WorldWideScience

Sample records for rhenium halides

  1. Rhenium

    Science.gov (United States)

    John, David A.; Seal, Robert R.; Polyak, Désirée E.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Rhenium is one of the rarest elements in Earth’s continental crust; its estimated average crustal abundance is less than 1 part per billion. Rhenium is a metal that has an extremely high melting point and a heat-stable crystalline structure. More than 80 percent of the rhenium consumed in the world is used in high-temperature superalloys, especially those used to make turbine blades for jet aircraft engines. Rhenium’s other major application is in platinum-rhenium catalysts used in petroleum refining.Rhenium rarely occurs as a native element or as its own sulfide mineral; most rhenium is present as a substitute for molybdenum in molybdenite. Annual world mine production of rhenium is about 50 metric tons. Nearly all primary rhenium production (that is, rhenium produced by mining rather than through recycling) is as a byproduct of copper mining, and about 80 percent of the rhenium obtained through mining is recovered from the flue dust produced during the roasting of molybdenite concentrates from porphyry copper deposits. Molybdenite in porphyry copper deposits can contain hundreds to several thousand grams per metric ton of rhenium, although the estimated rhenium grades of these deposits range from less than 0.1 gram per metric ton to about 0.6 gram per metric ton.Continental-arc porphyry copper-(molybdenum-gold) deposits supply most of the world’s rhenium production and have large inferred rhenium resources. Porphyry copper mines in Chile account for about 55 percent of the world’s mine production of rhenium; rhenium is also recovered from porphyry copper deposits in the United States, Armenia, Kazakhstan, Mexico, Peru, Russia, and Uzbekistan. Sediment-hosted strata-bound copper deposits in Kazakhstan (of the sandstone type) and in Poland (of the reduced-facies, or Kupferschiefer, type) account for most other rhenium produced by mining. These types of deposits also have large amounts of identified rhenium resources. The future supply of rhenium is likely

  2. Trinuclear rhenium(III) halide clusters with carboxylate ligands

    Science.gov (United States)

    Dougan, Jeffrey Steven

    Four mono(carboxylato)trirhenium complexes and three bis(carboxylato)trirhenium complexes have been synthesized and characterized, principally by mass spectrometry, with supporting evidence from X-ray diffraction. These compounds represent the first trinuclear rhenium carboxylate complexes. The reactions generally proceed readily under comparatively mild conditions. Mass spectrometry has again proved its usefulness as a technique in the field of metal cluster chemistry, having provided the initial identification of the products of the reactions studied. These compounds provide a further base to which future mass spectra of metal cluster compounds can be compared. Re-examination of a reaction reported by Taha and Wilkinson has also cast considerable doubt onto the validity of a conversion widely reported in the literature that transforms (Re3Cl9) x into [Re2(O2CCH3)4Cl 2]. We believe that the literature result is a consequence of the purity of the metal precursor, and suggest that the starting material in the earlier work may have contained ReCl4 or ReCl5. The importance of mass spectrometry in the characterization of the new compounds synthesized in this project has led to a thorough study of calculated isotopic distributions. The information gathered suggests that for isotopically simple molecules, the choice of algorithm for computing an isotopic distribution is unimportant. However, it is important to compute the mass spectrum of an isotopically complex molecule using an algorithm that can, if desired, show the underlying isotopic fine structure of a peak of interest. In the last chapter of this thesis, the results of a project in chemistry education research are presented. Predicting the success of students in general chemistry has long been of interest to the chemistry education community, and several factors have been identified as contributing factors. An off-hand comment by a student inspired an examination of whether continuity with the same instructor for

  3. Rhenium Re

    International Nuclear Information System (INIS)

    Busev, A.I.; Tiptsova, V.G.; Ivanov, V.M.

    1978-01-01

    The basic methods for determining rhenium in various objects are presented. The gravimetric determination of rhenium is based on a quantitative precipitation of ReO 4 - ions with tetraphenylarsonium chloride. The determination is not hindered by tungstates and molybdates. The potentiometric determination of rhenium in alloys (>=0.5% Re) is based on perrhenate ion reduction to Re(4) with the titrated solution of the Cr(2) salt. Re(7) is titrated in a hot sulfuric acid solution in the presence of KJ. The relative error of the method is 1 to 3%. The photometric determination of rhenium is performed by the rhodamide method in molybdenum-and tungsten-containing alloys and catalytically, in rocks, after it has been separated in the form of sulfide. The extraction-photometric determination of rhenium is carried out with the aid of methyl violet (analysis of a stock with a high content of Mo, W, Ta, Nb, Ti ahd Zr) and thio-oxine (the determination of Re is hindered by Au, Pt, Pd, Ru, Os, Rh, Ir). Also described are methods for differential-spectrophotometric determination of Re with the aid of thiocarbamide, as well as with the aid of dimethylglyoxime in the presence of SnCl 2 in an acid medium when Re is determined in its alloys with niobium and hafnium. It takes 2 hours to analyze the Hf-Re alloy and 3 hours to analyze the Nb-Re alloy, the standard deviation being 0.005 at 30-50% Re and 0.027 to 0.019 at 10-50% Re

  4. Spherical rhenium metal powder

    International Nuclear Information System (INIS)

    Leonhardt, T.; Moore, N.; Hamister, M.

    2001-01-01

    The development of a high-density, spherical rhenium powder (SReP) possessing excellent flow characteristics has enabled the use of advanced processing techniques for the manufacture of rhenium components. The techniques that were investigated were vacuum plasma spraying (VPS), direct-hot isostatic pressing (D-HIP), and various other traditional powder metallurgy processing methods of forming rhenium powder into near-net shaped components. The principal disadvantages of standard rhenium metal powder (RMP) for advanced consolidation applications include: poor flow characteristics; high oxygen content; and low and varying packing densities. SReP will lower costs, reduce processing times, and improve yields when manufacturing powder metallurgy rhenium components. The results of the powder characterization of spherical rhenium powder and the consolidation of the SReP are further discussed. (author)

  5. Rhenium Rocket Manufacturing Technology

    Science.gov (United States)

    1997-01-01

    The NASA Lewis Research Center's On-Board Propulsion Branch has a research and technology program to develop high-temperature (2200 C), iridium-coated rhenium rocket chamber materials for radiation-cooled rockets in satellite propulsion systems. Although successful material demonstrations have gained much industry interest, acceptance of the technology has been hindered by a lack of demonstrated joining technologies and a sparse materials property data base. To alleviate these concerns, we fabricated rhenium to C-103 alloy joints by three methods: explosive bonding, diffusion bonding, and brazing. The joints were tested by simulating their incorporation into a structure by welding and by simulating high-temperature operation. Test results show that the shear strength of the joints degrades with welding and elevated temperature operation but that it is adequate for the application. Rhenium is known to form brittle intermetallics with a number of elements, and this phenomena is suspected to cause the strength degradation. Further bonding tests with a tantalum diffusion barrier between the rhenium and C-103 is planned to prevent the formation of brittle intermetallics.

  6. Rhenium(V) complexes with sulfur-containing amino acids

    International Nuclear Information System (INIS)

    Gagieva, S.Ch.; Tautieva, M.A.; Tsaloev, A.T.; Galimov, Yu.B.; Gagieva, L.Ch.; Belyaeva, T.N.

    2007-01-01

    Rhenium(V) complexes with 2-amino-4-(methylthio)butanoic acid (methionine, Met) and 2-amino-3-sulfopropionic acid (cysteine, Cys) have been synthesized. Depending on the initial reagent ratio, the resulting complexes contain one or two ligand molecules. On heating the compounds with one amino acid molecule, two hydrogen halide molecules are removed at 128-132 deg C to form a molecular complex. The composition, structure, and thermal stability of the complexes have been studied by elemental analysis, conductometry, IR spectroscopy, NMR, and mass spectrometry [ru

  7. Rhenium corrosion in chloride melts

    International Nuclear Information System (INIS)

    Stepanov, A.D.; Shkol'nikov, S.N.; Vetyukov, M.M.

    1989-01-01

    The results investigating rhenium corrosion in chloride melts containing sodium, potassium and chromium ions by a gravimetry potentials in argon atmosphere in a sealing quarth cell are described. Rhenium corrosion is shown to be rather considerable in melts containing CrCl 2 . The value of corrosion rate depending on temperature is determined

  8. Rhenium Nanochemistry for Catalyst Preparation

    Directory of Open Access Journals (Sweden)

    Vadim G. Kessler

    2012-08-01

    Full Text Available The review presents synthetic approaches to modern rhenium-based catalysts. Creation of an active center is considered as a process of obtaining a nanoparticle or a molecule, immobilized within a matrix of the substrate. Selective chemical routes to preparation of particles of rhenium alloys, rhenium oxides and the molecules of alkyltrioxorhenium, and their insertion into porous structure of zeolites, ordered mesoporous MCM matrices, anodic mesoporous alumina, and porous transition metal oxides are considered. Structure-property relationships are traced for these catalysts in relation to such processes as alkylation and isomerization, olefin metathesis, selective oxidation of olefins, methanol to formaldehyde conversion, etc.

  9. Work function of carburized rhenium

    International Nuclear Information System (INIS)

    Pallmer, P.G. Jr.; Gordon, R.L.; Dresser, M.J.

    1980-01-01

    Variations of the electronic work function of carburized rhenium foils containing approximately 5 at.% carbon have been observed using the contact potential difference technique. Surface work function was observed to vary between 5.25 and 4.1 eV, with the work function of pure rhenium taken as 5.0 eV. Decrease in work function has been ascribed to the formation of graphitic layers on the surface at temperatures below the temperature of saturated solubility. The high work function surface was observed with all carbon in solution and has been ascribed to the presence of amorphous carbon near the surface

  10. Rhenium-osmium geochemistry: method and applications

    International Nuclear Information System (INIS)

    Luck, J.M.

    1982-03-01

    Experimental methods for chemical separation and isotopic analysis of rhenium-osmium are described. Accurate determinations are obtained for a quantity ratio around 10 -6 -10 -7 g. Development as a geochemical tracer is examined. Study of rhenium-osmium in meteorites allows the determination of solar system chronology and age of the galaxy. Rhenium-osmium chronology in meteorites is improved and osmium isotopes are used as petrogenetic and geological tracers. Molybdenites are studied through 187 Re- 187 Os dating [fr

  11. Rhenium radioisotopes for therapeutic radiopharmaceutical development

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Beets, A.L.; Pinkert, J.; Kropp, J.; Lin, W.Y.; Wang, S.Y.

    2001-01-01

    Rhenium-186 and rhenium-188 represent two important radioisotopes which are of interest for a variety of therapeutic applications in oncology, nuclear medicine and interventional cardiology. Rhenium-186 is directly produced in a nuclear reactor and the 90 hour half-life allows distribution to distant sites. The relatively low specific activity of rhenium-186 produced in most reactors, however, permits use of phosphonates, but limits use for labelled peptides and antibodies. Rhenium-188 has a much shorter 16.9 hour half-life which makes distribution from direct reactor production difficult. However, rhenium-188 can be obtained carrier-free from a tungsten-188/rhenium-188 generator, which has a long useful shelf-life of several months which is cost-effective, especially for developing regions. In this paper we discuss the issues associated with the production of rhenium-186- and rhenium-188 and the development and use of various radiopharmaceuticals and devices labelled with these radioisotopes for bone pain palliation, endoradiotherapy of tumours by selective catheterization and tumour therapy using radiolabelled peptides and antibodies, radionuclide synovectomy and the new field of vascular radiation therapy. (author)

  12. Thermal decomposition of rhenium (5) complexes with 1,2,4-triazole

    International Nuclear Information System (INIS)

    Amindzhanov, A.A.; Gagieva, S.Ch.; Kotegov, K.V.

    1991-01-01

    Processes of thermal decomposition of rhenium (5) complexes with 1,2,4-triazole were studied. Thermolysis products were identified on the basis of data of the element analysis, IR spectra, conductometry and other methods. It is ascertained that at the first stage of thermolysis of hydroxyl-containing monomer complexes removal of water molecules occurs, and at the second one - dimerization process with formation of Re-O-Re group. It is shown that the nature of halide ion practically does not affect the temperature of the start of intensive thermal decomposition of the complexes

  13. Thermophysical measurements on solid and liquid rhenium

    International Nuclear Information System (INIS)

    Pottlacher, G.; Jager, H.; Neger, T.

    1986-01-01

    A fast resistive heating technique was used to measure such thermophysical data of solid and liquid rhenium as enthalpy, specific heat, thermal volume expansion, and electrical resistivity. The measurements are performed with heating rates of slightly more than 10 9 K s -1 up to states of superheated liquid rhenium (7500 K)

  14. Electrochemical behaviour of rhenium-graphite electrode

    International Nuclear Information System (INIS)

    Varypaev, V.N.; Krasikov, V.L.

    1980-01-01

    Electrochemical behaviour of combination electrode from graphite with electrodeposited thin coating of electrolytic rhenium is studied. Solution of 0.5 m NaCl+0.04 m AlCl 3 served as an electrolite. Polarization galvanostatic curves of hydrogen evolution upon electrodes with conditional rhenium thickness of 3.5 and 0.35 μm, 35 and 3.5 nm are obtained. Possibility of preparation of rhenium-graphite cathode with extremely low rhenium consume, electro-chemical properties of which are simu-lar to purely rhenium cathode is shown. Such electrode is characterized with stable in time low cathode potential of hydrogen evolution in chloride electrolyte and during cathode polarization it is not affected by corrosion

  15. Directed light fabrication of rhenium components

    Energy Technology Data Exchange (ETDEWEB)

    Milewski, J.O.; Thoma, D.J.; Lewis, G.K.

    1997-02-01

    Directed Light Fabrication (DLF) is a direct metal deposition process that fuses powder, delivered by gas into the focal zone of a high powered laser beam to form fully dense near-net shaped components. This is accomplished in one step without the use of molds, dies, forming, pressing, sintering or forging equipment. DLF is performed in a high purity inert environment free from the contaminants associated with conventional processing such as oxide and carbon pickup, lubricants, binding agents, cooling or cleaning agents. Applications using rhenium have historically been limited in part by its workability and cost. This study demonstrates the ability to fuse rhenium metal powder, using a DLF machine, into free standing rods and describes the associated parameter study. Microstructural comparisons between DLF deposited rhenium and commercial rhenium sheet product is performed. This research combined with existing DLF technology demonstrates the feasibility of forming complex rhenium, metal shapes directly from powder.

  16. Photofragmentation of metal halides

    International Nuclear Information System (INIS)

    Veen, N.J.A. van.

    1980-01-01

    The author deals with photodissociation of molecules of alkali halides. It is shown that the total absorption cross section consists of two contributions arising from transitions to excited states of total electronic angular momentum Ω=0 + and Ω=1. From the inversion of the absorption continua potential energy curves of the excited states can be constructed in the Franck-Condon region. It is found that for all alkali halides the 0 + state is higher in energy than the Ω=1 state. Extensive studies are reported on three thallium halides, TlI, TlBr and TlCl at various wavelengths covering the near ultraviolet region. (Auth.)

  17. Entropy in halide perovskites

    Science.gov (United States)

    Katan, Claudine; Mohite, Aditya D.; Even, Jacky

    2018-05-01

    Claudine Katan, Aditya D. Mohite and Jacky Even discuss the possible impact of various entropy contributions (stochastic structural fluctuations, anharmonicity and lattice softness) on the optoelectronic properties of halide perovskite materials and devices.

  18. Linkable thiocarbamoylbenzamidines as ligands for bioconjugation of Rhenium and Technetium; Kopplungsfaehige Thiocarbamoylbenzamidine als Liganden zur Biokonjugation von Rhenium und Technetium

    Energy Technology Data Exchange (ETDEWEB)

    Castillo Gomez, Juan Daniel

    2015-04-27

    Bioconjugation reactions with Rhenium and Technetium are of high importance for the development of novel radiopharmaceuticals for nuclear medicine. In this thesis the possibilities for bioconjugation using linkable Thiocarmbamoylbenzamidines as ligands for the complexation of Rhenium and Technetium were examined.

  19. Thiocarbonyl complexes of rhenium. Pt. 1

    International Nuclear Information System (INIS)

    Abram, U.

    1993-01-01

    Novel rhenium complexes with terminal thiocarbonyl groups have been synthesized from ReCl 3 (Me 2 PhP) 3 and sodium diethyldithiocarbamate. mer-(Diethyldithiocarbamato)tris-(dimethylphenylphosphine)(thiocarbonyl)rhenium( I), mer-[Re(CS)(Me 2 PhP) 3 (Et 2 dtc)], and tris(diethyldithiocarbamato)(thiocarbonyl)rhenium(III), [Re(CS)(Et 2 dtc) 3 ] have been studied by infrared and NMR spectroscopy, mass spectrometry and X-ray diffraction. mer-[Re(CS)(Me 2 PhP) 3 (Et 2 dtc)] crystallizes orthorhombic in the space group P na 2 1 with a=1516.1(2), b=2189.8(2) and c=1035.6(1) pm. Structure solution and refinement converged at R=0.042. The coordination geometry is a distorted octahedron. The Re-C bond length is found to be 184(2) pm. [Re(CS)(Et 2 dtc) 3 ] crystallizes monoclinic in the space group P2 1 /c with a=962.2(6), b=1744.0(2), c=1537.4(6) pm and β=96.21(1) . The final R value is 0.028. In the monomeric complex the rhenium atom is seven-coordinate with an approximate pentagonal-bipyramidal coordination sphere and a rhenium-carbon distance of 181(1) pm. (orig.)

  20. Accelerator Production and Separations for High Specific Activity Rhenium-186

    Energy Technology Data Exchange (ETDEWEB)

    Jurisson, Silvia S. [Univ. of Missouri, Columbia, MO (United States); Wilbur, D. Scott [Univ. of Washington, Seattle, WA (United States)

    2016-04-01

    Tungsten and osmium targets were evaluated for the production of high specific activity rhenium-186. Rhenium-186 has potential applications in radiotherapy for the treatment of a variety of diseases, including targeting with monoclonal antibodies and peptides. Methods were evaluated using tungsten metal, tungsten dioxide, tungsten disulfide and osmium disulfide. Separation of the rhenium-186 produced and recycling of the enriched tungsten-186 and osmium-189 enriched targets were developed.

  1. Resonant halide perovskite nanoparticles

    Science.gov (United States)

    Tiguntseva, Ekaterina Y.; Ishteev, Arthur R.; Komissarenko, Filipp E.; Zuev, Dmitry A.; Ushakova, Elena V.; Milichko, Valentin A.; Nesterov-Mueller, Alexander; Makarov, Sergey V.; Zakhidov, Anvar A.

    2017-09-01

    The hybrid halide perovskites is a prospective material for fabrication of cost-effective optical devices. Unique perovskites properties are used for solar cells and different photonic applications. Recently, perovskite-based nanophotonics has emerged. Here, we consider perovskite like a high-refractive index dielectric material, which can be considered to be a basis for nanoparticles fabrication with Mie resonances. As a result, we fabricate and study resonant perovskite nanoparticles with different sizes. We reveal, that spherical nanoparticles show enhanced photoluminescence signal. The achieved results lay a cornerstone in the field of novel types of organic-inorganic nanophotonics devices with optical properties improved by Mie resonances.

  2. Thermal decomposition of rhenium (5) complexes with 1,2,4-triazole. Termicheskoe razlozhenie kompleksov reniya (5) s 1,2,4-triazolom

    Energy Technology Data Exchange (ETDEWEB)

    Amindzhanov, A A; Gagieva, S Ch; Kotegov, K V [Tadzhikskij Gosudarstvennyj Univ., Dushanbe (Tajikistan)

    1991-01-01

    Processes of thermal decomposition of rhenium (5) complexes with 1,2,4-triazole were studied. Thermolysis products were identified on the basis of data of the element analysis, IR spectra, conductometry and other methods. It is ascertained that at the first stage of thermolysis of hydroxyl-containing monomer complexes removal of water molecules occurs, and at the second one - dimerization process with formation of Re-O-Re group. It is shown that the nature of halide ion practically does not affect the temperature of the start of intensive thermal decomposition of the complexes.

  3. Thermal conduction and linear expansion of sintered rhenium and tungsten-rhenium alloys at a temperature up to 1000 K

    International Nuclear Information System (INIS)

    Pozdnyak, N.Z.; Belyaev, R.A.; Vavilov, Yu.V.; Vinogradov, Yu.G.; Serykh, G.M.

    1978-01-01

    Preparation technology (by powder metallurgy methods) of sintered rhenium and tungsten-rhenium VR-5, VR-10, and VR-20 alloys is described. Thermal conduction of rhenium and VR-20 alloy has been measured in the temperature range from 300 to 1000 K. The value obtained turned out to be considerably less than those published elsewhere, this testifies to the great thermal contact resistance between the material grains. Also measured is the mean linear expansion coefficient for the mentioned above materials in the same temperature range. Linear expansion increases with rhenium content increase

  4. Rhenium Mechanical Properties and Joining Technology

    Science.gov (United States)

    Reed, Brian D.; Biaglow, James A.

    1996-01-01

    Iridium-coated rhenium (Ir/Re) provides thermal margin for high performance and long life radiation cooled rockets. Two issues that have arisen in the development of flight Ir/Re engines are the sparsity of rhenium (Re) mechanical property data (particularly at high temperatures) required for engineering design, and the inability to directly electron beam weld Re chambers to C103 nozzle skirts. To address these issues, a Re mechanical property database is being established and techniques for creating Re/C103 transition joints are being investigated. This paper discusses the tensile testing results of powder metallurgy Re samples at temperatures from 1370 to 2090 C. Also discussed is the evaluation of Re/C103 transition pieces joined by both, explosive and diffusion bonding. Finally, the evaluation of full size Re transition pieces, joined by inertia welding, as well as explosive and diffusion bonding, is detailed.

  5. Electrodialysis separation of rhenium from silicon

    International Nuclear Information System (INIS)

    Prasolova, O.D.; Borisova, L.V.; Ermakov, A.N.

    1989-01-01

    A method of separation of ruthenium from silicon by electrodialysis with heterogenuos ion-exchange membranes is developed. The effeciency of purification of rhenium from silicon depending on the number of dialyzer chambers, temperature and pH value of the dialyzate is studed. It is found that an addditional fourth chamber between the middle and anolytic ones causes the purification coefficient increase 50 times. It is necessary to cool the dialyzate in order to reduce silicon migration into the anolyte and reverse diffusion of perrhenate-ion from the anolyte into the dialyzate. The optimal pH value of diaizate is 5.5-6. The method developed has been used for separating rhenium from industrial solution of lead production with complex composition

  6. Rhenium carbene complexes and their applications; Rhenium-Carben-Komplexe und ihre Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Hille, Claudia Heidi

    2016-01-25

    New pharmaceutically suitable metal complexes play an important role in the development of diagnostic and therapeutic agents for cancer treatment. One option concerning new radiopharmaceuticals, is the application of the rhenium isotopes {sup 186}Re and {sup 188}Re. Therefore, water soluble but at the same time stable complexes, which can be synthesized straightforward, are required. In this thesis, several synthetic pathways to such rhenium complexes bearing Nheterocyclic carbenes are presented and applicability tests of literature known complexes conducted. The selected target structures based on monocarbenes turned out to be inappropriate for use in radiopharmaceutical applications, due to their long reaction times and purification issues. Additionally, sterical and electronical effects of the carbene ligands concerning complex formation have been investigated. Possibilities of functionalization at different positions on the heterocycle as well as hydrophilic wingtips - to achieve a better stability in an aqueous media - have been examined to gain information about chemical and physical properties of the resulting complexes. Furthermore, experiments regarding the coordination of various biscarbene ligands, which provides besides the stable chelatisation additionally the possibility of varying the linking bridge, to rhenium(I/V) precursors, have been performed. Dioxo-bis-(1,1{sup '}-methylene-bis(3,3{sup '}-diisopropylimidazolium-2-ylidene)) rhenium(V )-hexafluorophosphate was synthesized via a transmetalation reaction of the corresponding silver carbene with ReOCl{sub 3}(PPh{sub 3}){sub 2} and silver hexafluorophosphate. This complex provided the basis for the first radiolabeled {sup 188}Rhenium NHC complex later on. An enhancement of the kinetic and thermodynamic stability of potential rhenium biscarbene complexes based on modifications concerning the length and character of the bridging moiety between the chelating NHC rings as well as the nature of

  7. Separation of Rhenium (VII) from Tungsten (VI)

    International Nuclear Information System (INIS)

    Vucina, J.; Lukic, D.; Stoiljkovic, M.; Milosevic, M.; Orlic, M.

    2004-01-01

    Examined were the conditions for an effective separation of tungsten (VI) and rhenium (VII) on alumina if the solution of 0.20 mol dm -3 NaCl, ph=2.6 is used as the aqueous phase. Under the given experimental conditions alumina was found to be much better adsorbent for tungsten than for rhenium. The breakthrough and saturation capacities of alumina at pH=2 are 24 and 78 mg W/g Al 2 O 3 , respectively. With the increase of pH these values decrease. So, at pH=6 they are only 4 and 13 mg W/g Al 2 O 3 respectively. The elution volume for rhenium for the given column dimensions and quantity of the adsorbent is about 16 ml. These results were confirmed by the experiments of the radiological separations. Tungsten-187 remains firmly bound to the alumina. The radionuclide purity of the eluted 186'188 Re at pH=2 is very high. (authors)

  8. Near net shape of powder metallurgy rhenium parts

    International Nuclear Information System (INIS)

    Leonhardt, T.; Downs, J.

    2001-01-01

    In this paper, a description of the stages of processing necessary to produce a near-net shape (NNS) powder metallurgy (PM) rhenium component through the use of cold isostatic pressing (CIP) to form a complex shape will be explained. This method was primarily developed for the production of the 440 N and 490 N liquid apogee engine combustion chambers used in satellite positioning systems. The CIP to NNS process has been used in the manufacture and production of other rhenium aerospace components as well. Cold isostatic pressing (CIP) to a near net shape utilizing a one or two-part mandrel greatly reduces the quantity of rhenium required to produce the component, and also significantly reduces the number of secondary machining operations necessary to complete the manufacturing process. Further, the developments in near-net shape powder metallurgy rhenium manufacturing techniques have generated significant savings in the area of both time and budget. Overall, cost declined by as much as 35 % for the quantity of rhenium chambers, and manufacturing time was decreased by 30-40 %. The quantity of rhenium metal powder used to produce a rhenium chamber was reduced by approximately 70 %, with a subsequent reduction of nearly 50 % in secondary machining operation schedules. Thus, it is apparent that the overall savings provided by the production of near-net shape powder metallurgy rhenium components will be more than merely another aspect of any project involving high temperature applications, it will constitute significant benefit. (author)

  9. Determination of rhenium in molybdenite by neutron-activation analysis.

    Science.gov (United States)

    Terada, K; Yoshimura, Y; Osaki, S; Kiba, T

    1967-01-01

    A neutron-activation method is described for the determination of rhenium in molybdenite. Radiochemical separation by a carrier technique was carried out very rapidly by means of successive liquid-liquid extraction processes. The recovery of rhenium, which was determined by a spectrophotometric method, was about 93%. About 10 samples could be analysed within 6 hr in parallel runs.

  10. Rhenium: a rare metal critical in modern transportation

    Science.gov (United States)

    John, David A.

    2015-01-01

    Rhenium is a silvery-white, metallic element with an extremely high melting point (3,180 degrees Celsius) and a heat-stable crystalline structure, making it exceptionally resistant to heat and wear. Since the late 1980s, rhenium has been critical for superalloys used in turbine blades and in catalysts used to produce lead-free gasoline.

  11. Crystallochemistry of rhenium compounds with metal-metal bonds

    International Nuclear Information System (INIS)

    Koz'min, P.A.; Surazhskaya, M.D.

    1980-01-01

    A review is presented including a brief description of atomic structure of 59 coordination rhenium compounds with metal-metal bond. The most important bond lengths and valent angles are presented for each compound. The dependence of rhenium-rhenium bond length on its multiplicity is discussed and possible causes of deviations from this dependence (namely, axial ligand presence, steric repulsion of ligands) are considered. On the basis of qualitative comparison of electronegativity of ligands in dimer compounds with quarternary bond of rhenium-rhenium a supposition is made on the influence of formal charge of atomic group and summary electro-negativity of ligands on the possibility of the metal-metal bond formation

  12. Near-Net Shape Powder Metallurgy Rhenium Thruster

    Science.gov (United States)

    Leonhardt, Todd; Hamister, Mark; Carlen, Jan C.; Biaglow, James; Reed, Brian

    2001-01-01

    This paper describes the development of a method to produce a near-net shape (NNS) powder metallurgy (PM) rhenium combustion chamber of the size 445 N (100 lbf) used in a high performance liquid apogee engine. These engines are used in low earth Orbit and geostationary orbit for satellite positioning systems. The developments in near-net shape powder metallurgy rhenium combustion chambers reported in this paper will reduce manufacturing cost of the rhenium chambers by 25 percent, and reduce the manufacturing time by 30 to 40 percent. The quantity of rhenium metal powder used to produce a rhenium chamber is reduced by approximately 70 percent and the subsequent reduction in machining schedule and costs is nearly 50 percent.

  13. Electrodeposition of rhenium-tin nanowires

    International Nuclear Information System (INIS)

    Naor-Pomerantz, Adi; Eliaz, Noam; Gileadi, Eliezer

    2011-01-01

    Highlights: → Rhenium-tin nanowires were formed electrochemically, without using a template. → The nanowires consisted of a crystalline-Sn-core/amorphous-Re-shell structure. → The effects of bath composition and operating conditions were investigated. → A mechanism is suggested for the formation of the core/shell structure. → The nanowires may be attractive for a variety of applications. - Abstract: Rhenium (Re) is a refractory metal which exhibits an extraordinary combination of properties. Thus, nanowires and other nanostructures of Re-alloys may possess unique properties resulting from both Re chemistry and the nanometer scale, and become attractive for a variety of applications, such as in catalysis, photovoltaic cells, and microelectronics. Rhenium-tin coatings, consisting of nanowires with a core/shell structure, were electrodeposited on copper substrates under galvanostatic or potentiostatic conditions. The effects of bath composition and operating conditions were investigated, and the chemistry and structure of the coatings were studied by a variety of analytical tools. A Re-content as high as 77 at.% or a Faradaic efficiency as high as 46% were attained. Ranges of Sn-to-Re in the plating bath, applied current density and applied potential, within which the nanowires could be formed, were determined. A mechanism was suggested, according to which Sn nanowires were first grown on top of Sn micro-particles, and then the Sn nanowires reduced the perrhenate chemically, thus forming a core made of crystalline Sn-rich phase, and a shell made of amorphous Re-rich phase. The absence of mutual solubility of Re and Sn may be the driving force for this phase separation.

  14. Highvalent and organometallic technetium and rhenium compounds

    International Nuclear Information System (INIS)

    Oehlke, Elisabeth

    2010-01-01

    Diagnostic methods in nuclear medicine allow a detailed description of morphological organ structures and their function. The beta emitting isotope Tc-99 has optimal physical properties (140 keV gamma rays, half-life 6 h) and is therefore used for radiopharmaceuticals. The thesis is concerned with the search for new technetium complexes and their reproducible production. The (TcO3) core is of main interest. The second part of the thesis deals with organometallic technetium and rhenium complexes with carbonyl ligands and N-heterocyclic carbenes that show stability in aerobic aqueous solutions.

  15. Making and Breaking of Lead Halide Perovskites

    KAUST Repository

    Manser, Joseph S.; Saidaminov, Makhsud I.; Christians, Jeffrey A.; Bakr, Osman; Kamat, Prashant V.

    2016-01-01

    To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice

  16. First principles calculations of interstitial and lamellar rhenium nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Soto, G., E-mail: gerardo@cnyn.unam.mx [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia, Km 107 Carretera Tijuana-Ensenada, Ensenada Baja California (Mexico); Tiznado, H.; Reyes, A.; Cruz, W. de la [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia, Km 107 Carretera Tijuana-Ensenada, Ensenada Baja California (Mexico)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer The possible structures of rhenium nitride as a function of composition are analyzed. Black-Right-Pointing-Pointer The alloying energy is favorable for rhenium nitride in lamellar arrangements. Black-Right-Pointing-Pointer The structures produced by magnetron sputtering are metastable variations. Black-Right-Pointing-Pointer The structures produced by high-pressure high-temperature are stable configurations. Black-Right-Pointing-Pointer The lamellar structures are a new category of interstitial dissolutions. - Abstract: We report here a systematic first principles study of two classes of variable-composition rhenium nitride: i, interstitial rhenium nitride as a solid solution and ii, rhenium nitride in lamellar structures. The compounds in class i are cubic and hexagonal close-packed rhenium phases, with nitrogen in the octahedral and tetrahedral interstices of the metal, and they are formed without changes to the structure, except for slight distortions of the unit cells. In the compounds in class ii, by contrast, the nitrogen inclusion provokes stacking faults in the parent metal structure. These faults create trigonal-prismatic sites where the nitrogen residence is energetically favored. This second class of compounds produces lamellar structures, where the nitrogen lamellas are inserted among multiple rhenium layers. The Re{sub 3}N and Re{sub 2}N phases produced recently by high-temperature and high-pressure synthesis belong to this class. The ratio of the nitrogen layers to the rhenium layers is given by the composition. While the first principle calculations point to higher stability for the lamellar structures as opposed to the interstitial phases, the experimental evidence presented here demonstrates that the interstitial classes are synthesizable by plasma methods. We conclude that rhenium nitrides possess polymorphism and that the two-dimensional lamellar structures might represent an emerging class of materials

  17. First principles calculations of interstitial and lamellar rhenium nitrides

    International Nuclear Information System (INIS)

    Soto, G.; Tiznado, H.; Reyes, A.; Cruz, W. de la

    2012-01-01

    Highlights: ► The possible structures of rhenium nitride as a function of composition are analyzed. ► The alloying energy is favorable for rhenium nitride in lamellar arrangements. ► The structures produced by magnetron sputtering are metastable variations. ► The structures produced by high-pressure high-temperature are stable configurations. ► The lamellar structures are a new category of interstitial dissolutions. - Abstract: We report here a systematic first principles study of two classes of variable-composition rhenium nitride: i, interstitial rhenium nitride as a solid solution and ii, rhenium nitride in lamellar structures. The compounds in class i are cubic and hexagonal close-packed rhenium phases, with nitrogen in the octahedral and tetrahedral interstices of the metal, and they are formed without changes to the structure, except for slight distortions of the unit cells. In the compounds in class ii, by contrast, the nitrogen inclusion provokes stacking faults in the parent metal structure. These faults create trigonal-prismatic sites where the nitrogen residence is energetically favored. This second class of compounds produces lamellar structures, where the nitrogen lamellas are inserted among multiple rhenium layers. The Re 3 N and Re 2 N phases produced recently by high-temperature and high-pressure synthesis belong to this class. The ratio of the nitrogen layers to the rhenium layers is given by the composition. While the first principle calculations point to higher stability for the lamellar structures as opposed to the interstitial phases, the experimental evidence presented here demonstrates that the interstitial classes are synthesizable by plasma methods. We conclude that rhenium nitrides possess polymorphism and that the two-dimensional lamellar structures might represent an emerging class of materials within binary nitride chemistry.

  18. Method of stably radiolabeling antibodies with technetium and rhenium

    International Nuclear Information System (INIS)

    Paik, C.H.; Reba, R.C.; Eckelman, W.C.

    1987-01-01

    A method is described for labeling antibodies or antibody fragments with radionuclides of technetium or rhenium to obtain stable labeling, comprising: reacting a reduced radioisotope of technetium or rhenium with an antibody or antibody fragment, or a diethylenetriaminepentaacetic acid conjugated antibody or antibody fragment, in the presence of free or carrier-bound diethylenetriaminepentaacetic acid (DTPA). The amount of DTPA is sufficient to substantially completely inhibit binding of the reduced technetium or rhenium to nonstable binding sites of the antibody or antibody fragment, or the DTPA-conjugated antibody or antibody fragment. The resultant stably labeled antibody or antibody fragment, or DTPA[conjugated antibody or antibody fragment is recovered

  19. Separation of tungsten and rhenium on alumina

    Directory of Open Access Journals (Sweden)

    MILOVAN SM. STOILJKOVIC

    2004-09-01

    Full Text Available The conditions for the efficient separation of tungsten(VI and rhenium (VII on alumina were established. The distribution coefficients Kd for tungstate and perrhenate anions, as well as the separation factors a (a = KdWO42-/Kd ReO4- were determined using hydrochloric or nitric acid as the aqueous media. A solution of sodium chloride in the pH range 2–6 was also examined. Under all the tested experimental conditions, alumina is a much better adsorbent for tungsten than for rhenium. The obtained results indicated that the best separation of these two elements is achieved when 0.01– 0.1 mol dm-3 HCl or 1.0 mol dm-3 HNO3 are used as the aqueous media. If NaCl is used as the aqueous phase, the best separation is achieved with 0.20 mol dm-3 NaCl, pH 4–6. Under these experimental conditions, the breakthrough and saturation capacities of alumina for tungsten at pH 4 are 17 and 26 mg W/g Al2O3, respectively. With increasing pH, these values decrease. Thus, at pH 6 they are only 4 and 13 mg W/g Al2O3, respectively.

  20. Development of industrial hydrogenating catalyst on rhenium base

    International Nuclear Information System (INIS)

    Chistyakova, G.A.; Bat', I.I.; Rebrova, V.V.

    1975-01-01

    Processes for forming rhenium catalysts on carbon carrier and their catalytic properties in nitrobenzene (NB) reduction were studied. Application of an ammonia preparation to the carbon surface produced impregnated carbon saturated at room temperature with a water solution of the ammonia preparation, taken in a volume equal to the volumetric capacity of the carbon. With one impregnation, 2% rhenium was taken up. Catalysts containing more than 5% rhenium were obtained by impregnating the carbon with heating and use of more concentrated solutions. Catalysts made in this way and dried at 100 0 C had the composition Re 2 OH/carbon/. The most active catalysts were those reduced at 200-250 0 C; higher temperatures, up to 300-500 0 C, decreased the activity. Study of the catalytic properties of the rhenium catalysts in a liquid phase reduction of NB showed that the specific activity of rhenium depends only slightly on the content of the active component in the catalyst and is close to the specific activity of palladium and considerably exceeds that of nickel. Study of the effect of the NB concentration and hydrogen pressure on the activity and stability of the 5% rhenium catalyst indicated that with NB concentrations from 50 to 10% the process takes place at an essentially constant rate; the order of the reaction was close to zero with an apparent activation energy of about 7000 cal/mole. At pressures of 15-200 atm the yield with the 5% catalyst was proportional to the hydrogen pressure. A big advantage of the rhenium catalysts in the reduction of NB is their high selectivity. With a higher activity than palladium and nickel catalysts, 5% rhenium catalyst produces a high operating capacity in a wide range of contact charges, which has considerable significance for industrial use in contact apparatus of the column type. Comparison of the costs of rhenium catalysts and granular carbon carrier with those of nickel, platinum, and palladium showed that 5% rhenium catalyst can

  1. Neutron activation determination of rhenium in shales shales and molybdenites

    International Nuclear Information System (INIS)

    Zajtsev, E.I.; Radinovich, B.S.

    1977-01-01

    Described is the technique for neutron activation determination of rhenium in shales and molybdenites with its radiochemical extraction separation by methyl-ethyl ketone. The sensitivity of the analysis is 5x10 -7 %. Experimental checking of the developed technique in reference to the analysis of shales and molybdenites was carried out. Estimated is the possibility of application of X-ray gamma-spectrometer to instrumental determination of rhenium in molybdenites

  2. New extraction chromatographic material for rhenium separation

    International Nuclear Information System (INIS)

    Lucanikova, M.; Czech Technical University, Prague; Kucera, J.; Czech Technical University, Prague; Sebesta, F.

    2008-01-01

    Three types of the extraction chromatographic materials, composed from Aliquat R 336 deposited in the polyacrylonitrile (PAN) beads and prepared by different procedures, were compared for extraction of rhenium. The best properties were exhibited when the solid extractant was prepared by impregnation of the ready-made PAN beads. Solid extractant prepared by direct coagulation of the beads from the suspension of Aliquat R 336 in solution of PAN in nitric acid differs only by lower capacity in dynamic conditions. Material prepared from the PAN solution in dimethylsulfoxide was the worst because Aliquat R 336 was washed out from the beads during coagulation of the polymer and the extraction capacity was low. As it is shown, the first two solid extractants are fully comparable with the commercial TEVA Resin. (author)

  3. Determination of rhenium in geologic samples of sandstone-type uranium deposit

    International Nuclear Information System (INIS)

    Li Yanan; Wang Xiuqin; Yin Jinshuang

    1997-01-01

    The thiourea colorimetry method suitable for the determination of samples with rhenium content higher than 5 μg/g is described. The method is characterized by many advantages: stability of analytical results, simplicity and cheapness of reagent, and wide range of analysed samples. The catalytic colorimetry is also applied to determine trace rhenium meeting the demand for comprehensive appraisal of prospecting and exploration, recovery and utilization of rhenium. This method can also be applied to analyse rhenium of other samples

  4. Development of Halide and Oxy-Halides for Isotopic Separations

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Leigh R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Johnson, Aaron T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pfeiffer, Jana [Idaho National Lab. (INL), Idaho Falls, ID (United States); Finck, Martha R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    The goal of this project was to synthesize a volatile form of Np for introduction into mass spectrometers at INL. Volatile solids of the 5f elements are typically those of the halides (e.g. UF6), however fluorine is highly corrosive to the sensitive internal components of the mass separator, and the other volatile halides exist as several different stable isotopes in nature. However, iodide is both mono-isotopic and volatile, and as such presents an avenue for creation of a form of Np suitable for introduction into the mass separator. To accomplish this goal, the technical work in the project sought to establish a novel synthetic route for the conversion NpO2+ (dissolved in nitric acid) to NpI3 and NpI4.

  5. Determination of rhenium in molybdenite by X-ray fluorescence: A combined chemical-spectrometric technique.

    Science.gov (United States)

    Solt, M W; Wahlberg, J S; Myers, A T

    1969-01-01

    Rhenium in molybdenite is separated from molybdenum by distillation of rhenium heptoxide from a perchloric-sulphuric acid mixture. It is concentrated by precipitation of the sulphide and then determined by X-ray fluorescence. From 3 to 1000 microg of rhenium can be measured with a precision generally within 2%. The procedure tolerates larger amounts of molybdenum than the usual colorimetric methods.

  6. Determination of rhenium in molybdenite by X-ray fluorescence. A combined chemical-spectrometric technique

    Science.gov (United States)

    Solt, M.W.; Wahlberg, J.S.; Myers, A.T.

    1969-01-01

    Rhenium in molybdenite is separated from molybdenum by distillation of rhenium heptoxide from a perchloric-sulphuric acid mixture. It is concentrated by precipitation of the sulphide and then determined by X-ray fluorescence. From 3 to 1000 ??g of rhenium can be measured with a precision generally within 2%. The procedure tolerates larger amounts of molybdenum than the usual colorimetric methods. ?? 1969.

  7. TRANSURANIC METAL HALIDES AND A PROCESS FOR THE PRODUCTION THEREOF

    Science.gov (United States)

    Fried, S.

    1951-03-20

    Halides of transuranic elements are prepared by contacting with aluminum and a halogen, or with an aluminum halide, a transuranic metal oxide, oxyhalide, halide, or mixture thereof at an elevated temperature.

  8. Concentration of rhenium from dilute sodium chloride solutions

    Directory of Open Access Journals (Sweden)

    DRAGOLJUB M. LUKIC

    2008-03-01

    Full Text Available The conditions for the desorption of rhenium from the anion exchange resin Dowex 1-x8 by HNO3, HCl, H2SO4 and NaOH were determined. The solution (5.0´10-3 mol dm-3 Re in 0.15 mol dm-3 NaCl was passed through a column containing 0.10 g of the resin. The total sorbed amount of rhenium was 0.20 g/g of the resin. It was then eluted by the corresponding eluent in the concentration range up to about 3.0 mol dm-3. The highest elution efficiency and the most favourable elution profile were found with 3.0 mol dm-3 HNO3. Over 77 % of the sorbed rhenium was found in the first 5 ml of the eluate. Practically all the rhenium was recovered with 20 ml of the acid. Under the given experimental conditions, HCl and H2SO4 were less favourable while NaOH was not applicable, due to very low efficiency of rhenium elution.

  9. A comparative study of electrochemical and optical properties of rhenium deposited on gold and platinum

    Energy Technology Data Exchange (ETDEWEB)

    Zerbino, Jorge O.; Castro Luna, Ana M.; Martins, M. E. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina). Inst. de Investigaciones Fisico-Quimicas, Teoricas y Aplicadas (INIFTA)]. E-mail: mmartins@inifta.unlp.edu.ar; Zinola, Carlos F.; Mendez, Eduardo [Universidad de la Republica, Montevideo (Uruguay). Facultad de Ciencias. Lab. de Electroquimica Fundamental

    2002-08-01

    Rhenium-containing films were grown on gold and platinum after different potentiostatic and potentiodynamic polarizations in the - 0.20 V to 0.70 V range (vs rhe) in aqueous acid perrhenate. Experimental data were obtained using cyclic voltammetry and ellipsometry, from which the thickness and optical indices of the electrodeposited rhenium layer were calculated. Metallic rhenium deposition on gold takes place at potentials within the hydrogen evolution reaction. Rhenium oxide on platinum is formed in the hydrogen adatom potential domain, whereas metallic rhenium is deposited concurrently with the hydrogen adsorption and evolution reactions on the same metal. (author)

  10. A comparative study of electrochemical and optical properties of rhenium deposited on gold and platinum

    Directory of Open Access Journals (Sweden)

    Zerbino Jorge O.

    2002-01-01

    Full Text Available Rhenium-containing films were grown on gold and platinum after different potentiostatic and potentiodynamic polarizations in the - 0.20 V to 0.70 V range (vs rhe in aqueous acid perrhenate. Experimental data were obtained using cyclic voltammetry and ellipsometry, from which the thickness and optical indices of the electrodeposited rhenium layer were calculated. Metallic rhenium deposition on gold takes place at potentials within the hydrogen evolution reaction. Rhenium oxide on platinum is formed in the hydrogen adatom potential domain, whereas metallic rhenium is deposited concurrently with the hydrogen adsorption and evolution reactions on the same metal.

  11. Monoclonal Antibodies Radiolabeling with Rhenium-188 for Radioimmunotherapy

    Science.gov (United States)

    Martini, Petra; Pasquali, Micol

    2017-01-01

    Rhenium-188, obtained from an alumina-based tungsten-188/rhenium-188 generator, is actually considered a useful candidate for labeling biomolecules such as antibodies, antibody fragments, peptides, and DNAs for radiotherapy. There is a widespread interest in the availability of labeling procedures that allow obtaining 188Re-labeled radiopharmaceuticals for various therapeutic applications, in particular for the rhenium attachment to tumor-specific monoclonal antibodies (Mo)Abs for immunotherapy. Different approaches have been developed in order to obtain 188Re-radioimmunoconjugates in high radiochemical purity starting from the generator eluted [188Re]ReO4−. The aim of this paper is to provide a short overview on 188Re-labeled (Mo)Abs, focusing in particular on the radiolabeling methods, quality control of radioimmunoconjugates, and their in vitro stability for radioimmunotherapy (RIT), with particular reference to the most important contributions published in literature in this topic. PMID:28951872

  12. Chalcogenhalide cluster rhenium- and molybdenum complexes

    International Nuclear Information System (INIS)

    Fedin, V.P.; Gubin, S.P.; Mishchenko, A.V.; Fedorov, V.E.

    1984-01-01

    The interaction of rhenium- and molybdenum chalcogenhalides with n-donor ligands (L) is studied. At heating Re 3 X 2 Hal 5 complexes up to 100 deg in DMSO in the L presence obtained are the complexes of the 1-6 composition Re 3 X 2 Hal 5 -x Lx DMSO (X=Se, Hal=Cl, L=Et 3 N(1); X=Se, Hal=Cl, L=Bipy(2); X=Se, Hal=Br, L=Et 3 N(3); X=Se, Hal=Br, L=Bipy(4); X=Te, Hal=Br, L=Et 3 N(5); X=Te, Hal=Br, L=(Me 2 NCH 2 ) 2 (6). In the course of boiling of Mo 3 S 7 Hal 4 with PPh 3 in MeCN the Mo 3 S 7 Hal 4 2PPh 3 complexes (Hal=Cl(7); Br(8)) are obtained. For 1 through 8 complexes the chemical analysis data and IR spectra are given. For 4 and 8 complexes the molecular mass is measured. A possible method of obtaining molecular trinuclear clusters from polymer clusters is discussed

  13. Rhenium-186 direct labelling HIgG

    International Nuclear Information System (INIS)

    Lungu, V.; Mihailescu, G.; Dumitrescu, G.

    2001-01-01

    The aim of this study is to develop and improve existing radiolabelling techniques of peptides and monoclonal antibodies with 186 Re for achievement of potential agents for cancer targeted radiotherapy. There were selected methods and techniques for the direct labelling of intact HIgG by studding chemical and radiochemical processes of -S-S- bridges prereduction, reduction of 186 ReO 4 - and coupling reaction of rhenium with HIgG. The -S-S- bridges prereduction of HIgG to sulfhydryls was effected using different reducing agents: ascorbic acid, 2,3 dimercaptopropanol, cysteine, active hydrogen. The prereduction reactions are controlled by masic ratios of HIgG/reduction agent, pH, temperature and time of incubation. A pH=4.5 and a 24 hours incubation time are in the advantage of the prereduction yield. The labelling with 186 Re of prereduced HIgG with ascorbic acid or active hydrogen and 37 deg. C incubation in 22 hours releases 92% radiochemical purity. (author)

  14. Epitaxial growth of rhenium with sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seongshik [National Institute of Standards and Technology, Boulder, CO 80305 (United States) and Department of Physics, University of Illinois, Urbana, IL 61801 (United States)]. E-mail: soh@boulder.nist.gov; Hite, Dustin A. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Cicak, K. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Osborn, Kevin D. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Simmonds, Raymond W. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); McDermott, Robert [University of California, Santa Barbara, CA 93106 (United States); Cooper, Ken B. [University of California, Santa Barbara, CA 93106 (United States); Steffen, Matthias [University of California, Santa Barbara, CA 93106 (United States); Martinis, John M. [University of California, Santa Barbara, CA 93106 (United States); Pappas, David P. [National Institute of Standards and Technology, Boulder, CO 80305 (United States)

    2006-02-21

    We have grown epitaxial Rhenium (Re) (0001) films on {alpha}-Al{sub 2}O{sub 3} (0001) substrates using sputter deposition in an ultra high vacuum system. We find that better epitaxy is achieved with DC rather than with RF sputtering. With DC sputtering, epitaxy is obtained with the substrate temperatures above 700 deg. C and deposition rates below 0.1 nm/s. The epitaxial Re films are typically composed of terraced hexagonal islands with screw dislocations, and island size gets larger with high temperature post-deposition annealing. The growth starts in a three dimensional mode but transforms into two dimensional mode as the film gets thicker. With a thin ({approx}2 nm) seed layer deposited at room temperature and annealed at a high temperature, the initial three dimensional growth can be suppressed. This results in larger islands when a thick film is grown at 850 deg. C on the seed layer. We also find that when a room temperature deposited Re film is annealed to higher temperatures, epitaxial features start to show up above {approx}600 deg. C, but the film tends to be disordered.

  15. Superhard Rhenium/Tungsten Diboride Solid Solutions.

    Science.gov (United States)

    Lech, Andrew T; Turner, Christopher L; Lei, Jialin; Mohammadi, Reza; Tolbert, Sarah H; Kaner, Richard B

    2016-11-02

    Rhenium diboride (ReB 2 ), containing corrugated layers of covalently bonded boron, is a superhard metallic compound with a microhardness reaching as high as 40.5 GPa (under an applied load of 0.49 N). Tungsten diboride (WB 2 ), which takes a structural hybrid between that of ReB 2 and AlB 2 , where half of the boron layers are planar (as in AlB 2 ) and half are corrugated (as in ReB 2 ), has been shown not to be superhard. Here, we demonstrate that the ReB 2 -type structure can be maintained for solid solutions of tungsten in ReB 2 with tungsten content up to a surprisingly large limit of nearly 50 atom %. The lattice parameters for the solid solutions linearly increase along both the a- and c-axes with increasing tungsten content, as evaluated by powder X-ray and neutron diffraction. From micro- and nanoindentation hardness testing, all of the compositions within the range of 0-48 atom % W are superhard, and the bulk modulus of the 48 atom % solid solution is nearly identical to that of pure ReB 2 . These results further indicate that ReB 2 -structured compounds are superhard, as has been predicted from first-principles calculations, and may warrant further studies into additional solid solutions or ternary compounds taking this structure type.

  16. Mechanistic Study of Oxygen Atom Transfer Catalyzed by Rhenium Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Xiaopeng [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    Two ionic and one neutral methyl(oxo)rhenium(V) compounds were synthesized and structurally characterized. They were compared in reactivity towards the ligands triphenylphosphane, pyridines, pyridine N-oxides. Assistance from Broensted bases was found on ligand displacement of ionic rhenium compounds as well as nucleophile assistance on oxidation of all compounds. From the kinetic data, crystal structures, and an analysis of the intermediates, a structural formula of PicH+3- and mechanisms of ligand displacement and oxidation were proposed.

  17. Effect of Temperature and Mole Ratio on the Synthesis Yield of Rhenium-Tetrofosmin

    Directory of Open Access Journals (Sweden)

    Widyastuti

    2015-08-01

    Full Text Available Technetium-99m (99mTc tetrofosmin is widely used in nuclear medicine as a diagnostic agent for myocardial perfusion and as a tumor imaging agent. As a parenteral preparation it requires an evaluation of its pharmacokinetics and stability in-vivo. Since 99mTc has a short half-life and is only available in very low concentrations, it is impossible to characterize its chemical properties and presence in the body. Due to this reason, only technetium-99 (T1/2 = 5 × 105 years, which is available in macro quantities, or natural rhenium can be used for this purpose. In this study rhenium-188 (188Re tetrofosmin will be synthesized and applied, because non-radioactive Re can be easily obtained. Synthesis and radiochemical purity analysis of carrier-added 188Re-tetrofosmin were carried out as a model to study the in-vivo stability of technetium-99m tetrofosmin. Rhenium-188 was used as a tracer to identify the formation of rhenium tetrofosmin. Rhenium gluconate was synthesized first prior to the formation of rhenium tetrofosmin. The quality of labeling for both rhenium gluconate and rhenium tetrofosmin was analyzed using paper- and thin-layer chromatography, respectively. Rhenium gluconate can be synthesized with high labeling yield within 1 hour, whereas rhenium tetrofosmin was synthesized both in room temperature and in an elevated temperature with various tetrofosmin-to-rhenium mole ratios.The results showed that heating at 95oC led to a higher yield of more than 90% within 30 minutes. Rhenium tetrofosmin could be produced in high radiochemical purity using an excess of tetrofosmin with mole ratio of 2000. It is concluded that rhenium tetrofosmin could be synthesized through the formation of rhenium gluconate, and a higher yield could be obtained in a shorter time by heating process.

  18. Electrocatalysis of the hydrogen evolution reaction by rhenium oxides electrodeposited by pulsed-current

    International Nuclear Information System (INIS)

    Vargas-Uscategui, Alejandro; Mosquera, Edgar; Chornik, Boris; Cifuentes, Luis

    2015-01-01

    Highlights: • Rhenium oxides were produced by means of pulsed current electrodeposition over ITO. • The electrocatalytic behavior of rhenium oxides electrodeposited over ITO was studied. • Electrodeposited rhenium oxides showed electrocatalytic behavior increasing the rate of the hydrogen evolution reaction. • The electrocatalysis behavior was explained considering the relative abundance of Re species on the surface of the electrodeposited material. - Abstract: Rhenium oxides are materials of interest for applications in the catalysis of reactions such as those occurring in fuel cells and photoelectrochemical cells. This research work was devoted to the production of rhenium oxide by means of pulsed current electrodeposition for the electrocatalysis of the hydrogen evolution reaction (HER). Rhenium oxides were electrodeposited over a transparent conductive oxide substrate (Indium Tin-doped Oxide – ITO) in an alkaline aqueous electrolyte. The electrodeposition process allowed the production of rhenium oxides islands (200–600 nm) with the presence of three oxidized rhenium species: Re"I"V associated to ReO_2, Re"V"I associated to ReO_3 and Re"V"I"I associated to H(ReO_4)H_2O. Electrodeposited rhenium oxides showed electrocatalytic behavior over the HER and an increase of one order of magnitude of the exchange current density was observed compared to the reaction taking place on the bare substrate. The electrocatalytic behavior varied with the morphology and relative abundance of oxidized rhenium species in the electrodeposits. Finally, two mechanisms of electrocatalysis were proposed to explain experimental results.

  19. Extraction of rhenium(VII) by phosphorylated podands

    International Nuclear Information System (INIS)

    Turanov, A.N.; Karandashev, V.K.; Baulin, V.E.

    2006-01-01

    Interphase distribution of ReO 4 - between aqueous solutions of H 2 SO 4 and solutions of phosphoryl-containing podands in organic solvents is studied. Stoichiometry of the complexes extracted is determined. Effect of extractant structure and nature of organic solvent on efficiency of rhenium extraction into organic phase is determined [ru

  20. Structure of polyvalent metal halide melts

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1990-12-01

    A short review is given of recent progress in determining and understanding the structure of molten halide salts involving polyvalent metal ions. It covers the following three main topics: (i) melting mechanisms and types of liquid structure for pure polyvalent-metal chlorides; (ii) geometry and stability of local coordination for polyvalent metal ions in molten mixtures of their halides with alkali halides; and (iii) structure breaking and electron localization on addition of metal to the melt. (author). 28 refs, 3 figs, 1 tab

  1. Rhenium 188 labelling of peptide conjugates

    International Nuclear Information System (INIS)

    Melendez-Alafort, Laura

    2001-01-01

    Many human tumours express high levels, of somatostatin receptors. In order to make possible a radiotherapeutic treatment of this kind for tumour a series of somatostatin analogues that can tightly chelate beta emitting isotopes have been developed in recent years. The work carried out for this thesis has been aimed towards development of a new therapeutic radiopharmaceutical for treatment of somatostatin receptor positive tumours. The first chapters describe work with technetium-99m to establish the labelling and analytical conditions for a somatostatin analogue, [Tyr 3 ]-octreotide (TOC), as a precursor to undertaking labelling studies with the beta emitter rhenium-188. 6-Hydrazinopyridine-3-carboxylic acid (HYNIC) was conjugated to TOC and labelled with 99m using different coligands. Then the stability, receptor binding and biodistribution of each complex were assessed. 99m Tc-HYNIC-TOC using EDDA as coligand showed the best characteristics, and was superior for tumour imaging in humans than the commercially available 111 In-DTPA-octreotide. The conditions for labelling the HYNIC-TOC conjugate with 188 Re were then optimised using tricine as a co-ligand. A labelling yield of ∼80% was achieved. After purification however, the stability of the complex was low. The use of other coligand systems which had proved useful for 99m Tc labelling was explored, but yields were very poor. Other chelators such as diethylenetriamine pentaacetic acid (DTPA), dimercaptosuccinic acid (DMSA) and mercaptoacetyltriglycine (MAG 3 ) were studied as potential co-ligand agents to label the HYNIC-TOC conjugate with 188 Re but, again low yields of the labelled peptide complexes were achieved. A novel 188 Re-HYNIC complex was prepared in high yields using N-N-disubstituted dithiocarbamates as coligands. However to date, the specific activities achieved with this system are relatively low. The use of the [ 99m Tc(CO) 3 (H 2 O) 3 ] complex to label the HYNIC-TOC conjugate was investigated

  2. The kinetics of anodic dissolution of rhenium in aqueous electrolyte solutions

    International Nuclear Information System (INIS)

    Atanasyants, A.G.; Kornienko, V.A.

    1986-01-01

    The kinetics of anodic rhenium dissolution was investigated by means of potentiodynamic and potentiostatic polarization curves recorded at temperature from 293 to 333 K in different media (NaOH, KOH, NaCl, NaBr, HCl, H 2 SO 4 ) using the rotating disc technique. It is shown that the kinetics of anodic rhenium dissolution and effective activation energy depend not only on the composition and pH value of the solutions but also on the structure of the dissolving rhenium surface. The investigation of the anodic behaviour of the rhenium monocrystal revealed the existence of anisotropy of the monocrystal electrochemical properties. The experimental results point to an important role of adsorption processes in anodic rhenium dissolution. Rhenium dissolution proceeds with formation of intermediate surface adsorption complexes between the metal and the components of the solution

  3. Fullerenes doped with metal halides

    International Nuclear Information System (INIS)

    Martin, T.P.; Heinebrodt, M.; Naeher, U.; Goehlich, H.; Lange, T.; Schaber, H.

    1993-01-01

    The cage-like structure of fullerenes is a challenge to every experimental to put something inside - to dope the fullerenes. In fact, the research team that first identified C 60 as a football-like molecule quickly succeeded in trapping metal atoms inside and in shrinking the cage around this atom by photofragmentation. In this paper we report the results of ''shrink-wrapping'' the fullerenes around metal halide molecules. Of special interest is the critical size (the minimum number of carbon atoms) that can still enclose the dopant. A rough model for the space available inside a carbon cage gives good agreement with the measured shrinking limits. (author). 8 refs, 6 figs

  4. Determination of rhenium in ores of complex composition by the kinetic method

    Energy Technology Data Exchange (ETDEWEB)

    Pavlova, L G; Gurkina, T V [Kazakhskij Gosudarstvennyj Univ., Alma-Ata (USSR); Tsentral' naya Lab. Yuzhno-Kazakhstanskogo Geologicheskogo Upravleniya, Alma-Ata (USSR))

    1979-09-01

    The kinetic rhenium determination method is proposed based on rhenium catalytic effect in the reaction of malachite green with thiourea. The accompanying elements, excluding molybdenum, do not interfere with the rhenium determination at their concentration of up to 0.1 M. The interfering influence of molybdenum can be eliminated by addition of tartaric acid to the solution up to the concentration of 0.1 M. This enables to determine rhenium in presence of 1000-fold quantity of molybdenum. The method is applicable for the analysis of complex copper-zinc sulphide ores.

