WorldWideScience

Sample records for rgiss rice oryza

  1. Rice (Oryza) hemoglobins

    Science.gov (United States)

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a sin...

  2. Molecular detection of Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicola, and Burkholderia glumae in infected rice seeds and leaves

    Science.gov (United States)

    Polymerase chain reaction (PCR) is particularly useful for plant pathogen detection. In the present study, multiplex PCR and SYBR green real-time PCR were developed to facilitate simultaneous detection of three important rice pathogens, Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, and Bur...

  3. indica rice (Oryza sativa L.)

    African Journals Online (AJOL)

    Jane

    2011-07-18

    Jul 18, 2011 ... fresh weight, regeneration, proline level and total protein content in salt sensitive indica rice cv. IR 64. For callus ... INTRODUCTION. Salinity is one of the ... Proline is reported to reduce the enzyme denaturation caused due.

  4. Rice diversity panels available through the genetic stocks oryza collection

    Science.gov (United States)

    The Genetic Stocks Oryza (GSOR) Collection was established in 2004 at the USDA-ARS, Dale Bumpers National Rice Research Center (DBNRRC) located in Stuttgart, AR. The mission of GSOR is to provide unique genetic resources to the rice research community for genetic and genomics related research. GSOR ...

  5. Secretome of Aspergillus oryzae in Shaoxing rice wine koji.

    Science.gov (United States)

    Zhang, Bo; Guan, Zheng-Bing; Cao, Yu; Xie, Guang-Fa; Lu, Jian

    2012-04-16

    Shaoxing rice wine is the most famous and representative Chinese rice wine. Aspergillus oryzae SU16 is used in the manufacture of koji, the Shaoxing rice wine starter culture. In the current study, a comprehensive analysis of the secretome profile of A. oryzae SU16 in Shaoxing rice wine koji was performed for the first time. The proteomic analysis for the identification of the secretory proteins was done using two-dimensional electrophoresis combined with matrix-assisted laser desorption/ionization-tandem time of flight mass spectrometry based on the annotated A. oryzae genome sequence. A total of 41 unique proteins were identified from the secretome. These proteins included 17 extracellular proteins following the classical secretory pathway, and 10 extracellular proteins putatively secreted by the non-classical secretory pathway. The present secretome profile greatly differed from previous reports on A. oryzae growing in other solid-state nutrient sources. Several new secretory or putative secretory proteins were also found. These proteomic data will significantly aid the advancement of research on the secretome of A. oryzae, especially in solid-state cultures, and in elucidating the production process mechanism of Shaoxing rice wine koji. The findings may promote the technological development and innovation of the Shaoxing rice wine industry. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Sensory acceptability evaluation of irradiated rice, oryza sativa indica

    International Nuclear Information System (INIS)

    Loaharanu, S.; Sutantawong, M.; Ungsunanatawiwat, A.

    1971-01-01

    The non-glutinous and glutinous types of polished rice, Oryza sativa indica were subjected to gamma rays at ambient temperature and stored at 27+-1 0 C for one week. The irradiated rice was cooked and tasted by members of trained panel. Using Hedonic scale and Triangle test, the acceptability of irradiated rice was justified. Gamma irradiation up to 100 krads did not significantly cause off-color, off-odor and off flavor in irradiated non-glutino rice. Glutinous rice irradiated at 60 krads could not be significantly differentiated from non-irradiated sample

  7. Antagonism of rice phylloplane fungi against Cercospora oryzae

    Science.gov (United States)

    Mardani, A.; Hadiwiyono

    2018-03-01

    Narrow brown leaf spot (NBLS) caused by Cercospora oryzae Miyake is one of the important obstacle in rice cultivation that can decrease the productivity up to 40%. It has been known well that some phylloplane fungi are antagonistic to some leaf diseases. Phylloplane fungi of rice however haven’t been studied much and poorly understood as biological control agent of rice pathogen such C. oryzae. The research aimed to study the antagonism of some phylloplane fungi of rice against C. oryzae. At least 14 isolates of phylloplane fungi were collected which consisted of six pathogenic and eight nonpathogenic variants. All of nonpathogenic isolates were antagonistic against C. oryzae both in vitro and only one isolate could not inhibit the infection of the pathogen in vivo. Some isolates were identified as Aspergillus, Mucor, Penicillium, Fusarium, and Trichoderma. The isolate of Mucor and Fusarium could inhibit the highest growth of pathogen on potato dextrose medium that were at 36.0% and 35.5% respectively. Whereas on artificial inoculation on rice, some isolates such Penicillium and Fusarium could inhibit most effectively and were significantly different to Mencozeb application with dosage 5g L-1.

  8. Fungicide sensitivity in the wild rice pathogen Bipolaris oryzae

    Science.gov (United States)

    In recent years the occurrence of fungal brown spot, caused by Bipolaris oryzae has increased in cultivated wild rice (Zizania palustris) paddies in spite of the use of fungicides. To implement an efficient integrated disease management system, we are exploring whether field isolates have developed ...

  9. Direct suppression of a rice bacterial blight (Xanthomonas oryzae pv. oryzae) by monoterpene (S)-limonene.

    Science.gov (United States)

    Lee, Gun Woong; Chung, Moon-Soo; Kang, Mihyung; Chung, Byung Yeoup; Lee, Sungbeom

    2016-05-01

    Rice bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is a severe disease of rice plants. Upon pathogen infection, rice biosynthesizes phytoalexins, including diterpenoids such as momilactones, phytocassanes, and oryzalexins. However, information on headspace volatiles in response to Xoo infection is limited. We have examined headspace volatile terpenes, induced by the infection of Xoo, and investigated their biological roles in the rice plant. Monoterpenes α-thujene, α-pinene, sabinene, myrcene, α-terpene, and (S)-limonene and sesquiterpenes cyclosativene, α-copaene, and β-elemene were detected from 1-week-old Xoo-infected rice seedlings, by solid-phase microextraction-gas chromatography-mass spectrometry. All monoterpenes were constitutively released from rice seedlings before Xoo infection. However, (S)-limonene emission was further elicited after exposure of the seedlings to Xoo in coincidence with upregulation of limonene synthase gene (OsTPS20) transcripts. Only the stereospecific (S)-limonene [and not (R)-limonene or other monoterpenes] severely inhibited Xoo growth, as confirmed by disc diffusion and liquid culture assays. Rice seedlings showed suppressed pathogenic symptoms suggestive of resistance to Xoo infection after foliar treatment with (S)-limonene. Collectively, our findings suggest that (S)-limonene is a volatile phytoanticipin, which plays a significant role in suppressing Xoo growth in rice seedlings.

  10. Rice is the seed of the monocot plants Oryza sativa (Asian rice) or ...

    African Journals Online (AJOL)

    BIOTECH

    2013-10-16

    Oct 16, 2013 ... of culture. The regenerated plantlets were transferred to pots for acclimatization. About 80% of plants were survived in the greenhouse condition. Key words: Somatic embryogenesis, immature zygotic embryos, Indica rice, plant regeneration. INTRODUCTION. Rice (Oryza sativa L.) is one of the most ...

  11. Xanthomonas oryzae pv oryzae the Causal Agent of Bacterial Leaf Blight of rice: Isolation, Characterization, and Study of Transposon Mutagenesis

    Directory of Open Access Journals (Sweden)

    Abdjad Asih Nawangsih

    2011-04-01

    Full Text Available Xanthomonas oryzae pv oryzae the Causal Agent of Bacterial Leaf Blight of rice: Isolation, Characterization, and Study of Transposon Mutagenesis. X. oryzae pv. oryzae (Xoo causes bacterial leaf blight (BLB of rice (Oryza sativa L., a major disease that constrains production of the staple crop in many countries of the world. Identification of X. oryzae pv. oryzae (Xoo was conducted based on the disease symptoms, pathogenicity, morphological, physiological, and genetic characteristics of bacterial cultures isolated from the infected plants. Fifty bacterial isolates predicted as Xoo have been successfully isolated. They are aerobic, rod shaped, and Gram negative bacteria. The isolates were evaluated for their hypersensitivity in tobacco and pathogenicity in rice plant. Fifty isolates induced hypersensitive reaction in tobacco and showed pathogenicity symptom in rice in different length. Based on physiological test, hypersensitivity and pathogenicity reactions, three bacterial isolates strongly predicted as Xoo, i.e. STG21, STG42, and STG46, were non indole formation, non pigment fluorescent, hydrolyzed casein, catalase activity positive, but negative oxidase. Partial sequencing of 16S rRNA genes of STG21 and STG42 showed 80% and 82% homology with X. oryzae, respectively, while STG46 showed 84% homology with X. campestris. Mini-Tn5 transposon mutagenesis of STG21 generated one of the mutants (M5 lossed it’s ability to induce hypersensitive reaction in tobacco plant and deficient in pathogenicity on rice. The lesion length of rice leaf caused by the mutant M5 decreased up to 80%.

  12. Oxygen dynamics in submerged rice (Oryza sativa L.)

    DEFF Research Database (Denmark)

    Colmer, Timothy D.; Pedersen, Ole

    2008-01-01

    Complete submergence of plants prevents direct O2 and CO2 exchange with air. Underwater photosynthesis can result in marked diurnal changes in O2 supply to submerged plants. Dynamics in pO2 had not been measured directly for submerged rice (Oryza sativa), but in an earlier study, radial O2 loss...... from roots showed an initial peak following shoot illumination.  O2 dynamics in shoots and roots of submerged rice were monitored during light and dark periods, using O2 microelectrodes. Tissue sugar concentrations were also measured.  On illumination of shoots of submerged rice, pO2 increased rapidly...... of magnitude higher than in darkness, enhancing also pO2 in roots.The initial peak in pO2 following illumination of submerged rice was likely to result from high initial rates of net photosynthesis, fuelled by CO2 accumulated during the dark period. Nevertheless, since sugars decline with time in submerged...

  13. Screening of gamma radiation-induced pathogen resistance rice lines against Xanthomonas oryzae pv. oryzae

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chan Ju; Lee, Ha Yeon; Kim, Woong Bom; Ahmad, Raza; Moon, Jae Sun; Kwon, Suk Yoon [Korea Research Institute of Beoscience and Biotechnology, Daejeon (Korea, Republic of); Kim, Dong Sub [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-09-15

    Bacterial blight is one of the most serious diseases of rice (Oryza sativa L.), and it has been known that Xanthomonas oryzae pv. oryzae (Xoo) causes this disease symptom. To develop resistance rice cultivars against Xoo, 3,000 lines of M{sub 3}, which were irradiated with gamma ray, were tested by 'scissor-dip method' primarily, and 191 putative resistant lines were selected. In M{sub 4} generation, these lines were screened again with various ways such as measuring of symptom of bacterial blight in leaf, number of tiller, fresh weight, and phenotypic segregation ratio in next generation. Finally, six resistance lines were selected. RT-PCR analysis revealed that these lines displayed high level of R-genes such as Xa21, Pi36, and Pi-ta. These results indicate that mutations by gamma ray cause disruptions of regulatory signal transduction systems of these R-genes. Furthermore, these selected mutants could be useful for the development of rice cultivar resistant to Xoo.

  14. Identification of Pectin Degrading Enzymes Secreted by Xanthomonas oryzae pv. oryzae and Determination of Their Role in Virulence on Rice

    OpenAIRE

    Tayi, Lavanya; Maku, Roshan V.; Patel, Hitendra Kumar; Sonti, Ramesh V.

    2016-01-01

    Xanthomonas oryzae pv.oryzae (Xoo) causes the serious bacterial blight disease of rice. Xoo secretes a repertoire of plant cell wall degrading enzymes (CWDEs) like cellulases, xylanases, esterases etc., which act on various components of the rice cell wall. The major cellulases and xylanases secreted by Xoo have been identified and their role in virulence has been determined. In this study, we have identified some of the pectin degrading enzymes of Xoo and assessed their role in virulence. Bi...

  15. Correlation between temperature and phenology prediction error in rice (Oryza sativa L.)

    NARCIS (Netherlands)

    Oort, van P.A.J.; Zhang, T.; Vries, de M.E.; Heinemann, A.B.; Meinke, H.B.

    2011-01-01

    For rice (Oryza sativa L.), simulation models like ORYZA2000 and CERES-Rice have been used to explore adaptation options to climate change and weather-related stresses (drought, heat). Output of these models is very sensitive to accurate modelling of crop development, i.e. phenology. What has to

  16. Vinegar rice (Oryza sativa L.) produced by a submerged fermentation process from alcoholic fermented rice

    OpenAIRE

    Spinosa,Wilma Aparecida; Santos Júnior,Vitório dos; Galvan,Diego; Fiorio,Jhonatan Luiz; Gomez,Raul Jorge Hernan Castro

    2015-01-01

    Considering the limited availability of technology for the production of rice vinegar and also due to the potential consumer product market, this study aimed to use alcoholic fermented rice (rice wine (Oryza sativa L.)) for vinegar production. An alcoholic solution with 6.28% (w/v) ethanol was oxidized by a submerged fermentation process to produce vinegar. The process of acetic acid fermentation occurred at 30 ± 0.3°C in a FRINGS® Acetator (Germany) for the production of vineg...

  17. Gene Ontology annotation of the rice blast fungus, Magnaporthe oryzae

    Directory of Open Access Journals (Sweden)

    Deng Jixin

    2009-02-01

    Full Text Available Abstract Background Magnaporthe oryzae, the causal agent of blast disease of rice, is the most destructive disease of rice worldwide. The genome of this fungal pathogen has been sequenced and an automated annotation has recently been updated to Version 6 http://www.broad.mit.edu/annotation/genome/magnaporthe_grisea/MultiDownloads.html. However, a comprehensive manual curation remains to be performed. Gene Ontology (GO annotation is a valuable means of assigning functional information using standardized vocabulary. We report an overview of the GO annotation for Version 5 of M. oryzae genome assembly. Methods A similarity-based (i.e., computational GO annotation with manual review was conducted, which was then integrated with a literature-based GO annotation with computational assistance. For similarity-based GO annotation a stringent reciprocal best hits method was used to identify similarity between predicted proteins of M. oryzae and GO proteins from multiple organisms with published associations to GO terms. Significant alignment pairs were manually reviewed. Functional assignments were further cross-validated with manually reviewed data, conserved domains, or data determined by wet lab experiments. Additionally, biological appropriateness of the functional assignments was manually checked. Results In total, 6,286 proteins received GO term assignment via the homology-based annotation, including 2,870 hypothetical proteins. Literature-based experimental evidence, such as microarray, MPSS, T-DNA insertion mutation, or gene knockout mutation, resulted in 2,810 proteins being annotated with GO terms. Of these, 1,673 proteins were annotated with new terms developed for Plant-Associated Microbe Gene Ontology (PAMGO. In addition, 67 experiment-determined secreted proteins were annotated with PAMGO terms. Integration of the two data sets resulted in 7,412 proteins (57% being annotated with 1,957 distinct and specific GO terms. Unannotated proteins

  18. Impact of Engineered Nanoparticles on Virulence of Xanthomonas oryzae pv oryzae and on Rice Sensitivity at its Infection

    Directory of Open Access Journals (Sweden)

    Giuliano Degrassi

    2014-12-01

    Full Text Available The present work of nanocotoxicity wants to propose a new plant model starting from the rice plant. The model takes into consideration the impact of engineered nanoparticles (Ag, Co, Ni, CeO2, Fe3O4, TiO2 on rice plants that were weakened by infections of Xanthomonas oryzae pv oryzae bacteria. The results indicate that some NPs increase the rice sensitivity to the pathogen while others decrease the virulence of the pathogen towards rice. No-enrichment in component metal concentration is detected in above organs of rice, with exception of Ni-NPs treatment. An imbalance of major elements in infected rice crops treated with NPs was investigated.

  19. Could abiotic stress tolerance in wild relatives of rice be used to improve Oryza sativa?

    Science.gov (United States)

    Atwell, Brian J; Wang, Han; Scafaro, Andrew P

    2014-02-01

    Oryza sativa and Oryza glaberrima have been selected to acquire and partition resources efficiently as part of the process of domestication. However, genetic diversity in cultivated rice is limited compared to wild Oryza species, in spite of 120,000 genotypes being held in gene banks. By contrast, there is untapped diversity in the more than 20 wild species of Oryza, some having been collected from just a few coastal locations (e.g. Oryza schlechteri), while others are widely distributed (e.g. Oryza nivara and Oryza rufipogon). The extent of DNA sequence diversity and phenotypic variation is still being established in wild Oryza, with genetic barriers suggesting a vast range of morphologies and function even within species, such as has been demonstrated for Oryza meridionalis. With increasing climate variability and attempts to make more marginal land arable, abiotic and biotic stresses will be managed over the coming decades by tapping into the genetic diversity of wild relatives of O. sativa. To help create a more targeted approach to sourcing wild rice germplasm for abiotic stress tolerance, we have created a climate distribution map by plotting the natural occurrence of all Oryza species against corresponding temperature and moisture data. We then discuss interspecific variation in phenotype and its significance for rice, followed by a discussion of ways to integrate germplasm from wild relatives into domesticated rice. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Systematic analysis of rice (Oryza sativa) metabolic responses to herbivory.

    Science.gov (United States)

    Alamgir, Kabir Md; Hojo, Yuko; Christeller, John T; Fukumoto, Kaori; Isshiki, Ryutaro; Shinya, Tomonori; Baldwin, Ian T; Galis, Ivan

    2016-02-01

    Plants defend against attack from herbivores by direct and indirect defence mechanisms mediated by the accumulation of phytoalexins and release of volatile signals, respectively. While the defensive arsenals of some plants, such as tobacco and Arabidopsis are well known, most of rice's (Oryza sativa) defence metabolites and their effectiveness against herbivores remain uncharacterized. Here, we used a non-biassed metabolomics approach to identify many novel herbivory-regulated metabolic signatures in rice. Most were up-regulated by herbivore attack while only a few were suppressed. Two of the most prominent up-regulated signatures were characterized as phenolamides (PAs), p-coumaroylputrescine and feruloylputrescine. PAs accumulated in response to attack by both chewing insects, i.e. feeding of the lawn armyworm (Spodoptera mauritia) and the rice skipper (Parnara guttata) larvae, and the attack of the sucking insect, the brown planthopper (Nilaparvata lugens, BPH). In bioassays, BPH insects feeding on 15% sugar solution containing p-coumaroylputrescine or feruloylputrescine, at concentrations similar to those elicited by heavy BPH attack in rice, had a higher mortality compared to those feeding on sugar diet alone. Our results highlight PAs as a rapidly expanding new group of plant defence metabolites that are elicited by herbivore attack, and deter herbivores in rice and other plants. © 2015 John Wiley & Sons Ltd.

  1. A walk on the wild side: Oryza species as source for rice abiotic stress tolerance.

    Science.gov (United States)

    Menguer, Paloma Koprovski; Sperotto, Raul Antonio; Ricachenevsky, Felipe Klein

    2017-01-01

    Oryza sativa, the common cultivated rice, is one of the most important crops for human consumption, but production is increasingly threatened by abiotic stresses. Although many efforts have resulted in breeding rice cultivars that are relatively tolerant to their local environments, climate changes and population increase are expected to soon call for new, fast generation of stress tolerant rice germplasm, and current within-species rice diversity might not be enough to overcome such needs. The Oryza genus contains other 23 wild species, with only Oryza glaberrima being also domesticated. Rice domestication was performed with a narrow genetic diversity, and the other Oryza species are a virtually untapped genetic resource for rice stress tolerance improvement. Here we review the origin of domesticated Oryza sativa from wild progenitors, the ecological and genomic diversity of the Oryza genus, and the stress tolerance variation observed for wild Oryza species, including the genetic basis underlying the tolerance mechanisms found. The summary provided here is important to indicate how we should move forward to unlock the full potential of these germplasms for rice improvement.

  2. WRKY transcription factor genes in wild rice Oryza nivara.

    Science.gov (United States)

    Xu, Hengjian; Watanabe, Kenneth A; Zhang, Liyuan; Shen, Qingxi J

    2016-08-01

    The WRKY transcription factor family is one of the largest gene families involved in plant development and stress response. Although many WRKY genes have been studied in cultivated rice (Oryza sativa), the WRKY genes in the wild rice species Oryza nivara, the direct progenitor of O. sativa, have not been studied. O. nivara shows abundant genetic diversity and elite drought and disease resistance features. Herein, a total of 97 O. nivara WRKY (OnWRKY) genes were identified. RNA-sequencing demonstrates that OnWRKY genes were generally expressed at higher levels in the roots of 30-day-old plants. Bioinformatic analyses suggest that most of OnWRKY genes could be induced by salicylic acid, abscisic acid, and drought. Abundant potential MAPK phosphorylation sites in OnWRKYs suggest that activities of most OnWRKYs can be regulated by phosphorylation. Phylogenetic analyses of OnWRKYs support a novel hypothesis that ancient group IIc OnWRKYs were the original ancestors of only some group IIc and group III WRKYs. The analyses also offer strong support that group IIc OnWRKYs containing the HVE sequence in their zinc finger motifs were derived from group Ia WRKYs. This study provides a solid foundation for the study of the evolution and functions of WRKY genes in O. nivara. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  3. The biosynthesis, structure and gelatinization properties of starches from wild and cultivated African rice species (Oryza barthii and Oryza glaberrima).

    Science.gov (United States)

    Wang, Kai; Wambugu, Peterson W; Zhang, Bin; Wu, Alex Chi; Henry, Robert J; Gilbert, Robert G

    2015-09-20

    The molecular structure and gelatinization properties of starches from domesticated African rice (Oryza glaberrima) and its wild progenitor (Oryza barthii) are determined and comparison made with Asian domesticated rice (Oryza sativa), the commonest commercial rice. This suggests possible enzymatic processes contributing to the unique traits of the African varieties. These have similar starch structures, including smaller amylose molecules, but larger amounts of amylose chains across the whole amylose chain-length distribution, and higher amylose contents, than O. sativa. They also show a higher proportion of two- and three-lamellae spanning amylopectin branch chains (degree of polymerization 34-100) than O. sativa, which contributes to their higher gelatinization temperatures. Fitting amylopectin chain-length distribution with a biosynthesis-based mathematical model suggests that the reason for this difference might be because O. glaberrima and O. barthii have more active SSIIIa and/or less active SBEIIb enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Interaction between Pyricularia oryzae, four Helminthosporium species and Curvularia lunata in rice leaves

    Directory of Open Access Journals (Sweden)

    M. Bahous

    2003-08-01

    Full Text Available The interaction between six fungal parasites of rice: Pyricularia oryzae, Helminthosporium oryzae, H. sativum, H. spiciferum, H. australiensis and Curvularia lunata was studied quantitatively by a modified plant ecology technique known as the de Wit replacement series. Each fungus was inoculated alone or in combination with one of the other five fungi in various proportions into rice plants under experimental conditions. Leaves developing lesions were harvested and incubated in a moist chamber. The yield of each fungus was its conidial production on the rice leaves. The artificial inoculations indicated that interactions between the pathogens in the mixture could be beneficial, antagonistic, or null. Interspecific interaction (i.e. antagonism occurred in the majority of paired combinations (H. oryzae + P. oryzae; H. sativum + H. spiciferum, H. australiensis, C. lunata or P. oryzae; H. australiensis + H. spiciferum, C. lunata or P. oryzae; and P. oryzae + C. lunata. The relative yield total (RYT lines were significantly lower than the expected value, which is 1. The RYT lines were concave upward, revealing a beneficial effect of one or both pathogens on the other, when H. oryzae was in mixture with H. sativum or H. spiciferum. A null effect between fungi occurred in four combinations (H. oryzae + H. australiensis or C. lunata; H. spiciferum + C. lunata; and P. oryzae + H. spiciferum showing that with these combinations inter- and intraspecific competitions were equal in intensity. Thus, the de Wit replacement series technique indicated that it was possible to quantify the interaction between all the pathogenic fungi tested.

  5. Genomic dissection of small RNAs in wild rice (Oryza rufipogon): lessons for rice domestication.

    Science.gov (United States)

    Wang, Yu; Bai, Xuefei; Yan, Chenghai; Gui, Yiejie; Wei, Xinghua; Zhu, Qian-Hao; Guo, Longbiao; Fan, Longjiang

    2012-11-01

    The lack of a MIRNA set and genome sequence of wild rice (Oryza rufipogon) has prevented us from determining the role of MIRNA genes in rice domestication. In this study, a genome, three small RNA populations and a degradome of O. rufipogon were sequenced by Illumina platform and the expression levels of microRNAs (miRNAs) were investigated by miRNA chips. A de novo O. rufipogon genome was assembled using c. 55× coverage of raw sequencing data and a total of 387 MIRNAs were identified in the O. rufipogon genome based on c. 5.2 million unique small RNA reads from three different tissues of O. rufipogon. Of these, O. rufipogon MIRNAs, 259 were not found in the cultivated rice, suggesting a loss of these MIRNAs in the cultivated rice. We also found that 48 MIRNAs were novel in the cultivated rice, suggesting that they were potential targets of domestication selection. Some miRNAs showed significant expression differences between wild and cultivated rice, suggesting that expression of miRNA could also be a target of domestication, as demonstrated for the miR164 family. Our results illustrated that MIRNA genes, like protein-coding genes, might have been significantly shaped during rice domestication and could be one of the driving forces that contributed to rice domestication. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  6. Cosmeceutical potentials and bioactive compounds of rice bran fermented with single and mix culture of Aspergillus oryzae and Rhizopus oryzae

    Directory of Open Access Journals (Sweden)

    Dang Lelamurni Abd Razak

    2017-04-01

    Full Text Available In the present study, rice bran, one of the most abundant agricultural by-products in Malaysia, was fermented with single and mixed cultures of Aspergillus oryzae and Rhizopus oryzae. The fermented rice bran extracts were tested for their functional properties and compared to the non-fermented counterparts. Antioxidant activities as well as phenolics and organic acid contents were evaluated. Skincare-related functionalities were also tested by evaluating tyrosinase and elastase inhibition activities. Tyrosinase inhibition activity, measured to determine the anti-pigmentation effect of extracts, was found to be the highest in the extract of rice bran fermented with A. oryzae (56.18% compared to other extracts. In determining the anti-aging effect of fermented rice bran extracts, the same extract showed the highest elastase inhibition activity with a value of 60.52%. Antioxidant activities were found to be highest in the mix-cultured rice bran extract. The results of phenolic and organic acid content were varied; the major phenolic acid detected was ferulic acid with a value of 43.19 μg/ml in the mix-cultured rice bran extract. On the other hand, citric acid was the major organic acid detected, with the highest content found in the same extract (214.6 mg/g. The results of this study suggest that the fermented rice bran extracts may have the potential to be further exploited as ingredients in cosmetics as well as in antioxidant-rich products.

  7. Small brown planthopper resistance loci in wild rice (Oryza officinalis).

    Science.gov (United States)

    Zhang, Weilin; Dong, Yan; Yang, Ling; Ma, Bojun; Ma, Rongrong; Huang, Fudeng; Wang, Changchun; Hu, Haitao; Li, Chunshou; Yan, Chengqi; Chen, Jianping

    2014-06-01

    Host-plant resistance is the most practical and economical approach to control the rice planthoppers. However, up to date, few rice germplasm accessions that are resistant to the all three kinds of planthoppers (1) brown planthopper (BPH; Nilaparvata lugens Stål), (2) the small brown planthopper (SBPH; Laodelphax striatellus Fallen), and (3) the whitebacked planthopper (WBPH, Sogatella furcifera Horvath) have been identified; consequently, the genetic basis for host-plant broad spectrum resistance to rice planthoppers in a single variety has been seldom studied. Here, one wild species, Oryza officinalis (Acc. HY018, 2n = 24, CC), was detected showing resistance to the all three kinds of planthoppers. Because resistance to WBPH and BPH in O. officinalis has previously been reported, the study mainly focused on its SBPH resistance. The SBPH resistance gene(s) was (were) introduced into cultivated rice via asymmetric somatic hybridization. Three QTLs for SBPH resistance detected by the SSST method were mapped and confirmed on chromosomes 3, 7, and 12, respectively. The allelic/non-allelic relationship and relative map positions of the three kinds of planthopper resistance genes in O. officinalis show that the SBPH, WBPH, and BPH resistance genes in O. officinalis were governed by multiple genes, but not by any major gene. The data on the genetics of host-plant broad spectrum resistance to planthoppers in a single accession suggested that the most ideally practical and economical approach for rice breeders is to screen the sources of broad spectrum resistance to planthoppers, but not to employ broad spectrum resistance gene for the management of planthoppers. Pyramiding these genes in a variety can be an effective way for the management of planthoppers.

  8. Ecogeographic variation in the morphology of two Asian wild rice species Oryza nivara and O. ruftipogon.

    NARCIS (Netherlands)

    Banaticla, M.C.N.; Sosef, M.S.M.; McNally, K.L.; Sackville Hamilton, R.; Berg, van den R.G.

    2013-01-01

    To search for variation patterns and diagnostic features between Asian wild rice species, several numerical methods were applied to phenotypic data obtained from 116 accessions representing sympatric populations of Oryza nivara and Oryza rufipogon from tropical continental Asia and O. rufipogon

  9. The whole chloroplast genome of wild rice (Oryza australiensis).

    Science.gov (United States)

    Wu, Zhiqiang; Ge, Song

    2016-01-01

    The whole chloroplast genome of wild rice (Oryza australiensis) is characterized in this study. The genome size is 135,224  bp, exhibiting a typical circular structure including a pair of 25,776  bp inverted repeats (IRa,b) separated by a large single-copy region (LSC) of 82,212  bp and a small single-copy region (SSC) of 12,470  bp. The overall GC content of the genome is 38.95%. 110 unique genes were annotated, including 76 protein-coding genes, 4 ribosomal RNA genes, and 30t RNA genes. Among these, 18 are duplicated in the inverted repeat regions, 13 genes contain one intron, and 2 genes (rps12 and ycf3) have two introns.

  10. The rice XA21 ectodomain fused to the Arabidopsis EFR cytoplasmic domain confers resistance to Xanthomonas oryzae pv. oryzae.

    Science.gov (United States)

    Thomas, Nicholas C; Oksenberg, Nir; Liu, Furong; Caddell, Daniel; Nalyvayko, Alina; Nguyen, Yen; Schwessinger, Benjamin; Ronald, Pamela C

    2018-01-01

    Rice ( Oryza sativa ) plants expressing the XA21 cell-surface receptor kinase are resistant to Xanthomonas oryzae pv. oryzae (Xoo) infection. We previously demonstrated that expressing a chimeric protein containing the ELONGATION FACTOR Tu RECEPTOR (EFR) ectodomain and the XA21 endodomain (EFR:XA21) in rice does not confer robust resistance to Xoo . To test if the XA21 ectodomain is required for Xoo resistance, we produced transgenic rice lines expressing a chimeric protein consisting of the XA21 ectodomain and EFR endodomain (XA21:EFR) and inoculated these lines with Xoo . We also tested if the XA21:EFR rice plants respond to a synthetic sulfated 21 amino acid derivative (RaxX21-sY) of the activator of XA21-mediated immunity, RaxX. We found that five independently transformed XA21:EFR rice lines displayed resistance to Xoo as measured by lesion length analysis, and showed that five lines share characteristic markers of the XA21 defense response (generation of reactive oxygen species and defense response gene expression) after treatment with RaxX21-sY. Our results indicate that expression of the XA21:EFR chimeric receptor in rice confers resistance to Xoo . These results suggest that the endodomain of the EFR and XA21 immune receptors are interchangeable and the XA21 ectodomain is the key determinant conferring robust resistance to Xoo .

  11. On-farm management practices against rice root weevil (Echinocnemus oryzae Marshall)

    OpenAIRE

    Rakesh Pandey; Ajit Kumar Chaturvedi; Rudal Prasad Chaudhary; Rajendra Prasad

    2017-01-01

    Rice is the staple food of over half the world's population and occupies almost one-fifth of the global cropland under cereals. The rice root weevil, Echinocnemus oryzae Marshall, (Coleoptera: Curculionidae) has posed a problem in paddy cultivation areas in India. The damage by this root weevil results in a significant decrease in root and shoot biomass and ultimately the yield of rice plants. Studies were conducted to test the effective management practices of rice root weevil using a seedli...

  12. Genome-wide analysis of Dongxiang wild rice (Oryza rufipogon Griff.) to investigate lost/acquired genes during rice domestication.

    Science.gov (United States)

    Zhang, Fantao; Xu, Tao; Mao, Linyong; Yan, Shuangyong; Chen, Xiwen; Wu, Zhenfeng; Chen, Rui; Luo, Xiangdong; Xie, Jiankun; Gao, Shan

    2016-04-26

    It is widely accepted that cultivated rice (Oryza sativa L.) was domesticated from common wild rice (Oryza rufipogon Griff.). Compared to other studies which concentrate on rice origin, this study is to genetically elucidate the substantially phenotypic and physiological changes from wild rice to cultivated rice at the whole genome level. Instead of comparing two assembled genomes, this study directly compared the Dongxiang wild rice (DXWR) Illumina sequencing reads with the Nipponbare (O. sativa) complete genome without assembly of the DXWR genome. Based on the results from the comparative genomics analysis, structural variations (SVs) between DXWR and Nipponbare were determined to locate deleted genes which could have been acquired by Nipponbare during rice domestication. To overcome the limit of the SV detection, the DXWR transcriptome was also sequenced and compared with the Nipponbare transcriptome to discover the genes which could have been lost in DXWR during domestication. Both 1591 Nipponbare-acquired genes and 206 DXWR-lost transcripts were further analyzed using annotations from multiple sources. The NGS data are available in the NCBI SRA database with ID SRP070627. These results help better understanding the domestication from wild rice to cultivated rice at the whole genome level and provide a genomic data resource for rice genetic research or breeding. One finding confirmed transposable elements contribute greatly to the genome evolution from wild rice to cultivated rice. Another finding suggested the photophosphorylation and oxidative phosphorylation system in cultivated rice could have adapted to environmental changes simultaneously during domestication.

  13. Evidence for biotrophic lifestyle and biocontrol potential of dark septate endophyte Harpophora oryzae to rice blast disease.

    Directory of Open Access Journals (Sweden)

    Zhen-Zhu Su

    Full Text Available The mutualism pattern of the dark septate endophyte (DSE Harpophora oryzae in rice roots and its biocontrol potential in rice blast disease caused by Magnaporthe oryzae were investigated. Fluorescent protein-expressing H. oryzae was used to monitor the colonization pattern. Hyphae invaded from the epidermis to the inner cortex, but not into the root stele. Fungal colonization increased with root tissue maturation, showing no colonization in the meristematic zone, slight colonization in the elongation zone, and heavy colonization in the differentiation zone. H. oryzae adopted a biotrophic lifestyle in roots accompanied by programmed cell death. Real-time PCR facilitated the accurate quantification of fungal growth and the respective plant response. The biocontrol potential of H. oryzae was visualized by inoculation with eGFP-tagged M. oryzae in rice. H. oryzae protected rice from M. oryzae root invasion by the accumulation of H2O2 and elevated antioxidative capacity. H. oryzae also induced systemic resistance against rice blast. This systemic resistance was mediated by the OsWRKY45-dependent salicylic acid (SA signaling pathway, as indicated by the strongly upregulated expression of OsWRKY45. The colonization pattern of H. oryzae was consistent with the typical characteristics of DSEs. H. oryzae enhanced local resistance by reactive oxygen species (ROS and high antioxidative level and induced OsWRKY45-dependent SA-mediated systemic resistance against rice blast.

  14. Genetic diversity associated with conservation of endangered Dongxiang wild rice (Oryza rufipogon)

    Science.gov (United States)

    The wild progenitor species (Oryza rufipogon) of Asian cultivated rice (O. sativa) is located in Dongxiang county, China where it is considered the northernmost range worldwide. Nine ex situ and three in situ populations of the Dongxiang wild rice (DXWR) and four groups of modern cultivars were geno...

  15. Gamma radiation effects on rice, substrate for Sitophilus oryzae (L.) rearing

    International Nuclear Information System (INIS)

    Wiendl, F.M.; Arthur, V.; Walder, J.M.M.; Domarco, R.E.

    1987-01-01

    The gamma radiation effects (800 Krad, 60 Co) on rice are studied. Degraded substances by the radiation and how this degradation affects the biology of Sitophilus oryzae (L.) are searched. The vitamins, proteins and stard of the rice are affected by the radiation. (M.A.C.) [pt

  16. Robustness and Strategies of Adaptation among Farmer Varieties of African Rice (Oryza glaberrima) and Asian Rice (Oryza sativa) across West Africa

    NARCIS (Netherlands)

    Mokuwa, A.; Nuijten, H.A.C.P.; Okry, F.; Teeken, B.W.E.; Maat, H.; Richards, P.; Struik, P.C.

    2013-01-01

    This study offers evidence of the robustness of farmer rice varieties (Oryza glaberrima and O. sativa) in West Africa. Our experiments in five West African countries showed that farmer varieties were tolerant of sub-optimal conditions, but employed a range of strategies to cope with stress.

  17. Endophytic Streptomyces spp. as Biocontrol Agents of Rice Bacterial Leaf Blight Pathogen (Xanthomonas oryzae pv. oryzae

    Directory of Open Access Journals (Sweden)

    RATIH DEWI HASTUTI

    2012-12-01

    Full Text Available Xanthomonas oryzae pv. oryzae (Xoo, a causal agent of bacterial leaf blight (BLB, is one of the most important pathogens of rice. The effectiveness of ten Streptomyces spp. isolates in suppressing Xoo disease was assessed in planta and in vitro. In planta experiments were carried out in a greenhouse and arranged in a randomized completely block design (RCBD with three replications. Twenty treatments were tested which included plants inoculated with both Streptomyces spp. and Xoo, and plants inoculated with only Streptomyces spp. Plants inoculated with Xoo and sprayed with a chemical bactericide, and plants inoculated with only Xoo served as positive controls, whereas plants not inoculated with either Streptomyces spp. or Xoo were used as negative controls. The results showed that the effect of endophytic Streptomyces spp. on BLB disease expressed as area under disease progress curve (AUDPC was not significantly different to that on control plants (P > 0.05. However, plants inoculated with endophytic Streptomyces spp. were significantly taller and produced higher tiller number than control plants (P < 0.05. Streptomyces spp. isolate AB131-1 gave the highest plant height. In vitro studies on biocontrol mechanisms of selected Streptomyces spp. isolates showed that isolate LBR02 gave the highest inhibition activity on Xoo growth, followed by AB131-1 and AB131-2. Two isolates (AB131-1 and LBR02 were able to produce chitinase, phosphatase, and siderophore which included biocontrol characteristics. Morphological and colonization studies under SEM and light microscopy confirmed that the three isolates were endophytic Streptomyces spp. from different species. These studies found that the paddy plant which was inoculated with endophytic Streptomyces spp. AB131-1 and infected by Xoo could increase the height of plant and number of tillers.

  18. Enhanced disease resistance and drought tolerance in transgenic rice plants overexpressing protein elicitors from Magnaporthe oryzae.

    Science.gov (United States)

    Wang, Zhenzhen; Han, Qiang; Zi, Qian; Lv, Shun; Qiu, Dewen; Zeng, Hongmei

    2017-01-01

    Exogenous application of the protein elicitors MoHrip1 and MoHrip2, which were isolated from the pathogenic fungus Magnaporthe oryzae (M. oryzae), was previously shown to induce a hypersensitive response in tobacco and to enhance resistance to rice blast. In this work, we successfully transformed rice with the mohrip1 and mohrip2 genes separately. The MoHrip1 and MoHrip2 transgenic rice plants displayed higher resistance to rice blast and stronger tolerance to drought stress than wild-type (WT) rice and the vector-control pCXUN rice. The expression of salicylic acid (SA)- and abscisic acid (ABA)-related genes was also increased, suggesting that these two elicitors may trigger SA signaling to protect the rice from damage during pathogen infection and regulate the ABA content to increase drought tolerance in transgenic rice. Trypan blue staining indicated that expressing MoHrip1 and MoHrip2 in rice plants inhibited hyphal growth of the rice blast fungus. Relative water content (RWC), water usage efficiency (WUE) and water loss rate (WLR) were measured to confirm the high capacity for water retention in transgenic rice. The MoHrip1 and MoHrip2 transgenic rice also exhibited enhanced agronomic traits such as increased plant height and tiller number.

  19. Vinegar rice (Oryza sativa L. produced by a submerged fermentation process from alcoholic fermented rice

    Directory of Open Access Journals (Sweden)

    Wilma Aparecida Spinosa

    2015-03-01

    Full Text Available Considering the limited availability of technology for the production of rice vinegar and also due to the potential consumer product market, this study aimed to use alcoholic fermented rice (rice wine (Oryza sativa L. for vinegar production. An alcoholic solution with 6.28% (w/v ethanol was oxidized by a submerged fermentation process to produce vinegar. The process of acetic acid fermentation occurred at 30 ± 0.3°C in a FRINGS® Acetator (Germany for the production of vinegar and was followed through 10 cycles. The vinegar had a total acidity of 6.85% (w/v, 0.17% alcohol (w/v, 1.26% (w/v minerals and 1.78% (w/v dry extract. The composition of organic acids present in rice vinegar was: cis-aconitic acid (6 mg/L, maleic acid (3 mg/L, trans-aconitic acid (3 mg/L, shikimic + succinic acid (4 mg/L, lactic acid (300 mg/L, formic acid (180 mg/L, oxalic acid (3 mg/L, fumaric acid (3 mg/L and itaconic acid (1 mg/L.

  20. Fe deficiency induced changes in rice (Oryza sativa L.) thylakoids.

    Science.gov (United States)

    Wang, Yuwen; Xu, Chao; Li, Kang; Cai, Xiaojie; Wu, Min; Chen, Guoxiang

    2017-01-01

    Iron deficiency is an important abiotic stress that limits productivity of crops all over the world. We selected a hybrid rice (Oryza sativa L.), LYPJ, which is super high-yield and widely cultured in China, to investigate changes in the components and structure of thylakoid membranes and photosynthetic performance in response to iron deficiency. Our results demonstrated that photosystem I (PSI) is the primary target for iron deficiency, while the changes in photosystem II (PSII) are important for rebuilding a balance in disrupted energy utilization and dissipation caused by differential degradation of photosynthetic components. The result of immunoblot analysis suggested that the core subunit PsaA declined drastically, while PsbA remained relatively stable. Furthermore, several organizational changes of the photosynthetic apparatus were found by BN-PAGE, including a marked decrease in the PSI core complexes, the Cytb 6 /f complex, and the trimeric form of the LHCII antenna, consistent with the observed unstacking grana. The fluorescence induction analysis indicated a descending PSII activity with energy dissipation enhanced markedly. In addition, we proposed that the crippled CO 2 assimilation could be compensated by the enhanced of phosphoenolpyruvate carboxylase (PEPC), which is suggested by the decreased ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and photosynthetic efficiency.

  1. All roads lead to weediness: patterns of genomic divergence reveal extensive recurrent weedy rice origins from South Asian Oryza

    Science.gov (United States)

    Weedy rice (Oryza spp.), a weedy relative of cultivated rice (O. sativa), invades and persists in cultivated rice fields worldwide. Many weedy rice populations have evolved similar adaptive traits, considered part of the “agricultural weed syndrome,” making this an ideal model to study the genetic b...

  2. Transcriptome Analysis of Early Responsive Genes in Rice during Magnaporthe oryzae Infection

    Directory of Open Access Journals (Sweden)

    Yiming Wang

    2014-12-01

    Full Text Available Rice blast disease caused by Magnaporthe oryzae is one of the most serious diseases of cultivated rice (Oryza sativa L. in most rice-growing regions of the world. In order to investigate early response genes in rice, we utilized the transcriptome analysis approach using a 300 K tilling microarray to rice leaves infected with compatible and incompatible M. oryzae strains. Prior to the microarray experiment, total RNA was validated by measuring the differential expression of rice defense-related marker genes (chitinase 2, barwin, PBZ1, and PR-10 by RT-PCR, and phytoalexins (sakuranetin and momilactone A with HPLC. Microarray analysis revealed that 231 genes were up-regulated (>2 fold change, p < 0.05 in the incompatible interaction compared to the compatible one. Highly expressed genes were functionally characterized into metabolic processes and oxidation-reduction categories. The oxidative stress response was induced in both early and later infection stages. Biotic stress overview from MapMan analysis revealed that the phytohormone ethylene as well as signaling molecules jasmonic acid and salicylic acid is important for defense gene regulation. WRKY and Myb transcription factors were also involved in signal transduction processes. Additionally, receptor-like kinases were more likely associated with the defense response, and their expression patterns were validated by RT-PCR. Our results suggest that candidate genes, including receptor-like protein kinases, may play a key role in disease resistance against M. oryzae attack.

  3. Influence of rice straw-derived dissolved organic matter on lactic acid fermentation by Rhizopus oryzae.

    Science.gov (United States)

    Chen, Xingxuan; Wang, Xiahui; Xue, Yiyun; Zhang, Tian-Ao; Li, Yuhao; Hu, Jiajun; Tsang, Yiu Fai; Zhang, Hongsheng; Gao, Min-Tian

    2018-01-31

    Rice straw can be used as carbon sources for lactic acid fermentation. However, only a small amount of lactic acid is produced even though Rhizopus oryzae can consume glucose in rice straw-derived hydrolysates. This study correlated the inhibitory effect of rice straw with rice straw-derived dissolved organic matter (DOM). Lactic acid fermentations with and without DOM were conducted to investigate the effect of DOM on lactic acid fermentation by R. oryzae. Fermentation using control medium with DOM showed a similar trend to fermentation with rice straw-derived hydrolysates, showing that DOM contained the major inhibitor of rice straw. DOM assay indicated that it mainly consisted of polyphenols and polysaccharides. The addition of polyphenols and polysaccharides derived from rice straw confirmed that lactic acid fermentation was promoted by polysaccharides and significantly inhibited by polyphenols. The removal of polyphenols also improved lactic acid production. However, the loss of polysaccharides during the removal of polyphenols resulted in low glucose consumption. This study is the first to investigate the effects of rice straw-derived DOM on lactic acid fermentation by R. oryzae. The results may provide a theoretical basis for identifying inhibitors and promoters associated with lactic acid fermentation and for establishing suitable pretreatment methods. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Proteomic analysis of seed storage proteins in wild rice species of the Oryza genus.

    Science.gov (United States)

    Jiang, Chunmiao; Cheng, Zaiquan; Zhang, Cheng; Yu, Tengqiong; Zhong, Qiaofang; Shen, J Qingxi; Huang, Xingqi

    2014-01-01

    The total protein contents of rice seeds are significantly higher in the three wild rice species (Oryza rufipogon Grill., Oryza officinalis Wall. and Oryza meyeriana Baill.) than in the cultivated rice (Oryza sativa L.). However, there is still no report regarding a systematic proteomic analysis of seed proteins in the wild rice species. Also, the relationship between the contents of seed total proteins and rice nutritional quality has not been thoroughly investigated. The total seed protein contents, especially the glutelin contents, of the three wild rice species were higher than those of the two cultivated rice materials. Based on the protein banding patterns of SDS-PAGE, O. rufipogon was similar to the two cultivated rice materials, followed by O. officinalis, while O. meyeriana exhibited notable differences. Interestingly, O. meyeriana had high contents of glutelin and low contents of prolamine, and lacked 26 kDa globulin band and appeared a new 28 kDa protein band. However, for O. officinali a 16 kDa protein band was absent and a row of unique 32 kDa proteins appeared. In addition, we found that 13 kDa prolamine band disappeared while special 14 kDa and 12 kDa protein bands were present in O. officinalis. Two-dimensional gel electrophoresis (2-DE) analysis revealed remarkable differences in protein profiles of the wild rice species and the two cultivated rice materials. Also, the numbers of detected protein spots of the three wild rice species were significantly higher than those of two cultivated rice. A total of 35 differential protein spots were found for glutelin acidic subunits, glutelin precursors and glutelin basic subunits in wild rice species. Among those, 18 protein spots were specific and 17 major spots were elevated. Six differential protein spots for glutelin acidic subunits were identified, including a glutelin type-A 2 precursor and five hypothetical proteins. This was the first report on proteomic analysis of the three wild rice species

  5. The Potency of White Rice (Oryza sativa), Black Rice (Oryza sativa L. indica), and Red Rice (Oryza nivara) as Antioxidant and Tyrosinase Inhibitor

    Science.gov (United States)

    Batubara, I.; Maharni, M.; Sadiah, S.

    2017-04-01

    Rice is known to have many beneficial biological activities and is often used as “bedak dingin”, a face powder. The content of vitamins, minerals, fiber, and several types of antioxidants, such as ferulic acid, phytic acid, tocopherol, and oryzanols [1-2] are predicted to be potential as a tyrosinase inhibitor. The purpose of this study is to determine the potency of extracts from there types of rice, namely white, red, and black rice as an antioxidant and tyrosinase inhibitor. The rice was extracted with three different solvents, n-hexane, ethyl acetate, and methanol. The results showed that the highest antioxidant activity using 1,1-diphenyl-2-picrylhydrazyl method was found in the methanol extract of black rice (IC50 290 μg/mL). Meanwhile, ethyl acetate extract of white rice has the highest antioxidant activity withphosphomolybdic acid method (41 mmol α-tocopherol equivalents/g sample). Thus, methanol extract of black rice and ethyl acetate extract of white rice are potential as an antioxidant. For tyrosinase inhibitor, n-hexane extract of red rice (IC50 3156 μg/mL) was the most active extract. The active component for radical scavenging is polar compound and for antioxidant by phosphomolybdate method is less polar compounds in black rice methanol extract based on TLC bioautogram. In conclusion, the black rice is the most potent in antioxidant while red rice is for tyrosinase inhibition.

  6. Rice DB: an Oryza Information Portal linking annotation, subcellular location, function, expression, regulation, and evolutionary information for rice and Arabidopsis.

