 50 GeV/c), Drell-Yan pairs (to m ll = 9 GeV), W +/- , Z. Here, the collaboration emphasizes the new information included in the Update, given to the Brookhaven PAC this September

  7. RHIC prefire protection masks

    International Nuclear Information System (INIS)

    Drees, A.; Biscardi, C.; Curcio, T.; Gassner, D.; DeSanto, L.; Fu, W.; Liaw, C. J.; Montag, C.; Thieberger, P.; Yip, K.

    2015-01-01

    The protection of the RHIC experimental detectors from damage due to beam hitting close upstream elements in cases of abort kicker prefires requires some dedicated precautionary measures with two general options: to bring the beam close to a limiting aperture (i.e. the beam pipe wall), as far upstream of the detector components as possible or, alternatively, to bring a limiting aperture close to the circulating beam. Spontaneous and random prefires of abort kicker modules (Pulse Forming Network, PFN) have a history as long as RHIC is being operated. The abort system consist of 5 kickers in per ring, each of them equipped with its own dedicated PFN.

  8. Advantages of polarization experiments at RHIC

    International Nuclear Information System (INIS)

    Underwood, D.G.

    1991-01-01

    We point out various spin experiments that could be done if the polarized beam option is pursued at RHIC. The advantages of RHIC for investigating several current and future physics problems are discussed. In particular, the gluon spin dependent structure function of the nucleon could be measured cleanly and systematically. Relevant experience developed in conjunction with the Fermilab Polarized Beam program is also presented

  9. COMMISSIONING CNI PROTON POLARIMETERS IN RHIC

    International Nuclear Information System (INIS)

    HUANG, H.; BRAVAR, A.; LI, Z.; MACKAY, W.W.; MAKDISI, Y.; RESCIA, S.; ROSER, T.; SURROW, B.; BUNCE, G.; DESHPANDE, A.; GOTO, Y.; ET AL

    2002-01-01

    Two polarimeters based on proton carbon elastic scattering in the Coulomb Nuclear Interference (CNI) region have been installed and commissioned in the Blue and Yellow rings of RHIC during the first RHIC polarized proton collider run. Each polarimeter consists of ultra-thin carbon targets and six silicon detectors. With newly developed wave form digitizers, they provide fast and reliable polarization information for both rings

  10. Parity violation experiments at RHIC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1993-01-01

    With longitudinally polarized protons at RHIC, even a 1 month dedicated run utilizing both approved major detectors could produce a significant search for new physics in hadron collisions via parity violation. Additionally, in the energy range of RHIC, large ''conventional'' parity violating effects are predicted due to the direct production of the weak bosons W ± and Z 0 . One can even envision measurements of the spin dependent sea-quark structure functions of nucleons using the single-spin parity violating asymmetry of W ± and Z 0

  11. Advantages of polarization experiments at RHIC

    International Nuclear Information System (INIS)

    Underwood, D.G.

    1990-01-01

    We point out various spin experiments that could be done if the polarized beam option is pursued at RHIC. The advantages of RHIC for investigating several current and future physics problems are discussed. In particular, the gluon spin dependent structure function of the nucleon could be measured cleanly and systematically. Relevant experience developed in conjunction with the Fermilab Polarized Beam program is also presented. 8 refs., 2 tabs

  12. Hypernucleus Production at RHIC and HIRFL-CSR Energy

    International Nuclear Information System (INIS)

    Zhang, S.; Xu, Z.; Chen, J.H.; Ma, Y.G.; Tang, Z.B.

    2010-01-01

    We calculated the hypertriton production at RHIC-STAR and HIRFL-CSR acceptance, with a multi-phase transport model (AMPT) and a relativistic transport model (ART), respectively. In specific, we calculated the Strangeness Population Factor S 3 = Λ 3 H/( 3 H e x Λ/p) at different beam energy. Our results from AGS to RHIC energy indicated that the collision system may change from hadronic phase at AGS energies to partonic phase at RHIC energies. Our calculation at HIRFL-CSR energy supports the proposal to measure hypertriton at HIRFL-CSR.

  13. Estimation of collective instabilities in RHIC

    International Nuclear Information System (INIS)

    MacKay, W.W.; Blaskiewicz, M.; Deng, D.; Mane, V.; Peggs, S.; Ratti, A.; Rose, J.; Shea, T.J.; Wei, J.

    1995-01-01

    The authors have estimated the broadband impedance in RHIC to be |Z/n| +79 ions at transition with an estimated 10% growth in emittance for Z/n = 1.5 Ω. They summarize the sources of broad and narrow band impedances in RHIC and investigate the multibunch instability limits throughout the machine cycle. The largest contribution to the broadband impedance comes from the abort and injection kickers. Since RHIC is designed to accelerate fully stripped ions from H + up to Au +79 they give results for both protons and gold ions; other ions should give results somewhere between these two extremes. All ion species are expected to be stable during storage. At lower energies damping systems and chromaticity corrections will limit any growth to acceptable levels during the short time it takes to inject and accelerate the beams

  14. The RHIC real time data link system

    International Nuclear Information System (INIS)

    Hartmann, H.

    1997-01-01

    The RHIC Real Time Data Link (RTDL) System distributes to all locations around the RHIC ring machine parameters of general interest to accelerator systems and users. The system, along with supporting host interface, is centrally located. The RTDL System is comprised of two module types: the Encoder Module (V105) and the Input Module (V106). There is only one V105 module, but many (up to 128) Input Modules. Multiple buffered outputs are provided for use locally or for retransmission to other RHIC equipment locations. Machine parameters are generated from the V115 Waveform Generator Module (WFG) or from machine hardware and coupled directly through a fiber optic serial link to one of the V106 input channels

  15. The color class condensate RHIC and HERA

    CERN Document Server

    McLerran, L

    2002-01-01

    In this talk, I discuss a universal form of matter, the color glass condensate. It is this matter which composes the low x part of all hadronic wavefunctions. The experimental programs at RHIC and HERA, and future programs at LHC and RHIC may allow us to probe and study the properties of this matter. (8 refs).

  16. Beam Induced Pressure Rise at RHIC

    CERN Document Server

    Zhang, S Y; Bai, Mei; Blaskiewicz, Michael; Cameron, Peter; Drees, Angelika; Fischer, Wolfram; Gullotta, Justin; He, Ping; Hseuh Hsiao Chaun; Huang, Haixin; Iriso, Ubaldo; Lee, Roger C; Litvinenko, Vladimir N; MacKay, William W; Nicoletti, Tony; Oerter, Brian; Peggs, Steve; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smart, Loralie; Snydstrup, Louis; Thieberger, Peter; Trbojevic, Dejan; Wang, Lanfa; Wei, Jie; Zeno, Keith

    2005-01-01

    Beam induced pressure rise in RHIC warm sections is currently one of the machine intensity and luminosity limits. This pressure rise is mainly due to electron cloud effects. The RHIC warm section electron cloud is associated with longer bunch spacings compared with other machines, and is distributed non-uniformly around the ring. In addition to the countermeasures for normal electron cloud, such as the NEG coated pipe, solenoids, beam scrubbing, bunch gaps, and larger bunch spacing, other studies and beam tests toward the understanding and counteracting RHIC warm electron cloud are of interest. These include the ion desorption studies and the test of anti-grazing ridges. For high bunch intensities and the shortest bunch spacings, pressure rises at certain locations in the cryogenic region have been observed during the past two runs. Beam studies are planned for the current 2005 run and the results will be reported.

  17. Modification of the CEBAF transport dipoles for energy upgrade considerations

    International Nuclear Information System (INIS)

    D. Bullard; L. Harwood; T. Hiatt; J. Karn; E. Martin; W. Oren; C. Rode; K. Sullivan; R. Wines; M. Wiseman

    1999-01-01

    The CEBAF accelerator at the Thomas Jefferson National Accelerator Facility contains 415 resistive dipoles in the recirculation arcs and transport lines. These dipoles were originally designed and magnetically mapped to support the operation of the accelerator at 6 GeV. Recent interests in upgrading the CEBAF energy beyond 6 GeV prompted a study into operating the dipoles beyond their design limits. Finite element modeling was performed to quantify saturation effects at higher currents and to test simple modifications to improve magnetic performance. For confirmation, various steps were prototyped and magnetically measured. Measurement results agreed with finite element models and showed that saturation could be reduced to manageable levels. It was found that the most populous dipole families could be modified to reach twice their design field with minimal cost and effort. At these higher fields, the magnets operate at a reasonable thermal state with minimal saturation losses a nd little degradation in field quality. Work continues on studying the smaller population of dipoles to determine their performance at higher fields

  18. RHIC sextant test: Accelerator systems and performance

    Energy Technology Data Exchange (ETDEWEB)

    Pilat, F.; Trbojevic, D.; Ahrens, L. [and others

    1997-08-01

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning.

  19. RHIC sextant test: Accelerator systems and performance

    International Nuclear Information System (INIS)

    Pilat, F.; Trbojevic, D.; Ahrens, L.

    1997-01-01

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning

  20. RHIC Beam Loss Monitor System Initial Operation

    International Nuclear Information System (INIS)

    Witkover, R. L.; Michnoff, R. J.; Geller, J. M.

    1999-01-01

    The RHIC Beam Loss Monitor (BLM) System is designed to prevent beam loss quenching of the superconducting magnets, and acquire loss data. Four hundred ion chambers are located around the rings to detect losses. The required 8-decade range in signal current is compressed using an RC pre-integrator ahead of a low current amplifier. A beam abort may be triggered if fast or slow losses exceed programmable threshold levels. A micro-controller based VME module sets references and gains and reads trip status for up to 64 channels. Results obtained with the detectors in the RHIC Sextant Test and the prototype electronics in the AGS-to-RHIC (AtR) transfer line are presented along with the present status of the system

  1. 5cm aperture dipole studies

    International Nuclear Information System (INIS)

    McInturff, A.D.; Bossert, R.; Carson, J.; Fisk, H.E.; Hanft, R.; Kuchnir, M.; Lundy, R.; Mantech, P.; Strait, J.

    1986-01-01

    The results obtained during the evolution of the design, construction, and testing program of the design ''B'' dipole are presented here. Design ''B'' is one of the original three competing designs for the Superconducting Super Collider ''SSC'' arc dipoles. The final design parameters were as follows: air cored (less than a few percent of the magnetic field derived from any iron present), aluminum collared, two layered winding, 5.5T maximum operating field, and a 5 cm cold aperture. There have been fourteen 64 cm long 5 cm aperture model dipoles cold tested (at 4.3K and less) in this program so far. There was a half length full size (6m) mechanical analog (M-10) built and tested to check the cryostat's mechanical design under ramping and quench conditions. Several deviations from the ''Tevatron'' dipole fabrication technique were incorporated, for example the use of aluminum collars instead of stainless steel. The winding technique variations explored were ''dry welding,'' a technique with the cable covered with Kapton insulation only and ''wet winding'' where the Kapton was covered with a light coat of ''B'' stage epoxy. Test data include quench currents, field quality (Fourier multipole co-efficients), coil magnetization, conductor current performance, and coil loading. Quench current, loss per cycle, and harmonics were measured as a function of the magnitude and rate of change of the magnetic field, and helium bath temperature

  2. The RHIC status update

    International Nuclear Information System (INIS)

    Ozaki, S.

    1995-01-01

    The construction of the Relativistic Heavy Ion Collider (RHIC) began in 1991, with the completion date originally scheduled for 1997. Significant reduction of the funding levels in FY 1993 and 1994, and the funding level cap for FY 1995 and later years caused a 19-month stretchout of the construction period to the second quarter of FY 1999, and an increase of the total estimated cost (TEC) to $475 M. The Project, therefore, is now at the halfway mark of the construction period with actual cost and schedule performance tracking close to the DOE-approved baseline. Construction funding through FY 1994 reached close to 60% of the TEC. Incidentally, if one adds the current value of preexisting facilities which will be incorporated into RHIC, such as the injection system (Tandem Van de Graaff - the Booster - the AGS), the esixting 3.8 km tunnel, the 24 kW helium refrigerator, etc., the total value of the RHIC facility, when completed, will reach one billion dollars, if not more. The accelerator lattice design was finalized in 1992 after an intensive study was made to optimize the collider design for performance, operational flexibility, and value engineering. The civil construciton, including the collider enclosure, magnet access ports to the ring tunnel, and six service buildings for accelerator power supplies and cryogenic control boxes was completed

  3. Implementation of Ramp Control in RHIC

    International Nuclear Information System (INIS)

    Kewisch, J.

    1999-01-01

    After the injection of beam into RHIC the beam energy is ramped from 10.8 GeV/u to 108 GeV/u and the beta function of the interaction points is reduced from 10 meters to 1 meter. The set points for magnet power supplies and RF cavities is changed during such ramps in concert. A system of Wave Form Generators (WFGs), interconnected by a Real Time Data Link (RTDL) and Event Link is used to control these devices. RHIC ramps use a two level system of WFGs: one transmits the beam energy and a ''pseudo time'' variable as functions of time via RTDL; the other calculates the device set points as functions of these RTDL variables. Energy scaling, saturation correction and the wiring of interaction region quadruples is performed on the second level. This report describes the configuration and implementation of the software, firmware and hardware of the RHIC ramp system

  4. The STAR experiment at RHIC

    International Nuclear Information System (INIS)

    Marx, J.N.

    1994-01-01

    STAR (Solenoidal Tracker at RHIC) will be one of two large, sophisticated experiments ready to take data when the Relativistic Heavy Ion Collider (RHIC) comes on-line in 1999. The design of STAR, its construction and commissioning and the physics program using the detector are the responsibility of a collaboration of over 250 members from 30 institutions, world-wide. The overall approach of the STAR Collaboration to the physics challenge of studying collisions of highly relativistic nuclei is to focus on measurements of the properties of the many hadrons produced in the collisions. The STAR detector is optimized to detect and identify hadrons over a large solid angle so that individual events can be characterized, in detail, based on their hadronic content. The broad capabilities of the STAR detector will permit an examination of a wide variety of proposed signatures for the Quark Gluon Plasma (QGP), using the sample of events which, on an event-by-event basis, appear to come from collisions resulting in a large energy density over a nuclear volume. In order to achieve this goal, the STAR experiment is based on a solenoid geometry with tracking detectors using the time projection chamber approach and covering a large range of pseudo-rapidity so that individual tracks can be seen within the very high track density expected in central collisions at RHIC. STAR also uses particle identification by the dE/dx technique and by time-of-flight. Electromagnetic energy is detected in a large, solid-angle calorimeter. The construction of STAR, which will be located in the Wide Angle Hall at the 6 o'clock position at RHIC, formally began in early 1993

  5. Opportunities for Drell-Yan Physics at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer, E.; Bland, L.; Crawford, H.; Goto, Y.; Eyser, O.; Kang, Z.; Vossen, A.

    2011-05-24

    Drell-Yan (DY) physics gives the unique opportunity to study the parton structure of nucleons in an experimentally and theoretically clean way. With the availability of polarized proton-proton collisions and asymmetric d+Au collisions at the Relativistic Heavy Ion Collider (RHIC), we have the basic (and unique in the world) tools to address several fundamental questions in QCD, including the expected gluon saturation at low partonic momenta and the universality of transverse momentum dependent parton distribution functions. A Drell-Yan program at RHIC is tied closely to the core physics questions of a possible future electron-ion collider, eRHIC. The more than 80 participants of this workshop focused on recent progress in these areas by both theory and experiment, trying to address imminent questions for the near and mid-term future.

  6. OVERVIEW OF THE RHIC INSERTION REGION, SEXTUPOLE, AND SNAKE POWER SUPPLY SYSTEMS

    International Nuclear Information System (INIS)

    BRUNO, D.; ENG, W.; GANETIS, G.; LAMBIASE, R.F.; SANDBERG, J.

    2001-01-01

    The Relativistic Heavy Ion Collider (RHIC) was commissioned in 1999 and 2000. RHIC requires power supplies to supply currents to highly inductive superconducting magnets. The RHIC Insertion Region (IR) contains many shunt power supplies to trim the current of different magnet elements in a large superconducting magnet circuit. There are a total of 237 Insertion Region power supplies in both RHIC rings. RHIC also requires sextupole power supplies. One sextupole power supply is connected across 12 sextupole magnets. There are a total of 24 sextupole power supplies in both rings. Snake magnets are also a part of the RHIC ring, and these snake magnets also require power supplies. There shall be a total of 24 snake power supplies in both rings. Power supply technology, connections, control systems and interfacing with the Quench Protection System will be presented

  7. Dilepton Production at Fermilab and RHIC

    International Nuclear Information System (INIS)

    Peng, J.C.; McGaughey, P.L.; Moss, J.M.

    1999-01-01

    Some recent results from several fixed-target dimuon production experiments at Fermilab are presented. In particular, we discuss the use of Drell-Yan data to determine the flavor structure of the nucleon sea, as well as to deduce the energy-loss of partons traversing nuclear medium. Future dilepton experiments at RHIC could shed more light on the flavor asymmetry and possible charge-symmetry-violation of the nucleon sea. Clear evidence for scaling violation in the Drell-Yan process could also be revealed at RHIC

  8. Modeling RHIC using the standard machine formal accelerator description

    International Nuclear Information System (INIS)

    Pilat, F.; Trahern, C.G.; Wei, J.

    1997-01-01

    The Standard Machine Format (SMF) is a structured description of accelerator lattices which supports both the hierarchy of beam lines and generic lattice objects as well as those deviations (field errors, alignment efforts, etc.) associated with each component of the as-installed machine. In this paper we discuss the use of SMF to describe the Relativistic Heavy Ion Collider (RHIC) as well as the ancillary data structures (such as field quality measurements) that are necessarily incorporated into the RHIC SMF model. Future applications of SMF are outlined, including its use in the RHIC operational environment

  9. A NEW RELATIVE PROTON POLARIMETER FOR RHIC

    International Nuclear Information System (INIS)

    HUANG, H.; ALEKSEEV, I.; BUNCE, G.; BRUNER, N.; DESHPANDE, A.; GOTO, Y.; FIELDS, D.; IMAI, K.

    2001-01-01

    An innovative polarimeter based on proton carbon elastic scattering in the Coulomb Nuclear Interference (CNI) region has been installed and commissioned in the Blue ring of RHIC during the first RHIC polarized proton commissioning in September, 2000. The polarimeter consists of ultra-thin carbon targets and four silicon detectors. All elements are in a 1.6 meter vacuum chamber. This paper summarizes the polarimeter design issues and recent commissioning results

  10. RHIC BEAM ABORT KICKER POWER SUPPLY SYSTEM COMMISSIONING EXPERIENCE AND REMAINING ISSUES

    International Nuclear Information System (INIS)

    ZHANG, W.; AHRENS, L.A.; MI, J.; OERTER, B.; SANDERS, R.; SANDBERG, J.

    2001-01-01

    The RHIC Beam Abort Kicker Power Supply Systems commissioning experience and the remaining issues will be reported in this paper. The RHIC Blue Ring Beam Abort Kicker Power Supply System initial commissioning took place in June 1999. Its identical system in Yellow Ring was brought on line during Spring 2000. Each of the RHIC Beam Abort Kicker Power Supply Systems consists of five high voltage modulators and subsystems. These systems are critical devices for RHIC machine protection and environmental protection. They are required to be effective, reliable and operating with sufficient redundancy to safely abort the beam to its beam dump at the end of accumulation or at any time when they are commanded. To deflect 66 GeV ion beam to the beam absorbers, the RHIC Beam Abort Kicker Power Supply Systems were operated at 22 kV level. The RHIC 2000 commissioning run was very successful

  11. Global Decoupling on the RHIC Ramp

    CERN Document Server

    Luo, Yun; Della Penna, Al; Fischer, Wolfram; Laster, Jonathan S; Marusic, Al; Pilat, Fulvia Caterina; Roser, Thomas; Trbojevic, Dejan

    2005-01-01

    The global betatron decoupling on the ramp is an important issue for the operation of the Relativistic Heavy Ion Collider (RHIC). In the polarized proton run, the betatron tunes are required to keep almost constant on the ramp to avoid spin resonance line crossing and the beam polarization loss. Some possible correction schemes on the ramp, like three-ramp correction, the coupling amplitude modulation and the coupling phase modulaxtion, have been found. The principles of these schemes are shortly reviewed and compared. Operational results of their applications on the RHIC ramps are given.

  12. ACCELERATION OF POLARIZED PROTONS AT RHIC

    International Nuclear Information System (INIS)

    HUANG, H.

    2002-01-01

    Relativistic Heavy Ion Collider (RHIC) ended its second year of operation in January 2002 with five weeks of polarized proton collisions. Polarized protons were successfully injected in both RHIC rings and maintained polarization during acceleration up to 100 GeV per ring using two Siberian snakes in each ring. This is the first time that polarized protons have been accelerated to 100 GeV. The machine performance and accomplishments during the polarized proton run will be reviewed. The plans for the next polarized proton run will be outlined

  13. BROOKHAVEN: Major detectors for RHIC under construction

    International Nuclear Information System (INIS)

    Ludlam, Thomas W.

    1994-01-01

    On March 9-10, a cost and schedule review at Brookhaven verified construction readiness for the PHENIX detector (May 1993, page 10). PHENIX thus joins STAR (Solenoidal Tracking at RHIC - November 1991, page 17), whose construction plan was ratified in January 1993, as a major detector to take data when the RHIC heavy ion collider is completed in mid-1999. The goal of both detectors is to search for the transition from ordinary nuclear matter to a new state of matter consisting of (momentarily) unconfined quarks and gluons. This transition to a ''quark-gluon plasma'' (QGP) is predicted to occur under extreme conditions of temperature and energy density, as is likely to be the case in the collision of heavy ions of sufficient energy. RHIC is expected to produce the highest energy densities ever observed on the nuclear scale

  14. Critical examination of RHIC paradigms - mostly high pT

    International Nuclear Information System (INIS)

    Tannenbaum, M.I.

    2009-01-01

    A critical examination of RHIC paradigms is presented. Topics include: search for a critical point with a low energy scan; the lack of understanding of radiative processes in a medium in QCD compared in detail to examples from QED; the reason why some physicists started to measure particles at large p T in the 1960's; a review of the discovery of hard-scattering in p-p collisions in the 1970's via single-inclusive and two-particle correlations and application of these techniques at RHIC. Several paradigms in both soft and hard physics which are popular at RHIC are discussed and challenged.

  15. QCD and Heavy Ions RHIC Overview

    CERN Document Server

    Granier de Cassagnac, Raphael

    2010-01-01

    Nowadays, the most violent heavy ion collisions available to experimental study occur at the Relativistic Heavy Ion Collider (RHIC) of the Brookhaven National Laboratory. There, gold ions collide at psNN = 200 GeV. The early and most striking RHIC results were summarised in 2005 by its four experiments, BRAHMS, PHENIX, PHOBOS and STAR, in their so-called white papers [1, 2, 3, 4] that will be largely referenced thereafter. Beyond and after this, a wealth of data has been collected and analysed, providing additional information about the properties of the matter created at RHIC. It is categorically impossible to give a comprehensive review of these results in a 20 minutes talk or a 7 pages report. Here, I have made a selection of some of the most striking or intriguing signatures: jet quenching in Section 2, quarkonia suppressions in Section 3 and thermal photons in Section 4. A slightly longer and older version of this review can be found in [5]. Some updates are given here, as well as emphasis on new probes ...

  16. RHIC beam loss monitor system design

    International Nuclear Information System (INIS)

    Witkover, R.; Zitvogel, E.; Michnoff, R.

    1997-01-01

    The Beam Loss Monitor (BLM) System is designed to prevent the quenching of RHIC magnets due to beam loss, provide quantitative loss data, and the loss history in the event of a beam abort. The system uses 400 ion chambers of a modified Tevatron design. To satisfy fast (single turn) and slow (100 msec) loss beam criteria and provide sensitivity for studies measurements, a range of over 8 decades is needed. An RC pre-integrator reduces the dynamic range for a low current amplifier. This is digitized for data logging. The output is also applied to an analog multiplier which compensates the energy dependence, extending the range of the abort comparators. High and low pass filters separate the signal to dual comparators with independent programmable trip levels. Up to 64 channels, on 8 VME boards, are controlled by a micro-controller based VME module, decoupling it from the front-end computer (FEC) for real-time operation. Results with the detectors in the RHIC Sextant Test and the electronics in the AGS-to-RHIC (AtR) transfer line will be presented

  17. Proceedings of the third workshop on experiments and detectors for a relativistic heavy ion collider (RHIC)

    International Nuclear Information System (INIS)

    Shivakumar, B.; Vincent, P.

    1988-01-01

    This report contains papers on the following topics: the RHIC Project; summary of the working group on calorimetry; J//Psi/ measurements in heavy ion collisions at CERN; QCD jets at RHIC; tracking and particle identification; a 4π tracking spectrometer for RHIC; Bose-Einstein measurements at RHIC in light of new data; summary of working group on read-out electronics; data acquisition for RHIC; summary of the working group on detector simulation; B-physics at RHIC; and CP violation revisited at BNL, B-physics at RHIC

  18. Preparing accelerator systems for the RHIC sextant commissioning

    International Nuclear Information System (INIS)

    Trbojevic, D.; Pilat, F.; Ahrens, L.

    1997-01-01

    The Relativistic Heavy Ion Collider (RHIC) construction is progressing steadily towards completion in 1999 when beams will circulate in both collider rings. One of the major tests of the RHIC project was the commissioning of the first sextant with gold ion beams in early 1997. This is a report on preparation of the RHIC accelerator systems for the first sextant test. It includes beam position monitors, timing, injection correction through the magnetic septum and kickers, current transformers, flags and the ionization beam profile monitors, beam loss monitors, beam and quench permit link system, power supply controls, and the configuration database system. The software and hardware development and coordination of the different systems before commissioning were regularly checked during bi-weekly, and (later) weekly, progress report meetings

  19. Statistical analysis of RHIC beam position monitors performance

    Science.gov (United States)

    Calaga, R.; Tomás, R.

    2004-04-01

    A detailed statistical analysis of beam position monitors (BPM) performance at RHIC is a critical factor in improving regular operations and future runs. Robust identification of malfunctioning BPMs plays an important role in any orbit or turn-by-turn analysis. Singular value decomposition and Fourier transform methods, which have evolved as powerful numerical techniques in signal processing, will aid in such identification from BPM data. This is the first attempt at RHIC to use a large set of data to statistically enhance the capability of these two techniques and determine BPM performance. A comparison from run 2003 data shows striking agreement between the two methods and hence can be used to improve BPM functioning at RHIC and possibly other accelerators.

  20. Statistical analysis of RHIC beam position monitors performance

    Directory of Open Access Journals (Sweden)

    R. Calaga

    2004-04-01

    Full Text Available A detailed statistical analysis of beam position monitors (BPM performance at RHIC is a critical factor in improving regular operations and future runs. Robust identification of malfunctioning BPMs plays an important role in any orbit or turn-by-turn analysis. Singular value decomposition and Fourier transform methods, which have evolved as powerful numerical techniques in signal processing, will aid in such identification from BPM data. This is the first attempt at RHIC to use a large set of data to statistically enhance the capability of these two techniques and determine BPM performance. A comparison from run 2003 data shows striking agreement between the two methods and hence can be used to improve BPM functioning at RHIC and possibly other accelerators.

  1. Chasing the unicorn: RHIC and the QGP

    International Nuclear Information System (INIS)

    Pisarski, Robert D.; Niels Bohr Institute, Copenhagen; J. W. Goethe Univ., Frankfurt

    2006-01-01

    At nonzero temperature, it is expected that QCD undergoes a phase transition to a deconfined, chirally symmetric phase, the Quark-Gluon Plasma (QGP). I review what we expect theoretically about this possible transition, and what we have learned from heavy ion experiments at RHIC. I argue that while there are unambiguous signals for qualitatively new behavior at RHIC, versus experiments at lower energies, that in detail, no simple theoretical model can explain all salient features of the data. (author)

  2. Chasing the unicorn: RHIC and the QGP

    Energy Technology Data Exchange (ETDEWEB)

    Pisarski, Robert D. [Brookhaven National Lab., Upton, NY (United States). Nuclear Theory and High Energy Theory Nuclear Theory Groups; Niels Bohr Institute, Copenhagen (Denmark); J. W. Goethe Univ., Frankfurt (Germany). Frankfurt Institute for Advanced Study

    2006-03-15

    At nonzero temperature, it is expected that QCD undergoes a phase transition to a deconfined, chirally symmetric phase, the Quark-Gluon Plasma (QGP). I review what we expect theoretically about this possible transition, and what we have learned from heavy ion experiments at RHIC. I argue that while there are unambiguous signals for qualitatively new behavior at RHIC, versus experiments at lower energies, that in detail, no simple theoretical model can explain all salient features of the data. (author)

  3. Machine Protection System for Concurrent Operation of RHIC and BLIP

    CERN Document Server

    Wilinski, Michelle; Glenn, Joseph; Mausner, Leonard; Unger, Kerry

    2005-01-01

    The Brookhaven 200 MeV linac is a multipurpose machine used to inject low intensity polarized protons ultimately ending up in RHIC as well as to inject high intensity protons to BLIP, a medical isotope production facility. If high intensity protons were injected to RHIC by mistake, administrative radiation limits could be exceeded or sensitive electronics could be damaged. In the past, the changeover from polarized proton to high intensity proton operation has been a lengthy process, thereby never allowing the two programs to run simultaneously. To remedy this situation and allow for concurrent operation of RHIC and BLIP, an active interlock system has been designed to monitor current levels in the AGS using two current transformers with fail safe circuitry and associated electronics to inhibit beam to RHIC if high intensity is detected.

  4. K-Ar geochronology and palaeomagnetism of volcanic rocks in the lesser Antilles island arc

    International Nuclear Information System (INIS)

    Briden, J.C.; Rex, D.C.; Faller, A.M.; Tomblin, J.F.

    1979-01-01

    K-Ar age determinations on rocks and minerals from 95 locations in the Lesser Antilles. An age range of 38 - 10 million years was found for the outer arc (Limestone Caribbees) but less than 7.7 million years in the inner arc (Volcanic Caribbees). From Martinique southwards the two arcs are superimposed. These age ranges fit between discontinuities in sea floor spreading in the North Atlantic at about 38 and 9 million years and a causal connection between spreading change and relocation of arc volcanicity is suggested. Paleomagnetic directions at 108 localities in 10 islands fall into normal and reversed groups with 6 sites intermediate and 5 indeterminate. The mean dipole axis is within 2% of the present rotation axis. The data generally agrees with the established geomagnetic polarity time scale but there is some suggestion of a normal polarity event at about 1.18 million years. The paleomagnetic data suggest that in the past 10 million years the Lesser Antilles have not changed their latitude or geographical orientation and the geomagnetic field has averaged that of a central axial dipole. (author)

  5. Summary of the RHIC Retreat 2008

    International Nuclear Information System (INIS)

    Pilat, F.; Brennan, M.; Brown, K.; Fischer, W.; Montag, C.

    2008-01-01

    The main goal of the RHIC Retreat is to review last run's performance and prepare for the next. As always though we also discussed the longer term goals and plans for the facility to put the work in perspective and in the right priority. A straw-man plan for the facility was prepared for the DOE that assumes 30 cryoweek and running 2 species per year. The plan outlines RHIC operations for 2008-2012 and integrates well accelerator and detector upgrades to optimize the physics output with high luminosities. The plans includes guidance from the PAC and has been reviewed by DOE

  6. SIMULATION OF PARTICLE SPECTRA AT RHIC

    International Nuclear Information System (INIS)

    KAHANA, D.E.; KAHANA, S.H.

    2001-01-01

    A purely hadronic simulation is performed of the recently reported data from PHOBOS at energies of √s = 56, 130 GeV using the relativistic heavy ion cascade LUCIFER which had previously given a good description of the NA49 inclusive spectra at √s = 17.2 GeV/A. The results compare well with these early measurements at RHIC and indeed successfully predict the increase in multiplicity now seen by PHOBOS and the other RHIC detectors at the nominal maximum energy of √s = 200 GeV/A, suggesting that evidence for quark-gluon matter remains elusive

  7. THE RHIC SEQUENCER

    International Nuclear Information System (INIS)

    VAN ZEIJTS, J.; DOTTAVIO, T.; FRAK, B.; MICHNOFF, R.

    2001-01-01

    The Relativistic Heavy Ion Collider (RHIC) has a high level asynchronous time-line driven by a controlling program called the ''Sequencer''. Most high-level magnet and beam related issues are orchestrated by this system. The system also plays an important task in coordinated data acquisition and saving. We present the program, operator interface, operational impact and experience

  8. MACHINE PROTECTION SYSTEM FOR CONCURRENT OPERATION OF RHIC AND BLIP

    International Nuclear Information System (INIS)

    WILINSKI, M.; BELLAVIA, S.; GLENN, J.W.; MAUSNER, L.F.; UNGER, K.L.

    2005-01-01

    The Brookhaven 200MeV linac is a multipurpose machine used to inject low intensity polarized protons for RHIC (Relativistic Heavy Ion Collider), as well as to inject high intensity protons to BLIP (Brookhaven Linac Isotope Producer), a medical isotope production facility. If high intensity protons were injected to RHIC by mistake, administrative radiation limits could be exceeded or sensitive electronics could be damaged. In the past, the changeover from polarized proton to high intensity proton operation has been a lengthy process, thereby never allowing the two programs to run simultaneously. To remedy this situation and allow concurrent operation of RHIC and BLIP, an active interlock system has been designed to monitor current levels in the AGS using two current transformers with fail safe circuitry and associated electronics to inhibit beam to RHIC if high intensity currents are detected

  9. Synchrotron Radiation in eRHIC Interaction Region

    CERN Document Server

    Beebe-Wang, Joanne; Montag, Christoph; Rondeau, Daniel J; Surrow, Bernd

    2005-01-01

    The eRHIC currently under study at BNL consists of an electron storage ring added to the existing RHIC complex. The interaction region of this facility has to provide the required low-beta focusing while accommodating the synchrotron radiation generated by beam separation close to the interaction point. In the current design, the synchrotron radiation caused by 10GeV electrons bent by low-beta triplet magnets will be guided through the interaction region and dumped 5m downstream. However, it is unavoidable to stop a fraction of the photons at the septum where the electron and ion vacuum system are separated. In order to protect the septum and minimize the backward scattering of the synchrotron radiation, an absorber and collimation system will be employed. In this paper, we first present the overview of the current design of the eRHIC interaction region with special emphasis on the synchrotron radiation. Then the initial design of the absorber and collimation system, including their geometrical and physical p...

  10. Recent RHIC in-situ coating technology developments

    CERN Document Server

    Hershcovitch, A.; Brennan, J.M.; Chawla, A.; Fischer, W.; Liaw, C-J; Meng, W.; Todd, R.; Custer, A.; Erickson, M.; Jamshidi, N.; Kobrin, P.; Laping, R.; Poole, H.J.; Jimenez, J.M.; Neupert, H.; Taborelli, M.; Yin-Vallgren, C.; Sochugov, N.

    2013-04-22

    To rectify the problems of electron clouds observed in RHIC and unacceptable ohmic heating for superconducting magnets that can limit future machine upgrades, we started developing a robotic plasma deposition technique for $in-situ$ coating of the RHIC 316LN stainless steel cold bore tubes based on staged magnetrons mounted on a mobile mole for deposition of Cu followed by amorphous carbon (a-C) coating. The Cu coating reduces wall resistivity, while a-C has low SEY that suppresses electron cloud formation. Recent RF resistivity computations indicate that 10 {\\mu}m of Cu coating thickness is needed. But, Cu coatings thicker than 2 {\\mu}m can have grain structures that might have lower SEY like gold black. A 15-cm Cu cathode magnetron was designed and fabricated, after which, 30 cm long samples of RHIC cold bore tubes were coated with various OFHC copper thicknesses; room temperature RF resistivity measured. Rectangular stainless steel and SS discs were Cu coated. SEY of rectangular samples were measured at ro...

  11. RHIC beam permit and quench detection communications system

    International Nuclear Information System (INIS)

    Conkling, C.R. Jr.

    1997-01-01

    A beam permit module has been developed to concentrate RHIC, subsystem sensor outputs, permit beam, and initiate emergency shutdowns. The modules accept inputs from the vacuum, cryogenic, power supply, beam loss, and superconducting magnet quench detection systems. Modules are located at equipment locations around the RHIC ring. The modules are connected by three fiberoptic communications links; a beam permit link, and two magnet power supply interlock links. During operation, carrier presence allows beam. If a RHIC subsystem detects a fault, the beam permit carrier terminates - initiating a beam dump. If the fault was a superconducting magnet quench, a power supply interlock carrier terminates - initiating an emergency magnet power dump. In addition, the master module triggers an event to cause remote sensors to log and hold data at the time-of-failure

  12. Transverse impedance measurement in RHIC and the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Biancacci, Nicolo [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Mernick, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; White, S. M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-05-12

    The RHIC luminosity upgrade program aims for an increase of the polarized proton luminosity by a factor 2. To achieve this goal a significant increase in the beam intensity is foreseen. The beam coupling impedance could therefore represent a source of detrimental effects for beam quality and stability at high bunch intensities. For this reason it is essential to quantify the accelerator impedance budget and the major impedance sources, and possibly cure them. In this MD note we summarize the results of the 2013 transverse impedance measurements in the AGS and RHIC. The studies have been performed measuring the tune shift as a function of bunch intensity and deriving the total accelerator machine transverse impedance. For RHIC, we could obtain first promising results of impedance localization measurements as well.

  13. Comparison of the Window-Frame RHIC-abort kicker with C-type Kicker

    International Nuclear Information System (INIS)

    Tsoupas, N.; McMahan, Brandon

    2014-01-01

    The high intensity proton bunches (~2.5x10 11 p/bunch ) circulating in RHIC increase the temperature of the ferrite-made RHIC-abort-kickers above the Curie point; as a result, the kickers cannot provide the required field to abort the beam at the beam dump. A team of experts in the CAD department worked on modifying the design of the window-frame RHIC-abort kicker to minimize the hysteresis losses responsible for the increase of the ferrite's temperature. In this technical note we report some results from the study of two possible modifications of the window-frame RHIC-abort kicker, and we compare these results with those of a propose C-type RHIC-abort kicker. We also include an Appendix where we describe a method which may further reduce the hysteresis losses of the window-frame kicker.

  14. Flow in Au+Au collisions at RHIC

    Science.gov (United States)

    Belt Tonjes, Marguerite; the PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2004-08-01

    The study of flow can provide information on the initial state dynamics and the degree of equilibration attained in heavy-ion collisions. This contribution presents results for both elliptic and directed flow as determined from data recorded by the PHOBOS experiment in Au+Au runs at RHIC at \\sqrt{sNN} = 19.6, 130 and 200 GeV. The PHOBOS detector provides a unique coverage in pseudorapidity for measuring flow at RHIC. The systematic dependence of flow on pseudorapidity, transverse momentum, centrality and energy is discussed.

  15. Polarization simulations in the RHIC run 15 lattice

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; White, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    RHIC polarized proton Run 15 uses a new acceleration ramp optics, compared to RHIC Run 13 and earlier runs, in relation with electron-lens beam-beam compensation developments. The new optics induces different strengths in the depolarizing snake resonance sequence, from injection to top energy. As a consequence, polarization transport along the new ramp has been investigated, based on spin tracking simulations. Sample results are reported and discussed.

  16. Proceedings of RIKEN BNL Research Center workwhop on RHIC spin

    Energy Technology Data Exchange (ETDEWEB)

    SOFFER,J.

    1999-10-06

    This RHIC Spin Workshop is the 1999 annual meeting of the RHIC Spin Collaboration, and the second to be hosted at Brookhaven and sponsored by the RIKEN BNL Research Center. The previous meetings were at Brookhaven (1998), Marseille (1996), MIT in 1995, Argonne 1994, Tucson in 1991, and the Polarized Collider Workshop at Penn State in 1990. As noted last year, the Center provides a home for combined work on spin by theorists, experimenters, and accelerator physicists. This proceedings, as last year, is a compilation of 1 page summaries and 5 selected transparencies for each speaker. It is designed to be available soon after the workshop is completed. Speakers are welcome to include web or other references for additional material. The RHIC spin program and RHIC are rapidly becoming reality. RHIC has completed its first commissioning run, as described here by Steve Peggs. The first Siberian Snake for spin has been completed and is being installed in RHIC. A new polarized source from KEK and Triumf with over 1 milliampere of polarized H{sup minus} is being installed, described by Anatoli Zelenski. They have had a successful test of a new polarimeter for RHIC, described by Kazu Kurita and Haixin Huang. Spin commissioning is expected next spring (2000), and the first physics run for spin is anticipated for spring 2001. The purpose of the workshop is to get everyone together about once per year and discuss goals of the spin program, progress, problems, and new ideas. They also have many separate regular forums on spin. There are spin discussion sessions every Tuesday, now organized by Naohito Saito and Werner Vogelsang. The spin discussion schedule and copies of presentations are posted on http://riksg01.rhic.bnl.gov/rsc. Speakers and other spinners are encouraged to come to BNL and to lead a discussion on your favorite idea. They also have regular polarimeter and snake meetings on alternate Thursdays, led by Bill McGahern, the lead engineer for the accelerator spin

  17. Proceedings of RIKEN BNL Research Center workshop on RHIC spin

    International Nuclear Information System (INIS)

    Soffer, J.

    1999-01-01

    This RHIC Spin Workshop is the 1999 annual meeting of the RHIC Spin Collaboration, and the second to be hosted at Brookhaven and sponsored by the RIKEN BNL Research Center. The previous meetings were at Brookhaven (1998), Marseille (1996), MIT in 1995, Argonne 1994, Tucson in 1991, and the Polarized Collider Workshop at Penn State in 1990. As noted last year, the Center provides a home for combined work on spin by theorists, experimenters, and accelerator physicists. This proceedings, as last year, is a compilation of 1 page summaries and 5 selected transparencies for each speaker. It is designed to be available soon after the workshop is completed. Speakers are welcome to include web or other references for additional material. The RHIC spin program and RHIC are rapidly becoming reality. RHIC has completed its first commissioning run, as described here by Steve Peggs. The first Siberian Snake for spin has been completed and is being installed in RHIC. A new polarized source from KEK and Triumf with over 1 milliampere of polarized H minus is being installed, described by Anatoli Zelenski. They have had a successful test of a new polarimeter for RHIC, described by Kazu Kurita and Haixin Huang. Spin commissioning is expected next spring (2000), and the first physics run for spin is anticipated for spring 2001. The purpose of the workshop is to get everyone together about once per year and discuss goals of the spin program, progress, problems, and new ideas. They also have many separate regular forums on spin. There are spin discussion sessions every Tuesday, now organized by Naohito Saito and Werner Vogelsang. The spin discussion schedule and copies of presentations are posted on http://riksg01.rhic.bnl.gov/rsc. Speakers and other spinners are encouraged to come to BNL and to lead a discussion on your favorite idea. They also have regular polarimeter and snake meetings on alternate Thursdays, led by Bill McGahern, the lead engineer for the accelerator spin effort

  18. The RHIC transfer line cable database

    International Nuclear Information System (INIS)

    Scholl, E.H.; Satogata, T.