  5. Treatment of liver cancer with Rhenium-188 Lipiodol: Colombian experience

    International Nuclear Information System (INIS)

    Bernal, P.; Osorio, M.; Mendoza, M.; Esguerra, R.; Ucros, G.; Gutierrez, C.; Velez, O.; Cerquera, A.M.; Padhy, A.K.

    2002-01-01

    Aim:Trans-arterial Radio-conjugate therapy plays an important role in the palliative treatment of inoperable liver cancer. It also helps in reduction of the tumor to an operable state from an inoperable one. As a part of an IAEA sponsored coordinated research project, a new radiopharmaceutical, Rhenium-188 Lipiodol has been developed. The aim of this study was to establish the safety of the radiopharmaceutical and to find out the efficacy of treatment. Materials and Methods: Eight patients suffering from various forms of liver cancer (Hepatocellular carcinoma-4, Metastases from carcinoma of colon-3 and Carcinoid- 1) were treated with Rhenium -188 Lipiodol. Seven out of the eight patients were classified as ECOG- 1 and one as ECOG- 3. Labelling of Rhenium-188 with Lipiodol was carried out according to a protocol developed under the CRP and standardized in our service. Rhenium-188 Lipiodol was administered through the trans-arterial route by either selective (75%) or ultra selective (25%) hepatic arteriography. Administered therapeutic doses ranged between 170 MBq and 4181 MBq. Dosimetric evaluations were made using the IAEA developed dosimetry spreadsheet. All patients were followed up (1-5 months, average = 2 months) after treatment by clinical examination, liver function tests, haematological examinations and CT scans of liver to determine the size of hepatic tumor. Results: Rhenium-188 Lipiodol treatment was well tolerated by all patients. No immediate systemic complications were noted in any of the patients within 72 hrs. following therapy. Only two patients had mild rise in temperature in the immediate post-therapy period, which subsided subsequently. One patient who was classified as Child B and ECOG 3, developed encephalopathy on the seventh day after treatment. He died of hepatic failure. Another one present depressive syndrome, didn't accept food and died Follow-up CT scans in all the surviving (6/8) patients revealed significant reduction of the tumours

  6. Methods for producing single crystal mixed halide perovskites

    Science.gov (United States)

    Zhu, Kai; Zhao, Yixin

    2017-07-11

    An aspect of the present invention is a method that includes contacting a metal halide and a first alkylammonium halide in a solvent to form a solution and maintaining the solution at a first temperature, resulting in the formation of at least one alkylammonium halide perovskite crystal, where the metal halide includes a first halogen and a metal, the first alkylammonium halide includes the first halogen, the at least one alkylammonium halide perovskite crystal includes the metal and the first halogen, and the first temperature is above about 21.degree. C.

  7. THERMIONIC EMISSION ENHANCEMENT FROM CESIUM COATED RHENIUM IN ELECTRIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    de Steese, J. G.; Zollweg, R. J.

    1963-04-15

    The plasma-anode technique was used to observe anomalously high thermionic emission from a rhenium surface with small cesium coverage, where the work function of the composite surface is greater than the ionization potential of cesium. Data suggest that emission enhancement is caused by increased cesium coverage because of cesiumion trapping near the emitter surface under the influence of an ion-rich sheath. (auth)

  8. Molecular Engineering of Technetium and Rhenium Based Radiopharmaceuticals

    International Nuclear Information System (INIS)

    Zubieta, J.

    2003-01-01

    The research was based on the observation that despite the extraordinarily rich coordination chemistry of technetium and rhenium and several notable successes in reagent design, the extensive investigations by numerous research groups on a variety of N 2 S 2 and N 3 S donor type ligands and on HYNIC have revealed that the chemistries of these ligands with Tc and Re are rather complex, giving rise to considerable difficulties in the development of reliable procedures for the development of radiopharmaceutical reagents

  9. Manufacture and properties of molybdenum-rhenium alloys

    International Nuclear Information System (INIS)

    Fischer, B.; Freund, D.

    2001-01-01

    It is necessary to measure strength and creep behavior to guarantee the safe and reliable usage of refractory alloys at extremely high temperatures. In the literature there is very little information available about the properties of Mo-Re alloys at temperatures higher than 1000 C. A special test facility has been designed and built for stress-rupture testing at very high temperatures (up to 3000 C) of refractory metals and alloys in inert atmospheres. - The stress-rupture strength as well as the creep behavior of molybdenum-rhenium alloys with rhenium contents between 41 and 51 wt.% have been determined at temperatures ranging from 1200 to 2000 C, and rupture times of up to 10 hours using this facility. Previous measurements of stress-rupture strength and creep behavior of pure rhenium have been compared with the measurement results of Mo-Re alloys. - The discussion of the values measured is based on metallographic test results and scanning electron microscopy (SEM) images of Mo-Re alloy samples after stress-rupture testing. (orig.) [de

  10. Thermochromic halide perovskite solar cells

    Science.gov (United States)

    Lin, Jia; Lai, Minliang; Dou, Letian; Kley, Christopher S.; Chen, Hong; Peng, Fei; Sun, Junliang; Lu, Dylan; Hawks, Steven A.; Xie, Chenlu; Cui, Fan; Alivisatos, A. Paul; Limmer, David T.; Yang, Peidong

    2018-03-01

    Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.

  11. Thermochromic halide perovskite solar cells.

    Science.gov (United States)

    Lin, Jia; Lai, Minliang; Dou, Letian; Kley, Christopher S; Chen, Hong; Peng, Fei; Sun, Junliang; Lu, Dylan; Hawks, Steven A; Xie, Chenlu; Cui, Fan; Alivisatos, A Paul; Limmer, David T; Yang, Peidong

    2018-03-01

    Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.

  12. Effect of rhenium addition on tungsten fuzz formation in helium plasmas

    NARCIS (Netherlands)

    Khan, A.; De Temmerman, G.; Morgan, T. W.; M. B. Ward,

    2016-01-01

    The effect of the addition of rhenium to tungsten on the formation of a nanostructure referred to as ‘fuzz’ when exposed to helium plasmas at fusion relevant ion fluxes was investigated in the Magnum and Pilot PSI devices at the FOM Institute DIFFER. The effect rhenium had on fuzz growth was seen to

  13. Synthesis and study of rhenium (5) complexes with benzimidazole and rubeanic acid

    International Nuclear Information System (INIS)

    Basitova, S.M.; Yurina, R.D.; Kotegov, K.V.; Amindzhanov, A.A.

    1986-01-01

    Mixed rhenium (5) oxohalide complex compounds with benzimidazole and rubeanic acid are synthesized. Composition of the compounds obtained is established by IR spectroscpy thermal and chemical analyses. It is shown that rhenium (5) chloride compound stability to pyrolysis is rather lower than that of the corresponding bromide derivatives

  14. Synthesis and study of rhenium (5) complexes with benzimidazole and rubeanic acid

    Energy Technology Data Exchange (ETDEWEB)

    Basitova, S M; Yurina, R D; Kotegov, K V; Amindzhanov, A A

    1986-01-01

    Mixed rhenium (5) oxohalide complex compounds with benzimidazole and rubeanic acid are synthesized. Composition of the compounds obtained is established by IR spectroscpy thermal and chemical analyses. It is shown that rhenium (5) chloride compound stability to pyrolysis is rather lower than that of the corresponding bromide derivatives.

  15. Effect of rhenium addition on tungsten fuzz formation in helium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Aneeqa, E-mail: aneeqa.khan-3@postgrad.manchester.ac.uk [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL (United Kingdom); De Temmerman, Gregory [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046 - 13067 St Paul Lez Durance Cedex (France); Morgan, Thomas W. [FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research, Partner in the Trilateral Euregio Cluster, Eindhoven (Netherlands); Ward, Michael B. [Institute for Materials Research, School of Chemical Process Engineering, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2016-06-15

    The effect of the addition of rhenium to tungsten on the formation of a nanostructure referred to as ‘fuzz’ when exposed to helium plasmas at fusion relevant ion fluxes was investigated in the Magnum and Pilot PSI devices at the FOM Institute DIFFER. The effect rhenium had on fuzz growth was seen to be dependent on time, temperature and flux. Initial fuzz growth was seen to be highly dependent on grain orientation, with rhenium having little effect. Once the fuzz was fully developed, the effect of grain orientation disappeared and the rhenium had an inhibiting effect on growth. This could be beneficial for inhibiting fuzz growth in a future fusion reactor, where transmutation of tungsten to rhenium is expected. It also appears that erosion or annealing of the fuzz is limiting growth of fuzz at higher temperatures in the range of ∼1340 °C.

  16. Effect of rhenium addition on tungsten fuzz formation in helium plasmas

    International Nuclear Information System (INIS)

    Khan, Aneeqa; De Temmerman, Gregory; Morgan, Thomas W.; Ward, Michael B.

    2016-01-01

    The effect of the addition of rhenium to tungsten on the formation of a nanostructure referred to as ‘fuzz’ when exposed to helium plasmas at fusion relevant ion fluxes was investigated in the Magnum and Pilot PSI devices at the FOM Institute DIFFER. The effect rhenium had on fuzz growth was seen to be dependent on time, temperature and flux. Initial fuzz growth was seen to be highly dependent on grain orientation, with rhenium having little effect. Once the fuzz was fully developed, the effect of grain orientation disappeared and the rhenium had an inhibiting effect on growth. This could be beneficial for inhibiting fuzz growth in a future fusion reactor, where transmutation of tungsten to rhenium is expected. It also appears that erosion or annealing of the fuzz is limiting growth of fuzz at higher temperatures in the range of ∼1340 °C.

  17. Halide-Dependent Electronic Structure of Organolead Perovskite Materials

    KAUST Repository

    Buin, Andrei; Comin, Riccardo; Xu, Jixian; Ip, Alexander H.; Sargent, Edward H.

    2015-01-01

    -based perovskites, in line with recent experimental data. As a result, the optimal growth conditions are also different for the distinct halide perovskites: growth should be halide-rich for Br and Cl, and halide-poor for I-based perovskites. We discuss stability

  18. Computational screening of mixed metal halide ammines

    DEFF Research Database (Denmark)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich

    2013-01-01

    Metal halide ammines, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, can reversibly store ammonia, with high volumetric hydrogen storage capacities. The storage in the halide ammines is very safe, and the salts are therefore highly relevant as a carbon-free energy carrier in future transportation infrastructure...... selection. The GA is evolving from an initial (random) population and selecting those with highest fitness, a function based on e.g. stability, release temperature and storage capacity. The search space includes all alkaline, alkaline earth, 3d and 4d metals and the four lightest halides. In total...... the search spaces consists of millions combinations, which makes a GA ideal, to reduce the number of necessary calculations. We are screening for a one step release from either a hexa or octa ammine, and we have found promising candidates, which will be further investigated ? both computationally...

  19. Muonium centers in the alkali halides

    International Nuclear Information System (INIS)

    Baumeler, H.; Kiefl, R.F.; Keller, H.; Kuendig, W.; Odermatt, W.; Patterson, B.D.; Schneider, J.W.; Savic, I.M.

    1986-01-01

    Muonium centers (Mu) in single crystals and powdered alkali halides have been studied using the high-timing-resolution transverse field μSR technique. Mu has been observed and its hyperfine parameter (HF) determined in every alkali halide. For the rocksalt alkali halides, the HF parameter A μ shows a systematic dependence on the host lattice constant. A comparison of the Mu HF parameter with hydrogen ESR data suggests that the Mu center is the muonic analogue of the interstitial hydrogen H i 0 -center. The rate of Mu diffusion can be deduced from the motional narrowing of the nuclear hyperfine interaction. KBr shows two different Mu states, a low-temperature Mu I -state and a high-temperature Mu II -state. (orig.)

  20. Synthesis and physicochemical characterization of rhenium (V) complexes with bisbenzoylthiosemicarbazones

    International Nuclear Information System (INIS)

    Gagieva, S.Ch.; Gutnova, N.A.; Tsaloev, A.T.; Khubulov, A.B.; Arutyunyants, A.A.; Galimov, Yu.B.

    2003-01-01

    Rhenium (V) complexing with mono- and bis-benzoylthiosemicarbazones is studied in dependence on hydrohalic acids concentration changes. It is determined that in media with high concentration of hydrohalic acids (6 mol/l HCl, 7 mol/l HBr) in dependence on reaction conditions stable complexes with bi- and tridentate coordination of thiosemicarbazone are formed. In the case of hydrohalic acid concentration decreasing stable binuclear and oxohydroxycomplexes are formed. Composition and structure of the compounds obtained are determined by the methods of element analysis, IR spectroscopy, conductometry. Thermal investigations of the compounds obtained are done [ru

  1. Cermets based on rhenium and rare earth element oxides

    International Nuclear Information System (INIS)

    Varfolomeev, M.B.; Velichko, A.V.; Zajtseva, L.L.; Shishkov, N.V.

    1977-01-01

    The reduction of perrhenates of rare earth elements and of yttrium by hydrogen and the subsequent sintering have yielded cermets based on rhenium and rare earth element oxides inherent in which are more disperse and homogeneous structures than those of the ''molecular'' rare earth element-Tc cermets. The dispersity of cermets increases in the rare earth elements series from La to Lu. The microhardness of the Re phase in cermets is 490 kgf/mm 2 ; the total microhardness of a cermet is substantially higher

  2. Liquid kit for preparation of {sup 188}rhenium-etidronate

    Energy Technology Data Exchange (ETDEWEB)

    Marczewski, Barbara; Dias, Carla Roberta; Moraes, Vanessa; Osso Junior, Joao Alberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), SP (Brazil). Centro de Radiofarmacia]. E-mail: baszot@gmail.com

    2005-10-15

    The aim of this study was the preparation of a liquid kit for radiolabeling of {sup 188} Re-HEDP (hydroxyethylidene diphosphonate). {sup 188} Re was obtained from alumina based {sup 188} W/{sup 188} Re generators. This paper reports the efficacy of a cold kit stored for more than two weeks, determined by the dependence of the radiolabeling yields of {sup 188} Re-HEDP on the incubation time, reducing agent concentration, the effects of concentration of ligand, the p H of the reaction and the temperature. The cold kits showed a good stability when carrie-free rhenium-188 was added in the reaction mixture. (author)

  3. Liquid kit for preparation of 188rhenium-etidronate

    International Nuclear Information System (INIS)

    Marczewski, Barbara; Dias, Carla Roberta; Moraes, Vanessa; Osso Junior, Joao Alberto

    2005-01-01

    The aim of this study was the preparation of a liquid kit for radiolabeling of 188 Re-HEDP (hydroxyethylidene diphosphonate). 188 Re was obtained from alumina based 188 W/ 188 Re generators. This paper reports the efficacy of a cold kit stored for more than two weeks, determined by the dependence of the radiolabeling yields of 188 Re-HEDP on the incubation time, reducing agent concentration, the effects of concentration of ligand, the p H of the reaction and the temperature. The cold kits showed a good stability when carrie-free rhenium-188 was added in the reaction mixture. (author)

  4. Rhenium(V) complexing with benzimidazole in acidic media

    International Nuclear Information System (INIS)

    Zakaeva, R.Sh.; Gagieva, S.Ch.; Kaloev, N.I.; Bukov, N.N.; Panyushkin, V.T.

    2003-01-01

    Coordination compounds of rhenium(V) with 1H-benzimidazole (L) separated from acid media: (HL) 2 [ReOX 5 ](H 2 O) n and [ReOL x X y (H 2 O) z ](H 2 O) n (HL and L - protonated and deprotonated forms of benzimidazole; X = Cl - , Br - ) were studied by the methods of IR spectroscopy, 1 H NMR spectroscopy and thermal gravimetric analysis. Methods of ligand coordination in the complexes are discussed on the basis of data obtained [ru

  5. Clustering of transmutation elements tantalum, rhenium and osmium in tungsten in a fusion environment

    Science.gov (United States)

    You, Yu-Wei; Kong, Xiang-Shan; Wu, Xuebang; Liu, C. S.; Fang, Q. F.; Chen, J. L.; Luo, G.-N.

    2017-08-01

    The formation of transmutation solute-rich precipitates has been reported to seriously degrade the mechanical properties of tungsten in a fusion environment. However, the underlying mechanisms controlling the formation of the precipitates are still unknown. In this study, first-principles calculations are therefore performed to systemically determine the stable structures and binding energies of solute clusters in tungsten consisting of tantalum, rhenium and osmium atoms as well as irradiation-induced vacancies. These clusters are known to act as precursors for the formation of precipitates. We find that osmium can easily segregate to form clusters even in defect-free tungsten alloys, whereas extremely high tantalum and rhenium concentrations are required for the formation of clusters. Vacancies greatly facilitate the clustering of rhenium and osmium, while tantalum is an exception. The binding energies of vacancy-osmium clusters are found to be much higher than those of vacancy-tantalum and vacancy-rhenium clusters. Osmium is observed to strongly promote the formation of vacancy-rhenium clusters, while tantalum can suppress the formation of vacancy-rhenium and vacancy-osmium clusters. The local strain and electronic structure are analyzed to reveal the underlying mechanisms governing the cluster formation. Employing the law of mass action, we predict the evolution of the relative concentration of vacancy-rhenium clusters. This work presents a microscopic picture describing the nucleation and growth of solute clusters in tungsten alloys in a fusion reactor environment, and thereby explains recent experimental phenomena.

  6. Reactivity of halide and pseudohalide ligands

    International Nuclear Information System (INIS)

    Kukushkin, Yu.N.

    1987-01-01

    Reactivity of halide and pseudohalide (cyanide, azide, thiocyanate, cyanate) ligands tending to form bridge bonds in transition metal (Re, Mo, W) complexes is considered. Complexes where transition metal salts are ligands of other, complex-forming ion, are described. Transformation of innerspheric pseudohalide ligands is an important way of directed synthesis of these metal coordination compounds

  7. Formation of structured nanophases in halide crystals

    Czech Academy of Sciences Publication Activity Database

    Kulveit, Jan; Demo, Pavel; Polák, Karel; Sveshnikov, Alexey; Kožíšek, Zdeněk

    2013-01-01

    Roč. 5, č. 6 (2013), s. 561-564 ISSN 2164-6627 R&D Projects: GA ČR GAP108/12/0891 Institutional support: RVO:68378271 Keywords : halide crystals * nucleation Subject RIV: BM - Solid Matter Physics ; Magnetism http://www.aspbs.com/asem.html#v5n6

  8. Complexes of alkylphenols with aluminium halides

    International Nuclear Information System (INIS)

    Golounin, A.V.

    1997-01-01

    Interaction of aluminium halides with alkylphenols is studied through the NMR method. The peculiarity of complex formation of pentamethylphenol with AlI 3 is revealed. By AlI 3 action on the pentamethylphenol the complexes are formed both of keto- and oxy form [ru

  9. luminescence in coloured alkali halide crystals

    Indian Academy of Sciences (India)

    have studied the effect of annealing in chlorine gas on the ML of X-rayed KCl crystals. ..... high temperature because of the thermal bleaching of the coloration in alkali halide ..... [31] J Hawkins, Ph.D. Thesis (University of Reading, 1976).

  10. Monocrystalline halide perovskite nanostructures for optoelectronic applications

    NARCIS (Netherlands)

    Khoram, P.

    2018-01-01

    Halide perovskites are a promising class of materials for incorporation in optoelectronics with higher efficiency and lower cost. The solution processability of these materials provides unique opportunities for simple nanostructure fabrication. In the first half of the thesis (chapter 2 and 3) we

  11. Use of cluster rhenium substances with alkyl ligands for inhibition of the Guerin carcinoma Growth

    Directory of Open Access Journals (Sweden)

    O. S. Voronkova

    2007-04-01

    Full Text Available Quantity and quality of erythrocytes, blood haemoglobin concentration, glucose levels in the erythrocytes and plasma, content of TBA-active products in blood plasma of rats were studied during development of the Guerin carcinoma, introduction of cis-platinum and cluster rhenium substances with organic ligands. It was shown that rhenium substances had essential antioxidant effects and changed the dynamic of tumour growth. The conclusion on perspectiveness of further investigations of rhenium substances with cluster fragment and organic ligands in experiments in vivo with changed redox-status of an organism was drawn.

  12. Reductive coupling of carbon monoxide in a rhenium carbonyl complex with pendant Lewis acids.

    Science.gov (United States)

    Miller, Alexander J M; Labinger, Jay A; Bercaw, John E

    2008-09-10

    Phosphinoborane ligands impart unique reactivity to a rhenium carbonyl cation relative to simple phosphine complexes. Addition of either triethylborohydride or a platinum hydride (that can be formed from H2) forms a rhenium boroxycarbene. This carbene, which crystallizes as a dimer, disproportionates over a period of days to afford the starting cation and a structurally unprecedented boroxy(boroxymethyl)carbene, in which a new C-C bond has been formed between two reduced CO ligands. This product of C-C bond formation can be independently synthesized by addition of 2 equiv of hydride to the rhenium carbonyl cation.

  13. Ambient aging of rhenium filaments used in thermal ionization mass spectrometry: Growth of oxo-rhenium crystallites and anti-aging strategies

    Directory of Open Access Journals (Sweden)

    Joseph M. Mannion

    2017-01-01

    Full Text Available Degassing is a common preparation technique for rhenium filaments used for thermal ionization mass spectrometric analysis of actinides, including plutonium. Although optimization studies regarding degassing conditions have been reported, little work has been done to characterize filament aging after degassing. In this study, the effects of filament aging after degassing were explored to determine a “shelf-life” for degassed rhenium filaments, and methods to limit filament aging were investigated. Zone-refined rhenium filaments were degassed by resistance heating under high vacuum before exposure to ambient atmosphere for up to 2 months. After degassing the nucleation and preferential growth of oxo-rhenium crystallites on the surface of polycrystalline rhenium filaments was observed by atomic force microscopy and scanning electron microscopy (SEM. Compositional analysis of the crystallites was conducted using SEM-Raman spectroscopy and SEM energy dispersive X-ray spectroscopy, and grain orientation at the metal surface was investigated by electron back-scatter diffraction mapping. Spectra collected by SEM-Raman suggest crystallites are composed primarily of perrhenic acid. The relative extent of growth and crystallite morphology were found to be grain dependent and affected by the dissolution of carbon into filaments during annealing (often referred to as carbonization or carburization. Crystallites were observed to nucleate in region specific modes and grow over time through transfer of material from the surface. Factors most likely to affect the rates of crystallite growth include rhenium substrate properties such as grain size, orientation, levels of dissolved carbon, and relative abundance of defect sites; as well as environmental factors such as length of exposure to oxygen and relative humidity. Thin (∼180 nm hydrophobic films of poly(vinylbenzyl chloride were found to slow the growth of oxo-rhenium crystallites on the filament

  14. Nipponium, the element ascribable to rhenium from the modern chemical viewpoint

    Energy Technology Data Exchange (ETDEWEB)

    Yoshihara, H.K. [Japan Isotope Data Inst., Sendai (Japan)

    1997-11-01

    Though the discovery of nipponium by Ogawa in 1908 was judged to be false and his work was forgotten for many years, the new element he believed to have found should be ascribed to rhenium (z = 75) by the following reasons: (1) the spectral line of 4882 A agrees well with the present data of rhenium, (2) recalculation of the atomic weight of the element supports the value in the neighbourhood of 185 which is very close to the present value 186.2 of rhenium, and (3) rhenium is actually present in Japanese molybdenite he studied. Therefore, it is concluded that his discovery of the `new` element was correct, but assignment of z = 43 was wrong. (orig.)

  15. Morphology-Controlled Synthesis of Organometal Halide Perovskite Inverse Opals.

    Science.gov (United States)

    Chen, Kun; Tüysüz, Harun

    2015-11-09

    The booming development of organometal halide perovskites in recent years has prompted the exploration of morphology-control strategies to improve their performance in photovoltaic, photonic, and optoelectronic applications. However, the preparation of organometal halide perovskites with high hierarchical architecture is still highly challenging and a general morphology-control method for various organometal halide perovskites has not been achieved. A mild and scalable method to prepare organometal halide perovskites in inverse opal morphology is presented that uses a polystyrene-based artificial opal as hard template. Our method is flexible and compatible with different halides and organic ammonium compositions. Thus, the perovskite inverse opal maintains the advantage of straightforward structure and band gap engineering. Furthermore, optoelectronic investigations reveal that morphology exerted influence on the conducting nature of organometal halide perovskites. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Development of unified X-ray fluorescent analysis to determine rhenium content in multicomponent oxide compositions

    International Nuclear Information System (INIS)

    Drobot, D.V.; Belyaev, A.V.; Kutvitskij, V.A.; Rysev, A.P.

    1999-01-01

    A procedure to prepare rhenium-containing glass-like specimens on the basis of bismuth and boron oxides is proposed. The glasses produced are studied by X-ray fluorescent analysis and routine spectrometric thiocyanate analysis. The results make it possible to determine rhenium in oxide mixtures in the range of its content 0.01 - 10% with S r = 0.03 [ru

  17. Determination of rhenium (7) trace amounts by spectrophotometric titration in medium of mixed solvents

    International Nuclear Information System (INIS)

    Kuznetsov, V.V.; Samorukova, O.L.

    1978-01-01

    The method has been proposed of determining rhenium (7) microamounts by spectrophotometric titration in the medium water-dimethyl-sulphoxide with the reagent nitrochromazo. The method is based on the formation of ionic pairs K + ReO 4 - in water-organic solvents. The results of rhenium determination are satisfactory in a wide concentration range up to 0.3 mkg in 15 ml which makes the method proposed close in sensitivity to photometric methods and much better in reproducibility

  18. Reductive Coupling of Carbon Monoxide in a Rhenium Carbonyl Complex with Pendant Lewis Acids

    OpenAIRE

    Miller, Alexander J. M.; Labinger, Jay A.; Bercaw, John E.

    2008-01-01

    Phosphinoborane ligands impart unique reactivity to a rhenium carbonyl cation relative to simple phosphine complexes. Addition of either triethylborohydride or a platinum hydride (that can be formed from H2) forms a rhenium boroxycarbene. This carbene, which crystallizes as a dimer, disproportionates over a period of days to afford the starting cation and a structurally unprecedented boroxy(boroxymethyl)carbene, in which a new C−C bond has been formed between two reduced CO ligands. This prod...

  19. Physicochemical properties of mixed phosphorus halides

    International Nuclear Information System (INIS)

    Sladkov, I.B.; Tugarinova, N.S.

    1996-01-01

    Certain physicochemical properties (thermodynamic characteristics at boiling point, critical constants, density of liquid on the saturation line) of mixed phosphorus halides (PI 3 , PI 2 F, PIF 2 , PI 2 Cl, PICl 2 , PI 1 Br, PIBr 2 , PIClF, PIBrCl, etc.) are determined by means of approximate methods. Reliability of the results obtained is confirmed by comparison of calculated and experimental data for phosphorus compounds of the same type. 7 refs., 3 figs., 4 tabs

  20. Unraveling halide hydration: A high dilution approach.

    Science.gov (United States)

    Migliorati, Valentina; Sessa, Francesco; Aquilanti, Giuliana; D'Angelo, Paola

    2014-07-28

    The hydration properties of halide aqua ions have been investigated combining classical Molecular Dynamics (MD) with Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. Three halide-water interaction potentials recently developed [M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144104 (2011)], along with three plausible choices for the value of the absolute hydration free energy of the proton (ΔG [minus sign in circle symbol]hyd[H+]), have been checked for their capability to properly describe the structural properties of halide aqueous solutions, by comparing the MD structural results with EXAFS experimental data. A very good agreement between theory and experiment has been obtained with one parameter set, namely LE, thus strengthening preliminary evidences for a ΔG [minus sign in circle symbol]hyd[H] value of -1100 kJ mol(-1) [M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144104 (2011)]. The Cl(-), Br(-), and I(-) ions have been found to form an unstructured and disordered first hydration shell in aqueous solution, with a broad distribution of instantaneous coordination numbers. Conversely, the F(-) ion shows more ordered and defined first solvation shell, with only two statistically relevant coordination geometries (six and sevenfold complexes). Our thorough investigation on the effect of halide ions on the microscopic structure of water highlights that the perturbation induced by the Cl(-), Br(-), and I(-) ions does not extend beyond the ion first hydration shell, and the structure of water in the F(-) second shell is also substantially unaffected by the ion.

  1. Thermomechanical measurements of lead halide single crystals

    Czech Academy of Sciences Publication Activity Database

    Nitsch, Karel; Rodová, Miroslava

    2002-01-01

    Roč. 234, č. 2 (2002), s. 701-709 ISSN 0370-1972 R&D Projects: GA AV ČR IAA2010926 Institutional research plan: CEZ:AV0Z1010914 Keywords : PbX 2 (X=Cl, Br, I) * coefficients of linear thermal expansion * polymorphism in lead halides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.930, year: 2002

  2. Electrochemistry of plutonium in molten halides

    International Nuclear Information System (INIS)

    McCurry, L.E.; Moy, G.M.M.; Bowersox, D.F.

    1987-01-01

    The electrochemistry of plutonium in molten halides is of technological importance as a method of purification of plutonium. Previous authors have reported that plutonium can be purified by electrorefining impure plutonium in various molten haldies. Work to eluciate the mechanism of the plutonium reduction in molten halides has been limited to a chronopotentiometric study in LiCl-KCl. Potentiometric studies have been carried out to determine the standard reduction potential for the plutonium (III) couple in various molten alkali metal halides. Initial cyclic voltammetric experiments were performed in molten KCL at 1100 K. A silver/silver chloride (10 mole %) in equimolar NaCl-KCl was used as a reference electrode. Working and counter electrodes were tungsten. The cell components and melt were contained in a quartz crucible. Background cyclic voltammograms of the KCl melt at the tungsten electrode showed no evidence of electroactive impurities in the melt. Plutonium was added to the melt as PuCl/sub 3/, which was prepared by chlorination of the oxide. At low concentrations of PuCl/sub 3/ in the melt (0.01-0.03 molar), no reduction wave due to the reduction of Pu(III) was observed in the voltammograms up to the potassium reduction limit of the melt. However on scan reversal after scanning into the potassium reduction limit a new oxidation wave was observed

  3. Complexes in polyvalent metal - Alkali halide melts

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Tosi, M.P.

    1991-03-01

    Experimental evidence is available in the literature on the local coordination of divalent and trivalent metal ions by halogens in some 140 liquid mixtures of their halides with alkali halides. After brief reference to classification criteria for main types of local coordination, we focus on statistical mechanical models that we are developing for Al-alkali halide mixtures. Specifically, we discuss theoretically the equilibrium between (AlF 6 ) 3- and (AlF 4 ) - complexes in mixtures of AlF 3 and NaF as a function of composition in the NaF-rich region, the effect of the alkali counterion on this equilibrium, the possible role of (AlF 5 ) 2- as an intermediate species in molten cryolite, and the origin of the different complexing behaviours of Al-alkali fluorides and chlorides. We also present a theoretical scenario for processes of structure breaking and electron localization in molten cryolite under addition of sodium metal. (author). 26 refs, 2 tabs

  4. Investigation of surface halide modification of nitrile butadiene rubber

    Science.gov (United States)

    Sukhareva, K. V.; Mikhailov, I. A.; Andriasyan, Yu O.; Mastalygina, E. E.; Popov, A. A.

    2017-12-01

    The investigation is devoted to the novel technology of surface halide modification of rubber samples based on nitrile butadiene rubber (NBR). 1,1,2-trifluoro-1,2,2-trichlorethane was used as halide modifier. The developed technology is characterized by production stages reduction to one by means of treating the rubber compound with a halide modifier. The surface halide modification of compounds based on nitrile butadiene rubber (NBR) was determined to result in increase of resistance to thermal oxidation and aggressive media. The conducted research revealed the influence of modification time on chemical resistance and physical-mechanical properties of rubbers under investigation.

  5. Lanthanide doped strontium-barium cesium halide scintillators

    Science.gov (United States)

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  6. Alkene-glycol interconversion with technetium and rhenium oxo complexes

    International Nuclear Information System (INIS)

    Pearlstein, R.M.; Davison, Alan

    1988-01-01

    The trioxotechnetium(VII) complexes TcO 3 Cl(AA) (AA = phen, bpy, 5-NO 2 -phen, 3,4,7,8-Me 4 -phen) cleanly oxidize olefins (C 2 R 4 ) in solution at 22 0 C, forming in high yields the corresponding oxotechnetium(V) diolate complexes, TcOCl(OCR 2 CR 2 O)(AA). The complexes have been characterized by 1 H NMR, IR, elemental analysis, and fast atom bombardment mass spectrometry. The free diols isolated by hydrolysis of these diolate complexes with HCl were shown by capillary gas chromatography to represent syn addition of the two hydroxyl groups across the double bond. The related rhenium complex, ReOCl(OCH 2 CH 2 O)(phen) undergoes the reverse reaction when thermalized, releasing ethylene and producing ReO 3 Cl(phen). (author)

  7. Catalytic transformation of functionalized carboxylic acids using multifunctional rhenium complexes.

    Science.gov (United States)

    Naruto, Masayuki; Agrawal, Santosh; Toda, Katsuaki; Saito, Susumu

    2017-06-13

    Carboxylic acids (CAs) are one of the most ubiquitous and important chemical feedstocks available from biorenewable resources, CO 2 , and the petrochemical industry. Unfortunately, chemoselective catalytic transformations of CH n CO 2 H (n = 1-3) groups into other functionalities remain a significant challenge. Herein, we report rhenium V complexes as extremely effective precatalysts for this purpose. Compared to previously reported heterogeneous and homogeneous catalysts derived from high- or low-valent metals, the present method involves a α-C-H bond functionalization, a hydrogenation, and a hydrogenolysis, which affords functionalized alcohols with a wide substrate scope and high chemoselectivity under relatively mild reaction conditions. The results represent an important step toward a paradigm shift from 'low-valent' to 'high-valent' metal complexes by exploring a new portfolio of selective functional group transformations of highly oxygenated organic substrates, as well as toward the exploitation of CAs as a valuable biorenewable feedstock.

  8. Convenient synthesis of bis(alkoxy)rhenium(VII) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Z.; Al-Ajlouni, A.M.; Espenson, J.H. [Iowa State Univ., Ames, IA (United States)

    1996-02-28

    The study of high-oxidation-state organorhenium compounds has been a field of continuing activity, thanks to the success of methylrhenium trioxide (CH{sub 3}ReO{sub 3} or MTO) in catalytic processes. This catalyst is effective in oxidations, olefin metathesis, the olefination of aldehydes, and the preparation of other compounds with three-membered rings. The syntheses of some rhenium compounds derived form MTO have been reported. Epoxide formation is a key reaction, and it bears directly on these findings reported here. Re(VII) complexes containing a chelated bis(diolate) ligand can be synthesized by refluxing MTO with 2,3-dimethyl-2,3-diol. Here, the authors report a more convenient method for this preparation. A different series of related compounds consists of chelated bis(diolates) of the Cp*Re-oxo series, Cp*ReO-(diolate).

  9. Making and Breaking of Lead Halide Perovskites

    KAUST Repository

    Manser, Joseph S.

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80–150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic–inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization

  10. Endocavitary treatment of craniopharyngioma cysts by 186-rhenium. Traitement endocavitaire par le rhenium 186 des kystes de craniopharyngiomes

    Energy Technology Data Exchange (ETDEWEB)

    Berenger, N.; Lebtahi, R.; Piketty, M.L.; Merienne, L.; Turak, B.; Bok, R.; Askienazy, S. (Hopital Sainte-Anne, 75 - Paris (France)); Munari, C. (Centre Hospitalier Universitaire, 38 - Grenoble (France))

    1993-01-01

    Forty-three patients with craniopharyngioma cysts were treated by intracystic injection of 186-rhenium. Leakage of colloid isotope into the CSF spaces during the ''test'' or ''therapeutic'' injection was detected by scintigraphic follow-up (15 cases/58 intracystic injections). In fact the physical characteristics of [sup 186]Re are well adapted to the requirements of treatment and, with the gamma emission, also allows early detection of leakage, avoiding irradiation of neighbouring structures. Follow-up studies revealed that craniopharyngioma cysts were effectively treated, with cessation of fluid formation, progressive shrinkage of the cysts leading to total disappearance in 14 cases (10-156 months, mean 52.5) and a considerable decrease in 13 cases (5-53 months, mean 23).

  11. The coacervation of aqueous solutions of tetraalkylammonium halides

    International Nuclear Information System (INIS)

    Mugnier de Trobriand, Anne.

    1979-09-01

    The coacervation of aqueous solutions of tatraalkylammonium halides in the presence of not of inorganic halides and acids has been studied, considering thermodynamic and spectroscopic aspects. The importance of dispersion forces as well as forces resulting from hydrophobic hydration has been assessed. The analogy between these systems and anionic ion exchange resins has been shown especially for Uranium VI extraction [fr

  12. Definition of a high intensity metal halide discharge reference lamp

    NARCIS (Netherlands)

    Stoffels, W.W.; Baede, A.H.F.M.; Mullen, van der J.J.A.M.; Haverlag, M.; Zissis, G.

    2006-01-01

    The design of a ref. metal halide discharge lamp is presented. This lamp is meant as a common study object for researchers working on metal halide discharge lamps, who by using the same design will be able to compare results between research groups, diagnostic techniques and numerical models. The

  13. Radiation damage in the alkali halide crystals

    International Nuclear Information System (INIS)

    Diller, K.M.

    1975-10-01

    A general review is given of the experimental data on radiation damage in the alkali halide crystals. A report is presented of an experimental investigation of irradiation produced interstitial dislocation loops in NaCl. These loops are found to exhibit the usual growth and coarsening behaviour during thermal annealing which operates by a glide and self-climb mechanism. It is shown that the recombination of defects in these crystals is a two stage process, and that the loss of interstitials stabilized at the loops is caused by extrinsic vacancies. The theoretical techniques used in simulating point defects in ionic crystals are described. Shell model potentials are derived for all the alkali halide crystals by fitting to bulk crystal data. The fitting is supplemented by calculations of the repulsive second neighbour interactions using methods based on the simple electron gas model. The properties of intrinsic and substitutional impurity defects are calculated. The HADES computer program is used in all the defect calculations. Finally the report returns to the problems of irradiation produced interstitial defects. The properties of H centres are discussed; their structure, formation energies, trapping at impurities and dimerization. The structure, formation energies and mobility of the intermediate and final molecular defects are then discussed. The thermodynamics of interstitial loop formation is considered for all the alklai halide crystals. The nucleation of interstitial loops in NaCl and NaBr is discussed, and the recombination of interstitial and vacancy defects. The models are found to account for all the main features of the experimental data. (author)

  14. Research Update: Luminescence in lead halide perovskites

    Directory of Open Access Journals (Sweden)

    Ajay Ram Srimath Kandada

    2016-09-01

    Full Text Available Efficiency and dynamics of radiative recombination of carriers are crucial figures of merit for optoelectronic materials. Following the recent success of lead halide perovskites in efficient photovoltaic and light emitting technologies, here we review some of the noted literature on the luminescence of this emerging class of materials. After outlining the theoretical formalism that is currently used to explain the carrier recombination dynamics, we review a few significant works which use photoluminescence as a tool to understand and optimize the operation of perovskite based optoelectronic devices.

  15. Exciton-relaxation dynamics in lead halides

    International Nuclear Information System (INIS)

    Iwanaga, Masanobu; Hayashi, Tetsusuke

    2003-01-01

    We survey recent comprehensive studies of exciton relaxation in the crystals of lead halides. The luminescence and electron-spin-resonance studies have revealed that excitons in lead bromide spontaneously dissociate and both electrons and holes get self-trapped individually. Similar relaxation has been also clarified in lead chloride. The electron-hole separation is ascribed to repulsive correlation via acoustic phonons. Besides, on the basis of the temperature profiles of self-trapped states, we discuss the origin of luminescence components which are mainly induced under one-photon excitation into the exciton band in lead fluoride, lead chloride, and lead bromide

  16. Large polarons in lead halide perovskites

    OpenAIRE

    Miyata, Kiyoshi; Meggiolaro, Daniele; Trinh, M. Tuan; Joshi, Prakriti P.; Mosconi, Edoardo; Jones, Skyler C.; De Angelis, Filippo; Zhu, X.-Y.

    2017-01-01

    Lead halide perovskites show marked defect tolerance responsible for their excellent optoelectronic properties. These properties might be explained by the formation of large polarons, but how they are formed and whether organic cations are essential remain open questions. We provide a direct time domain view of large polaron formation in single-crystal lead bromide perovskites CH3NH3PbBr3 and CsPbBr3. We found that large polaron forms predominantly from the deformation of the PbBr3 ? framewor...

  17. The alkali halide disk technique in infra-red spectrometry : Anomalous behaviour of some samples dispersed in alkali halide disks

    NARCIS (Netherlands)

    Tolk, A.

    1961-01-01

    Some difficulties encountered in the application of the alkali halide disk technique in infra-red spectrometry are discussed. Complications due to interaction of the sample with the alkali halide have been studied experimentally. It was found that the anomalous behaviour of benzoic acid, succinic

  18. Determination coefficient distribution rhenium and tungsten using method extraction with solvent methyl ethyl ketone

    International Nuclear Information System (INIS)

    Riftanio Natapratama Hidayat; Maria Christina Prihatiningsih; Duyeh Setiawan

    2015-01-01

    Determination of the distribution coefficient (K d ) of the rhenium and tungsten conducted for the purpose of knowing the value of K d of the two elements. K d value determination is applied to the process of separation rhenium-188 from target of tungsten-188 for the purposes purification of radioisotopes that are made to meet the radionuclide and radiochemical purity. The K d value determination using solvent extraction with methyl ethyl ketone (MEK). Prior to the determination of K d values, determined beforehand the optimum conditions of extraction process based on the effect of agitation time, the volume of MEK, and the pH of the solution. Confirmation the results of the extraction was conducted using UV-Vis spectrophotometer with a complexing KSCN under acidic conditions and reductant SnCl 2 . The results showed that the optimum condition extraction process to feed each of 10 ppm is when the agitation for 10 minutes, the volume of MEK in 20 ml, and the pH below 5. Obtained the maximum recovery of rhenium are drawn to the organic phase as much as 9.545 ppm. However, the condition of the extraction process does not affect the migration of tungsten to the organic phase. Then the maximum K d values obtained at 2.7566 rhenium and tungsten maximum K d is 0.0873. Optimum conditions of extraction process can be further tested on radioactive rhenium and tungsten as an alternative to the separation of radioisotopes. (author)

  19. New leads for fragment-based design of rhenium/technetium radiopharmaceutical agents.

    Science.gov (United States)

    Brink, Alice; Helliwell, John R

    2017-05-01

    Multiple possibilities for the coordination of fac -[Re(CO) 3 (H 2 O) 3 ] + to a protein have been determined and include binding to Asp, Glu, Arg and His amino-acid residues as well as to the C-terminal carboxylate in the vicinity of Leu and Pro. The large number of rhenium metal complex binding sites that have been identified on specific residues thereby allow increased target identification for the design of future radiopharmaceuticals. The core experimental concept involved the use of state-of-art tuneable synchrotron radiation at the Diamond Light Source to optimize the rhenium anomalous dispersion signal to a large value ( f '' of 12.1 electrons) at its L I absorption edge with a selected X-ray wavelength of 0.9763 Å. At the Cu  K α X-ray wavelength (1.5418 Å) the f '' for rhenium is 5.9 electrons. The expected peak-height increase owing to the optimization of the Re f '' was therefore 2.1. This X-ray wavelength tuning methodology thereby showed the lower occupancy rhenium binding sites as well as the occupancies of the higher occupancy rhenium binding sites.

  20. New leads for fragment-based design of rhenium/technetium radiopharmaceutical agents

    Directory of Open Access Journals (Sweden)

    Alice Brink

    2017-05-01

    Full Text Available Multiple possibilities for the coordination of fac-[Re(CO3(H2O3]+ to a protein have been determined and include binding to Asp, Glu, Arg and His amino-acid residues as well as to the C-terminal carboxylate in the vicinity of Leu and Pro. The large number of rhenium metal complex binding sites that have been identified on specific residues thereby allow increased target identification for the design of future radiopharmaceuticals. The core experimental concept involved the use of state-of-art tuneable synchrotron radiation at the Diamond Light Source to optimize the rhenium anomalous dispersion signal to a large value (f′′ of 12.1 electrons at its LI absorption edge with a selected X-ray wavelength of 0.9763 Å. At the Cu Kα X-ray wavelength (1.5418 Å the f′′ for rhenium is 5.9 electrons. The expected peak-height increase owing to the optimization of the Re f′′ was therefore 2.1. This X-ray wavelength tuning methodology thereby showed the lower occupancy rhenium binding sites as well as the occupancies of the higher occupancy rhenium binding sites.

  1. Influence of cold rolling and strain rate on plastic response of powder metallurgy and chemical vapor deposition rhenium

    International Nuclear Information System (INIS)

    Koeppel, B.J.; Subhash, G.

    1999-01-01

    The plastic response of two kinds of rhenium processed via powder metallurgy (PM) and chemical vapor deposition (CVD) were investigated under uniaxial compression over a range of strain rates. The PM rhenium, further cold rolled to 50 and 80 pct of the original thickness, was also investigated to assess the influence of cold work on the plastic behavior. A strong basal texture was detected in all the preceding materials as a result of processing and cold work. Both CVD and PM rhenium exhibited an increase in yield strength and flow stress with increasing strain rate. In PM rhenium, cold work resulted in an increase in hardness and yield strength and a decrease in the work hardening rate. The deformed microstructures revealed extensive twinning in CVD rhenium. At large strains, inhomogeneous deformation mode in the form of classical cup and cone fracture was noticed

  2. Influence of nano-cluster compounds of rhenium drugs on the activity of liver enzymes in a tumor model

    Directory of Open Access Journals (Sweden)

    J. V. Suponko

    2010-06-01

    Full Text Available Enzymes’ level in rat’s hepatocytes under Guerin's carcinoma T8 development as well as after injection of rhenium compounds and cis-platin has been studied. It has been determined that the decrease of enzymatic activity to the level of the animals of control group was observed at the simultaneous injection of cis-platin and cluster rhenium compounds in nanoliposomal and water-soluble forms. That confirms possible hepatoprotective properties of the rhenium compounds. It has been shown that hepatoprotective properties of rhenium cluster compounds mostly don’t depend on the form of their injection and are detected regardless of anticancer properties. Rhenium-platinum system with β-alanine ligand in aqueous solution, has been found. Its injection is accompanied by the hepatoprotective effect.

  3. Finding New Perovskite Halides via Machine learning

    Directory of Open Access Journals (Sweden)

    Ghanshyam ePilania

    2016-04-01

    Full Text Available Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning via building a support vector machine (SVM based classifier that uses elemental features (or descriptors to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  4. Finding New Perovskite Halides via Machine learning

    Science.gov (United States)

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; Lookman, Turab

    2016-04-01

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning) via building a support vector machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  5. Local polar fluctuations in lead halide perovskites

    Science.gov (United States)

    Tan, Liang; Yaffe, Omer; Guo, Yinsheng; Brus, Louis; Rappe, Andrew; Egger, David; Kronik, Leeor

    The lead halide perovskites have recently attracted much attention because of their large and growing photovoltaic power conversion efficiencies. However, questions remain regarding the temporal and spatial correlations of the structural fluctuations, their atomistic nature, and how they affect electronic and photovoltaic properties. To address these questions, we have performed a combined ab initio molecular dynamics (MD) and density functional theory (DFT) study on CsPbBr3. We have observed prevalent anharmonic motion in our MD trajectories, with local polar fluctuations involving head-to-head motion of A-site Cs cations coupled with Br window opening. We calculate Raman spectra from the polarizability auto-correlation functions obtained from these trajectories and show that anharmonic A-site cation motion manifests as a broad central peak in the Raman spectrum, which increases in intensity with temperature. A comparison of the experimental Raman spectrum of hybrid organometallic MAPbBr3 and fully inorganic CsPbBr3 suggests that structural fluctuations in lead-halide perovskites is more general than rotation of polar organic cations and is intimately coupled to the inorganic framework.

  6. Large polarons in lead halide perovskites

    Science.gov (United States)

    Miyata, Kiyoshi; Meggiolaro, Daniele; Trinh, M. Tuan; Joshi, Prakriti P.; Mosconi, Edoardo; Jones, Skyler C.; De Angelis, Filippo; Zhu, X.-Y.

    2017-01-01

    Lead halide perovskites show marked defect tolerance responsible for their excellent optoelectronic properties. These properties might be explained by the formation of large polarons, but how they are formed and whether organic cations are essential remain open questions. We provide a direct time domain view of large polaron formation in single-crystal lead bromide perovskites CH3NH3PbBr3 and CsPbBr3. We found that large polaron forms predominantly from the deformation of the PbBr3− frameworks, irrespective of the cation type. The difference lies in the polaron formation time, which, in CH3NH3PbBr3 (0.3 ps), is less than half of that in CsPbBr3 (0.7 ps). First-principles calculations confirm large polaron formation, identify the Pb-Br-Pb deformation modes as responsible, and explain quantitatively the rate difference between CH3NH3PbBr3 and CsPbBr3. The findings reveal the general advantage of the soft [PbX3]− sublattice in charge carrier protection and suggest that there is likely no mechanistic limitations in using all-inorganic or mixed-cation lead halide perovskites to overcome instability problems and to tune the balance between charge carrier protection and mobility. PMID:28819647

  7. Lymph node scintigraphy with sup(99m)Tc-rhenium colloid

    International Nuclear Information System (INIS)

    Mitsuhata, Naoki; Suyama, Bunzo; Matsumura, Yosuke; Ohmori, Hiroyuki

    1981-01-01

    Lymph node scintigraphy with sup(99m)Tc-rhenium colloid in evaluation of nodal involvement by urological malignancy were performed on twelve cases (4 bladder cancer, 3 prostatic cancer, 2 penile cancer and 3 testicular tumor). These cases had been examined the extent of disease on the basis of findings at pedal lymphangiography, urography, computed tomography or laparotomy. sup(99m)Tc-rhenium colloid in a volume of 0.2 ml (2 mCi) was injected into the first interdigital webs of each foot without local anesthesia. In one case of penile cancer radioactive colloid was directly injected into the glans penis and prepuce including tumor area. Our clinical experience reported here reveals that lymph node scintigraphy with sup(99m)Tc-rhenium colloid can provide a useful method of investigating the lymphatic system. This technique is reproducible and can be performed in poor risk patients or pediatric patients readily and safely. (author)

  8. A study of scandia and rhenium doped tungsten matrix dispenser cathode

    Science.gov (United States)

    Wang, Jinshu; Li, Lili; Liu, Wei; Wang, Yanchun; Zhao, Lei; Zhou, Meiling

    2007-10-01

    Scandia and rhenium doped tungsten powders were prepared by solid-liquid doping combined with two-step reduction method. The experimental results show that scandia was distributed evenly on the surface of tungsten particles. The addition of scandia and rhenium could decrease the particle size of doped tungsten, for example, the tungsten powders doped with Sc 2O 3 and Re had the average size of about 50 nm in diameter. By using this kind of powder, scandia and rhenium doped tungsten matrix with the sub-micrometer sized tungsten grains was obtained. This kind of matrix exhibited good anti-bombardment insensitivity at high temperature. The emission property result showed that high space charge limited current densities of more than 60 A/cm 2 at 900 °C could be obtained for this cathode. A Ba-Sc-O multilayer about 100 nm in thickness formed at the surface of cathode after activation led to the high emission property.

  9. Noncontact surface tension and viscosity measurements of rhenium in the liquid and undercooled states

    International Nuclear Information System (INIS)

    Ishikawa, Takehiko; Paradis, Paul-Francois; Yoda, Shinichi

    2004-01-01

    Surface tension and viscosity of liquid rhenium, which have hardly been measured due to the extremely high melting temperature of rhenium, were measured using an electrostatic levitation method combined with the oscillation drop technique. Sample position instability problems caused by the photon pressure of the heating lasers and by sample evaporation were solved by modifying the electrodes design. Good sample stability allowed the measurements of the surface tension and the viscosity over wide temperature ranges including the undercooled states. Over the 2800-3600 K interval, the surface tension of rhenium was measured as σ(T)=2.71x10 3 -0.23(T-T m ), where T m is the melting temperature, 3453 K. At T m , the datum agrees well with the literature values. Similarly, on the same temperature range, the viscosity was determined as η(T)=0.08 exp[1.33x10 5 /(RT)] (mPa s)

  10. Effect of rhenium irradiations on the mechanical properties of tungsten for nuclear fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Aneeqa, E-mail: aneeqa.khan-3@postgrad.manchester.ac.uk [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL (United Kingdom); Elliman, Robert; Corr, Cormac [Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601 (Australia); Lim, Joven J.H.; Forrest, Andrew [School of Materials, The University of Manchester, M13 9PL (United Kingdom); Mummery, Paul [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL (United Kingdom); Evans, Llion M. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom)

    2016-08-15

    As-received and annealed tungsten samples were irradiated at a temperature of 400 °C with Re and W ions to peak concentrations of 1600 appm (atomic parts per million) and damage levels of 40 dpa (displacements per atom). Mechanical properties were investigated using nanoindentation, and the orientation and depth dependence of irradiation damage was investigated using Electron Back Scatter Diffraction (EBSD). Following irradiation there was a 13% increase in hardness in the as received sheet and a 23% increase in the annealed material for both tungsten and rhenium irradiation. The difference between the tungsten and rhenium irradiated samples was negligible, suggesting that for the concentrations and damage levels employed, the presence of rhenium does not have a significant effect on the hardening mechanism. Energy dependent EBSD of annealed samples provided information about the depth distribution of the radiation damage in individual tungsten grains and confirmed that the radiation damage is orientation dependant.

  11. High-temperature extraction of rhenium from sulfuric acid solutions with trialkylamines

    International Nuclear Information System (INIS)

    Gladyhev, V.P.; Andreeva, N.N.; Kim, E.M.; Kovaleva, S.V.

    1985-01-01

    This paper attempts to determine the possibility of conducting high-temperature extraction of rhenium from sulfuric acid solutions with trialkylamines (TAA) using higher hydrocarbon-paraffin mixtures as the diluent of the extraction system. Substitution of kerosene by paraffin in the extraction system would permit decreasing the danger of fire and explosions during he extraction process. In extracting rhenium from industrial solutions with a melt of higher paraffins containing TAA and alcohols, the extraction system can be continously heated in heat exchangers through which washing sulfuric acid passes and then goes to the extractor. This permits utilizing the heat and decreases the temperature of the solutions for extraction to the optimum temperatures. Extraction of rhenium with a melt of trioctylamine in paraffin obeys the same mechanisms as high-temperature extraction of ruthenium (IV) by amines in kerosene and aromatic hydrocarbons

  12. Synthesis, Reactivity and Stability of Aryl Halide Protecting Groups towards Di-Substituted Pyridines

    Directory of Open Access Journals (Sweden)

    Ptoton Mnangat Brian

    2016-03-01

    Full Text Available This paper reports the synthesis and reactivity of different Benzyl derivative protecting groups. The synthesis and stability of Benzyl halides, 4-methoxybenzyl halides, 3,5-dimethoxybenzyl halides, 3,4-dimethoxybenzyl halides, 3,4,5-trimethoxybenzyl halide protecting groups and their reactivity towards nitrogen atom of a di-substituted pyridine ring in formation of pyridinium salts is also reported.

  13. Absorption behavior of technetium and rhenium through plant roots

    International Nuclear Information System (INIS)

    Tagami, K.; Uchida, S.

    2004-01-01

    The absorption behavior of technetium (Tc) and rhenium (Re) through plant roots was studied using nutrient solution culture. Radish samples, grown in culture solutions for 20-30 days in a green house, were transferred into plastic vessels containing nutrient solutions contaminated with multi-tracer solutions including Tc-95m and Re-183. The plant samples were grown individually for 1-7 days under laboratory conditions. The activities of radionuclides in nutrient solutions and oven-dried plant parts (roots, fleshy roots and leaves) were measured with Ge detecting systems. The concentrations of Tc-95m and Re-183 in the nutrient solutions after harvesting the plants were almost the same as those in the initial solution. Possibly, the radionuclides were taken up with water through plant roots. The distributions of Tc and Re in the plants showed no differences, thus, soluble Tc and Re absorption by plant samples were the same. It is suggested that Re could be used as a geochemical tracer of Tc in the soil environment. (author)

  14. Rhenium Dichalcogenides: Layered Semiconductors with Two Vertical Orientations.

    Science.gov (United States)

    Hart, Lewis; Dale, Sara; Hoye, Sarah; Webb, James L; Wolverson, Daniel

    2016-02-10

    The rhenium and technetium diselenides and disulfides are van der Waals layered semiconductors in some respects similar to more well-known transition metal dichalcogenides (TMD) such as molybdenum sulfide. However, their symmetry is lower, consisting only of an inversion center, so that turning a layer upside-down (that is, applying a C2 rotation about an in-plane axis) is not a symmetry operation, but reverses the sign of the angle between the two nonequivalent in-plane crystallographic axes. A given layer thus can be placed on a substrate in two symmetrically nonequivalent (but energetically similar) ways. This has consequences for the exploitation of the anisotropic properties of these materials in TMD heterostructures and is expected to lead to a new source of domain structure in large-area layer growth. We produced few-layer ReS2 and ReSe2 samples with controlled "up" or "down" orientations by micromechanical cleavage and we show how polarized Raman microscopy can be used to distinguish these two orientations, thus establishing Raman as an essential tool for the characterization of large-area layers.

  15. Polymer Photovoltaic Cells with Rhenium Oxide as Anode Interlayer.

    Science.gov (United States)

    Wei, Jinyu; Bai, Dongdong; Yang, Liying

    2015-01-01

    The effect of a new transition metal oxide, rhenium oxide (ReO3), on the performance of polymer solar cells based on regioregular poly(3-hexylthiophene) (P3HT) and methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM) blend as buffer layer was investigated. The effect of the thickness of ReO3 layer on electrical characteristics of the polymer solar cells was studied. It is found that insertion of ReO3 interfacial layer results in the decreased performance for P3HT: PCBM based solar cells. In order to further explore the mechanism of the decreasing of the open-circuit voltage (Voc), the X-ray photoelectron spectroscopy (XPS) is used to investigate the ReO3 oxidation states. Kelvin Probe method showed that the work function of the ReO3 is estimated to be 5.13eV after thermal evaporation. The results indicated the fact that a portion of ReO3 decomposed during thermal evaporation process, resulting in the formation of a buffer layer with a lower work function. As a consequence, a higher energy barrier was generated between the ITO and the active layer.

  16. A tungsten-rhenium interatomic potential for point defect studies

    Science.gov (United States)

    Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.

    2018-05-01

    A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures in the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancies and self-interstitial defects sufficiently accurately and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).

  17. The creation of defects in ammonium halides by excitons

    International Nuclear Information System (INIS)

    Kim, L.M.

    2002-01-01

    The ammonium halides crystals and alkali halides crystals are analogous by kind chemical bonds and crystalline lattices. The anionic sublattice is identical in this crystals. It is known the main mechanism of defect creation by irradiation is radiationless decay of excitons in alkali halides crystals. The F-, H-centers are formation in this processes. However, F, H-centres are not detected in ammonium halides. The goal of this work is investigation the creation of defects in ammonium halides by excitons. We established that excitons in ammonium chlorides and bromides are similar to excitons in alkali halides. It is known excitons are self-trapped and have identical parameters of the exciton-phonon interaction in both kind crystals. It is supposed, that processes of radiationless disintegration of excitons are identical in ammonium and alkali halides. It is necessary to understand why F-, H-centers are absent in ammonium halides. V k -centres are created by the excitation of the ammonium halides crystals in the absorption band of excitons. It was established by thermoluminescence and spectrums of absorption. The V k -centers begin to migrate at 110-120 K in ammonium chlorides and bromides. The curve of thermoluminescence have peak with maximum at this temperatures. It is known V k -centers in ammonium chlorides have the absorption band at 380 nm. We discovered this absorption band after irradiation of crystals by ultra-violet. In alkali halides F-center is anionic vacancy with electron. The wave function of electron are spread ed at the cations around anionic vacancy. We established the cation NH 4 + in ammonium halides can to capture electron. The ion NH 4 2+ is unsteady. It is disintegrated to NH 3 + and H + . We suppose that excitons in ammonium and alkali halides are disintegrated identically. When cation NH 4 + capture electron, in the anionic sublattice the configuration are created in a direction (100) The indicated configuration is unsteady in relation to a

  18. Treatment of alcaline metals halides for developing crystals

    International Nuclear Information System (INIS)

    Spurney, R.W.

    1974-01-01

    A process is described whereby crystals of an alkaline metal halide may be dried and placed in a crucible for development by the Bridgeman-Stockbarger method. Purified alkaline halides from a suspension are dried and formed into dense cakes of transverse section slightly smaller than that of the crucible, where they are packed, melted and grown into crystals according to the Bridgeman-Stockbarger technique. This method applies to the preparation of alkaline halide crystals, particularly sodium iodide for optical elements or scintillation counters [fr

  19. Alkali metal and alkali earth metal gadolinium halide scintillators

    Science.gov (United States)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  20. Structure and x-ray density of electrochemically deposited rhenium films

    International Nuclear Information System (INIS)

    Petrovich, V.A.; Fedenkov, A.L.; Shepurev, S.Yu.