    Science.gov (United States)

    Narsai, Reena; Devenish, James; Castleden, Ian; Narsai, Kabir; Xu, Lin; Shou, Huixia; Whelan, James

    2013-12-01

    Omics research in Oryza sativa (rice) relies on the use of multiple databases to obtain different types of information to define gene function. We present Rice DB, an Oryza information portal that is a functional genomics database, linking gene loci to comprehensive annotations, expression data and the subcellular location of encoded proteins. Rice DB has been designed to integrate the direct comparison of rice with Arabidopsis (Arabidopsis thaliana), based on orthology or 'expressology', thus using and combining available information from two pre-eminent plant models. To establish Rice DB, gene identifiers (more than 40 types) and annotations from a variety of sources were compiled, functional information based on large-scale and individual studies was manually collated, hundreds of microarrays were analysed to generate expression annotations, and the occurrences of potential functional regulatory motifs in promoter regions were calculated. A range of computational subcellular localization predictions were also run for all putative proteins encoded in the rice genome, and experimentally confirmed protein localizations have been collated, curated and linked to functional studies in rice. A single search box allows anything from gene identifiers (for rice and/or Arabidopsis), motif sequences, subcellular location, to keyword searches to be entered, with the capability of Boolean searches (such as AND/OR). To demonstrate the utility of Rice DB, several examples are presented including a rice mitochondrial proteome, which draws on a variety of sources for subcellular location data within Rice DB. Comparisons of subcellular location, functional annotations, as well as transcript expression in parallel with Arabidopsis reveals examples of conservation between rice and Arabidopsis, using Rice DB (http://ricedb.plantenergy.uwa.edu.au). © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  7. Some factors affecting reproduction in the Rice weevil Sitophilus Oryzae (L.)

    International Nuclear Information System (INIS)

    Hasaballa, Z.A.; Abdelkawy, F.K.

    1992-01-01

    Laboratory investigations on the effects or radiation, type of food and population density on the reproductive potential of the rice weevil. Sitophilus Oryzae were conducted at 30 degree C. and 75% R.H. The results indicate that the survival number of adult weevils infesting wheat grains increased markedly after 45 and 90 days of infestation. The survival and reproductive potential of the rice weevils declined significantly after exposure to gamma rays. This decline was more pronounced after 90 days and appeared to be markedly dose dependent. It was noticed that the rate of reproduction of the rice weevils was greatly influenced by insect crowding, science adults of S. Oryzae reared under crowded conditions failed to increase in numbers for 3 months as was expected. The reproduction of S. Oryzae was affected by the type of food. Wheat grains were more suitable than rice and maize grains as the average survival numbers of S. Oryzae reared on wheat grains were more after 45 and 90 days than those reared on rice and maize grains.3 tab

  8. Serratia oryzae sp. nov., isolated from rice stems.

    Science.gov (United States)

    Zhang, Cai-Wen; Zhang, Jun; Zhao, Juan-Juan; Zhao, Xia; Zhao, Dong-Fang; Yin, Hua-Qun; Zhang, Xiao-Xia

    2017-08-01

    A novel endophytic bacterium, strain J11-6T, was isolated from rice stems. Its taxonomic position was investigated using a polyphasic approach. The novel strain was Gram-staining-negative, facultatively anaerobic, motile and rod-shaped. Although the results of phylogenetic analysis based on 16S rRNA gene sequences indicated that J11-6T represented a member of the genus Rahnella, multilocus sequence analysis (MLSA) on the basis of concatenated partial atpD, gyrB, rpoB and infB gene sequences showed a clear distinction of J11-6T from the type strains of species of the genus Rahnella but indicated that it lay within the clade of the genus Serratia. The phylogenetically closest species were Serratia fonticola and Serratia aquatilis on the basis of the results of the MLSA phylogenetic analysis. The predominant cellular fatty acids were C16 : 1ω7c (38.7 %) and C16 : 0 (25.0 %). The DNA G+C content was 53.2 mol%. The DNA-DNA relatedness was 17.4 % between J11-6T and Rahnella aquatilis CIP 78.65T, and 29.2 % between J11-6T and S. fonticola LMG 7882T which indicates that this strain represents a novel species of the genus Serratia. Characterization by genotypic and phenotypic analysis indicated that J11-6T (=ACCC 19934T=KCTC 52529T) represents a novel species of the genus Serratia, for which the name Serratia oryzae sp. nov. is proposed.

  9. Malaysian weedy rice shows its true stripes: wild Oryza and elite rice cultivars shape agricultural weed evolution in Southeast Asia.

    Science.gov (United States)

    Song, Beng-Kah; Chuah, Tse-Seng; Tam, Sheh May; Olsen, Kenneth M

    2014-10-01

    Weedy rice is a close relative of domesticated rice (Oryza sativa) that competes aggressively with the crop and limits rice productivity worldwide. Most genetic studies of weedy rice have focused on populations in regions where no reproductively compatible wild Oryza species occur (North America, Europe and northern Asia). Here, we examined the population genetics of weedy rice in Malaysia, where wild rice (O. rufipogon) can be found growing in close proximity to cultivated and weedy rice. Using 375 accessions and a combined analysis of 24 neutral SSR loci and two rice domestication genes (sh4, controlling seed shattering, and Bh4, controlling hull colour), we addressed the following questions: (i) What is the relationship of Malaysian weedy rice to domesticated and wild rice, and to weedy rice strains in the USA? (ii) To what extent does the presence of O. rufipogon influence the genetic and phenotypic diversity of Malaysian weeds? (iii) What do the distributions of sh4 and Bh4 alleles and associated phenotypes reveal about the origin and contemporary evolution of Malaysian weedy rice? Our results reveal the following: independent evolutionary origins for Malaysian weeds and US strains, despite their very close phenotypic resemblance; wild-to-weed gene flow in Malaysian weed populations, including apparent adaptive introgression of seed-shattering alleles; and a prominent role for modern Malaysian cultivars in the origin and recent proliferation of Malaysian weeds. These findings suggest that the genetic complexity and adaptability of weedy crop relatives can be profoundly influenced by proximity to reproductively compatible wild and domesticated populations. © 2014 John Wiley & Sons Ltd.

  10. Physico-chemical and sensorial characteristics of rice (Oryza sativa L.) irradiated and the effect in Sitophilus oryzae L. development

    International Nuclear Information System (INIS)

    Zanao, Cintia Fernanda Pedroso

    2007-01-01

    Rice is exposed to injuries especially due to the attack of insects, which represent great qualitative and quantitative losses. The aim of the present research was to verify the viability of the gamma irradiation as rice (Oryza sativa L.) conservation method; its efficiency in the control of an important pest for stored grains Sitophilus oryzae L. and the effects that irradiation may present in irradiated grains in relation to the sensory aspect and starch alterations. Samples were composed of polished rice and the gamma irradiation dosages used were 0.5; 1.0; 3.0; and 5.0 kGy, and kept at room temperature. Analyses of the grain breakage percentages during processing and the longevity and reproduction of the rice weevil were performed. Analyses of the centesimal composition, phytic acid, apparent amylose content and starch paste properties were also conducted, as well as analyses of the rice color (instrumental) and acceptability (hedonic test), aimed at the determination of the raw and cooked rice sensory quality. It was verified that the gamma irradiation did not change the grain breakage percentage significantly and caused a negative effect on the insect development. Irradiation did not change the centesimal composition significantly. No significant values of phytic acid were found because during rice processing, the outer part (bran) containing 85-92% of total phytates was removed. Values from 17.33 to 18.44% for the apparent amylose content were found, and irradiation did not affect the rice starch amylose content significantly. The paste properties results were significantly changed, where reduction on the paste temperature, decrease on the time for the occurrence of the peak viscosity, reduction on the final viscosity values were observed. The retrogradation tendency became less intense in starches with increasing irradiation dosages. Statistical differences (p<0.05) were detected in the sensory aspect between irradiated and non-irradiated samples, and the

  11. Os11Gsk gene from a wild rice, Oryza rufipogon improves yield in rice.

    Science.gov (United States)

    Thalapati, Sudhakar; Batchu, Anil K; Neelamraju, Sarla; Ramanan, Rajeshwari

    2012-06-01

    Chromosomal segments from wild rice species Oryza rufipogon, introgressed into an elite indica rice restorer line (KMR3) using molecular markers, resulted in significant increase in yield. Here we report the transcriptome analysis of flag leaves and fully emerged young panicles of one of the high yielding introgression lines IL50-7 in comparison to KMR3. A 66-fold upregulated gene Os11Gsk, which showed no transcript in KMR3 was highly expressed in O. rufipogon and IL50-7. A 5-kb genomic region including Os11Gsk and its flanking regions could be PCR amplified only from IL50-7, O. rufipogon, japonica varieties of rice-Nipponbare and Kitaake but not from the indica varieties, KMR3 and Taichung Native-1. Three sister lines of IL50-7 yielding higher than KMR3 showed presence of Os11Gsk, whereas the gene was absent in three other ILs from the same cross having lower yield than KMR3, indicating an association of the presence of Os11Gsk with high yield. Southern analysis showed additional bands in the genomic DNA of O. rufipogon and IL50-7 with Os11Gsk probe. Genomic sequence analysis of ten highly co-expressed differentially regulated genes revealed that two upregulated genes in IL50-7 were derived from O. rufipogon and most of the downregulated genes were either from KMR3 or common to KMR3, IL50-7, and O. rufipogon. Thus, we show that Os11Gsk is a wild rice-derived gene introduced in KMR3 background and increases yield either by regulating expression of functional genes sharing homology with it or by causing epigenetic modifications in the introgression line.

  12. Identification of molecular markers linked to rice bacterial blight resistance genes from Oryza meyeriana

    Directory of Open Access Journals (Sweden)

    Jing WANG,Chen CHENG,Yanru ZHOU,Yong YANG,Qiong MEI,Junmin LI,Ye CHENG,Chengqi YAN,Jianping CHEN

    2015-09-01

    Full Text Available Y73 is a progeny of asymmetric somatic hybridization between Oryza sativa cv. Dalixiang and the wild rice species Oryza meyeriana. Inoculation with a range of strains of Xanthomonas oryzae pv. oryzae showed that Y73 had inherited a high level of resistance to rice bacterial blight (BB from its wild parent. An F2 population of 7125 individuals was constructed from the cross between Y73 and a BB-susceptible cultivar IR24. After testing 615 SSR and STS markers covering the 12 rice chromosomes, 186 markers were selected that showed polymorphism between Y73 and IR24. Molecular markers linked to the BB resistance genes in Y73 were scanned using the F2 population and the polymorphic markers. The SSR marker RM128 on chromosome 1, the STS marker R03D159 on chromosome 3 and the STS marker R05D104 on chromosome 5 were found to be linked to the rice BB resistance genes in Y73.

  13. Can rice (Oryza sativa) mitigate pesticides and nutrients in agricultural runoff?

    Science.gov (United States)

    Phytoremediation of nutrients and pesticides in runoff is a growing conservation effort, particularly in agriculturally intensive areas such as the lower Mississippi River Valley. In the current study, rice (Oryza sativa) was examined for its mitigation capacity of nitrogen, phosphorus, diazinon, a...

  14. Growth responses of NaCl stressed rice (Oryza sativa L.) plants ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-27

    Sep 27, 2010 ... Growth responses of NaCl stressed rice (Oryza sativa. L.) plants ... 2008), which is a real threat to human's food security. Existed situation may ..... content and composition of essential oil and minerals in black cumin. (Nigella ...

  15. Analysis of the temporal variation of radiation balance components in arid rice (Oryza sativa L.) culture

    International Nuclear Information System (INIS)

    Prates, J.E.; Coelho, D.T.; Steinmetz, S.

    1988-01-01

    The time variation of measured radiation balance components in a cultived rice area (Oryza sativa L.) under arid conditions in the Brazil central-west region was analysed. The relation between global solar radiation, radiation balance, reflected radiation and terrestrial effective radiation in three different stages of the culture development: vegetative stage; blooming and maturation, was determined. (M.C.K.) [pt

  16. Genomic diversity among Basmati rice ( Oryza sativa L) mutants ...

    African Journals Online (AJOL)

    Mutation breeding can be considered successful in obtaining new cultivars and broadening the genetic base of rice crop. In order to obtain new varieties of rice with improved agronomic and grain characteristics, gamma radiation (60Co) has been used to generate novel mutants of the Basmati rice. In this study rice cultivars ...

  17. The Role of Node Restriction on Cadmium Accumulation in the Brown Rice of 12 Chinese Rice (Oryza sativa L.) Cultivars.

    Science.gov (United States)

    Huang, Gaoxiang; Ding, Changfeng; Guo, Fuyu; Li, Xiaogang; Zhou, Zhigao; Zhang, Taolin; Wang, Xingxiang

    2017-11-29

    For selection or breeding of rice (Oryza sativa L.) cultivars with low Cd affinity, the role of node Cd restriction on Cd accumulation in brown rice was studied. A pot experiment was conducted to investigate the concentration of Cd in different sections of 12 Chinese rice cultivars. The results indicated that the Cd accumulation in the brown rice was mainly dependent on the root or shoot Cd concentration. Among the cultivars with nearly equal shoot Cd concentrations, Cd accumulation in brown rice was mainly dependent on the transport of Cd in the shoot. However, the Cd transport in the shoot was significantly restricted by the nodes, especially by the first node. Furthermore, the area of the diffuse vascular bundle in the junctional region of the flag leaf and the first node was a key contributor to the variations in Cd restriction by the nodes.

  18. Proximate Nutritional Evaluation of Gamma Irradiated Black Rice (Oryza sativa L. cv. Cempo ireng)

    Science.gov (United States)

    Riyatun; Suharyana; Ramelan, A. H.; Sutarno; Saputra, O. A.; Suryanti, V.

    2018-03-01

    Black rice is a type of pigmented rice with black bran covering the endosperm of the rice kernel. The main objective of the present study was to provide details information on the proximate composition of third generation of gamma irradiated black rice (Oryza sativa L. cv. Cempo ireng). In respect to the control, generally speaking, there were no significant changes of moisture, lipids, proteins, carbohydrates and fibers contents have been observed for the both gamma irradiated black rice. However, the 200-BR has slightly better nutritional value than that of 300-BR and the control. The mineral contents of 200-BR increased significantly of about 35% than the non-gamma irradiated black rice.

  19. Methodical characterization of rice ( Oryza sativa bran oil from Pakistan

    Directory of Open Access Journals (Sweden)

    Mahmood, Zahid

    2005-06-01

    Full Text Available The hexane-extracted oil content of four varieties of rice (Oryza sativa viz. Super Kernel, 386, 385 and Basmati, bran was ranged 14.70-19.10 %. Other physical and chemical parameters of the extracted oils were as follow: Iodine value 112.40, 109.80, 105.1 and 103.70; refractive index ( 40 °C 1.4650, 1.4680, 1.4657 and 1.4660; density ( 40 °C 0.919, 0.913, 0.909 and 0.911; saponification value 183, 177, 186 and 190; unsaponifiable matter 6.15, 5.60, 4.98 and 5.40 % respectively. Tocopherols ( α, γ and δ in the oils were: 284.00, 175.12, 180.42, 300.06; 83.40, 98.70, 120.70, 90.60; 75.16, 57.20, 39.32, 83.00 mg/kg respectively. The contents of tocotrienols ( α, γ and δ in the oils were: 120.30, 106.00, 95.20, 135.74; 196.00, 125.00, 210.0, 276.41; 72.50, 20.00, 39.30, 64.00 mg/kg respectively. The amount of γ - Oryzanol in the investigated oils was ranged 415.12-802.05 The induction periods (Rancimat, 20 L/h, 120 °C of the crude oils were 6.81, 5.99, 6.39 and 7.40 h respectively. The major sterol fractions of the oils consisted of campesterol ranged (10.10-19.20%, stigmasterol (14.00-19.28 %, b -sitosterol (49.30-58.20 %, and D5 ,avenasterol (8.14-13.05 %. The investigated varieties ( Super Kernel, 386, 385 and Basmati of rice bran oil were found to contain high levels of oleic acid 42.67, 38.59, 40.68 and 36.78 % followed by linoleic and palmitic acids 31.58, 33.80, 28.70, 30.51 and 17.00, 14.88, 19.63, 20.00 % respectively. The contents of myristic, stearic and arachidic acids was 1.50, 2.02, 4.28, 1.00; 2.64, 2.87, 4.02, 7.48; and 1.28, 3.00, 1.00, 1.00 % respectively. A number of parameters of the investigated rice bran oils indigenous to Pakistan were comparable to those of typical rice bran and some other vegetable oils, reported in the literature. The results of the present analysis as compared with those of different vegetable oils demonstrated rice bran to be a potential oil source and thus could be useful

  20. Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Zhou, Yi; Yang, Ping; Cui, Fenglei; Zhang, Fantao; Luo, Xiangdong; Xie, Jiankun

    2016-01-01

    Dongxiang wild rice (Oryza rufipogon Griff.) is the progenitor of cultivated rice (Oryza sativa L.), and is well known for its superior level of tolerance against cold, drought and diseases. To date, however, little is known about the salt-tolerant character of Dongxiang wild rice. To elucidate the molecular genetic mechanisms of salt-stress tolerance in Dongxiang wild rice, the Illumina HiSeq 2000 platform was used to analyze the transcriptome profiles of the leaves and roots at the seedling stage under salt stress compared with those under normal conditions. The analysis results for the sequencing data showed that 6,867 transcripts were differentially expressed in the leaves (2,216 up-regulated and 4,651 down-regulated) and 4,988 transcripts in the roots (3,105 up-regulated and 1,883 down-regulated). Among these differentially expressed genes, the detection of many transcription factor genes demonstrated that multiple regulatory pathways were involved in salt stress tolerance. In addition, the differentially expressed genes were compared with the previous RNA-Seq analysis of salt-stress responses in cultivated rice Nipponbare, indicating the possible specific molecular mechanisms of salt-stress responses for Dongxiang wild rice. A large number of the salt-inducible genes identified in this study were co-localized onto fine-mapped salt-tolerance-related quantitative trait loci, providing candidates for gene cloning and elucidation of molecular mechanisms responsible for salt-stress tolerance in rice.

  1. 10559 A NATIONAL SURVEY OF RICE (ORYZA SATIVA L.) GRAIN ...

    African Journals Online (AJOL)

    User

    The study provided quantitative measures of the quality status of rice grains available in Sierra ... using the most convenient methods at their disposal. ... rice, moisture content of grains and percentages of foreign matter, chalky immature grains ...

  2. Indica rice (Oryza sativa, BR29 and IR64).

    Science.gov (United States)

    Datta, Karabi; Datta, Swapan Kumar

    2006-01-01

    Rice is the world's most important food crop. Indica-type rice provides the staple food for more than half of the world population. To satisfy the growing demand of the ever-increasing population, more sustained production of indica-type rice is needed. In addition, because of the high per capita consumption of indica rice, improvement of any traits including its nutritive value may have a significant positive health outcome for the rice-consuming population. Rice yield productivity is greatly affected by different biotic stresses, like diseases and insect pests, and abiotic stresses like drought, cold, and salinity. Attempts to improve resistance in rice to these stresses by conventional breeding through introgression of traits have limited success owing to a lack of resistance germplasm in the wild relatives. Gene transfer technology with genes from other sources can be used to make rice plants resistant or tolerant to insect pests, diseases, and different environmental stresses. For improving the nutritional value of the edible endosperm part of the rice, genes for increasing iron, beta-carotene, or better quality protein can be introduced in rice plants by genetic engineering. Different crops have been transformed using various gene transfer methods, such as protoplast transformation, biolistic, and Agrobacterium-mediated transformation. This chapter describes the Agrobacterium-mediated transformation protocol for indica-type rice. The selectable marker genes used are hygromycin phosphotransferase (hpt), neomycin phosphotransferase (nptII), or phosphomannose isomerase (pmi), and, accordingly, the selection agents are hygromycin, kanamycin (G418), or mannose, respectively.

  3. Robustness and strategies of adaptation among farmer varieties of African Rice (Oryza glaberrima) and Asian Rice (Oryza sativa) across West Africa.

    Science.gov (United States)

    Mokuwa, Alfred; Nuijten, Edwin; Okry, Florent; Teeken, Béla; Maat, Harro; Richards, Paul; Struik, Paul C

    2013-01-01

    This study offers evidence of the robustness of farmer rice varieties (Oryza glaberrima and O. sativa) in West Africa. Our experiments in five West African countries showed that farmer varieties were tolerant of sub-optimal conditions, but employed a range of strategies to cope with stress. Varieties belonging to the species Oryza glaberrima - solely the product of farmer agency - were the most successful in adapting to a range of adverse conditions. Some of the farmer selections from within the indica and japonica subspecies of O. sativa also performed well in a range of conditions, but other farmer selections from within these two subspecies were mainly limited to more specific niches. The results contradict the rather common belief that farmer varieties are only of local value. Farmer varieties should be considered by breeding programmes and used (alongside improved varieties) in dissemination projects for rural food security.

  4. Robustness and Strategies of Adaptation among Farmer Varieties of African Rice (Oryza glaberrima) and Asian Rice (Oryza sativa) across West Africa

    Science.gov (United States)

    Maat, Harro; Richards, Paul; Struik, Paul C.

    2013-01-01

    This study offers evidence of the robustness of farmer rice varieties (Oryza glaberrima and O. sativa) in West Africa. Our experiments in five West African countries showed that farmer varieties were tolerant of sub-optimal conditions, but employed a range of strategies to cope with stress. Varieties belonging to the species Oryza glaberrima – solely the product of farmer agency – were the most successful in adapting to a range of adverse conditions. Some of the farmer selections from within the indica and japonica subspecies of O. sativa also performed well in a range of conditions, but other farmer selections from within these two subspecies were mainly limited to more specific niches. The results contradict the rather common belief that farmer varieties are only of local value. Farmer varieties should be considered by breeding programmes and used (alongside improved varieties) in dissemination projects for rural food security. PMID:23536754

  5. Exploring the Potentiality of Novel Rhizospheric Bacterial Strains against the Rice Blast Fungus Magnaporthe oryzae

    Science.gov (United States)

    Amruta, Narayanappa; Prasanna Kumar, M. K.; Puneeth, M. E.; Sarika, Gowdiperu; Kandikattu, Hemanth Kumar; Vishwanath, K.; Narayanaswamy, Sonnappa

    2018-01-01

    Rice blast caused by Magnaporthe oryzae is a major disease. In the present study, we aimed to identify and evaluate the novel bacterial isolates from rice rhizosphere for biocontrol of M. oryzae pathogen. Sixty bacterial strains from the rice plant’s rhizosphere were tested for their biocontrol activity against M. oryzae under in vitro and in vivo. Among them, B. amyloliquefaciens had significant high activity against the pathogen. The least disease severity and highest germination were recorded in seeds treated with B. amyloliquefaciens UASBR9 (0.96 and 98.00%) compared to untreated control (3.43 and 95.00%, respectively) under in vivo condition. These isolates had high activity of enzymes in relation to growth promoting activity upon challenge inoculation of the pathogen. The potential strains were identified based on 16S rRNA gene sequencing and dominance of these particular genes were associated in Bacillus strains. These strains were also confirmed for the presence of antimicrobial peptide biosynthetic genes viz., srfAA (surfactin), fenD (fengycin), spaS (subtilin), and ituC (iturin) related to secondary metabolite production (e.g., AMPs). Overall, the results suggested that application of potential bacterial strains like B. amyloliquefaciens UASBR9 not only helps in control of the biological suppression of one of the most devastating rice pathogens, M. grisea but also increases plant growth along with a reduction in application of toxic chemical pesticides. PMID:29628819

  6. Ehd4 encodes a novel and Oryza-genus-specific regulator of photoperiodic flowering in rice.

    Directory of Open Access Journals (Sweden)

    He Gao

    Full Text Available Land plants have evolved increasingly complex regulatory modes of their flowering time (or heading date in crops. Rice (Oryza sativa L. is a short-day plant that flowers more rapidly in short-day but delays under long-day conditions. Previous studies have shown that the CO-FT module initially identified in long-day plants (Arabidopsis is evolutionary conserved in short-day plants (Hd1-Hd3a in rice. However, in rice, there is a unique Ehd1-dependent flowering pathway that is Hd1-independent. Here, we report isolation and characterization of a positive regulator of Ehd1, Early heading date 4 (Ehd4. ehd4 mutants showed a never flowering phenotype under natural long-day conditions. Map-based cloning revealed that Ehd4 encodes a novel CCCH-type zinc finger protein, which is localized to the nucleus and is able to bind to nucleic acids in vitro and transactivate transcription in yeast, suggesting that it likely functions as a transcriptional regulator. Ehd4 expression is most active in young leaves with a diurnal expression pattern similar to that of Ehd1 under both short-day and long-day conditions. We show that Ehd4 up-regulates the expression of the "florigen" genes Hd3a and RFT1 through Ehd1, but it acts independently of other known Ehd1 regulators. Strikingly, Ehd4 is highly conserved in the Oryza genus including wild and cultivated rice, but has no homologs in other species, suggesting that Ehd4 is originated along with the diversification of the Oryza genus from the grass family during evolution. We conclude that Ehd4 is a novel Oryza-genus-specific regulator of Ehd1, and it plays an essential role in photoperiodic control of flowering time in rice.

  7. Economic and Environmental Impact of Rice Blast Pathogen (Magnaporthe oryzae) Alleviation in the United States.

    Science.gov (United States)

    Nalley, Lawton; Tsiboe, Francis; Durand-Morat, Alvaro; Shew, Aaron; Thoma, Greg

    2016-01-01

    Rice blast (Magnaporthe oryzae) is a key concern in combating global food insecurity given the disease is responsible for approximately 30% of rice production losses globally-the equivalent of feeding 60 million people. These losses increase the global rice price and reduce consumer welfare and food security. Rice is the staple crop for more than half the world's population so any reduction in rice blast would have substantial beneficial effects on consumer livelihoods. In 2012, researchers in the US began analyzing the feasibility of creating blast-resistant rice through cisgenic breeding. Correspondingly, our study evaluates the changes in producer, consumer, and environmental welfare, if all the rice produced in the Mid-South of the US were blast resistant through a process like cisgenics, using both international trade and environmental assessment modeling. Our results show that US rice producers would gain 69.34 million dollars annually and increase the rice supply to feed an additional one million consumers globally by eliminating blast from production in the Mid-South. These results suggest that blast alleviation could be even more significant in increasing global food security given that the US is a small rice producer by global standards and likely experiences lower losses from blast than other rice-producing countries because of its ongoing investment in production technology and management. Furthermore, results from our detailed life cycle assessment (LCA) show that producing blast-resistant rice has lower environmental (fossil fuel depletion, ecotoxicity, carcinogenics, eutrophication, acidification, global warming potential, and ozone depletion) impacts per unit of rice than non-blast resistant rice production. Our findings suggest that any reduction in blast via breeding will have significantly positive impacts on reducing global food insecurity through increased supply, as well as decreased price and environmental impacts in production.

  8. Economic and Environmental Impact of Rice Blast Pathogen (Magnaporthe oryzae Alleviation in the United States.

    Directory of Open Access Journals (Sweden)

    Lawton Nalley

    Full Text Available Rice blast (Magnaporthe oryzae is a key concern in combating global food insecurity given the disease is responsible for approximately 30% of rice production losses globally-the equivalent of feeding 60 million people. These losses increase the global rice price and reduce consumer welfare and food security. Rice is the staple crop for more than half the world's population so any reduction in rice blast would have substantial beneficial effects on consumer livelihoods. In 2012, researchers in the US began analyzing the feasibility of creating blast-resistant rice through cisgenic breeding. Correspondingly, our study evaluates the changes in producer, consumer, and environmental welfare, if all the rice produced in the Mid-South of the US were blast resistant through a process like cisgenics, using both international trade and environmental assessment modeling. Our results show that US rice producers would gain 69.34 million dollars annually and increase the rice supply to feed an additional one million consumers globally by eliminating blast from production in the Mid-South. These results suggest that blast alleviation could be even more significant in increasing global food security given that the US is a small rice producer by global standards and likely experiences lower losses from blast than other rice-producing countries because of its ongoing investment in production technology and management. Furthermore, results from our detailed life cycle assessment (LCA show that producing blast-resistant rice has lower environmental (fossil fuel depletion, ecotoxicity, carcinogenics, eutrophication, acidification, global warming potential, and ozone depletion impacts per unit of rice than non-blast resistant rice production. Our findings suggest that any reduction in blast via breeding will have significantly positive impacts on reducing global food insecurity through increased supply, as well as decreased price and environmental impacts in

  9. Metabolomic Profiles of Aspergillus oryzae and Bacillus amyloliquefaciens During Rice Koji Fermentation

    Directory of Open Access Journals (Sweden)

    Da Eun Lee

    2016-06-01

    Full Text Available Rice koji, used early in the manufacturing process for many fermented foods, produces diverse metabolites and enzymes during fermentation. Using gas chromatography time-of-flight mass spectrometry (GC-TOF-MS, ultrahigh-performance liquid chromatography linear trap quadrupole ion trap tandem mass spectrometry (UHPLC-LTQ-IT-MS/MS, and multivariate analysis we generated the metabolite profiles of rice koji produced by fermentation with Aspergillus oryzae (RK_AO or Bacillus amyloliquefaciens (RK_BA for different durations. Two principal components of the metabolomic data distinguished the rice koji samples according to their fermenter species and fermentation time. Several enzymes secreted by the fermenter species, including α-amylase, protease, and β-glucosidase, were assayed to identify differences in expression levels. This approach revealed that carbohydrate metabolism, serine-derived amino acids, and fatty acids were associated with rice koji fermentation by A. oryzae, whereas aromatic and branched chain amino acids, flavonoids, and lysophospholipids were more typical in rice koji fermentation by B. amyloliquefaciens. Antioxidant activity was significantly higher for RK_BA than for RK_AO, as were the abundances of flavonoids, including tricin, tricin glycosides, apigenin glycosides, and chrysoeriol glycosides. In summary, we have used MS-based metabolomics and enzyme activity assays to evaluate the effects of using different microbial species and fermentation times on the nutritional profile of rice koji.

  10. Variation of photosynthetic tolerance of rice cultivars (Oryza sativa L ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-01

    Mar 1, 2010 ... (Oryza sativa L.) to chilling temperature in the light. Xia Li*, Kun Cao, Chao .... 2 mol) formed red-brown trimethine that can be detected quantitatively with spectrophoto- ..... ses through the generation of appropriate signals (H2O2) and the balance ..... was under weak light intensity (Murata, 1989). Light.

  11. The Population Structure of African Cultivated Rice Oryza glaberrima (Steud.)

    DEFF Research Database (Denmark)

    Semon, Mande; Nielsen, Rasmus; Jones, Monty P.

    2005-01-01

    Genome-wide linkage disequilibrium (LD) was investigated for 198 accessions of Oryza glaberrima using 93 nuclear microsatellite markers. Significantly elevated levels of LD were detected, even among distantly located markers. Free recombination among loci at the population genetic level was shown...

  12. Quantitative phosphoproteomic analysis of early seed development in rice (Oryza sativa L.).

    Science.gov (United States)

    Qiu, Jiehua; Hou, Yuxuan; Tong, Xiaohong; Wang, Yifeng; Lin, Haiyan; Liu, Qing; Zhang, Wen; Li, Zhiyong; Nallamilli, Babi R; Zhang, Jian

    2016-02-01

    Rice (Oryza sativa L.) seed serves as a major food source for over half of the global population. Though it has been long recognized that phosphorylation plays an essential role in rice seed development, the phosphorylation events and dynamics in this process remain largely unknown so far. Here, we report the first large scale identification of rice seed phosphoproteins and phosphosites by using a quantitative phosphoproteomic approach. Thorough proteomic studies in pistils and seeds at 3, 7 days after pollination resulted in the successful identification of 3885, 4313 and 4135 phosphopeptides respectively. A total of 2487 proteins were differentially phosphorylated among the three stages, including Kip related protein 1, Rice basic leucine zipper factor 1, Rice prolamin box binding factor and numerous other master regulators of rice seed development. Moreover, differentially phosphorylated proteins may be extensively involved in the biosynthesis and signaling pathways of phytohormones such as auxin, gibberellin, abscisic acid and brassinosteroid. Our results strongly indicated that protein phosphorylation is a key mechanism regulating cell proliferation and enlargement, phytohormone biosynthesis and signaling, grain filling and grain quality during rice seed development. Overall, the current study enhanced our understanding of the rice phosphoproteome and shed novel insight into the regulatory mechanism of rice seed development.

  13. Can Rice (Oryza sativa) Mitigate Pesticides and Nutrients in Agricultural Runoff?

    Science.gov (United States)

    Moore, M T; Locke, M A

    2018-01-01

    Phytoremediation of nutrients and pesticides in runoff is a growing conservation effort, particularly in agriculturally intensive areas such as the lower Mississippi River Valley. In the current study, rice (Oryza sativa) was examined for its mitigation capacity of nitrogen, phosphorus, diazinon, and permethrin. Twenty-two high density polyethylene circular containers (56 cm x 45 cm) were used as mesocosms, with 12 mesocosms planted with rice and 10 mesocosms remaining unvegetated. Mesocosms were hydraulically connected and arranged in a series of two, with each system providing a 4 h hydraulic retention time (HRT) for a total system retention time of 8 h. Two treatments (RICE/RICE and RICE/BARE) of four replicates each were utilized, with three replicates of controls (BARE/BARE). Systems with RICE/RICE (8 h HRT) significantly reduced diazinon (p = 0.0126), cis-permethrin (p = 0.0442), filtered orthophosphate (p = 0.0058), and total orthophosphate (p = 0.0123) compared to control systems. No significant differences were noted for trans-permethrin, nitrate, or ammonium. Results indicate promise in phytoremediation of agricultural runoff by rice. If further studies reveal contaminants are not transferred into seeds, then rice could potentially serve as both a remediation tool and food source in countries facing agricultural pollution challenges.

  14. Growth in rice cells requires de novo purine biosynthesis by the blast fungus Magnaporthe oryzae

    Science.gov (United States)

    Fernandez, Jessie; Yang, Kuan Ting; Cornwell, Kathryn M.; Wright, Janet D.; Wilson, Richard A.

    2013-01-01

    Increasing incidences of human disease, crop destruction and ecosystem perturbations are attributable to fungi and threaten socioeconomic progress and food security on a global scale. The blast fungus Magnaporthe oryzae is the most devastating pathogen of cultivated rice, but its metabolic requirements in the host are unclear. Here we report that a purine-requiring mutant of M. oryzae could develop functional appressoria, penetrate host cells and undergo the morphogenetic transition to elaborate bulbous invasive hyphae from primary hyphae, but further in planta growth was aborted. Invasive hyphal growth following rice cell ingress is thus dependent on de novo purine biosynthesis by the pathogen and, moreover, plant sources of purines are neither available to the mutant nor required by the wild type during the early biotrophic phase of infection. This work provides new knowledge about the metabolic interface between fungus and host that might be applicable to other important intracellular fungal pathogens. PMID:23928947

  15. Equol, a Clinically Important Metabolite, Inhibits the Development and Pathogenicity of Magnaporthe oryzae, the Causal Agent of Rice Blast Disease

    Directory of Open Access Journals (Sweden)

    Jiaoyu Wang

    2017-10-01

    Full Text Available Equol, a metabolite of soybean isoflavone daidzein, has been proven to have various bioactivities related to human health, but little is known on its antifungal activity to plant fungal pathogens. Magnaporthe oryzae is a phytopathogenic fungus that causes rice blast, a devastating disease on rice. Here, we demonstrated that equol influences the development and pathogenicity of M. oryzae. Equol showed a significant inhibition to the mycelial growth, conidial generation and germination, and appressorial formation of M. oryzae. As a result, equol greatly reduced the virulence of M. oryzae on rice and barley leaves. The antifungal activity of equol was also found in several other plant fungal pathogens. These findings expand our knowledge on the bioactivities of equol.

  16. Fungi and some mycotoxins contaminating rice ( Oryza Sativa ) in ...

    African Journals Online (AJOL)

    The major fungal genera contaminating rice were Aspergillus, Penicillium, Fusarium, Alternaria, Mucor, Rhizopus, Trichoderma, Curvularia, elminthosporium and Cladosporium. The most prevalent fungal species on rice were .Penicillium spp., A. flavus, A. parasiticus, A. niger, Mucor spp., Rhizopus spp. and Alternaria spp.

  17. Effector Mimics and Integrated Decoys, the Never-Ending Arms Race between Rice and Xanthomonas oryzae

    OpenAIRE

    Zuluaga, Paola; Szurek, Boris; Koebnik, Ralf; Kroj, Thomas; Morel, Jean-Benoit

    2017-01-01

    Plants are constantly challenged by a wide range of pathogens and have therefore evolved an array of mechanisms to defend against them. In response to these defense systems, pathogens have evolved strategies to avoid recognition and suppress plant defenses (Brown and Tellier, 2011). Three recent reports dealing with the resistance of rice to Xanthomonas oryzae have added a new twist to our understanding of this fascinating co-evolutionary arms race (Ji et al., 2016; Read et al., 2016; Triplet...

  18. Differences in the Sensitivity to UVB Radiation of Two Cultivars of Rice (Oryza sativa L.)

    OpenAIRE

    Jun, Hidema; Hye-Sook, Kang; Tadashi, Kumagai; Institute of Genetic Ecology, Tohoku University; Institute of Genetic Ecology, Tohoku University; Institute of Genetic Ecology, Tohoku University

    1996-01-01

    The effects of UVB radiation on the growth of two cultivars of Japanese lowland rice (Oryza sativa L.), Sasanishiki and Norin 1, were examined in a phytotron. Supplementation of visible radiation with UVB radiation reduced plant length, tiller number, the fresh and dry weights of the aboveground parts of plants, and the amounts of total leaf nitrogen, chlorophyll, soluble protein and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in the eighth leaf, the youngest fully expanded leaf...

  19. Genome-wide analysis of potential cross-reactive endogenous allergens in rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Fang Chao Zhu

    2015-01-01

    Full Text Available The proteins in the food are the source of common allergic components to certain patients. Current lists of plant endogenous allergens were based on the medical/clinical reports as well as laboratory results. Plant genome sequences made it possible to predict and characterize the genome-wide of putative endogenous allergens in rice (Oryza sativa L.. In this work, we identified and characterized 122 candidate rice allergens including the 22 allergens in present databases. Conserved domain analysis also revealed 37 domains among rice allergens including one novel domain (histidine kinase-, DNA gyrase B-, and HSP90-like ATPase, PF13589 adding to the allergen protein database. Phylogenetic analysis of the allergens revealed the diversity among the Prolamin superfamily and DnaK protein family, respectively. Additionally, some allergens proteins clustered on the rice chromosome might suggest the molecular function during the evolution.

  20. Cyanobacteria-mediated phenylpropanoids and phytohormones in rice (Oryza sativa) enhance plant growth and stress tolerance.

    Science.gov (United States)

    Singh, Dhananjaya P; Prabha, Ratna; Yandigeri, Mahesh S; Arora, Dilip K

    2011-11-01

    Phenylpropanoids, flavonoids and plant growth regulators in rice (Oryza sativa) variety (UPR 1823) inoculated with different cyanobacterial strains namely Anabaena oryzae, Anabaena doliolum, Phormidium fragile, Calothrix geitonos, Hapalosiphon intricatus, Aulosira fertilissima, Tolypothrix tenuis, Oscillatoria acuta and Plectonema boryanum were quantified using HPLC in pot conditions after 15 and 30 days. Qualitative analysis of the induced compounds using reverse phase HPLC and further confirmation with LC-MS/MS showed consistent accumulation of phenolic acids (gallic, gentisic, caffeic, chlorogenic and ferulic acids), flavonoids (rutin and quercetin) and phytohormones (indole acetic acid and indole butyric acid) in rice leaves. Plant growth promotion (shoot, root length and biomass) was positively correlated with total protein and chlorophyll content of leaves. Enzyme activity of peroxidase and phenylalanine ammonia lyase and total phenolic content was fairly high in rice leaves inoculated with O. acuta and P. boryanum after 30 days. Differential systemic accumulation of phenylpropanoids in plant leaves led us to conclude that cyanobacterial inoculation correlates positively with plant growth promotion and stress tolerance in rice. Furthermore, the study helped in deciphering possible mechanisms underlying plant growth promotion and stress tolerance in rice following cyanobacterial inoculation and indicated the less explored avenue of cyanobacterial colonization in stress tolerance against abiotic stress.

  1. Association analysis using USDA diverse rice (Oryza sativa L.) germplasm collections to identify loci influencing grain quality traits

    Science.gov (United States)

    he USDA rice (Oryza sativa L.) core subset (RCS) was assembled to represent the genetic diversity of the entire USDA-ARS National Small Grains Collection and consists of 1,794 accessions from 114 countries. The USDA rice mini-core (MC) is a subset of 217 accessions from the RCS and was selected to ...

  2. Arsenic uptake and accumulation in rice (Oryza sativa L.) with selenite fertilization and water management.

    Science.gov (United States)

    Wan, Yanan; Camara, Aboubacar Younoussa; Huang, Qingqing; Yu, Yao; Wang, Qi; Li, Huafen

    2018-07-30

    The accumulation of arsenic (As) in rice grain is a potential threat to human health. Our study investigated the possible mediatory role of selenite fertilization on As uptake and accumulation by rice (Oryza sativa L.) under different water management regimes (aerobic or flooded) in a pot experiment. Soil solutions were also extracted during the growing season to monitor As dynamics. Results showed that As contents in the soil solutions, seedlings, and mature rice were higher under flooded than under aerobic water management. Under aerobic conditions, selenite additions slightly increased As concentrations in soil solutions (in the last two samplings), but decreased As levels in rice plants. Relative to the control, 0.5 mg kg -1 selenite decreased rice grain As by 27.5%. Under flooded conditions, however, selenite additions decreased As in soil solutions, while increased As in rice grain. Tendencies also showed that selenite additions decreased the proportion of As in rice shoots both at the seedling stage and maturity, and were more effective in aerobic soil. Our results demonstrate that the effect of selenite fertilizer on As accumulation by rice is related to water management. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Comprehensive phenotypic analysis of rice (Oryza sativa) response to salinity stress

    KAUST Repository

    Pires, Inês S.

    2015-07-22

    Increase in soil salinity levels is becoming a major cause of crop yield losses worldwide. Rice (Oryza sativa) is the most salt-sensitive cereal crop, and many studies have focused on rice salinity tolerance, but a global understanding of this crop\\'s response to salinity is still lacking. We systematically analyzed phenotypic data previously collected for 56 rice genotypes to assess the extent to which rice uses three known salinity tolerance mechanisms: shoot-ion independent tolerance (or osmotic tolerance), ion exclusion, and tissue tolerance. In general, our analyses of different phenotypic traits agree with results of previous rice salinity tolerance studies. However, we also established that the three salinity tolerance mechanisms mentioned earlier appear among rice genotypes and that none of them is predominant. Against the pervasive view in the literature that the K+/Na+ ratio is the most important trait in salinity tolerance, we found that the K+ concentration was not significantly affected by salt stress in rice, which puts in question the importance of K+/Na+ when analyzing rice salt stress response. Not only do our results contribute to improve our global understanding of salt stress response in an important crop, but we also use our results together with an extensive literature research to highlight some issues commonly observed in salinity stress tolerance studies and to propose solutions for future experiments.

  4. Hormonal regulation of floret closure of rice (Oryza sativa)

    Science.gov (United States)

    Huang, Youming; Zeng, Xiaochun

    2018-01-01

    Plant hormones play important roles in regulating every aspect of growth, development, and metabolism of plants. We are interested in understanding hormonal regulation of floret opening and closure in plants. This is a particularly important problem for hybrid rice because regulation of flowering time is vitally important in hybrid rice seed production. However, little was known about the effects of plant hormones on rice flowering. We have shown that jasmonate and methyl jasmonate play significant roles in promoting rice floret opening. In this study, we investigated the effects of auxins including indole-3-acidic acid (IAA), indole-3-butyric acid (IBA), 1-naphthalene-acetic acid (NAA), 2,4-dichlorophenoxy acetic acid (2,4-D) and 3,6-dichloro-2-methoxybenzoic acid (DIC) and abscisic acid (ABA) on floret closure of four fertile and three sterile varieties of rice. The results from field studies in three growing seasons in 2013–2015 showed that the percentages of closed florets were significantly lower in plants treated with IAA, IBA, 2,4-D, DIC and NAA and that the durations of floret opening were significantly longer in plants treated with the same auxins. The auxins exhibited time- and concentration-dependant effects on floret closure. ABA displayed opposite effects of auxins because it increased the percentages of floret closure and decreased the length of floret opening of rice varieties. The degree of auxin-inhibiting and ABA-promoting effects on floret closure was varied somewhat but not significantly different among the rice varieties. Endogenous IAA levels were the highest in florets collected shortly before opening followed by a sharp decline in florets with maximal angles of opening and a significant jump of IAA levels shortly after floret closure in both fertile and sterile rice plants. ABA levels showed an opposite trend in the same samples. Our results showed that auxins delayed but ABA promoted the closure of rice floret regardless of the varieties

  5. Hormonal regulation of floret closure of rice (Oryza sativa.

    Directory of Open Access Journals (Sweden)

    Youming Huang

    Full Text Available Plant hormones play important roles in regulating every aspect of growth, development, and metabolism of plants. We are interested in understanding hormonal regulation of floret opening and closure in plants. This is a particularly important problem for hybrid rice because regulation of flowering time is vitally important in hybrid rice seed production. However, little was known about the effects of plant hormones on rice flowering. We have shown that jasmonate and methyl jasmonate play significant roles in promoting rice floret opening. In this study, we investigated the effects of auxins including indole-3-acidic acid (IAA, indole-3-butyric acid (IBA, 1-naphthalene-acetic acid (NAA, 2,4-dichlorophenoxy acetic acid (2,4-D and 3,6-dichloro-2-methoxybenzoic acid (DIC and abscisic acid (ABA on floret closure of four fertile and three sterile varieties of rice. The results from field studies in three growing seasons in 2013-2015 showed that the percentages of closed florets were significantly lower in plants treated with IAA, IBA, 2,4-D, DIC and NAA and that the durations of floret opening were significantly longer in plants treated with the same auxins. The auxins exhibited time- and concentration-dependant effects on floret closure. ABA displayed opposite effects of auxins because it increased the percentages of floret closure and decreased the length of floret opening of rice varieties. The degree of auxin-inhibiting and ABA-promoting effects on floret closure was varied somewhat but not significantly different among the rice varieties. Endogenous IAA levels were the highest in florets collected shortly before opening followed by a sharp decline in florets with maximal angles of opening and a significant jump of IAA levels shortly after floret closure in both fertile and sterile rice plants. ABA levels showed an opposite trend in the same samples. Our results showed that auxins delayed but ABA promoted the closure of rice floret regardless of

  6. HEAVY METAL LEVELS IN PADDY SOILS AND RICE (ORYZA ...

    African Journals Online (AJOL)

    Mgina

    subsistence farms in Asia (Chaney et al. 2005). Indeed ..... environment have in most cases been associated ... Rice from other countries also with relatively ... Table 4: Comparison of concentrations of metals (µg g-1) in LVB and the European.

  7. Determinants of molecular marker based classification of rice (Oryza ...

    African Journals Online (AJOL)

    mr devi singh

    2015-01-07

    Jan 7, 2015 ... 1Molecular Biology Laboratory, Department of Genetics and Plant Breeding, SVP University of Agriculture and ... Basmati and non-Basmati rice adapted to different agro- ecological ..... acid soils in southern New South Wales?

  8. Determination of genetic variability of Asian rice (Oryza sativa L ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... diversity and relationship among thirty-five Asian cultivars of rice including 19 aromatic, 13 non- ... are promising and effective tools for measuring genetic .... efficients were employed by using Simqual sub-program in similarity.

  9. Comparative Transcriptome Profiling of Rice Near-Isogenic Line Carrying Xa23 under Infection of Xanthomonas oryzae pv. oryzae.

    Science.gov (United States)

    Tariq, Rezwan; Wang, Chunlian; Qin, Tengfei; Xu, Feifei; Tang, Yongchao; Gao, Ying; Ji, Zhiyuan; Zhao, Kaijun

    2018-03-02

    Bacterial blight, caused by Xanthomonas oryzae pv. oryzae ( Xoo ), is an overwhelming disease in rice-growing regions worldwide. Our previous studies revealed that the executor R gene Xa23 confers broad-spectrum disease resistance to all naturally occurring biotypes of Xoo . In this study, comparative transcriptomic profiling of two near-isogenic lines (NILs), CBB23 (harboring Xa23 ) and JG30 (without Xa23 ), before and after infection of the Xoo strain, PXO99 A , was done by RNA sequencing, to identify genes associated with the resistance. After high throughput sequencing, 1645 differentially expressed genes (DEGs) were identified between CBB23 and JG30 at different time points. Gene Ontlogy (GO) analysis categorized the DEGs into biological process, molecular function, and cellular component. KEGG analysis categorized the DEGs into different pathways, and phenylpropanoid biosynthesis was the most prominent pathway, followed by biosynthesis of plant hormones, flavonoid biosynthesis, and glycolysis/gluconeogenesis. Further analysis led to the identification of differentially expressed transcription factors (TFs) and different kinase responsive genes in CBB23, than that in JG30. Besides TFs and kinase responsive genes, DEGs related to ethylene, jasmonic acid, and secondary metabolites were also identified in both genotypes after PXO99 A infection. The data of DEGs are a precious resource for further clarifying the network of Xa23 -mediated resistance.

  10. Improvement of nitrogen accumulation and metabolism in rice (Oryza sativa L.) by the endophyte Phomopsis liquidambari.

    Science.gov (United States)

    Yang, Bo; Ma, Hai-Yan; Wang, Xiao-Mi; Jia, Yong; Hu, Jing; Li, Xia; Dai, Chuan-Chao

    2014-09-01

    The fungal endophyte Phomopsis liquidambari can enhance nitrogen (N) uptake and metabolism of rice plants under hydroponic conditions. To investigate the effects of P. liquidambari on N accumulation and metabolism in rice (Oryza sativa L.) under field conditions during the entire growing season (S1, the seedling stage; S2, the tillering stage; S3, the heading stage; S4, the ripening stage), we utilized pot experiments to examine metabolic and physiological levels in both shoot and root tissues of rice, with endophyte (E+) and without endophyte (E-), in response to three different N levels. We found that under low-N treatment, P. liquidambari symbiosis increased the rice yield and N use efficiency by 12% and by 11.59%, respectively; that the total N contents in E+ rice plants at the four growth stages were separately increased by 29.05%, 14.65%, 21.06% and 18.38%, respectively; and that the activities of nitrate reductase and glutamine synthetase in E+ rice roots and shoots were significantly increased by fungal infection during the S1 to S3 stages. Moreover, P. liquidambari significantly increased the free NH4(+), NO3(-), amino acid and soluble protein contents in infected rice tissues under low-N treatment during the S1 to S3 stages. The obtained results offer novel data concerning the systemic changes induced by P. liquidambari in rice during the entire growth period and confirm the hypothesis that the rice-P. liquidambari interaction improved the N accumulation and metabolism of rice plants, consequently increasing rice N utilization in nutrient-limited soil. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Characterization of High-Value Bioactives in Some Selected Varieties of Pakistani Rice (Oryza sativa L.)