    1995-01-01

    A cable database was created to facilitate and document installation of cables and wiring in the RHIC project, as well as to provide a data source to track possible wiring and signal problems. The eight tables of this relational database, currently implemented in Sybase, contain information ranging from cable routing to attenuation of individual wires. This database was created in a hierarchical scheme under the assumption that cables contain wires -- each instance of a cable has one to many wires associated with it. This scheme allows entry of information pertinent to individual wires while only requiring single entries for each cable. Relationships to other RHIC databases are also discussed

  19. Summary of the RHIC Retreat 2008

    Energy Technology Data Exchange (ETDEWEB)

    Pilat,F.; Brennan, M.; Brown, K.; Fischer, W.; Montag, C.

    2008-08-01

    The main goal of the RHIC Retreat is to review last run's performance and prepare for the next. As always though we also discussed the longer term goals and plans for the facility to put the work in perspective and in the right priority. A straw-man plan for the facility was prepared for the DOE that assumes 30 cryoweek and running 2 species per year. The plan outlines RHIC operations for 2008-2012 and integrates well accelerator and detector upgrades to optimize the physics output with high luminosities. The plans includes guidance from the PAC and has been reviewed by DOE.

  20. ERL-BASED LEPTON-HADRON COLLIDERS: eRHIC AND LHeC

    CERN Document Server

    Zimmermann, F

    2013-01-01

    Two hadron-ERL colliders are being proposed. The Large Hadron electron Collider (LHeC) plans to collide the high-energy protons and heavy ions in the Large Hadron Collider (LHC) at CERN with 60-GeV polarized electrons or positrons. The baseline scheme for this facility adds to the LHC a separate recirculating superconducting (SC) lepton linac with energy recovery, delivering a lepton current of 6.4mA. The electron-hadron collider project eRHIC aims to collide polarized (and unpolarized) electrons with a current of 50 (220) mA and energies in the range 5–30 GeV with a variety of hadron beams— heavy ions as well as polarized light ions— stored in the existing Relativistic Heavy Ion Collider (RHIC) at BNL. The eRHIC electron beam will be generated in an energy recovery linac (ERL) installed inside the RHIC tunnel.

  1. PHOBOS at RHIC 2000

    International Nuclear Information System (INIS)

    Garcia, E.; Baum, R.; Bindel, R.; Mignerey, A.; Shea, J.; Back, B.B.; Betts, R.R.; George, N.; Wuosmaa, A.H.; Baker, M.D.; Barton, D.S.; Carroll, A.; Ceglia, M.; Gushue, S.; Heintzelman, G.A.; Kraner, H.; Olszewski, A.; Pak, R.; Remsberg, L.P.; Scaduto, J.; Sinacore, J.; Steinberg, P.; Sukhanov, A.; Bogucki, W.; Budzanowski, A.; Coghen, T.; Dabrowski, B.; Despet, M.; Galuszka, K.; Godlewski, J.; Halik, J.; Holynski, R.; Kita, W.; Kotula, J.; Lemler, M.; Ligocki, J.; Michalowski, J.; Sawicki, P.; Straczek, A.; Stodulski, M.; Strek, M.; Stopa, Z.; Trzupek, A.; Wosiek, B.; Wozniak, K.; Zychowski, P.; Bialas, A.; Czyz, W.; Zalewski, K.; Basilev, S.; Bates, B.D.; Busza, W.; Decowski, M.P.; Fita, P.; Fitch, J.; Friedl, M.; Gomes, C.; Griesmayer, E.; Gulbrandsen, K.; Haridas, P.; Henderson, C.; Kane, J.; Katzy, J.; Kulinich, P.; Law, C.; Mulmenstadt, J.; Neal, M.; Patel, M.; Pernegger, H.; Plesko, M.; Reed, C.; Roland, C.; Roland, G.; Ross, D.; Rosenberg, L.; Ryan, J.; Sarin, P.; Steadman, S.G.; Stephans, G.S.F.; Surowiecka, K.; Vale, C.M.; Van Nieuwenhuizen, G.J.; Verdier, R.; Wadsworth, B.; Wyslouch, B.; Chang, Y.H.; Chen, A.E.; Lin, W.T.; Tang, J.L.; Conner, C.; Ganz, R.; Halliwell, C.; Hollis, R.; Holzman, B.; Kucewicz, W.; McLeod, D.; Nouicer, R.; Reuter, M.; Hayes, A.; Johnson, E.; Manly, S.; Park, I.C.; Skulski, W.; Teng, R.; Wolfs, F.L.H.; Sanzgiri, A.

    2001-01-01

    The relativistic heavy ion collider (RHIC) at Brookhaven national laboratory delivered in June 2000 the first collisions between Au nuclei at the highest center-of-mass energies achieved in a controlled environment to date. PHOBOS is one of the four experiments installed during this phase of RHIC running. This paper will describe the PHOBOS experiment, and discuss the results of the first physics measurement, thc pseudo rapidity densities of primary charged particles near mid rapidity in central Au + Au collisions at two different energies, √ S NN = 56 and 130 GeV. The observed densities are higher than those previously observed in any collisions, and the rate of increase between the two energies is larger than that for nucleon-nucleon collisions at comparable beam energies. This talk will describe the PHOBOS experiment, discuss the first physics measurement, and conclude with the present status of the experiment, the physics analysis and the perspectives fi the future. (Author)

  2. A hardware overview of the RHIC LLRF platform

    International Nuclear Information System (INIS)

    Hayes, T.; Smith, K.S.

    2011-01-01

    The RHIC Low Level RF (LLRF) platform is a flexible, modular system designed around a carrier board with six XMC daughter sites. The carrier board features a Xilinx FPGA with an embedded, hard core Power PC that is remotely reconfigurable. It serves as a front end computer (FEC) that interfaces with the RHIC control system. The carrier provides high speed serial data paths to each daughter site and between daughter sites as well as four generic external fiber optic links. It also distributes low noise clocks and serial data links to all daughter sites and monitors temperature, voltage and current. To date, two XMC cards have been designed: a four channel high speed ADC and a four channel high speed DAC. The new LLRF hardware was used to replace the old RHIC LLRF system for the 2009 run. For the 2010 run, the RHIC RF system operation was dramatically changed with the introduction of accelerating both beams in a new, common cavity instead of each ring having independent cavities. The flexibility of the new system was beneficial in allowing the low level system to be adapted to support this new configuration. This hardware was also used in 2009 to provide LLRF for the newly commissioned Electron Beam Ion Source.

  3. Spin tune dependence on closed orbit in RHIC

    International Nuclear Information System (INIS)

    Ptitsyn, V.; Bai, M.; Roser, T.

    2010-01-01

    Polarized proton beams are accelerated in RHIC to 250 GeV energy with the help of Siberian Snakes. The pair of Siberian Snakes in each RHIC ring holds the design spin tune at 1/2 to avoid polarization loss during acceleration. However, in the presence of closed orbit errors, the actual spin tune can be shifted away from the exact 1/2 value. It leads to a corresponding shift of locations of higher-order ('snake') resonances and limits the available betatron tune space. The largest closed orbit effect on the spin tune comes from the horizontal orbit angle between the two snakes. During RHIC Run in 2009 dedicated measurements with polarized proton beams were taken to verify the dependence of the spin tune on the local orbits at the Snakes. The experimental results are presented along with the comparison with analytical predictions.

  4. Heavy nuclei, from RHIC to the cosmos

    International Nuclear Information System (INIS)

    Klein, Spencer R.

    2003-01-01

    Ultra-relativistic heavy ion collisions produce a high-temperature, thermalized system that may mimic the conditions present shortly after the big bang. This writeup will given an overview of early results from the Relativistic Heavy Ion Collider (RHIC), and discuss what we have learned about hot, strongly interacting nuclear systems. The thermal and chemical composition of the system will be discussed, along with observables that are sensitive to the early evolution of the system. I will also discuss the implications of the RHIC results for cosmic ray air showers

  5. OVERVIEW AND STATUS OF THE STAR DETECTOR AT RHIC

    International Nuclear Information System (INIS)

    CHRISTIE, W.B.

    1999-01-01

    Presented here is the current status of the STAR Detector. STAR is one of the four detectors being constructed at the RHIC collider facility. The STAR detector is scheduled to have its first engineering run with the RHIC beams about six months from the date of this conference. The STAR project is on schedule and expects to recomplete on time

  6. Tracking studies in eRHIC energy-recovery recirculator

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-07-13

    Beam and polarization tracking studies in eRHIC energy recovery electron recirculator are presented, based on a very preliminary design of the FFAG lattice. These simulations provide examples of some of the beam and spin optics aspects of the linear FFAG lattice concept and its application in eRHIC, they provide code benchmarking for synchrotron radiation and spin diffusion in addition, and pave the way towards end-to-end 6-D(phasespace)+3D(spin) tracking simulations.

  7. RHIC: What We Have Learned So Far (434th Brookhaven Lecture)

    International Nuclear Information System (INIS)

    O'Brien, Edward

    2008-01-01

    One of the world's premiere nuclear research facilities, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab is just completing its eighth year of physics operation. During the past eight years, RHIC's primary physics program has emphasized the creation, observation and explanation of nuclear matter created at temperatures and densities that last existed in the universe some 13.7 billion years ago. RHIC was built to study the strong force, which holds quarks and gluons together within the nucleus of an atom, with the goal of observing a plasma of quarks and gluons freed from the atomic nucleus. The new state of matter that was created, however, was quite different. Dr. O'Brien will discuss what RHIC scientists expected versus what they discovered, and how this finding both challenges existing theory and provides an opportunity to understand the strong force better.

  8. HIGH-CURRENT ERL-BASED ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    BEN-ZVI, I.

    2005-01-01

    The design of an electron cooler must take into account both electron beam dynamics issues as well as the electron cooling physics. Research towards high-energy electron cooling of RHIC is in its 3rd year at Brookhaven National Laboratory. The luminosity upgrade of RHIC calls for electron cooling of various stored ion beams, such as 100 GeV/A gold ions at collision energies. The necessary electron energy of 54 MeV is clearly out of reach for DC accelerator system of any kind. The high energy also necessitates a bunched beam, with a high electron bunch charge, low emittance and small energy spread. The Collider-Accelerator Department adopted the Energy Recovery Linac (ERL) for generating the high-current, high-energy and high-quality electron beam. The RHIC electron cooler ERL will use four Superconducting RF (SRF) 5-cell cavities, designed to operate at ampere-class average currents with high bunch charges. The electron source will be a superconducting, 705.75 MHz laser-photocathode RF gun, followed up by a superconducting Energy Recovery Linac (ERL). An R and D ERL is under construction to demonstrate the ERL at the unprecedented average current of 0.5 amperes. Beam dynamics performance and luminosity enhancement are described for the case of magnetized and non-magnetized electron cooling of RHIC

  9. QCD and RHIC

    International Nuclear Information System (INIS)

    Kharzeev, D.

    2004-01-01

    In this talk I discuss recent advances in Quantum Chromo-Dynamics, in particular the progress in understanding the collective dynamics of the theory. I emphasise the significance of the RHIC program for establishing the properties of hot and dense QCD matter and for understanding the dynamics of the theory at the high parton density, strong color field frontier. Hopes and expectations for the future are discussed as well

  10. SYNTHESIZER CONTROLLED BEAM TRANSFER FROM THE AGS TO RHIC

    International Nuclear Information System (INIS)

    DELONG, J.; BRENNAN, J.M.; FISCHER, W.; HAYES, T.; SMITH, K.; VALENTINO, S.

    2001-01-01

    To ensure minimal losses and to preserve longitudinal emittance, beam is transferred from the AGS to the RHIC bunch to bucket. This requires precision frequency and phase control for synchronization and kicker timing. The required precision is realized with a set of Direct Digital Synthesizers. Each synthesizer can be frequency and phase modulated to align the AGS bunch to the target bucket in the RHIC phase

  11. Nuclear suppression of J/Ψ: From RHIC to the LHC

    International Nuclear Information System (INIS)

    Kopeliovich, B.Z.; Potashnikova, I.K.; Schmidt, Ivan

    2011-01-01

    A parameter-free calculation for J/Ψ suppression in pA collisions, based on the dipole description, is confronted with the new data from the PHENIX experiment. Achieving good agreement, we employed this model predicting the contribution of initial state interactions (ISI) to J/Ψ suppression in AA collisions. Such a transition from pA to AA is not straightforward, since involves specific effects of double color filtering and boosting of the saturation scale. Relying on this refined ISI contribution, we updated the previous analysis of RHIC data on J/Ψ production in Cu-Cu and Au-Au collisions at √(s)=200 GeV, and determined the transport coefficient of the created dense medium at q-hat 0 =0.6 GeV 2 /fm. Nuclear effects for J/Ψ production at the LHC are predicted using the transport coefficient q-hat 0 =0.8 GeV 2 /fm, extracted from data on suppression of high-p T hadrons in central lead-lead collisions at √(s)=2.76 TeV. Our analysis covers only direct J/Ψ production, while data may also include the feed-down from decay of heavier states and B-mesons.

  12. Experience with split transition lattices at RHIC

    International Nuclear Information System (INIS)

    Montag, C.; Tepikian, S.; Blaskiewicz, M.; Brennan, J.M.

    2010-01-01

    During the acceleration process, heavy ion beams in RHIC cross the transition energy. When RHIC was colliding deuterons and gold ions during Run-8, lattices with different integer tunes were used for the two rings. This resulted in the two rings crossing transition at different times, which proved beneficial for the 'Yellow' ring, the RF system of which is slaved to the 'Blue' ring. For the symmetric gold-gold run in FY2010, lattices with different transition energies but equal tunes were implemented. We report the optics design concept as well as operational experience with this configuration.

  13. A prototype ionization profile monitor for RHIC

    International Nuclear Information System (INIS)

    Connolly, R.; Cameron, P.; Ryan, W.

    1997-01-01

    Transverse beam profiles in the Relativistic Heavy-Ion Collider (RHIC) will be measured with ionization profile monitors (IPM's). Each IPM collects and measures the distribution of electrons in the beamline resulting from residual gas ionization during bunch passage. The electrons are swept transversely from the beamline and collected on strip anodes oriented parallel to the beam axis. At each bunch passage the charge pulses are amplified, integrated, and digitized for display as a profile histogram. A prototype detector was tested in the injection line during the RHIC Sextant Test. This paper describes the detector and gives results from the beam tests

  14. A prototype ionization profile monitor for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, R.; Cameron, P.; Ryan, W. [and others

    1997-07-01

    Transverse beam profiles in the Relativistic Heavy-Ion Collider (RHIC) will be measured with ionization profile monitors (IPM`s). Each IPM collects and measures the distribution of electrons in the beamline resulting from residual gas ionization during bunch passage. The electrons are swept transversely from the beamline and collected on strip anodes oriented parallel to the beam axis. At each bunch passage the charge pulses are amplified, integrated, and digitized for display as a profile histogram. A prototype detector was tested in the injection line during the RHIC Sextant Test. This paper describes the detector and gives results from the beam tests.

  15. Substorm onset location and dipole tilt angle

    Directory of Open Access Journals (Sweden)

    J. Wanliss

    2006-03-01

    Full Text Available From an initial data set of over 200 substorms we have studied a subset of 30 magnetospheric substorms close to magnetic midnight to investigate, in a statistical fashion, the source region of the auroral arc that brightens at the onset of expansive phase. This arc is usually identified as the ionospheric signature of the expansive phase onset that occurs in the magnetotail. All the substorm onsets were identified via ground-based magnetometer and photometer data from the CANOPUS array. Various Tsyganenko global magnetic field models were used to map magnetic field lines from the location of the onset arc out to its greatest radial distance in the magnetotail. The results appear to favour the current disruption model of substorms since the average onset location has an average of 14.1 Earth radii (RE and is therefore more consistent with theories that place the onset location in the inner magnetotail. For the narrow range of tilts available our modeling indicates the parameter that appears to strongly influence the location of the substorm onset is the dipole tilt angle; as tilt becomes less negative onsets occur further downtail.

  16. PHOBOS at RHIC 2000

    Energy Technology Data Exchange (ETDEWEB)

    Back, B. B [Argonne National Laboratory (United States)] (and others)

    2001-12-01

    The relativistic heavy ion collider (RHIC) at Brookhaven national laboratory delivered in June 2000 the first collisions between Au nuclei at the highest center-of-mass energies achieved in a controlled environment to date. PHOBOS is one of the four experiments installed during this phase of RHIC running. This paper will describe the PHOBOS experiment, and discuss the results of the first physics measurement, the pseudo rapidity densities of primary charged particles near mid rapidity in central Au+Au collisions at two different energies, S{sub N}N{sup .}5=56 and 130 GeV. The observed densities are higher than those previously observed in any collisions, and the rate of increase between the two energies is larger than that for nucleon-nucleon collisions at comparable beam energies. This talk will describe the PHOBOS experiment, discuss the first physics measurement, and conclude with the present status of the experiment, the physics analysis and the perspectives for the future. [Spanish] El elativistic heavy ion collider (RHIC) en Brookhaven national laboratory produjo por primera vez colisiones de nucleos de oro (Au) a las energias mas altas alcanzadas en un medio ambiente controlado. PHOBOS es uno de los cuatro experimentos presentes en DIC durante su fase inicial. Este articulo describe en detalle a PHOBOS y discute los primeros resultados publicados acerca de la fisica de DIC, esto es la densidad de particulas primarias a id rapidity en colisiones centrales de Au+Au a dos diferentes energias S{sub N}N{sup .}5 =56 y 130 GeV. Las densidades observadas son mas altas que en cualquier otra experimento anterior, las densidades obtenidas son tambien mas altas que las encontradas en colisiones proton-proton a energias comparables. Este articulo tambien discute el estado actual del experimento asi como los planes para el futuro.

  17. The RHIC polarized H{sup −} ion source

    Energy Technology Data Exchange (ETDEWEB)

    Zelenski, A., E-mail: zelenski@bnl.gov; Atoian, G.; Raparia, D.; Ritter, J.; Steski, D. [Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2016-02-15

    A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H{sup −} ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H{sup −} ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC.

  18. Development of NEG Coating for RHIC Experimental Beamtubes

    CERN Document Server

    Weiss, Daniel; Hseuh Hsiao Chaun; Todd, Robert J

    2005-01-01

    As RHIC beam intensity increases beyond original scope, pressure rises in some regions have been observed. The luminosity limiting pressure rises are associated with electron multi-pacting, electron stimulated desorption and beam induced desorption. Non-Evaporable Getter (NEG) coated beampipes have been proven effective to suppress pressure rise in synchrotron radiation facilities. Standard beampipes have been NEG coated by a vendor and added to many RHIC UHV regions. BNL is developing a cylindrical magnetron sputtering system to NEG coat special beryllium beampipes installed in RHIC experimental regions. It features a hollow, liquid cooled cathode producing power density of 500W/m and deposition rate of 5000 Angstrom/hr on 7.5cm OD beampipe. The cathode, a titanium tube partially covered with zirconium and vanadium ribbons, is oriented for horizontal coating of 4m long chambers. Ribbons and magnets are arranged to provide uniform sputtering distribution and deposited NEG composition. Vacuum performance of NE...

  19. Observations of Snake Resonance in RHIC

    CERN Document Server

    Bai, Mei; Lee, Shyh-Yuan; Lin, Fanglei; MacKay, William; Ptitsyn, Vadim; Roser, Thomas; Tepikian, Steven

    2005-01-01

    Siberian snakes now become essential in the polarized proton acceleration. With proper configuration of Siberian snakes, the spin precession tune of the beam becomes $\\frac{1}{2}$ which avoids all the spin depolarizing resonance. However, the enhancement of the perturbations on the spin motion can still occur when the betatron tune is near some low order fractional numbers, called snake resonances, and the beam can be depolarized when passing through the resonance. The snake resonances have been confirmed in the spin tracking calculations, and observed in RHIC with polarized proton beam. Equipped with two full Siberian snakes in each ring, RHIC provides us a perfect facility for snake resonance studies. This paper presents latest experimental results. New insights are also discussed.

  20. RHIC injection kicker impedance

    International Nuclear Information System (INIS)

    Mane, V.; Peggs, S.; Trbojevic, D.; Zhang, W.

    1995-01-01

    The longitudinal impedance of the RHIC injection kicker is measured using the wire method up to a frequency of 3 GHz. The mismatch between the 50 ohm cable and the wire and pipe system is calibrated using the TRL calibration algorithm. Various methods of reducing the impedance, such as coated ceramic pipe and copper strips are investigated

  1. Polarized proton parameters for the 2015 PP-on-Au setup in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-08-25

    Values are given for RHIC circumference shifts due to snakes for various situations. Relevant parameters are tabulated for polarized protons (PP) in the booster and in AGS and RHIC for PP-on-Au stores.

  2. Polarized proton parameters for the 2015 PP-on-Aluminum setup in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-10-02

    Values are given for RHIC circumference shifts due to snakes for various situations. Relevant parameters are tabulated for polarized protons (PP) in the booster and in AGS and RHIC for PP-on-Aluminum stores.

  3. Experts dismiss doomsday scenarios for RHIC

    CERN Multimedia

    Levi, B G

    2000-01-01

    A panel of particle physicists examining the possibility that operation of RHIC could generate blackholes or 'strangelets' which would consume ordinary matter, have declared that such scenarios are 'firmly excluded' (1 p).

  4. Conceptual design of the Relativistic Heavy Ion Collider [RHIC

    International Nuclear Information System (INIS)

    1989-05-01

    In August 1984 Brookhaven National Laboratory submitted a proposal for the construction of a Relativistic Heavy Ion Collider (RHIC) to the US Department of Energy. A Conceptual Design Report for the RHIC facility was completed in May 1986 after detailed reviews of the machine design, and of the requirements of the physics research program. Since that time an extensive R ampersand D program has been initiated and considerable work has been carried out to refine the design and specification of the major accelerator components, as well as the needs for research detectors, and to prepare the project for construction. This document is an update of the Conceptual Design Report, incorporating the results of work carried out since the beginning of Fiscal Year 1987 when a formal R ampersand D program for the RHIC project funded by DOE was initiated

  5. The RHIC/AGS Online Model Environment: Design and Overview

    International Nuclear Information System (INIS)

    Satogata, T.; Brown, K.; Pilat, F.; Tafti Alai, A.; Tepikian, S.; Vanzeijtz

    1999-01-01

    An integrated online modeling environment is currently under development for use by AGS and RHIC physicists and commissioners. This environment combines the modeling efforts of both groups in a CDEV[1] client-server design, providing access to expected machine optics and physics parameters based on live and design machine settings. An abstract modeling interface has been designed as a set of adapters[2] around core computational modeling engines such as MAD and UAL/Teapot++[3]. This approach allows us to leverage existing survey, lattice, and magnet infrastructure, as well as easily incorporate new model engine developments. This paper describes the architecture of the RHIC/AGS modeling environment, including the application interface through CDEV and general tools for graphical interaction with the model using Tcl/Tk. Separate papers at this conference address the specifics of implementation and modeling experience for AGS and RHIC

  6. Opportunities for Polarized He-3 in RHIC and EIC

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer E.; Deshpande, A.; Fischer, W.; Derbenev, S.; Milner, R.; Roser, T.; Zelenski, A.

    2011-10-01

    The workshop on opportunities for polarized He-3 in RHIC and EIC was targeted at finding practical ways of implementing and using polarized He-3 beams. Polarized He-3 beams will provide the unique opportunity for first measurements, i.e, to a full quark flavor separation measuring single spin asymmetries for p{sup +}, p{sup -} and p{sup 0} in hadron-hadron collisions. In electron ion collisions the combination of data recorded with polarized electron proton/He-3 beams allows to determine the quark flavor separated helicity and transverse momentum distributions. The workshop had sessions on polarized He-3 sources, the physics of colliding polarized He-3 beams, polarimetry, and beam acceleration in the AGS Booster, AGS, RHIC, and ELIC. The material presented at the workshop will allow making plans for the implementation of polarized He-3 beams in RHIC.

  7. PROPOSAL FOR AN EBIS BASED RHIC PREINJECTOR.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI,J.G.; BEEBE,E.; KPONOU,A.; PIKIN,A.; PRELEC,K.; RAPARIA,D.; RITTER,J.; ZHANG,S.Y.

    2000-11-06

    A proposed new heavy ion preinjector for RHIC is described. The progress made at BNL on the development of an Electron Beam Ion Source (EBIS) has increased our confidence that one can build a preinjector meeting RHIC requirements using an EBIS producing intermediate charge state heavy ions. A new RFQ and Linac will be required to accelerate beams from this source to an energy sufficient for injection into the AGS Booster. These are both straightforward devices, very similar to ones already in operation at other laboratories. Injection into the Booster will occur at the same location as the existing heavy ion injection from the Tandem Van de Graaff.

  8. PROPOSAL FOR AN EBIS-BASED RHIC PREINJECTOR

    International Nuclear Information System (INIS)

    ALESSI, J.G.; BEEBE, E.; KPONOU, A.; PIKIN, A.; PRELEC, K.; RAPARIA, D.; RITTER, J.; ZHANG, S.Y.

    2000-01-01

    A proposed new heavy ion preinjector for RHIC is described. The progress made at BNL on the development of an Electron Beam Ion Source (EBIS) has increased our confidence that one can build a preinjector meeting RHIC requirements using an EBIS producing intermediate charge state heavy ions. A new RFQ and Linac will be required to accelerate beams from this source to an energy sufficient for injection into the AGS Booster. These are both straightforward devices, very similar to ones already in operation at other laboratories. Injection into the Booster will occur at the same location as the existing heavy ion injection from the Tandem Van de Graaff

  9. Thermal and prompt photons at RHIC and the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Paquet, Jean-François [Department of Physics & Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A2T8 (Canada); Shen, Chun [Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A2T8 (Canada); Denicol, Gabriel [Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A2T8 (Canada); Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Luzum, Matthew [Universidade de Santiago de Compostela, E-15706 Santiago de Compostela, Galicia-Spain (Spain); Universidade de São Paulo, Rua do Matão Travessa R, no. 187, 05508-090, Cidade Universitária, São Paulo (Brazil); Schenke, Björn [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Jeon, Sangyong; Gale, Charles [Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A2T8 (Canada)

    2016-12-15

    Thermal and prompt photon production in heavy ion collisions is evaluated and compared with measurements from both RHIC and the LHC. An event-by-event hydrodynamical model of heavy ion collisions that includes shear and bulk viscosities is used, along with up-to-date photon emission rates. Larger tension with measurements is observed at RHIC than at the LHC. The center-of-mass energy and centrality dependence of thermal and prompt photons is investigated.

  10. Beam-beam collisions and crossing angles in RHIC

    International Nuclear Information System (INIS)

    Peggs, S.

    1999-01-01

    This paper evaluates the strength of head on and parasitic beam-beam collisions in RHIC when the crossing angle is zero. A non-zero crossing angle is not required in normal operation with 120 bunches, thanks to the early separation of the two beams. The RHIC lattice is shown to easily accommodate even conservatively large crossing angles, for example in beam dynamics studies, or in future operational upgrades to as many as 360 bunches per ring. A modest loss in luminosity is incurred when gold ions collide at an angle after 10 hours of storage

  11. Exploring new frontiers in nuclear and particle physics with the STAR detector at RHIC

    International Nuclear Information System (INIS)

    Hallman, T.J.

    1996-01-01

    The Solenoidal Tracker At RHIC (STAR) is a large acceptance collider detector scheduled to begin operation at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory in the fall of 1999. In the sections which follow, details of the STAR detector and physics program, as well as the status of the RHIC construction project will be presented

  12. Report of the stochastic cooling subgroup of the RHIC workshop

    International Nuclear Information System (INIS)

    Boussard, D.; Claus, J.; DiMassa, G.; Marriner, J.; Milutinovic, J.; Shafer, R.

    1988-01-01

    We have considered the possibility of stochastic cooling of beams for the RHIC collider. Similar studies have been carried out previously for RHIC and other bunched beam proton machines. The major motivation for cooling at RHIC is to stabilize the growth from intrabeam scattering. We find that cooling rates of the order of 500 sec are theoretically possible for beams of gold ions with γ = 100 if a cooling bandwidth of 10 GHz is used. However, the amount of microwave power which is required is large for momentum cooling and probably not practical. Considerably less power is required for slower rates. We believe that cooling times of 5000 sec for momentum cooling and 1000 sec for betatron cooling might be possible. 5 refs

  13. First turn around strategy for RHIC

    International Nuclear Information System (INIS)

    Milutinovic, J.; Ruggiero, A.G.

    1991-01-01

    The authors present a strategy for achieving the so-called first turn around in RHIC. The strategy is based on the same method proposed to correct a distorted closed orbit in RHIC, i.e. on a generalization of the local three-bump method. They found out that the method is very effective in passing the beam through a non-ideal, insufficiently known, machine. The perturbed lattice was generated by the code PATRIS, which was also adapted to control the newly developed software. In ten distributions of errors the software was capable of passing the beam through in 2-3 injection attempts, at full sextupole strength. It was also determined that once the beam makes the first turn around and all the correctors are energized, it stays in the machine for at least several hundred turns

  14. ERL with non-scaling fixed field alternating gradient lattice for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hao, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Thieberger, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The proposed eRHIC electron-hadron collider uses a "non-scaling FFAG" (NS-FFAG) lattice to recirculate 16 turns of different energy through just two beam lines located in the RHIC tunnel. This paper presents lattices for these two FFAGs that are optimized for low magnet field and to minimize total synchrotron radiation across the energy range. The higher number of recirculations in the FFAG allows a shorter linac (1.322GeV) to be used, drastically reducing cost, while still achieving a 21.2 GeV maximum energy to collide with one of the existing RHIC hadron rings at up to 250GeV. eRHIC uses many cost-saving measures in addition to the FFAG: the linac operates in energy recovery mode, so the beams also decelerate via the same FFAG loops and energy is recovered from the interacted beam. All magnets will be constructed from NdFeB permanent magnet material, meaning chillers and large magnet power supplies are not needed. This paper also describes a small prototype ERL-FFAG accelerator that will test all of these technologies in combination to reduce technical risk for eRHIC.

  15. Workshop on the RHIC performance

    Energy Technology Data Exchange (ETDEWEB)

    Khiari, F.; Milutinovic, J.; Ratti, A.; Rhoades-Brown, M.J. (eds.)

    1988-07-01

    The most recent conceptual design manual for the Relativistic Heavy Ion Collider (RHIC) at Brookhaven was published in May 1986 (BNL 51932). The purpose of this workshop was to review the design specifications in this RHIC reference manual, and to discuss in detail possible improvements in machine performance by addressing four main areas. These areas are beam-beam interactions, stochastic cooling, rf and bunch instabilities. The contents of this proceedings are as follows. Following an overview of the workshop, in which the motivation and goals are discussed in detail, transcripts of the first day talks are given. Many of these transcripts are copies of the original transparencies presented at the meeting. The following four sections contain contributed papers, that resulted from discussions at the workshop within each of the four working groups. In addition, there is a group summary for each of the four working groups at the beginning of each section. Finally, a list of participants is given.

  16. Tau electron atoms at RHIC

    International Nuclear Information System (INIS)

    Weiss, M.S.

    1985-01-01

    An amusement ancillary to the proposed quark-gluon plasma production hypothesized from a relativistic heavy ion collider (RHIC is a sufficient quantity of tau electrons to potentially admit the study of its exotic atoms. In this paper the given wealth of nuclear phenomena is derived from muonic atoms assume a tau atom is more forthcoming of information due to the lower orbits entirely contained within the nucleus. It is the purpose of this brief note to discuss the production mechanism at a RHIC and to delineate some of the more obvious properties of the tau atom. As in the case of the mu, more exotic phenomena derived from resonance ''accidents'' with nuclear transitions takes place, but it would be presumptions to discuss them at this time. Given the complete containment in nuclear matter of the tau lepton in its innermost atomic orbits. An experiment performed with such an exotic species results in the measurement of its lifetime

  17. First results from RHIC-PHENIX

    CERN Document Server

    Ghosh, T K; Adler, S S; Ajitanand, N N; Akiba, Y; Alexander, J; Aphecetche, L; Arai, Y; Aronson, S H; Averbeck, R; Awes, T C; Barish, K N; Barnes, P D; Barrette, J; Bassalleck, B; Bathe, S; Baublis, V; Bazilevsky, A; Belikov, S V; Bellaiche, F G; Belyaev, S T; Bennett, M J; Berdnikov, Yu A; Botelho, S S; Brooks, M L; Brown, D S; Bruner, N L; Bucher, D; Büsching, H; Bunce, G M; Burward-Hoy, J M; Butsyk, S; Carey, T A; Chand, P; Chang, J; Chang, W C; Chavez, L L; Chernichenko, S K; Chi, C Y; Chiba, J; Chiu, M; Choudhury, R K; Christ, T; Chujo, T; Chung, M S; Chung, P; Cianciolo, V; Cole, B A; D'Enterria, D G; Dávid, G; Delagrange, H; Denisov, A; Deshpande, A A; Desmond, E J; Dietzsch, O; Dinesh, B V; Drees, A; Durum, A A; Dutta, D; Ebisu, K; Efremenko, Yu V; Chenawi, K E; En-Yo, H; Esumi, S C; Ewell, L A; Ferdousi, T; Fields, D E; Fokin, S L; Fraenkel, Zeev; Franz, A; Frawley, A D; Fung, S Y; Garpman, S; Ghosh, T K; Glenn, A; Godoi, A L; Goto, Y; Greene, S V; Grosse-Perdekamp, M; Gupta, S K; Guryn, W; Gustafsson, Hans Åke; Haggerty, J S; Hamagaki, H; Hansen, A G; Hara, H; Hartouni, E P; Havano, R; Hayashi, N; He, X; Hemmick, T K; Heuser, J M; Hill, J C; Ho, D S; Homma, K; Hong, B; Hoover, A; Ichihara, T; Imai, K; Ippolitov, M S; Ishihara, M; Jacak, B V; Jang, W Y; Jia, J; Johnson, B M; Johnson, S C; Joo, K S; Kametani, S; Kang, J H; Kann, M; Kapoor, S S; Kelly, S; Khachaturov, B A; Khanzadeev, A V; Kikuchi, J; Kim, D J; Kim, H J; Kim, S Y; Kim, Y G; Kinnison, W W; Kistenev, E P; Kiyomichi, A; Klein-Bösing, C; Klinksiek, S A; Kochenda, L M; Kochetkov, D; Kochetkov, V; Köhler, D; Kohama, T; Kozlov, A; Kroon, P J; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R A; Lajoie, J G; Lauret, J; Lebedev, A; Lee, D M; Leitch, M J; Li, X H; Li, Z; Lim, D J; Liu, M X; Liu, X; Liu, Z; Maguire, C F; Mahon, J; Makdisi, Y I; Man'ko, V I; Mao, Y; Mark, S K; Markacs, S; Martínez, G; Marx, M D; Massaike, A; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E A; Merschmeyer, M; Messer, F; Messer, M; Miake, Y; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Muhlbacher, F; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagasaka, Y; Nagle, J L; Nakada, Y; Nandi, B K; Newby, J; Nikkinen, L; Nilsson, P O; Nishimura, S; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Ono, M; Onuchin, V A; Oskarsson, A; Österman, L; Otterlund, I; Oyama, K; Paffrath, L; Palounek, A P T; Pantuev, V S; Papavassiliou, V; Pate, S F; Peitzmann, Thomas; Petridis, A N; Pinkenburg, C H; Pisani, R P; Pitukhin, P; Plasil, F; Pollack, M E; Pope, K; Purschke, M L; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Rosati, M; Rose, A A; Ryu, S S; Saitô, N; Sakaguchi, A; Sakaguchi, T; Sako, H; Sakuma, T; Samsonov, V; Sangster, T C; Santo, R; Sato, H D; Sato, S; Sawada, S; Schlei, B R; Schutz, Y; Semenov, V; Seto, R; Shea, T K; Shein, I; Shibata, T A; Shigaki, K; Shiina, T; Shin, Y H; Sibiryak, Yu; Silvermyr, D; Sim, K S; Simon-Gillo, J; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sørensen, S; Stankus, P W; Starinsky, N; Steinberg, P; Stenlund, E; Ster, A; Stoll, S P; Sugioka, M; Sugitate, T; Sullivan, J P; Sumi, Y; Sun, Z; Suzuki, M; Takagui, E M; Taketani, A; Tamai, M; Tanaka, Y; Taniguchi, E; Tannenbaum, M J; Thomas, J; Thomas, J H; Thomas, T L; Tian, W; Tojo, J; Torii, H A; Towell, R S; Tserruya, Itzhak; Tsuruoke, H; Tsvetkov, A A; Tuli, S K; Tydesjo, H; Tyurin, N; Ushiroda, T; van Hecke, H; Velissaris, C; Velkovska, J; Velkovsky, M; Vingradov, A A; Volkov, M A; Vorobyov, A A; Vznuzdaev, E A; Wang, H; Watanabe, Y; White, S N; Witzig, C; Wohn, F K; Woody, C L; Xie, W; Yagi, K; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, Z; Zhou, S

    2001-01-01

    The PHENIX experiment consists of a large detector system located at the newly commissioned Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory. The primary goal of the PHENIX experiment is to look for signatures of the QCD prediction of a deconfined high-energy-density phase of nuclear matter and the quark gluon plasma. PHENIX started taking data for Au+Au collisions at square root (s/sub NN/)=130 GeV in June 2000. The signals from the beam-beam counter (BBC) and zero degree calorimeter (ZDC) are used to determine the centrality of the collision. A Glauber model reproduces the ZDC spectrum reasonably well to determine the participants in a collision. The charged particle multiplicity distribution from the first PHENIX paper is compared with the other RHIC experiment and the CERN and SPS results. Transverse momentum of photons are measured in the electro-magnetic calorimeter (EMCal) and preliminary results an presented. Particle identification is made by a time-of-flight (TOF) detecto...

  18. Polarized proton acceleration program at the AGS and RHIC

    International Nuclear Information System (INIS)

    Lee, Y.Y.

    1995-01-01

    Presented is an overview of the program for acceleration of polarized protons in the AGS and their injection into the RHIC collider. The problem of depolarizing resonances in strong focusing circulator accelerators is discussed. The intrinsic resonances are jumped over by the fast tune jump, and a partial Siberian Snake is used to compensate for over forty imperfection resonances in the AGS. Two sets of full Siberian Snake and spin rotators will be employed in RHIC

  19. Laser ion source with long pulse width for RHIC-EBIS

    International Nuclear Information System (INIS)

    Kondo, K.; Kanesue, T.; Okamura, M.

    2011-01-01

    The Electron Beam Ion Source (EBIS) at Brookhaven National Laboratory is a new heavy ion-projector for RHIC and NASA Space Radiation Laboratory. Laser Ion Source (LIS) with solenoid can supply many kinds of ion from solid targets and is suitable for long pulse length with low current as ion provider for RHIC-EBIS. In order to understand a plasma behavior for fringe field of solenoid, we measure current, pulse width and total ion charges by a new ion probe. The experimental result indicates that the solenoid confines the laser ablation plasma transversely. Laser ion source needs long pulse length with limited current as primary ion provider for RHIC-EBIS. New ion probe can measure current distribution for the radial positions along z axis. The beam pulse length is not effected by magnetic field strength. However, the currents and charges decay with the distance from the end of solenoid. These results indicate that solenoid field has important role for plasma confinement not longitudinally but transversely and solenoid is able to have long pulse length with sufficient total ion charges. Moreover, the results are useful for a design of the extraction system for RHIC-EBIS.

  20. RHIC ABORT KICKER WITH REDUCED COUPLING IMPEDANCE

    International Nuclear Information System (INIS)

    HAHN, H.; DAVINO, D.

    2002-01-01

    Kicker magnets typically represent the most important contributors to the transverse impedance budget of accelerators and storage rings. Methods of reducing the impedance value of the SNS extraction kicker presently under construction and, in view of a future performance upgrade, that of the RHIC abort kicker have been thoroughly studied at this laboratory. In this paper, the investigation of a potential improvement from using ferrite different from the BNL standard CMD5005 is reported. Permeability measurements of several ferrite types have been performed. Measurements on two kicker magnets using CMD5005 and C2050 suggest that the impedance of a magnet without external resistive damping, such as the RHIC abort kicker, would benefit

  1. Magnetic field of a dipole and the dipole-dipole interaction

    International Nuclear Information System (INIS)

    Kraftmakher, Yaakov

    2007-01-01

    With a data-acquisition system and sensors commercially available, it is easy to determine magnetic fields produced by permanent magnets and to study the dipole-dipole interaction for different separations and angular positions of the magnets. For sufficiently large distances, the results confirm the 1/R 3 law for the magnetic field and the 1/R 4 law for the interaction force between two dipoles, as well as their angular dependences

  2. Report on EBIS studies for a RHIC preinjector

    International Nuclear Information System (INIS)

    Beebe, E.; Hershcovitch, A.; Kponou, A.; Prelec, K.; Alessi, J.

    1995-01-01

    Bookhaven, an Electron Beam Ion Source (EBIS) is now operational. This source is being used as a test bed to answer questions relevant to the eventual design of an EBIS-based heavy ion injector for RHIC. Such a source can easily produce ions such as Au 43+ but the challenge lies in reaching intensities of interest for RHIC (3 x 10 9 particles/pulse). The source studies are planned to address issues such as scaling of the electron beam to 10 A, possible onset (and control) of instabilities, ion injection, and parametric studies of output emittance

  3. High density matter at RHIC

    Indian Academy of Sciences (India)

    QCD predicts a phase transition between hadronic matter and a quark-gluon plasma at high energy density. The relativistic heavy ion collider (RHIC) at Brookhaven National Laboratory is a new facility dedicated to the experimental study of matter under extreme conditions. Already the first round of experimental results at ...