    1988-01-01

    The electrodeposition of rhenium was carried out at a constant cathode-current density and room temperature. The backing was grade KEF-0.02 single-crystal silicon. The absorption coefficient μ of the film was determined for the K α radiation of the copper line. The investigation enabled us to conclude that electrochemically deposited rhenium films can be used as a material for the masking coatings of x-ray patterns, since the absorption coefficients of the x-ray radiation of the resultant films are superior to the similar parameters of traditionally employed materials, and surpass these materials in terms of corrosion resistance and simplicity of production

  1. Influence of ligand structure on anticancer and antioxidant properties of rhenium cluster compounds

    Directory of Open Access Journals (Sweden)

    I. V. Leus

    2009-11-01

    Full Text Available Under the model growth of T8 Guerin’s carcinoma in rats we studied the anticancer activity of the system rhenium-platinum, which includes cis-dicarboxylates of rhenium (III with different alkyl ligands, erythrocytes number and its morphological structure, erythrocytic stability, blood haemoglobin concentration, catalase activity and concentration of TBA-active products in the rats blood plasma. The renium-platinum system had considerable antioxidat effect and prevented the growth of tumour, that was maximal for a compound with the pivalate ligand.

  2. Radiation chemistry of the alkali halides

    International Nuclear Information System (INIS)

    Robinson, V.J.; Chandratillake, M.R.

    1987-01-01

    By far the most thoroughly investigated group of compounds in solid-state radiation chemistry are the alkali halides. Some of the reasons are undoubtedly practical: large single crystals of high purity are readily prepared. The crystals are transparent over a wide range of wavelengths. They are more sensitive to radiation damage than most other ionic solids. The crystals have simple well-defined structures, and the products of radiolysis have also in many cases been clearly identified by a variety of experimental techniques, the most important being optical methods and electron paramagnetic resonance (EPR). In recent years the application of pulse techniques-radiolysis and laser photolysis-has yielded a wealth of information concerning the mechanisms of the primary processes of radiation damage, on the one hand, and of thermal and photolytic reactions that the radiolysis products undergo, on the other

  3. Catalytic effect of halide additives ball milled with magnesium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Malka, I.E.; Bystrzycki, J. [Department of Advanced Materials and Technologies, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); Czujko, T. [Department of Advanced Materials and Technologies, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); CanmetENERGY, Hydrogen Fuel Cells and Transportation Energy, Natural Resources (Canada)

    2010-02-15

    The influence of various halide additives milled with magnesium hydride (MgH{sub 2}) on its decomposition temperature was studied. The optimum amount of halide additive and milling conditions were evaluated. The MgH{sub 2} decomposition temperature and energy of activation reduction were measured by temperature programmed desorption (TPD) and differential scanning calorimetry (DSC). The difference in catalytic efficiency between chlorides and fluorides of the various metals studied is presented. The effects of oxidation state, valence and position in the periodic table for selected halides on MgH{sub 2} decomposition temperature were also studied. The best catalysts, from the halides studied, for magnesium hydride decomposition were ZrF{sub 4}, TaF{sub 5}, NbF{sub 5}, VCl{sub 3} and TiCl{sub 3}. (author)

  4. Single Crystals of Organolead Halide Perovskites: Growth, Characterization, and Applications

    KAUST Repository

    Peng, Wei

    2017-01-01

    Despite their outstanding charge transport characteristics, organolead halide perovskite single crystals grown by hitherto reported crystallization methods are not suitable for most optoelectronic devices due to their small aspect ratios

  5. Dipole-dipole van der Waals interaction in alkali halides

    International Nuclear Information System (INIS)

    Thakur, B.N.; Thakur, K.P.

    1978-01-01

    Values of van der Waals dipole-dipole constants and interaction energetics of alkali halides are reported using the recent data. The values obtained are somewhat larger than those of earlier workers. (orig.) [de

  6. High temperature reactions between molybdenum and metal halides

    International Nuclear Information System (INIS)

    Boeroeczki, A.; Dobos, G.; Josepovits, V.K.; Hars, Gy.

    2006-01-01

    Good colour rendering properties, high intensity and efficacy are of vital importance for high-end lighting applications. These requirements can be achieved by high intensity discharge lamps doped with different metal halide additives (metal halide lamps). To improve their reliability, it is very important to understand the different failure processes of the lamps. In this paper, the corrosion reactions between different metal halides and the molybdenum electrical feed-through electrode are discussed. The reactions were studied in the feed-through of real lamps and on model samples too. X-ray photoelectron spectroscopy (XPS) was used to establish the chemical states. In case of the model samples we have also used atomic absorption spectroscopy (AAS) to measure the reaction product amounts. Based on the measurement results we were able to determine the most corrosive metal halide components and to understand the mechanism of the reactions

  7. Dislocation unpinning model of acoustic emission from alkali halide ...

    Indian Academy of Sciences (India)

    The present paper reports the dislocation unpinning model of acoustic emis- sion (AE) from ... Acoustic emission; dislocation; alkali halide crystals; plastic deformation. ..... [5] T Nishimura, A Tahara and T Kolama, Jpn. Metal Inst. 64, 339 (2000).

  8. Systemic analysis of thermodynamic properties of lanthanide halides

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Badalov, A.; Marufi, V.K.

    1992-01-01

    System analysis of thermodynamic characteristics of lanthanide halides was carried out. A method making allowances for the influence of spin and orbital moments of momentum of the main states of lanthanide trivalent ions in their natural series was employed. Unknown in literature thermodynamic values were calculated and corrected for certain compounds. The character of lanthanide halide thermodynamic parameter change depending on ordinal number of the metals was ascertained. Pronouncement of tetrad-effect in series of compounds considered was pointed out

  9. Analysis of extreme ultraviolet spectra from laser produced rhenium plasmas

    Science.gov (United States)

    Wu, Tao; Higashiguchi, Takeshi; Li, Bowen; Suzuki, Yuhei; Arai, Goki; Dinh, Thanh-Hung; Dunne, Padraig; O'Reilly, Fergal; Sokell, Emma; Liu, Luning; O'Sullivan, Gerry

    2015-08-01

    Extreme ultraviolet spectra of highly-charged rhenium ions were observed in the 1-7 nm region using two Nd:YAG lasers with pulse lengths of 150 ps and 10 ns, respectively, operating at a number of laser power densities. The maximum focused peak power density was 2.6 × 1014 W cm-2 for the former and 5.5 × 1012 W cm-2 for the latter. The Cowan suite of atomic structure codes and unresolved transition array (UTA) approach were used to calculate and interpret the emission properties of the different spectra obtained. The results show that n = 4-n = 4 and n = 4-n = 5 UTAs lead to two intense quasi-continuous emission bands in the 4.3-6.3 nm and 1.5-4.3 nm spectral regions. As a result of the different ion stage distributions in the plasmas induced by ps and ns laser irradiation the 1.5-4.3 nm UTA peak moves to shorter wavelength in the ps laser produced plasma spectra. For the ns spectrum, the most populated ion stage during the lifetime of this plasma that could be identified from the n = 4-n = 5 transitions was Re23+ while for the ps plasma the presence of significantly higher stages was demonstrated. For the n = 4-n = 4 4p64dN-4p54dN+1 + 4p64dN-14f transitions, the 4d-4f transitions contribute mainly in the most intense 4.7-5.5 nm region while the 4p-4d subgroup gives rise to a weaker feature in the 4.3-4.7 nm region. A number of previously unidentified spectral features produced by n = 4-n = 5 transitions in the spectra of Re XVI to Re XXXIX are identified.

  10. Relation between the electroforming voltage in alkali halide-polymer diodes and the bandgap of the alkali halide

    International Nuclear Information System (INIS)

    Bory, Benjamin F.; Wang, Jingxin; Janssen, René A. J.; Meskers, Stefan C. J.; Gomes, Henrique L.; De Leeuw, Dago M.

    2014-01-01

    Electroforming of indium-tin-oxide/alkali halide/poly(spirofluorene)/Ba/Al diodes has been investigated by bias dependent reflectivity measurements. The threshold voltages for electrocoloration and electroforming are independent of layer thickness and correlate with the bandgap of the alkali halide. We argue that the origin is voltage induced defect formation. Frenkel defect pairs are formed by electron–hole recombination in the alkali halide. This self-accelerating process mitigates injection barriers. The dynamic junction formation is compared to that of a light emitting electrochemical cell. A critical defect density for electroforming is 10 25 /m 3 . The electroformed alkali halide layer can be considered as a highly doped semiconductor with metallic transport characteristics

  11. Studies of the structures of rhenium complexes with sulphur-containing amino acids: cysteine and homocysteine

    International Nuclear Information System (INIS)

    Arkowska, A.; Wojciechowski, W.

    1979-01-01

    Two rhenium compounds have been synthesized: compound 1 with cysteine HS-CH 2 -CH-NH 2 -COOH and compound 2 with homocysteine HS-CH 2 -CH 2 -CH-NH 2 -COOH. On the basis of spectroscopic measurements (IR, far IR, Raman, VIS and UV spectra) and magnetic susceptibility measurements their probable electronic and molecular structures have been determined. (author)

  12. Femtosecond Fluorescence and Intersystem Crossing in Rhenium(I) Carbonyl-Bipyridine Complexes

    Czech Academy of Sciences Publication Activity Database

    Cannizzo, A.; Blanco-Rodríguez, A. M.; Nahhas, A. E.; Šebera, Jakub; Záliš, Stanislav; Vlček, Antonín; Chergui, M.

    2008-01-01

    Roč. 130, č. 28 (2008), s. 8967-8974 ISSN 0002-7863 R&D Projects: GA MŠk 1P05OC068 Institutional research plan: CEZ:AV0Z40400503 Keywords : rhenium(I) * carbonyl-bipyridine * intersystem crossing Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 8.091, year: 2008

  13. Synthesis, reactivity, and properties of N-fused porphyrin rhenium(I) tricarbonyl complexes.

    Science.gov (United States)

    Toganoh, Motoki; Ikeda, Shinya; Furuta, Hiroyuki

    2007-11-12

    The thermal reactions of N-fused tetraarylporphyrins or N-confused tetraarylporphyrins with Re2(CO)10 gave the rhenium(I) tricarbonyl complexes bearing N-fused porphyrinato ligands (4) in moderate to good yields. The rhenium complexes 4 are characterized by mass, IR, 1H, and 13C NMR spectroscopy, and the structures of tetraphenylporphynato complex 4a and its nitro derivative 15 are determined by X-ray single crystal analysis. The rhenium complexes 4 show excellent stability against heat, light, acids, bases, and oxidants. The aromatic substitution reactions of 4 proceed without a loss of the center metal to give the nitro (15), formyl (16), benzoyl (17), and cyano derivatives (19), regioselectively. In the electrochemical measurements for 4, one reversible oxidation wave and two reversible reduction waves are observed. Their redox potentials imply narrow HOMO-LUMO band gaps of 4 and are consistent with their electronic absorption spectra, in which the absorption edges exceed 1000 nm. Theoretical study reveals that the HOMO and LUMO of the rhenium complexes are exclusively composed of the N-fused porphyrin skeleton. Protonation of 4 takes place at the 21-position regioselectively, reflecting the high coefficient of the C21 atom in the HOMO orbital. The skeletal rearrangement reaction from N-confused porphyrin Re(I) complex (8) to N-fused porphyrin Re(I) complex (4) is suggested from the mechanistic study as well as DFT calculations.

  14. Rhenium solubility in borosilicate nuclear waste glass: implications for the processing and immobilization of technetium-99.

    Science.gov (United States)

    McCloy, John S; Riley, Brian J; Goel, Ashutosh; Liezers, Martin; Schweiger, Michael J; Rodriguez, Carmen P; Hrma, Pavel; Kim, Dong-Sang; Lukens, Wayne W; Kruger, Albert A

    2012-11-20

    The immobilization of technetium-99 ((99)Tc) in a suitable host matrix has proven to be a challenging task for researchers in the nuclear waste community around the world. In this context, the present work reports on the solubility and retention of rhenium, a nonradioactive surrogate for (99)Tc, in a sodium borosilicate glass. Glasses containing target Re concentrations from 0 to 10,000 ppm [by mass, added as KReO(4) (Re(7+))] were synthesized in vacuum-sealed quartz ampules to minimize the loss of Re from volatilization during melting at 1000 °C. The rhenium was found as Re(7+) in all of the glasses as observed by X-ray absorption near-edge structure. The solubility of Re in borosilicate glasses was determined to be ~3000 ppm (by mass) using inductively coupled plasma optical emission spectroscopy. At higher rhenium concentrations, additional rhenium was retained in the glasses as crystalline inclusions of alkali perrhenates detected with X-ray diffraction. Since (99)Tc concentrations in a glass waste form are predicted to be wastes, assuming Tc as Tc(7+) and similarities between Re(7+) and Tc(7+) behavior in this glass system.

  15. THE SYNTHESIS OF BIOCONJUGATE BASED ON RHENIUM(I CARBONYL COMPLEX FOR VISUALIZATION OF PATHOLOGICAL PROCESS

    Directory of Open Access Journals (Sweden)

    K. O. Piletska

    2017-03-01

    Full Text Available Tricarbonyl rhenium(I complexes have a great potential like biomarkers. It is caused their biological stability, low toxicity, large Stokes shifts, and long luminescence lifetimes. Rhenium tricarbonyl complexes fac-[Re(CO3(N^N], where N^N is a ligand with low π* orbitals are excellent candidates as imaging dyes. The method of obtaining potential biomarkers based on tricarbonyl rhenium(I complex with a 4-methyl-2,2’-bipyridine-4’-carboxylate by the addition of biomolecules by peptide synthesis was developed. The new complex [Re(CO3MebpyCOOHBr] was synthesized, composition and structure of which were established by mass spectrometry, IR and NMR spectroscopy. A selective attachment of receptor peptide enkephalin to complex [Re(CO3(MebpyCOOHBr] was performed. The formation of a new compound and its structure has been confirmed by HPLC and mass spectral analysis. The method which has been developed allows to connect various peptides to rhenium(I complex in the solution.

  16. Submersion criticality safety of tungsten-rhenium urania cermet fuel for space propulsion and power applications

    Energy Technology Data Exchange (ETDEWEB)

    Craft, A.E., E-mail: aaron.craft@inl.gov [Center for Space Nuclear Research (CSNR), INL, Idaho Falls, ID (United States); O’Brien, R.C., E-mail: Robert.OBrien@inl.gov [Center for Space Nuclear Research (CSNR), INL, Idaho Falls, ID (United States); Howe, S.D., E-mail: Steven.Howe@inl.gov [Center for Space Nuclear Research (CSNR), INL, Idaho Falls, ID (United States); King, J.C., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Metallurgical and Materials Engineering Department, Colorado School of Mines, Golden, CO 80401 (United States)

    2014-07-01

    Highlights: • Criticality safety studies consider a generic space nuclear reactor in reentry scenarios. • Describes the submersion criticality behavior for a reactor fueled with a tungsten cermet fuel. • Study considers effects of varying fuel content, geometry, and other conditions. - Abstract: Nuclear thermal rockets are the preferred propulsion technology for a manned mission to Mars, and tungsten–uranium oxide cermet fuels could provide significant performance and cost advantages for nuclear thermal rockets. A nuclear reactor intended for use in space must remain subcritical before and during launch, and must remain subcritical in launch abort scenarios where the reactor falls back to Earth and becomes submerged in terrestrial materials (including seawater, wet sand, or dry sand). Submersion increases reflection of neutrons and also thermalizes the neutron spectrum, which typically increases the reactivity of the core. This effect is typically very significant for compact, fast-spectrum reactors. This paper provides a submersion criticality safety analysis for a representative tungsten/uranium oxide fueled reactor with a range of fuel compositions. Each submersion case considers both the rhenium content in the matrix alloy and the uranium oxide volume fraction in the cermet. The inclusion of rhenium significantly improves the submersion criticality safety of the reactor. While increased uranium oxide content increases the reactivity of the core, it does not significantly affect the submersion behavior of the reactor. There is no significant difference in submersion behavior between reactors with rhenium distributed within the cermet matrix and reactors with a rhenium clad in the coolant channels. The combination of the flooding of the coolant channels in submersion scenarios and the presence of a significant amount of spectral shift absorbers (i.e. high rhenium concentration) further decreases reactivity for short reactor cores compared to longer cores.

  17. Structure and energetics of trivalent metal halides

    International Nuclear Information System (INIS)

    Hutchinson, F.

    1999-01-01

    Metal trihalide (MX 3 ) systems represent a stern challenge in terms of constructing transferable potential models. Starting from a previously published set of potentials, 'extended' ionic models are developed which, at the outset, include only anion polarization. Deficiencies in these models, particularly for smaller (highly polarizing) cations, axe shown to be significant. For example, crystal structures different to those observed experimentally axe adopted. The potentials axe improved upon by reference to ab initio information available for alkali halides with the 'constraint' that the parameters transfer systematically in a physically transparent manner, for example, in terms of ion radii. The possible influence of anion compression ('breathing') and the relative abundance of anion-anion interactions are considered. Simulation techniques axe developed to allow for the effective simulation of any system symmetry and for the study of transitions between different crystals (constant stress). The developed models are fully tested for a large range of metal trichloride (MCl 3 ) systems. Particular attention is paid to the comparison with recent neutron and X-ray diffraction data on the liquid state. Polarization effects axe shown to be vital in reproducing strong experimental features. The excellent agreement between simulation and experiment allows for differences in experimental procedures to be highlighted. The transferability is further tested by modelling mixtures of the lanthanides with alkali halides with potentials unchanged from the pure systems. The complex evolution of the melt structure is highlighted as the concentration of MCl 3 increases. The effectiveness of the models is tested by reference to dynamical properties. Particular attention is paid to the comparison with Raman scattering data available for a wide range of systems and mixture concentrations. The simulated spectra are generated both by a simple molecular picture of the underlying

  18. Tungsten-rhenium composite tube fabricated by CVD for application in 18000C high thermal efficiency fuel processing furnace

    International Nuclear Information System (INIS)

    Svedberg, R.C.; Bowen, W.W.; Buckman, R.W. Jr.

    1980-04-01

    Chemical Vapor Deposit (CVD) rhenium was selected as the muffle material for an 1800 0 C high thermal efficiency fuel processing furnace. The muffle is exposed to high vacuum on the heater/insulation/instrumentation side and to a flowing argon-8 V/0 hydrogen gas mixture at one atmosphere pressure on the load volume side. During operation, the muffle cycles from room temperature to 1800 0 C and back to room temperature once every 24 hours. Operational life is dependent on resistance to thermal fatigue during the high temperature exposure. For a prototypical furnace, the muffle is approximately 13 cm I.D. and 40 cm in length. A small (about one-half size) rhenium closed end tube overcoated with tungsten was used to evaluate the concept. The fabrication and testing of the composite tungsten-rhenium tube and prototypic rhenium muffle is described

  19. Effect of octanols structure on their extraction ability as regards to rhenium(VII) in sulfuric acid solutions

    International Nuclear Information System (INIS)

    Kasikov, A.G.; Petrova, A.M.

    2007-01-01

    It is established that extraction ability of octanols as regards to rhenium(VII) and sulfuric acid depends on the structure of alcohol, but if in passage from octanol-1 to octanol-3 as regard to rhenium(VII) it rises, then for H 2 SO 4 it falls. Dependence of the distribution function of rhenium from the concentration of the acid has maximums at 4-7 mol l 1- that the most distinctly it becomes apparent for secondary alcohols. Decreasing the extraction ability of octyl alcohols with the growth of H 2 SO 4 concentration more than 7 mol l 1- is connected with the change of extractant composition and forms of rhenium(VII) being in the solution [ru

  20. Crystal structures of a manganese(I and a rhenium(I complex of a bipyridine ligand with a non-coordinating benzoic acid moiety

    Directory of Open Access Journals (Sweden)

    Sheri Lense

    2018-05-01

    Full Text Available The structures of two facially coordinated Group VII metal complexes are reported, namely: fac-bromido[2-(2,2′-bipyridin-6-ylbenzoic acid-κ2N,N′]tricarbonylmanganese(I tetrahydrofuran monosolvate, [MnBr(C17H12N2O2(CO3]·C4H8O, I, and fac-[2-(2,2′-bipyridin-6-ylbenzoic acid-κ2N,N′]tricarbonylchloridorhenium(I tetrahydrofuran monosolvate, [ReCl(C17H12N2O2(CO3]·C4H8O, II. In both complexes, the metal ion is coordinated by three carbonyl ligands, a halide ion, and a 2-(2,2′-bipyridin-6-ylbenzoic acid ligand, in a distorted octahedral geometry. In manganese complex I, the tetrahydrofuran (THF solvent molecule could not be refined due to disorder. The benzoic acid fragment is also disordered over two positions, such that the carboxylic acid group is either positioned near to the bromide ligand or to the axial carbonyl ligand. In the crystal of I, the complex molecules are linked by a pair of C—H...Br hydrogen bonds, forming inversion dimers that stack up the a-axis direction. In the rhenium complex II, there is hydrogen bonding between the benzoic acid moiety and a disordered co-crystallized THF molecule. In the crystal, the molecules are linked by C—H...Cl hydrogen bonds, forming layers parallel to (100 separated by layers of THF solvent molecules.

  1. Residency of rhenium and osmium in a heavy crude oil

    Science.gov (United States)

    DiMarzio, Jenna M.; Georgiev, Svetoslav V.; Stein, Holly J.; Hannah, Judith L.

    2018-01-01

    Rhenium-osmium (Re-Os) isotope geochemistry is an emerging tool for the study of oil formation and migration processes, and a new technology for petroleum exploration. Little is known, however, about the residency of Re and Os within asphaltene and maltene sub-fractions of crude oil. This information is crucial for understanding the 187Re-187Os radiometric clock held in petroleum systems and for interpreting geochronology for key processes such as oil formation, migration, and biodegradation. In this study, a heavy crude oil was separated into soluble (maltene, MALT) and insoluble (asphaltene, ASPH) fractions using n-heptane as the asphaltene-precipitating agent. The asphaltenes were separated sequentially into sub-fractions using two different solvent pairs (heptane-dichloromethane and acetone-toluene), and the bulk maltenes were separated into saturate, aromatic, and resin (SAR) fractions using open column chromatography. Each asphaltene and maltene sub-fraction was analyzed for Re and Os. The asphaltene sub-fractions and the bulk ASPH, MALT, and crude oil were analyzed for a suite of trace metals by ICP-MS. Our results show that Re and Os concentrations co-vary between the asphaltene sub-fractions, and that both elements are found mostly in the more polar and aromatic sub-fractions. Significant Re and Os are also present in the aromatic and resin fractions of the maltenes. However, each asphaltene and maltene sub-fraction has a distinct isotopic composition, and sub-fractions are not isochronous. This suggests that asphaltene sub-fractionation separates Re-Os complexes to the point where the isotopic integrity of the geochronometer is compromised. The mobility of individual Re and Os isotopes and the decoupling possibilities between radiogenic 187Os produced from 187Re remain elusive, but their recognition in this study is a critical first step. Re and Os correlate strongly with Mo and Cd in the asphaltene sub-fractions, suggesting that these metals occupy

  2. Testing of electroformed deposited iridium/powder metallurgy rhenium rockets

    Science.gov (United States)

    Reed, Brian D.; Dickerson, Robert

    1996-01-01

    High-temperature, oxidation-resistant chamber materials offer the thermal margin for high performance and extended lifetimes for radiation-cooled rockets. Rhenium (Re) coated with iridium (Ir) allow hours of operation at 2200 C on Earth-storable propellants. One process for manufacturing Ir/Re rocket chambers is the fabrication of Re substrates by powder metallurgy (PM) and the application of Ir coatings by using electroformed deposition (ED). ED Ir coatings, however, have been found to be porous and poorly adherent. The integrity of ED Ir coatings could be improved by densification after the electroforming process. This report summarizes the testing of two 22-N, ED Ir/PM Re rocket chambers that were subjected to post-deposition treatments in an effort to densify the Ir coating. One chamber was vacuum annealed, while the other chamber was subjected to hot isostatic pressure (HIP). The chambers were tested on gaseous oxygen/gaseous hydrogen propellants, at mixture ratios that simulated the oxidizing environments of Earth-storable propellants. ne annealed ED Ir/PM Re chamber was tested for a total of 24 firings and 4.58 hr at a mixture ratio of 4.2. After only 9 firings, the annealed ED Ir coating began to blister and spall upstream of the throat. The blistering and spalling were similar to what had been experienced with unannealed, as-deposited ED Ir coatings. The HIP ED Ir/PM Re chamber was tested for a total of 91 firings and 11.45 hr at mixture ratios of 3.2 and 4.2. The HIP ED Ir coating remained adherent to the Re substrate throughout testing; there were no visible signs of coating degradation. Metallography revealed, however, thinning of the HIP Ir coating and occasional pores in the Re layer upstream of the throat. Pinholes in the Ir coating may have provided a path for oxidation of the Re substrate at these locations. The HIP ED Ir coating proved to be more effective than vacuum annealed and as-deposited ED Ir. Further densification is still required to

  3. Analysis of extreme ultraviolet spectra from laser produced rhenium plasmas

    International Nuclear Information System (INIS)

    Wu, Tao; Dunne, Padraig; O’Reilly, Fergal; Sokell, Emma; Liu, Luning; O’Sullivan, Gerry; Higashiguchi, Takeshi; Suzuki, Yuhei; Arai, Goki; Dinh, Thanh-Hung; Li, Bowen

    2015-01-01

    Extreme ultraviolet spectra of highly-charged rhenium ions were observed in the 1–7 nm region using two Nd:YAG lasers with pulse lengths of 150 ps and 10 ns, respectively, operating at a number of laser power densities. The maximum focused peak power density was 2.6 × 10 14 W cm −2 for the former and 5.5 × 10 12 W cm −2 for the latter. The Cowan suite of atomic structure codes and unresolved transition array (UTA) approach were used to calculate and interpret the emission properties of the different spectra obtained. The results show that n = 4-n = 4 and n = 4-n = 5 UTAs lead to two intense quasi-continuous emission bands in the 4.3–6.3 nm and 1.5–4.3 nm spectral regions. As a result of the different ion stage distributions in the plasmas induced by ps and ns laser irradiation the 1.5–4.3 nm UTA peak moves to shorter wavelength in the ps laser produced plasma spectra. For the ns spectrum, the most populated ion stage during the lifetime of this plasma that could be identified from the n = 4-n = 5 transitions was Re 23+ while for the ps plasma the presence of significantly higher stages was demonstrated. For the n = 4-n = 4 4p 6 4d N -4p 5 4d N+1  + 4p 6 4d N−1 4f transitions, the 4d-4f transitions contribute mainly in the most intense 4.7–5.5 nm region while the 4p-4d subgroup gives rise to a weaker feature in the 4.3–4.7 nm region. A number of previously unidentified spectral features produced by n = 4-n = 5 transitions in the spectra of Re XVI to Re XXXIX are identified. (paper)

  4. Study on the application of crown ether for neutron activation analysis of rubidium and rhenium in rock samples

    International Nuclear Information System (INIS)

    Wang Xiaolin; Fu Yibei; Liu Yinong; Xiong Zonghua; Hao Fanhua

    1996-01-01

    The extraction behaviour of rubidium and rhenium with 18-crown-6 (18C6) and benzo-15-crown-5 (B15C5) in nitrobenzene from picric acid or potassium hydroxide solution are studied and methods for separation and determination are developed. The molar ratio of 18C6 to Rb and B15C5 to Re in the extracted species is probably 2:1. Rubidium and rhenium in rock samples are satisfactorily determined by neutron activation method

  5. Excitonic Effects in Methylammonium Lead Halide Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Beard, Matthew C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chen, Xihan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lu, Haipeng [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Ye [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-05-01

    The exciton binding energy in methylammonium lead iodide (MAPbI3) is about 10 meV, around 1/3 of the available thermal energy (kBT ~ 26 meV) at room temperature. Thus, exciton populations are not stable at room temperature at moderate photoexcited carrier densities. However, excitonic resonances dominate the absorption onset. Furthermore, these resonances determine the transient absorbance and transient reflectance spectra. The exciton binding energy is a reflection of the Coulomb interaction energy between photoexcited electrons and holes. As such, it serves as a marker for the strength of electron/hole interactions and impacts a variety of phenomena, such as, absorption, radiative recombination, and Auger recombination. In this Perspective, we discuss the role of excitons and excitonic resonances in the optical properties of lead-halide perovskite semiconductors. Finally, we discuss how the strong light-matter interactions induce an optical stark effect splitting the doubly spin degenerate ground exciton states and are easily observed at room temperature.

  6. Structured alkali halides for medical applications

    International Nuclear Information System (INIS)

    Schmitt, B.; Fuchs, M.; Hell, E.; Knuepfer, W.; Hackenschmied, P.; Winnacker, A.

    2002-01-01

    Image plates based on storage phosphors are a major application of radiation defects in insulators. Storage phosphors absorb X-ray quanta creating trapped electron-hole pairs in the material. Optical stimulation of the electron causes recombination leading to light emission. Application of image plates requires an optimal compromise between resolution (represented by the modulation transfer function (MTF)) and sensitivity. In our paper we present a new solution of the problem of combining a high MTF with a high sensitivity by structuring the image plates in form of thin needles acting as light guides. This suppresses the lateral spread of light which is detrimental to resolution. As doped CsBr, e.g. CsBr:Ga [Physica Medica XV (1999) 301], can pose a good storage phosphor evaporated layers are of interest in computed radiography. Needle structured CsI:Tl is used as scintillator in direct radiography [IEEE Trans. Nucl. Sci. 45 (3) (1998)]. CsBr layers have been produced by evaporation in vacuum and in inert gas atmosphere varying pressure and temperature. The resulting structures are of fibrous or columnar nature being in good agreement with the zone model of Thornton [Ann. Rev. Mater. Sci. 7 (1977) 239]. A zone model for CsBr has been developed. Measurements on doped alkali halide image plates having needle structure show good MTF at high sensitivity making a significant progress in image plate technology

  7. Solar cells, structures including organometallic halide perovskite monocrystalline films, and methods of preparation thereof

    KAUST Repository

    Bakr, Osman; Peng, Wei; Wang, Lingfei

    2017-01-01

    Embodiments of the present disclosure provide for solar cells including an organometallic halide perovskite monocrystalline film (see fig. 1.1B), other devices including the organometallic halide perovskite monocrystalline film, methods of making

  8. Study of the electrodeposition of rhenium thin films by electrochemical quartz microbalance and X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Schrebler, R.; Cury, P.; Suarez, C.; Munoz, E.; Vera, F.; Cordova, R.; Gomez, H.; Ramos-Barrado, J.R.; Leinen, D.; Dalchiele, E.A.

    2005-01-01

    Rhenium thin films were prepared by electrodeposition from an aqueous solution containing 0.1 M Na 2 SO 4 +H 2 SO 4 , pH 2 in presence of y mM HReO 4 . As substrates polycrystalline gold (y=0.75 mM HReO 4 ) and monocrystalline n-Si(100) (y=40 mM HReO 4 ) were used. The electrochemical growth of rhenium was studied by cyclic voltammetry and electrochemical quartz microbalance on gold electrodes. The results found in the potential region before the hydrogen evolution reaction (her) showed that ReO 3 , ReO 2 and Re 2 O 3 with different hydration grades can be formed. In the potential region where the her is occurring, either on gold or n-Si(100) the electrodeposition of metallic rhenium takes place. On both substrates, rhenium films were formed by electrolysis at constant potential and X-ray photoelectron spectroscopy technique was used to characterise these deposits. It was concluded that the electrodeposited films were of metallic rhenium and only the uppermost atomic layer contained rhenium oxide species

  9. 78 FR 51463 - Energy Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures

    Science.gov (United States)

    2013-08-20

    ... merging the metal halide lamp fixture and the high-intensity discharge (HID) lamp rulemakings. This NOPR... Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures; Proposed Rule #0;#0;Federal...: Energy Conservation Standards for Metal Halide Lamp Fixtures AGENCY: Office of Energy Efficiency and...

  10. Solvated Positron Chemistry. Competitive Positron Reactions with Halide Ions in Water

    DEFF Research Database (Denmark)

    Christensen, Palle; Pedersen, Niels Jørgen; Andersen, J. R.

    1979-01-01

    It is shown by means of the angular correlation technique that the binding of positrons to halides is strongly influenced by solvation effects. For aqueous solutions we find increasing values for the binding energies between the halide and the positron with increasing mass of the halide...

  11. Solar cells, structures including organometallic halide perovskite monocrystalline films, and methods of preparation thereof

    KAUST Repository

    Bakr, Osman M.

    2017-03-02

    Embodiments of the present disclosure provide for solar cells including an organometallic halide perovskite monocrystalline film (see fig. 1.1B), other devices including the organometallic halide perovskite monocrystalline film, methods of making organometallic halide perovskite monocrystalline film, and the like.

  12. Quaternary oxide halides of group 15 with zinc and cadmium

    International Nuclear Information System (INIS)

    Rueck, Nadia

    2014-01-01

    The present thesis ''Quaternary oxide halides of group 15 with zinc and cadmium'' deals with the chemical class of oxide halides, which contain d-block element cations and pnicogens. Over the past few years compounds containing pnicogene cations are intensively investigated. The reason for this is the free electron pair of the Pn"3"+ cation, which is responsible for some interesting properties. Free electron pairs do not only impact the spatial structure of molecules but also the properties of materials. The object of this work was the synthesis and characterization of compounds containing Pn"3"+ cations with free electron pairs. Due to the structure-determining effect of these free electron pairs and in combination with halides it is possible to synthesize compounds with low-dimensional structures like chains and layers. In these compounds the structure is separated into halophilic and chalcophilic sub-structures, which are held together only by weak Van der Waals forces.

  13. Two-Dimensional Halide Perovskites for Emerging New- Generation Photodetectors

    DEFF Research Database (Denmark)

    Tang, Yingying; Cao, Xianyi; Chi, Qijin

    2018-01-01

    Compared to their conventional three-dimensional (3D) counterparts, two-dimensional (2D) halide perovskites have attracted more interests recently in a variety of areas related to optoelectronics because of their unique structural characteristics and enhanced performances. In general, there are two...... distinct types of 2D halide perovskites. One represents those perovskites with an intrinsic layered crystal structure (i.e. MX6 layers, M = metal and X = Cl, Br, I), the other defines the perovskites with a 2D nanostructured morphology such as nanoplatelets and nanosheets. Recent studies have shown that 2D...... halide perovskites hold promising potential for the development of new-generation photodetectors, mainly arising from their highly efficient photoluminescence and absorbance, color tunability in the visible-light range and relatively high stability. In this chapter, we present the summary and highlights...

  14. Local Polar Fluctuations in Lead Halide Perovskite Crystals

    Science.gov (United States)

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; Egger, David A.; Hull, Trevor; Stoumpos, Constantinos C.; Zheng, Fan; Heinz, Tony F.; Kronik, Leeor; Kanatzidis, Mercouri G.; Owen, Jonathan S.; Rappe, Andrew M.; Pimenta, Marcos A.; Brus, Louis E.

    2017-03-01

    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH3 NH3 PbBr3 ) and all-inorganic (CsPbBr3 ) lead-halide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. MD simulations indicate that head-to-head Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr3 .

  15. Halide-Dependent Electronic Structure of Organolead Perovskite Materials

    KAUST Repository

    Buin, Andrei

    2015-06-23

    © 2015 American Chemical Society. Organometal halide perovskites have recently attracted tremendous attention both at the experimental and theoretical levels. These materials, in particular methylammonium triiodide, are still limited by poor chemical and structural stability under ambient conditions. Today this represents one of the major challenges for polycrystalline perovskite-based photovoltaic technology. In addition to this, the performance of perovskite-based devices is degraded by deep localized states, or traps. To achieve better-performing devices, it is necessary to understand the nature of these states and the mechanisms that lead to their formation. Here we show that the major sources of deep traps in the different halide systems have different origin and character. Halide vacancies are shallow donors in I-based perovskites, whereas they evolve into a major source of traps in Cl-based perovskites. Lead interstitials, which can form lead dimers, are the dominant source of defects in Br-based perovskites, in line with recent experimental data. As a result, the optimal growth conditions are also different for the distinct halide perovskites: growth should be halide-rich for Br and Cl, and halide-poor for I-based perovskites. We discuss stability in relation to the reaction enthalpies of mixtures of bulk precursors with respect to final perovskite product. Methylammonium lead triiodide is characterized by the lowest reaction enthalpy, explaining its low stability. At the opposite end, the highest stability was found for the methylammonium lead trichloride, also consistent with our experimental findings which show no observable structural variations over an extended period of time.

  16. Local coordination of polyvalent metal ions in molten halide mixtures

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Tosi, M.P.

    1989-07-01

    Ample experimental evidence is available in the literature on the geometry and the stability of local coordination for polyvalent metal ions in molten mixtures of their halides with alkali halides. Recent schemes for classifying this evidence are discussed. Dissociation of tetrahedral halocomplexes in good ionic systems can be viewed as a classical Mott problem of bound-state stability in a conducting matrix. More generally, structural coordinates can be constructed from properties of the component elements, to separate out systems with long-lived fourfold or sixfold coordination and to distinguish between these. (author). 11 refs, 1 fig

  17. Single Crystals of Organolead Halide Perovskites: Growth, Characterization, and Applications

    KAUST Repository

    Peng, Wei

    2017-04-01

    With the soaring advancement of organolead halide perovskite solar cells rising from a power conversion efficiency of merely 3% to more than 22% shortly in five years, researchers’ interests on this big material family have been greatly spurred. So far, both in-depth studies on the fundamental properties of organolead halide perovskites and their extended applications such as photodetectors, light emitting diodes, and lasing have been intensively reported. The great successes have been ascribed to various superior properties of organolead halide hybrid perovskites such as long carrier lifetimes, high carrier mobility, and solution-processable high quality thin films, as will be discussed in Chapter 1. Notably, most of these studies have been limited to their polycrystalline thin films. Single crystals, as a counter form of polycrystals, have no grain boundaries and higher crystallinity, and thus less defects. These characteristics gift single crystals with superior optical, electrical, and mechanical properties, which will be discussed in Chapter 2. For example, organolead halide perovskite single crystals have been reported with much longer carrier lifetimes and higher carrier mobilities, which are especially intriguing for optoelectronic applications. Besides their superior optoelectronic properties, organolead halide perovskites have shown large composition versatility, especially their organic components, which can be controlled to effectively adjust their crystal structures and further fundamental properties. Single crystals are an ideal platform for such composition-structure-property study since a uniform structure with homogeneous compositions and without distraction from grain boundaries as well as excess defects can provide unambiguously information of material properties. As a major part of work of this dissertation, explorative work on the composition-structure-property study of organic-cation-alloyed organolead halide perovskites using their single

  18. Metal induced gap states at alkali halide/metal interface

    International Nuclear Information System (INIS)

    Kiguchi, Manabu; Yoshikawa, Genki; Ikeda, Susumu; Saiki, Koichiro

    2004-01-01

    The electronic state of a KCl/Cu(0 0 1) interface was investigated using the Cl K-edge near-edge X-ray absorption fine structure (NEXAFS). A pre-peak observed on the bulk edge onset of thin KCl films has a similar feature to the peak at a LiCl/Cu(0 0 1) interface, which originates from the metal induced gap state (MIGS). The present result indicates that the MIGS is formed universally at alkali halide/metal interfaces. The decay length of MIGS to an insulator differs from each other, mainly due to the difference in the band gap energy of alkali halide

  19. Ultrafast time-resolved spectroscopy of lead halide perovskite films

    Science.gov (United States)

    Idowu, Mopelola A.; Yau, Sung H.; Varnavski, Oleg; Goodson, Theodore

    2015-09-01

    Recently, lead halide perovskites which are organic-inorganic hybrid structures, have been discovered to be highly efficient as light absorbers. Herein, we show the investigation of the excited state dynamics and emission properties of non-stoichiometric precursor formed lead halide perovskites grown by interdiffusion method using steady-state and time-resolved spectroscopic measurements. The influence of the different ratios of the non-stoichiometric precursor solution was examined. The observed photoluminescence properties were correlated with the femtosecond transient absorption measurements.

  20. Thallous and cesium halide materials for use in cryogenic applications

    International Nuclear Information System (INIS)

    Lawless, W.N.

    1983-01-01

    Certain thallous and cesium halides, either used alone or in combination with other ceramic materials, are provided in cryogenic applications such as heat exchange material for the regenerator section of a closed-cycle cryogenic refrigeration section, as stabilizing coatings for superconducting wires, and as dielectric insulating materials. The thallous and cesium halides possess unusually large specific heats at low temperatures, have large thermal conductivities, are nonmagnetic, and are nonconductors of electricity. They can be formed into a variety of shapes such as spheres, bars, rods, or the like and can be coated or extruded onto substrates or wires. (author)

  1. The process development of laser surface modification of commercially pure titanium (Grade 2) with rhenium

    Science.gov (United States)

    Kobiela, K.; Smolina, I.; Dziedzic, R.; Szymczyk, P.; Kurzynowski, T.; Chlebus, E.

    2016-12-01

    The paper presents the results of the process development of laser surface modification of commercially pure titanium with rhenium. The criterion of the successful/optimal process is the repetitive geometry of the surface, characterized by predictable and repetitive chemical composition over its entire surface as well as special mechanical properties (hardness and wear resistance). The analysis of surface geometry concluded measurements of laser penetration depth and heat affected zone (HAZ), the width of a single track as well as width of a clad. The diode laser installed on the industrial robot carried out the laser treatment. This solution made possible the continuous supply of powder to the substrate during the process. The aim of an investigation is find out the possibility of improving the tribological characteristics of the surface due to the rhenium alloying. The verification of the surface properties (tribological) concluded geometry measurements, microstructure observation, hardness tests and evaluation of wear resistance.

  2. Tungsten - rhenium alloys wire: overview of thermomechanical processing and properties data

    International Nuclear Information System (INIS)

    Bryskin, B.

    2001-01-01

    The scope of this study encompasses the compositional modifications of the tungsten-rhenium dual system (W-3/5 Re up to W-27 Re) as well as some of the tungsten-molybdenum-rhenium ternary system. The alloys of interest are considered with a specific representation of powder metallurgy route based on doped or undoped tungsten vs. vacuum melted materials. This paper constitutes an in-depth review of structural and mechanical properties and systematic compilation of challenges necessary to provide the quality consistency of severely drawn filaments. The issue of thermomechanical processing trends is addressed as an important part of W-Re fabrication technology to achieve further improvement in design properties of rod and wire. (author)

  3. Effect of deformation and annealing on mechanical properties of nickel-rhenium alloys

    International Nuclear Information System (INIS)

    Mashkova, V.M.

    1978-01-01

    Studied have been the mechanical properties of nickel-rhenium alloys, depending on the extent of deformation and heat treatment leading to softening. The mechanical properties of the alloys have been estimated by the results of the tensile tests of wire samples. The softening of the alloy at different temperatures is judged about by the variation in hardness. The results of the study indicate that the most abrupt reduction in the hardness of the cold-hardened metal occurs at 900-1,000 deg C and the hold-time of 1 min. Increase in the hold-time at such temperature almost does not reduce the hardness. It is established that in order to soften nickel-rhenium alloys in the process of the cold-deformation at brief annealings in the air the hold-time should not exceed 5 min at 800-900 deg C

  4. Nanograined Net-Shaped Fabrication of Rhenium Components by EB-PVD

    International Nuclear Information System (INIS)

    Singh, Jogender; Wolfe, Douglas E.

    2004-01-01

    Cost-effective net-shaped forming components have brought considerable interest into DoD, NASA and DoE. Electron beam physical vapor deposition (EB-PVD) offers flexibility in forming net-shaped components with tailored microstructure and chemistry. High purity rhenium (Re) components including rhenium-coated graphite balls, Re- plates and tubes have been successfully manufactured by EB-PVD. EB-PVD Re components exhibited sub-micron and nano-sized grains with high hardness and strength as compared to CVD. It is estimated that the cost of Re components manufactured by EB-PVD would be less than the current CVD and powder-HIP Technologies

  5. Rhenium (5) and molybdenum (5) complexes with 4',4''(5'')-ditretbutyldibenzo-24-crown-8

    International Nuclear Information System (INIS)

    Ashurova, N.Kh.; Yakubov, K.G.; Basitova, S.M.; Tashmukhamedova, A.K.; Sajfullina, N.Zh.

    1989-01-01

    Rhenium and molybdenum complexes in +5 oxidation degree with 4',4''(5'')-ditretbutyldibenzo-24-crown-8 (L) are synthesized with 75-95 % yield. Composition and structure of compounds produced are investigated using element analysis, conductometry, IR spectroscopy, thermogravimetry methods. Oxidation degree of complexer metal is determined. It is ascertained that the compound composition corresponds to the MOLX 3 formula, where M-Re, Mo; X-Cl - , Br -

  6. Complexes of technetium, rhenium, and rhodium with sexidentate Schiff-base ligands

    International Nuclear Information System (INIS)

    Hunter, G.; Kilcullen, N.

    1989-01-01

    The monocationic technetium (IV) and rhenium (IV) complexes with the sexidentate Schiff-base ligands tris[2-(2'-hydroxybenzylideneethyl)]amine and its substituted derivatives have been prepared and their electrochemical properties studied. The variable-temperature 90.6 MHz 13 C-{ 1 H} n.m.r. spectrum of the rhodium (III) complex of tris[2-(2-hydroxy-5'-isopropylbenzylideneethyl)-amine] has been observed, indicating fluxionality at temperatures above 218 K. (author)

  7. Analysis of the Nuclear Structure of Rhenium-186 Using Neutron-Induced Reactions

    Science.gov (United States)

    2015-03-26

    5 1.5 Methods ... radioisotope power source for use on the battlefield. 1 Re-Os Cosmochronometer. The isotope 187Re has a half-life in its ground state of 4.35⇥ 1010 years [2...187Os in meteorites permits one to date the nucleosynthesis of rhenium and osmium by high neutron flux events such as supernovae. The Re-Os radioactive

  8. Kinetics and mechanism of nitrobenzene hydrogenation to phenylhydroxylamine in rhenium thiocomplexes solutions

    International Nuclear Information System (INIS)

    Korenyako, G.I.; Belousov, V.M.

    1985-01-01

    A study was made on kinetics of nitrobenzene hydrogenation to phenylhydroxylamine in dimethylformamide solutions of rhenium thiocomplexes. The mechanism of hydrogenation was suggested. Formation of hydride catalyst complex represents the first stage of the process. Kinetic equation derived on the basis of suggested mechanism corresponds satisfactorily with experimental results. Thermodynamic parameters of separate process stages calculated on the basis of equilibrium constant values testify as well to the benefit of suggested mechanism

  9. The Influence of Cobalt and Rhenium on the Behaviour of MCrAlY Coatings

    OpenAIRE

    Täck, Ulrike

    2009-01-01

    Superalloys are widely applied as materials for components in the hot section of gas turbines. As superalloys have a limited oxidation life, the application of a coating is vital. The most commonly applied coatings in stationary gas turbines are MCrAlY coatings. Since the turbine components are exposed to high cyclic thermal stresses, MCrAlY coatings must also show a high thermal fatigue resistance. In this thesis, the effect of Cobalt and Rhenium on microstructure, oxidation and thermal fati...

  10. Formamidine sulfinic acid as reducing agent in technetium-99m rhenium sulfide labelling

    Energy Technology Data Exchange (ETDEWEB)

    Neves, M; Patricio, L [Laboratorio Nacional de Engenharia e Technologia Industrial, Sacavem (Portugal). Dept. de Radioisotopes; Ferronha, H [Laboratorio Nacional de Investigacao Veterinaria, Lisboa (Portugal)

    1989-08-01

    Labelling kinetic studies, radiochemical characterization and particle size evaluation of {sup 99m}Tc rhenium sulfide colloid using formamidine sulfinic acid as reducing agent are described. Comparison with the same colloid which makes use of Sn-sodium pyrophosphate complex as reducing agent showed higher labelling yields, simplification of labelling procedure and a longer shelf life when formamidine sulfinic acid was used. (author) 15 refs.; 7 figs.

  11. Chromatographic separation of rhenium in alumina-methanol/sulfuric acid system

    International Nuclear Information System (INIS)

    Oguma, Koichi

    1983-01-01

    The adsorption behavior of a number of metals on alumina was surveyed in a methanol-(0.005 -- 0.5) M H 2 SO 4 (3 : 1 v/v) developing solvent by thin-layer chromatography. Over the acid concentration range tested, Re(VII) does not favor the alumina phase to any great extent while the most other metals are strongly adsorbed on alumina. These findings allowed to establish a column chromatographic technique for selective separation of rhenium in a methanol-0.05 M H 2 SO 4 (3 : 1 v/v) eluent. The separation technique thus established was applied to molybdenite analysis for rhenium. About 100-mg powdered sample containing ca. 100 ppm rhenium was decomposed with HNO 3 and then evaporated nearly to dryness. The residue was dissolved in NH 4 OH and the excess NH 4 OH was expelled by evaporation to dryness. The residue was dissolved in 2.5-ml 0.5 M H 2 SO 4 and 10-ml water, the insoluble materials filtered off, and the filtrate diluted to exactly 25 ml with water. A 10-ml aliquot of this solution was mixed with 30-ml methanol and the mixture was passed through a column (diameter 15 mm, bed height 30 mm) containing 5 g of alumina. The column was then washed with 20 ml of a methanol-0.05 M H 2 SO 4 (3 : 1 v/v) mixture. Rhenium was recovered from the loaded solution and the subsequent washings, and was determined spectrophotometrically with Methylene Blue as a chromogenic reagent. The values obtained from four samples of molybdenite are in good agreement with those obtained by neutron activation analysis. The relative standard deviation (n = 4; calculated from the range) was between 2.0 and 5.2 %. (author)

  12. Photovoltaic Rudorffites: Lead-Free Silver Bismuth Halides Alternative to Hybrid Lead Halide Perovskites.

    Science.gov (United States)

    Turkevych, Ivan; Kazaoui, Said; Ito, Eisuke; Urano, Toshiyuki; Yamada, Koji; Tomiyasu, Hiroshi; Yamagishi, Hideo; Kondo, Michio; Aramaki, Shinji

    2017-10-09

    Hybrid CPbX 3 (C: Cs, CH 3 NH 3 ; X: Br, I) perovskites possess excellent photovoltaic properties but are highly toxic, which hinders their practical application. Unfortunately, all Pb-free alternatives based on Sn and Ge are extremely unstable. Although stable and non-toxic C 2 ABX 6 double perovskites based on alternating corner-shared AX 6 and BX 6 octahedra (A=Ag, Cu; B=Bi, Sb) are possible, they have indirect and wide band gaps of over 2 eV. However, is it necessary to keep the corner-shared perovskite structure to retain good photovoltaic properties? Here, we demonstrate another family of photovoltaic halides based on edge-shared AX 6 and BX 6 octahedra with the general formula A a B b X x (x=a+3 b) such as Ag 3 BiI 6 , Ag 2 BiI 5 , AgBiI 4 , AgBi 2 I 7 . As perovskites were named after their prototype oxide CaTiO 3 discovered by Lev Perovski, we propose to name these new ABX halides as rudorffites after Walter Rüdorff, who discovered their prototype oxide NaVO 2 . We studied structural and optoelectronic properties of several highly stable and promising Ag-Bi-I photovoltaic rudorffites that feature direct band gaps in the range of 1.79-1.83 eV and demonstrated a proof-of-concept FTO/c-m-TiO 2 /Ag 3 BiI 6 /PTAA/Au (FTO: fluorine-doped tin oxide, PTAA: poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine], c: compact, m: mesoporous) solar cell with photoconversion efficiency of 4.3 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A Study on the Trapping Characteristics of Rhenium Oxide Using Ca(OH){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae-Kyo; Eun, Hee-Chul; Choi, Jung-Hoon; Lee, Ki-Rak; Han, Seung-Youb; Park, Hwan-Seo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-01-15

    The objective of this study was to obtain basic data for trapping gaseous technetium (Tc) oxide generated from the voloxidation process in spent nuclear fuel pyroprocessing. Rhenium (Re) and Ca(OH){sub 2} were used as surrogates for the technetium and a trapping material, respectively. The trapping characteristics of rhenium oxide were investigated with changing temperatures and molar ratios of calcium (Ca) over rhenium, and the thermal behaviors of the trapping products were observed. The products following after the trapping test were identified as Ca(ReO{sub 4}){sub 2} and Ca{sub 5}Re{sub 2}O{sub 12}. The conversion to Ca{sub 5}Re{sub 2}O{sub 12} was preferred with increasing temperatures, and the trapping products were completely converted into Ca5Re2O12 under conditions exceeding 800 ℃, or when maintained at 750 ℃ for 4 hr. The trapping efficiency at a molar ratio of 2.5 (Ca:Re=5:2) was significantly superior to that at the molar ratio of 2.

  14. Characterization of rhenium compounds obtained by electrochemical synthesis after aging process

    Energy Technology Data Exchange (ETDEWEB)

    Vargas-Uscategui, Alejandro, E-mail: avargasuscat@ing.uchile.cl [Departamento de Ingeniería de Minas, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Tupper Av. 2069, Santiago (Chile); Mosquera, Edgar [Laboratorio de Materiales a Nanoescala, Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Tupper Av. 2069, Santiago (Chile); López-Encarnación, Juan M. [Department of Mathematics-Physics and Department of Chemistry, University of Puerto Rico at Cayey, 205 Ave. Antonio R. Barceló, Cayey, PR 00736, USA. (Puerto Rico); Chornik, Boris [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada Av. 2008, Santiago (Chile); Katiyar, Ram S. [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico San Juan, San Juan, PR 00931-3343 (United States); Cifuentes, Luis [Departamento de Ingeniería de Minas, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Tupper Av. 2069, Santiago (Chile)

    2014-12-15

    The proper identification of the molecular nature of the aged rhenium compound obtained by means of electrodeposition from an alkaline aqueous electrolyte was determined. Chemical, structural and vibrational experimental characterization of the aged Re compound showed agreement with quantum-computations, thereby allowing the unambiguous identification of the Re compound as H(ReO{sub 4})H{sub 2}O. - Graphical abstract: Rhenium oxides were electrodeposited on a copper surface and after environmental aging was formed the H(ReO{sub 4})H{sub 2}O compound. The characterization of the synthesized material was made through the comparison of experimental evidence with quantum mechanical computations carried out by means of density functional theory (DFT). - Highlights: • Aged rhenium compound obtained by means of electrodeposition was studied. • The study was made by combining experimental and DFT-computational information. • The aged electrodeposited material is consistent with the H(ReO{sub 4})H{sub 2}O compound.

  15. A Study on the Trapping Characteristics of Rhenium Oxide Using Ca(OH)_2

    International Nuclear Information System (INIS)

    Lee, Tae-Kyo; Eun, Hee-Chul; Choi, Jung-Hoon; Lee, Ki-Rak; Han, Seung-Youb; Park, Hwan-Seo

    2017-01-01

    The objective of this study was to obtain basic data for trapping gaseous technetium (Tc) oxide generated from the voloxidation process in spent nuclear fuel pyroprocessing. Rhenium (Re) and Ca(OH)_2 were used as surrogates for the technetium and a trapping material, respectively. The trapping characteristics of rhenium oxide were investigated with changing temperatures and molar ratios of calcium (Ca) over rhenium, and the thermal behaviors of the trapping products were observed. The products following after the trapping test were identified as Ca(ReO_4)_2 and Ca_5Re_2O_1_2. The conversion to Ca_5Re_2O_1_2 was preferred with increasing temperatures, and the trapping products were completely converted into Ca5Re2O12 under conditions exceeding 800 ℃, or when maintained at 750 ℃ for 4 hr. The trapping efficiency at a molar ratio of 2.5 (Ca:Re=5:2) was significantly superior to that at the molar ratio of 2.

  16. Diverse roles of hydrogen in rhenium carbonyl chemistry: hydrides, dihydrogen complexes, and a formyl derivative.

    Science.gov (United States)

    Li, Nan; Xie, Yaoming; King, R Bruce; Schaefer, Henry F

    2010-11-04

    Rhenium carbonyl hydride chemistry dates back to the 1959 synthesis of HRe(CO)₅ by Hieber and Braun. The binuclear H₂Re₂(CO)₈ was subsequently synthesized as a stable compound with a central Re₂(μ-H)₂ unit analogous to the B₂(μ-H)₂ unit in diborane. The complete series of HRe(CO)(n) (n = 5, 4, 3) and H₂Re₂(CO)(n) (n = 9, 8, 7, 6) derivatives have now been investigated by density functional theory. In contrast to the corresponding manganese derivatives, all of the triplet rhenium structures are found to lie at relatively high energies compared with the corresponding singlet structures consistent with the higher ligand field splitting of rhenium relative to manganese. The lowest energy HRe(CO)₅ structure is the expected octahedral structure. Low-energy structures for HRe(CO)(n) (n = 4, 3) are singlet structures derived from the octahedral HRe(CO)₅ structure by removal of one or two carbonyl groups. For H₂Re₂(CO)₉ a structure HRe₂(CO)₉(μ-H), with one terminal and one bridging hydrogen atom, lies within 3 kcal/mol of the structure Re₂(CO)₉(η²-H₂), similar to that of Re₂(CO)₁₀. For H₂Re₂(CO)(n) (n = 8, 7, 6) the only low-energy structures are doubly bridged singlet Re₂(μ-H)₂(CO)(n) structures. Higher energy dihydrogen complex structures are also found.

  17. Evaluation of oxide dispersion strengthened (ODS) molybdenum and molybdenum-rhenium alloys

    International Nuclear Information System (INIS)

    Mueller, A.J.; Bianco, R.; Buckman, R.W. Jr.

    1999-01-01

    Oxide dispersion strengthened (ODS) molybdenum alloys being developed for high temperature applications possess excellent high temperature strength and creep resistance. In addition they exhibit a ductile-to-brittle transition temperature (DBIT) in the worked and stress-relieved condition under longitudinal tensile load well below room temperature. However, in the recrystallized condition, the DBTT maybe near or above room temperature, depending on the volume fraction of oxide dispersion and the amount of prior work. Dilute rhenium additions (7 and 14 wt.%) to ODS molybdenum were evaluated to determine their effect on low temperature ductility. The addition of 7 wt.% rhenium to the ODS molybdenum did not significantly enhance the mechanical properties. However, the addition of 14 wt.% rhenium to the ODS molybdenum resulted in a DBTT well below room temperature in both the stress-relieved and recrystallized condition. Additionally, the tensile strength of ODS Mo-14Re is greater than the base ODS molybdenum at 1,000 to 1,250 C

  18. THERMODYNAMICS OF MICELLE FORMATION BY 1-METHYL-4-ALKYLPYRIDINIUM HALIDES

    NARCIS (Netherlands)

    BIJMA, K; ENGBERTS, JBFN; HAANDRIKMAN, G; VANOS, NM; BLANDAMER, MJ; BUTT, MD; CULLIS, PM

    This paper reports enthalpies of micellization for a series of 1-methyl-4-alkylpyridinium halide surfactants at 303.2 K with different lengths and degrees of branching of the 4-alkyl chain and different sizes of counterions using two microcalorimeters (LKB 2277 and Omega Microcal). The standard

  19. Empirical formula for the parameters of metallic monovalent halides ...

    African Journals Online (AJOL)

    By collating the data on melting properties and transport coefficients obtained from various experiments and theories for certain halides of monovalent metals, allinclusive linear relationship has been fashioned out. This expression holds between the change in entropy and volume on melting; it is approximately obeyed by ...

  20. Demixing in a metal halide lamp, results from modelling

    NARCIS (Netherlands)

    Beks, M.L.; Hartgers, A.; Mullen, van der J.J.A.M.

    2006-01-01

    Convection and diffusion in the discharge region of a metal halide lamp is studied using a computer model built with the plasma modeling package Plasimo. A model lamp contg. mercury and sodium iodide is studied. The effects of the total lamp pressure on the degree of segregation of the light

  1. Demixing in a metal halide lamp, results from modeling

    NARCIS (Netherlands)

    Beks, M.L.; Hartgers, A.; Mullen, van der J.J.A.M.; Veldhuizen, van E.M.

    2005-01-01

    Metal Halide (MH) lamps are high pressure discharge devices, containing a complex chemical mixture, to emit light on a broad spectrum while maintaining good efficacies. Lamps of this type were first exhibited by General Electric at the 1964 World Fair in New York [1]. They typically consist of an

  2. Monocrystallomimicry in the aerosols of ammonium and cesium halides

    International Nuclear Information System (INIS)

    Melikhov, I.V.; Kitova, E.N.; Kozlovskaya, EhD.; Kamenskaya, A.N.; Mikheev, N.B.; Kulyukhin, S.A.

    1997-01-01

    It is experimentally shown that initial CsI and NH 4 Hal nanocrystals combining into mixed aggregates of polyhedral form (pseudo monocrystals) are formed in the process of cocrystallization of ammonium halide and cesium iodide. The origination and growth of the pseudo monocrystals on the account of successive addition of initial crystals is described by the Fokker-Plank equation [ru

  3. Alternative route to metal halide free ionic liquids

    International Nuclear Information System (INIS)

    Takao, Koichiro; Ikeda, Yasuhisa

    2008-01-01

    An alternative synthetic route to metal halide free ionic liquids using trialkyloxonium salt is proposed. Utility of this synthetic route has been demonstrated by preparing 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid through the reaction between 1-methylimidazole and triethyloxonium tetra-fluoroborate in anhydrous ether. (author)

  4. Metal Halide Perovskite Polycrystalline Films Exhibiting Properties of Single Crystals

    NARCIS (Netherlands)

    Brenes, Roberto; Guo, D.; Osherov, Anna; Noel, Nakita K.; Eames, Christopher; Hutter, E.M.; Pathak, Sandeep K.; Niroui, Farnaz; Friend, Richard H.; Islam, M. Saiful; Snaith, Henry J.; Bulović, Vladimir; Savenije, T.J.; Stranks, Samuel D.

