WorldWideScience

Sample records for rhabdoviridae

  1. ICTV Virus Taxonomy Profile: Rhabdoviridae.

    Science.gov (United States)

    Walker, Peter J; Blasdell, Kim R; Calisher, Charles H; Dietzgen, Ralf G; Kondo, Hideki; Kurath, Gael; Longdon, Ben; Stone, David M; Tesh, Robert B; Tordo, Noël; Vasilakis, Nikos; Whitfield, Anna E; Nbsp Ictv Report Consortium

    2018-04-01

    The family Rhabdoviridae comprises viruses with negative-sense (-) single-stranded RNA genomes of 10.8-16.1 kb. Virions are typically enveloped with bullet-shaped or bacilliform morphology but can also be non-enveloped filaments. Rhabdoviruses infect plants and animals including mammals, birds, reptiles and fish, as well as arthropods which serve as single hosts or act as biological vectors for transmission to animals or plants. Rhabdoviruses include important pathogens of humans, livestock, fish and agricultural crops. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of Rhabdoviridae, which is available at www.ictv.global/report/rhabdoviridae.

  2. Okrasné parkové dřeviny zásobárnou virů čeledi Rhabdoviridae

    OpenAIRE

    PECKOVÁ, Lucie

    2012-01-01

    Rhabdoviridae family viruses attacking the plant hosts were only described at the angiosperms. In this work, a gymnosperm rhabdoviridae infection was described for the first time ever ? specifically at Ginkgo biloba. Even though there were not observed any kinds of obvious infection symptoms on any of randomly chosen plant samples, through the molecular methods and detection primers the rhabdoviridae infection was proved at six of the plant samples. The acquired nucleotide and amino acid sequ...

  3. New Taastrup-Like virus, Rhabdoviridae, lethal to leafhoppers

    Science.gov (United States)

    A new viral pathogen (‘Taastrup Virus’) of leafhoppers was discovered. The unclassified virus is a negative sense, single-stranded RNA virus which appears to be a new member of the order Mononegavirales in the family Rhabdoviridae, and thus far it is only the second report of a Taastrup-like virus m...

  4. Molecular evolution of the Paramyxoviridae and Rhabdoviridae multiple-protein-encoding P gene.

    Science.gov (United States)

    Jordan, I K; Sutter, B A; McClure, M A

    2000-01-01

    Presented here is an analysis of the molecular evolutionary dynamics of the P gene among 76 representative sequences of the Paramyxoviridae and Rhabdoviridae RNA virus families. In a number of Paramyxoviridae taxa, as well as in vesicular stomatitis viruses of the Rhabdoviridae, the P gene encodes multiple proteins from a single genomic RNA sequence. These products include the phosphoprotein (P), as well as the C and V proteins. The complexity of the P gene makes it an intriguing locus to study from an evolutionary perspective. Amino acid sequence alignments of the proteins encoded at the P and N loci were used in independent phylogenetic reconstructions of the Paramyxoviridae and Rhabdoviridae families. P-gene-coding capacities were mapped onto the Paramyxoviridae phylogeny, and the most parsimonious path of multiple-coding-capacity evolution was determined. Levels of amino acid variation for Paramyxoviridae and Rhabdoviridae P-gene-encoded products were also analyzed. Proteins encoded in overlapping reading frames from the same nucleotides have different levels of amino acid variation. The nucleotide architecture that underlies the amino acid variation was determined in order to evaluate the role of selection in the evolution of the P gene overlapping reading frames. In every case, the evolution of one of the proteins encoded in the overlapping reading frames has been constrained by negative selection while the other has evolved more rapidly. The integrity of the overlapping reading frame that represents a derived state is generally maintained at the expense of the ancestral reading frame encoded by the same nucleotides. The evolution of such multicoding sequences is likely a response by RNA viruses to selective pressure to maximize genomic information content while maintaining small genome size. The ability to evolve such a complex genomic strategy is intimately related to the dynamics of the viral quasispecies, which allow enhanced exploration of the adaptive

  5. Reviewing host proteins of Rhabdoviridae: possible leads for lesser studied viruses.

    Science.gov (United States)

    Guleria, A; Kiranmayi, M; Sreejith, R; Kumar, K; Sharma, S K; Gupta, S

    2011-12-01

    Rhabdoviridae, characterized by bullet-shaped viruses, is known for its diverse host range, which includes plants, arthropods, fishes and humans. Understanding the viral-host interactions of this family can prove beneficial in developing effective therapeutic strategies. The host proteins interacting with animal rhabdoviruses have been reviewed in this report. Several important host proteins commonly interacting with animal rhabdoviruses are being reported, some of which, interestingly, have molecular features, which can serve as potential antiviral targets. This review not only provides the generalized importance of the functions of animal rhabdovirus-associated host proteins for the first time but also compares them among the two most studied viruses, i.e. Rabies virus (RV) and Vesicular Stomatitis virus (VSV). The comparative data can be used for studying emerging viruses such as Chandipura virus (CHPV) and the lesser studied viruses such as Piry virus (PIRYV) and Isfahan virus (ISFV) of the Rhabdoviridae family.

  6. Characterization of Farmington virus, a novel virus from birds that is distantly related to members of the family Rhabdoviridae.

    Science.gov (United States)

    Palacios, Gustavo; Forrester, Naomi L; Savji, Nazir; Travassos da Rosa, Amelia P A; Guzman, Hilda; Detoy, Kelly; Popov, Vsevolod L; Walker, Peter J; Lipkin, W Ian; Vasilakis, Nikos; Tesh, Robert B

    2013-07-01

    Farmington virus (FARV) is a rhabdovirus that was isolated from a wild bird during an outbreak of epizootic eastern equine encephalitis on a pheasant farm in Connecticut, USA. Analysis of the nearly complete genome sequence of the prototype CT AN 114 strain indicates that it encodes the five canonical rhabdovirus structural proteins (N, P, M, G and L) with alternative ORFs (> 180 nt) in the N and G genes. Phenotypic and genetic characterization of FARV has confirmed that it is a novel rhabdovirus and probably represents a new species within the family Rhabdoviridae. In sum, our analysis indicates that FARV represents a new species within the family Rhabdoviridae.

  7. Niakha virus: a novel member of the family Rhabdoviridae isolated from phlebotomine sandflies in Senegal.

    Science.gov (United States)

    Vasilakis, Nikos; Widen, Steven; Mayer, Sandra V; Seymour, Robert; Wood, Thomas G; Popov, Vsevolov; Guzman, Hilda; Travassos da Rosa, Amelia P A; Ghedin, Elodie; Holmes, Edward C; Walker, Peter J; Tesh, Robert B

    2013-09-01

    Members of the family Rhabdoviridae have been assigned to eight genera but many remain unassigned. Rhabdoviruses have a remarkably diverse host range that includes terrestrial and marine animals, invertebrates and plants. Transmission of some rhabdoviruses often requires an arthropod vector, such as mosquitoes, midges, sandflies, ticks, aphids and leafhoppers, in which they replicate. Herein we characterize Niakha virus (NIAV), a previously uncharacterized rhabdovirus isolated from phebotomine sandflies in Senegal. Analysis of the 11,124 nt genome sequence indicates that it encodes the five common rhabdovirus proteins with alternative ORFs in the M, G and L genes. Phylogenetic analysis of the L protein indicate that NIAV's closest relative is Oak Vale rhabdovirus, although in this analysis NIAV is still so phylogenetically distinct that it might be classified as distinct from the eight currently recognized Rhabdoviridae genera. This observation highlights the vast, and yet not fully recognized diversity, of this family. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Niakha virus: A novel member of the family Rhabdoviridae isolated from phlebotomine sandflies in Senegal

    Science.gov (United States)

    Vasilakis, Nikos; Widen, Steven; Mayer, Sandra V.; Seymour, Robert; Wood, Thomas G.; Popov, Vsevolov; Guzman, Hilda; da Rosa, Amelia P.A. Travassos; Ghedin, Elodie; Holmes, Edward C.; Walker, Peter J.; Tesh, Robert B.

    2013-01-01

    Members of the family Rhabdoviridae have been assigned to eight genera but many remain unassigned. Rhabdoviruses have a remarkably diverse host range that includes terrestrial and marine animals, invertebrates and plants. Transmission of some rhabdoviruses often requires an arthropod vector, such as mosquitoes, midges, sandflies, ticks, aphids and leafhoppers, in which they replicate. Herein we characterize Niakha virus (NIAV), a previously uncharacterized rhabdovirus isolated from phebotomine sandflies in Senegal. Analysis of the 11,124 nt genome sequence indicates that it encodes the five common rhabdovirus proteins with alternative ORFs in the M, G and L genes. Phylogenetic analysis of the L protein indicate that NIAV’s closest relative is Oak Vale rhabdovirus, although in this analysis NIAV is still so phylogenetically distinct that it might be classified as distinct from the eight currently recognized Rhabdoviridae genera. This observation highlights the vast, and yet not fully recognized diversity, of this family. PMID:23773405

  9. Interferon Response and Viral Evasion by Members of the Family Rhabdoviridae

    OpenAIRE

    Matthias J. Schnell; Elizabeth J. Faul; Douglas S. Lyles

    2009-01-01

    Like many animal viruses, those of the Rhabdoviridae family, are able to antagonize the type I interferon response and cause disease in mammalian hosts. Though these negative-stranded RNA viruses are very simple and code for as few as five proteins, they have been seen to completely abrogate the type I interferon response early in infection. In this review, we will discuss the viral organization and type I interferon evasion of rhabdoviruses, focusing on vesicular stomatitis virus (VSV) and r...

  10. Characterization of Farmington virus, a novel virus from birds that is distantly related to members of the family Rhabdoviridae

    Science.gov (United States)

    2013-01-01

    Background Farmington virus (FARV) is a rhabdovirus that was isolated from a wild bird during an outbreak of epizootic eastern equine encephalitis on a pheasant farm in Connecticut, USA. Findings Analysis of the nearly complete genome sequence of the prototype CT AN 114 strain indicates that it encodes the five canonical rhabdovirus structural proteins (N, P, M, G and L) with alternative ORFs (> 180 nt) in the N and G genes. Phenotypic and genetic characterization of FARV has confirmed that it is a novel rhabdovirus and probably represents a new species within the family Rhabdoviridae. Conclusions In sum, our analysis indicates that FARV represents a new species within the family Rhabdoviridae. PMID:23816310

  11. Xiburema Virus, a Hitherto Undescribed Virus within the Family Rhabdoviridae Isolated in the Brazilian Amazon Region

    OpenAIRE

    Wanzeller, Ana Lucia M.; Martins, Lívia C.; Diniz Júnior, José Antonio P.; de Almeida Medeiros, Daniele Barbosa; Cardoso, Jedson F.; da Silva, Daisy E. A.; de Oliveira, Layanna F.; de Vasconcelos, Janaina M.; Nunes, Márcio R. T.; Vianez Júnior, João Lídio da S. G.; Vasconcelos, Pedro F. C.

    2014-01-01

    We report here the first complete open reading frame (ORF) genome sequence of Xiburema virus (XIBV), that of strain BE AR362159, isolated from mosquitoes (Sabethes intermedius) in Sena Madureira, Acre state, northern Brazil. All genes showed similarities with those belonging to members of the family Rhabdoviridae.

  12. Genomics and structure/function studies of Rhabdoviridae proteins involved in replication and transcription.

    OpenAIRE

    Assenberg , R.; Delmas , O; Morin , B; Graham , C; de Lamballerie , X; Laubert , C; Coutard , B; Grimes , J; Neyts , J; Owens , R J; Brandt , B; Gorbalenya , A; Tucker , P; Stuart , D I; Canard , Bruno

    2010-01-01

    International audience; Some mammalian rhabdoviruses may infect humans, and also infect invertebrates, dogs, and bats, which may act as vectors transmitting viruses among different host species. The VIZIER programme, an EU-funded FP6 program, has characterized viruses that belong to the Vesiculovirus, Ephemerovirus and Lyssavirus genera of the Rhabdoviridae family to perform ground-breaking research on the identification of potential new drug targets against these RNA viruses through comprehe...

  13. Xiburema Virus, a Hitherto Undescribed Virus within the Family Rhabdoviridae Isolated in the Brazilian Amazon Region

    Science.gov (United States)

    Martins, Lívia C.; Diniz Júnior, José Antonio P.; de Almeida Medeiros, Daniele Barbosa; Cardoso, Jedson F.; da Silva, Daisy E. A.; de Oliveira, Layanna F.; de Vasconcelos, Janaina M.; Vianez Júnior, João Lídio da S. G.; Vasconcelos, Pedro F. C.

    2014-01-01

    We report here the first complete open reading frame (ORF) genome sequence of Xiburema virus (XIBV), that of strain BE AR362159, isolated from mosquitoes (Sabethes intermedius) in Sena Madureira, Acre state, northern Brazil. All genes showed similarities with those belonging to members of the family Rhabdoviridae. PMID:24948755

  14. Characterization of Oita virus 296/1972 of Rhabdoviridae isolated from a horseshoe bat bearing characteristics of both lyssavirus and vesiculovirus.

    Science.gov (United States)

    Iwasaki, T; Inoue, S; Tanaka, K; Sato, Y; Morikawa, S; Hayasaka, D; Moriyama, M; Ono, T; Kanai, S; Yamada, A; Kurata, T

    2004-06-01

    Oita virus 296/1972 was isolated from the blood of a wild horseshoe bat, Rhinolophus cornutus (Temminck) in 1972. We investigated the pathogenicity of this virus in mice in relation to its histological, immunohistochemical and ultrastructural characteristics and the entire sequence of nucleoprotein gene. This virus caused lethal encephalitis in mice through intracerebral route. This susceptibility of mice was until 3 weeks of age. Immunohistochemical analysis using the convalescent sera obtained from survived adult mice after intracerebral inoculation revealed that many neurons were positive in the cytoplasm, besides no cross reactivity with normal and rabies virus-infected mouse brain tissues to this anti-sera. Ultrastructural analysis disclosed many bullet-shaped and enveloped virions in neurons. These morphological characteristics of the virions are consistent of that of viruses in the family Rhabdoviridae. Budding from endoplasmic membrane suggests that this virus has a similarity with lyssaviruses. Molecular analysis of cDNA coding a tentative nucleoprotein sequence revealed homology with those of viruses in the family Rhabdoviridae. Distance matrix analysis of this gene sequence with those of other rhabdoviruses isolated from mammals disclosed the discrete position of this virus in the phylogenic tree of rhabdoviridae infecting mammals and we renamed this virus as Oita rhabdovirus.

  15. Structural disorder in proteins of the rhabdoviridae replication complex.

    Science.gov (United States)

    Leyrat, Cédric; Gérard, Francine C A; de Almeida Ribeiro, Euripedes; Ivanov, Ivan; Ruigrok, Rob W H; Jamin, Marc

    2010-08-01

    Rhabdoviridae are single stranded negative sense RNA viruses. The viral RNA condensed by the nucleoprotein (N), the phosphoprotein (P) and the large subunit (L) of the RNA-dependent RNA polymerase are the viral components of the transcription/replication machineries. Both P and N contain intrinsically disordered regions (IDRs) that play different roles in the virus life cycle. Here, we describe the modular organization of P based on recent structural, biophysical and bioinformatics data. We show how flexible loops in N participate in the attachment of P to the N-RNA template by an induced-fit mechanism. Finally, we discuss the roles of IDRs in the mechanism of replication/transcription, and propose a new model for the interaction of the L subunit with its N-RNA template.

  16. Xiburema Virus, a Hitherto Undescribed Virus within the Family Rhabdoviridae Isolated in the Brazilian Amazon Region.

    Science.gov (United States)

    Wanzeller, Ana Lucia M; Martins, Lívia C; Diniz Júnior, José Antonio P; de Almeida Medeiros, Daniele Barbosa; Cardoso, Jedson F; da Silva, Daisy E A; de Oliveira, Layanna F; de Vasconcelos, Janaina M; Nunes, Márcio R T; Vianez Júnior, João Lídio da S G; Vasconcelos, Pedro F C

    2014-06-19

    We report here the first complete open reading frame (ORF) genome sequence of Xiburema virus (XIBV), that of strain BE AR362159, isolated from mosquitoes (Sabethes intermedius) in Sena Madureira, Acre state, northern Brazil. All genes showed similarities with those belonging to members of the family Rhabdoviridae. Copyright © 2014 Wanzeller et al.

  17. Niakha virus: A novel member of the family Rhabdoviridae isolated from phlebotomine sandflies in Senegal

    OpenAIRE

    Vasilakis, Nikos; Widen, Steven; Mayer, Sandra V.; Seymour, Robert; Wood, Thomas G.; Popov, Vsevolov; Guzman, Hilda; Travassos da Rosa, Amelia P.A.; Ghedin, Elodie; Holmes, Edward C.; Walker, Peter J.; Tesh, Robert B.

    2013-01-01

    Members of the family Rhabdoviridae have been assigned to eight genera but many remain unassigned. Rhabdoviruses have a remarkably diverse host range that includes terrestrial and marine animals, invertebrates and plants. Transmission of some rhabdoviruses often requires an arthropod vector, such as mosquitoes, midges, sandflies, ticks, aphids and leafhoppers, in which they replicate. Herein we characterize Niakha virus (NIAV), a previously uncharacterized rhabdovirus isolated from phebotomin...

  18. Sunguru virus: a novel virus in the family Rhabdoviridae isolated from a chicken in north-western Uganda.

    Science.gov (United States)

    Ledermann, Jeremy P; Zeidner, Nord; Borland, Erin M; Mutebi, John-Paul; Lanciotti, Robert S; Miller, Barry R; Lutwama, Julius J; Tendo, Joseph M; Andama, Vincent; Powers, Ann M

    2014-07-01

    Sunguru virus (SUNV), a novel virus belonging to the highly diverse Rhabdoviridae family, was isolated from a domestic chicken in the district of Arua, Uganda, in 2011. This is the first documented isolation of a rhabdovirus from a chicken. SUNV is related to, but distinct from, Boteke virus and other members of the unclassified Sandjimba group. The genome is 11056 nt in length and contains the five core rhabdovirus genes plus an additional C gene (within the ORF of a phosphoprotein gene) and a small hydrophobic protein (between the matrix and glycoprotein genes). Inoculation of vertebrate cells with SUNV resulted in significant viral growth, with a peak titre of 7.8 log10 p.f.u. ml(-1) observed in baby hamster kidney (BHK) cells. Little to no growth was observed in invertebrate cells and in live mosquitoes, with Anopheles gambiae mosquitoes having a 47.4% infection rate in the body but no dissemination of the virus to the salivary glands; this suggests that this novel virus is not arthropod borne as some other members of the family Rhabdoviridae.

  19. Sunguru virus: a novel virus in the family Rhabdoviridae isolated from a chicken in north-western Uganda

    Science.gov (United States)

    Ledermann, Jeremy P.; Zeidner, Nord; Borland, Erin M.; Mutebi, John-Paul; Lanciotti, Robert S.; Miller, Barry R.; Lutwama, Julius J.; Tendo, Joseph M.; Andama, Vincent; Powers, Ann M.

    2017-01-01

    Sunguru virus (SUNV), a novel virus belonging to the highly diverse Rhabdoviridae family, was isolated from a domestic chicken in the district of Arua, Uganda, in 2011. This is the first documented isolation of a rhabdovirus from a chicken. SUNV is related to, but distinct from, Boteke virus and other members of the unclassified Sandjimba group. The genome is 11 056 nt in length and contains the five core rhabdovirus genes plus an additional C gene (within the ORF of a phosphoprotein gene) and a small hydrophobic protein (between the matrix and glycoprotein genes). Inoculation of vertebrate cells with SUNV resulted in significant viral growth, with a peak titre of 7.8 log10 p.f.u. ml−1 observed in baby hamster kidney (BHK) cells. Little to no growth was observed in invertebrate cells and in live mosquitoes, with Anopheles gambiae mosquitoes having a 47.4 % infection rate in the body but no dissemination of the virus to the salivary glands; this suggests that this novel virus is not arthropod borne as some other members of the family Rhabdoviridae. PMID:24718834

  20. Development of an inactivated candidate vaccine against Chandipura virus (Rhabdoviridae: Vesiculovirus).

    Science.gov (United States)

    Jadi, R S; Sudeep, A B; Barde, P V; Arankalle, V A; Mishra, A C

    2011-06-20

    A Vero cell based vaccine candidate against Chandipura (CHP) virus (Rhabdoviridae: Vesiculovirus), was developed and evaluated for immunogenicity in mice. Virus was purified by ultracentrifugation on 30% glycerol cushion followed by differential centrifugation on 10-60% sucrose gradient and inactivated with β-propio lactone at a concentration of 1:3500. The inactivated product was blended with aluminium phosphate (3%) and immunized 4-week-old Swiss albino mice. Neutralizing antibodies in the range of 1:10 to 160 and 1:80 to 1:320 was detected with 85% and 100% sero-conversion after 2nd and 3rd dose, respectively. All the immunized mice with antibody titer above 1:20 survived live virus challenge. The vaccine candidate has potential to be an efficient vaccine against CHP virus. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. The family Rhabdoviridae: mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins

    OpenAIRE

    Dietzgen, Ralf G.; Kondo, Hideki; Goodin, Michael M.; Kurath, Gael; Vasilakis, Nikos

    2016-01-01

    The family Rhabdoviridae consists of mostly enveloped, bullet-shaped or bacilliform viruses with a negative-sense, single-stranded RNA genome that infect vertebrates, invertebrates or plants. This ecological diversity is reflected by the diversity and complexity of their genomes. Five canonical structural protein genes are conserved in all rhabdoviruses, but may be overprinted, overlapped or interspersed with several novel and diverse accessory genes. This review gives an overview of the char...

  2. Interferon Response and Viral Evasion by Members of the Family Rhabdoviridae

    Directory of Open Access Journals (Sweden)

    Matthias J. Schnell

    2009-11-01

    Full Text Available Like many animal viruses, those of the Rhabdoviridae family, are able to antagonize the type I interferon response and cause disease in mammalian hosts. Though these negative-stranded RNA viruses are very simple and code for as few as five proteins, they have been seen to completely abrogate the type I interferon response early in infection. In this review, we will discuss the viral organization and type I interferon evasion of rhabdoviruses, focusing on vesicular stomatitis virus (VSV and rabies virus (RABV. Despite their structural similarities, VSV and RABV have completely different mechanisms by which they avert the host immune response. VSV relies on the matrix protein to interfere with host gene transcription and nuclear export of anti-viral mRNAs. Alternatively, RABV uses its phosphoprotein to interfere with IRF-3 phosphorylation and STAT1 signaling. Understanding the virus-cell interactions and viral proteins necessary to evade the immune response is important in developing effective vaccines and therapeutics for this viral family.

  3. The family Rhabdoviridae: Mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins

    Science.gov (United States)

    Dietzgen, Ralf G.; Kondo, Hideki; Goodin, Michael M.; Kurath, Gael; Vasilakis, Nikos

    2017-01-01

    The family Rhabdoviridae consists of mostly enveloped, bullet-shaped or bacilliform viruses with a negative-sense, single-stranded RNA genome that infect vertebrates, invertebrates or plants. This ecological diversity is reflected by the diversity and complexity of their genomes. Five canonical structural protein genes are conserved in all rhabdoviruses, but may be overprinted, overlapped or interspersed with several novel and diverse accessory genes. This review gives an overview of the characteristics and diversity of rhabdoviruses, their taxonomic classification, replication mechanism, properties of classical rhabdoviruses such as rabies virus and rhabdoviruses with complex genomes, rhabdoviruses infecting aquatic species, and plant rhabdoviruses with both mono- and bipartite genomes.

  4. The family Rhabdoviridae: mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins.

    Science.gov (United States)

    Dietzgen, Ralf G; Kondo, Hideki; Goodin, Michael M; Kurath, Gael; Vasilakis, Nikos

    2017-01-02

    The family Rhabdoviridae consists of mostly enveloped, bullet-shaped or bacilliform viruses with a negative-sense, single-stranded RNA genome that infect vertebrates, invertebrates or plants. This ecological diversity is reflected by the diversity and complexity of their genomes. Five canonical structural protein genes are conserved in all rhabdoviruses, but may be overprinted, overlapped or interspersed with several novel and diverse accessory genes. This review gives an overview of the characteristics and diversity of rhabdoviruses, their taxonomic classification, replication mechanism, properties of classical rhabdoviruses such as rabies virus and rhabdoviruses with complex genomes, rhabdoviruses infecting aquatic species, and plant rhabdoviruses with both mono- and bipartite genomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The transcriptional response of Drosophila melanogaster to infection with the sigma virus (Rhabdoviridae.

    Directory of Open Access Journals (Sweden)

    Jennifer Carpenter

    2009-08-01

    Full Text Available Bacterial and fungal infections induce a potent immune response in Drosophila melanogaster, but it is unclear whether viral infections induce an antiviral immune response. Using microarrays, we examined the changes in gene expression in Drosophila that occur in response to infection with the sigma virus, a negative-stranded RNA virus (Rhabdoviridae that occurs in wild populations of D. melanogaster.We detected many changes in gene expression in infected flies, but found no evidence for the activation of the Toll, IMD or Jak-STAT pathways, which control immune responses against bacteria and fungi. We identified a number of functional categories of genes, including serine proteases, ribosomal proteins and chorion proteins that were overrepresented among the differentially expressed genes. We also found that the sigma virus alters the expression of many more genes in males than in females.These data suggest that either Drosophila do not mount an immune response against the sigma virus, or that the immune response is not controlled by known immune pathways. If the latter is true, the genes that we identified as differentially expressed after infection are promising candidates for controlling the host's response to the sigma virus.

  6. The transcriptional response of Drosophila melanogaster to infection with the sigma virus (Rhabdoviridae).

    Science.gov (United States)

    Carpenter, Jennifer; Hutter, Stephan; Baines, John F; Roller, Julia; Saminadin-Peter, Sarah S; Parsch, John; Jiggins, Francis M

    2009-08-31

    Bacterial and fungal infections induce a potent immune response in Drosophila melanogaster, but it is unclear whether viral infections induce an antiviral immune response. Using microarrays, we examined the changes in gene expression in Drosophila that occur in response to infection with the sigma virus, a negative-stranded RNA virus (Rhabdoviridae) that occurs in wild populations of D. melanogaster. We detected many changes in gene expression in infected flies, but found no evidence for the activation of the Toll, IMD or Jak-STAT pathways, which control immune responses against bacteria and fungi. We identified a number of functional categories of genes, including serine proteases, ribosomal proteins and chorion proteins that were overrepresented among the differentially expressed genes. We also found that the sigma virus alters the expression of many more genes in males than in females. These data suggest that either Drosophila do not mount an immune response against the sigma virus, or that the immune response is not controlled by known immune pathways. If the latter is true, the genes that we identified as differentially expressed after infection are promising candidates for controlling the host's response to the sigma virus.

  7. The Transcriptional Response of Drosophila melanogaster to Infection with the Sigma Virus (Rhabdoviridae)

    Science.gov (United States)

    Baines, John F.; Roller, Julia; Saminadin-Peter, Sarah S.; Parsch, John; Jiggins, Francis M.

    2009-01-01

    Background Bacterial and fungal infections induce a potent immune response in Drosophila melanogaster, but it is unclear whether viral infections induce an antiviral immune response. Using microarrays, we examined the changes in gene expression in Drosophila that occur in response to infection with the sigma virus, a negative-stranded RNA virus (Rhabdoviridae) that occurs in wild populations of D. melanogaster. Principal Findings We detected many changes in gene expression in infected flies, but found no evidence for the activation of the Toll, IMD or Jak-STAT pathways, which control immune responses against bacteria and fungi. We identified a number of functional categories of genes, including serine proteases, ribosomal proteins and chorion proteins that were overrepresented among the differentially expressed genes. We also found that the sigma virus alters the expression of many more genes in males than in females. Conclusions These data suggest that either Drosophila do not mount an immune response against the sigma virus, or that the immune response is not controlled by known immune pathways. If the latter is true, the genes that we identified as differentially expressed after infection are promising candidates for controlling the host's response to the sigma virus. PMID:19718442

  8. Evolution of genome size and complexity in the rhabdoviridae.

    Directory of Open Access Journals (Sweden)

    Peter J Walker

    2015-02-01

    Full Text Available RNA viruses exhibit substantial structural, ecological and genomic diversity. However, genome size in RNA viruses is likely limited by a high mutation rate, resulting in the evolution of various mechanisms to increase complexity while minimising genome expansion. Here we conduct a large-scale analysis of the genome sequences of 99 animal rhabdoviruses, including 45 genomes which we determined de novo, to identify patterns of genome expansion and the evolution of genome complexity. All but seven of the rhabdoviruses clustered into 17 well-supported monophyletic groups, of which eight corresponded to established genera, seven were assigned as new genera, and two were taxonomically ambiguous. We show that the acquisition and loss of new genes appears to have been a central theme of rhabdovirus evolution, and has been associated with the appearance of alternative, overlapping and consecutive ORFs within the major structural protein genes, and the insertion and loss of additional ORFs in each gene junction in a clade-specific manner. Changes in the lengths of gene junctions accounted for as much as 48.5% of the variation in genome size from the smallest to the largest genome, and the frequency with which new ORFs were observed increased in the 3' to 5' direction along the genome. We also identify several new families of accessory genes encoded in these regions, and show that non-canonical expression strategies involving TURBS-like termination-reinitiation, ribosomal frame-shifts and leaky ribosomal scanning appear to be common. We conclude that rhabdoviruses have an unusual capacity for genomic plasticity that may be linked to their discontinuous transcription strategy from the negative-sense single-stranded RNA genome, and propose a model that accounts for the regular occurrence of genome expansion and contraction throughout the evolution of the Rhabdoviridae.

  9. Evolution of genome size and complexity in the rhabdoviridae.

    Science.gov (United States)

    Walker, Peter J; Firth, Cadhla; Widen, Steven G; Blasdell, Kim R; Guzman, Hilda; Wood, Thomas G; Paradkar, Prasad N; Holmes, Edward C; Tesh, Robert B; Vasilakis, Nikos

    2015-02-01

    RNA viruses exhibit substantial structural, ecological and genomic diversity. However, genome size in RNA viruses is likely limited by a high mutation rate, resulting in the evolution of various mechanisms to increase complexity while minimising genome expansion. Here we conduct a large-scale analysis of the genome sequences of 99 animal rhabdoviruses, including 45 genomes which we determined de novo, to identify patterns of genome expansion and the evolution of genome complexity. All but seven of the rhabdoviruses clustered into 17 well-supported monophyletic groups, of which eight corresponded to established genera, seven were assigned as new genera, and two were taxonomically ambiguous. We show that the acquisition and loss of new genes appears to have been a central theme of rhabdovirus evolution, and has been associated with the appearance of alternative, overlapping and consecutive ORFs within the major structural protein genes, and the insertion and loss of additional ORFs in each gene junction in a clade-specific manner. Changes in the lengths of gene junctions accounted for as much as 48.5% of the variation in genome size from the smallest to the largest genome, and the frequency with which new ORFs were observed increased in the 3' to 5' direction along the genome. We also identify several new families of accessory genes encoded in these regions, and show that non-canonical expression strategies involving TURBS-like termination-reinitiation, ribosomal frame-shifts and leaky ribosomal scanning appear to be common. We conclude that rhabdoviruses have an unusual capacity for genomic plasticity that may be linked to their discontinuous transcription strategy from the negative-sense single-stranded RNA genome, and propose a model that accounts for the regular occurrence of genome expansion and contraction throughout the evolution of the Rhabdoviridae.

  10. Evolution of Genome Size and Complexity in the Rhabdoviridae

    Science.gov (United States)

    Walker, Peter J.; Firth, Cadhla; Widen, Steven G.; Blasdell, Kim R.; Guzman, Hilda; Wood, Thomas G.; Paradkar, Prasad N.; Holmes, Edward C.; Tesh, Robert B.; Vasilakis, Nikos

    2015-01-01

    RNA viruses exhibit substantial structural, ecological and genomic diversity. However, genome size in RNA viruses is likely limited by a high mutation rate, resulting in the evolution of various mechanisms to increase complexity while minimising genome expansion. Here we conduct a large-scale analysis of the genome sequences of 99 animal rhabdoviruses, including 45 genomes which we determined de novo, to identify patterns of genome expansion and the evolution of genome complexity. All but seven of the rhabdoviruses clustered into 17 well-supported monophyletic groups, of which eight corresponded to established genera, seven were assigned as new genera, and two were taxonomically ambiguous. We show that the acquisition and loss of new genes appears to have been a central theme of rhabdovirus evolution, and has been associated with the appearance of alternative, overlapping and consecutive ORFs within the major structural protein genes, and the insertion and loss of additional ORFs in each gene junction in a clade-specific manner. Changes in the lengths of gene junctions accounted for as much as 48.5% of the variation in genome size from the smallest to the largest genome, and the frequency with which new ORFs were observed increased in the 3’ to 5’ direction along the genome. We also identify several new families of accessory genes encoded in these regions, and show that non-canonical expression strategies involving TURBS-like termination-reinitiation, ribosomal frame-shifts and leaky ribosomal scanning appear to be common. We conclude that rhabdoviruses have an unusual capacity for genomic plasticity that may be linked to their discontinuous transcription strategy from the negative-sense single-stranded RNA genome, and propose a model that accounts for the regular occurrence of genome expansion and contraction throughout the evolution of the Rhabdoviridae. PMID:25679389

  11. A neurotropic route for Maize mosaic virus (Rhabdoviridae) in its planthopper vector Peregrinus maidis.

    Science.gov (United States)

    Ammar, El-Desouky; Hogenhout, Saskia A

    2008-01-01

    To investigate the dissemination route of Maize mosaic virus (MMV, Rhabdoviridae) in its planthopper vector Peregrinus maidis (Delphacidae, Hemiptera), temporal and spatial distribution of MMV was studied by immunofluorescence confocal laser scanning microscopy following 1-week acquisition feeding of planthoppers on infected plants. MMV was detected 1-week post first access to diseased plants (padp) in the midgut and anterior diverticulum, 2-week padp in the esophagus, nerves, nerve ganglia and visceral muscles, and 3-week padp in hemocytes, tracheae, salivary glands and other tissues. MMV is neurotropic in P. maidis; infection was more extensive in the nervous system compared to other tissues. A significantly higher proportion of planthoppers had infected midguts (28.1%) compared to those with infected salivary glands (20.4%) or to those that transmitted MMV (15.7%), suggesting the occurrence of midgut and salivary gland barriers to MMV transmission in P. maidis. In this planthopper, the esophagus and anterior diverticulum are located between the compound ganglionic mass and the salivary glands. We postulate that MMV may overcome transmission barriers in P. maidis by proceeding from the midgut to the anterior diverticulum and esophagus, and from these to the salivary glands via the nervous system: a neurotropic route similar to that of some vertebrate-infecting rhabdoviruses.

  12. Genomic characterisation of Wongabel virus reveals novel genes within the Rhabdoviridae.

    Science.gov (United States)

    Gubala, Aneta J; Proll, David F; Barnard, Ross T; Cowled, Chris J; Crameri, Sandra G; Hyatt, Alex D; Boyle, David B

    2008-06-20

    Viruses belonging to the family Rhabdoviridae infect a variety of different hosts, including insects, vertebrates and plants. Currently, there are approximately 200 ICTV-recognised rhabdoviruses isolated around the world. However, the majority remain poorly characterised and only a fraction have been definitively assigned to genera. The genomic and transcriptional complexity displayed by several of the characterised rhabdoviruses indicates large diversity and complexity within this family. To enable an improved taxonomic understanding of this family, it is necessary to gain further information about the poorly characterised members of this family. Here we present the complete genome sequence and predicted transcription strategy of Wongabel virus (WONV), a previously uncharacterised rhabdovirus isolated from biting midges (Culicoides austropalpalis) collected in northern Queensland, Australia. The 13,196 nucleotide genome of WONV encodes five typical rhabdovirus genes N, P, M, G and L. In addition, the WONV genome contains three genes located between the P and M genes (U1, U2, U3) and two open reading frames overlapping with the N and G genes (U4, U5). These five additional genes and their putative protein products appear to be novel, and their functions are unknown. Predictive analysis of the U5 gene product revealed characteristics typical of viroporins, and indicated structural similarities with the alpha-1 protein (putative viroporin) of viruses in the genus Ephemerovirus. Phylogenetic analyses of the N and G proteins of WONV indicated closest similarity with the avian-associated Flanders virus; however, the genomes of these two viruses are significantly diverged. WONV displays a novel and unique genome structure that has not previously been described for any animal rhabdovirus.

  13. Genomics and structure/function studies of Rhabdoviridae proteins involved in replication and transcription.

    Science.gov (United States)

    Assenberg, R; Delmas, O; Morin, B; Graham, S C; De Lamballerie, X; Laubert, C; Coutard, B; Grimes, J M; Neyts, J; Owens, R J; Brandt, B W; Gorbalenya, A; Tucker, P; Stuart, D I; Canard, B; Bourhy, H

    2010-08-01

    Some mammalian rhabdoviruses may infect humans, and also infect invertebrates, dogs, and bats, which may act as vectors transmitting viruses among different host species. The VIZIER programme, an EU-funded FP6 program, has characterized viruses that belong to the Vesiculovirus, Ephemerovirus and Lyssavirus genera of the Rhabdoviridae family to perform ground-breaking research on the identification of potential new drug targets against these RNA viruses through comprehensive structural characterization of the replicative machinery. The contribution of VIZIER programme was of several orders. First, it contributed substantially to research aimed at understanding the origin, evolution and diversity of rhabdoviruses. This diversity was then used to obtain further structural information on the proteins involved in replication. Two strategies were used to produce recombinant proteins by expression of both full length or domain constructs in either E. coli or insect cells, using the baculovirus system. In both cases, parallel cloning and expression screening at small-scale of multiple constructs based on different viruses including the addition of fusion tags, was key to the rapid generation of expression data. As a result, some progress has been made in the VIZIER programme towards dissecting the multi-functional L protein into components suitable for structural and functional studies. However, the phosphoprotein polymerase co-factor and the structural matrix protein, which play a number of roles during viral replication and drives viral assembly, have both proved much more amenable to structural biology. Applying the multi-construct/multi-virus approach central to protein production processes in VIZIER has yielded new structural information which may ultimately be exploitable in the derivation of novel ways of intervening in viral replication. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Identification of very small open reading frames in the genomes of Holmes Jungle virus, Ord River virus, and Wongabel virus of the genus Hapavirus, family Rhabdoviridae.

    Science.gov (United States)

    Gubala, Aneta; Walsh, Susan; McAllister, Jane; Weir, Richard; Davis, Steven; Melville, Lorna; Mitchell, Ian; Bulach, Dieter; Gauci, Penny; Skvortsov, Alex; Boyle, David

    2017-01-01

    Viruses of the family Rhabdoviridae infect a broad range of hosts from a variety of ecological and geographical niches, including vertebrates, arthropods, and plants. The arthropod-transmitted members of this family display considerable genetic diversity and remarkable genomic flexibility that enable coding for various accessory proteins in different locations of the genome. Here, we describe the genome of Holmes Jungle virus, isolated from Culex annulirostris mosquitoes collected in northern Australia, and make detailed comparisons with the closely related Ord River and Wongabel viruses, with a focus on identifying very small open reading frames (smORFs) in their genomes. This is the first systematic prediction of smORFs in rhabdoviruses, emphasising the intricacy of the rhabdovirus genome and the knowledge gaps. We speculate that these smORFs may be of importance to the life cycle of the virus in the arthropod vector.