  4. SCHOTTKY MEASUREMENTS DURING RHIC 2000

    International Nuclear Information System (INIS)

    CAMERON, P.; CUPOLO, J.; DEGEN, C.; HAMMONS, L.; KESSELMAN, M.; LEE, R.; MEYER, A.; SIKORA, R.

    2001-01-01

    The 2GHz Schottky system was a powerful diagnostic during RHIC 2000 commissioning. A continuous monitor without beam excitation, it provided betatron tune, chromaticity, momentum spread relative emittance, and synchrotron tune. It was particularly useful during transition studies. In addition, a BPM was resonated at 230MHz for Schottky measurements

  5. NUMERICAL STUDIES OF THE FRICTION FORCE FOR THE RHIC ELECTRON COOLER

    International Nuclear Information System (INIS)

    FEDOTOV, A.V.; BEN-ZVI, I.; LITVINENKO, V.

    2005-01-01

    Accurate calculation of electron cooling times requires an accurate description of the dynamical friction force. The proposed RHIC cooler will require ∼55 MeV electrons, which must be obtained from an RF linac, leading to very high transverse electron temperatures. A strong solenoid will be used to magnetize the electrons and suppress the transverse temperature, but the achievable magnetized cooling logarithm will not be large. In this paper, we explore the magnetized friction force for parameters of the RHIC cooler, using the VORPAL code [l]. VORPAL can simulate dynamical friction and diffusion coefficients directly from first principles [2]. Various aspects of the fiction force are addressed for the problem of high-energy electron cooling in the RHIC regime

  6. Illuminating RHIC matter with the multi-purpose direct photon

    International Nuclear Information System (INIS)

    Frantz, Justin

    2007-01-01

    In the RHIC era, the use of direct photon physics to probe heavy ion collisions has developed beyond its original scope. I make evaluations of the current state of several measurements by RHIC experiments and their associated physics implications, with a focus on their current and desired precision. At low p T , thermal photon theory is still not well constrained by the data, but improvements are on the way. At higher p T , we have been able to gain important insights, now with regards to the proposed 'jet-medium' photon sources (Fries, Muller and Srivastava 2003 Phys. Rev. Lett. 90 132301 (Preprint nucl-th/0208001); Zakharov 2004 JETP Lett. 80 617). Such predictions, as they currently exist, seem to be disfavoured by the PHENIX data; however, the idea is probably not ruled out. Finally, direct γ-jet correlations have been measured for the first time at RHIC and already show hints of medium modification

  7. MEASURING LOCAL GRADIENT AND SKEW QUADRUPOLE ERRORS IN RHIC IRS

    International Nuclear Information System (INIS)

    CARDONA, J.; PEGGS, S.; PILAT, R.; PTITSYN, V.

    2004-01-01

    The measurement of local linear errors at RHIC interaction regions using an ''action and phase'' analysis of difference orbits has already been presented [2]. This paper evaluates the accuracy of this technique using difference orbits that were taken when known gradient errors and skew quadrupole errors were intentionally introduced. It also presents action and phase analysis of simulated orbits when controlled errors are intentionally placed in a RHIC simulation model

  8. Helical spin rotators and snakes for RHIC

    International Nuclear Information System (INIS)

    Ptitsin, V.I.; Shatunov, Yu.M.; Peggs, S.

    1995-01-01

    The RHIC collider, now under construction at BNL, will have the possibility of polarized proton-proton collisions up to a beam energy of 250 Gev. Polarized proton beams of such high energy can be only obtained with the use of siberian snakes, a special kind of spin rotator that rotates the particle spin by 180 degree around an axis lying in the horizontal plane. Siberian snakes help to preserve the beam polarization while numerous spin depolarizing resonances are crossed, during acceleration. In order to collide longitudinally polarized beams, it is also planned to install spin rotators around two interaction regions. This paper discusses snake and spin rotator designs based on sequences of four helical magnets. The schemes that were chosen to be applied at RHIC are presented

  9. Linear fixed-field multipass arcs for recirculating linear accelerators

    Directory of Open Access Journals (Sweden)

    V. S. Morozov

    2012-06-01

    Full Text Available Recirculating linear accelerators (RLA’s provide a compact and efficient way of accelerating particle beams to medium and high energies by reusing the same linac for multiple passes. In the conventional scheme, after each pass, the different energy beams coming out of the linac are separated and directed into appropriate arcs for recirculation, with each pass requiring a separate fixed-energy arc. In this paper we present a concept of an RLA return arc based on linear combined-function magnets, in which two and potentially more consecutive passes with very different energies are transported through the same string of magnets. By adjusting the dipole and quadrupole components of the constituting linear combined-function magnets, the arc is designed to be achromatic and to have zero initial and final reference orbit offsets for all transported beam energies. We demonstrate the concept by developing a design for a droplet-shaped return arc for a dogbone RLA capable of transporting two beam passes with momenta different by a factor of 2. We present the results of tracking simulations of the two passes and lay out the path to end-to-end design and simulation of a complete dogbone RLA.

  10. Verification of the high temperature phase by the electron pair measurement at RHIC

    International Nuclear Information System (INIS)

    Akiba, Yasuyuki

    2013-01-01

    At the high energy nuclear collisions of the RHIC accelerator, the high density parton materials are created. If the matter is the quark gluon plasma (QGP) in the high temperature phase of the QCD, thermal photons are expected to be to be radiated there. The direct photon production from the gold + gold collision reactions at RHIC has been measured by using the 'virtual photon method'. In the gold + gold collisions, very many photons are produced compared with the p + p collisions. The production of the excess direct photons approximately agrees with the theoretical prediction of the thermal photon production from the initial temperature from 300 to 600 MeV QGP. In the present explanatory text, the direct photon measurements at the RHENIX experiments of RHIC are described starting from the discovery of high density matter by RHIC. The photon measurements which give direct evidence of the high temperature state and the virtual photon measurement method are reported briefly. The measurements of the direct photons and the estimation of the initial temperature at RHIC are described in detail with illustrations. Finally, some recent results are added and the ALICE experiments of LHC are referred. (S. Funahashi)

  11. Re-visiting RHIC snakes: OPERA fields, n0 dance

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gupta, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-09-22

    In this Tech. Note RHIC snakes and stable spin direction $\\vector{n}$0(s) are re-visited, based on OPERA-computed field maps of the former. The numerical simulations so undertaken provide various outcomes regarding RHIC optics and spin dynamics, in relation with orbital and focusing effects resulting from the use of this realistic 3-D representation of the snakes.

  12. RHIC beam position monitor assemblies

    International Nuclear Information System (INIS)

    Cameron, P.R.; Grau, M.C.; Ryan, W.A.; Shea, T.J.; Sikora, R.E.

    1993-01-01

    Design calculations, design details, and fabrication techniques for the RHIC BPM Assemblies are discussed. The 69 mm aperture single plane detectors are 23 cm long short-circuited 50 ohm strip transmission lines subtending 80 degrees. They are mounted on the sextupole end of the Corrector-Quadrupole-Sextupole package and operate at liquid helium temperature. The 69 cm aperture was selected to be the same as that of the beampipe in the CQS package, the 23 cm length is a compromise between mechanical stability and electrical sensitivity to the long low-intensity proton and heavy ion bunches to be found in RHIC during commissioning, and the 80 degree subtended angle maximizes linear aperture. The striplines are aligned after brazing to maintain electrical-to-mechanical centers within 0.1 mm radius, eliminating the need for individual calibration. Because the cryogenic feedthrus isolate the UHV beam vacuum only from the HV insulating vacuum, and do not see liquid helium, a replaceable mini-ConFlat design was chosen to simplify fabrication, calibration, and maintenance

  13. RHIC Beam Position Monitor Assemblies

    International Nuclear Information System (INIS)

    Cameron, P.R.; Grau, M.C.; Ryan, W.A.; Shea, T.J.; Sikora, R.E.

    1993-01-01

    Design calculations, design details, and fabrication techniques for the RHIC BPM Assemblies are discussed. The 69 mm aperture single plane detectors are 23 cm long short-circuited 50 ohm strip transmission lines subtending 80 degrees. They are mounted on the sextupole end of the Corrector-Quadrupole-Sextupole package and operate at liquid helium temperature. The 69 cm aperture was selected to be the same as that of the beampipe in the CQS package, dc 23 cm length is a compromise between mechanical stability and electrical sensitivity to the long low-intensity proton and heavy ion bunches to be found in RHIC during commissioning, and the 80 degree subtended angle maximizes linear aperture. The striplines are aligned after brazing to maintain electrical-to-mechanical centers within 0.1 mm radius, eliminating the need for individual calibration. Because the cryogenic feedthrus isolate the UHV beam vacuum only from the HV insulating vacuum, and do not see liquid helium, a replaceable mini-ConFlat design was chosen to simplify fabrication, calibration, and maintenance

  14. UP-GRADED RHIC INJECTION SYSTEM.

    Energy Technology Data Exchange (ETDEWEB)

    HAHN,H.FISCHER,W.SEMERTZIDIS,Y.K.WARBURTON,D.S.

    2003-05-12

    The design of the RHIC injection systems anticipated the possibility of filling and operating the rings with a 120 bunch pattern, corresponding to 110 bunches after allowing for the abort gap. Beam measurements during the 2002 run confirmed the possibility, although at the expense of severe transverse emittance growth and thus not on an operational basis. An improvement program was initiated with the goal of reducing the kicker rise time from 110 to {approx}95 ns and of minimizing pulse timing jitter and drift. The major components of the injection system are 4 kicker magnets and Blmlein pulsers using thyratron switches. The kicker terminating resistor and operating voltage was increased to reduce the rise time. Timing has been stabilized by using commercial trigger units and extremely stable dc supplies for the thyratron reservoir. A fiber optical connection between control room and the thyratron trigger unit has been provided, thereby allowing the operator to adjust timing individually for each kicker unit. The changes were successfully implemented for use in the RHIC operation.

  15. Experimental overview on small colliding systems at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Stankus, Paul

    2016-12-15

    Beginning with the observation of ridge/flow-like features in pair correlations measurements in p+Pb, d+Au and high-density p+p events at RHIC and LHC, the last few years have seen a great surge of interest in the question of whether anything like a hot, locally-equilibrated QCD medium is formed in the small systems at collider energies. Many intriguing and suggestive results have been presented, but conclusions about medium formation must be approached with care. This presentation will attempt to summarize the experimental results from small colliding systems measured at RHIC, as part of a careful and objective evaluation of this question.

  16. Test results on the long models and full scale prototypes of the second generation LHC arc dipoles

    CERN Document Server

    Billan, J; Bottura, L; Leroy, D; Pagano, O; Perin, R; Perini, D; Savary, F; Siemko, A; Sievers, P; Spigo, G; Vlogaert, J; Walckiers, L; Wyss, C; Rossi, L

    1999-01-01

    With the test of the first full scale prototype in June-July 1998, the R&D on the long superconducting dipoles based on the LHC design of 1993-95 has come to an end. This second generation of long magnets has a 56 mm coil aperture, is wound with 15 mm wide cable arranged in a 5 coil block layout. The series includes four 10 m long model dipoles, whose coils have been wound and collared in industry and the cold mass assembled and cryostated at CERN, as well as one 15 m long dipole prototype, manufactured totally in industry in the framework of a CERN-INFN collaboration for the LHC. After a brief description of particular features of the design and of the manufacturing, test results are reported and compared with the expectations. One magnet reached the record field for long model dipoles of 9.8 T but results have not been well reproducible from magnet to magnet. Guidelines for modifications that will appear in the next generation of long magnets, based on a six block coil design, are indicated in the concl...

  17. Production of quarkonia at RHIC

    Czech Academy of Sciences Publication Activity Database

    Vértési, Robert

    2016-01-01

    Roč. 31, 28-29 (2016), č. článku 1645036. ISSN 0217-751X R&D Projects: GA ČR GA13-20841S Institutional support: RVO:61389005 Keywords : Brookhaven RHIC Coll * quark onium: heavy * quark onium: production * quark gluon: plasma Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.597, year: 2016

  18. The Electron-Cloud Effect in the Arcs of the LHC

    CERN Document Server

    Furman, M A

    1998-01-01

    We present an update of our estimates for the power deposition arising from the electron-cloud effect in the dipole bending magnets in the arcs of the LHC. In addition, we present the estimate of the power deposition in the field-free regions in the arcs. We hold the number of particles per bunch and the bunch spacing fixed at their nominal values, and we assume throughout a high photon reflectivi ty. We explore the dependence of the power deposition on the photoelectric efficiency and on secondary emission yield parameters. We find a marked sensitivity to parameters that characterize secondary emission on the scale of 5 - 10 eV.

  19. Ferrite HOM Absorber for the RHIC ERL

    Energy Technology Data Exchange (ETDEWEB)

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  20. Elliptic flow and incomplete equilibration at RHIC

    CERN Document Server

    Bhalerao, R S; Borghini, N; Ollitrault, Jean Yves

    2005-01-01

    We argue that RHIC data, in particular those on the anisotropic flow coefficients v_2 and v_4, suggest that the matter produced in the early stages of nucleus-nucleus collisions is incompletely thermalized. We interpret the parameter (1/S)(dN/dy), where S is the transverse area of the collision zone and dN/dy the multiplicity density, as an indicator of the number of collisions per particle at the time when elliptic flow is established, and hence as a measure of the degree of equilibration. This number serves as a control parameter which can be varied experimentally by changing the system size, the centrality or the beam energy. We provide predictions for Cu-Cu collisions at RHIC as well as for Pb-Pb collisions at the LHC.

  1. Dipole-dipole interaction of dust grains in plasmas

    International Nuclear Information System (INIS)

    Tskhakaya, D.D.; Shukla, P.K.

    2005-01-01

    Complete screening of the negative dust grain charge by a cloud of trapped ions in plasmas is investigated. In the external electric field, the compound dust particle - 'dust grain + ion cloud' acquires a dipole moment due to displacement of the centers of positive and negative charges in the opposite directions. By analogy to the Van der Waals potential, the dipole-dipole interaction of the compound dust particles can have an attractive behavior. It is shown that the dipole-dipole attractive force can exceed the shadowing force that is connected with the reciprocal interception of ions by the neighboring dust grains

  2. Open Heavy Flavor and Quarkonia Results at RHIC

    Science.gov (United States)

    Nouicer, Rachid

    2017-12-01

    RHIC experiments carry out a comprehensive physics program which studies open heavy flavor and quarkonium production in relativistic heavy-ion collisions. The discovery at RHIC of large high-pT suppression and flow of electrons from heavy quarks flavors have altered our view of the hot and dense matter formed in central Au + Au collisions at GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. In recent years, the RHIC experiments upgraded the detectors; (1) PHENIX Collaboration installed silicon vertex tracker (VTX) at mid-rapidity region and forward silicon vertex tracker (FVTX) at the forward rapidity region, and (2) STAR Collaboration installed the heavy flavor tracker (HFT) and the muon telescope detector (MTD) both at the mid-rapidity region. With these new upgrades, both experiments have collected large data samples. These new detectors enhance the capability of heavy flavor measurements via precision tracking. The PHENIX experiments established measurements of ψ(1S) and ψ(2S) production as a function of system size, p + p, p + Al, p + Au, and 3He + Au collisions at GeV. In p/3He + A collisions at forward rapidity, we observe no difference in the ψ(2S)/ψ(1S) ratio relative to p + p collisions. At backward rapidity, where the comoving particle density is higher, we find that the ψ(2S) is preferentially suppressed by a factor of two. STAR Collaboration presents the first J/ψ and ϒ measurements in the di-muon decay channel in Au + Au collisions at GeV at mid-rapidity at RHIC. We observe clear J/ψ RAA suppression and qualitatively well described by transport models simultaneously accounting for dissociation and regeneration processes.

  3. Open Heavy Flavor and Quarkonia Results at RHIC

    Directory of Open Access Journals (Sweden)

    Nouicer Rachid

    2017-01-01

    Full Text Available RHIC experiments carry out a comprehensive physics program which studies open heavy flavor and quarkonium production in relativistic heavy-ion collisions. The discovery at RHIC of large high-pT suppression and flow of electrons from heavy quarks flavors have altered our view of the hot and dense matter formed in central Au + Au collisions at SNN=200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. In recent years, the RHIC experiments upgraded the detectors; (1 PHENIX Collaboration installed silicon vertex tracker (VTX at mid-rapidity region and forward silicon vertex tracker (FVTX at the forward rapidity region, and (2 STAR Collaboration installed the heavy flavor tracker (HFT and the muon telescope detector (MTD both at the mid-rapidity region. With these new upgrades, both experiments have collected large data samples. These new detectors enhance the capability of heavy flavor measurements via precision tracking. The PHENIX experiments established measurements of ψ(1S and ψ(2S production as a function of system size, p + p, p + Al, p + Au, and 3He + Au collisions at SNN=200 GeV. In p/3He + A collisions at forward rapidity, we observe no difference in the ψ(2S/ψ(1S ratio relative to p + p collisions. At backward rapidity, where the comoving particle density is higher, we find that the ψ(2S is preferentially suppressed by a factor of two. STAR Collaboration presents the first J/ψ and ϒ measurements in the di-muon decay channel in Au + Au collisions at SNN=200 GeV at mid-rapidity at RHIC. We observe clear J/ψ RAA suppression and qualitatively well described by transport models simultaneously accounting for dissociation and regeneration processes.

  4. Relativistic nucleus-nucleus collisions: from the BEVALAC to RHIC

    International Nuclear Information System (INIS)

    Stock, Reinhard

    2004-01-01

    I briefly describe the initial goals of relativistic nuclear collision research, focusing on the LBL Bevatron/Bevalac facility in the 1970s. An early concept of high hadronic density fireball formation, and subsequent isentropic decay (preserving information of the high-density stage), led to an outline of physics observables that could determine the nuclear matter equation of state at several times the nuclear ground state matter density. With the advent of QCD the goal of locating and characterizing the hadron-parton deconfinement phase transformation suggested the need for higher √s, the research thus shifting to the BNL AGS and CERN SPS, and finally to RHIC at BNL. A set of physics observables is discussed where present data span the entire √s domain, from Bevalac and SIS at GSI, to high RHIC energy. Referring, selectively, to data concerning bulk hadron production, the overall √s evolution of directed and radial flow observables, and of pion pair Bose-Einstein correlation is discussed. The hadronization process is studied in the grand canonical statistical model. The resulting hadronization points in the plane T versus μ B converge onto the parton-hadron phase boundary predicted by finite μ B lattice QCD, from high SPS to RHIC energy. At lower SPS and high AGS energy a steep strangeness maximum occurs at which the Wroblewski parameter λ s ∼ 0.6; a possible connection to the QCD critical point is discussed. Finally the unique new RHIC physics is addressed: high-p T hadron suppression and jet 'tomography'

  5. Design aspects of an electrostatic electron cooler for low-energy RHIC operation

    International Nuclear Information System (INIS)

    Fedotov, A.; Ben-Zvi, I.; Brodowski, J.; Chang, X.Y.; Gassner, D.; Hoff, L.; Kayran, D.; Kewisch, J.; Oerter, B.; Pendzick, A.; Tepikian, S.; Thieberger, P.; Prost, L.; Shemyakin, A.

    2011-01-01

    Electron cooling was proposed to increase the luminosity of the Relativistic Heavy Ion Collider (RHIC) operation for heavy ion beam energies below 10 GeV/nucleon. The electron cooling system needed should be able to deliver an electron beam of adequate quality in a wide range of electron beam energies (0.9-5 MeV). An option of using an electrostatic accelerator to produce electrons for cooling heavy ions in RHIC was evaluated in detail. In this paper, we describe the requirements and options which were considered in the design of such a cooler for RHIC, as well as the associated challenges. The expected luminosity improvement and limitations with such an electron cooling system are also discussed.

  6. Electromagnetic radiation from nuclear collisions at RHIC energies

    CERN Document Server

    Turbide, Simon; Frodermann, Evan; Heinz, Ulrich

    2008-01-01

    The hot and dense strongly interacting matter created in collisions of heavy nuclei at RHIC energies is modeled with relativistic hydrodynamics, and the spectra of real and virtual photons produced at mid-rapidity in these events are calculated. Several different sources are considered, and their relative importance is compared. Specifically, we include jet fragmentation, jet-plasma interactions, the emission of radiation from the thermal medium and from primordial hard collisions. Our calculations consistently take into account jet energy loss, as evaluated in the AMY formalism. We obtain results for the spectra, the nuclear modification factor (R_AA), and the azimuthal anisotropy (v_2) that agree with the photon measurements performed by the PHENIX collaboration at RHIC.

  7. Chromatic analysis and possible local chromatic correction in RHIC

    International Nuclear Information System (INIS)

    Luo, Y.; Fischer, W.; Gu, X.; Trbojevic, D.

    2011-01-01

    In this article we will answer the following questions for the RHIC polarized proton (p-p) and Au-Au run lattices: (1) what are the sources of second order chromaticities? (2) what is the dependence of second order chromaticity on the on-momentum β-beat? (3) what is the dependence of second order chromaticity on β* at IP6 and IP8? To answer these questions, we use the perturbation theory to numerically calculate the contributions of each quadrupole and sextupole to the first, second, and third order chromaticities. Possible local methods to reduce chromatic effects in RHIC ring are shortly discussed.

  8. Silicon drift-chamber studies for possible use at RHIC

    International Nuclear Information System (INIS)

    Humanic, T.J.

    1990-01-01

    It is proposed to continue the program now underway at the University of Pittsburgh to study the feasibility of using silicon drift-chambers as particle tracking devices at RHIC. We are currently testing a UA6-type detector obtained from BNL and plan to also study a new device that will become available this year: a cylindrical geometry detector designed for NA45 (CERN). In addition we propose to fabricate and study a detector to be used in vertex determination for the RHIC OASIS experiment. The two-year budget for this proposal is $246.962. 5 refs., 12 figs

  9. Linear Fixed-Field Multi-Pass Arcs for Recirculating Linear Accelerators

    International Nuclear Information System (INIS)

    Morozov, V.S.; Bogacz, S.A.; Roblin, Y.R.; Beard, K.B.

    2012-01-01

    Recirculating Linear Accelerators (RLA's) provide a compact and efficient way of accelerating particle beams to medium and high energies by reusing the same linac for multiple passes. In the conventional scheme, after each pass, the different energy beams coming out of the linac are separated and directed into appropriate arcs for recirculation, with each pass requiring a separate fixed-energy arc. In this paper we present a concept of an RLA return arc based on linear combined-function magnets, in which two and potentially more consecutive passes with very different energies are transported through the same string of magnets. By adjusting the dipole and quadrupole components of the constituting linear combined-function magnets, the arc is designed to be achromatic and to have zero initial and final reference orbit offsets for all transported beam energies. We demonstrate the concept by developing a design for a droplet-shaped return arc for a dog-bone RLA capable of transporting two beam passes with momenta different by a factor of two. We present the results of tracking simulations of the two passes and lay out the path to end-to-end design and simulation of a complete dog-bone RLA.

  10. Simulations of silicon vertex tracker for star experiment at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Odyniec, G.; Cebra, D.; Christie, W.; Naudet, C.; Schroeder, L.; Wilson, W. [Lawrence Berkeley Lab., CA (United States); Liko, D. [Institut fur Hochenenergiephysik, Vienna, (Austria); Cramer, J.; Prindle, D.; Trainor, T. [Univ. of Washington, Seattle (United States); Braithwaite, W. [Univ. of Arkansas, Little Rock (United States)

    1991-12-31

    The first computer simulations to optimize the Silicon Vertex Tracker (SVT) designed for the STAR experiment at RHIC are presented. The physics goals and the expected complexity of the events at RHIC dictate the design of a tracking system for the STAR experiment. The proposed tracking system will consist of a silicon vertex tracker (SVT) to locate the primary interaction and secondary decay vertices and to improve the momentum resolution, and a time projection chamber (TPC), positioned inside a solenoidal magnet, for continuous tracking.

  11. Identification of preferred dipole design options and cost estimates: Deliverable D5.2

    CERN Document Server

    Tommasini, Davide

    2017-01-01

    This document contains a description of the preferred 16 Tesla dipole magnet baseline design with its expected performances. The document also includes an analysis of the individual merits and risks of the different, initial design options and gives a justification for the selection of the baseline design. The deliverable includes expected field levels, field errors and a cost estimate, which serve as input for the arc design consolidation.

  12. Intra-beam Scattering Theory and RHIC Experiments

    International Nuclear Information System (INIS)

    Wei, J.; Fedotov, A.; Fischer, W.; Malitsky, N.; Parzen, G.; Qiang, J.

    2005-01-01

    Intra-beam scattering is the leading mechanism limiting the luminosity in heavy-ion storage rings like the Relativistic Heavy Ion Collider (RHIC). The multiple Coulomb scattering among the charged particles causes transverse emittance growth and longitudinal beam de-bunching and beam loss, compromising machine performance during collision. Theoretically, the original theories developed by Piwinski, Bjorken, and Mtingwa only describe the rms beam size growth of an unbounded Gaussian distribution. Equations based on the Fokker-Planck approach are developed to further describe the beam density profile evolution and beam loss. During the 2004 RHIC heavy-ion operation, dedicated IBS experiments were performed to bench-mark the rms beam size growth, beam loss, and profile evolution both for a Gaussian-like and a longitudinal hollow beam. This paper summarizes the IBS theory and discusses the experimental bench-marking results

  13. Transverse energy production at RHIC

    International Nuclear Information System (INIS)

    Sahoo, Raghunath

    2006-01-01

    The quest for understanding of the possible formation and existence of the quark-gluon plasma (Qp), the deconfined phase of quarks and gluons, has been a major area of research in high energy nuclear physics. High energy nuclear collisions at the Relativistic Heavy Ion Collider (RHIC) has opened a new domain for the exploration of strongly interacting matter at very high energy density and temperature

  14. Nuclear Effects on Heavy Boson Production at RHIC and LHC

    CERN Document Server

    Zhang, X; Zhang, Xiaofei; Fai, George

    2002-01-01

    We predict W and Z transverse momentum distributions from proton-proton and nuclear collisions at RHIC and LHC. A resummation formalism with power corrections to the renormalization group equations is used. The dependence of the resummed QCD results on the non-perturbative input is very weak for the systems considered. Shadowing effects are discussed and found to be unimportant at RHIC, but important for LHC. We study the enhancement of power corrections due to multiple scattering in nuclear collisions and numerically illustrate the weak effects of the dependence on the nuclear mass.

  15. Cold matter effects and quarkonium production at RHIC and LHC

    Energy Technology Data Exchange (ETDEWEB)

    Dos Santos, G. S.; Mariotto, C. B. [Instituto de Matematica, Estatistica e Fisica, Universidade Federal do Rio Grande, Caixa Postal 474, CEP 96203-900, Rio Grande, RS (Brazil); Goncalves, V. P. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-090, Pelotas, RS (Brazil)

    2013-03-25

    In this work we investigate two cold matter effects in J/{Psi} and {Upsilon} production in nuclear collisions at RHIC and LHC, namely the shadowing effect and nuclear absorption. We characterize these effects by estimating the rapidity dependence of some nuclear ratios in pA and AA collisions at RHIC and LHC, R{sub pA} = d{sigma}{sub pA}(J/{Psi},{Upsilon})/Ad{sigma}{sub pp}(J/{Psi},{Upsilon}) and R{sub AA} = d{sigma}{sub AA}(J/{Psi},{Upsilon})/A{sup 2}d{sigma}{sub pp}(J/{Psi},{Upsilon}).

  16. Azimuthal anisotropy at RHIC: The first and fourth harmonics

    International Nuclear Information System (INIS)

    Adams, J.; Adler, C.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Badyal, S.K.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellwied, R.; Berger, J.; Bezverkhny, B.I.; Bhardwaj, S.; Bhaskar, P.; Bhati, A.K.; Bichsel, H.; Billmeier, A.; Bland, L.C.; Blyth, C.O.; Bonner, B.E.; Botje, M.; Boucham, A.; Brandin, A.; Bravar, A.; Cadman, R.V.; Cai, X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Carroll, J.; Castillo, J.; Castro, M.; Cebra, D.; Chaloupka, P.; Chattopadhyay, S.; Chen, H.F.; Chen, Y.; Chernenko, S.P.; Cherney, M.; Chikanian, A.; Choi, B.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cramer, J.G.; Crawford, H.J.; Das, D.; Das, S.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dubey, A.K.; Dunin, V.B.; Dunlop, J.C.; Dutta Majumdar, M.R.; Eckardt, V.; Efimov, L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faine, V.; Faivre, J.; Fatemi, R.; Filimonov, K.; Filip, P.; Finch, E.; Fisyak, Y.; Flierl, D.; Foley, K.J.; Fu, J.; Gagliardi, C.A.; Gagunashvili, N.; Gans, J.; Ganti, M.S.; Gaudichet, L.; Germain, M.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.E.; Grachov, O.; Grigoriev, V.; Gronstal, S.; Drosnick, D.; Guedon, M.; Guertin, S.M.; Gupta, A.; Gushin, E.; Hallman, T.J.; Hardtke, D.; Harris, J.W.; Heinz, M.; Henry, T.W.; Heppelmann, S.; Herston, T.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G.W.; Horsley, M.; Huang, H.Z.; Huang, S.L.; Humanic, T.J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W.W.; Janik, M.; Jiang, H.; Johnson, I.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kaneta, M.; Kaplan, M.; Keane, D.; Khodyrev, V.Yu.; Kiryluk, J.; Kisiel, A.; Klay, J.; Klein, S.R.; Klyachko, A.; Koetke, D.D.; Kollegger, T.; Kopytine, S.M.; Kotchenda, L.; Kovalenko, A.D.; Kramer, M.; Kravtsov, P.; Krueger, K.; Kuhn, C.; Kulikov, A.I.; Kumar, A.; et al.

    2004-01-01

    We report the first observations of the first harmonic (directed flow, v 1 ), and the fourth harmonic (v 4 ), in the azimuthal distribution of particles with respect to the reaction plane in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). Both measurements were done taking advantage of the large elliptic flow (v 2 ) generated at RHIC. From the correlation of v 2 with v 1 it is determined that v 2 is positive, or in-plane. The integrated v 4 is about a factor of 10 smaller than v 2 . For the sixth (v 6 ) and eighth (v 8 ) harmonics upper limits on the magnitudes are reported

  17. High-pT hadron spectra at RHIC: an overview

    International Nuclear Information System (INIS)

    Klay, Jennifer L

    2005-01-01

    Recent results on high transverse momentum (p T ) hadron production in p+p, d+Au and Au+Au collisions at the relativistic heavy-ion collider (RHIC) are reviewed. Comparison of the nuclear modification factors, R dAu (p T ) and R AA (p T ), demonstrates that the large suppression in central Au+Au collisions is due to strong final-state effects. Theoretical models which incorporate jet quenching via gluon bremsstrahlung in the dense partonic medium that is expected in central Au+Au collisions at ultra-relativistic energies are shown to reproduce the shape and magnitude of the observed suppression over the range of collision energies so far studied at RHIC

  18. Numerical Studies of the Friction Force for the RHIC Electron Cooler

    CERN Document Server

    Fedotov, Alexei V; Ben-Zvi, Ilan; Bruhwiler, David L; Busby, Richard; Litvinenko, Vladimir N; Schoessow, Paul

    2005-01-01

    Accurate calculation of electron cooling times requires an accurate description of the dynamical friction force. The proposed RHIC cooler will require ~55 MeV electrons, which must be obtained from an RF linac, leading to very high transverse electron temperatures. A strong solenoid will be used to magnetize the electrons and suppress the transverse temperature, but the achievable magnetized cooling logarithm will not be large. Available formulas for magnetized dynamical friction are derived in the logarithmic approximation, which is questionable in this regime. In this paper, we explore the magnetized friction force for parameters of the RHIC cooler, using the VORPAL code.* VORPAL can simulate dynamical friction and diffusion coefficients directly from first principles.** Various aspects of the friction force, such as dependence on magnetic field, scaling with ion charge number and others, are addressed for the problem of high-energy electron cooling in the RHIC regime.

  19. A high performance DAC/DDS daughter module for the RHIC LLRF platform

    International Nuclear Information System (INIS)

    Hayes, T.; Harvey, M.; Narayan, G.; Severino, F.; Smith, K.S.; Yuan, S.

    2011-01-01

    The RHIC LLRF upgrade is a flexible, modular system. Output signals are generated by a custom designed XMC card with 4 high speed digital to analog (DAC) converters interfaced to a high performance field programmable gate array (FPGA). This paper discusses the hardware details of the XMC DAC board as well as the implementation of a low noise rf synthesizer with digital IQ modulation. This synthesizer also provides injection phase cogging and frequency hop rebucketing capabilities. A new modular RHIC LLRF system was recently designed and commissioned based on custom designed XMC cards. As part of that effort a high speed, four channel DAC board was designed. The board uses Maxim MAX5891 16 bit DACs with a maximum update rate of 600 Msps. Since this module is intended to be used for many different systems throughout the Collider Accelerator complex, it was designed to be as generic as possible. One major application of this DAC card is to implement digital synthesizers to provide drive signals to the various cavities at RHIC. Since RHIC is a storage ring with stores that typically last many hours, extremely low RF noise is a critical requirement. Synchrotron frequencies at RHIC range from a few hertz to several hundred hertz depending on the species and point in the acceleration cycle so close in phase noise is a major concern. The RHIC LLRF system uses the Update Link, a deterministic, high speed data link that broadcasts the revolution frequency and the synchronous phase angle. The digital synthesizers use this data to generate a properly phased analog drive signal. The synthesizers must also provide smooth phase shifts for cogging and support frequency shift rebucketing. One additional feature implemented in the FPGA is a digital waveform generator (WFG) that generates I and Q data pairs based on a user selected amplitude and phase profile as a function of time.

  20. PROGRESS IN TUNE, COUPLING, AND CHROMATICITY MEASUREMENT AND FEEDBACK DURING RHIC RUN 7

    Energy Technology Data Exchange (ETDEWEB)

    CAMERON,P.; DELLAPENNA, A.; HOFF, L.; LUO, Y.; MARUSIC, A.; SCHULTHEISS, C.; TEPIKIAN, S.; ET AL.

    2007-06-25

    Tune feedback was first implemented in RHIC in 2002, as a specialist activity. The transition of the tune feedback system to full operational status was impeded by dynamic range problems, as well as by overall loop instabilities driven by large coupling. The dynamic range problem was solved by the CERN development of the Direct Diode Detection Analog Front End. Continuous measurement of all projections of the betatron eigenmodes made possible the world's first implementation of coupling feedback during beam acceleration, resolving the problem of overall loop instabilities. Simultaneous tune and coupling feedbacks were utilized as specialist activities for ramp development during the 2006 RHIC run. At the beginning of the 2007 RHIC run there remained two obstacles to making these feedbacks fully operational in RHIC - chromaticity measurement and control, and the presence of strong harmonics of the power line frequency in the betatron spectrum. We report on progress in tune, coupling, and chromaticity measurement and feedback, and discuss the relevance of our results to LHC commissioning.

  1. Monolithic readout circuits for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, P.; Harder, J. [Brookhaven National Laboratory, Upton, NY (United States)

    1991-12-31

    Several CMOS ASICs have been developed for a proposed RHIC experiment. This paper discusses why ASIC implementation was chosen for certain functions, circuit specifications and the design techniques used to meet them, and results of simulations and early prototypes. By working closely together from an early stage in the planning process, in-house ASIC designers and detector and data acquisition experimenters can achieve optimal use of this important technology.

  2. Monolithic readout circuits for RHIC

    International Nuclear Information System (INIS)

    O'Connor, P.; Harder, J.; Sippach, W.

    1991-10-01

    Several CMOS ASICs have been developed for a proposed RHIC experiment. This paper discusses why ASIC implementation was chosen for certain functions, circuit specifications and the design techniques used to meet them, and results of simulations and early prototypes. By working closely together from an early stage in the planning process, in-house ASIC designers and detector and data acquisition experimenters can achieve optimal use of this important technology

  3. ACOL dipoles

    International Nuclear Information System (INIS)

    Vlogaert, J.

    1987-01-01

    This paper describes the general design of ACOL dipoles, including the special injection area dipole. A list of mechanical, electrical and magnetic parameters and results of magnetic measurements are presented. Particular attention is paid to the proximity effects between quadrupoles and dipoles

  4. RHIC control system

    Energy Technology Data Exchange (ETDEWEB)

    Barton, D.S. E-mail: dsbarton@bnl.gov; Binello, S.; Buxton, W.; Clifford, T.; D' Ottavio, T.; Hartmann, H.; Hoff, L.T.; Katz, R.; Kennell, S.; Kerner, T.; Laster, J.; Lee, R.C.; Marusic, A.; Michnoff, R.; Morris, J.; Oerter, B.R.; Olsen, R.; Piacentino, J.; Skelly, J.F

    2003-03-01

    The RHIC control system architecture is hierarchical and consists of two physical layers with a fiber-optic network connection. The Front-End Level systems consist of VME chassis with processors running a real-time operating system and both VME I/O modules and remote bus interfaces. Accelerator device software interfaces are implemented as objects in C++. The network implementation uses high speed, switched Ethernet technology. Specialized hardware modules were built for waveform control of power supplies, multiplexed signal acquisition, and timing services. The Console Level systems are Unix workstations. A strong emphasis has been given to developing highly reusable, standard software tools for use in building physics and diagnostic application software.

  5. RHIC control system

    International Nuclear Information System (INIS)

    Barton, D.S.; Binello, S.; Buxton, W.; Clifford, T.; D'Ottavio, T.; Hartmann, H.; Hoff, L.T.; Katz, R.; Kennell, S.; Kerner, T.; Laster, J.; Lee, R.C.; Marusic, A.; Michnoff, R.; Morris, J.; Oerter, B.R.; Olsen, R.; Piacentino, J.; Skelly, J.F.

    2003-01-01

    The RHIC control system architecture is hierarchical and consists of two physical layers with a fiber-optic network connection. The Front-End Level systems consist of VME chassis with processors running a real-time operating system and both VME I/O modules and remote bus interfaces. Accelerator device software interfaces are implemented as objects in C++. The network implementation uses high speed, switched Ethernet technology. Specialized hardware modules were built for waveform control of power supplies, multiplexed signal acquisition, and timing services. The Console Level systems are Unix workstations. A strong emphasis has been given to developing highly reusable, standard software tools for use in building physics and diagnostic application software

  6. Coupled-resonator waveguide perfect transport single-photon by interatomic dipole-dipole interaction

    Science.gov (United States)

    Yan, Guo-an; Lu, Hua; Qiao, Hao-xue; Chen, Ai-xi; Wu, Wan-qing

    2018-06-01

    We theoretically investigate single-photon coherent transport in a one-dimensional coupled-resonator waveguide coupled to two quantum emitters with dipole-dipole interactions. The numerical simulations demonstrate that the transmission spectrum of the photon depends on the two atoms dipole-dipole interactions and the photon-atom couplings. The dipole-dipole interactions may change the dip positions in the spectra and the coupling strength may broaden the frequency band width in the transmission spectrum. We further demonstrate that the typical transmission spectra split into two dips due to the dipole-dipole interactions. This phenomenon may be used to manufacture new quantum waveguide devices.

  7. Heavy ion physics at BNL, the AGS and RHIC

    International Nuclear Information System (INIS)

    Lowenstein, D.I.

    1985-01-01

    The advent of heavy ion acceleration with the AGS at Brookhaven National Laboratory in 1986 and the proposed Relativistic Heavy Ion Collider (RHIC) for 1990 brings us into a temperature and density regime well above anything yet produced and into a time domain of the early universe of 10 -13 -10 -6 seconds. The physics of high energy heavy ions range from the more traditional nuclear physics to the formation of new forms of matter. Quantum Chromodynamics (QCD) is the latest, and as of yet, the most successful theory to describe the interaction of quarks and gluons. The nature of the confinement of the quarks and gluons under extremes of temperature and density is one of the compelling reasons for this new physics program at BNL. There are reasons to believe that with collisions of heavy nuclei at energies in the 10 to 100 GeV/amu range a very large volume of approx. 10 fm 3 would be heated to 200-300 MeV and/or acquire a sufficient quark density (5-10 times normal baryon density) so that the entire contents of the volume would be deconfined and the quarks and gluons would form a plasma. The kinematic region for the extant machines and the proposed RHIC are shown. At AGS energies the baryons in colliding nuclei bring each other to rest, yielding fragmentation regions of high baryon density. These are the regions in which supernorvae and neutrons stars exist. For energies much higher, such as in RHIC, nuclei are transparent to each other and one can form a central region of almost zero baryon density, mostly pions, and very high temperature. This is the region of the early universe and the quark-gluon plasma. Design parameters and cost of the RHIC are discussed

  8. PROCEEDINGS FROM RIKEN-BNL RESEARCH CENTER WORKSHOP: PARITY-VIOLATING SPIN ASYMMETRIES AT RHIC

    International Nuclear Information System (INIS)

    VOGELSANG, W.; PERDEKAMP, M.; SURROW, B.