    Science.gov (United States)

    Zubair, Muhammad; Anwar, Farooq; Ashraf, Muhammad; Uddin, Md. Kamal

    2012-01-01

    The present study reports the composition and variation of fatty acids, sterols, tocopherols and γ-oryzanol among selected varieties namely Basmati Super, Basmati 515, Basmati 198, Basmati 385, Basmati 2000, Basmati 370, Basmati Pak, KSK-139, KS-282 and Irri-6 of Pakistani rice (Oryza sativa L). Oil content extracted with n-hexane from different varieties of brown rice seed (unpolished rice) ranged from 1.92% to 2.72%. Total fatty acid contents among rice varieties tested varied between 18240 and 25840 mg/kg brown rice seed. The rice tested mainly contained oleic (6841–10952 mg/kg) linoleic (5453–7874 mg/kg) and palmitic acid (3613–5489 mg/kg). The amounts of total phytosterols (GC and GC-MS analysis), with main contribution from β-sitosterol (445–656 mg/kg), campesterol (116–242 mg/kg), Δ5-avenasterol (89–178 mg/kg) and stigmasterol (75–180 mg/kg) were established to be 739.4 to 1330.4 mg/kg rice seed. The content of α-, γ- and δ-tocopherols as analyzed by HPLC varied from 39.0–76.1, 21.6–28.1 and 6.5–16.5 mg/kg rice seed, respectively. The amounts of different γ-oryzanol components (HPLC data), identified as cycloartenyl ferulate, 24-methylene cycloartanyl ferulate, campesteryl ferulate and β-sitosteryl ferulate, were in the range of 65.5–103.6, 140.2–183.1, 29.8–45.5 and 8.6–10.4 mg/kg rice seed, respectively. Overall, the concentration of these bioactives was higher in the Basmati rice cultivars showing their functional food superiority. In conclusion, the tested varieties of Pakistani rice, especially the Basmati cultivars, can provide best ingredients for functional foods. PMID:22605998

  12. Characterization of High-Value Bioactives in Some Selected Varieties of Pakistani Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Md. Kamal Uddin

    2012-04-01

    Full Text Available The present study reports the composition and variation of fatty acids, sterols, tocopherols and γ-oryzanol among selected varieties namely Basmati Super, Basmati 515, Basmati 198, Basmati 385, Basmati 2000, Basmati 370, Basmati Pak, KSK-139, KS-282 and Irri-6 of Pakistani rice (Oryza sativa L. Oil content extracted with n-hexane from different varieties of brown rice seed (unpolished rice ranged from 1.92% to 2.72%. Total fatty acid contents among rice varieties tested varied between 18240 and 25840 mg/kg brown rice seed. The rice tested mainly contained oleic (6841–10952 mg/kg linoleic (5453–7874 mg/kg and palmitic acid (3613–5489 mg/kg. The amounts of total phytosterols (GC and GC-MS analysis, with main contribution from β-sitosterol (445–656 mg/kg, campesterol (116–242 mg/kg, ∆5-avenasterol (89–178 mg/kg and stigmasterol (75–180 mg/kg were established to be 739.4 to 1330.4 mg/kg rice seed. The content of α-, γ- and δ-tocopherols as analyzed by HPLC varied from 39.0–76.1, 21.6–28.1 and 6.5–16.5 mg/kg rice seed, respectively. The amounts of different γ-oryzanol components (HPLC data, identified as cycloartenyl ferulate, 24-methylene cycloartanyl ferulate, campesteryl ferulate and β-sitosteryl ferulate, were in the range of 65.5–103.6, 140.2–183.1, 29.8–45.5 and 8.6–10.4 mg/kg rice seed, respectively. Overall, the concentration of these bioactives was higher in the Basmati rice cultivars showing their functional food superiority. In conclusion, the tested varieties of Pakistani rice, especially the Basmati cultivars, can provide best ingredients for functional foods.

  13. Identification of Pectin Degrading Enzymes Secreted by Xanthomonas oryzae pv. oryzae and Determination of Their Role in Virulence on Rice.

    Science.gov (United States)

    Tayi, Lavanya; Maku, Roshan V; Patel, Hitendra Kumar; Sonti, Ramesh V

    2016-01-01

    Xanthomonas oryzae pv.oryzae (Xoo) causes the serious bacterial blight disease of rice. Xoo secretes a repertoire of plant cell wall degrading enzymes (CWDEs) like cellulases, xylanases, esterases etc., which act on various components of the rice cell wall. The major cellulases and xylanases secreted by Xoo have been identified and their role in virulence has been determined. In this study, we have identified some of the pectin degrading enzymes of Xoo and assessed their role in virulence. Bioinformatics analysis indicated the presence of four pectin homogalacturonan (HG) degrading genes in the genome of Xoo. The four HG degrading genes include one polygalacturonase (pglA), one pectin methyl esterase (pmt) and two pectate lyases (pel and pelL). There was no difference in the expression of pglA, pmt and pel genes by laboratory wild type Xoo strain (BXO43) grown in either nutrient rich PS medium or in plant mimic XOM2 medium whereas the expression of pelL gene was induced in XOM2 medium as indicated by qRT-PCR experiments. Gene disruption mutations were generated in each of these four genes. The polygalacturonase mutant pglA- was completely deficient in degrading the substrate Na-polygalacturonicacid (PGA). Strains carrying mutations in the pmt, pel and pelL genes were as efficient as wild type Xoo (BXO43) in cleaving PGA. These observations clearly indicate that PglA is the major pectin degrading enzyme produced by Xoo. The pectin methyl esterase, Pmt, is the pectin de-esterifying enzyme secreted by Xoo as evident from the enzymatic activity assay performed using pectin as the substrate. Mutations in the pglA, pmt, pel and pelL genes have minimal effects on virulence. This suggests that, as compared to cellulases and xylanases, the HG degrading enzymes may not have a major role in the pathogenicity of Xoo.

  14. Identification of Pectin Degrading Enzymes Secreted by Xanthomonas oryzae pv. oryzae and Determination of Their Role in Virulence on Rice.

    Directory of Open Access Journals (Sweden)

    Lavanya Tayi

    Full Text Available Xanthomonas oryzae pv.oryzae (Xoo causes the serious bacterial blight disease of rice. Xoo secretes a repertoire of plant cell wall degrading enzymes (CWDEs like cellulases, xylanases, esterases etc., which act on various components of the rice cell wall. The major cellulases and xylanases secreted by Xoo have been identified and their role in virulence has been determined. In this study, we have identified some of the pectin degrading enzymes of Xoo and assessed their role in virulence. Bioinformatics analysis indicated the presence of four pectin homogalacturonan (HG degrading genes in the genome of Xoo. The four HG degrading genes include one polygalacturonase (pglA, one pectin methyl esterase (pmt and two pectate lyases (pel and pelL. There was no difference in the expression of pglA, pmt and pel genes by laboratory wild type Xoo strain (BXO43 grown in either nutrient rich PS medium or in plant mimic XOM2 medium whereas the expression of pelL gene was induced in XOM2 medium as indicated by qRT-PCR experiments. Gene disruption mutations were generated in each of these four genes. The polygalacturonase mutant pglA- was completely deficient in degrading the substrate Na-polygalacturonicacid (PGA. Strains carrying mutations in the pmt, pel and pelL genes were as efficient as wild type Xoo (BXO43 in cleaving PGA. These observations clearly indicate that PglA is the major pectin degrading enzyme produced by Xoo. The pectin methyl esterase, Pmt, is the pectin de-esterifying enzyme secreted by Xoo as evident from the enzymatic activity assay performed using pectin as the substrate. Mutations in the pglA, pmt, pel and pelL genes have minimal effects on virulence. This suggests that, as compared to cellulases and xylanases, the HG degrading enzymes may not have a major role in the pathogenicity of Xoo.

  15. IDENTIFICATION AND MAPPING OF A GENE FOR RICE SLENDER KERNEL USING Oryza glumaepatula INTROGRESSION LINES

    Directory of Open Access Journals (Sweden)

    Sobrizal Sobrizal

    2016-10-01

    Full Text Available World demand for superior rice grain quality tends to increase. One of the  criteria of appearance quality of rice grain is grain shape. Rice consumers  exhibit wide preferences for grain shape, but most Indonesian rice consumers prefer long and slender grain. The objectives of this study were to identify and map a gene for rice slender kernel trait using Oryza  glumaepatula introgression lines with O. sativa cv. Taichung 65 genetic background. A segregation analysis of BC4F2 population derived from backcrosses of a donor parent O. glumaepatula into a recurrent parent Taichung 65 showed that the slender kernel was controlled by a single recessive gene. This new identified gene was designated as sk1 (slender kernel 1. Moreover, based on the RFLP analyses using 14 RFLP markers located on chromosomes 2, 8, 9, and 10 in which the O. glumaepatula chromosomal segments were retained in BC4F2 population, the sk1 was located between RFLP markers C679 and C560 on the long arm of chromosome 2, with map distances of 2.8 and 1.5 cM, respectively. The wild rice O. glumaepatula carried a recessive allele for slender kernel. This allele may be useful in breeding of rice with slender kernel types. In addition, the development of plant materials and RFLP map associated with slender kernel in this study is the preliminary works in the effort to isolate this important grain shape gene.

  16. Cadmium and lead content in several brands of rice grains (Oryza sativa) in central Iran.

    Science.gov (United States)

    Shakerian, A; Rahimi, E; Ahmadi, M

    2012-11-01

    The aim of this study was to investigate the cadmium (Cd) and lead (Pb) content of several commercially available brands of rice grains (Oryza sativa) in central Iran. A total of 67 samples of the most widely consumed brands of rice grains were purchased from local bazaar markets in Shahrekord, Iran. The first step, grains of raw rice were digested by acid digestion method and then were analyzed by atomic absorption spectrometer. The results showed that Cd concentration in rice grains ranged from 0.0378 to 0.1225 ppm dry weight and its average concentration was 0.062 ± 0.019 ppm and Pb content ranged from 0.0405 to 0.1281 ppm dry weight and its average concentration was 0.068 ± 0.0185 ppm. Cd and Pb concentrations in the sampled rice grains were lower in comparison with their upper limits (0.2 and 0.2 ppm for Cd and Pb, respectively) approved by food sanitary standard. Therefore, it can be concluded that there is no health problems due to the consumption of brands of rice grains, for these two elements. The results indicated that weekly intake of Cd and Pb from rice grains was below the provisional tolerable weekly intakes recommended by WHO/FAO.

  17. Growth promotion and inhibition of the Amazonian wild rice species Oryza grandiglumis to survive flooding.

    Science.gov (United States)

    Okishio, Takuma; Sasayama, Daisuke; Hirano, Tatsuya; Akimoto, Masahiro; Itoh, Kazuyuki; Azuma, Tetsushi

    2014-09-01

    In Asian cultivated rice (Oryza sativa), distinct mechanisms to survive flooding are activated in two groups of varieties. Submergence-tolerant rice varieties possessing the SUBMERGENCE1A (SUB1A) gene display reduced growth during flash floods at the seedling stage and resume growth after the flood recedes, whereas deepwater rice varieties possessing the SNORKEL1 (SK1) and SNORKEL2 (SK2) genes display enhanced growth based on internodal elongation during prolonged submergence at the mature stage. In this study, we investigated the occurrence of these growth responses to submergence in the wild rice species Oryza grandiglumis, which is native to the Amazon floodplains. When subjected to gradual submergence, adult plants of O. grandiglumis accessions showed enhanced internodal elongation with rising water level and their growth response closely resembled that of deepwater varieties of O. sativa with high floating capacity. On the other hand, when subjected to complete submergence, seedlings of O. grandiglumis accessions displayed reduced shoot growth and resumed normal growth after desubmergence, similar to the response of submergence-tolerant varieties of O. sativa. Neither SUB1A nor the SK genes were detected in the O. grandiglumis accessions. These results indicate that the O. grandiglumis accessions are capable of adapting successfully to flooding by activating two contrasting mechanisms as the situation demands and that each mechanism of adaptation to flooding is not mediated by SUB1A or the SK genes.

  18. Carbon-14 dynamics in rice: an extension of the ORYZA2000 model

    Energy Technology Data Exchange (ETDEWEB)

    Galeriu, D.; Melintescu, A. [' ' Horia Hulubei' ' National Institute for Physics and Nuclear Engineering, Life and Environmental Physics Department, 30 Reactorului St., POB MG-6, Bucharest-Magurele (Romania)

    2014-03-15

    Carbon-14 ({sup 14}C) is a radionuclide of major interest in nuclear power production. The Fukushima accident changed the public attitude on the use of nuclear energy all over the world. In terms of nuclear safety, the need of quality-assured radiological models was emphasized by many international organizations, and for models used by decision-makers (i.e. regulatory environmental models and radiological models), a moderate conservatism, transparency, relative simplicity and user friendliness are required. Because the interaction between crops and the environment is complex and regulated by many feedback mechanisms, however, these requirements are difficult to accomplish. The present study makes a step forward regarding the development of a robust model dealing with food contamination after a short-term accidental emission and considers a single crop species, rice (Oryza sativa), one of the most widely used rice species. Old and more recent experimental data regarding the carbon dynamics in rice plants are reviewed, and a well-established crop growth model, ORYZA2000, is used and adapted in order to assess the dynamics of {sup 14}C in rice after a short-term exposure to {sup 14}CO{sub 2}. Here, the model is used to investigate the role of the genotype, management and weather on the concentration of radiocarbon at harvest. (orig.)

  19. Arsenic accumulation and phosphorus status in two rice (Oryza sativa L.) cultivars surveyed from fields in South China

    International Nuclear Information System (INIS)

    Lu Ying; Dong, Fei; Deacon, Claire; Chen Huojun; Raab, Andrea; Meharg, Andrew A.

    2010-01-01

    The consumption of paddy rice (Oryza sativa L.) is a major inorganic arsenic exposure pathway in S.E. Asia. A multi-location survey was undertaken in Guangdong Province, South China to assess arsenic accumulation and speciation in 2 rice cultivars, one an Indica and the other a hybrid Indica. The results showed that arsenic concentrations in rice tissue increased in the order grain < husk < straw < root. Rice grain arsenic content of 2 rice cultivars was significant different and correlated with phosphorus concentration and molar ratio of P/As in shoot, being higher for the Indica cultivar than for the hybrid Indica, which suggests altering shoot phosphorus status as a promising route for breeding rice cultivars with reduced grain arsenic. Speciation of grain arsenic, performed using HPLC-ICP-MS, identified inorganic arsenic as the dominant arsenic species present in the rice grain. - Altering rice shoot phosphorus status is a promising route for breeding rice cultivars with reduced grain arsenic.

  20. Competitive and Allelopathic Effects of Wild Rice Accessions (Oryza longistaminata) at Different Growth Stages.

    Science.gov (United States)

    Shen, Shicai; Xu, Gaofeng; Clements, David Roy; Jin, Guimei; Zhang, Fudou; Tao, Dayun; Xu, Peng

    2016-01-01

    The competitive and allelopathic effects of wild rice (Oryza longistaminata) accessions on barnyard grass at different growth stages determined by days after sowing (0, 30, 60 and 90 days) were studied in greenhouse pot experiments. Wild rice accession RL159 exhibited the greatest height and tillering. The weed suppression rates of wild rice accessions OL and F1 on barnyard grass were significantly higher than for other rice accessions, with the lowest being O. sativa cultivar RD23. The highest suppression rates of OL and F1 were 80.23 and 73.96% at barnyard grass growth stages of 90 days and 60 days. At a 90 growth stage, wild rice accessions RL159 and RL169 caused 61.33 and 54.51% inhibition in barnyard grass growth, respectively. Under the same conditions, the competitive inhibition rates of OL, F1, RL159, RL169 and RL219 against barnyard grass were markedly lower than their weed suppressive effects, but were relatively similar for RD23. The allelopathic inhibition of OL and F1 on barnyard grass was significantly higher than other rice accessions. The highest allelopathic rates of OL and F1 were 60.61 and 56.87% at the 0 day growth stage. It is concluded that wild rice accessions OL and F1 exhibited the highest allelopathic activity along with moderate competitive ability against barnyard grass; wild rice accession RL159 had the highest competitive ability and moderate allelopathic activity on barnyard grass. Thus, the three wild rice accessions OL, F1 and RL159 could be used as ideal breeding materials for cultivated rice improvement.

  1. Photosynthetic characterization of a rolled leaf mutant of rice ( Oryza ...

    African Journals Online (AJOL)

    A new rolling leaf rice mutant was identified which showed an apparently straighter longitudinal shape normal transverse rolling characters at all developing stages. The chlorophyll contents per fresh weight of this mutant leaves were lower than those of wild-type. The electron transfer rate (ETR) and photochemical ...

  2. Assessment of genetic diversity in Indian rice germplasm (Oryza ...

    Indian Academy of Sciences (India)

    2013-12-11

    Dec 11, 2013 ... 3Indian Agricultural Research Institute, Rice Breeding and Genetics Research Centre, Aduthurai 612 101, India ..... Govind Ballabh Pant University of Agriculture and Technology; IRRI, Inter- ..... 83–91, Arkansas Agricultural Experiment Station, ... Temnykh S., Park D. W., Ayres N., Cartinhour S., Hauck N.,.

  3. Grain Accumulation of Selenium Species in Rice (Oryza sativa L.)

    Science.gov (United States)

    Selenium (Se) is an essential micronutrient in which up to 1 billion people worldwide are deficient, causing a range of health disorders and potentially an increased risk of certain cancers. Consequently, there is much interest in Se biofortification of rice, the staple food for...

  4. Some aspects of photoperiodism in rice (Oryza sativa L.)

    NARCIS (Netherlands)

    Best, R.

    1961-01-01

    Photoperiodism was studied in 417 rice varieties of which 28, selected by differences in photoperiodic response, were studied in more detail. The plants were usually grown under 16 different photoperiods ranging from 5 to 24 h. In detailed experiments the types of response to short and long days

  5. Estimation of genetic diversity in rice ( Oryza sativa L. ) genotypes ...

    African Journals Online (AJOL)

    Thirty rice genotypes comprising land races, pure lines, somaclones, breeding lines and varieties specifically adapted to costal saline environments were characterized by SSR markers and morphological characters in this study. Out of 35 primers of SSR markers, 28 were found to be polymorphic. The PIC value ranged ...

  6. Analysis of QTLs for yield-related traits in Yuanjiang common wild rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Fu, Qiang; Zhang, Peijiang; Tan, Lubin; Zhu, Zuofeng; Ma, Dan; Fu, Yongcai; Zhan, Xinchun; Cai, Hongwei; Sun, Chuanqing

    2010-02-01

    Using an accession of common wild rice (Oryza rufipogon Griff.) collected from Yuanjiang County, Yunnan Province, China, as the donor and an elite cultivar 93-11, widely used in two-line indica hybrid rice production in China, as the recurrent parent, an advanced backcross populations were developed. Through genotyping of 187 SSR markers and investigation of six yield-related traits of two generations (BC(4)F(2) and BC(4)F(4)), a total of 26 QTLs were detected by employing single point analysis and interval mapping in both generations. Of the 26 QTLs, the alleles of 10 (38.5%) QTLs originating from O. rufipogon had shown a beneficial effect for yield-related traits in the 93-11 genetic background. In addition, five QTLs controlling yield and its components were newly identified, indicating that there are potentially novel alleles in Yuanjiang common wild rice. Three regions underling significant QTLs for several yield-related traits were detected on chromosome 1, 7 and 12. The QTL clusters were founded and corresponding agronomic traits of those QTLs showed highly significant correlation, suggesting the pleiotropism or tight linkage. Fine-mapping and cloning of these yield-related QTLs from wild rice would be helpful to elucidating molecular mechanism of rice domestication and rice breeding in the future. Copyright 2010 Institute of Genetics and Developmental Biology and the Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  7. Identification of phasiRNAs in wild rice (Oryza rufipogon).

    Science.gov (United States)

    Liu, Yang; Wang, Yu; Zhu, Qian-Hao; Fan, Longjiang

    2013-08-01

    Plant miRNAs can trigger the production of phased, secondary siRNAs from either non-coding or protein-coding genes. In this study, at least 864 and 3,961 loci generating 21-nt and 24-nt phased siRNAs (phasiRNAs),respectively, were identified in three tissues from wild rice. Of these phasiRNA-producing loci, or PHAS genes, biogenesis of phasiRNAs in at least 160 of 21-nt and 254 of 24-nt loci could be triggered by interaction with miRNA(s). Developing seeds had more PHAS genes than leaves and roots. Genetic constrain on miRNA-triggered PHAS genes suggests that phasiRNAs might be one of the driving forces contributed to rice domestication.

  8. Genetic improvement of rice (oryza sativa l.) by induced mutations

    International Nuclear Information System (INIS)

    Suarez, E.; Deus, J. E.; Perez, R.; Alfonso, R.; Hernandez, R.; Avila, J.; Hernandez, J. L.; Puldon, Violeta; Duany, A.; Reinoso, J.; Mesa, H.; Rodriguez, S.

    2001-01-01

    In 1989 was initiated at Rice Research Institute of Cuba, a mutation breeding programme, in order to obtain new germoplasm with improved characters such as milling quality, earliness, resistance to the Hoja Blanca virus disease and salt tolerance. Seven varieties has been irradiated and two different sources of radiation were used: gamma rays from 60Co and fast neutrons of a 14 MeV neutron generator. In 1995, was released the variety IACuba 23 for low inputs conditions. Another four varieties IACuba 21, IACuba 22, IACuba 27 and IACuba 28 are in validation trials in rice production areas under irrigated condition. The last two have showed resistance to Steneotarsonemus spinki. Also, a group of mutants was selected to be used as parents. These mutants have been used in 953 crosses

  9. Improvement results of rice (Oryza glaberima) by induced mutation

    International Nuclear Information System (INIS)

    Cisse, F.

    1994-01-01

    In Mali, rice (Orzya glaberima) is still largely cultivated under conditions of natural semi-controlled submersion. To improve productivity the local varieties have been gradually replaced by new varieties, but the yields of these became lower because of the irregularity of the rain and the comparative weakness of the strain. For this reason a programme to improve the local varieties by means of gamma radiation has been undertaken. This document presents the results obtained to date

  10. Antimicrobial Activity of Plant Extracts from Aloe Vera, Citrus Hystrix, Sabah Snake Grass and Zingiber Officinale against Pyricularia Oryzae that causes Rice Blast Disease in Paddy Plants

    Science.gov (United States)

    Uda, M. N. A.; Harzana Shaari, N.; Shamiera. Said, N.; Hulwani Ibrahim, Nur; Akhir, Maisara A. M.; Khairul Rabani Hashim, Mohd; Salimi, M. N.; Nuradibah, M. A.; Hashim, Uda; Gopinath, Subash C. B.

    2018-03-01

    Rice blast disease, caused by the fungus known as Pyricularia oryzae, has become an important and serious disease of rice worldwide. Around 50% of production may be lost in a field moderately affected by infection and each year the fungus destroys rice, which is enough to feed an estimated 60 million people. Therefore, use of herbal plants offer an alternative for the management of plant diseases. Herbal plant like Aloe vera, Citrus hystrix, Sabah snake grass and Zingiber officinale extracts can be used for controlling disease of rice blast. In this study, these four herbal plants were used for evaluating antimicrobial activity against rice plant fungus Pyricularia oryzae, which causes rice blast disease.

  11. A comparative study of competitiveness between different genotypes of weedy rice (Oryza sativa) and cultivated rice.

    Science.gov (United States)

    Dai, Lei; Dai, Weimin; Song, Xiaoling; Lu, Baorong; Qiang, Sheng

    2014-01-01

    Competition from weedy rice can cause serious yield losses to cultivated rice. However, key traits that facilitate competitiveness are still not well understood. To explore the mechanisms behind the strong growth and competitive ability, replacement series experiments were established with six genotypes of weedy rice from different regions and one cultivated rice cultivar. (1) Weedy rice from southern China had the greatest impact on growth and yield of cultivated rice throughout the entire growing season. Weedy rice from the northeast was very competitive during the early vegetative stage while the competitive effects of eastern weedy rice were more detrimental at later crop-growth stages. (2) As the proportion of weedy rice increased, plant height, tillers, above-ground biomass, and yield of cultivated rice significantly declined; the crop always being at disadvantage regardless of proportion. (3) Weedy biotypes with greater diversity as estimated by their Shannon indexes were more detrimental to the growth and yield of cultivated rice. Geographic origin (latitude) of weedy rice biotype, its mixture proportion under competition with the crop and its genetic diversity are determinant factors of the outcome of competition and the associated decline in the rice crop yield. © 2013 Society of Chemical Industry. © 2013 Society of Chemical Industry.

  12. A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae.

    Science.gov (United States)

    Das, Alok; Soubam, D; Singh, P K; Thakur, S; Singh, N K; Sharma, T R

    2012-06-01

    The dominant rice blast resistance gene, Pi54 confers resistance to Magnaporthe oryzae in different parts of India. In our effort to identify more effective forms of this gene, we isolated an orthologue of Pi54 named as Pi54rh from the blast-resistant wild species of rice, Oryza rhizomatis, using allele mining approach and validated by complementation. The Pi54rh belongs to CC-NBS-LRR family of disease resistance genes with a unique Zinc finger (C(3)H type) domain. The 1,447 bp Pi54rh transcript comprises of 101 bp 5'-UTR, 1,083 bp coding region and 263 bp 3'-UTR, driven by pathogen inducible promoter. We showed the extracellular localization of Pi54rh protein and the presence of glycosylation, myristoylation and phosphorylation sites which implicates its role in signal transduction process. This is in contrast to other blast resistance genes that are predicted to be intracellular NBS-LRR-type resistance proteins. The Pi54rh was found to express constitutively at basal level in the leaves, but upregulates 3.8-fold at 96 h post-inoculation with the pathogen. Functional validation of cloned Pi54rh gene using complementation test showed high degree of resistance to seven isolates of M. oryzae collected from different geographical locations of India. In this study, for the first time, we demonstrated that a rice blast resistance gene Pi54rh cloned from wild species of rice provides broad spectrum resistance to M. oryzae hence can be used in rice improvement breeding programme.

  13. Virulence Types of Magnaporthe oryzae to Hybrid Rice in Sichuan, China

    Directory of Open Access Journals (Sweden)

    Yu-lian BAI

    2012-12-01

    Full Text Available A total of 638 isolates of rice blast (Magnaporthe oryzae were isolated in 2002–2009 from different rice varieties in different regions of Sichuan, China and inoculated onto seven rice varieties (Lijiangxintuanheigu, IR24, Minghui 63, Duohui 1, Chenghui 448, Neihui 99-14 and RHR-1 to differentiate the virulence types of the fungus and trace the changes. The virulence to the seven varieties was respectively scored at 1, 2, 4, 8, 16, 32 and 64. The total scores of individual M. grisea isolates which were the sum of scores infecting differential varieties could, in turn, be used for the nomenclature of the virulence types due to their accordance to the special virulence patterns. The 638 tested isolates were then differentiated into 56 different virulence types. Type 15 virulent to Lijiangxintuanheigu, IR24 and Minghui 63, and Type 127 virulent to all of the seven varieties were the most dominant virulence types respectively with the occurrence frequencies of 15.99% and 15.83%. Type 19 and other seven virulence types were not monitored during 2002–2009. Type 15 was the predominant virulence type in 2002, 2003, 2004 and 2007, whereas Type 127 had been the most dominant virulence type after 2005 except for the year 2007 when the province underwent severe drought. Five hundred and seven out of the 638 tested isolates were virulent to Minghui 63, and 89.58% of the 384 isolates virulent to either Duohui 1, Chenghui 448 or Neihui 99-14 were virulent to Minghui 63, which indicated the impact of the extensive plantation of hybrid rice Minghui 63 as the restorer line on the virulence evolution of M. oryzae in Sichuan. The virulence pattern of the dominant virulence types suggested that the acquiring of virulence to all the major resistant restorer lines was the main routes of the evolution in virulence of M. oryzae to hybrid rice in Sichuan. The virulence frequencies of the 638 tested isolates to IR24, Minghui 63, Duohui 1, Chenghui 448, Neihui 99

  14. Alternate wetting and drying decreases methylmercury in flooded rice (Oryza sativa) systems

    Science.gov (United States)

    Tanner, K. Christy; Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark C.; Fleck, Jacob; Linquist, Bruce A.

    2018-01-01

    In flooded soils, including those found in rice (Oryza sativa L.) fields, microbes convert inorganic Hg to more toxic methylmercury (MeHg). Methylmercury is accumulated in rice grain, potentially affecting health. Methylmercury in rice field surface water can bioaccumulate in wildlife. We evaluated how introducing aerobic periods into an otherwise continuously flooded rice growing season affects MeHg dynamics. Conventional continuously flooded (CF) rice field water management was compared with alternate wetting and drying, where irrigation was stopped twice during the growing season, allowing soil to dry to 35% volumetric moisture content, at which point plots were reflooded (AWD-35). Methylmercury studies began at harvest in Year 3 and throughout Year 4 of a 4-yr replicated field experiment. Bulk soil, water, and plant samples were analyzed for MeHg and total Hg (THg), and iron (Fe) speciation was measured in soil samples. Rice grain yield over 4 yr did not differ between treatments. Soil chemistry responded quickly to AWD-35 dry-downs, showing significant oxidation of Fe(II) accompanied by a significant reduction of MeHg concentration (76% reduction at harvest) compared with CF. Surface water MeHg decreased by 68 and 39% in the growing and fallow seasons, respectively, suggesting that the effects of AWD-35 management can last through to the fallow season. The AWD-35 treatment reduced rice grain MeHg and THg by 60 and 32%, respectively. These results suggest that the more aerobic conditions caused by AWD-35 limited the activity of Hg(II)-methylating microbes and may be an effective way to reduce MeHg concentrations in rice ecosystems.

  15. Effector Mimics and Integrated Decoys, the Never-Ending Arms Race between Rice and Xanthomonas oryzae.

    Science.gov (United States)

    Zuluaga, Paola; Szurek, Boris; Koebnik, Ralf; Kroj, Thomas; Morel, Jean-Benoit

    2017-01-01

    Plants are constantly challenged by a wide range of pathogens and have therefore evolved an array of mechanisms to defend against them. In response to these defense systems, pathogens have evolved strategies to avoid recognition and suppress plant defenses (Brown and Tellier, 2011). Three recent reports dealing with the resistance of rice to Xanthomonas oryzae have added a new twist to our understanding of this fascinating co-evolutionary arms race (Ji et al., 2016; Read et al., 2016; Triplett et al., 2016). They show that pathogens also develop sophisticated effector mimics to trick recognition.

  16. Influence of cooking on anthocyanins in black rice (Oryza sativa L. japonica var. SBR).

    Science.gov (United States)

    Hiemori, Miki; Koh, Eunmi; Mitchell, Alyson E

    2009-03-11

    The composition and thermal stability of anthocyanins in black rice (Oryza sativa L. japonica var. SBR) produced in California were investigated. Six anthocyanin pigments were identified and quantified by high performance liquid chromatography using photo diode-array detection (HPLC-PDA) and electrospray ionization mass spectrometry [LC-(ESI)MS/MS]. The predominant anthocyanins are cyanidin-3-glucoside (572.47 microg/g; 91.13% of total) and peonidin-3-glucoside (29.78 microg/g; 4.74% of total). Minor constituents included three cyanidin-dihexoside isomers and one cyanidin hexoside. Thermal stability of anthocyanins was assessed in rice cooked using a rice cooker, pressure cooker, or on a gas range. All cooking methods caused significant (P rice cooker (74.2%) and gas range (65.4%). Conversely, levels of protocatechuic acid increased 2.7 to 3.4 times in response to all cooking methods. These findings indicate that cooking black rice results in the thermal degradation of cyanidin-3-glucoside and concomitant production of protocatechuic acid.

  17. Isolation of stress responsive Psb A gene from rice (Oryza sativa l.) using differential display.

    Science.gov (United States)

    Tyagi, Aruna; Chandra, Arti

    2006-08-01

    Differential display (DD) experiments were performed on drought-tolerant rice (Oryza sativa L.) genotype N22 to identify both upregulated and downregulated partial cDNAs with respect to moisture stress. DNA polymorphism was detected between drought-stressed and control leaf tissues on the DD gels. A partial cDNA showing differential expression, with respect to moisture stress was isolated from the gel. Northern blotting analysis was performed using this cDNA as a probe and it was observed that mRNA corresponding to this transcript was accumulated to high level in rice leaves under water deficit stress. At the DNA sequence level, the partial cDNA showed homology with psb A gene encoding for Dl protein.

  18. Effect of selenium application on arsenic uptake in rice (Oryza sativa L.).

    Science.gov (United States)

    Kaur, Sumandeep; Singh, Dhanwinder; Singh, Kuldip

    2017-09-01

    Alluvial aquifers of the agrarian state of Punjab of southwestern arid zone used for irrigation of rice crops are rich in arsenic concentration. In the present study, rice (Oryza sativa L.) crops were raised in pots in a greenhouse with a purpose to study whether selenium (Se) application was effective in ameliorating As uptake. The rice crop was irrigated with arsenic laced water (0, 2.5, 5.0, 10.0 μM As L -1 ) throughout the growing period, without and with selenium (0.05 and 0.10 mg kg -1 ) added through mustard biomass, grown ex situ in seleniferous soil. Arsenic uptake and dry matter yield in different parts of the rice crop were assayed after application of As alone and simultaneous supplementations (As + Se). An antagonistic interaction between Se and As was observed. Addition of As through irrigation water significantly reduced yield of rice grain, straw and root. However, subsequent addition of Se helped in mitigating the harmful effect of As and countered the yield reduction caused due to As toxicity. The effect of Se on dry matter yield was more pronounced at its higher dose (0.10 mg kg -1 ) as compared to its lower dose (0.05 mg kg -1 ). The presence of Se either alone or added along with As significantly reduced the As concentration and its uptake by different parts of rice and higher reduction in As concentration was observed with addition of the highest level of applied Se (0.10 mg kg -1 ). Our observations indicated that Se supplementation might be favourable to reduce As accumulation and toxicity in rice crops.

  19. Transcriptome analysis of phosphorus stress responsiveness in the seedlings of Dongxiang wild rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Deng, Qian-Wen; Luo, Xiang-Dong; Chen, Ya-Ling; Zhou, Yi; Zhang, Fan-Tao; Hu, Biao-Lin; Xie, Jian-Kun

    2018-03-15

    Low phosphorus availability is a major factor restricting rice growth. Dongxiang wild rice (Oryza rufipogon Griff.) has many useful genes lacking in cultivated rice, including stress resistance to phosphorus deficiency, cold, salt and drought, which is considered to be a precious germplasm resource for rice breeding. However, the molecular mechanism of regulation of phosphorus deficiency tolerance is not clear. In this study, cDNA libraries were constructed from the leaf and root tissues of phosphorus stressed and untreated Dongxiang wild rice seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in phosphorus stress response. The results indicated that 1184 transcripts were differentially expressed in the leaves (323 up-regulated and 861 down-regulated) and 986 transcripts were differentially expressed in the roots (756 up-regulated and 230 down-regulated). 43 genes were up-regulated both in leaves and roots, 38 genes were up-regulated in roots but down-regulated in leaves, and only 2 genes were down-regulated in roots but up-regulated in leaves. Among these differentially expressed genes, the detection of many transcription factors and functional genes demonstrated that multiple regulatory pathways were involved in phosphorus deficiency tolerance. Meanwhile, the differentially expressed genes were also annotated with gene ontology terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes pathway mapping, respectively. A set of the most important candidate genes was then identified by combining the differentially expressed genes found in the present study with previously identified phosphorus deficiency tolerance quantitative trait loci. The present work provides abundant genomic information for functional dissection of the phosphorus deficiency resistance of Dongxiang wild rice, which will be help to understand the biological regulatory mechanisms of phosphorus

  20. The influence of soil water status on Oryza Sativa Var. MR220 in KADA rice agroecosystem

    International Nuclear Information System (INIS)

    Nashriyah Mat; Ismail Che Haron; Mazleha Maskin; Mohd Razi Ismail

    2006-01-01

    A study to determine the influence of soil water status on rice plant Oryza sativa var. MR220 after panicle initiation stage was carried out at Ladang Merdeka Mulong Lating in the Kemubu Agricultural Development Authority (KADA) area, Kelantan. Five water management treatments imposed on direct seeded rice were; T1. Continuous flooding, T2. Early flooding up to panicle initiation stage followed by saturated (F55-saturated), T3. Early flooding for the first month followed by saturated (F-30 saturated), T4. Continuous saturated, and T5. Continuous field capacity condition throughout the growth stage. The treatments were arranged in Randomized Complete Block Design (RCBD) with four replicates. Results showed significant differences in soil moisture content in the order of T1>T2>T3>T4>T5. Significant differences were also observed in rice plant water content at 68 DAS (days after seeding) in the order of T2>T3>T4>T1>T5. Moisture content also showed significant differences between replicates in the order of R1>R2>R3>R4 and R2>R1>R3>R4; in rice plant and ricefield soil, respectively. Results however showed no significant difference in leaf stomatal conductance due to water stress. Rice plant moisture, soil moisture and leaf stomatal conductance showed no interaction. Published results show that even though overall crop yield was reduced by sheath blight and panicle blast incidence that occur at later stage in 2004-2005 field trials, highest grain yields were obtained from T2 (off season) and T4 (main season). Saturated condition seems to be the most suitable method of growing rice under minimal water input in KADA rice agroecosystem. (Author)

  1. The Complete Chloroplast Genome of Wild Rice (Oryza minuta) and Its Comparison to Related Species.

    Science.gov (United States)

    Asaf, Sajjad; Waqas, Muhammad; Khan, Abdul L; Khan, Muhammad A; Kang, Sang-Mo; Imran, Qari M; Shahzad, Raheem; Bilal, Saqib; Yun, Byung-Wook; Lee, In-Jung

    2017-01-01

    Oryza minuta , a tetraploid wild relative of cultivated rice (family Poaceae), possesses a BBCC genome and contains genes that confer resistance to bacterial blight (BB) and white-backed (WBPH) and brown (BPH) plant hoppers. Based on the importance of this wild species, this study aimed to understand the phylogenetic relationships of O. minuta with other Oryza species through an in-depth analysis of the composition and diversity of the chloroplast (cp) genome. The analysis revealed a cp genome size of 135,094 bp with a typical quadripartite structure and consisting of a pair of inverted repeats separated by small and large single copies, 139 representative genes, and 419 randomly distributed microsatellites. The genomic organization, gene order, GC content and codon usage are similar to those of typical angiosperm cp genomes. Approximately 30 forward, 28 tandem and 20 palindromic repeats were detected in the O . minuta cp genome. Comparison of the complete O. minuta cp genome with another eleven Oryza species showed a high degree of sequence similarity and relatively high divergence of intergenic spacers. Phylogenetic analyses were conducted based on the complete genome sequence, 65 shared genes and matK gene showed same topologies and O. minuta forms a single clade with parental O. punctata . Thus, the complete O . minuta cp genome provides interesting insights and valuable information that can be used to identify related species and reconstruct its phylogeny.

  2. On-farm management practices against rice root weevil (Echinocnemus oryzae Marshall

    Directory of Open Access Journals (Sweden)

    Rakesh Pandey

    2017-06-01

    Full Text Available Rice is the staple food of over half the world's population and occupies almost one-fifth of the global cropland under cereals. The rice root weevil, Echinocnemus oryzae Marshall, (Coleoptera: Curculionidae has posed a problem in paddy cultivation areas in India. The damage by this root weevil results in a significant decrease in root and shoot biomass and ultimately the yield of rice plants. Studies were conducted to test the effective management practices of rice root weevil using a seedling treatment with chlorpyriphos alone and in combination with a soil application of chlorpyriphos, fipronil and cartap hydrochloride during 2013 and 2014. The benefit:cost (B:C ratio was also determined from the marketable yield and cost of treatments incurred in the technology to justify the economic viability of the appropriate technology management against E. oryzae. Reductions in tillers/hill (35.2% and 26.27% and, in panicles/hill (44.0% and 31.96% were observed during 2013 and 2014, respectively. The least number of root weevils (3.67 and 3.13 were observed in comparison to no root weevil management practice (23.53 and 32.53 during 2013 and 2014, respectively, from the treatment of seedlings prior to transplanting with chlorpyriphos at 3 mL/L of water followed by soil application with cartap hydrochloride at 20 kg/ha. The highest numbers of tillers/hill (25.00 and 23.60, numbers of panicles/hill (20.00 and 19.40, yield (5.41 t/ha and 4.57 t/ha and B:C ratio (1.75 and 1.48 were also observed from the same treatment during 2013 and 2014, respectively.

  3. Screening for rice mutant of resistance to piricularia oryzae by irradiation and in vitro technique

    International Nuclear Information System (INIS)

    Wang Cailian; Xu Gang; Chen Qiufang; Jin Wei

    2001-01-01

    The ability of callus formation and green plant regeneration was very different for different rice types and varieties in mature embryo. LS-5 was optimum medium for mature embryo. Increase in plant regeneration capacity was found with 100, 150 Gy gamma rays. The differentiation and regeneration of green plants were obviously improved when the anthers on induction medium were with 30 Gy of gamma rays. The change of free amino acids in subcultured callus tissue in rice were investigated after callus were treated with cultured filtrate from Piricularia oryzae. Fourteen kinds of free amino acid could be quantitatively analysed, among which, contents of serine and glutamate were the highest and made up about 20% of total amino acids respectively. The total amino acids in callus tissue of resistant varieties before treated with cultured filtrate were higher than that of susceptible varieties. However the total amino acids were decreased in the resistant varieties and increased in the susceptible varieties after treatment with the filtrate. Arginine was found in the variety of Zhen Kong No. 13. Disease resistance of R 2 plants screened with toxin was increased. Five mutants with resistance to Piricularia oryzae were selected

  4. Genetic variation for traits associated with domestication identified in a cultivated rice, Nipponbare (Oryza sativa ssp. japonica) x ancestral rice, O. nivara, mapping population

    Science.gov (United States)

    Oryza nivara, the progenitor of cultivated rice, O. sativa, has been the source of novel alleles for resistance to biotic and abiotic stresses, as well as for yield improvement. Many of these alleles were lost during the domestication process. To determine the molecular changes that occurred during ...

  5. Tolerance of different rice genotypes (oryza sativa l.) against the infestation of rice stem borers under natural field conditions

    International Nuclear Information System (INIS)

    Sarwar, M.; Ahmad, N.; Nasrullah; Tofique, M.

    2010-01-01

    The present studies report the genotypic responses of 61 rice (Oryza sativa L.) genotypes (35 aromatic and 26 non aromatic) against the infestation of rice stem borers under natural field conditions. The data obtained on these genotypes on larval infestation in combination with yield were the criteria to assess the resistance depicted by them. The studies showed that among aromatic genotypes, 'Khushboo-95' gave the best yield of grain and harboured the least pest infestation (2.81% dead hearts and 1.85% white heads); on the other hand variety 'Sonahri Sugdasi (P)' harboured the highest borers attack (10.37% and 19.30%) and yielded the lowest grain yield. Regarding non-aromatic genotypes, IR8-2.5-11 received least infestation (1.32% and 0.26% dead hearts and white heads, respectively) generating highest yield showing its tolerance to borer's attack, in contrast, genotype IR6-252 harboured the highest infestation (5.65%, 4.28%) and yielded minimum grain indicating its susceptibility. These results demonstrate the expression of resistance gene in the genome of tolerant rice genotypes that can provide season-long protection from the natural infestation of insect pests. (author)

  6. Association analysis of three diverse rice (Oryza sativa L.) germplasm collections for loci regulating grain quality traits

    Science.gov (United States)

    In rice (Oryza sativa L.), end-use/cooking quality is vital for producers and millions of consumers worldwide. Grain quality is a complex trait with interacting genetic and environmental factors. Deciphering the complex genetic architecture associated with grain quality, will provide vital informati...

  7. Genetic Architecture of Cold Tolerance in Rice (Oryza sativa) Determined through High Resolution Genome-Wide Analysis

    Science.gov (United States)

    Cold temperature is an important abiotic stress which negatively affects morphological development and seed production in rice (Oryza sativa L.). At the seedling stage, cold stress causes poor germination, seedling injury and poor stand establishment; and at the reproductive stage cold decreases se...

  8. Characteristics of Korean Alcoholic Beverages Produced by Using Rice Nuruks Containing Aspergillus oryzae N159-1.

    Science.gov (United States)

    Kim, Hye Ryun; Lee, Ae Ran; Kim, Jae-Ho

    2017-06-01

    Herein, nuruks derived from non-glutinous and glutinous rice inoculated with Aspergillus oryzae N159-1 (having high alpha-amylase and beta-glucosidase activities) were used to produce Korean alcoholic beverages. The resultant beverages had enhanced fruity (ethyl caproate and isoamyl alcohol) and rose (2-phenethyl acetate and phenethyl alcohol) flavors and high taste scores.

  9. Characteristics of Korean Alcoholic Beverages Produced by Using Rice Nuruks Containing Aspergillus oryzae N159-1

    OpenAIRE

    Kim, Hye Ryun; Lee, Ae Ran; Kim, Jae-Ho

    2017-01-01

    Herein, nuruks derived from non-glutinous and glutinous rice inoculated with Aspergillus oryzae N159-1 (having high alpha-amylase and beta-glucosidase activities) were used to produce Korean alcoholic beverages. The resultant beverages had enhanced fruity (ethyl caproate and isoamyl alcohol) and rose (2-phenethyl acetate and phenethyl alcohol) flavors and high taste scores.

  10. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease

    NARCIS (Netherlands)

    Mentlak, T.A.; Kombrink, A.; Shinya, T.; Ryder, L.S.; Otomo, I.; Saitoh, H.; Terauchi, R.; Nishizawa, Y.; Shibuya, N.; Thomma, B.P.H.J.; Talbot, N.J.

    2012-01-01

    Plants use pattern recognition receptors to defend themselves from microbial pathogens. These receptors recognize pathogen-associated molecular patterns (PAMPs) and activate signaling pathways that lead to immunity. In rice (Oryza sativa), the chitin elicitor binding protein (CEBiP) recognizes

  11. Genotypic differences in phosphate nutrition of rice (Oryza Sativa L.)

    International Nuclear Information System (INIS)

    Bui Thi Hong Thanh; Zapata, F.; Bowen, G.D.; Kumarasinghe, K.S.

    1996-01-01

    Phosphate uptake and use by five genotypes of paddy rice were studied at five phosphate levels in pot studies for 49 days. For all five P levels there were marked genotypic differences in shoot growth, plant dry weight, root/shoot ratios, phosphate uptake and translocation, P content of roots and shoots, and phosphorus use efficiency of shoots (PUE, g shoot mg P -1 in shoot). There were significant genotypic differences in root weight (4 P levels) and in uptake/mg root (all P levels). These latter may have resulted from differences in root weight/root length conversion, root hair development or uptake characteristics, factors which were not studied specifically. Differences between genotypes and P levels in the percentage translocation were partly explicable by differences in P uptake/plant (r = 0.72) but especially by differences in root/shoot ratios (r = 0.89). Differences in PUE were largely a factor of P percentage of the tops (r = 0.94) but significant differences between genotypes were shown as a function of % P. Differences in net photosynthesis rates were largely, but not entirely, due to differences in P % of the shoots. Key factors in P uptake and use and genotypic differences are root growth, uptake/mg root, root/shoot ratios and PUE. (author). 9 refs, 2 figs, 3 tabs

  12. Genotypic differences in phosphate nutrition of rice (Oryza Sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Hong Thanh, Bui Thi; Zapata, F [FAO/IAEA Agriculture and Biotechnology Lab., Seibersdorf (Austria). Soils Science Unit; Bowen, G D; Kumarasinghe, K S [Joint FAO/IAEA Div. of Nuclear Techniques in Food and Agriculture, Vienna (Austria). Soil Fertility, Irrigation and Crop Production Section

    1996-07-01

    Phosphate uptake and use by five genotypes of paddy rice were studied at five phosphate levels in pot studies for 49 days. For all five P levels there were marked genotypic differences in shoot growth, plant dry weight, root/shoot ratios, phosphate uptake and translocation, P content of roots and shoots, and phosphorus use efficiency of shoots (PUE, g shoot mg P{sup -1} in shoot). There were significant genotypic differences in root weight (4 P levels) and in uptake/mg root (all P levels). These latter may have resulted from differences in root weight/root length conversion, root hair development or uptake characteristics, factors which were not studied specifically. Differences between genotypes and P levels in the percentage translocation were partly explicable by differences in P uptake/plant (r = 0.72) but especially by differences in root/shoot ratios (r = 0.89). Differences in PUE were largely a factor of P percentage of the tops (r = 0.94) but significant differences between genotypes were shown as a function of % P. Differences in net photosynthesis rates were largely, but not entirely, due to differences in P % of the shoots. Key factors in P uptake and use and genotypic differences are root growth, uptake/mg root, root/shoot ratios and PUE. (author). 9 refs, 2 figs, 3 tabs.

  13. Quantitative Classification of Rice (Oryza sativa L.) Root Length and Diameter Using Image Analysis.

    Science.gov (United States)

    Gu, Dongxiang; Zhen, Fengxian; Hannaway, David B; Zhu, Yan; Liu, Leilei; Cao, Weixing; Tang, Liang

    2017-01-01

    Quantitative study of root morphological characteristics of plants is helpful for understanding the relationships between their morphology and function. However, few studies and little detailed and accurate information of root characteristics were reported in fine-rooted plants like rice (Oryza sativa L.). The aims of this study were to quantitatively classify fine lateral roots (FLRs), thick lateral roots (TLRs), and nodal roots (NRs) and analyze their dynamics of mean diameter (MD), lengths and surface area percentage with growth stages in rice plant. Pot experiments were carried out during three years with three rice cultivars, three nitrogen (N) rates and three water regimes. In cultivar experiment, among the three cultivars, root length of 'Yangdao 6' was longest, while the MD of its FLR was the smallest, and the mean diameters for TLR and NR were the largest, the surface area percentage (SAP) of TLRs (SAPT) was the highest, indicating that Yangdao 6 has better nitrogen and water uptake ability. High N rate increased the length of different types of roots and increased the MD of lateral roots, decreased the SAP of FLRs (SAPF) and TLRs, but increased the SAP of NRs (SAPN). Moderate decrease of water supply increased root length and diameter, water stress increased the SAPF and SAPT, but decreased SAPN. The quantitative results indicate that rice plant tends to increase lateral roots to get more surface area for nitrogen and water uptake when available assimilates are limiting under nitrogen and water stress environments.