  15. Identification of very small open reading frames in the genomes of Holmes Jungle virus, Ord River virus, and Wongabel virus of the genus Hapavirus, family Rhabdoviridae

    Science.gov (United States)

    Gubala, Aneta; Walsh, Susan; McAllister, Jane; Weir, Richard; Davis, Steven; Melville, Lorna; Mitchell, Ian; Bulach, Dieter; Gauci, Penny; Skvortsov, Alex; Boyle, David

    2017-01-01

    Viruses of the family Rhabdoviridae infect a broad range of hosts from a variety of ecological and geographical niches, including vertebrates, arthropods, and plants. The arthropod-transmitted members of this family display considerable genetic diversity and remarkable genomic flexibility that enable coding for various accessory proteins in different locations of the genome. Here, we describe the genome of Holmes Jungle virus, isolated from Culex annulirostris mosquitoes collected in northern Australia, and make detailed comparisons with the closely related Ord River and Wongabel viruses, with a focus on identifying very small open reading frames (smORFs) in their genomes. This is the first systematic prediction of smORFs in rhabdoviruses, emphasising the intricacy of the rhabdovirus genome and the knowledge gaps. We speculate that these smORFs may be of importance to the life cycle of the virus in the arthropod vector. PMID:28747815

  16. The structure of the nucleoprotein binding domain of lyssavirus phosphoprotein reveals a structural relationship between the N-RNA binding domains of Rhabdoviridae and Paramyxoviridae.

    Science.gov (United States)

    Delmas, Olivier; Assenberg, Rene; Grimes, Jonathan M; Bourhy, Hervé

    2010-01-01

    The phosphoprotein P of non-segmented negative-sense RNA viruses is an essential component of the replication and transcription complex and acts as a co-factor for the viral RNA-dependent RNA polymerase. P recruits the viral polymerase to the nucleoprotein-bound viral RNA (N-RNA) via an interaction between its C-terminal domain and the N-RNA complex. We have obtained the structure of the C-terminal domain of P of Mokola virus (MOKV), a lyssavirus that belongs to the Rhabdoviridae family and mapped at the amino acid level the crucial positions involved in interaction with N and in the formation of the viral replication complex. Comparison of the N-RNA binding domains of P solved to date suggests that the N-RNA binding domains are structurally conserved among paramyxoviruses and rhabdoviruses in spite of low sequence conservation. We also review the numerous other functions of this domain and more generally of the phosphoprotein.

  17. Phylogenetic relationships of seven previously unclassified viruses within the family Rhabdoviridae using partial nucleoprotein gene sequences.

    Science.gov (United States)

    Kuzmin, I V; Hughes, G J; Rupprecht, C E

    2006-08-01

    Partial nucleoprotein (N) gene sequences of the rhabdoviruses Obodhiang (OBOV), Kotonkon (KOTV), Rochambeau (RBUV), Kern canyon (KCV), Mount Elgon bat (MEBV), Kolongo (KOLV) and Sandjimba (SJAV) were generated and their phylogenetic positions within the family Rhabdoviridae were determined. Both OBOV and KOTV were placed within the genus Ephemerovirus. RBUV was joined to the same cluster, but more distantly. MEBV and KCV were grouped into a monophyletic cluster (putative genus) with Oita virus (OITAV). These three viruses, originating from different regions of the world, were all isolated from insectivorous bats and may be specific for these mammals. African avian viruses KOLV and SJAV were joined to each other and formed another clade at the genus level. Further, they were grouped with the recently characterized rhabdovirus Tupaia virus (TRV). Although the genetic distance was great, the grouping was supported by consistent bootstrap values. This observation suggests that viruses of this group may be distributed widely in the Old World. Non-synonymous/synonymous substitution ratio estimations (dN/dS) using a partial N gene fragment (241 codons) for the three rhabdovirus genera revealed contrasting patterns of evolution, where dN/dS values follow the pattern Ephemerovirus > Vesiculovirus > Lyssavirus. The magnitude of this ratio corresponds well with the number of negatively selected codons. The accumulation of dS appears evenly distributed along the gene fragment for all three genera. These estimations demonstrated clearly that lyssaviruses are subjected to the strongest constraints against amino acid substitutions, probably related to their particular niche and unique pathobiology.

  18. Uso de células de Aedes albopictus C6/36 na propagação e classificação de arbovírus das famílias Togaviridae, Flaviviridae, Bunyaviridae e Rhabdoviridae

    Directory of Open Access Journals (Sweden)

    Luiz Tadeu Moraes Figueiredo

    1990-03-01

    Full Text Available Colônias de células de mosquito Aedes albopictus C6/36 foram infectadas com 23 arbovirus, sendo 19 destes existentes no Brasil, pertencentes às famílias Togaviridae, Flaviviridae, Bunyaviridae e Rhabdoviridae. A Replicação virai foi detectada por imunofluorescência indireta com todos os vírus estudados enquanto que o efeito citopático foi observado durante a infecção por alguns destes. No teste de imunofluorescência indireta utilizou-se fluidos ascíticos imunes de camundongos, específicos para os vírus estudados. A replicação virai caracterizada por grande produção de antígeno recomenda a utilização de células C6/36 na propagação e em tentativas de isolamento desses arbovirus. A técnica de imunofluorescência ofereceu importantes subsídios na classificação e identificação de vírus que replicam nestas células.C6/36 Aedes albopictus cells were infected w ith Brazilian arbovirus from the families Togaviridae, Flaviviridae, Bunyaviridae and Rhabdoviridae. Replication was obtained with all the studied viruses and cytopathic effect was observed with some. Viral antigen was assayed in C6/36 cell cultures for antigen was assayed in C6/36 cells by an indirect immunofluorescence test using specific mouse immune ascitic fluid. Antigen production was detected in C6/36 cells infected with all the studied viruses. The author recommends the inoculation of C6/36 cell cultures for isolation of virus from the four studied families. The immunofluorescence technique is an important tool for classification and identification of virus growing in C6/36 cells.

  19. Detection and characterization of a novel rhabdovirus in Aedes cantans mosquitoes and evidence for a mosquito-associated new genus in the family Rhabdoviridae.

    Science.gov (United States)

    Shahhosseini, Nariman; Lühken, Renke; Jöst, Hanna; Jansen, Stephanie; Börstler, Jessica; Rieger, Toni; Krüger, Andreas; Yadouleton, Anges; de Mendonça Campos, Renata; Cirne-Santos, Claudio Cesar; Ferreira, Davis Fernandes; Garms, Rolf; Becker, Norbert; Tannich, Egbert; Cadar, Daniel; Schmidt-Chanasit, Jonas

    2017-11-01

    Thanks to recent advances in random amplification technologies, metagenomic surveillance expanded the number of novel, often unclassified viruses within the family Rhabdoviridae. Using a vector-enabled metagenomic (VEM) tool, we identified a novel rhabdovirus in Aedes cantans mosquitoes collected from Germany provisionally named Ohlsdorf virus (OHSDV). The OHSDV genome encodes the canonical rhabdovirus structural proteins (N, P, M, G and L) with alternative ORF in the P gene. Sequence analysis indicated that OHSDV exhibits a similar genome organization and characteristics compared to other mosquito-associated rhabdoviruses (Riverside virus, Tongilchon virus and North Creek virus). Complete L protein based phylogeny revealed that all four viruses share a common ancestor and form a deeply rooted and divergent monophyletic group within the dimarhabdovirus supergroup and define a new genus, tentatively named Ohlsdorfvirus. Although the Ohlsdorfvirus clade is basal within the dimarhabdovirus supergroup phylogeny that includes genera of arthropod-borne rhabdoviruses, it remains unknown if viruses in the proposed new genus are vector-borne pathogens. The observed spatiotemporal distribution in mosquitoes suggests that members of the proposed genus Ohlsdorfvirus are geographically restricted/separated. These findings increase the current knowledge of the genetic diversity, classification and evolution of this virus family. Further studies are needed to determine the host range, transmission route and the evolutionary relationships of these mosquito-associated viruses with those infecting vertebrates. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Characterization of the Fusion and Attachment Glycoproteins of Human Metapneumovirus and Human Serosurvey to Determine Reinfection Rates

    Science.gov (United States)

    2007-06-27

    Metapneumovirus genus. The Paramyxoviridae are in the taxonomical order Mononegavirales which includes Bornaviridae, Rhabdoviridae and Filoviridae which... Rhabdoviridae plant virus, replicate in the cytoplasm (66). The Paramyxoviridae are enveloped viruses and have been defined by the fusion glycoprotein

  1. Research in Drug Development against Viral Diseases of Military Importance (Biological Testing). Volume 1

    Science.gov (United States)

    1991-03-01

    Rhabdoviridae family. Vaccinia Virus is currently employed as a representation of the DNA Virus (Poxviridae). This agent poses a threat to the military...Arenaviridae, Rhabdoviridae , Poxviridae, Adenoviridae and Retroviridae families. The test viruses consist of the following: (1) Vaccinia (VV) Virus, (2

  2. Uso de células de Aedes albopictus C6/36 na propagação e classificação de arbovírus das famílias Togaviridae, Flaviviridae, Bunyaviridae e Rhabdoviridae

    Directory of Open Access Journals (Sweden)

    Luiz Tadeu Moraes Figueiredo

    1990-03-01

    Full Text Available Colônias de células de mosquito Aedes albopictus C6/36 foram infectadas com 23 arbovirus, sendo 19 destes existentes no Brasil, pertencentes às famílias Togaviridae, Flaviviridae, Bunyaviridae e Rhabdoviridae. A Replicação virai foi detectada por imunofluorescência indireta com todos os vírus estudados enquanto que o efeito citopático foi observado durante a infecção por alguns destes. No teste de imunofluorescência indireta utilizou-se fluidos ascíticos imunes de camundongos, específicos para os vírus estudados. A replicação virai caracterizada por grande produção de antígeno recomenda a utilização de células C6/36 na propagação e em tentativas de isolamento desses arbovirus. A técnica de imunofluorescência ofereceu importantes subsídios na classificação e identificação de vírus que replicam nestas células.

  3. Studies of the Biology of Phleboviruses in Sandflies.

    Science.gov (United States)

    1987-08-31

    Chandipura virus ( Rhabdoviridae : Vesiculovirus) in Phlebotomus papatasi. An. J. Trop. Med. Ryg. 32: 621-623, 1983. 2. Tesh, R.B. and Modi, G.B...8217 per insect. S. 2-a. ’p Table 24 " Comparative growth of Carajas virus ( Rhabdoviridae : Vesiculovirus) in Lutzomyia longipalpis following inoculation

  4. Infection rates and comparative population dynamics of Peregrinus maidis (Hemiptera: Delphacidae) on corn plants with and without symptoms of maize mosaic virus (Rhabdoviridae: Nucleorhabdovirus) infection.

    Science.gov (United States)

    Higashi, C H V; Bressan, A

    2013-10-01

    We examined the population dynamics of the corn planthopper Peregrinus maidis (Ashmead) (Hemiptera: Delphacidae) throughout a cycle of corn (Zea mays L.) production on plants with or without symptoms of maize mosaic virus (MMV) (Rhabdoviridae: Nucleorhabdovirus) infection. Our results indicate that the timing of MMV plant infection greatly influenced the planthopper's host plant colonization patterns. Corn plants that expressed symptoms of MMV infection early in the crop cycle (28 d after planting) harbored, on average, 40 and 48% fewer planthoppers than plants that expressed symptoms of MMV infection later in the crop cycle (49 d after planting) and asymptomatic plants, respectively. We also observed a change in the number of brachypterous (short-wing type) and macropterous (long-wing type) winged forms produced; plants expressing early symptoms of MMV infection harbored, on average, 41 and 47% more of the brachypterous form than plants with late infections of MMV and plants with no symptoms of MMV, respectively. Furthermore, we determined the rates of MMV-infected planthoppers relative to their wing morphology (macropterous or brachypterous) and gender. MMV infection was 5 and 12% higher in females than in males in field and greenhouse experiments, respectively; however, these differences were not significantly different. This research provides evidence that MMV similarly infects P. maidis planthoppers regardless of the gender and wing morphotype. These results also suggest that the timing of symptom development greatly affects the population dynamics of the planthopper vector, and likely has important consequences for the dynamics of the disease in the field.

  5. Bunyaviridae and Their Replication. Part 2. Replication of Bunyaviridae

    Science.gov (United States)

    1990-01-01

    8217 idae, and Rhabdoviridae ), viruses in the BunyaviridaeI I have no internal matrix proteins (see Chapters 31, 34, U and 39). No enzymatic activity...segment mRNA of SSH (45) all have been shown as the Orthomyxoviridae (10), Rhabdoviridae (94). and to be truncated at their 3’ termini by about 100 nu

  6. Influence of the corn resistance gene Mv on the fitness of Peregrinus maidis (Hemiptera: Delphacidae) and on the transmission of maize mosaic virus (Rhabdoviridae: Nucleorhabdovirus).

    Science.gov (United States)

    Higashi, C H V; Brewbaker, J L; Bressan, A

    2013-08-01

    Crops that are resistant to pests and pathogens are cost-effective for the management of pests and diseases. A corn (Zea mays L.) breeding program conducted in Hawaii has identified a source of heritable resistance to maize mosaic virus (MMV) (Rhabdoviridae: Nucleorhabdovirus). This resistance is controlled by the gene Mv, which has been shown to have a codominant action. To date, no studies have examined whether the resistance associated with this gene affects only MMV or whether it also affects the insect vector, the corn planthopper Peregrinus maidis (Ashmead) (Hemiptera: Delphacidae). Here, we examined the life history of the corn planthopper and its ability to transmit MMV on near isogenic lines that were homozygous dominant (Mv/Mv), homozygous recessive (mv/mv), or heterozygous (Mv/mv) for the gene. A field trial was also conducted to study the colonization of the corn plants with different genotypes by the planthopper. Although field observations revealed slightly lower densities ofplanthoppers on corn with the genotype Mv/Mv than on the inbreds with the genotype mv/mv and their hybrids with the genotype Mv/mv, laboratory assays showed no effects of the gene on planthopper development, longevity, or fecundity. In the field, the corn lines Mv/Mv had a lower incidence of MMV-infected plants. However, in the greenhouse, the transmission of MMV to corn seedlings did not differ across the near isogenic lines, although the corn lines Mv/Mv showed a delayed onset of symptoms compared with the corn lines mv/mv and Mv/mv. The acquisition of MMV by corn planthoppers on the corn genotypes Mv/Mv and Mv/mv averaged 0.2, whereas the acquisition on the corn genotypes mv/mv averaged > 0.3. Our results show that the Mv gene does not influence the fitness of the planthopper vector, suggesting that it may confer resistance by other means, possibly by limiting virus replication or movement within the host plant.

  7. [Rhabdoviruses].

    Science.gov (United States)

    Nishizono, Akira; Yamada, Kentaro

    2012-01-01

    The family Rhabdoviridae has a non-segmented single stranded negative-sense RNA and its genome ranges in size from approximately 11 kb to almost 16 kb. It is one of the most ecologically diverse families of RNA viruses with members infecting a wide range of organisms. The five structural protein genes are arranged in the same linear order (3'-N-P-M-G-L-5') and may be interspersed with one more additional accessory gene. For many years, a full of knowledge of the rhabdoviridae has been established on extensive studies of two kinds of prototype viruses; vesicular stomatitis virus (VSV) and rabies virus (RABV). Among them, the genus Lyssavirus includes RABV and rabies-related viruses naturally infect mammals and chiropterans via bite-exposure by rabid animals and finally cause fatal encephalitis. In this review, we describe the sketch of the various virological features of the Rhabdoviridae, especially focusing on VSV and RABV.

  8. Identification and partial characterization of Taastrup virus: a newly identified member species of the Mononegavirales

    DEFF Research Database (Denmark)

    Bock, J.O.; Lundsgaard, T.; Pedersen, P.A.

    2004-01-01

    with the glycoproteins of Filoviridae and Pneumovirinae, and a nucleoprotein (N) with homology to the nucleoprotein of viral hemorrhagic septicemia virus (VHSV), a member of the Rhabdoviridae. Highly conserved domains were identified in the RNA-dependent RNA polymerase (L) between TV and other viruses within the order...... of Mononegavirales, and homology was found in particular with members of the Rhabdoviridae. The sequence similarities and the unique filovirus-like but nonidentical morphology unambiguously refer this newly identified virus to the order of Mononegavirales but to no family more than any to other within the order....

  9. The rhabdoviruses: biodiversity, phylogenetics, and evolution.

    Science.gov (United States)

    Kuzmin, I V; Novella, I S; Dietzgen, R G; Padhi, A; Rupprecht, C E

    2009-07-01

    Rhabdoviruses (family Rhabdoviridae) include a diversity of important pathogens of animals and plants. They share morphology and genome organization. The understanding of rhabdovirus phylogeny, ecology and evolution has progressed greatly during the last 30 years, due to enhanced surveillance and improved methodologies of molecular characterization. Along with six established genera, several phylogenetic groups at different levels were described within the Rhabdoviridae. However, comparative relationships between viral phylogeny and taxonomy remains incomplete, with multiple representatives awaiting further genetic characterization. The same is true for rhabdovirus evolution. To date, rather simplistic molecular clock models only partially describe the evolutionary dynamics of postulated viral lineages. Ongoing progress in viral evolutionary and ecological investigations will provide the platform for future studies of this diverse family.

  10. Cellular and Molecular Interactions of Rhabdoviruses with their Insect and Plant Hosts

    Science.gov (United States)

    The rhabdoviruses form a large family (Rhabdoviridae) whose host ranges include humans, other vertebrates, invertebrates, and plants. There are about 75 plant-infecting rhabdoviruses described, several of which are economically important pathogens that are persistently transmitted to their plant ho...

  11. to view fulltext PDF

    Indian Academy of Sciences (India)

    (Her et al. 1997). Transport of nearly all proteins and RNA into and out of the nucleus depends on the ..... Hornung et al. 2006. Reviewing host proteins of Rhabdoviridae. 933 ..... Thoulouze MI, Lafage M, Schachner M, Hartmann U, Cremer H.

  12. The first isolation of a rhabdovirus from perch (Perca fluviatilis) in Norway

    DEFF Research Database (Denmark)

    Dannevig, B.H.; Olesen, Niels Jørgen; Jentoft, S.

    2001-01-01

    was stained in IF with rabbit antisera against perch rhabdovirus, pike rhabdovirus and lake trout rhabdovirus and neutralised by anti perch rhabdovirus indicating. that the Norwegian perch virus is closely related to these viruses belonging to the Vesiculovirus genus of the family Rhabdoviridae...

  13. Inter-Species Transmission of Viral Haemorrhagic Septicaemia Virus Between Turbot (Scophthalmus Maximus) and Rainbow Trout (Onchorhynchus Mykiss)

    DEFF Research Database (Denmark)

    Schönherz, A. A.; Lorenzen, Niels; Einer-Jensen, Katja

    2012-01-01

    Viral haemorrhagic septicaemia is a serious viral disease of teleost fish with high economic impact on the aquaculture industry. The disease is caused by the viral haemorrhagic septicaemia virus (VHSV), an RNA virus belonging to the family Rhabdoviridae. Compared to other rhabdoviruses infecting...

  14. Genus vesiculoviruses

    Science.gov (United States)

    The vesiculovirus genus of the family Rhabdoviridae contains a numbers of viruses that have been taxonomically classified using a combination of serological relatedness, host range, genome organization, pathobiology and phylogenetic analysis of sequence data. There are 11 viruses assigned to the gen...

  15. The first isolation of a rhabdovirus from perch (Perca fluviatilis) in Norway

    DEFF Research Database (Denmark)

    Dannevig, B.H.; Olesen, Niels Jørgen; Jentoft, S.

    2001-01-01

    was stained in IF with rabbit antisera against perch rhabdovirus, pike rhabdovirus and lake trout rhabdovirus and neutralised by anti perch rhabdovirus indicating that the Norwegian perch virus is closely related to these viruses belonging to the Vesiculovirus genus of the family Rhabdoviridae...

  16. Transmission and pathogenesis of vesicular stomatitis viruses

    Science.gov (United States)

    Vesicular Stomatitis (VS) is caused by the Vesicular Stomatitis Virus (VSV), a negative single stranded RNA arthropod-borne virus member of the Family Rhabdoviridae. The virion is composed of the host derived plasma membrane, the envelope, and an internal ribonucleoprotein core. The envelope contain...

  17. The lipidomes of vesicular stomatitis virus, semliki forest virus, and the host plasma membrane analyzed by quantitative shotgun mass spectrometry

    DEFF Research Database (Denmark)

    Kalvodova, Lucie; Sampaio, Julio L; Cordo, Sandra

    2009-01-01

    kidney cells can be infected by two different viruses, namely, vesicular stomatitis virus and Semliki Forest virus, from the Rhabdoviridae and Togaviridae families, respectively. We purified the host plasma membrane and the two different viruses after exit from the host cells and analyzed the lipid...

  18. CHANDIPURA VIRUS

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. CHANDIPURA VIRUS. First isolated from a village called Chandipura near Nagpur in 1965 in India. Belongs to rhabdoviridae family. Used as a Model System to study RNA virus multiplication in the infected cell at molecular level. Notes:

  19. Complete genomic sequence and taxonomic position of Eel virus European X (EVEX), a rhabdovirus of European eel

    NARCIS (Netherlands)

    Galinier, R.; Beurden, van S.J.; Amilhat, E.; Castric, J.; Schoehn, G.; Verneau, O.; Fazio, G.; Allienne, J.F.; Engelsma, M.Y.; Sasal, P.; Faliex, E.

    2012-01-01

    Eel virus European X (EVEX) was first isolated from diseased European eel Anguilla anguilla in Japan at the end of seventies. The virus was tentatively classified into the Rhabdoviridae family on the basis of morphology and serological cross reactivity. This family of viruses is organized into six

  20. Nuclear import of Maize fine streak virus proteins in Drosophila S2 cells

    Science.gov (United States)

    Maize fine streak virus (MFSV) is a member of the genus Nucleorhabdovirus, family Rhabdoviridae and is transmitted by the leafhopper Graminella nigrifons. The virus replicates in both its plant host and in its insect vector. Nucleorhabdoviruses replicate in the nucleus and assemble at the inner nu...

  1. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Importance to cancer, ethnicity and birth weight in a Brazilian cohort ... two Indian butterflies and female-biased sex ratio in the Red Pierrot, Talicada nyseus .... (2007) that hopes that someday humans may live and work on other planets ... Reviewing host proteins of Rhabdoviridae: Possible leads for lesser studied viruses.

  2. Unphosphorylated rhabdoviridae phosphoproteins form elongated dimers in solution.

    Science.gov (United States)

    Gerard, Francine C A; Ribeiro, Euripedes de Almeida; Albertini, Aurélie A V; Gutsche, Irina; Zaccai, Guiseppe; Ruigrok, Rob W H; Jamin, Marc

    2007-09-11

    The phosphoprotein (P) is an essential component of the replication machinery of rabies virus (RV) and vesicular stomatitis virus (VSV), and the oligomerization of P, potentially controlled by phosphorylation, is required for its function. Up to now the stoichiometry of phosphoprotein oligomers has been controversial. Size exclusion chromatography combined with detection by multiangle laser light scattering shows that the recombinant unphosphorylated phosphoproteins from VSV and from RV exist as dimers in solution. Hydrodynamic analysis indicates that the dimers are highly asymmetric, with a Stokes radius of 4.8-5.3 nm and a frictional ratio larger than 1.7. Small-angle neutron scattering experiments confirm the dimeric state and the asymmetry of the structure and yield a radius of gyration of about 5.3 nm and a cross-sectional radius of gyration of about 1.6-1.8 nm. Similar hydrodynamic properties and molecular dimensions were obtained with a variant of VSV phosphoprotein in which Ser60 and Thr62 are substituted by Asp residues and which has been reported previously to mimic phosphorylation by inducing oligomerization and activating transcription. Here, we show that this mutant also forms a dimer with hydrodynamic properties and molecular dimensions similar to those of the wild type protein. However, incubation at 30 degrees C for several hours induced self-assembly of both wild type and mutant proteins, leading to the formation of irregular filamentous structures.

  3. Identification and partial characterization of Taastrup virus: a newly identified member species of the Mononegavirales

    International Nuclear Information System (INIS)

    Bock, J.O.; Lundsgaard, T.; Pedersen, P.A.; Christensen, L.S.

    2004-01-01

    We present a 8904-nt sequence of the central part of the RNA genome of a novel virus with a filovirus-like, nonidentical morphology named Taastrup virus (TV) detected in the leafhopper Psammotettix alienus. Sequence analysis identified five potential open reading frames (ORFs) and a complex pattern of homologies to various members of the Mononegavirales suggests a genome organization with the following order of genes: 3'-N-P-M-G-L-5'. Sequence analyses reveal an unusually large glycoprotein (G) containing both potential O-linked (14) and N-linked (9) glycosylation sites--a feature shared with the glycoproteins of Filoviridae and Pneumovirinae, and a nucleoprotein (N) with homology to the nucleoprotein of viral hemorrhagic septicemia virus (VHSV), a member of the Rhabdoviridae. Highly conserved domains were identified in the RNA-dependent RNA polymerase (L) between TV and other viruses within the order of Mononegavirales, and homology was found in particular with members of the Rhabdoviridae. The sequence similarities and the unique filovirus-like but nonidentical morphology unambiguously refer this newly identified virus to the order of Mononegavirales but to no family more than any, to other within the order

  4. Complete Genome Sequence of Ikoma Lyssavirus

    OpenAIRE

    Marston, Denise A.; Ellis, Richard J.; Horton, Daniel L.; Kuzmin, Ivan V.; Wise, Emma L.; McElhinney, Lorraine M.; Banyard, Ashley C.; Ngeleja, Chanasa; Keyyu, Julius; Cleaveland, Sarah; Lembo, Tiziana; Rupprecht, Charles E.; Fooks, Anthony R.

    2012-01-01

    Lyssaviruses (family Rhabdoviridae) constitute one of the most important groups of viral zoonoses globally. All lyssaviruses cause the disease rabies, an acute progressive encephalitis for which, once symptoms occur, there is no effective cure. Currently available vaccines are highly protective against the predominantly circulating lyssavirus species. Using next-generation sequencing technologies, we have obtained the whole-genome sequence for a novel lyssavirus, Ikoma lyssavirus (IKOV), isol...

  5. Inhibition of spring viraemia of carp virus replication in an Epithelioma papulosum cyprini cell line by RNAi

    Science.gov (United States)

    Gotesman, M; Soliman, H; Besch, R; El-Matbouli, M

    2015-01-01

    Spring viraemia of carp virus (SVCV) is an aetiological agent of a serious disease affecting carp farms in Europe and is a member of the Rhabdoviridae family of viruses. The genome of SVCV codes for five proteins: nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G) and RNA-dependent RNA polymerase (L). RNA-mediated interference (RNAi) by small interfering RNAs (siRNAs) is a powerful tool to inhibit gene transcription and is used to study genes important for viral replication. In previous studies regarding another member of Rhabdoviridae, siRNA inhibition of the rabies virus nucleoprotein gene provided in vitro and in vivo protection against rabies. In this study, synthetic siRNA molecules were designed to target SVCV-N and SVCV-P transcripts to inhibit SVCV replication and were tested in an epithelioma papulosum cyprini (EPC) cell line. Inhibition of gene transcription was measured by real-time quantitative reverse-transcription PCR (RT-qPCR). The efficacy of using siRNA for inhibition of viral replication was analysed by RT-qPCR measurement of a reporter gene (glycoprotein) expression and by virus endpoint titration. Inhibition of nucleoprotein and phosphoprotein gene expression by siRNA reduced SVCV replication. However, use of tandem siRNAs that target phosphoprotein and nucleoprotein worked best at reducing SVCV replication. PMID:24460815

  6. Resistance to Rhabdoviridae Infection and Subversion of Antiviral Responses

    Directory of Open Access Journals (Sweden)

    Danielle Blondel

    2015-07-01

    Full Text Available Interferon (IFN treatment induces the expression of hundreds of IFN-stimulated genes (ISGs. However, only a selection of their products have been demonstrated to be responsible for the inhibition of rhabdovirus replication in cultured cells; and only a few have been shown to play a role in mediating the antiviral response in vivo using gene knockout mouse models. IFNs inhibit rhabdovirus replication at different stages via the induction of a variety of ISGs. This review will discuss how individual ISG products confer resistance to rhabdoviruses by blocking viral entry, degrading single stranded viral RNA, inhibiting viral translation or preventing release of virions from the cell. Furthermore, this review will highlight how these viruses counteract the host IFN system.

  7. Resistance to Rhabdoviridae Infection and Subversion of Antiviral Responses.

    Science.gov (United States)

    Blondel, Danielle; Maarifi, Ghizlane; Nisole, Sébastien; Chelbi-Alix, Mounira K

    2015-07-07

    Interferon (IFN) treatment induces the expression of hundreds of IFN-stimulated genes (ISGs). However, only a selection of their products have been demonstrated to be responsible for the inhibition of rhabdovirus replication in cultured cells; and only a few have been shown to play a role in mediating the antiviral response in vivo using gene knockout mouse models. IFNs inhibit rhabdovirus replication at different stages via the induction of a variety of ISGs. This review will discuss how individual ISG products confer resistance to rhabdoviruses by blocking viral entry, degrading single stranded viral RNA, inhibiting viral translation or preventing release of virions from the cell. Furthermore, this review will highlight how these viruses counteract the host IFN system.

  8. Resistance to Rhabdoviridae Infection and Subversion of Antiviral Responses

    Science.gov (United States)

    Blondel, Danielle; Maarifi, Ghizlane; Nisole, Sébastien; Chelbi-Alix, Mounira K.

    2015-01-01

    Interferon (IFN) treatment induces the expression of hundreds of IFN-stimulated genes (ISGs). However, only a selection of their products have been demonstrated to be responsible for the inhibition of rhabdovirus replication in cultured cells; and only a few have been shown to play a role in mediating the antiviral response in vivo using gene knockout mouse models. IFNs inhibit rhabdovirus  replication at different stages via the induction of a variety of ISGs. This review will discuss how individual ISG products confer resistance to rhabdoviruses by blocking viral entry, degrading single stranded viral RNA, inhibiting viral translation or preventing release of virions from the cell. Furthermore, this review will highlight how these viruses counteract the host IFN system. PMID:26198243

  9. RABIES IN NIGERIA: A REVIEW OF LITERATURE

    African Journals Online (AJOL)

    boaz

    Elle est causée par le virus de la rage (RABV), une forme de balle, virus enveloppé à ARN,45 – 100nm de diamètre et 100 – 430 nm en longueur avec des saillies et des nucléocapsidehélicoïdale, l'un des virus encéphalite mieux connu de la famille. Rhabdoviridae et le genre Lyssavirus type 1. C'est unproblème majeur ...

  10. Immunity to Fish Rhabdoviruses

    OpenAIRE

    Purcell, Maureen K.; Laing, Kerry J.; Winton, James R.

    2012-01-01

    Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabd...

  11. RNA splicing in a new rhabdovirus from Culex mosquitoes.

    Science.gov (United States)

    Kuwata, Ryusei; Isawa, Haruhiko; Hoshino, Keita; Tsuda, Yoshio; Yanase, Tohru; Sasaki, Toshinori; Kobayashi, Mutsuo; Sawabe, Kyoko

    2011-07-01

    Among members of the order Mononegavirales, RNA splicing events have been found only in the family Bornaviridae. Here, we report that a new rhabdovirus isolated from the mosquito Culex tritaeniorhynchus replicates in the nuclei of infected cells and requires RNA splicing for viral mRNA maturation. The virus, designated Culex tritaeniorhynchus rhabdovirus (CTRV), shares a similar genome organization with other rhabdoviruses, except for the presence of a putative intron in the coding region for the L protein. Molecular phylogenetic studies indicated that CTRV belongs to the family Rhabdoviridae, but it is yet to be assigned a genus. Electron microscopic analysis revealed that the CTRV virion is extremely elongated, unlike virions of rhabdoviruses, which are generally bullet shaped. Northern hybridization confirmed that a large transcript (approximately 6,500 nucleotides [nt]) from the CTRV L gene was present in the infected cells. Strand-specific reverse transcription-PCR (RT-PCR) analyses identified the intron-exon boundaries and the 76-nt intron sequence, which contains the typical motif for eukaryotic spliceosomal intron-splice donor/acceptor sites (GU-AG), a predicted branch point, and a polypyrimidine tract. In situ hybridization exhibited that viral RNAs are primarily localized in the nucleus of infected cells, indicating that CTRV replicates in the nucleus and is allowed to utilize the host's nuclear splicing machinery. This is the first report of RNA splicing among the members of the family Rhabdoviridae.

  12. Application of broad-spectrum resequencing microarray for genotyping rhabdoviruses.

    Science.gov (United States)

    Dacheux, Laurent; Berthet, Nicolas; Dissard, Gabriel; Holmes, Edward C; Delmas, Olivier; Larrous, Florence; Guigon, Ghislaine; Dickinson, Philip; Faye, Ousmane; Sall, Amadou A; Old, Iain G; Kong, Katherine; Kennedy, Giulia C; Manuguerra, Jean-Claude; Cole, Stewart T; Caro, Valérie; Gessain, Antoine; Bourhy, Hervé

    2010-09-01

    The rapid and accurate identification of pathogens is critical in the control of infectious disease. To this end, we analyzed the capacity for viral detection and identification of a newly described high-density resequencing microarray (RMA), termed PathogenID, which was designed for multiple pathogen detection using database similarity searching. We focused on one of the largest and most diverse viral families described to date, the family Rhabdoviridae. We demonstrate that this approach has the potential to identify both known and related viruses for which precise sequence information is unavailable. In particular, we demonstrate that a strategy based on consensus sequence determination for analysis of RMA output data enabled successful detection of viruses exhibiting up to 26% nucleotide divergence with the closest sequence tiled on the array. Using clinical specimens obtained from rabid patients and animals, this method also shows a high species level concordance with standard reference assays, indicating that it is amenable for the development of diagnostic assays. Finally, 12 animal rhabdoviruses which were currently unclassified, unassigned, or assigned as tentative species within the family Rhabdoviridae were successfully detected. These new data allowed an unprecedented phylogenetic analysis of 106 rhabdoviruses and further suggest that the principles and methodology developed here may be used for the broad-spectrum surveillance and the broader-scale investigation of biodiversity in the viral world.

  13. Application of Broad-Spectrum Resequencing Microarray for Genotyping Rhabdoviruses▿

    Science.gov (United States)

    Dacheux, Laurent; Berthet, Nicolas; Dissard, Gabriel; Holmes, Edward C.; Delmas, Olivier; Larrous, Florence; Guigon, Ghislaine; Dickinson, Philip; Faye, Ousmane; Sall, Amadou A.; Old, Iain G.; Kong, Katherine; Kennedy, Giulia C.; Manuguerra, Jean-Claude; Cole, Stewart T.; Caro, Valérie; Gessain, Antoine; Bourhy, Hervé

    2010-01-01

    The rapid and accurate identification of pathogens is critical in the control of infectious disease. To this end, we analyzed the capacity for viral detection and identification of a newly described high-density resequencing microarray (RMA), termed PathogenID, which was designed for multiple pathogen detection using database similarity searching. We focused on one of the largest and most diverse viral families described to date, the family Rhabdoviridae. We demonstrate that this approach has the potential to identify both known and related viruses for which precise sequence information is unavailable. In particular, we demonstrate that a strategy based on consensus sequence determination for analysis of RMA output data enabled successful detection of viruses exhibiting up to 26% nucleotide divergence with the closest sequence tiled on the array. Using clinical specimens obtained from rabid patients and animals, this method also shows a high species level concordance with standard reference assays, indicating that it is amenable for the development of diagnostic assays. Finally, 12 animal rhabdoviruses which were currently unclassified, unassigned, or assigned as tentative species within the family Rhabdoviridae were successfully detected. These new data allowed an unprecedented phylogenetic analysis of 106 rhabdoviruses and further suggest that the principles and methodology developed here may be used for the broad-spectrum surveillance and the broader-scale investigation of biodiversity in the viral world. PMID:20610710

  14. Inhibition of spring viraemia of carp virus replication in an Epithelioma papulosum cyprini cell line by RNAi.

    Science.gov (United States)

    Gotesman, M; Soliman, H; Besch, R; El-Matbouli, M

    2015-02-01

    Spring viraemia of carp virus (SVCV) is an aetiological agent of a serious disease affecting carp farms in Europe and is a member of the Rhabdoviridae family of viruses. The genome of SVCV codes for five proteins: nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G) and RNA-dependent RNA polymerase (L). RNA-mediated interference (RNAi) by small interfering RNAs (siRNAs) is a powerful tool to inhibit gene transcription and is used to study genes important for viral replication. In previous studies regarding another member of Rhabdoviridae, siRNA inhibition of the rabies virus nucleoprotein gene provided in vitro and in vivo protection against rabies. In this study, synthetic siRNA molecules were designed to target SVCV-N and SVCV-P transcripts to inhibit SVCV replication and were tested in an epithelioma papulosum cyprini (EPC) cell line. Inhibition of gene transcription was measured by real-time quantitative reverse-transcription PCR (RT-qPCR). The efficacy of using siRNA for inhibition of viral replication was analysed by RT-qPCR measurement of a reporter gene (glycoprotein) expression and by virus endpoint titration. Inhibition of nucleoprotein and phosphoprotein gene expression by siRNA reduced SVCV replication. However, use of tandem siRNAs that target phosphoprotein and nucleoprotein worked best at reducing SVCV replication. © 2014 The Authors. Journal of Fish Diseases published by John Wiley & Sons Ltd.

  15. Structure of the Nucleoprotein Binding Domain of Mokola Virus Phosphoprotein▿

    Science.gov (United States)

    Assenberg, René; Delmas, Olivier; Ren, Jingshan; Vidalain, Pierre-Olivier; Verma, Anil; Larrous, Florence; Graham, Stephen C.; Tangy, Frédéric; Grimes, Jonathan M.; Bourhy, Hervé

    2010-01-01

    Mokola virus (MOKV) is a nonsegmented, negative-sense RNA virus that belongs to the Lyssavirus genus and Rhabdoviridae family. MOKV phosphoprotein P is an essential component of the replication and transcription complex and acts as a cofactor for the viral RNA-dependent RNA polymerase. P recruits the viral polymerase to the nucleoprotein-bound viral RNA (N-RNA) via an interaction between its C-terminal domain and the N-RNA complex. Here we present a structure for this domain of MOKV P, obtained by expression of full-length P in Escherichia coli, which was subsequently truncated during crystallization. The structure has a high degree of homology with P of rabies virus, another member of Lyssavirus genus, and to a lesser degree with P of vesicular stomatitis virus (VSV), a member of the related Vesiculovirus genus. In addition, analysis of the crystal packing of this domain reveals a potential binding site for the nucleoprotein N. Using both site-directed mutagenesis and yeast two-hybrid experiments to measure P-N interaction, we have determined the relative roles of key amino acids involved in this interaction to map the region of P that binds N. This analysis also reveals a structural relationship between the N-RNA binding domain of the P proteins of the Rhabdoviridae and the Paramyxoviridae. PMID:19906936

  16. Strawberry crinkle virus, a Cytorhabdovirus needing more attention from virologists.

    Science.gov (United States)

    Posthuma, K I; Adams, A N; Hong, Y

    2000-11-01

    Summary Taxonomic relationship: A member of nonsegmented, negative-sense, single-stranded RNA viruses of the genus Cytorhabdovirus (type member: Lettuce necrotic yellows virus), family Rhabdoviridae, order Mononegavirales. Members of the family Rhabdoviridae can infect vertebrates, invertebrates and plants. Physical properties: Virions are bacilliform, 74-88 nm in diameter and 163-383 nm in length with surface projections probably composed of trimers of the glycoprotein G, occurring in the cytoplasm in either the coated or the uncoated form (Fig. 1). The nucleocapsid is enclosed in a host-derived envelope. Within the virion, the SCV genome consists of a single negative-sense single-stranded RNA molecule of approximately 13 kb. Viral proteins: The SCV genome encodes at least five proteins: the nucleocapsid (N) protein (45 kDa), the matrix (M) protein (77 kDa), the nonstructural protein [Ns, 55 kDa, also known as phosphoprotein (P)], the glycoprotein (G, 23 kDa) and the large (L) protein. Hosts: The natural host range of SCV is limited to species of the genus Fragaria L. Experimental hosts include Physalis pubescens L., P. floridana Rydb., Nicotiana occidentalis, N. glutinosa L. and N. clevelandi Gray. SCV also replicates in its insect vectors Chaetosiphon fragaefolii Cockerell and C. jacobi Hille Ris Lamberts. When injected as purified virus, SCV replicates in aphids Hyperomyzus lactucae (L.), Macrosiphon euphorbiae Thomas, Myzus ornatus Laing, Megoura viciae Buckton, and Acyrthosiphoa pisum (Harris).