    2007-01-01

    The RHIC spin program is now fully underway. Several runs have been successfully completed and are producing exciting first results. Luminosity and polarization have improved remarkably and promising advances toward the higher RHIC energy of √s = 500 GeV have been made. At this energy in particular, it will become possible to perform measurements of parity-violating spin asymmetries. Parity violation occurs in weak interactions, and in combination with the unique polarization capabilities at RHIC fascinating new opportunities arise. In particular, parity-violating single- and double-spin asymmetries give new insights into nucleon structure by allowing probes of up and down sea and anti-quark polarizations. Such measurements at RHIC are a DOE performance milestone for the year 2013 and are also supported by a very large effort from RIKEN. With transverse polarization, charged-current interactions may be sensitive to the Sivers effect. Parity-violating effects at RHIC have been proposed even as probes of physics beyond the Standard Model. With the era of measurements of parity-violating spin asymmetries at RHIC now rapidly approaching, we had proposed a small workshop that would bring together the main experts in both theory and experiment. We are very happy that this worked out. The whole workshop contained 17 formal talks, both experiment (10) and theory (7), and many fruitful discussions. The physics motivations for, the planned measurements were reviewed first. The RHIC machine prospects regarding polarized 500 GeV running were discussed, as well as the plans by the RHIC experiments for the vital upgrades of their detectors needed for the W physics program. We also had several talks on the topic of ''semi-inclusive deep-inelastic scattering'', which provides different access to related physics observables. On the theory side, new calculations were presented, for example in terms of QCD all-order resummations of perturbation theory. Also, new observables, such

  9. Status of the R and D Towards Electron Cooling of RHIC

    International Nuclear Information System (INIS)

    A. Favale; D. Holmes; J.J. Sredniawski; Hans Bluem; M.D. Cole; J. Rathke; T. Schultheiss; A.M.M. Todd; V.V. Parkhomchuk; V.B. Reva; J. Alduino; D.S. Barton; Dana Richard Beavis; I. Ben-Zvi; Michael Blaskiewicz; J.M. Brennan; Andrew Burrill; Rama Calaga; P. Cameron; X. Chang; K.A. Drees; A.V. Fedotov; W. Fischer; G. Ganetis; D.M. Gassner; J.G. Grimes; Hartmut Hahn; L.R. Hammons; A. Hershcovitch; H.C. Hseuh; D. Kayran; J. Kewisch; R.F. Lambiase; D.L. Lederle; Vladimir Litvinenko; C. Longo; W.W. MacKay; G.J. Mahler; G.T. McIntyre; W. Meng; B. Oerter; C. Pai; George Parzen; D. Pate; D. Phillips; S.R. Plate; Eduard Pozdeyev; Triveni Rao; J. Reich; Thomas Roser; A.G. Ruggiero; T. Russo; C. Schultheiss; Z. Segalov; J. Smedley; K. Smith; T. Tallerico; S. Tepikian; R. Than; R.J. Todd; Dejan Trbojevic; J.E. Tuozzolo; P. Wanderer; G. WANG; D. Weiss; Q. Wu; Kin Yip; A. Zaltsman; A. Burov; S. Nagaitsev; L.R. Prost; A.O. Sidorin; A.V. Smirnov; Yaroslav Derbenev; Peter Kneisel; John Mammosser; H. Phillips; Joseph Preble; Charles Reece; Robert Rimmer; Jeffrey Saunders; Mircea Stirbet; Haipeng Wang; A.V. Aleksandrov; D.L. Douglas; Y.W. Kang; D.T. Abell; G.I. Bell; David L. Bruhwiler; R. Busby; John R. Cary; D.A. Dimitrov; P. Messmer; Vahid Houston Ranjbar; D.S. Smithe; A.V. Sobol; P. Stoltz

    2007-01-01

    The physics interest in a luminosity upgrade of RHIC requires the development of a cooling-frontier facility. Detailed cooling calculations have been made to determine the efficacy of electron cooling of the stored RHIC beams. This has been followed by beam dynamics simulations to establish the feasibility of creating the necessary electron beam. Electron cooling of RHIC at collisions requires electron beam energy up to about 54 MeV at an average current of between 50 to 100 mA and a particularly bright electron beam. The accelerator chosen to generate this electron beam is a superconducting Energy Recovery Linac (ERL) with a superconducting RF gun with a laser-photocathode. An intensive experimental R and D program engages the various elements of the accelerator: Photocathodes of novel design, superconducting RF electron gun of a particularly high current and low emittance, a very high-current ERL cavity and a demonstration ERL using these components

  10. The heavy ion injection scheme for RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Rhoades-Brown, M.J.

    1989-01-01

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven has a multi-component injection system. The Collider requires very heavy ions such as 79 197 Au to be injected fully stripped of atomic electrons, at a kinetic energy of approximately 10 GeV/nucleon. However, the heavy ions are produced initially at a negative ion source and accelerated first in a 15 MV Tandem. These partially stripped ions have a kinetic energy of approximately 1 MeV/nucleon on leaving the Tandem. In order to achieve the injection requirements for RHIC, the partially stripped ions are accelerated in the Booster (currently under construction) and pass through a stripping foil on their way to the Alternating Gradient Synchrotron (AGS), where they are further accelerated before injection into RHIC. Recent theoretical calculations have shown quite convincingly that very heavy ions with 2 electrons in the filled K-shell may be accelerated with negligible loss in the AGS. 13 refs., 3 figs., 3 tabs

  11. Optimization of the Phase Advance Between RHIC Interaction Points

    CERN Document Server

    Tomas, Rogelio

    2005-01-01

    We consider the scenario of having two identical Interaction Points (IPs) in the Relativistic Heavy Ion Collider (RHIC). The strengths of beam-beam resonances strongly depend on the phase advance between these two IPs and therefore certain phase advances could improve beam lifetime and luminosity. We compute the dynamic aperture as function of the phase advance between these IPs to find the optimum settings. The beam-beam interaction is treated in the weak-strong approximation and a complete non-linear model of the lattice is used. For the current RHIC proton working point (0.69,0.685) the design lattice is found to have the optimum phase advance. However this is not the case for other working points.

  12. The effect and correction of coupling generated by the RHIC triplet quadrupoles

    International Nuclear Information System (INIS)

    Pilat, F.; Peggs, S.; Tepikian, S.; Trbojevic, D.; Wei, J.

    1995-01-01

    This study explores the possibility of operating the nominal RHIC coupling correction system in local decoupling mode, where a subset of skew quadrupoles are independently set by minimizing the coupling as locally measured by beam position monitors. The goal is to establish a correction procedure for the skew quadrupole errors in the interaction region triplets that does not rely on a priori knowledge of the individual errors. After a description of the present coupling correction scheme envisioned for RHIC, the basics of the local decoupling method will be briefly recalled in the context of its implementation in the TEAPOT simulation code as well as operationally. The method is then applied to the RHIC lattice: a series of simple tests establish that single triplet skew quadrupole errors can be corrected by local decoupling. More realistic correction schemes are then studied in order to correct distributed sources of skew quadrupole errors: the machine can be decoupled either by pure local decoupling or by a combination of global (minimum tune separation) and local decoupling. The different correction schemes are successively validated and evaluated by standard RHIC simulation runs with the complete set of errors and corrections. The different solutions and results are finally discussed together with their implications for the hardware

  13. Enhanced and tunable electric dipole-dipole interactions near a planar metal film

    Science.gov (United States)

    Zhou, Lei-Ming; Yao, Pei-Jun; Zhao, Nan; Sun, Fang-Wen

    2017-08-01

    We investigate the enhanced electric dipole-dipole interaction of surface plasmon polaritons (SPPs) supported by a planar metal film waveguide. By taking two nitrogen-vacancy (NV) center electric dipoles in diamond as an example, both the coupling strength and collective relaxation of two dipoles are studied with the numerical Green Function method. Compared to two-dipole coupling on a planar surface, metal film provides stronger and tunable coupling coefficients. Enhancement of the interaction between coupled NV center dipoles could have applications in both quantum information and energy transfer investigation. Our investigation provides systematic results for experimental applications based on a dipole-dipole interaction mediated with SPPs on a planar metal film.

  14. Adjusting the IP $\\beta$ Functions in RHIC

    CERN Document Server

    Wittmer, W; Pilat, F; Ptitsyn, V; Van Zeijts, J

    2004-01-01

    The beta functions at the IP can be adjusted without perturbation of other optics functions via several approaches. In this paper we describe a scheme based on a vector knob, which assigns fixed values to the different tuning quadrupoles and scales them by a common multiplier. The values for the knob vector were calculated for a lattice without any errors using MADX. Previous studies for the LHC [1] have shown that this approach can meet the design goals. A specific feature of the RHIC lattice is the nested power supply system. To cope with the resulting problems a detailed response matrix analysis has been carried out and different sets of knobs were calculated and compared. The knobs were tested at RHIC during the 2004 run and preliminary results are discussed. Simultaneously a new approach to measure the beam sizes of both colliding beams at the IP, based on the tunability provided by the knobs, was developed and tested.

  15. Design of the commissioning software for the AGS to RHIC transfer line

    International Nuclear Information System (INIS)

    Trahern, C.G.; Saltmarsh, C.; Satogata, T.; Kewisch, J.; Sathe, S.; D'ottavio, T.; Tepikian, S.; Shea, D.

    1995-01-01

    RHIC accelerator physicists and engineers have collaboratively specified the control system software for the commissioning of the AGS to RHIC transfer line (ATR) to occur in the fall of 1995. This paper summarizes the design and progress to date. The authors discuss the basic physics/engineering device model that they use to understand process and data flows, and describe the architecture and tools they will use to build the application level software

  16. Derivation of the electric dipole--dipole interaction as an electric hyperfine interaction

    International Nuclear Information System (INIS)

    Parker, G.W.

    1986-01-01

    The electric dipole--dipole interaction is derived by assuming that the electron and proton in hydrogen have intrinsic electric dipole moments that interact to give an electric hyperfine interaction. The electric field at the proton due to the electron's presumed dipole moment then gives rise to a contact type term for l = 0 and the normal dipole--dipole term for lnot =0. When combined with our previous derivation of the magnetic hyperfine interaction [Am. J. Phys. 52, 36 (1984)], which used a similar approach, these derivations provide a unified treatment of the interaction of electric and magnetic dipoles. As an application of these results, the product of the electron's and proton's dipole moments is estimated to be less than 10 -29 e 2 cm 2

  17. Generalized z-scaling and pp collisions at RHIC

    International Nuclear Information System (INIS)

    Tokarev, Mikhail; Zborovsky, Imrich

    2007-01-01

    New generalization of the z-scaling in inclusive particle production is proposed. The scaling variable z is expressed in terms of the momentum fractions x 1 and x 2 of the incoming protons. Explicit dependence of z on the momentum fractions y a and y b of the scattered and recoil constituents carried by the inclusive particle and recoil object is included. The scaling function Ψ (z) for charged and identified hadrons produced in proton-proton collisions is constructed. The scheme allows unique description of data on inclusive cross sections of charged hadrons, pions, kaons, antiprotons and lambdas produced at RHIC energies. The obtained results suggest that the z-scaling may be used as a tool for searching for new physics phenomena of particle production in high transverse momentum and high multiplicity region at proton-proton colliders RHIC and LHC. (author)

  18. Status of superconducting magnet development (SSC, RHIC, LHC)

    International Nuclear Information System (INIS)

    Wanderer, P.

    1993-01-01

    This paper summarizes recent superconducting accelerator magnet construction and test activities at the Superconducting Super Collider Laboratory (SSC), the Large Hardon Collider at CERN (LHC), and the Relativistic Heavy Ion Collider at Brookhaven (RHIC). Future plans are also presented

  19. Status of superconducting magnet development (SSC, RHIC, LHC)

    International Nuclear Information System (INIS)

    Wanderer, P.

    1993-01-01

    This paper summarize recent superconducting accelerator magnet construction and test activities at the Superconducting Super Collider Laboratory (SSC), the Large Hadron Collider at CERN (LHC), and the Relativistic Heavy Ion Collider at Brookhaven (RHIC). Future plan are also presented

  20. AutoDipole - Automated generation of dipole subtraction terms

    International Nuclear Information System (INIS)

    Hasegawa, K.; Uwer, P.

    2009-11-01

    We present an automated generation of the subtraction terms for next-to-leading order QCD calculations in the Catani-Seymour dipole formalism. For a given scattering process with n external particles our Mathematica package generates all dipole terms, allowing for bothmassless and massive dipoles. The numerical evaluation of the subtraction terms proceeds with MadGraph, which provides Fortran code for the necessary scattering amplitudes. Checks of the numerical stability are discussed. (orig.)

  1. AutoDipole - Automated generation of dipole subtraction terms

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, K.; Uwer, P. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2009-11-15

    We present an automated generation of the subtraction terms for next-to-leading order QCD calculations in the Catani-Seymour dipole formalism. For a given scattering process with n external particles our Mathematica package generates all dipole terms, allowing for bothmassless and massive dipoles. The numerical evaluation of the subtraction terms proceeds with MadGraph, which provides Fortran code for the necessary scattering amplitudes. Checks of the numerical stability are discussed. (orig.)

  2. Surface emission of quark gluon plasma at RHIC and LHC

    International Nuclear Information System (INIS)

    Xiang Wenchang; Wan Renzhou; Zhou Daicui

    2008-01-01

    Within the framework of a factorization model, we study the behaviour of nuclear modification factor in Au-Au collisions at RHIC and Pb-Pb collisions at LHC. We find that the nuclear modification factor is inversely proportional to the radius of the quark-gluon plasma and is dominated by the surface emission of hard jets. We predict the nuclear modification factor P AALHS ∼0.15 in central Pb-Pb collisions at LHC. The study shows that the factorization model can be used to describe the centrality dependence of nuclear modification factor of the high transverse momentum particles produced in heavy ion collisions at both RHIC and LHC. (authors)

  3. MEASURED TRANSVERSE COUPLING IMPEDANCE OF RHIC INJECTION AND ABORT KICKERS

    International Nuclear Information System (INIS)

    HAHN, H.; DAVINO, D.

    2001-01-01

    Concerns regarding possible transverse instabilities in RHIC and the SNS pointed to the need for measurements of the transverse coupling impedance of ring components. The impedance of the RHIC injection and abort kicker was measured using the conventional method based on the S 21 forward transmission coefficient. A commercial 450 Ω twin-wire Lecher line were used and the data was interpreted via the log-formula. All measurements, were performed in test stands fully representing operational conditions including pulsed power supplies and connecting cables. The measured values for the transverse coupling impedance in kick direction and perpendicular to it are comparable in magnitude, but differ from Handbook predictions

  4. Scientific articles of the RBRC/CCAST Symposium on Spin Physics Lattice QCD and RHIC Physics

    International Nuclear Information System (INIS)

    2003-01-01

    This volume comprises scientific articles of the symposium on spin physics, lattice QCD and RHIC physics organized by RIKEN BNL research center (RBRC) and China center of advanced science and technology (CCAST). The talks were discussing the spin structure of nucleons and other problems of RHIC physics

  5. CONTINUOUS ABORT GAP CLEANING AT RHIC

    International Nuclear Information System (INIS)

    DREES, A.; FLILLER, R.III.; FU, W.; MICHNOFF, R.

    2004-01-01

    Since the RHIC Au-Au run in the year 2001 the 200 MHz cavity system was used at storage and a 28 MHz system during injection and acceleration. The rebucketing procedure potentially causes a higher debunching rate of heavy ion beams in addition to amplifying debunching due to other mechanisms. At the end of a four hour store, debunched beam can easily account for more than 50% of the total beam intensity. This effect is even stronger with the achieved high intensities of the RHIC Au-Au run in 2004. A beam abort at the presence of a lot of debunched beam bears the risk of magnet quenching and experimental detector damage due to uncontrolled beam losses. Thus it is desirable to avoid any accumulation of debunched beam from the beginning of each store, in particular to anticipate cases of unscheduled beam aborts due to a system failure. A combination of a fast transverse kickers and the new 2-stage copper collimator system are used to clean the abort gap continuously throughout the store with a repetition rate of 1 Hz. This report gives. an overview of the new gap cleaning procedure and the achieved performance

  6. Brahms Experiment at RHIC Day-1 Physics

    International Nuclear Information System (INIS)

    Videbaek, Flemming

    1999-01-01

    The BRAHMS experiment is designed to measure semi-inclusive spectra of charged hadron over a wide range of rapidity. It will yield information on particle production, both at central rapidity and in the baryon rich fragmentation region. The physics plans for measurements in the first year of running at RHIC are discussed

  7. First turn around strategy for RHIC

    International Nuclear Information System (INIS)

    Milutinovic, J.; Ruggiero, A.G.

    1991-06-01

    We present a strategy for achieving the so-called first turn around in RHIC. The strategy is based on the same method we had proposed to correct a distorted closed orbit in RHIC, i.e., on a generalization of the local three-bump method. We found out that the method is very effective in passing the beam through a non-ideal, insufficiently known, machine. We tested that software on ten different Gaussian distributions of dominant orbit distorting lattice imperfections. The perturbed lattice was generated by the code PATRIS, which was also adapted to control the newly developed software. In all of the ten distributions the software was capable of passing the beam through in 2--3 injection attempts, at full sextupole strength. It was also determined that once the beam makes the first turn around and all the correctors are energized, it stays in the machine for at least several hundred turns that we had checked. The quality of the orbit, that was established in this way, was also found to be very good, i.e., the residual distortions at the places of large beta function were much less than one millimeter. With one or two monitors/correctors broken, the software established a first turn around without any extra difficulties. The quality of such orbit was, of course, somewhat degraded, especially around the broken devices. It was also observed that, in the process of actual closing, the beam develops free betatron oscillations in the amplitude range of 1--5 mm, which can be reduced either by changing the injection conditions to better match the actual closed orbit or by an appropriate damping device. The hardware proposed for RHIC is more than sufficient to meet the demands of the first turn controlling software. The maximum kick angle to be applied to the beam would require less than 2/3 of the corrector's top strength even at the top magnetic rigidity Bρ = 850 T·m, which means that the correctors will be performing an easy task at injection

  8. THE COUPLING CORRECTION SYSTEM AT RHIC: RESULTS FOR THE RUN 2000 AND PLANS FOR 2001

    International Nuclear Information System (INIS)

    Pilat, F.; Fischer, W.; Peggs, S.; Ptitsyn, V.; Tepikian, S.

    2001-01-01

    The RHIC coupling correction system has been commissioned during the Year 2000 run, which marked the successful first year of operation of the machine. The RHIC coupling correction system is described with particular emphasis on its flexibility, which allows using both global and local coupling compensation techniques. Coupling measurements and correction data are presented for the RHIC Blue and Yellow rings, together with the procedure used to reduce the minimum tune separation to 0.001, the typical resolution for tune measurements during run 2000. They further demonstrate how local coupling compensation in the interaction region substantially reduces the strength of the skew quadrupole families used for global coupling compensation

  9. Matter in extremis: Ultrarelativistic nuclear collisions at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Peter; Wang, Xin-Nian

    2004-08-20

    We review the physics of nuclear matter at high energy density and the experimental search for the Quark-Gluon Plasma at the Relativistic Heavy Ion Collider (RHIC). The data obtained in the first three years of the RHIC physics program provide several lines of evidence that a novel state of matter has been created in the most violent, head-on collisions of Au nuclei at {radical}s = 200 GeV. Jet quenching and global measurements show that the initial energy density of the strongly interacting medium generated in the collision is about two orders of magnitude larger than that of cold nuclear matter, well above the critical density for the deconfinement phase transition predicted by lattice QCD. The observed collective flow patterns imply that the system thermalizes early in its evolution, with the dynamics of its expansion consistent with ideal hydrodynamic flow based on a Quark-Gluon Plasma equation of state.

  10. Matter in extremis: Ultrarelativistic nuclear collisions at RHIC

    International Nuclear Information System (INIS)

    Jacobs, Peter; Wang, Xin-Nian

    2004-01-01

    We review the physics of nuclear matter at high energy density and the experimental search for the Quark-Gluon Plasma at the Relativistic Heavy Ion Collider (RHIC). The data obtained in the first three years of the RHIC physics program provide several lines of evidence that a novel state of matter has been created in the most violent, head-on collisions of Au nuclei at √s = 200 GeV. Jet quenching and global measurements show that the initial energy density of the strongly interacting medium generated in the collision is about two orders of magnitude larger than that of cold nuclear matter, well above the critical density for the deconfinement phase transition predicted by lattice QCD. The observed collective flow patterns imply that the system thermalizes early in its evolution, with the dynamics of its expansion consistent with ideal hydrodynamic flow based on a Quark-Gluon Plasma equation of state

  11. Overview of results from PHOBOS experiment at RHIC

    Science.gov (United States)

    Olszewski, Andrzej; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Corbo, J.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Henderson, C.; Hicks, D.; Hofman, D. J.; Holzman, B.; Hollis, R. S.; Hoyński, R.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michaowski, J.; Mignerey, A. C.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Rafelski, M.; Rbeiz, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J. L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysouch, B.

    2002-07-01

    An overview of results for interactions of Au+Au ions at centre-of-mass energies of √sNN = 56, 130 and 200 GeV obtained by the PHOBOS collaboration at RHIC is given. Measurements of primary charged particle density near mid-rapidity indicate that particle production grows logarithmically with collision energy and faster than linearly with the number of interacting nucleons. Elliptic flow is found to be much stronger at RHIC than at SPS energy. The effect is strongest in peripheral events and decreases for more central collisions and emission angles |η| > 1. The measured anti-particle to particle ratios of production rates for pions, kaons and protons in central Au+Au interactions at √sNN = 130 GeV are compatible with the statistical model of particle production, showing an increasingly baryon-free region in mid-rapidity with the increase of collision energy.

  12. Arc detector system for extraction switches in LHC CERN

    CERN Document Server

    Dahlerup-Petersen, K; Kuper, E; Ovchar, V; Zverev, S

    2006-01-01

    The opening switches, which will be used in case of quenches or other failures in CERN’s future LHC collider to extract the large amounts of energy stored in the magnetic field of the superconducting chains of main dipoles (8 chains with 1350 MJ each) and main quadrupoles (16 chains with about 24 MJ each) consist of an array of series/parallel connected, electro-mechanical D.C. breakers, specifically designed for this particular application. During the opening process the magnet excitation current is transferred from the cluster of breakers to extraction resistors for rapid de-excitation of the magnet chain. An arc detector has been developed in order to facilitate the determination of the need for maintenance interventions on the switches. The paper describes the arc detector and highlight results from operation of the detector with a LHC pilot extraction...

  13. Constraints on exotic dipole-dipole couplings between electrons at the micron scale

    Science.gov (United States)

    Kotler, Shlomi; Ozeri, Roee; Jackson Kimball, Derek

    2015-05-01

    Until recently, the magnetic dipole-dipole coupling between electrons had not been directly observed experimentally. This is because at the atomic scale dipole-dipole coupling is dominated by the exchange interaction and at larger distances the dipole-dipole coupling is overwhelmed by ambient magnetic field noise. In spite of these challenges, the magnetic dipole-dipole interaction between two electron spins separated by 2.4 microns was recently measured using the valence electrons of trapped Strontium ions [S. Kotler, N. Akerman, N. Navon, Y. Glickman, and R. Ozeri, Nature 510, 376 (2014)]. We have used this measurement to directly constrain exotic dipole-dipole interactions between electrons at the micron scale. For light bosons (mass 0.1 eV), we find that coupling constants describing pseudoscalar and axial-vector mediated interactions must be | gPegPe/4 πℏc | <= 1 . 5 × 10-3 and | gAegAe/4 πℏc | <= 1 . 2 × 10-17 , respectively, at the 90% confidence level. These bounds significantly improve on previous constraints in this mass range: for example, the constraints on axial-vector interactions are six orders of magnitude stronger than electron-positron constraints based on positronium spectroscopy. Supported by the National Science Foundation, I-Core: the Israeli excellence center, and the European Research Council.

  14. Event generator for RHIC spin physics. Proceedings of RIKEN BNL Research Center workshop: Volume 11

    International Nuclear Information System (INIS)

    1998-01-01

    A major objective of the workshop was to establish a firm collaboration to develop suitable event generators for the spin physics program at RHIC. With the completion of the Relativistic Heavy Ion Collider (RHIC) as a polarized collider a completely new domain of high-energy spin physics will be opened. The planned studies address the spin structure of the nucleon, tests of the standard model, and transverse spin effects in initial and final states. RHIC offers the unique opportunity to pursue these studies because of its high and variable energy, 50 ≤ √s ≤ 500 GeV, high polarization, 70%, and high luminosity, 2 x 10 32 cm -2 sec -1 or more at 500 GeV. To maximize the output from the spin program at RHIC, the understanding of both experimental and theoretical systematic errors is crucial. It will require full-fledged event generators, to simulate the processes of interest in great detail. The history of event generators shows that their development and improvement are ongoing processes taking place in parallel to the physics analysis by various experimental groups. The number of processes included in the generators has been increasing and the precision of their predictions is being improved continuously. This workshop aims at getting this process well under way for the spin physics program at RHIC, based on the first development in this direction, SPHINX

  15. Measuring two-particle Bose-Einstein correlations with PHOBOS at sign RHIC

    International Nuclear Information System (INIS)

    Betts, R.; Barton, D.; Carroll, A.

    1995-01-01

    We present results of a simulation of the measurement of two-particle Bose-Einstein correlations in central Au-Au collisions with the PHOBOS detector at RHIC. This measurement is expected to yield information on the relevant time and distance scales in these collisions. As the space-time scale is directly connected with the equation of state governing the evolution of the particle source, this information will be essential in understanding the physics of nucleus-nucleus collisions at RHIC energies. We demonstrate that the PHOBOS detector has sufficient resolution and acceptance to distinguish a variety of physics scenarios

  16. Detecting the anti-hypertriton and anti-helium-4 from the RHIC

    Directory of Open Access Journals (Sweden)

    Ma Yu-Gang

    2014-03-01

    Full Text Available Recent progress on the dectection of antimatter particles at RHIC is briefly reviewed. The observations of the anti-hypertriton (H¯⊼3${}_ \\mathbin{\\buildrel\\relbar \\over{\\smash{\\scriptstyle\\wedge}\\vphantom{_x}}} ^3\\overline {\\rm{H}} $and anti-helium-4 nuclei ( (4He¯, or α¯$\\left( {^4\\overline {{\\rm{He}}} ,\\,{\\rm{or}}\\,\\overline {\\rm{\\alpha }} } \\right$, or ᾱ from the RHIC-STAR Collaboration are highlighted. In addition, preliminary lifetime measurement of H¯Λ3${}_\\Lambda ^3\\overline {\\rm{H}} $ and energy dependence of strangeness population factor are presented. The mechanism of light antinuclei production is also discussed.

  17. A Prototype Ionization Profile Monitor for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cameron, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ryan, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Shea, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sikora, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    1997-03-17

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab will accelerate and store beams of ions ranging from protons to gold nuclei. Transverse beam profiles will be obtained by measuring the distribution of free electrons formed by beam ionization of the residual gas. The electrons are swept from the beamline by a transverse electric field, amplified by a microchannel plate (MCP), and collected on a circuit board with strip anodes oriented parallel to the beam axis. A uniform magnetic field,parallel to the sweep electric field, counters the defocusing effects of space charge and recoil momentum. A single-plane prototype ionization profile montor (IPM) was installed near the end of the AGS-to-RHIC transfer line (ATR) and tested during the sextant commissioning rung. It measured vertical profiles of single bunches of Au nuclei with intensities of 0.6-1.0 x 108 particles. These profiles are compared to profiles on a fluorescent screen (WF3) located 2m downstream from the IPM. This paper describes the detector and gives results from the beam test.

  18. High-pt and jet physics from RHIC to LHC

    International Nuclear Information System (INIS)

    Estienne, M.

    2008-01-01

    The observation of the strong suppression of high-pt hadrons in heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) at BNL has motivated a large experimental program using hard probes to characterize the deconfined medium created. However, what can be denoted as 'leading particle' physics accessible at RHIC presents some limitations which motivate at higher energy the study of much more penetrating objects: jets. The gain in center-of-mass energy expected at the Large Hadron Collider (LHC) at CERN will definitively improve our understanding on how the energy is lost in the system, opening a major new window of study: the physics of jets on an event-by-event basis. We will concentrate on the expected performance for jet reconstruction in ALICE using the EMCal calorimeter.

  19. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, RHIC SPIN COLLABORATION MEETING VI, VOLUME 36

    International Nuclear Information System (INIS)

    BLAND, L.; SAITO, N.

    2001-01-01

    The sixth meeting of the RHIC Spin Collaboration (RSC) took place on October 1, 2001 at Brookhaven National Laboratory. RHIC is now in its second year of operation for physics production and the first polarized proton collision run at √s=200 GeV is expected to start in eight weeks. The RSC has developed a plan for this coming run through two previous meetings, RHIC Spin Physics III (August 3, 2000) and IV (October 13-14, 2000). We requested the following: two weeks of polarized proton studies in AGS, three weeks of polarized collider commissioning, and five weeks of polarized proton physics run. As a result, we have obtained all we asked and the above plans are implemented in the current operation schedule. The focus of the present meeting was to bring all involved in the RHIC Spin activities up-to-date on the progress of machine development, theory issues, and experimental issues. This meeting was right after the Program Advisory Committee (PAC) meeting and it started with the comments on the PAC discussion by Gerry Bunce, who was informed about the PAC deliberations by Tom Kirk. The PAC was fully supportive to complete the proposed spin program within the currently available budget for RHIC run 2 operations. Gerry further explained the expected luminosity to be ∫ Ldt = 0.5 pb -1 per week, reflecting the current machine status. The introductory session also had a talk from Werner Vogelsang that reviewed the progress in perturbative QCD theory focused on spin effects

  20. A simulation study of linear coupling effects and their correction in RHIC

    International Nuclear Information System (INIS)

    Parzen, G.

    1992-11-01

    This paper describes a possible skew quadrupole correction system for linear coupling for the RHIC92 lattice. A simulation study has been done for the correction system. Results are given for the performance of the correction system, and the required strength of the skew quadruple correctors. An important effect of linear coupling in RHIC is to shift the tune ν x ν y , sometimes called tune splitting. Most of this tune splitting can be corrected with a two family skew quadrupole correction system. For RHIC92, the same 2 family correction system will work for all likely choices of β*. This was not the case for the RHIC91 lattice where different families of correctors were needed for different β*. The tune splitting described above which is corrected with a 2 family correction system is driven primarily by the ν x - ν y harmonic of the skew quadrupole field given by the field multipole αl. There are several other effects of linear coupling present which are driven primarily by the ν x + ν y harmonics of the skew quadrupole field, αl. These include the following: (1) A higher order residual tune shift that remains after correction with the 2 family correction system. This tune shift is roughly quadratic in αl; (2) Possible large changes in the beta functions; (3) Possible increase in the beam size at injection due to the beta function distortion and the emittance distortion at injection

  1. The PHENIX experiment at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Tonse, S.R.; Thomas, J.H.

    1993-12-15

    Later this decade the Relativistic Heavy Ion Collider (RHIC) will be built at Brookhaven National Laboratory. Its goal will be to accelerate and collide Au beams at 100 GeV/c in an attempt to create a Quark Gluon Plasma (QGP). The PHENIX detector aims to detect the QGP through its leptonic and hadronic signatures. We describe here its physics capabilities and the details of the apparatus designed to pick out rare leptonic signatures from among hadronic multiplicities of up to 1500 particles per unit of rapidity.

  2. Hydrodynamic analysis of anisotropic transverse flow at RHIC

    International Nuclear Information System (INIS)

    Hirano, Tetsufumi; Tsuda, Keiichi; Kajimoto, Kohei

    2001-01-01

    By using a (3+1)-dimensional relativistic hydrodynamic model, we estimate the magnitude of (differential) elliptic flow parameter υ 2 at the BNL-RHIC energy. We compare the centrality and the transverse momentum dependence of υ 2 with the experimental data observed by the STAR Collaboration. (author)

  3. Overview of results from PHOBOS experiment at RHIC

    CERN Document Server

    Olszewski, A; Baker, M D; Barton, D S; Betts, R R; Bindel, R; Budzanowski, A; Busza, W; Carroll, A; Corbo, J; Decowski, M P; García, E; George, N; Gulbrandsen, K H; Gushue, S; Halliwell, C; Hamblen, J; Henderson, C; Hicks, D; Hofman, D J; Holzman, B; Hollis, R S; Holynski, R; Iordanova, A; Johnson, E; Kane, J L; Katzy, J; Khan, N; Kucewicz, W; Kulinich, P A; Kuo, C M; Lin, W T; Manly, S L; McLeod, D; Michalowski, J; Mignerey, A C; Mülmenstädt, J; Nouicer, R; Olszewski, A; Pak, R; Park, I C; Pernegger, H; Rafelski, M; Rbeiz, M; Reed, C; Remsberg, L P; Reuter, M; Roland, C; Roland, G; Rosenberg, L J; Sagerer, J; Sarin, P; Sawicki, P; Skulski, W; Steadman, S G; Steinberg, P; Stephans, G S F; Stodulski, M; Sukhanov, A; Tang, J L; Teng, R; Trzupek, A; Vale, C; van Nieuwenhuizen, G J; Verdier, R; Wadsworth, B; Wolfs, F L H; Wosiek, B; Wozniak, K; Wuosmaa, A H; Wyslouch, B

    2002-01-01

    An overview of results for interactions of Au+Au ions at centre-of- mass energies of square root s/sub NN/=56, 130 and 200 GeV obtained by the PHOBOS collaboration at RHIC is given. Measurements of the primary charged particle density near mid-rapidity indicate that particle production grows logarithmically with collision energy and faster than linearly with the number of interacting nucleons. Elliptic flow is found to be much stronger at RHIC than at SPS energy. The effect is strongest in peripheral events and decreases for more central collisions and emission angles $\\beta >1$. The measured anti-particle to particle ratios of production rates for pions, kaons and protons in central Au+Au interactions at square root s/sub NN/=130 GeV are compatible with the statistical model of particle production, showing an increasingly baryon-free region in mid-rapidity with the increase of collision energy. (16 refs).

  4. Permanent Electric Dipole-Dipole Interactions in Lyotropic Polypeptide Liquid Crystals

    OpenAIRE

    MORI, Norio; Norio, MORI; Research Associate, Department of Industrial Chemistry

    1981-01-01

    The interaction energy between two adjacent α-helical molecules was calculated taking into account for permanent electric dipoles locating orl the helical core of a polymer mainchain in order to explain the cholesteric structure of lyotropic polypeptide liquid crystals. It was concluded that the dipole-dipole interactions were responsible for the formation of the cholesteric structure.

  5. Ramp Management in RHIC

    International Nuclear Information System (INIS)

    Kewisch, J.; Van Zeijts, J.; Peggs, S.; Satogata, T.

    1999-01-01

    In RHIC, magnets and RF cavities are controlled by Wave Form Generators (WFGs), simple real time computers which generate the set points. The WFGs are programmed to change set points from one state to another in a synchrotronized way. Such transition is called a ''Ramp'' and consists of a sequence of ''stepping stones'' which contain the set point of every WFG controlled device at a point in time. An appropriate interpolation defines the set points between these stepping stones. This report describes the implementation of the ramp system. The user interface, tools to create and modify ramps, interaction with modeling tools and measurements and correction programs are discussed

  6. ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    BEN-ZVI, I.; AHRENS, L.; BRENNAN, M.; HARRISON, M.; KEWISCH, J.; MACKAY, W.; PEGGS, S.; ROSER, T.; SATOGATA, T.; TRBOJEVIC, D.; YAKIMENKO, V.

    2001-01-01

    We introduce plans for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This project has a number of new features as electron coolers go: It will cool 100 GeV/nucleon ions with 50 MeV electrons; it will be the first attempt to cool a collider at storage-energy; and it will be the first cooler to use a bunched beam and a linear accelerator as the electron source. The linac will be superconducting with energy recovery. The electron source will be based on a photocathode gun. The project is carried out by the Collider-Accelerator Department at BNL in collaboration with the Budker Institute of Nuclear Physics

  7. RHIC electron lenses upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Gu, X. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Altinbas, Z. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Bruno, D. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Binello, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Costanzo, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Drees, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Gassner, D. M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Hock, J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Hock, K. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Harvey, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Mi, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Mernick, K. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Michnoff, R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Miller, T. A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Pikin, A. I. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Samms, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Shrey, T. C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Schoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Tan, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Thieberger, P. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; White, S. M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    In the Relativistic Heavy Ion Collider (RHIC) 100 GeV polarized proton run in 2015, two electron lenses were used to partially compensate for the head-on beam-beam effect for the first time. Here, we describe the design of the current electron lens, detailing the hardware modifications made after the 2014 commissioning run with heavy ions. A new electron gun with 15-mm diameter cathode is characterized. The electron beam transverse profile was measured using a YAG screen and fitted with a Gaussian distribution. During operation, the overlap of the electron and proton beams was achieved using the electron backscattering detector in conjunction with an automated orbit control program.

  8. Theoretical perspective on RHIC [relativistic heavy ion collider] physics

    International Nuclear Information System (INIS)

    Dover, C.B.

    1990-10-01

    We discuss the status of the relativistic heavy ion collider (RHIC) project at Brookhaven, and assess some key experiments which propose to detect the signatures of a transient quark-gluon plasma (QGP) phase in such collisions. 24 refs

  9. Proceedings of RIKEN BNL Research Center Workshop: Progress in High-pT Physics at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Bazilevsky, A.; Bland, L.; Vogelsang, W.

    2010-03-17

    This volume archives the presentations at the RIKEN BNL Research Center workshop 'Progress in High-PT Physics at RHIC', held at BNL in March 2010. Much has been learned from high-p{sub T} physics after 10 years of RHIC operations for heavy-ion collisions, polarized proton collisions and d+Au collisions. The workshop focused on recent progress in these areas by both theory and experiment. The first morning saw review talks on the theory of RHIC high-p{sub T} physics by G. Sterman and J. Soffer, and on the experimental results by M. Tannenbaum. One of the most exciting recent results from the RHIC spin program is the first observation of W bosons and their associated single-spin asymmetry. The new preliminary data were reported on the first day of our workshop, along with a theoretical perspective. There also were detailed discussions on the global analysis of polarized parton distributions, including the knowledge on gluon polarization and the impact of the W-data. The main topic of the second workshop day were single-transverse spin asymmetries and their analysis in terms of transverse-momentum dependent parton distributions. There is currently much interest in a future Drell-Yan program at RHIC, thanks to the exciting physics opportunities this would offer. This was addressed in some of the talks. There also were presentations on the latest results on transverse-spin physics from HERMES and BELLE. On the final day of the workshop, the focus shifted toward forward and small-x physics at RHIC, which has become a cornerstone of the whole RHIC program. Exciting new data were presented and discussed in terms of their possible implications for our understanding of strong color-field phenomena in QCD. In the afternoon, there were discussions of nuclear parton distributions and jet observables, among them fragmentation. The workshop was concluded with outlooks toward the near-term (LHC, JLab) and longer-term (EIC) future. The workshop has been a great success

  10. DESCRIPTION OF THE RHIC SEQUENCER SYSTEM

    International Nuclear Information System (INIS)

    DOTTAVIO, T.; FRAK, B.; MORRIS, J.; SATOGATA, T.; VAN ZEIJTS, J.

    2001-01-01

    The movement of the Relativistic Heavy Ion Collider (RHIC) through its various states (eg. injection, acceleration, storage, collisions) is controlled by an application called the Sequencer. This program orchestrates most magnet and instrumentation systems and is responsible for the coordinated acquisition and saving of data from various systems. The Sequencer system, its software infrastructure, support programs, and the language used to drive it are discussed in this paper. Initial operational experience is also described

  11. eRHIC ERL modeling in Zgoubi

    International Nuclear Information System (INIS)

    Meot, F.; Brooks, S.; Hao, Y.; Jing, Y.; Ptitsyn, V.; Trbojevic, D.; Tsoupas, N.

    2016-01-01

    This Note discusses on-going work regarding the modeling of eRHIC ERL in the ray-tracing code Zgoubi. The various pieces of the recirculator puzzle, their optical properties and their assemblage into an operational input data file in are addressed. The Note reports in particular on preparatory stages toward extensive end-to-end 6D polarized electron bunch transport simulations, which yield methods, as well a series of preliminary qualitative outcomes, discussed as well.

  12. Technology transfer for industrial production of superconducting magnets for the RHIC project at BNL

    International Nuclear Information System (INIS)

    Wanderer, P.; Anerella, M.D.; Greene, A.F.; Kelly, E.; Willen, E.

    1994-01-01

    Industrial production of superconducting magnets for the Relativistic Heavy Ion Collider (RHIC) has begun. The R ampersand D for the magnets was carried out at BNL. Following the award of built-to-print contracts, staff from the laboratory and the vendors worked toward transferring both design principles and practical details to an industrial framework for cost effective production. All magnets made thus far have been acceptable for use in RHIC

  13. Detectors for low energy electron cooling in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, F. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-15

    Low-energy operation of RHIC is of particular interest to study the location of a possible critical point in the QCD phase diagram. The performance of RHIC at energies equal to or lower than 10 GV/nucleon is limited by nonlinearities, Intra-BeamScattering (IBS) processes and space-charge effects. To successfully address the luminosity and ion store lifetime limitations imposed by IBS, the method of electron cooling has been envisaged. During electron cooling processes electrons are injected along with the ion beam at the nominal ion bunch velocities. The velocity spread of the ion beam is reduced in all planes through Coulomb interactions between the cold electron beam and the ion beam. The electron cooling system proposed for RHIC will be the first of its kind to use bunched beams for the delivery of the electron bunches, and will therefore be accompanied by the necessary challenges. The designed electron cooler will be located in IP2. The electron bunches will be accelerated by a linac before being injected along side the ion beams. Thirty consecutive electron bunches will be injected to overlap with a single ion bunch. They will first cool the yellow beam before being extracted, turned by 180-degrees, and reinjected into the blue beam for cooling. As such, both the yellow and blue beams will be cooled by the same ion bunches. This will pose considerable challenges to ensure proper electron beam quality to cool the second ion beam. Furthermore, no ondulator will be used in the electron cooler so radiative recombination between the ions and the electrons will occur.

  14. Operations and Performance of RHIC as a Cu-Cu Collider

    CERN Document Server

    Pilat, Fulvia Caterina; Bai, Mei; Barton, Donald; Beebe-Wang, Joanne; Blaskiewicz, Michael; Brennan, Joseph M; Bruno, Donald; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Harvey, Margaret; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Lee, Roger C; Litvinenko, Vladimir N; Luo, Yun; MacKay, William W; Marr, Gregory J; Marusic, Al; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oerter, Brian; Ptitsyn, Vadim; Roser, Thomas; Russo, Thomas; Sandberg, Jon; Satogata, Todd; Schultheiss, Carl; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Zaltsman, Alex; Zeno, Keith; Zhang, S Y; Zhang, Wu

    2005-01-01

    The 5th year of RHIC operations, started in November 2004 and expected to last till June 2005, consists of a physics run with Cu-Cu collisions at 100 GeV/u followed by one with polarized protons at 100 GeV. We will address here overall performance of the RHIC complex used for the first time as a Cu-Cu collider, and compare it with previous operational experience with Au, PP and asymmetric d-Au collisions. We will also discuss operational improvements, such as a ?* squeeze to 85cm in the high luminosity interaction regions from the design value of 1m, system improvements and machine performance limitations, such as vacuum pressure rise, intra-beam scattering, and beam beam interaction.

  15. Dipole-dipole van der Waals interaction in alkali halides

    International Nuclear Information System (INIS)

    Thakur, B.N.; Thakur, K.P.

    1978-01-01

    Values of van der Waals dipole-dipole constants and interaction energetics of alkali halides are reported using the recent data. The values obtained are somewhat larger than those of earlier workers. (orig.) [de

  16. RHIC Workshop: experiments for a relativistic heavy ion collider

    International Nuclear Information System (INIS)

    Haustein, P.E.; Woody, C.L.