  14. Quantitative Classification of Rice (Oryza sativa L.) Root Length and Diameter Using Image Analysis

    Science.gov (United States)

    Gu, Dongxiang; Zhen, Fengxian; Hannaway, David B.; Zhu, Yan; Liu, Leilei; Cao, Weixing; Tang, Liang

    2017-01-01

    Quantitative study of root morphological characteristics of plants is helpful for understanding the relationships between their morphology and function. However, few studies and little detailed and accurate information of root characteristics were reported in fine-rooted plants like rice (Oryza sativa L.). The aims of this study were to quantitatively classify fine lateral roots (FLRs), thick lateral roots (TLRs), and nodal roots (NRs) and analyze their dynamics of mean diameter (MD), lengths and surface area percentage with growth stages in rice plant. Pot experiments were carried out during three years with three rice cultivars, three nitrogen (N) rates and three water regimes. In cultivar experiment, among the three cultivars, root length of ‘Yangdao 6’ was longest, while the MD of its FLR was the smallest, and the mean diameters for TLR and NR were the largest, the surface area percentage (SAP) of TLRs (SAPT) was the highest, indicating that Yangdao 6 has better nitrogen and water uptake ability. High N rate increased the length of different types of roots and increased the MD of lateral roots, decreased the SAP of FLRs (SAPF) and TLRs, but increased the SAP of NRs (SAPN). Moderate decrease of water supply increased root length and diameter, water stress increased the SAPF and SAPT, but decreased SAPN. The quantitative results indicate that rice plant tends to increase lateral roots to get more surface area for nitrogen and water uptake when available assimilates are limiting under nitrogen and water stress environments. PMID:28103264

  15. Metabolomics analysis of TiO2 nanoparticles induced toxicological effects on rice (Oryza sativa L.).

    Science.gov (United States)

    Wu, Biying; Zhu, Lizhong; Le, X Chris

    2017-11-01

    The wide occurrence and high environmental concentration of titanium dioxide nanoparticles (nano-TiO 2 ) have raised concerns about their potential toxic effects on crops. In this study, we employed a GC-MS-based metabolomic approach to investigate the potential toxicity of nano-TiO 2 on hydroponically-cultured rice (Oryza sativa L.) after exposed to 0, 100, 250 or 500 mg/L of nano-TiO 2 for fourteen days. Results showed that the biomass of rice was significantly decreased and the antioxidant defense system was significantly disturbed after exposure to nano-TiO 2 . One hundred and five identified metabolites showed significant difference compared to the control, among which the concentrations of glucose-6-phosphate, glucose-1-phosphate, succinic and isocitric acid were increased most, while the concentrations of sucrose, isomaltulose, and glyoxylic acid were decreased most. Basic energy-generating ways including tricarboxylic acid cycle and the pentose phosphate pathway, were elevated significantly while the carbohydrate synthesis metabolism including starch and sucrose metabolism, and glyoxylate and dicarboxylate metabolism were inhibited. However, the biosynthetic formation of most of the identified fatty acids, amino acids and secondary metabolites which correlated to crop quality, were increased. The results suggest that the metabolism of rice plants is distinctly disturbed after exposure to nano-TiO 2 , and nano-TiO 2 would have a mixed effect on the yield and quality of rice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The buffering capacity of stems: genetic architecture of nonstructural carbohydrates in cultivated Asian rice, Oryza sativa.

    Science.gov (United States)

    Wang, Diane R; Han, Rongkui; Wolfrum, Edward J; McCouch, Susan R

    2017-07-01

    Harnessing stem carbohydrate dynamics in grasses offers an opportunity to help meet future demands for plant-based food, fiber and fuel production, but requires a greater understanding of the genetic controls that govern the synthesis, interconversion and transport of such energy reserves. We map out a blueprint of the genetic architecture of rice (Oryza sativa) stem nonstructural carbohydrates (NSC) at two critical developmental time-points using a subpopulation-specific genome-wide association approach on two diverse germplasm panels followed by quantitative trait loci (QTL) mapping in a biparental population. Overall, 26 QTL are identified; three are detected in multiple panels and are associated with starch-at-maturity, sucrose-at-maturity and NSC-at-heading. They tag OsHXK6 (rice hexokinase), ISA2 (rice isoamylase) and a tandem array of sugar transporters. This study provides the foundation for more in-depth molecular investigation to validate candidate genes underlying rice stem NSC and informs future comparative studies in other agronomically vital grass species. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  17. Identification of heterotic loci associated with yield-related traits in Chinese common wild rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Luo, Xiaojin; Wu, Shuang; Tian, Feng; Xin, Xiaoyun; Zha, Xiaojun; Dong, Xianxin; Fu, Yongcai; Wang, Xiangkun; Yang, Jinshui; Sun, Chuanqing

    2011-07-01

    Many rice breeding programs have currently reached yield plateaus as a result of limited genetic variability in parental strains. Dongxiang common wild rice (Oryza rufipogon Griff.) is the progenitor of cultivated rice (Oryza sativa L.) and serves as an important gene pool for the genetic improvement of rice cultivars. In this study, heterotic loci (HLs) associated with six yield-related traits were identified in wild and cultivated rice and investigated using a set of 265 introgression lines (ILs) of O. rufipogon Griff. in the background of the Indica high-yielding cultivar Guichao 2 (O. sativa L.). Forty-two HLs were detected by a single point analysis of mid-parent heterosis values from test cross F(1) offspring, and 30 (71.5%) of these HLs showed significantly positive effects, consistent with the superiority shown by the F(1) test cross population in the six yield-related traits under study. Genetic mapping of hsp11, a locus responsible for the number of spikelets per panicle, confirmed the utility of these HLs. The results indicate that favorable HLs capable of improving agronomic traits are available. The identification of HLs between wild rice and cultivated rice could lead to a new strategy for the application of heterosis in rice breeding. Copyright © 2011. Published by Elsevier Ireland Ltd.

  18. A mutable slender glume gene in rice (Oryza sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Okumoto, Yutaka; Teraishi, Masayosi; Tanisaka, Takatoshi [Kyoto Univ. (Japan). Graduate School of Agriculture; Yamagata, Hirotada; Horibata, Akira [Kinki Univ., Uchida, Osaka (Japan)

    1999-07-01

    Identification of genetic factors involved in the mutability of slender glume was made for further understanding of active transposable elements or epigenetic transformation in the rice genome. The results indicated that slender glume mutation is induced with a single recessive mutable gene, slg. The rate of reverse mutation was little affected by crossing, backcrossing, genetic background or cytoplasmic factors. To examine the inheritance of mutability in slg, the reverse mutation rate was evaluated using the progenies of F{sub 2}, F{sub 3}, BC{sub 1}F{sub 2} and BC{sub 1}F{sub 3} SGPs. It was suggested that background and cytoplasmic factors did not have noticeable effects on the reverse mutation frequency (RMF) thus on the mutability of slg. In most cases, the lines derived from slender glume panicles included slender glume plants (SGPs) in a ratio of more than 90%, while those derived from normal glume panicles did in a ratio of 10-20%. Thus, the genotype was concluded as slg/slg for the slender panicles and slg/+ for the normal ones, suggesting that the outer layer of the normal glumes in chimeric plants (CPs) has a genotype slg/+, whereas the inner one including embryo has a genotype of slg/slg. The appearance of such chimera plant is a clear indication of the occurrence of reverse mutation during mitosis as well as meiosis. RFLP linkage analysis showed that slg locus was located between XNpb33 and R1440 with the recombination values of 3.1 and 1.0 cM, respectively. The slg locus was identified to localize on the overlapping region of two YAC clones, Y1774 and Y3356 and the length of this region was assumed to be less than 280 kb. (M.N.)

  19. Geographic authentication of Asian rice (Oryza sativa L.) using multi-elemental and stable isotopic data combined with multivariate analysis.

    Science.gov (United States)

    Chung, Ill-Min; Kim, Jae-Kwang; Lee, Kyoung-Jin; Park, Sung-Kyu; Lee, Ji-Hee; Son, Na-Young; Jin, Yong-Ik; Kim, Seung-Hyun

    2018-02-01

    Rice (Oryza sativa L.) is the world's third largest food crop after wheat and corn. Geographic authentication of rice has recently emerged asan important issue for enhancing human health via food safety and quality assurance. Here, we aimed to discriminate rice of six Asian countries through geographic authentication using combinations of elemental/isotopic composition analysis and chemometric techniques. Principal components analysis could distinguish samples cultivated from most countries, except for those cultivated in the Philippines and Japan. Furthermore, orthogonal projection to latent structure-discriminant analysis provided clear discrimination between rice cultivated in Korea and other countries. The major common variables responsible for differentiation in these models were δ 34 S, Mn, and Mg. Our findings contribute to understanding the variations of elemental and isotopic compositions in rice depending on geographic origins, and offer valuable insight into the control of fraudulent labeling regarding the geographic origins of rice traded among Asian countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Rubisco activity is associated with photosynthetic thermotolerance in a wild rice (Oryza meridionalis).

    Science.gov (United States)

    Scafaro, Andrew P; Yamori, Wataru; Carmo-Silva, A Elizabete; Salvucci, Michael E; von Caemmerer, Susanne; Atwell, Brian J

    2012-09-01

    Oryza meridionalis is a wild species of rice, endemic to tropical Australia. It shares a significant genome homology with the common domesticated rice Oryza sativa. Exploiting the fact that the two species are highly related but O. meridionalis has superior heat tolerance, experiments were undertaken to identify the impact of temperature on key events in photosynthesis. At an ambient CO(2) partial pressure of 38 Pa and irradiance of 1500 µmol quanta m(-2) s(-1), the temperature optimum of photosynthesis was 33.7 ± 0.8°C for O. meridionalis, significantly higher than the 30.6 ± 0.7°C temperature optimum of O. sativa. To understand the basis for this difference, we measured gas exchange and rubisco activation state between 20 and 42°C and modeled the response to determine the rate-limiting steps of photosynthesis. The temperature response of light respiration (R(light)) and the CO(2) compensation point in the absence of respiration (Γ(*)) were determined and found to be similar for the two species. C3 photosynthesis modeling showed that despite the difference in susceptibility to high temperature, both species had a similar temperature-dependent limitation to photosynthesis. Both rice species were limited by ribulose-1,5-bisphosphate (RuBP) regeneration at temperatures of 25 and 30°C but became RuBP carboxylation limited at 35 and 40°C. The activation state of rubisco in O. meridionalis was more stable at higher temperatures, explaining its greater heat tolerance compared with O. sativa. Copyright © Physiologia Plantarum 2012.

  1. Comparative analysis of the genomes of two field isolates of the rice blast fungus Magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Minfeng Xue

    Full Text Available Rice blast caused by Magnaporthe oryzae is one of the most destructive diseases of rice worldwide. The fungal pathogen is notorious for its ability to overcome host resistance. To better understand its genetic variation in nature, we sequenced the genomes of two field isolates, Y34 and P131. In comparison with the previously sequenced laboratory strain 70-15, both field isolates had a similar genome size but slightly more genes. Sequences from the field isolates were used to improve genome assembly and gene prediction of 70-15. Although the overall genome structure is similar, a number of gene families that are likely involved in plant-fungal interactions are expanded in the field isolates. Genome-wide analysis on asynonymous to synonymous nucleotide substitution rates revealed that many infection-related genes underwent diversifying selection. The field isolates also have hundreds of isolate-specific genes and a number of isolate-specific gene duplication events. Functional characterization of randomly selected isolate-specific genes revealed that they play diverse roles, some of which affect virulence. Furthermore, each genome contains thousands of loci of transposon-like elements, but less than 30% of them are conserved among different isolates, suggesting active transposition events in M. oryzae. A total of approximately 200 genes were disrupted in these three strains by transposable elements. Interestingly, transposon-like elements tend to be associated with isolate-specific or duplicated sequences. Overall, our results indicate that gain or loss of unique genes, DNA duplication, gene family expansion, and frequent translocation of transposon-like elements are important factors in genome variation of the rice blast fungus.

  2. Transcriptome analysis highlights defense and signaling pathways mediated by rice pi21 gene with partial resistance to Magnaporthe oryzae

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2016-12-01

    Full Text Available Rice blast disease is one of the most destructive rice diseases worldwide. The pi21 gene confers partial and durable resistance to Magnaporthe oryzae. However, little is known regarding the molecular mechanisms of resistance mediated by the loss-of-function of Pi21. In this study, comparative transcriptome profiling of the Pi21-RNAi transgenic rice line and Nipponbare with M. oryzae infection at different time points (0, 12, 24, 48, and 72 hpi were investigated using RNA sequencing. The results generated 43,222 unique genes mapped to the rice genome. In total, 1,109 differentially expressed genes (DEGs were identified between the Pi21-RNAi line and Nipponbare with M. oryzae infection, with 103, 281, 209, 69, and 678 DEGs at 0, 12, 24, 48, and 72 hpi, respectively. Functional analysis showed that most of the DEGs were involved in metabolism, transport, signaling, and defense. Among the genes assigned to plant–pathogen interaction, we identified 43 receptor kinase genes associated with pathogen-associated molecular pattern recognition and calcium ion influx. The expression levels of brassinolide-insensitive 1, flagellin sensitive 2 and elongation factor Tu receptor, ethylene (ET biosynthesis and signaling genes, were higher in the Pi21-RNAi line than Nipponbare. This suggested that there was a more robust PTI response in Pi21-RNAi plants and that ET signaling was important to rice blast resistance. We also identified 53 transcription factor genes, including WRKY, NAC, DOF, and ERF families that show differential expression between the two genotypes. This study highlights possible candidate genes that may serve a function in the partial rice blast resistance mediated by the loss-of-function of Pi21 and increase our understanding of the molecular mechanisms involved in partial resistance against M. oryzae.

  3. Phylogeography of Asian wild rice, Oryza rufipogon: a genome-wide view.

    Science.gov (United States)

    Huang, Pu; Molina, Jeanmaire; Flowers, Jonathan M; Rubinstein, Samara; Jackson, Scott A; Purugganan, Michael D; Schaal, Barbara A

    2012-09-01

    Asian wild rice (Oryza rufipogon) that ranges widely across the eastern and southern part of Asia is recognized as the direct ancestor of cultivated Asian rice (O. sativa). Studies of the geographic structure of O. rufipogon, based on chloroplast and low-copy nuclear markers, reveal a possible phylogeographic signal of subdivision in O. rufipogon. However, this signal of geographic differentiation is not consistently observed among different markers and studies, with often conflicting results. To more precisely characterize the phylogeography of O. rufipogon populations, a genome-wide survey of unlinked markers, intensively sampled from across the entire range of O. rufipogon is critical. In this study, we surveyed sequence variation at 42 genome-wide sequence tagged sites (STS) in 108 O. rufipogon accessions from throughout the native range of the species. Using Bayesian clustering, principal component analysis and amova, we conclude that there are two genetically distinct O. rufipogon groups, Ruf-I and Ruf-II. The two groups exhibit a clinal variation pattern generally from north-east to south-west. Different from many earlier studies, Ruf-I, which is found mainly in China and the Indochinese Peninsula, shows genetic similarity with one major cultivated rice variety, O. satvia indica, whereas Ruf-II, mainly from South Asia and the Indochinese Peninsula, is not found to be closely related to cultivated rice varieties. The other major cultivated rice variety, O. sativa japonica, is not found to be similar to either O. rufipogon groups. Our results support the hypothesis of a single origin of the domesticated O. sativa in China. The possible role of palaeoclimate, introgression and migration-drift balance in creating this clinal variation pattern is also discussed. © 2012 Blackwell Publishing Ltd.

  4. Arsenate exposure affects amino acids, mineral nutrient status and antioxidants in rice (Oryza sativa L.) genotypes.

    Science.gov (United States)

    Dwivedi, S; Tripathi, R D; Tripathi, P; Kumar, A; Dave, R; Mishra, S; Singh, R; Sharma, D; Rai, U N; Chakrabarty, D; Trivedi, P K; Adhikari, B; Bag, M K; Dhankher, O P; Tuli, R

    2010-12-15

    Simulated pot experiments were conducted on four rice (Oryza sativa L.) genotypes (Triguna, IR-36, PNR-519, and IET-4786) to examine the effects of As(V) on amino acids and mineral nutrient status in grain along with antioxidant response to arsenic exposure. Rice genotypes responded differentially to As(V) exposure in terms of amino acids and antioxidant profiles. Total amino acid content in grains of all rice genotypes was positively correlated with arsenic accumulation. While, most of the essential amino acids increased in all cultivars except IR-36, glutamic acid and glycine increased in IET-4786 and PNR-519. The level of nonprotein thiols (NPTs) and the activities of superoxide dismutase (SOD; EC 1.15.1.1), glutathione reductase (GR; EC 1.6.4.2) and ascorbate peroxidase (APX; EC 1.11.1.11) increased in all rice cultivars except IET-4786. A significant genotypic variation was also observed in specific arsenic uptake (SAU; mg kg(-1)dw), which was in the order of Triguna (134) > IR-36 (71) > PNR-519 (53) > IET-4786 (29). Further, application of As(V) at lower doses (4 and 8 mg L(-1) As) enhanced the accumulation of selenium (Se) and other nutrients (Fe, P, Zn, and S), however, higher dose (12 mg L(-1) As) limits the nutrient uptake in rice. In conclusion, low As accumulating genotype, IET-4786, which also had significantly induced level of essential amino acids, seems suitable for cultivation in moderately As contaminated soil and would be safe for human consumption.

  5. The response of rice (Oryza sativa L. to elevated night temperature with application of Pyraclostobin

    Directory of Open Access Journals (Sweden)

    T.Y. Wahjanto

    2016-07-01

    Full Text Available Rice productivity is having a problem related with climate change phenomenon, mainly the global warming. The rising of temperature in some country threat the rice production. The increasing of temperature is a major limiting factor that affects yield through the growth and development of rice plant. This study was aimed to examine the response of rice (Oryza sativa L. to elevated night temperature with the application of Pyraclostobin. A glasshouse experiment that was conducted from March to August 2015 at Brawijaya University Research Station of Jatikerto – Malang, used nested plot design with three replications and two treatments. The first treatments were the night temperature level (normal temperature, increased 2oC, and increased 4oC. The second treatments were the concentration of Pyraclostrobin (0 ppm, 400 ppm and 800 ppm. Results of the study showed that the increase of temperature at night for about 2oC and 4oC, as well as application of Pyraclostrobin, affected growth and yield of rice. Application of Pyraclostrobin by concentrations of 400 ppm and 800 ppm effectively reduced yield loss by increasing night temperature of 2oC, which resulted in 20.20% and 24.93%, respectively, in comparison with the control; while the increase of night temperature by 4oC have resulted 26.86% and 33.33% in comparison with the control. Pyraclostrobin was effective in maintaining percentage of the filled spikelets by the increase of temperature at night for about 2oC and 4oC.

  6. Host-Induced Gene Silencing of Rice Blast Fungus Magnaporthe oryzae Pathogenicity Genes Mediated by the Brome Mosaic Virus.

    Science.gov (United States)

    Zhu, Lin; Zhu, Jian; Liu, Zhixue; Wang, Zhengyi; Zhou, Cheng; Wang, Hong

    2017-09-26

    Magnaporthe oryzae is a devastating plant pathogen, which has a detrimental impact on rice production worldwide. Despite its agronomical importance, some newly-emerging pathotypes often overcome race-specific disease resistance rapidly. It is thus desirable to develop a novel strategy for the long-lasting resistance of rice plants to ever-changing fungal pathogens. Brome mosaic virus (BMV)-induced RNA interference (RNAi) has emerged as a useful tool to study host-resistance genes for rice blast protection. Planta-generated silencing of targeted genes inside biotrophic pathogens can be achieved by expression of M. oryzae -derived gene fragments in the BMV-mediated gene silencing system, a technique termed host-induced gene silencing (HIGS). In this study, the effectiveness of BMV-mediated HIGS in M. oryzae was examined by targeting three predicted pathogenicity genes, MoABC1, MoMAC1 and MoPMK1 . Systemic generation of fungal gene-specific small interfering RNA (siRNA) molecules induced by inoculation of BMV viral vectors inhibited disease development and reduced the transcription of targeted fungal genes after subsequent M. oryzae inoculation. Combined introduction of fungal gene sequences in sense and antisense orientation mediated by the BMV silencing vectors significantly enhanced the efficiency of this host-generated trans-specific RNAi, implying that these fungal genes played crucial roles in pathogenicity. Collectively, our results indicated that BMV-HIGS system was a great strategy for protecting host plants against the invasion of pathogenic fungi.

  7. An improved Agrobacterium-mediated transformation of recalcitrant indica rice (Oryza sativa L.) cultivars.

    Science.gov (United States)

    Shri, Manju; Rai, Arti; Verma, Pankaj Kumar; Misra, Prashant; Dubey, Sonali; Kumar, Smita; Verma, Sikha; Gautam, Neelam; Tripathi, Rudra Deo; Trivedi, Prabodh Kumar; Chakrabarty, Debasis

    2013-04-01

    Agrobacterium-mediated transformation of indica rice varieties has been quite difficult as these are recalcitrant to in vitro responses. In the present study, we established a high-efficiency Agrobacterium tumefaciens-mediated transformation system of rice (Oryza sativa L. ssp. indica) cv. IR-64, Lalat, and IET-4786. Agrobacterium strain EHA-101 harboring binary vector pIG121-Hm, containing a gene encoding for β-glucuronidase (GUS) and hygromycin resistance, was used in the transformation experiments. Manipulation of different concentrations of acetosyringone, days of co-culture period, bacterial suspension of different optical densities (ODs), and the concentrations of L-cysteine in liquid followed by solid co-culture medium was done for establishing the protocol. Among the different co-culture periods, 5 days of co-culture with bacterial cells (OD600 nm = 0.5-0.8) promoted the highest frequency of transformation (83.04 %) in medium containing L-cysteine (400 mg l(-1)). Putative transformed plants were analyzed for the presence of a transgene through genomic PCR and GUS histochemical analyses. Our results also suggest that different cultural conditions and the addition of L-cysteine in the co-culture medium improve the Agrobacterium-mediated transformation frequencies from an average of 12.82 % to 33.33 % in different indica rice cultivars.

  8. Root Associated Bacillus sp. Improves Growth, Yield and Zinc Translocation for Basmati Rice (Oryza sativa) Varieties

    Science.gov (United States)

    Shakeel, Muhammad; Rais, Afroz; Hassan, Muhammad Nadeem; Hafeez, Fauzia Yusuf

    2015-01-01

    Plant associated rhizobacteria prevailing in different agro-ecosystems exhibit multiple traits which could be utilized in various aspect of sustainable agriculture. Two hundred thirty four isolates were obtained from the roots of basmati-385 and basmati super rice varieties growing in clay loam and saline soil at different locations of Punjab (Pakistan). Out of 234 isolates, 27 were able to solubilize zinc (Zn) from different Zn ores like zinc phosphate [Zn3 (PO4)2], zinc carbonate (ZnCO3) and zinc oxide (ZnO). The strain SH-10 with maximum Zn solubilization zone of 24 mm on Zn3 (PO4)2ore and strain SH-17 with maximum Zn solubilization zone of 14–15 mm on ZnO and ZnCO3ores were selected for further studies. These two strains solubilized phosphorous (P) and potassium (K) in vitro with a solubilization zone of 38–46 mm and 47–55 mm respectively. The strains also suppressed economically important rice pathogens Pyricularia oryzae and Fusarium moniliforme by 22–29% and produced various biocontrol determinants in vitro. The strains enhanced Zn translocation toward grains and increased yield of basmati-385 and super basmati rice varieties by 22–49% and 18–47% respectively. The Zn solubilizing strains were identified as Bacillus sp. and Bacillus cereus by 16S rRNA gene analysis. PMID:26635754

  9. Identification of heat-sensitive QTL derived from common wild rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Lei, Dongyang; Tan, Lubin; Liu, Fengxia; Chen, Liyun; Sun, Chuanqing

    2013-03-01

    Understanding the responses of rice plants to heat-stress is a challenging, yet crucial, endeavor. A set of introgression lines was previously developed using an advanced backcrossing strategy that involved the elite indica cultivar Teqing as the recipient and an accession of common wild rice (Oryza rufipongon Griff.) as the donor. In this study, we evaluated the responses of 90 of these previously developed introgression lines to heat stress. Five quantitative trait loci (QTLs) related to heat response were detected. The phenotypic variances explained by these QTLs ranged from 6.83% to 14.63%, and O. rufipogon-derived alleles at one locus reduced sensitivity to heat. A heat-sensitive introgression line, YIL106, was identified and characterized. Genotypic analysis demonstrated that YIL106 contained four introgressed segments derived from O. rufipongon and two QTLs (qHTS1-1 and qHTS3) related to heat response. Physiological tests, including measurements of chlorophyll content, electrolyte leakage, malondialdehyde content, and soluble sugar content, were consistent with the heat sensitivity observed in YIL106. Ultrastructural analysis of YIL106 mesophyll cells showed that they were severely damaged following heat stress. This suggests that modification of the cell membrane system is a primary response to heat stress in plants. Identification and characterization of the heat-sensitive line YIL106 may facilitate the isolation of genes associated with the response of rice plants to heat stress. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Development of Novel Cytoplasmic Male Sterile Source from Dongxiang Wild Rice (Oryza rufipogon

    Directory of Open Access Journals (Sweden)

    Xian-hua SHEN

    2013-09-01

    Full Text Available This study was conducted to develop and characterize a novel cytoplasmic male sterile (CMS source which was identified from Dongxiang wild rice (Oryza rufipogon by crossing Dongxiang wild rice as female with Zhongzao 35, an indica inbred variety, as male and continuous backcrossing with Zhongzao 35. Observation under optical microscope manifested that this novel CMS belonged to typical abortion type with less pollen compared with wild abortive type cytoplasm (CMS-WA. Sequential planting showed that this novel CMS has complete and stable male sterility. Testcross experiment showed that all the 24 tested materials including maintainer and restorer lines of CMS-WA and Honglian type cytoplasm (CMS-HL and other indica inbred varieties are the maintainers with complete maintaining ability, suggesting that this novel CMS has fertility restoration totally different from CMS-WA and CMS-HL and belongs to a novel type of CMS. So far, we only discovered a unique fertility restoration source for this novel CMS. Inheritance analysis showed that the fertility restoration of this CMS was governed by three pairs of independent dominant genes. Prospect for application of this novel CMS system in hybrid rice breeding was also discussed.

  11. Genetic analysis and gene fine mapping of aroma in rice (Oryza sativa L. Cyperales, Poaceae

    Directory of Open Access Journals (Sweden)

    Shu Xia Sun

    2008-01-01

    Full Text Available We investigated inheritance and carried out gene fine mapping of aroma in crosses between the aromatic elite hybrid rice Oryza sativa indica variety Chuanxiang-29B (Ch-29B and the non-aromatic rice O. sativa indica variety R2 and O. sativa japonica Lemont (Le. The F1 grains and leaves were non-aromatic while the F2 non-aroma to aroma segregation pattern was 3:1. The F3 segregation ratio was consistent with the expected 1:2:1 for a single recessive aroma gene in Ch-29B. Linkage analysis between simple sequence repeat (SSR markers and the aroma locus for the aromatic F2 plants mapped the Ch-29B aroma gene to a chromosome 8 region flanked by SSR markers RM23120 at 0.52 cM and RM3459 at 1.23 cM, a replicate F2 population confirming these results. Three bacterial artificial chromosome (BAC clones cover chromosome 8 markers RM23120 and RM3459. Our molecular mapping data from the two populations indicated that the aroma locus occurs in a 142.85 kb interval on BAC clones AP005301 or AP005537, implying that it might be the same gene reported by Bradbury et al (2005a; Plant Biotec J. 3:363-370. The flanking markers Aro7, RM23120 and RM3459 identified by us could greatly accelerate the efficiency and precision of aromatic rice breeding programs.

  12. The humic acids from vermicompost protect rice (Oryza sativa L.) plants against a posterior hidric stress

    International Nuclear Information System (INIS)

    Guridi-Izquierdo, Fernando; Martínez-Balmori, Dariellys; Rosquete-Bassó, Mayelín; Calderín-García, Andrés; Louro-Berbara, Ricardo L.

    2017-01-01

    The humic acids (HA) from two different vermicompost were extracted, isolated, purified and partially characterized, to evaluate their possible protection in rice (Oryza sativa L.) plants against an hydric stress. Differences in elemental composition, as the coagulation threshold value and E4/E6 relation in their UV-Vis spectra were found. Two concentrations (40 and 60 mg L-1) of both HA were included in the nutritive solutions for rice plants in controlled conditions. It was verified that the previous treatment with the HA during six days stimulated the root biomass production. Later the HA were excluded and was an hydric deficit induced by adding polietilenglicol (PEG-6000) in the initially treated plants and in a group of those used as control. After 96 hours of this final condition the net radical biomass, the photosynthetic pigments content and the root membrane permeability were evaluated. In the plants previously treated with HA (at the concentration 60 mg HA L-1), the root membrane permeability, the net radical biomass production and the “a” chlorophyll content had no differences when compared with those without stress. It was concluded that the previous treatment with the HA protected the rice plants against a posterior hydric stress that was induced. (author)

  13. Tungsten (W) bioavailability in paddy rice soils and its accumulation in rice (Oryza sativa).

    Science.gov (United States)

    James, Blessing; Zhang, Weili; Sun, Pei; Wu, Mingyan; Li, Hong Hong; Khaliq, Muhammad Athar; Jayasuriya, Pathmamali; James, Swithin; Wang, Guo

    2017-12-01

    The aim of this study was to investigate the accumulation characteristics of tungsten (W) by different indica rice cultivars from the soil and to assess the potential risks to human health via dietary intake of W in rice consumption. A total of 153 rice (ear) samples of 15 cultivars and the corresponding surface soil samples were collected from 7 cities in Fujian Province of southeastern China. The available soil W were extracted using H 2 C 2 O 4 ·2H 2 O-(NH 4 ) 2 C 2 O 4 ·H 2 O at pH 3.3). Results showed that the total soil W ranged from 2.03 mg kg -1 to 15.34 mg kg -1  and available soil W ranged from 0.03 mg kg -1 to 1.61 mg kg -1 . The W concentration in brown rice varied from 7 μg kg -1 to 283 μg kg -1 and was significantly correlated with the available soil W. The highest mean TF avail (transfer factor based on available soil W) was 0.91 for Te-you 627 (hybrid, indica rice), whereas the lowest was 0.08 for Yi-you 673 (hybrid, indica rice). The TF avail decreased with the increase in available soil W, clay content, and cation exchange capacity. The consumption of the brown rice produced from the investigated areas in some cultivars by the present study may cause risks to human health.

  14. Coordination of Leaf Photosynthesis, Transpiration, and Structural Traits in Rice and Wild Relatives (Genus Oryza).

    Science.gov (United States)

    Giuliani, Rita; Koteyeva, Nuria; Voznesenskaya, Elena; Evans, Marc A; Cousins, Asaph B; Edwards, Gerald E

    2013-07-01

    The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO(2) access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thick(leaf)), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (S(mes)), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO(2) diffusion (g(m)), stomatal conductance to gas diffusion (g(s)), and the g(m)/g(s) ratio.While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (S(mes)) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thick(leaf) and transpiration rate and a significant positive association between Thick(leaf) and leaf transpiration efficiency. Interestingly, high g(m) together with high g(m)/g(s) and a low S(mes)/g(m) ratio (M resistance to CO(2) diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance.

  15. All roads lead to weediness: Patterns of genomic divergence reveal extensive recurrent weedy rice origins from South Asian Oryza.

    Science.gov (United States)

    Huang, Zhongyun; Young, Nelson D; Reagon, Michael; Hyma, Katie E; Olsen, Kenneth M; Jia, Yulin; Caicedo, Ana L

    2017-06-01

    Weedy rice (Oryza spp.), a weedy relative of cultivated rice (O. sativa), infests and persists in cultivated rice fields worldwide. Many weedy rice populations have evolved similar adaptive traits, considered part of the 'agricultural weed syndrome', making this an ideal model to study the genetic basis of parallel evolution. Understanding parallel evolution hinges on accurate knowledge of the genetic background and origins of existing weedy rice groups. Using population structure analyses of South Asian and US weedy rice, we show that weeds in South Asia have highly heterogeneous genetic backgrounds, with ancestry contributions both from cultivated varieties (aus and indica) and wild rice. Moreover, the two main groups of weedy rice in the USA, which are also related to aus and indica cultivars, constitute a separate origin from that of Asian weeds. Weedy rice populations in South Asia largely converge on presence of red pericarps and awns and on ease of shattering. Genomewide divergence scans between weed groups from the USA and South Asia, and their crop relatives are enriched for loci involved in metabolic processes. Some candidate genes related to iconic weedy traits and competitiveness are highly divergent between some weed-crop pairs, but are not shared among all weed-crop comparisons. Our results show that weedy rice is an extreme example of recurrent evolution, and suggest that most populations are evolving their weedy traits through different genetic mechanisms. © 2017 John Wiley & Sons Ltd.

  16. Effect of atmospheric plasma treatment on seed germination of rice (Oryza sativa L.)

    Science.gov (United States)

    Penado, Keith Nealson M.; Mahinay, Christian Lorenz S.; Culaba, Ivan B.

    2018-01-01

    Multiple methods of improving plant development have been utilized over the past decades. Despite these improvements, there still exists a need for better planting methods due to the increasing population of a global community. Studies have reported that plasma treatment affects the growth and germination of a variety of plant species, including a multitude of grains which often takes the bulk in the diet of the average human being. This study explores the effect of atmospheric air plasma jet treatment on the seed germination of rice (Oryza sativa L.). The seeds were treated using an atmospheric air plasma jet for 1, 2, and 3 s. The effect of plasma exposure shows a reduction of trichomes on the surface of the seed. This caused a possible increase in wettability which significantly affected the seed germ length but did not affect the seed germination count after the germination period of 72 h.

  17. Toxic action of zinc on growth and enzyme activities of rice Oryza sativa L. seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Nag, P.; Nag, P.; Paul, A.K.; Mukherji, S.

    1984-01-01

    This paper provides information on the effects of toxic concentrations of zinc sulfate (ZnSO/sub 4/.7H/sub 2/O) on the growth and metabolism of rice Oryza sativa L. seedlings. Root growth inhibition was always more pronounced than was shoot growth inhibition. Root growth was completely inhibited at 40 m M concentration, whereas the magnitude of reduction of shoot length was only 56% at this concentration. Gibberellic acid (GA/sub 3/) was partially capable of relieving zinc inhibition. The activities of peroxidase, IAA oxidase and ascorbic acid oxidase of seedlings increased in response to zinc addition, whereas catalase and IAA synthetase decreased. All the hydrolyzing enzymes, viz., ..cap alpha..-amylase and phytase of endosperm together with RNase and ATPase of the embryo, showed distinct inhibition from the control, the exception being endosperm RNase which was stimulated under zinc treatment. 50 references, 6 figures.

  18. Overexpression of Rice Auxilin-Like Protein, XB21, Induces Necrotic Lesions, up-Regulates Endocytosis-Related Genes, and Confers Enhanced Resistance to Xanthomonas oryzae pv. oryzae.

    Science.gov (United States)

    Park, Chang-Jin; Wei, Tong; Sharma, Rita; Ronald, Pamela C

    2017-12-01

    The rice immune receptor XA21 confers resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo). To elucidate the mechanism of XA21-mediated immunity, we previously performed a yeast two-hybrid screening for XA21 interactors and identified XA21 binding protein 21 (XB21). Here, we report that XB21 is an auxilin-like protein predicted to function in clathrin-mediated endocytosis. We demonstrate an XA21/XB21 in vivo interaction using co-immunoprecipitation in rice. Overexpression of XB21 in rice variety Kitaake and a Kitaake transgenic line expressing XA21 confers a necrotic lesion phenotype and enhances resistance to Xoo. RNA sequencing reveals that XB21 overexpression results in the differential expression of 8735 genes (4939 genes up- and 3846 genes down-regulated) (≥2-folds, FDR ≤0.01). The up-regulated genes include those predicted to be involved in 'cell death' and 'vesicle-mediated transport'. These results indicate that XB21 plays a role in the plant immune response and in regulation of cell death. The up-regulation of genes controlling 'vesicle-mediated transport' in XB21 overexpression lines is consistent with a functional role for XB21 as an auxilin.

  19. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation

    Directory of Open Access Journals (Sweden)

    Kouki eYoshida

    2013-10-01

    Full Text Available Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs can regulate secondary wall formation in rice (Oryza sativa and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S has very low transcriptional activation ability, but the longer protein (OsSWN2L and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications.

  20. Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae produces multiple DSF-family signals in regulation of virulence factor production

    Directory of Open Access Journals (Sweden)

    Cha Jae-Soon

    2010-07-01

    Full Text Available Abstract Background Xanthomonas oryzae pv. oryzae (Xoo is the causal agent of rice bacterial blight disease. Xoo produces a range of virulence factors, including EPS, extracellular enzyme, iron-chelating siderophores, and type III-secretion dependent effectors, which are collectively essential for virulence. Genetic and genomics evidence suggest that Xoo might use the diffusible signal factor (DSF type quorum sensing (QS system to regulate the virulence factor production. However, little is known about the chemical structure of the DSF-like signal(s produced by Xoo and the factors influencing the signal production. Results Xoo genome harbours an rpf cluster comprising rpfB, rpfF, rpfC and rpfG. The proteins encoded by these genes are highly homologous to their counterparts in X. campestris pv. campestris (Xcc, suggesting that Xcc and Xoo might use similar mechanisms for DSF biosynthesis and autoregulation. Consistent with in silico analysis, the rpfF mutant was DSF-deficient and the rpfC mutant produced about 25 times higher DSF-like activity than the wild type Xoo strain KACC10331. From the supernatants of rpfC mutant, we purified three compounds showing strong DSF-like activity. Mass spectrometry and NMR analysis revealed that two of them were the previously characterized DSF and BDSF; the third one was a novel unsaturated fatty acid with 2 double bonds and was designated as CDSF in this study. Further analysis showed that all the three DSF-family signals were synthesized via the enzyme RpfF encoded by Xoo2868. DSF and BDSF at a final concentration of 3 μM to the rpfF mutant could fully restore its extracellular xylanase activity and EPS production to the wild type level, but CDSF was less active than DSF and BDSF in induction of EPS and xylanase. DSF and CDSF shared a similar cell density-dependent production time course with the maximum production being detected at 42 h after inoculation, whereas the maximum production of BDSF was observed

  1. Using ORYZA2000 to model cold rice yield response to climate change in the Heilongjiang province, China

    Directory of Open Access Journals (Sweden)

    Jingting Zhang

    2015-08-01

    Full Text Available Rice (Oryza sativa L. is one of the most important staple crops in China. Increasing atmospheric greenhouse gas concentrations and associated climate change may greatly affect rice production. We assessed the potential impacts of climate change on cold rice production in the Heilongjiang province, one of China's most important rice production regions. Data for a baseline period (1961–1990 and the period 2010–2050 in A2 and B2 scenarios were used as input to drive the rice model ORYZA2000 with and without accounting for the effects of increasing atmospheric CO2 concentration. The results indicate that mean, maximum, and minimum temperature during the rice growing season, in the future period considered, would increase by 1.8 °C under the A2 scenario and by 2.2 °C under the B2 scenario compared with those in the baseline. The rate of change in average maximum and minimum temperatures would increase by 0.6 °C per 10-year period under the A2 scenario and by 0.4 °C per 10-year period under the B2 scenario. Precipitation would increase slightly in the rice growing season over the next 40 years. The rice growing season would be shortened and the yield would increase in most areas in the Heilongjiang province. Without accounting for CO2 effect, the rice growing season in the period 2010–2050 would be shortened by 4.7 and 5.8 days, and rice yields would increase by 11.9% and 7.9%, under the A2 and B2 scenarios, respectively. Areas with simulated rice yield increases greater than 30.0% were in the Xiaoxing'an Mountain region. The simulation indicated a decrease in yield of less than 15% in the southwestern Songnen Plain. The rate of change in simulated rice yield was 5.0% and 2.5% per 10 years under the A2 and B2 scenarios, respectively. When CO2 effect was accounted for, rice yield increased by 44.5% and 31.3% under the A2 and B2 scenarios, respectively. The areas of increasing yield were sharply expanded. The area of decreasing yield in the

  2. Evidence for a transketolase-mediated metabolic checkpoint governing biotrophic growth in rice cells by the blast fungus Magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Jessie Fernandez

    2014-09-01

    Full Text Available The blast fungus Magnaporthe oryzae threatens global food security through the widespread destruction of cultivated rice. Foliar infection requires a specialized cell called an appressorium that generates turgor to force a thin penetration hypha through the rice cuticle and into the underlying epidermal cells, where the fungus grows for the first days of infection as a symptomless biotroph. Understanding what controls biotrophic growth could open new avenues for developing sustainable blast intervention programs. Here, using molecular genetics and live-cell imaging, we dismantled M. oryzae glucose-metabolizing pathways to reveal that the transketolase enzyme, encoded by TKL1, plays an essential role in facilitating host colonization during rice blast disease. In the absence of transketolase, Δtkl1 mutant strains formed functional appressoria that penetrated rice cuticles successfully and developed invasive hyphae (IH in rice cells from primary hyphae. However, Δtkl1 could not undertake sustained biotrophic growth or cell-to-cell movement. Transcript data and observations using fluorescently labeled histone H1:RFP fusion proteins indicated Δtkl1 mutant strains were alive in host cells but were delayed in mitosis. Mitotic delay could be reversed and IH growth restored by the addition of exogenous ATP, a metabolite depleted in Δtkl1 mutant strains. We show that ATP might act via the TOR signaling pathway, and TOR is likely a downstream target of activation for TKL1. TKL1 is also involved in controlling the migration of appressorial nuclei into primary hyphae in host cells. When taken together, our results indicate transketolase has a novel role in mediating--via ATP and TOR signaling--an in planta-specific metabolic checkpoint that controls nuclear migration from appressoria into primary hyphae, prevents mitotic delay in early IH and promotes biotrophic growth. This work thus provides new information about the metabolic strategies employed by M

  3. Mitochondrial Genome Analysis of Wild Rice (Oryza minuta) and Its Comparison with Other Related Species.

    Science.gov (United States)

    Asaf, Sajjad; Khan, Abdul Latif; Khan, Abdur Rahim; Waqas, Muhammad; Kang, Sang-Mo; Khan, Muhammad Aaqil; Shahzad, Raheem; Seo, Chang-Woo; Shin, Jae-Ho; Lee, In-Jung

    2016-01-01

    Oryza minuta (Poaceae family) is a tetraploid wild relative of cultivated rice with a BBCC genome. O. minuta has the potential to resist against various pathogenic diseases such as bacterial blight (BB), white backed planthopper (WBPH) and brown plant hopper (BPH). Here, we sequenced and annotated the complete mitochondrial genome of O. minuta. The mtDNA genome is 515,022 bp, containing 60 protein coding genes, 31 tRNA genes and two rRNA genes. The mitochondrial genome organization and the gene content at the nucleotide level are highly similar (89%) to that of O. rufipogon. Comparison with other related species revealed that most of the genes with known function are conserved among the Poaceae members. Similarly, O. minuta mt genome shared 24 protein-coding genes, 15 tRNA genes and 1 ribosomal RNA gene with other rice species (indica and japonica). The evolutionary relationship and phylogenetic analysis revealed that O. minuta is more closely related to O. rufipogon than to any other related species. Such studies are essential to understand the evolutionary divergence among species and analyze common gene pools to combat risks in the current scenario of a changing environment.

  4. Molecular Scree ning of Blast Resistance Genes in Rice Germplasms Resistant to Magnaporthe oryzae

    Directory of Open Access Journals (Sweden)

    Liang Yan

    2017-01-01

    Full Text Available Molecular screening of major rice blast resistance genes was determined with molecular markers, which showed close-set linkage to 11 major rice blast resistance genes (Pi-d2, Pi-z, Piz-t, Pi-9, Pi-36, Pi-37, Pi5, Pi-b, Pik-p, Pik-h and Pi-ta2, in a collection of 32 accessions resistant to Magnaporthe oryzae. Out of the 32 accessions, the Pi-d2 and Pi-z appeared to be omnipresent and gave positive express. As the second dominant, Pi-b and Piz-t gene frequencies were 96.9% and 87.5%. And Pik-h and Pik-p gene frequencies were 43.8% and 28.1%, respectively. The molecular marker linkage to Pi-ta2 produced positive bands in eleven accessions, while the molecular marker linkage to Pi-36 and Pi-37 in only three and four accessions, respectively. The natural field evaluation analysis showed that 30 of the 32 accessions were resistant, one was moderately resistant and one was susceptible. Infection types were negatively correlated with the genotype scores of Pi-9, Pi5, Pi-b, Pi-ta2 and Pik-p, although the correlation coefficients were very little. These results are useful in identification and incorporation of functional resistance genes from these germplasms into elite cultivars through marker-assisted selection for improved blast resistance in China and worldwide.

  5. Mapping of Novel QTL Regulating Grain Shattering Using Doubled Haploid Population in Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Gyu-Ho Lee

    2016-01-01

    Full Text Available The critical evolutionary step during domestication of major cereals was elimination of seed shattering because the easy-to-shatter trait in wild relatives results in a severe reduction in yield. In this study, we analyzed the QTLs associated with shattering employing a high-density genetic map in doubled haploid (DH population of rice (Oryza sativa L.. A genetic linkage map was generated with 217 microsatellite markers spanning 2082.4 cM and covering 12 rice chromosomes with an average interval of 9.6 cM between markers based on 120 DHLs derived from a cross between Cheongcheong indica type cultivar and Nagdong japonica type cultivar. In the QTL analysis, five QTLs pertaining to the breaking tensile strength (BTS were detected in 2013 and 2015. Two regions of the QTLs related to BTS on chromosome 1 and chromosome 6 were detected. Several important genes are distributed in 1 Mbp region of the QTL on chromosome 6 and they are related to the formation of abscission layer. We decide to name this QTL qSh6 and the candidate genes in the qSh6 region can be employed usefully in further research for cloning.

  6. Studies on the physiological changes in the rice plants infected with Xanthomonas campestris pv. oryzae, (3)

    International Nuclear Information System (INIS)

    Watanabe, Minoru; Samejima, Shin-ichi; Hosokawa, Daijiro

    1980-01-01

    Accumulation of 14 C-photosynthetic assimilates in rice leaves infected with Xanthomonas campestris pv. oryzae was studied by using autoradiography for the purpose of elucidating the movement of nutrients from healthy tissues to the infected parts. When rice plants were exposed to 14 CO 2 immediately after inoculation, 14 C-photosynthetic assimilates did not accumulate in and around the inoculated spots of leaves until the lesions became visible, i.e., approximately 7 days after inoculation. When the leaves were exposed to 14 CO 2 before visible lesions appeared, 2 and 5 days after inoculation, the assimilates did not accumulate in the inoculated areas, but apparently accumulated in the lesions 24 hr later on from the exposure of leaves with visible lesions. In the newly formed lesions, accumulation site corresponded to the yellow streak parts of lesions along leaf veins. In the large and old lesions, assimilates hardly any accumulated in the center of lesions, grayish-white in color, but accumulated in the border parts of lesions adjacent to healthy tissues which are developing and yellow streak in symptoms. (author)

  7. The relationship between vacuolation and initiation of PCD in rice (Oryza sativa) aleurone cells

    Science.gov (United States)

    Zheng, Yan; Zhang, Heting; Deng, Xiaojiang; Liu, Jing; Chen, Huiping

    2017-01-01

    Vacuole fusion is a necessary process for the establishment of a large central vacuole, which is the central location of various hydrolytic enzymes and other factors involved in death at the beginning of plant programmed cell death (PCD). In our report, the fusion of vacuoles has been presented in two ways: i) small vacuoles coalesce to form larger vacuoles through membrane fusion, and ii) larger vacuoles combine with small vacuoles when small vacuoles embed into larger vacuoles. Regardless of how fusion occurs, a large central vacuole is formed in rice (Oryza sativa) aleurone cells. Along with the development of vacuolation, the rupture of the large central vacuole leads to the loss of the intact plasma membrane and the degradation of the nucleus, resulting in cell death. Stabilizing or disrupting the structure of actin filaments (AFs) inhibits or promotes the fusion of vacuoles, which delays or induces PCD. In addition, the inhibitors of the vacuolar processing enzyme (VPE) and cathepsin B (CathB) block the occurrence of the large central vacuole and delay the progression of PCD in rice aleurone layers. Overall, our findings provide further evidence for the rupture of the large central vacuole triggering the PCD in aleruone layers.

  8. Influence of lead on atrazine uptake by rice (Oryza sativa L.) seedlings from nutrient solution.

    Science.gov (United States)

    Su, Yu-Hong; Zhu, Yong-Guan

    2005-01-01

    Atrazine is a widely used herbicide, and its persistence in soil and water causes environmental concerns. In the past, plant uptake processes are mainly investigated for single contaminants. However, in many cases, contaminants co-exist in environmental matrix, such as soil, and plant uptake of one contaminant may be influenced by its co-existing ones. The uptake of atrazine by rice seedlings (Oryza sativa L.) from nutrient solution through the roots was investigated in a solution culture, over an exposure period of 4 weeks. Atrazine accumulation in plant tissues was determined by gas chromatography, and lead was determined using atomic absorption spectrometry. With different ratios of atrazine and Pb2+ concentrations in solution, the observed atrazine concentrations in shoots and roots varied significantly. In atrazine-Pb2+ mixture systems, the added Pb2+ either increased or decreased the concentrations or BCFs of atrazine in seedlings (relative to those without Pb2+), depending on the atrazine-Pb2+ ratio in nutrient solution. The enhanced atrazine uptake results presumably from atrazine-Pb2+ complex formation. The reduced atrazine uptake, which occurred mainly at high atrazine concentrations, is attributed to atrazine toxicity that inhibited seedling growth and transpiration. The formation of atrazine-Pb2+ complex both in the solution and within plant tissues may affect the accumulation of both contaminants by rice plants.