  17. Rabies.

    Science.gov (United States)

    Burnett, Nark

    2013-01-01

    Rabies has been a scourge of mankind since antiquity. The name itself, ?rabies? is derived from the ancient Sanskrit rabhas meaning ?to do violence? and has been found described in medical writings several thousand years old. The rabies virus is an RNA virus of the family Rhabdoviridae (Greek for ?rod-shaped virus?), genus Lyssavirus (Lyssa being the Greek God of frenzy and rage). Rabies infections have a worldwide spread, with only a few, mostly island nations laying claim to being ?rabies free.? 2013.

  18. Emergence of a new rhabdovirus associated with mass mortalities in eelpout (Zoarces viviparous) in the Baltic Sea

    DEFF Research Database (Denmark)

    Axen, C.; Hakhverdyan, M.; Boutrup, Torsten Snogdal

    2017-01-01

    We report the first description of a new Rhabdoviridae tentatively named eelpout rhabdovirus (EpRV genus Perhabdovirus). This virus was associated with mass mortalities in eelpout (Zoarces viviparous, Linnaeus) along the Swedish Baltic Sea coast line in 2014. Diseased fish showed signs of central......) and spring viraemia of carp virus (SVCV) were negative. Further investigations by chloroform inactivation, indirect fluorescence antibody test and electron microscopy indicated the presence of a rhabdovirus. By deep sequencing of original tissue suspension and infected cell culture supernatant, the full...

  19. PROFILAKSIS RABIES

    Directory of Open Access Journals (Sweden)

    Susilawathi NM

    2014-09-01

    Full Text Available Rabies merupakan penyakit ensefalitis akut yang disebabkan oleh virus RNA, famili Rhabdoviridae, genus lyssavirus. Anjing adalah reservoir utama penularan rabies, puluhan ribu kematian per tahun disebabkan oleh gigitan anjing rabies. Bila seseorang menunjukkan gejala rabies, biasanya selalu fatal.  Profilaksis terhadap rabies merupakan tindakan efektif dan aman. Mencuci luka dan vaksinasi segera setelah kontak dengan hewan tersangka rabies dapat mencegah timbulnya rabies hampir 100%. Strategi yang paling efektif untuk mencegah rabies adalah mengurangi penularan rabies pada anjing melalui vaksinasi.[MEDICINA 2009;40:55-9].

  20. Identification of rhabdoviral sequences in oropharyngeal swabs from German and Danish bats

    DEFF Research Database (Denmark)

    Fischer, Melina; Freuling, Conrad M.; Müller, Thomas

    2014-01-01

    Background: In the frame of active lyssavirus surveillance in bats, oropharyngeal swabs from German (N = 2297) and Danish (N = 134) insectivorous bats were investigated using a newly developed generic pan-lyssavirus real-time reverse transcriptase PCR (RT-qPCR).Findings: In total, 15 RT-qPCR posi...... bats. The results also prove that the novel generic pan-lyssavirus RT-qPCR offers a very broad detection range that allows the collection of further valuable data concerning the broad and complex diversity within the family Rhabdoviridae....

  1. RNA Splicing in a New Rhabdovirus from Culex Mosquitoes▿†

    Science.gov (United States)

    Kuwata, Ryusei; Isawa, Haruhiko; Hoshino, Keita; Tsuda, Yoshio; Yanase, Tohru; Sasaki, Toshinori; Kobayashi, Mutsuo; Sawabe, Kyoko

    2011-01-01

    Among members of the order Mononegavirales, RNA splicing events have been found only in the family Bornaviridae. Here, we report that a new rhabdovirus isolated from the mosquito Culex tritaeniorhynchus replicates in the nuclei of infected cells and requires RNA splicing for viral mRNA maturation. The virus, designated Culex tritaeniorhynchus rhabdovirus (CTRV), shares a similar genome organization with other rhabdoviruses, except for the presence of a putative intron in the coding region for the L protein. Molecular phylogenetic studies indicated that CTRV belongs to the family Rhabdoviridae, but it is yet to be assigned a genus. Electron microscopic analysis revealed that the CTRV virion is extremely elongated, unlike virions of rhabdoviruses, which are generally bullet shaped. Northern hybridization confirmed that a large transcript (approximately 6,500 nucleotides [nt]) from the CTRV L gene was present in the infected cells. Strand-specific reverse transcription-PCR (RT-PCR) analyses identified the intron-exon boundaries and the 76-nt intron sequence, which contains the typical motif for eukaryotic spliceosomal intron-splice donor/acceptor sites (GU-AG), a predicted branch point, and a polypyrimidine tract. In situ hybridization exhibited that viral RNAs are primarily localized in the nucleus of infected cells, indicating that CTRV replicates in the nucleus and is allowed to utilize the host's nuclear splicing machinery. This is the first report of RNA splicing among the members of the family Rhabdoviridae. PMID:21507977

  2. Discovery of Novel Viruses in Mosquitoes from the Zambezi Valley of Mozambique.

    Directory of Open Access Journals (Sweden)

    Harindranath Cholleti

    Full Text Available Mosquitoes carry a wide variety of viruses that can cause vector-borne infectious diseases and affect both human and veterinary public health. Although Mozambique can be considered a hot spot for emerging infectious diseases due to factors such as a rich vector population and a close vector/human/wildlife interface, the viral flora in mosquitoes have not previously been investigated. In this study, viral metagenomics was employed to analyze the viral communities in Culex and Mansonia mosquitoes in the Zambezia province of Mozambique. Among the 1.7 and 2.6 million sequences produced from the Culex and Mansonia samples, respectively, 3269 and 983 reads were classified as viral sequences. Viruses belonging to the Flaviviridae, Rhabdoviridae and Iflaviridae families were detected, and different unclassified single- and double-stranded RNA viruses were also identified. A near complete genome of a flavivirus, tentatively named Cuacua virus, was obtained from the Mansonia mosquitoes. Phylogenetic analysis of this flavivirus, using the NS5 amino acid sequence, showed that it grouped with 'insect-specific' viruses and was most closely related to Nakiwogo virus previously identified in Uganda. Both mosquito genera had viral sequences related to Rhabdoviruses, and these were most closely related to Culex tritaeniorhynchus rhabdovirus (CTRV. The results from this study suggest that several viruses specific for insects belonging to, for example, the Flaviviridae and Rhabdoviridae families, as well as a number of unclassified RNA viruses, are present in mosquitoes in Mozambique.

  3. Molecular double check strategy for the identification and characterization of European Lyssaviruses

    DEFF Research Database (Denmark)

    Fischer, Melina; Freuling, Conrad; Mueller, Thomas

    2013-01-01

    Lyssaviruses (order Mononegavirales, family Rhabdoviridae), the causative agents of rabies, represent a remarkable public health threat in developing countries. Among human exposures RABV is transmitted predominantly by dog bite; however bat lyssaviruses have also caused human cases. The “gold...... standard” for post-mortem rabies diagnosis is the fluorescence antibody test (FAT). However, in the case of ante-mortem non-neural sample material (e.g. saliva, cerebral spinal fluid, skin biopsies) or badly decomposed tissues the FAT reaches its limit and the use of molecular methods like reverse...

  4. Evidence for ADAR-induced hypermutation of the Drosophila sigma virus (Rhabdoviridae).

    Science.gov (United States)

    Carpenter, Jennifer A; Keegan, Liam P; Wilfert, Lena; O'Connell, Mary A; Jiggins, Francis M

    2009-11-26

    ADARs are RNA editing enzymes that target double stranded RNA and convert adenosine to inosine, which is read by translation machinery as if it were guanosine. Aside from their role in generating protein diversity in the central nervous system, ADARs have been implicated in the hypermutation of some RNA viruses, although why this hypermutation occurs is not well understood. Here we describe the hypermutation of adenosines to guanosines in the genome of the sigma virus--a negative sense RNA virus that infects Drosophila melanogaster. The clustering of these mutations and the context in which they occur indicates that they have been caused by ADARs. However, ADAR-editing of viral RNA is either rare or edited viral RNA are rapidly degraded, as we only detected evidence for editing in two of the 104 viral isolates we studied. This is the first evidence for ADARs targeting viruses outside of mammals, and it raises the possibility that ADARs could play a role in the antiviral defences of insects.

  5. Evidence for ADAR-induced hypermutation of the Drosophila sigma virus (Rhabdoviridae

    Directory of Open Access Journals (Sweden)

    O'Connell Mary A

    2009-11-01

    Full Text Available Abstract Background ADARs are RNA editing enzymes that target double stranded RNA and convert adenosine to inosine, which is read by translation machinery as if it were guanosine. Aside from their role in generating protein diversity in the central nervous system, ADARs have been implicated in the hypermutation of some RNA viruses, although why this hypermutation occurs is not well understood. Results Here we describe the hypermutation of adenosines to guanosines in the genome of the sigma virus--a negative sense RNA virus that infects Drosophila melanogaster. The clustering of these mutations and the context in which they occur indicates that they have been caused by ADARs. However, ADAR-editing of viral RNA is either rare or edited viral RNA are rapidly degraded, as we only detected evidence for editing in two of the 104 viral isolates we studied. Conclusion This is the first evidence for ADARs targeting viruses outside of mammals, and it raises the possibility that ADARs could play a role in the antiviral defences of insects.

  6. The glycoprotein genes and gene junctions of the fish rhabdoviruses spring viremia of carp virus and hirame rhabdovirus: Analysis of relationships with other rhabdoviruses

    Science.gov (United States)

    Bjorklund, H.V.; Higman, K.H.; Kurath, G.

    1996-01-01

    The nucleotide sequences of the glycoprotein genes and all of the internal gene junctions of the fish pathogenic rhabdoviruses spring viremia of carp virus (SVCV) and hirame rhabdovirus (HIRRV) have been determined from cDNA clones generated from viral genomic RNA. The SVCV glycoprotein gene sequence is 1588 nucleotides (nt) long and encodes a 509 amino acid (aa) protein. The HIRRV glycoprotein gene sequence comprises 1612 nt, coding for a 508 aa protein. In sequence comparisons of 15 rhabdovirus glycoproteins, the SVCV glycoprotein gene showed the highest amino acid sequence identity (31.2–33.2%) with vesicular stomatitis New Jersey virus (VSNJV), Chandipura virus (CHPV) and vesicular stomatitis Indiana virus (VSIV). The HIRRV glycoprotein gene showed a very high amino acid sequence identity (74.3%) with the glycoprotein gene of another fish pathogenic rhabdovirus, infectious hematopoietic necrosis virus (IHNV), but no significant similarity with glycoproteins of VSIV or rabies virus (RABV). In phylogenetic analyses SVCV was grouped consistently with VSIV, VSNJV and CHPV in the Vesiculovirus genus of Rhabdoviridae. The fish rhabdoviruses HIRRV, IHNV and viral hemorrhagic septicemia virus (VHSV) showed close relationships with each other, but only very distant relationships with mammalian rhabdoviruses. The gene junctions are highly conserved between SVCV and VSIV, well conserved between IHNV and HIRRV, but not conserved between HIRRV/IHNV and RABV. Based on the combined results we suggest that the fish lyssa-type rhabdoviruses HIRRV, IHNV and VHSV may be grouped in their own genus within the family Rhabdoviridae. Aquarhabdovirus has been proposed for the name of this new genus.

  7. Isolation and characterization of a novel Rhabdovirus from a wild boar (Sus scrofa) in Japan.

    Science.gov (United States)

    Sakai, Kouji; Hagiwara, Katsuro; Omatsu, Tsutomu; Hamasaki, Chinami; Kuwata, Ryusei; Shimoda, Hiroshi; Suzuki, Kazuo; Endoh, Daiji; Nagata, Noriyo; Nagai, Makoto; Katayama, Yukie; Oba, Mami; Kurane, Ichiro; Saijo, Masayuki; Morikawa, Shigeru; Mizutani, Tetsuya; Maeda, Ken

    2015-09-30

    A novel rhabdovirus was isolated from the serum of a healthy Japanese wild boar (Sus scrofa leucomystax) and identified using the rapid determination system for viral nucleic acid sequences (RDV), next-generation sequencing, and electron microscopy. The virus was tentatively named wild boar rhabdovirus 1 (WBRV1). Phylogenetic analysis of the entire genome sequence indicated that WBRV1 is closely related to Tupaia rhabdovirus (TRV), which was isolated from cultured cells of hepatocellular carcinoma tissue of tree shrew. TRV has not been assigned to any genus of Rhabdoviridae till date. Analysis of the L gene indicated that WBRV1 belongs to the genus Vesiculovirus. These observations suggest that both TRV and WBRV1 belong to a new genus of Rhabdoviridae. Next-generation genome sequencing of WBRV1 revealed 5 open reading frames of 1329, 765, 627, 1629, and 6336 bases in length. The WBRV1 gene sequences are similar to those of other rhabdoviruses. Epizootiological analysis of a population of wild boars in Wakayama prefecture in Japan indicated that 6.5% were positive for the WBRV1 gene and 52% were positive for WBRV1-neutralizing antibodies. Furthermore, such viral neutralizing antibodies were found in domestic pigs in another prefecture. WBRV1 was inoculated intranasally and intraperitoneally into SCID and BALB/c mice and viral RNA was detected in SCID mice, suggesting that WBRV1 can replicate in immunocompromised mice. These results indicate this novel virus is endemic in wild animals and livestock in Japan. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A bioinformatics approach to the structure, function, and evolution of the nucleoprotein of the order mononegavirales.

    Directory of Open Access Journals (Sweden)

    Sean B Cleveland

    2011-05-01

    Full Text Available The goal of this Bioinformatic study is to investigate sequence conservation in relation to evolutionary function/structure of the nucleoprotein of the order Mononegavirales. In the combined analysis of 63 representative nucleoprotein (N sequences from four viral families (Bornaviridae, Filoviridae, Rhabdoviridae, and Paramyxoviridae we predict the regions of protein disorder, intra-residue contact and co-evolving residues. Correlations between location and conservation of predicted regions illustrate a strong division between families while high- lighting conservation within individual families. These results suggest the conserved regions among the nucleoproteins, specifically within Rhabdoviridae and Paramyxoviradae, but also generally among all members of the order, reflect an evolutionary advantage in maintaining these sites for the viral nucleoprotein as part of the transcription/replication machinery. Results indicate conservation for disorder in the C-terminus region of the representative proteins that is important for interacting with the phosphoprotein and the large subunit polymerase during transcription and replication. Additionally, the C-terminus region of the protein preceding the disordered region, is predicted to be important for interacting with the encapsidated genome. Portions of the N-terminus are responsible for N∶N stability and interactions identified by the presence or lack of co-evolving intra-protein contact predictions. The validation of these prediction results by current structural information illustrates the benefits of the Disorder, Intra-residue contact and Compensatory mutation Correlator (DisICC pipeline as a method for quickly characterizing proteins and providing the most likely residues and regions necessary to target for disruption in viruses that have little structural information available.

  9. A new bacilliform fathead minnow rhabdovirus that produces syncytia in tissue culture.

    Science.gov (United States)

    Iwanowicz, L R; Goodwin, A E

    2002-05-01

    A pathogenic bacilliform virus 130-180 nm in length and 31-47 nm in diameter was isolated from moribund fathead minnows (Pimephales promelas) exhibiting hemorrhages in their eyes and skin. A cytopathic effect of multifocal syncytia was observed in the epithelioma papulosum cyprini cell line after a 48 h incubation at 20 degrees C. A similar cytopathic effect was also observed in other cell lines tested, but not in bluegill fry, koi fin, or Chinook salmon embryo cells. The filterable agent was inactivated by exposure to 50 degrees C for 10 min, 20% ether, 2 and 50% chloroform, pH 3, and pH 10, was unaffected by 5'-iodo-2 deoxyuridine, and appeared bacilliform and occasionally bullet-shaped by electron microscopy. These results are consistent with those of rhabdoviruses. Immunodot blots performed with antisera against selected fish rhabdoviruses, an aquareovirus, and a birnavirus were all negative. River's postulates were fulfilled in fathead minnows, but the agent did not replicate or cause disease in other cyprinids or salmonids during challenge experiments. Hepatic, splenic, and renal lesions were observed during histological analysis of diseased fish from viral challenges and from the original case. Structural proteins resolved via SDS-PAGE had molecular weights similar to those reported in lyssaviruses of the family Rhabdoviridae; however, syncytia formation is not a typical cytopathic effect of rhabdoviruses. This virus, has tentatively been named the fathead minnow rhabdovirus (FHMRV) and is most similar to the members of the family Rhabdoviridae, but atypical properties like syncytia formation may justify the assignment to a novel taxon.

  10. Candidates in Astroviruses, Seadornaviruses, Cytorhabdoviruses and Coronaviruses for +1 frame overlapping genes accessed by leaky scanning

    Directory of Open Access Journals (Sweden)

    Atkins John F

    2010-01-01

    Full Text Available Abstract Background Overlapping genes are common in RNA viruses where they serve as a mechanism to optimize the coding potential of compact genomes. However, annotation of overlapping genes can be difficult using conventional gene-finding software. Recently we have been using a number of complementary approaches to systematically identify previously undetected overlapping genes in RNA virus genomes. In this article we gather together a number of promising candidate new overlapping genes that may be of interest to the community. Results Overlapping gene predictions are presented for the astroviruses, seadornaviruses, cytorhabdoviruses and coronaviruses (families Astroviridae, Reoviridae, Rhabdoviridae and Coronaviridae, respectively.

  11. Molecular detection and sequence characterization of diverse rhabdoviruses in bats, China.

    Science.gov (United States)

    Xu, Lin; Wu, Jianmin; Jiang, Tinglei; Qin, Shaomin; Xia, Lele; Li, Xingyu; He, Biao; Tu, Changchun

    2018-01-15

    The Rhabdoviridae is among the most diverse families of RNA viruses and currently classified into 18 genera with some rhabdoviruses lethal to humans and other animals. Herein, we describe genetic characterization of three novel rhabdoviruses from bats in China. Of these, two viruses (Jinghong bat virus and Benxi bat virus) found in Rhinolophus bats showed a phylogenetic relationship with vesiculoviruses, and sequence analyses indicate that they represent two new species within the genus Vesiculovirus. The remaining Yangjiang bat virus found in Hipposideros larvatus bats were only distantly related to currently known rhabdoviruses. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Zahedan rhabdovirus, a novel virus detected in ticks from Iran.

    Science.gov (United States)

    Dilcher, Meik; Faye, Oumar; Faye, Ousmane; Weber, Franziska; Koch, Andrea; Sadegh, Chinikar; Weidmann, Manfred; Sall, Amadou Alpha

    2015-11-05

    Rhabdoviridae infect a wide range of vertebrates, invertebrates and plants. Their transmission can occur via various arthropod vectors. In recent years, a number of novel rhabdoviruses have been identified from various animal species, but so far only few tick-transmitted rhabdoviruses have been described. We isolated a novel rhabdovirus, provisionally named Zahedan rhabdovirus (ZARV), from Hyalomma anatolicum anatolicum ticks collected in Iran. The full-length genome was determined using 454 next-generation sequencing and the phylogenetic relationship to other rhabdoviruses was analyzed. Inoculation experiments in mammalian Vero cells and mice were conducted and a specific PCR assay was developed. The complete genome of ZARV has a size of 11,230 nucleotides (nt) with the typical genomic organization of Rhabdoviridae. Phylogenetic analysis confirms that ZARV is closely related to Moussa virus (MOUV) from West Africa and Long Island tick rhabdovirus (LITRV) from the U.S., all forming a new monophyletic clade, provisionally designated Zamolirhabdovirus, within the Dimarhabdovirus supergroup. The glycoprotein (G) contains 12 conserved cysteins which are specific for animal rhabdoviruses infecting fish and mammals. In addition, ZARV is able to infect mammalian Vero cells and is lethal for mice when inoculated intracerebrally or subcutaneously. The developed PCR assay can be used to specifically detect ZARV. The novel tick-transmitted rhabdovirus ZARV is closely related to MOUV and LITRV. All three viruses seem to form a new monophyletic clade. ZARV might be pathogenic for mammals, since it can infect Vero cells, is lethal for mice and its glycoprotein contains 12 conserved cysteins only found in animal rhabdoviruses. The mammalian host of ZARV remains to be identified.

  13. Emergence and resurgence of the viral hemorrhagic septicemia virus (Novirhabdovirus, Rhabdoviridae, Mononegavirales

    Directory of Open Access Journals (Sweden)

    Robert Kim

    2011-01-01

    Full Text Available Viral hemorrhagic septicemia virus (VHSV is one of the most serious pathogens of finfish worldwide in terms of its wide host-range, pathogenicity, disease course, and mortality rates. The disease was first documented in the 1930s in Europe in association with heavy losses in rainbow. Data collected over 50 years show that VHSV is a virus of marine origin: its ability to alternate between marine and freshwater environments remains an enigma which requires further investigation. In 2003, VHSV invaded the Laurentian Great Lakes basin causing devastating losses. VHSV is believed to have negative impacts on a number of important Atlantic, Pacific, and Great Lakes fish species. Phylogenetic analysis has offered clues into the geographic and host range of the virus, but sporadic outbreaks of the disease in uncommon locations have imparted unforeseen challenges in delineating the virus’ regional distribution. The virus’ ability to gain access to aquaculture farms has also positioned it as a disease of utmost priority once detected in these settings. Current diagnostic methods, while greatly improved, are hampered by the variability of disease course among susceptible species. In general, VHSV causes severe degeneration in the hematopoietic tissues of affected fish. Based on historical and current data, it is feared that VHSV will continue to mutate, expand to other geographic areas, and infect new host species. As a result, immediate international attention and coordination of efforts are needed. The objective of this review article is to provide an updated synopsis on the current status of VHSV epizootiology and pathogenicity.

  14. Structure of the C-terminal domain of lettuce necrotic yellows virus phosphoprotein.

    Science.gov (United States)

    Martinez, Nicolas; Ribeiro, Euripedes A; Leyrat, Cédric; Tarbouriech, Nicolas; Ruigrok, Rob W H; Jamin, Marc

    2013-09-01

    Lettuce necrotic yellows virus (LNYV) is a prototype of the plant-adapted cytorhabdoviruses. Through a meta-prediction of disorder, we localized a folded C-terminal domain in the amino acid sequence of its phosphoprotein. This domain consists of an autonomous folding unit that is monomeric in solution. Its structure, solved by X-ray crystallography, reveals a lollipop-shaped structure comprising five helices. The structure is different from that of the corresponding domains of other Rhabdoviridae, Filoviridae, and Paramyxovirinae; only the overall topology of the polypeptide chain seems to be conserved, suggesting that this domain evolved under weak selective pressure and varied in size by the acquisition or loss of functional modules.

  15. Genome characterization of Long Island tick rhabdovirus, a new virus identified in Amblyomma americanum ticks.

    Science.gov (United States)

    Tokarz, Rafal; Sameroff, Stephen; Leon, Maria Sanchez; Jain, Komal; Lipkin, W Ian

    2014-02-11

    Ticks are implicated as hosts to a wide range of animal and human pathogens. The full range of microbes harbored by ticks has not yet been fully explored. As part of a viral surveillance and discovery project in arthropods, we used unbiased high-throughput sequencing to examine viromes of ticks collected on Long Island, New York in 2013. We detected and sequenced the complete genome of a novel rhabdovirus originating from a pool of Amblyomma americanum ticks. This virus, which we provisionally name Long Island tick rhabdovirus, is distantly related to Moussa virus from Africa. The Long Island tick rhabdovirus may represent a novel species within family Rhabdoviridae.

  16. Complete genome sequence of Ikoma lyssavirus.

    Science.gov (United States)

    Marston, Denise A; Ellis, Richard J; Horton, Daniel L; Kuzmin, Ivan V; Wise, Emma L; McElhinney, Lorraine M; Banyard, Ashley C; Ngeleja, Chanasa; Keyyu, Julius; Cleaveland, Sarah; Lembo, Tiziana; Rupprecht, Charles E; Fooks, Anthony R

    2012-09-01

    Lyssaviruses (family Rhabdoviridae) constitute one of the most important groups of viral zoonoses globally. All lyssaviruses cause the disease rabies, an acute progressive encephalitis for which, once symptoms occur, there is no effective cure. Currently available vaccines are highly protective against the predominantly circulating lyssavirus species. Using next-generation sequencing technologies, we have obtained the whole-genome sequence for a novel lyssavirus, Ikoma lyssavirus (IKOV), isolated from an African civet in Tanzania displaying clinical signs of rabies. Genetically, this virus is the most divergent within the genus Lyssavirus. Characterization of the genome will help to improve our understanding of lyssavirus diversity and enable investigation into vaccine-induced immunity and protection.

  17. The biological features and genetic diversity of novel fish rhabdovirus isolates in China.

    Science.gov (United States)

    Fu, Xiaozhe; Lin, Qiang; Liang, Hongru; Liu, Lihui; Huang, Zhibin; Li, Ningqiu; Su, Jianguo

    2017-09-01

    The Rhabdoviridae is a diverse family of negative-sense single-stranded RNA viruses which infects mammals, birds, reptiles, fish, insects and plants. Herein, we reported the isolation and characterization of 6 novel viruses from diseased fish collected from China including SCRV-QY, SCRV-SS, SCRV-GM, CmRV-FS, MsRV-SS, OmbRV-JM. The typical clinical symptom of diseased fish was hemorrhaging. Efficient propagation of these isolates in a Chinese perch brain cell line was determined by means of observation of cytopathic effect, RT-PCR and electron microscopy. Sequence alignment and phylogenetic analysis of the complete G protein sequences revealed that these isolates were clustered into one monophyletic lineage belonging to the species Siniperca chuatsi rhabdovirus.

  18. Genome characterization of Long Island tick rhabdovirus, a new virus identified in Amblyomma americanum ticks

    Science.gov (United States)

    2014-01-01

    Background Ticks are implicated as hosts to a wide range of animal and human pathogens. The full range of microbes harbored by ticks has not yet been fully explored. Methods As part of a viral surveillance and discovery project in arthropods, we used unbiased high-throughput sequencing to examine viromes of ticks collected on Long Island, New York in 2013. Results We detected and sequenced the complete genome of a novel rhabdovirus originating from a pool of Amblyomma americanum ticks. This virus, which we provisionally name Long Island tick rhabdovirus, is distantly related to Moussa virus from Africa. Conclusions The Long Island tick rhabdovirus may represent a novel species within family Rhabdoviridae. PMID:24517260

  19. Structure of the C-Terminal Domain of Lettuce Necrotic Yellows Virus Phosphoprotein

    Science.gov (United States)

    Martinez, Nicolas; Ribeiro, Euripedes A.; Leyrat, Cédric; Tarbouriech, Nicolas; Ruigrok, Rob W. H.

    2013-01-01

    Lettuce necrotic yellows virus (LNYV) is a prototype of the plant-adapted cytorhabdoviruses. Through a meta-prediction of disorder, we localized a folded C-terminal domain in the amino acid sequence of its phosphoprotein. This domain consists of an autonomous folding unit that is monomeric in solution. Its structure, solved by X-ray crystallography, reveals a lollipop-shaped structure comprising five helices. The structure is different from that of the corresponding domains of other Rhabdoviridae, Filoviridae, and Paramyxovirinae; only the overall topology of the polypeptide chain seems to be conserved, suggesting that this domain evolved under weak selective pressure and varied in size by the acquisition or loss of functional modules. PMID:23785215

  20. Vaccine-induced rabies case in a cow (Bos taurus): Molecular characterisation of vaccine strain in brain tissue.

    Science.gov (United States)

    Vuta, Vlad; Picard-Meyer, Evelyne; Robardet, Emmanuelle; Barboi, Gheorghe; Motiu, Razvan; Barbuceanu, Florica; Vlagioiu, Constantin; Cliquet, Florence

    2016-09-22

    Rabies is a fatal neuropathogenic zoonosis caused by the rabies virus of the Lyssavirus genus, Rhabdoviridae family. The oral vaccination of foxes - the main reservoir of rabies in Europe - using a live attenuated rabies virus vaccine was successfully conducted in many Western European countries. In July 2015, a rabies vaccine strain was isolated from the brain tissues of a clinically suspect cow (Bos taurus) in Romania. The nucleotide analysis of both N and G gene sequences showed 100% identity between the rabid animal, the GenBank reference SAD B19 strain and five rabies vaccine batches used for the national oral vaccination campaign targeting foxes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Plant rhabdoviruses: new insights and research needs in the interplay of negative-strand RNA viruses with plant and insect hosts.

    Science.gov (United States)

    Mann, Krin S; Dietzgen, Ralf G

    2014-08-01

    Rhabdoviruses are taxonomically classified in the family Rhabdoviridae, order Mononegavirales. As a group, rhabdoviruses can infect plants, invertebrates and vertebrates. Plant cyto- and nucleorhabdoviruses infect a wide variety of species across both monocot and dicot families, including agriculturally important crops such as lettuce, wheat, barley, rice, maize, potato and tomato. Plant rhabdoviruses are transmitted by and replicate in hemipteran insects such as aphids (Aphididae), leafhoppers (Cicadellidae), or planthoppers (Delphacidae). These specific interactions between plants, viruses and insects offer new insights into host adaptation and molecular virus evolution. This review explores recent advances as well as knowledge gaps in understanding of replication, RNA silencing suppression and movement of plant rhabdoviruses with respect to both plant and insect hosts.

  2. Beatrice Hill Virus Represents a Novel Species in the Genus Tibrovirus (Mononegavirales: Rhabdoviridae)

    Science.gov (United States)

    2017-01-26

    Bioinformatics in Action 17:10-12. 2 15. Schmieder R, Edwards R. 2011. Quality control and preprocessing of metagenomic 3 datasets. Bioinformatics...2Commonwealth Scientific and Industrial Research Organisation (CSIRO), Health 7 and Biosecurity, Australian Animal Health Laboratory , Geelong, Victoria...Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious 15 Diseases (NIAID), National Institutes of Health

  3. Identification of rhabdoviral sequences in oropharyngeal swabs from German and Danish bats.

    Science.gov (United States)

    Fischer, Melina; Freuling, Conrad M; Müller, Thomas; Schatz, Juliane; Rasmussen, Thomas Bruun; Chriel, Mariann; Balkema-Buschmann, Anne; Beer, Martin; Hoffmann, Bernd

    2014-11-25

    In the frame of active lyssavirus surveillance in bats, oropharyngeal swabs from German (N = 2297) and Danish (N = 134) insectivorous bats were investigated using a newly developed generic pan-lyssavirus real-time reverse transcriptase PCR (RT-qPCR). In total, 15 RT-qPCR positive swabs were detected. Remarkably, sequencing of positive samples did not confirm the presence of bat associated lyssaviruses but revealed nine distinct novel rhabdovirus-related sequences. Several novel rhabdovirus-related sequences were detected both in German and Danish insectivorous bats. The results also prove that the novel generic pan-lyssavirus RT-qPCR offers a very broad detection range that allows the collection of further valuable data concerning the broad and complex diversity within the family Rhabdoviridae.

  4. Korelasi dan Penyebaran Kejadian Rabies pada Anjing dan Manusia di Kabupaten Klungkung Bali Tahun 2010-2014

    Directory of Open Access Journals (Sweden)

    Rendi Tegar Pratama

    2016-06-01

    Full Text Available Rabies atau penyakit anjing gila merupakan penyakit virus yang disebabkan oleh genus Lyssavirus dari famili Rhabdoviridae bersifat akut serta sangat berbahaya dan mengakibatkan kematian karena mampu menginfeksi sistem saraf pusat yakni otak dan sumsum tulang belakang. Penelitian ini bertujuan untuk mengetahui kawasan rabies, penyebaran rabies dan korelasi antara kejadian rabies pada anjing dan manusia di Kabupaten Klungkung tahun 2010-2014. Metode yang digunakan dalam penelitian ini adalah analisis deskriptif. Untuk mengetahui hubungan kejadian rabies pada anjing dan manusia dilakukan uji korelasi Rank Spearman. Berdasarkan uji korelasi Spearman diperoleh hasil bahwa terdapat hubungan yang searah antara kejadian rabies pada anjing dan manusia. Dari uji Spearman yang dilakukan nilai koefisiensi yang diperoleh adalah 0,468 dengan nilai signifikansi 0,037.

  5. Kolente virus, a rhabdovirus species isolated from ticks and bats in the Republic of Guinea.

    Science.gov (United States)

    Ghedin, Elodie; Rogers, Matthew B; Widen, Steven G; Guzman, Hilda; Travassos da Rosa, Amelia P A; Wood, Thomas G; Fitch, Adam; Popov, Vsevolod; Holmes, Edward C; Walker, Peter J; Vasilakis, Nikos; Tesh, Robert B

    2013-12-01

    Kolente virus (KOLEV) is a rhabdovirus originally isolated from ticks and a bat in Guinea, West Africa, in 1985. Although tests at the time of isolation suggested that KOLEV is a novel rhabdovirus, it has remained largely uncharacterized. We assembled the complete genome sequence of the prototype strain DakAr K7292, which was found to encode the five canonical rhabdovirus structural proteins (N, P, M, G and L) with alternative ORFs (>180 nt) in the P and L genes. Serologically, KOLEV exhibited a weak antigenic relationship with Barur and Fukuoka viruses in the Kern Canyon group. Phylogenetic analysis revealed that KOLEV represents a distinct and divergent lineage that shows no clear relationship to any rhabdovirus except Oita virus, although with limited phylogenetic resolution. In summary, KOLEV represents a novel species in the family Rhabdoviridae.

  6. What's a novirhabdovirus?

    Science.gov (United States)

    Kurath, Gael

    2000-01-01

    Some of our most well known fish viruses are now members of a newly recognized genus within the virus family Rhabdoviridae. As a member of the rhabdovirus study group of the International Committee for Virus Taxonomy (ICTV), I have been involved for the last five years in working towards updated and improved taxonomic classification of fish rhabdoviruses. The major fruit of this effort has been the establishment of a new genus that includes many, but not all, rhabdoviruses of fish hosts. Although this new genus was officially accepted by the ICTV in July of 1998, the continuing delay in publication of the seventh report of the ICTV has meant that there is still no official notification of this change. This article is meant to explain the new genus to all interested fish health professionals.

  7. Arboretum and Puerto Almendras viruses: two novel rhabdoviruses isolated from mosquitoes in Peru.

    Science.gov (United States)

    Vasilakis, Nikos; Castro-Llanos, Fanny; Widen, Steven G; Aguilar, Patricia V; Guzman, Hilda; Guevara, Carolina; Fernandez, Roberto; Auguste, Albert J; Wood, Thomas G; Popov, Vsevolod; Mundal, Kirk; Ghedin, Elodie; Kochel, Tadeusz J; Holmes, Edward C; Walker, Peter J; Tesh, Robert B

    2014-04-01

    Arboretum virus (ABTV) and Puerto Almendras virus (PTAMV) are two mosquito-associated rhabdoviruses isolated from pools of Psorophora albigenu and Ochlerotattus fulvus mosquitoes, respectively, collected in the Department of Loreto, Peru, in 2009. Initial tests suggested that both viruses were novel rhabdoviruses and this was confirmed by complete genome sequencing. Analysis of their 11 482 nt (ABTV) and 11 876 (PTAMV) genomes indicates that they encode the five canonical rhabdovirus structural proteins (N, P, M, G and L) with an additional gene (U1) encoding a small hydrophobic protein. Evolutionary analysis of the L protein indicates that ABTV and PTAMV are novel and phylogenetically distinct rhabdoviruses that cannot be classified as members of any of the eight currently recognized genera within the family Rhabdoviridae, highlighting the vast diversity of this virus family.

  8. Complete genome sequence of Menghai rhabdovirus, a novel mosquito-borne rhabdovirus from China.

    Science.gov (United States)

    Sun, Qiang; Zhao, Qiumin; An, Xiaoping; Guo, Xiaofang; Zuo, Shuqing; Zhang, Xianglilan; Pei, Guangqian; Liu, Wenli; Cheng, Shi; Wang, Yunfei; Shu, Peng; Mi, Zhiqiang; Huang, Yong; Zhang, Zhiyi; Tong, Yigang; Zhou, Hongning; Zhang, Jiusong

    2017-04-01

    Menghai rhabdovirus (MRV) was isolated from Aedes albopictus in Menghai county of Yunnan Province, China, in August 2010. Whole-genome sequencing of MRV was performed using an Ion PGM™ Sequencer. We found that MRV is a single-stranded, negative-sense RNA virus. The complete genome of MRV has 10,744 nt, with short inverted repeat termini, encoding five typical rhabdovirus proteins (N, P, M, G, and L) and an additional small hypothetical protein. Nucleotide BLAST analysis using the BLASTn method showed that the genome sequence most similar to that of MRV is that of Arboretum virus (NC_025393.1), with a Max score of 322, query coverage of 14%, and 66% identity. Genomic and phylogenetic analyses both demonstrated that MRV should be considered a member of a novel species of the family Rhabdoviridae.

  9. Major viral diseases affecting fish aquaculture in Spain.

    Science.gov (United States)

    Pérez, S I; Rodríguez, S

    1997-06-01

    The number of viruses isolated from fish has grown in the last few years as a reflection of the increasing interest in fish diseases, particularly those occurring in aquaculture facilities. Of all the described viruses, only a few are considered to be of serious concern and economic importance; they are described in this review, drawing special attention to the four families of viruses (Birnaviridae, Rhabdoviridae, Iridoviridae and Reoviridae) that have been reported in Spanish aquaculture. Infectious pancreatic necrosis virus, a member of the first family, is the most spread virus with a prevalence of 39%. Viral diseases are untreatable and because effective and safe vaccines for fish are not yet commercially available, a great care needs to be exercised when moving fish or eggs from one site or country to another. Some fish health control regulations have been legislated in Europe and USA.