    1985-01-01

    Separate abstracts were prepared for individual papers in this workshop proceedings, covering such topics as: calorimeter-based experiments, dimuon detection, large magnetic spectrometers, experiments in the fragmentation region, two-photon physics, and theoretical questions relevant to experimental work at the RHIC

  17. Magnetic dipole moment of a moving electric dipole

    OpenAIRE

    Hnizdo, V.

    2012-01-01

    The current density of a moving electric dipole is expressed as the sum of polarization and magnetization currents. The magnetic field due to the latter current is that of a magnetic dipole moment that is consistent with the relativistic transformations of the polarization and magnetization of macroscopic electrodynamics.

  18. LEPTON AND PHOTON PHYSICS AT RHIC

    International Nuclear Information System (INIS)

    TANNENBAUM, M.J.

    2003-01-01

    Results on physics at RHIC using outgoing leptons and photons will be presented from Au+Au collisions at nucleon-nucleon c.m. energies √(sNN) = 130 GeV and 200 GeV, and from p-p collisions at √(sNN) = 200 GeV. Introduction and motivation will be presented both from the theoretical and experimental perspectives. Topics include open charm production via single e ± , J/Ψ → e + + e - , μ + + μ - and inclusive photon production

  19. Inhibition of two-photon absorption due to dipole-dipole interaction in nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London, N6A 3K7 (Canada)], E-mail: msingh@uwo.ca

    2008-07-21

    We have investigated the inhibition of two-photon absorption in photonic crystals doped with an ensemble of four-level nanoparticles. The particles are interacting with one another by the dipole-dipole interaction. Dipoles in nanoparticles are induced by a selected transition. Numerical simulations have been performed for an isotropic photonic crystal. Interesting phenomena have been predicted such as the inhibition of the two-photon absorption due to the dipole-dipole interaction. It has also been found that the inhibition effect can be switched on and off by tuning a decay resonance energy within the energy band of the crystal. A theory of dressed states has been used to explain the results.

  20. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 65, RHIC SPIN COLLABORATION MEETINGS XXVII, XXVIII, and XXX

    International Nuclear Information System (INIS)

    OGAWA, A.

    2004-01-01

    The RIKEN BNL Research Center (RSRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the 'Rikagaku Kenkyusho' (RIKEN, The Institute of Physical and Chemical Research) of Japan. The Center is dedicated to the study of strong interactions, including spin physics, lattice QCD, and RHIC physics through the nurturing of a new generation of young physicists. The RBRC has both a theory and experimental component. At present the theoretical group has 4 Fellows and 3 Research Associates as well as 11 RHIC Physics/University Fellows (academic year 2003-2004). To date there are approximately 30 graduates from the program of which 13 have attained tenure positions at major institutions worldwide. The experimental group is smaller and has 2 Fellows and 3 RHIC Physics/University Fellows and 3 Research Associates, and historically 6 individuals have attained permanent positions. Beginning in 2001 a new RIKEN Spin Program (RSP) category was implemented at RBRC. These appointments are joint positions of RBRC and RIKEN and include the following positions in theory and experiment: RSP Researchers, RSP Research Associates, and Young Researchers, who are mentored by senior RBRC Scientists, A number of RIKEN Jr. Research Associates and Visiting Scientists also contribute to the physics program at the Center. RBRC has an active workshop program on strong interaction physics with each workshop focused on a specific physics problem. Each workshop speaker is encouraged to select a few of the most important transparencies from his or her presentation, accompanied by a page of explanation. This material is collected at the end of the workshop by the organizer to form proceedings, which can therefore be available within a short time. To date there are sixty nine proceedings volumes available. The construction of a 0.6 teraflops parallel processor, dedicated to lattice QCD, begun at the Center on February 19, 1998, was completed on August 28, 1998 and is still

  1. How can the odderon be detected at RHIC and LHC?

    Energy Technology Data Exchange (ETDEWEB)

    Avila, R.F.; Gauron, P.; Nicolescu, B. [CNRS, Paris (France); Pierre et Marie Curie Univ., Paris (FR). Lab. de Physique Nucleaire et des Hautes Energies (LPNHE)

    2007-01-15

    The odderon remains an elusive object, 33 years after its invention. The odderon is now a fundamental object in QCD and it has to be found experimentally if QCD is right. In the present paper, we show how to find it at RHIC and LHC. The most spectacular signature of the odderon is the predicted difference between the differential cross-sections for proton-proton and antiproton-proton at high s and moderate t. This experiment can be done by using the STAR detector at RHIC and by combining these future data with the already present UA4/2 data. The odderon could also be found by the ATLAS experiment at LHC by performing a high-precision measurement of the real part of the hadron elastic scattering amplitude at small t. (orig.)

  2. Collisional transfer of coherence by electric dipole-dipole interaction

    OpenAIRE

    Gough , W.

    1983-01-01

    An expression is derived for the contribution from dipole-dipole interaction to the intensity of sensitized fluorescence, from the results of a theory by Chiu. Tensor operator methods are used. The degree of polarization is deduced for certain particular cases.

  3. Multiple transparency windows and Fano interferences induced by dipole-dipole couplings

    Science.gov (United States)

    Diniz, E. C.; Borges, H. S.; Villas-Boas, C. J.

    2018-04-01

    We investigate the optical properties of a two-level system (TLS) coupled to a one-dimensional array of N other TLSs with dipole-dipole coupling between the first neighbors. The first TLS is probed by a weak field, and we assume that it has a decay rate much greater than the decay rates of the other TLSs. For N =1 and in the limit of a Rabi frequency of a probe field much smaller than the dipole-dipole coupling, the optical response of the first TLS, i.e., its absorption and dispersion, is equivalent to that of a three-level atomic system in the configuration which allows one to observe the electromagnetically induced transparency (EIT) phenomenon. Thus, here we investigate an induced transparency phenomenon where the dipole-dipole coupling plays the same role as the control field in EIT in three-level atoms. We describe this physical phenomenon, named a dipole-induced transparency (DIT), and investigate how it scales with the number of coupled TLSs. In particular, we have shown that the number of TLSs coupled to the main TLS is exactly equal to the number of transparency windows. The ideas presented here are very general and can be implemented in different physical systems, such as an array of superconducting qubits, or an array of quantum dots, spin chains, optical lattices, etc.

  4. INTENSITY DEPENDENT EFFECTS IN RHIC

    International Nuclear Information System (INIS)

    WEI, J.

    1999-01-01

    The Relativistic Heavy Ion Collider (RHIC) is currently under commissioning after a seven-year construction cycle. Unlike conventional hadron colliders, this machine accelerates, stores, and collides heavy ion beams of various combinations of species. The dominant intensity dependent effects are intra-beam scattering at both injection and storage, and complications caused by crossing transition at a slow ramp rate. In this paper, the authors present theoretical formalisms that have been used for the study, and discuss mechanisms, impacts, and compensation methods including beam cooling and transition jump schemes. Effects of space charge, beam-beam, and ring impedances are also summarized

  5. Possible origin of RHIC Rout/Rsid HBT results

    International Nuclear Information System (INIS)

    Sandra S. Padula

    2002-01-01

    The effects of opacity of the nuclei together with a blackbody type of emission along the system history are considered as a means to explain the ratio R out =R sid observed by STAR and PHENIX collaborations at RHIC. Within our model, no flow is required to explain the data trend of this ratio for large surface emissivities

  6. Possible origin of RHIC Rout/Rsid HBT results

    International Nuclear Information System (INIS)

    Padula, Sandra S.

    2003-01-01

    The effects of opacity of the nuclei together with a blackbody type of emission along the system history are considered as a means to explain the ratio R out /R sid observed by STAR and PHENIX collaborations at RHIC. Within our model, no flow is required to explain the data trend of this ratio for large surface emissivities

  7. Jet Tomography versus Holography at RHIC and LHC

    Directory of Open Access Journals (Sweden)

    Torrieri G.

    2011-04-01

    Full Text Available We compare pQCD based jet tomography to AdS/CFT based jet holography approach to address the heavy quark jet puzzle and discuss future tests at RHIC and LHC that could help decide which paradigm can provide the most consistent quantitative theory to explain modification of jet observabkles in high energy nuclear collisions.

  8. A simulation study of linear coupling effects and their correction in RHIC

    International Nuclear Information System (INIS)

    Parzen, G.

    1993-01-01

    This paper describes a possible skew quadrupole correction system for linear coupling effects for the RHIC92 lattice. A simulation study has been done for this correction system. Results are given for the performance of the correction system and the required strength of the skew quadrupole corrections. The location of the correctors is discussed. For RHIC92, it appears possible to use the same 2 family correction system for all the likely choices of β*. The simulation study gives results for the residual tune splitting that remains after correction with a 2 family correction system. It also gives results for the beta functions before and after correction

  9. Spin transfers for baryon production in polarized pp collisions at RHIC-BNL

    International Nuclear Information System (INIS)

    Ma BoQiang; Schmidt, Ivan; Soffer, Jacques; Yang Jianjun

    2002-01-01

    We consider the inclusive production of longitudinally polarized baryons in p→p collisions at RHIC-BNL, with one longitudinally polarized proton. We study the spin transfer between the initial proton and the produced baryon as a function of its rapidity and we elucidate its sensitivity to the quark helicity distributions of the proton and to the polarized fragmentation functions of the quark into the baryon. We make predictions using an SU(6) quark spectator model and a perturbative QCD (pQCD) based model. We discuss these different predictions, and what can be learned from them, in view of the forthcoming experiments at RHIC-BNL

  10. Long-range and head-on beam-beam compensation studies in RHIC with lessons for the LHC

    International Nuclear Information System (INIS)

    Fischer, W.; Luo, Y.; Abreu, N.; Calaga, R.; Montag, C.; Robert-Demolaize, G.; Dorda, U.; Koutchouk, J.-P.; Sterbini, G.; Zimmermann, F.; Kim, H.-J.; Sen, T.; Shiltsev, V.; Valishev, A.; Qiang, J.; Kabel, A.

    2009-01-01

    Long-range as well as head-on beam-beam effects are expected to limit the LHC performance with design parameters. They are also important consideration for the LHC upgrades. To mitigate long-range effects, current carrying wires parallel to the beam were proposed. Two such wires are installed in RHIC where they allow studying the effect of strong long-range beam-beam effects, as well as the compensation of a single long-range interaction. The tests provide benchmark data for simulations and analytical treatments. Electron lenses were proposed for both RHIC and the LHC to reduce the head-on beam-beam effect. We present the experimental long-range beam-beam program at RHIC and report on head-on compensations studies based on simulations

  11. Report of the eRHIC Ring-Ring Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer, E. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brennan, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedotov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Montag, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Palmer, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Parker, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Peggs, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Willeke, F. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-10-13

    This report evaluates the ring-ring option for eRHIC as a lower risk alternative to the linac-ring option. The reduced risk goes along with a reduced initial luminosity performance. However, a luminosity upgrade path is kept open. This upgrade path consists of two branches, with the ultimate upgrade being either a ring-ring or a linac-ring scheme. The linac-ring upgrade could be almost identical to the proposed linac-ring scheme, which is based on an ERL in the RHIC tunnel. This linac-ring version has been studied in great detail over the past ten years, and its significant risks are known. On the other hand, no detailed work on an ultimate performance ring-ring scenario has been performed yet, other than the development of a consistent parameter set. Pursuing the ring-ring upgrade path introduces high risks and requires significant design work that is beyond the scope of this report.

  12. Reduction of beta* and increase of luminosity at RHIC

    International Nuclear Information System (INIS)

    Pilat, F.; Bai, M.; Bruno, D.; Cameron, P.; Della Penna, A.; Drees, A.; Litvinenko, V.; Luo, Y.; Malitsky, N.; Marr, G.; Ptitsyn, V.; Satogata, T.; Tepikian, S.; Trbojevic, D.

    2009-01-01

    The reduction of β* beyond the 1m design value at RHIC has been consistently achieved over the last 6 years of RHIC operations, resulting in an increase of luminosity for different running modes and species. During the recent 2007-08 deuteron-gold run the reduction to 0.70 from the design 1m achieved a 30% increase in delivered luminosity. The key ingredients allowing the reduction have been the capability of efficiently developing ramps with tune and coupling feedback, orbit corrections on the ramp, and collimation, to minimize beam losses in the final focus triplets, the main aperture limitations for the collision optics. We will describe the operational strategy used to reduce the β*, at first squeezing the beam at store, to test feasibility, followed by the operationally preferred option of squeezing the beam during acceleration, and the resulting luminosity increase. We will conclude with future plans for the beta squeeze

  13. Upgrade of RHIC Vacuum Systems for High Luminosity Operation

    CERN Document Server

    Hseuh Hsiao Chaun; Smart, Loralie; Todd, Robert J; Weiss, Daniel

    2005-01-01

    With increasing ion beam intensity during recent RHIC operations, pressure rises of several decades were observed at most room temperature sections and at a few cold sections. The pressure rises are associated with electron multi-pacting, electron stimulated desorption and beam ion induced desorption and have been one of the major intensity and luminosity limiting factors for RHIC. Improvement of the warm sections has been carried out in the last few years. Extensive in-situ bakes, additional UHV pumping, anti-grazing ridges and beam tube solenoids have been implemented. Several hundred meters of NEG coated beam pipes have been installed and activated. Vacuum monitoring and interlock were enhanced to reduce premature beam aborts. Preliminary measures, such as pumping before cool down to reduce monolayer condensates, were also taken to suppress the pressure rises in the cold sections. The effectiveness of these measures in reducing the pressure rises during machine studies and during physics runs are discussed...

  14. The strongly coupled quark-gluon plasma created at RHIC

    CERN Document Server

    Heinz, Ulrich W

    2009-01-01

    The Relativistic Heavy Ion Collider (RHIC) was built to re-create and study in the laboratory the extremely hot and dense matter that filled our entire universe during its first few microseconds. Its operation since June 2000 has been extremely successful, and the four large RHIC experiments have produced an impressive body of data which indeed provide compelling evidence for the formation of thermally equilibrated matter at unprecedented temperatures and energy densities -- a "quark-gluon plasma (QGP)". A surprise has been the discovery that this plasma behaves like an almost perfect fluid, with extremely low viscosity. Theorists had expected a weakly interacting gas of quarks and gluons, but instead we seem to have created a strongly coupled plasma liquid. The experimental evidence strongly relies on a feature called "elliptic flow" in off-central collisions, with additional support from other observations. This article explains how we probe the strongly coupled QGP, describes the ideas and measurements whi...

  15. OBSERVATION OF STRONG - STRONG AND OTHER BEAM - BEAM EFFECTS IN RHIC

    International Nuclear Information System (INIS)

    FISCHER, W.; BLASKIEWICZ, M.; BRENNAN, J.M.; CAMERON, P.; CONNOLLY, R.; MONTAG, C.; PEGGS, S.; PILAT, F.; PTITSYN, V.; TEPIKIAN, S.; TRBOJEVIC, D.; VAN ZEIJTS, J.

    2003-01-01

    RHIC is currently the only hadron collider in which strong-strong beam-beam effects can be seen. For the first time, coherent beam-beam modes were observed in a bunched beam hadron collider. Other beam-beam effects in RHIC were observed in operation and in dedicated experiments with gold ions, deuterons and protons. Observations include measurements of beam-beam induced tune shifts, lifetime and emittance growth measurements with and without beam-beam interaction, and background rates as a function of tunes. During ramps unequal radio frequencies in the two rings cause the crossing points to move longitudinally. Thus bunches experience beam-beam interactions only in intervals and the tunes are modulated. In this article we summarize the most important beam-beam observations made so far

  16. The RHIC general purpose multiplexed analog to digital converter system

    International Nuclear Information System (INIS)

    Michnoff, R.

    1995-01-01

    A general purpose multiplexed analog to digital converter system is currently under development to support acquisition of analog signals for the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The system consists of a custom intelligent VME based controller module (V113) and a 14-bit 64 channel multiplexed A/D converter module (V114). The design features two independent scan groups, where one scan group is capable of acquiring 64 channels at 60 Hz, concurrently with the second scan group acquiring data at an aggregate rate of up to 80 k samples/second. An interface to the RHIC serially encoded event line is used to synchronize acquisition. Data is stored in a circular static RAM buffer on the controller module, then transferred to a commercial VMEbus CPU board and higher level workstations for plotting, report Generation, analysis and storage

  17. sPHENIX: The next generation heavy ion detector at RHIC

    Science.gov (United States)

    Campbell, Sarah; sPHENIX Collaboration

    2017-04-01

    sPHENIX is a new collaboration and future detector project at Brookhaven National Laboratory’s Relativistic Heavy Ion Collider (RHIC). It seeks to answer fundamental questions on the nature of the quark gluon plasma (QGP), including its coupling strength and temperature dependence, by using a suite of precision jet and upsilon measurements that probe different length scales of the QGP. This is possible with a full acceptance, |η| superconducting magnet. With the increased luminosity afforded by accelerator upgrades, sPHENIX is going to perform high statistics measurements extending the kinematic reach at RHIC to overlap the LHC’s. This overlap is going to facilitate a better understanding of the role of temperature, density and parton virtuality in QGP dynamics and, specifically, jet quenching. This paper focuses on key future measurements and the current state of the sPHENIX project.

  18. Resummed pQCD for $W^{+-}$ and $Z^{0}$ transverse momentum spectra at RHIC and LHC

    CERN Document Server

    Xiao Fei Zhang

    2003-01-01

    The transverse momentum distributions of W/sup +or-/ and Z/sup 0/ are predicted at RHIC and LHC. A resummation formalism with power corrections to the renormalization group equations is used. Shadowing effects are discussed and found to be unimportant at RHIC, but important for LHC. We study the enhancement of power corrections due to multiple scattering in nuclear collisions and numerically illustrate the weak effects of the dependence on the nuclear mass. (12 refs).

  19. Low-frequency RF Coupling To Unconventional (Fat Unbalanced) Dipoles

    Energy Technology Data Exchange (ETDEWEB)

    Ong, M M; Brown, C G; Perkins, M P; Speer, R D; Javedani, J B

    2010-12-07

    The report explains radio frequency (RF) coupling to unconventional dipole antennas. Normal dipoles have thin equal length arms that operate at maximum efficiency around resonance frequencies. In some applications like high-explosive (HE) safety analysis, structures similar to dipoles with ''fat'' unequal length arms must be evaluated for indirect-lightning effects. An example is shown where a metal drum-shaped container with HE forms one arm and the detonator cable acts as the other. Even if the HE is in a facility converted into a ''Faraday cage'', a lightning strike to the facility could still produce electric fields inside. The detonator cable concentrates the electric field and carries the energy into the detonator, potentially creating a hazard. This electromagnetic (EM) field coupling of lightning energy is the indirect effect of a lightning strike. In practice, ''Faraday cages'' are formed by the rebar of the concrete facilities. The individual rebar rods in the roof, walls and floor are normally electrically connected because of the construction technique of using metal wire to tie the pieces together. There are two additional requirements for a good cage. (1) The roof-wall joint and the wall-floor joint must be electrically attached. (2) All metallic penetrations into the facility must also be electrically connected to the rebar. In this report, it is assumed that these conditions have been met, and there is no arcing in the facility structure. Many types of detonators have metal ''cups'' that contain the explosives and thin electrical initiating wires, called bridge wires mounted between two pins. The pins are connected to the detonator cable. The area of concern is between the pins supporting the bridge wire and the metal cup forming the outside of the detonator. Detonator cables usually have two wires, and in this example, both wires generated the same voltage at the

  20. Dynamics of nonstationary dipole vortices

    DEFF Research Database (Denmark)

    Hesthaven, J.S.; Lynov, Jens-Peter; Nycander, J.

    1993-01-01

    The dynamics of tilted dipole vortices in the equivalent barotropic vorticity (or Hasegawa-Mima) equation is studied. A recent theory is compared with numerical simulations and found to describe the short time behavior of dipole vortices well. In the long time limit the dipoles are found to eithe...... disintegrate or relax toward a steady eastward propagating dipole vortex. This relaxation is a consequence of nonviscous enstrophy loss by the dipole vortex....

  1. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ENTITLED "ODDERON SEARCHES AT RHIC" (VOLUME 76)

    Energy Technology Data Exchange (ETDEWEB)

    ORGANIZERS: GURYN, W.; KOVCHEGOV, Y.; VOGELSANG, W.; TRUEMAN, L.

    2005-10-25

    The Odderon, a charge-conjugation-odd partner of the Pomeron, has been a puzzle ever since its introduction in 1973. The Pomeron describes a colorless exchange with vacuum quantum numbers in the t-channel of hadronic scattering at high energies. The concept was originally formulated for the non-perturbative regime of Quantum Chromodynamics (QCD). In perturbation theory, the simplest picture of the Poineron is that of a two-gluon exchange process, whereas an Odderon can be thought of as an exchange of three gluons. Both the Pomeron and the Odderon are expected in QCD. However, while there exists plenty of experimental data that could be successfully described by Pomeron exchanges (for example in electron-proton and hadron-hadron scattering at high energies), no experimental sign of the Odderon has been observed. One of the very few hints so far is the difference in the diffractive minima of elastic proton-proton and proton-antiproton scattering measured at the ISR. The Odderon has recently received renewed attention by QCD researchers, mainly for the following two reasons. First of all, RHIC has entered the scene, offering exciting unique new opportunities for Odderon searches. RHIC provides collisions of nuclei at center-of-mass energies far exceeding those at all previous experiments. RHIC also provides collisions of protons of the highest center-of-mass energy, and in the interval, which has not been explored previously in p {bar p} collisions. In addition, it also has the unique feature of polarization for the proton beams, promising to become a crucial tool in Odderon searches. Indeed, theorists have proposed possible signatures of the Odderon in some spin asymmetries measurable at RHIC. Qualitatively unique signals should be seen in these observables if the Odderon coupling is large. Secondly, the Odderon has recently been shown to naturally emerge from the Color Glass Condensate (CGC), a theory for the high-energy asymptotics of QCD. It has been argued that

  2. The dipole-dipole dispersion forces for small, intermediate and large distances

    International Nuclear Information System (INIS)

    Antonio, J.C.

    1986-10-01

    An improved expression is obtained for the dipole-dipole London dispersion force between closed shell atoms for small, intermediate and large distances compared with their linear dimensions. (Author) [pt

  3. and two-particle spectra at RHIC based on a hydrodynamical model

    Indian Academy of Sciences (India)

    parametrize the initial energy density distribution and net baryon number distribution as in figure 1. For both RHIC and ... Figure 2 shows pseudorapidity distribution of charged hadrons and transverse momen- ... Network Center. References.

  4. COMMISSIONING SPIN ROTATORS IN RHIC

    International Nuclear Information System (INIS)

    MACKAY, W.W.; AHRENS, L.; BAI, M.; COURANT, E.D.; FISCHER, W.; HUANG, H.; LUCCIO, A.; MONTAG, C.; PILAT, F.; PTITSYN, V.; ROSER, T.; SATOGATA, T.; TRBOJEVIC, D.; VANZIEJTS, J.

    2003-01-01

    During the summer of 2002, eight superconducting helical spin rotators were installed into RHIC in order to control the polarization directions independently at the STAR and PHENIX experiments. Without the rotators, the orientation of polarization at the interaction points would only be vertical. With four rotators around each of the two experiments, we can rotate either or both beams from vertical into the horizontal plane through the interaction region and then back to vertical on the other side. This allows independent control for each beam with vertical, longitudinal, or radial polarization at the experiment. In this paper, we present results from the first run using the new spin rotators at PHENIX

  5. RHIC heavy ion operations performance

    CERN Document Server

    Satogata, T; Ferrone, R; Pilat, F

    2006-01-01

    The Relativistic Heavy Ion Collider (RHIC) completed its fifth year of operation in 2005, colliding copper ion beams with ps=200 GeV/u and 62.4 GeV/u[1]. Previous heavy ion runs have collided gold ions at ps=130 GeV/u, 200 GeV/u, and 62.4 GeV/u[2], and deuterons and gold ions at ps=200 GeV/u[3]. This paper discusses operational performance statistics of this facility, including Cu- Cu delivered luminosity, availability, calendar time spent in physics stores, and time between physics stores. We summarize the major factors affecting operations efficiency, and characterize machine activities between physics stores.

  6. RHIC spin physics: Proceedings. Volume 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This proceedings compiles one-page summaries and five transparencies for each talk, with the intention that the speaker should include a web location for additional information in the summary. Also, email addresses are given with the participant list. The order follows the agenda: gluon, polarimetry, accelerator, W production and quark/antiquark polarization, parity violation searches, transversity, single transverse spin, small angle elastic scattering, and the final talk on ep collisions at RHIC. The authors begin the Proceedings with the full set of transparencies from Bob Jaffe`s colloquium on spin, by popular request.

  7. RHIC spin physics: Proceedings. Volume 7

    International Nuclear Information System (INIS)

    1998-01-01

    This proceedings compiles one-page summaries and five transparencies for each talk, with the intention that the speaker should include a web location for additional information in the summary. Also, email addresses are given with the participant list. The order follows the agenda: gluon, polarimetry, accelerator, W production and quark/antiquark polarization, parity violation searches, transversity, single transverse spin, small angle elastic scattering, and the final talk on ep collisions at RHIC. The authors begin the Proceedings with the full set of transparencies from Bob Jaffe's colloquium on spin, by popular request

  8. B-physics at RHIC: An opportunity

    International Nuclear Information System (INIS)

    Atiya, M.S.; White, S.; Marx, M.

    1994-01-01

    B physics provides a unique window for investigation and confirmation of our picture of CP violation, as well as an opportunity to explore physics beyond the Standard Model. Because of this richness of physics, programs for the study of the B sector are in progress or under development at most of the major facilities for high energy physics in the world. In this note we suggest that a B program at the RHIC facility at BNL could provide timely and complementary information to our understanding of physics within and beyond the Standard Model

  9. THE RHIC BEAM ABORT KICKER SYSTEM

    International Nuclear Information System (INIS)

    Hahn, H.

    1999-01-01

    THE ENERGY STORED IN THE RHIC BEAM IS ABOUT 200 KJ PER RING AT DESIGN ENERGY AND INTENSITY. TO PREVENT QUENCHING OF THE SUPERCONDUCTING MAGNETS OR MATERIAL DAMAGE, THE BEAM WILL BE SAFELY DISPOSED OF BY AN INTERNAL BEAM ABORT SYSTEM, WHICH INCLUDES THE KICKER MAGNETS, THE PULSED POWER SUPPLIES, AND THE DUMP ABSORBER. DISPOSAL OF HEAVY IONS, SUCH AS GOLD, IMPOSES DESIGN CONSTRAINTS MORE SEVERE THAN THOSE FOR PROTON BEAMS OF EQUAL INTENSITY. IN ORDER TO MINIMIZE THE THERMAL SHOCK IN THE CARBON-FIBER DUMP BLOCK, THE BUNCHES MUST BE LATERALLY DISPERSED

  10. The ERL-based Design of Electron-Hadron Collider eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Ptitsyn, Vadim [et al.

    2016-06-01

    Recent developments of the ERL-based design of future high-luminosity electron-hadron collider eRHIC focused on balancing technological risks present in the design versus the design cost. As a result a lower risk design has been adopted at moderate cost increase. The modifications include a change of the main linac RF frequency, reduced number of SRF cavity types and modified electron spin transport using a spin rotator. A luminosity-staged approach is being explored with a Nominal design ($L \\sim 10^{33} {\\rm cm}^2 {\\rm s}^{-1}$) that employs reduced electron current and could possibly be based on classical electron cooling, and then with the Ultimate design ($L \\gt 10^{34} {\\rm cm}^{-2} {\\rm s}^{-1}$) that uses higher electron current and an innovative cooling technique (CeC). The paper describes the recent design modifications, and presents the full status of the eRHIC ERL-based design.

  11. New challenges for HEP computing: RHIC [Relativistic Heavy Ion Collider] and CEBAF [Continuous Electron Beam Accelerator Facility

    International Nuclear Information System (INIS)

    LeVine, M.J.

    1990-01-01

    We will look at two facilities; RHIC and CEBF. CEBF is in the construction phase, RHIC is about to begin construction. For each of them, we examine the kinds of physics measurements that motivated their construction, and the implications of these experiments for computing. Emphasis will be on on-line requirements, driven by the data rates produced by these experiments

  12. UNK superconducting dipole development

    International Nuclear Information System (INIS)

    Ageev, A.I.; Andreev, N.I.; Balbekov, V.I.

    1987-01-01

    For choozing the design of superconducting dipoles (SCD) for the IHEP UNK the test results for SCD with warm and cold iron are given. The main parameters of dipoles are presented. The SCD designs are described. At present works on SP magnet simulation for UNK are carried out in two directions. Tests are conducted on a rig with a chain of series dipoles with a warm magnetic screen. The purpose of these tests is to study heat exchange and hydraulics in magnets, energy and helium evacuation in emergency magnet transition into normal conditions, simulation of possible cooling and heating schemes. Another direction involves production of short and full-scale dipole models with cold iron and their testing on rigs. The final choice of the dipole design for commercial production is planned for 1987

  13. Source of second order chromaticity in RHIC

    International Nuclear Information System (INIS)

    Luo, Y.; Gu, X.; Fischer, W.; Trbojevic, D.

    2011-01-01

    In this note we will answer the following questions: (1) what is the source of second order chromaticities in RHIC? (2) what is the dependence of second order chromaticity on the on-momentum β-beat? (3) what is the dependence of second order chromaticity on β* at IP6 and IP8? To answer these questions, we use the perturbation theory to numerically calculate the contributions of each quadrupole and sextupole to the first, second, and third order chromaticities.

  14. NON-LINEAR MODELING OF THE RHIC INTERACTION REGIONS

    International Nuclear Information System (INIS)

    TOMAS, R.; FISCHER, W.; JAIN, A.; LUO, Y.; PILAT, F.

    2004-01-01

    For RHIC's collision lattices the dominant sources of transverse non-linearities are located in the interaction regions. The field quality is available for most of the magnets in the interaction regions from the magnetic measurements, or from extrapolations of these measurements. We discuss the implementation of these measurements in the MADX models of the Blue and the Yellow rings and their impact on beam stability

  15. The gold flashlight: Coherent photons (and Pomerons) at RHIC

    International Nuclear Information System (INIS)

    Klein, S.; Scannapieco, E.

    1997-06-01

    The Relativistic Heavy Ion Collider (RHIC) will be the first heavy ion accelerator energetic enough to produce hadronic final states via coherent γγ, γP, and PP interactions. Because the photon flux scales as Z 2 , up to an energy of about γℎc/R ∼ 3 GeV/c, the γγ interaction rates are large. RHIC γP interactions test how Pomerons couple to nuclei and measure how different vector mesons, including the J/ψ, interact with nuclear matter. PP collisions can probe Pomeron couplings. Because these collisions can involve identical initial states, for identical final states, the γγ, γP, and PP channels may interfere, producing new effects. The authors review the physics of these interactions and discuss how these signals can be detected experimentally, in the context of the STAR detector. Signals can be separated from backgrounds by using isolation cuts (rapidity gaps) and p perpendicular. The authors present Monte Carlo studies of different backgrounds, showing that representative signals can be extracted with good rates and signal to noise ratios

  16. The PHOBOS perspective on discoveries at RHIC

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N. K.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C. M.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zhang, J.; Phobos Collaboration

    2005-08-01

    This paper describes the conclusions that can be drawn from the data taken thus far with the PHOBOS detector at RHIC. In the most central Au + Au collisions at the highest beam energy, evidence is found for the formation of a very high energy density system whose description in terms of simple hadronic degrees of freedom is inappropriate. Furthermore, the constituents of this novel system are found to undergo a significant level of interaction. The properties of particle production at RHIC energies are shown to follow a number of simple scaling behaviors, some of which continue trends found at lower energies or in simpler systems. As a function of centrality, the total number of charged particles scales with the number of participating nucleons. When comparing Au + Au at different centralities, the dependence of the yield on the number of participants at higher p ( ˜4 GeV/c) is very similar to that at low transverse momentum. The measured values of charged particle pseudorapidity density and elliptic flow were found to be independent of energy over a broad range of pseudorapidities when effectively viewed in the rest frame of one of the colliding nuclei, a property we describe as "extended longitudinal scaling". Finally, the centrality and energy dependences of several observables were found to factorize to a surprising degree.

  17. Changes in earth's dipole.

    Science.gov (United States)

    Olson, Peter; Amit, Hagay

    2006-11-01

    The dipole moment of Earth's magnetic field has decreased by nearly 9% over the past 150 years and by about 30% over the past 2,000 years according to archeomagnetic measurements. Here, we explore the causes and the implications of this rapid change. Maps of the geomagnetic field on the core-mantle boundary derived from ground-based and satellite measurements reveal that most of the present episode of dipole moment decrease originates in the southern hemisphere. Weakening and equatorward advection of normal polarity magnetic field by the core flow, combined with proliferation and growth of regions where the magnetic polarity is reversed, are reducing the dipole moment on the core-mantle boundary. Growth of these reversed flux regions has occurred over the past century or longer and is associated with the expansion of the South Atlantic Anomaly, a low-intensity region in the geomagnetic field that presents a radiation hazard at satellite altitudes. We address the speculation that the present episode of dipole moment decrease is a precursor to the next geomagnetic polarity reversal. The paleomagnetic record contains a broad spectrum of dipole moment fluctuations with polarity reversals typically occurring during dipole moment lows. However, the dipole moment is stronger today than its long time average, indicating that polarity reversal is not likely unless the current episode of moment decrease continues for a thousand years or more.

  18. sPHENIX: The next generation heavy ion detector at RHIC

    International Nuclear Information System (INIS)

    Campbell, Sarah

    2017-01-01

    sPHENIX is a new collaboration and future detector project at Brookhaven National Laboratory’s Relativistic Heavy Ion Collider (RHIC). It seeks to answer fundamental questions on the nature of the quark gluon plasma (QGP), including its coupling strength and temperature dependence, by using a suite of precision jet and upsilon measurements that probe different length scales of the QGP. This is possible with a full acceptance, | η | < 1 and 0-2 π in φ , electromagentic and hadronic calorimeters and precision tracking enabled by a 1.5 T superconducting magnet. With the increased luminosity afforded by accelerator upgrades, sPHENIX is going to perform high statistics measurements extending the kinematic reach at RHIC to overlap the LHC’s. This overlap is going to facilitate a better understanding of the role of temperature, density and parton virtuality in QGP dynamics and, specifically, jet quenching. This paper focuses on key future measurements and the current state of the sPHENIX project. (paper)

  19. Solitary excitations in discrete two-dimensional nonlinear Schrodinger models with dispersive dipole-dipole interactions

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Johansson, M.

    1998-01-01

    The dynamics of discrete two-dimensional nonlinear Schrodinger models with long-range dispersive interactions is investigated. In particular, we focus on the cases where the dispersion arises from a dipole-dipole interaction, assuming the dipole moments at each lattice site to be aligned either...

  20. HIGH PT MEASUREMENT AT RHIC

    International Nuclear Information System (INIS)

    MIODUSZEWSKI, S.

    2003-01-01

    We present recent high transverse momentum measurements in Au+Au and p+p collisions at the Relativistic Heavy Ion Collider (RHIC). We define and show the nuclear modification factor for neutral pions and charged hadrons and discuss the particle species dependence. By means of the nuclear modification factor, we observe a suppression factor at high p T of 5-6 for neutral pions and 3-4 for charged hadrons in central Au+Au collisions relative to the binary-scaled yields in p+p (or peripheral) collisions. Finally we present strong evidence for the observation of jets in Au+Au collisions and the disappearance of the away-side jet in central Au+Au collisions

  1. ABORT GAP CLEANING IN RHIC

    International Nuclear Information System (INIS)

    DREES, A.; AHRENS, L.; III FLILLER, R.; GASSNER, D.; MCINTYRE, G.T.; MICHNOFF, R.; TRBOJEVIC, D.

    2002-01-01

    During the RHIC Au-run in 2001 the 200 MHz storage cavity system was used for the first time. The rebucketing procedure caused significant beam debunching in addition to amplifying debunching due to other mechanisms. At the end of a four hour store, debunched beam could account for approximately 30%-40% of the total beam intensity. Some of it will be in the abort gap. In order to minimize the risk of magnet quenching due to uncontrolled beam losses at the time of a beam dump, a combination of a fast transverse kicker and copper collimators were used to clean the abort gap. This report gives an overview of the gap cleaning procedure and the achieved performance

  2. Calirimeter/absorber optimization for a RHIC dimuon experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aronson, S.H.; Murtagh, M.J.; Starks, M. [Brookhaven National Lab., Upton, NY (United States); Liu, X.T.; Petitt, G.A.; Zhang, Z. [Georgia State Univ., Atlanta (United States); Ewell, L.A.; Hill, J.C.; Wohn, F.K. [Iowa State Univ., Ames (United States); Costales, J.B.; Namboodiri, M.N., Sangster, T.C.; Thomas, J.H. [Lawrence Livermore National Lab., CA (United States); Gavron, A.; Waters, L. [Los Alamos National Lab., NM (United States); Kehoe, W.L.; Steadman, S.G. [Massachusetts Institute of Technology, Cambridge (United States); Awes, T.C.; Obenshain, F.E.; Saini, S.; Young, G.R. [Oak Ridge National Lab., TN (United States); Chang, J.; Fung, S.Y.; Kang, J.H. [Univ. of California, Riverside, CA (United States); Kreke, J.; He, Xiaochun, Sorensen, S.P. [Univ. of Tennessee, Knoxville (United States); Cornell, E.C.; Maguire, C.F. [Vanderbilt Univ., Nashville, TN (United States)

    1991-12-31

    The RD-10 R&D effort on calorimeter/absorber optimization for a RHIC experiment had an extended run in 1991 using the A2 test beam at the AGS. Measurements were made of the leakage of particles behind various model hadron calorimeters. Behavior of the calorimeter/absorber as a muon-identifier was studied. First comparisons of results from test measurements to calculated results using the GHEISHA code were made

  3. Parton-hadron cascade approach at SPS and RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Nara, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-07-01

    A parton-hadron cascade model which is the extension of hadronic cascade model incorporating hard partonic scattering based on HIJING is presented to describe the space-time evolution of parton/hadron system produced by ultra-relativistic nuclear collisions. Hadron yield, baryon stopping and transverse momentum distribution are calculated and compared with HIJING and VNI. Baryon density, energy density and temperature for RHIC are calculated within this model. (author)

  4. Lepton dipole moments

    CERN Document Server

    Marciano, William J

    2010-01-01

    This book provides a self-contained description of the measurements of the magnetic dipole moments of the electron and muon, along with a discussion of the measurements of the fine structure constant, and the theory associated with magnetic and electric dipole moments. Also included are the searches for a permanent electric dipole moment of the electron, muon, neutron and atomic nuclei. The related topic of the transition moment for lepton flavor violating processes, such as neutrinoless muon or tauon decays, and the search for such processes are included as well. The papers, written by many o

  5. Some calculations for the RHIC kicker

    International Nuclear Information System (INIS)

    Claus, J.

    1996-12-01

    This paper starts with a brief discussion of the design of the RHIC injection kicker magnets which calls for longitudinal and capacitive sections of the same order as the aperture, not much larger nor much smaller. This makes accurate analytical prediction of their behavior very difficult. In order to gain at least some qualitative insight of that behavior, the author preformed calculations which are based on the actual dimensions of the kickers but which neglect the end effects of the individual sections. The effects of the sectionalization are therefore exaggerated relative to reality in the results

  6. Electronics for the RHIC PHENIX detector

    International Nuclear Information System (INIS)

    Young, G.R.

    1992-01-01

    The PHENIX detector for RHIC is being designed to measure lepton pairs, direct photons and hadrons emitted in collisions of heavy nuclei at center of mass energies up to 200 GeV/(nucleon-pair). The physics goal is tests of predictions concerning the existence and nature of a deconfined state of strongly-interacting matter. The relatively large final state multiplicities, which reach 1500 charged particles per unit of rapidity, place strong demands on detector segmentation and control of electronics cost and power consumption. An overview of present ideas concerning signal processing and data rates for PHENIX will be presented

  7. Recent Results from PHOBOS at Rhic

    Science.gov (United States)

    Garcia, Edmundo; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; Garcia, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    The PHOBOS detector is one of four heavy-ion experiments at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. In this paper we will review some of the results of PHOBOS from the data collected in p+p, d+Au and Au+Au collisions at nucleon-nucleon center-of-mass energies up to 200 GeV. In the most central Au+Au collisions at the highest energy, evidence is found for the formation of a very high energy density and highly interactive system, which can not be described in terms of hadrons, and which has a relatively low baryon density.

  8. Strangeness production in heavy ion collisions: What have we learned with the energy increase from SPS to RHIC

    International Nuclear Information System (INIS)

    Odyniec, Grazyna

    2002-01-01

    A review of strange particle production in heavy ion collisions at ultrarelativistic energies is presented. The particle yields and ratios from SPS and RHIC are discussed in view of the newest developments in understanding collision dynamics, and in view of their role in the search for a quark gluon plasma. A strangeness enhancement, most notably observed in CERN Pb-beam results, shows a remarkable two fold global enhancement with a much larger effect seen in the case of multistrange baryons. Hadronic models did fail to explain this pattern. At RHIC energy strangeness assumes a different role, since temperatures are higher and the central rapidity region almost baryon-free. An intriguing question: ''Did RHIC change the way we understand strangeness production in heavy ion collisions ?'' is discussed

  9. Highlights from PHENIX transverse spin program at RHIC

    International Nuclear Information System (INIS)

    Liu, M.

    2013-01-01

    In recent years, there has been exciting development in both experimental and theoretical studies of transverse spin phenomena in high energy polarized p+p and polarized DIS collisions. In the p+p frontier, the polarized p+p collider at RHIC provides a unique opportunity to investigate the novel physics that causes the large spin effects seen in the transversely polarized p+p collisions over the past 30 years, particularly in the forward rapidity. Since the beginning, PHENIX has been conducting a very active transverse spin physics program to study Sivers, Collins and other novel spin effects at RHIC, including measurements of transverse single spin asymmetry (TSSA) in light and heavy quark productions, leading neutron TSSA in the very forward rapidity, and di-hadron (and 'jet') spin correlations in a wide kinematics range, just to name a few. In 2012, PHENIX collected transversely polarized 200 GeV p+p data with a record high luminosity of 9.24 pb −1 , with an average beam polarization of 58%. In this talk, I highlight the recent results from the PHENIX experiment, and also briefly discuss the near-term prospects of new transverse spin measurements only possible with the latest (forward) silicon vertex detectors, (F)VTX, and the upcoming forward MPC-EX upgrade detectors.