    2017-01-01

    Metal halide perovskites are generating enormous excitement for use in solar cells and light-emission applications, but devices still show substantial non-radiative losses. Here, we show that by combining light and atmospheric treatments, we can increase the internal luminescence quantum

  5. Spectroscopy on metal-halide lamps under varying gravity conditions

    NARCIS (Netherlands)

    Flikweert, A.J.

    2008-01-01

    Worldwide, 20% of all electricity is used for lighting. For this reason, efficient lamps are economically and ecologically important. High intensity discharge (HID) lamps are efficient lamps. The most common HID lamp these days is the metal-halide (MH) lamp. MH lamps have a good colour rendering

  6. Advances and Promises of Layered Halide Hybrid Perovskite Semiconductors

    NARCIS (Netherlands)

    Pedesseau, Laurent; Sapori, Daniel; Traore, Boubacar; Robles, Roberto; Fang, Hong-Hua; Loi, Maria Antonietta; Tsai, Hsinhan; Nie, Wanyi; Blancon, Jean-Christophe; Neukirch, Amanda; Tretiak, Sergei; Mohite, Aditya D.; Katan, Claudine; Even, Jacky; Kepenekian, Mikael

    2016-01-01

    Layered halide hybrid organic inorganic perovskites (HOP) have been the subject of intense investigation before the rise of three-dimensional (3D) HOP and their impressive performance in solar cells. Recently, layered HOP have also been proposed as attractive alternatives for photostable solar cells

  7. Methyl halide emission estimates from domestic biomass burning in Africa

    Science.gov (United States)

    Mead, M. I.; Khan, M. A. H.; White, I. R.; Nickless, G.; Shallcross, D. E.

    Inventories of methyl halide emissions from domestic burning of biomass in Africa, from 1950 to the present day and projected to 2030, have been constructed. By combining emission factors from Andreae and Merlet [2001. Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15, 955-966], the biomass burning estimates from Yevich and Logan [2003. An assessment of biofuel use and burning of agricultural waste in the developing world. Global Biogeochemical Cycles 17(4), 1095, doi:10.1029/2002GB001952] and the population data from the UN population division, the emission of methyl halides from domestic biomass usage in Africa has been estimated. Data from this study suggest that methyl halide emissions from domestic biomass burning have increased by a factor of 4-5 from 1950 to 2005 and based on the expected population growth could double over the next 25 years. This estimated change has a non-negligible impact on the atmospheric budgets of methyl halides.

  8. Crystal growth, structure and phase studies on gold halides

    NARCIS (Netherlands)

    Janssen, Eugenius Maria Wilhelmus Janssen

    1977-01-01

    Only very corrosive substances attack gold, the most noble metal. In this study the reactivity and the phase diagrams of gold with the halogens chlorine, bromine and iodine have been investigated. owing to the noble behaviour of gold, its halides are sensitive to heat; on heating they decompose into

  9. On the Boiling Points of the Alkyl Halides.

    Science.gov (United States)

    Correia, John

    1988-01-01

    Discusses the variety of explanations in organic chemistry textbooks of a physical property of organic compounds. Focuses on those concepts explaining attractive forces between molecules. Concludes that induction interactions play a major role in alkyl halides and other polar organic molecules and should be given wider exposure in chemistry texts.…

  10. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    Science.gov (United States)

    Cruz-Ramirez de Arellano, Daniel

    2013-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  11. Dislocation unpinning model of acoustic emission from alkali halide ...

    Indian Academy of Sciences (India)

    AE) from alkali halide crystals. Equations are derived for the strain dependence of the transient AE pulse rate, peak value of the AE pulse rate and the total number of AE pulse emitted. It is found that the AE pulse rate should be maximum for a ...

  12. Analysis and modeling of alkali halide aqueous solutions

    DEFF Research Database (Denmark)

    Kim, Sun Hyung; Anantpinijwatna, Amata; Kang, Jeong Won

    2016-01-01

    on calculations for various electrolyte properties of alkali halide aqueous solutions such as mean ionic activity coefficients, osmotic coefficients, and salt solubilities. The model covers highly nonideal electrolyte systems such as lithium chloride, lithium bromide and lithium iodide, that is, systems...

  13. Strong Carrier-Phonon Coupling in Lead Halide Perovskite Nanocrystals

    NARCIS (Netherlands)

    Iaru, Claudiu M; Geuchies, Jaco J|info:eu-repo/dai/nl/370526090; Koenraad, Paul M; Vanmaekelbergh, Daniël|info:eu-repo/dai/nl/304829137; Silov, Andrei Yu

    2017-01-01

    We highlight the importance of carrier-phonon coupling in inorganic lead halide perovskite nanocrystals. The low-temperature photoluminescence (PL) spectrum of CsPbBr3 has been investigated under a nonresonant and a nonstandard, quasi-resonant excitation scheme, and phonon replicas of the main PL

  14. Miscellaneous Lasing Actions in Organo-Lead Halide Perovskite Films.

    Science.gov (United States)

    Duan, Zonghui; Wang, Shuai; Yi, Ningbo; Gu, Zhiyuan; Gao, Yisheng; Song, Qinghai; Xiao, Shumin

    2017-06-21

    Lasing actions in organo-lead halide perovskite films have been heavily studied in the past few years. However, due to the disordered nature of synthesized perovskite films, the lasing actions are usually understood as random lasers that are formed by multiple scattering. Herein, we demonstrate the miscellaneous lasing actions in organo-lead halide perovskite films. In addition to the random lasers, we show that a single or a few perovskite microparticles can generate laser emissions with their internal resonances instead of multiple scattering among them. We experimentally observed and numerically confirmed whispering gallery (WG)-like microlasers in polygon shaped and other deformed microparticles. Meanwhile, owing to the nature of total internal reflection and the novel shape of the nanoparticle, the size of the perovskite WG laser can be significantly decreased to a few hundred nanometers. Thus, wavelength-scale lead halide perovskite lasers were realized for the first time. All of these laser behaviors are complementary to typical random lasers in perovskite film and will help the understanding of lasing actions in complex lead halide perovskite systems.

  15. Electrodeposition of rhenium from chloride melts: Electrochemical nature, structure and applied aspects

    Directory of Open Access Journals (Sweden)

    Vinogradov-Zhabrov O.N.

    2003-01-01

    Full Text Available Processes involved in the electrodeposition of rhenium from chloride melts have been studied over the temperature interval from 680 to 970 0C at a cathodic current density of 5 to 250 mA/cm2. It has been found that rhenium is deposited in the form of continuous layers. In addition to that the growth of deposits as separate single-crystal needles has also been noticed. Continuous layers had axial growth textures. The crystallographic direction of the textures is due to electrolysis conditions, such as concentration of oxygen-containing impurities, temperature, melt composition and cathodic current density. When the concentration of oxygen-containing impurities in the melt decreased, electrolysis temperature increased, the average radius of the supporting electrolyte cations became smaller, or cathodic current density diminished, the direction of the growth textures was changing as follows: (1010 →(1120 →(101L →(0001 →(0001needles. The microhardness of the deposits in this series is 900 to 250 kg/mm2. The growth of deposits on textured rhenium substrates and single crystals having different orientations, including bent substrates, was studied. It has been found that the epitaxial growth is virtually unlimited in depth if the orientation of the substrate coincides with the growth texture under given conditions. If the substrate orientation deviated from the growth texture, the epitaxial growth was nearly absent. Kinetic parameters were measured using the galvanostatic method. The exchange current density was determined over the interval of (0.01-0.1 A/cm2 depending on the concentration of oxygen-containing impurities, cation composition, type of the surface and its condition. The parameter α⋅Z, which was estimated by two methods, was equal to 2.1-3.1. The diffusion coefficient of rhenium ions has been found to be 2.8 ⋅10 −5 cm2/s at 790 0C and 3.5 ⋅10 −5 cm2/s at 840 0C. Galvanoplastic production of rhenium products, such as

  16. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation

    Science.gov (United States)

    Abdi-Jalebi, Mojtaba; Andaji-Garmaroudi, Zahra; Cacovich, Stefania; Stavrakas, Camille; Philippe, Bertrand; Richter, Johannes M.; Alsari, Mejd; Booker, Edward P.; Hutter, Eline M.; Pearson, Andrew J.; Lilliu, Samuele; Savenije, Tom J.; Rensmo, Håkan; Divitini, Giorgio; Ducati, Caterina; Friend, Richard H.; Stranks, Samuel D.

    2018-03-01

    Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield—a quantity that must be maximized to obtain high efficiency—remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can

  17. Therapeutic applications of Rhenium-188 in nuclear medicine and oncology - Current status and expected future perspectives

    International Nuclear Information System (INIS)

    Knapp, F. F. Jr.

    2005-01-01

    Full text: The increasing use of unsealed radioactive targeting agents for cancer treatment requires the routine availability of cost-effective radioisotopes. Rhenium-188 (Re-188; half-life 16.9 hours) is a high-energy beta-emitter (E max 2.12 MeV), readily available no- max carrier-added from the alumina-based tungsten-188 (half-life 69 days)/rhenium-188 generator system. Rhenium-188 also emits a 155 keV (15%) gamma photon, permitting gamma camera imaging for biodistribution and dosimetry evaluation. The versatile chemistry of rhenium allows attachment to a wide variety of targeting molecules for Re-188 applications in nuclear oncology for both palliative metastatic treatment and targeted tumor therapy - radionuclide synovectomy, and coronary restenosis therapy. The long parent half-life and consistent performance provide an indefinite generator shelf-life of several months with high Re-188 elution yields (75-85 %) and consistently low W-188 parent breakthrough ( -6 ). Simple post-elution concentration methods have been developed which provide very high specific volume solution of Re-188 for radiolabeling (> 700 mCi/mL saline/1 Ci generator). Over 60 physician-sponsored clinical trials are currently in progress worldwide with applications in nuclear medicine, nuclear oncology and interventional cardiology. A variety of Re-188-labeled therapeutic radiopharmaceuticals and devices are being developed for clinical trials currently in progress for treatment of both benign and metastatic oncological disorders. Palliation of metastatic bone pain with Re-188-HEDP - prepared from a simple 'kit' - has been demonstrated as a cost-effective alternative to similar agents. Recent studies have in fact demonstrated the enhancement of progression-free interval and survival time by repeated Re-188-HEDP injections to patients with metastatic disease from prostate cancer. The use of the Re-188-labeled antiNCA95 (CD66) antibody in conjunction with external beam irradiation is an

  18. Fabrication and use of zircaloy/tantalum-sheathed cladding thermocouples and molybdenum/rhenium-sheathed fuel centerline thermocouples

    International Nuclear Information System (INIS)

    Wilkins, S.C.; Sepold, L.K.

    1985-01-01

    The thermocouples described in this report are zircaloy/tantalum-sheathed and molybdenum/rhenium alloy-sheathed instruments intended for fuel rod cladding and fuel centerline temperature measurements, respectively. Both types incorporate beryllium oxide insulation and tungsten/rhenium alloy thermoelements. These thermocouples, operated at temperatures of 2000 0 C and above, were developed for use in the internationally sponsored Severe Fuel Damage test series in the Power Burst Facility. The fabrication steps for both thermocouple types are described in detail. A laser-welding attachment technique for the cladding-type thermocouple is presented, and experience with alternate materials for cladding and fuel therocouples is discussed

  19. Lattice strains in gold and rhenium under nonhydrostatic compression to 37 GPa

    International Nuclear Information System (INIS)

    Duffy, Thomas S.; Shen, Guoyin; Heinz, Dion L.; Shu, Jinfu; Ma, Yanzhang; Mao, Ho-Kwang; Hemley, Russell J.; Singh, Anil K.

    1999-01-01

    Using energy-dispersive x-ray diffraction techniques together with the theory describing lattice strains under nonhydrostatic compression, the behavior of a layered sample of gold and rhenium has been studied at pressures of 14-37 GPa. For gold, the uniaxial stress component t is consistent with earlier studies and can be described by t=0.06+0.015P where P is the pressure in GPa. The estimated single-crystal elastic moduli are in reasonable agreement with trends based on extrapolated low-pressure data. The degree of elastic anisotropy increases as α, the parameter which characterizes stress-strain continuity across grain boundaries, is reduced from 1.0 to 0.5. For rhenium, the apparent equation of state has been shown to be strongly influenced by nonhydrostatic compression, as evidenced by its dependence on the angle ψ between the diffracting plane normal and the stress axis. The bulk modulus obtained by inversion of nonhydrostatic compression data can differ by nearly a factor of 2 at angles of 0 degree sign and 90 degree sign . On the other hand, by a proper choice of ψ, d spacings corresponding to quasihydrostatic compression can be obtained from data obtained under highly nonhydrostatic conditions. The uniaxial stress in rhenium over the pressure range from 14-37 GPa can be described by t=2.5+0.09P. The large discrepancy between x-ray elastic moduli and ultrasonic data and theoretical calculations indicates that additional factors such as texturing or orientation dependence of t need to be incorporated to more fully describe the strain distribution in hexagonal-close-packed metals. (c) 1999 The American Physical Society

  20. Double Charged Surface Layers in Lead Halide Perovskite Crystals

    KAUST Repository

    Sarmah, Smritakshi P.

    2017-02-01

    Understanding defect chemistry, particularly ion migration, and its significant effect on the surface’s optical and electronic properties is one of the major challenges impeding the development of hybrid perovskite-based devices. Here, using both experimental and theoretical approaches, we demonstrated that the surface layers of the perovskite crystals may acquire a high concentration of positively charged vacancies with the complementary negatively charged halide ions pushed to the surface. This charge separation near the surface generates an electric field that can induce an increase of optical band gap in the surface layers relative to the bulk. We found that the charge separation, electric field, and the amplitude of shift in the bandgap strongly depend on the halides and organic moieties of perovskite crystals. Our findings reveal the peculiarity of surface effects that are currently limiting the applications of perovskite crystals and more importantly explain their origins, thus enabling viable surface passivation strategies to remediate them.

  1. Alkali Halide Microstructured Optical Fiber for X-Ray Detection

    Science.gov (United States)

    DeHaven, S. L.; Wincheski, R. A.; Albin, S.

    2014-01-01

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.

  2. Development and melt growth of novel scintillating halide crystals

    Science.gov (United States)

    Yoshikawa, Akira; Yokota, Yuui; Shoji, Yasuhiro; Kral, Robert; Kamada, Kei; Kurosawa, Shunsuke; Ohashi, Yuji; Arakawa, Mototaka; Chani, Valery I.; Kochurikhin, Vladimir V.; Yamaji, Akihiro; Andrey, Medvedev; Nikl, Martin

    2017-12-01

    Melt growth of scintillating halide crystals is reviewed. The vertical Bridgman growth technique is still considered as very popular method that enables production of relatively large and commercially attractive crystals. On the other hand, the micro-pulling-down method is preferable when fabrication of small samples, sufficient for preliminary characterization of their optical and/or scintillation performance, is required. Moreover, bulk crystal growth is also available using the micro-pulling-down furnace. The examples of growths of various halide crystals by industrially friendly melt growth techniques including Czochralski and edge-defined film-fed growth methods are also discussed. Finally, traveling molten zone growth that in some degree corresponds to horizontal zone melting is briefly overviewed.

  3. Heterofacial alkylation of alkylenediamines by higher alkyl halides

    International Nuclear Information System (INIS)

    Semenov, V.A.; Kryshko, G.M.; Sokal'skaya, L.I.; Zhukova, N.G.

    1985-01-01

    A study of the physiochemical properties of alkylenediamines substituted by lower alkyls, showed that they possess increased complex-forming ability with respect to salts of different metals as titanium, niobium, zirconium, molybdenum, and zinc. To create a simpler method of synthesis of higher tetraaklyalkylalklyenediamines, based on the use of the accessible domestic raw material, the authors investigated the reaction of alkylenediamines with various alkyl halides. It was established that the best reagents can be obtained using alkyl bromides. It is concluded that the procedure of alkylation of alkylenediamines by higher alkyl halides in the presence of water developed permits the production of terraalkylalkylenediamines in one step with good yield and with purity acceptable for use as extraction reagents

  4. Correlations between entropy and volume of melting in halide salts

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Tosi, M.P.

    1991-09-01

    Melting parameters and transport coefficients in the melt are collated for halides of monovalent, divalent and trivalent metals. A number of systems show a deficit of entropy of melting relative to the linear relationships between entropy change and relative volume change on melting that are found to be approximately obeyed by a majority of halides. These behaviours are discussed on the basis of structural and transport data. The deviating systems are classified into three main classes, namely (i) fast-ion conductors in the high-temperature crystal phase such as AgI, (ii) strongly structured network-like systems such as ZnCl 2 , and (iii) molecular systems melting into associated molecular liquids such as SbCl 3 . (author). 35 refs, 1 fig., 3 tabs

  5. Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires.

    Science.gov (United States)

    Zhang, Dandan; Eaton, Samuel W; Yu, Yi; Dou, Letian; Yang, Peidong

    2015-07-29

    Halide perovskites have attracted much attention over the past 5 years as a promising class of materials for optoelectronic applications. However, compared to hybrid organic-inorganic perovskites, the study of their pure inorganic counterparts, like cesium lead halides (CsPbX3), lags far behind. Here, a catalyst-free, solution-phase synthesis of CsPbX3 nanowires (NWs) is reported. These NWs are single-crystalline, with uniform growth direction, and crystallize in the orthorhombic phase. Both CsPbBr3 and CsPbI3 are photoluminescence active, with composition-dependent temperature and self-trapping behavior. These NWs with a well-defined morphology could serve as an ideal platform for the investigation of fundamental properties and the development of future applications in nanoscale optoelectronic devices based on all-inorganic perovskites.

  6. Local Polar Fluctuations in Lead Halide Perovskite Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; Egger, David A.; Hull, Trevor; Stoumpos, Constantinos C.; Zheng, Fan; Heinz, Tony F.; Kronik, Leeor; Kanatzidis, Mercouri G.; Owen, Jonathan S.; Rappe, Andrew M.; Pimenta, Marcos A.; Brus, Louis E.

    2017-03-01

    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH3NH3PbBr3) and all-inorganic (CsPbBr3) leadhalide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. MD simulations indicate that head-tohead Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr3.

  7. Rhenium(5) and molybdenum(5) complexes with 4',4(5)-divaleryldibenzo-18-crown-6

    International Nuclear Information System (INIS)

    Ashurova, N.Kh.; Yakubov, K.G.; Tashmukhamedova, A.K.; Basitova, S.M.

    1993-01-01

    Methods for synthesizing oxohalide complexes of rhenium and molybdenum with +5 oxidation degree with 4',4 (5) -divaleryldibenzo-18-crown-6 were developed. Content and composition of prepared compounds were investigated by the methods of element analysis, crystal optics, conductometry, IR spectroscopy in the near and far regions, thermogravimetry. Oxidation degree of the complex-forming metal was determined. It was established that composition of the compounds coressponded to the general formula MOLX · H 2 O, where M - Re, Mo; L -4',4 (5) -divaleryldibenzo-18-crown-6; X -Cl - , Br -

  8. Broad Detection Range Rhenium Diselenide Photodetector Enhanced by (3-Aminopropyl)Triethoxysilane and Triphenylphosphine Treatment.

    Science.gov (United States)

    Jo, Seo-Hyeon; Park, Hyung-Youl; Kang, Dong-Ho; Shim, Jaewoo; Jeon, Jaeho; Choi, Seunghyuk; Kim, Minwoo; Park, Yongkook; Lee, Jaehyeong; Song, Young Jae; Lee, Sungjoo; Park, Jin-Hong

    2016-08-01

    The effects of triphenylphosphine and (3-aminopropyl)triethoxysilane on a rhenium diselenide (ReSe2 ) photodetector are systematically studied by comparing with conventional MoS2 devices. This study demonstrates a very high performance ReSe2 photodetector with high photoresponsivity (1.18 × 10(6) A W(-1) ), fast photoswitching speed (rising/decaying time: 58/263 ms), and broad photodetection range (possible above 1064 nm). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fate of rhenium in the environment as a chemical analogue of technetium

    International Nuclear Information System (INIS)

    Tagami, Keiko; Uchida, Shigeo

    2007-01-01

    Concentrations of rhenium, a chemical analogue of Tc, were measured in various environmental samples by ICP-MS to obtain information values on long-lived 99 Tc mobility in the environment. From the results, it was assumed that Re was removed from the rock and soil by water due to weathering and transport to the sea through rivers. The element would be retained in seawater for a long time, i.e., 2 x 10 5 to 7.5 x 10 5 y. The reservoirs of Re in the sea would be seaweeds, and anoxic and suboxic sediments, especially slightly below the water-sediment interface. (author)

  10. Synthesis, molecular structure and magnetic properties of a rhenium(IV) compound with catechol

    Science.gov (United States)

    Cuevas, A.; Geis, L.; Pintos, V.; Chiozzone, R.; Sanchíz, J.; Hummert, M.; Schumann, H.; Kremer, C.

    2009-03-01

    A novel Re(IV) complex containing catechol as ligand has been prepared and characterized. The crystal structure of (HNEt 3)(NBu 4)[ReCl 4(cat)]·H 2cat was determined. The rhenium ion presents a distorted octahedral geometry, being bonded to a bidentate catecholate group and four chloride anions. The magnetic properties of the complex were studied, a /2 D/ (the energy gap between ±3/2 and ±1/2 Kramers doublets) value of 190(10) cm -1. This is the largest /2 D/ value reported for Re(IV) up to now.

  11. The analysis of mechanism of rhenium-coated tools' wear-resistance rising

    Directory of Open Access Journals (Sweden)

    Daniel Petrosyan

    2017-06-01

    Full Text Available It is proposed to obtain wear-resistant layers on the hard-alloy materials by thermochemical treatment. In the different field of production – mechanical engineering, metallurgy and military technologies, with machine parts demanding high wearproof and corrosion-proof machinery parts on the surfaces of syntheses of diamonds, with metal surface thermal-diffusion with rhenium, to receive diffusion wearing layers for the first time. A method for thermochemical treatment of hard alloy plates has been investigated, allowing to raise the wear-resistance of cutting and mining tools.

  12. Lamp-Ballast Compatibility Index for Efficient Ceramic Metal Halide Lamp Operation

    OpenAIRE

    Sourish Chatterjee

    2013-01-01

    Development of energy efficient products and exploration of energy saving potential are major challenges for present day’s technology. Ceramic Metal Halide lamp is the latest improved version of metal halide lamp that finds its wide applications in indoor commercial lighting especially in retail shop lighting. This lamp shows better performance in terms of higher lumen per watt and colour constancy in comparison to conventional metal halide lamp. The inherent negative incremental impedance of...

  13. Halides of BET-TTF: novel hydrated molecular metals

    Energy Technology Data Exchange (ETDEWEB)

    Laukhina, E.; Ribera, E.; Vidal-Gancedo, J.; Canadell, E.; Veciana, J.; Rovira, C. [Universidad Autonoma de Barcelona, Bellaterra (Spain). Inst. de Ciencia de Materials; Khasanov, S.; Zorina, L.; Shibaeva, R. [Rossijskaya Akademiya Nauk, Chernogolovka (Russian Federation). Inst. Fiziki Tverdogo Tela; Laukhin, V. [Inst. of Problems of Chemical Physics, RAS, Chernogolovka (Russian Federation); Honold, M.; Nam, M.-S.; Singleton, J. [Clarendon Lab., Univ. of Oxford (United Kingdom)

    2000-01-07

    A hint of superconducting transition has been observed for the first time in a cation radical salt derived from bisethylenethio-tetrathiafulvalene (BET-TTF), the salt (BET-TTF){sub 2}Br.3H{sub 2}O. Here the synthesis, X-ray structure, and physical properties of two hydrated halides of BET-TTF that are isostructural and present stable metallic properties are described. (orig.)

  14. Solvation structures of lithium halides in methanol–water mixtures

    International Nuclear Information System (INIS)

    Sarkar, Atanu; Dixit, Mayank Kumar; Tembe, B.L.

    2015-01-01

    Highlights: • Potentials of mean force for Li + -halides are calculated in methanol–water mixtures. • Stable CIP for x methanol = 1.0 becomes unstable at and below x methanol = 0.75. • The Li + ion is preferentially solvated by methanol molecules. • The halide ions are preferentially solvated by water molecules. - Abstract: The potentials of mean force (PMFs) for the ion pairs, Li + −Cl − , Li + −Br − and Li + −I − have been calculated in five methanol–water compositions. The results obtained are verified by trailing the trajectories and calculating the ion pair distance residence times. Local structures around the ions are studied using the radial distribution functions, density profiles, orientational correlation functions, running coordination numbers and excess coordination numbers. The major change in PMF is observed as the methanol mole fraction (x methanol ) is changed from 1.0 to 0.75. The stable contact ion pair occurring for x methanol = 1.0 becomes unstable at and below x methanol = 0.75. The preferential solvation data show that the halide ions are always preferentially solvated by water molecules. Although the lithium ion is preferentially solvated by methanol molecules, there is significant affinity towards water molecules as well

  15. Methyl halide emissions from greenhouse-grown mangroves

    Science.gov (United States)

    Manley, Steven L.; Wang, Nun-Yii; Walser, Maggie L.; Cicerone, Ralph J.

    2007-01-01

    Two mangrove species, Avicennia germinans and Rhizophora mangle, were greenhouse grown for nearly 1.5 years from saplings. A single individual of each species was monitored for the emission of methyl halides from aerial tissue. During the first 240 days, salinity was incrementally increased with the addition of seawater, and was maintained between 18 and 28‰ for the duration of the study. Exponential growth occurred after 180 days. Methyl halide emissions normalized to leaf area were measured throughout the study and varied dramatically. Emission rates normalized to land area (mg m-2 y-1), assuming a LAI = 5, yielded 82 and 29 for CH3Cl, 10 and 1.6 for CH3Br, and 26 and 11 for CH3I, for A. germinans and R. mangle, respectively. From these preliminary determinations, only CH3I emissions emerge as being of possible global atmospheric significance. This study emphasizes the need for field studies of methyl halide emissions from mangrove forests.

  16. Lasing in robust cesium lead halide perovskite nanowires

    Science.gov (United States)

    Eaton, Samuel W.; Lai, Minliang; Gibson, Natalie A.; Wong, Andrew B.; Dou, Letian; Ma, Jie; Wang, Lin-Wang; Leone, Stephen R.; Yang, Peidong

    2016-01-01

    The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic–inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emission tunability or ease of synthesis. Here, we report the low-temperature, solution-phase growth of cesium lead halide nanowires exhibiting low-threshold lasing and high stability. The as-grown nanowires are single crystalline with well-formed facets, and act as high-quality laser cavities. The nanowires display excellent stability while stored and handled under ambient conditions over the course of weeks. Upon optical excitation, Fabry–Pérot lasing occurs in CsPbBr3 nanowires with an onset of 5 μJ cm−2 with the nanowire cavity displaying a maximum quality factor of 1,009 ± 5. Lasing under constant, pulsed excitation can be maintained for over 1 h, the equivalent of 109 excitation cycles, and lasing persists upon exposure to ambient atmosphere. Wavelength tunability in the green and blue regions of the spectrum in conjunction with excellent stability makes these nanowire lasers attractive for device fabrication. PMID:26862172

  17. Abiotic Formation of Methyl Halides in the Terrestrial Environment

    Science.gov (United States)

    Keppler, F.

    2011-12-01

    Methyl chloride and methyl bromide are the most abundant chlorine and bromine containing organic compounds in the atmosphere. Since both compounds have relatively long tropospheric lifetimes they can effectively transport halogen atoms from the Earth's surface, where they are released, to the stratosphere and following photolytic oxidation form reactive halogen gases that lead to the chemical destruction of ozone. Methyl chloride and methyl bromide account for more than 20% of the ozone-depleting halogens delivered to the stratosphere and are predicted to grow in importance as the chlorine contribution to the stratosphere from anthropogenic CFCs decline. Today methyl chloride and methyl bromide originate mainly from natural sources with only a minor fraction considered to be of anthropogenic origin. However, until as recently as 2000 most of the methyl chloride and methyl bromide input to the atmosphere was considered to originate from the oceans, but investigations in recent years have clearly demonstrated that terrestrial sources such as biomass burning, wood-rotting fungi, coastal salt marshes, tropical vegetation and organic matter degradation must dominate the atmospheric budgets of these trace gases. However, many uncertainties still exist regarding strengths of both sources and sinks, as well as the mechanisms of formation of these naturally occurring halogenated gases. A better understanding of the atmospheric budget of both methyl chloride and methyl bromide is therefore required for reliable prediction of future ozone depletion. Biotic and abiotic methylation processes of chloride and bromide ion are considered to be the dominant pathways of formation of these methyl halides in nature. In this presentation I will focus on abiotic formation processes in the terrestrial environment and the potential parameters that control their emissions. Recent advances in our understanding of the abiotic formation pathway of methyl halides will be discussed. This will

  18. Development of a radiochemical neutron activation analysis procedure for determination of rhenium in biological and environmental samples at ultratrace level

    Czech Academy of Sciences Publication Activity Database

    Kučera, Jan; Byrne, A. R.; Mizera, Jiří; Lučaníková, M.; Řanda, Zdeněk

    2006-01-01

    Roč. 269, č. 2 (2006), s. 251-257 ISSN 0236-5731 R&D Projects: GA ČR(CZ) GA203/04/0943 Institutional research plan: CEZ:AV0Z10480505 Keywords : radiochemical neutron activation analysis * rhenium * biological and environmental samples Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.509, year: 2006

  19. Effect of operational parameters and internal recycle on rhenium solvent extraction from leach liquors using a mixer-settler

    Directory of Open Access Journals (Sweden)

    Mostafa Hosseinzadeh

    2014-06-01

    Full Text Available The extraction of rhenium from molybdenite roasting dust leach solution was performed using a mixer-settler extractor by tributyl phosphate (TBP diluted in kerosene as the extractant. In the single-stage extraction experiments, effect of the aqueous to organic phase ratios, Qa/Qo, and the number of extraction stages, N, on the rhenium extraction was studied. It was found that using the phase ratio of 1:1 in a two-stage extraction, 87.5% depletion of rhenium was obtained. The comparison of experimental results with the continuous co-current extraction showed a good agreement. The effect of internal recycle of organic phase was investigated in the phase ratio of 1:1 by changing the flow rate ratio of recycle-to-fresh organic phase, Qro/Qfo. The optimum performance was achieved in the phase ratio, Qro/Qfo, equal to 3:7. It was found that improvement in the performance of the mixer-settler for the rhenium-TBP system can be obtained in the phase ratio of 1:1when Qro/Qfo = 3:7.

  20. Separation of Rhenium from Lead-Rich Molybdenite Concentrate via Hydrochloric Acid Leaching Followed by Oxidative Roasting

    Directory of Open Access Journals (Sweden)

    Guanghui Li

    2016-11-01

    Full Text Available Lead-rich molybdenite is a typical rhenium-bearing molybdenum resource in China, which has not been efficiently utilized due to its high contents of lead and gangue minerals. In this study, hydrochloric acid was used for preliminarily removing lead and calcite from a lead-rich molybdenite concentrate. Oxidative roasting-ammonia leaching was then carried out for separation of rhenium and extraction of molybdenum. The hydrochloric acid leaching experiments revealed that 93.6% Pb and 97.4% Ca were removed when the leaching was performed at 95 °C for 10 min with HCl concentration of 8 wt. % and liquid-solid ratio of 5 (mL/g. The results of direct oxidative roasting indicated that 89.3% rhenium was volatilized from the raw concentrate after roasting at 600 °C for 120 min in air. In contrast, the rhenium volatilization was enhanced distinctly to 98.0% after the acid-leached concentrate (leaching residue was roasted at 550 °C for 100 min. By the subsequent ammonia leaching, 91.5% molybdenum was leached out from the calcine produced from oxidative roasting of the acid-leached concentrate, while only 79.3% Mo was leached from the calcine produced by roasting molybdenite concentrate without pretreatment.

  1. Rhenium-catalyzed dehydrogenative olefination of C(sp(3))-H bonds with hypervalent iodine(III) reagents.

    Science.gov (United States)

    Gu, Haidong; Wang, Congyang

    2015-06-07

    A dehydrogenative olefination of C(sp(3))-H bonds is disclosed here, by merging rhenium catalysis with an alanine-derived hypervalent iodine(III) reagent. Thus, cyclic and acyclic ethers, toluene derivatives, cycloalkanes, and nitriles are all successfully alkenylated in a regio- and stereoselective manner.

  2. Oxidation of iridium coating on rhenium coated graphite at elevated temperature in stagnated air

    International Nuclear Information System (INIS)

    Huang, Yongle; Bai, Shuxin; Zhang, Hong; Ye, Yicong

    2015-01-01

    Highlights: • Continuous and dense Ir coatings were prepared on graphite by electrodepostion. • The purification of the as-prepared Ir coating was higher than about 99.98%. • The Ir/Re/C specimen kept integrity without significant failures after oxidation. • The average oxidation rate of the Ir coating was about 0.219 mg/(cm 2 min). • Penetrating holes at gains boundaries resulted in the failure of the Ir coating. - Abstract: Continuous and dense iridium coatings were prepared on the rhenium coated graphite specimens by electrodeposition. The iridium/rhenium coated graphite (Ir/Re/C) specimens were oxidized at elevated temperatures in stagnated air for 3600 s. The purification of the as-prepared Ir coating was higher than about 99.98% with the main impurity elements Si, Al, Fe and Ru. After oxidation, the Ir/Re/C specimens kept integrity without significant failures and the average oxidation rate was about 0.219 mg/(cm 2 min). Pores were found at the grain boundaries and concentrated to penetrating holes with the growth of Ir grains, which resulted in disastrous failures of the Ir coating

  3. Oxidation of iridium coating on rhenium coated graphite at elevated temperature in stagnated air

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yongle; Bai, Shuxin, E-mail: NUDT_MSE_501@163.com; Zhang, Hong; Ye, Yicong

    2015-02-15

    Highlights: • Continuous and dense Ir coatings were prepared on graphite by electrodepostion. • The purification of the as-prepared Ir coating was higher than about 99.98%. • The Ir/Re/C specimen kept integrity without significant failures after oxidation. • The average oxidation rate of the Ir coating was about 0.219 mg/(cm{sup 2} min). • Penetrating holes at gains boundaries resulted in the failure of the Ir coating. - Abstract: Continuous and dense iridium coatings were prepared on the rhenium coated graphite specimens by electrodeposition. The iridium/rhenium coated graphite (Ir/Re/C) specimens were oxidized at elevated temperatures in stagnated air for 3600 s. The purification of the as-prepared Ir coating was higher than about 99.98% with the main impurity elements Si, Al, Fe and Ru. After oxidation, the Ir/Re/C specimens kept integrity without significant failures and the average oxidation rate was about 0.219 mg/(cm{sup 2} min). Pores were found at the grain boundaries and concentrated to penetrating holes with the growth of Ir grains, which resulted in disastrous failures of the Ir coating.

  4. Neutron activation determination of rhenium in mineral raw materials of complex composition

    International Nuclear Information System (INIS)

    Shiryaeva, M.B.; Lyubimova, L.N.; Salmin, Yu.P.; Ryumina, K.N.; Tatarkin, M.A.

    1984-01-01

    The method of neutron-activation rhenium determination in mineral raw material of complex composition is developed, according to which easily hydrolized elements: scandium, iron, lanthanum, ytterbium, protactinium, hafnium and partially ruthenium and osmium are isolated in the form of hydroxides after smelting of a sample, which has been previously irradiated in nuclear reactor (thermal neutron flux 1.2x10 13 n/cm 2 xs for 22 hr) with sodium peroxide and leaching of the melt by water. To separate Re from other interfering elements extraction of perrhenate-ion by methylethylketone from alkali solution is used. Interfering effect of gold is eliminated by its extraction with TBP 30% solution in toluence or benzene from 1 M HNO 3 . Activity of rhenium preparations, singled out from samples of comparison, is measured, using multichannel γ-spectrometer with Ge(Li)-coaxial detector of high resolution (approximately 2.0-2.2 keV over the line 122 keV 5+ Co). Relative standard deviation in Re content range 5x10 -7 -5x10 -2 % does not exceed 0.3

  5. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Science.gov (United States)

    2010-01-01

    ... high intensity discharge fixture, the efficiency of a lamp and ballast combination, expressed as a... lamps. Metal halide lamp means a high intensity discharge lamp in which the major portion of the light... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning metal halide lamp ballasts and...

  6. Broadly tunable metal halide perovskites for solid-state light-emission applications

    NARCIS (Netherlands)

    Adjokatse, Sampson; Fang, Hong-Hua; Loi, Maria Antonietta

    2017-01-01

    The past two years have witnessed heightened interest in metal-halide perovskites as promising optoelectronic materials for solid-state light emitting applications beyond photovoltaics. Metal-halide perovskites are low-cost solution-processable materials with excellent intrinsic properties such as

  7. Thermal battery. [solid metal halide electrolytes with enhanced electrical conductance after a phase transition

    Science.gov (United States)

    Carlsten, R.W.; Nissen, D.A.

    1973-03-06

    The patent describes an improved thermal battery whose novel design eliminates various disadvantages of previous such devices. Its major features include a halide cathode, a solid metal halide electrolyte which has a substantially greater electrical conductance after a phase transition at some temperature, and a means for heating its electrochemical cells to activation temperature.

  8. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    KAUST Repository

    Moore, David T.

    2014-08-01

    The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material.Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt\\'s anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films. © 2014 Author(s).

  9. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    Directory of Open Access Journals (Sweden)

    David T. Moore

    2014-08-01

    Full Text Available The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material. Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt's anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films.

  10. Effect of the method for rhenium neptasulfide preparation on its catalytic properties in hydrogenation of nitrobenzene and m-nitrobenzoic acid

    International Nuclear Information System (INIS)

    Pal'chevskaya, T.A.; Bogutskaya, L.V.; Belousov, V.M.

    1988-01-01

    The effect of conditions of rhenium heptasulfide synthesis by thiosulfate method on its physicochemical and catalytic properties during hydrogenation of nitrobenzene and m-nitrobenzoic acid has been studied. It is shown that the maximum yield of m-aminobenzoic acid can be attained on insoluble sulfide rhenium contacts, containing excessive amount of sulfur (3.5 %). Under certain conditions of catalyst synthesis particles of Re 2 S 7 soluble in dimethylformamide are formed, which possess selectivity towards amine

  11. Metal-halide lamp design: atomic and molecular data needed

    International Nuclear Information System (INIS)

    Lapatovich, Walter P

    2009-01-01

    Metal-halide lamps are a subset of high intensity discharge (HID) lamps so named because of their high radiance. These lamps are low temperature (∼0.5 eV), weakly ionized plasmas sustained in refractory but light transmissive envelopes by the passage of electric current through atomic and molecular vapors. For commercial applications, the conversion of electric power to light must occur with good efficiency and with sufficient spectral content throughout the visible (380-780 nm) to permit the light so generated to render colors comparable to natural sunlight. This is achieved by adding multiple metals to a basic mercury discharge. Because the vapor pressure of most metals is very much lower than mercury itself, metal-halide salts of the desired metals, having higher vapor pressures, are used to introduce the material into the basic discharge. The metal compounds are usually polyatomic iodides, which vaporize and subsequently dissociate as they diffuse into the bulk plasma. Metals with multiple visible transitions are necessary to achieve high photometric efficiency (efficacy) and good color. Compounds of Sc, Dy, Ho, Tm, Ce, Pr, Yb and Nd are commonly used. The electrons, atoms and radicals are in local thermodynamic equilibrium (LTE), but not with the radiation field. Strong thermal (10 6 K m -1 ) and density gradients are sustained in the discharge. Atomic radiation produced in the high-temperature core transits through colder gas regions where it interacts with cold atoms and un-dissociated molecules before exiting the lamp. Power balance and spectral output of the lamp are directly affected by the strength of atomic transitions. Attempts to simulate the radiative output of functional metal-halide lamps have been successful only in very simple cases. More data (e.g. the atomic transition probabilities of Ce i) are necessary to improve lamp performance, to select appropriate radiators and in scaling the lamp geometry to various wattages for specific applications.

  12. Calcium phosphate cements with strontium halides as radiopacifiers.

    Science.gov (United States)

    López, Alejandro; Montazerolghaem, Maryam; Engqvist, Håkan; Ott, Marjam Karlsson; Persson, Cecilia

    2014-02-01

    High radiopacity is required to monitor the delivery and positioning of injectable implants. Inorganic nonsoluble radiopacifiers are typically used in nondegradable bone cements; however, their usefulness in resorbable cements is limited due to their low solubility. Strontium halides, except strontium fluoride, are ionic water-soluble compounds that possess potential as radiopacifiers. In this study, we compare the radiopacity, mechanical properties, composition, and cytotoxicity of radiopaque brushite cements prepared with strontium fluoride (SrF2 ), strontium chloride (SrCl2 ·6H2 O), strontium bromide (SrBr2 ), or strontium iodide (SrI2 ). Brushite cements containing 10 wt % SrCl2 ·6H2 O, SrBr2 , or SrI2 exhibited equal to or higher radiopacity than commercial radiopaque cements. Furthermore, the brushite crystal lattice in cements that contained the ionic radiopacifiers was larger than in unmodified cements and in cements that contained SrF2 , indicating strontium substitution. Despite the fact that the strontium halides increased the solubility of the cements and affected their mechanical properties, calcium phosphate cements containing SrCl2 ·6H2 O, SrBr2 , and SrI2 showed no significant differences in Saos-2 cell viability and proliferation with respect to the control. Strontium halides: SrCl2 ·6H2 O, SrBr2 , and SrI2 may be potential candidates as radiopacifiers in resorbable biomaterials although their in vivo biocompatibility, when incorporated into injectable implants, is yet to be assessed. Copyright © 2013 Wiley Periodicals, Inc.

  13. Hot working alkali halides for laser window applications

    International Nuclear Information System (INIS)

    Koepke, B.G.; Anderson, R.H.; Stokes, R.J.

    1975-01-01

    The techniques used to hot work alkali halide crystals into laser window blanks are reviewed. From the point of view of high power laser window applications one of the materials with a high figure of merit is KCl. Thus the materials examined are KCl and alloys of KCl-KBr containing 5 mole percent KBr. The fabrication techniques include conventional and constrained press forging, isostatic press forging and hot rolling. Optical properties are paramount to the ultimate usefulness of these materials. Results on the optical properties of the hot worked material are included together with mechanical properties and microstructural data

  14. Effect of chromone-substituted benzothiazolium halides on photosynthetic processes

    International Nuclear Information System (INIS)

    Kralova, K.; Sersen, F.; Gasparova, R.; Lacova, M.

    1998-01-01

    The effects of 3-R 2 -2[2-(6-R 1 -chromone-3-yl)ethenyl]benzothiazolium halides (CBH) on photosynthetic electron transport in spinach chloroplasts and in the legal suspension of Chlorella vulgaris were investigated. Using EPR spectroscopy it was confirmed that these compounds containing in their molecules two heterocyclic skeletons, namely benzothiazole and chromone, interact with the intermediate D + , corresponding to the tyrosine radical Tyr D situated in D 2 protein on the donor side of photosystem 2. Consequently, higher concentrations of CBH inhibited oxygen evolution rate in Chlorella vulgaris and the inhibitory effectiveness depended on the lipophilicity of the of the compound. (authors)

  15. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals

    Science.gov (United States)

    Akkerman, Quinten A.; Rainò, Gabriele; Kovalenko, Maksym V.; Manna, Liberato

    2018-05-01

    Lead halide perovskites (LHPs) in the form of nanometre-sized colloidal crystals, or nanocrystals (NCs), have attracted the attention of diverse materials scientists due to their unique optical versatility, high photoluminescence quantum yields and facile synthesis. LHP NCs have a `soft' and predominantly ionic lattice, and their optical and electronic properties are highly tolerant to structural defects and surface states. Therefore, they cannot be approached with the same experimental mindset and theoretical framework as conventional semiconductor NCs. In this Review, we discuss LHP NCs historical and current research pursuits, challenges in applications, and the related present and future mitigation strategies explored.

  16. Status quo of ceramic material for metal halide discharge lamps

    International Nuclear Information System (INIS)

    Kappen, Theo G M M

    2005-01-01

    Polycrystalline alumina is an excellent ceramic material for use as the envelope for metal halide discharge lamps. Although this material was introduced in the mid-1960s, and is thus already known for several decades, recent years have seen considerable effort aimed at further development of these ceramic envelope materials. Developments are not only in the field of ceramic shaping technologies, but are also concentrated on the material properties of the ceramic material itself. Optical, mechanical as well as the chemical properties of the ceramic envelope are strongly controlled by the shape as well as the microstructure of the ceramics used

  17. Evaluation of field test equipment for halide and DOP testing

    International Nuclear Information System (INIS)

    Schreiber, K.L.; Kovach, J.L.

    1975-01-01

    The Nucon Testing Services Department, field testing at power reactor sites, has performed tests using R-11, R-12, and R-112 in conjunction with gas chromatographs and direct reading halide detectors. The field operational experience with these detector systems, thus sensitivity, precision, and manner of field calibration, are presented. Laboratory experiments regarding 3 H-tagged methyl iodide for in place leak testing of adsorber systems indicate a low hazard, high reliability process for leak testing in facilities where atmospheric cross contamination occurs. (U.S.)

  18. Synthesis of halide- and solvent free metal borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Møller, Kasper Trans; Richter, Bo

    have challenges due to their high desorption kinetics and limited reversibility at moderate conditions.[2],[3],[4] In this work, we present a new approach to synthesize halide- and solvent free metal borohydrides starting from the respective metal hydride. The synthetic strategy ensures that no metal...... to the metal. Hence, the powdered M(BH4)3∙DMS is heated to 140 °C for 4 hours to obtain pure M(BH4)3. The rare-earth metal borohydrides have been investigated by infrared spectroscopy and thermal analysis (TGA-DSC-MS). Furthermore, the structural trends are investigated by synchrotron radiation powder X...

  19. Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic-Inorganic Perovskites.

    Science.gov (United States)

    Sutter-Fella, Carolin M; Ngo, Quynh P; Cefarin, Nicola; Gardner, Kira L; Tamura, Nobumichi; Stan, Camelia V; Drisdell, Walter S; Javey, Ali; Toma, Francesca M; Sharp, Ian D

    2018-06-13

    Mixed cation metal halide perovskites with increased power conversion efficiency, negligible hysteresis, and improved long-term stability under illumination, moisture, and thermal stressing have emerged as promising compounds for photovoltaic and optoelectronic applications. Here, we shed light on photoinduced halide demixing using in situ photoluminescence spectroscopy and in situ synchrotron X-ray diffraction (XRD) to directly compare the evolution of composition and phase changes in CH(NH 2 ) 2 CsPb-halide (FACsPb-) and CH 3 NH 3 Pb-halide (MAPb-) perovskites upon illumination, thereby providing insights into why FACs-perovskites are less prone to halide demixing than MA-perovskites. We find that halide demixing occurs in both materials. However, the I-rich domains formed during demixing accumulate strain in FACsPb-perovskites but readily relax in MA-perovskites. The accumulated strain energy is expected to act as a stabilizing force against halide demixing and may explain the higher Br composition threshold for demixing to occur in FACsPb-halides. In addition, we find that while halide demixing leads to a quenching of the high-energy photoluminescence emission from MA-perovskites, the emission is enhanced from FACs-perovskites. This behavior points to a reduction of nonradiative recombination centers in FACs-perovskites arising from the demixing process and buildup of strain. FACsPb-halide perovskites exhibit excellent intrinsic material properties with photoluminescence quantum yields that are comparable to MA-perovskites. Because improved stability is achieved without sacrificing electronic properties, these compositions are better candidates for photovoltaic applications, especially as wide bandgap absorbers in tandem cells.

  20. Monte Carlo criticality analysis of simple geometries containing tungsten-rhenium alloys engrained with uranium dioxide and uranium mononitride

    International Nuclear Information System (INIS)

    Webb, Jonathan A.; Charit, Indrajit

    2011-01-01

    Highlights: → The addition of rhenium to the tungsten matrix within W-UO 2 and W-UN CERMET materials can help reduce the risk of submersion criticality accidents while increasing the strength and ductility of tungsten based nuclear fuel elements. → The addition of rhenium up to 30 at.% to simple geometries containing W-UO 2 mixtures can increase the critical mass by 65 kg. → The addition of rhenium up to 30 at.% to simple geometries containing W-UN mixtures can increase the critical mass by 22 kg. → The addition of rhenium by up to 30 at.% to simple geometries containing W-UO 2 mixtures can reduce the change in reactivity change due to water submersion by $5.07. → The addition of rhenium by up to 30 at.% to simple geometries containing W-UN mixtures can reduce the change in reactivity due to water submersion by $3.24. - Abstract: The critical mass and dimensions of simple geometries containing highly enriched uranium dioxide (UO 2 ) and uranium mononitride (UN) encapsulated in tungsten-rhenium alloys are determined using MCNP5 criticality calculations. Spheres as well as cylinders with length to radius ratios of 1.82 are computationally built to consist of 60 vol.% fuel and 40 vol.% metal matrix. Within the geometries, the uranium is enriched to 93 wt.% uranium-235 and the rhenium content within the metal alloy was modeled over the range of 0-30 at.%. The spheres containing UO 2 were determined to have a critical radius of 18.29-19.11 cm and a critical mass ranging from 366 kg to 424 kg. The cylinders containing UO 2 were found to have a critical radius ranging from 17.07 cm to 17.84 cm with a corresponding critical mass of 406-471 kg. Spheres engrained with UN were determined to have a critical radius ranging from 14.82 cm to 15.19 cm and a critical mass between 222 kg and 242 kg. Cylinders which were engrained with UN were determined to have a critical radius ranging from 13.81 cm to 14.15 cm and a corresponding critical mass of 245-267 kg. The critical

  1. Hot rocket plume experiment - Survey and conceptual design. [of rhenium-iridium bipropellants

    Science.gov (United States)

    Millard, Jerry M.; Luan, Taylor W.; Dowdy, Mack W.

    1992-01-01

    Attention is given to a space-borne engine plume experiment study to fly an experiment which will both verify and quantify the reduced contamination from advanced rhenium-iridium earth-storable bipropellant rockets (hot rockets) and provide a correlation between high-fidelity, in-space measurements and theoretical plume and surface contamination models. The experiment conceptual design is based on survey results from plume and contamination technologists throughout the U.S. With respect to shuttle use, cursory investigations validate Hitchhiker availability and adaptability, adequate remote manipulator system (RMS) articulation and dynamic capability, acceptable RMS attachment capability, adequate power and telemetry capability, and adequate flight altitude and attitude/orbital capability.

  2. Hydrodeoxygenation of vicinal OH groups over heterogeneous rhenium catalyst promoted by palladium and ceria support.

    Science.gov (United States)

    Ota, Nobuhiko; Tamura, Masazumi; Nakagawa, Yoshinao; Okumura, Kazu; Tomishige, Keiichi

    2015-02-02

    Heterogeneous ReOx-Pd/CeO2 catalyst showed excellent performance for simultaneous hydrodeoxygenation of vicinal OH groups. High yield (>99%), turnover frequency (300 h(-1)), and turnover number (10,000) are achieved in the reaction of 1,4-anhydroerythritol to tetrahydrofuran. This catalyst can be applied to sugar alcohols, and mono-alcohols and diols are obtained in high yields (≥85%) from substrates with even and odd numbers of OH groups, respectively. The high catalytic performance of ReOx-Pd/CeO2 can be assigned to rhenium species with +4 or +5 valence state, and the formation of this species is promoted by H2/Pd and the ceria support. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. 188Rhenium-HEDP in the Treatment of Pain in Bone Metastases

    International Nuclear Information System (INIS)

    Gaudiano, J.; Savio, E.; Robles, A.; Muniz, S.; Leon, A.; Verdera, S.; Martinez, G.; Hermida, J.C.; Knapp, F.F. Jr.

    1999-01-01

    Systemic use of radiopharmaceuticals is a recognized alternative method for the treatment of pain in patients with multiple bone metastasis. A new option, 188 Re-HEDP is proposed, using generator-obtained 188 Rhenium (β energy = 2.1 MeV, γ energy = 155 keV, half-life = 16.9 hours). After establishing parameters of biodistribution, dosimetry and image acquisition in mice, rats and rabbits, Phase I and II studies were conducted on 12 patients with multiple metastasis from carcinomas, with pain surpassing other analgesic options. More than 50% pain relief was found in 91% of the patients, with total relief during a variable period in 41% of them allowing opiate and other analgesic drugs to be decreased or withdrawn, and showing a lower bone marrow contribution to total absorbed dose than that reported for other similar radiopharmaceuticals. Further study of this option is recommended in order to determine higher dose protocols without toxic bone marrow reaction possibilities

  4. Determination of rhenium in biological and environmental samples by radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Kucera, J.; Mizera, J.; Randa, Z.; Byrne, A.R.; Lucanikova, M.

    2006-01-01

    Radiochemical neutron activation procedures using liquid-liquid extraction with tetraphenylarsonium chloride in chloroform from 1 M HCl and solid extraction with ALIQUAT 336 incorporated in a polyacrylonitrile binding matrix from 0.1 M HCl were developed for accurate determination of rhenium in biological and environmental samples at the sub-ng.g -1 level. Concentrations of Re in the range of 0.1 to 2.4 ng.g -1 were determined in several botanical reference materials (RM), while in a RM of road dust a value of approx. 10 ng.g -1 was found. Significantly elevated values of Re, up to 90 ng.g -1 , were found in seaweed (brown algae). Results for Re in the brown algae Fucus vesiculosus in which elevated 99 Tc values had previously been determined suggest possible competition between Re and Tc in the accumulation process. (author)

  5. Click-to-Chelate: Development of Technetium and Rhenium-Tricarbonyl Labeled Radiopharmaceuticals

    Directory of Open Access Journals (Sweden)

    Thomas L. Mindt

    2013-03-01

    Full Text Available The Click-to-Chelate approach is a highly efficient strategy for the radiolabeling of molecules of medicinal interest with technetium and rhenium-tricarbonyl cores. Reaction of azide-functionalized molecules with alkyne prochelators by the Cu(I-catalyzed azide-alkyne cycloaddition (CuAAC; click reaction enables the simultaneous synthesis and conjugation of tridentate chelating systems for the stable complexation of the radiometals. In many cases, the functionalization of (biomolecules with the ligand system and radiolabeling can be achieved by convenient one-pot procedures. Since its first report in 2006, Click-to-Chelate has been applied to the development of numerous novel radiotracers with promising potential for translation into the clinic. This review summarizes the use of the Click-to-Chelate approach in radiopharmaceutical sciences and provides a perspective for future applications.

  6. Mechanical properties of tungsten following rhenium ion and helium plasma exposure

    Directory of Open Access Journals (Sweden)

    C.S. Corr

    2017-08-01

    Full Text Available Mechanical properties of Tungsten (W samples irradiated with 2 MeV Rhenium (Re ions and helium (He plasma were investigated using nanoindentation. It was found that there was an increase in hardness for all samples following separate irradiation with both Re ion and He plasma. A slight increase in hardness was obtained for combined exposures. A comparable increase in hardness was observed for a pure He plasma with a sample temperature of 473 K and 1273 K. Optical interferometry was employed to compare surface modification of the samples. Grazing incidence small angle x-ray scattering confirmed He nano-bubble formation of approximately 1 nm diameter in the higher temperature sample, which was not observed with samples at the lower temperatures.

  7. Halide Perovskites: New Science or ``only'' future Energy Converters?

    Science.gov (United States)

    Cahen, David

    Over the years many new ideas and systems for photovoltaic, PV, solar to electrical energy conversion have been explored, but only a few have really impacted PV's role as a more sustainable, environmentally less problematic and safer source of electrical power than fossil or nuclear fuel-based generation. Will Halide Perovskites, HaPs, be able to join the very select group of commercial PV options? To try to address this question, we put Halide Perovskite(HaP) cells in perspective with respect to other PV cells. Doing so also allows to identify fundamental scientific issues that can be important for PV and beyond. What remains to be seen is if those issues lead to new science or scientific insights or additional use of existing models. Being more specific is problematic, given the fact that this will be 4 months after writing this abstract. Israel National Nano-initiative, Weizmann Institute of Science's Alternative sustainable Energy Research Initiative; Israel Ministries of -Science and of -Infrastructure, Energy & Water.

  8. Melting and liquid structure of polyvalent metal halides

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1992-08-01

    A short review is given of recent progress in determining and understanding liquid structure types and melting mechanisms for halides of polyvalent metals. The nature of the preferred local coordination for the polyvalent metal ion in the melt can usually be ascertained from data on liquid mixtures with halogen-donating alkali halides. The stability of these local coordination states and the connectivity that arises between them in the approach to the pure melt determines the character of its short-range and possible medium-range order. A broad classification of structural and melting behaviours can be given on the basis of measured melting parameters and transport coefficients for many compounds, in combination with the available diffraction data on the liquid structure of several compounds. Correlations have been shown to exist with a simple indicator of the nature of the chemical bond and also with appropriate parameters of ionic models, wherever the latter are usefully applicable for semiquantitative calculations of liquid structure. Consequences on the mechanisms for valence electron localization in solutions of metallic elements into strongly structured molten salts are also briefly discussed. (author). 46 refs, 4 figs, 2 tabs

  9. Sodium-metal halide and sodium-air batteries.

    Science.gov (United States)

    Ha, Seongmin; Kim, Jae-Kwang; Choi, Aram; Kim, Youngsik; Lee, Kyu Tae

    2014-07-21

    Impressive developments have been made in the past a few years toward the establishment of Na-ion batteries as next-generation energy-storage devices and replacements for Li-ion batteries. Na-based cells have attracted increasing attention owing to low production costs due to abundant sodium resources. However, applications of Na-ion batteries are limited to large-scale energy-storage systems because of their lower energy density compared to Li-ion batteries and their potential safety problems. Recently, Na-metal cells such as Na-metal halide and Na-air batteries have been considered to be promising for use in electric vehicles owing to good safety and high energy density, although less attention is focused on Na-metal cells than on Na-ion cells. This Minireview provides an overview of the fundamentals and recent progress in the fields of Na-metal halide and Na-air batteries, with the aim of providing a better understanding of new electrochemical systems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Self-trapped holes in alkali silver halide crystals

    International Nuclear Information System (INIS)

    Awano, T.; Ikezawa, M.; Matsuyama, T.

    1995-01-01

    γ-Ray irradiation at 77 K induces defects in M 2 AgX 3 (M=Rb, K and NH 4 ; X=Br and I) crystals. The irradiation induces self-trapped holes of the form of I 0 in the case of alkali silver iodides, and (halogen) 2 - and (halogen) 0 in the case of ammonium silver halides. The (halogen) 0 is weakly coupled with the nearest alkali metal ion or ammonium ion. It is able to be denoted as RbI + , KI + , NH 4 I + or NH 4 Br + . The directions of hole distribution of (halogen) 2 - and (halogen) 0 were different in each case of the alkali silver iodides, ammonium silver halides and mixed crystal of them. The (halogen) 0 decayed at 160 K in annealing process. The (halogen) 2 - was converted into another form of (halogen) 2 - at 250 K and this decayed at 310 K. A formation of metallic layers was observed on the crystal surface parallel with the c-plane of (NH 4 ) 2 AgI 3 irradiated at room temperature. (author)

  11. Nature of the superionic transition in Ag+ and Cu+ halides

    International Nuclear Information System (INIS)

    Keen, D.A.; Hull, S.; Barnes, A.C.; Berastegui, P.; Crichton, W.A.; Madden, P.A.; Tucker, M.G.; Wilson, M.

    2003-01-01

    Silver and copper halides generally display an abrupt (first-order) transition to the superionic state. However, powder diffraction studies and molecular dynamics (MD) simulations of AgI under hydrostatic pressure both indicate that a continuous superionic transition occurs on heating. The gradual onset of the highly conducting state is accompanied by an increasing fraction of dynamic Frenkel defects, a peak in the specific heat and anomalous behavior of the lattice expansion. Similar methods have been employed to investigate the proposed continuous superionic transition between the two ambient pressure face centered cubic phases of CuI. This is difficult to examine experimentally, because the hexagonal β phase exists over a narrow temperature range between the γ (cation ordered) and α (cation disordered) phases. MD simulations performed with the simulation box constrained to remain cubic at all temperatures show that, although limited Cu + Frenkel disorder occurs within γ-CuI, CuI undergoes an abrupt superionic transition at 670 K to the superionic α phase. This is supported by powder neutron diffraction studies of CuI lightly doped with Cs + to prevent stabilization of the β phase. The implications of these results on the phase transitions of other copper and silver halide superionic conductors are discussed

  12. Protonation of octadecylamine Langmuir monolayer by adsorption of halide counterions

    Science.gov (United States)

    Sung, Woongmo; Avazbaeva, Zaure; Lee, Jonggwan; Kim, Doseok

    Langmuir monolayer consisting of octadecylamine (C18H37NH2, ODA) was investigated by heterodyne vibrational sum-frequency generation (HD-VSFG) spectroscopy in conjunction with surface pressure-area (π- A) isotherm, and the result was compared with that from cationic-lipid (DPTAP) Langmuir monolayer. In case of ODA monolayer on pure water, both SF intensity of water OH band and the surface pressure were significantly smaller than those of the DPTAP monolayer implying that only small portion of the amine groups (-NH3+ is protonated in the monolayer. In the presence of sodium halides (NaCl and NaI) in the subphase water, it was found that the sign of Imχ (2) of water OH band remained the same as that of the ODA monolayer on pure water, but there was a substantial increase in the SF amplitude. From this, we propose that surface excess of the halide counterions (Cl- and I-) makes the solution condition near the ODA monolayer/water interface more acidic so that ODA molecules in the monolayer are more positively charged, which works to align the water dipoles at the interface.