  10. Phylogenetic relationships of Iranian infectious hematopoietic necrosis virus of rainbow trout (Oncorhynchus mykiss) based on the glycoprotein gene

    Science.gov (United States)

    Adel, Milad; Amiri, Alireza Babaalian; Dada, Maryam; Kurath, Gael; Laktarashi, Bahram; Ghajari, Amrolah; Breyta, Rachel

    2016-01-01

    Infectious hematopoietic necrosis virus (IHNV), a member of family Rhabdoviridae and genus Novirhabdoviridae, causes a highly lethal disease of salmon and trout. In Iran IHNV was first detected in 2001 on farms rearing rainbow trout (Oncorhynchus mykiss). To evaluate the genetic relationships of IHNV from northern and western Iran, the sequences of a 651-nt region of the glycoprotein gene were determined for two Iranian isolates. These sequences were analyzed to evaluate their genetic relatedness to worldwide isolates representing the five known genogroups of IHNV. Iranian isolates were most closely related to European isolates within the genogroup E rather than those of North American genogroups U, M and L, or the Asian genogroup J. It appears that Iranian IHNV was most likely introduced to Iran from a source in Europe by the movement of contaminated fish eggs.

  11. Viral hemorrhagic septicemia

    Science.gov (United States)

    Batts, William N.; Winton, James R.

    2012-01-01

    Viral hemorrhagic septicemia (VHS) is one of the most important viral diseases of finfish worldwide. In the past, VHS was thought to affect mainly rainbow trout Oncorhynchus mykiss reared at freshwater facilities in Western Europe where it was known by various names including Egtved disease and infectious kidney swelling and liver degeneration (Wolf 1988). Today, VHS is known as an important source of mortality for cultured and wild fish in freshwater and marine environments in several regions of the northern hemisphere (Dixon 1999; Gagné et al. 2007; Kim and Faisal 2011; Lumsden et al. 2007; Marty et al. 1998, 2003; Meyers and Winton 1995; Skall et al. 2005b; Smail 1999; Takano et al. 2001). Viral hemorrhagic septicemia is caused by the fish rhabdovirus, viral hemorrhagic septicemia virus (VHSV), a member of the genus Novirhabdovirus of the family Rhabdoviridae

  12. Arboretum and Puerto Almendras viruses: two novel rhabdoviruses isolated from mosquitoes in Peru

    Science.gov (United States)

    Castro-Llanos, Fanny; Widen, Steven G.; Aguilar, Patricia V.; Guzman, Hilda; Guevara, Carolina; Fernandez, Roberto; Auguste, Albert J.; Wood, Thomas G.; Popov, Vsevolod; Mundal, Kirk; Ghedin, Elodie; Kochel, Tadeusz J.; Holmes, Edward C.; Walker, Peter J.; Tesh, Robert B.

    2014-01-01

    Arboretum virus (ABTV) and Puerto Almendras virus (PTAMV) are two mosquito-associated rhabdoviruses isolated from pools of Psorophora albigenu and Ochlerotattus fulvus mosquitoes, respectively, collected in the Department of Loreto, Peru, in 2009. Initial tests suggested that both viruses were novel rhabdoviruses and this was confirmed by complete genome sequencing. Analysis of their 11 482 nt (ABTV) and 11 876 (PTAMV) genomes indicates that they encode the five canonical rhabdovirus structural proteins (N, P, M, G and L) with an additional gene (U1) encoding a small hydrophobic protein. Evolutionary analysis of the L protein indicates that ABTV and PTAMV are novel and phylogenetically distinct rhabdoviruses that cannot be classified as members of any of the eight currently recognized genera within the family Rhabdoviridae, highlighting the vast diversity of this virus family. PMID:24421116

  13. Kolente virus, a rhabdovirus species isolated from ticks and bats in the Republic of Guinea

    Science.gov (United States)

    Ghedin, Elodie; Rogers, Matthew B.; Widen, Steven G.; Guzman, Hilda; Travassos da Rosa, Amelia P. A.; Wood, Thomas G.; Fitch, Adam; Popov, Vsevolod; Holmes, Edward C.; Walker, Peter J.; Tesh, Robert B.

    2013-01-01

    Kolente virus (KOLEV) is a rhabdovirus originally isolated from ticks and a bat in Guinea, West Africa, in 1985. Although tests at the time of isolation suggested that KOLEV is a novel rhabdovirus, it has remained largely uncharacterized. We assembled the complete genome sequence of the prototype strain DakAr K7292, which was found to encode the five canonical rhabdovirus structural proteins (N, P, M, G and L) with alternative ORFs (>180 nt) in the P and L genes. Serologically, KOLEV exhibited a weak antigenic relationship with Barur and Fukuoka viruses in the Kern Canyon group. Phylogenetic analysis revealed that KOLEV represents a distinct and divergent lineage that shows no clear relationship to any rhabdovirus except Oita virus, although with limited phylogenetic resolution. In summary, KOLEV represents a novel species in the family Rhabdoviridae. PMID:24062532

  14. Can VHS virus bypass the protective immunity induced by DNA vaccination in rainbow trout?

    DEFF Research Database (Denmark)

    Sepúlveda, Dagoberto; Lorenzen, Niels

    2016-01-01

    DNA vaccines encoding viral glycoproteins have been very successful for induction of protective immunity against diseases caused by rhabdoviruses in cultured fish species. However, the vaccine concept is based on a single viral gene and since RNA viruses are known to possess high variability...... and adaptation capacity, this work aimed at evaluating whether viral haemorrhagic septicaemia virus (VHSV), an RNA virus and member of Rhabdoviridae family, was able to evade the protective immune response induced by the DNA vaccination of rainbow trout. The experiments comprised repeated passages of a highly...... pathogenic VHSV isolate in a fish cell line in the presence of neutralizing fish serum (in vitro approach), and in rainbow trout immunized with the VHS DNA vaccine (in vivo approach). For the in vitro approach, the virus collected from the last passage (passaged virus) was as sensitive as the parental virus...

  15. Isolation of Chandipura virus (Vesiculovirus: Rhabdoviridae from Sergentomyia species of sandflies from Nagpur, Maharashtra, India

    Directory of Open Access Journals (Sweden)

    A B Sudeep

    2014-01-01

    Full Text Available Background & objectives: An outbreak of acute encephalitis syndrome was reported from Vidarbha region of Maharashtra s0 tate, India, during July 2012. Anti-IgM antibodies against Chandipura virus (CHPV were detected in clinical samples. Sandfly collections were done to determine their role in CHPV transmission. Methods: Twenty nine pools of Sergentomyia spp. comprising 625 specimens were processed for virus isolation in Vero E6 cell line. Diagnostic RT-PCR targeting N-gene was carried out with the sample that showed cytopathic effects (CPE. The PCR product was sequenced, analysed and the sequences were deposited in Genbank database. Results: CPE in Vero E6 cell line infected with three pools was detected at 48 h post infection. However, virus could be isolated only from one pool. RT-PCR studies demonstrated 527 nucleotide product that confirmed the agent as CHPV. Sequence analysis of the new isolate showed difference in 10-12 nucleotides in comparison to earlier isolates. Interpretation & conclusions: This is perhaps the first isolation of CHPV from Sergentomyia spp. in India and virus isolation during transmission season suggests their probable role in CHPV transmission. Further studies need to be done to confirm the precise role of Sargentomyia spp. in CHPV transmission.

  16. Ledantevirus: a proposed new genus in the Rhabdoviridae has a strong ecological association with bats.

    Science.gov (United States)

    Blasdell, Kim R; Guzman, Hilda; Widen, Steven G; Firth, Cadhla; Wood, Thomas G; Holmes, Edward C; Tesh, Robert B; Vasilakis, Nikos; Walker, Peter J

    2015-02-01

    The Le Dantec serogroup of rhabdoviruses comprises Le Dantec virus from a human with encephalitis and Keuriliba virus from rodents, each isolated in Senegal. The Kern Canyon serogroup comprises a loosely connected set of rhabdoviruses many of which have been isolated from bats, including Kern Canyon virus from California, Nkolbisson virus from Cameroon, Central African Republic, and Cote d'Ivoire, Kolente virus from Guinea, Mount Elgon bat and Fikirini viruses from Kenya, and Oita virus from Japan. Fukuoka virus isolated from mosquitoes, midges, and cattle in Japan, Barur virus from a rodent in India and Nishimuro virus from pigs in Japan have also been linked genetically or serologically to this group. Here, we analyze the genome sequences and phylogenetic relationships of this set of viruses. We show that they form three subgroups within a monophyletic group, which we propose should constitute the new genus Ledantevirus. © The American Society of Tropical Medicine and Hygiene.

  17. Two new rhabdoviruses (Rhabdoviridae) isolated from birds during surveillance for arboviral encephalitis, northeastern United States.

    Science.gov (United States)

    Travassos da Rosa, Amelia P A; Mather, Thomas N; Takeda, Tsutomu; Whitehouse, Chris A; Shope, Robert E; Popov, Vsevolod L; Guzman, Hilda; Coffey, Lark; Araujo, Tais P; Tesh, Robert B

    2002-06-01

    Two novel rhabdoviruses were isolated from birds during surveillance for arboviral encephalitis in the northeastern United States. The first, designated Farmington virus, is a tentative new member of the Vesiculovirus genus. The second, designated Rhode Island virus, is unclassified antigenically, but its ultrastructure and size are more similar to those of some of the plant rhabdoviruses. Both viruses infect birds and mice, as well as monkey kidney cells in culture, but their importance for human health is unknown.

  18. Black fly involvement in the epidemic transmission of vesicular stomatitis New Jersey virus (Rhabdoviridae: Vesiculovirus).

    Science.gov (United States)

    Mead, Daniel G; Howerth, Elizabeth W; Murphy, Molly D; Gray, Elmer W; Noblet, Raymond; Stallknecht, David E

    2004-01-01

    The transmission routes of Vesicular stomatitis New Jersey virus (VSNJV), a causative agent of vesicular stomatitis, an Office International des Epizooties List-A disease, are not completely understood. Epidemiological and entomological studies conducted during the sporadic epidemics in the western United States have identified potential virus transmission routes involving insect vectors and animal-to-animal contact. In the present study we experimentally tested the previously proposed transmission routes which were primarily based on field observations. Results obtained provide strong evidence for the following: (1) hematophagous insects acquire VSNJV by unconventional routes while blood feeding on livestock, (2) clinical course of VSNJV infection in livestock following transmission by an infected insect is related to insect bite site, (3) infection of livestock via insect bite can result in multiple transmission possibilities, including animal-to-animal contact. Taken together, these data significantly add to our understanding of the transmission routes of a causative agent of one of the oldest known infectious diseases of livestock, for which the details have remained largely unknown despite decades of research.

  19. Isolation of Chandipura virus (Vesiculovirus: Rhabdoviridae) from Sergentomyia species of sandflies from Nagpur, Maharashtra, India.

    Science.gov (United States)

    Sudeep, A B; Bondre, V P; Gurav, Y K; Gokhale, M D; Sapkal, G N; Mavale, M S; George, R P; Mishra, A C

    2014-05-01

    An outbreak of acute encephalitis syndrome was reported from Vidarbha region of Maharashtra s0 tate, India, during July 2012. Anti-IgM antibodies against Chandipura virus (CHPV) were detected in clinical samples. Sandfly collections were done to determine their role in CHPV transmission. Twenty nine pools of Sergentomyia spp. comprising 625 specimens were processed for virus isolation in Vero E6 cell line. Diagnostic RT-PCR targeting N-gene was carried out with the sample that showed cytopathic effects (CPE). The PCR product was sequenced, analysed and the sequences were deposited in Genbank database. CPE in Vero E6 cell line infected with three pools was detected at 48 h post infection. However, virus could be isolated only from one pool. RT-PCR studies demonstrated 527 nucleotide product that confirmed the agent as CHPV. Sequence analysis of the new isolate showed difference in 10-12 nucleotides in comparison to earlier isolates. This is perhaps the first isolation of CHPV from Sergentomyia spp. in India and virus isolation during transmission season suggests their probable role in CHPV transmission. Further studies need to be done to confirm the precise role of Sargentomyia spp. in CHPV transmission.

  20. Ledantevirus: A Proposed New Genus in the Rhabdoviridae Has A Strong Ecological Association with Bats

    Science.gov (United States)

    Blasdell, Kim R.; Guzman, Hilda; Widen, Steven G.; Firth, Cadhla; Wood, Thomas G.; Holmes, Edward C.; Tesh, Robert B.; Vasilakis, Nikos; Walker, Peter J.

    2015-01-01

    The Le Dantec serogroup of rhabdoviruses comprises Le Dantec virus from a human with encephalitis and Keuriliba virus from rodents, each isolated in Senegal. The Kern Canyon serogroup comprises a loosely connected set of rhabdoviruses many of which have been isolated from bats, including Kern Canyon virus from California, Nkolbisson virus from Cameroon, Central African Republic, and Cote d'Ivoire, Kolente virus from Guinea, Mount Elgon bat and Fikirini viruses from Kenya, and Oita virus from Japan. Fukuoka virus isolated from mosquitoes, midges, and cattle in Japan, Barur virus from a rodent in India and Nishimuro virus from pigs in Japan have also been linked genetically or serologically to this group. Here, we analyze the genome sequences and phylogenetic relationships of this set of viruses. We show that they form three subgroups within a monophyletic group, which we propose should constitute the new genus Ledantevirus. PMID:25487727

  1. Viral diseases of marine invertebrates

    Science.gov (United States)

    Johnson, P. T.

    1984-03-01

    Approximately 40 viruses are known from marine sponges; turbellarian and monogenetic flatworms; cephalopod, bivalve, and gastropod mollusks; nereid polychaetes; and isopod and decapod crustaceans. Most of the viruses can be tentatively assigned to the Herpesviridae, Baculoviridae, Iridoviridae, Adenoviridae, Papovaviridae, Reoviridae, “Birnaviridae”, Bunyaviridae, Rhabdoviridae, and Picornaviridae. Viruslike particles found in oysters might be representatives of the Togaviridae and Retroviridae. Enveloped single-stranded RNA viruses from crustaceans have developmental and morphological characteristics intermediate between families, and some show evidence of relationships to the Paramyxoviridae as well as the Bunyaviridae or Rhabdoviridae. Certain small viruses of shrimp cannot be assigned, even tentatively, to a particular family. Some viruses cause disease in wild and captive hosts, others are associated with disease states but may not be primary instigators, and many occur in apparently normal animals. The frequency of viral disease in natural populations of marine invertebrates is unknown. Several viruses that cause disease in captive animals, with or without experimental intervention, have also been found in diseased wild hosts, including herpeslike viruses of crabs and oysters, iridovirus of octopus, and reolike and bunyalike viruses of crabs. Iridolike viruses have been implicated in massive mortalities of cultured oysters. Baculoviruses, and IHHN virus, which is of uncertain affinities, cause economically damaging diseases in cultured penaeid shrimp. Double or multiple viral infection is common in crabs. For example, a reolike virus and associated rhabdolike virus act synergistically to cause paralytic and fatal disease in Callinectes sapidus. Information on host range, most susceptible stage, and viral latency is available only for viruses of shrimp. One baculovirus attacks five species of New World penaeid shrimp. IHHN virus infects three species of

  2. Identification of very small open reading frames in the genomes of Holmes Jungle virus, Ord River virus, and Wongabel virus of the genus , family

    Directory of Open Access Journals (Sweden)

    Aneta Gubala

    2017-07-01

    Full Text Available Viruses of the family Rhabdoviridae infect a broad range of hosts from a variety of ecological and geographical niches, including vertebrates, arthropods, and plants. The arthropod-transmitted members of this family display considerable genetic diversity and remarkable genomic flexibility that enable coding for various accessory proteins in different locations of the genome. Here, we describe the genome of Holmes Jungle virus, isolated from Culex annulirostris mosquitoes collected in northern Australia, and make detailed comparisons with the closely related Ord River and Wongabel viruses, with a focus on identifying very small open reading frames (smORFs in their genomes. This is the first systematic prediction of smORFs in rhabdoviruses, emphasising the intricacy of the rhabdovirus genome and the knowledge gaps. We speculate that these smORFs may be of importance to the life cycle of the virus in the arthropod vector.

  3. Infection of guinea pigs with vesicular stomatitis New Jersey virus Transmitted by Culicoides sonorensis (Diptera: Ceratopogonidae).

    Science.gov (United States)

    Pérez De León, Adalberto A; O'Toole, Donal; Tabachnick, Walter J

    2006-05-01

    Intrathoracically inoculated Culicoides sonorensis Wirth & Jones were capable of transmitting vesicular stomatitis New Jersey virus (family Rhabdoviridae, genus Vesiculovirus, VSNJV) during blood feeding on the abdomen of six guinea pigs. None of the guinea pigs infected in this manner developed clinical signs of vesicular stomatitis despite seroconversion for VSNJV. Guinea pigs infected by intradermal inoculations of VSNJV in the abdomen also failed to develop clinical signs of vesicular stomatitis. Three guinea pigs given intradermal inoculations of VSNJV in the foot pad developed lesions typical of vesicular stomatitis. Transmission by the bite of C. sonorensis may have facilitated guinea pig infection with VSNJV because a single infected C. sonorensis caused seroconversion and all guinea pigs infected by insect bite seroconverted compared with 50% of the guinea pigs infected by intradermal inoculation with a higher titer VSNJV inoculum. The role of C. sonorensis in the transmission of VSNJV is discussed.

  4. Tibrogargan and Coastal Plains rhabdoviruses: genomic characterization, evolution of novel genes and seroprevalence in Australian livestock.

    Science.gov (United States)

    Gubala, Aneta; Davis, Steven; Weir, Richard; Melville, Lorna; Cowled, Chris; Boyle, David

    2011-09-01

    Tibrogargan virus (TIBV) and Coastal Plains virus (CPV) were isolated from cattle in Australia and TIBV has also been isolated from the biting midge Culicoides brevitarsis. Complete genomic sequencing revealed that the viruses share a novel genome structure within the family Rhabdoviridae, each virus containing two additional putative genes between the matrix protein (M) and glycoprotein (G) genes and one between the G and viral RNA polymerase (L) genes. The predicted novel protein products are highly diverged at the sequence level but demonstrate clear conservation of secondary structure elements, suggesting conservation of biological functions. Phylogenetic analyses showed that TIBV and CPV form an independent group within the 'dimarhabdovirus supergroup'. Although no disease has been observed in association with these viruses, antibodies were detected at high prevalence in cattle and buffalo in northern Australia, indicating the need for disease monitoring and further study of this distinctive group of viruses.

  5. Genome Sequence of Bivens Arm Virus, a Tibrovirus Belonging to the Species Tibrogargan virus (Mononegavirales: Rhabdoviridae).

    OpenAIRE

    Chiu, Charles; Lauck, M; Yú, SQ; Caì, Y; Hensley, LE; Chiu, CY; O'Connor, DH; Kuhn, JH

    2015-01-01

    The new rhabdoviral genus Tibrovirus currently has two members, Coastal Plains virus and Tibrogargan virus. Here, we report the coding-complete genome sequence of a putative member of this genus, Bivens Arm virus. A genomic comparison reveals Bivens Arm vi

  6. Genome Sequence of Bivens Arm Virus, a Tibrovirus Belonging to the Species Tibrogargan virus (Mononegavirales: Rhabdoviridae).

    Science.gov (United States)

    Lauck, Michael; Yú, Shu Qìng; Caì, Yíngyún; Hensley, Lisa E; Chiu, Charles Y; O'Connor, David H; Kuhn, Jens H

    2015-03-19

    The new rhabdoviral genus Tibrovirus currently has two members, Coastal Plains virus and Tibrogargan virus. Here, we report the coding-complete genome sequence of a putative member of this genus, Bivens Arm virus. A genomic comparison reveals Bivens Arm virus to be closely related to, but distinct from, Tibrogargan virus. Copyright © 2015 Lauck et al.

  7. A Study of the Fruit Bat (Rousettus sp Brain Anatomy as Natural Reservoir Wild Animal for the Rabies Virus

    Directory of Open Access Journals (Sweden)

    Karina Mayang Sari

    2015-06-01

    Full Text Available Rousettus sp. (Fruit bat is one type of fruit bats in Indonesia and act as a natural reservoir of rabies. Rabies is caused by a virus from genus Lyssavirus, family Rhabdoviridae, which attack central nervous system (CNS.The brain is an organ that is sensitive to rabies infection. The purpose of this study was to determine the anatomical structure of the fruit bat brain macroscopically. Five fruit bat were used in this study, they were anaesthetized using ketamine and xylazin. Animals were perfused using physiological saline and 10% buffered formalin. Brains were taken using tweezers after all the bones of the skull were separated. Analysis of macroscopic brain was done descriptively. The results showed that the fruit bat brain were generally divided into cerebrum, cerebellum and brain stem. Gyrus, sulcus and the paraflokulus lobes of the fruit bat brain were less developed than that of the dogs brain.

  8. Genetic variation of eggplant mottled dwarf virus from annual and perennial plant hosts.

    Science.gov (United States)

    Pappi, Polyxeni G; Maliogka, Varvara I; Amoutzias, Gregory D; Katis, Nikolaos I

    2016-03-01

    The genetic diversity of eggplant mottled dwarf virus (EMDV), a member of the family Rhabdoviridae, was studied using isolates collected from different herbaceous and woody plant species and remote geographic areas. Sequences corresponding to the N, X, P, Y, M and G ORFs as well as the untranslated regions (UTRs) between ORFs were determined from all isolates. Low genetic diversity was found in almost all genomic regions studied except for the X ORF and the UTRs, which were more variable, while interestingly, an EMDV isolate from caper possessed a truncated G gene sequence. Furthermore, low d N /d S ratios, indicative of purifying selection, were calculated for all genes. Phylogenetic analysis showed that the EMDV isolates clustered in three distinct subgroups based on their geographical origin, with the exception of one subgroup that consisted of isolates from northern Greece and Cyprus. Overall, the level of genetic diversity of EMDV differed between seed- and asexually propagated plants in our collection, and this could be related to the mode of transmission.

  9. Bovine Ephemeral Fever pada ternak sapi potong di Kabupaten Gunungkidul, Yogyakarta (Laporan Kasus

    Directory of Open Access Journals (Sweden)

    Alfarisa Nururrozi

    2017-06-01

    Full Text Available Bovine Ephemeral Fever (BEF or three days sickness is one of the most common disease in cattle. The disease is caused by rhabdoviridae virus transmitted through mosquito as a vectors. This paper aims to determine the incidence of BEF cases in Gunungkidul district, Yogyakarta. Diagnoses BEF based on information collected through the anamnesis from owner and the results of clinical examination. 134 (48% from 277 cows were examined in the Gunungkidul district period October-November 2016 diagnosed BEF. Clinical signs were found consist of anorexia 111 cases (34%, hyperthermia 99 cases (31%, lameness 42 cases (13%, cow downer 31 cases (10%, nasal discharge 35 cases (11% and hypersalivation 6 cases (2%. Bovine Ephemeral Fever mayority reported on the second day of the disease progression by 67 cases (42%. The most common therapy used combinations of antipyretics, antibiotics and vitamins were 45 cases (33%. Based on the information from the farmers, the treatment has given good results and absence of the absence of post-treatment recurrence

  10. Completed sequence and corrected annotation of the genome of maize Iranian mosaic virus.

    Science.gov (United States)

    Ghorbani, Abozar; Izadpanah, Keramatollah; Dietzgen, Ralf G

    2018-03-01

    Maize Iranian mosaic virus (MIMV) is a negative-sense single-stranded RNA virus that is classified in the genus Nucleorhabdovirus, family Rhabdoviridae. The MIMV genome contains six open reading frames (ORFs) that encode in 3΄ to 5΄ order the nucleocapsid protein (N), phosphoprotein (P), putative movement protein (P3), matrix protein (M), glycoprotein (G) and RNA-dependent RNA polymerase (L). In this study, we determined the first complete genome sequence of MIMV using Illumina RNA-Seq and 3'/5' RACE. MIMV genome ('Fars' isolate) is 12,426 nucleotides in length. Unexpectedly, the predicted N gene ORF of this isolate and of four other Iranian isolates is 143 nucleotides shorter than that of the MIMV coding-complete reference isolate 'Shiraz 1' (Genbank NC_011542), possibly due to a minor error in the previous sequence. Genetic variability among the N, P, P3 and G ORFs of Iranian MIMV isolates was limited, but highest in the G gene ORF. Phylogenetic analysis of complete nucleorhabdovirus genomes demonstrated a close evolutionary relationship between MIMV, maize mosaic virus and taro vein chlorosis virus.

  11. Prevalência de anticorpos neutralizantes para o arbovirus Piry em individuos da região de Ribeirão Preto, Estado de São Paulo

    Directory of Open Access Journals (Sweden)

    Luiz Tadeu Moraes Figueiredo

    1985-06-01

    Full Text Available Como parte de um inquérito sorológico pesquisando anticorpos para arbovírus, em habitantes da região de Ribeirão Preto, 202 soros foram testados por neutralização em camundongos, para o vírus Piry. Trata-se de um vesículo-vírus (Rhabdoviridae isolado em Belém do Pará, das vísceras de um marsupial e do sangue de um caso humano. O Piry é causa de doença humana aguda febril. Desconhece-se seus reservatórios animais, vetores e seu ciclo biológico. Os 202 soros testados foram obtidos por venopunção, de moradores adultos em áreas rurais e urbana da cidade de Ribeirão Preto. Os resultados mostraram prevalência de 14,3% de anticorpos neutralizantes para o vírus Piry. Conclui-se que infecções pelo Piry, ou outro agente antigenicamente relacionado, ocorram endemicamente nesta região.

  12. Short communication. First report of Eggplant mottled dwarf virus in China rose in southern Spain

    Directory of Open Access Journals (Sweden)

    G. Parrella

    2013-01-01

    Full Text Available Eggplant mottled dwarf virus (EMDV, genus Nucleorhabdovirus, family Rhabdoviridae is transmitted in nature by leafhoppers and its natural host range includes vegetable crops (eggplant, tomato, potato, pepper, ornamentals (pittosporum, honeysuckle, pelargonium and wild plants (caper, Solanum nigrum. The prevalence of infections is generally very low. EMDV has been demonstrated to be the causal agent of a vein yellowing disease of China rose (Hibiscus rosa-sinensis in southern Italy. In this work, four locations from Málaga and Granada provinces (southern Spain were surveyed in 2011 to study the prevalence of EMDV infections in China rose by serological and molecular methods. Overall, EMDV was detected in 77.3% of the samples (33 out of 45 samples tested. Mechanical transmission tests and immunoelectron microscopy confirmed the presence of EMDV. The possible causes of such a high and unexpected prevalence are discussed. The use of molecular hibridization with an EMDV specific riboprobe is proposed for early screening of vegetative propagated China rose plants to avoid dissemination of infected material.

  13. Sigma viruses from three species of Drosophila form a major new clade in the rhabdovirus phylogeny

    Science.gov (United States)

    Longdon, Ben; Obbard, Darren J.; Jiggins, Francis M.

    2010-01-01

    The sigma virus (DMelSV), which is a natural pathogen of Drosophila melanogaster, is the only Drosophila-specific rhabdovirus that has been described. We have discovered two new rhabdoviruses, D. obscura and D. affinis, which we have named DObsSV and DAffSV, respectively. We sequenced the complete genomes of DObsSV and DMelSV, and the L gene from DAffSV. Combining these data with sequences from a wide range of other rhabdoviruses, we found that the three sigma viruses form a distinct clade which is a sister group to the Dimarhabdovirus supergroup, and the high levels of divergence between these viruses suggest that they deserve to be recognized as a new genus. Furthermore, our analysis produced the most robustly supported phylogeny of the Rhabdoviridae to date, allowing us to reconstruct the major transitions that have occurred during the evolution of the family. Our data suggest that the bias towards research into plants and vertebrates means that much of the diversity of rhabdoviruses has been missed, and rhabdoviruses may be common pathogens of insects. PMID:19812076

  14. Novel viruses in salivary glands of mosquitoes from sylvatic Cerrado, Midwestern Brazil.

    Directory of Open Access Journals (Sweden)

    Andressa Zelenski de Lara Pinto

    Full Text Available Viruses may represent the most diverse microorganisms on Earth. Novel viruses and variants continue to emerge. Mosquitoes are the most dangerous animals to humankind. This study aimed at identifying viral RNA diversity in salivary glands of mosquitoes captured in a sylvatic area of Cerrado at the Chapada dos Guimarães National Park, Mato Grosso, Brazil. In total, 66 Culicinae mosquitoes belonging to 16 species comprised 9 pools, subjected to viral RNA extraction, double-strand cDNA synthesis, random amplification and high-throughput sequencing, revealing the presence of seven insect-specific viruses, six of which represent new species of Rhabdoviridae (Lobeira virus, Chuviridae (Cumbaru and Croada viruses, Totiviridae (Murici virus and Partitiviridae (Araticum and Angico viruses. In addition, two mosquito pools presented Kaiowa virus sequences that had already been reported in South Pantanal, Brazil. These findings amplify the understanding of viral diversity in wild-type Culicinae. Insect-specific viruses may present a broader diversity than previously imagined and future studies may address their possible role in mosquito vector competence.

  15. Ebola virus (EBOV) infection: Therapeutic strategies.

    Science.gov (United States)

    De Clercq, Erik

    2015-01-01

    Within less than a year after its epidemic started (in December 2013) in Guinea, Ebola virus (EBOV), a member of the filoviridae, has spread over a number of West-African countries (Guinea, Sierra Leone and Liberia) and gained allures that have been unprecedented except by human immunodeficiency virus (HIV). Although EBOV is highly contagious and transmitted by direct contact with body fluids, it could be counteracted by the adequate chemoprophylactic and -therapeutic interventions: vaccines, antibodies, siRNAs (small interfering RNAs), interferons and chemical substances, i.e. neplanocin A derivatives (i.e. 3-deazaneplanocin A), BCX4430, favipiravir (T-705), endoplasmic reticulum (ER) α-glucosidase inhibitors and a variety of compounds that have been found to inhibit EBOV infection blocking viral entry or by a mode of action that still has to be resolved. Much has to be learned from the mechanism of action of the compounds active against VSV (vesicular stomatitis virus), a virus belonging to the rhabdoviridae, that in its mode of replication could be exemplary for the replication of filoviridae. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Expression, purification and crystallization of a lyssavirus matrix (M) protein

    Science.gov (United States)

    Assenberg, René; Delmas, Olivier; Graham, Stephen C.; Verma, Anil; Berrow, Nick; Stuart, David I.; Owens, Raymond J.; Bourhy, Hervé; Grimes, Jonathan M.

    2008-01-01

    The matrix (M) proteins of lyssaviruses (family Rhabdoviridae) are crucial to viral morphogenesis as well as in modulating replication and transcription of the viral genome. To date, no high-resolution structural information has been obtained for full-length rhabdovirus M. Here, the cloning, expression and purification of the matrix proteins from three lyssaviruses, Lagos bat virus (LAG), Mokola virus and Thailand dog virus, are described. Crystals have been obtained for the full-length M protein from Lagos bat virus (LAG M). Successful crystallization depended on a number of factors, in particular the addition of an N-terminal SUMO fusion tag to increase protein solubility. Diffraction data have been recorded from crystals of native and selenomethionine-labelled LAG M to 2.75 and 3.0 Å resolution, respectively. Preliminary analysis indicates that these crystals belong to space group P6122 or P6522, with unit-cell parameters a = b = 56.9–57.2, c = 187.9–188.6 Å, consistent with the presence of one molecule per asymmetric unit, and structure determination is currently in progress. PMID:18391421

  17. Role of Host-Driven Mutagenesis in Determining Genome Evolution of Sigma Virus (DMelSV; Rhabdoviridae) in Drosophila melanogaster.

    Science.gov (United States)

    Piontkivska, Helen; Matos, Luis F; Paul, Sinu; Scharfenberg, Brian; Farmerie, William G; Miyamoto, Michael M; Wayne, Marta L

    2016-10-05

    Sigma virus (DMelSV) is ubiquitous in natural populations of Drosophila melanogaster. Host-mediated, selective RNA editing of adenosines to inosines (ADAR) may contribute to control of viral infection by preventing transcripts from being transported into the cytoplasm or being translated accurately; or by increasing the viral genomic mutation rate. Previous PCR-based studies showed that ADAR mutations occur in DMelSV at low frequency. Here we use SOLiD TM deep sequencing of flies from a single host population from Athens, GA, USA to comprehensively evaluate patterns of sequence variation in DMelSV with respect to ADAR. GA dinucleotides, which are weak targets of ADAR, are strongly overrepresented in the positive strand of the virus, consistent with selection to generate ADAR resistance on this complement of the transient, double-stranded RNA intermediate in replication and transcription. Potential ADAR sites in a worldwide sample of viruses are more likely to be "resistant" if the sites do not vary among samples. Either variable sites are less constrained and hence are subject to weaker selection than conserved sites, or the variation is driven by ADAR. We also find evidence of mutations segregating within hosts, hereafter referred to as hypervariable sites. Some of these sites were variable only in one or two flies (i.e., rare); others were shared by four or even all five of the flies (i.e., common). Rare and common hypervariable sites were indistinguishable with respect to susceptibility to ADAR; however, polymorphism in rare sites were more likely to be consistent with the action of ADAR than in common ones, again suggesting that ADAR is deleterious to the virus. Thus, in DMelSV, host mutagenesis is constraining viral evolution both within and between hosts. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Role of Host-Driven Mutagenesis in Determining Genome Evolution of Sigma Virus (DMelSV; Rhabdoviridae) in Drosophila melanogaster

    Science.gov (United States)

    Piontkivska, Helen; Matos, Luis F.; Paul, Sinu; Scharfenberg, Brian; Farmerie, William G.; Miyamoto, Michael M.; Wayne, Marta L.

    2016-01-01

    Abstract Sigma virus (DMelSV) is ubiquitous in natural populations of Drosophila melanogaster. Host-mediated, selective RNA editing of adenosines to inosines (ADAR) may contribute to control of viral infection by preventing transcripts from being transported into the cytoplasm or being translated accurately; or by increasing the viral genomic mutation rate. Previous PCR-based studies showed that ADAR mutations occur in DMelSV at low frequency. Here we use SOLiDTM deep sequencing of flies from a single host population from Athens, GA, USA to comprehensively evaluate patterns of sequence variation in DMelSV with respect to ADAR. GA dinucleotides, which are weak targets of ADAR, are strongly overrepresented in the positive strand of the virus, consistent with selection to generate ADAR resistance on this complement of the transient, double-stranded RNA intermediate in replication and transcription. Potential ADAR sites in a worldwide sample of viruses are more likely to be “resistant” if the sites do not vary among samples. Either variable sites are less constrained and hence are subject to weaker selection than conserved sites, or the variation is driven by ADAR. We also find evidence of mutations segregating within hosts, hereafter referred to as hypervariable sites. Some of these sites were variable only in one or two flies (i.e., rare); others were shared by four or even all five of the flies (i.e., common). Rare and common hypervariable sites were indistinguishable with respect to susceptibility to ADAR; however, polymorphism in rare sites were more likely to be consistent with the action of ADAR than in common ones, again suggesting that ADAR is deleterious to the virus. Thus, in DMelSV, host mutagenesis is constraining viral evolution both within and between hosts. PMID:27614234

  19. Moussa virus: a new member of the Rhabdoviridae family isolated from Culex decens mosquitoes in Côte d'Ivoire.

    Science.gov (United States)

    Quan, Phenix-Lan; Junglen, Sandra; Tashmukhamedova, Alla; Conlan, Sean; Hutchison, Stephen K; Kurth, Andreas; Ellerbrok, Heinz; Egholm, Michael; Briese, Thomas; Leendertz, Fabian H; Lipkin, W Ian

    2010-01-01

    Characterization of arboviruses at the interface of pristine habitats and anthropogenic landscapes is crucial to comprehensive emergent disease surveillance and forecasting efforts. In context of a surveillance campaign in and around a West African rainforest, particles morphologically consistent with rhabdoviruses were identified in cell cultures infected with homogenates of trapped mosquitoes. RNA recovered from these cultures was used to derive the first complete genome sequence of a rhabdovirus isolated from Culex decens mosquitoes in Côte d'Ivoire, tentatively named Moussa virus (MOUV). MOUV shows the classical genome organization of rhabdoviruses, with five open reading frames (ORF) in a linear order. However, sequences show only limited conservation (12-33% identity at amino acid level), and ORF2 and ORF3 have no significant similarity to sequences deposited in GenBank. Phylogenetic analysis indicates a potential new species with distant relationship to Tupaia and Tibrogargan virus.

  20. Genomic characterization and phylogenetic position of two new species in Rhabdoviridae infecting the parasitic copepod, salmon louse (Lepeophtheirus salmonis).

    Science.gov (United States)

    Økland, Arnfinn Lodden; Nylund, Are; Øvergård, Aina-Cathrine; Blindheim, Steffen; Watanabe, Kuninori; Grotmol, Sindre; Arnesen, Carl-Erik; Plarre, Heidrun

    2014-01-01

    Several new viruses have emerged during farming of salmonids in the North Atlantic causing large losses to the industry. Still the blood feeding copepod parasite, Lepeophtheirus salmonis, remains the major challenge for the industry. Histological examinations of this parasite have revealed the presence of several virus-like particles including some with morphologies similar to rhabdoviruses. This study is the first description of the genome and target tissues of two new species of rhabdoviruses associated with pathology in the salmon louse. Salmon lice were collected at different Atlantic salmon (Salmo salar) farming sites on the west coast of Norway and prepared for histology, transmission electron microscopy and Illumina sequencing of the complete RNA extracted from these lice. The nearly complete genomes, around 11,600 nucleotides encoding the five typical rhabdovirus genes N, P, M, G and L, of two new species were obtained. The genome sequences, the putative protein sequences, and predicted transcription strategies for the two viruses are presented. Phylogenetic analyses of the putative N and L proteins indicated closest similarity to the Sigmavirus/Dimarhabdoviruses cluster, however, the genomes of both new viruses are significantly diverged with no close affinity to any of the existing rhabdovirus genera. In situ hybridization, targeting the N protein genes, showed that the viruses were present in the same glandular tissues as the observed rhabdovirus-like particles. Both viruses were present in all developmental stages of the salmon louse, and associated with necrosis of glandular tissues in adult lice. As the two viruses were present in eggs and free-living planktonic stages of the salmon louse vertical, transmission of the viruses are suggested. The tissues of the lice host, Atlantic salmon, with the exception of skin at the attachment site for the salmon louse chalimi stages, were negative for these two viruses.