  9. Characterisation of some Accessions of Indigenous Rice (Oryza glaberrima Steud) in Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Doku, H. A

    2011-07-15

    African rice (Oryza glaberrima Steud), a relative of the commonly consumed Asian (white) rice (Oryza sativa L.) is resistant to a number of biotic and abiotic stress factors and contains higher amounts of some essential mineral elements required for human health and growth, compared to the latter. Seventeen local accessions collected from four geographical regions in Ghana were characterised alongside NERICA 1, a high yielding, protein-rich hybrid line purposely bred for Africa, using 32 IBPGR-IRRI agro-botanical traits. Molecular characterisation was done using 24 standard simple sequence repeat markers. The accessions were also evaluated for seven essential mineral elements: calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), Manganese (Mn), potassium (K) and zinc (Zn) in the caryopsis, using Atomic Absorption Spectrophotometry (AAS) supported by Neutron Activation Analysis (NAA). The aim was to assess genetic diversity of the accessions and identify superior ones for incorporation in future breeding programmes. Cluster analysis (UPGMA), principal component analysis (Axes), correlation and population genetic analysis were used to group the accessions. The single link cluster technique classified the qualitative and quantitative traits of 18 accessions into six and four clusters respectively while the use of molecular traits grouped them into four clusters. Principal component analysis (PCA) re-ordered the accessions into four broad groups which had within-cluster and inter-cluster variations. Two pairs of duplicate accessions were revealed from the dendogram generated using morphological characters. SSRs were highly polymorphic, more discriminatory and informative at 77.3% and 80.0% similarity distance respectively, they were able to discriminate between these pairs of accessions earlier identified as duplicates using botanical descriptors. The overall genetic diversity of the accessions was relatively high (He = 0.625; Nei's He = 0.608 and I = 1.178) with

  10. Characterisation of some Accessions of Indigenous Rice (Oryza glaberrima Steud) in Ghana

    International Nuclear Information System (INIS)

    Doku, H. A

    2011-07-01

    African rice (Oryza glaberrima Steud), a relative of the commonly consumed Asian (white) rice (Oryza sativa L.) is resistant to a number of biotic and abiotic stress factors and contains higher amounts of some essential mineral elements required for human health and growth, compared to the latter. Seventeen local accessions collected from four geographical regions in Ghana were characterised alongside NERICA 1, a high yielding, protein-rich hybrid line purposely bred for Africa, using 32 IBPGR-IRRI agro-botanical traits. Molecular characterisation was done using 24 standard simple sequence repeat markers. The accessions were also evaluated for seven essential mineral elements: calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), Manganese (Mn), potassium (K) and zinc (Zn) in the caryopsis, using Atomic Absorption Spectrophotometry (AAS) supported by Neutron Activation Analysis (NAA). The aim was to assess genetic diversity of the accessions and identify superior ones for incorporation in future breeding programmes. Cluster analysis (UPGMA), principal component analysis (Axes), correlation and population genetic analysis were used to group the accessions. The single link cluster technique classified the qualitative and quantitative traits of 18 accessions into six and four clusters respectively while the use of molecular traits grouped them into four clusters. Principal component analysis (PCA) re-ordered the accessions into four broad groups which had within-cluster and inter-cluster variations. Two pairs of duplicate accessions were revealed from the dendogram generated using morphological characters. SSRs were highly polymorphic, more discriminatory and informative at 77.3% and 80.0% similarity distance respectively, they were able to discriminate between these pairs of accessions earlier identified as duplicates using botanical descriptors. The overall genetic diversity of the accessions was relatively high (He = 0.625; Nei's He = 0.608 and I = 1.178) with

  11. Extraction of anthocyanins and polyphenols from black rice (Oryza sativa L.) by modeling and assessing their reversibility and stability.

    Science.gov (United States)

    Pedro, Alessandra Cristina; Granato, Daniel; Rosso, Neiva Deliberali

    2016-01-15

    This study was aimed the extraction of total flavonoids, anthocyanins and phenolics, as well as the antioxidant activity of black rice (Oryza sativa) and to study the stability in relation to pH, light and copigmentation. Variations in temperature (10-50°C), time (20-80min), and solid-solvent ratio (1:15-1:45) were studied using a Box-Behnken design. The regression models were significant (Pblack rice was cyanidin-3-glucoside. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Two Rab5 Homologs Are Essential for the Development and Pathogenicity of the Rice Blast Fungus Magnaporthe oryzae

    Directory of Open Access Journals (Sweden)

    Cheng D. Yang

    2017-05-01

    Full Text Available The rice blast fungus, Magnaporthe oryzae, infects many economically important cereal crops, particularly rice. It has emerged as an important model organism for studying the growth, development, and pathogenesis of filamentous fungi. RabGTPases are important molecular switches in regulation of intracellular membrane trafficking in all eukaryotes. MoRab5A and MoRab5B are Rab5 homologs in M. oryzae, but their functions in the fungal development and pathogenicity are unknown. In this study, we have employed a genetic approach and demonstrated that both MoRab5A and MoRab5B are crucial for vegetative growth and development, conidiogenesis, melanin synthesis, vacuole fusion, endocytosis, sexual reproduction, and plant pathogenesis in M. oryzae. Moreover, both MoRab5A and MoRab5B show similar localization in hyphae and conidia. To further investigate possible functional redundancy between MoRab5A and MoRab5B, we overexpressed MoRAB5A and MoRAB5B, respectively, in MoRab5B:RNAi and MoRab5A:RNAi strains, but neither could rescue each other’s defects caused by the RNAi. Taken together, we conclude that both MoRab5A and MoRab5B are necessary for the development and pathogenesis of the rice blast fungus, while they may function independently.

  13. A Hypersensitivity-Like Response to Meloidogyne graminicola in Rice (Oryza sativa).

    Science.gov (United States)

    Phan, Ngan Thi; De Waele, Dirk; Lorieux, Mathias; Xiong, Lizhong; Bellafiore, Stephane

    2018-04-01

    Meloidogyne graminicola is a major plant-parasitic nematode affecting rice cultivation in Asia. Resistance to this nematode was found in the African rice genotypes Oryza glaberrima and O. longistaminata; however, due to interspecific hybrid sterility, the introgression of resistance genes in the widely consumed O. sativa varieties remains challenging. Recently, resistance was found in O. sativa and, here, we report for the first time the histological and genetic characterization of the resistance to M. graminicola in Zhonghua 11, an O. sativa variety. Bright-light microscopy and fluorescence observations of the root tissue of this variety revealed that the root cells surrounding the nematode displayed a hypersensitivity-like reaction with necrotic cells at early stages of infection when nematodes are migrating in the root's mesoderm. An accumulation of presumably phenolic compounds in the nematodes' neighboring root cells was also observed. In addition, at a later stage of infection, not only were few feeding sites observed but also the giant cells were underdeveloped, underlining an incompatible interaction. Furthermore, we generated a hybrid O. sativa population by crossing Zhonghua 11 with the susceptible O. sativa variety IR64 in order to describe the genetic background of this resistance. Our data suggested that the resistance to M. graminicola infection was qualitative rather than quantitative and, therefore, major resistance genes must be involved in this infection process. The full characterization of the defense mechanism and the preliminary study of the genetic inheritance of novel sources of resistance to Meloidogyne spp. in rice constitute a major step toward their use in crop breeding.

  14. Hybrid Sterility in Rice (Oryza sativa L.) Involves the Tetratricopeptide Repeat Domain Containing Protein.

    Science.gov (United States)

    Yu, Yang; Zhao, Zhigang; Shi, Yanrong; Tian, Hua; Liu, Linglong; Bian, Xiaofeng; Xu, Yang; Zheng, Xiaoming; Gan, Lu; Shen, Yumin; Wang, Chaolong; Yu, Xiaowen; Wang, Chunming; Zhang, Xin; Guo, Xiuping; Wang, Jiulin; Ikehashi, Hiroshi; Jiang, Ling; Wan, Jianmin

    2016-07-01

    Intersubspecific hybrid sterility is a common form of reproductive isolation in rice (Oryza sativa L.), which significantly hampers the utilization of heterosis between indica and japonica varieties. Here, we elucidated the mechanism of S7, which specially causes Aus-japonica/indica hybrid female sterility, through cytological and genetic analysis, map-based cloning, and transformation experiments. Abnormal positioning of polar nuclei and smaller embryo sac were observed in F1 compared with male and female parents. Female gametes carrying S7(cp) and S7(i) were aborted in S7(ai)/S7(cp) and S7(ai)/S7(i), respectively, whereas they were normal in both N22 and Dular possessing a neutral allele, S7(n) S7 was fine mapped to a 139-kb region in the centromere region on chromosome 7, where the recombination was remarkably suppressed due to aggregation of retrotransposons. Among 16 putative open reading frames (ORFs) localized in the mapping region, ORF3 encoding a tetratricopeptide repeat domain containing protein was highly expressed in the pistil. Transformation experiments demonstrated that ORF3 is the candidate gene: downregulated expression of ORF3 restored spikelet fertility and eliminated absolutely preferential transmission of S7(ai) in heterozygote S7(ai)/S7(cp); sterility occurred in the transformants Cpslo17-S7(ai) Our results may provide implications for overcoming hybrid embryo sac sterility in intersubspecific hybrid rice and utilization of hybrid heterosis for cultivated rice improvement. Copyright © 2016 by the Genetics Society of America.

  15. Intercellular production of tamavidin 1, a biotin-binding protein from Tamogitake mushroom, confers resistance to the blast fungus Magnaporthe oryzae in transgenic rice.

    Science.gov (United States)

    Takakura, Yoshimitsu; Oka, Naomi; Suzuki, Junko; Tsukamoto, Hiroshi; Ishida, Yuji

    2012-05-01

    The blast fungus Magnaporthe oryzae, one of the most devastating rice pathogens in the world, shows biotin-dependent growth. We have developed a strategy for creating disease resistance to M. oryzae whereby intercellular production of tamavidin 1, a biotin-binding protein from Pleurotus cornucopiae occurs in transgenic rice plants. The gene that encodes tamavidin 1, fused to the sequence for a secretion signal peptide derived from rice chitinase gene, was connected to the Cauliflower mosaic virus 35S promoter, and the resultant construct was introduced into rice. The tamavidin 1 was accumulated at levels of 0.1-0.2% of total soluble leaf proteins in the transgenic rice and it was localized in the intercellular space of rice leaves. The tamavidin 1 purified from the transgenic rice was active, it bound to biotin and inhibited in vitro growth of M. oryzae by causing biotin deficiency. The transgenic rice plants showed a significant resistance to M. oryzae. This study shows the possibility of a new strategy to engineer disease resistance in higher plants by taking advantage of a pathogen's auxotrophy.

  16. Fine mapping and introgressing qFIS1-2, a major QTL for kernel fissure resistance in rice (Oryza sativa L.)

    Science.gov (United States)

    Rice (Oryza sativa L.) kernel fissuring increases breakage during milling and decreases the value of processed rice. This study employed molecular gene tagging methods to fine-map a fissure resistance (FR) locus in ‘Cybonnet’, a semidwarf tropical japonica cultivar, as well as transfer this trait to...

  17. OxyR-regulated catalase CatB promotes the virulence in rice via detoxifying hydrogen peroxide in Xanthomonas oryzae pv. oryzae.

    Science.gov (United States)

    Yu, Chao; Wang, Nu; Wu, Maosen; Tian, Fang; Chen, Huamin; Yang, Fenghuan; Yuan, Xiaochen; Yang, Ching-Hong; He, Chenyang

    2016-11-08

    To facilitate infection, Xanthomonas oryzae pv. oryzae (Xoo), the bacterial blight pathogen of rice, needs to degrade hydrogen peroxide (H 2 O 2 ) generated by the host defense response via a mechanism that is mediated by the transcriptional regulator OxyR. The catalase (CAT) gene catB has previously been shown to belong to the OxyR regulon in Xoo. However, its expression patterns and function in H 2 O 2 detoxification and bacterial pathogenicity on rice remain to be elucidated. The catB gene encodes a putative catalase and is highly conserved in the sequenced strains of Xanthomonas spp. β-galactosidase analysis and electrophoretic mobility shift assays (EMSA) showed that OxyR positively regulated the transcription of catB by directly binding to its promoter region. The quantitative real-time PCR (qRT-PCR) assays revealed that the expression levels of catB and oxyR were significantly induced by H 2 O 2 . Deletion of catB or oxyR drastically impaired bacterial viability in the presence of extracellular H 2 O 2 and reduced CAT activity, demonstrating that CatB and OxyR contribute to H 2 O 2 detoxification in Xoo. In addition, ΔcatB and ΔoxyR displayed shorter bacterial blight lesions and reduced bacterial growth in rice compared to the wild-type stain, indicating that CatB and OxyR play essential roles in the virulence of Xoo. Transcription of catB is enhanced by OxyR in response to exogenous H 2 O 2 . CatB functions as an active catalase that is required for the full virulence of Xoo in rice.

  18. Rice Snl6, a cinnamoyl-CoA reductase-like gene family member, is required for NH1-mediated immunity to Xanthomonas oryzae pv. oryzae.

    Directory of Open Access Journals (Sweden)

    Rebecca S Bart

    2010-09-01

    Full Text Available Rice NH1 (NPR1 homolog 1 is a key mediator of innate immunity. In both plants and animals, the innate immune response is often accompanied by rapid cell death at the site of pathogen infection. Over-expression of NH1 in rice results in resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo, constitutive expression of defense related genes and enhanced benzothiadiazole (BTH- mediated cell death. Here we describe a forward genetic screen that identified a suppressor of NH1-mediated lesion formation and resistance, snl6. Comparative genome hybridization and fine mapping rapidly identified the genomic location of the Snl6 gene. Snl6 is a member of the cinnamoyl-CoA reductase (CCR-like gene family. We show that Snl6 is required for NH1-mediated resistance to Xoo. Further, we show that Snl6 is required for pathogenesis-related gene expression. In contrast to previously described CCR family members, disruption of Snl6 does not result in an obvious morphologic phenotype. Snl6 mutants have reduced lignin content and increased sugar extractability, an important trait for the production of cellulosic biofuels. These results suggest the existence of a conserved group of CCR-like genes involved in the defense response, and with the potential to alter lignin content without affecting development.

  19. Ethanol production by Mucor indicus and Rhizopus oryzae from rice straw by separate hydrolysis and fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Abedinifar, Sorahi [Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran); Karimi, Keikhosro [Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran); School of Engineering, University of Boraas, SE-501 90 Boraas (Sweden); Khanahmadi, Morteza [Isfahan Agriculture and Natural Resources Research Centre, Isfahan (Iran); Taherzadeh, Mohammad J. [School of Engineering, University of Boraas, SE-501 90 Boraas (Sweden)

    2009-05-15

    Rice straw was successfully converted to ethanol by separate enzymatic hydrolysis and fermentation by Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. The hydrolysis temperature and pH of commercial cellulase and {beta}-glucosidase enzymes were first investigated and their best performance obtained at 45 C and pH 5.0. The pretreatment of the straw with dilute-acid hydrolysis resulted in 0.72 g g{sup -1} sugar yield during 48 h enzymatic hydrolysis, which was higher than steam-pretreated (0.60 g g{sup -1}) and untreated straw (0.46 g g{sup -1}). Furthermore, increasing the concentration of the dilute-acid pretreated straw from 20 to 50 and 100 g L{sup -1} resulted in 13% and 16% lower sugar yield, respectively. Anaerobic cultivation of the hydrolyzates with M. indicus resulted in 0.36-0.43 g g{sup -1} ethanol, 0.11-0.17 g g{sup -1} biomass, and 0.04-0.06 g g{sup -1} glycerol, which is comparable with the corresponding yields by S. cerevisiae (0.37-0.45 g g{sup -1} ethanol, 0.04-0.10 g g{sup -1} biomass and 0.05-0.07 glycerol). These two fungi produced no other major metabolite from the straw and completed the cultivation in less than 25 h. However, R. oryzae produced lactic acid as the major by-product with yield of 0.05-0.09 g g{sup -1}. This fungus had ethanol, biomass and glycerol yields of 0.33-0.41, 0.06-0.12, and 0.03-0.04 g g{sup -1}, respectively. (author)

  20. A rare sugar, d-allose, confers resistance to rice bacterial blight with upregulation of defense-related genes in Oryza sativa.

    Science.gov (United States)

    Kano, Akihito; Gomi, Kenji; Yamasaki-Kokudo, Yumiko; Satoh, Masaru; Fukumoto, Takeshi; Ohtani, Kouhei; Tajima, Shigeyuki; Izumori, Ken; Tanaka, Keiji; Ishida, Yutaka; Tada, Yasuomi; Nishizawa, Yoko; Akimitsu, Kazuya

    2010-01-01

    We investigated responses of rice plant to three rare sugars, d-altrose, d-sorbose, and d-allose, due to establishment of mass production methods for these rare sugars. Root growth and shoot growth were significantly inhibited by d-allose but not by the other rare sugars. A large-scale gene expression analysis using a rice microarray revealed that d-allose treatment causes a high upregulation of many defense-related, pathogenesis-related (PR) protein genes in rice. The PR protein genes were not upregulated by other rare sugars. Furthermore, d-allose treatment of rice plants conferred limited resistance of the rice against the pathogen Xanthomonas oryzae pv. oryzae but the other tested sugars did not. These results indicate that d-allose has a growth inhibitory effect but might prove to be a candidate elicitor for reducing disease development in rice.

  1. [Effect of selenium on the uptake and translocation of manganese, iron, phosphorus and selenium in rice (Oryza sativa L.)].

    Science.gov (United States)

    Hu, Ying; Huang, Yi-Zong; Huang, Yan-Chao; Liu, Yun-Xia; Liang, Jian-Hong

    2013-10-01

    A pot experiment was conducted to clarify the effect of selenium on the uptake and translocation of manganese (Mn), iron (Fe) , phosphorus (P) and selenium (Se) in rice ( Oryza sativa L.). The results showed that addition of Se led to the significant increase of Se concentration in iron plaque on the root surface, root, shoot, husk and brown rice, and significant decrease of Mn concentration in shoot, husk and brown rice. At the Se concentrations of 0.5 and 1.0 mg.kg-1 in soil, Mn concentrations in rice shoot decreased by 32. 2% and 35.0% respectively, in husk 22.0% and 42.6% , in brown rice 27.5% and 28.5% , compared with the Se-free treatment. There was no significant effect of Se on the P and Fe concentrations in every parts of rice, except for Fe concentrations in husk. The translocation of P and Fe from iron plaque, root, shoot and husk to brown rice was not significantly affected by Se addition, but Mn translocation from iron plaque and root to brown rice was significantly inhibited by Se addition. Addition of 1.0 mg.kg-1. Se resulted in the decrease of translocation factor from iron plaque and root to brown rice by 38.9% and 37.9%, respectively, compared with the control treatment. The distribution ratios of Mn, Fe, P and Se in iron plaque, root, shoot, husk and brown rice were also affected by Se addition. The results indicated that Mn uptake, accumulation and translocation in rice could be decreased by the addition of Se in soil, therefore, Se addition could reduce the Mn harm to human health through food chain.

  2. The production of corn kernel miso based on rice-koji fermented by Aspergillus oryzae and Rhizopus oligosporus

    Directory of Open Access Journals (Sweden)

    Diah Ratnaningrum

    2018-04-01

    Full Text Available The suitability of corn kernel as raw material to produce miso fermented by rice-koji containing Aspergillus oryzae and Rhizopus oligosporus has been investigated. The optimization was conducted on two important factors in miso production namely mold composition in rice-koji and salt concentration. The mold composition was prepared by inoculating the spores of 2% A. oryzae, 2% R. oligosporus, and 2% the mixture of both in a ratio of 1:1, 2:1, and 1:2 (v/v into different rice media. The mold composition was optimized to produce rice-koji with high α-amylase and protease activity. Different NaCl concentrations of 10%, 15%, and 20% were subjected to optimization process and added to each mixture after five days of fermentation. The salt concentration was also optimized to produce corn kernel miso with high glucose and high dissolved protein concentration. The result showed that rice-koji containing A. oryzae and R. oligosporus in the ratio of 1:1 had the highest α-amylase and protease activity of 0.42 U/mL and 0.45 U/mL respectively. In addition, the presence of 10% NaCl in corn kernel miso fermented by A. oryzae and R. oligosporus in the ratio of 1:1 exhibited the highest glucose and dissolved protein concentration of 0.64 mg/mL and 8.80 mg/mL respectively. The optimized corn kernel miso by A. oryzae and R. oligosporus in the ratio of 1:1 with 10% NaCl was subjected to nutrient content analysis and compared to the result before the corn kernel was fermented. The nutrient content analysis showed nutrient enhancement after corn kernel was fermented and transformed into a miso. Glucose, dissolved protein, and fat content increased 6.74, 1.34, 7.63 times respectively. This study concludes corn kernel could be utilized to produce a novel corn kernel miso for dietary diversification and for improving nutritional and health status.

  3. Ortholog Alleles at Xa3/Xa26 Locus Confer Conserved Race-Specific Resistance against Xanthomonas oryzae in Rice

    Institute of Scientific and Technical Information of China (English)

    Hong-Jing Li; Xiang-Hua Li; Jing-Hua Xiao; Rod A. Wing; Shi-Ping Wang

    2012-01-01

    The rice disease resistance (R) gene Xa3/Xa26 (having also been named Xa3 and Xa26) against Xanthomonas oryzae pv.oryzae (Xoo),which causes bacterial blight disease,belongs to a multiple gene family clustered in chromosome 11 and is from an AA genome rice cultivar (Oryza sativa L.).This family encodes leucine-rich repeat (LRR) receptor kinasetype proteins.Here,we show that the orthologs (alleles) of Xa3/Xa26,Xa3/Xa26-2,and Xa3/Xa26-3,from wild Oryza species O.officinalis (CC genome) and O.minuta (BBCC genome),respectively,were also R genes against Xoo.Xa3/Xa26-2 and Xa3/Xa26-3 conferred resistance to 16 of the 18 Xoo strains examined.Comparative sequence analysis of the Xa3/Xa26 families in the two wild Oryza species showed that Xa3/Xa26-3 appeared to have originated from the CC genome of O.minuta.The predicted proteins encoded by Xa3/Xa26,Xa3/Xa26-2,and Xa3/Xa26-3 share 91-99% sequence identity and 94-99% sequence similarity.Transgenic plants carrying a single copy of Xa3/Xa26,Xa3/Xa26-2,or Xa3/Xa26-3,in the same genetic background,showed a similar resistance spectrum to a set of Xoo strains,although plants carrying Xa3/Xa26-2 or Xa3/Xa26-3 showed lower resistance levels than the plants carrying Xa3/Xa26.These results suggest that the Xa3/Xa26 locus predates the speciation of A and C genome,which is approximately 7.5 million years ago.Thus,the resistance specificity of this locus has been conserved for a long time.

  4. HrcQ is necessary for Xanthomonas oryzae pv. oryzae HR-induction in non-host tobacco and pathogenicity in host rice

    Directory of Open Access Journals (Sweden)

    Xiaoping Zhang

    2013-12-01

    Full Text Available Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo, is one of the most destructive diseases of rice (Oryza sativa L. worldwide. The type III secretion system (T3SS of Xoo, encoded by the hrp (hypersensitive response and pathogenicity genes, plays critical roles in conferring pathogenicity in host rice and triggering a hypersensitive response (HR in non-host plants. To investigate the major genes conferring the pathogenicity and avirulence of Xoo, we previously constructed a random Tn5-insertion mutant library of Xoo strain PXO99A. We report here the isolation and characterization of a Tn5-insertion mutant PXM69. Tn5-insertion mutants were screened on indica rice JG30, which is highly susceptible to PXO99A, by leaf-cutting inoculation. Four mutants with reduced virulence were obtained after two rounds of screening. Among them, the mutant PXM69 had completely lost virulence to the rice host and ability to elicit HR in non-host tobacco. Southern blotting analysis showed a single copy of a Tn5-insertion in the genome of PXM69. PCR walking and sequencing analysis revealed that the Tn5 transposon was inserted at nucleotide position 70,192–70,201 in the genome of PXO99A, disrupting the type III hrc (hrp-conserved gene hrcQ, the first gene in the D operon of the hrp cluster in Xoo. To confirm the relationship between the Tn5-insertion and the avirulence phenotype of PXM69, we used the marker exchange mutagenesis to create a PXO99A mutant, ΔhrcQ::KAN, in which the hrcQ was disrupted by a kanamycin-encoding gene cassette at the same site as that of the Tn5-insertion. ΔhrcQ::KAN showed the same phenotype as mutant PXM69. Reintroduction of the wild-type hrcQ gene partially complemented the pathogenic function of PXM69. RT-PCR and cellulase secretion assays showed that the Tn5-disruption of hrcQ did not affect transcription of downstream genes in the D operon and function of the type II secretion system. Our results provide new insights into

  5. HrcQ is necessary for Xanthomonas oryzae pv. oryzae HR-induction in non-host tobacco and pathogenicity in host rice

    Institute of Scientific and Technical Information of China (English)

    Xiaoping; Zhang; Chunlian; Wang; Chongke; Zheng; Jinying; Che; Yanqiang; Li; Kaijun; Zhao

    2013-01-01

    Bacterial blight, caused by Xanthomonas oryzae pv. oryzae(Xoo), is one of the most destructive diseases of rice(Oryza sativa L.) worldwide. The type III secretion system(T3SS) of Xoo, encoded by the hrp(hypersensitive response and pathogenicity) genes, plays critical roles in conferring pathogenicity in host rice and triggering a hypersensitive response(HR) in non-host plants. To investigate the major genes conferring the pathogenicity and avirulence of Xoo, we previously constructed a random Tn5-insertion mutant library of Xoo strain PXO99A. We report here the isolation and characterization of a Tn5-insertion mutant PXM69. Tn5-insertion mutants were screened on indica rice JG30, which is highly susceptible to PXO99A, by leaf-cutting inoculation.Four mutants with reduced virulence were obtained after two rounds of screening. Among them, the mutant PXM69 had completely lost virulence to the rice host and ability to elicit HR in non-host tobacco. Southern blotting analysis showed a single copy of a Tn5-insertion in the genome of PXM69. PCR walking and sequencing analysis revealed that the Tn5 transposon was inserted at nucleotide position 70,192–70,201 in the genome of PXO99A, disrupting the type III hrc(hrp-conserved) gene hrcQ, the first gene in the D operon of the hrp cluster in Xoo. To confirm the relationship between the Tn5-insertion and the avirulence phenotype of PXM69, we used the marker exchange mutagenesis to create a PXO99Amutant, ΔhrcQ::KAN, in which the hrcQ was disrupted by a kanamycin-encoding gene cassette at the same site as that of the Tn5-insertion. ΔhrcQ::KAN showed the same phenotype as mutant PXM69. Reintroduction of the wild-type hrcQ gene partially complemented the pathogenic function of PXM69. RT-PCR and cellulase secretion assays showed that the Tn5-disruption of hrcQ did not affect transcription of downstream genes in the D operon and function of the type II secretion system. Our results provide new insights into the pathogenic

  6. Effects of ozone on growth, yield and leaf gas exchange rates of four Bangladeshi cultivars of rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Akhtar, Nahid; Yamaguchi, Masahiro; Inada, Hidetoshi; Hoshino, Daiki; Kondo, Taisuke; Fukami, Motohiro; Funada, Ryo; Izuta, Takeshi

    2010-01-01

    To assess the effects of tropospheric O 3 on rice cultivated in Bangladesh, four Bangladeshi cultivars (BR11, BR14, BR28 and BR29) of rice (Oryza sativa L.) were exposed daily to charcoal-filtered air or O 3 at 60 and 100 nl l -1 (10:00-17:00) from 1 July to 28 November 2008. The whole-plant dry mass and grain yield per plant of the four cultivars were significantly reduced by the exposure to O 3 . The exposure to O 3 significantly reduced net photosynthetic rate of the 12th and flag leaves of the four cultivars. The sensitivity to O 3 of growth, yield and leaf gas exchange rates was not significantly different among the four cultivars. The present study suggests that the sensitivity to O 3 of yield of the four Bangladeshi rice cultivars is greater than that of American rice cultivars and is similar to that of Japanese rice cultivars and that O 3 may detrimentally affect rice production in Bangladesh. - Bangladeshi cultivars of rice are sensitive to O 3 below 100 ppb.

  7. Combined Mass Spectrometry-Based Metabolite Profiling of Different Pigmented Rice (Oryza sativa L. Seeds and Correlation with Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Ga Ryun Kim

    2014-09-01

    Full Text Available Nine varieties of pigmented rice (Oryza sativa L. seeds that were black, red, or white were used to perform metabolite profiling by using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS and gas chromatography (GC TOF-MS, to measure antioxidant activities. Clear grouping patterns determined by the color of the rice seeds were identified in principle component analysis (PCA derived from UPLC-Q-TOF-MS. Cyanidin-3-glucoside, peonidin-3-glucoside, proanthocyanidin dimer, proanthocyanidin trimer, apigenin-6-C-glugosyl-8-C-arabiboside, tricin-O-rhamnoside-O-hexoside, and lipids were identified as significantly different secondary metabolites. In PCA score plots derived from GC-TOF-MS, Jakwangdo (JKD and Ilpoom (IP species were discriminated from the other rice seeds by PC1 and PC2. Valine, phenylalanine, adenosine, pyruvate, nicotinic acid, succinic acid, maleic acid, malonic acid, gluconic acid, xylose, fructose, glucose, maltose, and myo-inositol were significantly different primary metabolites in JKD species, while GABA, asparagine, xylitol, and sucrose were significantly distributed in IP species. Analysis of antioxidant activities revealed that black and red rice seeds had higher activity than white rice seeds. Cyanidin-3-glucoside, peonidin-3-glucoside, proanthocyanidin dimers, proanthocyanidin trimers, and catechin were highly correlated with antioxidant activities, and were more plentiful in black and red rice seeds. These results are expected to provide valuable information that could help improve and develop rice-breeding techniques.

  8. Quantitative Genetic Analysis for Yield and Yield Components in Boro Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Supriyo CHAKRABORTY

    2010-03-01

    Full Text Available Twenty-nine genotypes of boro rice (Oryza sativa L. were grown in a randomized block design with three replications in plots of 4m x 1m with a crop geometry of 20 cm x 20 cm between November-April, in Regional Agricultural Research Station, Nagaon, India. Quantitative data were collected on five randomly selected plants of each genotype per replication for yield/plant, and six other yield components, namely plant height, panicles/plant, panicle length, effective grains/panicle, 100 grain weight and harvest index. Mean values of the characters for each genotype were used for analysis of variance and covariance to obtain information on genotypic and phenotypic correlation along with coheritability between two characters. Path analyses were carried out to estimate the direct and indirect effects of boro rice�s yield components. The objective of the study was to identify the characters that mostly influence the yield for increasing boro rice productivity through breeding program. Correlation analysis revealed significant positive genotypic correlation of yield/plant with plant height (0.21, panicles/plant (0.53, panicle length (0.53, effective grains/panicle (0.57 and harvest index (0.86. Path analysis based on genotypic correlation coefficients elucidated high positive direct effect of harvest index (0.8631, panicle length (0.2560 and 100 grain weight (0.1632 on yield/plant with a residual effect of 0.33. Plant height and panicles/plant recorded high positive indirect effect on yield/plant via harvest index whereas effective grains/panicle on yield/plant via harvest index and panicle length. Results of the present study suggested that five component characters, namely harvest index, effective grains/plant, panicle length, panicles/plant and plant height influenced the yield of boro rice. A genotype with higher magnitude of these component characters could be either selected from the existing genotypes or evolved by breeding program for genetic

  9. Characterization of seeds of selected wild species of rice (Oryza) stored under high temperature and humidity conditions.

    Science.gov (United States)

    Das, Smruti; Nayak, Monalisa; Patra, B C; Ramakrishnan, B; Krishnan, P

    2010-06-01

    Wild progenitors of rice (Oryza) are an invaluable resource for restoring genetic diversity and incorporating useful traits back into cultivars. Studies were conducted to characterize the biochemical changes, including SDS-PAGE banding pattern of storage proteins in seeds of six wild species (Oryza alta, O. grandiglumis, O. meridionalis, O. nivara, O. officinalis and O. rhizomatis) of rice stored under high temperature (45 degrees C) and humidity (approixmately 100%) for 15 days, which facilitated accelerated deterioration. Under the treated conditions, seeds of different wild rice species showed decrease in per cent germination and concentrations of protein and starch, but increase in conductivity of leachate and content of sugar. The SDS-PAGE analysis of seed proteins showed that not only the total number of bands, but also their intensity in terms of thickness differed for each species under storage. The total number of bands ranged from 11 to 22, but none of the species showed all the bands. Similarity index for protein bands between the control and treated seeds was observed to be least in O. rhizomatis and O. alta, while the indices were 0.7 and 0.625 for O. officinalis and O. nivara, respectively. This study clearly showed that seed deterioration led to distinctive biochemical changes, including the presence or absence as well as altered levels of intensity of proteins. Hence, SDS-PAGE protein banding pattern can be used effectively to characterize deterioration of seeds of different wild species of rice.

  10. Genetic study of resistance to inhibitory effects of UV radiation in rice (Oryza sativa)

    International Nuclear Information System (INIS)

    Sato, T.; Kang, H.S.; Kumagai, T.

    1994-01-01

    Genetic analysis of resistance to the inhibitory effects of UV radiation on growth of rice (Oryza sativa L.) cultivars was carried out. Some experimental plants were grown in visible radiation supplemented with UV radiation containing a large amount of UV-B and a small amount of UV-C in a phytotron, while others were grown without UV radiation. The degree of resistance to UV radiation was estimated in terms of the degree of reduction caused by supplemental UV radiation in the fresh weight of the aboveground plant parts and the chlorophyll content per unit fresh weight. Fresh weight and chlorophyll content in F 2 plants generated by reciprocally crossing cv. Sasanishiki, a cultivar more resistant to UV radiation, and Norin 1, a cultivar less resistant to such radiation exhibited a normal frequency distribution. The heritabilities of these two properties in F 2 plants were low under conditions of non-supplemental UV radiation. Under elevated UV radiation, the F 2 population shifted to the lower range of fresh weight and chlorophyll content, and the means were close to those of Norin 1. The heritabilities of these two properties were the same in the reciprocal crosses, indicating that maternal inheritance was not involved. Inheritance of chlorophyll content per unit fresh weight was further determined in F 3 lines generated by self-fertilizing F 2 plants of Sasanishiki and Norin 1. The results showed that the F 3 population was segregated into three genotypes, namely, resistant homozygotes, segregated heterozygotes and sensitive homozygotes, with a ratio of 1:65:16. It was thus evident that the resistance to the inhibitory effect of elevated UV radiation in these rice plants was controlled by recessive polygenes. (author)

  11. Evaluasi Perlakuan Pendahuluan Menggunakan Kalsium Hidroksida untuk Biokonversi Jerami Padi Menjadi L-Asam Laktat oleh Rhizopus oryzae AT3 (Evaluation of Lime Pretreatment for Bioconversion of Rice Straw to L-Lactic Acid by Rhizopus Oryzae AT3

    Directory of Open Access Journals (Sweden)

    Dhina Aprilia Nurani Widyahapsari

    2016-12-01

    Full Text Available L-lactic acid can be used as a precursor of polylactic acid (PLA. PLA is a biodegradable biomaterial commonly used for biodegradable plastics. Lactic acid can be produced from lignocelluloses materials such as rice straw. Rice straw is composed of cellulose and hemicellulose that can be hydrolyzed to fermentable sugar by cellulolytic and hemicellulolytic enzymes then converted to L-lactic acid by Rhizopus oryzae. As most cellulose and hemicellulose present in lignocellulose biomass are not readily accessible for these enzyme, pretreatment is required to alter the structure of lignocellulose substrates. This research aimed to investigate the effect of lime pretreatment on rice straw bioconversion to L-lactic acid by Rhizopus oryzae AT3. Rice straw was pretreated with lime (Ca(OH2 at 85 °C for 16 hours. Unpretreated and pretreated rice straw were hydrolyzed using crude enzyme that produced by Trichoderma reesei Pk1J2. Enzyme production was carried out by solid state fermentation using rice straw and rice brand as substrate. Enzymatic hydrolysis was carried out in flasks. Each flask was added with unpretreated or pretreated rice straw, buffer citrate solution and crude enzyme then hydrolyzed for 0-96 hours. Hydrolysate was fermented by Rhizopus oryzae AT3 for 0-6 days by using adsorbed carrier solid-state fermentation method with polyurethane foam as inert support material. Lime pretreatment at 85 °C for 16 hour led to significant solubilisation of lignin and hemicellulose. It involved lignocellulose structure modified that enhance enzymatic hydrolysis and resulted higher reducing sugars than unpretreated rice straw. The high reducing sugars was not related to high lactic acid yields. Fermentation of pretreated rice straw hydrolysate by Rhizopus oryzae AT3 did not only produce L-lactic acid but also other compound. On the other hand, fermentation of unpretreated rice straw hydrolysate only produced L-lactic acid.   ABSTRAK Polimerisasi asam

  12. Co-evolutionary interactions between host resistance and pathogen avirulence genes in rice-Magnaporthe oryzae pathosystem.

    Science.gov (United States)

    Singh, Pankaj Kumar; Ray, Soham; Thakur, Shallu; Rathour, Rajeev; Sharma, Vinay; Sharma, Tilak Raj

    2018-06-01

    Rice and Magnaporthe oryzae constitutes an ideal pathosystem for studying host-pathogen interaction in cereals crops. There are two alternative hypotheses, viz. Arms race and Trench warfare, which explain the co-evolutionary dynamics of hosts and pathogens which are under continuous confrontation. Arms race proposes that both R- and Avr- genes of host and pathogen, respectively, undergo positive selection. Alternatively, trench warfare suggests that either R- or Avr- gene in the pathosystem is under balanced selection intending to stabilize the genetic advantage gained over the opposition. Here, we made an attempt to test the above-stated hypotheses in rice-M. oryzae pathosystem at loci of three R-Avr gene pairs, Piz-t-AvrPiz-t, Pi54-AvrPi54 and Pita-AvrPita using allele mining approach. Allele mining is an efficient way to capture allelic variants existing in the population and to study the selective forces imposed on the variants during evolution. Results of nucleotide diversity, neutrality statistics and phylogenetic analyses reveal that Piz-t, Pi54 and AvrPita are diversified and under positive selection at their corresponding loci, while their counterparts, AvrPiz-t, AvrPi54 and Pita are conserved and under balancing selection, in nature. These results imply that rice-M. oryzae populations are engaged in a trench warfare at least at the three R/Avr loci studied. It is a maiden attempt to study the co-evolution of three R-Avr gene pairs in this pathosystem. Knowledge gained from this study will help in understanding the evolutionary dynamics of host-pathogen interaction in a better way and will also aid in developing new durable blast resistant rice varieties in future. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Magnesium-induced alterations in the photosynthetic performance and resistance of rice plants infected with Bipolaris oryzae

    Directory of Open Access Journals (Sweden)

    Wiler Ribas Moreira

    2015-08-01

    Full Text Available Brown spot (BS, caused by the fungus Bipolaris oryzae, is one of the most important diseases contracted by rice. We investigated the effect of magnesium (Mg on the development of BS, caused by Bipolaris oryzae, and the effects of disease development on the photosynthetic performance of rice (Oryza sativa L. plants (cv. Metica-1 grown in nutrient solutions containing 0.25 or 4.0 mM of Mg. Assessments of BS severity, leaf Mg and pigment concentrations (total chlorophylls and carotenoids, were carried out at 120 h after inoculation, in addition to gas exchange parameters,. Higher leaf concentration of Mg was observed in plants supplied with 4.0 mM Mg than in those supplied with 0.25 mM. The increase in leaf Mg was accompanied by a decrease in BS severity, higher concentration of total chlorophyll and better photosynthetic performance. Plants supplied with 4.0 mM Mg had higher average values for carbon assimilation, stomatal conductance and internal leaf CO2 concentration when compared with plants supplied with 0.25 mM Mg. Conversely, the concentration of carotenoids was lower in plants supplied with the higher Mg rate. These results suggest that Mg suppresses disease severity and preserves photosynthetic performance by allowing for better stomatal conductance and, consequently, greater availability of CO2 at the carboxylation sites.

  14. A cell wall-degrading esterase of Xanthomonas oryzae requires a unique substrate recognition module for pathogenesis on rice.

    Science.gov (United States)

    Aparna, Gudlur; Chatterjee, Avradip; Sonti, Ramesh V; Sankaranarayanan, Rajan

    2009-06-01

    Xanthomonas oryzae pv oryzae (Xoo) causes bacterial blight, a serious disease of rice (Oryza sativa). LipA is a secretory virulence factor of Xoo, implicated in degradation of rice cell walls and the concomitant elicitation of innate immune responses, such as callose deposition and programmed cell death. Here, we present the high-resolution structural characterization of LipA that reveals an all-helical ligand binding module as a distinct functional attachment to the canonical hydrolase catalytic domain. We demonstrate that the enzyme binds to a glycoside ligand through a rigid pocket comprising distinct carbohydrate-specific and acyl chain recognition sites where the catalytic triad is situated 15 A from the anchored carbohydrate. Point mutations disrupting the carbohydrate anchor site or blocking the pocket, even at a considerable distance from the enzyme active site, can abrogate in planta LipA function, exemplified by loss of both virulence and the ability to elicit host defense responses. A high conservation of the module across genus Xanthomonas emphasizes the significance of this unique plant cell wall-degrading function for this important group of plant pathogenic bacteria. A comparison with the related structural families illustrates how a typical lipase is recruited to act on plant cell walls to promote virulence, thus providing a remarkable example of the emergence of novel functions around existing scaffolds for increased proficiency of pathogenesis during pathogen-plant coevolution.

  15. A study of technetium 99 uptake by irrigated rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Vandecasteele, C.M.; De Becker, R.; Tang Van Hai; Myttenaere, C.

    1983-01-01

    The absorption of technetium 99 (an important fission product which can be released in the environment at different steps of the nuclear fuel cycle) by rice (Oryza sativa L.) was studied in nutrient solutions and in flooded soils with contaminated water. The absorption kinetics established in water culture (continuous flowing system) for 99 Tc concentrations ranging from 0.017 to 17 μCi.I - 1 revealed two phases: the former corresponds to the diffusion in the apparent free spaces and the second, which is linear, represents the transfer of 99 Tc from the external medium into the root cells as well as its translocation to the leaves. The study of the desorption mechanism confirmed the existence of these compartments, the second one containing more than 95% of the total activity of the plant. The biological half-life of 99 Tc of the second compartment is so high that decontamination of the plant may not be expected. In soils, toxicity symptoms were observed for a 99 Tc water concentration of 17 μCi.I - 1 . The transfer factors calculated in irrigated soils are very high (>10 3 for the leafy shoots) and the distribution of 99 Tc between the different organs waries with the concentration used. More than 90% of 99 Tc is found in the leafy shoots meanwhile 1% of the plant total activity is only found in the caryopses [fr

  16. Analysis of Rhizome Development in Oryza longistaminata, a Wild Rice Species.

    Science.gov (United States)

    Yoshida, Akiko; Terada, Yasuhiko; Toriba, Taiyo; Kose, Katsumi; Ashikari, Motoyuki; Kyozuka, Junko

    2016-10-01

    Vegetative reproduction is a form of asexual propagation in plants. A wide range of plants develop rhizomes, modified stems that grow underground horizontally, as a means of vegetative reproduction. In rhizomatous species, despite their distinct developmental patterns, both rhizomes and aerial shoots derive from axillary buds. Therefore, it is of interest to understand the basis of rhizome initiation and development. Oryza longistaminata, a wild rice species, develops rhizomes. We analyzed bud initiation and growth of O. longistaminata rhizomes using various methods of morphological observation. We show that, unlike aerial shoot buds that contain a few leaves only, rhizome buds initiate several leaves and bend to grow at right angles to the original rhizome. Rhizomes are maintained in the juvenile phase irrespective of the developmental phase of the aerial shoot. Stem elongation and reproductive transition are tightly linked in the aerial shoots, but are uncoupled in the rhizome. Our findings indicate that developmental programs operate independently in the rhizomes and aerial shoots. Temporal modification of the developmental pathways that are common to rhizomes and aerial shoots may be the source of developmental plasticity. Furthermore, the creation of new developmental systems appears to be necessary for rhizome development. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Genetic diversity analysis of Cuban traditional rice (Oryza sativa L. varieties based on microsatellite markers

    Directory of Open Access Journals (Sweden)

    Alba Alvarez

    2007-01-01

    Full Text Available Microsatellite polymorphism was studied in a sample of 39 traditional rice (Oryza sativa L. varieties and 11 improved varieties widely planted in Cuba. The study was aimed at assessing the extent of genetic variation in traditional and improved varieties and to establish their genetic relationship for breeding purposes. Heterozygosity was analyzed at each microsatellite loci and for each genotype using 10 microsatellite primer pairs. Between varieties genetic relationship was estimated. The number of alleles per microsatellite loci was 4 to 8, averaging 6.6 alleles per locus. Higher heterozygosity (H was found in traditional varieties (H TV = 0.72 than in improved varieties (H IV = 0.42, and 68% of the total microsatellite alleles were found exclusively in the traditional varieties. Genetic diversity, represented by cluster analysis, indicated three different genetic groups based on their origin. Genetic relationship estimates based on the proportion of microsatellite loci with shared alleles indicated that the majority of traditional varieties were poorly related to the improved varieties. We also discuss the more efficient use of the available genetic diversity in future programs involving genetic crosses.

  18. Biochemical and anatomical changes and yield reduction in rice (Oryza sativa L.) under varied salinity regimes.

    Science.gov (United States)

    Hakim, M A; Juraimi, Abdul Shukor; Hanafi, M M; Ismail, Mohd Razi; Selamat, Ahmad; Rafii, M Y; Latif, M A

    2014-01-01

    Five Malaysian rice (Oryza sativa L.) varieties, MR33, MR52, MR211, MR219, and MR232, were tested in pot culture under different salinity regimes for biochemical response, physiological activity, and grain yield. Three different levels of salt stresses, namely, 4, 8, and 12 dS m(-1), were used in a randomized complete block design with four replications under glass house conditions. The results revealed that the chlorophyll content, proline, sugar content, soluble protein, free amino acid, and yield per plant of all the genotypes were influenced by different salinity levels. The chlorophyll content was observed to decrease with salinity level but the proline increased with salinity levels in all varieties. Reducing sugar and total sugar increased up to 8 dS m(-1) and decreased up to 12 dS m(-1). Nonreducing sugar decreased with increasing the salinity levels in all varieties. Soluble protein and free amino acid also decreased with increasing salinity levels. Cortical cells of MR211 and MR232 did not show cell collapse up to 8 dS m(-1) salinity levels compared to susceptible checks (IR20 and BRRI dhan29). Therefore, considering all parameters, MR211 and MR232 showed better salinity tolerance among the tested varieties. Both cluster and principal component analyses depict the similar results.

  19. Differences in the sensitivity to UVB radiation of two cultivars of rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Hidema, J.; Kang, H.S.; Kumagai, T.

    1996-01-01

    The effects of UVB radiation on the growth of two cultivars of Japanese lowland rice (Oryza sativa L.), Sasanishiki and Norin 1, were examined in a phytotron. Supplementation of visible radiation with UVB radiation reduced plant length, tiller number, the fresh and dry weights of the aboveground parts of plants, an the amounts of total leaf nitrogen, chlorophyll, soluble protein and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in the eight leaf, the youngest fully expanded leaf. By contrast, UVB radiation significantly increased the accumulation of UV-absorbing compounds. There was a difference between the two cultivars in the resistance to the effects of UVB radiation. The reduction in the amounts of Rubisco was smaller in Sasanishiki, while the increase in the accumulation of UV-absorbing compounds was greater in Sasanishiki. Parameters of plant growth, with the exception of the amount of Rubisco, decreased in direct proportion to decreases in total leaf nitrogen in plants grown under lower or the Rubisco content of Norin 1 grown under a high dose of UVB radiation was exceptionally marked, and was not observed similarly in Sasanishiki. The results suggest that the remarkable reduction in rubisco content in NOrin 1 might have been due to the specific effects of UVB radiation. It is also suggested that the difference between cultivars in the resistance to UVB radiation might be due to the differences in the levels of Rubisco and in UV-absorbing compounds that are induced by UVB radiation

  20. Biochemical and Anatomical Changes and Yield Reduction in Rice (Oryza sativa L. under Varied Salinity Regimes

    Directory of Open Access Journals (Sweden)

    M. A. Hakim

    2014-01-01

    Full Text Available Five Malaysian rice (Oryza sativa L. varieties, MR33, MR52, MR211, MR219, and MR232, were tested in pot culture under different salinity regimes for biochemical response, physiological activity, and grain yield. Three different levels of salt stresses, namely, 4, 8, and 12 dS m−1, were used in a randomized complete block design with four replications under glass house conditions. The results revealed that the chlorophyll content, proline, sugar content, soluble protein, free amino acid, and yield per plant of all the genotypes were influenced by different salinity levels. The chlorophyll content was observed to decrease with salinity level but the proline increased with salinity levels in all varieties. Reducing sugar and total sugar increased up to 8 dS m−1 and decreased up to 12 dS m−1. Nonreducing sugar decreased with increasing the salinity levels in all varieties. Soluble protein and free amino acid also decreased with increasing salinity levels. Cortical cells of MR211 and MR232 did not show cell collapse up to 8 dS m−1 salinity levels compared to susceptible checks (IR20 and BRRI dhan29. Therefore, considering all parameters, MR211 and MR232 showed better salinity tolerance among the tested varieties. Both cluster and principal component analyses depict the similar results.