  13. Halide salts accelerate degradation of high explosives by zerovalent iron

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Shea, Patrick J.; Yang, Jae E.; Kim, Jang-Eok

    2007-01-01

    Zerovalent iron (Fe 0 , ZVI) has drawn great interest as an inexpensive and effective material to promote the degradation of environmental contaminants. A focus of ZVI research is to increase degradation kinetics and overcome passivation for long-term remediation. Halide ions promote corrosion, which can increase and sustain ZVI reactivity. Adding chloride or bromide salts with Fe 0 (1% w/v) greatly enhanced TNT, RDX, and HMX degradation rates in aqueous solution. Adding Cl or Br salts after 24 h also restored ZVI reactivity, resulting in complete degradation within 8 h. These observations may be attributed to removal of the passivating oxide layer and pitting corrosion of the iron. While the relative increase in degradation rate by Cl - and Br - was similar, TNT degraded faster than RDX and HMX. HMX was most difficult to remove using ZVI alone but ZVI remained effective after five HMX reseeding cycles when Br - was present in solution. - The addition of halide ions promotes the degradation of high explosives by zerovalent iron

  14. Tracing oxidative weathering from the Andes to the lowland Amazon Basin using dissoved rhenium

    Science.gov (United States)

    Dellinger, M.; Hilton, R. G.; West, A. J.; Torres, M.; Burton, K. W.; Clark, K. E.; Baronas, J. J.

    2016-12-01

    Over long timescales (>105 yrs), the abundance of carbon dioxide (CO2) in the atmosphere is determined by the balance of the major carbon sources and sinks. Among the major carbon sources, the oxidation of organic carbon contained within sedimentary rocks ("petrogenic" carbon, or OCpetro) is thought to result in CO2 emission of similar magnitude to that released by volcanism. Rhenium (Re) has been proposed as a proxy for tracing OCpetro oxidation. Here we investigate the source, behavior and flux of dissolved and particulate rhenium (Re) in the Madre de Dios watershed (a major Andean tributary of the Amazon River) and the lowlands, aiming to characterize the behavior of Re in river water and quantify the flux of CO2 released by OCpetro oxidation. Measured Re concentrations in Andean rivers range from 0.07 to 1.55 ppt. In the Andes, Re concentration do not change significantly with water discharge, whereas in the lowlands, Re concentration decrease at high water discharge. Mass balance calculation show that more than 70% of the dissolved Re is sourced from the oxidation of OCpetro the Andes-floodplain system. We calculate dissolved Re flux over a hydrological year to estimate the rates of oxidative weathering, and the associated CO2 release from OCpetro. Rates are high in the Andean headwaters, consistent with estimates from other mountain rivers with similar rates of physical erosion. We find evidence that a significant amount of additional oxidation (Re flux) happens during floodplain transport. These results have important implications for improving our understanding of the source and processes controlling Re in rivers, and allowing us to quantify long-term OCpetro cycling in large river basins.

  15. Rhenium and technetium complexes with phenylbis(2-pyridyl)phosphine and tris(2-pyridyl)phosphine

    Energy Technology Data Exchange (ETDEWEB)

    Saucedo A, S. A. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Hagenbach, A.; Abram, U., E-mail: ssaucedo@uaz.edu.m [Institut fur Chemie und Biochemie, Freie Universitat Berlin, Fabeckstr. 34-36, D-14195, Berlin (Germany)

    2010-10-15

    Reactions of common technetium and rhenium precursors with 2-pyridyl phosphines produce novel, air stable tricarbonyl and oxo complexes. (NEt{sub 4}){sub 2}[Re(CO){sub 3}Br{sub 3}] or (NEt{sub 4}){sub 2}[Tc(CO){sub 3}Cl{sub 3}] react with phenylbis(2-pyridyl)phosphine (PPhpy{sub 2}) or tris(2-pyridyl)phosphine (Ppy{sub 3}) under formation of neutral tricarbonyl complexes of the composition [M(CO){sub 3}X(L)] (M = Re, X = Br; M = Tc, X = Cl, L = PPhpy{sub 2} or Ppy{sub 3}), where the ligands coordinate only with two for their nitrogen atoms. Removal of the bromo ligands from (NEt{sub 4}){sub 2}[Re(CO){sub 3}(Br){sub 3}] with AgNO{sub 3}, to force a tripodal coordination, and the subsequent reaction with the Ppy{sub 3} results in the formation of the complex [Re(CO){sub 3}(NO{sub 3})(Ppy{sub 3}{sup -}N,N{sup '})] with a monodentate coordinated nitrato ligand. (NBu{sub 4})[ReOCl{sub 4}] reacts with PPhpy{sub 2} to give the asymmetric, oxo-bridged rhenium (V) dimer (NBu{sub 4})[Re{sub 2}O{sub 2}Cl{sub 5}({mu}-PPhpy{sub 2}{sup -}P,N,N,N{sup '})({mu}-O)], while a similar reaction with (ReOCl{sub 3}(PPh{sub 3}){sub 2}] in boiling Thf results in reduction of the metal and gives (ReCl{sub 3}(OPPhpy{sub 2})(PPh{sub 3})]. The products have been characterized spectroscopically and by X-ray structure analyses. (Author)

  16. Rhenium-188: Availability from the W-188/Re-188 Generator and Status of Current Applications

    International Nuclear Information System (INIS)

    Pillai, M.R.A.; Dash, A.; Knapp, Russ F. Jr.

    2012-01-01

    Rhenium-188 is one of the most readily available generator derived and useful radionuclides for therapy emitting β-particles (2.12 MeV, 71.1% and 1.965 MeV, 25.6%) and imageable gammas (155 KeV, 15.1%). The 188W/188Re generator is an ideal source for the long term (4-6 months) continuous availability of no carrier added (nca) 188Re suitable for the preparation of radiopharmaceuticals for radionuclide therapy. The challenges associated with the double neutron capture route of production of the parent 188W radionuclide have been a major impediment in the progress of application of 188Re. Tungsten-188 of adequate specific activity can be prepared only in 2-3 of the high flux reactors operating in the World. Several useful technologies have been developed for the preparation of clinical grade 188W/188Re generator. Since the specific activity of 188W used in the generator is relatively low (<5 Ci/g), the eluted 188ReO4- can have low radioactive concentration often insufficient for radiopharmaceutical preparation. However, several efficient post elution concentration techniques have been developed that yield clinically useful 188ReO4-. Rhenium-188 has been used for the preparation of therapeutic radiopharmaceuticals for the management of diseases such as bone metastasis, rheumatoid arthritis and primary cancers. Several early phase clinical studies using radiopharmaceuticals based on 188Re-labeled phosphonates, antibodies, peptides, lipiodol and particulates have been reported. This article reviews the availability, and use of188Re including a discussion of why broader use of 188Re has not progressed as ecpected as a popular radionuclide for therapy.

  17. Rhenium Alloys as Ductile Substrates for Diamond Thin-Film Electrodes.

    Science.gov (United States)

    Halpern, Jeffrey M; Martin, Heidi B

    2014-02-01

    Molybdenum-rhenium (Mo/Re) and tungsten-rhenium (W/Re) alloys were investigated as substrates for thin-film, polycrystalline boron-doped diamond electrodes. Traditional, carbide-forming metal substrates adhere strongly to diamond but lose their ductility during exposure to the high-temperature (1000°C) diamond, chemical vapor deposition environment. Boron-doped semi-metallic diamond was selectively deposited for up to 20 hours on one end of Mo/Re (47.5/52.5 wt.%) and W/Re (75/25 wt.%) alloy wires. Conformal diamond films on the alloys displayed grain sizes and Raman signatures similar to films grown on tungsten; in all cases, the morphology and Raman spectra were consistent with well-faceted, microcrystalline diamond with minimal sp 2 carbon content. Cyclic voltammograms of dopamine in phosphate-buffered saline (PBS) showed the wide window and low baseline current of high-quality diamond electrodes. In addition, the films showed consistently well-defined, dopamine electrochemical redox activity. The Mo/Re substrate regions that were uncoated but still exposed to the diamond-growth environment remained substantially more flexible than tungsten in a bend-to-fracture rotation test, bending to the test maximum of 90° and not fracturing. The W/Re substrates fractured after a 27° bend, and the tungsten fractured after a 21° bend. Brittle, transgranular cleavage fracture surfaces were observed for tungsten and W/Re. A tension-induced fracture of the Mo/Re after the prior bend test showed a dimple fracture with a visible ductile core. Overall, the Mo/Re and W/Re alloys were suitable substrates for diamond growth. The Mo/Re alloy remained significantly more ductile than traditional tungsten substrates after diamond growth, and thus may be an attractive metal substrate for more ductile, thin-film diamond electrodes.

  18. Refined global methyl halide budgets with respect to rapeseed (Brassica napus) by life-cycle measurements

    Science.gov (United States)

    Jiao, Y.; Acdan, J.; Xu, R.; Deventer, M. J.; Rhew, R. C.

    2017-12-01

    A precise quantification of global methyl halide budgets is needed to evaluate the ozone depletion potential of these compounds and to predict future changes of stratospheric ozone. However, the global budgets of methyl halides are not balanced between currently identified and quantified sources and sinks. Our study re-evaluated the methyl bromide budget from global cultivated rapeseed (Brassica napus) through life-cycle flux measurements both in the greenhouse and in the field, yielding a methyl bromide emission rate that scales globally to 1.0 - 1.2 Gg yr-1. While this indicates a globally significant source, it is much smaller than the previously widely cited value of 5 - 6 Gg yr-1(Mead et al., 2008), even taking into account the near tripling of annual global yield of rapeseed since the previous evaluation was conducted. Our study also evaluated the methyl chloride and methyl iodide emission levels from rapeseed, yielding emission rates that scale to 5.4 Gg yr-1 for methyl chloride and 1.8 Gg yr-1 of methyl iodide. The concentrations of the methyl donor SAM (S-adenosyl methionine) and the resultant product SAH (S-Adenosyl-L-homocysteine) were also analyzed to explore their role in biogenic methyl halide formation. Halide gradient incubations showed that the magnitude of methyl halide emissions from rapeseed is highly correlated to soil halide levels, thus raising the concern that the heterogeneity of soil halide contents geographically should be considered when extrapolating to global budget.

  19. Formability of ABX3 (X=F,Cl,Br,I) halide perovskites

    International Nuclear Information System (INIS)

    Li Chonghea; Lu Xionggang; Ding Weizhong; Feng Liming; Gao Yonghui; Guo Ziming

    2008-01-01

    In this study a total of 186 complex halide systems were collected; the formabilities of ABX 3 (X = F, Cl, Br and I) halide perovskites were investigated using the empirical structure map, which was constructed by Goldschmidt's tolerance factor and the octahedral factor. A model for halide perovskite formability was built up. In this model obtained, for all 186 complex halides systems, only one system (CsF-MnF 2 ) without perovskite structure and six systems (RbF-PbF 2 , CsF- BeF 2 , KCl-FeCl 2 , TlI-MnI 2 , RbI-SnI 2 , TlI-PbI 2 ) with perovskite structure were wrongly classified, so its predicting accuracy reaches 96%. It is also indicated that both the tolerance factor and the octahedral factor are a necessary but not sufficient condition for ABX 3 halide perovskite formability, and a lowest limit of the octahedral factor exists for halide perovskite formation. This result is consistent with our previous report for ABO 3 oxide perovskite, and may be helpful to design novel halide materials with the perovskite structure. (orig.)

  20. Energetics of the ruthenium-halide bond in olefin metathesis (pre)catalysts

    KAUST Repository

    Falivene, Laura; Poater, Albert; Cazin, Catherine S J; Slugovc, Christian; Cavallo, Luigi

    2013-01-01

    A DFT analysis of the strength of the Ru-halide bond in a series of typical olefin metathesis (pre)catalysts is presented. The calculated Ru-halide bond energies span the rather broad window of 25-43 kcal mol-1. This indicates that in many systems dissociation of the Ru-halide bond is possible and is actually competitive with dissociation of the labile ligand generating the 14e active species. Consequently, formation of cationic Ru species in solution should be considered as a possible event. © 2013 The Royal Society of Chemistry.

  1. Development of halide copper vapor laser (the characteristics of using Cul)

    International Nuclear Information System (INIS)

    Oouti, Kazumi; Wada, Yukio; Sasao, Nobuyuki

    1990-01-01

    We are developing halide copper vapor laser that is high efficiency and high reputation rate visible laser. Halide copper vapor laser uses halide copper of copper vapor source. It melts low temperature in comporison with metal copper, because laser tube structure is very simple and it can operate easy. This time, we experiment to use Cul for copper vapor source. We resulted maximum output energy 17.8 (W) and maximum efficiency 0.78 (%) when operate condition was reputation rate 30 (kHz), gas pressure 90 (Torr), charging voltage 13 (kV). (author)

  2. sup(99m)Tc-sulfur-rhenium-colloid and 111In-indiumcitrate in the bone marrow scintigraphy

    International Nuclear Information System (INIS)

    Glaubitt, D.; Haberland, K.; Knoch, K.; Fejer, F.L.; Zachariah, S.; Staedtische Krankenanstalten Krefeld

    1975-01-01

    Bone marrow scintigraphy using 111 In-Indium-citrate and sup(99m)Tc-sulfur rhenium colloid was compared with each other in 6 male and 3 female patients. Our results in all patients were in favour of 111 In-citrate which caused a better delineation of morphological details than sup(99m)Tc-sulfur rhenium colloid did. In the first days after intravenous administration of 111 In-citrate, radioindium accumulated markedly in the pudendal region, this finding being more distinct in male patients than in female ones. On account of these results a considerable radiation dose has to be assumed in bone marrow scintigraphy using 111 In-citrate as long as the absorbed dose from 111 In has not been estimated under consideration of the radioindium accumulation in the pudendal region. 111 In-citrate should be applied in bone marrow scanning only exceptionally and sup(99m)Tc-sulfur rhenium colloid be preferred in the routine diagnostics of bone marrow. (orig.) [de

  3. Metal halide arc discharge lamp having short arc length

    Science.gov (United States)

    Muzeroll, Martin E. (Inventor)

    1994-01-01

    A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.

  4. Structure of some complex halides of uranium(III)

    International Nuclear Information System (INIS)

    Volkov, V.A.; Suglobova, I.G.; Chirkst, D.E.

    1987-01-01

    Polycrystals of some halide complexes of uranium(III) were obtained and investigated by x-ray diffraction. The M 2 UCl 5 compounds (M = K, Rb) are isostructural with K 2 PrCl 5 ; RbU 2 Cl 7 is of the same type as RbDy 2 Cl 7 or KDy 2 Cl 7 . The coordination number of the uranium is 7. The M 2 UBr 5 compounds (M = K-Cs) are isostructural with Cs 2 DyCl 5 , and the coordination number of the uranium is 6. Rb 2 NaUCl 6 is a 12L-hexagonal polytype, the structural analog of Cs 2 NaCrF 6 . The most characteristic coordination number of uranium in the UHal 3 -MHal systems is 8 for Hal = F, 7 for Hal = Cl, and 6 for Hal = Br

  5. Phase-resolved response of a metal-halide lamp

    International Nuclear Information System (INIS)

    Flikweert, A J; Beks, M L; Nimalasuriya, T; Kroesen, G M W; Van der Mullen, J J A M; Stoffels, W W

    2009-01-01

    The metal-halide (MH) lamp sometimes shows unwanted colour segregation, caused by a combination of convection and diffusion. In the past we investigated the lamp, running on a switched dc ballast of 120 Hz, using a dc approximation for the distribution of the radiating species. Here we present phase-resolved intensity measurements to verify this approximation. The MH lamp contains Hg as buffer gas and DyI 3 as salt additive; we measure the light emitted by Dy and by Hg atoms. An intensity fluctuation of ∼25% close to the electrodes is found only. The observed fluctuations are explained by the cataphoresis effect and temperature fluctuations; the time scales are in the same order. Furthermore, measurements at higher gravity in a centrifuge (up to 10g) show that the effect becomes smaller at increasing gravity levels. From these results it is concluded that a dc approximation, which is generally assumed by lamp developers, is allowed for this MH lamp.

  6. Ultraviolet optical absorption of alkali cyanides and alkali halide cyanides

    International Nuclear Information System (INIS)

    Souza Camargo Junior, S.A. de.

    1982-09-01

    The ultraviolet absorption spectra of alkali cyanide and mixed alkali halide cyanide crystals were measured at temperatures ranging from 300K down to 4.2K. A set of small absorption peaks was observed at energies near 6 eV and assigned to parity forbidden X 1 Σ + →a' 3 Σ + transitions of the CN - molecular ions. It was observed that the peak position depends on the alkali atom while the absorption cross section strongly depends on the halogen and on the CN - concentration of the mixed crystals. These effects are explained in terms of an interaction between the triplet molecular excitons and charge transfer excitons. The experimental data were fit with a coupling energy of a few meV. The coupling mechanism is discussed and it is found to be due to the overlap between the wave functions of the two excitations. (Author) [pt

  7. Absorption lineshape of FA centers in alkali halides

    International Nuclear Information System (INIS)

    Baldacchini, G.; Giovenale, E.; De Matteis, F.; Scacco, A.; Somma, F.; Grassano, U.M.

    1988-01-01

    The line shape of the absorption bands of F A centers in alkali halides have been studied for the first time. The new method used for this investigation is based on the determination of the overlap between the F A1 and F A2 bands from luminescence measurements. The experimental results have been compared with calculated values deduced from the theoretical F A bands of different shapes. For both F A (I) centers in KCl:Na + and F A (II) centers in KCl:Li + and RbCl:Li + the absorption lineshape at low temperature is much closer to a sum of two Lorentzian curves than that of two Gaussian or Poissonian bands. This results shows an unexpected difference with the F centers, whose absorption lineshape is known to be Poissonian at the same temperatures

  8. White-Light Emission from Layered Halide Perovskites.

    Science.gov (United States)

    Smith, Matthew D; Karunadasa, Hemamala I

    2018-03-20

    With nearly 20% of global electricity consumed by lighting, more efficient illumination sources can enable massive energy savings. However, effectively creating the high-quality white light required for indoor illumination remains a challenge. To accurately represent color, the illumination source must provide photons with all the energies visible to our eye. Such a broad emission is difficult to achieve from a single material. In commercial white-light sources, one or more light-emitting diodes, coated by one or more phosphors, yield a combined emission that appears white. However, combining emitters leads to changes in the emission color over time due to the unequal degradation rates of the emitters and efficiency losses due to overlapping absorption and emission energies of the different components. A single material that emits broadband white light (a continuous emission spanning 400-700 nm) would obviate these problems. In 2014, we described broadband white-light emission upon near-UV excitation from three new layered perovskites. To date, nine white-light-emitting perovskites have been reported by us and others, making this a burgeoning field of study. This Account outlines our work on understanding how a bulk material, with no obvious emissive sites, can emit every color of the visible spectrum. Although the initial discoveries were fortuitous, our understanding of the emission mechanism and identification of structural parameters that correlate with the broad emission have now positioned us to design white-light emitters. Layered hybrid halide perovskites feature anionic layers of corner-sharing metal-halide octahedra partitioned by organic cations. The narrow, room-temperature photoluminescence of lead-halide perovskites has been studied for several decades, and attributed to the radiative recombination of free excitons (excited electron-hole pairs). We proposed that the broad white emission we observed primarily stems from exciton self-trapping. Here, the

  9. The Effect of Radiation "Memory" in Alkali-Halide Crystals

    Science.gov (United States)

    Korovkin, M. V.; Sal'nikov, V. N.

    2017-01-01

    The exposure of the alkali-halide crystals to ionizing radiation leads to the destruction of their structure, the emergence of radiation defects, and the formation of the electron and hole color centers. Destruction of the color centers upon heating is accompanied by the crystal bleaching, luminescence, and radio-frequency electromagnetic emission (REME). After complete thermal bleaching of the crystal, radiation defects are not completely annealed, as the electrons and holes released from the color centers by heating leave charged and locally uncompensated defects. Clusters of these "pre centers" lead to electric microheterogeneity of the crystal, the formation of a quasi-electret state, and the emergence of micro-discharges accompanied by radio emission. The generation of REME associated with residual defectiveness, is a manifestation of the effect of radiation "memory" in dielectrics.

  10. Coulometric thermometric titration of halides in molten calcium nitrate tetrahydrate.

    Science.gov (United States)

    Zsigrai, I J; Bartusz, D B

    1983-01-01

    A method for coulometric thermometric precipitation titrations of chloride, bromide and iodide in molten calcium nitrate tetrahydrate at 55 degrees with coulometrically generated silver ions has been developed. The change in temperature during the titration is followed with the aid of a thermistor bridge coupled to a recorder. To minimize the temperature effect of the passage of current through the melt, two thermistors are connected in opposition in the bridge, with one in the anodic and the other in the cathodic cell compartment. Amounts of 62-80 mumole of halide have been determined with relative error below 0.4% and relative standard deviation less than 2.7%. The relative error in determination of 40 mumole of iodide was + 2%.

  11. Metal Halide Perovskite Single Crystals: From Growth Process to Application

    Directory of Open Access Journals (Sweden)

    Shuigen Li

    2018-05-01

    Full Text Available As a strong competitor in the field of optoelectronic applications, organic-inorganic metal hybrid perovskites have been paid much attention because of their superior characteristics, which include broad absorption from visible to near-infrared region, tunable optical and electronic properties, high charge mobility, long exciton diffusion length and carrier recombination lifetime, etc. It is noted that perovskite single crystals show remarkably low trap-state densities and long carrier diffusion lengths, which are even comparable with the best photovoltaic-quality silicon, and thus are expected to provide better optoelectronic performance. This paper reviews the recent development of crystal growth in single-, mixed-organic-cation and fully inorganic halide perovskite single crystals, in particular the solution approach. Furthermore, the application of metal hybrid perovskite single crystals and future perspectives are also highlighted.

  12. Gas phase chromatography of halides of elements 104 and 105

    International Nuclear Information System (INIS)

    Tuerler, A.; Gregorich, K.E.; Czerwinski, K.R.; Hannink, N.J.; Henderson, R.A.; Hoffman, D.C.; Kacher, C.D.; Kadkhodayan, B.; Kreek, S.A.; Lee, D.M.; Leyba, J.D.; Nurmia, M.J.; Gaeggeler, H.W.; Jost, D.T.; Kovacs, J.; Scherer, U.W.; Vermeulen, D.; Weber, A.; Barth, H.; Gober, M.K.; Kratz, J.V.; Bruechle, W.; Schaedel, M.; Schimpf, E.; Gober, M.K.; Kratz, J.V.; Zimmermann, H.P.

    1991-04-01

    On-line isothermal gas phase chromatography was used to study halides of 261 104 (T 1/2 = 65 s) and 262,263 105 (T 1/2 = 34 s and 27 s) produced an atom-at-a time via the reactions 248 Cm( 18 O, 5n) and 249 Bk( 18 O, 5n, 4n), respectively. Using HBr and HCl gas as halogenating agents, we were able to produce volatile bromides and chlorides of the above mentioned elements and study their behavior compared to their lighter homologs in Groups 4 or 5 of the periodic table. Element 104 formed more volatile bromides than its homolog Hf. In contrast, element 105 bromides were found to be less volatile than the bromides of the group 5 elements Nb and Ta. Both 104 and Hf chlorides were observed to be more volatile than their respective bromides. 31 refs., 8 figs

  13. M-center growth in alkali halides: computer simulation

    International Nuclear Information System (INIS)

    Aguilar, M.; Jaque, F.; Agullo-Lopez, F.

    1983-01-01

    The heterogeneous interstitial nucleation model previously proposed to explain F-center growth curves in irradiated alkali halides has been extended to account for M-center kinetics. The interstitials produced during the primary irradiation event are assumed to be trapped at impurities and interstitial clusters or recombine with F and M centers. For M-center formation two cases have been considered: (a) diffusion and aggregation of F centers, and (b) statistical generation and pairing of F centers. Process (b) is the only one consistent with the quadratic relationship between M and F center concentrations. However, to account for the F/M ratios experimentally observed as well as for the role of dose-rate, a modified statistical model involving random creation and association of F + -F pairs has been shown to be adequate. (author)

  14. Irradiation damage of alkali halide crystals during positron bombardment

    International Nuclear Information System (INIS)

    Arefiev, K.P.; Arefiev, V.P.; Vorobiev, S.A.

    1978-01-01

    The bleaching effect of positron irradiation of KCl and KBr single crystals previously coloured with electrons or protons was investigated. Positrons injection in the coloured alkali halide samples reduced the F-centres concentration considerably. For KCl crystals thicker than the positrons range the appearance of additional bands in the absorption spectra is noticeable. The experimental data show that the bleaching phenomenon should be observed merely throughout the positron exposure both for irradiated and non-irradiated regions of the sample. Irradiation effects, due to positron source, on the peak counting rate of (γ-γ) angular correlation in KCl crystals under applied magnetic field were also investigated. The growth of peak counting rate shows the increase of positronium-like states formation near defects of cation sublattice. (author)

  15. Water-Induced Dimensionality Reduction in Metal-Halide Perovskites

    KAUST Repository

    Turedi, Bekir

    2018-03-30

    Metal-halide perovskite materials are highly attractive materials for optoelectronic applications. However, the instability of perovskite materials caused by moisture and heat-induced degradation impairs future prospects of using these materials. Here we employ water to directly transform films of the three-dimensional (3D) perovskite CsPbBr3 to stable two-dimensional (2D) perovskite-related CsPb2Br5. A sequential dissolution-recrystallization process governs this water induced transformation under PbBr2 rich condition. We find that these post-synthesized 2D perovskite-related material films exhibit excellent stability against humidity and high photoluminescence quantum yield. We believe that our results provide a new synthetic method to generate stable 2D perovskite-related materials that could be applicable for light emitting device applications.

  16. Phase space investigation of the lithium amide halides

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Rosalind A. [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Hydrogen and Fuel Cell Group, School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Hewett, David R.; Korkiakoski, Emma [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Thompson, Stephen P. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Anderson, Paul A., E-mail: p.a.anderson@bham.ac.uk [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2015-10-05

    Highlights: • The lower limits of halide incorporation in lithium amide have been investigated. • The only amide iodide stoichiometry observed was Li{sub 3}(NH{sub 2}){sub 2}I. • Solid solutions were observed in both the amide chloride and amide bromide systems. • A 46% reduction in chloride content resulted in a new phase: Li{sub 7}(NH{sub 2}){sub 6}Cl. • New low-chloride phase maintained improved H{sub 2} desorption properties of Li{sub 4}(NH{sub 2}){sub 3}Cl. - Abstract: An investigation has been carried out into the lower limits of halide incorporation in lithium amide (LiNH{sub 2}). It was found that the lithium amide iodide Li{sub 3}(NH{sub 2}){sub 2}I was unable to accommodate any variation in stoichiometry. In contrast, some variation in stoichiometry was accommodated in Li{sub 7}(NH{sub 2}){sub 6}Br, as shown by a decrease in unit cell volume when the bromide content was reduced. The amide chloride Li{sub 4}(NH{sub 2}){sub 3}Cl was found to adopt either a rhombohedral or a cubic structure depending on the reaction conditions. Reduction in chloride content generally resulted in a mixture of phases, but a new rhombohedral phase with the stoichiometry Li{sub 7}(NH{sub 2}){sub 6}Cl was observed. In comparison to LiNH{sub 2}, this new low-chloride phase exhibited similar improved hydrogen desorption properties as Li{sub 4}(NH{sub 2}){sub 3}Cl but with a much reduced weight penalty through addition of chloride. Attempts to dope lithium amide with fluoride ions have so far proved unsuccessful.

  17. Halide based MBE of crystalline metals and oxides

    Energy Technology Data Exchange (ETDEWEB)

    Greenlee, Jordan D.; Calley, W. Laws; Henderson, Walter; Doolittle, W. Alan [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, Georgia (United States)

    2012-02-15

    A halide based growth chemistry has been demonstrated which can deliver a range of transition metals using low to moderate effusion cell temperatures (30-700 C) even for high melting point metals. Previously, growth with transition metal species required difficult to control electron beam or impurity inducing metal organic sources. Both crystalline oxide and metal films exhibiting excellent crystal quality are grown using this halide-based growth chemistry. Films are grown using a plasma assisted Molecular Beam Epitaxy (MBE) system with metal-chloride precursors. Crystalline niobium, cobalt, iron, and nickel were grown using this chemistry but the technology can be generalized to almost any metal for which a chloride precursor is available. Additionally, the oxides LiNbO{sub 3} and LiNbO{sub 2} were grown with films exhibiting X-ray diffraction (XRD) rocking curve full-widths at half maximum of 150 and 190 arcseconds respectively. LiNbO{sub 2} films demonstrate a memristive response due to the rapid movement of lithium in the layered crystal structure. The rapid movement of lithium ions in LiNbO{sub 2} memristors is characterized using impedance spectroscopy measurements. The impedance spectroscopy measurements suggest an ionic current of.1 mA for a small drive voltage of 5 mV AC or equivalently an ionic current density of {proportional_to}87 A/cm{sup 2}. This high ionic current density coupled with low charge transfer resistance of {proportional_to}16.5 {omega} and a high relaxation frequency (6.6 MHz) makes this single crystal material appealing for battery applications in addition to memristors. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Dehalogenation of aromatic halides by polyaniline/zero-valent iron composite nanofiber: Kinetics and mechanisms

    CSIR Research Space (South Africa)

    Giri, S

    2016-03-01

    Full Text Available Dehalogenation of aryl halides was demonstrated using polyaniline/zero valent iron composite nanofiber (termed as PANI/Fe0) as a cheap, efficient and environmentally friendly heterogeneous catalyst. The catalyst was prepared via rapid mixing...

  19. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    KAUST Repository

    Moore, David T.; Sai, Hiroaki; Wee Tan, Kwan; Estroff, Lara A.; Wiesner, Ulrich

    2014-01-01

    The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material.Despite recent advances, however, there are still a number of fundamental aspects of their formation as well

  20. The Role of Surface Tension in the Crystallization of Metal Halide Perovskites

    KAUST Repository

    Zhumekenov, Ayan A.; Burlakov, Victor M.; Saidaminov, Makhsud I.; Alofi, Abdulilah; Haque, Mohammed; Turedi, Bekir; Davaasuren, Bambar; Dursun, Ibrahim; Cho, Nam Chul; El-Zohry, Ahmed M.; de Bastiani, Michele; Giugni, Andrea; Torre, Bruno; Di Fabrizio, Enzo M.; Mohammed, Omar F.; Rothenberger, Alexander; Wu, Tao; Goriely, Alain; Bakr, Osman

    2017-01-01

    The exciting intrinsic properties discovered in single crystals of metal halide perovskites still await their translation into optoelectronic devices. The poor understanding and control of the crystallization process of these materials are current

  1. NEW THIO S2- ADDUCTS WITH ANTIMONY (III AND V HALIDE: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    HASSAN ALLOUCH

    2013-12-01

    Full Text Available Five new S2- adducts with SbIII and SbV halides have been synthesized and studied by infrared. Discrete structures have been suggested, the environment around the antimony being tetrahedral, trigonal bipyramidal or octahedral.

  2. Growth and Characterization of PDMS-Stamped Halide Perovskite Single Microcrystals

    NARCIS (Netherlands)

    Khoram, P.; Brittman, S.; Dzik, W.I.; Reek, J.N.H.; Garneett, E.C.

    2016-01-01

    Recently, halide perovskites have attracted considerable attention for optoelectronic applications, but further progress in this field requires a thorough understanding of the fundamental properties of these materials. Studying perovskites in their single-crystalline form provides a model system for

  3. Non-hydrolytic metal oxide films for perovskite halide overcoating and stabilization

    Science.gov (United States)

    Martinson, Alex B.; Kim, In Soo

    2017-09-26

    A method of protecting a perovskite halide film from moisture and temperature includes positioning the perovskite halide film in a chamber. The chamber is maintained at a temperature of less than 200 degrees Celsius. An organo-metal compound is inserted into the chamber. A non-hydrolytic oxygen source is subsequently inserted into the chamber. The inserting of the organo-metal compound and subsequent inserting of the non-hydrolytic oxygen source into the chamber is repeated for a predetermined number of cycles. The non-hydrolytic oxygen source and the organo-metal compound interact in the chamber to deposit a non-hydrolytic metal oxide film on perovskite halide film. The non-hydrolytic metal oxide film protects the perovskite halide film from relative humidity of greater than 35% and a temperature of greater than 150 degrees Celsius, respectively.

  4. Influence of the acid and basic properties of rhenium oxide supported on alumina catalyst on the catalytic performance in olefin metathesis; Influence des proprietes acido-basiques de l`oxyde de rhenium supporte sur les performances catalytiques en metathese des olefines

    Energy Technology Data Exchange (ETDEWEB)

    Nahama, F.

    1996-11-30

    The aim of this work is to study the influence of the acid-basic properties of rhenium oxide supported on alumina catalyst on the catalytic performance in olefin metathesis. The literature data indicate that the environment of the active site does possess acid properties. However, the nature of the acid sites is still matter of debate. Concerning the Re O{sub x} - Al{sub 2}O{sub 3} interactions, we have shown that perrhenate ions are electrostatically absorbed on alumina. The uptake of rhenium is favoured at acidic pH (below 4), and the absorbed rhenium is in equilibrium with rhenium in solution. The results of rhenium extraction by water strongly suggest that the surface compounds of the calcined Re{sub 2}O{sub 7}/Al{sub 2}O{sub 3} materials is aluminium perrhenate. Characterization of surface acidity of the catalyst by infrared spectroscopy reveals that the initiation of the metathesis reaction is governed essentially by Lewis acidity. This strongly supports the role of Lewis acidity, which is exalted by the increase of the rhenium content and the calcination temperature. Finally, we point out by ammonia adsorption-thermodesorption a band at 1320 cm{sup -1} characteristic of the Lewis acidity of aluminium perrhenate. This result is a second indication of the presence of aluminium perrhenate on the Re{sub 2}O{sub 7}/Al{sub 2}O{sub 3} catalyst surface. (author)

  5. Solution enthalpies of alkali metal halides in water and heavy water mixtures with dimethyl sulfoxide

    International Nuclear Information System (INIS)

    Egorov, G.I.

    1994-01-01

    Solution enthalpies of CsF, LiCl, NaI, CsI and some other halides of alkali metals and tetrabutylammonium have been measured by the method of calorimetry. Standard solution enthalpies of all alkali metals (except rubidium) halides in water and heavy water mixtures with dimethylsulfoxide at 298.15 K have been calculated. Isotopic effects in solvation enthalpy of the electrolytes mentioned in aqueous solutions of dimethylsulfoxide have been discussed. 29 refs., 2 figs., 4 tabs

  6. Influence of electrode, buffer gas and control gear on metal halide lamp performance

    International Nuclear Information System (INIS)

    Lamouri, A; Naruka, A; Sulcs, J; Varanasi, C V; Brumleve, T R

    2005-01-01

    In this paper the influence of electrode composition, buffer gas fill pressure and control gear on the performance of metal halide lamps is investigated. It is shown that pure tungsten electrodes improve lumen maintenance and reduce voltage rise over lamp life. An optimum buffer gas fill pressure condition is discovered which allows for reduced electrode erosion during lamp starting as well as under normal operating conditions. Use of electronic control gear is shown to improve the performance of metal halide lamps

  7. Transfer Hydro-dehalogenation of Organic Halides Catalyzed by Ruthenium(II) Complex.

    Science.gov (United States)

    You, Tingjie; Wang, Zhenrong; Chen, Jiajia; Xia, Yuanzhi

    2017-02-03

    A simple and efficient Ru(II)-catalyzed transfer hydro-dehalogenation of organic halides using 2-propanol solvent as the hydride source was reported. This methodology is applicable for hydro-dehalogenation of a variety of aromatic halides and α-haloesters and amides without additional ligand, and quantitative yields were achieved in many cases. The potential synthetic application of this method was demonstrated by efficient gram-scale transformation with catalyst loading as low as 0.5 mol %.

  8. Organometallic halide perovskite single crystals having low deffect density and methods of preparation thereof

    KAUST Repository

    Bakr, Osman M.

    2016-02-18

    The present disclosure presents a method of making a single crystal organometallic halide perovskites, with the formula: AMX3, wherein A is an organic cation, M is selected from the group consisting of: Pb, Sn, Cu, Ni, Co, Fe, Mn, Pd, Cd, Ge, and Eu, and X is a halide. The method comprises the use of two reservoirs containing different precursors and allowing the vapor diffusion from one reservoir to the other one. A solar cell comprising said crystal is also disclosed.

  9. The thermo-elastic instability model of melting of alkali halides in the Debye approximation

    Science.gov (United States)

    Owens, Frank J.

    2018-05-01

    The Debye model of lattice vibrations of alkali halides is used to show that there is a temperature below the melting temperature where the vibrational pressure exceeds the electrostatic pressure. The onset temperature of this thermo-elastic instability scales as the melting temperature of NaCl, KCl, and KBr, suggesting its role in the melting of the alkali halides in agreement with a previous more rigorous model.

  10. Broadly tunable metal halide perovskites for solid-state light-emission applications

    OpenAIRE

    Adjokatse, Sampson; Fang, Hong-Hua; Loi, Maria Antonietta

    2017-01-01

    The past two years have witnessed heightened interest in metal-halide perovskites as promising optoelectronic materials for solid-state light emitting applications beyond photovoltaics. Metal-halide perovskites are low-cost solution-processable materials with excellent intrinsic properties such as broad tunability of bandgap, defect tolerance, high photoluminescence quantum efficiency and high emission color purity (narrow full-width at half maximum). In this review, the photophysical propert...

  11. Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic-Inorganic Perovskites

    OpenAIRE

    Sutter-Fella, CM; Ngo, QP; Cefarin, N; Gardener, K; Tamura, N; Stan, CV; Drisdell, WS; Javey, A; Toma, FM; Sharp, ID

    2018-01-01

    © 2018 American Chemical Society. Mixed cation metal halide perovskites with increased power conversion efficiency, negligible hysteresis, and improved long term stability under illumination, moisture, and thermal stressing have emerged as promising compounds for photovoltaic and optoelectronic applications. Here, we shed light on photo-induced halide demixing using in-situ photoluminescence spectroscopy and in-situ synchrotron X-ray diffraction (XRD) to directly compare the evolution of comp...

  12. Metal halides vapor lasers with inner reactor and small active volume.

    Science.gov (United States)

    Shiyanov, D. V.; Sukhanov, V. B.; Evtushenko, G. S.

    2018-04-01

    Investigation of the energy characteristics of copper, manganese, lead halide vapor lasers with inner reactor and small active volume 90 cm3 was made. The optimal operating pulse repetition rates, temperatures, and buffer gas pressure for gas discharge tubes with internal and external electrodes are determined. Under identical pump conditions, such systems are not inferior in their characteristics to standard metal halide vapor lasers. It is shown that the use of a zeolite halogen generator provides lifetime laser operation.

  13. Silver halide photographic material providing an image and an unsharp mask

    International Nuclear Information System (INIS)

    Broadhead, P.; Farnell, G.C.

    1981-01-01

    Desirable edge effects are produced by normal imagewise exposure and processing of a sensitive radiographic film comprising a transparent film support bearing a layer of a direct-positive silver halide emulsion and a layer of a negative silver halide emulsion and wherein the film comprises means to reduce crossover between the two emulsion layers, one of said emulsion layers being adapted to record a primary image and the other being adapted to record an unsharp mask image. (author)

  14. Observation of vapor pressure enhancement of rare-earth metal-halide salts in the temperature range relevant to metal-halide lamps

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J. J.; Henins, A.; Hardis, J. E. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Estupinan, E. G. [Osram Sylvania Inc., Beverly, Massachusetts 01915 (United States); Lapatovich, W. P. [Independent Consultant, 51 Pye Brook Lane, Boxford, Massachusetts 01921 (United States); Shastri, S. D. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2012-02-20

    Total vapor-phase densities of Dy in equilibrium with a DyI{sub 3}/InI condensate and Tm in equilibrium with a TmI{sub 3}/TlI condensate have been measured for temperatures between 900 K and 1400 K. The measurements show strong enhancements in rare-earth vapor densities compared to vapors in equilibrium with the pure rare-earth metal-halides. The measurements were made with x-ray induced fluorescence on the sector 1-ID beam line at the Advanced Photon Source. The temperature range and salt mixtures are relevant to the operation of metal-halide high-intensity discharge lamps.

  15. Use of a new tandem cation/anion exchange system with clinical-scale generators provides high specific volume solutions of technetium-99m and rhenium-188

    International Nuclear Information System (INIS)

    Knapp, F.R. Jr.; Beets, A.L.; Mirzadeh, S.; Guhlke, S.; Univ. of Bonn

    1998-03-01

    In this paper the authors describe the first application of a simple and inexpensive post elution tandem cation-anion exchange column system which is based on generator elution with salts of weak acids such as ammonium acetate instead of saline solution to provide very high specific volume solutions of technetium-99m and rhenium-188 from clinical scale molybdenum-99/technetium-99m generator prepared from low specific activity (n,y) molybdenum-99, and tungsten-188/rhenium-188 generators, respectively. Initial passage of the bolus through a strong cation exchange cartridge converts the ammonium acetate to acetic acid which is essentially not ionized at the acidic pH, allowing specific subsequent amine type (QMA SepPak trademark) anion exchange cartridge column trapping of the microscopic levels of the pertechnetate or perrhenate. Subsequent elution of the anion cartridge with a small volume ( 500 mCi/mL) from the alumina-based tungsten-188/rhenium-188 generator

  16. Intracellular distribution and stability of a luminescent rhenium(I) tricarbonyl tetrazolato complex using epifluorescence microscopy in conjunction with X-ray fluorescence imaging

    International Nuclear Information System (INIS)

    Wedding, Jason L.; Harris, Hugh H.; Bader, Christie A.; Plush, Sally E.; Mak, Rachel

    2016-01-01

    Optical fluorescence microscopy was used in conjunction with X-ray fluorescence microscopy to monitor the stability and intracellular distribution of the luminescent rhenium(I) complex fac-[Re(CO) 3 (phen)L], where phen = 1,10-phenathroline and L = 5-(4-iodophenyl)tetrazolato, in 22Rv1 cells. The rhenium complex showed no signs of ancillary ligand dissociation, a conclusion based on data obtained via X-ray fluorescence imaging aligning iodine and rhenium distributions. A diffuse reticular localisation was detected for the complex, in the nuclear/perinuclear region of cells, by either optical or X-ray fluorescence techniques. Furthermore, X-ray fluorescence also showed that the Re-I complex disrupted the homeostasis of some biologically relevant elements, such as chlorine, potassium and zinc.

  17. Studies of technetium chemistry. Pt.8. The regularities of the bond length and configuration of rhenium and technetium complexes in crystals

    International Nuclear Information System (INIS)

    Liu Guozheng; Liu Boli

    1995-01-01

    Some bond length regularities in MO 6 , MO-4, MX 5 α and MX 4 αβ moieties of technetium and rhenium compounds are summarized and rationalized by cavity model. The chemical properties of technetium and rhenium are so similar that their corresponding complexes have almost the same configuration and M-X bond lengths when they are in cavity-controlled state. Technetium and Rhenium combine preferably with N, O, F, S, Cl and Br when they are in higher oxidation states (>3), but preferably with P, Se etc. when they are in lower oxidation states ( 4 αβ is approximately constant; (2) the average M-X bond length of MX 6 varies moderately with the oxidation state of M; (3) the bond length of M-X trans to M-α in MX 5 α has a linear relationship with the angle

  18. 188Rhenium-HEDP in the treatment of pain in bone metastases

    International Nuclear Information System (INIS)

    Gaudiano, J.; Martinez, G.; Hermida, J.C.; Savio, E.; Verdera, S.; Robles, A.; Muniz, S.; Leon, A.; Knapp, F.F.

    2001-01-01

    Systemic use of radiopharmaceuticals is a recognised alternative method for the treatment of pain in patients with multiple bone metastases. A new option, 188 Re-HEDP is proposed, using generator-obtained 188 Rhenium (β energy = 2.1 MeV, γ energy = 155 keV, half-life = 16.9 hours). After establishing parameters of biodistribution, dosimetry and image acquisition in mice, rats and rabbits, Phase I and II studies were conducted on 12 patients with multiple metastases from carcinomas, with pain surpassing other analgesic options. More than 50% pain relief was found in 91% of the patients, with total relief during a variable period in 41% of them allowing opiate and other analgesic drugs to be decreased or withdrawn, and showing a lower bone marrow contribution to total absorbed dose than that reported for other similar radiopharmaceuticals. Further study of this option is recommended in order to determine higher dose protocols without toxic bone marrow reaction possibilities. (author)

  19. Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic

    Science.gov (United States)

    Shim, Jaewoo; Oh, Seyong; Kang, Dong-Ho; Jo, Seo-Hyeon; Ali, Muhammad Hasnain; Choi, Woo-Young; Heo, Keun; Jeon, Jaeho; Lee, Sungjoo; Kim, Minwoo; Song, Young Jae; Park, Jin-Hong

    2016-11-01

    Recently, negative differential resistance devices have attracted considerable attention due to their folded current-voltage characteristic, which presents multiple threshold voltage values. Because of this remarkable property, studies associated with the negative differential resistance devices have been explored for realizing multi-valued logic applications. Here we demonstrate a negative differential resistance device based on a phosphorene/rhenium disulfide (BP/ReS2) heterojunction that is formed by type-III broken-gap band alignment, showing high peak-to-valley current ratio values of 4.2 and 6.9 at room temperature and 180 K, respectively. Also, the carrier transport mechanism of the BP/ReS2 negative differential resistance device is investigated in detail by analysing the tunnelling and diffusion currents at various temperatures with the proposed analytic negative differential resistance device model. Finally, we demonstrate a ternary inverter as a multi-valued logic application. This study of a two-dimensional material heterojunction is a step forward toward future multi-valued logic device research.

  20. Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic

    Science.gov (United States)

    Shim, Jaewoo; Oh, Seyong; Kang, Dong-Ho; Jo, Seo-Hyeon; Ali, Muhammad Hasnain; Choi, Woo-Young; Heo, Keun; Jeon, Jaeho; Lee, Sungjoo; Kim, Minwoo; Song, Young Jae; Park, Jin-Hong

    2016-01-01

    Recently, negative differential resistance devices have attracted considerable attention due to their folded current–voltage characteristic, which presents multiple threshold voltage values. Because of this remarkable property, studies associated with the negative differential resistance devices have been explored for realizing multi-valued logic applications. Here we demonstrate a negative differential resistance device based on a phosphorene/rhenium disulfide (BP/ReS2) heterojunction that is formed by type-III broken-gap band alignment, showing high peak-to-valley current ratio values of 4.2 and 6.9 at room temperature and 180 K, respectively. Also, the carrier transport mechanism of the BP/ReS2 negative differential resistance device is investigated in detail by analysing the tunnelling and diffusion currents at various temperatures with the proposed analytic negative differential resistance device model. Finally, we demonstrate a ternary inverter as a multi-valued logic application. This study of a two-dimensional material heterojunction is a step forward toward future multi-valued logic device research. PMID:27819264

  1. 3.3.1. Synthesis, Spectroscopy and Structural Analysis of Technetium and Rhenium Nitrosyl Complexes

    Directory of Open Access Journals (Sweden)

    Terrence\tNicholson*,\tEsther\tChunb, Ashfaq\tMahmood,\tPeter\tMueller,\tAlan\tDavisona\tand\tAlun\tG.\tJones

    2015-11-01

    Full Text Available Here we report an overview of our synthetic, spectroscopic and structural studies of technetium and rhenium nitrosyl complexes. We review the results from various notes and short papers reported over the past 15 years and discuss their significance in terms of radiopharmaceutical design.A single new complex is reported, the ReI-NO complex [ReICl2(NO(py-N(Et-py], in which the tridentate ligand di-(2-picolyl(N-ethylamine, (py-N(Et-py, is coordinated in a meridional manner. This complex was synthesized from the reaction of the ReI-nitrosyl complex ReCl2(NO(NCMe3] and the neutral tri-amine ligand py-N(Et-py in methylene chloride under argon. The bright red species was isolated chromatographically and recrystallized from CH2Cl2/MeOH under diethylether.A review of literature values for nitrosyl complexes with various ligands bound to the coordination sitetrans- to the nitrosyl group shows only minor variations in the M-N-O bond angle.

  2. Safety and Efficacy of 188-Rhenium-Labeled Antibody to Melanin in Patients with Metastatic Melanoma

    Directory of Open Access Journals (Sweden)

    M. Klein

    2013-01-01

    Full Text Available There is a need for effective “broad spectrum” therapies for metastatic melanoma which would be suitable for all patients. The objectives of Phase Ia/Ib studies were to evaluate the safety, pharmacokinetics, dosimetry, and antitumor activity of 188Re-6D2, a 188-Rhenium-labeled antibody to melanin. Stage IIIC/IV metastatic melanoma (MM patients who failed standard therapies were enrolled in both studies. In Phase Ia, 10 mCi 188Re-6D2 were given while unlabeled antibody preload was escalated. In Phase Ib, the dose of 188Re-6D2 was escalated to 54 mCi. SPECT/CT revealed 188Re-6D2 uptake in melanoma metastases. The mean effective half-life of 188Re-6D2 was 12.4 h. Transient HAMA was observed in 9 patients. Six patients met the RECIST criteria for stable disease at 6 weeks. Two patients had durable disease stabilization for 14 weeks and one for 22 weeks. Median overall survival was 13 months with no dose-limiting toxicities. The data demonstrate that 188Re-6D2 was well tolerated, localized in melanoma metastases, and had antitumor activity, thus warranting its further investigation in patients with metastatic melanoma.

  3. Laser-induced breakdown spectroscopy measurement of a small fraction of rhenium in bulk tungsten

    Science.gov (United States)

    Nishijima, D.; Ueda, Y.; Doerner, R. P.; Baldwin, M. J.; Ibano, K.

    2018-03-01

    Laser-induced breakdown spectroscopy (LIBS) of bulk rhenium (Re) and tungsten (W)-Re alloy has been performed using a Q-switched Nd:YAG laser (wavelength = 1064 nm, pulse width ∼4-6 ns, laser energy = 115 mJ). It is found that the electron temperature, Te, of laser-induced Re plasma is lower than that of W plasma, and that Te of W-Re plasma is in between Re and W plasmas. This indicates that material properties affect Te in a laser-induced plasma. For analysis of W-3.3%Re alloy, only the strongest visible Re I 488.9 nm line is found to be used because of the strong enough intensity without contamination with W lines. Using the calibration-free LIBS method, the atomic fraction of Re, cRe, is evaluated as a function of the ambient Ar gas pressure, PAr. At PAr 10 Torr due to spectral overlapping of the Re I 488.9 nm line by an Ar II 488.9 nm line.

  4. Bone marrow adsorbed dose of rhenium-186-HEDP and the relationship with decreased platelet counts

    International Nuclear Information System (INIS)

    Klerk, J.M.H. de; Dieren, E.B. van; Schip, A.D. van het

    1996-01-01

    Rhenium-186(Sn)-1,1-hydroxyethylidene diphosphonate ( 186 Re-HEDP) has been used for palliation of metastatic bone pain. The purpose of this study was to find a relationship between the bone marrow absorbed dose and the toxicity, expressed as the percentage decrease in the peripheral blood platelet count. The bone marrow absorbed dose was calculated according to the MIRD model using data obtained from ten treatments of patients suffering from metastatic prostate cancer; noninvasive and pharmacokinetic method were used. The bone marrow doses were related to toxicity using the pharmacodynamic sigmoid E max model. The mean bone marrow absorbed doses using the noninvasive and pharmacokinetic methods were in a close range to each other (1.07 mGy/MBq and 1.02 mGy/MBq, respectively). There was a good relationship between the toxicity and the bone marrow absorbed dose (r = 0.80). Furthermore, the EDrm 50 (i.e., the bone marrow absorbed dose producing a 50% platelet decrease) to bone marrow for 186 Re-HEDP was on the order of 2 Gy. Although the function of normal bone marrow is affected by metastases in patients with metastatic bone disease, the MIRD model can be used to relate toxicity to the bone marrow absorbed dose after a therapeutic dosage of 186 Re-HEDP. 33 refs., 1 fig., 1 tab

  5. SPS Fabrication of Tungsten-Rhenium Alloys in Support of NTR Fuels Development

    International Nuclear Information System (INIS)

    Webb, Jonathan A.; Charit, Indrajit; Sparks, Cory; Butt, Darryl P.; Frary, Megan; Carroll, Mark

    2011-01-01

    Tungsten metal slugs were fabricated via Spark Plasma Sintering (SPS) of powdered metals at temperatures ranging from 1575 K to 1975 K and hold times of 5 minutes to 30 minutes, using powders with an average diameter of 7.8 ?m. Sintered tungsten specimens were found to have relative densities ranging from 83 % to 94 % of the theoretical density for tungsten. Consolidated specimens were also tested for their Vickers Hardness Number (VHN), which was fitted as a function of relative density; the fully consolidated VHN was extrapolated to be 381.45 kg/mm2. Concurrently, tungsten and rhenium powders with average respective diameters of 0.5 ?m and 13.3 ?m were pre-processed either by High-Energy-Ball-Milling (HEBM) or by homogeneous mixing to yield W-25at.%Re mixtures. The powder batches were sintered at temperatures of 1975 K and 2175 K for hold times ranging from 0 minutes to 60 minutes yielding relative densities ranging from 94% to 97%. The combination of HEBM and sintering showed a significant decrease in the inter-metallic phases compared to that of the homogenous mixing and sintering.

  6. Sorption of technetium and its analogue rhenium on bentonite material under aerobic conditions

    International Nuclear Information System (INIS)

    Koudelkova, M.; Vinsova, H.; Konirova, R.; Ernestova, M.; Jedinakova-Krizova, V.; Tereesha, M.

    2003-01-01

    The uptake of technetium on bentonite materials has been studied from the point of view of characterization of long-term radioactive elements behavior in nuclear waste repository. Bentonite R (locality Rokle, Czech Republic) and two types of model groundwater (granitic and bentonite) were selected for the sorption experiments. The aim of our research has been to find out the conditions suitable for the technetium sorption on selected bentonite under oxidizing condition. The sorption experiments with Tc-99 on bentonite have been carried out by batch method. The influence of the addition of different materials (e.g. activated carbon, graphite, Fe 2+ ) with bentonite, the effect of solid: aqueous phase ratio and a pH value on the percentage of technetium uptake and on the K d values were tested. Perrhenate was selected as an analogue of pertechnetate in non-active experiments of capillary electrophoresis (CE) and isotachophoresis (ITP). The percentage of rhenium sorbed on bentonite material was determined from the decrease of perrhenate peak area (CE) and from the shortening of the ITP zone corresponding to perrhenate. Both electromigration methods provided comparable results. The results obtained in this study with non-active material were compared to those of technetium acquired by radiometry and polarography. The 8 days kinetics of the perrhenate and pertechnetate sorption on bentonite was described mathematically with a tendency to predict long-term behavior of studied systems. (authors)

  7. Prototype commercial electrooxidation cell for the recovery of molybdenum and rhenium from molybdenite concentrates

    International Nuclear Information System (INIS)

    Scheiner, B.J.; Pool, D.L.; Lindstrom, R.E.; McCleland, G.E.

    1979-01-01

    As part of the goal to maximize minerals and metals recovery from primary domestic resources, design factors associated with minimizing current leakage in bipolar cell configurations were studied as a means of improving the efficiency of bipolar electrooxidation cells. Initial studies that were conducted in a small bipolar cell operating at 140 to 145 volts and 15.4 A indicated how design factors could be employed to minimize current leakage around adjacent electrodes during cell operation. Based on these results, a 40-electrode, 108-kVA prototype of an industrial-sized cell was constructed and tested for extracting metal values from offgrade molybdenite concentrates. The feasibility of recovering molybdenum and rhenium from the oxidized pulp also was determined. Feed to the process sequence consisted of flotation concentrates containing 16 to 35% Mo as molybdenite and 6 to 15% Cu. Electrooxidation in the prototype cell results in 84 to 97% Mo and Re extraction with a corresponding energy consumption of 9 to 13 kWh/lb Mo extracted

  8. {sup 188}Rhenium-HEDP in the Treatment of Pain in Bone Metastases

    Energy Technology Data Exchange (ETDEWEB)

    Gaudiano, J.; Savio, E.; Robles, A.; Muniz, S.; Leon, A.; Verdera, S.; Martinez, G.; Hermida, J.C.; Knapp, F.F., Jr.

    1999-01-18

    Systemic use of radiopharmaceuticals is a recognized alternative method for the treatment of pain in patients with multiple bone metastasis. A new option, {sup 188}Re-HEDP is proposed, using generator-obtained {sup 188}Rhenium ({beta} energy = 2.1 MeV, {gamma} energy = 155 keV, half-life = 16.9 hours). After establishing parameters of biodistribution, dosimetry and image acquisition in mice, rats and rabbits, Phase I and II studies were conducted on 12 patients with multiple metastasis from carcinomas, with pain surpassing other analgesic options. More than 50% pain relief was found in 91% of the patients, with total relief during a variable period in 41% of them allowing opiate and other analgesic drugs to be decreased or withdrawn, and showing a lower bone marrow contribution to total absorbed dose than that reported for other similar radiopharmaceuticals. Further study of this option is recommended in order to determine higher dose protocols without toxic bone marrow reaction possibilities.

  9. Magnetic properties of nickel halide hydrates including deuteration effects

    Energy Technology Data Exchange (ETDEWEB)

    DeFotis, G.C., E-mail: gxdefo@wm.edu [Chemistry Department, College of William & Mary, Williamsburg, VA, 23187 United States (United States); Van Dongen, M.J.; Hampton, A.S.; Komatsu, C.H.; Trowell, K.T.; Havas, K.C.; Davis, C.M.; DeSanto, C.L. [Chemistry Department, College of William & Mary, Williamsburg, VA, 23187 United States (United States); Hays, K.; Wagner, M.J. [Chemistry Department, George Washington University, Washington, DC, 20052 United States (United States)

    2017-01-01

    Magnetic measurements on variously hydrated nickel chlorides and bromides, including deuterated forms, are reported. Results include locations and sizes of susceptibility maxima, T{sub max} and χ{sub max}, ordering temperatures T{sub c}, Curie constants and Weiss theta in the paramagnetic regime, and primary and secondary exchange interactions from analysis of low temperature data. For the latter a 2D Heisenberg model augmented by interlayer exchange in a mean-field approximation is applied. Magnetization data to 16 kG as a function of temperature show curvature and hysteresis characteristics quite system dependent. For four materials high field magnetization data to 70 kG at 2.00 K are also obtained. Comparison is made with theoretical relations for spin-1 models. Trends are apparent, primarily that T{sub max} of each bromide hydrate is less than for the corresponding chloride, and that for a given halide nD{sub 2}O (n=1 or 2) deuterates exhibit lesser T{sub max} than do nH{sub 2}O hydrates. A monoclinic unit cell determined from powder X-ray diffraction data on NiBr{sub 2}·2D{sub 2}O is different from and slightly larger than that of NiBr{sub 2}·2H{sub 2}O. This provides some rationale for the difference in magnetic properties between these. - Highlights: • The magnetism of Ni(II) chloride and bromide dihydrates and monohydrates is studied. • Effects of replacing H{sub 2}O by D{sub 2}O are examined for both hydration states and both halides. • Exchange interactions in bromides are weaker than in corresponding chlorides. • Exchange interactions are weaker in D{sub 2}O than in corresponding H{sub 2}O containing systems. • The unit cell of NiBr{sub 2}·2D{sub 2}O is different from and slightly larger than that of NiBr{sub 2}·2H{sub 2}O.

  10. Elementary steps of the catalytic oxidation of CO in a gas phase in the presence of rhenium cations with carbonyl and oxygen ligands: a comparison with heterogeneous catalysis

    International Nuclear Information System (INIS)

    Goncharov, V.B.; Fialko, E.F.; Shejnin, D.Eh.; Kikhtenko, A.V.

    1997-01-01

    Reactivity in a gaseous phase o rhenium (Re + ) and rhenium monocarbonyl (ReCO + ) in the reaction of CO oxidation in oxygen-containing reagents (NO, O 2 , H 2 O) is studied through the method of the ionic cyclotron resonance. It is shown that presence of carbonyl ligand essentially influences the ion reactivity. The effective channel of the metal monocarbonyl ions oxidation through molecular oxygen is found. Accounting for this stage makes of possible to explain the low-temperature activity of a number of oxide catalyzer Mo, W in the reaction of CO oxidation by molecular oxygen

  11. High-resolution metallic magnetic calorimeters for β-spectroscopy on 187rhenium and position resolved X-ray spectroscopy

    International Nuclear Information System (INIS)

    Porst, Jan-Patrick

    2011-01-01

    This thesis describes the development of metallic magnetic calorimeters (MMCs) for high resolution spectroscopy. MMCs are energy dispersive particle detectors based on the calorimetric principle which are typically operated at temperatures below 100 mK. The detectors make use of a paramagnetic temperature sensor to transform the temperature rise upon the absorption of a particle in the detector into a measurable magnetic flux change in a dc-SQUID. The application of MMCs for neutrino mass measurements and their advantages with respect to other approaches are discussed. In view of this application the development of an MMC optimized for β-endpoint spectroscopy on 187 rhenium is presented. A fully micro-fabricated X-ray detector is characterized and performs close to design values. Furthermore, a new technique to more efficiently couple rhenium absorbers mechanically and thermally to the sensor was developed and successfully tested. By employing a metallic contact, signal rise times faster than 5 μs could be observed with superconducting rhenium absorbers. In addition to the single pixel detectors, an alternative approach of reading out multiple pixels was developed in this work, too. Here, the individual absorbers have a different thermal coupling to only one temperature sensor resulting in a distribution of different pulse shapes. Straightforward position discrimination by means of rise time analysis is demonstrated for a four pixel MMC and a thermal model of the detector is provided. Unprecedented so far, an energy resolution of less than ΔE FWHM <5 eV for 5.9 keV X-rays was achieved across all absorbers. (orig.)