  1. Moussa virus: a new member of the Rhabdoviridae family isolated from Culex decens mosquitoes in Côte d’Ivoire

    Science.gov (United States)

    Quan, Phenix-Lan; Junglen, Sandra; Tashmukhamedova, Alla; Conlan, Sean; Hutchison, Stephen K.; Kurth, Andreas; Ellerbrok, Heinz; Egholm, Michael; Briese, Thomas; Leendertz, Fabian H.; Ian Lipkin, W

    2009-01-01

    Characterization of arboviruses at the interface of pristine habitats and anthropogenic landscapes is crucial to comprehensive emergent disease surveillance and forecasting efforts. In context of surveillance campaign in and around a West African rainforest, particles morphologically consistent with rhabdoviruses were identified in cell cultures infected with homogenates of trapped mosquitoes. RNA recovered from these cultures was used to derive the first complete genome sequence of a rhabdovirus isolated from Culex decens mosquitoes in Côte d’Ivoire, tentatively named Moussa virus (MOUV). MOUV shows the classical genome organization of rhabdoviruses, with five open reading frames (ORF) in a linear order. However, sequences show only limited conservation (12–33% identity at amino acid level), and ORF2 and ORF3 have no significant similarity to sequences deposited in GenBank. Phylogenetic analysis indicates a potential new species with distant relationship to Tupaia and Tibrogargan virus. PMID:19804801

  2. Genomic Characterization and Phylogenetic Position of Two New Species in Rhabdoviridae Infecting the Parasitic Copepod, Salmon Louse (Lepeophtheirus salmonis)

    Science.gov (United States)

    Økland, Arnfinn Lodden; Nylund, Are; Øvergård, Aina-Cathrine; Blindheim, Steffen; Watanabe, Kuninori; Grotmol, Sindre; Arnesen, Carl-Erik; Plarre, Heidrun

    2014-01-01

    Several new viruses have emerged during farming of salmonids in the North Atlantic causing large losses to the industry. Still the blood feeding copepod parasite, Lepeophtheirus salmonis, remains the major challenge for the industry. Histological examinations of this parasite have revealed the presence of several virus-like particles including some with morphologies similar to rhabdoviruses. This study is the first description of the genome and target tissues of two new species of rhabdoviruses associated with pathology in the salmon louse. Salmon lice were collected at different Atlantic salmon (Salmo salar) farming sites on the west coast of Norway and prepared for histology, transmission electron microscopy and Illumina sequencing of the complete RNA extracted from these lice. The nearly complete genomes, around 11 600 nucleotides encoding the five typical rhabdovirus genes N, P, M, G and L, of two new species were obtained. The genome sequences, the putative protein sequences, and predicted transcription strategies for the two viruses are presented. Phylogenetic analyses of the putative N and L proteins indicated closest similarity to the Sigmavirus/Dimarhabdoviruses cluster, however, the genomes of both new viruses are significantly diverged with no close affinity to any of the existing rhabdovirus genera. In situ hybridization, targeting the N protein genes, showed that the viruses were present in the same glandular tissues as the observed rhabdovirus-like particles. Both viruses were present in all developmental stages of the salmon louse, and associated with necrosis of glandular tissues in adult lice. As the two viruses were present in eggs and free-living planktonic stages of the salmon louse vertical, transmission of the viruses are suggested. The tissues of the lice host, Atlantic salmon, with the exception of skin at the attachment site for the salmon louse chalimi stages, were negative for these two viruses. PMID:25402203

  3. Genomic characterization and phylogenetic position of two new species in Rhabdoviridae infecting the parasitic copepod, salmon louse (Lepeophtheirus salmonis.

    Directory of Open Access Journals (Sweden)

    Arnfinn Lodden Økland

    Full Text Available Several new viruses have emerged during farming of salmonids in the North Atlantic causing large losses to the industry. Still the blood feeding copepod parasite, Lepeophtheirus salmonis, remains the major challenge for the industry. Histological examinations of this parasite have revealed the presence of several virus-like particles including some with morphologies similar to rhabdoviruses. This study is the first description of the genome and target tissues of two new species of rhabdoviruses associated with pathology in the salmon louse. Salmon lice were collected at different Atlantic salmon (Salmo salar farming sites on the west coast of Norway and prepared for histology, transmission electron microscopy and Illumina sequencing of the complete RNA extracted from these lice. The nearly complete genomes, around 11,600 nucleotides encoding the five typical rhabdovirus genes N, P, M, G and L, of two new species were obtained. The genome sequences, the putative protein sequences, and predicted transcription strategies for the two viruses are presented. Phylogenetic analyses of the putative N and L proteins indicated closest similarity to the Sigmavirus/Dimarhabdoviruses cluster, however, the genomes of both new viruses are significantly diverged with no close affinity to any of the existing rhabdovirus genera. In situ hybridization, targeting the N protein genes, showed that the viruses were present in the same glandular tissues as the observed rhabdovirus-like particles. Both viruses were present in all developmental stages of the salmon louse, and associated with necrosis of glandular tissues in adult lice. As the two viruses were present in eggs and free-living planktonic stages of the salmon louse vertical, transmission of the viruses are suggested. The tissues of the lice host, Atlantic salmon, with the exception of skin at the attachment site for the salmon louse chalimi stages, were negative for these two viruses.

  4. Expression, purification and crystallization of a lyssavirus matrix (M) protein

    Energy Technology Data Exchange (ETDEWEB)

    Assenberg, René [Division of Structural Biology and Oxford Protein Production Facility, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Delmas, Olivier [UPRE Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, 28 Rue du Docteur Roux, 75724 Paris CEDEX 15 (France); Graham, Stephen C.; Verma, Anil; Berrow, Nick; Stuart, David I.; Owens, Raymond J. [Division of Structural Biology and Oxford Protein Production Facility, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Bourhy, Hervé [UPRE Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, 28 Rue du Docteur Roux, 75724 Paris CEDEX 15 (France); Grimes, Jonathan M., E-mail: jonathan@strubi.ox.ac.uk [Division of Structural Biology and Oxford Protein Production Facility, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2008-04-01

    The expression, purification and crystallization of the full-length matrix protein from three lyssaviruses is described. The matrix (M) proteins of lyssaviruses (family Rhabdoviridae) are crucial to viral morphogenesis as well as in modulating replication and transcription of the viral genome. To date, no high-resolution structural information has been obtained for full-length rhabdovirus M. Here, the cloning, expression and purification of the matrix proteins from three lyssaviruses, Lagos bat virus (LAG), Mokola virus and Thailand dog virus, are described. Crystals have been obtained for the full-length M protein from Lagos bat virus (LAG M). Successful crystallization depended on a number of factors, in particular the addition of an N-terminal SUMO fusion tag to increase protein solubility. Diffraction data have been recorded from crystals of native and selenomethionine-labelled LAG M to 2.75 and 3.0 Å resolution, respectively. Preliminary analysis indicates that these crystals belong to space group P6{sub 1}22 or P6{sub 5}22, with unit-cell parameters a = b = 56.9–57.2, c = 187.9–188.6 Å, consistent with the presence of one molecule per asymmetric unit, and structure determination is currently in progress.

  5. A metagenomic survey of viral abundance and diversity in mosquitoes from Hubei province.

    Directory of Open Access Journals (Sweden)

    Chenyan Shi

    Full Text Available Mosquitoes as one of the most common but important vectors have the potential to transmit or acquire a lot of viruses through biting, however viral flora in mosquitoes and its impact on mosquito-borne disease transmission has not been well investigated and evaluated. In this study, the metagenomic techniquehas been successfully employed in analyzing the abundance and diversity of viral community in three mosquito samples from Hubei, China. Among 92,304 reads produced through a run with 454 GS FLX system, 39% have high similarities with viral sequences belonging to identified bacterial, fungal, animal, plant and insect viruses, and 0.02% were classed into unidentified viral sequences, demonstrating high abundance and diversity of viruses in mosquitoes. Furthermore, two novel viruses in subfamily Densovirinae and family Dicistroviridae were identified, and six torque tenosus virus1 in family Anelloviridae, three porcine parvoviruses in subfamily Parvovirinae and a Culex tritaeniorhynchus rhabdovirus in Family Rhabdoviridae were preliminarily characterized. The viral metagenomic analysis offered us a deep insight into the viral population of mosquito which played an important role in viral initiative or passive transmission and evolution during the process.

  6. Vertically transmitted rhabdoviruses are found across three insect families and have dynamic interactions with their hosts.

    Science.gov (United States)

    Longdon, Ben; Day, Jonathan P; Schulz, Nora; Leftwich, Philip T; de Jong, Maaike A; Breuker, Casper J; Gibbs, Melanie; Obbard, Darren J; Wilfert, Lena; Smith, Sophia C L; McGonigle, John E; Houslay, Thomas M; Wright, Lucy I; Livraghi, Luca; Evans, Luke C; Friend, Lucy A; Chapman, Tracey; Vontas, John; Kambouraki, Natasa; Jiggins, Francis M

    2017-01-25

    A small number of free-living viruses have been found to be obligately vertically transmitted, but it remains uncertain how widespread vertically transmitted viruses are and how quickly they can spread through host populations. Recent metagenomic studies have found several insects to be infected with sigma viruses (Rhabdoviridae). Here, we report that sigma viruses that infect Mediterranean fruit flies (Ceratitis capitata), Drosophila immigrans, and speckled wood butterflies (Pararge aegeria) are all vertically transmitted. We find patterns of vertical transmission that are consistent with those seen in Drosophila sigma viruses, with high rates of maternal transmission, and lower rates of paternal transmission. This mode of transmission allows them to spread rapidly in populations, and using viral sequence data we found the viruses in D. immigrans and C. capitata had both recently swept through host populations. The viruses were common in nature, with mean prevalences of 12% in C. capitata, 38% in D. immigrans and 74% in P. aegeria We conclude that vertically transmitted rhabdoviruses may be widespread in a broad range of insect taxa, and that these viruses can have dynamic interactions with their hosts. © 2017 The Authors.

  7. In vitro inhibition of fish rhabdoviruses by Japanese flounder, Paralichthys olivaceus Mx

    International Nuclear Information System (INIS)

    Caipang, Christopher Marlowe A.; Hirono, Ikuo; Aoki, Takashi

    2003-01-01

    A homologous fish cell line stably expressing the recombinant Japanese flounder Mx (JFMx) was infected with hirame rhabdovirus (HIRRV) and viral hemorrhagic septicemia virus (VHSV), both of which are negative single-stranded RNA viruses belonging to the Rhabdoviridae family. Analysis of primary transcription of the two rhabdoviruses showed that there was lower expression level and copy number of the viral nucleoprotein transcript in the JFMx-transfected cell line than the infected, control cells, although no significant difference was observed. This suggests that JFMx may not be a potent inhibitor of rhabdoviral primary transcription. Kinetics of rhabdovirus expression by RT-PCR and quantitative real-time RT-PCR showed reduced levels of the rhabdoviral glycoprotein and nucleoprotein transcripts over time, indicating the possible role of JFMx in blocking rhabdoviral replication by interfering with the transcription of the viral subgenomic mRNAs. Significant inhibition in rhabdovirus replication consequently resulted in the synthesis of fewer viral particles. This may explain why JFMx-expressing cells are less susceptible to virus-induced cell lysis, and thus, why they would have a significantly higher survival than the infected, control cells. These results provide direct evidence that JFMx has an antiviral effect in vitro

  8. Fish Rhabdoviruses

    Science.gov (United States)

    Kurath, G.; Winton, J.

    2008-01-01

    Many important viral pathogens of fish are members of the family Rhabdoviridae. The viruses in this large group cause significant losses in populations of wild fish as well as among fish reared in aquaculture. Fish rhabdoviruses often have a wide host and geographic range, and infect aquatic animals in both freshwater and seawater. The fish rhabdoviruses comprise a diverse collection of isolates that can be placed in one of two quite different groups: isolates that are members of the established genusNovirhabdovirus, and those that are most similar to members of the genus Vesiculovirus. Because the diseases caused by fish rhabdoviruses are important to aquaculture, diagnostic methods for their detection and identification are well established. In addition to regulations designed to reduce the spread of fish viruses, a significant body of research has addressed methods for the control or prevention of diseases caused by fish rhabdoviruses, including vaccination. The number of reported fish rhabdoviruses continues to grow as a result of the expansion of aquaculture, the increase in global trade, the development of improved diagnostic methods, and heightened surveillance activities. Fish rhabdoviruses serve as useful components of model systems to study vertebrate virus disease, epidemiology, and immunology.

  9. Expression, purification and crystallization of a lyssavirus matrix (M) protein

    International Nuclear Information System (INIS)

    Assenberg, René; Delmas, Olivier; Graham, Stephen C.; Verma, Anil; Berrow, Nick; Stuart, David I.; Owens, Raymond J.; Bourhy, Hervé; Grimes, Jonathan M.

    2008-01-01

    The expression, purification and crystallization of the full-length matrix protein from three lyssaviruses is described. The matrix (M) proteins of lyssaviruses (family Rhabdoviridae) are crucial to viral morphogenesis as well as in modulating replication and transcription of the viral genome. To date, no high-resolution structural information has been obtained for full-length rhabdovirus M. Here, the cloning, expression and purification of the matrix proteins from three lyssaviruses, Lagos bat virus (LAG), Mokola virus and Thailand dog virus, are described. Crystals have been obtained for the full-length M protein from Lagos bat virus (LAG M). Successful crystallization depended on a number of factors, in particular the addition of an N-terminal SUMO fusion tag to increase protein solubility. Diffraction data have been recorded from crystals of native and selenomethionine-labelled LAG M to 2.75 and 3.0 Å resolution, respectively. Preliminary analysis indicates that these crystals belong to space group P6 1 22 or P6 5 22, with unit-cell parameters a = b = 56.9–57.2, c = 187.9–188.6 Å, consistent with the presence of one molecule per asymmetric unit, and structure determination is currently in progress

  10. A Metagenomic Survey of Viral Abundance and Diversity in Mosquitoes from Hubei Province

    Science.gov (United States)

    Shi, Chenyan; Liu, Yi; Hu, Xiaomin; Xiong, Jinfeng; Zhang, Bo; Yuan, Zhiming

    2015-01-01

    Mosquitoes as one of the most common but important vectors have the potential to transmit or acquire a lot of viruses through biting, however viral flora in mosquitoes and its impact on mosquito-borne disease transmission has not been well investigated and evaluated. In this study, the metagenomic techniquehas been successfully employed in analyzing the abundance and diversity of viral community in three mosquito samples from Hubei, China. Among 92,304 reads produced through a run with 454 GS FLX system, 39% have high similarities with viral sequences belonging to identified bacterial, fungal, animal, plant and insect viruses, and 0.02% were classed into unidentified viral sequences, demonstrating high abundance and diversity of viruses in mosquitoes. Furthermore, two novel viruses in subfamily Densovirinae and family Dicistroviridae were identified, and six torque tenosus virus1 in family Anelloviridae, three porcine parvoviruses in subfamily Parvovirinae and a Culex tritaeniorhynchus rhabdovirus in Family Rhabdoviridae were preliminarily characterized. The viral metagenomic analysis offered us a deep insight into the viral population of mosquito which played an important role in viral initiative or passive transmission and evolution during the process. PMID:26030271

  11. Immunity to fish rhabdoviruses

    Science.gov (United States)

    Purcell, Maureen K.; Laing, Kerry J.; Winton, James R.

    2012-01-01

    Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN) system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M) protein to mediate host-cell shutoff and the non-virion (NV) protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.

  12. Vertically transmitted rhabdoviruses are found across three insect families and have dynamic interactions with their hosts

    Science.gov (United States)

    Day, Jonathan P.; Schulz, Nora; Leftwich, Philip T.; de Jong, Maaike A.; Wilfert, Lena; Smith, Sophia C. L.; McGonigle, John E.; Houslay, Thomas M.; Livraghi, Luca; Evans, Luke C.; Friend, Lucy A.; Vontas, John; Kambouraki, Natasa

    2017-01-01

    A small number of free-living viruses have been found to be obligately vertically transmitted, but it remains uncertain how widespread vertically transmitted viruses are and how quickly they can spread through host populations. Recent metagenomic studies have found several insects to be infected with sigma viruses (Rhabdoviridae). Here, we report that sigma viruses that infect Mediterranean fruit flies (Ceratitis capitata), Drosophila immigrans, and speckled wood butterflies (Pararge aegeria) are all vertically transmitted. We find patterns of vertical transmission that are consistent with those seen in Drosophila sigma viruses, with high rates of maternal transmission, and lower rates of paternal transmission. This mode of transmission allows them to spread rapidly in populations, and using viral sequence data we found the viruses in D. immigrans and C. capitata had both recently swept through host populations. The viruses were common in nature, with mean prevalences of 12% in C. capitata, 38% in D. immigrans and 74% in P. aegeria. We conclude that vertically transmitted rhabdoviruses may be widespread in a broad range of insect taxa, and that these viruses can have dynamic interactions with their hosts. PMID:28100819

  13. Epidemiological characteristics of infectious hematopoietic necrosis virus (IHNV): a review.

    Science.gov (United States)

    Dixon, Peter; Paley, Richard; Alegria-Moran, Raul; Oidtmann, Birgit

    2016-06-10

    Infectious hematopoietic necrosis virus (IHNV, Rhabdoviridae), is the causative agent of infectious hematopoietic necrosis (IHN), a disease notifiable to the World Organisation for Animal Health, and various countries and trading areas (including the European Union). IHNV is an economically important pathogen causing clinical disease and mortalities in a wide variety of salmonid species, including the main salmonid species produced in aquaculture, Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). We reviewed the scientific literature on IHNV on a range of topics, including geographic distribution; host range; conditions required for infection and clinical disease; minimum infectious dose; subclinical infection; shedding of virus by infected fish; transmission via eggs; diagnostic tests; pathogen load and survival of IHNV in host tissues. This information is required for a range of purposes including import risk assessments; parameterisation of disease models; for surveillance planning; and evaluation of the chances of eradication of the pathogen to name just a few. The review focuses on issues that are of relevance for the European context, but many of the data summarised have relevance to IHN globally. Examples for application of the information is presented and data gaps highlighted.

  14. A perspective on lyssavirus emergence and perpetuation.

    Science.gov (United States)

    Rupprecht, Charles E; Turmelle, Amy; Kuzmin, Ivan V

    2011-12-01

    Rabies is propagated globally by viruses in the Family Rhabdoviridae, Genus Lyssavirus. These RNA viruses utilize the mammalian central nervous system as their ultimate niche, and exploit routine social mechanisms, as well as host behavioral alterations, to facilitate transmission by neural transport and innervations of the salivary glands, and ultimately excretion via the saliva, towards circulation thereafter in host populations. All mammals are susceptible to infection, but lyssavirus reservoirs are represented by several species of Carnivora, with viral global diversity and distribution in toto driven by a wide variety of the Chiroptera. Pathogen diversity is maintained by multiple faunas, and facilitated by pronounced host vagility, as exemplified by the ease of routine daily and seasonal movements by bats. Viral 'ensembles', or subpopulations associated with productive transmission events, emerge locally in vivo through a combination of naive host infections in some individuals versus acquired immunity by others, using complex metapopulation dynamics. Enhanced surveillance, improved diagnostics, increased pathogen detection, and an integrated One Health approach, targeting human, domestic animal and wildlife interfaces, provide modern insights to the ecology of bat lyssaviruses to augment future prevention and control. Published by Elsevier B.V.

  15. Negative-strand RNA viruses: the plant-infecting counterparts.

    Science.gov (United States)

    Kormelink, Richard; Garcia, Maria Laura; Goodin, Michael; Sasaya, Takahide; Haenni, Anne-Lise

    2011-12-01

    While a large number of negative-strand (-)RNA viruses infect animals and humans, a relative small number have plants as their primary host. Some of these have been classified within families together with animal/human infecting viruses due to similarities in particle morphology and genome organization, while others have just recently been/or are still classified in floating genera. In most cases, at least two striking differences can still be discerned between the animal/human-infecting viruses and their plant-infecting counterparts which for the latter relate to their adaptation to plants as hosts. The first one is the capacity to modify plasmodesmata to facilitate systemic spread of infectious viral entities throughout the plant host. The second one is the capacity to counteract RNA interference (RNAi, also referred to as RNA silencing), the innate antiviral defence system of plants and insects. In this review an overview will be presented on the negative-strand RNA plant viruses classified within the families Bunyaviridae, Rhabdoviridae, Ophioviridae and floating genera Tenuivirus and Varicosavirus. Genetic differences with the animal-infecting counterparts and their evolutionary descendants will be described in light of the above processes. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Immunity to fish rhabdoviruses.

    Science.gov (United States)

    Purcell, Maureen K; Laing, Kerry J; Winton, James R

    2012-01-01

    Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN) system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M) protein to mediate host-cell shutoff and the non‑virion (NV) protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.

  17. Immunity to Fish Rhabdoviruses

    Directory of Open Access Journals (Sweden)

    Maureen K. Purcell

    2012-01-01

    Full Text Available Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M protein to mediate host-cell shutoff and the non‑virion (NV protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.

  18. On the interference of clinical outcome on rabies transmission an perpetuation

    Directory of Open Access Journals (Sweden)

    PE Brandão

    2009-01-01

    Full Text Available Rabies is a viral zoonotic infectious disease that affects mammals and is caused by genotypes/species of the Lyssavirus genus (Rhabdoviridae, Mononegavirales, with the genotype 1 (classic rabies virus - RABV being the most prevalent. Despite continuous efforts, rabies is still an incurable disease that causes thousands of deaths amongst humans worldwide. Due to a wide range of hosts and the different evolutionary paths of RABV in each host, several host-specific variants have arisen in an ongoing process. The result of RABV replication in nervous tissues may lead to two opposite clinical outcomes, i.e., paralytic/dumb form and encephalitic/furious one. The paralytic form creates dead-end hosts mainly amongst herbivores, while the furious form of the disease allows for augmented transmission when manifested in gregarious carnivores, as their natural aggressive behavior is accentuated by the disease itself. The aim of this article is to propose a theoretical model intended to explore how the rabies virus intrinsically modulates the immune system of different host classes, the pathological changes that the virus causes in these animals and how these elements favor its own perpetuation in nature, thus providing a basis for better prediction of the patterns this disease may present.

  19. Characterization of Viral Communities of Biting Midges and Identification of Novel Thogotovirus Species and Rhabdovirus Genus

    Directory of Open Access Journals (Sweden)

    Sarah Temmam

    2016-03-01

    Full Text Available More than two thirds of emerging viruses are of zoonotic origin, and among them RNA viruses represent the majority. Ceratopogonidae (genus Culicoides are well-known vectors of several viruses responsible for epizooties (bluetongue, epizootic haemorrhagic disease, etc.. They are also vectors of the only known virus infecting humans: the Oropouche virus. Female midges usually feed on a variety of hosts, leading to possible transmission of emerging viruses from animals to humans. In this context, we report here the analysis of RNA viral communities of Senegalese biting midges using next-generation sequencing techniques as a preliminary step toward the identification of potential viral biohazards. Sequencing of the RNA virome of three pools of Culicoides revealed the presence of a significant diversity of viruses infecting plants, insects and mammals. Several novel viruses were detected, including a novel Thogotovirus species, related but genetically distant from previously described tick-borne thogotoviruses. Novel rhabdoviruses were also detected, possibly constituting a novel Rhabdoviridae genus, and putatively restricted to insects. Sequences related to the major viruses transmitted by Culicoides, i.e., African horse sickness, bluetongue and epizootic haemorrhagic disease viruses were also detected. This study highlights the interest in monitoring the emergence and circulation of zoonoses and epizooties using their arthropod vectors.

  20. Characterization of Viral Communities of Biting Midges and Identification of Novel Thogotovirus Species and Rhabdovirus Genus

    Science.gov (United States)

    Temmam, Sarah; Monteil-Bouchard, Sonia; Robert, Catherine; Baudoin, Jean-Pierre; Sambou, Masse; Aubadie-Ladrix, Maxence; Labas, Noémie; Raoult, Didier; Mediannikov, Oleg; Desnues, Christelle

    2016-01-01

    More than two thirds of emerging viruses are of zoonotic origin, and among them RNA viruses represent the majority. Ceratopogonidae (genus Culicoides) are well-known vectors of several viruses responsible for epizooties (bluetongue, epizootic haemorrhagic disease, etc.). They are also vectors of the only known virus infecting humans: the Oropouche virus. Female midges usually feed on a variety of hosts, leading to possible transmission of emerging viruses from animals to humans. In this context, we report here the analysis of RNA viral communities of Senegalese biting midges using next-generation sequencing techniques as a preliminary step toward the identification of potential viral biohazards. Sequencing of the RNA virome of three pools of Culicoides revealed the presence of a significant diversity of viruses infecting plants, insects and mammals. Several novel viruses were detected, including a novel Thogotovirus species, related but genetically distant from previously described tick-borne thogotoviruses. Novel rhabdoviruses were also detected, possibly constituting a novel Rhabdoviridae genus, and putatively restricted to insects. Sequences related to the major viruses transmitted by Culicoides, i.e., African horse sickness, bluetongue and epizootic haemorrhagic disease viruses were also detected. This study highlights the interest in monitoring the emergence and circulation of zoonoses and epizooties using their arthropod vectors. PMID:26978389

  1. Genomic characterisation of Almpiwar virus, Harrison Dam virus and Walkabout Creek virus; three novel rhabdoviruses from northern Australia

    Directory of Open Access Journals (Sweden)

    Jane McAllister

    2014-09-01

    Full Text Available Rhabdoviridae represent a diverse group of viruses with the potential to cause disease in humans, animals and plants. Currently there are nine genera in the family; however a large number of rhabdoviruses remain unassigned. Here we characterise three novel rhabdoviruses genomes. Almpiwar virus (ALMV, isolated from skinks in northern Queensland, is the first completely sequenced rhabdovirus from squamates, with serological studies indicating multiple animal host species. Harrison Dam virus (HARDV and Walkabout Creek virus (WACV were isolated from mosquitoes in the Northern Territory and biting midges in southern Queensland respectively and their vertebrate hosts remain unknown. Serological cross-neutralisation tests with other Australian rhabdoviruses indicate that ALMV, WACV and HARDV are distinct viruses with little antigenic cross-reactivity. Next-generation sequencing revealed that all viruses encode the core proteins common to rhabdoviruses (N, P, M, G and L, plus additional ORFs between the M and G genes. HARDV also contains a small ORF between the G and L genes. Phylogenetic analysis of N and L proteins suggests that HARDV and WACV share a common lineage with the tupaviruses and Sandjimba group, whereas ALMV is a distinct and divergent virus showing no clear relationship to any rhabdovirus except the recently characterised Niahka virus (NIAV.

  2. Rhabdovirus evasion of the interferon system.

    Science.gov (United States)

    Rieder, Martina; Conzelmann, Karl-Klaus

    2009-09-01

    The family Rhabdoviridae contains important pathogens of humans, livestock, and crops, including the insect-transmitted vesicular stomatitis virus (VSV) and the neurotropic rabies virus (RV), which is directly transmitted between mammals. In spite of a highly similar organization of RNA genomes, proteins, and virus particles, cell biology of VSV and RV is divergent in several aspects, particularly with respect to their interplay with the cellular host defense. While infection with both rhabdoviruses is recognized via viral triphosphate RNAs by the cytoplasmic RNA helicase/translocase RIG-I, the viral counteractions to limit the response are contrasting. VSV infection is characterized by a rapid general shutdown of host gene expression and severe cytopathic effects, due to multiple activities of the matrix (M) protein affecting host polymerase functions and mRNA nuclear export, and by rapid and high-level virus replication. In contrast, RV spread and transmission relies on preserving the integrity of host cells, particularly of neurons. While a general cell shutdown by RV M is not observed, RV phosphoprotein (P) has developed independent functions to interfere with activation of IRFs and with STAT signaling. The molecular mechanisms employed are different from those of the paramyxovirus P gene products serving similar functions, and illustrate evolution of IFN antagonists to specifically support virus survival in the natural niches.

  3. Assembly of viral genomes from metagenomes

    Directory of Open Access Journals (Sweden)

    Saskia L Smits

    2014-12-01

    Full Text Available Viral infections remain a serious global health issue. Metagenomic approaches are increasingly used in the detection of novel viral pathogens but also to generate complete genomes of uncultivated viruses. In silico identification of complete viral genomes from sequence data would allow rapid phylogenetic characterization of these new viruses. Often, however, complete viral genomes are not recovered, but rather several distinct contigs derived from a single entity, some of which have no sequence homology to any known proteins. De novo assembly of single viruses from a metagenome is challenging, not only because of the lack of a reference genome, but also because of intrapopulation variation and uneven or insufficient coverage. Here we explored different assembly algorithms, remote homology searches, genome-specific sequence motifs, k-mer frequency ranking, and coverage profile binning to detect and obtain viral target genomes from metagenomes. All methods were tested on 454-generated sequencing datasets containing three recently described RNA viruses with a relatively large genome which were divergent to previously known viruses from the viral families Rhabdoviridae and Coronaviridae. Depending on specific characteristics of the target virus and the metagenomic community, different assembly and in silico gap closure strategies were successful in obtaining near complete viral genomes.

  4. Real-Time RT-PCR for the Detection of Lyssavirus Species

    Directory of Open Access Journals (Sweden)

    A. Deubelbeiss

    2014-01-01

    Full Text Available The causative agents of rabies are single-stranded, negative-sense RNA viruses in the genus Lyssavirus of Rhabdoviridae, consisting of twelve classified and three as yet unclassified species including classical rabies virus (RABV. Highly neurotropic RABV causes rapidly progressive encephalomyelitis with nearly invariable fatal outcome. Rapid and reliable diagnosis of rabies is highly relevant for public and veterinary health. Due to growing variety of the genus Lyssavirus observed, the development of suitable molecular assays for diagnosis and differentiation is challenging. This work focused on the establishment of a suitable real-time RT-PCR technique for rabies diagnosis as a complement to fluorescent antibody test and rabies tissue culture infection test as gold standard for diagnosis and confirmation. The real-time RT-PCR was adapted with the goal to detect the whole spectrum of lyssavirus species, for nine of which synthesized DNA fragments were used. For the detection of species, seven probes were developed. Serial dilutions of the rabies virus strain CVS-11 showed a 100-fold higher sensitivity of real-time PCR compared to heminested RT-PCR. Using a panel of thirty-one lyssaviruses representing four species, the suitability of the protocol could be shown. Phylogenetic analysis of the sequences obtained by heminested PCR allowed correct classification of all viruses used.

  5. Molecular Characterization of the Kamese Virus, an Unassigned Rhabdovirus, Isolated from Culex pruina in the Central African Republic.

    Science.gov (United States)

    Simo Tchetgna, Huguette Dorine; Nakoune, Emmanuel; Selekon, Benjamin; Gessain, Antoine; Manuguerra, Jean-Claude; Kazanji, Mirdad; Berthet, Nicolas

    2017-06-01

    Rhabdoviridae is one of the most diversified families of RNA viruses whose members infect a wide range of plants, animals, and arthropods. The members of this family are classified into 13 genera and >150 unassigned viruses. Here, we sequenced the complete genome of a rhabdovirus belonging to the Hart Park serogroup, the Kamese virus (KAMV), isolated in 1977 from Culex pruina in the Central African Republic. The genomic sequence showed an organization typical of rhabdoviruses with additional genes in the P-M and G-L intergenic regions, as already reported for the Hart Park serogroup. Our Kamese strain (ArB9074) had 98% and 78.8% nucleotide sequence similarity with the prototypes of the KAMV and Mossuril virus isolated in Uganda and Mozambique in two different Culex species, respectively. Moreover, the protein sequences had 98-100% amino acid similarity with the prototype of the KAMV, except for an additional gene (U3) that showed a divergence of 6%. These molecular data show that our strain of the KAMV is genetically close to the Culex annuliorus strain that was circulating in Uganda in 1967. However, this study suggests the need to improve our knowledge of the KAMV to better understand its behavior, its life cycle, and its potential reservoirs.

  6. Identification and genetic characterization of rabies virus from Egyptian water buffaloes (Bubalus bubalis) bitten by a fox.

    Science.gov (United States)

    El-Tholoth, Mohamed; El-Beskawy, Mohamed; Hamed, Mohamed F

    2015-09-01

    Rabies is caused by negative strand RNA-virus classified in the genus Lyssavirus, family Rhabdoviridae of the order Mononegavirales. The aim of the present study was to identify and analyze nucleotides sequence of nucleoprotein (N) gene of rabies virus (RABV) from two cases of water buffaloes (Bubalus bubalis) bitten by a fox in Egypt, 2013. The diseased buffaloes showed nervous manifestations with fever. Specimens from brains of the buffaloes with suspected rabies were collected. RABV in collected samples was identified using direct fluorescent antibody (dFA) technique, histopathological examination and reverse transcription-polymerase chain reaction (RT-PCR). Also, nucleotides sequence of partially amplified nucleoprotein (N) gene was compared with the other street strains of RABV available on GenBank. The results revealed that RABV antigen was identified in the brains of diseased buffaloes by dFA technique and the characteristic intracytoplasmic inclusions (Negri bodies) and RABV nucleic acid were detected by histopathology and RT-PCR, respectively. The identified virus showed close genetic relationship with street strains identified previously from dogs in different Governorates in Egypt and with strains identified in Israel and Jordan indicating transmission of the virus between Egyptian Governorates with a potential transmission from and/or to our neighboring countries.

  7. Antigenic characterisation of yeast-expressed lyssavirus nucleoproteins.

    Science.gov (United States)

    Kucinskaite, Indre; Juozapaitis, Mindaugas; Serva, Andrius; Zvirbliene, Aurelija; Johnson, Nicholas; Staniulis, Juozas; Fooks, Anthony R; Müller, Thomas; Sasnauskas, Kestutis; Ulrich, Rainer G

    2007-12-01

    In Europe, three genotypes of the genus Lyssavirus, family Rhabdoviridae, are present, classical rabies virus (RABV, genotype 1), European bat lyssavirus type 1 (EBLV-1, genotype 5) and European bat lyssavirus type 2 (EBLV-2, genotype 6). The entire authentic nucleoprotein (N protein) encoding sequences of RABV (challenge virus standard, CVS, strain), EBLV-1 and EBLV-2 were expressed in yeast Saccharomyces cerevisiae at high level. Purification of recombinant N proteins by caesium chloride gradient centrifugation resulted in yields between 14-17, 25-29 and 18-20 mg/l of induced yeast culture for RABV-CVS, EBLV-1 and EBLV-2, respectively. The purified N proteins were evaluated by negative staining electron microscopy, which revealed the formation of nucleocapsid-like structures. The antigenic conformation of the N proteins was investigated for their reactivity with monoclonal antibodies (mAbs) directed against different lyssaviruses. The reactivity pattern of each mAb was virtually identical between immunofluorescence assay with virus-infected cells, and ELISA and dot blot assay using the corresponding recombinant N proteins. These observations lead us to conclude that yeast-expressed lyssavirus N proteins share antigenic properties with naturally expressed virus protein. These recombinant proteins have the potential for use as components of serological assays for lyssaviruses.

  8. Kanyawara Virus: A Novel Rhabdovirus Infecting Newly Discovered Nycteribiid Bat Flies Infesting Previously Unknown Pteropodid Bats in Uganda.

    Science.gov (United States)

    Goldberg, Tony L; Bennett, Andrew J; Kityo, Robert; Kuhn, Jens H; Chapman, Colin A

    2017-07-13

    Bats are natural reservoir hosts of highly virulent pathogens such as Marburg virus, Nipah virus, and SARS coronavirus. However, little is known about the role of bat ectoparasites in transmitting and maintaining such viruses. The intricate relationship between bats and their ectoparasites suggests that ectoparasites might serve as viral vectors, but evidence to date is scant. Bat flies, in particular, are highly specialized obligate hematophagous ectoparasites that incidentally bite humans. Using next-generation sequencing, we discovered a novel ledantevirus (mononegaviral family Rhabdoviridae, genus Ledantevirus) in nycteribiid bat flies infesting pteropodid bats in western Uganda. Mitochondrial DNA analyses revealed that both the bat flies and their bat hosts belong to putative new species. The coding-complete genome of the new virus, named Kanyawara virus (KYAV), is only distantly related to that of its closest known relative, Mount Elgon bat virus, and was found at high titers in bat flies but not in blood or on mucosal surfaces of host bats. Viral genome analysis indicates unusually low CpG dinucleotide depletion in KYAV compared to other ledanteviruses and rhabdovirus groups, with KYAV displaying values similar to rhabdoviruses of arthropods. Our findings highlight the possibility of a yet-to-be-discovered diversity of potentially pathogenic viruses in bat ectoparasites.

  9. Proteomics computational analyses suggest that the bornavirus glycoprotein is a class III viral fusion protein (γ penetrene

    Directory of Open Access Journals (Sweden)

    Garry Robert F

    2009-09-01

    Full Text Available Abstract Background Borna disease virus (BDV is the type member of the Bornaviridae, a family of viruses that induce often fatal neurological diseases in horses, sheep and other animals, and have been proposed to have roles in certain psychiatric diseases of humans. The BDV glycoprotein (G is an extensively glycosylated protein that migrates with an apparent molecular mass of 84,000 to 94,000 kilodaltons (kDa. BDV G is post-translationally cleaved by the cellular subtilisin-like protease furin into two subunits, a 41 kDa amino terminal protein GP1 and a 43 kDa carboxyl terminal protein GP2. Results Class III viral fusion proteins (VFP encoded by members of the Rhabdoviridae, Herpesviridae and Baculoviridae have an internal fusion domain comprised of beta sheets, other beta sheet domains, an extended alpha helical domain, a membrane proximal stem domain and a carboxyl terminal anchor. Proteomics computational analyses suggest that the structural/functional motifs that characterize class III VFP are located collinearly in BDV G. Structural models were established for BDV G based on the post-fusion structure of a prototypic class III VFP, vesicular stomatitis virus glycoprotein (VSV G. Conclusion These results suggest that G encoded by members of the Bornavirdae are class III VFPs (gamma-penetrenes.

  10. Vesicular stomatitis virus (indiana 2 serotype as experimental model to study acute encephalitis – morphological features Vírus da estomatite vesicular (sorotipo indiana 2 como modelo experimental para o estudo de encefalite aguda – aspectos morfológicos

    Directory of Open Access Journals (Sweden)

    Florêncio Figueiredo Cavalcanti Neto

    2003-10-01

    Full Text Available The Vesicular Stomatitis Virus (VSV is a Vesiculovirus of the Rhabdoviridae family that infects mammals and causes vesicular lesions similar to those of foot-and-mouth disease. VSV experimental encephalitis can be induced in rodents and the symptoms are similar to those observed in rabies. However, the lesions observed in the animals´ encephalon are different. Inclusion bodies are not observed. There is necrosis, particularly in the region of the olfactory bulb, and, in some cases, ventriculitis. It was observed that the time pattern of VSV dissemination and the morphological aspects of the lesions are similar to those described in literature. The virus seems to be disseminated through the brain ventricles, being multiplied in the ependyma cells and in the neurons, besides using retrograde and anterograde transport. It was noticed that, due to the facility of virus manipulation, this experimental model has been used in innumerable research studies in several fields. If, on the one hand there are plenty of reports on the infection pathogenesis, on the other hand there are many gaps involving, for instance, aspects about virus transmission, recovery of infected animals and participation of glial cells in the acute as well as in the recovery phases.   O vírus da estomatite vesicular (VEV é um Vesiculovírus da família Rhabdoviridae que infecta mamíferos e causa lesões vesiculares semelhantes às observadas na febre aftosa. A encefalite experimental pode ser induzida em roedores e os sintomas são semelhantes aos observados na raiva; entretanto, as lesões observadas no encéfalo dos animais são diferentes. Corpúsculos de inclusão não são observados, há necrose especialmente da região do bulbo olfatório e em alguns casos, ventriculite. Observamos que o padrão temporal de disseminação do VEV e os aspectos morfológicos das lesões são similares aos descritos na literatura. O vírus parece se disseminar através dos ventr

  11. Transmission of vesicular stomatitis New Jersey virus to cattle by the biting midge Culicoides sonorensis (Diptera: Ceratopogonidae).

    Science.gov (United States)

    Perez de Leon, Adalberto A; Tabachnick, Walter J

    2006-03-01

    Laboratory-reared Culicoides sonorensis Wirth & Jones were infected with vesicular stomatitis virus serotype New Jersey (family Rhabdoviridae, genus Vesiculovirus, VSNJV) through intrathoracic inoculation. After 10-d incubation at 25 degrees C, these insects were allowed to blood feed on four steers. Two other steers were exposed to VSNJV through intralingual inoculation with 10(8) tissue culture infective dose50 VSNJV. All six steers became seropositive for VSNJV. The results demonstrate the ability of C. sonorensis to transmit VSNJV to livestock. Only the animals intralingually inoculated with VSNJV showed clinical signs in the form of vesicles at the site of inoculation. Uninfected C. sonorensis allowed to feed on the exposed animals did not become infected with VSNJV. Animals infected by C. sonorensis showed a slower antibody response compared with intralingually inoculated animals. This is probably because of different amounts of virus received via insect transmission and syringe inoculation. A significant difference was found in the serum acute-phase protein alpha-1-acid glycoprotein in animals that received VSNJV through C. sonorensis transmission. These animals had previously been exposed to insect attack in the field compared with intralingually inoculated animals and C. sonorensis-infected animals that had been protected from insect attack. The failure to observe clinical signs of vesicular stomatitis through transmission of VSNJV by C. sonorensis may explain widespread subclinical infections during vesicular stomatitis epidemics.