  10. "Upgraded" physics at the LHC and RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Llope, W. J. [Wayne State University, Detroit, MI (United States)

    2017-09-03

    Closeout materials enclosed. This grant supported a postdoctoral scientist (S. Jowzaee) and the tuition for a graduate student (B. Erko), both working under the supervision of Prof. W.J. Llope at Wayne State University. Travel to a STAR Collaboration Meeting and the Quark Matter 2017 conference was also supported. The physics research concentrated on particle-identified two-particle correlations in the Beam Energy Scan data from the STAR experiment at RHIC. S. Jowzaee gave an oral presentation on this research at the Quark Matter 2017 conference.

  11. Photoproduction at collider energies: from RHIC and HERA to the LHC

    CERN Document Server

    Baltz, A; Brodsky, S J; D'Enterria, D G; Dreyer, U; Engel, R; Frankfurt, L; Gorbunov, Y; Guzey, V; Hamilton, A; Klasen, M; Klein, S R; Kowalski, H; Levonian, S; Lourenço, C; Machado, M V T; Nachtmann, O; Nagy, Z; Nystrand, J; Piotrzkowski, K; Ramalhete, P; Savin, A; Scapparone, E; Schicker, R; Silvermyr, D; Strikman, M I; Valkárová, A; Vogt, R; Yilmaz, M; Enterria, David d'

    2007-01-01

    We present the mini-proceedings of the workshop on "Photoproduction at collider energies: from RHIC and HERA to the LHC" held at the European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*, Trento) from January 15 to 19, 2007. The workshop gathered both theorists and experimentalists to discuss the current status of investigations of high-energy photon-induced processes at different colliders (HERA, RHIC, and Tevatron) as well as preparations for extension of these studies at the LHC. The main physics topics covered were: (i) small-$x$ QCD in photoproduction studies with protons and in electromagnetic (aka. ultraperipheral) nucleus-nucleus collisions, (ii) hard diffraction physics at hadron colliders, and (iii) photon-photon collisions at very high energies: electroweak and beyond the Standard Model processes. These mini-proceedings consist of an introduction and short summaries of the talks presented at the meeting.

  12. A Note on the Dipole Coordinates

    OpenAIRE

    Kageyama, Akira; Sugiyama, Tooru; Watanabe, Kunihiko; Sato, Tetsuya

    2004-01-01

    A couple of orthogonal coordinates for dipole geometry are proposed for numerical simulations of plasma geophysics in the Earth's dipole magnetic field. These coordinates have proper metric profiles along field lines in contrast to the standard dipole coordinate system that is commonly used in analytical studies for dipole geometry.

  13. Current status of PHOBOS at sign RHIC

    International Nuclear Information System (INIS)

    Betts, R.R.; Univ. of Illinois, Chicago, IL

    1996-01-01

    Four experiments are currently approved for the first measurements with colliding heavy ion beams from the Relativistic Heavy Ion Collider (RHIC) which is scheduled to come into operation in Spring 1999. These experiments are named STAR, Phoenix, PHOBOS and Brahms. It is expected that central collisions of 100 GeV/u Au + Au at RHIC will lead to energy densities far above any so far attained in the laboratory and it is suspected and hoped that this situation will lead to qualitatively new physics perhaps associated with the creation of a large volume containing a plasma of deconfined quarks and gluons. All four experiments attempt to search for signatures of new physics through combinations of measurements of quantities such as the multiplicity of produced particles, the average transverse momentum of these particles, fluctuations in their multiplicity distribution, their flavor composition, the size scales of the volume from which they are emitted, mass shifts and changes in the decay widths of resonances which decay inside the high energy density volume etc. The PHOBOS detector addresses these issues with a Multiplicity Array which covers the pseudo-rapidity region -5.3 ≤ η ≤ 5.3 with a coverage of 85% of 4π and also incorporates a Vertex Detector. The Multiplicity Array is complemented by two Multi-Particle Spectrometers, each of which cover the range 0.5 ≤ η ≤ 1.5 and azimuthal angle range Δφ = 11 degree. Various trigger and monitor detectors complete PHOBOS

  14. RAPIDE 0.0 RHIC Accelerator Physics Intrepid Development Environment

    Energy Technology Data Exchange (ETDEWEB)

    Satogata, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Saltmarsh, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Peggs, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    1993-08-01

    This document is a guide to the common environmental features of computing in (and around) the RHIC Accelerator Physics.sectio on the 'zoo' cluster of UNJX workstations, in RAPIDE, the RHIC Accelerator Physics Intrepid Development Environment It is hoped tliat later revisions of this document will approach a more professional 'style guide', beyond the convenient collection of pointers and hints presented here. RAP does two kinds of computing, "controls" and "general", addressed in sections 2 and 3 of this document For general computing, efficient system administration requires cooperation in using a common environment There is a much stronger need to define - and adhere to - a commonly agreed set of styles (or rules) in developing controls software. Right now, these rules have been set "de facto". Future improvements to the controls environment, particularly in response to the opinions of users, depends on broad knowledge of what the rules are. There are environmental issues that are basic to both controls and general computing, and that are so fundamental that they are (almost) unarguable. They are described immediately below, in the next section.

  15. The strongly coupled quark-gluon plasma created at RHIC

    International Nuclear Information System (INIS)

    Heinz, Ulrich

    2009-01-01

    The relativistic heavy-ion collider (RHIC) was built to re-create and study in the laboratory the extremely hot and dense matter that filled our entire universe during its first few microseconds. Its operation since June 2000 has been extremely successful, and the four large RHIC experiments have produced an impressive body of data which indeed provide compelling evidence for the formation of thermally equilibrated matter at unprecedented temperatures and energy densities-a 'quark-gluon plasma (QGP)'. A surprise has been the discovery that this plasma behaves like an almost perfect fluid, with extremely low viscosity. Theorists had expected a weakly interacting gas of quarks and gluons, but instead we seem to have created a strongly coupled plasma liquid. The experimental evidence strongly relies on a feature called 'elliptic flow' in off-central collisions, with additional support from other observations. This paper explains how we probe the strongly coupled QGP, describes the ideas and measurements which led to the conclusion that the QGP is an almost perfect liquid, and shows how they tie relativistic heavy-ion physics into other burgeoning fields of modern physics, such as strongly coupled Coulomb plasmas, ultracold systems of trapped atoms and superstring theory

  16. Polarization response of RHIC electron lens lattices

    Directory of Open Access Journals (Sweden)

    V. H. Ranjbar

    2016-10-01

    Full Text Available Depolarization response for a system of two orthogonal snakes at irrational tunes is studied in depth using lattice independent spin integration. In particular we consider the effect of overlapping spin resonances in this system, to understand the impact of phase, tune, relative location and threshold strengths of the spin resonances. These results are benchmarked and compared to two dimensional direct tracking results for the RHIC e-lens lattice and the standard lattice. Finally we consider the effect of longitudinal motion via chromatic scans using direct six dimensional lattice tracking.

  17. Heavy flavour production at RHIC and LHC

    Directory of Open Access Journals (Sweden)

    Innocenti Gian Michele

    2018-01-01

    Full Text Available In this proceedings, I present selected experimental results on heavy-flavour production at RHIC and at the LHC, which were presented at the Strangeness in Quark Matter 2017 conference. I will present a brief introduction to the heavy-flavour physics in heavy ion collisions and I will focus on recents measurements of in-medium energy loss and and collective properties of heavy-flavour particles, which provided important information on the mechanisms of heavy flavour interaction with the hot and dense medium created in ultra-relativistic heavy-ion collisions.

  18. Polarization response of RHIC electron lens lattices

    International Nuclear Information System (INIS)

    Ranjbar, V. H.; Méot, F.; Bai, M.; Abell, D. T.; Meiser, D.

    2016-01-01

    Depolarization response for a system of two orthogonal snakes at irrational tunes is studied in depth using lattice independent spin integration. Particularly, we consider the effect of overlapping spin resonances in this system, to understand the impact of phase, tune, relative location and threshold strengths of the spin resonances. Furthermore, these results are benchmarked and compared to two dimensional direct tracking results for the RHIC e-lens lattice and the standard lattice. We then consider the effect of longitudinal motion via chromatic scans using direct six dimensional lattice tracking.

  19. Proceedings of RIKEN BNL Resarch Center Workshop: Fluctuations, Correlations and RHIC Low Energy Runs

    Energy Technology Data Exchange (ETDEWEB)

    Karsch, F.; Kojo, T.; Mukherjee, S.; Stephanov, M.; Xu, N.

    2011-10-27

    Most of our visible universe is made up of hadronic matter. Quantum Chromodynamics (QCD) is the theory of strong interaction that describes the hadronic matter. However, QCD predicts that at high enough temperatures and/or densities ordinary hadronic matter ceases to exist and a new form of matter is created, the so-called Quark Gluon Plasma (QGP). Non-perturbative lattice QCD simulations shows that for high temperature and small densities the transition from the hadronic to the QCD matter is not an actual phase transition, rather it takes place via a rapid crossover. On the other hand, it is generally believed that at zero temperature and high densities such a transition is an actual first order phase transition. Thus, in the temperature-density phase diagram of QCD, the first order phase transition line emanating from the zero temperature high density region ends at some higher temperature where the transition becomes a crossover. The point at which the first order transition line turns into a crossover is a second order phase transition point belonging to three dimensional Ising universality class. This point is known as the QCD Critical End Point (CEP). For the last couple of years the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been performing experiments at lower energies in search of the elusive QCD CEP. In general critical behaviors are manifested through appearance of long range correlations and increasing fluctuations associated with the presence of mass-less modes in the vicinity of a second order phase transition. Experimental signatures of the CEP are likely to be found in observables related to fluctuations and correlations. Thus, one of the major focuses of the RHIC low energy scan program is to measure various experimental observables connected to fluctuations and correlations. On the other hand, with the start of the RHIC low energy scan program, a flurry of activities are taking place to provide solid theoretical

  20. Testing of a Single 11 T $Nb_3Sn$ Dipole Coil Using a Dipole Mirror Structure

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, Alexander [Fermilab; Andreev, Nicolai [Fermilab; Barzi, Emanuela [Fermilab; Chlachidze, Guram [Fermilab; Kashikhin, Vadim [Fermilab; Nobrega, Alfred [Fermilab; Novitski, Igor [Fermilab; Turrioni, Daniele [Fermilab; Karppinen, Mikko [CERN; Smekens, David [CERN

    2014-07-01

    FNAL and CERN are developing an 11 T Nb3Sn dipole suitable for installation in the LHC. To optimize coil design parameters and fabrication process and study coil performance, a series of 1 m long dipole coils is being fabricated. One of the short coils has been tested using a dipole mirror structure. This paper describes the dipole mirror magnetic and mechanical designs, and reports coil parameters and test results.

  1. Dynamic Dipole-Dipole Interactions between Excitons in Quantum Dots of Different Sizes

    DEFF Research Database (Denmark)

    Matsueda, Hideaki; Leosson, Kristjan; Xu, Zhangcheng

    2005-01-01

    Micro-photoluminescence spectra of GaAs/AlGaAs coupled quantum dots (QDs) are given, and proposed to be analyzed by our resonance dynamic dipole-dipole interaction (RDDDI) model, based on parity inheritance and exchange of virtual photons among QDs of different sizes....

  2. Optimization of multiwire coil ends having 45 degree bends

    International Nuclear Information System (INIS)

    Morgan, G.H.

    1989-01-01

    Multiwire is the name of a proprietary process for affixing small diameter wires to a flat substrate using digitally controlled machinery. It is currently being used to wind trim coils for the SSC dipoles on a flexible substrate which is wrapped around the beam tube. It is proposed for making multipole coils for the Corrector, a regular arc magnet in each half-cell of the Relativistic Heavy Ion Collider (RHIC). The current Multiwire process does not permit a change in direction of the wire other than 45 degree. The present paper answers the question of whether the 45 degree bends in the flattened coil can be located along straight lines in such a way as to eliminate or reduce higher harmonics in the ends. The more general question of bends located along curves is not addressed

  3. Optimization of multiwire coil ends having 45 degree bends

    International Nuclear Information System (INIS)

    Morgan, G.H.

    1988-01-01

    Multiwire is the name of a proprietary process for affixing small diameter wires to a flat substrate using digitally controlled machinery. It is currently being used to wind trim coils for the SSC dipoles on a flexible substrate which is wrapped around the beam tube. It is proposed for making multipole coils for the Corrector, a regular arc magnet in each half-cell of the Relativistic Heavy Ion Collider (RHIC). The current Multiwire process does not permit a change in direction of the wire other than 45 degree. The present paper answers the question of whether the 45 degree bends in the flattened coil can be located along straight lines in such a way as to eliminate or reduce higher harmonics in the ends. The more general question of bends located along curves is not addressed. 3 refs., 3 figs., 2 tabs

  4. Heavy ion program at BNL: AGS, RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Barton, D.S.

    1987-01-01

    With the recent commissioning of fixed target, heavy ion physics at the AGS, Brookhaven National Laboratory (BNL) has embarked on a long range program in support of relativistic heavy ion research. Acceleration of low mass heavy ions (up to sulfur) to an energy of about 14.5 GeV/nucleon is possible with the direct connection of the BNL Tandem Van de Graaff and AGS accelerators. When completed, the new booster accelerator will provide heavy ions over the full mass range for injection and subsequent acceleration in the AGS. BNL is now engaged in an active R and D program directed toward the proposed Relativistic Heavy Ion Collider (RHIC). The results of the first operation of the low mass heavy ion program will be reviewed, and future expectations discussed. The expected performance for the heavy ion operation of the booster will be described and finally, the current status and outlook for the RHIC facility will be presented

  5. POSSIBLE ORIGIN OF RHIC R OUT/R SID HBT RESULTS

    International Nuclear Information System (INIS)

    PADULA, S.S.

    2002-01-01

    The effects of opacity of the nuclei together with a blackbody type of emission along the system history are considered as a means to explain the ratio R out /R sid observed by STAR and PHENIX collaborations at RHIC. Within our model, no flow is required to explain the data trend of this ratio for large surface emissivities

  6. POSSIBLE ORIGIN OF RHIC R OUT / R SID HBT RESULTS

    International Nuclear Information System (INIS)

    PADULA, S.

    2002-01-01

    The effects of opacity of the nuclei together with a blackbody type of emission along the system history are considered as a means to explain the ratio R out /R sid observed by STAR and PHENIX collaborations at RHIC. Within our model, no flow is required to explain the data trend of this ratio for large surface emissivities

  7. Possible displacement of mercury's dipole

    International Nuclear Information System (INIS)

    Ng, K.H.; Beard, D.B.

    1979-01-01

    Earlier attempts to model the Hermean magnetospheric field based on a planet-centered magnetic multipole field have required the addition of a quadrupole moment to obtain a good fit to space vehicle observations. In this work we obtain an equally satisfactory fit by assuming a null quadrupole moment and least squares fitting of the displacement of the planetary dipole from the center of the planet. We find a best fit for a dipole displacement from the planet center of 0.033 R/sub m/ away from the solar direction, 0.025 R/sub m/ toward dawn in the magnetic equatorial plane, and 0.189 R/sub m/ northward along the magnetic dipole axis, where R/sub m/ is the planet radius. Therefore the presence of a magnetic quadrupole moment is not ruled out. The compressed dipole field more completely represents the field in the present work than in previous work where the intrinsic quadrupole field was not included in the magnetopause surface and field calculations. Moreover, we have corrected a programing error in previous work in the computation of dipole tilt lambda away from the sun. We find a slight increase for the planet dipole moment of 190γR/sub m/ 3 and a dipole tilt angle lambda away from the sun. We find a slight increase for the planet moment of 190γR/sub m/ 3 and a dipole tilt angle lambda of only 1.2 0 away from the sun. All other parameters are essentially unchanged

  8. Dipoles at rest

    International Nuclear Information System (INIS)

    Griffiths, D.J.

    1992-01-01

    In a world populated by magnetic monopoles (as well as ordinary electric charges), there are two kinds of electric dipoles: those due to separated electric charges, and those due to current loops of magnetic charge. Similarly, there are two kinds of magnetic dipoles: those due to separated magnetic monopoles, and those due to electric current loops. This paper derives the potentials and fields of each of the four dipole species, and calculates the force, torque, energy, momentum, and angular momentum of each type, when placed (at rest) in a static external field (which may itself be produced by electric charges and currents, magnetic charges and currents, or all of these). Some implications and applications of the various results are discussed

  9. Some dipole shower studies

    Science.gov (United States)

    Cabouat, Baptiste; Sjöstrand, Torbjörn

    2018-03-01

    Parton showers have become a standard component in the description of high-energy collisions. Nowadays most final-state ones are of the dipole character, wherein a pair of partons branches into three, with energy and momentum preserved inside this subsystem. For initial-state showers a dipole picture is also possible and commonly used, but the older global-recoil strategy remains a valid alternative, wherein larger groups of partons share the energy-momentum preservation task. In this article we introduce and implement a dipole picture also for initial-state radiation in Pythia, and compare with the existing global-recoil one, and with data. For the case of Deeply Inelastic Scattering we can directly compare with matrix element expressions and show that the dipole picture gives a very good description over the whole phase space, at least for the first branching.

  10. Ionization of Rb Rydberg atoms in the attractive nsnp dipole-dipole potential

    International Nuclear Information System (INIS)

    Park, Hyunwook; Shuman, E. S.; Gallagher, T. F.

    2011-01-01

    We have observed the ionization of a cold gas of Rb Rydberg atoms which occurs when nsns van der Waals pairs of ns atoms of n≅ 40 on a weakly repulsive potential are transferred to an attractive dipole-dipole nsnp potential by a microwave transition. Comparing the measurements to a simple model shows that the initial 300-μK thermal velocity of the atoms plays an important role. Excitation to a repulsive dipole-dipole potential does not lead to more ionization on a 15-μs time scale than leaving the atoms in the weakly repulsive nsns state. This observation is slightly surprising since a radiative transition must occur to allow ionization in the latter case. Finally, by power broadening of the microwave transition, to allow transitions from the initial nsns state to the nsnp state over a broad range of internuclear spacings, it is possible to accelerate markedly the evolution to a plasma.

  11. Angle-dependent quantum Otto heat engine based on coherent dipole-dipole coupling

    Science.gov (United States)

    Su, Shan-He; Luo, Xiao-Qing; Chen, Jin-Can; Sun, Chang-Pu

    2016-08-01

    Electromagnetic interactions between molecules or within a molecule have been widely observed in biological systems and exhibit broad application for molecular structural studies. Quantum delocalization of molecular dipole moments has inspired researchers to explore new avenues to utilize this physical effect for energy harvesting devices. Herein, we propose a simple model of the angle-dependent quantum Otto heat engine which seeks to facilitate the conversion of heat to work. Unlike previous studies, the adiabatic processes are accomplished by varying only the directions of the magnetic field. We show that the heat engine continues to generate power when the angle relative to the vector r joining the centres of coupled dipoles departs from the magic angle θm where the static coupling vanishes. A significant improvement in the device performance has to be attributed to the presence of the quantum delocalized levels associated with the coherent dipole-dipole coupling. These results obtained may provide a promising model for the biomimetic design and fabrication of quantum energy generators.

  12. An approximately 4π tracking magnetic spectrometer for RHIC

    International Nuclear Information System (INIS)

    1987-01-01

    A tracking magnetic spectrometer based on large Time Projection Chambers (TPC) is proposed to measure the momentum of charged particles emerging from the RHIC beam pipe at angles larger than four degrees and to identify the particle type for those beyond fifteen degrees with momenta up to 700 MeV/c, which is a large fraction of the final charged particles emitted by a low rapidity quark-gluon plasma

  13. W-boson electric dipole moment

    International Nuclear Information System (INIS)

    He, X.; McKellar, B.H.J.

    1990-01-01

    The W-boson electric dipole moment is calculated in the SU(3) C xSU(2) L xU(1) Y model with several Higgs-boson doublets. Using the constraint on the CP-violating parameters from the experimental upper bound of the neutron electric dipole moment, we find that the W-boson electric dipole moment is constrained to be less than 10 -4

  14. The e+, e- background at Relativistic Heavy Ion Collider (RHIC) generated by beam crossing

    International Nuclear Information System (INIS)

    Rhoades-Brown, M.J.; Ludlam, T.; Wu, J.; Bottcher, C.; Strayer, M.

    1990-01-01

    At the Brookhaven Relativistic Heavy Ion Collider (RHIC), fully stripped heavy ions will circulate in each of two rings up to beam energies of 250 (Z/A) GeV/u. During the beam crossing, the peripheral electromagnetic interaction between the heavy ions is sufficient to induce copious production of di-lepton pairs. These pairs are a potential source of background for the detectors at RHIC. In this paper we discuss the expected number of e + ,e - pairs, given the accepted initial luminosity value L of the collider. More importantly, we also calculate the differential cross sections for the angle, energy, rapidity and momentum distribution of the leptons. Using the luminosity L of the collider, these differential cross sections are normalized to the expected number of leptons per second. We restrict ourselves to e + ,e - production, a discussion of μ + ,μ - and τ + τ - distributions will be published later. The results are presented for the expected worst case, namely 197 Au 79+ ions at a beam kinetic energy of 100 GeV/u. This is forseen to be the heaviest ion for high luminosity experiments at RHIC. We note for a given energy, the cross section for e + ,e - production scales as Z 4 , where Z is the atomic number of the ions

  15. Recuperation of ISR Dipole Magnet Yokes for Use as Shielding for the LHC Beam Dumps TDE

    CERN Document Server

    Ross, M

    1999-01-01

    The quantity of iron shielding required for two LHC dumps was estimated at about 1500 tons. Possible sources of slightly irradiated iron shielding were considered, in particular, the ISR dipole yokes, which were stocked in the I2. Of rectangular form and weighing 22 tons each, they were well suited to the LHC dump geometry. Furthermore, they were to all intents and purposes non-radioactive. The preferred solution was to cut off four lifting pads and three support plates using arc/air equipment, seal temporarily each end with shutters, fit two lifting "anchor" pins, and fill with concrete.

  16. The Forward GEM Tracker of STAR at RHIC

    OpenAIRE

    Simon, F.; Balewski, J.; Fatemi, R.; Hasell, D.; Kelsey, J.; Majka, R.; Page, B.; Plesko, M.; Underwood, D.; Smirnov, N.; Sowinski, J.; Spinka, H.; Surrow, B.; Visser, G.

    2008-01-01

    The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) is in the process of designing and constructing a forward tracking system based on triple GEM technology. This upgrade is necessary to give STAR the capability to reconstruct and identify the charge sign of W bosons over an extended rapidity range through their leptonic decay mode into an electron (positron) and a neutrino. This will allow a detailed study of the flavor-separated spin str...

  17. Optimal control of orientation and entanglement for two dipole-dipole coupled quantum planar rotors.

    Science.gov (United States)

    Yu, Hongling; Ho, Tak-San; Rabitz, Herschel

    2018-05-09

    Optimal control simulations are performed for orientation and entanglement of two dipole-dipole coupled identical quantum rotors. The rotors at various fixed separations lie on a model non-interacting plane with an applied control field. It is shown that optimal control of orientation or entanglement represents two contrasting control scenarios. In particular, the maximally oriented state (MOS) of the two rotors has a zero entanglement entropy and is readily attainable at all rotor separations. Whereas, the contrasting maximally entangled state (MES) has a zero orientation expectation value and is most conveniently attainable at small separations where the dipole-dipole coupling is strong. It is demonstrated that the peak orientation expectation value attained by the MOS at large separations exhibits a long time revival pattern due to the small energy splittings arising form the extremely weak dipole-dipole coupling between the degenerate product states of the two free rotors. Moreover, it is found that the peak entanglement entropy value attained by the MES remains largely unchanged as the two rotors are transported to large separations after turning off the control field. Finally, optimal control simulations of transition dynamics between the MOS and the MES reveal the intricate interplay between orientation and entanglement.

  18. Translational Entanglement of Dipole-Dipole Interacting Atoms in Optical Lattices

    OpenAIRE

    Opatrny, T.; Deb, B.; Kurizki, G.

    2003-01-01

    We propose and investigate a realization of the position- and momentum-correlated Einstein-Podolsky-Rosen (EPR) states [Phys. Rev. 47, 777 (1935)] that have hitherto eluded detection. The realization involves atom pairs that are confined to adjacent sites of two mutually shifted optical lattices and are entangled via laser-induced dipole-dipole interactions. The EPR "paradox" with translational variables is then modified by lattice-diffraction effects, and can be verified to a high degree of ...

  19. Dynamic dipole-dipole interactions between excitons in quantum dots of different sizes

    DEFF Research Database (Denmark)

    Matsueda, Hideaki; Leosson, Kristjan; Xu, Zhangcheng

    2004-01-01

    A model of the resonance dynamic dipole-dipole interaction between excitons confined in quantum dots (QDs) of different sizes at close enough distance is given in terms of parity inheritance and exchange of virtual photons. Microphotoluminescence spectra of GaAs-AlGaAs coupled QDs are proposed to...

  20. Metal halide arc discharge lamp having short arc length

    Science.gov (United States)

    Muzeroll, Martin E. (Inventor)

    1994-01-01

    A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.

  1. Electron Cooling of RHIC

    CERN Document Server

    Ben-Zvi, Ilan; Barton, Donald; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Bruhwiler, David L; Burger, Al; Burov, Alexey; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Derbenev, Yaroslav S; Eidelman, Yury I; Favale, Anthony; Fedotov, Alexei V; Fischer, Wolfram; Funk, L W; Gassner, David M; Hahn, Harald; Harrison, Michael; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Koop, Ivan; Lambiase, Robert; Litvinenko, Vladimir N; MacKay, William W; Mahler, George; Malitsky, Nikolay; McIntyre, Gary; Meng, Wuzheng; Merminga, Lia; Meshkov, Igor; Mirabella, Kerry; Montag, Christoph; Nagaitsev, Sergei; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Parkhomchuk, Vasily; Parzen, George; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Sekutowicz, Jacek; Shatunov, Yuri; Sidorin, Anatoly O; Skrinsky, Aleksander Nikolayevich; Smirnov, Alexander V; Smith, Kevin T; Todd, Alan M M; Trbojevic, Dejan; Troubnikov, Grigory; Wang, Gang; Wei, Jie; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Zaltsman, Alex; Zhao, Yongxiang; ain, Animesh K

    2005-01-01

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.ags...

  2. Chemical freeze-out study in proton-proton collisions at RHIC and LHC energies

    International Nuclear Information System (INIS)

    Das, Sabita; Mishra, Debadeepti; Mohanty, Bedangadas; Chatterjee, Sandeep

    2016-01-01

    Particle multiplicities measured at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) facilities can be used to understand the chemical freeze-out dynamics. At chemical freeze-out (CFO), inelastic collisions cease and the freeze-out parameters can be determined using measured particle multiplicities within the framework of a statistical model. The statistical model has proven to be quite successful in describing the particle production from elementary p-p and e"+e"- collisions up to heavy-ion collisions. It helps to do a systematic study of the centrality and energy dependence of freeze-out parameters in heavy-ion collisions from lower SPS to higher LHC energies. The new data at LHC along with the RHIC data can be used to do such a systematic study in proton-proton collisions

  3. Preliminary studies on a magneto-optical procedure for aligning RHIC magnets

    International Nuclear Information System (INIS)

    Goldman, M.A.; Sikora, R.E.; Shea, T.J.

    1993-01-01

    Colloid dispersions of magnetite were used at SLAC and KEK to locate multipole magnet centers. The authors study here possible adaption of this method, to align RHIC magnets. A procedure for locating magnetic centers with respect to external fiducial markers, using electronic coordinate determination and digital TV image processing is described

  4. The electromagnetic calorimeter for the solenoidal tracker at RHIC. A Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Beddo, M.E.; Bielick, E.; Dawson, J.W. [Argonne National Lab., IL (United States)] [and others; The STAR EMC Collaboration

    1993-09-22

    This report discusses the following on the electromagnetic calorimeter for the solenoidal tracker at RHIC: conceptual design; the physics of electromagnetic calorimetry in STAR; trigger capability; integration into STAR; and cost, schedule, manpower, and funding.

  5. Luminosity monitor topics for RHIC spin and AA, and pA interactions

    International Nuclear Information System (INIS)

    Underwood, D.

    1998-01-01

    This is a note to define topics to be studied in more depth for the Luminosity monitoring for Spin Asymmetries. My numerical examples here are to stimulate discussion and should be taken with a grain of salt. The RHIC Spin experiments will require a very high degree of coordination between the experiments and the accelerator. For example see AGS/RHIC/SN 035. In this note we list some of the issues to be considered in monitoring the relative luminosity between various beam-beam spin combinations and beam-gas combinations. We give simplified numerical examples of the problems encountered in doing the luminosity monitoring to the 10 -4 level. It is hoped that this will provide a framework for serious study of these problems with simulations and other means. Many of the issues may also be relevant to pA and AA running where there may be sizable beam-gas backgrounds

  6. Can doubly strange dibaryon resonances be discovered at RHIC?

    International Nuclear Information System (INIS)

    Paganis, S. D.; Hoffmann, G. W.; Ray, R. L.; Tang, J.-L.; Udagawa, T.; Longacre, R. S.

    2000-01-01

    The baryon-baryon continuum invariant mass spectrum generated from relativistic nucleus + nucleus collision data may reveal the existence of doubly strange dibaryons not stable against strong decay if they lie within a few MeV of threshold. Furthermore, since the dominant component of these states is a superposition of two color-octet clusters which can be produced intermediately in a color-deconfined quark-gluon plasma (QGP), an enhanced production of dibaryon resonances could be a signal of QGP formation. A total of eight, doubly strange dibaryon states are considered for experimental search using the STAR detector (solenoidal tracker at RHIC) at the new Relativistic Heavy Ion Collider (RHIC). These states may decay to ΛΛ and/or pΞ - , depending on the resonance energy. STAR's large acceptance, precision tracking and vertex reconstruction capabilities, and large data volume capacity, make it an ideal instrument to use for such a search. Detector performance and analysis sensitivity are studied as a function of resonance production rate and width for one particular dibaryon which can directly strong decay to pΞ - , but not ΛΛ. Results indicate that such resonances may be discovered using STAR if the resonance production rates are comparable to coalescence model predictions for dibaryon bound states. (c) 2000 The American Physical Society

  7. Monolithic circuit development for RHIC at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Alley, G.T.; Britton, C.L. Jr.; Kennedy, E.J.; Newport, D.F.; Wintenberg, A.L.; Young, G.R. [Oak Ridge National Laboratory, TN (United States)

    1991-12-31

    The work performed for RHIC at Oak Ridge National Laboratory during FY 91 is presented in this paper. The work includes preamplifier, analog memory, and analog-digital converter development for Dimuon Pad Readout, and evaluation and development of preamplifier-shapers for silicon strip readout. The approaches for implementation are considered as well as measured data for the various circuits that have been developed.

  8. Observation of helium flow induced beam orbit oscillations at RHIC

    International Nuclear Information System (INIS)

    Montag, C.; Bonati, R.; Brennan, J.M.; Butler, J.; Cameron, P.; Ganetis, G.; He, P.; Hirzel, W.; Jia, L.X.; Koello, P.; Louie, W.; McIntyre, G.; Nicoletti, A.; Rank, J.; Roser, T.; Satogata, T.; Schmalzle, J.; Sidi-Yekhlef, A.; Sondericker, J.; Tallerico, T.

    2006-01-01

    Horizontal beam orbit jitter at frequencies around 10 Hz has been observed at RHIC for several years. The distinct frequencies of this jitter have been found at superconducting low-beta quadrupole triplet magnets around the ring, where they coincide with mechanical vibration modes of the cold masses. Recently, we have identified liquid helium flow as the driving force of these oscillations

  9. Effect of intermolecular dipole-dipole interactions on interfacial supramolecular structures of C3-symmetric hexa-peri-hexabenzocoronene derivatives.

    Science.gov (United States)

    Mu, Zhongcheng; Shao, Qi; Ye, Jun; Zeng, Zebing; Zhao, Yang; Hng, Huey Hoon; Boey, Freddy Yin Chiang; Wu, Jishan; Chen, Xiaodong

    2011-02-15

    Two-dimensional (2D) supramolecular assemblies of a series of novel C(3)-symmetric hexa-peri-hexabenzocoronene (HBC) derivatives bearing different substituents adsorbed on highly oriented pyrolytic graphite were studied by using scanning tunneling microscopy at a solid-liquid interface. It was found that the intermolecular dipole-dipole interactions play a critical role in controlling the interfacial supramolecular assembly of these C(3)-symmetric HBC derivatives at the solid-liquid interface. The HBC molecule bearing three -CF(3) groups could form 2D honeycomb structures because of antiparallel dipole-dipole interactions, whereas HBC molecules bearing three -CN or -NO(2) groups could form hexagonal superstructures because of a special trimeric arrangement induced by dipole-dipole interactions and weak hydrogen bonding interactions ([C-H···NC-] or [C-H···O(2)N-]). Molecular mechanics and dynamics simulations were performed to reveal the physics behind the 2D structures as well as detailed functional group interactions. This work provides an example of how intermolecular dipole-dipole interactions could enable fine control over the self-assembly of disklike π-conjugated molecules.

  10. Monitoring ARC services with GangliARC

    International Nuclear Information System (INIS)

    Cameron, D; Karpenko, D

    2012-01-01

    Monitoring of Grid services is essential to provide a smooth experience for users and provide fast and easy to understand diagnostics for administrators running the services. GangliARC makes use of the widely-used Ganglia monitoring tool to present web-based graphical metrics of the ARC computing element. These include statistics of running and finished jobs, data transfer metrics, as well as showing the availability of the computing element and hardware information such as free disk space left in the ARC cache. Ganglia presents metrics as graphs of the value of the metric over time and shows an easily-digestable summary of how the system is performing, and enables quick and easy diagnosis of common problems. This paper describes how GangliARC works and shows numerous examples of how the generated data can quickly be used by an administrator to investigate problems. It also presents possibilities of combining GangliARC with other commonly-used monitoring tools such as Nagios to easily integrate ARC monitoring into the regular monitoring infrastructure of any site or computing centre.

  11. Arc Interference Behavior during Twin Wire Gas Metal Arc Welding Process

    Directory of Open Access Journals (Sweden)

    Dingjian Ye

    2013-01-01

    Full Text Available In order to study arc interference behavior during twin wire gas metal arc welding process, the synchronous acquisition system has been established to acquire instantaneous information of arc profile including dynamic arc length variation as well as relative voltage and current signals. The results show that after trailing arc (T-arc is added to the middle arc (M-arc in a stable welding process, the current of M arc remains unchanged while the agitation increases; the voltage of M arc has an obvious increase; the shape of M arc changes, with increasing width, length, and area; the transfer frequency of M arc droplet increases and the droplet itself becomes smaller. The wire extension length of twin arc turns out to be shorter than that of single arc welding.

  12. Multiparticle production at RHIC and LHC: a classical point of view

    International Nuclear Information System (INIS)

    Krasnitz, A.; Venugopalan, R.

    2000-01-01

    We report results of our ongoing nonperturbative numerical study of a classical effective theory describing low-x partons in the central region of a heavy-ion collision. In particular, we give estimates of the initial transverse energies and multiplicities for a wide range of collision regimes, including those at RHIC and at LHC

  13. Elliptic flow in Au+Au collisions at RHIC

    Science.gov (United States)

    Vale, Carla M.; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Ngyuen, M.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wyslouch, B.

    2005-04-01

    Elliptic flow is an interesting probe of the dynamical evolution of the dense system formed in the ultrarelativistic heavy ion collisions at the relativistic heavy ion collider (RHIC). The elliptic flow dependences on transverse momentum, centrality and pseudorapidity were measured using data collected by the PHOBOS detector, which offers a unique opportunity to study the azimuthal anisotropies of charged particles over a wide range of pseudorapidity. These measurements are presented, together with an overview of the analysis methods and a discussion of the results.

  14. Dynamics of a nonlinear dipole vortex

    DEFF Research Database (Denmark)

    Hesthaven, J.S.; Lynov, Jens-Peter; Nielsen, A.H.

    1995-01-01

    A localized stationary dipole solution to the Euler equations with a relationship between the vorticity and streamfunction given as omega=-psi+psi(3) is presented. By numerical integration of the Euler equations this dipole is shown to be unstable. However, the initially unstable dipole reorganiz...

  15. Electrostatic-Dipole (ED) Fusion Confinement Studies

    Science.gov (United States)

    Miley, George H.; Shrestha, Prajakti J.; Yang, Yang; Thomas, Robert

    2004-11-01

    The Electrostatic-Dipole (ED) concept significantly differs from a "pure" dipole confinement device [1] in that the charged particles are preferentially confined to the high-pressure region interior of the dipole coil by the assistance of a surrounding spherical electrostatic grid. In present ED experiments, a current carrying coil is embedded inside the grid of an IEC such as to produce a magnetic dipole field. Charged particles are injected axisymmetrically from an ion gun (or duo-plasmatron) into the center of the ED confinement grid/dipole ring where they oscillate along the magnetic field lines and pass the peak field region at the center of the dipole region. As particles begin accelerating away from the center region towards the outer electrostatic grid region, they encounter a strong electrostatic potential (order of 10's of kilovolts) retarding force. The particles then decelerate, reverse direction and re-enter the dipole field region where again magnetic confinement dominates. This process continues, emulating a complex harmonic oscillator motion. The resulting pressure profile averaged over the field curvature offers good plasma stability in the ED configuration. The basic concept and results from preliminary experiments will be described. [1] M.E. Mauel, et al. "Dipole Equilibrium and Stability," 18th IAEA Conference of Plasma Phys. and Control. Nuclear Fusion, Varenna, Italy 2000, IAEA-F1-CN-70/TH

  16. Arc Shape Characteristics with Ultra-High-Frequency Pulsed Arc Welding

    Directory of Open Access Journals (Sweden)

    Mingxuan Yang

    2017-01-01

    Full Text Available Arc plasma possesses a constriction phenomenon with a pulsed current. The constriction is created by the Lorentz force, the radial electromagnetic force during arc welding, which determines the energy distribution of the arc plasma. Welding experiments were carried out with ultra-high-frequency pulsed arc welding (UHFP-AW. Ultra-high-speed camera observations were produced for arc surveillance. Hue-saturation-intensity (HSI image analysis was used to distinguish the regions of the arc plasma that represented the heat energy distribution. The measurement of arc regions indicated that, with an ultra-high-frequency pulsed arc, the constriction was not only within the decreased arc geometry, but also within the constricted arc core region. This can be checked by the ratio of the core region to the total area. The arc core region expanded significantly at 40 kHz at 60 A. A current level of 80 A caused a decrease in the total region of the arc. Meanwhile, the ratio of the core region to the total increased. It can be concluded that arc constriction depends on the increased area of the core region with the pulsed current (>20 kHz.

  17. Mechanical design of 56 MHz superconducting RF cavity for RHIC collider

    Energy Technology Data Exchange (ETDEWEB)

    Pai, C.; Ben-Zvi, I.; Burrill, A.; Chang, X.; McIntyre, G.; Than, Y.; Tuozzolo, J.; Wu, Q.

    2011-03-28

    A 56 MHz Superconducting RF Cavity operating at 4.4K is being constructed for the RHIC collider. This cavity is a quarter wave resonator with beam transmission along the centerline. This cavity will increase collision luminosity by providing a large longitudinal bucket for stored bunches of RHIC ion beam. The major components of this assembly are the niobium cavity with the mechanical tuner, its titanium helium vessel and vacuum cryostat, the support system, and the ports for HOM and fundamental dampers. The cavity and its helium vessel must meet equivalent safety with the ASME pressure vessel code and it must not be sensitive to frequency shift due to pressure fluctuations from the helium supply system. Frequency tuning achieved by a two stage mechanical tuner is required to meet performance parameters. This tuner mechanism pushes and pulls the tuning plate in the gap of niobium cavity. The tuner mechanism has two separate drive systems to provide both coarse and fine tuning capabilities. This paper discusses the design detail and how the design requirements are met.

  18. Dipoles on a Two-leg Ladder

    DEFF Research Database (Denmark)

    Gammelmark, Søren; Zinner, Nikolaj Thomas

    2013-01-01

    We study polar molecules with long-range dipole-dipole interactions confined to move on a two-leg ladder for different orientations of the molecular dipole moments with respect to the ladder. Matrix product states are employed to calculate the many-body ground state of the system as function...... that there is a critical angle at which ordering disappears. This angle is slightly larger than the angle at which the dipoles are non-interacting along a single leg. This behavior should be observable using current experimental techniques....

  19. The Strongly Interacting Quark Gluon Plasma at RHIC and LHC

    Directory of Open Access Journals (Sweden)

    Tserruya Itzhak

    2014-04-01

    Full Text Available The study of heavy-ion collisions has currently unprecedented opportunities with two first class facilities, the Relativistic Heavy Ion Collider (RHIC at BNL and the Large Hadron Collider (LHC at CERN, and five large experiments ALICE, ATLAS, CMS, PHENIX and STAR producing a wealth of high quality data. Selected results recently obtained are presented on the study of flow, energy loss and direct photons.

  20. Induced dipole-dipole coupling between two atoms at a migration resonance

    Science.gov (United States)

    Kaur, Maninder; Mian, Mahmood

    2018-05-01

    Results of numerical simulations for the resonant energy exchange phenomenon called Migration reaction between two cold Rydberg atoms are presented. The effect of spatial interatomic distance on the onset of peculiar coherent mechanism is investigated. Observation of Rabi-like population inversion oscillation at the resonance provides a clear signature of dipole induced exchange of electronic excitations between the atoms. Further we present the results for the dependence of expectation value of the interaction hamiltonian on the interatomic distance, which is responsible for energy exchange process. The results of this observation endorse the range of inter atomic distance within which the excitation exchange process occurs completely or partially. Migration process enhance the Rydberg-Rydberg interaction in the absence of an external field, under the condition of the zero permanent dipole moments. Our next observation sheds light on the fundamental mechanism of induced electric fields initiated by the oscillating dipoles in such energy exchange processes. We explore the dependence of induced electric field on the interatomic distance and angle between the dipoles highlighting the inverse power law dependence and anisotropic property of the field. We put forward an idea to utilise the coherent energy exchange process to build efficient and fast energy transfer channels by incorporating more atoms organised at successive distances with decreasing distance gradient.