  12. Silver nanoparticles from silver halide photography to plasmonics

    CERN Document Server

    Tani, Tadaaki

    2015-01-01

    This book provides systematic knowledge and ideas on nanoparticles of Ag and related materials. While Ag and metal nanoparticles are essential for plasmonics, silver halide (AgX) photography relies to a great extent on nanoparticles of Ag and AgX which have the same crystal structure and have been studied extensively for many years. This book has been written to combine the knowledge of nanoparticles of Ag and related materials in plasmonics and AgX photography in order to provide new ideas for metal nanoparticles in plasmonics. Chapters 1–3 of this book describe the structure and formation of nanoparticles of Ag and related materials. Systematic descriptions of the structure and preparation of Ag, Au, and noble-metal nanoparticles for plasmonics are followed by and related to those of nanoparticles of Ag and AgX in AgX photography. Knowledge of the structure and preparation of Ag and AgX nanoparticles in photography covers nanoparticles with widely varying sizes, shapes, and structures, and formation proce...

  13. Modelling current transfer to cathodes in metal halide plasmas

    International Nuclear Information System (INIS)

    Benilov, M S; Cunha, M D; Naidis, G V

    2005-01-01

    This work is concerned with investigation of the main features of current transfer to cathodes under conditions characteristic of metal halide (MH) lamps. It is found that the presence of MHs in the gas phase results in a small decrease of the cathode surface temperature and of the near-cathode voltage drop in the diffuse mode of current transfer; the range of stability of the diffuse mode expands. Effects caused by a variation of the work function of the cathode surface owing to formation of a monolayer of alkali metal atoms on the surface are studied for particular cases where the monolayer is composed of sodium or caesium. It is found that the formation of the sodium monolayer affects the diffuse mode of current transfer only moderately and in the same direction that the presence of metal atoms in the gas phase affects it. Formation of the caesium monolayer produces a dramatic effect: the cathode surface temperature decreases very strongly, the diffuse-mode current-voltage characteristic becomes N-S-shaped

  14. A new fundamental hydrogen defect in alkali halides

    International Nuclear Information System (INIS)

    Morato, S.P.; Luety, F.

    1978-01-01

    Atom hydrogen in neutral (H 0 ) and negative (H - ) form on substitutional and interstitial lattice sites gives rise to well characterized model defects in alkali-halides (U,U 1 ,U 2 ,U 3 centers), which have been extensively investigated in the past. When studying the photo-decomposition of OH - defects, a new configuration of atomic charged hidrogen was discovered, which can be produced in large quantities in the crystal and is apparently not connected to any other impurity. This new hidrogen defect does not show any pronounced electronic absorption, but displays a single sharp local mode band (at 1114cm -1 in KCl) with a perfect isotope shift. The defect can be produced by various UV or X-ray techniques in crystais doped with OH - , Sh - or H - defects. A detailed study of its formation kinetics at low temperature shows that it is primarily formed by the reaction of a mobile CI 2 - crowdion (H-center) with hidrogen defects [pt

  15. Photography: enhancing sensitivity by silver-halide crystal doping

    International Nuclear Information System (INIS)

    Belloni, Jacqueline

    2003-01-01

    The physical chemistry of the silver photography processes, exposure, development and fixing, is briefly summarized. The mechanism of the autocatalytic development by the developer of the clusters produced in silver bromide crystals during the exposure which is controlled by the critical nuclearity of these clusters was understood from pulse radiolysis studies. The effective quantum yield PHI eff of photoinduced silver cluster formation in silver halide microcrystals is usually much lower than the photoionization theoretical limit PHI theor =1 electron-hole pair per photon absorbed, owing to a subsequent very fast intra-crystal recombination of a part of the electron-hole pairs. In order to inhibit this recombination and favor the silver reduction by photo-electrons, the AgX crystals were doped with the formate HCO 2 - as a specific hole scavenger. First, the dopant scavenges the photoinduced hole, thus enhancing the electron escape from the pair recombination. Second, the CO 2 ·- radical so formed transfers an electron to another silver cation, so that the PHI eff limit may be of 2Ag 0 per photon. This Photoinduced Bielectronic Transfer mechanism is strictly proportional to the light quanta absorbed and induces an exceptional efficiency for enhancing the radio- or photographic sensitivity insofar as it totally suppresses the electron-hole recombination

  16. Isotope effects in aqueous solvation of simple halides

    Science.gov (United States)

    Videla, Pablo E.; Rossky, Peter J.; Laria, D.

    2018-03-01

    We present a path-integral-molecular-dynamics study of the thermodynamic stabilities of DOH⋯ X- and HOD⋯ X- (X = F, Cl, Br, I) coordination in aqueous solutions at ambient conditions. In agreement with experimental evidence, our results for the F- case reveal a clear stabilization of the latter motif, whereas, in the rest of the halogen series, the former articulation prevails. The DOH⋯ X- preference becomes more marked the larger the size of the ionic solute. A physical interpretation of these tendencies is provided in terms of an analysis of the global quantum kinetic energies of the light atoms and their geometrical decomposition. The stabilization of the alternative ionic coordination geometries is the result of a delicate balance arising from quantum spatial dispersions along parallel and perpendicular directions with respect to the relevant O-H⋯X- axis, as the strength of the water-halide H-bond varies. This interpretation is corroborated by a complementary analysis performed on the different spectroscopic signals of the corresponding IR spectra.

  17. Emission Enhancement and Intermittency in Polycrystalline Organolead Halide Perovskite Films

    Directory of Open Access Journals (Sweden)

    Cheng Li

    2016-08-01

    Full Text Available Inorganic-organic halide organometal perovskites have demonstrated very promising performance for opto-electronic applications, such as solar cells, light-emitting diodes, lasers, single-photon sources, etc. However, the little knowledge on the underlying photophysics, especially on a microscopic scale, hampers the further improvement of devices based on this material. In this communication, correlated conventional photoluminescence (PL characterization and wide-field PL imaging as a function of time are employed to investigate the spatially- and temporally-resolved PL in CH3NH3PbI3−xClx perovskite films. Along with a continuous increase of the PL intensity during light soaking, we also observe PL blinking or PL intermittency behavior in individual grains of these films. Combined with significant suppression of PL blinking in perovskite films coated with a phenyl-C61-butyric acid methyl ester (PCBM layer, it suggests that this PL intermittency is attributed to Auger recombination induced by photoionized defects/traps or mobile ions within grains. These defects/traps are detrimental for light conversion and can be effectively passivated by the PCBM layer. This finding paves the way to provide a guideline on the further improvement of perovskite opto-electronic devices.

  18. Cerium doped lanthanum halides: fast scintillators for medical imaging

    International Nuclear Information System (INIS)

    Selles, O.

    2006-12-01

    This work is dedicated to two recently discovered scintillating crystals: cerium doped lanthanum halides (LaCl 3 :Ce 3+ and LaBr 3 :Ce 3+ ).These scintillators exhibit interesting properties for gamma detection, more particularly in the field of medical imaging: a short decay time, a high light yield and an excellent energy resolution. The strong hygroscopicity of these materials requires adapting the usual experimental methods for determining physico-chemical properties. Once determined, these can be used for the development of the industrial manufacturing process of the crystals. A proper comprehension of the scintillation mechanism and of the effect of defects within the material lead to new possible ways for optimizing the scintillator performance. Therefore, different techniques are used (EPR, radioluminescence, laser excitation, thermally stimulated luminescence). Alongside Ce 3+ ions, self-trapped excitons are involved in the scintillation mechanism. Their nature and their role are detailed. The knowledge of the different processes involved in the scintillation mechanism leads to the prediction of the effect of temperature and doping level on the performance of the scintillator. A mechanism is proposed to explain the thermally stimulated luminescence processes that cause slow components in the light emission and a loss of light yield. Eventually the study of afterglow reveals a charge transfer to deep traps involved in the high temperature thermally stimulated luminescence. (author)

  19. Transmission electron microscopy of weakly deformed alkali halide crystals

    International Nuclear Information System (INIS)

    Strunk, H.

    1976-01-01

    Transmission electron microscopy (TEM) is applied to the investigation of the dislocation arrangement of [001]-orientated alkali halide crystals (orientation four quadruple slip) deformed into stage I of the work-hardenig curve. The investigations pertain mainly to NaCl - (0.1-1) mole-% NaBr crystals, because these exhibit a relatively long stage I. The time available for observing the specimens is limited by the ionization radiation damage occuring in the microscope. An optimum reduction of the damage rate is achieved by a combination of several experimental techniques that are briefly outlined. The crystals deform essentially in single glide. According to the observations, stage I deformation of pure and weakly alloyed NaCl crystals is characterized by the glide of screw dislocations, which bow out between jogs and drag dislocation dipoles behind them. In crystals with >= 0.5 mole-% NaBr this process is not observed to occur. This is attributed to the increased importance of solid solution hardening. (orig.) [de

  20. Strong Carrier–Phonon Coupling in Lead Halide Perovskite Nanocrystals

    Science.gov (United States)

    2017-01-01

    We highlight the importance of carrier–phonon coupling in inorganic lead halide perovskite nanocrystals. The low-temperature photoluminescence (PL) spectrum of CsPbBr3 has been investigated under a nonresonant and a nonstandard, quasi-resonant excitation scheme, and phonon replicas of the main PL band have been identified as due to the Fröhlich interaction. The energy of longitudinal optical (LO) phonons has been determined from the separation of the zero phonon band and phonon replicas. We reason that the observed LO phonon coupling can only be related to an orthorhombically distorted crystal structure of the perovskite nanocrystals. Additionally, the strength of carrier–phonon coupling has been characterized using the ratio between the intensities of the first phonon replica and the zero-phonon band. PL emission from localized versus delocalized carriers has been identified as the source of the observed discrepancies between the LO phonon energy and phonon coupling strength under quasi-resonant and nonresonant excitation conditions, respectively. PMID:29019652

  1. Thermodynamic origin of instability in hybrid halide perovskites

    Science.gov (United States)

    Tenuta, E.; Zheng, C.; Rubel, O.

    2016-11-01

    Degradation of hybrid halide perovskites under the influence of environmental factors impairs future prospects of using these materials as absorbers in solar cells. First principle calculations can be used as a guideline in search of new materials, provided we can rely on their predictive capabilities. We show that the instability of perovskites can be captured using ab initio total energy calculations for reactants and products augmented with additional thermodynamic data to account for finite temperature effects. Calculations suggest that the instability of CH3NH3PbI3 in moist environment is linked to the aqueous solubility of the CH3NH3I salt, thus making other perovskite materials with soluble decomposition products prone to degradation. Properties of NH3OHPbI3, NH3NH2PbI3, PH4PbI3, SbH4PbI3, CsPbBr3, and a new hypothetical SF3PbI3 perovskite are studied in the search for alternative solar cell absorber materials with enhanced chemical stability.

  2. Quantification of Ionic Diffusion in Lead Halide Perovskite Single Crystals

    KAUST Repository

    Peng, Wei

    2018-05-25

    Lead halide perovskites are mixed electronic/ionic semiconductors that have recently revolutionized the photovoltaics field. The physical characterization of the ionic conductivity has been rather elusive due to the highly intermixing of ionic and electronic current. In this work the synthesis of low defect density monocrystalline MAPbBr3 (MA=Methyl ammonium) solar cells free of hole transport layer (HTL) suppresses the effect of electronic current. Impedance spectroscopy reveals the characteristic signature of ionic diffusion (the Warburg element and transmission line equivalent circuit) and ion accumulation at the MAPbBr3/Au interface. Diffusion coefficients are calculated based on a good correlation between thickness of MAPbBr3 and characteristic diffusion transition frequency. In addition, reactive external interfaces are studied by comparison of polycrystalline MAPbBr3 devices prepared either with or without a HTL. The low frequency response in IS measurements is correlated with the chemical reactivity of moving ions with the external interfaces and diffusion into the HTL.

  3. Thermal transformations of oxohalide complexes of rhenium(5) and molybdenum(5) with diazo-18-crown-6 in solid phase

    International Nuclear Information System (INIS)

    Ashurova, N.Kh.; Yakubov, K.G.

    1992-01-01

    Methods for synthesis and separation in solid state of the rhenium(5) and molybdenum(5) onium complexes with diaza-18-crown-6(L), the content of which according to the data of elementary analysis, IRS in the close and remote areas, thermogravimetry, conductometry and potentiometry corresponds to the (H 2 L)[EOX 5 ], where E = Re, Mo; X = Cl - , Br - . Thermotransformation of onium compounds is studied by methods of thermal methods (TG-DTG-DTA combined study). Their avility to be affected by solid-phase dehydrohalogenization, e.i. anderson regrouping. The thermolysis products, corresponding to the general formula (EOLX 3 ), are separated and studied

  4. Synthesis, characterization, and photophysical properties of a thiophene-functionalized bis(pyrazolyl) pyridine (BPP) tricarbonyl rhenium(I) complex.

    Science.gov (United States)

    Lytwak, Lauren A; Stanley, Julie M; Mejía, Michelle L; Holliday, Bradley J

    2010-09-07

    A bromo tricarbonyl rhenium(I) complex with a thiophene-functionalized bis(pyrazolyl) pyridine ligand (L), ReBr(L)(CO)(3) (1), has been synthesized and characterized by variable temperature and COSY 2-D (1)H NMR spectroscopy, single-crystal X-ray diffraction, and photophysical methods. Complex 1 is highly luminescent in both solution and solid-state, consistent with phosphorescence from an emissive (3)MLCT excited state with an additional contribution from a LC (3)(pi-->pi*) transition. The single-crystal X-ray diffraction structure of the title ligand is also reported.

  5. Evaluation of a new component used for isotopic lymphography: colloidal rhenium sulfide sup(99m)Tc labelled

    International Nuclear Information System (INIS)

    Pecking, A.; Le Mercier, N.; Gobin, R.; Bardy, A.; Najean, Y.

    1978-01-01

    We have studied for lymphatic scintigraphy a new radiopharmaceutical, sup(99m)Tc-labelled rhenium sulfocolloid. This preliminary study includes 20 adults patients with lymphomas and lymphoedemas. The principal advantage of this drug is its absence of toxicity and local pain, so that a rapid sub-cutaneous injection without local anesthesia is made possible. Good results have been obtained, as well in morphological studies of para-aortic and mammary lymph nodes as for kinetic studies of lymphatic flow in lymphoedemas. No liver and spleen uptake of radio-isotope was observed after foot injection [fr

  6. The impact of alkali metal halide electron donor complexes in the photocatalytic degradation of pentachlorophenol

    Energy Technology Data Exchange (ETDEWEB)

    Khuzwayo, Z., E-mail: zack.khuzwayo@up.ac.za; Chirwa, E.M.N

    2017-01-05

    Highlights: • Facilitation of photocatalysis using simple metal-halides as VB hole scavengers. • Recombination prevention by coupled valence and conduction band approaches. • Determination of anions critical levels beyond which process retardation occurs. • Determination of the photocatalytic process rate of reaction kinetics. - Abstract: The performance of photocatalytic oxidation of chemical pollutants is subjected to the presence of anion complexes in natural waters. This study investigated the influence of alkali metal (Na{sup +} (sodium), K{sup +} (potassium)) halides (Cl{sup −} (chloride), Br{sup −} (bromide), F{sup −} (fluoride)) as inorganic ion sources in the photocatalytic degradation of pentachlorophenol (PCP) in batch systems. It was found that the exclusive presence of halides in the absence of an electron acceptor adequately facilitated the photocatalyst process below critical levels of anion populations, where beyond the critical point the process was significantly hindered. Below the determined critical point, the performance in some cases near matches that of the facilitation of the photocatalytic process by exclusive oxygen, acting as an electron scavenger. The coupling of halide ions and oxygenation presented significantly improved photo-oxidation of PCP, this was confirmed by the inclusion of formic acid as a comparative electron donor. The Langmuir-Hinshelwood kinetic expression was used to calculate the performance rate kinetics. The probable impact of the halide anions was discussed with regards to the process of electron hole pair recombination prevention.

  7. Physico-chemical characterisation and biological evaluation of 188-Rhenium colloids for radiosynovectomy

    International Nuclear Information System (INIS)

    Ures, Ma Cristina; Savio, Eduardo; Malanga, Antonio; Fernández, Marcelo; Paolino, Andrea; Gaudiano, Javier

    2002-01-01

    Radiosynovectomy is a type of radiotherapy used to relieve pain and inflammation from rheumatoid arthritis. In this study, 188-Rhenium ( 188 Re) colloids were characterized by physical and biological methodologies. This was used to assess which parameters of the kit formulation would be the basis in the development of a more effective radiopharmaceutical for synovectomy. Intraarticular injection in knees of rabbits assessed cavity leakage of activity. The physical characteristics of tin (Sn) and sulphur (S) colloids were determined to assess the formulation with suitable properties. Particles were grouped in three ranges for analyzing their distribution according to their number, volume and surface. The ideal particle size range was considered to be from 2 to 10 microns. Membrane filtration and laser diffraction characterization methodologies were used. While membrane filtration could give misleading data, laser diffraction proportions more reliable results. The Sn colloid showed a better distribution of particle volume and surface than S colloid, in the 2 to 10 microns range. The 188 Re-Sn colloid was obtained with a radiochemical purity higher than 95% after 30 minutes of autoclaving. While Sn colloid kit stability was verified for 60 days, the 188 Re-Sn preparation was stable in the first 24 hrs. No significant intrabatch variability (n = 3) was detected. Biodistribution and scintigraphic studies in rabbits after intraarticular injection showed relevant activity only in knee, being 90% at 48 hours. The 188 Re-Sn colloid is easy to prepare, is stable for 24 hours and shows minimal cavity leakage after intraarticular injection into rabbit knees, suggesting this radiotherapeutical agent has suitable physical properties for evaluation for joint treatment in humans

  8. Sorption of technetium and its analogue rhenium on bentonite material under aerobic conditions

    International Nuclear Information System (INIS)

    Vinsova, H.; Koudelkova, M.; Konirova, R.; Vecernik, P.; Jedinakova-Krizova, V.

    2003-01-01

    The uptake of technetium on bentonite materials has been studied from the point of view of characterization of long-term radioactive elements behavior in nuclear waste repository. Bentonite R (locality Rokle, Czech Republic) and two types of model groundwater (granitic and bentonite) were selected for the sorption experiments. It is generally known that bentonite materials show an excellent cation-exchange capacity and, on the other hand, a poor uptake of anions. Technetium occurs under aerobic conditions in its most stable oxidation state (+VII) as pertechnetate, which makes a question of its sorption on bentonite more complex when compared with e.g. Cs + or Sr 2+ . To increase the K d values for technetium sorption on bentonite, it is necessary to carry out the experiments under anaerobic conditions in the presence of reducing agent, which is capable to lower the oxidation state of technetium which enables its successful immobilization. The aim of our research has been to find out the conditions suitable for the technetium sorption on selected bentonite under oxidizing conditions. The sorption experiments with Tc-99 on bentonite have been carried out by batch method. The influence of the addition of different materials (e.g. activated carbon, graphite, Fe 2+ , Fe) with bentonite, the effect of solid:aqueous phase ratio and a pH value on the percentage of technetium uptake and on the K d values were tested. Perrhenate was selected as an analogue of pertechnetate in non-active experiments of capillary electrophoresis (CE) and isotachophoresis (ITP). The percentage of rhenium sorbed on bentonite material was determined from the decrease of perrhenate peak area (CE) and from the shortening of the ITP zone corresponding to perrhenate. Both electromigration methods provided comparable results. The results obtained in this study with non-active material were compared to those of technetium acquired by radiometry and polarography. (authors)

  9. Iron halide mediated atom transfer radical polymerization of methyl methacrylate with N-Alkyl-2-pyridylmethanimine as the ligand

    NARCIS (Netherlands)

    Zhang, H.; Schubert, U.S.

    2004-01-01

    The controlled atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) catalyzed by iron halide/N-(n-hexyl)-2-pyridylmethanimine (NHPMI) is described. The ethyl 2-bromoisobutyrate (EBIB)-initiated ATRP with [MMA]0/[EBIB]0/[iron halide]0/[NHPMI]0 = 150/1/1/2 was better controlled in

  10. Homocoupling of aryl halides in flow: Space integration of lithiation and FeCl3 promoted homocoupling

    Directory of Open Access Journals (Sweden)

    Aiichiro Nagaki

    2011-08-01

    Full Text Available The use of FeCl3 resulted in a fast homocoupling of aryllithiums, and this enabled its integration with the halogen–lithium exchange reaction of aryl halides in a flow microreactor. This system allows the homocoupling of two aryl halides bearing electrophilic functional groups, such as CN and NO2, in under a minute.

  11. A study on the localized corrosion of cobalt in bicarbonate solutions containing halide ions

    Energy Technology Data Exchange (ETDEWEB)

    Gallant, Danick [Departement de Biologie, Chimie et Sciences de la Sante, Universite du Quebec a Rimouski, 300, Allee des Ursulines, Rimouski, Que., G5L 3A1 (Canada); Departement de Chimie, Universite Laval, Quebec, Que., G1K 7P4 (Canada); Simard, Stephan [Departement de Biologie, Chimie et Sciences de la Sante, Universite du Quebec a Rimouski, 300, Allee des Ursulines, Rimouski, Que., G5L 3A1 (Canada)]. E-mail: stephan_simard@uqar.qc.ca

    2005-07-01

    The localized attack of cobalt in bicarbonate aqueous solutions containing halide ions was investigated using electrochemical techniques, scanning electron microscopy, UV-visible and Raman spectroscopies. Rotating disc and rotating ring-disc electrodes were used to determine the effect of bicarbonate concentration, solution pH, nature and concentration of the halide ions, convection and potential sweep rate on the corrosion processes. These parameters were found to play a key role on the localized attack induced by halide ions by influencing the production of a Co(HCO{sub 3}){sub 2} precipitate on the pit surface. Potentiostatically generated cobalt oxide films (CoO and Co{sub 3}O{sub 4}) were found to be efficient to reduce pitting corrosion of cobalt.

  12. The role of halide ions on the electrochemical behaviour of iron in alkali solutions

    Science.gov (United States)

    Begum, S. Nathira; Muralidharan, V. S.; Basha, C. Ahmed

    2008-02-01

    Active dissolution and passivation of transition metals in alkali solutions is of technological importance in batteries. The performance of alkaline batteries is decided by the presence of halides as they influence passivation. Cyclic voltammetric studies were carried out on iron in different sodium hydroxide solutions in presence of halides. In alkali solutions iron formed hydroxo complexes and their polymers in the interfacial diffusion layer. With progress of time they formed a cation selective layer. The diffusion layer turned into bipolar ion selective layer consisted of halides, a selective inner sublayer to the metal side and cation selective outer layer to the solution side. At very high anodic potentials, dehydration and deprotonation led to the conversion of salt layer into an oxide.

  13. Holographic Optical Elements Recorded in Silver Halide Sensitized Gelatin Emulsions. Part I. Transmission Holographic Optical Elements

    Science.gov (United States)

    Kim, Jong Man; Choi, Byung So; Kim, Sun Il; Kim, Jong Min; Bjelkhagen, Hans I.; Phillips, Nicholas J.

    2001-02-01

    Silver halide sensitized gelatin (SHSG) holograms are similar to holograms recorded in dichromated gelatin (DCG), the main recording material for holographic optical elements (HOE s). The drawback of DCG is its low sensitivity and limited spectral response. Silver halide materials can be processed in such a way that the final hologram will have properties like a DCG hologram. Recently this technique has become more interesting since the introduction of new ultra-high-resolution silver halide emulsions. An optimized processing technique for transmission HOE s recorded in these materials is introduced. Diffraction efficiencies over 90% can be obtained for transmissive diffraction gratings. Understanding the importance of the selective hardening process has made it possible to obtain results similar to conventional DCG processing. The main advantage of the SHSG process is that high-sensitivity recording can be performed with laser wavelengths anywhere within the visible spectrum. This simplifies the manufacturing of high-quality, large-format HOE s.

  14. Purcell effect in an organic-inorganic halide perovskite semiconductor microcavity system

    International Nuclear Information System (INIS)

    Wang, Jun; Wang, Yafeng; Hu, Tao; Wu, Lin; Shen, Xuechu; Chen, Zhanghai; Cao, Runan; Xu, Fei; Da, Peimei; Zheng, Gengfeng; Lu, Jian

    2016-01-01

    Organic-inorganic halide perovskite semiconductors with the attractive physics properties, including strong photoluminescence (PL), huge oscillator strengths, and low nonradiative recombination losses, are ideal candidates for studying the light-matter interaction in nanostructures. Here, we demonstrate the coupling of the exciton state and the cavity mode in the lead halide perovskite microcavity system at room temperature. The Purcell effect in the coupling system is clearly observed by using angle-resolved photoluminescence spectra. Kinetic analysis based on time-resolved PL reveals that the spontaneous emission rate of the halide perovskite semiconductor is significantly enhanced at resonance of the exciton energy and the cavity mode. Our results provide the way for developing electrically driven organic polariton lasers, optical devices, and on-chip coherent quantum light sources

  15. Photocatalytic Conversion of CO2 to CO using Rhenium Bipyridine Platforms Containing Ancillary Phenyl or BODIPY Moieties

    Science.gov (United States)

    Andrade, Gabriel A.; Pistner, Allen J.; Yap, Glenn P.A.; Lutterman, Daniel A.; Rosenthal, Joel

    2013-01-01

    Harnessing of solar energy to drive the reduction of carbon dioxide to fuels requires the development of efficient catalysts that absorb sunlight. In this work, we detail the synthesis, electrochemistry and photophysical properties of a set of homologous fac-ReI(CO)3 complexes containing either an ancillary phenyl (8) or BODIPY (12) substituent. These studies demonstrate that both the electronic properties of the rhenium center and BODIPY chromophore are maintained for these complexes. Photolysis studies demonstrate that both assemblies 8 and 12 are competent catalysts for the photochemical reduction of CO2 to CO in DMF using triethanolamine (TEOA) as a sacrificial reductant. Both compounds 8 and 12 display TOFs for photocatalytic CO production upon irradiation with light (λex ≥ 400 nm) of ~5 hr−1 with TON values of approximately 20. Although structural and photophysical measurements demonstrate that electronic coupling between the BODIPY and fac-ReI(CO)3 units is limited for complex 12, this work clearly shows that the photoactive BODIPY moiety is tolerated during catalysis and does not interfere with the observed photochemistry. When taken together, these results provide a clear roadmap for the development of advanced rhenium bipyridine complexes bearing ancillary BODIPY groups for the efficient photocatalytic reduction of CO2 using visible light. PMID:24015374

  16. Ionic conductivity of N-alkyl pyridinium halides mesophases

    International Nuclear Information System (INIS)

    Meftah, Ahmed

    1980-01-01

    The quasi anhydrous N-alkyl pyridinium halides undergo at a temperature T c a phase transition from a crystalline isolating state to a conducting mesophase (σ = 3.10 -2 Ω -1 cm -1 ). The transition temperature depends on the nature on counter-ion and on the aliphatic chain length. The present study is devoted to the N-alkyl pyridinium chlorides, bromides and iodides varying the number of carbon atoms in the chain from ten to twenty two. The transition temperatures T c were found to increase from 30 deg. C up to 110 deg. C by a step of 10 deg. C for two added carbon atoms in the chain. The electrical measurements have shown that the conductivity of the mesophases which is ionic in origin is due to a large mobility of counter-ions in hydrophilic parts. At high frequencies (F > 10 3 Hz) ionic conductivity predominates in the bulk and does not depend on frequency. At low frequencies (F 3 Hz) the most important are interface phenomena depending on the square root of inverse frequency (ω -1/2 ) and being due to an electronic exchange limited by diffusion velocity of counter-ions. The electrical conductivity depends weekly on the chain length and the mesophases textures. The most conducting mesophase is the optically isotropic. The conductivity increases with increasing water content of the system and decreases with increasing atomic number of counter-ion. The diffusion measurements by radioactive tracers confirm the ionic character of charge carriers although the diffusion factors obtained by this method are largely higher than the calculated ones from the conductivity values. (author) [fr

  17. Molecular beam scattering from clean surfaces of alkali halides

    International Nuclear Information System (INIS)

    Meyers, J.A.

    1975-01-01

    Molecular beam scattering of light gases from in situ cleaved alkali halide surfaces has been studied as a means of developing molecular beam scattering as a surface characterization tool and as a means of obtaining information about the gas atom-solid surface potential interaction. For 4 He scattering from LiF carried out under improved resolution the main results are: (1) there are four bound states in the surface potential well, as energies of -5.8, -2.2, -0.6 and -0.1 MeV. (2) Most of the structure designated as ''fine structure'' is due either to transitions to these four levels via various small reciprocal lattice vectors or to the opening of diffraction channels. (3) The transitions involving the (01) and (0 anti 1) reciprocal lattice vectors (i.e., the ones nearly perpendicular to the incident wavevector) are strong; as much as 85 percent of the specular intensity may be removed. Transitions via the other small reciprocal lattice vectors are much weaker. (4) The widths of the lines are consistent with the velocity distribution, which has a half-width of about 2 percent. (5) The observed energies agree fairly well with those calculated for a zeta-function potential, but are not consistent with a Morse potential. The preliminary results for 4 He/NaF scattering are that there are three bound-states in the surface potential well and are quite similar to the LiF results. These energies are -5.0, -1.9, and -0.5 MeV. 4 He/NaF selective adsorption also shows ''fine structure'' and a more detailed analysis is called for here

  18. Studies on radiation-sensitive nonsilver halide materials, (1)

    International Nuclear Information System (INIS)

    Komizu, Hideo; Honda, Koichi; Yabe, Akira; Kawasaki, Masami; Fujii, Etsuo

    1978-01-01

    In order to discover new radiation-sensitive nonsilver halide materials, the coloration based on the formation of Stenhouse salts was studied in the following three systems: (a) furfural-amine/HCl aq/methanol solution, (b) furfural-amine/polyhalogenide/PMMA matrix, (c) furfural-amine/PVC matrix. Firstly, forty-five aromatic amines were surveyed to find out the amines suitable for the color precursors (reactant from furfural and amine) in the system (a). As a result, the five amines, which gave the precursors in good yields by the reaction with furfural, were selected: m-nitroaniline, N-methylaniline, m-methyl-N-methylaniline, aniline, and o-methoxyaniline. Secondly, the coloration induced by electron beam bombardment was studied in the systems (b) and (c) containing the color precursors (the reactants from these amines and furfural). Although the PMMA films containing the color precursors and polyhalogenides were sensitive to electron beam, they were not stable when standing under daylight at room temperature. The PVC films containing the color precursors were very stable and colored to reddish yellow (lambda sub(max) 498 - 545 nm) by electron beam bombardment. The PVC film containing N-methylaniline-furfural was the most sensitive and the increase in absorbance at 498 nm was 0.78 by electron beam bombardment of 60 kV - 7.5 x 10 -7 C/cm 2 . A good linear relationship existed between the degree of coloration and the amounts of electron beam bombardment in the range from 0 to 10 -6 C/cm 2 . (author)

  19. Origins and mechanisms of hysteresis in organometal halide perovskites

    Science.gov (United States)

    Li, Cheng; Guerrero, Antonio; Zhong, Yu; Huettner, Sven

    2017-05-01

    Inorganic-organic halide organometal perovskites, such as CH3NH3PbI3 and CsPbI3, etc, have been an unprecedented rising star in the field of photovoltaics since 2009, owing to their exceptionally high power conversion efficiency and simple fabrication processability. Despite its relatively short history of development, intensive investigations have been concentrating on this material; these have ranged from crystal structure analysis and photophysical characterization to performance optimization and device integration, etc. Yet, when applied in photovoltaic devices, this material suffers from hysteresis, that is, the difference of the current-voltage (I-V) curve during sweeping in two directions (from short-circuit towards open-circuit and vice versa). This behavior may significantly impede its large-scale commercial application. This Review will focus on the recent theoretical and experimental efforts to reveal the origin and mechanism of hysteresis. The proposed origins include (1) ferroelectric polarization, (2) charge trapping/detrapping, and (3) ion migration. Among them, recent evidence consistently supports the idea that ion migration plays a key role for the hysteretic behavior in perovskite solar cells (PSCs). Hence, this Review will summarize the recent results on ion migration such as the migrating ion species, activation energy measurement, capacitive characterization, and internal electrical field modulation, etc. In addition, this Review will also present the devices with alleviation/elimination of hysteresis by incorporating either large-size grains or phenyl-C61-butyric acid methyl ester molecules. In a different application, the hysteretic property has been utilized in photovoltaic and memristive switching devices. In sum, by examining these three possible mechanisms, it is concluded that the origin of hysteresis in PSCs is associated with a combination of effects, but mainly limited by ion/defect migration. This strong interaction between ion

  20. Bright triplet excitons in caesium lead halide perovskites

    Science.gov (United States)

    Becker, Michael A.; Vaxenburg, Roman; Nedelcu, Georgian; Sercel, Peter C.; Shabaev, Andrew; Mehl, Michael J.; Michopoulos, John G.; Lambrakos, Samuel G.; Bernstein, Noam; Lyons, John L.; Stöferle, Thilo; Mahrt, Rainer F.; Kovalenko, Maksym V.; Norris, David J.; Rainò, Gabriele; Efros, Alexander L.

    2018-01-01

    Nanostructured semiconductors emit light from electronic states known as excitons. For organic materials, Hund’s rules state that the lowest-energy exciton is a poorly emitting triplet state. For inorganic semiconductors, similar rules predict an analogue of this triplet state known as the ‘dark exciton’. Because dark excitons release photons slowly, hindering emission from inorganic nanostructures, materials that disobey these rules have been sought. However, despite considerable experimental and theoretical efforts, no inorganic semiconductors have been identified in which the lowest exciton is bright. Here we show that the lowest exciton in caesium lead halide perovskites (CsPbX3, with X = Cl, Br or I) involves a highly emissive triplet state. We first use an effective-mass model and group theory to demonstrate the possibility of such a state existing, which can occur when the strong spin-orbit coupling in the conduction band of a perovskite is combined with the Rashba effect. We then apply our model to CsPbX3 nanocrystals, and measure size- and composition-dependent fluorescence at the single-nanocrystal level. The bright triplet character of the lowest exciton explains the anomalous photon-emission rates of these materials, which emit about 20 and 1,000 times faster than any other semiconductor nanocrystal at room and cryogenic temperatures, respectively. The existence of this bright triplet exciton is further confirmed by analysis of the fine structure in low-temperature fluorescence spectra. For semiconductor nanocrystals, which are already used in lighting, lasers and displays, these excitons could lead to materials with brighter emission. More generally, our results provide criteria for identifying other semiconductors that exhibit bright excitons, with potential implications for optoelectronic devices.

  1. Electrochemically reduced titanocene dichloride as a catalyst of reductive dehalogenation of organic halides

    International Nuclear Information System (INIS)

    Magdesieva, Tatiana V.; Graczyk, Magdalena; Vallat, Alain; Nikitin, Oleg M.; Demyanov, Petr I.; Butin, Kim P.; Vorotyntsev, Mikhail A.

    2006-01-01

    We have studied a reaction between the reduced form of titanocene dichloride (Cp 2 TiCl 2 ) and a group of organic halides: benzyl derivatives (4-X-C 6 H 4 CH 2 Cl, X = H, NO 2 , CH 3 ; 4-X-C 6 H 4 CH 2 Br, X = H, NO 2 , PhC(O); 4-X-C 6 H 4 CH 2 SCN, X = H, NO 2 ) as well as three aryl halides (4-NO 2 C 6 H 4 Hal, Hal = Cl, Br; 4-CH 3 O-C 6 H 4 Cl). It has been shown that the electrochemical reduction of Cp 2 TiCl 2 in the presence of these benzyl halides leads to a catalytic cycle resulting in the reductive dehalogenation of these organic substrates to yield mostly corresponding toluene derivatives as the main product. No dehalogenation has been observed for aryl derivatives. Based on electrochemical data and digital simulation, possible schemes of the catalytic process have been outlined. For non-substituted benzyl halides halogen atom abstraction is a key step. For the reaction of nitrobenzyl halides the complexation of Ti(III) species with the nitro group takes place, with the electron transfer from Ti(III) to this group (owing to its highest coefficient in LUMO of the nitro benzyl halide) followed by an intramolecular dissociative electron redistribution in the course of the heterolytic C-Hal bond cleavage. The results for reduced titanocene dichloride centers immobilized inside a polymer film showed that the catalytic reductive dehalogenation of the p-nitrobenzyl chloride does occur but with a low efficiency because of the partial deactivation of the film due to the blocking of the electron charge transport between the electrode and catalytic centers

  2. Nanostructure of propylammonium nitrate in the presence of poly(ethylene oxide) and halide salts

    Science.gov (United States)

    Stefanovic, Ryan; Webber, Grant B.; Page, Alister J.

    2018-05-01

    Nanoscale structure of protic ionic liquids is critical to their utility as molecular electrochemical solvents since it determines the capacity to dissolve salts and polymers such as poly(ethylene oxide) (PEO). Here we use quantum chemical molecular dynamics simulations to investigate the impact of dissolved halide anions on the nanostructure of an archetypal nanostructured protic ionic liquid, propylammonium nitrate (PAN), and how this impacts the solvation of a model PEO polymer. At the molecular level, PAN is nanostructured, consisting of charged/polar and uncharged/nonpolar domains. The charged domain consists of the cation/anion charge groups, and is formed by their electrostatic interaction. This domain solvophobically excludes the propyl chains on the cation, which form a distinct, self-assembled nonpolar domain within the liquid. Our simulations demonstrate that the addition of Cl- and Br- anions to PAN disrupts the structure within the PAN charged domain due to competition between nitrate and halide anions for the ammonium charge centre. This disruption increases with halide concentration (up to 10 mol. %). However, at these concentrations, halide addition has little effect on the structure of the PAN nonpolar domain. Addition of PEO to pure PAN also disrupts the structure within the charged domain of the liquid due to hydrogen bonding between the charge groups and the terminal PEO hydroxyl groups. There is little other association between the PEO structure and the surrounding ionic liquid solvent, with strong PEO self-interaction yielding a compact, coiled polymer morphology. Halide addition results in greater association between the ionic liquid charge centres and the ethylene oxide components of the PEO structure, resulting in reduced conformational flexibility, compared to that observed in pure PAN. Similarly, PEO self-interactions increase in the presence of Cl- and Br- anions, compared to PAN, indicating that the addition of halide salts to PAN

  3. Structures of butyl ions formed by electron impact ionization of isomeric butyl halides and alkanes

    International Nuclear Information System (INIS)

    Shold, D.M.; Ausloos, P.

    1978-01-01

    Using a pulsed ion cyclotron resonance (ICR) spectrometer, it is demonstrated that at pressures of about 10 -6 Torr and at observation times ranging from 10 -3 to 0.5 s, isobutane, neopentane, 2,2-dimethylbutane, isobutyl halides, and tert-butyl halides form C 4 H 9 + ions having the tertiary structure. In n-alkanes, 2-methylbutane, 3-methylpentane, n-butyl halides, and sec-butyl halides, both sec-C 4 H 9 + and t-C 4 H 9 + ions are observed, the sec-C 4 H 9 + ions surviving without rearrangement for at least 0.1 s. However, in the case of the halides, a collision-induced isomerization of the sec-C 4 H 9 + to the t-C 4 H 9 + ions occurs. The efficiency of this process increases with the basicity of the alkyl halide. Radiolysis experiments carried out at atmospheric pressures indicate, in agreement with ICR and solution experiments, that at times as short as 10 -10 s the majority of the i-C 4 H 9 + ions from isobutyl bromide rearrange to the t-C 4 H 9 + structure. On the other hand, in the radiolysis of both n-hexane and 3-methylpentane, the abundance of t-C 4 H 9 + relative to sec-C 4 H 9 + is substantially smaller than that observed in the ICR experiments, and decreases with decreasing collision interval. It is suggested that about 90% of the i-C 4 H 9 + can rearrange to t-C 4 H 9 + by simple 1,2-hydride shift without involving secondary or protonated methylcyclopropane structures as intermediates. 4 figures, 2 tables

  4. Plasmonic characterization of photo-induced silver nanoparticles extracted from silver halide based TEM film

    Energy Technology Data Exchange (ETDEWEB)

    Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Rai, V. N.; Srivastava, A. K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology Indore, Madhya Pradesh 452013 (India); Varshney, G. K. [Laser Bio-medical Applications & Instrumentation Division, Raja Ramanna Centre for Advanced Technology Indore, Madhya Pradesh 452013 (India)

    2016-05-23

    The plasmonic responses of silver nanoparticles extracted from silver halide based electron microscope film are investigated. Photo-reduction process is carried out to convert the silver halide grains into the metallic silver. The centrifuge technique is used for separating the silver nanoparticles from the residual solution. Morphological study performed by field emission scanning electron microscope (FESEM) shows that all the nanoparticles have an average diameter of ~120 nm with a high degree of mono dispersion in size. The localized surface plasmon resonance (LSPR) absorption peak at ~537 nm confirms the presence of large size silver nanoparticles.

  5. The electronic structure of the F-center in alkali-halides-The Bethe cluster - lattice

    International Nuclear Information System (INIS)

    Queiroz, S.L.A. de.

    1977-07-01

    The electronic structure of the F-center in alkali-halides with the NaCl structure has been studied using the Bethe Cluster lattice method. The central cluster has been taken as constituted by the vacancy and the nearest- and second-neighbors to it, respectively cations and anions. The optical transitions have been calculated and compared to experimental data on the location of the peak of the F-absorption band. The agreement obtained indicates that this method may be used to study properties of this defect in alkali halides. (Author) [pt

  6. The Electrical and Optical Properties of Organometal Halide Perovskites Relevant to Optoelectronic Performance

    KAUST Repository

    Adinolfi, Valerio

    2017-10-12

    Organometal halide perovskites are under intense study for use in optoelectronics. Methylammonium and formamidinium lead iodide show impressive performance as photovoltaic materials; a premise that has spurred investigations into light-emitting devices and photodetectors. Herein, the optical and electrical material properties of organometal halide perovskites are reviewed. An overview is given on how the material composition and morphology are tied to these properties, and how these properties ultimately affect device performance. Material attributes and techniques used to estimate them are analyzed for different perovskite materials, with a particular focus on the bandgap, mobility, diffusion length, carrier lifetime, and trap-state density.

  7. Aluminum Pitting Corrosion in Halide Media: A Quantum Model and Empirical Evidence

    Science.gov (United States)

    Lashgari, Mohsen; Kianpour, Effat; Mohammadi, Esmaeil

    2013-12-01

    The phenomenon of localized damage of aluminum oxide surface in the presence of halide anions was scrutinized at an atomistic level, through the cluster approach and density functional theory. The phenomenon was also investigated empirically through Tafel polarization plots and scanning electron microscopy. A distinct behavior witnessed in the fluoride medium was justified through the hard-soft acid-base principle. The atomistic investigations revealed the greatest potency for chloride entrance into the metal oxide lattice and rationalized to the severity of damage. The interaction of halide anions with the oxide surface causing some displacements on the position of Al atoms provides a mechanistic insight of the phenomenon.

  8. Band Gap Tuning and Defect Tolerance of Atomically Thin Two- Dimensional Organic-Inorganic Halide Perovskites

    OpenAIRE

    Pandey, Mohnish; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer

    2016-01-01

    Organic−inorganic halide perovskites have proven highly successful for photovoltaics but suffer from low stability, which deteriorates their performance over time. Recent experiments have demonstrated that low dimensional phases of the hybrid perovskites may exhibit improved stability. Here we report first-principles calculations for isolated monolayers of the organometallic halide perovskites (C4H9NH3)2MX2Y2, where M = Pb, Ge, Sn and X,Y = Cl, Br, I. The band gaps computed using the GLLB-SC ...

  9. Environmental Effects on the Photophysics of Organic-Inorganic Halide Perovskites.

    Science.gov (United States)

    Galisteo-López, Juan F; Anaya, M; Calvo, M E; Míguez, H

    2015-06-18

    The photophysical properties of films of organic-inorganic lead halide perovskites under different ambient conditions are herein reported. We demonstrate that their luminescent properties are determined by the interplay between photoinduced activation and darkening processes, which strongly depend on the atmosphere surrounding the samples. We have isolated oxygen and moisture as the key elements in each process, activation and darkening, both of which involve the interaction with photogenerated carriers. These findings show that environmental factors play a key role in the performance of lead halide perovskites as efficient luminescent materials.

  10. Building up an electrocatalytic activity scale of cathode materials for organic halide reductions

    International Nuclear Information System (INIS)

    Bellomunno, C.; Bonanomi, D.; Falciola, L.; Longhi, M.; Mussini, P.R.; Doubova, L.M.; Di Silvestro, G.

    2005-01-01

    A wide investigation on the electrochemical activity of four model organic bromides has been carried out in acetonitrile on nine cathodes of widely different affinity for halide anions (Pt, Zn, Hg, Sn, Bi, Pb, Au, Cu, Ag), and the electrocatalytic activities of the latter have been evaluated with respect to three possible inert reference cathode materials, i.e. glassy carbon, boron-doped diamond, and fluorinated boron-doped diamond. A general electrocatalytic activity scale for the process is proposed, with a discussion on its modulation by the configuration of the reacting molecule, and its connection with thermodynamic parameters accounting for halide adsorption

  11. Research Update: Physical and electrical characteristics of lead halide perovskites for solar cell applications

    Directory of Open Access Journals (Sweden)

    Simon A. Bretschneider

    2014-04-01

    Full Text Available The field of thin-film photovoltaics has been recently enriched by the introduction of lead halide perovskites as absorber materials, which allow low-cost synthesis of solar cells with efficiencies exceeding 16%. The exact impact of the perovskite crystal structure and composition on the optoelectronic properties of the material are not fully understood. Our progress report highlights the knowledge gained about lead halide perovskites with a focus on physical and optoelectronic properties. We discuss the crystal and band structure of perovskite materials currently implemented in solar cells and the impact of the crystal properties on ferroelectricity, ambipolarity, and the properties of excitons.

  12. A mild and efficient procedure for the synthesis of ethers from various alkyl halides

    Directory of Open Access Journals (Sweden)

    Mosstafa Kazemi

    2013-10-01

    Full Text Available A simple, mild and practical procedure has been developed for the synthesis of symmetrical and unsymmetrical ethers by using DMSO, TBAI in the presence of K2CO3. We extended the utility of Potassium carbonate as an efficient base for the preparation of ethers. A wide range of alkyl aryl and dialkyl ethers are synthezied from treatment of aliphatic alcohols and phenols with various alkyl halides in the prescence of efficient base Potassium carbonate. Secondary alkyl halides were easily converted to corresponding ethers in releatively good yields . This is a mild, simple and practical procedure for the preparation of ethers in high yields and suitable times under mild condition.

  13. Designing mixed metal halide ammines for ammonia storage using density functional theory and genetic algorithms

    DEFF Research Database (Denmark)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich J.

    2014-01-01

    electrolyte membrane fuel cells (PEMFC). We use genetic algorithms (GAs) to search for materials containing up to three different metals (alkaline-earth, 3d and 4d) and two different halides (Cl, Br and I) – almost 27000 combinations, and have identified novel mixtures, with significantly improved storage......Metal halide ammines have great potential as a future, high-density energy carrier in vehicles. So far known materials, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, are not suitable for automotive, fuel cell applications, because the release of ammonia is a multi-step reaction, requiring too much heat...

  14. Improved catalytic properties of halohydrin dehalogenase by modification of the halide-binding site.

    Science.gov (United States)

    Tang, Lixia; Torres Pazmiño, Daniel E; Fraaije, Marco W; de Jong, René M; Dijkstra, Bauke W; Janssen, Dick B

    2005-05-03

    Halohydrin dehalogenase (HheC) from Agrobacterium radiobacter AD1 catalyzes the dehalogenation of vicinal haloalcohols by an intramolecular substitution reaction, resulting in the formation of the corresponding epoxide, a halide ion, and a proton. Halide release is rate-limiting during the catalytic cycle of the conversion of (R)-p-nitro-2-bromo-1-phenylethanol by the enzyme. The recent elucidation of the X-ray structure of HheC showed that hydrogen bonds between the OH group of Tyr187 and between the Odelta1 atom of Asn176 and Nepsilon1 atom of Trp249 could play a role in stabilizing the conformation of the halide-binding site. The possibility that these hydrogen bonds are important for halide binding and release was studied using site-directed mutagenesis. Steady-state kinetic studies revealed that mutant Y187F, which has lost both hydrogen bonds, has a higher catalytic activity (k(cat)) with two of the three tested substrates compared to the wild-type enzyme. Mutant W249F also shows an enhanced k(cat) value with these two substrates, as well as a remarkable increase in enantiopreference for (R)-p-nitro-2-bromo-1-phenylethanol. In case of a mutation at position 176 (N176A and N176D), a 1000-fold lower catalytic efficiency (k(cat)/K(m)) was obtained, which is mainly due to an increase of the K(m) value of the enzyme. Pre-steady-state kinetic studies showed that a burst of product formation precedes the steady state, indicating that halide release is still rate-limiting for mutants Y187F and W249F. Stopped-flow fluorescence experiments revealed that the rate of halide release is 5.6-fold higher for the Y187F mutant than for the wild-type enzyme and even higher for the W249F enzyme. Taken together, these results show that the disruption of two hydrogen bonds around the halide-binding site increases the rate of halide release and can enhance the overall catalytic activity of HheC.

  15. Manganese-Catalyzed Cross-Coupling of Aryl Halides and Grignard Reagents by a Radical Mechanism

    DEFF Research Database (Denmark)

    Antonacci, Giuseppe; Ahlburg, Andreas; Fristrup, Peter

    2017-01-01

    The substrate scope and the mechanism have been investigated for the MnCl2-catalyzed cross-coupling reaction between aryl halides and Grignard reagents. The transformation proceeds rapidly and in good yield when the aryl halide component is an aryl chloride containing a cyano or an ester group....... Two radical-clock experiments were carried out, and in both cases an intermediate aryl radical was successfully trapped. The cross-coupling reaction is therefore believed to proceed by an SRN1 mechanism, with a triorganomanganate complex serving as the most likely nucleophile and single-electron donor...

  16. A Cluster-Bethe lattice treatment for the F-center in alkali-halides

    International Nuclear Information System (INIS)

    Queiroz, S.L.A. de; Koiller, B.; Maffeo, B.; Brandi, H.S.

    1977-01-01

    The electronic structure of the F-center in alkali-halides with the NaCl structure has been studied using the Cluster-Bethe lattice method. The central cluster has been taken as constituted by the vacancy and the nearest- and second- neighbors to it, respectively, cations and anions. The optical transitions have been calculated and compared to experimental data on the location of the peak of the F-absorption band. The agreement obtained indicates that this method may be used to study properties of this defect in alkali halides [pt

  17. Spectroscopic investigation of indium halides as substitudes of mercury in low pressure discharges for lighting applications

    Energy Technology Data Exchange (ETDEWEB)

    Briefi, Stefan

    2012-05-22

    Low pressure discharges with indium halides as radiator are discussed as substitutes for hazardous mercury in conventional fluorescent lamps. In this work, the applicability of InBr and InCl in a low pressure discharge light source is investigated. The aim is to identify and understand the physical processes which determine the discharge characteristics and the efficiency of the generated near-UV emission of the indium halide molecule and of the indium atom which is created due to dissociation processes in the plasma. As discharge vessels sealed cylindrical quartz glass tubes which contain a defined amount of indium halide and a rare gas are used. Preliminary investigations showed that for a controlled variation of the indium halide density a well-defined cold spot setup is mandatory. This was realized in the utilized experimental setup. The use of metal halides raises the issue, that power coupling by internal electrodes is not possible as the electrodes would quickly be eroded by the halides. The comparison of inductive and capacitive RF-coupling with external electrodes revealed that inductively coupled discharges provide higher light output and much better long term stability. Therefore, all investigations are carried out using inductive RF-coupling. The diagnostic methods optical emission and white light absorption spectroscopy are applied. As the effects of absorption-signal saturation and reabsorption of emitted radiation within the plasma volume could lead to an underestimation of the determined population densities by orders of magnitude, these effects are considered in the data evaluation. In order to determine the electron temperature and the electron density from spectroscopic measurements, an extended corona model as population model of the indium atom has been set up. A simulation of the molecular emission spectra has been implemented to investigate the rovibrational population processes of the indium halide molecules. The impact of the cold spot

  18. Evaluation of technetium-99m/rhenium labelled nucleoside analogues as potential radiotracers in oncology

    International Nuclear Information System (INIS)

    Desbouis, D.

    2007-01-01

    cell uptake in transfected cancer cells this technetium thymidine complex revealed a low internalisation of 0.03 ± 0.01%ID/(mg/mL). Under the same conditions the [ 3 H]thymidine exhibited an uptake of 1.50 ± 0.02%lD/(mg/mL). In order to gain potency and selectivity for HSV1-TK, the corresponding 5'-carboxamide 5-ethyl-2', 5'-dideoxyuridine was synthesized. The synthesis of the ligand was performed in seven steps from 2'-deoxyuridine. This ligand was then successfully labelled with the fac-M(CO) 3 -core (M = 99m Tc, Re). The rhenium complex was found to be a selective competitive inhibitor of HSV1-TK (K i = 4.56 ± 0.11 μM). Although the cellular uptake of the technetium 2'-deoxyurine complex (0.10 ± 0.01%ID/(mg/mL)) was better than its corresponding technetium thymidine complex, it is still very low compared to thymidine uptake. The second aspect of this work was to develop nucleoside derivatives labelled with technetium-99m/rhenium tricarbonyl core capable of acting as substrates for human cytosolic thymidine kinase (hTKl). hTKl is a target of choice to evaluate cell proliferation due to its overexpression in a variety of cancer cells. [ 18 F]Fluorothymidine [ 18 F]FLT), which acts as a hTKl substrate, has emerged as a very efficient PET tracer for the monitoring of cell proliferation. Our aim was to develop a SPET tracer with the same mode of action as [ 18 F]FLT. We prepared a set of technetium-99m/rhenium complexes of N3 thymidine derivatives with different overall charges (+1, 0 and -1) and variable spacer lengths. The complexes with different overall charges had the same spacer length between chelating system and thymidine moiety (two carbons spacer) while the complexes with different spacer lengths (2, 3, 5 and 10) were all neutral. These compounds were tested for their substrate activity with respect to recombinant hTKl. The phosphorylation rates of neutral and negative complexes were found to be similar, ranging between 15-16% with respect to thymidine

  19. Adsorption and Diffusion of Lithium and Sodium on Defective Rhenium Disulfide: A First Principles Study.

    Science.gov (United States)

    Mukherjee, Sankha; Banwait, Avinav; Grixti, Sean; Koratkar, Nikhil; Singh, Chandra Veer

    2018-02-14

    Single-layer rhenium disulfide (ReS 2 ) is a unique material with distinctive, anisotropic electronic, mechanical, and optical properties and has the potential to be used as an anode in alkali-metal-ion batteries. In this work, first principles calculations were performed to systematically evaluate the potential of monolayer pristine and defective ReS 2 as anodes in lithium (Li)- and sodium (Na)-ion batteries. Our calculations suggest that there are several potential adsorption sites for Li and Na on pristine ReS 2 , owing to its low-symmetry structure. Additionally, the adsorption of Li and Na over pristine ReS 2 is very strong with adsorption energies of -2.28 and -1.71 eV, respectively. Interestingly, the presence of point defects causes significantly stronger binding of the alkali-metal atoms with adsorption energies in the range -2.98 to -3.17 eV for Li and -2.66 to -2.92 eV for Na. Re single vacancy was found to be the strongest binding defect for Li adsorption, whereas S single vacancy was found to be the strongest for Na. The diffusion of these two alkali atoms over pristine ReS 2 is anisotropic, with an energy barrier of 0.33 eV for Li and 0.16 eV for Na. The energy barriers associated with escaping a double vacancy and single vacancy for Li atoms are significantly large at 0.60 eV for the double-vacancy case and 0.51 eV for the single-vacancy case. Similarly, for Na, they are 0.59 and 0.47 eV, respectively, which indicates slower migration and sluggish charging/discharging. However, the diffusion energy barrier over a Re single vacancy is found to be merely 0.42 eV for a Li atom and 0.28 eV for Na. Overall, S single and double vacancies can reduce the diffusion rate by 10 3 -10 5 times for Li and Na ions, respectively. These results suggest that monolayer ReS 2 with a Re single vacancy adsorbs Li and Na stronger than pristine ReS 2 , with negligible negotiation with the charging/discharging rate of the battery, and therefore they can be used as an anode

  20. Analysis of a rhenium-osmium solid-solution spike by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Richardson, J.M.; Dickin, A.P.; McNutt, R.H.; McAndrew, J.I.; Beneteau, S.B.

    1989-01-01

    The rhenium-osmium decay scheme ( 187 Re → 187 Os) offers a unique opportunity to investigate the genesis of, and directly date, ultramafic rock, sulphide and platinum ore deposits. Inductively coupled plasma mass spectrometry (ICP-MS) is a viable method for Os isotopic analysis as it provides the high temperatures necessary to ionise Os. The sample can be introduced into the ICP mass spectrometer either by conventional nebulisation or by distillation using an Os ''generator''. Generator-mode analysis is superior to nebulisation because (i) the total number of counts is two orders of magnitude higher for a given sample size and (ii) Os oxidises readily to volatile OsO 4 , which has a boiling-point lower than most Re compounds, so that Os can be efficiently separated from 187 Re. The importance of Os loss during sample preparation was minimised by combining the sample powder with a powdered Re-Os isotopic spike prior to any chemical treatment. The spike is in a nickel sulphide matrix and was made by a thioacetamide co-precipitation of Os, Re and Ni followed by a fire assay. The 190 Os/ 192 Os ratio in this preparation is 51.5 ± 0.9, the 187 Os 188 Os ratio is 0.063 ± 0.006 and the 185 Re/ 187 Re ratio is 17.04 - + 0.41. These values are within the error limits quoted by the Oak Ridge National Laboratory and Techsnabexport, the suppliers of the metallic spikes. Parameters that significantly influence the Os analyses include the oxidising agent and the run temperature. The oxidising agent H 5 IO 6 is preferred to H 2 O 2 or HNO 3 as it has the highest electrode potential, provides a prolonged, consistent reaction and is more stable when stored. Chilling the sample and the H 5 IO 6 , initially retards uncontrolled OsO 4 emission. Heat applied later in the run releases OsO 4 and helps maintain a high count rate. Thus, OsO 4 can be generated in a steady, controllable and reproducible manner. (author)

  1. Rhenium-188 Lipiodol Therapy of Hepatocellular Carcinoma: Results of a multicentre-multinational study

    International Nuclear Information System (INIS)

    Padhy, A.K.; Bernal, P.; Buscombe, R.J.

    2007-01-01

    Full text: A multi-centre study was sponsored by the IAEA to assess the safety and efficacy of trans-arterial Rhenium-188 HDD Lipiodol in the treatment of inoperable Hepatocellular Carcinoma. The radioconjugate was prepared by using an HDD kit and Lipiodol. Over three years, 185 patients received at least one treatment. The dose administered was based on radiation absorbed dose to critical normal organs, calculated following a ''scout'' dose (approximately 4 mCi) of radioconjugate. The organs at greatest risk for radiation toxicity are the liver, the lung and the bone marrow. An Excel spreadsheet was used to determine maximum tolerated activity, defined as the amount of radioactivity calculated to deliver no more than 12 Gy to lungs, 30 Gy to liver, or 1.5 Gy to bone marrow. A single treatment was given to 134 patients, 42 patients received two doses, 8 received three and one patient received four treatments. The total injected activity including the scout dose during the first treatment ranged from 21 to 364 mCi (average 108 mCi). Patients were followed for at least l2 weeks after therapy. The clinical parameters evaluated included toxicity, response as determined objectively by contrast enhanced computed tomography, palliation of symptoms, overall survival, performance status (Karnofsky), and hepatic function (Child's classification). Liver function tests, serum alpha-fetoprotein (AFP) levels and complete blood counts were done at each follow-up visit. Side effects were minimal and usually presented as loss of appetite, right hypochondrial discomfort and low-grade fever. Liver function tests at 24 and 72 hours showed no significant changes and complete blood counts at 1 week, 4 weeks and 12 weeks showed no changes (no bone marrow suppression). Data on largest tumour diameter after therapy and/or tumour response as evaluated from CT scans are available for 88 patients. Complete disappearance of tumour was recorded in 3 (3%), partial response in 19 (22%), stable

  2. Solid-state thermolysis of a fac-rhenium(I) carbonyl complex with a redox non-innocent pincer ligand.

    Science.gov (United States)

    Jurca, Titel; Chen, Wen-Ching; Michel, Sheila; Korobkov, Ilia; Ong, Tiow-Gan; Richeson, Darrin S

    2013-03-25

    The development of rhenium(I) chemistry has been restricted by the limited structural and electronic variability of the common pseudo-octahedral products fac-[ReX(CO)3L2] (L2 = α-diimine). We address this constraint by first preparing the bidentate bis(imino)pyridine complexes [(2,6-{2,6-Me2C6H3N=CPh}2C5H3N)Re(CO)3X] (X = Cl 2, Br 3), which were characterized by spectroscopic and X-ray crystallographic means, and then converting these species into tridentate pincer ligand compounds, [(2,6-{2,6-Me2C6H3N=CPh}2C5H3N)Re(CO)2X] (X = Cl 4, Br 5). This transformation was performed in the solid-state by controlled heating of 2 or 3 above 200 °C in a tube furnace under a flow of nitrogen gas, giving excellent yields (≥95 %). Compounds 4 and 5 define a new coordination environment for rhenium(I) carbonyl chemistry where the metal center is supported by a planar, tridentate pincer-coordinated bis(imino)pyridine ligand. The basic photophysical features of these compounds show significant elaboration in both number and intensity of the d-π* transitions observed in the UV/Vis spec tra relative to the bidentate starting materials, and these spectra were analyzed using time-dependent DFT computations. The redox nature of the bis(imino)pyridine ligand in compounds 2 and 4 was examined by electrochemical analysis, which showed two ligand reduction events and demonstrated that the ligand reduction shifts to a more positive potential when going from bidentate 2 to tridentate 4 (+160 mV for the first reduction step and +90 mV for the second). These observations indicate an increase in electrostatic stabilization of the reduced ligand in the tridentate conformation. Elaboration on this synthetic methodology documented its generality through the preparation of the pseudo-octahedral rhenium(I) triflate complex [(2,6-{2,6-Me2C6H3N=CPh}2C5H3N)Re(CO)2OTf] (7, 93 % yield). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Determination of the structural phase and octahedral rotation angle in halide perovskites

    Science.gov (United States)

    dos Reis, Roberto; Yang, Hao; Ophus, Colin; Ercius, Peter; Bizarri, Gregory; Perrodin, Didier; Shalapska, Tetiana; Bourret, Edith; Ciston, Jim; Dahmen, Ulrich

    2018-02-01

    A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurement of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). The approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.