  12. Proteomics computational analyses suggest that baculovirus GP64 superfamily proteins are class III penetrenes

    Directory of Open Access Journals (Sweden)

    Garry Robert F

    2008-02-01

    Full Text Available Abstract Background Members of the Baculoviridae encode two types of proteins that mediate virus:cell membrane fusion and penetration into the host cell. Alignments of primary amino acid sequences indicate that baculovirus fusion proteins of group I nucleopolyhedroviruses (NPV form the GP64 superfamily. The structure of these viral penetrenes has not been determined. The GP64 superfamily includes the glycoprotein (GP encoded by members of the Thogotovirus genus of the Orthomyxoviridae. The entry proteins of other baculoviruses, group II NPV and granuloviruses, are class I penetrenes. Results Class III penetrenes encoded by members of the Rhabdoviridae and Herpesviridae have an internal fusion domain comprised of beta sheets, other beta sheet domains, an extended alpha helical domain, a membrane proximal stem domain and a carboxyl terminal anchor. Similar sequences and structural/functional motifs that characterize class III penetrenes are located collinearly in GP64 of group I baculoviruses and related glycoproteins encoded by thogotoviruses. Structural models based on a prototypic class III penetrene, vesicular stomatitis virus glycoprotein (VSV G, were established for Thogoto virus (THOV GP and Autographa california multiple NPV (AcMNPV GP64 demonstrating feasible cysteine linkages. Glycosylation sites in THOV GP and AcMNPV GP64 appear in similar model locations to the two glycosylation sites of VSV G. Conclusion These results suggest that proteins in the GP64 superfamily are class III penetrenes.

  13. Rhabdovirus accessory genes.

    Science.gov (United States)

    Walker, Peter J; Dietzgen, Ralf G; Joubert, D Albert; Blasdell, Kim R

    2011-12-01

    The Rhabdoviridae is one of the most ecologically diverse families of RNA viruses with members infecting a wide range of organisms including placental mammals, marsupials, birds, reptiles, fish, insects and plants. The availability of complete nucleotide sequences for an increasing number of rhabdoviruses has revealed that their ecological diversity is reflected in the diversity and complexity of their genomes. The five canonical rhabdovirus structural protein genes (N, P, M, G and L) that are shared by all rhabdoviruses are overprinted, overlapped and interspersed with a multitude of novel and diverse accessory genes. Although not essential for replication in cell culture, several of these genes have been shown to have roles associated with pathogenesis and apoptosis in animals, and cell-to-cell movement in plants. Others appear to be secreted or have the characteristics of membrane-anchored glycoproteins or viroporins. However, most encode proteins of unknown function that are unrelated to any other known proteins. Understanding the roles of these accessory genes and the strategies by which rhabdoviruses use them to engage, divert and re-direct cellular processes will not only present opportunities to develop new anti-viral therapies but may also reveal aspects of cellar function that have broader significance in biology, agriculture and medicine. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  14. Almendravirus: A Proposed New Genus of Rhabdoviruses Isolated from Mosquitoes in Tropical Regions of the Americas.

    Science.gov (United States)

    Contreras, Maria Angelica; Eastwood, Gillian; Guzman, Hilda; Popov, Vsevolod; Savit, Chelsea; Uribe, Sandra; Kramer, Laura D; Wood, Thomas G; Widen, Steven G; Fish, Durland; Tesh, Robert B; Vasilakis, Nikos; Walker, Peter J

    2017-01-11

    The Rhabdoviridae is a diverse family of negative-sense single-stranded RNA viruses, many of which infect vertebrate hosts and are transmitted by hematophagous arthropods. Others appear to be arthropod specific, circulating only within arthropod populations. Herein, we report the isolation and characterization of three novel viruses from mosquitoes collected from the Americas. Coot Bay virus was isolated from Anopheles quadrimaculatus mosquitoes collected in the Everglades National Park, Florida; Rio Chico virus was isolated from Anopheles triannulatus mosquitoes collected in Panama; and Balsa virus was isolated from two pools of Culex erraticus mosquitoes collected in Colombia. Sequence analysis indicated that the viruses share a similar genome organization to Arboretum virus and Puerto Almendras virus that had previously been isolated from mosquitoes collected in Peru. Each genome features the five canonical rhabdovirus structural protein genes as well as a gene encoding a class 1A viroporin-like protein (U1) located between the G and L genes (3'-N-P-M-G-U1-L-5'). Phylogenetic analysis of complete L protein sequences indicated that all five viruses cluster in a unique clade that is relatively deeply rooted in the ancestry of animal rhabdoviruses. The failure of all viruses in this clade to grow in newborn mice or vertebrate cells in culture suggests that they may be poorly adapted to replication in vertebrates. © The American Society of Tropical Medicine and Hygiene.

  15. Emergence of a new rhabdovirus associated with mass mortalities in eelpout (Zoarces viviparous) in the Baltic Sea.

    Science.gov (United States)

    Axén, C; Hakhverdyan, M; Boutrup, T S; Blomkvist, E; Ljunghager, F; Alfjorden, A; Hagström, Å; Olesen, N J; Juremalm, M; Leijon, M; Valarcher, J-F

    2017-02-01

    We report the first description of a new Rhabdoviridae tentatively named eelpout rhabdovirus (EpRV genus Perhabdovirus). This virus was associated with mass mortalities in eelpout (Zoarces viviparous, Linnaeus) along the Swedish Baltic Sea coast line in 2014. Diseased fish showed signs of central nervous system infection, and brain lesions were confirmed by histology. A cytopathogenic effect was observed in cell culture, but ELISAs for the epizootic piscine viral haemorrhagic septicaemia virus (VHSV), infectious pancreas necrosis virus (IPNV), infectious haematopoietic necrosis virus (IHNV) and spring viraemia of carp virus (SVCV) were negative. Further investigations by chloroform inactivation, indirect fluorescence antibody test and electron microscopy indicated the presence of a rhabdovirus. By deep sequencing of original tissue suspension and infected cell culture supernatant, the full viral genome was assembled and we confirmed the presence of a rhabdovirus with 59.5% nucleotide similarity to the closest relative Siniperca chuatsi rhabdovirus. The full-genome sequence of this new virus, eelpout rhabdovirus (EpRV), has been deposited in GenBank under accession number KR612230. An RT-PCR based on the L-gene sequence confirmed the presence of EpRV in sick/dead eelpout, but the virus was not found in control fish. Additional investigations to characterize the pathogenicity of EpRV are planned. © 2016 John Wiley & Sons Ltd.

  16. Almendravirus: A Proposed New Genus of Rhabdoviruses Isolated from Mosquitoes in Tropical Regions of the Americas

    Science.gov (United States)

    Contreras, Maria Angelica; Eastwood, Gillian; Guzman, Hilda; Popov, Vsevolod; Savit, Chelsea; Uribe, Sandra; Kramer, Laura D.; Wood, Thomas G.; Widen, Steven G.; Fish, Durland; Tesh, Robert B.; Vasilakis, Nikos; Walker, Peter J.

    2017-01-01

    The Rhabdoviridae is a diverse family of negative-sense single-stranded RNA viruses, many of which infect vertebrate hosts and are transmitted by hematophagous arthropods. Others appear to be arthropod specific, circulating only within arthropod populations. Herein, we report the isolation and characterization of three novel viruses from mosquitoes collected from the Americas. Coot Bay virus was isolated from Anopheles quadrimaculatus mosquitoes collected in the Everglades National Park, Florida; Rio Chico virus was isolated from Anopheles triannulatus mosquitoes collected in Panama; and Balsa virus was isolated from two pools of Culex erraticus mosquitoes collected in Colombia. Sequence analysis indicated that the viruses share a similar genome organization to Arboretum virus and Puerto Almendras virus that had previously been isolated from mosquitoes collected in Peru. Each genome features the five canonical rhabdovirus structural protein genes as well as a gene encoding a class 1A viroporin-like protein (U1) located between the G and L genes (3′-N-P-M-G-U1-L-5′). Phylogenetic analysis of complete L protein sequences indicated that all five viruses cluster in a unique clade that is relatively deeply rooted in the ancestry of animal rhabdoviruses. The failure of all viruses in this clade to grow in newborn mice or vertebrate cells in culture suggests that they may be poorly adapted to replication in vertebrates. PMID:27799634

  17. Generation of recombinant European bat lyssavirus type 1 and inter-genotypic compatibility of lyssavirus genotype 1 and 5 antigenome promoters.

    Science.gov (United States)

    Orbanz, Jeannette; Finke, Stefan

    2010-10-01

    Bat lyssaviruses (Fam. Rhabdoviridae) represent a source for the infection of terrestial mammals and the development of rabies disease. Molecular differences in the replication of bat and non-bat lyssaviruses and their contribution to pathogenicity, however, are unknown. One reason for this is the lack of reverse genetics systems for bat-restricted lyssaviruses. To investigate bat lyssavirus replication and host adaptation, we developed a reverse genetics system for European bat lyssavirus type 1 (EBLV-1; genotype 5). This was achieved by co-transfection of HEK-293T cells with a full-length EBLV-1 genome cDNA and expression plasmids for EBLV-1 proteins, resulting in recombinant EBLV-1 (rEBLV-1). Replication of rEBLV-1 was comparable to that of parental virus, showing that rEBLV-1 is a valid tool to investigate EBLV-1 replication functions. In a first approach, we tested whether the terminal promoter sequences of EBLV-1 are genotype-specific. Although genotype 1 (rabies virus) minigenomes were successfully amplified by EBLV-1 helper virus, in the context of the complete virus, only the antigenome promoter (AGP) sequence of EBLV-1 was replaceable, as indicated by comparable replication of rEBLV-1 and the chimeric virus. These analyses demonstrate that the terminal AGPs of genotype 1 and genotype 5 lyssaviruses are compatible with those of the heterologous genotype.

  18. Rhabdoviruses as vaccine platforms for infectious disease and cancer.

    Science.gov (United States)

    Zemp, Franz; Rajwani, Jahanara; Mahoney, Douglas J

    2018-05-21

    The family Rhabdoviridae (RV) comprises a large, genetically diverse collection of single-stranded, negative sense RNA viruses from the order Mononegavirales. Several RV members are being developed as live-attenuated vaccine vectors for the prevention or treatment of infectious disease and cancer. These include the prototype recombinant Vesicular Stomatitis Virus (rVSV) and the more recently developed recombinant Maraba Virus, both species within the genus Vesiculoviridae. A relatively strong safety profile in humans, robust immunogenicity and genetic malleability are key features that make the RV family attractive vaccine platforms. Currently, the rVSV vector is in preclinical development for vaccination against numerous high-priority infectious diseases, with clinical evaluation underway for HIV/AIDS and Ebola virus disease. Indeed, the success of the rVSV-ZEBOV vaccine during the 2014-15 Ebola virus outbreak in West Africa highlights the therapeutic potential of rVSV as a vaccine vector for acute, life-threatening viral illnesses. The rVSV and rMaraba platforms are also being tested as 'oncolytic' cancer vaccines in a series of phase 1-2 clinical trials, after being proven effective at eliciting immune-mediated tumour regression in preclinical mouse models. In this review, we discuss the biological and genetic features that make RVs attractive vaccine platforms and the development and ongoing testing of rVSV and rMaraba strains as vaccine vectors for infectious disease and cancer.

  19. Development and validation of sensitive real-time RT-PCR assay for broad detection of rabies virus.

    Science.gov (United States)

    Faye, Martin; Dacheux, Laurent; Weidmann, Manfred; Diop, Sylvie Audrey; Loucoubar, Cheikh; Bourhy, Hervé; Sall, Amadou Alpha; Faye, Ousmane

    2017-05-01

    Rabies virus (RABV) remains one of the most important global zoonotic pathogens. RABV causes rabies, an acute encephalomyelitis associated with a high rate of mortality in humans and animals and affecting different parts of the world, particularly in Asia and Africa. Confirmation of rabies diagnosis relies on laboratory diagnosis, in which molecular techniques such as detection of viral RNA by reverse transcription polymerase chain reaction (RT-PCR) are increasingly being used. In this study, two real-time quantitative RT-PCR assays were developed for large-spectrum detection of RABV, with a focus on African isolates. The primer and probe sets were targeted highly conserved regions of the nucleoprotein (N) and polymerase (L) genes. The results indicated the absence of non-specific amplification and cross-reaction with a range of other viruses belonging to the same taxonomic family, i.e. Rhabdoviridae, as well as negative brain tissues from various host species. Analytical sensitivity ranged between 100 to 10 standard RNA copies detected per reaction for N-gene and L-gene assays, respectively. Effective detection and high sensitivity of these assays on African isolates showed that they can be successfully applied in general research and used in diagnostic process and epizootic surveillance in Africa using a double-check strategy. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Host Phylogeny Determines Viral Persistence and Replication in Novel Hosts

    Science.gov (United States)

    Longdon, Ben; Hadfield, Jarrod D.; Webster, Claire L.

    2011-01-01

    Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae) to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts. PMID:21966271

  1. Níveis de anticorpos para arbovírus em indivíduos da região de Ribeirão Preto, SP (Brasil Arbovirus antibody levels in the population of the Ribeirão Preto area, S.Paulo State (Brazil

    Directory of Open Access Journals (Sweden)

    Luiz Tadeu Moraes Figueiredo

    1986-06-01

    Full Text Available Com o objetivo de conhecer os níveis de anticorpos para arbovírus, foram estudados 302 indivíduos da região de Ribeirão Preto (Brasil, moradores em 3 tipos de locais com distintas formas de organização do espaço: próximos à área de paisagem natural; com paisagem modificada para a agropecuária; comunidades urbanas. Foram efetuados testes sorológicos de inibição da hemaglutinação, neutralização e fixação do complemento para 21 arbovírus. Os resultados mostraram que 19,9% dos indivíduos investigados apresentaram anticorpos, sugerindo infecções pregressas por vários arbovírus. A maior percentagem de habitantes que se infectaram por estes agentes foi observada em locais próximos à área de paisagem natural, 38,5%. O vesiculovírus Piry foi o agente para o qual se encontrou o maior número de soros reagentes, 12,5%. A maior ocorrência de portadores de anticorpos para o vírus Piry foi observada nos indivíduos: do sexo masculino; com idade superior a 40 anos; guardas-florestais, lavradores e profissionais com atividades ligadas ao rio.The area of Ribeirão Preto is located in the north of S.Paulo State - Brazil. The population is 611,742. The climate is sub-tropical warm and humid. The area of Ribeirão Preto is almost completely deforested and covered by extensive plantations of sugar cane and coffee and pasture. With the purpose of discovering the arbovirus antibody levels, a serologic survey was carried out among people of the Ribeirão Preto area living in different geographical environments. Fifty two inhabitants located close to natural landscap, 38 in places with landscape modified by agriculture and cattle raising, and 93 in urban communities were studied. Serologic tests for hemagglutination inhibition by 20 Togaviridae and Bunyaviridae arbovirus, and neutralization and complement fixation tests on Piry Rhabdoviridae were carried out. It was discovered that 19.9% of the sample population presented antibodies

  2. Host phylogeny determines viral persistence and replication in novel hosts.

    Directory of Open Access Journals (Sweden)

    Ben Longdon

    2011-09-01

    Full Text Available Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts.

  3. Vírus, viróides, fitoplasmas e espiroplasmas detectados em plantas ornamentais no período de 1992 a 2003.

    Directory of Open Access Journals (Sweden)

    Maria Amélia Vaz Aalexandre

    2005-06-01

    Full Text Available No período de 1992 a 2003 foi investigada, visando diagnóstico, a presença de vírus, viróides, fitoplasmas e espiroplasmas em 167 gêneros de plantas ornamentais, pertencentes a 64 famílias. Para o diagnóstico e a identificação desses patógenos, foram realizados ensaios biológicos, serológicos e/ou moleculares, bem como observações ao microscópio eletrônico de transmissão. Tospovirus foram detectados em 104 amostras pertencentes a 15 gêneros, incluindo flores de corte, envasadas e folhagens; Potyviridae estavam presentes em 23 gêneros, dentre esses Hyppeastrum, Lilium, Gladiolus e Dieffenbachia infectados com Potyvirus; Cucumovirus (Cucumber mosaic virus e Ilarvirus foram detectados em 14 e 5 gêneros, respectivamente; Tobamovirus e Potexvirus, que são de ocorrência freqüente no Brasil, infectaram 40,4% das orquídeas que representaram 29,3% do total de amostras recebidas; outros 7 gêneros (Badnavirus, Carlavirus, Caulimovirus, Furovirus, Nepovirus, Tobravirus e Tymovirus e duas famílias (Closteroviridae e Rhabdoviridae de fitovírus foram também detectados. Nesse período, pelo menos três novas espécies de vírus foram descritas infectando crisântemo, petúnia e caládio. Viróide foi detectado em crisântemo, fitoplasma em lisiantos e espiroplasma em prímula.

  4. The complete genome structure and phylogenetic relationship of infectious hematopoietic necrosis virus

    Science.gov (United States)

    Morzunov , Sergey P.; Winton, James R.; Nichol, Stuart T.

    1995-01-01

    Infectious hematopoietic necrosis virus (IHNV), a member of the family Rhabdoviridae, causes a severe disease with high mortality in salmonid fish. The nucleotide sequence (11, 131 bases) of the entire genome was determined for the pathogenic WRAC strain of IHNV from southern Idaho. This allowed detailed analysis of all 6 genes, the deduced amino acid sequences of their encoded proteins, and important control motifs including leader, trailer and gene junction regions. Sequence analysis revealed that the 6 virus genes are located along the genome in the 3′ to 5′ order: nucleocapsid (N), polymerase-associated phosphoprotein (P or M1), matrix protein (M or M2), surface glycoprotein (G), a unique non-virion protein (NV) and virus polymerase (L). The IHNV genome RNA was found to have highly complementary termini (15 of 16 nucleotides). The gene junction regions display the highly conserved sequence UCURUC(U)7RCCGUG(N)4CACR (in the vRNA sense), which includes the typical rhabdovirus transcription termination/polyadenylation signal and a novel putative transcription initiation signal. Phylogenetic analysis of M, G and L protein sequences allowed insights into the evolutionary and taxonomic relationship of rhabdoviruses of fish relative to those of insects or mammals, and a broader sense of the relationship of non-segmented negative-strand RNA viruses. Based on these data, a new genus, piscivirus, is proposed which will initially contain IHNV, viral hemorrhagic septicemia virus and Hirame rhabdovirus.

  5. Isolation and characterization of a rhabdovirus from starry flounder (Platichthys stellatus) collected from the northern portion of Puget Sound, Washington, USA

    Science.gov (United States)

    Mork, Christina; Hershberger, Paul K.; Kocan, Richard; Batts, William N.; Winton, James R.

    2004-01-01

    The initial characterization of a rhabdovirus isolated from a single, asymptomatic starry flounder (Platichthys stellatus) collected during a viral survey of marine fishes from the northern portion of Puget Sound, Washington, USA, is reported. Virions were bullet-shaped and approximately 100 nm long and 50 nm wide, contained a lipid envelope, remained stable for at least 14 days at temperatures ranging from -80 to 5 degrees C and grew optimally at 15 degrees C in cultures of epithelioma papulosum cyprini (EPC) cells. The cytopathic effect on EPC cell monolayers was characterized by raised foci containing rounded masses of cells. Pyknotic and dark-staining nuclei that also showed signs of karyorrhexis were observed following haematoxylin and eosin, May-Grunwald Giemsa and acridine orange staining. PAGE of the structural proteins and PCR assays using primers specific for other known fish rhabdoviruses, including Infectious hematopoietic necrosis virus, Viral hemorrhagic septicemia virus, Spring viremia of carp virus, and Hirame rhabdovirus, indicated that the new virus, tentatively termed starry flounder rhabdovirus (SFRV), was previously undescribed in marine fishes from this region. In addition, sequence analysis of 2678 nt of the amino portion of the viral polymerase gene indicated that SFRV was genetically distinct from other members of the family Rhabdoviridae for which sequence data are available. Detection of this virus during a limited viral survey of wild fishes emphasizes the void of knowledge regarding the diversity of viruses that naturally infect marine fish species in the North Pacific Ocean.

  6. Drosophila melanogaster Mounts a Unique Immune Response to the Rhabdovirus Sigma virus▿

    Science.gov (United States)

    Tsai, C. W.; McGraw, E. A.; Ammar, E.-D.; Dietzgen, R. G.; Hogenhout, S. A.

    2008-01-01

    Rhabdoviruses are important pathogens of humans, livestock, and plants that are often vectored by insects. Rhabdovirus particles have a characteristic bullet shape with a lipid envelope and surface-exposed transmembrane glycoproteins. Sigma virus (SIGMAV) is a member of the Rhabdoviridae and is a naturally occurring disease agent of Drosophila melanogaster. The infection is maintained in Drosophila populations through vertical transmission via germ cells. We report here the nature of the Drosophila innate immune response to SIGMAV infection as revealed by quantitative reverse transcription-PCR analysis of differentially expressed genes identified by microarray analysis. We have also compared and contrasted the immune response of the host with respect to two nonenveloped viruses, Drosophila C virus (DCV) and Drosophila X virus (DXV). We determined that SIGMAV infection upregulates expression of the peptidoglycan receptor protein genes PGRP-SB1 and PGRP-SD and the antimicrobial peptide (AMP) genes Diptericin-A, Attacin-A, Attacin-B, Cecropin-A1, and Drosocin. SIGMAV infection did not induce PGRP-SA and the AMP genes Drosomycin-B, Metchnikowin, and Defensin that are upregulated in DCV and/or DXV infections. Expression levels of the Toll and Imd signaling cascade genes are not significantly altered by SIGMAV infection. These results highlight shared and unique aspects of the Drosophila immune response to the three viruses and may shed light on the nature of the interaction with the host and the evolution of these associations. PMID:18378641

  7. Malpais spring virus is a new species in the genus vesiculovirus

    Science.gov (United States)

    2013-01-01

    Background Malpais Spring virus (MSPV) is a mosquito-borne rhabdovirus that infects a variety of wild and feral ungulates in New Mexico, including horses and deer. Although, initial serologic tests and electron microscopy at the time of isolation nearly 25 years ago provided evidence that MSPV is a novel virus, possibly related to vesiculoviruses, the virus still has not been approved as a new species. Findings Use of the illumina platform allowed us to obtain the complete genome of MSPV. Analysis of the complete 11019 nt genome sequence of the prototype 85-488NM strain of MSPV indicates that it encodes the five common rhabdovirus structural proteins (N, P, M, G and L) with alternative ORFs (> 180 nt) in the N, M and G genes, including a 249 nt ORF in the G gene predicted to encode a 9.26 kDa highly basic transmembrane protein. Although antigenically very distant, phylogenetic analysis of the L gene indicates that MSPV is most closely related to Jurona virus, also isolated from mosquitoes in Brazil, as well as a number of other vesiculoviruses. Conclusions In sum, our analysis indicates MSPV should be classified as a member of the genus Vesiculovirus, family Rhabdoviridae. The complete genome sequence of MSPV will be helpful in the development of a reverse genetics system to study the unique aspects of this vesiculovirus in vivo and in vitro, and will assist development of specific diagnostic tests to study the epidemiology of MSPV infection. PMID:23497016

  8. Characterization of Durham virus, a novel rhabdovirus that encodes both a C and SH protein.

    Science.gov (United States)

    Allison, A B; Palacios, G; Travassos da Rosa, A; Popov, V L; Lu, L; Xiao, S Y; DeToy, K; Briese, T; Lipkin, W I; Keel, M K; Stallknecht, D E; Bishop, G R; Tesh, R B

    2011-01-01

    The family Rhabdoviridae is a diverse group of non-segmented, negative-sense RNA viruses that are distributed worldwide and infect a wide range of hosts including vertebrates, invertebrates, and plants. Of the 114 currently recognized vertebrate rhabdoviruses, relatively few have been well characterized at both the antigenic and genetic level; hence, the phylogenetic relationships between many of the vertebrate rhabdoviruses remain unknown. The present report describes a novel rhabdovirus isolated from the brain of a moribund American coot (Fulica americana) that exhibited neurological signs when found in Durham County, North Carolina, in 2005. Antigenic characterization of the virus revealed that it was serologically unrelated to 68 other known vertebrate rhabdoviruses. Genomic sequencing of the virus indicated that it shared the highest identity to Tupaia rhabdovirus (TUPV), and as only previously observed in TUPV, the genome encoded a putative C protein in an overlapping open reading frame (ORF) of the phosphoprotein gene and a small hydrophobic (SH) protein located in a novel ORF between the matrix and glycoprotein genes. Phylogenetic analysis of partial amino acid sequences of the nucleoprotein and polymerase protein indicated that, in addition to TUPV, the virus was most closely related to avian and small mammal rhabdoviruses from Africa and North America. In this report, we present the morphological, pathological, antigenic, and genetic characterization of the new virus, tentatively named Durham virus (DURV), and discuss its potential evolutionary relationship to other vertebrate rhabdoviruses. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Characterization of Durham virus, a novel rhabdovirus that encodes both a C and SH protein

    Science.gov (United States)

    Allison, A. B.; Palacios, G.; Rosa, A. Travassos da; Popov, V. L.; Lu, L.; Xiao, S. Y.; DeToy, K.; Briese, T.; Lipkin, W. Ian; Keel, M. K.; Stallknecht, D. E.; Bishop, G. R.; Tesh, R. B.

    2010-01-01

    The family Rhabdoviridae is a diverse group of non-segmented, negative-sense RNA viruses that are distributed worldwide and infect a wide range of hosts including vertebrates, invertebrates, and plants. Of the 114 currently recognized vertebrate rhabdoviruses, relatively few have been well characterized at both the antigenic and genetic level; hence, the phylogenetic relationships between many of the vertebrate rhabdoviruses remain unknown. The present report describes a novel rhabdovirus isolated from the brain of a moribund American coot (Fulica americana) that exhibited neurological signs when found in Durham County, North Carolina, in 2005. Antigenic characterization of the virus revealed that it was serologically unrelated to 68 other known vertebrate rhabdoviruses. Genomic sequencing of the virus indicated that it shared the highest identity to Tupaia rhabdovirus (TUPV), and as only previously observed in TUPV, the genome encoded a putative C protein in an overlapping open reading frame (ORF) of the phosphoprotein gene and a small hydrophobic protein located in a novel ORF between the matrix and glycoprotein genes. Phylogenetic analysis of partial amino acid sequences of the nucleoprotein and polymerase proteins indicated that, in addition to TUPV, the virus was most closely related to avian and small mammal rhabdoviruses from Africa and North America. In this report, we present the morphological, pathological, antigenic, and genetic characterization of the new virus, tentatively named Durham virus (DURV), and discuss its potential evolutionary relationship to other vertebrate rhabdoviruses. PMID:20863863

  10. Natural Rabies Infection in a Domestic Fowl (Gallus domesticus): A Report from India.

    Science.gov (United States)

    Baby, Julie; Mani, Reeta Subramaniam; Abraham, Swapna Susan; Thankappan, Asha T; Pillai, Prasad Madhavan; Anand, Ashwini Manoor; Madhusudana, Shampur Narayan; Ramachandran, Jayachandran; Sreekumar, Sachin

    2015-01-01

    Rabies is a fatal encephalitis caused by viruses belonging to the genus Lyssavirus of the family Rhabdoviridae. It is a viral disease primarily affecting mammals, though all warm blooded animals are susceptible. Experimental rabies virus infection in birds has been reported, but naturally occurring infection of birds has been documented very rarely. The carcass of a domestic fowl (Gallus domesticus), which had been bitten by a stray dog one month back, was brought to the rabies diagnostic laboratory. A necropsy was performed and the brain tissue obtained was subjected to laboratory tests for rabies. The brain tissue was positive for rabies viral antigens by fluorescent antibody test (FAT) confirming a diagnosis of rabies. Phylogenetic analysis based on nucleoprotein gene sequencing revealed that the rabies virus strain from the domestic fowl belonged to a distinct and relatively rare Indian subcontinent lineage. This case of naturally acquired rabies infection in a bird species, Gallus domesticus, being reported for the first time in India, was identified from an area which has a significant stray dog population and is highly endemic for canine rabies. It indicates that spill over of infection even to an unusual host is possible in highly endemic areas. Lack of any clinical signs, and fewer opportunities for diagnostic laboratory testing of suspected rabies in birds, may be the reason for disease in these species being undiagnosed and probably under-reported. Butchering and handling of rabies virus- infected poultry may pose a potential exposure risk.

  11. Natural Rabies Infection in a Domestic Fowl (Gallus domesticus: A Report from India.

    Directory of Open Access Journals (Sweden)

    Julie Baby

    Full Text Available Rabies is a fatal encephalitis caused by viruses belonging to the genus Lyssavirus of the family Rhabdoviridae. It is a viral disease primarily affecting mammals, though all warm blooded animals are susceptible. Experimental rabies virus infection in birds has been reported, but naturally occurring infection of birds has been documented very rarely.The carcass of a domestic fowl (Gallus domesticus, which had been bitten by a stray dog one month back, was brought to the rabies diagnostic laboratory. A necropsy was performed and the brain tissue obtained was subjected to laboratory tests for rabies. The brain tissue was positive for rabies viral antigens by fluorescent antibody test (FAT confirming a diagnosis of rabies. Phylogenetic analysis based on nucleoprotein gene sequencing revealed that the rabies virus strain from the domestic fowl belonged to a distinct and relatively rare Indian subcontinent lineage.This case of naturally acquired rabies infection in a bird species, Gallus domesticus, being reported for the first time in India, was identified from an area which has a significant stray dog population and is highly endemic for canine rabies. It indicates that spill over of infection even to an unusual host is possible in highly endemic areas. Lack of any clinical signs, and fewer opportunities for diagnostic laboratory testing of suspected rabies in birds, may be the reason for disease in these species being undiagnosed and probably under-reported. Butchering and handling of rabies virus- infected poultry may pose a potential exposure risk.

  12. Alfalfa dwarf cytorhabdovirus P protein is a local and systemic RNA silencing supressor which inhibits programmed RISC activity and prevents transitive amplification of RNA silencing.

    Science.gov (United States)

    Bejerman, Nicolás; Mann, Krin S; Dietzgen, Ralf G

    2016-09-15

    Plants employ RNA silencing as an innate defense mechanism against viruses. As a counter-defense, plant viruses have evolved to express RNA silencing suppressor proteins (RSS), which target one or more steps of the silencing pathway. In this study, we show that the phosphoprotein (P) encoded by the negative-sense RNA virus alfalfa dwarf virus (ADV), a species of the genus Cytorhabdovirus, family Rhabdoviridae, is a suppressor of RNA silencing. ADV P has a relatively weak local RSS activity, and does not prevent siRNA accumulation. On the other hand, ADV P strongly suppresses systemic RNA silencing, but does not interfere with the short-distance spread of silencing, which is consistent with its lack of inhibition of siRNA accumulation. The mechanism of suppression appears to involve ADV P binding to RNA-induced silencing complex proteins AGO1 and AGO4 as shown in protein-protein interaction assays when ectopically expressed. In planta, we demonstrate that ADV P likely functions by inhibiting miRNA-guided AGO1 cleavage and prevents transitive amplification by repressing the production of secondary siRNAs. As recently described for lettuce necrotic yellows cytorhabdovirus P, but in contrast to other viral RSS known to disrupt AGO activity, ADV P sequence does not contain any recognizable GW/WG or F-box motifs, which suggests that cytorhabdovirus P proteins may use alternative motifs to bind to AGO proteins. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  13. Ribonuclease activity of buckwheat plant (Fagopyrum esculentum cultivars with different sensitivities to buckwheat burn virus

    Directory of Open Access Journals (Sweden)

    Y. R. Sindarovska

    2014-06-01

    Full Text Available Ribonucleases (RNases are present in base-level amounts in intact plants, but this level is able to increase greatly under stress conditions. The possible cause for such an increase is protection against plant RNA-virus attack. Buckwheat burn virus (BBV is a highly virulent pathogen that belongs to Rhabdoviridae family. In our study, we have analyzed the correlation between RNase activity and resistance of different buckwheat cultivars to BBV infection. Two cultivars, Kara-Dag and Roksolana, with different sensitivities to BBV have been used. Kara-Dag is a cultivar with medium sensitivity to virus and Roksolana is a tolerant cultivar. It has been shown that the base level of RNase activity in Roksolana cultivar was in most cases higher than the corresponding parameter in Kara-Dag cultivar. Both infected and uninfected plants of Roksolana cultivar demonstrated high RNase activity during two weeks. Whereas infected plants of Kara-Dag cultivar demonstrated unstable levels of RNase activity. Significant decline in RNase activity was detected on the 7th day post infection with subsequent gradual increase in RNase activity. Decline of the RNase activity during the first week could promote the virus replication and therefore more successful infection of upper leaves of plants. Unstable levels of RNase activity in infected buckwheat plants may be explained by insufficiency of virus-resistant mechanisms that determines the medium sensitivity of the cultivar to BBV. Thus, plants of buckwheat cultivar having less sensitivity to virus, displayed in general higher RNase activity.

  14. In vitro and in vivo inhibition of rabies virus replication by RNA interference.

    Science.gov (United States)

    Durymanova Ono, Ekaterina A; Iamamoto, Keila; Castilho, Juliana G; Carnieli, Pedro; de Novaes Oliveira, Rafael; Achkar, Samira M; Carrieri, Maria L; Kotait, Ivanete; Brandão, Paulo E

    2013-01-01

    Rabies is a zoonotic disease that affects all mammals and leads to more than 55,000 human deaths every year, caused by rabies virus (RABV) (Mononegavirales: Rhabdoviridae: Lyssavirus). Currently, human rabies treatment is based on the Milwaukee Protocol which consists on the induction of coma and massive antiviral therapy. The aim of this study was to assess the decrease in the titer of rabies virus both in vitro and in vivo using short-interfering RNAs. To this end, three siRNAs were used with antisense strands complementary to rabies virus nucleoprotein (N) mRNA. BHK-21 cells monolayers were infected with 1000 to 0.1 TCID50 of PV and after 2 hours the cells were transfected with each of tree RNAs in separate using Lipofectamine-2000. All three siRNAs reduced the titer of PV strain in a least 0.72 logTCID50/mL and no cytotoxic effect was observed in the monolayers treated with Lipofectamine-2000. Swiss albino mice infected with 10.000 to 1 LD of PV strain by the intracerebral route were also transfected after two hours of infection with a pool 3 siRNAs with Lipofectamine-2000 by the intracerebral route, resulting in a survival rate of 30% in mice inoculated with 100 LD50, while the same dose led to 100% mortality in untreated animals. Lipofectamine-2000 showed no toxic effect in control mice. These results suggest that intracerebral administration of siRNAs might be an effective antiviral strategy for rabies.

  15. Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families.

    Directory of Open Access Journals (Sweden)

    Jemma L Geoghegan

    2017-02-01

    Full Text Available The cross-species transmission of viruses from one host species to another is responsible for the majority of emerging infections. However, it is unclear whether some virus families have a greater propensity to jump host species than others. If related viruses have an evolutionary history of co-divergence with their hosts there should be evidence of topological similarities between the virus and host phylogenetic trees, whereas host jumping generates incongruent tree topologies. By analyzing co-phylogenetic processes in 19 virus families and their eukaryotic hosts we provide a quantitative and comparative estimate of the relative frequency of virus-host co-divergence versus cross-species transmission among virus families. Notably, our analysis reveals that cross-species transmission is a near universal feature of the viruses analyzed here, with virus-host co-divergence occurring less frequently and always on a subset of viruses. Despite the overall high topological incongruence among virus and host phylogenies, the Hepadnaviridae, Polyomaviridae, Poxviridae, Papillomaviridae and Adenoviridae, all of which possess double-stranded DNA genomes, exhibited more frequent co-divergence than the other virus families studied here. At the other extreme, the virus and host trees for all the RNA viruses studied here, particularly the Rhabdoviridae and the Picornaviridae, displayed high levels of topological incongruence, indicative of frequent host switching. Overall, we show that cross-species transmission plays a major role in virus evolution, with all the virus families studied here having the potential to jump host species, and that increased sampling will likely reveal more instances of host jumping.

  16. The biological effects of ozone on representative members of five groups of animal viruses

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, D.C.; Zee, Y.C.; Osebold, J.W.

    1982-04-01

    In an effort to establish the biological relevance of the reactions of ozone with soluble proteins and lipid bilayer membrane systems, representative viruses from five major virus groups were exposed to moderate concentrations of ozone. The virus suspensions were exposed at 37/sup 0/C to 0.00, 0.16, and 0.64 ppm ozone in the gas phase. The ozone reacted with the virus suspensions as a thin film of fluid on the surface of a rotating culture bottle as the gas was drawn through the bottle at a flow rate of 2 liters/min. The three enveloped viruses tested exhibited different susceptibilities to ozone inactivation which correlated with their thermolability in the absence of ozone. The order of susceptibility to ozone inactivation of the enveloped viruses was vesicular stomatitis virus (VSV) (Rhabdoviridae) > influenza A virus (WSN strain) (Orthomyxoviridae) > infectious bovine rhinotracheitis virus (IBRV) (Herpesviridae). The inactivation reactions of the enveloped viruses with ozone showed pseudo-first-order kinetics. A simple reaction model was used to derive a reaction rate expression from which rate constrants and reaction stoichiometry were estimated. In contrast to the enveloped viruses, the two nonenveloped viruses examined were relatively resistant to ozone inactivation. Polio virus type I (Picornaviridae) was found to be completely resistant to ozone inactivation after 60 hr exposure to either ozone concentration, while infectious canine hepatitis virus (Adenoviridae) showed only slight inactivation after exposure to 0.64 ppm ozone for 66 hr. The significance of these results with regard to the reactions of ozone with cell membranes and other components is discussed.

  17. Transcriptome of the Plant Virus Vector Graminella nigrifrons, and the Molecular Interactions of Maize fine streak rhabdovirus Transmission

    Science.gov (United States)

    Chen, Yuting; Cassone, Bryan J.; Bai, Xiaodong; Redinbaugh, Margaret G.; Michel, Andrew P.

    2012-01-01

    Background Leafhoppers (Hemiptera: Cicadellidae) are plant-phloem feeders that are known for their ability to vector plant pathogens. The black-faced leafhopper (Graminella nigrifrons) has been identified as the only known vector for the Maize fine streak virus (MFSV), an emerging plant pathogen in the Rhabdoviridae. Within G. nigrifrons populations, individuals can be experimentally separated into three classes based on their capacity for viral transmission: transmitters, acquirers and non-acquirers. Understanding the molecular interactions between vector and virus can reveal important insights in virus immune defense and vector transmission. Results RNA sequencing (RNA-Seq) was performed to characterize the transcriptome of G. nigrifrons. A total of 38,240 ESTs of a minimum 100 bp were generated from two separate cDNA libraries consisting of virus transmitters and acquirers. More than 60% of known D. melanogaster, A. gambiae, T. castaneum immune response genes mapped to our G. nigrifrons EST database. Real time quantitative PCR (RT-qPCR) showed significant down-regulation of three genes for peptidoglycan recognition proteins (PGRP – SB1, SD, and LC) in G. nigrifrons transmitters versus control leafhoppers. Conclusions Our study is the first to characterize the transcriptome of a leafhopper vector species. Significant sequence similarity in immune defense genes existed between G. nigrifrons and other well characterized insects. The down-regulation of PGRPs in MFSV transmitters suggested a possible role in rhabdovirus transmission. The results provide a framework for future studies aimed at elucidating the molecular mechanisms of plant virus vector competence. PMID:22808205

  18. Sequence variation of the glycoprotein gene identifies three distinct lineages within field isolates of viral hemorrhagic septicemia virus, a fish rhabdovirus

    Science.gov (United States)

    Benmansour, A.; Bascuro, B.; Monnier, A.F.; Vende, P.; Winton, J.R.; de Kinkelin, P.