  1. Contamination of rice (Oryza sativa L) with Cadmium and Arsenic by irrigation with the Bogota River water in rice soils of the Lower Basin

    International Nuclear Information System (INIS)

    Montenegro, Omar; Mejia L

    2001-01-01

    In this study, field and greenhouse experiments were simultaneously carried out with rice (oryza sativa l., variedad oryzica-1) in soils of the Bogota River lower basin (Los Manueles Series, a member of the clayed, mixed, isohipertermic family of the Fluventic Vertic Haplustepts) to evaluate the effect of Cd and As content of the irrigation waters (of the Bogota River and greenhouse) on soils and: 1) rice growth physiological parameters; 2) Cd and As accumulated in different parts of rice plants; 3) yields and other aspects and properties of rice crop. The results lead to the following conclusions: 1) The Cd and As content of the Bogota River water, increased during the driest months and was minimum in those with the highest precipitation; Cd and As concentrations in both seasons surpassed the maximum permissible limits. 2) Rice height was highest when irrigation water does have neither Cd nor As. Effects of both elements showed an inverse lineal tendency. 3) The gradual increase of Cd in irrigation water reduced in 12.5% the number of grains per panicle; the increase of As induced a 10% reduction. 4) The highest concentration of Cd and As in irrigation waters significantly reduced yields; maximum yields l were obtained when Cd and As were absent from irrigation waters. 5) For any concentration of As in irrigation water the highest concentration of Cd was accumulated in rice leafs when concentration of Cd 2 was 2mg/l; above this value Cd accumulation in leafs el decreased with the gradual increase of As concentration. 6) Cd and As accumulated in rice grains increased with the gradual increment of both elements in the irrigation waters; Cd and As accumulated were respectively 50 and 15 times higher than the maximum critical levels proposed for rice grains. 7) Cd and As accumulated progressively on soils with gradual increase of both elements in irrigation waters 8) Cd and As concentration in irrigation waters apparently does not affect the rice mill behavior

  2. A study on the life cycle and the effect of radiation on rice weevil, sitophilus oryzae L.

    Energy Technology Data Exchange (ETDEWEB)

    1969-12-31

    Studies on the life cycle and the effect of radiation on rice weevil, Sitophilus oryzae L. were made. Each stage of development of rice weevil was determined. The egg, larval and pupal stage was 7-9, 13-17 and 7-11 days respectively. The highest rate of oviposition was at 3-6 days. Rice weevils in different stages were exposed to various doses of gamma-radiation and the effects were recorded. It was observed that the males were more susceptible to radiation than females. A dose of 3500-5000 rads induced sterility in adult stage and no hatchability was observed at a dose of 5000 rads. The LD{sub 50} in egg, larval, pupal and adult stage was 15, 120, 1300 and 28400 rads respectively. The response of adult weevils to gamma radiation obtained from Co-60 and the reactor (U{sup 235}) appeared nearly the same. No radioresistance was observed in the second and third generations of rice weevils when adult parents were irradiated at a dose of 2500 rads. There was no recovery of germ cells in male insects following radiation exposure of about 5000 rads. A decrease in the population of rice weevils was noted when the irradiated males were introduced to mate with the non-irradiated females. The Sterile Male Release Technique could be well applied to reduce the number of rice weevils in storage places.

  3. Analysis of transactivation potential of rice (Oryza sativa L.) heat shock factors.

    Science.gov (United States)

    Lavania, Dhruv; Dhingra, Anuradha; Grover, Anil

    2018-06-01

    Based on yeast one-hybrid assays, we show that the presence of C-terminal AHA motifs is not a prerequisite for transactivation potential in rice heat shock factors. Transcriptional activation or transactivation (TA) of heat stress responsive genes takes place by binding of heat shock factors (Hsfs) to heat shock elements. Analysis of TA potential of thirteen rice (Oryza sativa L.) Hsfs (OsHsfs) carried out in this study by yeast one-hybrid assay showed that OsHsfsA3 possesses strong TA potential while OsHsfs A1a, A2a, A2b, A4a, A4d, A5, A7b, B1, B2a, B2b, B2c and B4d lack TA potential. From a near complete picture of TA potential of the OsHsf family (comprising of 25 members) emerging from this study and an earlier report from our group (Mittal et al. in FEBS J 278(17):3076-3085, 2011), it is concluded that (1) overall, six OsHsfs, namely A3, A6a, A6b, A8, C1a and C1b possess TA potential; (2) four class A OsHsfs, namely A3, A6a, A6b and A8 have TA potential out of which A6a and A6b contain AHA motifs while A3 and A8 lack AHA motifs; (3) nine class A OsHsfs, namely A1a, A2a, A2b, A2e, A4a, A4d, A5, A7a and A7b containing AHA motif(s) lack TA function in the yeast assay system; (4) all class B OsHsfs lack AHA motifs and TA potential (B4a not analyzed) and (5) though all class C OsHsf members lack AHA motifs, two members C1a and C1b possess TA function, while one member C2a lacks TA potential (C2b not analyzed). Thus, the presence or absence of AHA motif is possibly not the only factor determining TA potential of OsHsfs. Our findings will help to identify the transcriptional activators of rice heat shock response.

  4. A hairy-leaf gene, BLANKET LEAF, of wild Oryza nivara increases photosynthetic water use efficiency in rice.

    Science.gov (United States)

    Hamaoka, Norimitsu; Yasui, Hideshi; Yamagata, Yoshiyuki; Inoue, Yoko; Furuya, Naruto; Araki, Takuya; Ueno, Osamu; Yoshimura, Atsushi

    2017-12-01

    High water use efficiency is essential to water-saving cropping. Morphological traits that affect photosynthetic water use efficiency are not well known. We examined whether leaf hairiness improves photosynthetic water use efficiency in rice. A chromosome segment introgression line (IL-hairy) of wild Oryza nivara (Acc. IRGC105715) with the genetic background of Oryza sativa cultivar 'IR24' had high leaf pubescence (hair). The leaf hairs developed along small vascular bundles. Linkage analysis in BC 5 F 2 and F 3 populations showed that the trait was governed by a single gene, designated BLANKET LEAF (BKL), on chromosome 6. IL-hairy plants had a warmer leaf surface in sunlight, probably due to increased boundary layer resistance. They had a lower transpiration rate under moderate and high light intensities, resulting in higher photosynthetic water use efficiency. Introgression of BKL on chromosome 6 from O. nivara improved photosynthetic water use efficiency in the genetic background of IR24.

  5. Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.)

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, M. [Department of Environmental Chemistry, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)]. E-mail: simple@affrc.go.jp; Ae, N. [Department of Environmental Chemistry, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)]. E-mail: aenoriha@kobe-u.ac.jp; Ishikawa, S. [Department of Environmental Chemistry, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)]. E-mail: isatoru@niaes.affrc.go.jp

    2007-01-15

    Selecting a phytoextraction plant with high Cd-accumulating ability based on the plant's compatibility with mechanized cultivation techniques may yield more immediately practical results than selection based on high tolerance to Cd. Rice (Oryza sativa L., cv. Nipponbare and Milyang 23), soybean (Glycine max [L.] Merr., cv. Enrei and Suzuyutaka), and maize (Zea mays L., cv. Gold Dent) were grown on one Andosol and two Fluvisols with low concentration of Cd contamination ranging from 0.83 to 4.29 mg Cd kg{sup -1}, during 60 days in pots (550 mL) placed in a greenhouse. Shoot Cd uptake was as follows: Gold Dent < Enrei and Nipponbare < Suzuyutaka and Milyang 23. Several soil Cd fractions after Milyang 23 harvesting decreased most. Milyang 23 accumulated 10-15% of the total soil Cd in its shoot. The Milyang 23 rice is thus promising for phytoextraction of Cd from paddy soils with low contamination level. - Milyang 23 rice (Oryza sativa L.) accumulated 10-15% of the total soil Cd in its shoot.

  6. Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.)

    International Nuclear Information System (INIS)

    Murakami, M.; Ae, N.; Ishikawa, S.

    2007-01-01

    Selecting a phytoextraction plant with high Cd-accumulating ability based on the plant's compatibility with mechanized cultivation techniques may yield more immediately practical results than selection based on high tolerance to Cd. Rice (Oryza sativa L., cv. Nipponbare and Milyang 23), soybean (Glycine max [L.] Merr., cv. Enrei and Suzuyutaka), and maize (Zea mays L., cv. Gold Dent) were grown on one Andosol and two Fluvisols with low concentration of Cd contamination ranging from 0.83 to 4.29 mg Cd kg -1 , during 60 days in pots (550 mL) placed in a greenhouse. Shoot Cd uptake was as follows: Gold Dent < Enrei and Nipponbare < Suzuyutaka and Milyang 23. Several soil Cd fractions after Milyang 23 harvesting decreased most. Milyang 23 accumulated 10-15% of the total soil Cd in its shoot. The Milyang 23 rice is thus promising for phytoextraction of Cd from paddy soils with low contamination level. - Milyang 23 rice (Oryza sativa L.) accumulated 10-15% of the total soil Cd in its shoot

  7. The defense-responsive genes showing enhanced and repressed expression after pathogen infection in rice (Oryza sativa L.)

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Bin(周斌); PENG; Kaiman(彭开蔓); CHU; Zhaohui(储昭晖); WANG; Shiping(王石平); ZHANG; Qifa(张启发)

    2002-01-01

    Despite large numbers of studies about defense response, processes involved in the resistance of plants to incompatible pathogens are still largely uncharacterized. The objective of this study was to identify genes involved in defense response by cDNA array analysis and to gain knowledge about the functions of the genes involved in defense response. Approximately 20000 rice cDNA clones were arrayed on nylon filters. RNA samples isolated from different rice lines after infection with incompatible strains or isolates of Xanthomonas oryzae pv. oryzae or Pyricularia grisea, respectively, were used to synthesize cDNA as probes for screening the cDNA arrays. A total of 100 differentially expressed unique sequences were identified from 5 pathogen-host combinations. Fifty-three sequences were detected as showing enhanced expression and 47 sequences were detected as showing repressed expression after pathogen infection. Sequence analysis revealed that most of the 100 sequences had various degrees of homology with genes in databases which encode or putatively encode transcription regulating proteins, translation regulating proteins, transport proteins, kinases, metabolic enzymes, and proteins involved in other functions. Most of the genes have not been previously reported as being involved in the disease resistance response in rice. The results from cDNA arrays, reverse transcription-polymerase chain reaction, and RNA gel blot analysis suggest that activation or repression of most of these genes might occur commonly in the defense response.

  8. Xanthomonas oryzae pv. oryzae TALE proteins recruit OsTFIIAγ1 to compensate for the absence of OsTFIIAγ5 in bacterial blight in rice.

    Science.gov (United States)

    Ma, Wenxiu; Zou, Lifang; Ji, Zhiyuan; Xu, Xiameng; Xu, Zhengyin; Yang, Yangyang; Alfano, James R; Chen, Gongyou

    2018-04-28

    Xanthomonas oryzae pv. oryzae (Xoo), causal agent of bacterial blight (BB) of rice, uses transcription activator-like effectors (TALEs) to interact with the basal transcription factor gama subunit OsTFIIAγ5 (Xa5) and activates transcription of host genes. However, how OsTFIIAγ1, the other OsTFIIAγ protein, functions in the presence of TALEs remains unclear. In this study, we show that OsTFIIAγ1 plays a compensatory role in the absence of Xa5. The expression of OsTFIIAγ1, which is activated by TALE PthXo7, increased the expression of host genes targeted by avirulent and virulent TALEs. Defective OsTFIIAγ1 rice lines showed reduced expression of the TALE-targeted susceptibility (S) genes, OsSWEET11 and OsSWEET14, which resulted in increased BB resistance. Selected TALEs (PthXo1, AvrXa7, and AvrXa27) were evaluated for interactions with OsTFIIAγ1, Xa5 and xa5 (naturally-occurring mutant form of Xa5) using biomolecular fluorescence complementation (BiFC) and microscale thermophoresis (MST). BiFC and MST demonstrated that the three TALEs bind Xa5 and OsTFIIAγ1 with a stronger affinity than xa5. These results provide insight into the complex roles of OsTFIIAγ1 and OsTFIIAγ5 in TALE-mediated host gene transcription. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.

  9. Immediate Genetic and Epigenetic Changes in F1 Hybrids Parented by Species with Divergent Genomes in the Rice Genus (Oryza.

    Directory of Open Access Journals (Sweden)

    Ying Wu

    Full Text Available Inter-specific hybridization occurs frequently in higher plants, and represents a driving force of evolution and speciation. Inter-specific hybridization often induces genetic and epigenetic instabilities in the resultant homoploid hybrids or allopolyploids, a phenomenon known as genome shock. Although genetic and epigenetic consequences of hybridizations between rice subspecies (e.g., japonica and indica and closely related species sharing the same AA genome have been extensively investigated, those of inter-specific hybridizations between more remote species with different genomes in the rice genus, Oryza, remain largely unknown.We investigated the immediate chromosomal and molecular genetic/epigenetic instability of three triploid F1 hybrids produced by inter-specific crossing between species with divergent genomes of Oryza by genomic in situ hybridization (GISH and molecular marker analysis. Transcriptional and transpositional activity of several transposable elements (TEs and methylation stability of their flanking regions were also assessed. We made the following principle findings: (i all three triploid hybrids are stable in both chromosome number and gross structure; (ii stochastic changes in both DNA sequence and methylation occurred in individual plants of all three triploid hybrids, but in general methylation changes occurred at lower frequencies than genetic changes; (iii alteration in DNA methylation occurred to a greater extent in genomic loci flanking potentially active TEs than in randomly sampled loci; (iv transcriptional activation of several TEs commonly occurred in all three hybrids but transpositional events were detected in a genetic context-dependent manner.Artificially constructed inter-specific hybrids of remotely related species with divergent genomes in genus Oryza are chromosomally stable but show immediate and highly stochastic genetic and epigenetic instabilities at the molecular level. These novel hybrids might

  10. Evaluation of estimated daily intake (EDI) of cadmium and lead for rice (Oryza sativa L.) in calcareous soils.

    Science.gov (United States)

    Chamannejadian, Ali; Sayyad, Gholamabbas; Moezzi, Abdolamir; Jahangiri, Alireza

    2013-04-08

    The excessive amounts of cadmium and lead in food chain can cause health problems for humans and ecosystem. Rice is an important food in human diet. Therefore this study was conducted in order to investigate cadmium and Lead concentrations in seed rice (Oryza saliva) of paddy fields in southwest of Iran. A total of 70 rice seed samples were collected from paddy fields in five regions of Khuzestan province, Southwest Iran, during harvesting time. In the samples cadmium and Lead concentrations were measured. To assess the daily intake of Cadmium and Lead by rice, daily consumption of rice was calculated. The results showed that average concentrations of Cadmium and Lead in rice seeds were 273.6 and 121.8 μg/kg, respectively. Less than 72% of rice seed samples had Cadmium concentrations above 200 μg/kg (i.e. Guide value for cadmium); and less than 3% had Lead concentrations above 150 μg/kg (i.e. Guide value for Lead). The estimated daily intakes of cadmium by the local population was calculated to 0.59 μg/day kg bw, which corresponds to 59% of the tolerable daily intakes (i.e. 1 μg/day kg bw). Eleven out of 70 samples (15.71%) exceed the tolerable daily intakes. The dietary intakes for Lead in the local population ranged from 0.22 to 0.47 μg/day kg bw. Tolerable daily intakes for Lead is 3.6 μg/day kg bw. As a whole, long term consumption of the local rice may bear high risk of heavy metal exposure to the consumer in the study region.

  11. Genome wide re-sequencing of newly developed Rice Lines from common wild rice (Oryza rufipogon Griff.) for the identification of NBS-LRR genes.

    Science.gov (United States)

    Liu, Wen; Ghouri, Fozia; Yu, Hang; Li, Xiang; Yu, Shuhong; Shahid, Muhammad Qasim; Liu, Xiangdong

    2017-01-01

    Common wild rice (Oryza rufipogon Griff.) is an important germplasm for rice breeding, which contains many resistance genes. Re-sequencing provides an unprecedented opportunity to explore the abundant useful genes at whole genome level. Here, we identified the nucleotide-binding site leucine-rich repeat (NBS-LRR) encoding genes by re-sequencing of two wild rice lines (i.e. Huaye 1 and Huaye 2) that were developed from common wild rice. We obtained 128 to 147 million reads with approximately 32.5-fold coverage depth, and uniquely covered more than 89.6% (> = 1 fold) of reference genomes. Two wild rice lines showed high SNP (single-nucleotide polymorphisms) variation rate in 12 chromosomes against the reference genomes of Nipponbare (japonica cultivar) and 93-11 (indica cultivar). InDels (insertion/deletion polymorphisms) count-length distribution exhibited normal distribution in the two lines, and most of the InDels were ranged from -5 to 5 bp. With reference to the Nipponbare genome sequence, we detected a total of 1,209,308 SNPs, 161,117 InDels and 4,192 SVs (structural variations) in Huaye 1, and 1,387,959 SNPs, 180,226 InDels and 5,305 SVs in Huaye 2. A total of 44.9% and 46.9% genes exhibited sequence variations in two wild rice lines compared to the Nipponbare and 93-11 reference genomes, respectively. Analysis of NBS-LRR mutant candidate genes showed that they were mainly distributed on chromosome 11, and NBS domain was more conserved than LRR domain in both wild rice lines. NBS genes depicted higher levels of genetic diversity in Huaye 1 than that found in Huaye 2. Furthermore, protein-protein interaction analysis showed that NBS genes mostly interacted with the cytochrome C protein (Os05g0420600, Os01g0885000 and BGIOSGA038922), while some NBS genes interacted with heat shock protein, DNA-binding activity, Phosphoinositide 3-kinase and a coiled coil region. We explored abundant NBS-LRR encoding genes in two common wild rice lines through genome wide re

  12. LHD1, an allele of DTH8/Ghd8, controls late heading date in common wild rice (Oryza rufipogon).

    Science.gov (United States)

    Dai, Xiaodong; Ding, Younian; Tan, Lubin; Fu, Yongcai; Liu, Fengxia; Zhu, Zuofeng; Sun, Xianyou; Sun, Xuewen; Gu, Ping; Cai, Hongwei; Sun, Chuanqing

    2012-10-01

    Flowering at suitable time is very important for plants to adapt to complicated environments and produce their seeds successfully for reproduction. In rice (Oryza rufipogon Griff.) photoperiod regulation is one of the important factors for controlling heading date. Common wild rice, the ancestor of cultivated rice, exhibits a late heading date and a more sensitive photoperiodic response than cultivated rice. Here, through map-based cloning, we identified a major quantitative trait loci (QTL) LHD1 (Late Heading Date 1), an allele of DTH8/Ghd8, which controls the late heading date of wild rice and encodes a putative HAP3/NF-YB/CBF-A subunit of the CCAAT-box-binding transcription factor. Sequence analysis revealed that several variants in the coding region of LHD1 were correlated with a late heading date, and a further complementary study successfully rescued the phenotype. These results suggest that a functional site for LHD1 could be among those variants present in the coding region. We also found that LHD1 could down-regulate the expression of several floral transition activators such as Ehd1, Hd3a and RFT1 under long-day conditions, but not under short-day conditions. This indicates that LHD1 may delay flowering by repressing the expression of Ehd1, Hd3a and RFT1 under long-day conditions. © 2012 Institute of Botany, Chinese Academy of Sciences.

  13. Detection of Alien Oryza punctata Kotschy Chromosomes in Rice, Oryza sativa L., by Genomic in situ Hybridization

    OpenAIRE

    Yasui, Hideshi; Nonomura, Ken-ichi; Iwata, Nobuo; 安井, 秀; 野々村, 賢一; 岩田, 伸夫

    1997-01-01

    Genomic in situ hybridization (GIS H) using total Oryza punctata Kotschy genomic DNA as a probe was applied to detect alien chromosomes transferred from O. punctata (W1514: 2n=2x=24: BB) to O. sativa Japonica cultivar, Nipponbare (2n=2x=24: AA). Only 12 chromosomes in the interspecific hybrids (2n=3x=36: AAB) between autotetraploid of O. sativa cultivar Nipponbare and a diploid strain of O. punctata (W1514) showed intense staining by FITC in mitotic metaphase spreads. Only one homologous pair...

  14. Lowered Diversity and Increased Inbreeding Depression within Peripheral Populations of Wild Rice Oryza rufipogon.

    Science.gov (United States)

    Gao, Li-Zhi; Gao, Cheng-Wen

    2016-01-01

    The distribution of genetic variability from the interior towards the periphery of a species' range is of great interest to evolutionary biologists. Although it has been long presumed that population genetic variation should decrease as a species' range is approached, results of empirical investigations still remain ambiguous. Knowledge regarding patterns of genetic variability as well as affected factors is particularly not conclusive in plants. To determine genetic divergence in peripheral populations of the wild rice Oryza rufipogon Griff. from China, genetic diversity and population structure were studied in five northern & northeastern peripheral and 16 central populations using six microsatellite loci. We found that populations resided at peripheries of the species possessed markedly decreased microsatellite diversity than those located in its center. Population size was observed to be positively correlated with microsatellite diversity. Moreover, there are significantly positive correlations between levels of microsatellite diversity and distances from the northern and northeastern periphery of this species. To investigate genetic structure and heterozygosity variation between generations of O. rufipogon, a total of 2382 progeny seeds from 186 maternal families were further assayed from three peripheral and central populations, respectively. Peripheral populations exhibited significantly lower levels of heterozygosities than central populations for both seed and maternal generations. In comparisons with maternal samples, significantly low observed heterozygosity (HO) and high heterozygote deficit within populations (FIS) values were detected in seed samples from both peripheral and central populations. Significantly lower observed heterozygosity (HO) and higher FIS values were further observed in peripheral populations than those in central populations for seed samples. The results indicate an excess of homozygotes and thus high inbreeding depression in

  15. Determination of residues of imazapic and imazaphic in rice (Oryza sativa) by HPLC

    International Nuclear Information System (INIS)

    Silva Trejos, Paulina

    2005-01-01

    A requirement to introduce a pesticide in the harvest of any product for the human consume is imperative to determine that it will not leave residues that can injure the human healthy. In this research the residues of imazapic and imazapyr, both systemic herbicides of the imidazolinone family, were determined in rice (Oryza sativa) by extraction of the samples with the extraction solvent prepared by mixing 40 mL of HC1 1 N, 2400 mL of methanol pesticide grade and 1560 mL of bidistilled water. An aliquot of the extract was concentrated approximately to 10 mL in a rotary evaporator; water was added to the concentrated extract and dissolution to 10 % m/v of lead acetate and it was regulated the pH to 6,2 with dissolution of NaOH 1 N. This dissolution was centrifuged and from the floating liquid and aliquot was measured to regulate the pH to 2,1 with dissolution of HC1 1 N. After it was extracted with dichlormethan and the join extracts were carried to dryness in the rotary evaporator. The residues were dissolved in ultrapure water of pH 2,5 and they were injected in HPLC chromatograph with a C 8 column. The validation of the analytical method obtained were: 5,1 x 10 -2 to 5,1 x 10 -3 μg/mL for linearity; (1,5 x 10 -3 , 5,0 x 10 -3 , 7,8 x 10 -3 , 2,6 x 10 -2 ) μg/mL for imazapyr and imazapic for the detection and quantification limits equivalent to 5,0 x 10 -2 mg/kg in rice; the percent of recovery were 80 % and 125 %, for imazapyr and imazapic and finally, the precision for the retention time, the area and for concentration were: 0,003 % standard deviations, 18 500 and 0,008, respectively. (author) [es

  16. ALOGAMIA EM ARROZ (Oryza sativa L. E RELAÇÃO COM CARACTERÍSTICAS AGRONÔMICAS RICE (Oryza sativa L. ALLOGAMY AND RELATIONSHIP WITH AGRONOMIC TRAITS

    Directory of Open Access Journals (Sweden)

    Péricles de Carvalho Ferreira Neves

    2007-09-01

    ="western" align="justify">Hybrid rice seed production, following the Chinese technique, requires a great amount of hand labor and is expensive. Alternatives to increase the outcrossing rate may help to reduce cost. Embrapa Rice and Beans´ hybrid rice breeding program transferred allogamic traits (anther and stigma lengths from Oryza longistaminata A. Chev. to the cultivated species Oryza sativa L. The objective of this study was to correlate allogamic and agronomic characters. O. longistaminata was crossed to O. sativa and then backcrossed twice to the cultivated line. Twenty five F3:6-derived lines were produced and correlation studies between allogamic (stigma, anther, and spikelet length and agronomic traits (panicle length, sterility, shattering, awn length, plant height, tiller per plant, and panicle exsertion were performed. The experimental design was a randomized complete block with four replications. The trials were sown in two environments within the Embrapa Rice and Beans´ experimental station. In general, there were poor genotypic and phenotypic correlations between allogamic and agronomic traits. Highly significant associations were found between stigma and anther length, stigma and awn length anther and awn length, and panicle length and plant height.

    KEY-WORDS: Oryza longistaminata; outcrossing rate; hybrid rice; seed production.

  17. Evaluation of Genetic Diversity and Development of a Core Collection of Wild Rice (Oryza rufipogon Griff.) Populations in China.

    Science.gov (United States)

    Liu, Wen; Shahid, Muhammad Qasim; Bai, Lin; Lu, Zhenzhen; Chen, Yuhong; Jiang, Lan; Diao, Mengyang; Liu, Xiangdong; Lu, Yonggen

    2015-01-01

    Common wild rice (Oryza rufipogon Griff.), the progenitor of Asian cultivated rice (O. sativa L.), is endangered due to habitat loss. The objectives of this research were to evaluate the genetic diversity of wild rice species in isolated populations and to develop a core collection of representative genotypes for ex situ conservation. We collected 885 wild rice accessions from eight geographically distinct regions and transplanted these accessions in a protected conservation garden over a period of almost two decades. We evaluated these accessions for 13 morphological or phenological traits and genotyped them for 36 DNA markers evenly distributed on the 12 chromosomes. The coefficient of variation of quantitative traits was 0.56 and ranged from 0.37 to 1.06. SSR markers detected 206 different alleles with an average of 6 alleles per locus. The mean polymorphism information content (PIC) was 0.64 in all populations, indicating that the marker loci have a high level of polymorphism and genetic diversity in all populations. Phylogenetic analyses based on morphological and molecular data revealed remarkable differences in the genetic diversity of common wild rice populations. The results showed that the Zengcheng, Gaozhou, and Suixi populations possess higher levels of genetic diversity, whereas the Huilai and Boluo populations have lower levels of genetic diversity than do the other populations. Based on their genetic distance, 130 accessions were selected as a core collection that retained over 90% of the alleles at the 36 marker loci. This genetically diverse core collection will be a useful resource for genomic studies of rice and for initiatives aimed at developing rice with improved agronomic traits.

  18. Growth and Cd uptake by rice (Oryza sativa) in acidic and Cd-contaminated paddy soils amended with steel slag.

    Science.gov (United States)

    He, Huaidong; Tam, Nora F Y; Yao, Aijun; Qiu, Rongliang; Li, Wai Chin; Ye, Zhihong

    2017-12-01

    Contamination of rice (Oryza sativa) by Cd is of great concern. Steel slag could be used to amend Cd-contaminated soils and make them safe for cereal production. This work was conducted to study the effects of steel slag on Cd uptake and growth of rice plants in acidic and Cd-contaminated paddy soils and to determine the possible mechanisms behind these effects. Pot (rhizobag) experiments were conducted using rice plants grown on two acidic and Cd-contaminated paddy soils with or without steel slag amendment. Steel slag amendment significantly increased grain yield by 36-45% and root catalase activity, and decreased Cd concentrations in brown rice by 66-77% compared with the control, in both soils. Steel slag amendment also markedly decreased extractable soil Cd, Cd concentrations in pore-water and Cd translocation from roots to above-ground parts. It also significantly increased soil pH, extractable Si and Ca in soils and Ca concentrations in roots. Significant positive correlations were found between extractable soil Cd and Cd concentrations in rice tissues, but it was negatively correlated with soil pH and extractable Si. Calcium in root tissues significantly and negatively correlated with Cd translocation factors from roots to straw. Overall, steel slag amendment not only significantly promoted rice growth but decreased Cd accumulation in brown rice. These benefits appear to be related to improvements in soil conditions (e.g. increasing pH, extractable Si and Ca), a reduction in extractable soil Cd, and suppression of Cd translocation from roots to above-ground parts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.).

    Science.gov (United States)

    Andrés-Bordería, Amparo; Andrés, Fernando; Garcia-Molina, Antoni; Perea-García, Ana; Domingo, Concha; Puig, Sergi; Peñarrubia, Lola

    2017-09-01

    Copper deficiency and excess differentially affect iron homeostasis in rice and overexpression of the Arabidopsis high-affinity copper transporter COPT1 slightly increases endogenous iron concentration in rice grains. Higher plants have developed sophisticated mechanisms to efficiently acquire and use micronutrients such as copper and iron. However, the molecular mechanisms underlying the interaction between both metals remain poorly understood. In the present work, we study the effects produced on iron homeostasis by a wide range of copper concentrations in the growth media and by altered copper transport in Oryza sativa plants. Gene expression profiles in rice seedlings grown under copper excess show an altered expression of genes involved in iron homeostasis compared to standard control conditions. Thus, ferritin OsFER2 and ferredoxin OsFd1 mRNAs are down-regulated whereas the transcriptional iron regulator OsIRO2 and the nicotianamine synthase OsNAS2 mRNAs rise under copper excess. As expected, the expression of OsCOPT1, which encodes a high-affinity copper transport protein, as well as other copper-deficiency markers are down-regulated by copper. Furthermore, we show that Arabidopsis COPT1 overexpression (C1 OE ) in rice causes root shortening in high copper conditions and under iron deficiency. C1 OE rice plants modify the expression of the putative iron-sensing factors OsHRZ1 and OsHRZ2 and enhance the expression of OsIRO2 under copper excess, which suggests a role of copper transport in iron signaling. Importantly, the C1 OE rice plants grown on soil contain higher endogenous iron concentration than wild-type plants in both brown and white grains. Collectively, these results highlight the effects of rice copper status on iron homeostasis, which should be considered to obtain crops with optimized nutrient concentrations in edible parts.

  20. Analysis of nucleotide diversity among alleles of the major bacterial blight resistance gene Xa27 in cultivars of rice (Oryza sativa) and its wild relatives.

    Science.gov (United States)

    Bimolata, Waikhom; Kumar, Anirudh; Sundaram, Raman Meenakshi; Laha, Gouri Shankar; Qureshi, Insaf Ahmed; Reddy, Gajjala Ashok; Ghazi, Irfan Ahmad

    2013-08-01

    Xa27 is one of the important R-genes, effective against bacterial blight disease of rice caused by Xanthomonas oryzae pv. oryzae (Xoo). Using natural population of Oryza, we analyzed the sequence variation in the functionally important domains of Xa27 across the Oryza species. DNA sequences of Xa27 alleles from 27 rice accessions revealed higher nucleotide diversity among the reported R-genes of rice. Sequence polymorphism analysis revealed synonymous and non-synonymous mutations in addition to a number of InDels in non-coding regions of the gene. High sequence variation was observed in the promoter region including the 5'UTR with 'π' value 0.00916 and 'θ w ' = 0.01785. Comparative analysis of the identified Xa27 alleles with that of IRBB27 and IR24 indicated the operation of both positive selection (Ka/Ks > 1) and neutral selection (Ka/Ks ≈ 0). The genetic distances of alleles of the gene from Oryza nivara were nearer to IRBB27 as compared to IR24. We also found the presence of conserved and null UPT (upregulated by transcriptional activator) box in the isolated alleles. Considerable amino acid polymorphism was localized in the trans-membrane domain for which the functional significance is yet to be elucidated. However, the absence of functional UPT box in all the alleles except IRBB27 suggests the maintenance of single resistant allele throughout the natural population.

  1. Role of hydroperoxide lyase in white-backed planthopper (Sogatella furcifera Horváth)-induced resistance to bacterial blight in rice, Oryza sativa L.

    Science.gov (United States)

    Gomi, Kenji; Satoh, Masaru; Ozawa, Rika; Shinonaga, Yumi; Sanada, Sachiyo; Sasaki, Katsutomo; Matsumura, Masaya; Ohashi, Yuko; Kanno, Hiroo; Akimitsu, Kazuya; Takabayashi, Junji

    2010-01-01

    A pre-infestation of the white-backed planthopper (WBPH), Sogatella furcifera Horváth, conferred resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) in rice (Oryza sativa L.) under both laboratory and field conditions. The infestation of another planthopper species, the brown planthopper (BPH) Nilaparvata lugens Stål, did not significantly reduce the incidence of bacterial blight symptoms. A large-scale screening using a rice DNA microarray and quantitative RT-PCR revealed that WBPH infestation caused the upregulation of more defence-related genes than did BPH infestation. Hydroperoxide lyase 2 (OsHPL2), an enzyme for producing C(6) volatiles, was upregulated by WBPH infestation, but not by BPH infestation. One C(6) volatile, (E)-2-hexenal, accumulated in rice after WBPH infestation, but not after BPH infestation. A direct application of (E)-2-hexenal to a liquid culture of Xoo inhibited the growth of the bacterium. Furthermore, a vapour treatment of rice plants with (E)-2-hexenal induced resistance to bacterial blight. OsHPL2-overexpressing transgenic rice plants exhibited increased resistance to bacterial blight. Based on these data, we conclude that OsHPL2 and its derived (E)-2-hexenal play some role in WBPH-induced resistance in rice.

  2. The Asian Rice Gall Midge (Orseolia oryzae Mitogenome Has Evolved Novel Gene Boundaries and Tandem Repeats That Distinguish Its Biotypes.

    Directory of Open Access Journals (Sweden)

    Isha Atray

    Full Text Available The complete mitochondrial genome of the Asian rice gall midge, Orseolia oryzae (Diptera; Cecidomyiidae was sequenced, annotated and analysed in the present study. The circular genome is 15,286 bp with 13 protein-coding genes, 22 tRNAs and 2 ribosomal RNA genes, and a 578 bp non-coding control region. All protein coding genes used conventional start codons and terminated with a complete stop codon. The genome presented many unusual features: (1 rearrangement in the order of tRNAs as well as protein coding genes; (2 truncation and unusual secondary structures of tRNAs; (3 presence of two different repeat elements in separate non-coding regions; (4 presence of one pseudo-tRNA gene; (5 inversion of the rRNA genes; (6 higher percentage of non-coding regions when compared with other insect mitogenomes. Rearrangements of the tRNAs and protein coding genes are explained on the basis of tandem duplication and random loss model and why intramitochondrial recombination is a better model for explaining rearrangements in the O. oryzae mitochondrial genome is discussed. Furthermore, we evaluated the number of iterations of the tandem repeat elements found in the mitogenome. This led to the identification of genetic markers capable of differentiating rice gall midge biotypes and the two Orseolia species investigated.

  3. Two novel transcriptional regulators are essential for infection-related morphogenesis and pathogenicity of the rice blast fungus Magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Xia Yan

    2011-12-01

    Full Text Available The cyclic AMP-dependent protein kinase A signaling pathway plays a major role in regulating plant infection by the rice blast fungus Magnaporthe oryzae. Here, we report the identification of two novel genes, MoSOM1 and MoCDTF1, which were discovered in an insertional mutagenesis screen for non-pathogenic mutants of M. oryzae. MoSOM1 or MoCDTF1 are both necessary for development of spores and appressoria by M. oryzae and play roles in cell wall differentiation, regulating melanin pigmentation and cell surface hydrophobicity during spore formation. MoSom1 strongly interacts with MoStu1 (Mstu1, an APSES transcription factor protein, and with MoCdtf1, while also interacting more weakly with the catalytic subunit of protein kinase A (CpkA in yeast two hybrid assays. Furthermore, the expression levels of MoSOM1 and MoCDTF1 were significantly reduced in both Δmac1 and ΔcpkA mutants, consistent with regulation by the cAMP/PKA signaling pathway. MoSom1-GFP and MoCdtf1-GFP fusion proteins localized to the nucleus of fungal cells. Site-directed mutagenesis confirmed that nuclear localization signal sequences in MoSom1 and MoCdtf1 are essential for their sub-cellular localization and biological functions. Transcriptional profiling revealed major changes in gene expression associated with loss of MoSOM1 during infection-related development. We conclude that MoSom1 and MoCdtf1 functions downstream of the cAMP/PKA signaling pathway and are novel transcriptional regulators associated with cellular differentiation during plant infection by the rice blast fungus.

  4. Ultrastructure of Oryza glumaepatula , a wild rice species endemic of tropical America

    Directory of Open Access Journals (Sweden)

    Ethel Sánchez

    2005-06-01

    Full Text Available Oryza glumaepatula is a perennial wild rice species,endemic to tropical America, previously known as the Latin American race of Oryza rufipogon .In Costa Rica, it is found in the northern region of the country, mainly in the wetland of the Medio Queso River, Los Chiles, Alajuela. It is diploid, of AA type genome and because of its genetic relatedness to cultivated rice it is included in the O.sativa complex. We describe the ultrastructure of leaf blade, spikelet, ligule and auricles. Special emphasis is given to those traits of major taxonomic value for O.glumaepatula and to those characters that distinguish this species from O. rufipogon and O. sativa . O. glumaepatula has a leaf blade covered with tombstone-shaped, oblong and spheroid epicuticular wax papillae. It has diamond-shaped stomata surrounded by spherical papillae, rows of zipper-like silica cells, bulky prickle trichomes of ca .40 mu m in length and small hirsute trichomes of ca. 32 mu m in length.The central vein is covered with large,globular papillae of ca. 146 mu m in length,a characteristic that distinguishes this species from O.rufipogon and O.sativa. The border of the leaf blade exhibits a row of even-sized bulky prickle trichomes of ca .42.5 mu m in length.Auricles have attenuated trichomes of ca .5.5 mm in length on the edges and small bicellular trichomes of 120 mu m in length on the surface.The ligule has a large number of short attenuated trichomes on its surface of 100 mu m in length.These latter two traits have important taxonomic value since they were found in O.glumaepatula but not found in O.sativa or in O.rufipogon . The spikelet has the typical morphology of the Oryza genus. Fertile lemmas have abundant spines, a trait shared with O.rufipogon but not with O.sativa. The sterile lemmas are wing-shaped with serrated borders,a characteristic that distinguishes this species from O. rufipogon and O.sativa. All the ultrastructure characters observed in O.glumaepatula from

  5. Ultrastructural morphologic description of the wild rice species Oryza latifolia (Poaceae in Costa Rica

    Directory of Open Access Journals (Sweden)

    Ethel Sánchez

    2003-06-01

    Full Text Available The wild rice species Oryza latifolia is endemic to Tropical America, allotetraploid and has a CCDD genome type. It belongs to the officinalis group of the genus Oryza. This species is widely distributed through-out the lowlands of Costa Rica and it is found on different life zones, having great morphologic diversity. The purpose of this research is to perform a morphologic description of O. latifolia samples of three Costa Rican localities (Carara, Liberia and Cañas and to see if the phenotypic diversity of the species is reflected at the ultra-structure level. Structures such as the leaf blade, ligule, auricles and spikelet were analyzed. Leaf blade morphology of the specimens from the three localities is characterized by the presence of diamond-shaped stomata with papillae, zipper-like rows of silica cells; a variety of evenly distributed epicuticular wax papillae and bulky prickle trichomes. The central vein of the leaf blade from the Cañas populations is glabrous, while those from Carara and Liberia have abundant papillae. There are also differences among the borders of the leaf blade between these locations. Cañas and Liberia present alternating large and small prickle trichomes ca. 81 and 150 µm, while Carara exhibits even sized prickle trichomes of ca. 93 µm. Auricles from Cañas are rectangular and present long trichomes along the surface ca. 1.5 mm, while those of Liberia and Carara wrap the culm and exhibit trichomes only in the borders. The ligule from the plants of Carara has an acute distal tip, while that of Cañas and Liberia is blunt. The Liberia spikelet has large lignified spines while Cañas and Carara show flexible trichomes.La especie silvestre Oryza latifolia es endémica de América, tetraploide y de genoma CCDD. Pertenece a las especies del género Oryza del grupo officinalis. Presenta una amplia distribución en las tierras bajas de Costa Rica y se le encuentra en varias zonas de vida, mostrando una gran diversidad

  6. Molecular cloning, functional characterization and expression analysis of a novel monosaccharide transporter gene OsMST6 from rice (Oryza sativa L.)

    NARCIS (Netherlands)

    Wang, Y.; Xiao, Y.; Zhang, Y.; Chai, C.; Wei, G.; Wei, X.; Xu, H.; Wang, M.; Ouwerkerk, P.B.F.; Zhu, Z.

    2008-01-01

    Monosaccharides transporters play important roles in assimilate supply for sink tissue development. In this study, a new monosaccharide transporter gene OsMST6 was identified from rice (Oryza sativa L.). The predicted OsMST6 protein shows typical features of sugar transporters and shares 79.6%

  7. African rice (Oryza glaberrima) cultivation in the Togo Hills: ecological and socio-cultural cues in farmer seed selection and development

    NARCIS (Netherlands)

    Teeken, B.W.E.

    2015-01-01

    Abstract

    Teeken B (2015). African rice (Oryza glaberrima) cultivation in the Togo Hills: ecological and socio-cultural cues in farmer seed selection and development. PhD thesis, Wageningen University, The Netherlands, 306 pp. The low adoption rates of

  8. Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress

    International Nuclear Information System (INIS)

    Guo, B.; Liang, Y.C.; Zhu, Y.G.; Zhao, F.J.

    2007-01-01

    Time-dependent changes in enzymatic and non-enzymatic antioxidants, and lipid peroxidation were investigated in roots of rice (Oryza sativa) grown hydroponically with Cd, with or without pretreatment of salicylic acid (SA). Exposure to 50 μM Cd significantly decreased root growth, and activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), but increased the concentrations of H 2 O 2 , malondialdehyde (MDA), ascorbic acid (AsA), glutathione (GSH) and non-protein thiols (NPT). However, pretreatment with 10 μM SA enhanced the activities of antioxidant enzymes and the concentrations of non-enzymatic antioxidants, but lowered the concentrations of H 2 O 2 and MDA in the Cd-stressed rice compared with the Cd treatment alone. Pretreatment with SA alleviated the Cd-induced inhibition of root growth. The results showed that pretreatment with SA enhanced the antioxidant defense activities in Cd-stressed rice, thus alleviating Cd-induced oxidative damage and enhancing Cd tolerance. The possible mechanism of SA-induced H 2 O 2 signaling in mediating Cd tolerance was discussed. - Pretreatment with SA enhanced the antioxidant defense activities in Cd-stressed rice, thus alleviating Cd-induced oxidative damage and enhancing Cd tolerance

  9. Black Rice (Oryza sativa L., Poaceae) Extract Reduces Hippocampal Neuronal Cell Death Induced by Transient Global Cerebral Ischemia in Mice.

    Science.gov (United States)

    Hwang, Sun-Nyoung; Kim, Jae-Cheon; Bhuiyan, Mohammad Iqbal Hossain; Kim, Joo Youn; Yang, Ji Seon; Yoon, Shin Hee; Yoon, Kee Dong; Kim, Seong Yun

    2018-04-01

    Rice is the most commonly consumed grain in the world. Black rice has been suggested to contain various bioactive compounds including anthocyanin antioxidants. There is currently little information about the nutritional benefits of black rice on brain pathology. Here, we investigated the effects of black rice ( Oryza sativa L ., Poaceae) extract (BRE) on the hippocampal neuronal damage induced by ischemic insult. BRE (300 mg/kg) was orally administered to adult male C57BL/6 mice once a day for 21 days. Bilateral common carotid artery occlusion (BCCAO) was performed for 23 min on the 8th day of BRE or vehicle administration. Histological analyses conducted on the 22nd day of BRE or vehicle administration revealed that administering BRE profoundly attenuated neuronal cell death, inhibited reactive astrogliosis, and prevented loss of glutathione peroxidase expression in the hippocampus when compared to vehicle treatment. In addition, BRE considerably ameliorated BCCAO-induced memory impairment on the Morris water maze test from the 15th day to the 22nd day of BRE or vehicle administration. These results indicate that chronic administration of BRE is potentially beneficial in cerebral ischemia.

  10. Dispersal distance of rice ( Oryza Sativa L.) pollen at the Tana River ...

    African Journals Online (AJOL)

    Rice is a staple food in Kenya and its production needs to be increased. Genetically modified (GM) rice may be a solution, but before it can be introduced, potential ecological impacts, such as pollen mediated gene flow from GM rice to non-GM rice or to its wild indigenous relatives, need to be understood. Pollen dispersal in ...

  11. Association mapping of stigma and spikelet characteristics in rice (Oryza sativa L.)

    Science.gov (United States)

    Hybrid rice exhibits a yield advantage of 15 to 20 percent (or more than one ton of paddy rice per hectare) over the best traditional varieties. Because rice plants are self-pollinating, commercial production of hybrid seed plays a key role in successful implementation of hybrid rice. Stigma exserti...

  12. Ultrastructure of the wild rice Oryza grandiglumis (Gramineae in Costa Rica

    Directory of Open Access Journals (Sweden)

    Ethel Sánchez

    2006-06-01

    Full Text Available Oryza grandiglumis is a wild species of rice endemic to tropical America. This species was first found in 1998 in the wetlands of Caño Negro, located in the northern part of Costa Rica. Twenty five plants of O. grandiglumis were processed for scanning electron microscope. An ultrastructural description of the leaf blade, ligule, auricles, spikelet and caryopsis, with an emphasis on structures of taxonomic value. The leaf blade has a characteristic cuticular wax pattern, composed of dense rod-like structures, and is surrounded by papillae, zipper- like silica cells, abundant bulky prickle trichomes, and hooked trichomes. The blade’s edge has three rows of hooked prickle trichomes of various sizes. The auricles wrapped the culm, with long attenuated trichomes at the edges; the base was surrounded by oblong cells. The ligule is a blunt membrane covered by short prickle trichomes. Spikelet morphology is characteristic of the Poaceae family, but the sterile lemmas were nearly as long as the fertile lemmas, and they have an unique crown-like structure of lignified spines between the rachilla and the fertile lemmas. Comparison with Brazilian specimens of O. grandiglumis revealed little differences in the ultrastructural characteristics. Rev. Biol. Trop. 54(2: 377-385. Epub 2006 Jun 01.El arroz silvestre Oryza grandiglumis es endémico de América. Se localiza en la zona norte de Costa Rica, principalmente en el humedal de Caño Negro y del Río Medio Queso. Es una planta vigorosa y grande. Su nombre deriva del gran tamaño de las lemas estériles (glumas. Presentamos una descripción ultraestructural de la lámina foliar, lígula, aurículas, espiguilla y cariópside, con énfasis en las estructuras de valor taxonómico, usando el microscopio electrónico de barrido. La lámina foliar se caracteriza por presentar un patrón de cera cuticular en forma de densos bastoncillos. Presenta estomas rodeados de papilas, células de sílice en forma crenada

  13. Alterations in Gas Exchange and Oxidative Metabolism in Rice Leaves Infected by Pyricularia oryzae are Attenuated by Silicon.

    Science.gov (United States)

    Domiciano, Gisele Pereira; Cacique, Isaías Severino; Chagas Freitas, Cecília; Filippi, Marta Cristina Corsi; DaMatta, Fábio Murilo; do Vale, Francisco Xavier Ribeiro; Rodrigues, Fabrício Ávila

    2015-06-01

    Rice blast, caused by Pyricularia oryzae, is the most important disease in rice worldwide. This study investigated the effects of silicon (Si) on the photosynthetic gas exchange parameters (net CO2 assimilation rate [A], stomatal conductance to water vapor [gs], internal-to-ambient CO2 concentration ratio [Ci/Ca], and transpiration rate [E]); chlorophyll fluorescence a (Chla) parameters (maximum photochemical efficiency of photosystem II [Fv/Fm], photochemical [qP] and nonphotochemical [NPQ] quenching coefficients, and electron transport rate [ETR]); concentrations of pigments, malondialdehyde (MDA), and hydrogen peroxide (H2O2); and activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), and lypoxigenase (LOX) in rice leaves. Rice plants were grown in a nutrient solution containing 0 or 2 mM Si (-Si or +Si, respectively) with and without P. oryzae inoculation. Blast severity decreased with higher foliar Si concentration. The values of A, gs and E were generally higher for the +Si plants in comparison with the -Si plants upon P. oryzae infection. The Fv/Fm, qp, NPQ, and ETR were greater for the +Si plants relative to the -Si plants at 108 and 132 h after inoculation (hai). The values for qp and ETR were significantly higher for the -Si plants in comparison with the +Si plants at 36 hai, and the NPQ was significantly higher for the -Si plants in comparison with the +Si plants at 0 and 36 hai. The concentrations of Chla, Chlb, Chla+b, and carotenoids were significantly greater in the +Si plants relative to the -Si plants. For the -Si plants, the MDA and H2O2 concentrations were significantly higher than those in the +Si plants. The LOX activity was significantly higher in the +Si plants than in the -Si plants. The SOD and GR activities were significantly higher for the -Si plants than in the +Si plants. The CAT and APX activities were significantly higher in the +Si plants than in the -Si plants. The supply of

  14. Chloroplast DNA polymorphism and evolutional relationships between Asian cultivated rice (Oryza sativa) and its wild relatives (O. rufipogon).

    Science.gov (United States)

    Li, W J; Zhang, B; Huang, G W; Kang, G P; Liang, M Z; Chen, L B

    2012-12-17

    We analyzed chloroplast DNA (cpDNA) polymorphism and phylogenic relationships between 6 typical indica rice, 4 japonica rice, 8 javanica rice, and 12 Asian common wild rice (Oryza rufipogon) strains collected from different latitudes in China by comparing polymorphism at 9 highly variable regions. One hundred and forty-four polymorphic bases were detected. The O. rufipogon samples had 117 polymorphic bases, showing rich genetic diversity. One hundred and thirty-one bases at 13 sites were identified with indica/japonica characteristics; they showed differences between the indica and japonica subspecies at these sites. The javanica strains and japonica shared similar bases at these 131 polymorphic sites, suggesting that javanica is closely related to japonica. On the basis of length analyses of the open reading frame (ORF)100 and (ORF)29-tRNA-Cys(GCA) (TrnC(GCA)) fragments, the O. rufipogon strains were classified into indica/japonica subgroups, which was consistent with the results of the phylogenic tree assay based on concatenated datasets. These results indicated that differences in indica and japonica also exist in the cpDNA genome of the O. rufipogon strains. However, these differences demonstrated a certain degree of primitiveness and incompleteness, as an O. rufipogon line may show different indica/ japonica attributes at different sites. Consequently, O. rufipogon cannot be simply classified into the indica/japonica types as O. sativa. Our data support the hypothesis that Asian cultivated rice, O. indica and O. japonica, separately evolved from Asian common wild rice (O. rufipogon) strains, which have different indica-japonica differentiation trends.

  15. The Organelle Genomes of Hassawi Rice (Oryza sativa L.) and Its Hybrid in Saudi Arabia: Genome Variation, Rearrangement, and Origins

    Science.gov (United States)

    Zhang, Tongwu; Hu, Songnian; Zhang, Guangyu; Pan, Linlin; Zhang, Xiaowei; Al-Mssallem, Ibrahim S.; Yu, Jun

    2012-01-01

    Hassawi rice (Oryza sativa L.) is a landrace adapted to the climate of Saudi Arabia, characterized by its strong resistance to soil salinity and drought. Using high quality sequencing reads extracted from raw data of a whole genome sequencing project, we assembled both chloroplast (cp) and mitochondrial (mt) genomes of the wild-type Hassawi rice (Hassawi-1) and its dwarf hybrid (Hassawi-2). We discovered 16 InDels (insertions and deletions) but no SNP (single nucleotide polymorphism) is present between the two Hassawi cp genomes. We identified 48 InDels and 26 SNPs in the two Hassawi mt genomes and a new type of sequence variation, termed reverse complementary variation (RCV) in the rice cp genomes. There are two and four RCVs identified in Hassawi-1 when compared to 93–11 (indica) and Nipponbare (japonica), respectively. Microsatellite sequence analysis showed there are more SSRs in the genic regions of both cp and mt genomes in the Hassawi rice than in the other rice varieties. There are also large repeats in the Hassawi mt genomes, with the longest length of 96,168 bp and 96,165 bp in Hassawi-1 and Hassawi-2, respectively. We believe that frequent DNA rearrangement in the Hassawi mt and cp genomes indicate ongoing dynamic processes to reach genetic stability under strong environmental pressures. Based on sequence variation analysis and the breeding history, we suggest that both Hassawi-1 and Hassawi-2 originated from the Indonesian variety Peta since genetic diversity between the two Hassawi cultivars is very low albeit an unknown historic origin of the wild-type Hassawi rice. PMID:22870184

  16. Enhanced resistance to blast fungus in rice (Oryza sativa L.) by expressing the ribosome-inactivating protein α-momorcharin.