  4. Luminescent decay and spectra of impurity-activated alkali halides under high pressure

    International Nuclear Information System (INIS)

    Klick, D.I.

    1977-01-01

    The effect of high pressure on the luminescence of alkali halides doped with the transition-metal ions Cu + and Ag + and the heavy-metal ions In + and Tl + was investigated to 140 kbar. Measurement of spectra allowed the prediction of kinetic properties, and the predictions agree with lifetime data

  5. 2-D images of the metal-halide lamp obtained by experiment and model

    NARCIS (Netherlands)

    Flikweert, A.J.; Beks, M.L.; Nimalasuriya, T.; Kroesen, G.M.W.; Mullen, van der J.J.A.M.; Stoffels, W.W.

    2008-01-01

    The metal-halide lamp shows color segregation caused by diffusion and convection. Two-dimensional imaging of the arc discharge under varying gravity conditions aids in the understanding of the flow phenomena. In this paper, we show results obtained by experiments and by numerical simulations in

  6. Organometallic halide perovskite single crystals having low deffect density and methods of preparation thereof

    KAUST Repository

    Bakr, Osman; Shi, Dong

    2016-01-01

    The present disclosure presents a method of making a single crystal organometallic halide perovskites, with the formula: AMX3, wherein A is an organic cation, M is selected from the group consisting of: Pb, Sn, Cu, Ni, Co, Fe, Mn, Pd, Cd, Ge, and Eu

  7. Trap-Free Hot Carrier Relaxation in Lead–Halide Perovskite Films

    KAUST Repository

    Bretschneider, Simon A.; Laquai, Fré dé ric; Bonn, Mischa

    2017-01-01

    Photovoltaic devices that employ lead-halide perovskites as photoactive materials exhibit power conversion efficiencies of 22%. One of the potential routes to go beyond the current efficiencies is to extract charge carriers that carry excess energy, that is, nonrelaxed or

  8. Effect of halide-mixing on the switching behaviors of organic-inorganic hybrid perovskite memory

    Science.gov (United States)

    Hwang, Bohee; Gu, Chungwan; Lee, Donghwa; Lee, Jang-Sik

    2017-03-01

    Mixed halide perovskite materials are actively researched for solar cells with high efficiency. Their hysteresis which originates from the movement of defects make perovskite a candidate for resistive switching memory devices. We demonstrate the resistive switching device based on mixed-halide organic-inorganic hybrid perovskite CH3NH3PbI3-xBrx (x = 0, 1, 2, 3). Solvent engineering is used to deposit the homogeneous CH3NH3PbI3-xBrx layer on the indium-tin oxide-coated glass substrates. The memory device based on CH3NH3PbI3-xBrx exhibits write endurance and long retention, which indicate reproducible and reliable memory properties. According to the increase in Br contents in CH3NH3PbI3-xBrx the set electric field required to make the device from low resistance state to high resistance state decreases. This result is in accord with the theoretical calculation of migration barriers, that is the barrier to ionic migration in perovskites is found to be lower for Br- (0.23 eV) than for I- (0.29-0.30 eV). The resistive switching may be the result of halide vacancy defects and formation of conductive filaments under electric field in the mixed perovskite layer. It is observed that enhancement in operating voltage can be achieved by controlling the halide contents in the film.

  9. Advancement on Lead-Free Organic-Inorganic Halide Perovskite Solar Cells: A Review.

    Science.gov (United States)

    Sani, Faruk; Shafie, Suhaidi; Lim, Hong Ngee; Musa, Abubakar Ohinoyi

    2018-06-14

    Remarkable attention has been committed to the recently discovered cost effective and solution processable lead-free organic-inorganic halide perovskite solar cells. Recent studies have reported that, within five years, the reported efficiency has reached 9.0%, which makes them an extremely promising and fast developing candidate to compete with conventional lead-based perovskite solar cells. The major challenge associated with the conventional perovskite solar cells is the toxic nature of lead (Pb) used in the active layer of perovskite material. If lead continues to be used in fabricating solar cells, negative health impacts will result in the environment due to the toxicity of lead. Alternatively, lead free perovskite solar cells could give a safe way by substituting low-cost, abundant and non toxic material. This review focuses on formability of lead-free organic-inorganic halide perovskite, alternative metal cations candidates to replace lead (Pb), and possible substitutions of organic cations, as well as halide anions in the lead-free organic-inorganic halide perovskite architecture. Furthermore, the review gives highlights on the impact of organic cations, metal cations and inorganic anions on stability and the overall performance of lead free perovskite solar cells.

  10. Trap-Free Hot Carrier Relaxation in Lead–Halide Perovskite Films

    KAUST Repository

    Bretschneider, Simon A.

    2017-05-08

    Photovoltaic devices that employ lead-halide perovskites as photoactive materials exhibit power conversion efficiencies of 22%. One of the potential routes to go beyond the current efficiencies is to extract charge carriers that carry excess energy, that is, nonrelaxed or

  11. Can Ferroelectric Polarization Explain the High Performance of Hybrid Halide Perovskite Solar Cells?

    NARCIS (Netherlands)

    Sherkar, Tejas; Koster, L. Jan Anton

    The power conversion efficiency of photovoltaic cells based on the use of hybrid halide perovskites, CH3NH3PbX3 (X = Cl, Br, I), now exceeds 20%. Recently, it was suggested that this high performance originates from the presence of ferroelectricity in the perovskite, which is hypothesized to lower

  12. Ligand-free, palladium-catalyzed dihydrogen generation from TMDS: dehalogenation of aryl halides on water.

    Science.gov (United States)

    Bhattacharjya, Anish; Klumphu, Piyatida; Lipshutz, Bruce H

    2015-03-06

    A mild and environmentally attractive dehalogenation of functionalized aryl halides has been developed using nanoparticles formed from PdCl2 in the presence of tetramethyldisiloxane (TMDS) on water. The active catalyst and reaction medium can be recycled. This method can also be applied to cascade reactions in a one-pot sequence.

  13. Radiation chemistry of hydrocarbon and alkyl halide systems. Progress report, August 1, 1977--August 1, 1978

    International Nuclear Information System (INIS)

    Hanrahan, R.J.

    1978-01-01

    Progress of experimental work is reported on pulse radiolysis of simple alkyl halides in the gas phase, gas phase radiolysis of CHF 3 -CH 3 I mixtures, gamma radiolysis of the system CO/H 2 , and improvements in equipment and facilities

  14. Direct ToF-SIMS analysis of organic halides and amines on TLC plates

    Energy Technology Data Exchange (ETDEWEB)

    Parent, Alexander A. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Anderson, Thomas M. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Michaelis, David J. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Jiang, Guilin [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Savage, Paul B. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Linford, Matthew R. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States)]. E-mail: mrlinford@chem.byu.edu

    2006-07-30

    It has been reported that: 'direct analysis of thin layer chromatography (TLC) plates with secondary ion mass spectrometry (SIMS) yields no satisfactory results' (J. Chromatogr. A 1084 (2005) 113-118). While this statement appears to be true in general, we have identified two important classes of compounds, organic halides and amines, that appear to yield to such direct analyses. For example, five organic halides with diverse structures were eluted on normal phase TLC plates. In all cases the halide signals in the negative ion time-of-flight secondary ion mass spectrometry (ToF-SIMS) spectra were notably stronger than the background signals. Similarly, a series of five organic amines with diverse structures were directly analyzed by positive ion ToF-SIMS. In all but one of the spectra characteristic, and sometimes even quasi-molecular ions, were observed. Most likely, the good halide ion yields are largely a function of the electronegativity of the halogens. We also propose that direct analysis of amines on normal phase silica gel is facilitated by the acidity, i.e., proton donation, of surface silanol groups.

  15. Direct ToF-SIMS analysis of organic halides and amines on TLC plates

    International Nuclear Information System (INIS)

    Parent, Alexander A.; Anderson, Thomas M.; Michaelis, David J.; Jiang, Guilin; Savage, Paul B.; Linford, Matthew R.

    2006-01-01

    It has been reported that: 'direct analysis of thin layer chromatography (TLC) plates with secondary ion mass spectrometry (SIMS) yields no satisfactory results' (J. Chromatogr. A 1084 (2005) 113-118). While this statement appears to be true in general, we have identified two important classes of compounds, organic halides and amines, that appear to yield to such direct analyses. For example, five organic halides with diverse structures were eluted on normal phase TLC plates. In all cases the halide signals in the negative ion time-of-flight secondary ion mass spectrometry (ToF-SIMS) spectra were notably stronger than the background signals. Similarly, a series of five organic amines with diverse structures were directly analyzed by positive ion ToF-SIMS. In all but one of the spectra characteristic, and sometimes even quasi-molecular ions, were observed. Most likely, the good halide ion yields are largely a function of the electronegativity of the halogens. We also propose that direct analysis of amines on normal phase silica gel is facilitated by the acidity, i.e., proton donation, of surface silanol groups

  16. Electron detachment energies in high-symmetry alkali halide solvated-electron anions

    Science.gov (United States)

    Anusiewicz, Iwona; Berdys, Joanna; Simons, Jack; Skurski, Piotr

    2003-07-01

    We decompose the vertical electron detachment energies (VDEs) in solvated-electron clusters of alkali halides in terms of (i) an electrostatic contribution that correlates with the dipole moment (μ) of the individual alkali halide molecule and (ii) a relaxation component that is related to the polarizability (α) of the alkali halide molecule. Detailed numerical ab initio results for twelve species (MX)n- (M=Li,Na; X=F,Cl,Br; n=2,3) are used to construct an interpolation model that relates the clusters' VDEs to their μ and α values as well as a cluster size parameter r that we show is closely related to the alkali cation's ionic radius. The interpolation formula is then tested by applying it to predict the VDEs of four systems [i.e., (KF)2-, (KF)3-, (KCl)2-, and (KCl)3-] that were not used in determining the parameters of the model. The average difference between the model's predicted VDEs and the ab initio calculated electron binding energies is less than 4% (for the twelve species studied). It is concluded that one can easily estimate the VDE of a given high-symmetry solvated electron system by employing the model put forth here if the α, μ and cation ionic radii are known. Alternatively, if VDEs are measured for an alkali halide cluster and the α and μ values are known, one can estimate the r parameter, which, in turn, determines the "size" of the cluster anion.

  17. Highly Efficient Broadband Yellow Phosphor Based on Zero-Dimensional Tin Mixed-Halide Perovskite.

    Science.gov (United States)

    Zhou, Chenkun; Tian, Yu; Yuan, Zhao; Lin, Haoran; Chen, Banghao; Clark, Ronald; Dilbeck, Tristan; Zhou, Yan; Hurley, Joseph; Neu, Jennifer; Besara, Tiglet; Siegrist, Theo; Djurovich, Peter; Ma, Biwu

    2017-12-27

    Organic-inorganic hybrid metal halide perovskites have emerged as a highly promising class of light emitters, which can be used as phosphors for optically pumped white light-emitting diodes (WLEDs). By controlling the structural dimensionality, metal halide perovskites can exhibit tunable narrow and broadband emissions from the free-exciton and self-trapped excited states, respectively. Here, we report a highly efficient broadband yellow light emitter based on zero-dimensional tin mixed-halide perovskite (C 4 N 2 H 14 Br) 4 SnBr x I 6-x (x = 3). This rare-earth-free ionically bonded crystalline material possesses a perfect host-dopant structure, in which the light-emitting metal halide species (SnBr x I 6-x 4- , x = 3) are completely isolated from each other and embedded in the wide band gap organic matrix composed of C 4 N 2 H 14 Br - . The strongly Stokes-shifted broadband yellow emission that peaked at 582 nm from this phosphor, which is a result of excited state structural reorganization, has an extremely large full width at half-maximum of 126 nm and a high photoluminescence quantum efficiency of ∼85% at room temperature. UV-pumped WLEDs fabricated using this yellow emitter together with a commercial europium-doped barium magnesium aluminate blue phosphor (BaMgAl 10 O 17 :Eu 2+ ) can exhibit high color rendering indexes of up to 85.

  18. Kinetics of halide release of haloalkane dehalogenase : Evidence for a slow conformational change

    NARCIS (Netherlands)

    Schanstra, JP; Janssen, DB; Schanstra, Joost P.

    1996-01-01

    Haloalkane dehalogenase converts haloalkanes to their corresponding alcohols and halides, The reaction mechanism involves the formation of a covalent alkyl-enzyme complex which is hydrolyzed by water. The active site is a hydrophobic cavity buried between the main domain and the cap domain of the

  19. Behaviour of alkali halides as materials for optical components of high power lasers

    International Nuclear Information System (INIS)

    Apostol, D.I.; Mihailescu, N.I.; Ghiordanescu, V.; Nistor, C.L.; Nistor, V.S.; Teodorescu, V.; Voda, M.

    1978-01-01

    The physical phenomena taking place in alkali halides when a CO 2 laser radiation is passing through have been reviewed. A special emphasis has been put on the specific qualities which such materials should have for being used as components for high power lasers. (author)

  20. Correlated linear response calculations of the C6 dispersion coefficients of hydrogen halides

    Czech Academy of Sciences Publication Activity Database

    Sauer, S. P. A.; Paidarová, Ivana

    2007-01-01

    Roč. 3, 2-4 (2007), s. 399-421 ISSN 1574-0404 R&D Projects: GA AV ČR IAA401870702 Institutional research plan: CEZ:AV0Z40400503 Keywords : hydrogen halides * C6 dospersion coefficients * van der Waals coefficients * polarizability at imaginary frequences * SOPPA Subject RIV: CF - Physical ; Theoretical Chemistry

  1. REPLACEMENT OF TRYPTOPHAN RESIDUES IN HALOALKANE DEHALOGENASE REDUCES HALIDE BINDING AND CATALYTIC ACTIVITY

    NARCIS (Netherlands)

    KENNES, C; PRIES, F; KROOSHOF, GH; BOKMA, E; Kingma, Jacob; JANSSEN, DB

    1995-01-01

    Haloalkane dehalogenase catalyzes the hydrolytic cleavage of carbon-halogen bonds in short-chain haloalkanes. Two tryptophan residues of the enzyme (Trp125 and Trp175) form a halide-binding site in the active-site cavity, and were proposed to play a role in catalysis. The function of these residues

  2. Relationship between thermoluminescence and X-ray induced luminescence in alkali halides

    International Nuclear Information System (INIS)

    Aguilar, M.; Lopez, F.J.; Jaque, F.

    1978-01-01

    The wavelength spectra of thermoluminescence and X-ray induced luminescence in pure and divalent cation doped alkali halides, in the temperature range LNT-RT have been studied. The more important conclusion is that the wavelength spectra in both cases are very similar. This allows a new point of view to be presented on thermoluminescence mechanisms. (author)

  3. Chemistry of gaseous lower-valent actinide halides. Technical progress report

    International Nuclear Information System (INIS)

    Hildenbrand, D.L.

    1984-01-01

    Objective is to provide thermochemical data for key actinide halide and oxyhalide systems. Progress is reported on bond dissociation energies of gaseous ThCl 4 , ThCl 3 , ThCl 2 , and ThCl; bond dissociation energies of ruthenium fluorides; and mass spectroscopy of UF 6

  4. Charge-charge liquid structure factor and the freezing of alkali halides

    International Nuclear Information System (INIS)

    March, N.H.; Tosi, M.P.

    1980-10-01

    The peak height of the charge-charge liquid structure factor Ssub(QQ) in molten alkali halides is proposed as a criterion for freezing. Available data on molten alkali chlorides, when extrapolated to the freezing point suggests Ssub(QQ)sup(max) approximately 5. (author)

  5. A model for additive transport in metal halide lamps containing mercury and dysprosium tri-iodide

    NARCIS (Netherlands)

    Beks, M.L.; Haverlag, M.; Mullen, van der J.J.A.M.

    2008-01-01

    The distribution of additives in a metal halide lamp is examined through numerical modelling. A model for a lamp containing sodium iodide additives has been modified to study a discharge containing dysprosium tri-iodide salts. To study the complex chemistry the method of Gibbs minimization is used

  6. The importance of moisture in hybrid lead halide perovskite thin film fabrication

    NARCIS (Netherlands)

    Eperon, G.E.; Habisreutinger, S.N.; Leijtens, T.; Bruijnaers, B.J.; van Franeker, J.J.; deQuilettes, D.W.; Pathak, S.; Sutton, R.J.; Grancini, G.; Ginger, D.S.; Janssen, R.A.J.; Petrozza, A.; Snaith, H.J.

    2015-01-01

    Moisture, in the form of ambient humidity, has a significant impact on methylammonium lead halide perovskite films. In particular, due to the hygroscopic nature of the methylammonium component, moisture plays a significant role during film formation. This issue has so far not been well understood

  7. Electrochemical specific adsorption of halides on Cu 111, 100, and 211: A Density Functional Theory study

    International Nuclear Information System (INIS)

    McCrum, Ian T.; Akhade, Sneha A.; Janik, Michael J.

    2015-01-01

    The specific adsorption of ions onto electrode surfaces can affect electrocatalytic reactions. Density functional theory is used to investigate the specific adsorption of aqueous F − , Cl − , Br − , and I − onto Cu (111), (100), and (211) surfaces. The adsorption is increasingly favorable in the order of F − < Cl − < Br − < I − . The adsorption has a weak dependence on the surface facet, with adsorption most favorable on Cu (100) and least favorable on Cu (111). Potential ranges where specific adsorption would be expected on each facet are reported. The thermodynamics of bulk copper halide (CuX, CuX 2 ) formation are also investigated as a function of potential. CuX formation occurs at potentials slightly more positive of halide specific adsorption and of copper oxidation in aqueous electrolytes. Specifically adsorbed halides and bulk CuX may be present during a variety of electrochemical reactions carried out over a Cu electrode in halide containing electrolyte solutions

  8. Transport phenomena in metal-halide lamps : a poly-diagnostic study

    NARCIS (Netherlands)

    Nimalasuriya, T.

    2007-01-01

    Worldwide about 20% of all electricity is used for lighting. It is therefore of great interest to develop a lamp that has high e±cacy, good colour rendering and long lifetime. The metal-halide lamp is a gas discharge lamp that meets all these demands. Unfortunately there are still issues with this

  9. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    Science.gov (United States)

    Cruz-Ramírez de Arellano, Daniel; Towns, Marcy H.

    2014-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  10. Epitaxial Growth of a Methoxy-Functionalized Quaterphenylene on Alkali Halide Surfaces

    DEFF Research Database (Denmark)

    Balzer, Frank; Sun, Rong; Parisi, Jürgen

    2015-01-01

    The epitaxial growth of the methoxy functionalized para-quaterphenylene (MOP4) on the (001) faces of the alkali halides NaCl and KCl and on glass is investigated by a combination of lowenergy electron diffraction (LEED), polarized light microscopy (PLM), atomic force microscopy (AFM), and X...

  11. Thorium valency in molten alkali halides in equilibrium with metallic thorium

    International Nuclear Information System (INIS)

    Smirnov, M.V.; Kudyakov, V.Ya.

    1983-01-01

    Metallic thorium is shown to corrode in molten alkali halides even in the absence of external oxidizing agents, alkali cations acting as oxidizing agents. Its corrosion rate grows in the series of alkali chlorides from LiCl to CsCl at constant temperature. Substituting halide anions for one another exerts a smaller influence, the rate rising slightly in going from chlorides to bromides and iodides, having the same alkali cations. Thorium valency is determined coulometrically, the metal being dissolved anodically in molten alkali halides and their mixtures. In fluoride melts it is equal to 4 but in chloride, bromide and iodide ones, as a rule, it has non-integral values between 4 and 2 which diminish as the temperature is raised, as the thorium concentration is lowered, as the radii of alkali cations decrease and those of halide anions increase. The emf of cells Th/N ThHlsub(n) + (1-N) MHl/MHl/C, Hlsub(2(g)) where Hl is Cl, Br or I, M is Li, Na, K, Cs or Na + K, and N < 0.05, is measured as a function of concentration at several temperatures. Expressions are obtained for its concentration dependence. The emf grows in the series of alkali chlorides from LiCl to CsCl, other conditions being equal. (author)

  12. Homocoupling of benzyl halides catalyzed by POCOP-nickel pincer complexes

    KAUST Repository

    Chen, Tao

    2012-08-01

    Two types of POCOP-nickel(II) pincer complexes were prepared by mixing POCOP pincer ligands and NiX 2 in toluene at reflux. The resulting nickel complexes efficiently catalyze the homocoupling reactions of benzyl halides in the presence of zinc. The coupled products were obtained in excellent to quantitative yields. © 2012 Elsevier Ltd. All rights reserved.

  13. Preliminary results of transarterial Rhenium-188 HDD Lipiodol in treatment of inoperable primary hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Sundram, Felix

    2004-01-01

    Full text: In this paper we present our early experience with a new radio-conjugate, namely rhenium-188 HDD Lipiodol (Re-188 lipiodol). Imported radiopharmaceuticals are generally expensive, particularly for developing countries. A Tungsten (W-188-Re 188) generator obtained from ORNL (Oak Ridge National Laboratory, Tennessee, USA) allows us on-site production of a beta emitting therapeutic isotope (Re-188) for up to 6 months from a single generator. The objectives of this study were to establish the safety of trans-arterial Re-188 lipiodol in patients with inoperable HCC, and determine the adverse effects and efficacy for this radio-conjugate treatment in a multi-center study of patients with advanced HCC. A multi-center study was sponsored by the International Atomic Energy Agency (Vienna) to assess the safety and efficacy of trans-arterial Re-188 HDD conjugated lipiodol (radio-conjugate) in the treatment of patients with inoperable hepatocellular carcinoma (HCC), The radio-conjugate was prepared by using a HDD (4-hexadecyl 1-2, 9, 9-tetramethyl-4, 7-diaza-1, 10-decanethiol) kit developed in Korea, and lipiodol. Over a period of eighteen months seventy patients received at least one treatment of radio-conjugate. Some patients were re-treated if there was no evidence of disease progression. The level of radio-conjugate administered was based on radiation-absorbed dose to critical normal organs, calculated following a 'scout' dose of radio-conjugate. The organs at greatest risk for radiation toxicity are the normal liver, the lung and the bone marrow. A specially designed spreadsheet was used to determine maximum tolerated activity (MTA), defined as the amount of radioactivity calculated to deliver no more than 12 Gray (Gy) to lungs, or 30 Gy to liver, or 1.5 Gy to bone marrow. These doses have been found to be safe in multiple trials using external beam therapy and systemically administered radiopharmaceuticals. Patients were followed for at least twelve weeks

  14. 2D halide perovskite-based van der Waals heterostructures: contact evaluation and performance modulation

    Science.gov (United States)

    Guo, Yaguang; Saidi, Wissam A.; Wang, Qian

    2017-09-01

    Halide perovskites and van der Waals (vdW) heterostructures are both of current interest owing to their novel properties and potential applications in nano-devices. Here, we show the great potential of 2D halide perovskite sheets (C4H9NH3)2PbX4 (X  =  Cl, Br and I) that were synthesized recently (Dou et al 2015 Science 349 1518-21) as the channel materials contacting with graphene and other 2D metallic sheets to form van der Waals heterostructures for field effect transistor (FET). Based on state-of-the-art theoretical simulations, we show that the intrinsic properties of the 2D halide perovskites are preserved in the heterojunction, which is different from the conventional contact with metal surfaces. The 2D halide perovskites form a p-type Schottky barrier (Φh) contact with graphene, where tunneling barrier exists, and a negative band bending occurs at the lateral interface. We demonstrate that the Schottky barrier can be turned from p-type to n-type by doping graphene with nitrogen atoms, and a low-Φh or an Ohmic contact can be realized by doping graphene with boron atoms or replacing graphene with other high-work-function 2D metallic sheets such as ZT-MoS2, ZT-MoSe2 and H-NbS2. This study not only predicts a 2D halide perovskite-based FETs, but also enhances the understanding of tuning Schottky barrier height in device applications.

  15. Halide peroxidase in tissues that interact with bacteria in the host squid Euprymna scolopes.

    Science.gov (United States)

    Small, A L; McFall-Ngai, M J

    1999-03-15

    An enzyme with similarities to myeloperoxidase, the antimicrobial halide peroxidase in mammalian neutrophils, occurs abundantly in the light organ tissue of Euprymna scolopes, a squid that maintains a beneficial association with the luminous bacterium Vibrio fischeri. Using three independent assays typically applied to the analysis of halide peroxidase enzymes, we directly compared the activity of the squid enzyme with that of human myeloperoxidase. One of these methods, the diethanolamine assay, confirmed that the squid peroxidase requires halide ions for its activity. The identification of a halide peroxidase in a cooperative bacterial association suggested that this type of enzyme can function not only to control pathogens, but also to modulate the interactions of host animals with their beneficial partners. To determine whether the squid peroxidase functions under both circumstances, we examined its distribution in a variety of host tissues, including those that typically interact with bacteria and those that do not. Tissues interacting with bacteria included those that have specific cooperative associations with bacteria (i.e., the light organ and accessory nidamental gland) and those that have transient nonspecific interactions with bacteria (i.e., the gills, which clear the cephalopod circulatory system of invading microorganisms). These bacteria-associated tissues were compared with the eye, digestive gland, white body, and ink-producing tissues, which do not typically interact directly with bacteria. Peroxidase enzyme assays, immunocytochemical localization, and DNA-RNA hybridizations showed that the halide-dependent peroxidase is consistently expressed in high concentration in tissues that interact bacteria. Elevated levels of the peroxidase were also found in the ink-producing tissues, which are known to have enzymatic pathways associated with antimicrobial activity. Taken together, these data suggest that the host uses a common biochemical response to

  16. Application of rhenium 186 radiosynovectomy in elbow diffuse pigmented villonodular synovitis: Case report with multiple joint involvement

    International Nuclear Information System (INIS)

    Koca, Go Khan; Ozsoy, Ha Kan; Atilgan, Hasan Ikbal; Demirel, Koray; Dincel, Veysel Ercan; Korkmaz, Meliha

    2012-01-01

    After surgical therapy of diffuse pigmented villonodular synovitis (DPVNS), recurrence is seen in almost half of the patients. The effectiveness of radiosynovectomy (RSV)in preventing recurrence and complaints of DPVNS is well known. Elbow involvement in DPVNS is a very rare condition; therefore, RSV in elbow hasn't been experienced widely. The aim of this case report is to show the effectiveness of RSV with rhenium 186 (Re 186)sulfide colloid. We applied Re 186 sulfide colloid to the elbow joint of DPVNS patients six weeks after arthroscopic synovectomy. As a result, the patient did not have any complaints, and our findings are compatible with residue or recurrence on magnetic resonance imaging (MRI)in sixth and twentieth month controls after administration. We concluded that Re 186 is an effective adjuvant therapy for the prevention of recurrence and complaints

  17. Development of a radiochemical neutron activation analysis procedure for determination of rhenium in biological and environmental samples at ultratrace level

    International Nuclear Information System (INIS)

    Kucera, J.; Lucanikova, M.; Czech Technical Univ., Prague

    2006-01-01

    Radiochemical neutron activation procedures using liquid-liquid extraction with tetraphenylarsonium chloride in chloroform from 1M HCl and solid extraction with ALIQUAT 336 incorporated in a polyacrylonitrile binding matrix from 0.1M HCl were developed for accurate determination of rhenium in biological and environmental samples at the sub-ng x g -1 level. Concentrations of Re in the range of 0.1 to 2.4 ng x g -1 were determined in several botanical reference materials (RM), while in a RM of road dust a value of ∼ 10 ng x g -1 was found. Significantly elevated values of Re, up to 90 ng x g -1 were found in seaweed (brown algae). Results for Re in the brown algae Fucus vesiculosus in which elevated 99 Tc values had previously been determined suggested possible competition between Re and Tc in the accumulation process. (author)

  18. Determination of rhenium traces in river water by Q-ICP-MS and HR-ICP-MS

    International Nuclear Information System (INIS)

    Uchida, S.; Tagami, K.; Saito, M.

    2003-01-01

    A simple separation method was applied to determine rhenium in river water using Q-ICP-MS and HR-ICP-MS. Re was concentrated from 420-925 ml river water using a TEVA resin minicolumn. Such extraction using a resin could separate Re from most sample matrices and trace elements. Almost 100% recovery was found throughout the method as determined with radioactive multitracers. The HR-ICP-MS was also used for the direct determination because of its low detection limit for Re (0.007 pg/ml). The Re concentration in the river water samples ranged from 0.9 to 6.5 pg/ml and the three analysis results showed good agreement with each other. (author)

  19. A Fluorine-18 Radiolabeling Method Enabled by Rhenium(I) Complexation Circumvents the Requirement of Anhydrous Conditions.

    Science.gov (United States)

    Klenner, Mitchell A; Pascali, Giancarlo; Zhang, Bo; Sia, Tiffany R; Spare, Lawson K; Krause-Heuer, Anwen M; Aldrich-Wright, Janice R; Greguric, Ivan; Guastella, Adam J; Massi, Massimiliano; Fraser, Benjamin H

    2017-05-11

    Azeotropic distillation is typically required to achieve fluorine-18 radiolabeling during the production of positron emission tomography (PET) imaging agents. However, this time-consuming process also limits fluorine-18 incorporation, due to radioactive decay of the isotope and its adsorption to the drying vessel. In addressing these limitations, the fluorine-18 radiolabeling of one model rhenium(I) complex is reported here, which is significantly improved under conditions that do not require azeotropic drying. This work could open a route towards the investigation of a simplified metal-mediated late-stage radiofluorination method, which would expand upon the accessibility of new PET and PET-optical probes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Identification of rhenium donors and sulfur vacancy acceptors in layered MoS{sub 2} bulk samples

    Energy Technology Data Exchange (ETDEWEB)

    Brandão, F. D., E-mail: fdbrand@fisica.ufmg.br; Ribeiro, G. M.; Vaz, P. H.; González, J. C.; Krambrock, K. [Departamento de Física, Universidade Federal de Minas Gerais, CP 702, 30.123-970 Belo Horizonte, MG (Brazil)

    2016-06-21

    MoS{sub 2} monolayers, a two-dimensional (2D) direct semiconductor material with an energy gap of 1.9 eV, offer many opportunities to be explored in different electronic devices. Defects often play dominant roles in the electronic and optical properties of semiconductor devices. However, little experimental information about intrinsic and extrinsic defects or impurities is available for this 2D system, and even for macroscopic 3D samples for which MoS{sub 2} shows an indirect bandgap of 1.3 eV. In this work, we evaluate the nature of impurities with unpaired spins using electron paramagnetic resonance (EPR) in different geological macroscopic samples. Regarding the fact that monolayers are mostly obtained from natural crystals, we expect that the majority of impurities found in macroscopic samples are also randomly present in MoS{sub 2} monolayers. By EPR at low temperatures, rhenium donors and sulfur vacancy acceptors are identified as the main impurities in bulk MoS{sub 2} with a corresponding donor concentration of about 10{sup 8–12} defects/cm{sup 2} for MoS{sub 2} monolayer. Electrical transport experiments as a function of temperature are in good agreement with the EPR results, revealing a shallow donor state with an ionization energy of 89 meV and a concentration of 7 × 10{sup 15 }cm{sup −3}, which we attribute to rhenium, as well as a second deeper donor state with ionization energy of 241 meV with high concentration of 2 × 10{sup 19 }cm{sup −3} and net acceptor concentration of 5 × 10{sup 18 }cm{sup −3} related to sulfur vacancies.

  1. Synthesis, structural characterization and photoluminescence properties of rhenium(I) complexes based on bipyridine derivatives with carbazole moieties.

    Science.gov (United States)

    Li, Hong-Yan; Wu, Jing; Zhou, Xin-Hui; Kang, Ling-Chen; Li, Dong-Ping; Sui, Yan; Zhou, Yong-Hui; Zheng, You-Xuan; Zuo, Jing-Lin; You, Xiao-Zeng

    2009-12-21

    Three N,N-bidentate ligands, 5,5'-dibromo-2,2-bipyridine (L1) and two carbazole containing ligands of 5-bromo-5'-carbazolyl-2,2-bipyridine (L2), 5,5'-dicarbazolyl-2,2'-bipyridine (L3), and their corresponding rhenium Re(CO)3Cl(L) complexes (ReL1-ReL3) have been successfully synthesized and characterized by elemental analysis, 1H NMR and IR spectra. Their photophysical properties and thermal analysis, along with the X-ray crystal structure analysis of L3 and complexes ReL1 and ReL3 are also described. In CH2Cl2 solution at room temperature, all complexes display intense absorption bands at ca. 220-350 nm, which can be assigned to spin-allowed intraligand (pi-->pi*) transitions, and the low energy broad bands in the 360-480 nm region are attributed to the metal to ligand charge-transfer d(Re)-->pi* (diimine) (MLCT). The introduction of carbazole moieties improves the MLCT absorption and molar extinction coefficient of these complexes. Upon excitation at the peak maxima, all complexes show strong emissions around 620 nm, which are assigned to d(Re)-->pi* (diimine) MLCT phosphorescence. The photoluminescence lifetime decay of Re(I) complexes were measured and the quantum efficiencies of the rhenium(I) complexes were calculated by using air-equilibrated [Ru(bpy)3]2+ x 2 Cl- aqueous solution as standard (phi(std) = 0.028). The complexes with appended carbazole moieties exhibit enhanced luminescence performances relative to ReL1.

  2. Active and passive vectorization of technetium99m and 188rhenium radiopharmaceuticals for medical imaging and radiotherapy

    International Nuclear Information System (INIS)

    Lepareur, N.

    2003-11-01

    Research for new molecules for nuclear medicine is a field in constant development. Over the past few years, development of new radiopharmaceuticals for radiotherapy has renewed interest for rhenium chemistry. Indeed, its two isotopes 186 Re and 188 Re, owing to their ideal properties and their similitude with 99m Tc, which is widely used as a radiotracer for diagnostic imaging, seem very promising for the preparation of radiopharmaceuticals. In the first part of this manuscript, the synthesis of rhenium and technetium-99 complexes, [M(RPhCS3)2(RPhCS2)] (M = Re, Tc), is described. The preparation of technetium 99m based radiopharmaceuticals, analogues to the pondered complexes, is also described. The stability/reactivity of these complexes has been studied by exchange reactions with potential ligands, specially dithiocarbamates, and also by UV-visible absorption spectroscopy and thermogravimetry. The reactivity of the complexes towards dithiocarbamates leads to the possibility to bind biomolecules to the metallic core, via the dithiocarbamate moiety. This method represents a potential alternative to current ones using the so-called bifunctional approach. In the second part of this manuscript, a new kit formulation for the 188 Re labeling of lipiodol is described, using a complex analogous to those described in the previous part. The labeled oil is a potential cure for hepatocellular carcinoma. The in vitro and in vivo stability of this 188 Re-SSS lipiodol and of its analogue 99m Tc-SSS lipiodol has been studied, and also their in vivo behavior in healthy pigs. This study has shown the quasi-exclusive hepatic fixation of the radiopharmaceutical, and has proven its good stability. Its selectivity for tumors remains to be shown before trying it on humans. (author)

  3. Phase stability, physical properties of rhenium diboride under high pressure and the effect of metallic bonding on its hardness

    International Nuclear Information System (INIS)

    Zhong, Ming-Min; Kuang, Xiao-Yu; Wang, Zhen-Hua; Shao, Peng; Ding, Li-Ping; Huang, Xiao-Fen

    2013-01-01

    Highlights: •The transition pressure P t between the ReB 2 –ReB 2 and MoB 2 –ReB 2 phases is firstly determinate. •The single-bonded B–B feather remains in ReB 2 compounds. •A semiempirical method to evaluate the hardness of crystals with partial metallic bond is presented. •The large hardness (39.1 GPa) of ReB 2 –ReB 2 indicate that it is a superhard material. •The zigzag interconnected B–Re and B–B covalent bonds underlie the ultraincompressibilities. -- Abstract: Using first-principles calculations, the elastic constants, thermodynamic property and structural phase transition of rhenium diboride under pressure are investigated by means of the pseudopotential plane-waves method, as well as the effect of metallic bond on its hardness. Eight candidate structures of known transition-metal compounds are chosen to probe for rhenium diboride ReB 2 . The calculated lattice parameters are consistent with the experimental and theoretical values. Based on the third order Birch–Murnaghan equation of states, the transition pressure P t between the ReB 2 –ReB 2 and MoB 2 –ReB 2 phases is firstly determinate. Elastic constants, shear modulus, Young’s modulus, Poisson’s ratio and Debye temperature are derived. The single-bonded B–B feather remains in ReB 2 compounds. Furthermore, according to Mulliken overlap population analysis, a semiempirical method to evaluate the hardness of multicomponent crystals with partial metallic bond is presented. Both strong covalency and a zigzag topology of interconnected bonds underlie the ultraincompressibilities. In addition, the superior performance and large hardness (39.1 GPa) of ReB 2 –ReB 2 indicate that it is a superhard material

  4. Design criteria for rhenium-reduced nickel-based single-crystal alloys. Identification and computer-assisted conversion

    International Nuclear Information System (INIS)

    Goehler, Thomas

    2016-01-01

    In the present work, design criteria and property models for the creep strength optimization of rhenium-free nickel based single crystal Superalloys are investigated. The study focuses on a typical load condition of 1050 C and 150 MPa, which is representative for flight engine applications. Thereby the key aspect is to link chemical composition, manufacturing processes, microstructure formation and mechanistic understanding of dislocation creep through a computational materials engineering approach. Beside the positive effect of rhenium on solid solution hardening, a second mechanism in which rhenium increases high temperature creep strength is identified. It indirectly stabilizes precipitation hardening by reducing the coarsening kinetics of γ'-rafting. Five 1st and 2nd generation technical Superalloys show a comparable microstructure evolution for up to 2 % plastic elongation, while creep times differ by a factor of five. The application of a microstructure sensitive creep model shows that these coarsening processes can activate γ-cutting and thus lead to an increasing creep rate. Based on these calculations a threshold value of φ γ/γ' > 2,5 at 150 MPa is estimated. This ratio of matrix channel to raft thickness has been proofed for multiple positions by microstructure analysis of interrupted creep tests. The mechanism described previously can be decelerated by the enrichment of the γ-matrix with slow diffusing elements. The same principle also increases the solid solution strength of the γ-matrix. Therefore, the present work delivers an additional mechanistic explanation why creep properties of single phase nickel based alloys can be transferred to two phase technical Superalloys with rafted γ'-structure. Following, the best way to substitute both rhenium fundamental properties, namely a slow diffusion coefficient and a small solubility in g', has been investigated by means of CALPHAD-modeling. Only molybdenum and especially tungsten

  5. The chemistry of positronium. Part VI: inhibition and enhancement of positronium formation in aqueous solutions of halides, sulfide and thiocyanate

    International Nuclear Information System (INIS)

    Duplatre, G.; Abbe, J.C.; Maddock, A.G.; Haessler, A.

    1977-01-01

    The formation of positronium in aqueous solutions of halides, sulfide and thiocyanate has been investigated. Inhibiting and enhancing reactions of positronium formation are found. The results are discussed in terms of the spur model

  6. Effect of rhenium and osmium on mechanical properties of a 9Cr-2W-0.25V-0.07Ta-0.1C steel

    International Nuclear Information System (INIS)

    Klueh, R.L.; Alexander, D.J.; Sokolov, M.A.

    2000-01-01

    The nuclear transmutation of tungsten to rhenium and osmium in a tungsten-containing steel irradiated in a fission or fusion reactor will change the chemical composition of the steel. To determine the possible consequences of such compositional changes on the mechanical properties, tensile and Charpy impact properties were measured on five 9Cr-2W-0.25V-0.07Ta-0.1C steels that contained different amounts of rhenium, osmium, and tungsten. The mechanical properties changes caused by these changes in composition were minor. Observations were also made on the effect of carbon concentration. The effect of carbon on tensile behavior was minor, but there was a large effect on Charpy properties. Several of the steels showed little effect of tempering temperature on the Charpy transition temperature, a behavior that was tentatively attributed to the low silicon and/or manganese concentration of the experimental steels

  7. Methyl halide fluxes from tropical plants under controlled radiation and temperature regimes

    Science.gov (United States)

    Blei, Emanuel; Yokouchi, Yoko; Saito, Takuya; Nozoe, Susumu

    2015-04-01

    Methyl halides (CH3Cl, CH3Br, CH3I) contribute significantly to the halogen burden of the atmosphere and have the potential to influence the stratospheric ozone layer through their catalytic effect in the Chapman cycle. As such they have been studied over the years, and many plants and biota have been examined for their potential to act as a source of these gases. One of the potentially largest terrestrial sources identified was tropical vegetation such as tropical ferns and Dipterocarp trees. Most of these studies concentrated on the identification and quantification of such fluxes rather than their characteristics and often the chambers used in these studies were either opaque or only partially transparent to the full solar spectrum. Therefore it is not certain to which degree emissions of methyl halides are innate to the plants and how much they might vary due to radiation or temperature conditions inside the enclosures. In a separate development it had been proposed that UV-radiation could cause live plant materials to be become emitters of methane even under non-anoxic conditions. As methane is chemically very similar to methyl halides and had been proposed to be produced from methyl-groups ubiquitously found in plant cell material there is a relatively good chance that such a production mechanism would also apply to methyl halides. To test whether radiation can affect elevated emissions of methyl halides from plant materials and to distinguish this from temperature effects caused by heat build-up in chambers a set of controlled laboratory chamber enclosures under various radiation and temperature regimes was conducted on four different tropical plant species (Magnolia grandiflora, Cinnamonum camphora, Cyathea lepifera, Angiopteris lygodiifolia), the latter two of which had previously been identified as strong methyl halide emitters. Abscised leaf samples of these species were subjected to radiation treatments such UV-B, UV-A and broad spectrum radiation

  8. Electrochemically reduced titanocene dichloride as a catalyst of reductive dehalogenation of organic halides

    Energy Technology Data Exchange (ETDEWEB)

    Magdesieva, Tatiana V. [Department Chemistry, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation)]. E-mail: tvm@org.chem.msu.ru; Graczyk, Magdalena [LSEO-UMR 5188 CNRS, Universite de Bourgogne, Dijon (France); Vallat, Alain [LSEO-UMR 5188 CNRS, Universite de Bourgogne, Dijon (France); Nikitin, Oleg M. [Department Chemistry, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Demyanov, Petr I. [Department Chemistry, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Butin, Kim P. [Department Chemistry, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Vorotyntsev, Mikhail A. [LSEO-UMR 5188 CNRS, Universite de Bourgogne, Dijon (France)]. E-mail: MV@u-bourgogne.fr

    2006-11-12

    We have studied a reaction between the reduced form of titanocene dichloride (Cp{sub 2}TiCl{sub 2}) and a group of organic halides: benzyl derivatives (4-X-C{sub 6}H{sub 4}CH{sub 2}Cl, X = H, NO{sub 2}, CH{sub 3}; 4-X-C{sub 6}H{sub 4}CH{sub 2}Br, X = H, NO{sub 2}, PhC(O); 4-X-C{sub 6}H{sub 4}CH{sub 2}SCN, X = H, NO{sub 2}) as well as three aryl halides (4-NO{sub 2}C{sub 6}H{sub 4}Hal, Hal = Cl, Br; 4-CH{sub 3}O-C{sub 6}H{sub 4}Cl). It has been shown that the electrochemical reduction of Cp{sub 2}TiCl{sub 2} in the presence of these benzyl halides leads to a catalytic cycle resulting in the reductive dehalogenation of these organic substrates to yield mostly corresponding toluene derivatives as the main product. No dehalogenation has been observed for aryl derivatives. Based on electrochemical data and digital simulation, possible schemes of the catalytic process have been outlined. For non-substituted benzyl halides halogen atom abstraction is a key step. For the reaction of nitrobenzyl halides the complexation of Ti(III) species with the nitro group takes place, with the electron transfer from Ti(III) to this group (owing to its highest coefficient in LUMO of the nitro benzyl halide) followed by an intramolecular dissociative electron redistribution in the course of the heterolytic C-Hal bond cleavage. The results for reduced titanocene dichloride centers immobilized inside a polymer film showed that the catalytic reductive dehalogenation of the p-nitrobenzyl chloride does occur but with a low efficiency because of the partial deactivation of the film due to the blocking of the electron charge transport between the electrode and catalytic centers.

  9. Vibrational Spectra of Discrete UO22+ Halide Complexes in the Gas Phase

    International Nuclear Information System (INIS)

    Groenewold, G.S.; Van Stipdonk, Michael J.; Oomens, Jos; De Jong, Wibe A.; Gresham, Garold L.; Mcilwain, Michael

    2010-01-01

    The intrinsic binding of halide ions to the metal center in the uranyl molecule is a topic of ongoing research interest in both the actinide separations and theoretical communities. Investigations of structure in the condensed phases is frequently obfuscated by solvent interactions that can alter ligand binding and spectroscopic properties. The approach taken in this study is to move the uranyl halide complexes into the gas phase where they are free from solvent interactions, and then interrogate their vibrational spectroscopy using infrared multiple photon dissociation (IRMPD). The spectra of cationic coordination complexes having the composition (UO 2 (X)(ACO) 3 ) + (where X = F, Cl, Br and I; ACO = acetone) were acquired using electrospray for ion formation, and monitoring the ion signal from the photoelimination of ACO ligands. The studies showed that the asymmetric ν 3 UO 2 frequency was insensitive to halide identity as X was varied from Cl to I, suggesting that in these pseudo-octahedral complexes, changing the nucleophilicity of the halide did not appreciably alter its binding in the complex. The ν 3 peak in the spectrum of the F-containing complex was 9 cm -1 lower indicating stronger coordination in this complex. Similarly the ACO carbonyl stretches showed that the C=O frequency was relatively insensitive to the identity of the halide, although a modest shift to higher wavenumber was seen for the complexes with the more nucleophilic anions, consistent with the idea that they loosen solvent binding. Surprisingly, the ν 1 stretch was activated when the softer anions Cl, Br and I were present in the complexes. IR studies of the anionic complexes (UO 2 X 3 ) - (where X = Cl - , Br - and I - ) compared the ν 3 UO 2 modes versus halide, and showed that the ν 3 values decreased with increasing anion nucleophilicity. This observation was consistent with DFT calculations that indicated that (UO 2 X 2 ) - -X, and (UO 2 X 2 )·-X - dissociation energies

  10. Conformational isomerism in mixed-ligand complexes of 2,2'-bipyridine and triphenylphosphine with copper(I) halides

    International Nuclear Information System (INIS)

    Barron, P.F.; Engelhardt, L.M.; Healy, P.C.; Kildea, J.D.; White, A.H.

    1988-01-01

    Mixed-ligand complexes of triphenylphosphine and 2,2'-bipyridine and copper(I) halides have been synthesized. The 31 P NMR spectra of the complexes were measured and are reported along with data for complete structural characterization of the complexes. The results indicate a novel dichotomy of conformational isomers to be present in the chloride lattice. The Cu-P bond length was found to not vary with different halides. 8 refs., 4 figs., 6 tabs

  11. Rhenium(V) and technetium(V) complexes of bis(o-hydroxyphenyl)phenylphosphine (PO22-) and (o-hydroxyphenyl)diphenylphosphine (PO-) ligands

    International Nuclear Information System (INIS)

    Luo, Hongyan; Setyawati, Ika; Rettig, S.J.; Orvig, C.

    1995-01-01

    The synthesis of several phosphine-based chelating compounds and chelates formed between these compounds and rhenium or technetium is discussed. Four categories of products result, (i) bis-(o-hydroxyphenyl) diphenylphosphine (PO) complexes, (ii) mono- (PO) complexes, (iii) bis-bis(o-hydroxyphenyl)-phenylphosphine (PO 2 ) complexes, and mixed-(PO) and (PO 2 ) complexes. Molecular structures of these compounds (including isomers) were probed by NMR, MS, and IR spectroscopies and by X-ray crystallography

  12. RHENIUM SOLUBILITY IN BOROSILICATE NUCLEAR WASTE GLASS IMPLICATIONS FOR THE PROCESSING AND IMMOBILIZATION OF TECHNETIUM-99 (AND SUPPORTING INFORMATION WITH GRAPHICAL ABSTRACT)

    Energy Technology Data Exchange (ETDEWEB)

    AA KRUGER; A GOEL; CP RODRIGUEZ; JS MCCLOY; MJ SCHWEIGER; WW LUKENS; JR, BJ RILEY; D KIM; M LIEZERS; P HRMA

    2012-08-13

    The immobilization of 99Tc in a suitable host matrix has proved a challenging task for researchers in the nuclear waste community around the world. At the Hanford site in Washington State in the U.S., the total amount of 99Tc in low-activity waste (LAW) is {approx} 1,300 kg and the current strategy is to immobilize the 99Tc in borosilicate glass with vitrification. In this context, the present article reports on the solubility and retention of rhenium, a nonradioactive surrogate for 99Tc, in a LAW sodium borosilicate glass. Due to the radioactive nature of technetium, rhenium was chosen as a simulant because of previously established similarities in ionic radii and other chemical aspects. The glasses containing target Re concentrations varying from 0 to10,000 ppm by mass were synthesized in vacuum-sealed quartz ampoules to minimize the loss of Re by volatilization during melting at 1000 DC. The rhenium was found to be present predominantly as Re7 + in all the glasses as observed by X-ray absorption near-edge structure (XANES). The solubility of Re in borosilicate glasses was determined to be {approx}3,000 ppm (by mass) using inductively coupled plasma-optical emission spectroscopy (ICP-OES). At higher rhenium concentrations, some additional material was retained in the glasses in the form of alkali perrhenate crystalline inclusions detected by X-ray diffraction (XRD) and laser ablation-ICP mass spectrometry (LA-ICP-MS). Assuming justifiably substantial similarities between Re7 + and Tc 7+ behavior in this glass system, these results implied that the processing and immobilization of 99Tc from radioactive wastes should not be limited by the solubility of 99Tc in borosilicate LAW glasses.

  13. Influence of liposome forms of the rhenium compounds and cis-platin on thiol-disulfide coefficient in the rats’ blood

    Directory of Open Access Journals (Sweden)

    I. V. Klenina

    2007-12-01

    Full Text Available Thiol-disulfide coefficient (TDC and its different modifications in model in vivo were studied. Introduction of the liposome forms of cluster rhenium compounds with organic ligands (CROL leads to both TDC increasing and to the constancy of the TDC. Thus, CROLs aren’t toxic agents and some compounds could mobilize organisms’ thiol defence system. Liposome form of cis-platin leads to the TDC decreasing. Important CROL capacities for its future medical treatment practice were shown.

  14. Adsorption of molecular additive onto lead halide perovskite surfaces: A computational study on Lewis base thiophene additive passivation

    Science.gov (United States)

    Zhang, Lei; Yu, Fengxi; Chen, Lihong; Li, Jingfa

    2018-06-01

    Organic additives, such as the Lewis base thiophene, have been successfully applied to passivate halide perovskite surfaces, improving the stability and properties of perovskite devices based on CH3NH3PbI3. Yet, the detailed nanostructure of the perovskite surface passivated by additives and the mechanisms of such passivation are not well understood. This study presents a nanoscopic view on the interfacial structure of an additive/perovskite interface, consisting of a Lewis base thiophene molecular additive and a lead halide perovskite surface substrate, providing insights on the mechanisms that molecular additives can passivate the halide perovskite surfaces and enhance the perovskite-based device performance. Molecular dynamics study on the interactions between water molecules and the perovskite surfaces passivated by the investigated additive reveal the effectiveness of employing the molecular additives to improve the stability of the halide perovskite materials. The additive/perovskite surface system is further probed via molecular engineering the perovskite surfaces. This study reveals the nanoscopic structure-property relationships of the halide perovskite surface passivated by molecular additives, which helps the fundamental understanding of the surface/interface engineering strategies for the development of halide perovskite based devices.

  15. Use of new tandem cation/anion exchange system with clinical-scale generators provides high specific volume solutions of technetium-99m and rhenium-188

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Beets, A.L.; Mirzadeh, S.; Guhlke, S.

    1998-01-01

    In this paper we describe the first application of our simple and inexpensive post-elution tandem cation/anion exchange column system which is based on generator elution with salts of weak acids such as ammonium acetate instead of saline solution to provide very high specific volume solutions of technetium-99m and rhenium-188 from clinical-scale molybdenum-99/technetium-99m generator prepared from low specific activity (n,y) molybdenum-99, and tungsten-188/rhenium-188 generators, respectively. Initial passage of the bolus through a strong cation exchange cartridge converts the ammonium acetate to acetic acid which is essentially not ionized at the acidic pH, allowing specific subsequent amine-type (QMA SepPak TM ) anion exchange cartridge column trapping of the microscopic levels of the pertechnetate or perrhenate. Subsequent elution of the anion cartridge with a small volume ( 500 mCi/mL) from the alumina-based tungsten-188/rhenium-188 generator. (author)

  16. Development of pharmaceuticals with radioactive rhenium for cancer therapy. Production of {sup 186}Re and {sup 188}Re, synthesis of labeled compounds and their biodistributions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Production of the radioactive rhenium isotopes {sup 186}Re and {sup 188}Re, and synthesis of their labeled compounds have been studied together with the biodistributions of the compounds. This work was carried out by the Working Group on Radioactive Rhenium, consisting of researchers of JAERI and some universities, in the Subcommittee for Production and Radiolabeling under the Consultative Committee of Research on Radioisotopes. For {sup 186}Re, production methods by the {sup 185}Re(n,{gamma}){sup 186}Re reaction in a reactor and by the {sup 186}W(p,n){sup 186}Re reaction with an accelerator, which can produce nocarrier-added {sup 186}Re, have been established. For {sup 188}Re, a production method by the double neutron capture reaction of {sup 186}W, which produces a {sup 188}W/{sup 188}Re generator, has been established. For labeling of bisphosphonate, DMSA, DTPA, DADS, aminomethylenephosphonate and some monoclonal antibodies with the radioactive rhenium isotopes, the optimum conditions, including pH, the amounts of reagents and so on, have been determined for each compound. The biodistributions of each of the labeled compounds in mice have been also obtained. (author)

  17. Thermoluminescence response of a mixed ternary alkali halide crystals exposed to gamma rays

    International Nuclear Information System (INIS)

    Rodriguez M, R.; Perez S, R.; Vazquez P, G.; Riveros, H.; Gonzalez M, P.

    2014-08-01

    Ionic crystals, mainly alkali halide crystals have been the subject of intense research for a better understanding of the luminescence properties of defects induced by ionizing radiation. The defects in crystals can be produced in appreciable concentration due to elastic stresses, radiation, and addition of impurities. These defects exhibit remarkable thermoluminescence properties. This work is concerned with the Tl properties of a ternary alkali halide crystal after being irradiated with gamma and beta rays. It has been found that the Tl glow peak of the crystal follows a rule of average associated to the Tl Temperatures of the components of the mixture, similarly to the response of europium doped binary mixed crystals KCl x KBr 1-x and KBr x RbBr 1-x . (Author)

  18. Rapid Microwave-Assisted Copper-Catalyzed Nitration of Aromatic Halides with Nitrite Salts

    International Nuclear Information System (INIS)

    Paik, Seung Uk; Jung, Myoung Geun

    2012-01-01

    A rapid and efficient copper-catalyzed nitration of aryl halides has been established under microwave irradiation. The catalytic systems were found to be the most effective with 4-substituted aryl iodides leading to nearly complete conversions. Nitration of aromatic compounds is one of the important industrial processes as underlying intermediates in the manufacture of a wide range of chemicals such as dyes, pharmaceuticals, agrochemicals and explosives. General methods for the nitration of aromatic compounds utilize strongly acidic conditions employing nitric acid or a mixture of nitric and sulfuric acids, sometimes leading to problems with poor regioselectivity, overnitration, oxidized byproducts and excess acid waste in many cases of functionalized aromatic compounds. Several other nitrating agents or methods avoiding harsh reaction conditions have been explored using metal nitrates, nitrite salts, and ionic liquid-mediated or microwave-assisted nitrations. Recently, copper or palladium compounds have been successfully used as efficient catalysts for the arylation of amines with aryl halides under mild conditions

  19. Ground state depletion – A step towards mid-IR lasing of doped silver halides

    Energy Technology Data Exchange (ETDEWEB)

    Tsur, Yuval, E-mail: yuvaltsu@post.tau.ac.il [Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801 (Israel); Goldring, Sharone [Applied Physics Division, Soreq NRC, Yavne 81800 (Israel); Galun, Ehud [DDR& D, Ministry of Defense (Israel); Katzir, Abraham [Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801 (Israel)

    2016-07-15

    We show for the first time ground state absorption saturation in a doped silver halide crystal (AgCl{sub x}Br{sub 1−x}), specifically with cobalt. Spectroscopic studies showed absorption bands in the 1.4–2.5 μm region and emission bands in the 3.8–5.0 μm region, with a 1.5 ms lifetime at low temperatures. Absorption saturation indicates a good low and room temperature lasing feasibility at 4.1 μm. In addition, a comparison of cobalt, nickel and iron as dopants is presented. These doped silver halide crystals can be extruded to form optical fibers, possibly introducing a new family of fiber lasers for the middle infrared.

  20. Analogy between temperature dependent radiation effects in alkali halide crystals and crystalline ammonia

    International Nuclear Information System (INIS)

    Blum, A.

    1977-01-01

    Pikaev, Ershov, and Makarov recently reported the characteristic shape of Arrhenius-type dependence for F-centers slow part (millisecond) decay in alkali halide crystals irradiated at different temperatures. The decay rate is constant when the temperature is below the limiting value (T/sub lim/) and exhibits constant activation energy (E/sub A/) at temperatures above T/sub lim/ up to the melting point. A similar dependence has been observed for crystalline ammonia radiolysis yields (H 2 and N 2 ) in the temperature range from 77 to 195 0 K (ammonia melting point) with a limiting value of 105 0 K for N 2 and 119 0 K for H 2 . The coincidence between the alkali halide and ammonia data does not seem to be formal and there are indications showing a closer analogy between these two cases

  1. Structural stability, acidity, and halide selectivity of the fluoride riboswitch recognition site

    KAUST Repository

    Chawla, Mohit; Credendino, Raffaele; Poater, Albert; Oliva, Romina M.; Cavallo, Luigi

    2015-01-01

    Using static and dynamics DFT methods we show that the Mg2+/F-/phosphate/water cluster at the center of the fluoride riboswitch is stable by its own and, once assembled, does not rely on any additional factor from the overall RNA fold. Further, we predict that the pKa of the water molecule bridging two Mg cations is around 8.4. We also demonstrate that the halide selectivity of the fluoride riboswitch is determined by the stronger Mg-F bond, which is capable of keeping together the cluster. Replacing F- with Cl- results in a cluster that is unstable under dynamic conditions. Similar conclusions on the structure and energetics of the cluster in the binding pocket of fluoride-inhibited pyrophosphatase suggest that the peculiarity of fluoride is in its ability to establish much stronger metal-halide bonds.

  2. Structural stability, acidity, and halide selectivity of the fluoride riboswitch recognition site

    KAUST Repository

    Chawla, Mohit

    2015-01-14

    Using static and dynamics DFT methods we show that the Mg2+/F-/phosphate/water cluster at the center of the fluoride riboswitch is stable by its own and, once assembled, does not rely on any additional factor from the overall RNA fold. Further, we predict that the pKa of the water molecule bridging two Mg cations is around 8.4. We also demonstrate that the halide selectivity of the fluoride riboswitch is determined by the stronger Mg-F bond, which is capable of keeping together the cluster. Replacing F- with Cl- results in a cluster that is unstable under dynamic conditions. Similar conclusions on the structure and energetics of the cluster in the binding pocket of fluoride-inhibited pyrophosphatase suggest that the peculiarity of fluoride is in its ability to establish much stronger metal-halide bonds.

  3. Reaction between aminoalkyl radicals and akyl halides: Dehalogenation by electron transfer?

    Science.gov (United States)

    Lalevée, J.; Fouassier, J. P.; Blanchard, N.; Ingold, K. U.