    1997-01-01

    To evaluate the genetic diversity of viral haemorrhagic septicaemia virus (VHSV), the sequence of the glycoprotein genes (G) of 11 North American and European isolates were determined. Comparison with the G protein of representative members of the family Rhabdoviridae suggested that VHSV was a different virus species from infectious haemorrhagic necrosis virus (IHNV) and Hirame rhabdovirus (HIRRV). At a higher taxonomic level, VHSV, IHNV and HIRRV formed a group which was genetically closest to the genus Lyssavirus. Compared with each other, the G genes of VHSV displayed a dissimilar overall genetic diversity which correlated with differences in geographical origin. The multiple sequence alignment of the complete G protein, showed that the divergent positions were not uniformly distributed along the sequence. A central region (amino acid position 245-300) accumulated substitutions and appeared to be highly variable. The genetic heterogeneity within a single isolate was high, with an apparent internal mutation frequency of 1.2 x 10(-3) per nucleotide site, attesting the quasispecies nature of the viral population. The phylogeny separated VHSV strains according to the major geographical area of isolation: genotype I for continental Europe, genotype II for the British Isles, and genotype III for North America. Isolates from continental Europe exhibited the highest genetic variability, with sub-groups correlated partially with the serological classification. Neither neutralizing polyclonal sera, nor monoclonal antibodies, were able to discriminate between the genotypes. The overall structure of the phylogenetic tree suggests that VHSV genetic diversity and evolution fit within the model of random change and positive selection operating on quasispecies.

  19. In vitro and in vivo inhibition of rabies virus replication by RNA interference

    Directory of Open Access Journals (Sweden)

    Ekaterina A. Durymanova Ono

    2013-09-01

    Full Text Available Rabies is a zoonotic disease that affects all mammals and leads to more than 55,000 human deaths every year, caused by rabies virus (RABV (Mononegavirales: Rhabdoviridae: Lyssavirus. Currently, human rabies treatment is based on the Milwaukee Protocol which consists on the induction of coma and massive antiviral therapy. The aim of this study was to assess the decrease in the titer of rabies virus both in vitro and in vivo using short-interfering RNAs. To this end, three siRNAs were used with antisense strands complementary to rabies virus nucleoprotein (N mRNA. BHK-21 cells monolayers were infected with 1000 to 0.1 TCID50 of PV and after 2 hours the cells were transfected with each of tree RNAs in separate using Lipofectamine-2000. All three siRNAs reduced the titer of PV strain in a least 0.72 logTCID50/mL and no cytotoxic effect was observed in the monolayers treated with Lipofectamine-2000. Swiss albino mice infected with 10.000 to 1 LD of PV strain by the intracerebral route were also transfected after two hours of infection with a pool 3 siRNAs with Lipofectamine-2000 by the intracerebral route, resulting in a survival rate of 30% in mice inoculated with 100 LD50, while the same dose led to 100% mortality in untreated animals. Lipofectamine-2000 showed no toxic effect in control mice. These results suggest that intracerebral administration of siRNAs might be an effective antiviral strategy for rabies.

  20. Identification of Novel Viruses in Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis Ticks

    Science.gov (United States)

    Sameroff, Stephen; Tagliafierro, Teresa; Jain, Komal; Williams, Simon H.; Cucura, D. Moses; Rochlin, Ilia; Monzon, Javier; Carpi, Giovanna; Tufts, Danielle; Diuk-Wasser, Maria; Brinkerhoff, Jory; Lipkin, W. Ian

    2018-01-01

    ABSTRACT Ticks carry a wide range of known human and animal pathogens and are postulated to carry others with the potential to cause disease. Here we report a discovery effort wherein unbiased high-throughput sequencing was used to characterize the virome of 2,021 ticks, including Ixodes scapularis (n = 1,138), Amblyomma americanum (n = 720), and Dermacentor variabilis (n = 163), collected in New York, Connecticut, and Virginia in 2015 and 2016. We identified 33 viruses, including 24 putative novel viral species. The most frequently detected viruses were phylogenetically related to members of the Bunyaviridae and Rhabdoviridae families, as well as the recently proposed Chuviridae. Our work expands our understanding of tick viromes and underscores the high viral diversity that is present in ticks. IMPORTANCE The incidence of tick-borne disease is increasing, driven by rapid geographical expansion of ticks and the discovery of new tick-associated pathogens. The examination of the tick microbiome is essential in order to understand the relationship between microbes and their tick hosts and to facilitate the identification of new tick-borne pathogens. Genomic analyses using unbiased high-throughput sequencing platforms have proven valuable for investigations of tick bacterial diversity, but the examination of tick viromes has historically not been well explored. By performing a comprehensive virome analysis of the three primary tick species associated with human disease in the United States, we gained substantial insight into tick virome diversity and can begin to assess a potential role of these viruses in the tick life cycle. PMID:29564401

  1. Can VHS Virus Bypass the Protective Immunity Induced by DNA Vaccination in Rainbow Trout?

    Directory of Open Access Journals (Sweden)

    Dagoberto Sepúlveda

    Full Text Available DNA vaccines encoding viral glycoproteins have been very successful for induction of protective immunity against diseases caused by rhabdoviruses in cultured fish species. However, the vaccine concept is based on a single viral gene and since RNA viruses are known to possess high variability and adaptation capacity, this work aimed at evaluating whether viral haemorrhagic septicaemia virus (VHSV, an RNA virus and member of Rhabdoviridae family, was able to evade the protective immune response induced by the DNA vaccination of rainbow trout. The experiments comprised repeated passages of a highly pathogenic VHSV isolate in a fish cell line in the presence of neutralizing fish serum (in vitro approach, and in rainbow trout immunized with the VHS DNA vaccine (in vivo approach. For the in vitro approach, the virus collected from the last passage (passaged virus was as sensitive as the parental virus to serum neutralization, suggesting that the passaging did not promote the selection of virus populations able to bypass the neutralization by serum antibodies. Also, in the in vivo approach, where virus was passaged several times in vaccinated fish, no increased virulence nor increased persistence in vaccinated fish was observed in comparison with the parental virus. However, some of the vaccinated fish did get infected and could transmit the infection to naïve cohabitant fish. The results demonstrated that the DNA vaccine induced a robust protection, but also that the immunity was non-sterile. It is consequently important not to consider vaccinated fish as virus free in veterinary terms.

  2. Rhabdoviruses in two species of Drosophila: vertical transmission and a recent sweep.

    Science.gov (United States)

    Longdon, Ben; Wilfert, Lena; Obbard, Darren J; Jiggins, Francis M

    2011-05-01

    Insects are host to a diverse range of vertically transmitted micro-organisms, but while their bacterial symbionts are well-studied, little is known about their vertically transmitted viruses. We have found that two sigma viruses (Rhabdoviridae) recently discovered in Drosophila affinis and Drosophila obscura are both vertically transmitted. As is the case for the sigma virus of Drosophila melanogaster, we find that both males and females can transmit these viruses to their offspring. Males transmit lower viral titers through sperm than females transmit through eggs, and a lower proportion of their offspring become infected. In natural populations of D. obscura in the United Kingdom, we found that 39% of flies were infected and that the viral population shows clear evidence of a recent expansion, with extremely low genetic diversity and a large excess of rare polymorphisms. Using sequence data we estimate that the virus has swept across the United Kingdom within the past ∼11 years, during which time the viral population size doubled approximately every 9 months. Using simulations based on our lab estimates of transmission rates, we show that the biparental mode of transmission allows the virus to invade and rapidly spread through populations at rates consistent with those measured in the field. Therefore, as predicted by our simulations, the virus has undergone an extremely rapid and recent increase in population size. In light of this and earlier studies of a related virus in D. melanogaster, we conclude that vertically transmitted rhabdoviruses may be common in insects and that these host-parasite interactions can be highly dynamic.

  3. Crystallization and preliminary X-ray analysis of Chandipura virus glycoprotein G

    International Nuclear Information System (INIS)

    Baquero, Eduard; Buonocore, Linda; Rose, John K.; Bressanelli, Stéphane; Gaudin, Yves; Albertini, Aurélie A.

    2012-01-01

    Chandipura virus glycoprotein ectodomain (Gth) was purified and crystallized at pH 7.5. X-ray diffraction data set was collected to a resolution of 3.1 Å. Fusion in members of the Rhabdoviridae virus family is mediated by the G glycoprotein. At low pH, the G glycoprotein catalyzes fusion between viral and endosomal membranes by undergoing a major conformational change from a pre-fusion trimer to a post-fusion trimer. The structure of the G glycoprotein from vesicular stomatitis virus (VSV G), the prototype of Vesiculovirus, has recently been solved in its trimeric pre-fusion and post-fusion conformations; however, little is known about the structural details of the transition. In this work, a soluble form of the ectodomain of Chandipura virus G glycoprotein (CHAV G th ) was purified using limited proteolysis of purified virus; this soluble ectodomain was also crystallized. This protein shares 41% amino-acid identity with VSV G and thus its structure could provide further clues about the structural transition of rhabdoviral glycoproteins induced by low pH. Crystals of CHAV G th obtained at pH 7.5 diffracted X-rays to 3.1 Å resolution. These crystals belonged to the orthorhombic space group P2 1 2 1 2, with unit-cell parameters a = 150.3, b = 228.2, c = 78.8 Å. Preliminary analysis of the data based on the space group and the self-rotation function indicated that there was no trimeric association of the protomers. This unusual oligomeric status could result from the presence of fusion intermediates in the crystal

  4. Transcriptome of the plant virus vector Graminella nigrifrons, and the molecular interactions of maize fine streak rhabdovirus transmission.

    Directory of Open Access Journals (Sweden)

    Yuting Chen

    Full Text Available BACKGROUND: Leafhoppers (HEmiptera: Cicadellidae are plant-phloem feeders that are known for their ability to vector plant pathogens. The black-faced leafhopper (Graminella nigrifrons has been identified as the only known vector for the Maize fine streak virus (MFSV, an emerging plant pathogen in the Rhabdoviridae. Within G. nigrifrons populations, individuals can be experimentally separated into three classes based on their capacity for viral transmission: transmitters, acquirers and non-acquirers. Understanding the molecular interactions between vector and virus can reveal important insights in virus immune defense and vector transmission. RESULTS: RNA sequencing (RNA-Seq was performed to characterize the transcriptome of G. nigrifrons. A total of 38,240 ESTs of a minimum 100 bp were generated from two separate cDNA libraries consisting of virus transmitters and acquirers. More than 60% of known D. melanogaster, A. gambiae, T. castaneum immune response genes mapped to our G. nigrifrons EST database. Real time quantitative PCR (RT-qPCR showed significant down-regulation of three genes for peptidoglycan recognition proteins (PGRP - SB1, SD, and LC in G. nigrifrons transmitters versus control leafhoppers. CONCLUSIONS: Our study is the first to characterize the transcriptome of a leafhopper vector species. Significant sequence similarity in immune defense genes existed between G. nigrifrons and other well characterized insects. The down-regulation of PGRPs in MFSV transmitters suggested a possible role in rhabdovirus transmission. The results provide a framework for future studies aimed at elucidating the molecular mechanisms of plant virus vector competence.

  5. Rhabdoviruses in Two Species of Drosophila: Vertical Transmission and a Recent Sweep

    Science.gov (United States)

    Longdon, Ben; Wilfert, Lena; Obbard, Darren J.; Jiggins, Francis M.

    2011-01-01

    Insects are host to a diverse range of vertically transmitted micro-organisms, but while their bacterial symbionts are well-studied, little is known about their vertically transmitted viruses. We have found that two sigma viruses (Rhabdoviridae) recently discovered in Drosophila affinis and Drosophila obscura are both vertically transmitted. As is the case for the sigma virus of Drosophila melanogaster, we find that both males and females can transmit these viruses to their offspring. Males transmit lower viral titers through sperm than females transmit through eggs, and a lower proportion of their offspring become infected. In natural populations of D. obscura in the United Kingdom, we found that 39% of flies were infected and that the viral population shows clear evidence of a recent expansion, with extremely low genetic diversity and a large excess of rare polymorphisms. Using sequence data we estimate that the virus has swept across the United Kingdom within the past ∼11 years, during which time the viral population size doubled approximately every 9 months. Using simulations based on our lab estimates of transmission rates, we show that the biparental mode of transmission allows the virus to invade and rapidly spread through populations at rates consistent with those measured in the field. Therefore, as predicted by our simulations, the virus has undergone an extremely rapid and recent increase in population size. In light of this and earlier studies of a related virus in D. melanogaster, we conclude that vertically transmitted rhabdoviruses may be common in insects and that these host–parasite interactions can be highly dynamic. PMID:21339477

  6. Rabies - epidemiology, pathogenesis, public health concerns and advances in diagnosis and control: a comprehensive review.

    Science.gov (United States)

    Singh, Rajendra; Singh, Karam Pal; Cherian, Susan; Saminathan, Mani; Kapoor, Sanjay; Manjunatha Reddy, G B; Panda, Shibani; Dhama, Kuldeep

    2017-12-01

    Rabies is a zoonotic, fatal and progressive neurological infection caused by rabies virus of the genus Lyssavirus and family Rhabdoviridae. It affects all warm-blooded animals and the disease is prevalent throughout the world and endemic in many countries except in Islands like Australia and Antarctica. Over 60,000 peoples die every year due to rabies, while approximately 15 million people receive rabies post-exposure prophylaxis (PEP) annually. Bite of rabid animals and saliva of infected host are mainly responsible for transmission and wildlife like raccoons, skunks, bats and foxes are main reservoirs for rabies. The incubation period is highly variable from 2 weeks to 6 years (avg. 2-3 months). Though severe neurologic signs and fatal outcome, neuropathological lesions are relatively mild. Rabies virus exploits various mechanisms to evade the host immune responses. Being a major zoonosis, precise and rapid diagnosis is important for early treatment and effective prevention and control measures. Traditional rapid Seller's staining and histopathological methods are still in use for diagnosis of rabies. Direct immunofluoroscent test (dFAT) is gold standard test and most commonly recommended for diagnosis of rabies in fresh brain tissues of dogs by both OIE and WHO. Mouse inoculation test (MIT) and polymerase chain reaction (PCR) are superior and used for routine diagnosis. Vaccination with live attenuated or inactivated viruses, DNA and recombinant vaccines can be done in endemic areas. This review describes in detail about epidemiology, transmission, pathogenesis, advances in diagnosis, vaccination and therapeutic approaches along with appropriate prevention and control strategies.

  7. An N-targeting real-time PCR strategy for the accurate detection of spring viremia of carp virus.

    Science.gov (United States)

    Shao, Ling; Xiao, Yu; He, Zhengkan; Gao, Longying

    2016-03-01

    Spring viremia of carp virus (SVCV) is a highly pathogenic agent of several economically important Cyprinidae fish species. Currently, there are no effective vaccines or drugs for this virus, and prevention of the disease mostly relies on prompt diagnosis. Previously, nested RT-PCR and RT-qPCR detection methods based on the glycoprotein gene G have been developed. However, the high genetic diversity of the G gene seriously limits the reliability of those methods. Compared with the G gene, phylogenetic analyses indicate that the nucleoprotein gene N is more conserved. Furthermore, studies in other members of the Rhabdoviridae family reveals that their gene transcription level follows the order N>P>M>G>L, indicating that an N gene based RT-PCR should have higher sensitivity. Therefore, two pairs of primers and two corresponding probes targeting the conserved regions of the N gene were designed. RT-qPCR assays demonstrated all primers and probes could detect phylogenetically distant isolates specifically and efficiently. Moreover, in artificially infected fish, the detected copy numbers of the N gene were much higher than those of the G gene in all tissues, and both the N and G gene copy numbers were highest in the kidney and spleen. Testing in 1100 farm-raised fish also showed that the N-targeting strategy was more reliable than the G-targeting methods. The method developed in this study provides a reliable tool for the rapid diagnosis of SVCV. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Diversity and evolutionary history of lettuce necrotic yellows virus in Australia and New Zealand.

    Science.gov (United States)

    Higgins, Colleen M; Chang, Wee-Leong; Khan, Subuhi; Tang, Joe; Elliott, Carol; Dietzgen, Ralf G

    2016-02-01

    Lettuce necrotic yellows virus (LNYV) is the type member of the genus Cytorhabdovirus, family Rhabdoviridae, and causes a severe disease of lettuce (Lactuca sativa L.). This virus has been described as endemic to Australia and New Zealand, with sporadic reports of a similar virus in Europe. Genetic variability studies of plant-infecting rhabdoviruses are scarce. We have extended a previous study on the variability of the LNYV nucleocapsid gene, comparing sequences from isolates sampled from both Australia and New Zealand, as well as analysing symptom expression on Nicotiana glutinosa. Phylogenetic and BEAST analyses confirm separation of LNYV isolates into two subgroups (I and II) and suggest that subgroup I is slightly older than subgroup II. No correlation was observed between isolate subgroup and disease symptoms on N. glutinosa. The origin of LNYV remains unclear; LNYV may have moved between native and weed hosts within Australia or New Zealand before infecting lettuce or may have appeared as a result of at least two incursions, with the first coinciding with the beginning of European agriculture in the region. The apparent extinction of subgroup I in Australia may have been due to less-efficient dispersal than that which has occurred for subgroup II - possibly a consequence of suboptimal interactions with plant and/or insect hosts. Introduction of subgroup II to New Zealand appears to be more recent. More-detailed epidemiological studies using molecular tools are needed to fully understand how LNYV interacts with its hosts and to determine where the virus originated.

  9. Whole genomes of Chandipura virus isolates and comparative analysis with other rhabdoviruses.

    Science.gov (United States)

    Cherian, Sarah S; Gunjikar, Rashmi S; Banerjee, Arpita; Kumar, Satyendra; Arankalle, Vidya A

    2012-01-01

    The Chandipura virus (CHPV) belonging to the Vesiculovirus genus and Rhabdoviridae family, has recently been associated with a number of encephalitis epidemics, with high mortality in children, in different parts of India. No full length genome sequences of CHPV isolates were available in GenBank and little is known about the molecular markers for pathogenesis. In the present study, we provide the complete genomic sequences of four isolates from epidemics during 2003-2007. These sequences along with the deduced sequence of the prototype isolate of 1965 were analysed using phylogeny, motif search, homology modeling and epitope prediction methods. Comparison with other rhaboviruses was also done for functional extrapolations. All CHPV isolates clustered with the Isfahan virus and maintained several functional motifs of other rhabdoviruses. A notable difference with the prototype vesiculovirus, Vesicular Stomatitis Virus was in the L-domain flanking sequences of the M protein that are known to be crucial for interaction with host proteins. With respect to the prototype isolate, significant additional mutations were acquired in the 2003-2007 isolates. Several mutations in G mapped onto probable antigenic sites. A mutation in N mapped onto regions crucial for N-N interaction and a putative T-cell epitope. A mutation in the Casein kinase II phosphorylation site in P may attribute to increased rates of phosphorylation. Gene junction comparison revealed changes in the M-G junction of all the epidemic isolates that may have implications on read-through and gene transcription levels. The study can form the basis for further experimental verification and provide additional insights into the virulence determinants of the CHPV.

  10. A reverse genetics system for the Great Lakes strain of viral hemorrhagic septicemia virus: the NV gene is required for pathogenicity

    Science.gov (United States)

    Ammayappan, Arun; Kurath, Gael; Thompson, Tarin M.; Vakharia, Vikram N.

    2011-01-01

    Viral hemorrhagic septicemia virus (VHSV), belonging to the genus Novirhabdovirus in the family of Rhabdoviridae, causes a highly contagious disease of fresh and saltwater fish worldwide. Recently, a novel genotype of VHSV, designated IVb, has invaded the Great Lakes in North America, causing large-scale epidemics in wild fish. An efficient reverse genetics system was developed to generate a recombinant VHSV of genotype IVb from cloned cDNA. The recombinant VHSV (rVHSV) was comparable to the parental wild-type strain both in vitro and in vivo, causing high mortality in yellow perch (Perca flavescens). A modified recombinant VHSV was generated in which the NV gene was substituted with an enhanced green fluorescent protein gene (rVHSV-ΔNV-EGFP), and another recombinant was made by inserting the EGFP gene into the full-length viral clone between the P and M genes (rVHSV-EGFP). The in vitro replication kinetics of rVHSV-EGFP was similar to rVHSV; however, the rVHSV-ΔNV-EGFP grew 2 logs lower. In yellow perch challenges, wtVHSV and rVHSV induced 82-100% cumulative per cent mortality (CPM), respectively, whereas rVHSV-EGFP produced 62% CPM and rVHSV-ΔNV-EGFP caused only 15% CPM. No reversion of mutation was detected in the recovered viruses and the recombinant viruses stably maintained the foreign gene after several passages. These results indicate that the NV gene of VHSV is not essential for viral replication in vitro and in vivo, but it plays an important role in viral replication efficiency and pathogenicity. This system will facilitate studies of VHSV replication, virulence, and production of viral vectored vaccines.

  11. Systems Biomedicine of Rabies Delineates the Affected Signaling pathways

    Directory of Open Access Journals (Sweden)

    Sayed Hamid Reza Mozhgani

    2016-11-01

    Full Text Available The prototypical neurotropic virus, rabies, is a member of the Rhabdoviridae family that causes lethal encephalomyelitis. Although there have been a plethora of studies investigating the etiological mechanism of the rabies virus and many precautionary methods have been implemented to avert the disease outbreak over the last century, the disease has surprisingly no definite remedy at its late stages. The psychological symptoms and the underlying etiology, as well as the rare survival rate from rabies encephalitis, has still remained a mystery. We, therefore, undertook a systems biomedicine approach to identify the network of gene products implicated in rabies. This was done by meta-analyzing whole-transcriptome microarray datasets of the CNS infected by strain CVS-11, and integrating them with interactome data using computational and statistical methods. We first determined the differentially expressed genes (DEGs in each study and horizontally integrated the results at the mRNA and microRNA levels separately. A total of 61 seed genes involved in signal propagation system were obtained by means of unifying mRNA and microRNA detected integrated DEGs. We then reconstructed a refined protein-protein interaction network (PPIN of infected cells to elucidate the rabies-implicated signal transduction network (RISN. To validate our findings, we confirmed differential expression of randomly selected genes in the network using Real-time PCR. In conclusion, the identification of seed genes and their network neighborhood within the refined PPIN can be useful for demonstrating signaling pathways including interferon circumvent, toward proliferation and survival, and neuropathological clue, explaining the intricate underlying molecular neuropathology of rabies infection and thus rendered a molecular framework for predicting potential drug targets.

  12. Antigen detection of rabies virus in brain smear using direct Rapid Immunohistochemistry Test

    Directory of Open Access Journals (Sweden)

    Damayanti R

    2014-03-01

    Full Text Available Rabies is zoonotic disease caused by a fatal, neurotropic virus. Rabies virus is classified into the Genus of Lyssavirus under the yang family of Rhabdoviridae. Rabies affecting hot- blooded animals, as well as human. Dogs, cats, monkeys are the vectors or reservoirs for rabies and the virus was transmitted through the saliva after infected animal’s bites. The aim of this study was to conduct rapid diagnosis to detect rabies viral antigen in brain smear using immunohistochemical (IHC method namely direct Rapid Immunohistochemical Test (dRIT. A total number of 119 brain samples were achieved from Bukittinggi Veterinary Laboratory, West Sumatra. Standardisation and validation of the method were compared to Fluorescent Antibody Test (FAT as a golden standard for rabies diagnosis. Results show that dRIT was a very good method, it can be performed within two hours without the need of fluorescent microscope. The samples were tested using FAT and from 119 samples tested, 80 (67.23% samples were positive for rabies and 39 (32.77% samples were negative for rabies whereas using dRIT showed that 78 (65.54% samples were positive for rabies and 41 (34.45% samples were negative for rabies. The dRIT results were validated by comparing them with FAT results as a golden standard for rabies. The relative sensitivity of dRIT to FAT was 97.5% and the relative specificity to FAT was 100% (with Kappa value of 0.976, stated as excellent. The achievement showed that dRIT is very potential diagnostic tool and is highly recommended to be used widely as a rapid diagnosis tool for rabies.

  13. Whole genomes of Chandipura virus isolates and comparative analysis with other rhabdoviruses.

    Directory of Open Access Journals (Sweden)

    Sarah S Cherian

    Full Text Available The Chandipura virus (CHPV belonging to the Vesiculovirus genus and Rhabdoviridae family, has recently been associated with a number of encephalitis epidemics, with high mortality in children, in different parts of India. No full length genome sequences of CHPV isolates were available in GenBank and little is known about the molecular markers for pathogenesis. In the present study, we provide the complete genomic sequences of four isolates from epidemics during 2003-2007. These sequences along with the deduced sequence of the prototype isolate of 1965 were analysed using phylogeny, motif search, homology modeling and epitope prediction methods. Comparison with other rhaboviruses was also done for functional extrapolations. All CHPV isolates clustered with the Isfahan virus and maintained several functional motifs of other rhabdoviruses. A notable difference with the prototype vesiculovirus, Vesicular Stomatitis Virus was in the L-domain flanking sequences of the M protein that are known to be crucial for interaction with host proteins. With respect to the prototype isolate, significant additional mutations were acquired in the 2003-2007 isolates. Several mutations in G mapped onto probable antigenic sites. A mutation in N mapped onto regions crucial for N-N interaction and a putative T-cell epitope. A mutation in the Casein kinase II phosphorylation site in P may attribute to increased rates of phosphorylation. Gene junction comparison revealed changes in the M-G junction of all the epidemic isolates that may have implications on read-through and gene transcription levels. The study can form the basis for further experimental verification and provide additional insights into the virulence determinants of the CHPV.

  14. A strain of Siniperca chuatsi rhabdovirus causes high mortality among cultured Largemouth Bass in South China.

    Science.gov (United States)

    Ma, Dongmei; Deng, Guocheng; Bai, Junjie; Li, Shengjie; Yu, Lingyun; Quan, Yingchun; Yang, Xiaojing; Jiang, Xiaoyan; Zhu, Zemin; Ye, Xing

    2013-09-01

    In April 2011, 40% mortality of Largemouth Bass Micropterus salmoides juveniles occurred at a farm of Zhongshan City, Guangdong Province, China. Infected fish became lethargic, exhibited corkscrew and irregular swimming, and developed a distended abdomen and crooked body. Fish began to die within 2 d after the appearance of clinical signs. In order to analyze the pathogeny and diagnose the disease earlier, observation of clinical signs, cell infection, titer calculation, electron microscopy, immersion infection assay for fish, and nucleotide sequence analysis were carried out. Fathead minnow (FHM) cell cultures, inoculated with filtrate of liver and spleen homogenates from the diseased fish, developed the obvious cytopathic effect 46 h after inoculation in the primary culture and 24 h at the first passage. Typical rhabdovirus particles, 115-143 nm in length and 62-78 nm in diameter, were observed in infected FHM cells by direct transmission electron microscopy. The isolated virus produced a titer of 10(7.15) TCID50/mL. Immersion-Fish infected with the virus had similar clinical signs and 80% mortality with 10(2.5) LD50/mL. The data indicated that the rhabdovirus was the lethal pathogeny of the current disease. Based on nucleoprotein-gene nucleotide sequence multiple alignment analysis, the newly isolated virus is a strain of Siniperca chuatsi rhabdovirus (SCRV) under family Rhabdoviridae, which was initially isolated from Mandarin Fish Siniperca chuatsi. Up to the present, at least four virus strains have been isolated from diseased Largemouth Bass, which have had different clinical signs. Comparison of the clinical signs can help in an early diagnosis of the disease.

  15. Whole Genomes of Chandipura Virus Isolates and Comparative Analysis with Other Rhabdoviruses

    Science.gov (United States)

    Cherian, Sarah S.; Kumar, Satyendra; Arankalle, Vidya A.

    2012-01-01

    The Chandipura virus (CHPV) belonging to the Vesiculovirus genus and Rhabdoviridae family, has recently been associated with a number of encephalitis epidemics, with high mortality in children, in different parts of India. No full length genome sequences of CHPV isolates were available in GenBank and little is known about the molecular markers for pathogenesis. In the present study, we provide the complete genomic sequences of four isolates from epidemics during 2003–2007. These sequences along with the deduced sequence of the prototype isolate of 1965 were analysed using phylogeny, motif search, homology modeling and epitope prediction methods. Comparison with other rhaboviruses was also done for functional extrapolations. All CHPV isolates clustered with the Isfahan virus and maintained several functional motifs of other rhabdoviruses. A notable difference with the prototype vesiculovirus, Vesicular Stomatitis Virus was in the L-domain flanking sequences of the M protein that are known to be crucial for interaction with host proteins. With respect to the prototype isolate, significant additional mutations were acquired in the 2003–2007 isolates. Several mutations in G mapped onto probable antigenic sites. A mutation in N mapped onto regions crucial for N-N interaction and a putative T-cell epitope. A mutation in the Casein kinase II phosphorylation site in P may attribute to increased rates of phosphorylation. Gene junction comparison revealed changes in the M-G junction of all the epidemic isolates that may have implications on read-through and gene transcription levels. The study can form the basis for further experimental verification and provide additional insights into the virulence determinants of the CHPV. PMID:22272333

  16. Systems Biomedicine of Rabies Delineates the Affected Signaling Pathways

    Science.gov (United States)

    Azimzadeh Jamalkandi, Sadegh; Mozhgani, Sayed-Hamidreza; Gholami Pourbadie, Hamid; Mirzaie, Mehdi; Noorbakhsh, Farshid; Vaziri, Behrouz; Gholami, Alireza; Ansari-Pour, Naser; Jafari, Mohieddin

    2016-01-01

    The prototypical neurotropic virus, rabies, is a member of the Rhabdoviridae family that causes lethal encephalomyelitis. Although there have been a plethora of studies investigating the etiological mechanism of the rabies virus and many precautionary methods have been implemented to avert the disease outbreak over the last century, the disease has surprisingly no definite remedy at its late stages. The psychological symptoms and the underlying etiology, as well as the rare survival rate from rabies encephalitis, has still remained a mystery. We, therefore, undertook a systems biomedicine approach to identify the network of gene products implicated in rabies. This was done by meta-analyzing whole-transcriptome microarray datasets of the CNS infected by strain CVS-11, and integrating them with interactome data using computational and statistical methods. We first determined the differentially expressed genes (DEGs) in each study and horizontally integrated the results at the mRNA and microRNA levels separately. A total of 61 seed genes involved in signal propagation system were obtained by means of unifying mRNA and microRNA detected integrated DEGs. We then reconstructed a refined protein–protein interaction network (PPIN) of infected cells to elucidate the rabies-implicated signal transduction network (RISN). To validate our findings, we confirmed differential expression of randomly selected genes in the network using Real-time PCR. In conclusion, the identification of seed genes and their network neighborhood within the refined PPIN can be useful for demonstrating signaling pathways including interferon circumvent, toward proliferation and survival, and neuropathological clue, explaining the intricate underlying molecular neuropathology of rabies infection and thus rendered a molecular framework for predicting potential drug targets. PMID:27872612

  17. Systems Biomedicine of Rabies Delineates the Affected Signaling Pathways.

    Science.gov (United States)

    Azimzadeh Jamalkandi, Sadegh; Mozhgani, Sayed-Hamidreza; Gholami Pourbadie, Hamid; Mirzaie, Mehdi; Noorbakhsh, Farshid; Vaziri, Behrouz; Gholami, Alireza; Ansari-Pour, Naser; Jafari, Mohieddin

    2016-01-01

    The prototypical neurotropic virus, rabies, is a member of the Rhabdoviridae family that causes lethal encephalomyelitis. Although there have been a plethora of studies investigating the etiological mechanism of the rabies virus and many precautionary methods have been implemented to avert the disease outbreak over the last century, the disease has surprisingly no definite remedy at its late stages. The psychological symptoms and the underlying etiology, as well as the rare survival rate from rabies encephalitis, has still remained a mystery. We, therefore, undertook a systems biomedicine approach to identify the network of gene products implicated in rabies. This was done by meta-analyzing whole-transcriptome microarray datasets of the CNS infected by strain CVS-11, and integrating them with interactome data using computational and statistical methods. We first determined the differentially expressed genes (DEGs) in each study and horizontally integrated the results at the mRNA and microRNA levels separately. A total of 61 seed genes involved in signal propagation system were obtained by means of unifying mRNA and microRNA detected integrated DEGs. We then reconstructed a refined protein-protein interaction network (PPIN) of infected cells to elucidate the rabies-implicated signal transduction network (RISN). To validate our findings, we confirmed differential expression of randomly selected genes in the network using Real-time PCR. In conclusion, the identification of seed genes and their network neighborhood within the refined PPIN can be useful for demonstrating signaling pathways including interferon circumvent, toward proliferation and survival, and neuropathological clue, explaining the intricate underlying molecular neuropathology of rabies infection and thus rendered a molecular framework for predicting potential drug targets.

  18. Genetic diversity of perch rhabdoviruses isolates based on the nucleoprotein and glycoprotein genes.

    Science.gov (United States)

    Talbi, Chiraz; Cabon, Joelle; Baud, Marine; Bourjaily, Maya; de Boisséson, Claire; Castric, Jeannette; Bigarré, Laurent

    2011-12-01

    Despite the increasing impact of rhabdoviruses in European percid farming, the diversity of the viral populations is still poorly investigated. To address this issue, we sequenced the partial nucleoprotein (N) and complete glycoprotein (G) genes of nine rhabdoviruses isolated from perch (Perca fluviatilis) between 1999 and 2010, mostly from France, and analyzed six of them by immunofluorescence antibody test (IFAT). Using two rabbit antisera raised against either the reference perch rhabdovirus (PRhV) isolated in 1980 or the perch isolate R6146, two serogroups were distinguished. Meanwhile, based on partial N and complete G gene analysis, perch rhabdoviruses were divided into four genogroups, A-B-D and E, with a maximum of 32.9% divergence (G gene) between isolates. A comparison of the G amino acid sequences of isolates from the two identified serogroups revealed several variable regions that might account for antigenic differences. Comparative analysis of perch isolates with other rhabdoviruses isolated from black bass, pike-perch and pike showed some strong phylogenetic relationships, suggesting cross-host transmission. Similarly, striking genetic similarities were shown between perch rhabdoviruses and isolates from other European countries and various ecological niches, most likely reflecting the circulation of viruses through fish trade as well as putative transfers from marine to freshwater fish. Phylogenetic relationships of the newly characterized viruses were also determined within the family Rhabdoviridae. The analysis revealed a genetic cluster containing only fish viruses, including all rhabdoviruses from perch, as well as siniperca chuatsi rhabdovirus (SCRV) and eel virus X (EVEX). This cluster was distinct from the one represented by spring viraemia of carp vesiculovirus (SVCV), pike fry rhabdovirus (PFRV) and mammalian vesiculoviruses. The new genetic data provided in the present study shed light on the diversity of rhabdoviruses infecting perch in

  19. Early and Late Pathogenic Events of Newborn Mice Encephalitis Experimentally Induced by Itacaiunas and Curionópolis Bracorhabdoviruses Infection

    Science.gov (United States)

    Diniz, José Antonio Picanço; dos Santos, Zaire Alves; Braga, Marcio Augusto Galvão; Dias, Ádila Liliane Barros; da Silva, Daisy Elaine Andrade; Medeiros, Daniele Barbosa de Almeida; Barros, Vera Lucia Reis de Souza; Chiang, Jannifer Oliveira; Zoghbi, Kendra Eyllen de Freitas; Quaresma, Juarez Antônio Simões; Takiya, Christina Maeda; Moura Neto, Vivaldo; de Souza, Wanderley; Vasconcelos, Pedro Fernando da Costa; Diniz, Cristovam Wanderley Picanço

    2008-01-01

    In previous reports we proposed a new genus for Rhabdoviridae and described neurotropic preference and gross neuropathology in newborn albino Swiss mice after Curionopolis and Itacaiunas infections. In the present report a time-course study of experimental encephalitis induced by Itacaiunas and Curionopolis virus was conducted both in vivo and in vitro to investigate cellular targets and the sequence of neuroinvasion. We also investigate, after intranasal inoculation, clinical signs, histopathology and apoptosis in correlation with viral immunolabeling at different time points. Curionopolis and Itacaiunas viral antigens were first detected in the parenchyma of olfactory pathways at 2 and 3 days post-inoculation (dpi) and the first clinical signs were observed at 4 and 8 dpi, respectively. After Curionopolis infection, the mortality rate was 100% between 5 and 6 dpi, and 35% between 8 and 15 dpi after Itacaiunas infection. We identified CNS mice cell types both in vivo and in vitro and the temporal sequence of neuroanatomical olfactory areas infected by Itacaiunas and Curionopolis virus. Distinct virulences were reflected in the neuropathological changes including TUNEL immunolabeling and cytopathic effects, more intense and precocious after intracerebral or in vitro inoculations of Curionopolis than after Itacaiunas virus. In vitro studies revealed neuronal but not astrocyte or microglial cytopathic effects at 2 dpi, with monolayer destruction occurring at 5 and 7 dpi with Curionopolis and Itacaiunas virus, respectively. Ultrastructural changes included virus budding associated with interstitial and perivascular edema, endothelial hypertrophy, a reduced and/or collapsed small vessel luminal area, thickening of the capillary basement membrane, and presence of phagocytosed apoptotic bodies. Glial cells with viral budding similar to oligodendrocytes were infected with Itacaiunas virus but not with Curionopolis virus. Thus, Curionopolis and Itacaiunas viruses share

  20. Molecular inferences suggest multiple host shifts of rabies viruses from bats to mesocarnivores in Arizona during 2001-2009.