  1. The First Asymmetry Measurements in High-Energy Polarized Proton-Nucleus Collision at PHENIX-RHIC

    Directory of Open Access Journals (Sweden)

    Nakagawa Itaru

    2017-01-01

    Full Text Available The single spin asymmetries in very forward neutron production had been first observed about a decade ago at RHIC in transversely polarized proton + proton collision at √s = 200 GeV. Although neutron production near zero degrees is well described by the one-pion exchange (OPE framework, the OPE appeared to be not satisfactory to describe the observed analyzing power AN. The absorptive correction to the OPE generates the asymmetry as a consequence of a phase shift between the spin flip and non-spin flip amplitudes. However the amplitude predicted by the OPE is too small to explain the large observed asymmetries. Only the model which introduces interference between major pion and small a1-Reggeon exchange amplitudes has been successful in reproducing the experimental data. During RHIC Run-15, RHIC delivered polarized proton collisions with Au and Al for the first time, enabling the exploration of the mechanism of transverse single-spin asymmetries with nuclear collisions. A very striking A-dependence was discovered in very forward neutron production at PHENIX in transversely polarized proton + nucleus collision at √s = 200 GeV. Such a dependence has not been predicted from the existing framework which has been succesful in proton + proton collision. In this report, experimental and theoretical efforts are discussed to disentangle the mysterious A-dependence in the very forward neutron asymmetry.

  2. DESIGN OF A FAST CHROMATICITY JUMP IN RHIC

    International Nuclear Information System (INIS)

    MONTAG, C.; KEWISCH, J.; BRUNO, D.; GANETIS, G.; LOUIE, W.

    2003-01-01

    During transition crossing in the .Relativistic Heavy Ion Collider (RHIC), chromaticities have to change sign. This sign change is partially accomplished by the γ t quadrupole jump; however, the resulting chromaticity jump is only Δξ x = 2.1 in the horizontal and Δξ y = 2.4 in the vertical plane. To increase the jump height, a dedicated chromaticity jump scheme has been designed, consisting of fast power supplies connected to six sextupoles per ring, which is capable of providing a chromaticity jump of Δξ = 6

  3. Simulation of jet quenching at RHIC and LHC

    International Nuclear Information System (INIS)

    Lokhtin, I P; Snigirev, A M

    2007-01-01

    A model to simulate the jet quenching effect in ultrarelativistic heavy ion collisions is presented. The model is the fast Monte Carlo tool implemented to modify a standard PYTHIA jet event. The model has been generalized to the case of the 'full' heavy ion event (the superposition of soft, hydro-type state and hard multi-jets) using a simple and fast simulation procedure for soft particle production. The model is capable of reproducing the main features of the jet quenching pattern at RHIC and is applied to analyse novel jet quenching features at LHC

  4. arXiv Jet Production at RHIC and LHC

    CERN Document Server

    Cunqueiro, Leticia

    Recent results on jet production in heavy ion collisions at RHIC and the LHC are discussed, with emphasis on inclusive jet yields and semi-inclusive hadron-triggered and vector boson-triggered recoil jet yields as well as their azimuthal angular correlations. I will also discuss the constraints that these observables impose on the opacity of the medium, the flavour dependence of energy loss, the interplay of perturbative and non perturbative effects and the change of the degrees of freedom of the medium with the resolution of the probe.

  5. Dipole-dipole interactions in a hot atomic vapor and in an ultracold gas of Rydberg atoms

    Science.gov (United States)

    Sautenkov, V. A.; Saakyan, S. A.; Bronin, S. Ya; Klyarfeld, A. B.; Zelener, B. B.; Zelener, B. V.

    2018-01-01

    In our paper ideal and non-ideal gas media of neutral atoms are analyzed. The first we discuss a dipole broadening of atomic transitions in excited dilute and dense metal vapors. Then the theoretical studies of the dipole-dipole interactions in dense ultracold gas of Rydberg atoms are considered. Possible future experiments on a base of our experimental arrangement are suggested.

  6. Note on polarized RHIC bunch arrangement

    International Nuclear Information System (INIS)

    Underwood, D.

    1996-01-01

    We discuss what combinations of bunch polarization in the two RHIC rings are necessary to do the physics measurements at various interaction regions. We also consider the bunches for both the pion inclusive and p-p elastic polarization measurements. Important factors to consider are the direction of the polarization with respect to the momentum in each bunch, the beam gas backgrounds, and the simulation of zero - polarization in one beam by averaging + and - helicity, and luminosity monitoring for normalization. These considerations can be addressed by setting the relative number of each of the 9 combinations possible at each of the 6 interaction regions. The combinations are (+ empty -) yellow X (+ empty -)blue, where yellow and blue are the counter-rotating rings

  7. RHIC PC CNI POLARIMETER:STATUS AND PERFORMANCE from THE FIRST COLLIDER RUN

    International Nuclear Information System (INIS)

    JINNOUCHI, O.; ALEKSEEV, I.G.; BLAND, L.C.; BRAVAR, A.; BUNCE, G.; CADMAN, R.; DESHPANDE, A.D.; HAWAN, S.; FIELDS, D.E.; HUANG, H.; HUGHES, V.; IGO, G.; IMAI, K.; KANAVETS, V.P.; KIRYLUK, J.; KURITA, K.; LI, Z.; LOZOWSKI, W.; MACKAY, W.W.; MAKDISI, Y.; OGAWA, A.; RESCIA, S.; ROSER, T.; SAITO, N.; SPINKA, H.; SURROW, B.; SVIRIDA, D.N.; TOJO, J.; UNDERWOOD, D.; WOOD, J.

    2002-01-01

    Polarimeters using the proton carbon elastic scattering process in Coulomb Nuclear Interference (CNI) region were installed in two RHIC rings. Polarization measurements were successfully carried out with the high energy polarized proton beams for the first polarized pp collision run. The physics principles, performance, and polarization measurements are presented

  8. Magnetisation of magnetite nanoparticles medium with dipol-dipol interaction

    International Nuclear Information System (INIS)

    Ali-zade, R. A.

    2005-01-01

    Full text: Magnetisation expression for magnetite nanoparticles medium with dipo-dipol interaction has been obtained. We suggested, that energy magnetic dipol-dipol interaction of magnetite nanopaticles is determined by: E d-d = - m 2 /4πμ 0 r 3 (cth x -1/x) 2 where x=mH/kT. This expression has been substituted in statistical sum of magnetite nanoparticles medium. Obtained statistical sum consists the production of two statistical sums. The first statistical sum described non-interacting magnetite nanoparticle medium and from this is obtained Langevan equation. Second statistical sum is: Z 2 -∫exp(Σm 2 /4π 0 r 3 (cth x -1/x) 2 ) dΩ 2 . The second statistical sum has been expanded in Taylor's set and taken into consideration first two terms. Integration has been carried out over all volume. In this case take into account that, number twice interactions of magnetite nanoparticles in unit volume is equal to N(N-1)/2 at N>>1 to N 2 /2. We obtain expressions for magnetisation and initial magnetic susceptibility of interacting magnetite nanoparticles medium take into account that Φ=-kT ln Z, M=-dΦ/dH, χ=dM/dH: M=M Sφm (cth x -1/x)+ 1/3 M S 2 φ m 2 (1μ 0 H) ln(VM S /kT).(cth x -1/x)(-xcsch 2 x+1/x) χ 0 =1/3 (m/kT)+ 1/27 M S 2 φ m 2 (1μ 0 )ln(VM S /kT).(m/kT) 2 . Second term in the magnetisation is sufficient at weak and middle magnetic fields. At large magnetic fields, it leads to zero. The second term of magnetisation has maximum at x=1.566. The values of experimental and calculated magnetic field corresponding to magnetisation maximum for magnetite nanoparticles medium (mean diameter of nanoparticle is 9.4 nm) are 1.19 10 4 A/m and 1.25 10 4 A/m respectively. Magnetic dipol-dipol interaction influence to magnetisation of magnetite nanoparticles. Magnetite nanoparticles lined along external magnetic fields line and formatted chains. Magnetisation of medium occurs by the 'parallel' mechanism method magnetisation of chains

  9. Electric dipole polarizability from first principles calculations

    International Nuclear Information System (INIS)

    Miorelli, M.; University of British Columbia, Vancouver, BC; Bacca, S.; University of Manitoba; Barnea, N.

    2016-01-01

    The electric dipole polarizability quantifies the low-energy behavior of the dipole strength and is related to critical observables such as the radii of the proton and neutron distributions. Its computation is challenging because most of the dipole strength lies in the scattering continuum. In our paper we combine integral transforms with the coupled-cluster method and compute the dipole polarizability using bound-state techniques. Furthermore, employing different interactions from chiral effective field theory, we confirm the strong correlation between the dipole polarizability and the charge radius, and study its dependence on three-nucleon forces. Finally, we find good agreement with data for the 4 He, 40 Ca, and 16 O nuclei, and predict the dipole polarizability for the rare nucleus 22 O.

  10. PHENIX EXPERIMENT AT RHIC: DECADAL PLAN 2004-2013

    International Nuclear Information System (INIS)

    ZAJC, W.

    2003-01-01

    The PHENIX Collaboration has developed a plan for the detailed investigation of quantum chromodynamics in the next decade. The demonstrated capabilities of the PHENIX experiment to measure rare processes in hadronic, leptonic and photonic channels, in combination with RHIC's unparalleled flexibility as a hadronic collider, provides a physics program of extraordinary breadth and depth. A superlative set of measurements to elucidate the states of both hot and cold nuclear matter, and to measure the spin structure of the proton has been identified. The components of this plan include: (1) Definitive measurements that will establish the nature of the matter created in nucleus+nucleus collisions, that will determine if the description of such matter as a quark-gluon plasma is appropriate, and that will quantify both the equilibrium and non-equilibrium features of the produced medium. (2) Precision measurements of the gluon structure of the proton, and of the spin structure of the gluon and sea-quark distributions of the proton via polarized proton+proton collisions. (3) Determination of the gluon distribution in cold nuclear matter using proton+nucleus collisions. Each of these fundamental fields of investigation will be addressed through a program of correlated measurements in some or all of the following channels: (1) Particle production at high transverse momentum, studied via single particle inclusive measurements of identified charged and neutral hadrons, multi-particle correlations and jet production. (2) Direct photon, photon+jet and virtual photon production. (3) Light and heavy vector mesons. (4) Heavy flavor production. These measurements, together with the established PHENIX abilities to identify hadrons at low transverse momentum, to perform detailed centrality selections, and to monitor polarization and luminosity with high precision create a superb opportunity for performing world-class science with PHENIX for the next decade. A portion of this program is

  11. PHENIX EXPERIMENT AT RHIC: DECADAL PLAN 2004-2013

    Energy Technology Data Exchange (ETDEWEB)

    ZAJC,W.ET. AL.

    2003-11-30

    The PHENIX Collaboration has developed a plan for the detailed investigation of quantum chromodynamics in the next decade. The demonstrated capabilities of the PHENIX experiment to measure rare processes in hadronic, leptonic and photonic channels, in combination with RHIC's unparalleled flexibility as a hadronic collider, provides a physics program of extraordinary breadth and depth. A superlative set of measurements to elucidate the states of both hot and cold nuclear matter, and to measure the spin structure of the proton has been identified. The components of this plan include: (1) Definitive measurements that will establish the nature of the matter created in nucleus+nucleus collisions, that will determine if the description of such matter as a quark-gluon plasma is appropriate, and that will quantify both the equilibrium and non-equilibrium features of the produced medium. (2) Precision measurements of the gluon structure of the proton, and of the spin structure of the gluon and sea-quark distributions of the proton via polarized proton+proton collisions. (3) Determination of the gluon distribution in cold nuclear matter using proton+nucleus collisions. Each of these fundamental fields of investigation will be addressed through a program of correlated measurements in some or all of the following channels: (1) Particle production at high transverse momentum, studied via single particle inclusive measurements of identified charged and neutral hadrons, multi-particle correlations and jet production. (2) Direct photon, photon+jet and virtual photon production. (3) Light and heavy vector mesons. (4) Heavy flavor production. These measurements, together with the established PHENIX abilities to identify hadrons at low transverse momentum, to perform detailed centrality selections, and to monitor polarization and luminosity with high precision create a superb opportunity for performing world-class science with PHENIX for the next decade. A portion of this

  12. STAR barrel electromagnetic calorimeter absolute calibration using 'minimum ionizing particles' from collisions at RHIC

    International Nuclear Information System (INIS)

    Cormier, T.M.; Pavlinov, A.I.; Rykov, M.V.; Rykov, V.L.; Shestermanov, K.E.

    2002-01-01

    The procedure for the STAR Barrel Electromagnetic Calorimeter (BEMC) absolute calibrations, using penetrating charged particle hits (MIP-hits) from physics events at RHIC, is presented. Its systematic and statistical errors are evaluated. It is shown that, using this technique, the equalization and transfer of the absolute scale from the test beam can be done to a percent level accuracy in a reasonable amount of time for the entire STAR BEMC. MIP-hits would also be an effective tool for continuously monitoring the variations of the BEMC tower's gains, virtually without interference to STAR's main physics program. The method does not rely on simulations for anything other than geometric and some other small corrections, and also for estimations of the systematic errors. It directly transfers measured test beam responses to operations at RHIC

  13. A sum rule calculation of the neutron electric dipole moment from a quark chromoelectric dipole coupling

    International Nuclear Information System (INIS)

    Kogan, I.I.; Wyler, D.

    1992-01-01

    The neutron electric dipole moment (NEDM) from a quark chromoelectric dipole moment is calculated using a QCD sumrule approach. We demonstrate that leading contributions to the NEDM come from induced condensates (quark and quark-gluon condensate magnetic susceptibilities) which are also determined. Other possible contributions to the NEDM such as a quark electric dipole moment or a triple gluon operator are briefly discussed. (orig.)

  14. Conceptual design of the Relativistic Heavy Ion Collider: RHIC

    International Nuclear Information System (INIS)

    1986-05-01

    The complete Relativistic Heavy Ion Collider (RHIC) facility will be a complex set of accelerators and beam transfer equipment connecting them. A significant portion of the total facility either exists or is under construction. Two existing Tandem Van de Graaff accelerators will serve for the initial ion acceleration. Ions with a charge of -1 would be accelerated from ground to +15 MV potential, pass through a stripping foil, and accelerate back to ground potential, where they would pass through a second stripping foil. From there the ions will traverse a long transfer line to the AGS tunnel and be injected into the Booster accelerator. The Booster accelerates the ion bunch, and then the ions pass through one more stripper and then enter the Alternating Gradient Synchrotron (AGS), where they are accelerated to the top AGS energy and transferred to the collider. Bending and focusing of ion beams is to be achieved by superconducting magnets. The physics goals behind the RHIC are enumerated, particularly as regards the study of quark matter and the characteristics of high energy nucleus-nucleus collisions. The design of the collider and all its components is described, including the injector, the lattice, magnet system, cryogenic and vacuum systems, beam transfer, injection, and dump, rf system, and beam instrumentation and control system. Also given are cost estimates, construction schedules, and a management plan

  15. Automating dipole subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, K.; Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Uwer, P. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Theoretische Teilchenphysik

    2008-07-15

    We report on automating the Catani-Seymour dipole subtraction which is a general procedure to treat infrared divergences in real emission processes at next-to-leading order in QCD. The automatization rests on three essential steps: the creation of the dipole terms, the calculation of the color linked squared Born matrix elements, and the evaluation of different helicity amplitudes. The routines have been tested for a number of complex processes, such as the real emission process gg{yields}t anti tggg. (orig.)

  16. Automating dipole subtraction

    International Nuclear Information System (INIS)

    Hasegawa, K.; Moch, S.; Uwer, P.

    2008-07-01

    We report on automating the Catani-Seymour dipole subtraction which is a general procedure to treat infrared divergences in real emission processes at next-to-leading order in QCD. The automatization rests on three essential steps: the creation of the dipole terms, the calculation of the color linked squared Born matrix elements, and the evaluation of different helicity amplitudes. The routines have been tested for a number of complex processes, such as the real emission process gg→t anti tggg. (orig.)

  17. Automatic dipole subtraction

    International Nuclear Information System (INIS)

    Hasegawa, K.

    2008-01-01

    The Catani-Seymour dipole subtraction is a general procedure to treat infrared divergences in real emission processes at next-to-leading order in QCD. We automatized the procedure in a computer code. The code is useful especially for the processes with many parton legs. In this talk, we first explain the algorithm of the dipole subtraction and the whole structure of our code. After that we show the results for some processes where the infrared divergences of real emission processes are subtracted. (author)

  18. Spin physics at RHIC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1996-01-01

    Operation of RHIC with two beams of highly polarized protons (70%, either longitudinal or transverse) at high luminosity L = 2 x 10 32 cm -2 sec -1 for two months/year will allow the STAR and PHENIX detectors to perform high statististics studies of polarization phenomena in the perturbative region of hard scattering where both QCD and ElectroWeak theory make detailed predictions for polarization effects. The collision c.m. energy, √s = 200 - 500 GeV, represents a new domain for the study of spin. Direct photon production will be used to measure the gluon polarization in the polarized proton. A new twist comes from W-boson production which is expected to be 100% parity violating and will thus allow measurements of flavor separated Quark and antiquark (u, bar u, d, bar d) polarization distributions. Searches for parity violation in strong interaction processes such as jet and leading particle production will be a sensitive way to look for new physics beyond the standard model, one possibility being quark substructure

  19. Polarized protons at RHIC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1990-12-01

    The Physics case is presented for the use of polarized protons at RHIC for one or two months each year. This would provide a facility with polarizations of approx-gt 50% high luminosity ∼2.0 x 10 32 cm -2 s -1 , the possibility of both longitudinal and transverse polarization at the interaction regions, and frequent polarization reversal for control of systematic errors. The annual integrated luminosity for such running (∼10 6 sec per year) would be ∫ Ldt = 2 x 10 38 cm -2 -- roughly 20 times the total luminosity integrated in ∼ 10 years of operation of the CERN Collider (∼10 inverse picobarns, 10 37 cm -2 ). This facility would be unique in the ability to perform parity-violating measurements and polarization test of QCD. Also, the existence of p-p collisions in a new energy range would permit the study of ''classical'' reactions like the total cross section and elastic scattering, etc., and serve as a complement to measurements from p-bar p colliders. 11 refs

  20. Enhanced dilepton radiation at RHIC

    CERN Document Server

    Toia, Alberica

    2009-01-01

    Recently, there is growing evidence that a new state of matter is formed in Au+Au collisions at RHIC: a strongly coupled Quark Gluon Plasma of partonic degrees of freedom which develops a collective motion. Dilepton spectra are not affected by strong interaction and can therefore probe the whole time evolution of the collision. Thus they may be sensitive to the onset of deconfinement, chiral symmetry restoration, as well as the production of thermal photons. The PHENIX experiment measured the production of e+e− pairs in p+p and Au+Au collisions at . An enhanced dilepton yield in the mass range is measured. The excess increases faster with centrality than the number of participating nucleons, and is concentrated at . At higher pT the excess below 300 MeV/c2 has been related to an enhanced production of direct photons, possibly of thermal origin.

  1. Jets as a probe of dense matter at RHIC

    International Nuclear Information System (INIS)

    Filimonov, Kirill

    2004-01-01

    Jet quenching in the matter created in high energy nucleus-nucleus collisions provides a tomographic tool to probe the medium properties. Recent experimental results on jet production at the Relativistic Heavy-Ion Collider (RHIC) are reviewed. Jet properties in p+p and d+Au collisions have been measured, establishing the baseline for studying jet modification in heavy-ion collisions. Current progress on detailed studies of high transverse momentum production in Au+Au collisions is discussed, with an emphasis on dihadron correlation measurements

  2. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 57, HIGH PT PHYSICS AT RHIC, DECEMBER 2-6, 2003

    Energy Technology Data Exchange (ETDEWEB)

    Kretzer, Stefan; Venugopalan, Raju; Vogelsang, Werner

    2004-02-18

    The AuAu, dAu, and pp collision modes of the RHIC collider at BNL have led to the publication of exciting high p{perpendicular} particle production data. There have also been two physics runs with polarized protons, and preliminary results on the double-spin asymmetry for pion production had been presented very recently. The ontological questions behind these measurements are fascinating: Did RHIC collisions create a Quark-Gluon-Plasma phase and did they verify the Color Glass Condensate as the high energy limit of QCD? Will the Spin Crisis finally be resolved in terms of gluon polarization and what new surprises are we yet to meet for Transverse Spin? Phenomena related to sub-microscopic questions as important as these call for interpretations that are footed in solid theory. At large p{perpendicular}, perturbative concepts are legitimately expected to provide useful approaches. The corresponding hard parton dynamics are, in several ways, key to unraveling the initial or final state and collisional phase of hard scattering events in vacuum as well as in hot or cold nuclear matter. Before the advent of RHIC data, a RIKEN-BNL workshop had been held at BNL in March 1999 on ''Hard Parton Physics in High Energy Nuclear Collisions''. The 2003 workshop on ''High p{perpendicular} Physics at RHIC'' was a logical continuation of this previous workshop. It gave the opportunity to revisit the 1999 expectations in the light of what has been found in the meantime and, at the same time, to critically discuss the underlying theoretical concepts. We brought together theorists who have done seminal work on the foundations of parton phenomenology in field theory, with theorists and experimentalists who are presently working on RHIC phenomenology. The participants were both from a high-energy physics and nuclear physics background and it remains only to be said here that this chemistry worked perfectly and the workshop was a great success.

  3. Position and Momentum Entanglement of Dipole-Dipole Interacting Atoms in Optical Lattices

    Science.gov (United States)

    Opatrný, T.; Kolář, M.; Kurizki, G.

    We consider a possible realization of the position- and momentum-correlated atomic pairs that are confined to adjacent sites of two mutually shifted optical lattices and are entangled via laser-induced dipole-dipole interactions. The Einstein-Podolsky-Rosen (EPR) "paradox" [Einstein 1935] with translational variables is then modified by lattice-diffraction effects. We study a possible mechanism of creating such diatom entangled states by varying the effective mass of the atoms.

  4. Electric dipole moments reconsidered

    International Nuclear Information System (INIS)

    Rupertsberger, H.

    1989-01-01

    The electric dipole moments of elementary particles, atoms, molecules and their connection to the electric susceptibility are discussed for stationary states. Assuming rotational invariance it is emphasized that for such states only in the case of a parity and time reversal violating interaction the considered particles can obtain a nonvanishing expectation value for the electric dipole moment. 1 fig., 13 refs. (Author)

  5. Status of the RHIC and BNL/CERN heavy ion programs

    International Nuclear Information System (INIS)

    Ozaki, S.

    1993-01-01

    With the gold beam operation at the Brookhaven AGS started in 1992, and with the lead beam operation at the CERN SPS planned for 1994--1995, investigation of high nucleon density states through high energy heavy ion collisions is becoming a reality. In addition, the Relativistic Heavy Ion Collider (RHIC) at BNL, which is dedicated to the study of ultra-high energy heavy ion collisions, is under construction with a target completion date in 1997. There also is a plan to run the proposed CERN LHC for a few months a year for the heavy ion program. These colliders should provide opportunities to extend our knowledge of nuclear matter to the extraordinary states of extreme high temperature and high density, thus opening the way to the creation and study of quark-gluon plasma. The lattice gauge calculation based on the theory of strong interactions (QCD) predicts that, at such states, quarks and gluons are deconfined from individual nucleons and form a hot plasma. In this paper, the status of heavy ion stationary target programs at the BNL AGS and the CERN SPS, the progress of RHIC construction, and heavy ion research potential at LHC will be presented. The status of the CERN LHC will be covered elsewhere in these Proceedings

  6. High-field dipoles for future accelerators

    International Nuclear Information System (INIS)

    Wipf, S.L.

    1984-09-01

    This report presents the concept for building superconducting accelerator dipoles with record high fields. Economic considerations favor the highest possible current density in the windings. Further discussion indicates that there is an optimal range of pinning strength for a superconducting material and that it is not likely for multifilamentary conductors to ever equal the potential performance of tape conductors. A dipole design with a tape-wound, inner high-field winding is suggested. Methods are detailed to avoid degradation caused by flux jumps and to overcome problems with the dipole ends. Concerns for force support structure and field precision are also addressed. An R and D program leading to a prototype 11-T dipole is outlined. Past and future importance of superconductivity to high-energy physics is evident from a short historical survey. Successful dipoles in the 10- to 20-T range will allow interesting options for upgrading present largest accelerators

  7. The abstract geometry modeling language (AgML): experience and road map toward eRHIC

    International Nuclear Information System (INIS)

    Webb, Jason; Lauret, Jerome; Perevoztchikov, Victor

    2014-01-01

    The STAR experiment has adopted an Abstract Geometry Modeling Language (AgML) as the primary description of our geometry model. AgML establishes a level of abstraction, decoupling the definition of the detector from the software libraries used to create the concrete geometry model. Thus, AgML allows us to support both our legacy GEANT 3 simulation application and our ROOT/TGeo based reconstruction software from a single source, which is demonstrably self- consistent. While AgML was developed primarily as a tool to migrate away from our legacy FORTRAN-era geometry codes, it also provides a rich syntax geared towards the rapid development of detector models. AgML has been successfully employed by users to quickly develop and integrate the descriptions of several new detectors in the RHIC/STAR experiment including the Forward GEM Tracker (FGT) and Heavy Flavor Tracker (HFT) upgrades installed in STAR for the 2012 and 2013 runs. AgML has furthermore been heavily utilized to study future upgrades to the STAR detector as it prepares for the eRHIC era. With its track record of practical use in a live experiment in mind, we present the status, lessons learned and future of the AgML language as well as our experience in bringing the code into our production and development environments. We will discuss the path toward eRHIC and pushing the current model to accommodate for detector miss-alignment and high precision physics.

  8. Latest Results of Open Heavy Flavor and Quarkonia from the PHENIX Experiment at RHIC

    International Nuclear Information System (INIS)

    Nouicer, Rachid

    2017-01-01

    The PHENIX Collaboration carries out a comprehensive physics program which studies heavy flavor production in relativistic heavy ion collisions at RHIC. The discovery at RHIC of large high-p T suppression and flow of electrons from heavy quarks flavors have altered our view of the hot and dense matter formed in central Au+Au collisions at GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. In recent years, the PHENIX has installed a silicon vertex tracker both in central rapidity (VTX) and in forward rapidity (FVTX) regions, and has collected large data samples. These two silicon trackers enhance the capability of heavy flavor measurements via precision tracking. This paper summarizes some of the latest PHENIX results concerning open heavy flavor and quarkonia production as a function of rapidity, energy and system size. (paper)

  9. Construction details and test results from RHIC sextupoles

    International Nuclear Information System (INIS)

    Lindner, M.; Anerella, M.; Ganetis, G.

    1993-01-01

    Four 8 cm aperture sextupoles have been built at BNL to verify the magnetic performance of this magnet in the RHIC installation. Two significantly different mechanical configurations have been designed, and two magnets of each design have been built, and successfully tested, and have exceeded the required minimum quench current by a substantial margin. This report describes the assembly details of the second configuration, which is the final production configuration. In addition the first industry built production sextupole has been delivered and tested. This report presents the results of quench tests on all 5 magnets and field measurements on the first production sextupole

  10. Direct Photons and Dileptons in PHENIX at RHIC

    International Nuclear Information System (INIS)

    David, G.

    2009-01-01

    Direct photons and dileptons are penetrating probes of relativistic heavy ion collisions. Generated throughout the entire history of the collision and then emerging without further interaction they give insight into basic processes that are otherwise not directly accessible experimentally. One of the main objectives and strengths of the PHENIX experiment at RHIC is the measurement of both types of electromagnetic probes in the same apparatus and in the widest p T range in nucleon-nucleon and heavy ion collisions. The experimental results and recent developments of theory started to change our perception of high transverse momentum photons from A+A collisions.

  11. RESONANT BPM FOR CONTINUOUS TUNE MEASUREMENT IN RHIC

    International Nuclear Information System (INIS)

    KESSELMAN, M.; CAMERON, P.; CUPOLO, J.

    2001-01-01

    A movable Beam Position Monitor (BPM) using shorted stripline Pick-Up Electrode (NE) elements has been resonated using matching stub techniques to achieve a relatively high Q resonance at about 230MHz. This PUE has been used in a feasibility study of phase-locked-loop tune measurement [1], using a lock-in amplifier and variable frequency generator to continuously track betatron tune in RHIC, as well as to observe Schottky signals of the Gold beam. The approach to providing a high Q PUE for difference mode signals, simulation studies, and the results of initial tests will be presented

  12. On arc efficiency in gas tungsten arc welding

    Directory of Open Access Journals (Sweden)

    Nils Stenbacka

    2013-12-01

    Full Text Available The aim of this study was to review the literature on published arc efficiency values for GTAW and, if possible, propose a narrower band. Articles between the years 1955 - 2011 have been found. Published arc efficiency values for GTAW DCEN show to lie on a wide range, between 0.36 to 0.90. Only a few studies covered DCEP - direct current electrode positive and AC current. Specific information about the reproducibility in calorimetric studies as well as in modeling and simulation studies (considering that both random and systematic errors are small was scarce. An estimate of the average arc efficiency value for GTAW DCEN indicates that it should be about 0.77. It indicates anyway that the GTAW process with DCEN is an efficient welding method. The arc efficiency is reduced when the arc length is increased. On the other hand, there are conflicting results in the literature as to the influence of arc current and travel speed.

  13. FITTING HELICAL SNAKE AND ROTATOR FIELD STRENGTH MEASUREMENTS IN RHIC

    International Nuclear Information System (INIS)

    RANJBAR, V.; LUCCIO, A.U.; MACKAY, W.W.; TSOUPAS, N.

    2001-01-01

    We examined recent multi-pole measurements for the helical snakes and rotators in RHIC to generate a full field map. Since multi-pole measurements yield real field values for B, field components we developed a unique technique to evaluate the full fields using a traditional finite element analysis software [1]. From these measurements we employed SNIG [2] to generate orbit and Spin plots. From orbit values we generated a transfer matrix for the first snake

  14. K*0(892 and ϕ(1020 resonance production at RHIC

    Directory of Open Access Journals (Sweden)

    Kumar Lokesh

    2015-01-01

    The K*0(892 and ϕ(1020 resonance production at mid-rapidity (|y| <0.5, measured in high energy (Au+Au, Cu+Cu, d+Au and p + p collisions at RHIC with the STAR experiment, reconstructed by their hadronic decay in Kπ and KK, respectively, are discussed. Mesons’ spectra, yields, mean transverse momentum 〈pT〉, nuclear modification factor, and azimuthal anisotropy are discussed as a function of centrality and collision energy.

  15. Asymmetry of neoclassical transport by dipole electric field

    International Nuclear Information System (INIS)

    Wang Zhongtian; Wang Long

    2004-01-01

    Effects of dipole electric fields on neoclassical transport are studied. Large asymmetry in transport is created. The dipole fields, which are in a negative R-direction, reduce the ion drift, increase electron drift, and change the steps of excursion due to collisions. It is found that different levels of dipole field intensities have different types of transport. For the lowest level of the dipole field, the transport returns to the neoclassical one. For the highest level of the dipole field, the transport is turned to be the turbulence transport similar to the pseudo-classical transport. Experimental data may be corresponded to a large level of the dipole field intensity. (authors)

  16. High density matter in AGS, SPS and RHIC collisions. Proceedings. Volume 9

    International Nuclear Information System (INIS)

    1998-01-01

    This 1-day workshop focused on phenomenological models regarding the specific question of the maximum energy density achievable in collisions at AGS, SPS and RHIC. The idea was to have 30-minute (or less) presentations of each model--but not the model as a whole, rather then that strongly narrowed to the above physics question. The key topics addressed were: (1) to estimate the energy density in heavy-ion collisions within a model, and to discuss its physical implications; (2) to suggest experimental observables that may confirm the correctness of a model approach--with respect to the energy density estimate; (3) to compare with existing data from AGS and SPS heavy-ion collisions, and to give predictions for the future RHIC experiments. G. Ogilvie started up the workshop with a critical summary of experimental manifestations of high-density matter at the AGS, and gave a personal outlook on RHIC physics. R. Mattiello talked about his newly developed hadron cascade model for applications to AGS and SPS collisions. Next, D. Kharzeev gave a nice introduction of the Glauber approach to high-energy collisions and illustrated the predictive power of this approach in nucleus-nucleus collisions at the SPS. It followed S. Vance with a presentation of the baryon-junction model to explain the observed baryon stopping phenomenon in collisions of heavy nuclei. S. Bass continued with a broad perspective of the UrQMD model, and provided insight into the details of the microscopic dynamical features of nuclear collisions at high energy. J. Sandweiss and J. Kapusta addressed the interesting aspect of photon production in peripherical nuclear collisions due to intense electromagnetic bremstrahlung by the highly charged, fast moving ions. Finally, H. Sorge closed up the one-day workshop with a presentation of his recent work with the RQMD model. This report consists of a summary and vugraphs of the presentations

  17. High density matter in AGS, SPS and RHIC collisions: Proceedings. Volume 9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This 1-day workshop focused on phenomenological models regarding the specific question of the maximum energy density achievable in collisions at AGS, SPS and RHIC. The idea was to have 30-minute (or less) presentations of each model--but not the model as a whole, rather then that strongly narrowed to the above physics question. The key topics addressed were: (1) to estimate the energy density in heavy-ion collisions within a model, and to discuss its physical implications; (2) to suggest experimental observables that may confirm the correctness of a model approach--with respect to the energy density estimate; (3) to compare with existing data from AGS and SPS heavy-ion collisions, and to give predictions for the future RHIC experiments. G. Ogilvie started up the workshop with a critical summary of experimental manifestations of high-density matter at the AGS, and gave a personal outlook on RHIC physics. R. Mattiello talked about his newly developed hadron cascade model for applications to AGS and SPS collisions. Next, D. Kharzeev gave a nice introduction of the Glauber approach to high-energy collisions and illustrated the predictive power of this approach in nucleus-nucleus collisions at the SPS. It followed S. Vance with a presentation of the baryon-junction model to explain the observed baryon stopping phenomenon in collisions of heavy nuclei. S. Bass continued with a broad perspective of the UrQMD model, and provided insight into the details of the microscopic dynamical features of nuclear collisions at high energy. J. Sandweiss and J. Kapusta addressed the interesting aspect of photon production in peripherical nuclear collisions due to intense electromagnetic bremstrahlung by the highly charged, fast moving ions. Finally, H. Sorge closed up the one-day workshop with a presentation of his recent work with the RQMD model. This report consists of a summary and vugraphs of the presentations.

  18. Perspectives of a mid-rapidity dimuon program at the RHIC: a novel and compact muon telescope detector

    International Nuclear Information System (INIS)

    Ruan, L.; Lin, G.; Xu, Z.; Asselta, K.; Chen, H.F.; Christie, W.; Crawford, H.K.; Engelage, J.; Eppley, G.; Hallman, T.J.; Li, C.; Liu, J.; Llope, W.J.; Majka, R.; Nussbaum, T.; Scheblein, J.; Shao, M.; Soja, R.; Sun, Y.; Tang, Z.; Wang, X.; Wang, Y.; STAR Collaboration

    2009-01-01

    We propose a large-area, cost-effective Muon Telescope Detector (MTD) at mid-rapidity for the Solenoidal Tracker at RHIC (STAR) and for the next generation of detectors at a possible electron-ion collider. We utilize large Multi-gap Resistive Plate Chambers with long readout strips (long-MRPC) in the detector design. The results from cosmic ray and beam tests show the intrinsic timing and spatial resolution for a long-MRPC are 60-70 ps and ∼ 1 cm, respectively. The performance of the prototype muon telescope detector at STAR indicates that muon identification at a transverse momentum of a few GeV/c can be achieved by combining information from track matching with the MTD, ionization energy loss in the Time Projection Chamber, and time-of-flight measurements. A primary muon over secondary muon ratio of better than 1/3 can be achieved. This provides a promising device for future quarkonium programs and primordial dilepton measurements at RHIC. Simulations of the muon efficiency, the signal-to-background ratio of J/ψ, the separation of Υ 1S from 2S+3S states, and the electron-muon correlation from charm pair production in the RHIC environment are presented.

  19. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ON SPIN PHYSICS AT RHIC IN YEAR-1 AND BEYOND

    International Nuclear Information System (INIS)

    BLAND, L.; BOER, D.; SAITO, N.; VOGELSANG, W.

    2001-01-01

    The much anticipated RHIC spin physics program will commence this fall when the first physics run with colliding beams of polarized protons is expected. More specifically, the planned year-1 RHIC-Spin measurements are (1) the double-spin asymmetry A LL π in production of pions by collisions of longitudinally polarized protons (in order to obtain first information on the proton's spin-dependent gluon density, Δg); (2) the transverse single-spin asymmetry A N π for pion production. These two reactions provided part of the motivation for our workshop. On the first day there were informative talks on the specific plans of STAR (by Rakness) and PHENIX (by Goto) for the polarized run of Year-1. Some of the theoretical questions related to the double-spin asymmetry A LL π were discussed on the first day by Vogelsang and Kretzer, which centered mostly around the questions of how well the unpolarized fragmentation functions are known, the need for next-to-leading order calculations, and on how sensitive the asymmetry is to the possible Δg distributions. Vetterli presented HERMES measurements of fragmentation functions, which overlap in Q 2 with the future lower-p T measurements at RHIC

  20. A p-Carbon CNI Polarimeter for RHIC

    International Nuclear Information System (INIS)

    Huang, H.; Bai, M.; Bunce, G.; Makdisi, Y.; Roser, T.; Imai, K.; Nakamura, M.; Tojo, J.; Yamamoto, K.; Zhu, L.; Bassalleck, B.; Eilerts, S.; Fields, D.E.; Lewis, B.; Smith, B.; Thomas, T. L.; Wolfe, D.; Goto, Y.; Hayoshi, N.; Ishihara, M.; Kurita, K.; Okamura, M.; Saito, N.; Taketani, A.; Doskow, J.; Kwiatkowski, K.; Lozowski, B.; Meyer, H.O.; Przewoski, B. V.; Rinckel, T.; Nurushev, S. B.; Strikhanov, M. N.; Runtzo, M. F.; Alekseev, I. G.; Svirida, D. N.; Deshpande, A.; Hughes, V.

    1999-01-01

    The RHIC spin program requires excellent polarimetry so that the knowledge of the beam polarization does not limit the errors on the experimental measurements. However, polarimetry of proton beams with energies higher than about 30 GeV poses a difficult challenge. For polarization monitoring during operation, a fast and reliable polarimeter is required that produces a polarization measurement with a 10% relative error within a few minutes. The p-Carbon elastic scattering in the Coulomb-Nuclear-Scattering (CNI) region has a calculable and large analyzing power, but detecting the recoil carbon needs sophisticated detector system and a very thin target. Experiment has been planned in the AGS. This paper describes the experimental setup in the AGS

  1. RHIC spin: The first polarized proton collider

    International Nuclear Information System (INIS)

    Roser, T.

    1994-01-01

    The very successful program of QCD and electroweak tests at the high energy hadron colliders have shown that the perturbative QCD has progressed towards becoming a ''precision'' theory. At the same time, it has been shown that with the help of Siberian Snakes it is feasible to accelerate polarized protons to high enough energies where the proven methods of collider physics can be used to probe the spin content of the proton but also where fundamental tests of the spin effects in the standard model are possible. With Siberian Snakes the Relativistic Heavy Ion Collider (RHIC) will be the first collider to allow for 250 GeV on 250 GeV polarized proton collisions

  2. THE ERL HIGH-ENERGY COOLER FOR RHIC

    International Nuclear Information System (INIS)

    BEN-ZVI, I.

    2006-01-01

    Electron cooling [1] entered a new era with the July 2005 cooling of the Tevatron recycler ring [2] at Fermilab, using γ = 9.5. Considering that the cooling rate decreases as faster than γ 2 and the electron energy forces higher electron currents, new acceleration techniques, high-energy electron cooling presents special challenges to the accelerator scientists and engineers. For example, electron cooling of RHIC at collisions requires electron beam energy up to about 54 MeV at an average current of between 50 to 100 mA and a particularly bright electron beam. The accelerator chosen to generate this electron beam is a superconducting Energy Recovery Linac (ERL) with a superconducting RF gun with a laser-photocathode

  3. From leading hadron suppression to jet quenching at RHIC and at the LHC

    International Nuclear Information System (INIS)

    Wiedemann, U.A.

    2005-01-01

    In nucleus-nucleus collisions at the Relativistic Heavy Ion Collider (RHIC), one generically observes a strong medium-induced suppression of high- p T hadron production. This suppression is accounted for in models which assume a significant medium-induced radiative energy loss of high- p T parent partons produced in the collision. How can we further test the microscopic dynamics conjectured to underlie this abundant high- p T phenomenon? What can we learn about the dynamics of parton fragmentation, and what can we learn about the properties of the medium which modifies it? Given that inelastic parton scattering is expected to be the dominant source of partonic equilibration processes, can we use hard processes as an experimentally well-controlled window into QCD non-equilibrium dynamics? Here I review what has been achieved so far, and which novel opportunities open up with higher luminosity at RHIC, and with the wider kinematical range accessible soon at the LHC. (orig.)

  4. Polarization electric dipole moment in nonaxial nuclei

    International Nuclear Information System (INIS)

    Denisov, V.Yu.; Davidovskaya, O.I.

    1996-01-01

    An expression for the macroscopic polarization electric dipole moment is obtained for nonaxial nuclei whose radii of the proton and neutron surfaces are related by a linear equation. Dipole transitions associated with the polarization electric dipole moment are analyzed for static and dynamical multipole deformations

  5. Open heavy flavor and quarkonia measurements in heavy-ion collisions at RHIC

    Directory of Open Access Journals (Sweden)

    Bielcik Jaroslav

    2014-04-01

    Full Text Available The properties of the hot and dense nuclear matter produced at RHIC in heavy-ion collisions can be investigated in multiple ways by heavy flavor production. The STAR and PHENIX experiments have excellent capability to study both open heavy flavor and quarkonia. Heavy quarks are produced in early stage of the collisions and the mechanisms of their interaction with nuclear matter are not yet well understood. The open heavy flavor hadrons can be studied using electrons from their semileptonic decays or via direct reconstruction through their hadronic decay channels. The heavy quarkonia production is expected to be sequentially suppressed depending on the temperature of the produced nuclear matter. However, cold nuclear matter effects play an important role and have to be well understood. In this paper we report recent results from the RHIC heavyion program on non-photonic electrons, direct reconstruction of charm mesons, J/ψ as well as ϒ in p+p, d+Au and Au+Au collisions at √sNN = 200 GeV.