    Science.gov (United States)

    Qian, Qian; Huang, Lin; Yi, Rong; Wang, Shuzhen; Ding, Yi

    2014-03-01

    Rice blast caused by Magnaporthe grisea is one of the three major diseases that seriously affect the rice production. Alpha-momorcharin (α-MC), a ribosome-inactivating protein (RIP) isolated from Momordica charantia seeds, has antifungal effects in vitro. In this study, the α-MC gene was constitutively expressed under the control of the 2×35S promoter in transgenic rice (Oryza sativa L.) using an Agrobacterium tumefaciens-mediated method. The nine transgenic plants were obtained and confirmed by PCR and RT-PCR, and the four (B2, B4, B7 and B9) of them whose copy numbers were 1, 2, 3 and 3, respectively, were shown to express the α-MC protein by Western blot. The molecular weight of α-MC in transgenic plants was approximately 38 kDa larger than the purified α-MC protein (28 kDa) in vitro. When the confirmed T1 generations were inoculated with a suspension of M. grisea spores for ten days, the lesions on leaves of transgenic plants were much lesser than those found on wild type (WT). According to the criteria of International Rice Research Institute standard, the mean values for morbidity and disease index numbers were 29.8% and 14.9%, respectively, which were lower than for WT. It is unclear whether RIPs could impact plant fitness and however our results suggest that the α-MC protein is an effective antifungal protein preventing rice blast in transgenic rice. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. In silico Allergenicity Study of Insect resistant genetically Modified Rice (Oryza sativa L. for assessment of biosafety

    Directory of Open Access Journals (Sweden)

    S.K. Das

    2017-12-01

    Full Text Available India is one of the world's largest producers of rice (Oryza sativa, accounting for 20% of all world rice production. However, lepidopteran pests severely impact the harvest of rice, which leads to environmental pollution and increase production cost. Alternatively, genetic engineering methods may be used to prevent rice pests and increase production of rice in a safe and environmentally friendly manner. Bacillus thuringiensis (Bt genes have been widely used to generate genetically modified (GM crops because the expressed cry1Ab protein confers resistance to lepidopteron pests. The proteins expressed by these genes may lead to food safety problems. Thus, safety evaluations are necessary prior to commercialization. Bioinformatics analysis for allergenicity assessment of cry1Ab protein is performed using different allergen databases viz. FARRP SDAP, Allergome, and Algpred to identify any potential sequence matches to allergen proteins that might indicate allergenic cross-reactivity with the query sequence. A full FASTA search was performed to identify highly similar proteins. However; the full length search cannot identify discontinuous or conformational epitopes that depend upon the tertiary structure of the protein.So every possible contiguous 80-amino acid sequence of each query protein was searched for determining the similarity. The proteins sequence can be searched using FASTA/BLAST for broad homology to known allergens to identify any short sequence that might represent an allergenic epitope. The domains in the Cry protein sequences were searched using Interproscan for potential similarity at the domain level. The results showed neither significant alignment nor similarity of cry1Ab protein at full sequence, domain, and epitope level with any of the known allergen proteins in the full sequence matching. Matching the 80 amino acid and matching of 8 amino acids showed no similarity to determine the epitope potential. From literature survey

  18. Growth responses of NaCl stressed rice (Oryza sativa L.) plants ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-27

    Sep 27, 2010 ... 3Department of Statistics, University of Sindh Jamshoro, Pakistan. 4Mityari Sugar Mills ... Key words: Oryza sativa L., seedling biomass, epidermal cells, proline content. ... Attempts to reduce the soil salinity, using mechanical.

  19. Characterization and evolutionary analysis of ent-kaurene synthase like genes from the wild rice species Oryza rufipogon.

    Science.gov (United States)

    Toyomasu, Tomonobu; Miyamoto, Koji; Shenton, Matthew R; Sakai, Arisa; Sugawara, Chizu; Horie, Kiyotaka; Kawaide, Hiroshi; Hasegawa, Morifumi; Chuba, Masaru; Mitsuhashi, Wataru; Yamane, Hisakazu; Kurata, Nori; Okada, Kazunori

    2016-11-18

    Cultivated rice (Oryza sativa) possesses various labdane-related diterpene synthase genes, homologs of ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS) that are responsible for the biosynthesis of phytohormone gibberellins. The CPS homologs and KS like (KSL) homologs successively converted geranylgeranyl diphosphate to cyclic diterpene hydrocarbons via ent-copalyl diphosphate or syn-copalyl diphosphate in O. sativa. Consequently, a variety of labdane-related diterpenoids, including phytoalexin phytocassanes, momilactones and oryzalexins, have been identified from cultivated rice. Our previous report indicated that the biosynthesis of phytocassanes and momilactones is conserved in Oryza rufipogon, the progenitor of Asian cultivated rice. Moreover, their biosynthetic gene clusters, containing OsCPS2 and OsKSL7 for phytocassane biosynthesis and OsCPS4 and OsKSL4 for momilactone biosynthesis, are also present in the O. rufipogon genome. We herein characterized O. rufipogon homologs of OsKSL5, OsKSL6, OsKSL8 responsible for oryzalexin S biosynthesis, and OsKSL10 responsible for oryzalexins A-F biosynthesis, to obtain more evolutionary insight into diterpenoid biosynthesis in O. sativa. Our phytoalexin analyses showed that no accumulation of oryzalexins was detected in extracts from O. rufipogon leaf blades. In vitro functional analyses indicated that unlike OsKSL10, O. rufipogon KSL10 functions as an ent-miltiradiene synthase, which explains the lack of accumulation of oryzalexins A-F in O. rufipogon. The different functions of KSL5 and KSL8 in O. sativa japonica to those in indica are conserved in each type of O. rufipogon, while KSL6 functions (ent-isokaurene synthases) are well conserved. Our study suggests that O. sativa japonica has evolved distinct specialized diterpenoid metabolism, including the biosynthesis of oryzalexins. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Toxicity of lemon grass Cymbopogon citratus powder and methanol extract against rice weevil Sitophilus oryzae (Coleoptera: Curculionidae

    Directory of Open Access Journals (Sweden)

    Martin Osaigbokan Uwamose

    2017-03-01

    Full Text Available Objective: To evaluate the toxicity potential of lemon grass [Cymbopogon citratus (C. citratus] products against adult rice weevil, Sitophilus oryzae. Methods: Lemon grass (C. citratus leaves were sundried for 7 days, pulverized and sieved using 0.5 mm mesh size to obtain fine powders. About 500 g of the powder were dissolved in 1000 mL of 90% methanol to produce the extract. The powder and extract were used for the bioassay. The powder was tested at 1.0, 1.5, 2.0 and 2.5 g/10 g rice grains, respectively. The toxic potential of the extract of concentration of 1.0, 1.5, 2.0, and 2.5 mg/mL were evaluated using the filter paper method. The experiment was setup on a completely randomized design using three replicates per treatment. Results: The results indicated significant difference (F = 7.450; df = 3.15; P < 0.05 in mean percentage mortality after 24, 48, 72, and 96 h exposure with the powder compared with the control. Significantly (F = 5.519; df = 3.15; P < 0.05 higher percentage adult mortality was also observed in the extract after 24, 48, 72, and 96 h exposure compared with the control. The LC50 value of the powder was 4.91 g/10 g of rice while the LT50 was 160.51 h. The LC50 value of the extract was 2.16 mg/20 mL of methanol with an LT50 of 75.10 h. The methanol extract of C. citratus showed the highest mortality compared to the powder which was less toxic. Conclusions: The study showed that C. citratus products are promising insecticides and can be used effectively in the management of Sitophilus oryzae in storage..

  1. Glycogen Metabolic Genes Are Involved in Trehalose-6-Phosphate Synthase-Mediated Regulation of Pathogenicity by the Rice Blast Fungus Magnaporthe oryzae

    Science.gov (United States)

    Wilson, Richard A.; Wang, Zheng-Yi; Kershaw, Michael J.; Talbot, Nicholas J.

    2013-01-01

    The filamentous fungus Magnaporthe oryzae is the causal agent of rice blast disease. Here we show that glycogen metabolic genes play an important role in plant infection by M. oryzae. Targeted deletion of AGL1 and GPH1, which encode amyloglucosidase and glycogen phosphorylase, respectively, prevented mobilisation of glycogen stores during appressorium development and caused a significant reduction in the ability of M. oryzae to cause rice blast disease. By contrast, targeted mutation of GSN1, which encodes glycogen synthase, significantly reduced the synthesis of intracellular glycogen, but had no effect on fungal pathogenicity. We found that loss of AGL1 and GPH1 led to a reduction in expression of TPS1 and TPS3, which encode components of the trehalose-6-phosphate synthase complex, that acts as a genetic switch in M. oryzae. Tps1 responds to glucose-6-phosphate levels and the balance of NADP/NADPH to regulate virulence-associated gene expression, in association with Nmr transcriptional inhibitors. We show that deletion of the NMR3 transcriptional inhibitor gene partially restores virulence to a Δagl1Δgph1 mutant, suggesting that glycogen metabolic genes are necessary for operation of the NADPH-dependent genetic switch in M. oryzae. PMID:24098112

  2. Genetic diversity in Oryza glumaepatula wild rice populations in Costa Rica and possible gene flow from O. sativa.

    Science.gov (United States)

    Fuchs, Eric J; Meneses Martínez, Allan; Calvo, Amanda; Muñoz, Melania; Arrieta-Espinoza, Griselda

    2016-01-01

    Wild crop relatives are an important source of genetic diversity for crop improvement. Diversity estimates are generally lacking for many wild crop relatives. The objective of the present study was to analyze how genetic diversity is distributed within and among populations of the wild rice species Oryza glumaepatula in Costa Rica. We also evaluated the likelihood of gene flow between wild and commercial rice species because the latter is commonly sympatric with wild rice populations. Introgression may change wild species by incorporating alleles from domesticated species, increasing the risk of losing original variation. Specimens from all known O. glumaepatula populations in Costa Rica were analyzed with 444 AFLP markers to characterize genetic diversity and structure. We also compared genetic diversity estimates between O. glumaepatula specimens and O. sativa commercial rice. Our results showed that O. glumaepatula populations in Costa Rica have moderately high levels of genetic diversity, comparable to those found in South American populations. Despite the restricted distribution of this species in Costa Rica, populations are fairly large, reducing the effects of drift on genetic diversity. We found a dismissible but significant structure (θ = 0.02 ± 0.001) among populations. A Bayesian structure analysis suggested that some individuals share a significant proportion of their genomes with O. sativa. These results suggest that gene flow from cultivated O. sativa populations may have occurred in the recent past. These results expose an important biohazard: recurrent hybridization may reduce the genetic diversity of this wild rice species. Introgression may transfer commercial traits into O. glumaepatula, which in turn could alter genetic diversity and increase the likelihood of local extinction. These results have important implications for in situ conservation strategies of the only wild populations of O. glumaepatula in Costa Rica.

  3. Population Dynamics Among six Major Groups of the Oryza rufipogon Species Complex, Wild Relative of Cultivated Asian Rice.

    Science.gov (United States)

    Kim, HyunJung; Jung, Janelle; Singh, Namrata; Greenberg, Anthony; Doyle, Jeff J; Tyagi, Wricha; Chung, Jong-Wook; Kimball, Jennifer; Hamilton, Ruaraidh Sackville; McCouch, Susan R

    2016-12-01

    Understanding population structure of the wild progenitor of Asian cultivated rice (O. sativa), the Oryza rufipogon species complex (ORSC), is of interest to plant breeders and contributes to our understanding of rice domestication. A collection of 286 diverse ORSC accessions was evaluated for nuclear variation using genotyping-by-sequencing (113,739 SNPs) and for chloroplast variation using Sanger sequencing (25 polymorphic sites). Six wild subpopulations were identified, with 25 % of accessions classified as admixed. Three of the wild groups were genetically and geographically closely related to the O. sativa subpopulations, indica, aus and japonica, and carried O. sativa introgressions; the other three wild groups were genetically divergent, had unique chloroplast haplotypes, and were located at the geographical extremes of the species range. The genetic subpopulations were significantly correlated (r 2  = 0.562) with traditional species designations, O. rufipogon (perennial) and O. nivara (annual), differentiated based on morphology and life history. A wild diversity panel of 95 purified (inbred) accessions was developed for future genetic studies. Our results suggest that the cultivated aus subpopulation is most closely related to an annual wild relative, japonica to a perennial wild relative, and indica to an admixed population of diverse annual and perennial wild ancestors. Gene flow between ORSC and O. sativa is common in regions where rice is cultivated, threatening the identity and diversity of wild ORSC populations. The three geographically isolated ORSC populations harbor variation rarely seen in cultivated rice and provide a unique window into the genetic composition of ancient rice subpopulations.

  4. Fine mapping and characterization of BPH27, a brown planthopper resistance gene from wild rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Huang, D; Qiu, Y; Zhang, Y; Huang, F; Meng, J; Wei, S; Li, R; Chen, B

    2013-01-01

    The brown planthopper (Nilaparvata lugens Stål; BPH) is one of the most serious rice pests worldwide. Growing resistant varieties is the most effective way to manage this insect, and wild rice species are a valuable source of resistance genes for developing resistant cultivars. BPH27 derived from an accession of Guangxi wild rice, Oryza rufipogon Griff. (Accession no. 2183, hereafter named GX2183), was primarily mapped to a 17-cM region on the long arm of the chromosome four. In this study, fine mapping of BPH27 was conducted using two BC(1)F(2) populations derived from introgression lines of GX2183. Insect resistance was evaluated in the BC(1)F(2) populations with 6,010 individual offsprings, and 346 resistance extremes were obtained and employed for fine mapping of BPH27. High-resolution linkage analysis defined the BPH27 locus to an 86.3-kb region in Nipponbare. Regarding the sequence information of rice cultivars, Nipponbare and 93-11, all predicted open reading frames (ORFs) in the fine-mapping region have been annotated as 11 types of proteins, and three ORFs encode disease-related proteins. Moreover, the average BPH numbers showed significant differences in 96-120 h after release in comparisons between the preliminary near-isogenic lines (pre-NILs, lines harboring resistance genes) and BaiR54. BPH growth and development were inhibited and survival rates were lower in the pre-NIL plants compared with the recurrent parent BaiR54. The pre-NIL exhibited 50.7% reductions in population growth rates (PGR) compared to BaiR54. The new development in fine mapping of BPH27 will facilitate the efforts to clone this important resistant gene and to use it in BPH-resistance rice breeding.

  5. Response of oxidative stress defense systems in rice (Oryza sativa) leaves with supplemental UV-B radiation

    International Nuclear Information System (INIS)

    Dai, Q.; Yan, B.; Huang, S.; Liu, X.; Peng, S.; Miranda, M.L.L.; Chavez, A.Q.; Vergara, B.S.; Olszyk, D.M.

    1997-01-01

    The impact of elevated ultraviolet-B radiation (UV-B, 280–320 nm) on membrane systems and lipid peroxidation, and possible involvement of active oxygen radicals was investigated in leaves of two UV-B susceptible rice cultivars (Oryza sativa L. cvs IR74 and Dular). Rice seedlings were grown in a greenhouse for 10 days and then treated with biologically effective UV-B (UV-B BE ) radiation for 28 days. Oxidative stress effects were evaluated by measuring superoxide anion (O 2 ) generation rate, hydrogen peroxide (H 2 O 2 ) content, malondialdehyde (MDA) concentration and relative electrolyte conductivity (EC) for IR74 and Dular at 0 (control), 6 or 13 kJ m −2 day −1 UV-B BE . Significant increases in these parameters were found in rice plants grown at 13 vs 0 kJ m −2 day −1 UV-B BE after 28 days; indicating that disruption of membrane systems may be an eventual reason for UV-B-induced injury in rice plants. There was a positive correlation between O 2 − generation and increases in EC or MDA in leaves. Activities of enzymatic and nonenzymatic free radical scavengers were measured for IR74 after 7, 14, 21 and 28 days of exposure to 13 or 0 UV-B BE to evaluate dynamics of these responses over time. Activities of catalase and superoxide dismutase (but not ascorbate peroxidase) and concentrations of ascorbic acid and glutathione were enhanced by 13 vs 0 UV-B BE after 14 days of UV-B exposure. Further exposure to 28 days of UV-B was associated with a decline in enzyme activities and ascorbic acid, but not glutathione. It is suggested that UV-B-induced injury may be associated with disturbance of active oxygen metabolism through the destruction and alteration of both enzymatic and nonenzymatic defense systems in rice. (author)

  6. Effect of fluoride on photosynthesis, growth and accumulation of four widely cultivated rice (Oryza sativa L.) varieties in India.

    Science.gov (United States)

    Mondal, Naba Kumar

    2017-10-01

    Long-term use of fluoride contaminated groundwater to irrigate crops; especially paddy rice (Oryza sativa L.) has resulted in elevated soil fluoride levels in Eastern India. There is, therefore, growing concern regarding accumulation of fluoride in rice grown on these soils. A laboratory experiment was conducted to investigate the effect of F on germination and phytotoxicity of four varieties of rice (Orzya sativa L.) (MTU-1010; IET-4094; IET-4786 and GB-1) grown in petri dish in a green house with inorganic sodium fluoride (NaF). Three different levels (0, 5, 10 and 20mg/L) of NaF solution were applied. At the end of the experiment (28 days), biochemical analysis (pigment, sugar, protein, amino acid and phenol), lipid peroxidation, root ion leakage and catalase activity along with fluoride accumulation and fresh and dry weight of roots and shoots of four cultivars were measured. The results revealed that all the four studied varieties exhibited gradual decrease of germination pattern with increasing concentration of F. Pigment and growth morphological study clearly demonstrated that the variety IET-4094 was the least influenced by F compare to the other three varieties of rice. The translocation factor (TF) was recorded to be the highest for variety IET-4786 (0.215 ± 0.03) at 5mg/L F concentration. All the four varieties showed higher level of fluoride accumulation in root than in shoot. Variable results were recorded for biochemical parameters and lipid peroxidation. Catalase activity and relative conductivity (root ion leakage) gradually increased with increasing F concentration for all the four varieties. It is speculated that fluoride accumulation in rice straw at very high levels will affect the feeding cattle and such contaminated straw could be a direct threat to their health and also, indirectly, to human health via presumably contaminated meat and milk. Copyright © 2017. Published by Elsevier Inc.

  7. Monitoring expression profiles of rice (Oryza sativa L.) genes under abiotic stresses using cDNA Microarray Analysis (abstract)

    International Nuclear Information System (INIS)

    Rabbani, M.A.

    2005-01-01

    Transcript regulation in response to cold, drought, high salinity and ABA application was investigated in rice (Oryza sativa L., Nipponbare) with microarray analysis including approx. 1700 independent DNA elements derived from three cDNA libraries constructed from 15-day old rice seedlings stressed with drought, cold and high salinity. A total of 141 non-redundant genes were identified, whose expression ratios were more than three-fold compared with the control genes for at least one of stress treatments in microarray analysis. However, after RNA gel blot analysis, a total of 73 genes were identified, among them the transcripts of 36, 62, 57 and 43 genes were found increased after cold, drought, high salinity and ABA application, respectively. Sixteen of these identified genes have been reported previously to be stress inducible in rice, while 57 of which are novel that have not been reported earlier as stress responsive in rice. We observed a strong association in the expression patterns of stress responsive genes and found 15 stress inducible genes that responded to all four treatments. Based on Venn diagram analysis, 56 genes were induced by both drought and high salinity, whereas 22 genes were upregulated by both cold and high salinity stress. Similarly 43 genes were induced by both drought stress and ABA application, while only 17 genes were identified as cold and ABA inducible genes. These results indicated the existence of greater cross talk between drought, ABA and high salinity stress signaling processes than those between cold and ABA, and cold and high salinity stress signaling pathways. The cold, drought, high salinity and ABA inducible genes were classified into four gene groups from their expression profiles. Analysis of data enabled us to identify a number of promoters and possible cis-acting DNA elements of several genes induced by a variety of abiotic stresses by combining expression data with genomic sequence data of rice. Comparative analysis of

  8. Concentrations of arsenic and lead in rice (Oryza sativa L.) in Iran: A systematic review and carcinogenic risk assessment.

    Science.gov (United States)

    Fakhri, Yadolah; Bjørklund, Geir; Bandpei, Anoushiravan Mohseni; Chirumbolo, Salvatore; Keramati, Hassan; Hosseini Pouya, Rokhsane; Asadi, Anvar; Amanidaz, Nazak; Sarafraz, Mansour; Sheikhmohammad, Amir; Alipour, Mohamadreza; Baninameh, Zahra; Mohseni, Seyed Mohsen; Sarkhosh, Maryam; Ghasemi, Seyed Mehdi

    2018-03-01

    Exposure to heavy metals such as arsenic (As), lead (Pb), and cadmium (Cd) in either the short or the long term can cause cancers in humans. Dietary intake and consumption of rice (Oryza sativa L.) is increasing in Iran, and several studies on the concentration of heavy metals in rice have been carried out in this country in recent years. In this perspective, the main objective of the present study was to investigate, even via a meta-analysis of the existing literature, the presence of As and Pb in rice from many geographical areas in Iran, as well as to estimate the carcinogenic risk of these heavy metals in rice consumers. The results of the present ten years-spanning systematic review indicate that 21 reports, collecting a total of 2088 samples, were performed between 2008 and October 2017. The minimum and maximum concentration of As was observed in the Golestan area (0.01 ± 0.01 mg/kg d.w) and the Gillan region (3 mg/kg d.w); and Pb in the Shahrekord (0.07 ± 0.02 mg/kg d.w) and Mazandaran (35 mg/kg d.w). The meta-analysis of data showed that pooled concentration of As in the rice was 0.04 (95%CI: 0.02-0.06 mg/kg d.w), which resulted lower than the National Standard (NS) limits. However, the pooled concentration of Pb in the rice was 0.38 (95%CI: 0.25-0.5 mg/kg d.w), i.e., higher than NS limits. The heterogeneity was significant between As (I 2  = 63%, P value = .003) and Pb (I 2  = 96%, P value rice content of As and Pb are at considerable carcinogenesis risk (ILCR > 10 -3 ). Therefore a decreased level of heavy metals in rice cultivation should be encouraged and performed in next planning. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Effects of drought stress on global gene expression profile in leaf and root samples of Dongxiang wild rice (Oryza rufipogon).

    Science.gov (United States)

    Zhang, Fantao; Zhou, Yi; Zhang, Meng; Luo, Xiangdong; Xie, Jiankun

    2017-06-30

    Drought is a serious constraint to rice production throughout the world, and although Dongxiang wild rice ( Oryza rufipogon , DXWR) possesses a high degree of drought resistance, the underlying mechanisms of this trait remains unclear. In the present study, cDNA libraries were constructed from the leaf and root tissues of drought-stressed and untreated DXWR seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in drought-stress response. The results indicated that 11231 transcripts were differentially expressed in the leaves (4040 up-regulated and 7191 down-regulated) and 7025 transcripts were differentially expressed in the roots (3097 up-regulated and 3928 down-regulated). Among these differentially expressed genes (DEGs), the detection of many transcriptional factors and functional genes demonstrated that multiple regulatory pathways were involved in drought resistance. Meanwhile, the DEGs were also annotated with gene ontology (GO) terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway mapping, respectively. A set of the most interesting candidate genes was then identified by combining the DEGs with previously identified drought-resistant quantitative trait loci (QTL). The present work provides abundant genomic information for functional dissection of the drought resistance of DXWR, and findings will further help the current understanding of the biological regulatory mechanisms of drought resistance in plants and facilitate the breeding of new drought-resistant rice cultivars. © 2017 The Author(s).

  10. Analysis of genetic and genotype X environment interaction effects for agronomic traits of rice (oryza sativa l.) in salt tolerance

    International Nuclear Information System (INIS)

    Zhou, H.K.; Hayat, Y.; Fang, L.J.; Guo, R.F.; He, J.M.; Xu, H.M.

    2010-01-01

    A diallel cross experiment of 4 rice (Oryza sativa L.) female and 6 male varieties was conducted to study the genetic effects and their interaction with salt-stress condition of 7 agronomic traits in normal and salt-stressed planting conditions. The panicle length (PL), effective number of panicles per plant (ENP), plumped number of grains per panicles (PNG), total number of grains per panicles (TNG), 1000-grain weight (W), seed setting ratio (SSR) and grain weight per plant (PGW), were investigated. A genetic model including additive effect, dominance effect and their interaction effects with environment (ADE) was employed for analysis of data. It was observed that significant (p<0.05) additive effects, dominance effects, additive X environment interaction effects and dominance X environment interaction effects exist for most of the agronomic traits of rice. In addition, significant (p<0.05) narrow sense heritabilities of ENP, PNG, TNG, W and PGW were found, indicating that the genetic performance of these traits are greatly affected by salt stress condition. A significant (p<0.05) negative correlations in the additive effects and additive X environment interaction effects detected between ENP and PNG suggesting that selection on increasing of ENP can reduce PNG. In addition, there exist a highly significant (p<0.01) positive dominance correlation among the dominance effects of the ENP, PNG and TNG, which shows that it is possible to breed salt-tolerant rice variety by coordinating large panicle and multi-panicle in utilization of heterosis. (author)

  11. Influence of chelating ligands on arsenic uptake by hydroponically grown rice seedlings (Oryza sativa L.): a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Mohammad A.; Hasegawa, Hiroshi; Ueda, Kazumasa; Maki, Teruya [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa (Japan); Rahman, M.M. [Department of Botany, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2008-06-15

    Ferric (oxyhydro-)oxides (FeO{sub x}) precipitate in the rhizosphere at neutral or alkaline pH and are adsorbed on the plant root surfaces. Consequently, the higher binding affinity of arsenate to FeO{sub x} and the low iron phytoavailability of the precipitated FeO{sub x} make the phytoremediation of arsenic difficult. In the present study, the influence of chelating ligands on arsenic and iron uptake by hydroponically grown rice seedlings (Oryza sativa L.) was investigated. When chelating ligands were not treated to the growth medium, about 63 and 71% of the total arsenic and iron were distributed in the root extract (outer root surfaces) of rice, respectively. On the other hand, ethylenediaminetetraacetic acid (EDTA), ethylenediaminedisuccinic acid (EDDS) and hydroxyiminodisuccinic acid (HIDS) desorbed a significant amount of arsenic from FeO{sub x} of the outer root surfaces. Therefore, the uptake of arsenic and iron into the roots and their subsequent translocation to the shoots of the rice seedlings increased significantly. The order of increasing arsenic uptake by chelating ligands was HIDS > EDTA > EDDS. Methylglycinediacetic acid (MGDA) and iminodisuccinic acid (IDS) might not be effective in arsenic solubilization from FeO{sub x}. The results suggest that EDDS and HIDS would be a good and environmentally safe choice to accelerate arsenic phytoavailability in the phytoremediation process because of their biodegradability and would be a competent alternative to the widely used non-biodegradable and environmentally persistent EDTA. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  12. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution.

    Science.gov (United States)

    Lu, Guangwen; Coneva, Viktoriya; Casaretto, José A; Ying, Shan; Mahmood, Kashif; Liu, Fang; Nambara, Eiji; Bi, Yong-Mei; Rothstein, Steven J

    2015-09-01

    Plant architecture attributes such as tillering, plant height and panicle size are important agronomic traits that determine rice (Oryza sativa) productivity. Here, we report that altered auxin content, transport and distribution affect these traits, and hence rice yield. Overexpression of the auxin efflux carrier-like gene OsPIN5b causes pleiotropic effects, mainly reducing plant height, leaf and tiller number, shoot and root biomass, seed-setting rate, panicle length and yield parameters. Conversely, reduced expression of OsPIN5b results in higher tiller number, more vigorous root system, longer panicles and increased yield. We show that OsPIN5b is an endoplasmic reticulum (ER) -localized protein that participates in auxin homeostasis, transport and distribution in vivo. This work describes an example of an auxin-related gene where modulating its expression can simultaneously improve plant architecture and yield potential in rice, and reveals an important effect of hormonal signaling on these traits. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  13. First report of multiple races of the rice blast fungus Magnaporthe oryzae in Puerto Rico

    Science.gov (United States)

    The rice nursery located in the Lajas Valley, in the southwestern corner of Puerto Rico has been used by US rice breeders for the past 43 years to produce one to two extra generations per year. In April, 2015, blast disease lesions were observed on rice breeding lines belonging to the USDA ARS DB NR...

  14. Effects of Three Inhibitors on the Accumulation of Cadmium in Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    LONG Si-si

    2016-09-01

    Full Text Available How to control cadmium (Cd pollution in rice grain has become a hot research issue. The effects of the three amendments such as lime, silicon fertilizer and zinc foliar fertilizer from local market on the accumulation Cd in rice grain including early rice and later rice growth in one Cd-contaminated field in Hengyang County, Hunan Province were studied. Among the three treatments, the silicon fertilizer and lime were applied into soil, and the zinc fertilizer was sprayed on the leaf of rice plant. The results showed that, except lime and zinc fertilizer(late rice, in comparison to nonamendment, the output of early rice and late rice increased with increasing of the other types of resistances. Among three kinds of resistances, the zinc foliar fertilizer had significant impacts on decreasing Cd in edible grains, in which Cd concentrations of early rice(Y-liangyou 792 and late rice(Nongxiang130 reduced by 51.28% and 50.92%, respectively, followed by silicon fertilizer. The present study demonstrated that the silicon fertilizer and zinc foliar fertilizer would be used as resistances for remediation Cd-polluted rice plant, moreover, the relationship between Zn and Cd in rice-soil would need further studied.

  15. Influence of Rapeseed Cake on Iron Plaque Formation and Cd Uptake by Rice (Oryza sativa L.) Seedlings Exposed to Excess Cd.

    Science.gov (United States)

    Yang, Wen-Tao; Zhou, Hang; Gu, Jiao-Feng; Zeng, Qing-Ru; Liao, Bo-Han

    2017-11-01

    A soil spiking experiment at two Cd levels (0.72 and 5.20 mg kg -1 ) was conducted to investigate the effects of rapeseed cake (RSC) at application rates of 0%, 0.75%, 1.5%, and 3.0% (w/w) on iron plaque formation and Cd uptake by rice (Oryza sativa L.) seedlings. The use of RSC did result in a sharp decrease in soil bioavailability of Cd and a significant increase in rice growth, soil pH and organic matter. Application of RSC increased the amount of iron plaque formation and this effectively inhibited the uptake and translocation of Cd into the rice seedlings. RSC was an effective organic additive for increasing rice growth and reducing Cd uptake by rice plant, simultaneously. These results could be used as a reference for the safety use of Cd polluted paddy soil.

  16. Mercury in rice (Oryza sativa L.) and rice-paddy soils under long-term fertilizer and organic amendment.

    Science.gov (United States)

    Tang, Zhenya; Fan, Fangling; Wang, Xinyue; Shi, Xiaojun; Deng, Shiping; Wang, Dingyong

    2018-04-15

    High levels of mercury (Hg), especially methylmercury (MeHg), in rice is of concern due to its potential of entering food chain and the high toxicity to human. The level and form of Hg in rice could be influenced by fertilizers and other soil amendments. Studies were conducted to evaluate the effect of 24 years application of chemical fertilizers and organic amendments on total Hg (THg) and MeHg and their translocation in soil, plants, and rice grain. All treatments led to significantly higher concentrations of MeHg in grain than those from the untreated control. Of nine treatments tested, chemical fertilizers combining with returning rice straw (NPK1+S) led to highest MeHg concentration in grain and soil; while the nitrogen and potassium (NK) treatment led to significantly higher THg in grain. Concentrations of soil MeHg were significantly correlated with THg in soil (r = 0.59 *** ) and MeHg in grain (r = 0.48 *** ). Calcium superphosphate negatively affected plant bioavailability of soil Hg. MeHg concentration in rice was heavily influenced by soil Hg levels. Phosphorus fertilizer was a main source contributing to soil THg, while returning rice straw to the field contributed significantly to MeHg in soil and rice grain. As a result, caution should be exercised in soil treatment or when utilizing Hg-contaminated soils to produce rice for human consumption. Strategic management of rice straw and phosphorus fertilizer could be effective strategies of lowering soil Hg, which would ultimately lower MeHg in rice and the risk of Hg entering food chain. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Determination of contents and antioxidant activity of free and bound phenolics compounds and in vitro digestibility of commercial black and red rice (Oryza sativa L.) varieties.

    Science.gov (United States)

    Sumczynski, Daniela; Kotásková, Eva; Družbíková, Helena; Mlček, Jiří

    2016-11-15

    Black and red rices (Oryza sativa L.) were analysed for total flavonoids and phenolics and the HPLC profile including both free and bound phenolic fractions. Moreover, antioxidant activity and in vitro digestibility was determined. Content of flavonoids and polyphenols as well as antioxidant activity was higher in free phenolic fractions. Bound flavonoids in black rices were not significant contributors to antioxidant activity. The main free phenolics in black rices were ferulic, protocatechuic and trans-p-coumaric acids, while the major free phenolics in red rices were catechin, protocatechuic and caffeic acids. The main bound phenolics in black rices were ferulic and vanillic acids and quercetin, in red rice types, they were ferulic, syringic, trans-p-coumaric acids and quercetin. Newly, the presence of m-coumaric acid in red rices was detected. Steam cooked rices showed very high levels of organic matter digestibility, whereas red rices were significantly more digestible than black rices (p<0.05). Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. An assessment of Wx microsatellite allele, alkali degradation and differentiation of chloroplast DNA in traditional black rice (Oryza sativa L.) from Thailand and Lao PDR.

    Science.gov (United States)

    Prathepha, Preecha

    2007-01-15

    Thailand and Lao PDR are the country's rich rice diversity. To contribute a significant knowledge for development new rice varieties, a collection of 142 black rice (Oryza sativa) accessions were determined for variation of physico-chemical properties, Wx microsatellite allele, Wx allele and chloroplast DNA type. The results showed that amylose content of black rice accessions were ranged from 1.9 to 6.8%. All of the alkali disintegration types (high, intermediate and low) was observed in these rice with average of 1.75 on the 1-3 digestibility scale. The unique Wx microsatellite allele (CT)17 was found in these samples and all black rice strains carried Wx(b) allele. In addition, all black rice accessions were found the duplication of the 23 bp sequence motif in the exon 2 of the wx gene. This evidence is a common phenomenon in glutinous rice. Based on two growing condition for black rice, rainfed lowland and rainfed upland, chloroplast DNA type was distinct from each other. All rice strains from rainfed lowland was deletion plastotype, but all other rainfed upland strains were non-deletion types.

  19. Assessment and genetic analysis of heavy metal content in rice grain using an Oryza sativa × O. rufipogon backcross inbred line population.

    Science.gov (United States)

    Huang, De-Run; Fan, Ye-Yang; Hu, Biao-Lin; Xiao, Ye-Qing; Chen, Da-Zhou; Zhuang, Jie-Yun

    2018-03-01

    Heavy metal accumulation in rice is a growing concern for public health. Backcross inbred lines derived from an interspecific cross of Oryza sativa × O. rufipogon were grown in two distinct ecological locations (Hangzhou and Lingshui, China). The objective of this study was to characterise the contents of heavy metal in rice grains, and to identify quantitative trait loci (QTLs) for heavy metal contents. The contents of Ni, As, Pb, Cr and Hg in milled rice showed a significant decline as compared with those in brown rice, whereas the content of Cd showed little change. The concentration of heavy metal in rice grain varied greatly between the two environments. A total of 24 QTLs responsible for heavy metal contents were detected, including two for both the brown and milled rice, 13 for brown rice only, and nine for milled rice only. All the QTLs except two had the enhancing alleles derived from O. rufipogon. Sixteen QTLs were clustered in six chromosomal regions. Environmental variation plays an important role in the heavy metal contents in rice grain. QTLs detected in this study might be useful for breeding rice varieties with low heavy metal content. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Excessive sulfur supply reduces cadmium accumulation in brown rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Fan Jianling; Hu Zhengyi; Ziadi, Noura; Xia Xu; Wu Congyanghui

    2010-01-01

    Human activities have resulted in cadmium (Cd) and sulfur (S) accumulation in paddy soils in parts of southern China. A combined soil-sand pot experiment was conducted to investigate the influence of excessive S supply on iron plaque formation and Cd accumulation in rice plants, using two Cd levels (0, 1.5 mg kg -1 ) combined with three S concentrations (0, 60, 120 mg kg -1 ). The results showed that excessive S supply significantly decreased Cd accumulation in brown rice due to the decrease of Cd availability and the increase of glutathione in rice leaves. But excessive S supply obviously increased Cd accumulation in roots due to the decrease of iron plaque formation on the root surface of rice. Therefore, excessive S supply may result in loss of rice yield, but it could effectively reduce Cd accumulation in brown rice exposed to Cd contaminated soils. - Excessive sulfur reduces cadmium accumulation in brown rice.

  1. Studies on mineral nutrition and safety of wild rice (Oryza L.).

    Science.gov (United States)

    Jiang, Shuli; Shi, Chunhai; Wu, Jianguo

    2009-01-01

    Mineral element contents of five wild rice were analyzed, including mineral nutrient elements such as phosphorus (P), potassium (K), calcium (Ca), sodium (Na), magnesium (Mg), iron (Fe), zinc (Zn), copper (Cu), manganese (Mn) and selenium (Se), and the potential toxic elements arsenic (As), mercury (Hg), lead (Pb) and cadmium (Cd). The results showed that the contents of K, Mg, Fe, Zn, Cu, Mn and Se in five wild rice materials were much higher than the cultivate variety Zhou 903 in both brown and milled rice. Wild rice also had lower potential toxic element contents of Hg, Pb and Cd compared with Zhou 903 in brown rice and milled rice, respectively. Among five wild rice samples, WR-3 from Uganda had the highest level of P, K, Ca, Na, Mg, Fe, Zn, Mn and Se, and the lowest contents of Hg, Pb and Cd.

  2. Variations in characters of diploid-like plants derived from gamma-irradiated tetraploids in rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Yamamoto, K.; Fukuoka, H.; Kageyama, Y.; Takeda, G.

    1990-01-01

    Full text: Populations of artificial autotetraploids of rice (Oryza sativa L. cvs. 'Nipponbare' and 'Fukunishiki') were repeatedly irradiated with gamma-rays through several generations. Plants which did not differ in appearance from the original diploid plants occurred occasionally in the populations. Nine diploid-like plants were obtained so far, and their generations were advanced without irradiation in order to examine the mode of segregation of characters in their progeny. The results indicate that diploid-like plants with multiple mutant characters could be obtained and that dominant characters, i.e. awned spikelet and coloured apiculus, were included in the mutant characters. The diploid-like plants had 2n=24 chromosomes. (author)

  3. Effect of gamma-irradiated sludge on the growth and yield of rice (Oryza sativa L. var. GR-3)

    International Nuclear Information System (INIS)

    Pandya, G.A.; Prakash, L.; Devasia, Preston; Modi, V.V.

    1988-01-01

    The effects of gamma-irradiated sludge on the growth and yield of rice (Oryza sativa L. var. GR-3) in pot cultures have been studied. Compared to plants grown only in soil, shoot length, root length, fresh weight, dry weight, total proteins, total soluble sugars, starch and chlorophyll content of plants grown in soil supplemented with unirradiated or gamma-irradiated sludge were found to be significantly increased. Irradiation of sludge significantly stimulated the linear growth of shoot and root systems as well as fresh and dry weights of plants, compared to those grown in soil containing unirradiated sludge. There was also an improvement in the grain yield (weight of seed) when plants were grown in soil supplemented with irradiated sludge. The results obtained suggest that the gamma-irradiated sewage sludge can be beneficially recycled for agricultural uses. (author)

  4. Gamma ray, EMS and sodium azide induced effectiveness and efficiency of chlorophyll mutations in basmati rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Singh, Sanjeev; Singh, J.; Singh, R.K.

    2001-01-01

    The effectiveness and efficiency of gamma ray, EMS, sodium azide alone or in combination in relation to chlorophyll mutations in two varieties of Basmati rice (Oryza sativa L.) in M 2 generation were studied. The chlorophyll mutations were induced by all the doses of mutagens alone or in combination relatively at a fair frequency in both the varieties in M 2 generation. In general, it was found that combination treatments of gamma rays and EMS were observed to be more efficient in Taraori Basmati, while EMS alone and combination treatment of gamma rays and EMS were more efficient in Pusa Basmati 1 on sterility and growth injury basis both. Sodium azide at 0.5 mM was found as the most effective dose in both Taraori Basmati and Pusa Basmati 1 cultivars. (author)

  5. Spatial Rice Yield Estimation Based on MODIS and Sentinel-1 SAR Data and ORYZA Crop Growth Model

    Directory of Open Access Journals (Sweden)

    Tri D. Setiyono

    2018-02-01

    Full Text Available Crop insurance is a viable solution to reduce the vulnerability of smallholder farmers to risks from pest and disease outbreaks, extreme weather events, and market shocks that threaten their household food and income security. In developing and emerging countries, the implementation of area yield-based insurance, the form of crop insurance preferred by clients and industry, is constrained by the limited availability of detailed historical yield records. Remote-sensing technology can help to fill this gap by providing an unbiased and replicable source of the needed data. This study is dedicated to demonstrating and validating the methodology of remote sensing and crop growth model-based rice yield estimation with the intention of historical yield data generation for application in crop insurance. The developed system combines MODIS and SAR-based remote-sensing data to generate spatially explicit inputs for rice using a crop growth model. MODIS reflectance data were used to generate multitemporal LAI maps using the inverted Radiative Transfer Model (RTM. SAR data were used to generate rice area maps using MAPScape-RICE to mask LAI map products for further processing, including smoothing with logistic function and running yield simulation using the ORYZA crop growth model facilitated by the Rice Yield Estimation System (Rice-YES. Results from this study indicate that the approach of assimilating MODIS and SAR data into a crop growth model can generate well-adjusted yield estimates that adequately describe spatial yield distribution in the study area while reliably replicating official yield data with root mean square error, RMSE, of 0.30 and 0.46 t ha−1 (normalized root mean square error, NRMSE of 5% and 8% for the 2016 spring and summer seasons, respectively, in the Red River Delta of Vietnam, as evaluated at district level aggregation. The information from remote-sensing technology was also useful for identifying geographic locations with

  6. An operon for production of bioactive gibberellin A4 phytohormone with wide distribution in the bacterial rice leaf streak pathogen Xanthomonas oryzae pv. oryzicola.

    Science.gov (United States)

    Nagel, Raimund; Turrini, Paula C G; Nett, Ryan S; Leach, Jan E; Verdier, Valérie; Van Sluys, Marie-Anne; Peters, Reuben J

    2017-05-01

    Phytopathogens have developed elaborate mechanisms to attenuate the defense response of their host plants, including convergent evolution of complex pathways for production of the GA phytohormones, which were actually first isolated from the rice fungal pathogen Gibberella fujikuroi. The rice bacterial pathogen Xanthomonas oryzae pv. oryzicola (Xoc) has been demonstrated to contain a biosynthetic operon with cyclases capable of producing the universal GA precursor ent-kaurene. Genetic (knock-out) studies indicate that the derived diterpenoid serves as a virulence factor for this rice leaf streak pathogen, serving to reduce the jasmonic acid-mediated defense response. Here the functions of the remaining genes in the Xoc operon are elucidated and the distribution of the operon in X. oryzae is investigated in over 100 isolates. The Xoc operon leads to production of the bioactive GA 4 , an additional step beyond production of the penultimate precursor GA 9 mediated by the homologous operons recently characterized from rhizobia. Moreover, this GA biosynthetic operon was found to be widespread in Xoc (> 90%), but absent in the other major X. oryzae pathovar. These results indicate selective pressure for production of GA 4 in the distinct lifestyle of Xoc, and the importance of GA to both fungal and bacterial pathogens of rice. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  7. Peroxisomal alanine: glyoxylate aminotransferase AGT1 is indispensable for appressorium function of the rice blast pathogen, Magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Vijai Bhadauria

    Full Text Available The role of β-oxidation and the glyoxylate cycle in fungal pathogenesis is well documented. However, an ambiguity still remains over their interaction in peroxisomes to facilitate fungal pathogenicity and virulence. In this report, we characterize a gene encoding an alanine, glyoxylate aminotransferase 1 (AGT1 in Magnaporthe oryzae, the causative agent of rice blast disease, and demonstrate that AGT1 is required for pathogenicity of M. oryzae. Targeted deletion of AGT1 resulted in the failure of penetration via appressoria; therefore, mutants lacking the gene were unable to induce blast symptoms on the hosts rice and barley. This penetration failure may be associated with a disruption in lipid mobilization during conidial germination as turgor generation in the appressorium requires mobilization of lipid reserves from the conidium. Analysis of enhanced green fluorescent protein expression using the transcriptional and translational fusion with the AGT1 promoter and open reading frame, respectively, revealed that AGT1 expressed constitutively in all in vitro grown cell types and during in planta colonization, and localized in peroxisomes. Peroxisomal localization was further confirmed by colocalization with red fluorescent protein fused with the peroxisomal targeting signal 1. Surprisingly, conidia produced by the Δagt1 mutant were unable to form appressoria on artificial inductive surfaces, even after prolonged incubation. When supplemented with nicotinamide adenine dinucleotide (NAD(++pyruvate, appressorium formation was restored on an artificial inductive surface. Taken together, our data indicate that AGT1-dependent pyruvate formation by transferring an amino group of alanine to glyoxylate, an intermediate of the glyoxylate cycle is required for lipid mobilization and utilization. This pyruvate can be converted to non-fermentable carbon sources, which may require reoxidation of NADH generated by the β-oxidation of fatty acids to NAD(+ in

  8. Macromolecular Traits in the African Rice Oryza glaberrima and in Glaberrima/Sativa Crosses, and Their Relevance to Processing.

    Science.gov (United States)

    Marengo, Mauro; Barbiroli, Alberto; Bonomi, Francesco; Casiraghi, Maria Cristina; Marti, Alessandra; Pagani, Maria Ambrogina; Manful, John; Graham-Acquaah, Seth; Ragg, Enzio; Fessas, Dimitrios; Hogenboom, Johannes A; Iametti, Stefania

    2017-10-01

    Molecular properties of proteins and starch were investigated in 2 accessions of Oryza glaberrima and Oryza sativa, and in one NERICA cross between the 2 species, to assess traits that could be relevant to transformation into specific foods. Protein nature and organization in O. glaberrima were different from those in O. sativa and in NERICA. Despite the similar cysteine content in all samples, thiol accessibility in O. glaberrima proteins was higher than in NERICA or in O. sativa. Inter-protein disulphide bonds were important for the formation of protein aggregates in O. glaberrima, whereas non-covalent protein-protein interactions were relevant in NERICA and O. sativa. DSC and NMR studies indicated only minor differences in the structure of starch in these species, as also made evident by their microstructural features. Nevertheless, starch gelatinization in O. glaberrima was very different from what was observed in O. sativa and NERICA. The content of soluble species in gelatinized starch from the various species in the presence/absence of treatments with specific enzymes indicated that release of small starch breakdown products was lowest in O. glaberrima, in particular from the amylopectin component. These findings may explain the low glycemic index of O. glaberrima, and provide a rationale for extending the use of O. glaberrima in the production of specific rice-based products, thus improving the economic value and the market appeal of African crops. The structural features of proteins and starch in O. glaberrima are very different from those in O. sativa and in the NERICA cross. These results appear useful as for extending the use of O. glaberrima cultivars in the design and production of specific rice-based products (for example, pasta), that might, in turn, improve the economic value and the market appeal of locally sourced raw materials, by introducing added-value products on the African market. © 2017 Institute of Food Technologists®.

  9. Evaluation of RNA extraction methods in rice and their application in expression analysis of resistance genes against Magnaporthe oryzae

    Directory of Open Access Journals (Sweden)

    Parisa Azizi

    2017-01-01

    Full Text Available Extraction of RNA of high quality and integrity is essential for gene expression studies and all downstream RNA-based techniques. The leaves of 16 merit Malaysian rice varieties were used to isolate total RNA using five different methods. The quantity, quality and integrity of extracted RNA were confirmed using three different means. The ratios of A260/280 ranged from 2.12 to 2.20. Electrophoresis (1.5% agarose gel was performed, illustrating intact and sharp bands representing the 28S, 18S, 5.8S and 5S ribosomal subunits of RNA, presenting intact RNA. RNA quality was verified using semi-quantitative polymerase chain reaction (sqPCR. The objective of this study was to identify different genes involved in the resistance of rice plants using high-quality RNA extracted 31 h after inoculation of Magnaporthe oryzae pathotype P7.2. The expression levels of eight blast resistance genes, Pikh, Pib, Pita, Pi21, Pi9, Os11gRGA8, OsWRKY22 and OsWRKY45, were evaluated by real-time PCR (RT-PCR. Real-time PCR was performed to identify candidate genes using RNA extracted by the TRIzol method, which showed the highest score compared with other methods in terms of RNA quantity, purity and integrity. In addition, the results of real-time PCR confirmed that the up-regulation of seven blast resistance genes may confer stronger resistance for the MR 276 variety against M. oryzae pathotype P7.2.

  10. Impact of SNPs on Protein Phosphorylation Status in Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Shoukai Lin

    2016-11-01

    Full Text Available Single nucleotide polymorphisms (SNPs are widely used in functional genomics and genetics research work. The high-quality sequence of rice genome has provided a genome-wide SNP and proteome resource. However, the impact of SNPs on protein phosphorylation status in rice is not fully understood. In this paper, we firstly updated rice SNP resource based on the new rice genome Ver. 7.0, then systematically analyzed the potential impact of Non-synonymous SNPs (nsSNPs on the protein phosphorylation status. There were 3,897,312 SNPs in Ver. 7.0 rice genome, among which 9.9% was nsSNPs. Whilst, a total 2,508,261 phosphorylated sites were predicted in rice proteome. Interestingly, we observed that 150,197 (39.1% nsSNPs could influence protein phosphorylation status, among which 52.2% might induce changes of protein kinase (PK types for adjacent phosphorylation sites. We constructed a database, SNP_rice, to deposit the updated rice SNP resource and phosSNPs information. It was freely available to academic researchers at http://bioinformatics.fafu.edu.cn. As a case study, we detected five nsSNPs that potentially influenced heterotrimeric G proteins phosphorylation status in rice, indicating that genetic polymorphisms showed impact on the signal transduction by influencing the phosphorylation status of heterotrimeric G proteins. The results in this work could be a useful resource for future experimental identification and provide interesting information for better rice breeding.