    Directory of Open Access Journals (Sweden)

    Ivan V Kuzmin

    Full Text Available In nature, rabies virus (RABV; genus Lyssavirus, family Rhabdoviridae represents an assemblage of phylogenetic lineages, associated with specific mammalian host species. Although it is generally accepted that RABV evolved originally in bats and further shifted to carnivores, mechanisms of such host shifts are poorly understood, and examples are rarely present in surveillance data. Outbreaks in carnivores caused by a RABV variant, associated with big brown bats, occurred repeatedly during 2001-2009 in the Flagstaff area of Arizona. After each outbreak, extensive control campaigns were undertaken, with no reports of further rabies cases in carnivores for the next several years. However, questions remained whether all outbreaks were caused by a single introduction and further perpetuation of bat RABV in carnivore populations, or each outbreak was caused by an independent introduction of a bat virus. Another question of concern was related to adaptive changes in the RABV genome associated with host shifts. To address these questions, we sequenced and analyzed 66 complete and 20 nearly complete RABV genomes, including those from the Flagstaff area and other similar outbreaks in carnivores, caused by bat RABVs, and representatives of the major RABV lineages circulating in North America and worldwide. Phylogenetic analysis demonstrated that each Flagstaff outbreak was caused by an independent introduction of bat RABV into populations of carnivores. Positive selection analysis confirmed the absence of post-shift changes in RABV genes. In contrast, convergent evolution analysis demonstrated several amino acids in the N, P, G and L proteins, which might be significant for pre-adaptation of bat viruses to cause effective infection in carnivores. The substitution S/T₂₄₂ in the viral glycoprotein is of particular merit, as a similar substitution was suggested for pathogenicity of Nishigahara RABV strain. Roles of the amino acid changes, detected in our

  1. DIAGNÓSTICO LABORATORIAL DA RAIVA NO ESTADO DE GOIÁS NO PERÍODO DE 1976 A 2001

    Directory of Open Access Journals (Sweden)

    Reinaldo Neves Sobrinho

    2006-10-01

    Full Text Available A raiva é uma enfermidade causada por um vírus neurotrópio da família Rhabdoviridae e gênero Lyssavirus. Todos os mamíferos, inclusive o homem, são susceptíveis.No período de 1976 a 2001, foram analisadas, no Centro de Diagnósticos e Pesquisas Veterinárias (CDPV, através das técnicas de imunofluorescência direta (IFD e inoculação em camundongos, 24.722 amostras do sistema nervoso central de diferentes espécies animais, provenientes de municípios do Estado de Goiás. Reações positivas para raiva foram obtidas em 22,1% (5.471 das amostras. Houve oscilações no percentual de positividade até o ano de 1996, e depois ocorreu uma diminuição gradativa, chegando a 10,9% em 2001. Os casos de raiva em cães e gatos têm decrescido de forma acentuada, sendo registrados 25 casos em cães e 2 em gatos no ano de 2001. Em bovinos, eqüinos e quirópteros o número de casos vem aumentando, sendo que do ano de 2000 para 2001 houve um crescimento de 16,4% para os casos em bovinos, atingindo 67,5% de amostras positivas(249/369 em 2001. Medidas de controle como a obrigatoriedade da vacinação de bovídeos, eqüídeos, ovinos e caprinos e o controle populacional dos quirópteros foram recentemente adotadas no Estado de Goiás. PALAVRAS-CHAVE: Animais domésticos, inoculação em camundongos, raiva, reação de imunofluorescência direta, Goiás.

  2. Toll-like receptors and interferon associated immune factors responses to spring viraemia of carp virus infection in common carp (Cyprinus carpio).

    Science.gov (United States)

    Wei, Xinxian; Li, Xiao Zheng; Zheng, Xiaocong; Jia, Peng; Wang, Jinjin; Yang, Xianle; Yu, Li; Shi, Xiujie; Tong, Guixiang; Liu, Hong

    2016-08-01

    Pattern recognition receptor (PRR) toll-like receptors (TLRs), antiviral agent interferon (IFN) and the effector IFN stimulated genes (ISGs) play a fundamental role in the innate immune response against viruses among all vertebrate classes. Common carp is a host for spring viraemia of carp virus (Rhabdovirus carpio, SVCV), which belong to Rhabdoviridae family. The present in-vivo experiment was conducted to investigate the expression of these innate immune factors in early phase as well as during recovery of SVCV infection by real-time quantitative reverse transcriptase polymerase chain reaction. A less lethal SVCV infection was generated in common carp (Cyprinus carpio) and was sampled at 3, 6, 12 h post infection (hpi), 1, 3, 5, 7 and 10 days post infection (dpi). At 3 hpi, the SVCV N gene was detected in all three fish and all three fish showed a relative fold increase of TLR2, TLR3 and TLR7, IFNa1, ISG15 and Vig1. Viral copies rapidly increased at 12 hpi then remained high until 5 dpi. When viral copy numbers were high, a higher expression of immune genes TLR2, TLR3, TLR7, IFNa1, IFNa2, IFNa1S, IFN regulatory factor 3 (IRF3), IRF7, interleukin 1β (IL1β), IL6, IL10, ADAR, ISG15, Mx1, PKR and Vig1 were observed. Viral copies were gradually reduced in 5 to 10 dpi fish, and also the immune response was considerably reduced but remained elevated. A high degree of correlation was observed between immune genes and viral copy number in each of the sampled fish at 12 hpi. The quick and prolonged elevated expression of the immune genes indicates their crucial role in survival of host against SVCV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Successive increases in the resistance of Drosophila to viral infection through a transposon insertion followed by a Duplication.

    Directory of Open Access Journals (Sweden)

    Michael M Magwire

    2011-10-01

    Full Text Available To understand the molecular basis of how hosts evolve resistance to their parasites, we have investigated the genes that cause variation in the susceptibility of Drosophila melanogaster to viral infection. Using a host-specific pathogen of D. melanogaster called the sigma virus (Rhabdoviridae, we mapped a major-effect polymorphism to a region containing two paralogous genes called CHKov1 and CHKov2. In a panel of inbred fly lines, we found that a transposable element insertion in the protein coding sequence of CHKov1 is associated with increased resistance to infection. Previous research has shown that this insertion results in a truncated messenger RNA that encodes a far shorter protein than the susceptible allele. This resistant allele has rapidly increased in frequency under directional selection and is now the commonest form of the gene in natural populations. Using genetic mapping and site-specific recombination, we identified a third genotype with considerably greater resistance that is currently rare in the wild. In these flies there have been two duplications, resulting in three copies of both the truncated allele of CHKov1 and CHKov2 (one of which is also truncated. Remarkably, the truncated allele of CHKov1 has previously been found to confer resistance to organophosphate insecticides. As estimates of the age of this allele predate the use of insecticides, it is likely that this allele initially functioned as a defence against viruses and fortuitously "pre-adapted" flies to insecticides. These results demonstrate that strong selection by parasites for increased host resistance can result in major genetic changes and rapid shifts in allele frequencies; and, contrary to the prevailing view that resistance to pathogens can be a costly trait to evolve, the pleiotropic effects of these changes can have unexpected benefits.

  4. RNA shotgun metagenomic sequencing of northern California (USA mosquitoes uncovers viruses, bacteria, and fungi

    Directory of Open Access Journals (Sweden)

    James Angus eChandler

    2015-03-01

    Full Text Available Mosquitoes, most often recognized for the microbial agents of disease they may carry, harbor diverse microbial communities that include viruses, bacteria, and fungi, collectively called the microbiota. The composition of the microbiota can directly and indirectly affect disease transmission through microbial interactions that could be revealed by its characterization in natural populations of mosquitoes. Furthermore, the use of shotgun metagenomic sequencing (SMS approaches could allow the discovery of unknown members of the microbiota. In this study, we use RNA SMS to characterize the microbiota of seven individual mosquitoes (species include Culex pipiens, Culiseta incidens, and Ochlerotatus sierrensis collected from a variety of habitats in California, USA. Sequencing was performed on the Illumina HiSeq platform and the resulting sequences were quality-checked and assembled into contigs using the A5 pipeline. Sequences related to single stranded RNA viruses of the Bunyaviridae and Rhabdoviridae were uncovered, along with an unclassified genus of double-stranded RNA viruses. Phylogenetic analysis finds that in all three cases, the closest relatives of the identified viral sequences are other mosquito-associated viruses, suggesting widespread host-group specificity among disparate viral taxa. Interestingly, we identified a Narnavirus of fungi, also reported elsewhere in mosquitoes, that potentially demonstrates a nested host-parasite association between virus, fungi, and mosquito. Sequences related to 8 bacterial families and 13 fungal families were found across the seven samples. Bacillus and Escherichia/Shigella were identified in all samples and Wolbachia was identified in all Cx. pipiens samples, while no single fungal genus was found in more than two samples. This study exemplifies the utility of RNA SMS in the characterization of the natural microbiota of mosquitoes and, in particular, the value of identifying all microbes associated with

  5. Early and late pathogenic events of newborn mice encephalitis experimentally induced by itacaiunas and curionópolis bracorhabdoviruses infection.

    Directory of Open Access Journals (Sweden)

    José Antonio Picanço Diniz

    Full Text Available In previous reports we proposed a new genus for Rhabdoviridae and described neurotropic preference and gross neuropathology in newborn albino Swiss mice after Curionopolis and Itacaiunas infections. In the present report a time-course study of experimental encephalitis induced by Itacaiunas and Curionopolis virus was conducted both in vivo and in vitro to investigate cellular targets and the sequence of neuroinvasion. We also investigate, after intranasal inoculation, clinical signs, histopathology and apoptosis in correlation with viral immunolabeling at different time points. Curionopolis and Itacaiunas viral antigens were first detected in the parenchyma of olfactory pathways at 2 and 3 days post-inoculation (dpi and the first clinical signs were observed at 4 and 8 dpi, respectively. After Curionopolis infection, the mortality rate was 100% between 5 and 6 dpi, and 35% between 8 and 15 dpi after Itacaiunas infection. We identified CNS mice cell types both in vivo and in vitro and the temporal sequence of neuroanatomical olfactory areas infected by Itacaiunas and Curionopolis virus. Distinct virulences were reflected in the neuropathological changes including TUNEL immunolabeling and cytopathic effects, more intense and precocious after intracerebral or in vitro inoculations of Curionopolis than after Itacaiunas virus. In vitro studies revealed neuronal but not astrocyte or microglial cytopathic effects at 2 dpi, with monolayer destruction occurring at 5 and 7 dpi with Curionopolis and Itacaiunas virus, respectively. Ultrastructural changes included virus budding associated with interstitial and perivascular edema, endothelial hypertrophy, a reduced and/or collapsed small vessel luminal area, thickening of the capillary basement membrane, and presence of phagocytosed apoptotic bodies. Glial cells with viral budding similar to oligodendrocytes were infected with Itacaiunas virus but not with Curionopolis virus. Thus, Curionopolis and

  6. Arboviroses e políticas públicas no Brasil / Arboviruses and public policies in Brazil

    Directory of Open Access Journals (Sweden)

    Vivian Iida Avelino-Silva

    2017-09-01

    Full Text Available O Brasil enfrenta historicamente ciclos de epidemias de arboviroses em praticamente todo o seu território. A Dengue é a doença de maior importância epidemiológica, observada de forma praticamente contínua no país desde a década de 1980, com identificação dos 4 sorotipos virais em circulação e aumento importante de incidência e óbitos a partir do ano de 2004.1 Mais recentemente, com as epidemias emergentes de Zika e Chikungunya, e com a recente epidemia de Febre Amarela no estado de Minas Gerais, a atenção sobre o tema ganhou novo enfoque na literatura científica e na comunidade. Ampliou-se a discussão a respeito dos determinantes das arboviroses, relacionados ao vetor (mosquito, ao hospedeiro (ser humano ou outro primata e ao ambiente. Além disso, abordagens pertinentes no âmbito de saúde pública devem ser mais amplamente discutidas. Arboviroses são doenças causadas por vírus e transmitidas pela saliva contaminada de artrópodes hematófagos durante o repasto sanguíneo. Os arbovírus causadores de doenças em humanos pertencem a cinco famílias: Bunyaviridae, Togaviridae (que inclui o vírus Chikungunya, Flaviviridae (que inclui os vírus da Dengue, Zika e Febre Amarela, Reoviridae e Rhabdoviridae. Enquanto os mosquitos do gênero Aedes são os principais transmissores da Dengue, Chikungunya e Zika em áreas urbanas e peri-urbanas, a transmissão da Febre Amarela no Brasil restringe-se no momento a regiões silvestres e se dá através da picada de mosquitos dos gêneros Haemagogus ou Sabethes.

  7. Sequence analysis of the L protein of the Ebola 2014 outbreak: Insight into conserved regions and mutations.

    Science.gov (United States)

    Ayub, Gohar; Waheed, Yasir

    2016-06-01

    The 2014 Ebola outbreak was one of the largest that have occurred; it started in Guinea and spread to Nigeria, Liberia and Sierra Leone. Phylogenetic analysis of the current virus species indicated that this outbreak is the result of a divergent lineage of the Zaire ebolavirus. The L protein of Ebola virus (EBOV) is the catalytic subunit of the RNA‑dependent RNA polymerase complex, which, with VP35, is key for the replication and transcription of viral RNA. Earlier sequence analysis demonstrated that the L protein of all non‑segmented negative‑sense (NNS) RNA viruses consists of six domains containing conserved functional motifs. The aim of the present study was to analyze the presence of these motifs in 2014 EBOV isolates, highlight their function and how they may contribute to the overall pathogenicity of the isolates. For this purpose, 81 2014 EBOV L protein sequences were aligned with 475 other NNS RNA viruses, including Paramyxoviridae and Rhabdoviridae viruses. Phylogenetic analysis of all EBOV outbreak L protein sequences was also performed. Analysis of the amino acid substitutions in the 2014 EBOV outbreak was conducted using sequence analysis. The alignment demonstrated the presence of previously conserved motifs in the 2014 EBOV isolates and novel residues. Notably, all the mutations identified in the 2014 EBOV isolates were tolerant, they were pathogenic with certain examples occurring within previously determined functional conserved motifs, possibly altering viral pathogenicity, replication and virulence. The phylogenetic analysis demonstrated that all sequences with the exception of the 2014 EBOV sequences were clustered together. The 2014 EBOV outbreak has acquired a great number of mutations, which may explain the reasons behind this unprecedented outbreak. Certain residues critical to the function of the polymerase remain conserved and may be targets for the development of antiviral therapeutic agents.

  8. Rabies: An overview

    Directory of Open Access Journals (Sweden)

    Tarun Kumar Dutta

    2014-01-01

    Full Text Available Rabies is a fatal disease caused by rabies virus, a neurotropic virus and a prototype of Lyssavirus of Rhabdoviridae family. It is transmitted to human beings through infected saliva of dogs and cats during bite. Dog is the cause of more than 90% of human rabies in India. The incubation period is 4-8 weeks (but it may vary from 5 days to 7 years. There are two clinical types of rabies - encephalitic (furious and paralytic (dumb types. In the encephalitic (furious form, the principal malfunction is in the brain stem and limbic system. Patient has hydrophobia in the full-blown form, but the mind remains clear till the end. Death occurs within a week after the onset of symptoms. Paralytic rabies resembles Guillain-Barre syndrome. Diagnosis is mostly clinical. However, direct fluorescent antibody test is used to identify the antigen in skin biopsy from the nape of neck. In the postmortem specimen, demonstration of Negri bodies in the brain confirms the diagnosis. Anti-rabies vaccine is used for pre- and post-exposure prophylaxis. The commonly used intramuscular (IM regimen is being superseded by intradermal (ID vaccine because it makes the treatment economical. Whereas touching of animal or lick on intact skin does not require vaccination, any transdermal bite with bleeding requires immediate administration of rabies immunoglobulin (RIG and simultaneous vaccination with a tissue culture vaccine (TCV. Minor abrasion without bleeding may require only vaccination and no RIG. Rabies human monoclonal antibody (RMAb is the newest entry in the prophylaxis of rabies which may ultimately replace RIG. Prognosis is grave since there are just six reports of survivors. Treatment is mainly palliative with heavy sedation and/or therapeutic coma (Milwaukee protocol.

  9. Molecular characterization of the virulent infectious hematopoietic necrosis virus (IHNV strain 220-90

    Directory of Open Access Journals (Sweden)

    LaPatra Scott E

    2010-01-01

    Full Text Available Abstract Background Infectious hematopoietic necrosis virus (IHNV is the type species of the genus Novirhabdovirus, within the family Rhabdoviridae, infecting several species of wild and hatchery reared salmonids. Similar to other rhabdoviruses, IHNV has a linear single-stranded, negative-sense RNA genome of approximately 11,000 nucleotides. The IHNV genome encodes six genes; the nucleocapsid, phosphoprotein, matrix protein, glycoprotein, non-virion protein and polymerase protein genes, respectively. This study describes molecular characterization of the virulent IHNV strain 220-90, belonging to the M genogroup, and its phylogenetic relationships with available sequences of IHNV isolates worldwide. Results The complete genomic sequence of IHNV strain 220-90 was determined from the DNA of six overlapping clones obtained by RT-PCR amplification of genomic RNA. The complete genome sequence of 220-90 comprises 11,133 nucleotides (GenBank GQ413939 with the gene order of 3'-N-P-M-G-NV-L-5'. These genes are separated by conserved gene junctions, with di-nucleotide gene spacers. An additional uracil nucleotide was found at the end of the 5'-trailer region, which was not reported before in other IHNV strains. The first 15 of the 16 nucleotides at the 3'- and 5'-termini of the genome are complementary, and the first 4 nucleotides at 3'-ends of the IHNV are identical to other novirhadoviruses. Sequence homology and phylogenetic analysis of the glycoprotein genes show that 220-90 strain is 97% identical to most of the IHNV strains. Comparison of the virulent 220-90 genomic sequences with less virulent WRAC isolate shows more than 300 nucleotides changes in the genome, which doesn't allow one to speculate putative residues involved in the virulence of IHNV. Conclusion We have molecularly characterized one of the well studied IHNV isolates, 220-90 of genogroup M, which is virulent for rainbow trout, and compared phylogenetic relationship with North American

  10. Lyssaviruses and rabies: current conundrums, concerns, contradictions and controversies [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Charles Rupprecht

    2017-02-01

    Full Text Available Lyssaviruses are bullet-shaped, single-stranded, negative-sense RNA viruses and the causative agents of the ancient zoonosis rabies. Africa is the likely home to the ancestors of taxa residing within the Genus Lyssavirus, Family Rhabdoviridae. Diverse lyssaviruses are envisioned as co-evolving with bats, as the ultimate reservoirs, over seemingly millions of years. In terms of relative distribution, overt abundance, and resulting progeny, rabies virus is the most successful lyssavirus species today, but for unknown reasons. All mammals are believed to be susceptible to rabies virus infection. Besides reservoirs among the Chiroptera, meso-carnivores also serve as major historical hosts and are represented among the canids, raccoons, skunks, mongooses, and ferret badgers.  Perpetuating as a disease of nature with the mammalian central nervous system as niche, host breadth alone precludes any candidacy for true eradication. Despite having the highest case fatality of any infectious disease and a burden in excess of or comparative to other major zoonoses, rabies remains neglected. Once illness appears, no treatment is proven to prevent death. Paradoxically, vaccines were developed more than a century ago, but the clear majority of human cases are unvaccinated. Tens of millions of people are exposed to suspect rabid animals and tens of thousands succumb annually, primarily children in developing countries, where canine rabies is enzootic. Rather than culling animal populations, one of the most cost-effective strategies to curbing human fatalities is the mass vaccination of dogs. Building on considerable progress to date, several complementary actions are needed in the near future, including a more harmonized approach to viral taxonomy, enhanced de-centralized laboratory-based surveillance, focal pathogen discovery and characterization, applied pathobiological research for therapeutics, improved estimates of canine populations at risk, actual

  11. [Complete genome sequencing and analyses of rabies viruses isolated from wild animals (Chinese Ferret-Badger) in Zhejiang province].

    Science.gov (United States)

    Lei, Yong-Liang; Wang, Xiao-Guang; Liu, Fu-Ming; Chen, Xiu-Ying; Ye, Bi-Feng; Mei, Jian-Hua; Lan, Jin-Quan; Tang, Qing

    2009-08-01

    Based on sequencing the full-length genomes of two Chinese Ferret-Badger, we analyzed the properties of rabies viruses genetic variation in molecular level to get information on prevalence and variation of rabies viruses in Zhejiang, and to enrich the genome database of rabies viruses street strains isolated from Chinese wildlife. Overlapped fragments were amplified by RT-PCR and full-length genomes were assembled to analyze the nucleotide and deduced protein similarities and phylogenetic analyses of the N genes from Chinese Ferret-Badger, sika deer, vole, dog. Vaccine strains were then determined. The two full-length genomes were completely sequenced to find out that they had the same genetic structure with 11 923 nts including 58 nts-Leader, 1353 nts-NP, 894 nts-PP, 609 nts-MP, 1575 nts-GP, 6386 nts-LP, and 2, 5, 5 nts- intergenic regions (IGRs), 423 nts-Pseudogene-like sequence (Psi), 70 nts-Trailer. The two full-length genomes were in accordance with the properties of Rhabdoviridae Lyssa virus by blast and multi-sequence alignment. The nucleotide and amino acid sequences among Chinese strains had the highest similarity, especially among animals of the same species. Of the two full-length genomes, the similarity in amino acid level was dramatically higher than that in nucleotide level, so that the nucleotide mutations happened in these two genomes were most probably as synonymous mutations. Compared to the referenced rabies viruses, the lengths of the five protein coding regions did not show any changes or recombination, but only with a few-point mutations. It was evident that the five proteins appeared to be stable. The variation sites and types of the two ferret badgers genomes were similar to the referenced vaccine or street strains. The two strains were genotype 1 according to the multi-sequence and phylogenetic analyses, which possessing the distinct geographyphic characteristics of China. All the evidence suggested a cue that these two ferret badgers

  12. [Sequencing and analysis of complete genome of rabies viruses isolated from Chinese Ferret-Badger and dog in Zhejiang province].

    Science.gov (United States)

    Lei, Yong-Liang; Wang, Xiao-Guang; Tao, Xiao-Yan; Li, Hao; Meng, Sheng-Li; Chen, Xiu-Ying; Liu, Fu-Ming; Ye, Bi-Feng; Tang, Qing

    2010-01-01

    Based on sequencing the full-length genomes of four Chinese Ferret-Badger and dog, we analyze the properties of rabies viruses genetic variation in molecular level, get the information about rabies viruses prevalence and variation in Zhejiang, and enrich the genome database of rabies viruses street strains isolated from China. Rabies viruses in suckling mice were isolated, overlapped fragments were amplified by RT-PCR and full-length genomes were assembled to analyze the nucleotide and deduced protein similarities and phylogenetic analyses from Chinese Ferret-Badger, dog, sika deer, vole, used vaccine strain were determined. The four full-length genomes were sequenced completely and had the same genetic structure with the length of 11, 923 nts or 11, 925 nts including 58 nts-Leader, 1353 nts-NP, 894 nts-PP, 609 nts-MP, 1575 nts-GP, 6386 nts-LP, and 2, 5, 5 nts- intergenic regions(IGRs), 423 nts-Pseudogene-like sequence (psi), 70 nts-Trailer. The four full-length genomes were in accordance with the properties of Rhabdoviridae Lyssa virus by BLAST and multi-sequence alignment. The nucleotide and amino acid sequences among Chinese strains had the highest similarity, especially among animals of the same species. Of the four full-length genomes, the similarity in amino acid level was dramatically higher than that in nucleotide level, so the nucleotide mutations happened in these four genomes were most synonymous mutations. Compared with the reference rabies viruses, the lengths of the five protein coding regions had no change, no recombination, only with a few point mutations. It was evident that the five proteins appeared to be stable. The variation sites and types of the four genomes were similar to the reference vaccine or street strains. And the four strains were genotype 1 according to the multi-sequence and phylogenetic analyses, which possessed the distinct district characteristics of China. Therefore, these four rabies viruses are likely to be street viruses

  13. The complete genome sequence of CrRV-Ch01, a new member of the family Rhabdoviridae in the parasitic copepod Caligus rogercresseyi present on farmed Atlantic salmon (Salmo salar) in Chile.

    Science.gov (United States)

    Økland, Arnfinn Lodden; Skoge, Renate Hvidsten; Nylund, Are

    2018-06-01

    We have determined the complete genome sequence of a new rhabdovirus, tentatively named Caligus rogercresseyi rhabdovirus Ch01 (CrRV-Ch01), which was found in the parasite Caligus rogercresseyi, present on farmed Atlantic salmon (Salmo salar) in Chile. The genome encodes the five canonical rhabdovirus proteins in addition to an unknown protein, in the order N-P-M-U (unknown)-G-L. Phylogenetic analysis showed that the virus clusters with two rhabdoviruses (Lepeophtheirus salmonis rhabdovirus No9 and Lepeophtheirus salmonis rhabdovirus No127) obtained from another parasitic caligid, Lepeophtheirus salmonis, present on farmed Atlantic salmon on the west coast of Norway.

  14. Molecular characterization of the Great Lakes viral hemorrhagic septicemia virus (VHSV isolate from USA

    Directory of Open Access Journals (Sweden)

    Vakharia Vikram N

    2009-10-01

    Full Text Available Abstract Background Viral hemorrhagic septicemia virus (VHSV is a highly contagious viral disease of fresh and saltwater fish worldwide. VHSV caused several large scale fish kills in the Great Lakes area and has been found in 28 different host species. The emergence of VHS in the Great Lakes began with the isolation of VHSV from a diseased muskellunge (Esox masquinongy caught from Lake St. Clair in 2003. VHSV is a member of the genus Novirhabdovirus, within the family Rhabdoviridae. It has a linear single-stranded, negative-sense RNA genome of approximately 11 kbp, with six genes. VHSV replicates in the cytoplasm and produces six monocistronic mRNAs. The gene order of VHSV is 3'-N-P-M-G-NV-L-5'. This study describes molecular characterization of the Great Lakes VHSV strain (MI03GL, and its phylogenetic relationships with selected European and North American isolates. Results The complete genomic sequences of VHSV-MI03GL strain was determined from cloned cDNA of six overlapping fragments, obtained by RT-PCR amplification of genomic RNA. The complete genome sequence of MI03GL comprises 11,184 nucleotides (GenBank GQ385941 with the gene order of 3'-N-P-M-G-NV-L-5'. These genes are separated by conserved gene junctions, with di-nucleotide gene spacers. The first 4 nucleotides at the termini of the VHSV genome are complementary and identical to other novirhadoviruses genomic termini. Sequence homology and phylogenetic analysis show that the Great Lakes virus is closely related to the Japanese strains JF00Ehi1 (96% and KRRV9822 (95%. Among other novirhabdoviruses, VHSV shares highest sequence homology (62% with snakehead rhabdovirus. Conclusion Phylogenetic tree obtained by comparing 48 glycoprotein gene sequences of different VHSV strains demonstrate that the Great Lakes VHSV is closely related to the North American and Japanese genotype IVa, but forms a distinct genotype IVb, which is clearly different from the three European genotypes. Molecular

  15. Characterization of a rhabdovirus isolated from carpione Salmo trutta carpio in Italy

    Science.gov (United States)

    Bovo, G.; Olesen, N.J.; Jorgensen, P.E.V.; Ahne, W.; Winton, J.R.

    1995-01-01

    A virus, strain 583, was isolated from carpione Salmo trutta carpio fry exhibiting high mortality. The virus was not neutralized by rabbit antisera against the fish rhabdoviruses viral haemorrhagic septicaemia virus (VHSV), infectious hematopoietic necrosis virus, eel rhabdovirus European X, spring viraemia of carp virus or pike fry rhabdovirus, or against the birnavirus infectious pancreatic necrosis virus. The virus replicated in several fish cell lines incubated at 20 to 25*C and grew optimally in the bluegill fry (BF-2) and fathead minnow (FHM) cell lines. Electron microscopy of infected BF-2 cell cultures revealed the presence of typical rhabdovirus particles, and immunofluorescent staining was observed using various polyclonal and monoclonal antibodies (MAbs) against Egtved virus, the causative agent of viral haemorrhagic septicaemia. The staining by a MAb against the nucleoprotein (N) of VHSV was particularly strong, a MAb against the glycoprotein (G) gave a moderate reaction, whereas a second MAb against the G protein and MAbs against the matrix proteins, M_(1) and M_(2), of VHSV did not react. Fluorescence titres using 3 rabbit antisera against whole Egtved virus varied between negative and moderately positive. Western blotting using polyclonal and monoclonal sera confirmed that both the N and G proteins of the carpione virus shared some epitopes with those of VHSV, but the M_(1) and M_(2) proteins did not. SDS-PAGE showed the structural proteins of the carpione virus produced a pattern typical of members of the Lyssavirus genus of the Rhabdoviridae and the molecular weights were very similar to those of VHSV, except for the M_(2) protein which was somewhat smaller. Infection trials showed the carpione virus induced high mortalities in carpione fry but not in rainbow trout Oncorhynchus mykiss fry. The carpione virus was clearly distinguishable from Egtved virus despite limited serological cross reaction. Since it was also easily distinguishable by

  16. Spring viremia of carp

    Science.gov (United States)

    Ahne, W.; Bjorklund, H.V.; Essbauer, S.; Fijan, N.; Kurath, G.; Winton, J.R.

    2002-01-01

    pring viremia of carp (SVC) is an important disease affecting cyprinids, mainly common carp Cyprinus carpio. The disease is widespread in European carp culture, where it causes significant morbidity and mortality. Designated a notifiable disease by the Office International des Epizooties, SVC is caused by a rhabdovirus, spring viremia of carp virus (SVCV). Affected fish show destruction of tissues in the kidney, spleen and liver, leading to hemorrhage, loss of water-salt balance and impairment of immune response. High mortality occurs at water temperatures of 10 to 17°C, typically in spring. At higher temperatures, infected carp develop humoral antibodies that can neutralize the spread of virus and such carp are protected against re-infection by solid immunity. The virus is shed mostly with the feces and urine of clinically infected fish and by carriers. Waterborne transmission is believed to be the primary route of infection, but bloodsucking parasites like leeches and the carp louse may serve as mechanical vectors of SVCV. The genome of SVCV is composed of a single molecule of linear, negative-sense, single-stranded RNA containing 5 genes in the order 3¹-NPMGL-5¹ coding for the viral nucleoprotein, phosphoprotein, matrix protein, glycoprotein, and polymerase, respectively. Polyacrylamide gel electrophoresis of the viral proteins, and sequence homologies between the genes and gene junctions of SVCV and vesicular stomatitis viruses, have led to the placement of the virus as a tentative member of the genus Vesiculovirus in the family Rhabdoviridae. These methods also revealed that SVCV is not related to fish rhabdoviruses of the genus Novirhabdovirus. In vitro replication of SVCV takes place in the cytoplasm of cultured cells of fish, bird and mammalian origin at temperatures of 4 to 31°C, with an optimum of about 20°C. Spring viremia of carp can be diagnosed by clinical signs, isolation of virus in cell culture and molecular methods. Antibodies directed

  17. Development and evaluation of a real-time one step Reverse-Transcriptase PCR for quantitation of Chandipura Virus

    Directory of Open Access Journals (Sweden)

    Tandale Babasaheb V

    2008-12-01

    Full Text Available Abstract Background Chandipura virus (CHPV, a member of family Rhabdoviridae was attributed to an explosive outbreak of acute encephalitis in children in Andhra Pradesh, India in 2003 and a small outbreak among tribal children from Gujarat, Western India in 2004. The case-fatality rate ranged from 55–75%. Considering the rapid progression of the disease and high mortality, a highly sensitive method for quantifying CHPV RNA by real-time one step reverse transcriptase PCR (real-time one step RT-PCR using TaqMan technology was developed for rapid diagnosis. Methods Primers and probe for P gene were designed and used to standardize real-time one step RT-PCR assay for CHPV RNA quantitation. Standard RNA was prepared by PCR amplification, TA cloning and run off transcription. The optimized real-time one step RT-PCR assay was compared with the diagnostic nested RT-PCR and different virus isolation systems [in vivo (mice in ovo (eggs, in vitro (Vero E6, PS, RD and Sand fly cell line] for the detection of CHPV. Sensitivity and specificity of real-time one step RT-PCR assay was evaluated with diagnostic nested RT-PCR, which is considered as a gold standard. Results Real-time one step RT-PCR was optimized using in vitro transcribed (IVT RNA. Standard curve showed linear relationship for wide range of 102-1010 (r2 = 0.99 with maximum Coefficient of variation (CV = 5.91% for IVT RNA. The newly developed real-time RT-PCR was at par with nested RT-PCR in sensitivity and superior to cell lines and other living systems (embryonated eggs and infant mice used for the isolation of the virus. Detection limit of real-time one step RT-PCR and nested RT-PCR was found to be 1.2 × 100 PFU/ml. RD cells, sand fly cells, infant mice, and embryonated eggs showed almost equal sensitivity (1.2 × 102 PFU/ml. Vero and PS cell-lines (1.2 × 103 PFU/ml were least sensitive to CHPV infection. Specificity of the assay was found to be 100% when RNA from other viruses or healthy

  18. Wongabel Rhabdovirus Accessory Protein U3 Targets the SWI/SNF Chromatin Remodeling Complex

    Science.gov (United States)

    Joubert, D. Albert; Rodriguez-Andres, Julio; Monaghan, Paul; Cummins, Michelle; McKinstry, William J.; Paradkar, Prasad N.; Moseley, Gregory W.

    2014-01-01

    ABSTRACT Wongabel virus (WONV) is an arthropod-borne rhabdovirus that infects birds. It is one of the growing array of rhabdoviruses with complex genomes that encode multiple accessory proteins of unknown function. In addition to the five canonical rhabdovirus structural protein genes (N, P, M, G, and L), the 13.2-kb negative-sense single-stranded RNA (ssRNA) WONV genome contains five uncharacterized accessory genes, one overlapping the N gene (Nx or U4), three located between the P and M genes (U1 to U3), and a fifth one overlapping the G gene (Gx or U5). Here we show that WONV U3 is expressed during infection in insect and mammalian cells and is required for efficient viral replication. A yeast two-hybrid screen against a mosquito cell cDNA library identified that WONV U3 interacts with the 83-amino-acid (aa) C-terminal domain of SNF5, a component of the SWI/SNF chromatin remodeling complex. The interaction was confirmed by affinity chromatography, and nuclear colocalization was established by confocal microscopy. Gene expression studies showed that SNF5 transcripts are upregulated during infection of mosquito cells with WONV, as well as West Nile virus (Flaviviridae) and bovine ephemeral fever virus (Rhabdoviridae), and that SNF5 knockdown results in increased WONV replication. WONV U3 also inhibits SNF5-regulated expression of the cytokine gene CSF1. The data suggest that WONV U3 targets the SWI/SNF complex to block the host response to infection. IMPORTANCE The rhabdoviruses comprise a large family of RNA viruses infecting plants, vertebrates, and invertebrates. In addition to the major structural proteins (N, P, M, G, and L), many rhabdoviruses encode a diverse array of accessory proteins of largely unknown function. Understanding the role of these proteins may reveal much about host-pathogen interactions in infected cells. Here we examine accessory protein U3 of Wongabel virus, an arthropod-borne rhabdovirus that infects birds. We show that U3 enters the

  19. Borna disease virus and its role in the pathology of animals and humans

    Directory of Open Access Journals (Sweden)

    A. O. Mikheev

    2017-12-01

    Full Text Available Infectious diseases that are caused by numerous pathogenic microorganisms – bacteria, viruses, protozoa or fungi – can be transmitted from patients or carriers to healthy people or animals. A large group of infectious disease is caused by pathogens of animal infections – zoonoses. The issue of zoonoses is of great significance in human pathology and requires comprehensive study. This is of particular relevance to Ukraine, as the question of prevalence, level within the population and threats to human life and health from zoonoses, though highly important, has remained insufficiently studied. Information about many of these pathogens is absent in the existing scientific literature accessible in Ukraine – both veterinary and medical. This applies, in particular, to a causative agent of viral zoonoses the Borna disease virus or Bornavirus. For this purpose, an analysis of the literature concerning the role of the Bornavirus in the pathology of animals and humans was conducted. It is well known that a large number of pathogens of animal infections (zoonoses, including viral, pose a potential threat to human health. Among these potential threats is the Borna disease virus belonging to the family of Bornaviridae, order Mononegavirales. This order includes representatives of deadly human diseases like rabies (family Rhabdoviridae, Ebola virus (family Filoviridae and Nipah virus (family Paramyxoviridae. Borna virus disease affects mainly mammals, but can infect birds and even reptiles (Aspid bornavirus. It is established that Bornaviruses have a wide range of natural hosts (horses, sheeps, cats, bats and various birds, including domestic animals, which poses a potential threat to human health. This is evidenced by numerous, although contradictory, research into the role of the Borna disease virus in human pathologies such as schizophrenia, depression, prolonged fatigue syndrome, multiple sclerosis and others. Analysis of the literature clearly

  20. [Bats and Viruses: complex relationships].

    Science.gov (United States)

    Rodhain, F

    2015-10-01

    With more than 1 200 species, bats and flying foxes (Order Chiroptera) constitute the most important and diverse order of Mammals after Rodents. Many species of bats are insectivorous while others are frugivorous and few of them are hematophagous. Some of these animals fly during the night, others are crepuscular or diurnal. Some fly long distances during seasonal migrations. Many species are colonial cave-dwelling, living in a rather small home range while others are relatively solitary. However, in spite of the importance of bats for terrestrial biotic communities and ecosystem ecology, the diversity in their biology and lifestyles remain poorly known and underappreciated. More than sixty viruses have been detected or isolated in bats; these animals are therefore involved in the natural cycles of many of them. This is the case, for instance, of rabies virus and other Lyssavirus (Family Rhabdoviridae), Nipah and Hendra viruses (Paramyxoviridae), Ebola and Marburg viruses (Filoviridae), SARS-CoV and MERS-CoV (Coronaviridae). For these zoonotic viruses, a number of bat species are considered as important reservoir hosts, efficient disseminators or even directly responsible of the transmission. Some of these bat-borne viruses cause highly pathogenic diseases while others are of potential significance for humans and domestic or wild animals; so, bats are an important risk in human and animal public health. Moreover, some groups of viruses developed through different phylogenetic mechanisms of coevolution between viruses and bats. The fact that most of these viral infections are asymptomatic in bats has been observed since a long time but the mechanisms of the viral persistence are not clearly understood. The various bioecology of the different bat populations allows exchange of virus between migrating and non-migrating conspecific species. For a better understanding of the role of bats in the circulation of these viral zoonoses, epidemiologists must pay attention to

  1. DE LA RABIA HUMANA DE ORIGEN CANINO Y OTRAS VERGÜENZAS

    Directory of Open Access Journals (Sweden)

    Nelson Alvis G

    2006-12-01

    Full Text Available Colombia invierte cerca de diez puntos de su PIB en salud, sin embargo, sus indicadores desalud pública desdicen de la efectividad de su sistema sanitario. A las ya altas tasas deprevalencia e incidencia de patologías controlables o erradicables, como malaria, dengueclásico y hemorrágico, fiebre amarilla, tuberculosis, cólera y leishmaniasis, se agrega otravergüenza: los brotes de rabia humana de origen canino recientemente observados en laregión caribe colombiana.La rabia es una enfermedad letal transmitida al hombre por animales domésticos o silvestresproducida por el virus rábico perteneciente al género Lyssavirus de la familia Rhabdoviridae,prevenible mediante vacunación. Los mecanismos para evitar muertes por rabia estándesarrollados y bien descritos: a cortar la cadena de transmisión del virus en especiesdomésticas (vacunación, manejo de poblaciones de perros y atención de focos; b aplicaciónoportuna de tratamientos pre y post exposición a personas en riesgo; c Vigilanciaepidemiológica y monitoreo y control de la enfermedad en especies silvestres.En el informe final sobre “Evaluación del Programa Nacional de rabia de Colombia”, realizadopor la organización Panamericana de la Salud y el Ministerio de la Protección Social en 2003se destaca: “….la rabia transmitida por el perro aún constituye una situación preocupanteen Colombia, además de los pocos casos registrados en los últimos años. Persisten situacionesde circulación viral, fundamentalmente en los departamentos de la costa atlántica querequieren de la aplicación de medidas de emergencia..” (1. Sin embargo, al parecer talesmedidas quedaron solo en simples recomendaciones de política sin que las mismas hubiesensido tenidas en cuenta, con los resultados ya conocidos y sin que aparecieran los responsables.En el citado informe se revela que entre los años 1995 a 2003 la región de la región caribecolombiana presentó el mayor número de defunciones