  6. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ON RHIC SPIN PHYSICS III AND IV, POLARIZED PARTONS AT HIGH Q2 REGION (VOLUME 31)

    International Nuclear Information System (INIS)

    BUNCE, G.; VIGDOR, S.

    2001-01-01

    International workshop on II Polarized Partons at High Q2 region 11 was held at the Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan on October 13-14, 2000, as a satellite of the international conference ''SPIN 2000'' (Osaka, Japan, October 16-21,2000). This workshop was supported by RIKEN (The Institute of Physical and Chemical Research) and by Yukawa Institute. The scientific program was focused on the upcoming polarized collider RHIC. The workshop was also an annual meeting of RHIC Spin Collaboration (RSC). The number of participants was 55, including 28 foreign visitors and 8 foreign-resident Japanese participants, reflecting the international nature of the RHIC spin program. At the workshop there were 25 oral presentations in four sessions, (1) RHIC Spin Commissioning, (2) Polarized Partons, Present and Future, (3) New Ideas on Polarization Phenomena, (4) Strategy for the Coming Spin Running. In (1) the successful polarized proton commissioning and the readiness of the accelerator for the physics program impressed us. In (2) and (3) active discussions were made on the new structure function to be firstly measured at RHIC, and several new theoretical ideas were presented. In session (4) we have established a plan for the beam time requirement toward the first collision of polarized protons. These proceedings include the transparencies presented at the workshop. The discussion on ''Strategy for the Coming Spin Running'' was summarized by the chairman of the session, S. Vigdor and G. Bunce

  7. The new conceptual design of snakes and spin rotators in RHIC

    International Nuclear Information System (INIS)

    Lee, S.Y.; Courant, E.D.

    1990-01-01

    We discuss the generalized snake configurations, which offers either the advantages of shorter total snake length and smaller horizontal orbit displacement in the compact configuration or the dual functions of a snake and a 90 degree spin rotation for the helicity state. The generalized snake is then applied to the polarized proton collision in RHIC. The possible schemes of obtaining high luminosity are discussed

  8. Probing the Big Bang at the Relativistic Heavy Ion Collider (RHIC) (or Probing the Big Bang 13.7 billion years later)

    International Nuclear Information System (INIS)

    Lee, David M

    2010-01-01

    The Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory in the USA is a variable energy proton-proton and ion-ion collider that is the first accelerator capable of colliding heavy ions. RHIC was designed to do experiments that provide important information about the Standard Model of particle physics, Quantum Chromodynamics (QCD). QCD predicts that in the early part of the Universe just after the Big Bang the world consisted of a Quark Gluon Plasma, a weakly interacting collection of quarks and gluons. At RHIC we can recreate the conditions of the early Universe by colliding heavy ions at 200 GeV. This paper will give a general overview of the physics motivation for studying the QGP, how our experiments are designed to study the QGP, what we have learned over the last 9 years, and what the future holds.

  9. Numerical spin tracking in a synchrotron computer code Spink: Examples (RHIC)

    International Nuclear Information System (INIS)

    Luccio, A.

    1995-01-01

    In the course of acceleration of polarized protons in a synchrotron, many depolarizing resonances are encountered. They are classified in two categories: Intrinsic resonances that depend on the lattice structure of the ring and arise from the coupling of betatron oscillations with horizontal magnetic fields, and imperfection resonances caused by orbit distortions due to field errors. In general, the spectrum of resonances vs spin tune Gγ(G = 1.7928, the proton gyromagnetic anomaly, and y the proton relativistic energy ratio) for a given lattice tune ν, or vs ν for a given Gγ, contains a multitude of lines with various amplitudes or resonance strengths. The depolarization due to the resonance lines can be studied by numerically tracking protons with spin in a model accelerator. Tracking will allow one to check the strength of resonances, to study the effects of devices like Siberian Snakes, to find safe lattice tune regions where to operate, and finally to study in detail the operation of special devices such as Spin Flippers. A few computer codes exist that calculate resonance strengths E k and perform tracking, for proton and electron machines. Most relevant to our work for the AGS and RHIC machines are the programs Depol and Snake. Depol, calculates the E k 's by Fourier analysis. The input to Depol is the output of a machine model code, such as Synch or Mad, containing all details of the lattice. Snake, does the tracking, starting from a synthetic machine, that contains a certain number of periods, of FODO cells, of Siberian snakes, etc. We believed the complexities of machines like the AGS or RHIC could not be adequately represented by Snake. Then, we decided to write a new code, Spink, that combines some of the features of Depol and Snake. I.E., Spink reads a Mad output like Depol and tracks as Snake does. The structure of the code and examples for RHIC are described in the following

  10. RHIC pC CNI Polarimeter: Status and Performance from the First Collider Run

    International Nuclear Information System (INIS)

    Jinnouchi, O.; Tojo, J.; Alekseev, I.G.; Kanavets, V.P.; Svirida, D.N.; Bland, L.C.; Bravar, A.; Huang, H.; Li, Z.; MacKay, W.W.; Makdisi, Y.; Ogawa, A.; Rescia, S.; Roser, T.; Surrow, B.; Bunce, G.; Cadman, R.; Spinka, H.; Underwood, D.; Deshpande, A.

    2003-01-01

    Polarimeters using the proton carbon elastic scattering process in Coulomb Nuclear Interference (CNI) region were installed in two RHIC rings. Polarization measurements were successfully carried out with the high energy polarized proton beams for the first polarized pp collision run. The physics principles, performance, and polarization measurements are presented

  11. Formation of dislocation dipoles in irradiated graphite

    International Nuclear Information System (INIS)

    Niwase, Keisuke

    2005-01-01

    Recently, we have proposed a dislocation dipole accumulation model to explain the irradiation-induced amorphization of graphite. However, the structure of dislocation dipole in the hexagonal networks is still an open question at the atomic-level. In this paper, we propose a possible formation process of the dislocation dipole

  12. The dipole response of {sup 132}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Schrock, Philipp; Aumann, Thomas; Johansen, Jacob; Schindler, Fabia [IKP, TU Darmstadt (Germany); Boretzky, Konstanze [GSI Helmholtzzentrum (Germany); Rossi, Dominic [Michigan State University (United States); Collaboration: R3B-Collaboration

    2015-07-01

    The Isovector Giant Dipole Resonance (IVGDR) is a well-known collective excitation in which all protons oscillate against all neutrons of a nucleus. In neutron-rich nuclei an additional low-lying dipole excitation occurs, often denoted as Pygmy Dipole Resonance (PDR). To study the PDR in exotic Sn-isotopes, an experiment has been successfully performed with the upgraded R{sup 3}B-LAND setup at GSI. The complete-kinematics measurement of all reaction participants allows for the reconstuction of the excitation energy and, hence, the extraction of the dipole strength. Presented are the main features of the experiment, the analysis concept and the current status of the analysis of the dipole response of the doubly-magic isotope {sup 132}Sn.

  13. Backfire antennas with dipole elements

    DEFF Research Database (Denmark)

    Nielsen, Erik Dragø; Pontoppidan, Knud

    1970-01-01

    A method is set up for a theoretical investigation of arbitrary backfire antennas based upon dipole structures. The mutual impedance between the dipole elements of the antenna is taken into account, and the field radiated due to a surface wave reflector of finite extent is determined by calculating...

  14. Unusual dileptions at RHIC a field theoretic approach based on a non-equilibrium chiral phase transition

    International Nuclear Information System (INIS)

    Cooper, F.

    1997-01-01

    This paper contains viewgraphs on unusual dileptons at Brookhaven RHIC. A field theory approach is used based on a non-equilibrium chiral phase transformation utilizing the schroedinger and Heisenberg picture

  15. Unusual dileptions at RHIC a field theoretic approach based on a non-equilibrium chiral phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, F. [Los Alamos National Labs., NM (United States)

    1997-09-22

    This paper contains viewgraphs on unusual dileptons at Brookhaven RHIC. A field theory approach is used based on a non-equilibrium chiral phase transformation utilizing the schroedinger and Heisenberg picture.

  16. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, RHIC SPIN COLLABORATION MEETINGS VIII, IX, X, XI, APRIL 12, MAY, 22, JUNE 17, JULY 29, 2002.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,B.

    2003-03-06

    Since its inception, the RHIC Spin Collaboration (RSC) has held semi-regular meetings each year to discuss the physics possibilities and the operational details of the program. Having collected our first data sample of polarized proton-proton collisions in Run02 of RHIC, we are now in the process of examining the performance of both the accelerator and the experiments. From this evaluation, we not only aim to formulate a consensus plan for polarized proton-proton during Run03 of RHIC but also to look more forward into the future to ensure the success of the spin program. In the second meeting of this series (which took place at BNL on April 12, 2002), we focused on Run02 polarization issues. This meeting opened with a presentation by Thomas Roser about his reflections on the outcome from the RHIC retreat during which the Run02 performance was evaluated. Of particular importance, Thomas pointed out that, with the expected beam time and his estimates for machine-tuning requirements, the experiments should limit their beam requests to two or three programs.

  17. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, RHIC SPIN COLLABORATION MEETINGS VIII, IX, X, XI, APRIL 12, MAY, 22, JUNE 17, JULY 29, 2002

    International Nuclear Information System (INIS)

    FOX, B.

    2003-01-01

    Since its inception, the RHIC Spin Collaboration (RSC) has held semi-regular meetings each year to discuss the physics possibilities and the operational details of the program. Having collected our first data sample of polarized proton-proton collisions in Run02 of RHIC, we are now in the process of examining the performance of both the accelerator and the experiments. From this evaluation, we not only aim to formulate a consensus plan for polarized proton-proton during Run03 of RHIC but also to look more forward into the future to ensure the success of the spin program. In the second meeting of this series (which took place at BNL on April 12, 2002), we focused on Run02 polarization issues. This meeting opened with a presentation by Thomas Roser about his reflections on the outcome from the RHIC retreat during which the Run02 performance was evaluated. Of particular importance, Thomas pointed out that, with the expected beam time and his estimates for machine-tuning requirements, the experiments should limit their beam requests to two or three programs

  18. Capture from pair production as a beam loss mechanism for heavy ions at RHIC

    International Nuclear Information System (INIS)

    Feinberg, B.; Belkacem, A.; Claytor, N.; Dinneen, T.; Gould, H.

    1997-05-01

    Electron capture from electron-positron pair production is predicted to be a major source of beam loss for the heaviest ions at RHIC. Achieving the highest luminosity thus requires an understanding of the capture process. The authors report measurements of this process at Brookhaven National Laboratory's AGS using 10.8 GeV/nucleon Au 79+ projectiles on Au targets. Capture from pair production is a process in which the very high electromagnetic field involved in the collision of two relativistic heavy ions results in the production of an electron-positron pair with the capture of the electron by one of the ions. There are many theoretical papers published on capture from pair production with discrepancies between predicted cross sections. The experimental results are compared to theory and to previous experiments at 1 GeV/nucleon. The implications of extrapolations to RHIC energies are presented

  19. Proposal for Translational Entanglement of Dipole-Dipole Interacting Atoms in Optical Lattices

    Science.gov (United States)

    Opatrný, Tomáš; Deb, Bimalendu; Kurizki, Gershon

    2003-06-01

    We propose and investigate a realization of the position- and momentum-correlated Einstein-Podolsky-Rosen (EPR) states [Phys. Rev. 47, 777 (1935)] that have hitherto eluded detection. The realization involves atom pairs that are confined to adjacent sites of two mutually shifted optical lattices and are entangled via laser-induced dipole-dipole interactions. The EPR “paradox” with translational variables is then modified by lattice-diffraction effects and can be verified to a high degree of accuracy in this scheme.

  20. Electric dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.

    1983-01-01

    The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the CO, HB, HF and LiH molecules are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. The possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment is discussed. (Author) [pt

  1. Dipole plasma in molecular crystals

    International Nuclear Information System (INIS)

    Kotel'nikov, Yu.E.; Kochelaev, B.I.

    1976-01-01

    Collective oscillations in a system of electric dipoles of molecular crystals are investigated. It has been proved in the exciton approximation that in an elementary cell of a molecular crystal with one molecule there may exist energy fluctuations of the ''dipole'' plasma, analogous to plasma oscillations in the charged Fermi liquid

  2. Droplet-model electric dipole moments

    International Nuclear Information System (INIS)

    Myers, W.D.; Swiatecki, W.J.

    1991-01-01

    Denisov's recent criticism of the droplet-model formula for the dipole moment of a deformed nucleus as derived by Dorso et al., it shown to be invalid. This helps to clarify the relation of theory to the measured dipole moments, as discussed in the review article by Aberg et al. (orig.)

  3. COUPLING MEASUREMENT AND CORRECTION AT RHIC

    International Nuclear Information System (INIS)

    PILAT, F.; BEEBE-WANG, J.; FISCHER, W.; PTITSYN, V.; SATOGATA, T.

    2002-01-01

    Coupling correction at RHIC has been operationally achieved through a two-step process: using local triplet skew quadrupoles to compensate coupling corn rolled low-beta triplet quadrupoles, and minimizing the tune separation and residual coupling with orthogonal global skew quadrupole families. An application has been developed for global correction that allows skew quadrupole tuning and tune display with a choice of different tune measurement techniques, including tune-meter, Schottky and phase lock loop (PLL). Coupling effects have been analyzed by using 1024-turn (TBT) information from the beam position monitor (BPM) system. These data allow the reconstruction of the off-diagonal terms of the transfer matrix, a measure of global coupling. At both injection and storage energies, coordination of tune meter kicks with TBT acquisition at 322 BPW's in each ring allows the measurement of local coupling at all BPM locations

  4. LHC dipoles: the countdown has begun

    CERN Document Server

    Patrice Loiez

    2002-01-01

    At the entrance to the fourth floor corridor of the LHC-MMS (Main Magnets and Superconductors) Group in building 30, the Director-General has unveiled an electronic information panel indicating the number of LHC dipoles still to be delivered and the days remaining to the deadline (30 June 2006). The panel was the idea of Lucio Rossi, leader of the MMS Group, which is responsible for the construction of the dipole magnets. The unveiling ceremony took place on the morning of Friday 11 October 2002, at the end of a drink held to celebrate with MMS group and the LHC top management the exceptional performance of the latest dipoles, built by the French consortium Alstom-Jeumont. They are the first dipoles to achieve a magnetic field of 9 tesla in one go without quenching, thus exceeding the nominal operating field of 8.3 tesla. The challenge is now to increase the production rate from 2 to 35 dipoles per month by 2004 in order to meet the deadline, while maintaining this quality. Photo 01: The Director-General Luci...

  5. Clustering of arc volcanoes caused by temperature perturbations in the back-arc mantle.

    Science.gov (United States)

    Lee, Changyeol; Wada, Ikuko

    2017-06-29

    Clustering of arc volcanoes in subduction zones indicates along-arc variation in the physical condition of the underlying mantle where majority of arc magmas are generated. The sub-arc mantle is brought in from the back-arc largely by slab-driven mantle wedge flow. Dynamic processes in the back-arc, such as small-scale mantle convection, are likely to cause lateral variations in the back-arc mantle temperature. Here we use a simple three-dimensional numerical model to quantify the effects of back-arc temperature perturbations on the mantle wedge flow pattern and sub-arc mantle temperature. Our model calculations show that relatively small temperature perturbations in the back-arc result in vigorous inflow of hotter mantle and subdued inflow of colder mantle beneath the arc due to the temperature dependence of the mantle viscosity. This causes a three-dimensional mantle flow pattern that amplifies the along-arc variations in the sub-arc mantle temperature, providing a simple mechanism for volcano clustering.

  6. Comparison of electric dipole and magnetic dipole models for electromagnetic pulse generated by nuclear detonation in space

    International Nuclear Information System (INIS)

    Zhu Meng; Zhou Hui; Cheng Yinhui; Li Baozhong; Wu Wei; Li Jinxi; Ma Liang; Zhao Mo

    2013-01-01

    Electromagnetic pulse can be generated by the nuclear detonation in space via two radiation mechanisms. The electric dipole and magnetic dipole models were analyzed. The electric radiation in the far field generated by two models was calculated as well. Investigations show that in the case of one hundred TNT yield detonations, when electrons are emitted according to the Gaussian shape, two radiation models can give rise to the electric field in great distances with amplitudes of kV/m and tens of V/m, independently. Because the geomagnetic field in space is not strong and the electrons' angular motion is much weaker than the motion in the original direction, radiations from the magnetic dipole model are much weaker than those from the electric dipole model. (authors)

  7. Flow and bose-einstein correlations in Au-Au collisions at RHIC

    Science.gov (United States)

    Phobos Collaboration; Manly, Steven; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Henderson, C.; Hofman, D.; Hollis, R. S.; Hołyinski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    Argonne flow and Bose-Einstein correlations have been measured in Au-Au collisions at S=130 and 200 GeV using the PHOBOS detector at RHIC. The systematic dependencies of the flow signal on the transverse momentum, pseudorapidity, and centrality of the collision, as well as the beam energy are shown. In addition, results of a 3-dimensional analysis of two-pion correlations in the 200 GeV data are presented.

  8. Neutron Electric Dipole Moment Experiments

    OpenAIRE

    Peng, Jen-Chieh

    2008-01-01

    The neutron electric dipole moment (EDM) provides unique information on CP violation and physics beyond the Standard Model. We first review the history of experimental searches for neutron electric dipole moment. The status of future neutron EDM experiments, including experiments using ultra-cold neutrons produced in superfluid helium, will then be presented.

  9. Electric dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.

    1983-01-01

    The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the molecules CO, HB, HF and LiH are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. It is discussed the possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment. (Author) [pt

  10. Physics at Relativistic Heavy Ion Collider (RHIC)

    International Nuclear Information System (INIS)

    Shuryak, E.V.

    1990-08-01

    This introductory talk contains a brief discussion of future experiments at RHIC related to physics of superdense matter. In particular, we consider the relation between space-time picture of the collision and spectra of the observed secondaries. We discuss where one should look for QGP signals and for possible manifestation of the phase transition. We pay more attention to a rather new topic: hadron modification in the gas phase, which is interesting by itself as a collective phenomenon, and also as a precursor indicating what happens with hadrons near the phase transition. We briefly review current understanding of the photon physics, dilepton production, charm and strangeness and J/ψ suppression. At the end we try to classify all possible experiments. 47 refs., 3 figs

  11. Possible origin of RHIC R{sub out}/R{sub sid} HBT results

    Energy Technology Data Exchange (ETDEWEB)

    Padula, Sandra S

    2003-03-10

    The effects of opacity of the nuclei together with a blackbody type of emission along the system history are considered as a means to explain the ratio R{sub out}/R{sub sid} observed by STAR and PHENIX collaborations at RHIC. Within our model, no flow is required to explain the data trend of this ratio for large surface emissivities.

  12. Dual Aharonov-Casher effect and persistent dipole current

    International Nuclear Information System (INIS)

    Yi, J.; Jeon, G.S.; Choi, M.Y.

    1995-01-01

    An electric dipole moving in a magnetic field acquires a nontrivial quantum phase in the appropriate configuration. It is shown that this phase is manifested by the persistent dipole current induced on a ring pierced by a line of magnetic monopoles. Such a current depends on the statistics of the dipoles, which may have interesting implications for experiments. It is also pointed out that the dipole current cannot be self-sustained

  13. Particle electric dipole moments

    CERN Document Server

    Pendlebury, J M

    2000-01-01

    Measurements of particle electric dipole moments (EDMs) continue to put powerful constraints on theories of T-symmetry and CP-symmetry violation, which form currently one of the most prominent fields in particle physics. EDM measurements have been concentrated on neutral systems such as the neutron and atoms and molecules. These measurements allow one to deduce, in turn, the electric dipole moments of the fundamental fermions, that is, the lighter leptons and quarks and also those of some heavy nuclei.

  14. Statistical error of spin transfer to hyperon at RHIC energy

    International Nuclear Information System (INIS)

    Han Ran; Mao Yajun

    2009-01-01

    From the RHIC/PHENIX experiment data, it is found that the statistical error of spin transfer is few times larger than the statistical error of the single spin asymmetry. In order to verify the difference between σDLL and σAL, the linear least squares method was used to check it first, and then a simple Monte-Carlo simulation to test this factor again. The simulation is consistent with the calculation result which indicates that the few times difference is reasonable. (authors)

  15. Modification of the U-line of the RHIC injection line

    International Nuclear Information System (INIS)

    Xu, Jianming.

    1991-09-01

    The parameters of the U-line of the RHIC injection line with low β waist are described. In that lattice, the location of SA is not dispersion free and 14 quadrupoles are needed. This line has been modified to move SA to a dispersion free region (after the 8-degree bend), the length and maximum gradient of quadrupoles have been adjusted to fit the existing quadrupole parameters and the number of quadrupoles is reduced to 12. 2 refs., 3 tabs

  16. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ON SPIN PHYSICS AT RHIC IN YEAR-1 AND BEYOND.

    Energy Technology Data Exchange (ETDEWEB)

    BLAND, L.; BOER, D.; SAITO, N.; VOGELSANG, W.

    2001-05-14

    The much anticipated RHIC spin physics program will commence this fall when the first physics run with colliding beams of polarized protons is expected. More specifically, the planned year-1 RHIC-Spin measurements are (1) the double-spin asymmetry A{sub LL}{sup {pi}} in production of pions by collisions of longitudinally polarized protons (in order to obtain first information on the proton's spin-dependent gluon density, {Delta}g); (2) the transverse single-spin asymmetry A{sub N}{sup {pi}} for pion production. These two reactions provided part of the motivation for our workshop. On the first day there were informative talks on the specific plans of STAR (by Rakness) and PHENIX (by Goto) for the polarized run of Year-1. Some of the theoretical questions related to the double-spin asymmetry A{sub LL}{sup {pi}} were discussed on the first day by Vogelsang and Kretzer, which centered mostly around the questions of how well the unpolarized fragmentation functions are known, the need for next-to-leading order calculations, and on how sensitive the asymmetry is to the possible {Delta}g distributions. Vetterli presented HERMES measurements of fragmentation functions, which overlap in Q{sup 2} with the future lower-p{sub T} measurements at RHIC.

  17. Visualizing dipole radiation

    International Nuclear Information System (INIS)

    Girwidz, Raimund V

    2016-01-01

    The Hertzian dipole is fundamental to the understanding of dipole radiation. It provides basic insights into the genesis of electromagnetic waves and lays the groundwork for an understanding of half-wave antennae and other types. Equations for the electric and magnetic fields of such a dipole can be derived mathematically. However these are very abstract descriptions. Interpreting these equations and understanding travelling electromagnetic waves are highly limited in that sense. Visualizations can be a valuable supplement that vividly present properties of electromagnetic fields and their propagation. The computer simulation presented below provides additional instructive illustrations for university lectures on electrodynamics, broadening the experience well beyond what is possible with abstract equations. This paper refers to a multimedia program for PCs, tablets and smartphones, and introduces and discusses several animated illustrations. Special features of multiple representations and combined illustrations will be used to provide insight into spatial and temporal characteristics of field distributions—which also draw attention to the flow of energy. These visualizations offer additional information, including the relationships between different representations that promote deeper understanding. Finally, some aspects are also illustrated that often remain unclear in lectures. (paper)

  18. Critical Length Criterion and the Arc Chain Model for Calculating the Arcing Time of the Secondary Arc Related to AC Transmission Lines

    International Nuclear Information System (INIS)

    Cong Haoxi; Li Qingmin; Xing Jinyuan; Li Jinsong; Chen Qiang

    2015-01-01

    The prompt extinction of the secondary arc is critical to the single-phase reclosing of AC transmission lines, including half-wavelength power transmission lines. In this paper, a low-voltage physical experimental platform was established and the motion process of the secondary arc was recorded by a high-speed camera. It was found that the arcing time of the secondary arc rendered a close relationship with its arc length. Through the input and output power energy analysis of the secondary arc, a new critical length criterion for the arcing time was proposed. The arc chain model was then adopted to calculate the arcing time with both the traditional and the proposed critical length criteria, and the simulation results were compared with the experimental data. The study showed that the arcing time calculated from the new critical length criterion gave more accurate results, which can provide a reliable criterion in term of arcing time for modeling and simulation of the secondary arc related with power transmission lines. (paper)

  19. Is the 2MASS dipole convergent?

    OpenAIRE

    Chodorowski, Michał; Bilicki, Maciej; Mamon, Gary A.; Jarrett, Thomas

    2010-01-01

    We study the growth of the clustering dipole of galaxies from the Two Micron All Sky Survey (2MASS). We find that the dipole does not converge before the completeness limit of the 2MASS Extended Source Catalog, i.e. up to about 300 Mpc/h. We compare the observed growth of the dipole with the theoretically expected, conditional growth for the LambdaCDM power spectrum and cosmological parameters constrained by WMAP. The observed growth turns out to be within 1-sigma confidence level of the theo...

  20. Plasma confinement in a magnetic dipole

    International Nuclear Information System (INIS)

    Kesner, J.; Bromberg, L.; Garnier, D.; Mauel, M.

    1999-01-01

    A dipole fusion confinement device is stable to MHD interchange and ballooning modes when the pressure profile is sufficiently gentle. The plasma can be confined at high beta, is steady state and disruption free. Theory indicates that when the pressure gradient is sufficiently gentle to satisfy MHD requirements drift waves will also be stable. The dipole approach is particularly applicable for advanced fuels. A new experimental facility is presently being built to test the stability and transport properties of a dipole-confined plasma. (author)

  1. Plasma confinement in a magnetic dipole

    International Nuclear Information System (INIS)

    Kesner, J.; Bromberg, L.; Garnier, D.; Mauel, M.

    2001-01-01

    A dipole fusion confinement device is stable to MHD interchange and ballooning modes when the pressure profile is sufficiently gentle. The plasma can be confined at high beta, is steady state and disruption free. Theory indicates that when the pressure gradient is sufficiently gentle to satisfy MHD requirements drift waves will also be stable. The dipole approach is particularly applicable for advanced fuels. A new experimental facility is presently being built to test the stability and transport properties of a dipole-confined plasma. (author)

  2. Arc saw development report

    International Nuclear Information System (INIS)

    Deichelbohrer, P.R.; Beitel, G.A.

    1981-01-01

    The arc saw is one of the key components of the Contaminated Equipment Volume Reduction (CEVR) Program. This report describes the progress of the arc saw from its inception to its current developmental status. History of the arc saw and early contributors are discussed. Particular features of the arc saw and their advantages for CEVR are detailed. Development of the arc saw including theory of operation, pertinent experimental results, plans for the large arc saw and advanced control systems are covered. Associated topics such as potential applications for the arc saw and other arc saw installations in the world is also touched upon

  3. Auroral arc classification scheme based on the observed arc-associated electric field pattern

    International Nuclear Information System (INIS)

    Marklund, G.

    1983-06-01

    Radar and rocket electric field observations of auroral arcs have earlier been used to identify essentially four different arc types, namely anticorrelation and correlation arcs (with, respectively, decreased and increased arc-assocaited field) and asymmetric and reversal arcs. In this paper rocket double probe and supplementary observations from the literature, obtained under various geophysical conditions, are used to organize the different arc types on a physical rather than morphological basis. This classification is based on the relative influence on the arc electric field pattern from the two current continuity mechanisms, polarisation electric fields and Birkeland currents. In this context the tangential electric field plays an essential role and it is thus important that it can be obtained with both high accuracy and resolution. In situ observations by sounding rockets are shown to be better suited for this specific task than monostatic radar observations. Depending on the dominating mechanism, estimated quantitatively for a number of arc-crossings, the different arc types have been grouped into the following main categories: Polarisation arcs, Birkeland current arcs and combination arcs. Finally the high altitude potential distributions corresponding to some of the different arc types are presented. (author)

  4. Multiscale dipole relaxation in dielectric materials

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt

    2016-01-01

    Dipole relaxation from thermally induced perturbations is investigated on different length scales for dielectric materials. From the continuum dynamical equations for the polarisation, expressions for the transverse and longitudinal dipole autocorrelation functions are derived in the limit where ...

  5. RHIC polarized proton-proton operation at 100 GeV in Run 15

    International Nuclear Information System (INIS)

    Schoefer, V.; Aschenauer, E. C.; Atoian, G.; Blaskiewicz, M.; Brown, K. A.; Bruno, D.; Connolly, R.; D Ottavio, T.; Drees, K. A.; Dutheil, Y.; Fischer, W.; Gardner, C.; Gu, X.; Hayes, T.; Huang, H.; Laster, J.; Liu, C.; Luo, Y.; Makdisi, Y.; Marr, G.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R.; Marusic, A.; Minty, M.; Montag, C.; Morris, J.; Narayan, G.; Nemesure, S.; Pile, P.; Poblaguev, A.; Ranjbar, V.; Robert-Demolaize, G.; Roser, T.; Schmidke, W. B.; Severino, F.; Shrey, T.; Smith, K.; Steski, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; White, S.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S. Y.

    2015-01-01

    The first part of RHIC Run 15 consisted of ten weeks of polarized proton on proton collisions at a beam energy of 100 GeV at two interaction points. In this paper we discuss several of the upgrades to the collider complex that allowed for improved performance. The largest effort consisted in commissioning of the electron lenses, one in each ring, which are designed to compensate one of the two beam-beam interactions experienced by the proton bunches. The e-lenses raise the per bunch intensity at which luminosity becomes beam-beam limited. A new lattice was designed to create the phase advances necessary for a beam-beam compensation with the e-lens, which also has an improved off-momentum dynamic aperture relative to previous runs. In order to take advantage of the new, higher intensity limit without suffering intensity driven emittance deterioration, other features were commissioned including a continuous transverse bunch-by-bunch damper in RHIC and a double harmonic RF cature scheme in the Booster. Other high intensity protections include improvements to the abort system and the installation of masks to intercept beam lost due to abort kicker pre-fires.

  6. Across-arc versus along-arc Sr-Nd-Pb isotope variations in the Ecuadorian volcanic arc

    Science.gov (United States)

    Ancellin, Marie-Anne; Samaniego, Pablo; Vlastélic, Ivan; Nauret, François; Gannoun, Adbelmouhcine; Hidalgo, Silvana

    2017-03-01

    Previous studies of the Ecuadorian arc (1°N-2°S) have revealed across-arc geochemical trends that are consistent with a decrease in mantle melting and slab dehydration away from the trench. The aim of this work is to evaluate how these processes vary along the arc in response to small-scale changes in the age of the subducted plate, subduction angle, and continental crustal basement. We use an extensive database of 1437 samples containing 71 new analyses, of major and trace elements as well as Sr-Nd-Pb isotopes from Ecuadorian and South Colombian volcanic centers. Large geochemical variations are found to occur along the Ecuadorian arc, in particular along the front arc, which encompasses 99% and 71% of the total variations in 206Pb/204Pb and 87Sr/86Sr ratios of Quaternary Ecuadorian volcanics, respectively. The front arc volcanoes also show two major latitudinal trends: (1) the southward increase of 207Pb/204Pb and decrease of 143Nd/144Nd reflect more extensive crustal contamination of magma in the southern part (up to 14%); and (2) the increase of 206Pb/204Pb and decrease of Ba/Th away from ˜0.5°S result from the changing nature of metasomatism in the subarc mantle wedge with the aqueous fluid/siliceous slab melt ratio decreasing away from 0.5°S. Subduction of a younger and warmer oceanic crust in the Northern part of the arc might promote slab melting. Conversely, the subduction of a colder oceanic crust south of the Grijalva Fracture Zone and higher crustal assimilation lead to the reduction of slab contribution in southern part of the arc.

  7. A deterministic, gigabit serial timing, synchronization and data link for the RHIC LLRF

    International Nuclear Information System (INIS)

    Hayes, T.; Smith, K.S.; Severino, F.

    2011-01-01

    A critical capability of the new RHIC low level rf (LLRF) system is the ability to synchronize signals across multiple locations. The 'Update Link' provides this functionality. The 'Update Link' is a deterministic serial data link based on the Xilinx RocketIO protocol that is broadcast over fiber optic cable at 1 gigabit per second (Gbps). The link provides timing events and data packets as well as time stamp information for synchronizing diagnostic data from multiple sources. The new RHIC LLRF was designed to be a flexible, modular system. The system is constructed of numerous independent RF Controller chassis. To provide synchronization among all of these chassis, the Update Link system was designed. The Update Link system provides a low latency, deterministic data path to broadcast information to all receivers in the system. The Update Link system is based on a central hub, the Update Link Master (ULM), which generates the data stream that is distributed via fiber optic links. Downstream chassis have non-deterministic connections back to the ULM that allow any chassis to provide data that is broadcast globally.

  8. How to introduce the magnetic dipole moment

    International Nuclear Information System (INIS)

    Bezerra, M; Kort-Kamp, W J M; Cougo-Pinto, M V; Farina, C

    2012-01-01

    We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the magnetic field at distant points, identifying the magnetic dipole moment of the distribution. We also present a simple but general demonstration of the torque exerted by a uniform magnetic field on a current loop of general form, not necessarily planar. For pedagogical reasons we start by reviewing briefly the concept of the electric dipole moment. (paper)

  9. Phenomenology of the squeezed hadronic correlations at RHIC energies

    International Nuclear Information System (INIS)

    Padula, Sandra S.; Dudek, Danuce M.; Socolowski, Otavio Jr.

    2012-01-01

    We briefly review the basic theoretical results on bosonic back-to-back correlations (bBBC) and compare our predictions with the first experimental search for squeezed correlations of K + K - pairs, performed by PHENIX. The hadronic squeezed correlations are very sensitive to the functional form of the time emission distribution. The comparison is made for three different kaon time distributions. From such comparison we show that the outcome of the experimental search may still be inconclusive but it does not exclude the existence of squeezing effects on hadrons with in-medium modified masses already at RHIC energies. (author)

  10. TWO-PHOTON PHYSICS IN NUCLEUS-NUCLEUS COLLISIONS AT RHIC

    International Nuclear Information System (INIS)

    Nystrand, J.; Klein, S.

    1998-01-01

    Ultra-relativistic heavy-ions carry strong electromagnetic and nuclear fields. Interactions between these fields in peripheral nucleus-nucleus collisions can probe many interesting physics topics. This presentation will focus on coherent two-photon and photonuclear processes at RHIC. The rates for these interactions will be high. The coherent coupling of all the protons in the nucleus enhances the equivalent photon flux by a factor Z 2 up to an energy of ∼ 3 GeV. The plans for studying coherent interactions with the STAR experiment will be discussed. Experimental techniques for separating signal from background will be presented

  11. Two-photon physics in nucleus-nucleus collisions at RHIC

    International Nuclear Information System (INIS)

    Nystrand, J.; Klein, S.

    1998-01-01

    Ultra-relativistic heavy-ions carry strong electromagnetic and nuclear fields. Interactions between these fields in peripheral nucleus-nucleus collisions can probe many interesting physics topics. This presentation will focus on coherent two-photon and photonuclear processes at RHIC. The rates for these interactions will be high. The coherent coupling of all the protons in the nucleus enhances the equivalent photon flux by a factor Z 2 up to an energy of ∼ 3 GeV. The plans for studying coherent interactions with the STAR experiment will be discussed. Experimental techniques for separating signal from background will be presented

  12. Analysis of failed ramps during the RHIC FY09 run

    Energy Technology Data Exchange (ETDEWEB)

    Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-08-15

    The Relativistic Heavy Ion Collider (RHIC) is a versatile accelerator that supports operation with polarized protons of up to 250 GeV and ions with up to 100 GeV/nucleon. During any running period, various operating scenarios with different particle species, beam energies or accelerator optics are commissioned. In this report the beam commissioning periods for establishing full energy beams (ramp development periods) from the FY09 run are summarized and, for the purpose of motivating further developments, we analyze the reasons for all failed ramps.

  13. Measurement and Optimization of Local Coupling from RHIC BPM Data

    CERN Document Server

    Calaga, Rama; Bai, Mei; Fischer, Wolfram; Franchi, Andrea; Tomas, Rogelio

    2005-01-01

    Global coupling in RHIC is routinely corrected by using three skew quadrupole families to minimize the tune split. In this paper we aim to re-optimize the coupling at top energy by minimizing resonance driving terms and the C-matrix in two steps: 1. Find the best configuration of the three skew quadrupole families and 2. Identify locations with coupling sources by inspection of the driving terms and the C-matrix around the ring. The measurements of resonance terms and C-matrix are presented.

  14. Analysis of failed ramps during the RHIC FY09 run

    International Nuclear Information System (INIS)

    Minty, M.

    2014-01-01

    The Relativistic Heavy Ion Collider (RHIC) is a versatile accelerator that supports operation with polarized protons of up to 250 GeV and ions with up to 100 GeV/nucleon. During any running period, various operating scenarios with different particle species, beam energies or accelerator optics are commissioned. In this report the beam commissioning periods for establishing full energy beams (ramp development periods) from the FY09 run are summarized and, for the purpose of motivating further developments, we analyze the reasons for all failed ramps.

  15. Cryogenics in CEBAF HMS dipole

    International Nuclear Information System (INIS)

    Bogensberger, P.; Ramsauer, F.; Brindza, P.; Wines, R.; Koefler, H.

    1994-01-01

    The paper will report upon the final design, manufacturing and tests of CEBAF's HMS Dipole cryogenic equipment. The liquid nitrogen circuits, the helium circuits and thermal insulation of the magnet will be addressed. The cryogenic reservoir and control module as an integral part of the HMS Dipole magnet will be presented. The construction, manufacturing, tests and final performance of the HMS Dipole cryogenic system will be reported. The LN 2 circuit and the He circuit are tied together by the control system for cool down, normal operation and standby. This system monitors proper temperature differences between both circuits and controls the cryogenic supply to meet the constraints. Implementation of the control features for the cryogenic system into the control system will be reported

  16. Influence of arc current and pressure on non-chemical equilibrium air arc behavior

    Science.gov (United States)

    Yi, WU; Yufei, CUI; Jiawei, DUAN; Hao, SUN; Chunlin, WANG; Chunping, NIU

    2018-01-01

    The influence of arc current and pressure on the non-chemical equilibrium (non-CE) air arc behavior of a nozzle structure was investigated based on the self-consistent non-chemical equilibrium model. The arc behavior during both the arc burning and arc decay phases were discussed at different currents and different pressures. We also devised the concept of a non-equilibrium parameter for a better understanding of non-CE effects. During the arc burning phase, the increasing current leads to a decrease of the non-equilibrium parameter of the particles in the arc core, while the increasing pressure leads to an increase of the non-equilibrium parameter of the particles in the arc core. During the arc decay phase, the non-CE effect will decrease by increasing the arc burning current and the nozzle pressure. Three factors together—convection, diffusion and chemical reactions—influence non-CE behavior.

  17. Field of a dipole in charged black-hole electrostatics

    International Nuclear Information System (INIS)

    Souza, J.A.

    1979-01-01

    By using the solution of Adler and Das for Maxwell's equations in a Reissner-Nordstroem optimally charged background metric, the field of a static electric dipole is found and then, by a duality rotation, the field of a static magnetic dipole is obtained. A generalization of the concept of electric-dipole moment is proposed for static dipoles in curved manifolds, and the behaviour of the fields both for the dipole very near and very far from the singular surface of the Reissner-Nordstroem geometry is studied. (author)

  18. RHIC detector electronics R and D proposal (number-sign RH-8) - development of analog memories for RHIC detector front-end electronic systems

    International Nuclear Information System (INIS)

    Konstantinidis, A.; Ledoux, R.; Steadman, S.; Stephans, G.; Wadsworth, B.

    1990-01-01

    Detectors for colliding beam experiments at RHIC will provide 4pi coverage and are expected to contain from 10**5 to 10**6 channels. As the 2 to 5usec required to generate first-level triggers is long compared with RHIC's 114nsec beam crossing interval, there will be a need not only to deal with signals from a great number of channels but also to store and tag these signals over many beam crossings. The authors are concentrating their efforts on developing the switched-capacitor (SC) analog memory as the generic mechanism for storing detector signals. Switched-capacitor circuits can be implemented using metaloxide-semiconductor (MOS) technology; and, for development work, they have relatively easy access to a number of foundries running different MOS processes the choice of which would depend on the exact nature of their application. In terms of memory applications, several MOS-based designs have been reported in the literature. MOS technology is generally considered to have advantages over charge-coupled devices in terms of lower power dissipation, lower noise, better linearity, better radiation hardness, and lower cost: all desirable characteristics for a device to be used in a particle detector. However, the authors have recently learned of new developments in CCD technology at MIT's Lincoln Laboratory, and they find that the advantage of MOS technology over CCD technology, at least in terms of the parameters mentioned above, may not be as marked as once thought. Since CCD's have some interesting features which make them potentially useful for pipeline trigger applications, if not for the more general storage applications they are considering here, they intend to keep in close contact with this work

  19. Hadron spectroscopy and B physics at RHIC

    International Nuclear Information System (INIS)

    Chung, S.U.; Weygand, D.P.; Willutzki, H.J.

    1991-11-01

    A description is given of the physics opportunities at RHIC regarding quark-gluon spectroscopy. The basic idea is to isolate with appropriate triggers the sub-processes pomeron + pomeron → hadrons and γ * + γ * → hadrons with the net effective mass of hadrons in the range of 1.0 to 10.0 GeV, in order to study the hadronic states composed of quarks and gluons. The double-pomeron interactions are expected to produce glueballs and hybrids preferentially, while the two-offshell-photon initial states should couple predominantly to quarkonia and multiquark states. Of particular interest is the possibility of carrying out a CP-violation study in the self-tagging B decays, B d 0 → K + π - and bar B d 0 → K - π + . 20 refs., 4 figs

  20. Conceptual Design of the RHIC Dump Core

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, A. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    1995-09-26

    Conceptually, the internal dump consists of a "core" whose purpose is to absorb the energy of the beam, and surrounding shielding whose purpose is to attenuate radiation. Design of the core for an internal dump has two problems which must be overcome. The first problem is preserving the integrity of the dump core. The bunches must be dispersed laterally an amount sufficient to keep the energy density from cracking the dump core material. Since the dump kickers in RHIC are only ~25m upstream of the entrance face of the dump, this is i a difficult problem. The second problem, not addressed in this note, is that dumping the beam should not quench downstream magnets. Preliminary calculations related to both of these problems have been presented in earlier notes.