    2011-07-01

    Aminoalkyl radicals, such as Et2NCrad HCH3, have low oxidation potentials and are therefore powerful reducing agents. We have found that Et2NCrad HCH3 reacts with CCl4 and CBr4 in di-tert-butyl peroxide with bimolecular rate constants (measured by LFP) close, or equal, to the diffusion-controlled limit. For the less reactive halide, CH2Br2, the reaction rate is increased substantially by the addition of acetonitrile as a co-solvent. It is tentatively concluded that these reactions occur by electron-transfer from the aminoalkyl to the organohalide with formation of the iminium ion, Et2N+dbnd CHCH3 (NMR detection), halide ion and a halomethyl radical, e.g., rad CCl3 and rad CHCl2 (ESR, spin-trapping detection).

  4. Quantitative positron annihilation studies in citrates, halides and oxyhalides chemisorbed on γ-alumina catalyst

    International Nuclear Information System (INIS)

    Luo, X.H.; Jean, Y.C.; Cheng, K.L.

    1987-01-01

    A quantitative study of the γ-alumina catalyst chemisorbed by nitrates, halides, and oxyhalides has been conducted with the positron annihilation spectroscopy (PAS). Catalysts containing Fe, Co, or Ni have been extensively used in chemical industry and petroleum refining. The positron or Ps annihilation can provide a profile information about the bulk, near surface, and void. It is an in-situ surface technique. The PAS technique has shown its capability to determine the nitrate or chloride in γ-alumina as low as 0.02% in solids. It is interesting to note that the PAS may offer the oxidation state information in solids. This is not surprising because the positron annihilation is sensitive to the electron density variation in environments. Positron annihilation models for halides and oxyhalides are proposed

  5. F-center and self-trapped exciton formation in strongly excited alkali halide crystals

    International Nuclear Information System (INIS)

    Kravchenko, V.A.; Yakovlev, V.Yu.

    1988-01-01

    Method of luminescent and absorption spectroscopy with time resolution was used to study the effect of density of electron pulse excitation (t p =10 -8 s, P=(10 5 -10 8 ) WXcm -2 ) on efficiency of η ε two-halide autolocalized exciton (TALE) and F-centers (η F ) formation in CsI, CsBr, KBr, KI alkali halide crystals. It was established that for all studied systems the elevation of P power of electron beam (EB) from 10 5 up to 5X10 7 WXcm -2 resulted to sufficient decrease of production efficiency and yield of TALE luminescence. In the case when F-centers of colour are induced predominantly by pulsed irradiation in crystals, F-center yield is independent of P. If F-centers and TALE are produced in comparable amounts (CsBr crystals, T=80 K), η ε decrease with P growth is accompanied by η F growth

  6. Energy distributions of atoms sputtered from alkali halides by 540 eV electrons, Ch.1

    International Nuclear Information System (INIS)

    Overeijnder, H.; Szymonski, M.; Haring, A.; Vries, A.E. de

    1978-01-01

    The emission of halogen and alkali atoms, occurring under bombardment of alkali halides with electrons has been investigated. The electron energy was 540 eV and the temperature of the target was varied between room temperature and 400 0 C. The energy distribution of the emitted neutral particles was measured with a time of flight method. It was found that either diffusing interstitial halogen atoms or moving holes dominate the sputtering process above 200 0 C. Below 150 0 C alkali halides with lattice parameters s/d >= 0.33 show emission of non-thermal halogen atoms. s is the interionic space between two halogen ions in a direction and d is the diameter of a halogen atom. In general the energy distribution of the alkali and halogen atoms is thermal above 200 0 C, but not Maxwellian. (Auth.)

  7. Efficient Photon Recycling and Radiation Trapping in Cesium Lead Halide Perovskite Waveguides

    KAUST Repository

    Dursun, Ibrahim

    2018-05-26

    Cesium lead halide perovskite materials have attracted considerable attention for potential applications in lasers, light emitting diodes and photodetectors. Here, we provide the experimental and theoretical evidence for photon recycling in CsPbBr3 perovskite microwires. Using two-photon excitation, we recorded photoluminescence (PL) lifetimes and emission spectra as a function of the lateral distance between PL excitation and collection positions along the microwire, with separations exceeding 100 µm. At longer separations, the PL spectrum develops a red-shifted emission peak accompanied by an appearance of well-resolved rise times in the PL kinetics. We developed quantitative modeling that accounts for bimolecular recombination and photon recycling within the microwire waveguide and is sufficient to account for the observed decay modifications. It relies on a high radiative efficiency in CsPbBr3 perovskite microwires and provides crucial information about the potential impact of photon recycling and waveguide trapping on optoelectronic properties of cesium lead halide perovskite materials.

  8. Rapid Microwave-Assisted Copper-Catalyzed Nitration of Aromatic Halides with Nitrite Salts

    Energy Technology Data Exchange (ETDEWEB)

    Paik, Seung Uk; Jung, Myoung Geun [Keimyung University, Daegu (Korea, Republic of)

    2012-02-15

    A rapid and efficient copper-catalyzed nitration of aryl halides has been established under microwave irradiation. The catalytic systems were found to be the most effective with 4-substituted aryl iodides leading to nearly complete conversions. Nitration of aromatic compounds is one of the important industrial processes as underlying intermediates in the manufacture of a wide range of chemicals such as dyes, pharmaceuticals, agrochemicals and explosives. General methods for the nitration of aromatic compounds utilize strongly acidic conditions employing nitric acid or a mixture of nitric and sulfuric acids, sometimes leading to problems with poor regioselectivity, overnitration, oxidized byproducts and excess acid waste in many cases of functionalized aromatic compounds. Several other nitrating agents or methods avoiding harsh reaction conditions have been explored using metal nitrates, nitrite salts, and ionic liquid-mediated or microwave-assisted nitrations. Recently, copper or palladium compounds have been successfully used as efficient catalysts for the arylation of amines with aryl halides under mild conditions.

  9. A Simple Halide-to-Anion Exchange Method for Heteroaromatic Salts and Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Neus Mesquida

    2012-04-01

    Full Text Available A broad and simple method permitted halide ions in quaternary heteroaromatic and ammonium salts to be exchanged for a variety of anions using an anion exchange resin (A− form in non-aqueous media. The anion loading of the AER (OH− form was examined using two different anion sources, acids or ammonium salts, and changing the polarity of the solvents. The AER (A− form method in organic solvents was then applied to several quaternary heteroaromatic salts and ILs, and the anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide impurities. Relying on the hydrophobicity of the targeted ion pair for the counteranion swap, organic solvents with variable polarity were used, such as CH3OH, CH3CN and the dipolar nonhydroxylic solvent mixture CH3CN:CH2Cl2 (3:7 and the anion exchange was equally successful with both lipophilic cations and anions.

  10. Development of alkali halide-optics for high power-IR laser

    International Nuclear Information System (INIS)

    Pohl, L.

    1989-01-01

    In this work 'Development of Alkali Halide-Optics for High Power-IR Laser' we investigated the purification of sodiumchloride-, potassiumchloride- and potassiumbromide-raw materials. We succeeded to reduce the content of impurities like Cu, Pb, V, Cr, Mn, Fe, Co and Ni in these raw materials to the lower of ppb's by a Complex-Adsorption-Method (CAM). Crystals were grown from purified substances by 'Kyropoulos' method'. Windows were cur thereof, polished and measured by FTIR-spectroscopy. Analytical data showed, that the resulting crystals were of lower quality than the raw materials. Because of this fact crystal-growing-conditions have to undergo a special improvement. Alkali halide windows from other sources on the market had been tested. (orig.) [de

  11. [BMIM][PF(6)] promotes the synthesis of halohydrin esters from diols using potassium halides.

    Science.gov (United States)

    Oromí-Farrús, Mireia; Eras, Jordi; Villorbina, Gemma; Torres, Mercè; Llopis-Mestre, Veronica; Welton, Tom; Canela, Ramon

    2008-10-01

    Haloesterification of diverse diols with various carboxylic acids was achieved using potassium halides (KX) as the only halide source in ionic liquids. The best yield was obtained in [BMIM][PF(6)] when 1,2-octanediol, palmitic acid and KBr were used. This yield was 85% and the regioisomer with the bromine in primary position was present in a 75:25 ratio. The regioisomeric ratio could be improved using either KCl or some phenylcarboxylic acids. [BMIM][PF(6)] acts as both reaction media and catalyst of the reaction. To the best of our knowledge, this type of combined reaction using an ionic liquid is unprecedented. The other solvents tested did not lead either to the same yield or to the same regioisomeric ratio.

  12. Band Gap Tuning and Defect Tolerance of Atomically Thin Two- Dimensional Organic-Inorganic Halide Perovskites

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer

    2016-01-01

    Organic−inorganic halide perovskites have proven highly successful for photovoltaics but suffer from low stability, which deteriorates their performance over time. Recent experiments have demonstrated that low dimensional phases of the hybrid perovskites may exhibit improved stability. Here we...... report first-principles calculations for isolated monolayers of the organometallic halide perovskites (C4H9NH3)2MX2Y2, where M = Pb, Ge, Sn and X,Y = Cl, Br, I. The band gaps computed using the GLLB-SC functional are found to be in excellent agreement with experimental photoluminescence data...... for the already synthesized perovskites. Finally, we study the effect of different defects on the band structure. We find that the most common defects only introduce shallow or no states in the band gap, indicating that these atomically thin 2D perovskites are likely to be defect tolerant....

  13. Energetics and dynamics in organic–inorganic halide perovskite photovoltaics and light emitters

    International Nuclear Information System (INIS)

    Sum, Tze Chien; Chen, Shi; Xing, Guichuan; Liu, Xinfeng; Wu, Bo

    2015-01-01

    The rapid transcendence of organic–inorganic metal halide perovskite solar cells to above the 20% efficiency mark has captivated the broad photovoltaic community. As the efficiency race continues unabated, it is essential that fundamental studies keep pace with these developments. Further gains in device efficiencies are expected to be increasingly arduous and harder to come by. The key to driving the perovskite solar cell efficiencies towards their Shockley–Queisser limit is through a clear understanding of the interfacial energetics and dynamics between perovskites and other functional materials in nanostructured- and heterojunction-type devices. In this review, we focus on the current progress in basic characterization studies to elucidate the interfacial energetics (energy-level alignment and band bending) and dynamical processes (from the ultrafast to the ultraslow) in organic–inorganic metal halide perovskite photovoltaics and light emitters. Major findings from these studies will be distilled. Open questions and scientific challenges will also be highlighted. (topical review)

  14. Superconducting nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I)

    Energy Technology Data Exchange (ETDEWEB)

    Schurz, Christian M.; Shlyk, Larysa; Schleid, Thomas; Niewa, Rainer [Stuttgart Univ. (Germany). Inst. fuer Anorganische Chemie

    2011-07-01

    Two different polymorphs of the metal nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I) are known to crystallize in layered structures. The two crystal structures differ in the way {sub {infinity}}{sup 2}{l_brace}X[M{sub 2}N{sub 2}]X{r_brace} slabs are stacked along the c-axes. Metal atoms and/or organic molecules can be intercalated into the van-der-Waals gap between these layers. After such an electron-doping via intercalation the prototypic band insulators change into superconductors with moderate high critical temperatures T{sub c} up to 25.5 K. This review gathers information on synthesis routes, structural characteristics and properties of the prototypic nitride halides and the derivatives after electron-doping with a focus on superconductivity. (orig.)

  15. Composition-Dependent Energy Splitting between Bright and Dark Excitons in Lead Halide Perovskite Nanocrystals.

    Science.gov (United States)

    Chen, Lan; Li, Bin; Zhang, Chunfeng; Huang, Xinyu; Wang, Xiaoyong; Xiao, Min

    2018-03-14

    Perovskite semiconductor nanocrystals with different compositions have shown promise for applications in light-emitting devices. Dark excitonic states may suppress light emission from such nanocrystals by providing an additional nonradiative recombination channel. Here, we study the composition dependence of dark exciton dynamics in nanocrystals of lead halides by time-resolved photoluminescence spectroscopy at cryogenic temperatures. The presence of a spin-related dark state is revealed by magneto-optical spectroscopy. The energy splitting between bright and dark states is found to be highly sensitive to both halide elements and organic cations, which is explained by considering the effects of size confinement and charge screening, respectively, on the exchange interaction. These findings suggest the possibility of manipulating dark exciton dynamics in perovskite semiconductor nanocrystals by composition engineering, which will be instrumental in the design of highly efficient light-emitting devices.

  16. Alloying effects on superionic conductivity in lithium indium halides for all-solid-state batteries

    Science.gov (United States)

    Zevgolis, Alysia; Wood, Brandon C.; Mehmedović, Zerina; Hall, Alex T.; Alves, Thomaz C.; Adelstein, Nicole

    2018-04-01

    Alloying of anions is a promising engineering strategy for tuning ionic conductivity in halide-based inorganic solid electrolytes. We explain the alloying effects in Li3InBr6-xClx, in terms of strain, chemistry, and microstructure, using first-principles molecular dynamics simulations and electronic structure analysis. We find that strain and bond chemistry can be tuned through alloying and affect the activation energy and maximum diffusivity coefficient. The similar conductivities of the x = 3 and x = 6 compositions can be understood by assuming that the alloy separates into Br-rich and Cl-rich regions. Phase-separation increases diffusivity at the interface and in the expanded Cl-region, suggesting microstructure effects are critical. Similarities with other halide superionic conductors are highlighted.

  17. Thermoluminescence response of a mixed ternary alkali halide crystals exposed to gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez M, R.; Perez S, R. [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico); Vazquez P, G.; Riveros, H. [UNAM, Instituto de Fisica, Apdo. Postal 20-364, 01000 Mexico D. F. (Mexico); Gonzalez M, P., E-mail: mijangos@cifus.uson.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-08-15

    Ionic crystals, mainly alkali halide crystals have been the subject of intense research for a better understanding of the luminescence properties of defects induced by ionizing radiation. The defects in crystals can be produced in appreciable concentration due to elastic stresses, radiation, and addition of impurities. These defects exhibit remarkable thermoluminescence properties. This work is concerned with the Tl properties of a ternary alkali halide crystal after being irradiated with gamma and beta rays. It has been found that the Tl glow peak of the crystal follows a rule of average associated to the Tl Temperatures of the components of the mixture, similarly to the response of europium doped binary mixed crystals KCl{sub x}KBr{sub 1-x} and KBr{sub x}RbBr{sub 1-x}. (Author)

  18. The nature of dynamic disorder in lead halide perovskite crystals (Conference Presentation)

    Science.gov (United States)

    Yaffe, Omer; Guo, Yinsheng; Hull, Trevor; Stoumpos, Costas; Tan, Liang Z.; Egger, David A.; Zheng, Fan; Szpak, Guilherme; Semonin, Octavi E.; Beecher, Alexander N.; Heinz, Tony F.; Kronik, Leeor; Rappe, Andrew M.; Kanatzidis, Mercouri G.; Owen, Jonathan S.; Pimenta, Marcos A.; Brus, Louis E.

    2016-09-01

    We combine low frequency Raman scattering measurements with first-principles molecular dynamics (MD) to study the nature of dynamic disorder in hybrid lead-halide perovskite crystals. We conduct a comparative study between a hybrid (CH3NH3PbBr3) and an all-inorganic lead-halide perovskite (CsPbBr3). Both are of the general ABX3 perovskite formula, and have a similar band gap and structural phase sequence, orthorhombic at low temperature, changing first to tetragonal and then to cubic symmetry as temperature increases. In the high temperature phases, we find that both compounds show a pronounced Raman quasi-elastic central peak, indicating that both are dynamically disordered.

  19. Binuclear trivalent and tetravalent uranium halides and cyanides supported by cyclooctatetraene ligands

    International Nuclear Information System (INIS)

    Wang, Cong-Zhi; Wu, Qun-Yan; Lan, Jian-Hui; Shi, Wei-Qun; Gibson, John K.

    2017-01-01

    Although the first organoactinide chloride Cp_3UCl (Cp = η"5-C_5H_5) was synthesized more than 50 years ago, binuclear uranium halides remain very rare in organoactinide chemistry. Herein, a series of binuclear trivalent and tetravalent uranium halides and cyanides with cyclooctatetraene ligands, (COT)_2U_2X_n (COT = η"8-C_8H_8; X=F, Cl, CN; n=2, 4), have been systematically studied using scalar-relativistic density functional theory (DFT). The structures with bridging halide or cyanide ligands were predicted to be the most stable complexes of (COT)_2U_2X_n, and all the complexes show weak antiferromagnetic interactions between the uranium centers. However, for each species, there is no significant uranium-uranium bonding interaction. The bonding between the metal and the ligands shows some degree of covalent character, especially between the metal and terminal halide or cyanide ligands. The U-5f and 6d orbitals are predominantly involved in the metal-ligand bonding. All the (COT)_2U_2X_n species were predicted to be more stable compared to the mononuclear half-sandwich complexes at room temperature in the gas phase such that (COT)_2U_2X_4 might be accessible through the known (COT)_2U complex. The tetravalent derivatives (COT)_2U_2X_4 are more energetically favorable than the trivalent (COT)_2U_2X_2 analogs, which may be attributed to the greater number of strong metal-ligand bonds in the former complexes.

  20. Evaluation of thermodynamic data on zirconium and hafnium halides and oxyhalides by means of transport experiments

    International Nuclear Information System (INIS)

    Dittmer, G.; Niemann, U.

    1987-01-01

    A consistent set of thermodynamic data for zirconium and hafnium halides, oxides and oxyhalides was achieved. It was found that formation enthalpies of gaseous compounds could be derived from solubility measurements together with theoretical estimations and a revision of literature data. Free energy functions were calculated employing statistical mechanics. Data for liquid and solid compounds were obtained via sublimation and vaporization data. Chemical equilibria of zirconium and hafnium with halogens are discussed. 51 refs.; 16 figs.; 14 tabs

  1. Binuclear trivalent and tetravalent uranium halides and cyanides supported by cyclooctatetraene ligands

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cong-Zhi; Wu, Qun-Yan; Lan, Jian-Hui; Shi, Wei-Qun [Chinese Academy of Sciences, Beijing (China). Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Chai, Zhi-Fang [Chinese Academy of Sciences, Beijing (China). Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Soochow Univ., Suzhou (China). School of Radiological and Interdisciplinary Sciences (RAD-X); Gibson, John K. [Lawrence Berkeley National Laboratory, CA (United States). Chemical Sciences Division

    2017-03-01

    Although the first organoactinide chloride Cp{sub 3}UCl (Cp = η{sup 5}-C{sub 5}H{sub 5}) was synthesized more than 50 years ago, binuclear uranium halides remain very rare in organoactinide chemistry. Herein, a series of binuclear trivalent and tetravalent uranium halides and cyanides with cyclooctatetraene ligands, (COT){sub 2}U{sub 2}X{sub n} (COT = η{sup 8}-C{sub 8}H{sub 8}; X=F, Cl, CN; n=2, 4), have been systematically studied using scalar-relativistic density functional theory (DFT). The structures with bridging halide or cyanide ligands were predicted to be the most stable complexes of (COT){sub 2}U{sub 2}X{sub n}, and all the complexes show weak antiferromagnetic interactions between the uranium centers. However, for each species, there is no significant uranium-uranium bonding interaction. The bonding between the metal and the ligands shows some degree of covalent character, especially between the metal and terminal halide or cyanide ligands. The U-5f and 6d orbitals are predominantly involved in the metal-ligand bonding. All the (COT){sub 2}U{sub 2}X{sub n} species were predicted to be more stable compared to the mononuclear half-sandwich complexes at room temperature in the gas phase such that (COT){sub 2}U{sub 2}X{sub 4} might be accessible through the known (COT){sub 2}U complex. The tetravalent derivatives (COT){sub 2}U{sub 2}X{sub 4} are more energetically favorable than the trivalent (COT){sub 2}U{sub 2}X{sub 2} analogs, which may be attributed to the greater number of strong metal-ligand bonds in the former complexes.

  2. Photoinduced intramolecular substitution reaction of aryl halide with carbonyl oxygen of amide group

    CERN Document Server

    Park, Y T; Kim, M S; Kwon, J H

    2002-01-01

    Photoreaction of N-(o-halophenyl)acetamide in basic acetonitrile produces an intramolecular substituted product, 2-methylbenzoxazole in addition to reduced product, acetanilide, whereas photoreaction of N-(o-halobenzyl)acetamide affords a reduced product, N-benzylacetamide only. On the basis of preparative reaction, kinetics, and UV/vis absorption behavior, an electrophilic aromatic substitution of aryl halide with oxygen of its amide bond are proposed.

  3. Amination of Aryl Halides and Esters Using Intensified Continuous Flow Processing

    Directory of Open Access Journals (Sweden)

    Thomas M. Kohl

    2015-09-01

    Full Text Available Significant process intensification of the amination reactions of aryl halides and esters has been demonstrated using continuous flow processing. Using this technology traditionally difficult amination reactions have been performed safely at elevated temperatures. These reactions were successfully conducted on laboratory scale coil reactor modules with 1 mm internal diameter (ID and on a preparatory scale tubular reactor with 6 mm ID containing static mixers.

  4. An air-stable copper reagent for nucleophilic trifluoromethylthiolation of aryl halides

    KAUST Repository

    Weng, Zhiqiang; He, Weiming; Chen, Chaohuang; Lee, Richmond; Tan, Davin; Lai, Zhiping; Kong, Dedao; Yuan, Yaofeng; Huang, Kuo-Wei

    2012-01-01

    A series of copper(I) trifluoromethyl thiolate complexes have been synthesized from the reaction of CuF2 with Me3SiCF 3 and S8 (see scheme; Cu red, F green, N blue, S yellow). These air-stable complexes serve as reagents for the efficient conversion of a wide range of aryl halides into the corresponding aryl trifluoromethyl thioethers in excellent yields. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Sodium-Metal-Halide Battery Energy Storage for DoD Installations

    Science.gov (United States)

    2017-10-24

    electrical equipment for AC interface PDE Pacific Data Electric V&F Voltage and Frequency, power quality measurements VA Volt-Amp, units for apparent...Metal-Halide technology could operate at extreme ambient temperatures, but the early prototypes did struggle with managing sand ingress.  The...peak power Not tested 3. PV smoothing Measure improvement in power quality Power meter measurements Power quality improvements 15-min

  6. Development of processes for the production of solar grade silicon from halides and alkali metals

    Science.gov (United States)

    Dickson, C. R.; Gould, R. K.

    1980-01-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon in volume at low cost were studied. Experiments were performed to evaluate product separation and collection processes, measure heat release parameters for scaling purposes, determine the effects of reactants and/or products on materials of reactor construction, and make preliminary engineering and economic analyses of a scaled-up process.

  7. UV and X radiation effects on the stability of calcium halide phosphate phosphors. 2

    International Nuclear Information System (INIS)

    Tews, W.; Getter, R.; Kleemann, M.

    1983-01-01

    Sb(V) and Sb(III) concentrations in calcium halide phosphate phosphors have been investigated as a function of time of irradiation with near UV and X radiation. It was found that the reduction of both Sb(V) and Sb(III) to elemental Sb results in intensity losses. The reductions follow consecutive first-order kinetics and first-order kinetics, respectively

  8. Experimental demonstration of correlated flux scaling in photoconductivity and photoluminescence of lead-halide perovskites

    OpenAIRE

    Yi, Hee Taek; Irkhin, Pavel; Joshi, Prakriti P.; Gartstein, Yuri N.; Zhu, Xiaoyang; Podzorov, Vitaly

    2018-01-01

    Lead-halide perovskites attracted attention as materials for high-efficiency solar cells and light emitting applications. Among their attributes are solution processability, high absorbance in the visible spectral range and defect tolerance, as manifested in long photocarrier lifetimes and diffusion lengths. The microscopic origin of photophysical properties of perovskites is, however, still unclear and under debate. Here, we have observed an interesting universal scaling behavior in a series...

  9. Phase recording for formation of holographic optical elements on silver-halide photographic emulsions

    Science.gov (United States)

    Ganzherli, Nina M.; Gulyaev, Sergey N.; Maurer, Irina A.; Chernykh, Dmitrii F.

    2009-05-01

    Holographic fabrication methods of regular and nonregular relief-phase structures on silver-halide photographic emulsions are considered. Methods of gelatin photodestruction under short-wave ultra-violet radiation and chemical hardening with the help of dichromated solutions were used as a technique for surface relief formation. The developed techniques permitted us to study specimens of holographic diffusers and microlens rasters with small absorption and high light efficiency.

  10. Tailoring Mixed-Halide, Wide-Gap Perovskites via Multistep Conversion Process

    NARCIS (Netherlands)

    Bae, D.; Palmstrom, A.; Roelofs, K.; Mei, Bastian Timo; Chorkendorf, I.; Bent, S.F.; Vesborg, P.C.

    2016-01-01

    Wide-band-gap mixed-halide CH3NH3PbI3–XBrX-based solar cells have been prepared by means of a sequential spin-coating process. The spin-rate for PbI2 as well as its repetitive deposition are important in determining the cross-sectional shape and surface morphology of perovskite, and, consequently,

  11. Photoinduced intramolecular substitution reaction of aryl halide with carbonyl oxygen of amide group

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Tae; Song, Myong Geun; Kim, Moon Sub; Kwon, Jeong Hee [Kyungpook National Univ., Daegu (Korea, Republic of)

    2002-09-01

    Photoreaction of N-(o-halophenyl)acetamide in basic acetonitrile produces an intramolecular substituted product, 2-methylbenzoxazole in addition to reduced product, acetanilide, whereas photoreaction of N-(o-halobenzyl)acetamide affords a reduced product, N-benzylacetamide only. On the basis of preparative reaction, kinetics, and UV/vis absorption behavior, an electrophilic aromatic substitution of aryl halide with oxygen of its amide bond are proposed.

  12. Photoinduced intramolecular substitution reaction of aryl halide with carbonyl oxygen of amide group

    International Nuclear Information System (INIS)

    Park, Yong Tae; Song, Myong Geun; Kim, Moon Sub; Kwon, Jeong Hee

    2002-01-01

    Photoreaction of N-(o-halophenyl)acetamide in basic acetonitrile produces an intramolecular substituted product, 2-methylbenzoxazole in addition to reduced product, acetanilide, whereas photoreaction of N-(o-halobenzyl)acetamide affords a reduced product, N-benzylacetamide only. On the basis of preparative reaction, kinetics, and UV/vis absorption behavior, an electrophilic aromatic substitution of aryl halide with oxygen of its amide bond are proposed

  13. An air-stable copper reagent for nucleophilic trifluoromethylthiolation of aryl halides

    KAUST Repository

    Weng, Zhiqiang

    2012-12-12

    A series of copper(I) trifluoromethyl thiolate complexes have been synthesized from the reaction of CuF2 with Me3SiCF 3 and S8 (see scheme; Cu red, F green, N blue, S yellow). These air-stable complexes serve as reagents for the efficient conversion of a wide range of aryl halides into the corresponding aryl trifluoromethyl thioethers in excellent yields. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Radiophotoluminescence of alkali-halide crystals stimulated by Bessel laser beam

    CERN Document Server

    Lyakh, V V; Kochubey, D I; Gyunsburg, K E; Zvezdova, N P; Kochubey, D I; Sedova, Y G; Koronkevich, V P; Poleschuk, A G; Sedukhin, A G

    2000-01-01

    A new approach to realization of optimal high-resolution reading of deep X-ray images in X-ray-sensitive materials on the base of alkali-halide crystals modified with admixtures has been suggested and investigated experimentally. A possibility to use diffraction axicons with ring aperture for forming micron bright light beams (spatially truncated Bessel beams) which can efficiently de-excite radiophotoluminescence centers lying at large depth in crystals is also presented.

  15. Barium halide nanocrystals in fluorozirconate based glass ceramics for scintillation application

    International Nuclear Information System (INIS)

    Selling, J.

    2007-01-01

    Europium (Eu)-activated barium halide nanocrystals in fluorozirconate based glass ceramics represent a promising class of Xray scintillators. The scintillation in these glass ceramics is mainly caused by the emission of divalent Eu incorporated in hexagonal BaCl 2 nanocrystals which are formed in the glass matrix upon appropriate annealing. Experiments with cerium (Ce)-activated fluorozironate glass ceramics showed that Ce is an interesting alternative. In order to get a better understanding of the scintillation mechanism in Eu- or Ce-activated barium halide nanocrystals, an investigation of the processes in the corresponding bulk material is essential. The objective of this thesis is the investigation of undoped, Eu-, and Ce-doped barium halides by X-ray excited luminescence (XL), pulse height, and scintillation decay spectra. That will help to figure out which of these crystals has the most promising scintillation properties and would be the best nanoparticles for the glass ceramics. Furthermore, alternative dopants like samarium (Sm) and manganese (Mn) were also investigated. Besides the above-mentioned optical investigation electron paramagnetic resonance (EPR) and Moessbauer measurements were carried out in order to complete the picture of Eu-doped barium halides. The EPR data of Eu-doped BaI 2 is anticipated to yield more information about the crystal field and crystal structure that will help to understand the charge carrier process during the scintillation process. The main focus of the Moessbauer investigations was set on the Eu-doped fluorochlorozirconate glass ceramics. The results of this investigation should help to improve the glass ceramics. The Eu 2+ /Eu 3+ ratio in the glass ceramics should be determined and optimize favor of the Eu 2+ . We also want to distinguish between Eu 2+ in the glass matrix and Eu 2+ in the nanocrystals. For a better understanding of Moessbauer spectroscopy on Eu also measurements on Eu in a CaF 2 host lattice were carried

  16. Issues associated with the use of the Tungsten-188/Rhenium188 generator and concentrator system and preparation of Re-188 HDD: A report

    International Nuclear Information System (INIS)

    Knapp, F.F.Jr.; Turner, J.H.; Jeong, J.-M.; Padhy, A.K.

    2004-01-01

    The ready availability of no-carrier-added Rhenium-188 from the Tungsten-188/Rhenium-188 generator represents an important source of a therapeutic radioisotope for a broad range of therapeutic applications in nuclear medicine, oncology, rheumatology and interventional cardiology. The International Atomic Energy Agency (IAEA) is coordinating a clinical trial involving the use of Rhenium188-Lipiodol for therapy of hepatocellular carcinoma. This report summarizes the experience of investigators at ten participating centres associated with the use and performance of the Tungsten-188/Rhenium-188 generators and the preparation and handling of the Re-188 HDD agent. This evaluation has demonstrated the cost effective provision of on-site therapeutic activities of Rhenium-188 and recommendations are made for further development of the next generator prototype in light of this international experience. The high bolus volumes (20-40 ml) of the ORNL generator requires post elution concentration of the Re-188 bolus by passage through the tandem silver cation/anion column system. The high back pressure often encountered during generator elution through the silver cation/anion concentrator system has been identified as a potential problem. The details of a method involving in house preparation of the silver cation columns were provided and implementation of this method for Re-188 bolus concentration is recommended. It is also recommended that ORNL investigators reassess the possibility of increasing Tungsten generator loading capacity and the use of higher specific activity Tungsten-188, with a view to reducing the generator bolus volume. The Re-188 HDD/Lipiodol conjugate?;ate is used in this IAEA trial for radioembolytic therapy of primary liver cancer, and methods for preparation of Re-188 HDD and its extraction into Lipiodol are discussed. Since Re-188 HDD binds to glass surfaces, the recovery yields are variable and can be as low as 40-45%. In an effort to maximize the

  17. Effects of Annealing Conditions on Mixed Lead Halide Perovskite Solar Cells and Their Thermal Stability Investigation.

    Science.gov (United States)

    Yang, Haifeng; Zhang, Jincheng; Zhang, Chunfu; Chang, Jingjing; Lin, Zhenhua; Chen, Dazheng; Xi, He; Hao, Yue

    2017-07-21

    In this work, efficient mixed organic cation and mixed halide (MA 0.7 FA 0.3 Pb(I 0.9 Br 0.1 )₃) perovskite solar cells are demonstrated by optimizing annealing conditions. AFM, XRD and PL measurements show that there is a better perovskite film quality for the annealing condition at 100 °C for 30 min. The corresponding device exhibits an optimized PCE of 16.76% with V OC of 1.02 V, J SC of 21.55 mA/cm² and FF of 76.27%. More importantly, the mixed lead halide perovskite MA 0.7 FA 0.3 Pb(I 0.9 Br 0.1 )₃ can significantly increase the thermal stability of perovskite film. After being heated at 80 °C for 24 h, the PCE of the MA 0.7 FA 0.3 Pb(I 0.9 Br 0.1 )₃ device still remains at 70.00% of its initial value, which is much better than the control MAPbI₃ device, where only 46.50% of its initial value could be preserved. We also successfully fabricated high-performance flexible mixed lead halide perovskite solar cells based on PEN substrates.

  18. Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices.

    Science.gov (United States)

    Manjappa, Manukumara; Srivastava, Yogesh Kumar; Solanki, Ankur; Kumar, Abhishek; Sum, Tze Chien; Singh, Ranjan

    2017-08-01

    The recent meteoric rise in the field of photovoltaics with the discovery of highly efficient solar-cell devices is inspired by solution-processed organic-inorganic lead halide perovskites that exhibit unprecedented light-to-electricity conversion efficiencies. The stunning performance of perovskites is attributed to their strong photoresponsive properties that are thoroughly utilized in designing excellent perovskite solar cells, light-emitting diodes, infrared lasers, and ultrafast photodetectors. However, optoelectronic application of halide perovskites in realizing highly efficient subwavelength photonic devices has remained a challenge. Here, the remarkable photoconductivity of organic-inorganic lead halide perovskites is exploited to demonstrate a hybrid perovskite-metamaterial device that shows extremely low power photoswitching of the metamaterial resonances in the terahertz part of the electromagnetic spectrum. Furthermore, a signature of a coupled phonon-metamaterial resonance is observed at higher pump powers, where the Fano resonance amplitude is extremely weak. In addition, a low threshold, dynamic control of the highly confined electric field intensity is also observed in the system, which could tremendously benefit the new generation of subwavelength photonic devices as active sensors, low threshold optically controlled lasers, and active nonlinear devices with enhanced functionalities in the infrared, optical, and the terahertz parts of the electromagnetic spectrum. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Quantum confinement effect of two-dimensional all-inorganic halide perovskites

    KAUST Repository

    Cai, Bo; Li, Xiaoming; Gu, Yu; Harb, Moussab; Li, Jianhai; Xie, Meiqiu; Cao, Fei; Song, Jizhong; Zhang, Shengli; Cavallo, Luigi; Zeng, Haibo

    2017-01-01

    Quantum confinement effect (QCE), an essential physical phenomenon of semiconductors when the size becomes comparable to the exciton Bohr radius, typically results in quite different physical properties of low-dimensional materials from their bulk counterparts and can be exploited to enhance the device performance in various optoelectronic applications. Here, taking CsPbBr3 as an example, we reported QCE in all-inorganic halide perovskite in two-dimensional (2D) nanoplates. Blue shifts in optical absorption and photoluminescence spectra were found to be stronger in thinner nanoplates than that in thicker nanoplates, whose thickness lowered below ∼7 nm. The exciton binding energy results showed similar trend as that obtained for the optical absorption and photoluminescence. Meanwile, the function of integrated intensity and full width at half maximum and temperature also showed similar results, further supporting our conclusions. The results displayed the QCE in all-inorganic halide perovskite nanoplates and helped to design the all-inorganic halide perovskites with desired optical properties.

  20. Design of Lead-Free Inorganic Halide Perovskites for Solar Cells via Cation-Transmutation.

    Science.gov (United States)

    Zhao, Xin-Gang; Yang, Ji-Hui; Fu, Yuhao; Yang, Dongwen; Xu, Qiaoling; Yu, Liping; Wei, Su-Huai; Zhang, Lijun

    2017-02-22

    Hybrid organic-inorganic halide perovskites with the prototype material of CH 3 NH 3 PbI 3 have recently attracted intense interest as low-cost and high-performance photovoltaic absorbers. Despite the high power conversion efficiency exceeding 20% achieved by their solar cells, two key issues-the poor device stabilities associated with their intrinsic material instability and the toxicity due to water-soluble Pb 2+ -need to be resolved before large-scale commercialization. Here, we address these issues by exploiting the strategy of cation-transmutation to design stable inorganic Pb-free halide perovskites for solar cells. The idea is to convert two divalent Pb 2+ ions into one monovalent M + and one trivalent M 3+ ions, forming a rich class of quaternary halides in double-perovskite structure. We find through first-principles calculations this class of materials have good phase stability against decomposition and wide-range tunable optoelectronic properties. With photovoltaic-functionality-directed materials screening, we identify 11 optimal materials with intrinsic thermodynamic stability, suitable band gaps, small carrier effective masses, and low excitons binding energies as promising candidates to replace Pb-based photovoltaic absorbers in perovskite solar cells. The chemical trends of phase stabilities and electronic properties are also established for this class of materials, offering useful guidance for the development of perovskite solar cells fabricated with them.

  1. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics.

    Science.gov (United States)

    Hoke, Eric T; Slotcavage, Daniel J; Dohner, Emma R; Bowring, Andrea R; Karunadasa, Hemamala I; McGehee, Michael D

    2015-01-01

    We report on reversible, light-induced transformations in (CH 3 NH 3 )Pb(Br x I 1- x ) 3 . Photoluminescence (PL) spectra of these perovskites develop a new, red-shifted peak at 1.68 eV that grows in intensity under constant, 1-sun illumination in less than a minute. This is accompanied by an increase in sub-bandgap absorption at ∼1.7 eV, indicating the formation of luminescent trap states. Light soaking causes a splitting of X-ray diffraction (XRD) peaks, suggesting segregation into two crystalline phases. Surprisingly, these photo-induced changes are fully reversible; the XRD patterns and the PL and absorption spectra revert to their initial states after the materials are left for a few minutes in the dark. We speculate that photoexcitation may cause halide segregation into iodide-rich minority and bromide-enriched majority domains, the former acting as a recombination center trap. This instability may limit achievable voltages from some mixed-halide perovskite solar cells and could have implications for the photostability of halide perovskites used in optoelectronics.

  2. First-principles thermodynamics study of phase stability in inorganic halide perovskite solid solutions

    Science.gov (United States)

    Bechtel, Jonathon S.; Van der Ven, Anton

    2018-04-01

    Halide substitution gives rise to a tunable band gap as a function of composition in halide perovskite materials. However, photoinduced phase segregation, observed at room temperature in mixed halide A Pb (IxBr1-x) 3 systems, limits open circuit voltages and decreases photovoltaic device efficiencies. We investigate equilibrium phase stability of orthorhombic P n m a γ -phase CsM (XxY1-x) 3 perovskites where M is Pb or Sn, and X and Y are Br, Cl, or I. Finite-temperature phase diagrams are constructed using a cluster expansion effective Hamiltonian parameterized from first-principles density-functional-theory calculations. Solid solution phases for CsM (IxBr1-x) 3 and CsM (BrxCl1-x) 3 are predicted to be stable well below room temperature while CsM (IxCl1-x) 3 systems have miscibility gaps that extend above 400 K. The height of the miscibility gap correlates with the difference in volume between end members. Also layered ground states are found on the convex hull at x =2 /3 for CsSnBr2Cl ,CsPbI2Br , and CsPbBrCl2. The impact of these ground states on the finite temperature phase diagram is discussed in the context of the experimentally observed photoinduced phase segregation.

  3. Cuprous halides semiconductors as a new means for highly efficient light-emitting diodes

    Science.gov (United States)

    Ahn, Doyeol; Park, Seoung-Hwan

    2016-01-01

    In group-III nitrides in use for white light-emitting diodes (LEDs), optical gain, measure of luminous efficiency, is very low owing to the built-in electrostatic fields, low exciton binding energy, and high-density misfit dislocations due to lattice-mismatched substrates. Cuprous halides I-VII semiconductors, on the other hand, have negligible built-in field, large exciton binding energies and close lattice matched to silicon substrates. Recent experimental studies have shown that the luminescence of I-VII CuCl grown on Si is three orders larger than that of GaN at room temperature. Here we report yet unexplored potential of cuprous halides systems by investigating the optical gain of CuCl/CuI quantum wells. It is found that the optical gain and the luminescence are much larger than that of group III-nitrides due to large exciton binding energy and vanishing electrostatic fields. We expect that these findings will open up the way toward highly efficient cuprous halides based LEDs compatible to Si technology. PMID:26880097

  4. Preparation of gold microparticles using halide ions in bulk block copolymer phases via photoreduction

    International Nuclear Information System (INIS)

    Cha, Sang-Ho; Kim, Ki-Hyun; Lee, Won-Ki; Lee, Jong-Chan

    2009-01-01

    Gold microparticles were prepared from the gold salt in the solid bulk phase of a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer via a photoreduction process in the presence of halide ions. The shapes and sizes of the gold microparticles were found to be dependent on the types and amount of halide ions as well as the types of cations used due to the combined effects of the adsorption power and oxidative dissolution ability of the additives on gold surfaces. Gold nanorods were obtained when poly(ethylene oxide) was used instead of the block copolymer. This suggests that the poly(propylene oxide) (PPO) parts in the block copolymer are essential for the formation of gold microparticles, even though the degree of the direct interaction between the PPO blocks and gold salt is not significant. - Graphical abstract: Gold microparticles were successfully prepared using halide ions as additives in the polymeric bulk phase via photoreduction with the glow lamp irradiation.

  5. Holographic Optical Elements Recorded in Silver Halide Sensitized Gelatin Emulsions. Part 2. Reflection Holographic Optical Elements

    Science.gov (United States)

    Kim, Jong Man; Choi, Byung So; Choi, Yoon Sun; Kim, Jong Min; Bjelkhagen, Hans I.; Phillips, Nicholas J.

    2002-03-01

    Silver halide sensitized gelatin (SHSG) holograms are similar to holograms recorded in dichromated gelatin (DCG), the main recording material for holographic optical elements (HOEs). The drawback of DCG is its low energetic sensitivity and limited spectral response. Silver halide materials can be processed in such a way that the final hologram will have properties like a DCG hologram. Recently this technique has become more interesting since the introduction of new ultra-fine-grain silver halide (AgHal) emulsions. In particular, high spatial-frequency fringes associated with HOEs of the reflection type are difficult to construct when SHSG processing methods are employed. Therefore an optimized processing technique for reflection HOEs recorded in the new AgHal materials is introduced. Diffraction efficiencies over 90% can be obtained repeatably for reflection diffraction gratings. Understanding the importance of a selective hardening process has made it possible to obtain results similar to conventional DCG processing. The main advantage of the SHSG process is that high-sensitivity recording can be performed with laser wavelengths anywhere within the visible spectrum. This simplifies the manufacturing of high-quality, large-format HOEs, also including high-quality display holograms of the reflection type in both monochrome and full color.

  6. Designing mixed metal halide ammines for ammonia storage using density functional theory and genetic algorithms.

    Science.gov (United States)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich J; Vegge, Tejs

    2014-09-28

    Metal halide ammines have great potential as a future, high-density energy carrier in vehicles. So far known materials, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, are not suitable for automotive, fuel cell applications, because the release of ammonia is a multi-step reaction, requiring too much heat to be supplied, making the total efficiency lower. Here, we apply density functional theory (DFT) calculations to predict new mixed metal halide ammines with improved storage capacities and the ability to release the stored ammonia in one step, at temperatures suitable for system integration with polymer electrolyte membrane fuel cells (PEMFC). We use genetic algorithms (GAs) to search for materials containing up to three different metals (alkaline-earth, 3d and 4d) and two different halides (Cl, Br and I) - almost 27,000 combinations, and have identified novel mixtures, with significantly improved storage capacities. The size of the search space and the chosen fitness function make it possible to verify that the found candidates are the best possible candidates in the search space, proving that the GA implementation is ideal for this kind of computational materials design, requiring calculations on less than two percent of the candidates to identify the global optimum.

  7. Infrared Dielectric Screening Determines the Low Exciton Binding Energy of Metal-Halide Perovskites.

    Science.gov (United States)

    Umari, Paolo; Mosconi, Edoardo; De Angelis, Filippo

    2018-02-01

    The performance of lead-halide perovskites in optoelectronic devices is due to a unique combination of factors, including highly efficient generation, transport, and collection of photogenerated charge carriers. The mechanism behind efficient charge generation in lead-halide perovskites is still largely unknown. Here, we investigate the factors that influence the exciton binding energy (E b ) in a series of metal-halide perovskites using accurate first-principles calculations based on solution of the Bethe-Salpeter equation, coupled to ab initio molecular dynamics simulations. We find that E b is strongly modulated by screening from low-energy phonons, which account for a factor ∼2 E b reduction, while dynamic disorder and rotational motion of the organic cations play a minor role. We calculate E b = 15 meV for MAPbI 3 , in excellent agreement with recent experimental estimates. We then explore how different material combinations (e.g., replacing Pb → Pb:Sn→ Sn; and MA → FA → Cs) may lead to different E b values and highlight the mechanisms underlying E b tuning.

  8. Third-order elastic moduli for alkali-halide crystals possessing the sodium chloride structure

    International Nuclear Information System (INIS)

    Ray, U.

    2010-01-01

    The values of third-order elastic moduli for alkali halides, having NaCl-type crystal structure are calculated according to the Born-Mayer potential model, considering the repulsive interactions up to the second nearest neighbours and calculating the values of the potential parameters for each crystal, independently, from the compressibility data. This work presents the first published account of the calculation of the third-order elastic moduli taking the actual value of the potential parameter unlike the earlier works. Third-order elastic constants have been computed for alkali halides at 0 and 300 K. The results of the third-order elastic constants are compared with the available experimental and theoretical data. Very good agreement between experimental and theoretical third-order elastic constant data (except C 123 ) is found. We have also computed the values of the pressure derivatives of second-order elastic constants and Anderson-Grueneisen parameter for alkali halides, which agree reasonably well with the experimental values, indicating the satisfactory nature of our computed data for third-order elastic constants.

  9. Quantum confinement effect of two-dimensional all-inorganic halide perovskites

    KAUST Repository

    Cai, Bo

    2017-09-07

    Quantum confinement effect (QCE), an essential physical phenomenon of semiconductors when the size becomes comparable to the exciton Bohr radius, typically results in quite different physical properties of low-dimensional materials from their bulk counterparts and can be exploited to enhance the device performance in various optoelectronic applications. Here, taking CsPbBr3 as an example, we reported QCE in all-inorganic halide perovskite in two-dimensional (2D) nanoplates. Blue shifts in optical absorption and photoluminescence spectra were found to be stronger in thinner nanoplates than that in thicker nanoplates, whose thickness lowered below ∼7 nm. The exciton binding energy results showed similar trend as that obtained for the optical absorption and photoluminescence. Meanwile, the function of integrated intensity and full width at half maximum and temperature also showed similar results, further supporting our conclusions. The results displayed the QCE in all-inorganic halide perovskite nanoplates and helped to design the all-inorganic halide perovskites with desired optical properties.

  10. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning

    Energy Technology Data Exchange (ETDEWEB)

    Shmyreva, Anna A. [Center for Magnetic Resonance, St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Safdari, Majid; Furó, István [Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Dvinskikh, Sergey V., E-mail: sergeid@kth.se [Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034 (Russian Federation)

    2016-06-14

    Orders of magnitude decrease of {sup 207}Pb and {sup 199}Hg NMR longitudinal relaxation times T{sub 1} upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX{sub 2} (Me = Pb, Hg and X = Cl, Br, I). In lead(II) halides, the most dramatic decrease of T{sub 1} relative to that in a static sample is in PbI{sub 2}, while it is smaller but still significant in PbBr{sub 2}, and not detectable in PbCl{sub 2}. The effect is magnetic-field dependent but independent of the spinning speed in the range 200–15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.

  11. Line emissions from sonoluminescence in aqueous solutions of halide salts without noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jinfu, E-mail: liang.shi2007@163.com [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China); School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001 (China); Chen, Weizhong, E-mail: wzchen@nju.edu.cn [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China); Zhou, Chao; Cui, Weicheng; Chen, Zhan [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China)

    2015-02-20

    Line emissions of trivalent terbium (Tb{sup 3+}) ion were observed from single-bubble sonoluminescence (SL) in an aqueous solution of terbium chloride (TbCl{sub 3}) that contained no noble gas. In addition, sodium (Na) lines were observed in multi-bubble SL in aqueous solutions of various halide salts that contained no noble gas. These observations show that the halide ions, such as Cl{sup −}, Br{sup −}, and I{sup −}, help for line emissions as the noble gases. The intensity of a line emission depends on both the chemical species produced by cavitation bubbles and the temperature of SL bubble that responds to the driving ultrasound pressure. With the increase of driving pressure, some line emissions attached to the continuous spectrum may become increasingly clear, while other line emissions gradually become indistinct. - Highlights: • Line emissions of Tb(III) ions were observed without the presence of noble gases. • The halide ions help to generate a line emission during sonoluminescence. • The intensity of a line emission mainly depends on the bubble's temperature. • The definition of a line emission is related to the temperature of caviation bubble and the kind of host liquid.

  12. First-principles study of γ-ray detector materials in perovskite halides

    Science.gov (United States)

    Im, Jino; Jin, Hosub; Stoumpos, Constantinos; Chung, Duck; Liu, Zhifu; Peters, John; Wessels, Bruce; Kanatzidis, Mercouri; Freeman, Arthur

    2013-03-01

    In an effort to search for good γ-ray detector materials, perovskite halide compounds containing heavy elements were investigated. Despite the three-dimensional network of the corner shared octahedra and the extended nature of the outermost shell, its strong ionic character leads to a large band gap, which is one of the essential criteria for γ-ray detector materials. Thus, considering high density and high atomic number, these pervoskite halides are possible candidate for γ-ray detector materials. We performed first-principles calculations to investigate electronic structures and thermodynamic properties of intrinsic defects in the selected perovskite halide, CsPbBr3. The screened-exchange local density approximation scheme was employed to correct the underestimation of the band gap in the LDA method. As a result, the calculated band gap of CsPbBr3 is found to be suitable for γ-ray detection. Furthermore, defect formation energy calculations allow us to predict thermodynamic and electronic properties of possible intrinsic defects, which affect detector efficiency and energy resolution. Supported by the office of Nonproliferation and Verification R &D under Contract No. DE-AC02-06CH11357

  13. Lead Halide Perovskite Nanocrystals in the Research Spotlight: Stability and Defect Tolerance

    Science.gov (United States)

    2017-01-01

    This Perspective outlines basic structural and optical properties of lead halide perovskite colloidal nanocrystals, highlighting differences and similarities between them and conventional II–VI and III–V semiconductor quantum dots. A detailed insight into two important issues inherent to lead halide perovskite nanocrystals then follows, namely, the advantages of defect tolerance and the necessity to improve their stability in environmental conditions. The defect tolerance of lead halide perovskites offers an impetus to search for similar attributes in other related heavy metal-free compounds. We discuss the origins of the significantly blue-shifted emission from CsPbBr3 nanocrystals and the synthetic strategies toward fabrication of stable perovskite nanocrystal materials with emission in the red and infrared parts of the optical spectrum, which are related to fabrication of mixed cation compounds guided by Goldschmidt tolerance factor considerations. We conclude with the view on perspectives of use of the colloidal perovskite nanocrystals for applications in backlighting of liquid-crystal TV displays. PMID:28920080

  14. Unveiling the Shape Evolution and Halide-Ion-Segregation in Blue-Emitting Formamidinium Lead Halide Perovskite Nanocrystals Using an Automated Microfluidic Platform.

    Science.gov (United States)

    Lignos, Ioannis; Protesescu, Loredana; Emiroglu, Dilara Börte; Maceiczyk, Richard; Schneider, Simon; Kovalenko, Maksym V; deMello, Andrew J

    2018-02-14

    Hybrid organic-inorganic perovskites and in particular formamidinium lead halide (FAPbX 3 , X = Cl, Br, I) perovskite nanocrystals (NCs) have shown great promise for their implementation in optoelectronic devices. Specifically, the Br and I counterparts have shown unprecedented photoluminescence properties, including precise wavelength tuning (530-790 nm), narrow emission linewidths (photoluminescence quantum yields (70-90%). However, the controlled formation of blue emitting FAPb(Cl 1-x Br x ) 3 NCs lags behind their green and red counterparts and the mechanism of their formation remains unclear. Herein, we report the formation of FAPb(Cl 1-x Br x ) 3 NCs with stable emission between 440 and 520 nm in a fully automated droplet-based microfluidic reactor and subsequent reaction upscaling in conventional laboratory glassware. The thorough parametric screening allows for the elucidation of parametric zones (FA-to-Pb and Br-to-Cl molar ratios, temperature, and excess oleic acid) for the formation of nanoplatelets and/or NCs. In contrast to CsPb(Cl 1-x Br x ) 3 NCs, based on online parametric screening and offline structural characterization, we demonstrate that the controlled synthesis of Cl-rich perovskites (above 60 at% Cl) with stable emission remains a challenge due to fast segregation of halide ions.

  15. The therapeutic threesome, Iodine 131, Lutetium-111 and Rhenium-188 Radionuclide Trifecta

    International Nuclear Information System (INIS)

    Turner, J.H.

    2007-01-01

    intervals of 7 - 11 weeks, in 10 patients at Fremantle Hospital and 7 patients at Erasmus Medical Centre. A multicentre international physician-sponsored randomised controlled trial of 177 Lu octreotate with or without capecitabine will commence in 2008, given that toxicity of combined chemotherapy and radiopeptide therapy is no greater than 177 Lu octreotate alone. 3. Rhenium-188 Lipiodol Hepatocellular carcinoma is the cancer which kills more people in Asia than any other malignancy and if unresectable is incurable. Effective palliation, which may increase survival, has been demonstrated with intrahepatic arterial administration of 131 I-lipiodol (6) and there are even greater potential benefits with 188 Re-lipiodol (7). We are currently testing a commercial prototype of semiautomated shielded synthesis box (Comecer, Castel- bolognese, Italy) for preparation of sterile 188 Re-lipiodol, for eventual installation in radiopharmacies throughout Asia, to provide cost-effective, safe treatment of hepatocellular carcinoma. Given the advent of the 188 W/ 188 Re generator, other therapeutic radio-pharmaceuticals such as 188 Re- HEDP for bone pain palliation of skeletal metastases, 188 Re colloid for radiation synovectomy and 188 Re antibodies for internalizing radioimmunotherapy would be available in-house in radiopharmacies throughout the world, to facilitate cost-effective incorporation of therapeutic nuclear oncology into mainstream clinical management of cancer. (author)

  16. Rhenium complexes of chromophore-appended dipicolylamine ligands: syntheses, spectroscopic properties, DNA binding and X-ray crystal structure

    International Nuclear Information System (INIS)

    Mullice, L.A.; Buurma, N.J.; Pope, S.J.A.; Laye, R.H.; Harding, L.P.

    2008-01-01

    The syntheses of two chromophore-appended dipicolylamine-derived ligands and their reactivity with penta-carbonyl-chloro-rhenium have been studied. The resultant complexes each possess the fac-Re(CO) 3 core. The ligands L 1 1-[bis(pyridine-2-yl-methyl)amino]methyl-pyrene and L 2 2-[bis(pyridine-2-yl-methyl)amino]methyl-quinoxaline were isolated via a one-pot reductive amination in moderate yield. The corresponding rhenium complexes were isolated in good yields and characterised by 1 H NMR, MS, IR and UV-Vis studies. X-Ray crystallographic data were obtained for fac-{Re(CO) 3 (L 1 )}(BF 4 ), C 34 H 26 BF 4 N 4 O 3 Re: monoclinic, P2(1)/c, a 18.327(2) Angstroms, α = 90.00 degrees, b 14.1537(14) Angstroms, β96.263(6) degrees, c = 23.511(3) Angstroms, γ 90.00 Angstroms, 6062.4(11) (Angstroms) 3 , Z=8. The luminescence properties of the ligands and complexes were also investigated, with the emission attributed to the appended chromophore in each case. Isothermal titration calorimetry suggests that fac-{Re(CO) 3 (L 1 )}(BF 4 ) self-aggregates cooperatively in aqueous solution, probably forming micelle-like aggregates with a cmc of 0.18 mM. Investigations into the DNA-binding properties of fac-{Re(CO) 3 (L 1 )}(BF 4 ) were undertaken and revealed that fac-{Re(CO) 3 (L 1 )}(BF 4 ) binding to fish sperm DNA (binding constant 1.5 ± 0.2 * 10 5 M -1 , binding site size 3.2 ± 0.3 base pairs) is accompanied by changes in the UV-Vis spectrum as typically observed for pyrene-based intercalators while the calorimetrically determined binding enthalpy (-14 ± 2 kcal mol -1 ) also agrees favourably with values as typically found for intercalators. (authors)

  17. Mechanoluminescence response to the plastic flow of coloured alkali halide crystals

    International Nuclear Information System (INIS)

    Chandra, B.P.; Bagri, A.K.; Chandra, V.K.

    2010-01-01

    The present paper reports the luminescence induced by plastic deformation of coloured alkali halide crystals using pressure steps. When pressure is applied onto a γ-irradiated alkali halide crystal, then initially the mechanoluminescence (ML) intensity increases with time, attains a peak value and later on it decreases with time. The ML of diminished intensity also appears during the release of applied pressure. The intensity I m corresponding to the peak of ML intensity versus time curve and the total ML intensity I T increase with increase in value of the applied pressure. The time t m corresponding to the ML peak slightly decreases with the applied pressure. After t m , initially the ML intensity decreases at a fast rate and later on it decreases at a slow rate. The decay time of the fast decrease in the ML intensity is equal to the pinning time of dislocations and the decay time for the slow decrease of ML intensity is equal to the diffusion time of holes towards the F-centres. The ML intensity increases with the density of F-centres and it is optimum for a particular temperature of the crystals. The ML spectra of coloured alkali halide crystals are similar to the thermoluminescence and afterglow spectra. The peak ML intensity and the total ML intensity increase drastically with the applied pressure following power law, whereby the pressure dependence of the ML intensity is related to the work-hardening exponent of the crystals. The ML also appears during the release of the applied pressure because of the movement of dislocation segments and movements of dislocation lines blocked under pressed condition. On the basis of the model based on the mechanical interaction between dislocation and F-centres, expressions are derived for the ML intensity, which are able to explain different characteristics of the ML. From the measurements of the plastico ML induced by the application of loads on γ-irradiated alkali halide crystals, the pinning time of dislocations

  18. A new amperometric glucose biosensor based on screen printed carbon electrodes with rhenium(IV - oxide as a mediator

    Directory of Open Access Journals (Sweden)

    ALBANA VESELI

    2012-11-01

    Full Text Available Rhenium(IV-oxide, ReO2, was used as a mediator for carbon paste (CPE and screen printed carbon (SPCE electrodes for the catalytic amperometric determination of hydro-gen peroxide, whose overpotential for the reduction could be lowered to -0.1 V vs. Ag/AgCl in flow injection analysis (FIA using phosphate buffer (0.1 M, pH=7.5 as a carrier. For hydrogen peroxide a detection limit (3σ of 0.8 mg L-1 could be obtained.ReO2-modified SPCEs were used to design biosensors with a template enzyme, i.e. glucose oxidase, entrapped in a Nafion membrane. The resulting glucose sensor showed a linear dynamic range up to 200 mg L-1 glucose with a detection limit (3σ of 0.6 mg L-1. The repeatability was 2.1 % RSD (n = 5 measurements, the reproducibility 5.4 % (n = 5 sensors. The sensor could be applied for the determination of glucose in blood serum in good agreement with a reference method.

  19. Pharmacokinetic properties of new antitumor radiopharmaceutical on the basis of diamond nanoporous composites labeled with rhenium-188

    International Nuclear Information System (INIS)

    Petriev, V M; Tishchenko, V K; Kuril’chik, A A; Skvortsov, V G

    2017-01-01

    Today the development of address therapeutic radionuclide delivery systems directly to tumor tissue is of current interest. It can be achieved by the design of drug containers of specific sizes and shapes from carbon-based composite materials. It will be allowed to enhance the efficacy of anticancer therapy and avoid serious side effects. In this work we studied the pharmacokinetic properties of nanodiamond nanoporous composite labeled with rhenium-188 in rats with hepatocholangioma PC-1 after intratumoral injection. It was established that substantial part of injected radioactivity remained in tumor tissue. Within three hours after 188 Re-nanoporous composites injection activity in tumor constituted 79.1–91.3% of injected dose (ID). Then activity level declined to 45.9% ID at 120 hours. No more than 1.34% ID entered the bloodstream. In soft organs and tissues, except thyroid gland, the content of compound didn’t exceed 0.3% ID/g. The highest activity in thyroid gland was 6.95% ID/g. In conclusion, received results suggest 188 Re-nanoporous composites can be promising radionuclide delivery systems for cancer treatment. (paper)

  20. Syntheses and structures of technetium(V) and rhenium(V) oxo complexes of peptide having KYC-sequence

    International Nuclear Information System (INIS)

    Takayama, T.; Suzuki, K.; Sekine, T.; Kudo, H.

    2000-01-01

    Technetium(V) and rhenium(V) oxo complexes of a peptide having a KYC-sequence such as KYCAR (H 3 L 5 ) and KYCAREPPTRTNAYQGQG-NH 2 (H 3 L 18 ) were synthesized, and structures of the complexes were characterized by spectroscopic techniques. All of the complexes were synthesized by the ligand exchange reaction of [(n-C 4 H 9 ) 4 N][MOCl 4 ] (M = 99 Tc, Re) with peptide in methanol or dimethylformamide solution. These complexes have a square pyramidal structure with an oxo ligand at the apical position. The peptide is coordinated to a metal atom through N amine of lysine. S thiol of cysteine, and N amide of tyrosine and cysteine in the equatorial plane. A lysine (CH 2 ) 4 NH 2 group of the L 5 ligand has the syn conformation with respect to metal-oxo bonding in the complex. The syn isomer was selectively formed in the ligand exchange reaction. The conversion of the syn isomer to the anti isomer was observed only for syn-[ReO(L 5 )], in which the coordination of water to the trans position of the oxo ligand was involved. (orig.)