  11. A Rice Gene Homologous to Arabidopsis AGD2-LIKE DEFENSE1 Participates in Disease Resistance Response against Infection with Magnaporthe oryzae

    Directory of Open Access Journals (Sweden)

    Ga Young Jung

    2016-08-01

    Full Text Available ALD1 (ABERRANT GROWTH AND DEATH2 [AGD2]-LIKE DEFENSE1 is one of the key defense regulators in Arabidopsis thaliana and Nicotiana benthamiana. In these model plants, ALD1 is responsible for triggering basal defense response and systemic resistance against bacterial infection. As well ALD1 is involved in the production of pipecolic acid and an unidentified compound(s for systemic resistance and priming syndrome, respectively. These previous studies proposed that ALD1 is a potential candidate for developing genetically modified (GM plants that may be resistant to pathogen infection. Here we introduce a role of ALD1-LIKE gene of Oryza sativa, named as OsALD1, during plant immunity. OsALD1 mRNA was strongly transcribed in the infected leaves of rice plants by Magnaporthe oryzae, the rice blast fungus. OsALD1 proteins predominantly localized at the chloroplast in the plant cells. GM rice plants over-expressing OsALD1 were resistant to the fungal infection. The stable expression of OsALD1 also triggered strong mRNA expression of PATHOGENESIS-RELATED PROTEIN1 genes in the leaves of rice plants during infection. Taken together, we conclude that OsALD1 plays a role in disease resistance response of rice against the infection with rice blast fungus.

  12. Soil-to-plant transfer factors of trace and major elements in rice plant (Oryza Sativa) at Kalpakkam

    International Nuclear Information System (INIS)

    Sreedevi, K.R.; Rajaram, S.; Thulasi Brindha, J.; Venkataraman, S.; Hegde, A.G.

    2011-01-01

    The objective of this study was to evaluate the distribution of trace and major elements in rice plant (Oryza Sativa) which is the staple diet of the public at Kalpakkam. The transfer factor from soil to various parts of plant was also studied. Trace and major elements such as Fe, Mn, Zn, Co, Cu, Ni, Cr, Cd, Pb , Sr, K, Ca and Mg were selected based on their role in nutrition and also to study the behaviour of their radioactive counterparts. Among the trace elements Fe concentration was observed to be maximum in soil, the mean value of which was 18394 mg/kg dry wt. Cadmium concentration was observed to be minimum with the mean value of 2 mg/kg dry wt. The maximum and minimum concentration observed in the rice grain were due to Zn and Cd and the values were found to be 9 and 0.044 mg/kg dry wt, respectively. In the stem and leaves part the maximum and minimum concentration was due to Fe and Cd and the values were found to be 26.8 and 0.12 mg/kg dry wt. Similarly in the root part Fe and Cd concentrations were found to be maximum and minimum, respectively. Among the different parts of the rice plant, trace elements concentration in root was maximum and in stem and leaves major elements concentration was maximum. Transfer factor from soil to plant parts was computed. In general, the transfer factor was maximum in root, followed by stem and leaves and grain for trace elements. The transfer factor computed for whole rice plant was maximum for Zn and minimum for Sr which is a significant observation from radiological point of view. (author)

  13. [Quantifying rice (Oryza sativa L.) photo-assimilated carbon input into soil organic carbon pools following continuous 14C labeling].

    Science.gov (United States)

    Nie, San-An; Zhou, Ping; Ge, Ti-Da; Tong, Cheng-Li; Xiao, He-Ai; Wu, Jin-Shui; Zhang, Yang-Zhu

    2012-04-01

    The microcosm experiment was carried out to quantify the input and distribution of photo-assimilated C into soil C pools by using a 14C continuous labeling technique. Destructive samplings of rice (Oryza sativa) were conducted after labeling for 80 days. The allocation of 14C-labeled photosynthates in plants and soil C pools such as dissolved organic C (DOC) and microbial biomass C (MBC) in rice-planted soil were examined over the 14C labeling span. The amounts of rice shoot and root biomass C was ranged from 1.86 to 5.60 g x pot(-1), 0.46 to 0.78 g x pot(-1) in different tested paddy soils after labeling for 80 days, respectively. The amount of 14C in the soil organic C (14C-SOC) was also dependent on the soils, ranged from 114.3 to 348.2 mg x kg(-1), accounting for 5.09% to 6.62% of the rice biomass 14C, respectively. The amounts of 14C in the dissolved organic C (14C-DOC) and in the microbial biomass C(14C-MBC), as proportions of 14C-SOC, were 2.21%-3.54% and 9.72% -17.2%, respectively. The 14C-DOC, 14C-MBC, and 14C-SOC as proportions of total DOC, MBC, and SOC, respectively, were 6.72% -14.64%, 1.70% -7.67%, and 0.73% -1.99%, respectively. Moreover, the distribution and transformation of root-derived C had a greater influence on the dynamics of DOC and MBC than on the dynamics of SOC. Further studies are required to ascertain the functional significance of soil microorganisms (such as C-sequestering bacteria and photosynthetic bacteria) in the paddy system.

  14. Rice (Oryza sativa L.) containing the bar gene is compositionally equivalent to the nontransgenic counterpart.

    Science.gov (United States)

    Oberdoerfer, Regina B; Shillito, Raymond D; de Beuckeleer, Marc; Mitten, Donna H

    2005-03-09

    This publication presents an approach to assessing compositional equivalence between grain derived from glufosinate-tolerant rice grain, genetic event LLRICE62, and its nontransgenic counterpart. Rice was grown in the same manner as is common for commercial production, using either conventional weed control practices or glufosinate-ammonium herbicide. A two-season multisite trial design provided a robust data set to evaluate environmental effects between the sites. Statistical comparisons to test for equivalence were made between glufosinate-tolerant rice and a conventional counterpart variety. The key nutrients, carbohydrates, protein, iron, calcium, thiamin, riboflavin, and niacin, for which rice can be the principal dietary source, were investigated. The data demonstrate that rice containing the genetic locus LLRICE62 has the same nutritional value as its nontransgenic counterpart, and most results for nutritional components fall within the range of values reported for rice commodities in commerce.

  15. Excessive sulfur supply reduces cadmium accumulation in brown rice (Oryza sativa L.).

    Science.gov (United States)

    Fan, Jian-Ling; Hu, Zheng-Yi; Ziadi, Noura; Xia, Xu; Wu, Cong-Yang-Hui

    2010-02-01

    Human activities have resulted in cadmium (Cd) and sulfur (S) accumulation in paddy soils in parts of southern China. A combined soil-sand pot experiment was conducted to investigate the influence of excessive S supply on iron plaque formation and Cd accumulation in rice plants, using two Cd levels (0, 1.5 mg kg(-1)) combined with three S concentrations (0, 60, 120 mg kg(-1)). The results showed that excessive S supply significantly decreased Cd accumulation in brown rice due to the decrease of Cd availability and the increase of glutathione in rice leaves. But excessive S supply obviously increased Cd accumulation in roots due to the decrease of iron plaque formation on the root surface of rice. Therefore, excessive S supply may result in loss of rice yield, but it could effectively reduce Cd accumulation in brown rice exposed to Cd contaminated soils. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  16. Spectroscopic determination of essential elements in unpolished rice (oryza sativa l.), grown at rri, Dokri

    International Nuclear Information System (INIS)

    Shar, G.Q.; Arain, S.A.; Shar, L.A.; Kazi, T.G.; Sahito, S.

    2005-01-01

    seven rice varieties collected from, Rice Research institute (RRI) Dokri, Sindh in Pakistan. Agricultural soil samples was also collected to evaluate the bioavailability of eight essential elements to seven varieties of rice grown in the same agricultural plot. The agricultural soil and rice varieties were digested by wet acid digestion method. Homogeneity of the prepared materials was evaluated through the determination of eight essential elements i.e., Na, K, Mg, Ca, Fe, Mn, Zn, using flame atomic absorption spectrophotometer. The unpolished rice varieties contained high amount of essential micro nutrients such as Na, K, Mg, Ca, Fe, Mn, Zn, and Cu (616.01, 4097.15, 626.20, 73.90, 1829.88, 50.34, 42.72 and 7.21 mg/kg) in seven different varieties of rice i.e. DR-82, DR83, DR92, Kanwal-95, Lateefi, Sadahayat and Sarshar respectively. (author)

  17. Evaluation of Mercury Uptake and Distribution in Rice (Oryza sativa L.).

    Science.gov (United States)

    Hang, Xiaoshuai; Gan, Fangqun; Chen, Yudong; Chen, Xiaoqin; Wang, Huoyan; Du, Changwen; Zhou, Jianmin

    2018-03-01

    Mercury (Hg) contamination in soil-rice systems from industry, mining and agriculture has received increasing attention recently in China. Pot experiments were conducted to research the Hg accumulation capacity of rice under exogenous Hg in the soil and study the major soil factors affecting translocation of Hg from soil to plant. Soil treated with 2 mg kg -1 Hg decreased rice grain yield and inhibited the growth of rice plants. With increased Hg contamination of the rice, the enrichment rate of Hg was significantly higher in the rice grain than that in the stalk and leaf. Soil pH and cation exchange capacity are the key factors controlling Hg bioavailability in soils.

  18. Evaluation of soil characteristics potentially affecting arsenic concentration in paddy rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Bogdan, Katja; Schenk, Manfred K.

    2009-01-01

    Paddy rice may contribute considerably to the human intake of As. The knowledge of soil characteristics affecting the As content of the rice plant enables the development of agricultural measures for controlling As uptake. During field surveys in 2004 and 2006, plant samples from 68 fields (Italy, Po-area) revealed markedly differing As concentration in polished rice. The soil factors total As (aquaregia) , pH, grain size fractions, total C, plant available P (CAL) , poorly crystalline Fe (oxal.) and plant available Si (Na-acetate) content that potentially affect As content of rice were determined. A multiple linear regression analysis showed a significant positive influence of the total As (aquaregia) and plant available P (CAL) content and a negative influence of the poorly crystalline Fe (oxal.) content of the soil on the As content in polished rice and rice straw. Si concentration in rice straw varied widely and was negatively related to As content in straw and polished rice. - Field selection for total As, poorly crystalline Fe and plant available P in soil might contribute to control As content of paddy rice.

  19. Utilization of wastewater on seed germination and physioogical parameters of rice (Oryza sativa L.)

    Science.gov (United States)

    Huy, V.; Iwai, C. B.

    2018-03-01

    Due to increasing world population and demand, fresh water availability is becoming a limited resource. Reusing wastewater for agriculture has received attention since it contains nutrients, which are beneficial for growing crops. Even though wastewater can be used as the nutrient source for the plant, the toxicity of wastewater can still be a cause for concern and investigation. The main objective of this paper was to assess the effect of different sources of wastewater on the germination of Jasmine rice (KDML105), White rice (Phatum Thani 1), and Sticky rice (RD6) under laboratory conditions. Petri dish cultures were used with various concentrations (0, 50, and 100%) of wastewater collected from swine farm, aquaculture activity, and domestic. Seed germination, root length, shoot length, seed vigor index, fresh weight and dry weight were measured after each experiment. The results have shown that domestic wastewater and aquaculture activity wastewater did not decrease performance of Jasmine rice (KDML105), White rice (Phatum thani 1), and Sticky rice (RD6) while the germination of Jasmine rice (KDML105), White rice (Phatum thani 1), and Sticky rice (RD6) decreased when irrigated with swine farm wastewater. Therefore, using domestic and aquaculture activity wastewater for irrigation are suitable for growth of these crop.

  20. Fine mapping and identification of a novel locus qGL12.2 control grain length in wild rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Qi, Lan; Ding, Yingbin; Zheng, Xiaoming; Xu, Rui; Zhang, Lizhen; Wang, Yanyan; Wang, Xiaoning; Zhang, Lifang; Cheng, Yunlian; Qiao, Weihua; Yang, Qingwen

    2018-04-19

    A wild rice QTL qGL12.2 for grain length was fine mapped to an 82-kb interval in chromosome 12 containing six candidate genes and none was reported previously. Grain length is an important trait for yield and commercial value in rice. Wild rice seeds have a very slender shape and have many desirable genes that have been lost in cultivated rice during domestication. In this study, we identified a quantitative trait locus, qGL12.2, which controls grain length in wild rice. First, a wild rice chromosome segment substitution line, CSSL41, was selected that has longer glume and grains than does the Oryza sativa indica cultivar, 9311. Next, an F 2 population was constructed from a cross between CSSL41 and 9311. Using the next-generation sequencing combined with bulked-segregant analysis and F 3 recombinants analysis, qGL12.2 was finally fine mapped to an 82-kb interval in chromosome 12. Six candidate genes were found, and no reported grain length genes were found in this interval. Using scanning electron microscopy, we found that CSSL41 cells are significantly longer than those of 9311, but there is no difference in cell widths. These data suggest that qGL12.2 is a novel gene that controls grain cell length in wild rice. Our study provides a new genetic resource for rice breeding and a starting point for functional characterization of the wild rice GL gene.

  1. Enhancement of gama-aminobutyric acid (GABA) and other health-related metabolites in germinated red rice (Oryza sativa L.) by ultrasonication.

    Science.gov (United States)

    Ding, Junzhou; Ulanov, Alexander V; Dong, Mengyi; Yang, Tewu; Nemzer, Boris V; Xiong, Shanbai; Zhao, Siming; Feng, Hao

    2018-01-01

    Red rice (Oryza sativa L.) that has a red (reddish brown) bran layer in de-hulled rice is known to contain rich biofunctional components. Germination is an effective technique to improve the nutritional quality, digestibility, and flavor of de-hulled rice. Ultrasonication, a form of physical stimulation, has been documented as a novel approach to improve the nutritional quality of plant-based food. This study was undertaken to test the use of ultrasound to enhance the nutritional value of red rice. Ultrasonication (5min, 16W/L) was applied to rice during soaking or after 66h germination. Changes of metabolites (amino acids, sugars, and organic acids) in red rice treated by ultrasonication were determined using a GC/MS plant primary metabolomics analysis platform. Differential expressed metabolites were identified through multivariate statistical analysis. Results showed that γ-aminobutyric acid (GABA) and riboflavin (vitamin B 2 ) in red rice significantly increased after germination for 72h, and then experienced a further increase after treatment by ultrasound at different stages during germination. The metabolomics analysis showed that some plant metabolites, i.e. GABA, O-phosphoethanolamine, and glucose-6-phosphate were significantly increased after the ultrasonic treatment (VIP>1.5) in comparison with the untreated germinated rice. The findings of this study showed that controlled germination with ultrasonic stress is an effective method to enhance GABA and other health-promoted components in de-hulled rice. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Identification and functional analysis of flowering related microRNAs in common wild rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Chen, Zongxiang; Li, Fuli; Yang, Songnan; Dong, Yibo; Yuan, Qianhua; Wang, Feng; Li, Weimin; Jiang, Ying; Jia, Shirong; Pei, Xinwu

    2013-01-01

    MicroRNAs (miRNAs) is a class of non-coding RNAs involved in post- transcriptional control of gene expression, via degradation and/or translational inhibition. Six-hundred sixty-one rice miRNAs are known that are important in plant development. However, flowering-related miRNAs have not been characterized in Oryza rufipogon Griff. It was approved by supervision department of Guangdong wild rice protection. We analyzed flowering-related miRNAs in O. rufipogon using high-throughput sequencing (deep sequencing) to understand the changes that occurred during rice domestication, and to elucidate their functions in flowering. Three O. rufipogon sRNA libraries, two vegetative stage (CWR-V1 and CWR-V2) and one flowering stage (CWR-F2) were sequenced using Illumina deep sequencing. A total of 20,156,098, 21,531,511 and 20,995,942 high quality sRNA reads were obtained from CWR-V1, CWR-V2 and CWR-F2, respectively, of which 3,448,185, 4,265,048 and 2,833,527 reads matched known miRNAs. We identified 512 known rice miRNAs in 214 miRNA families and predicted 290 new miRNAs. Targeted functional annotation, GO and KEGG pathway analyses predicted that 187 miRNAs regulate expression of flowering-related genes. Differential expression analysis of flowering-related miRNAs showed that: expression of 95 miRNAs varied significantly between the libraries, 66 are flowering-related miRNAs, such as oru-miR97, oru-miR117, oru-miR135, oru-miR137, et al. 17 are early-flowering -related miRNAs, including osa-miR160f, osa-miR164d, osa-miR167d, osa-miR169a, osa-miR172b, oru-miR4, et al., induced during the floral transition. Real-time PCR revealed the same expression patterns as deep sequencing. miRNAs targets were confirmed for cleavage by 5'-RACE in vivo, and were negatively regulated by miRNAs. This is the first investigation of flowering miRNAs in wild rice. The result indicates that variation in miRNAs occurred during rice domestication and lays a foundation for further study of phase change

  3. Regulation of glutamine synthetase isoforms in two differentially drought-tolerant rice (Oryza sativa L.) cultivars under water deficit conditions.

    Science.gov (United States)

    Singh, Kamal Krishna; Ghosh, Shilpi

    2013-02-01

    KEY MESSAGE : The regulation of GS isoforms by WD was organ specific. Two GS isoforms i.e. OsGS1;1 and OsGS2 were differentially regulated in IR-64 (drought-sensitive) and Khitish (drought-tolerant) cultivars of rice. Water deficit (WD) has adverse effect on rice (Oryza sativa L.) and acclimation requires essential reactions of primary metabolism to continue. Rice plants utilize ammonium as major nitrogen source, which is assimilated into glutamine by the reaction of Glutamine synthetase (GS, EC 6.3.1.2). Rice plants possess one gene (OsGS2) for chloroplastic GS2 and three genes (OsGS1;1, OsGS1;2 and OsGS1;3) for cytosolic GS1. Here, we report the effect of WD on regulation of GS isoforms in drought-sensitive (cv. IR-64) and drought-tolerant (cv. Khitish) rice cultivars. Under WD, total GS activity in root and leaf decreased significantly in IR-64 seedlings in comparison to Khitish seedlings. The reduced GS activity in IR-64 leaf was mainly due to decrease in GS2 activity, which correlated with decrease in corresponding transcript and polypeptide contents. GS1 transcript and polypeptide accumulated in leaf during WD, however, GS1 activity was maintained at a constant level. Total GS activity in stem of both the varieties was insensitive to WD. Among GS1 genes, OsGS1;1 expression was differently regulated by WD in the two rice varieties. Its transcript accumulated more abundantly in IR-64 leaf than in Khitish leaf. Following WD, OsGS1;1 mRNA level in stem and root tissues declined in IR-64 and enhanced in Khitish. A steady OsGS1;2 expression patterns were noted in leaf, stem and root of both the cultivars. Results suggest that OsGS2 and OsGS1;1 expression may contribute to drought tolerance of Khitish cultivar under WD conditions.

  4. Identification and functional analysis of flowering related microRNAs in common wild rice (Oryza rufipogon Griff..

    Directory of Open Access Journals (Sweden)

    Zongxiang Chen

    Full Text Available BACKGROUND: MicroRNAs (miRNAs is a class of non-coding RNAs involved in post- transcriptional control of gene expression, via degradation and/or translational inhibition. Six-hundred sixty-one rice miRNAs are known that are important in plant development. However, flowering-related miRNAs have not been characterized in Oryza rufipogon Griff. It was approved by supervision department of Guangdong wild rice protection. We analyzed flowering-related miRNAs in O. rufipogon using high-throughput sequencing (deep sequencing to understand the changes that occurred during rice domestication, and to elucidate their functions in flowering. RESULTS: Three O. rufipogon sRNA libraries, two vegetative stage (CWR-V1 and CWR-V2 and one flowering stage (CWR-F2 were sequenced using Illumina deep sequencing. A total of 20,156,098, 21,531,511 and 20,995,942 high quality sRNA reads were obtained from CWR-V1, CWR-V2 and CWR-F2, respectively, of which 3,448,185, 4,265,048 and 2,833,527 reads matched known miRNAs. We identified 512 known rice miRNAs in 214 miRNA families and predicted 290 new miRNAs. Targeted functional annotation, GO and KEGG pathway analyses predicted that 187 miRNAs regulate expression of flowering-related genes. Differential expression analysis of flowering-related miRNAs showed that: expression of 95 miRNAs varied significantly between the libraries, 66 are flowering-related miRNAs, such as oru-miR97, oru-miR117, oru-miR135, oru-miR137, et al. 17 are early-flowering -related miRNAs, including osa-miR160f, osa-miR164d, osa-miR167d, osa-miR169a, osa-miR172b, oru-miR4, et al., induced during the floral transition. Real-time PCR revealed the same expression patterns as deep sequencing. miRNAs targets were confirmed for cleavage by 5'-RACE in vivo, and were negatively regulated by miRNAs. CONCLUSIONS: This is the first investigation of flowering miRNAs in wild rice. The result indicates that variation in miRNAs occurred during rice domestication and

  5. Uptake, translocation and transformation of antimony in rice (Oryza sativa L.) seedlings

    International Nuclear Information System (INIS)

    Cai, Fei; Ren, Jinghua; Tao, Shu; Wang, Xilong

    2016-01-01

    Antimony (Sb), as a toxic metalloid, has been gaining increasing research concerns due mainly to its severe pollution in many places. Rice has been identified to be the dominant intake route of Sb by residents close to the Sb mining areas. A hydroponic experiment was conducted to investigate the difference in uptake, translocation and transformation of Sb in rice seedlings of four cultivars exposed to 0.2 or 1.0 mg/L of Sb(V). The results showed that mass concentration of iron plaque (mg/kg FW) formed at the root surfaces of cultivar N was the highest among all tested cultivars at both low and high exposure levels of Sb(V). The accumulated Sb concentration in iron plaque significantly increased with an increase in mass concentration of iron plaque formed at the rice root. The total amount of iron plaque (mg/pot) at rice root generally increased with increasing exposed Sb(V) concentration, which was closely associated with the increasing lipid peroxidation in roots. Concentration percentage of Sb in rice root significantly reduced as the corresponding value in the iron plaque increased, suggesting that iron plaque formation strongly suppressed uptake of Sb by rice root. Sb concentration in rice tissues followed an order: root > stem, leaf. The japonica rice (cultivars N and Z) exhibited a stronger translocation tendency of Sb from root to stem than indica hybrid rice (cultivars F and G). Translocation of Sb from root of cultivar F to its stem and leaf was sharply enhanced with increasing Sb exposure concentration. Sb(V) could be reduced to Sb(III) in rice tissues, especially in stems (10–26% of the total Sb). For the sake of food safety, the difference in uptake, translocation and transformation of Sb in rice species planted in Sb-contaminated soils should be taken into consideration. - Highlights: • Sb(V) caused lipid peroxidation and increased iron plaque formation at root surface. • The iron plaque may suppress uptake of Sb by rice. • Cultivars

  6. Uptake, translocation and transformation of antimony in rice (Oryza sativa L.) seedlings.

    Science.gov (United States)

    Cai, Fei; Ren, Jinghua; Tao, Shu; Wang, Xilong

    2016-02-01

    Antimony (Sb), as a toxic metalloid, has been gaining increasing research concerns due mainly to its severe pollution in many places. Rice has been identified to be the dominant intake route of Sb by residents close to the Sb mining areas. A hydroponic experiment was conducted to investigate the difference in uptake, translocation and transformation of Sb in rice seedlings of four cultivars exposed to 0.2 or 1.0 mg/L of Sb(V). The results showed that mass concentration of iron plaque (mg/kg FW) formed at the root surfaces of cultivar N was the highest among all tested cultivars at both low and high exposure levels of Sb(V). The accumulated Sb concentration in iron plaque significantly increased with an increase in mass concentration of iron plaque formed at the rice root. The total amount of iron plaque (mg/pot) at rice root generally increased with increasing exposed Sb(V) concentration, which was closely associated with the increasing lipid peroxidation in roots. Concentration percentage of Sb in rice root significantly reduced as the corresponding value in the iron plaque increased, suggesting that iron plaque formation strongly suppressed uptake of Sb by rice root. Sb concentration in rice tissues followed an order: root > stem, leaf. The japonica rice (cultivars N and Z) exhibited a stronger translocation tendency of Sb from root to stem than indica hybrid rice (cultivars F and G). Translocation of Sb from root of cultivar F to its stem and leaf was sharply enhanced with increasing Sb exposure concentration. Sb(V) could be reduced to Sb(III) in rice tissues, especially in stems (10-26% of the total Sb). For the sake of food safety, the difference in uptake, translocation and transformation of Sb in rice species planted in Sb-contaminated soils should be taken into consideration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Gene manipulation for salt tolerance and blast resistance through in vitro techniques in rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Reddy, G.M.

    1990-01-01

    Full text: Rice calli generally lose regenerating ability in about 90 days. However, plant regeneration (60-70%) from 1500 day old embryo calli of 'Thellahamsa' cultivar has been established with 3% sorbitol/mannitol on LS media for efficient genetic manipulation at the cellular level. Matured embryo calli of four susceptible cultivars, 'Tellahamsa', 'Jaya', 'HR-2' and 'Zenith' were irradiated (0.1-0.5 kR) and challenged with Pyricularia oryzae spore suspensions (10 5 /ml) and with the major toxin d-picolinic acid (125-200 ppm). A total of 514 plants were regenerated from the resistant calli. The TC-2 plants exhibited varying degrees of resistance (66-78%). The genetic basis of resistance of regenerated plants and their progeny may help in understanding the mechanism. Rice embryo calli of nine scented and non-scented cultivars were challenged with NaCI (0.5-2%) and 25-50% sea water with or without proline. A total of 222 plants were regenerated. The progeny of TC-2 plants were evaluated with normal and saline soil (EC 13.5 ds/m) for yield parameters. These studies suggested that stable tolerant TC-2 plants under stress exhibited superior yield parameters and the salinity index ranged from 89.4-98.4. (author)

  8. Gene manipulation for salt tolerance and blast resistance through in vitro techniques in rice (Oryza sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, G M [Department of Genetics, Osmania University, Hyderabad (India)

    1990-01-01

    Full text: Rice calli generally lose regenerating ability in about 90 days. However, plant regeneration (60-70%) from 1500 day old embryo calli of 'Thellahamsa' cultivar has been established with 3% sorbitol/mannitol on LS media for efficient genetic manipulation at the cellular level. Matured embryo calli of four susceptible cultivars, 'Tellahamsa', 'Jaya', 'HR-2' and 'Zenith' were irradiated (0.1-0.5 kR) and challenged with Pyricularia oryzae spore suspensions (10{sup 5}/ml) and with the major toxin d-picolinic acid (125-200 ppm). A total of 514 plants were regenerated from the resistant calli. The TC-2 plants exhibited varying degrees of resistance (66-78%). The genetic basis of resistance of regenerated plants and their progeny may help in understanding the mechanism. Rice embryo calli of nine scented and non-scented cultivars were challenged with NaCI (0.5-2%) and 25-50% sea water with or without proline. A total of 222 plants were regenerated. The progeny of TC-2 plants were evaluated with normal and saline soil (EC 13.5 ds/m) for yield parameters. These studies suggested that stable tolerant TC-2 plants under stress exhibited superior yield parameters and the salinity index ranged from 89.4-98.4. (author)

  9. Studies on the physiological changes in the rice plants infected with Xanthomonas campestris pv. of oryzae, (4)

    International Nuclear Information System (INIS)

    Watanabe, Minoru; Samejima, Shin-ichi; Hayashi, Nobuo; Hosokawa, Daijiro

    1980-01-01

    The translocation and accumulation of 14 C-photosynthetic assimilates in rice plants infected with Xanthomonas campestris pv. oryzae were investigated. Approximately the same quantities of assimilates were detected in healthy and infected leaves 1 day after photosynthesis, but 1.7 times as much as healthy leaves assimilates were still remained in infected leaves 7 days after photosynthesis. Much more 14 C-photosynthetic assimilates were generally detected in leaf blade than in leaf sheath or in root within 1 day after photosynthesis, but detected in leaf sheath than in leaf blade later than 2 days after photosynthesis. The rates of translocation of 14 C-assimilates from leaf blade to leaf sheath were lower in inoculated rice plants than in healthy ones. In both healthy and inoculated leaves of susceptible and resistant cultivars, there was a tendency that 14 C-sugar contents decreased, but 14 C-organic acid and -amino acid contents increased gradually after photosynthesis. Incorporation of 14 C-photosynthetic assimilates into invading bacterial cells which were separated from leaf tissues by the methods of leakage and Millipore filtration was not detected immediately after photosynthesis, but became apparent 5 days after photosynthesis. The leakage of 14 C-photosynthetic assimilates from leaf tissues into bathing solution was about 4 times higher in infected leaves than in healthy ones 5 days after photosynthesis, suggesting that the permeability in infected leaf tissues would increase. (author)

  10. Glomus mosseae enhances root growth and Cu and Pb acquisition of upland rice (Oryza sativa L.) in contaminated soils.

    Science.gov (United States)

    Lin, Aijun; Zhang, Xuhong; Yang, Xiaojin

    2014-12-01

    A pot culture experiment was carried out to investigate the roles of Glomus mosseae in Cu and Pb acquisition by upland rice (Oryza sativa L.) and the interactions between Cu and Pb. The soil was treated with three Cu levels (0, 100 and 200 mg kg(-1)) and three Pb levels (0, 300, and 600 mg kg(-1)). All treatments were designed with (+M) or without (-M) G. mosseae inoculation in a randomized block design. The addition of Cu and Pb significantly decreased root mycorrhizal colonization. Compared with -M, +M significantly increased root biomass in almost all treatments, and also significantly increased shoot biomass in the Pb(0)Cu(200), Pb(300)Cu(0), and all Pb(600) treatments. AM fungi enhanced plant Cu acquisition, but decreased plant Cu concentrations with all Cu plus Pb treatments, except for shoot in the Cu(200)Pb(600) treatment. Irrespective of Cu and Pb levels, +M plants had higher Pb uptakes than -M plants, but had lower root Pb and higher shoot Pb concentrations than those of -M plants. Another interpretation for the higher shoot Pb concentration in +M plants relied on Cu-Pb interactions. The study provided further evidences for the protective effects of AM fungi on upland rice against Cu and Pb contamination, and uncovered the phenomenon that Cu addition could promote Pb uptake and Pb partitioning to shoot. The possible mechanisms by which AM fungi can alleviate the toxicity induced by Cu and Pb are also discussed.

  11. Mapping and marker-assisted selection of a brown planthopper resistance gene bph2 in rice (Oryza sativa L.).

    Science.gov (United States)

    Sun, Li-Hong; Wang, Chun-Ming; Su, Chang-Chao; Liu, Yu-Qiang; Zhai, Hu-Qu; Wan, Jian-Min

    2006-08-01

    Nilaparvata lugens Stål (brown planthopper, BPH), is one of the major insect pests of rice (Oryza sativa L.) in the temperate rice-growing region. In this study, ASD7 harboring a BPH resistance gene bph2 was crossed to a susceptible cultivar C418, a japonica restorer line. BPH resistance was evaluated using 134 F2:3 lines derived from the cross between "ASD7" and "C418". SSR assay and linkage analysis were carried out to detect bph2. As a result, the resistant gene bph2 in ASD7 was successfully mapped between RM7102 and RM463 on the long arm of chromosome 12, with distances of 7.6 cM and 7.2 cM, respectively. Meanwhile, both phenotypic selection and marker-assisted selection (MAS) were conducted in the BC1F1 and BC2F1 populations. Selection efficiencies of RM7102 and RM463 were determined to be 89.9% and 91.2%, respectively. It would be very beneficial for BPH resistance improvement by using MAS of this gene.

  12. The impact of Rhizopus oryzae cultivation on rice bran: Gamma-oryzanol recovery and its antioxidant properties.

    Science.gov (United States)

    Massarolo, Kelly Cristina; Denardi de Souza, Taiana; Collazzo, Carolina Carvalho; Badiale Furlong, Eliana; Souza Soares, Leonor Almeida de

    2017-08-01

    This study evaluated the effect of the solid state cultivation (SSC) time of rice bran by Rhizopus oryzae on γ-oryzanol recovery and its antioxidant properties. Gamma-oryzanol was extracted with organic solvents and its extracts were characterized by GC-FID and HPLC-UV. The antioxidant capacity was assessed by DPPH and ABTS + assays, β-carotene/linoleic acid system, and reduction of oxidation in lipid system. The biomass showed the γ-oryzanol recovery increased by 51.5% (20.52mg/g), and 5.7% in polyunsaturated fatty acids. The γ-oryzanol major components changing in their profile. The γ-oryzanol extract from biomass (72h) showed the greatest DPPH inhibition (59.0%), while 90.5% inhibition of oxidation of β-carotene/linoleic acid system, and 30% reduction of the indicators of oxidation in olive oil was observed in the one cultivated at 96h, these behaviors were confirmed by PCA analyses. SSC provides an increase in the γ-oryzanol recovery followed by improving of the functional properties of rice bran. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Molecular cloning and characterization of RGA1 encoding a G protein alpha subunit from rice (Oryza sativa L. IR-36).

    Science.gov (United States)

    Seo, H S; Kim, H Y; Jeong, J Y; Lee, S Y; Cho, M J; Bahk, J D

    1995-03-01

    A cDNA clone, RGA1, was isolated by using a GPA1 cDNA clone of Arabidopsis thaliana G protein alpha subunit as a probe from a rice (Oryza sativa L. IR-36) seedling cDNA library from roots and leaves. Sequence analysis of genomic clone reveals that the RGA1 gene has 14 exons and 13 introns, and encodes a polypeptide of 380 amino acid residues with a calculated molecular weight of 44.5 kDa. The encoded protein exhibits a considerable degree of amino acid sequence similarity to all the other known G protein alpha subunits. A putative TATA sequence (ATATGA), a potential CAAT box sequence (AGCAATAC), and a cis-acting element, CCACGTGG (ABRE), known to be involved in ABA induction are found in the promoter region. The RGA1 protein contains all the consensus regions of G protein alpha subunits except the cysteine residue near the C-terminus for ADP-ribosylation by pertussis toxin. The RGA1 polypeptide expressed in Escherichia coli was, however, ADP-ribosylated by 10 microM [adenylate-32P] NAD and activated cholera toxin. Southern analysis indicates that there are no other genes similar to the RGA1 gene in the rice genome. Northern analysis reveals that the RGA1 mRNA is 1.85 kb long and expressed in vegetative tissues, including leaves and roots, and that its expression is regulated by light.

  14. Leaf gas films contribute to rice (Oryza sativa) submergence tolerance during saline floods

    DEFF Research Database (Denmark)

    Herzog, Max; Konnerup, Dennis; Pedersen, Ole

    2018-01-01

    Floods and salinization of agricultural land adversely impact global rice production. We investigated whether gas films on leaves of submerged rice delay salt entry during saline submergence. Two-week-old plants with leaf gas films (+GF) or with gas films experimentally removed (-GF) were submerged...

  15. Assessment of genetic variability in rice (oryza sativa l.) germplasm from Pakistan using rapd markers

    International Nuclear Information System (INIS)

    Pervaiz, Z.H.; Rabbani, M.A.; Shinwar, Z.K.; Masood, M.S.; Malik, S.A.

    2010-01-01

    Information on genetic diversity and relationships among rice genotypes from Pakistan is currently very limited. Molecular marker analysis can truly be beneficial in analyzing the diversity of rice germplasm providing useful information to broaden the genetic base of modern rice cultivars. The objective of this study was to evaluate the genetic polymorphism of 75 rice accessions and improved cultivars using random amplified polymorphic DNA (RAPD) technique. Twenty-eight decamer-primers generated a total of 145 RAPD fragments, of which 116 (80%) were polymorphic. The number of amplification products produced by each primer varied from 3 to 9 with an average of 5.2 alleles primer-1. The size of amplified fragments ranged from 250 to 4000bp. A dendrogram was generated from minimal variance algorithm using Ward method. All the 75 genotypes were grouped into two main groups corresponding to aromatic and non-aromatic types of indica rice. Clustering of accessions did not show any significant pattern of association between the RAPD fingerprints and collection sites. This type of analysis grouping different rice accessions in relation to fragrance, a major rice quality determinant, and varietal group is extremely useful to develop a core collection and gene bank management. Further more, the information revealed by the RAPDs regarding genetic variation is helpful to the plant breeder in selecting diverse parents and for future orientation of rice breeding program. (author)

  16. Molecular screening of rice ( Oryza sativa L.) germplasm for Xa4 ...

    African Journals Online (AJOL)

    DNA fingerprinting results indicated the presence of Xa4 gene in 41 entries, while 14 lines were positive for xa5 gene. Only one local line was carrying Xa21 gene along with Xa4. Thus, the present study will not only be helpful for rice breeders to develop new rice varieties carrying disease resistant genes, but will also ...

  17. A national survey of rice ( Oryza sativa L.) grain quality in Sierra ...

    African Journals Online (AJOL)

    As Sierra Leone approaches self-sufficiency in rice, against a backdrop of agricultural commercialization, the dynamics of the rice grain production and consumption will increasingly be driven by the quality of grains demanded by consumers to be produced by farmers and marketed by traders in the open market.

  18. Mechanism study of sulfur fertilization mediating copper translocation and biotransformation in rice (Oryza sativa L.) plants.

    Science.gov (United States)

    Sun, Lijuan; Yang, Jianjun; Fang, Huaxiang; Xu, Chen; Peng, Cheng; Huang, Haomin; Lu, Lingli; Duan, Dechao; Zhang, Xiangzhi; Shi, Jiyan

    2017-07-01

    Metabolism of sulfur (S) is suggested to be an important factor for the homeostasis and detoxification of Cu in plants. We investigated the effects of S fertilizers (S 0 , Na 2 SO 4 ) on Cu translocation and biotransformation in rice plants by using multiple synchrotron-based techniques. Fertilization of S increased the biomass and yield of rice plants, as well as the translocation factor of Cu from root to shoot and shoot to grain, resulting in enhanced Cu in grain. Sulfur K-edge X-ray near edge structure (XANES) analysis showed that fertilization of S increased the concentration of glutathione in different rice tissues, especially in rice stem and leaf. Copper K-edge XANES results indicated that a much higher proportion of Cu (I) species existed in rice grain than husk and leaf, which was further confirmed by soft X-ray scanning transmission microscopy results. Sulfur increased the proportion of Cu (I) species in rice grain, husk and leaf, suggesting the inducing of Cu (II) reduction in rice tissues by S fertilization. These results suggested that fertilization of S in paddy soils increased the accumulation of Cu in rice grain, possibly due to the reduction of Cu (II) to Cu (I) by enhancing glutathione synthesis and increasing the translocation of Cu from shoot to grain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. How Rice (Oryza sativa L.) Responds to Elevated As under Different Si-Rich Soil Amendments.

    Science.gov (United States)

    Teasley, William A; Limmer, Matthew A; Seyfferth, Angelia L

    2017-09-19

    Several strategies exist to mitigate As impacts on rice and each has its set of trade-offs with respect to yield, inorganic As content in grain, and CH 4 emissions. The addition of Si to paddy soil can decrease As uptake by rice but how rice will respond to elevated As when soil is amended with Si-rich materials is unresolved. Here, we evaluated yield impacts and grain As content and speciation in rice exposed to elevated As in response to different Si-rich soil amendments including rice husk, rice husk ash, and CaSiO 3 in a pot study. We found that As-induced yield losses were alleviated by Husk amendment, partially alleviated by Ash amendment, and not affected by CaSiO 3 amendment. Furthermore, Husk was the only tested Si-amendment to significantly decrease grain As concentrations. Husk amendment was likely effective at decreasing grain As and improving yield because it provided more plant-available Si, particularly during the reproductive and ripening phases. Both Husk and Ash provided K, which also played a role in yield improvement. This study demonstrates that while Si-rich amendments can affect rice uptake of As, the kinetics of Si dissolution and nutrient availability can also affect As uptake and toxicity in rice.

  20. Comprehensive phenotypic analysis of rice (Oryza sativa) response to salinity stress

    KAUST Repository

    Pires, Inê s S.; Negrã o, Só nia; Oliveira, M. Margarida; Purugganan, Michael D.

    2015-01-01

    affected by salt stress in rice, which puts in question the importance of K+/Na+ when analyzing rice salt stress response. Not only do our results contribute to improve our global understanding of salt stress response in an important crop, but we also use

  1. Progress and challenges in improving the nutritional quality of rice (Oryza sativa L.).

    Science.gov (United States)

    Birla, Deep Shikha; Malik, Kapil; Sainger, Manish; Chaudhary, Darshna; Jaiwal, Ranjana; Jaiwal, Pawan K

    2017-07-24

    Rice is a staple food for more than 3 billion people in more than 100 countries of the world but ironically it is deficient in many bioavailable vitamins, minerals, essential amino- and fatty-acids and phytochemicals that prevent chronic diseases like type 2 diabetes, heart disease, cancers, and obesity. To enhance the nutritional and other quality aspects of rice, a better understanding of the regulation of the processes involved in the synthesis, uptake, transport, and metabolism of macro-(starch, seed storage protein and lipid) and micronutrients (vitamins, minerals and phytochemicals) is required. With the publication of high quality genomic sequence of rice, significant progress has been made in identification, isolation, and characterization of novel genes and their regulation for the nutritional and quality enhancement of rice. During the last decade, numerous efforts have been made to refine the nutritional and other quality traits either by using the traditional breeding with high through put technologies such as marker assisted selection and breeding, or by adopting the transgenic approach. A significant improvement in vitamins (A, folate, and E), mineral (iron), essential amino acid (lysine), and flavonoids levels has been achieved in the edible part of rice, i.e., endosperm (biofortification) to meet the daily dietary allowance. However, studies on bioavailability and allergenicity on biofortified rice are still required. Despite the numerous efforts, the commercialization of biofortified rice has not yet been achieved. The present review summarizes the progress and challenges of genetic engineering and/or metabolic engineering technologies to improve rice grain quality, and presents the future prospects in developing nutrient dense rice to save the everincreasing population, that depends solely on rice as the staple food, from widespread nutritional deficiencies.

  2. Selectivity and weed control efficacy of some herbicides applied to sprinkler irrigated rice (Oryza sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Cavero, J; Zaragoza, C; Cirujeda, A; Anzalone, A; Faci, J M; Blanco, O

    2011-07-01

    Sprinkler irrigation can reduce the irrigation water needed to grow rice. However, most available information on weed control with herbicides is related to flood irrigated rice because this is the main growing method. Field experiments were conducted at Zaragoza (Spain) during two years to study weed control and tolerance of sprinkler irrigated rice to several herbicides. The main weeds were Atriplex prostrata Boucher ex DC., Cyperus rotundus L., Echinochloa crus-galli (L.) Beauv. and Sonchus oleraceus L. Rice cv Guadiamar was tolerant to preemergence (PRE) application of clomazone at 0.36 kg ha{sup -}1 and oxadiazon at 0.5 kg ha{sup -}1. PRE application of pendimethalin at 1.32 kg ha{sup -}1 combined with clomazone at 0.36 kg ha{sup -}1 decreased rice yield. Postemergence (POST) application of bentazon at 1.6 kg ha{sup -}1 + MCPA at 0.25 kg ha{sup -}1 did not injure rice but POST application of azimsulfuron at 0.025 kg ha{sup -}1 produced visual crop injury. Only treatments that controlled grassy weeds since rice was planted and by more than 80% at harvest time lead to acceptable rice yield (> 5,000 kg ha{sup -}1). Clomazone applied PRE at 0.36 kg ha{sup -}1 provided good control of grassy weeds (> 80%) and the highest rice yield, so it is recommended as a selective and efficacious PRE treatment for weed control of annual weeds in sprinkler irrigated rice. The perennial purple nutsedge was difficult to control at high plant densities (> 150 plants m{sup -}2) and the recommended herbicide is azimsulfuron applied at POST at 0.02 kg ha{sup -}1. (Author) 37 refs.

  3. Response of yield and yield components of rice (Oryza sativa L. cv. Tarom Hashemi in rice, duck and Azolla (Azolla sp. farming

    Directory of Open Access Journals (Sweden)

    M Gharavi Baigi

    2016-05-01

    Full Text Available In order to evaluate the yield and yield components of rice (Oryza sativa L. cv. Tarom Hashemi in integrated rice, duck and Azolla, an experiment was conducted at the Research Farm of Sari University of Agricultural Sciences and Natural Resources during 2012. Experiment was arranged in split plot based on a randomized complete block design with three replications. The number of ducks as main plots at four levels (0, 400, 800 and 1200 ducks.ha-1 and Nitrogen source as sub plots at four levels (without Azolla and nitrogen, Azolla, Azolla+nitrogen and nitrogen were the treatments. Analysis of variance showed highly significant differences for the number of ducks, Azolla+nitrogen and their interaction effects of plant height, number of tillers.plant-1, number of panicle.plant-1, number of grains.panicle-1, panicle weight, panicle dry weight and grain yield. The results revealed that the highest values of plant height (133 cm, number of tillers (38 tillers.plant-1, number of panicle (24 numbers.plant-1, number of grains (171 numbers.panicle-1, panicle weight (23 g, panicle dry weight (13 g and grain yield (4 t.ha-1 were recorded in 1200 duck pieces per hectare while treated with Azolla (500 g.m-2 and nitrogen (50 kg.ha-1. In conclusion, results of the current experiment showed that increasing of duck number from 400 to 1200 pieces.ha-1 along with Azolla and nitrogen could enhance the yield and yield components of rice (Tarom Hashemi cultivar.

  4. Comparative Mapping of Seed Dormancy Loci Between Tropical and Temperate Ecotypes of Weedy Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Lihua Zhang

    2017-08-01

    Full Text Available Genotypic variation at multiple loci for seed dormancy (SD contributes to plant adaptation to diverse ecosystems. Weedy rice (Oryza sativa was used as a model to address the similarity of SD genes between distinct ecotypes. A total of 12 quantitative trait loci (QTL for SD were identified in one primary and two advanced backcross (BC populations derived from a temperate ecotype of weedy rice (34.3°N Lat.. Nine (75% of the 12 loci were mapped to the same positions as those identified from a tropical ecotype of weedy rice (7.1°N Lat.. The high similarity suggested that the majority of SD genes were conserved during the ecotype differentiation. These common loci are largely those collocated/linked with the awn, hull color, pericarp color, or plant height loci. Phenotypic correlations observed in the populations support the notion that indirect selections for the wild-type morphological characteristics, together with direct selections for germination time, were major factors influencing allelic distributions of SD genes across ecotypes. Indirect selections for crop-mimic traits (e.g., plant height and flowering time could also alter allelic frequencies for some SD genes in agroecosystems. In addition, 3 of the 12 loci were collocated with segregation distortion loci, indicating that some gametophyte development genes could also influence the genetic equilibria of SD loci in hybrid populations. The SD genes with a major effect on germination across ecotypes could be used as silencing targets to develop transgene mitigation (TM strategies to reduce the risk of gene flow from genetically modified crops into weed/wild relatives.

  5. iTRAQ-based proteomic analysis reveals the mechanisms of silicon-mediated cadmium tolerance in rice (Oryza sativa) cells.

    Science.gov (United States)

    Ma, Jie; Sheng, Huachun; Li, Xiuli; Wang, Lijun

    2016-07-01

    Silicon (Si) can alleviate cadmium (Cd) stress in rice (Oryza sativa) plants, however, the understanding of the molecular mechanisms at the single-cell level remains limited. To address these questions, we investigated suspension cells of rice cultured in the dark environment in the absence and presence of Si with either short- (12 h) or long-term (5 d) Cd treatments using a combination of isobaric tags for relative and absolute quantitation (iTRAQ), fluorescent staining, and inductively coupled plasma mass spectroscopy (ICP-MS). We identified 100 proteins differentially regulated by Si under the short- or long-term Cd stress. 70% of these proteins were down-regulated, suggesting that Si may improve protein use efficiency by maintaining cells in the normal physiological status. Furthermore, we showed two different mechanisms for Si-mediated Cd tolerance. Under the short-term Cd stress, the Si-modified cell walls inhibited the uptake of Cd ions into cells and consequently reduced the expressions of glycosidase, cell surface non-specific lipid-transfer proteins (nsLTPs), and several stress-related proteins. Under the long-term Cd stress, the amount of Cd in the cytoplasm in Si-accumulating (+Si) cells was decreased by compartmentation of Cd into vacuoles, thus leading to a lower expression of glutathione S-transferases (GST). These results provide protein-level insights into the Si-mediated Cd detoxification in rice single cells. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Seed Germination Behaviors Of Some Aerobic Rice Cultivars Oryza Sativa L After Priming With Polyethylene Glycol-8000 Peg-8000

    Directory of Open Access Journals (Sweden)

    Elkheir H.A

    2015-08-01

    Full Text Available Seed Priming Is Famous Technique To Accelerate Seed Germination Behaviors. This Experiment Was Conducted To Study The Effect Of Polyethylene Glycol-8000 Peg-8000 As Priming Agent On Seed Germination Behavior Of Some Aerobic Rice Cultivars Oryza Sativa L. Experiment Was Carried Out By Using Two-Factor Three Aerobic Rice Cultivars And Peg With Four Replications Which Arranged In Factorial System Design And Conducted With Completely Randomized Design. The Factor Was Varieties Which Were Inpago 8 V1 Ir64 V2 And Situbagendit V3 Combine With 4 Levels Of Peg Concentrations 0100 And 200 Gl-1 And Control With No Treatment. Experiment Was Repeated 4 Times So Total Number Of Experimental Units Were 48. Germination Parameters Measured Were Germination Percentage Germination Index Days Of 50 Germination Seedling Fresh Weight Mg Seedling Shoot Fresh Weight And Root Fresh Weight Mg Seedling Dry Weigh Mg Seedling Shoot Dry Weight And Root Dry Weight Mg ShootRoot Ratio Seedling Length Cm Seedling Root Length Cm And Shoot Length Cm And Seed Vigor Index. The Results Indicated That Seed Priming Significantly Affected Germination Behaviors Compared With Control Depending Upon Varieties. The Highest Germination Was Obtained Under Laboratory And Greenhouse Condition By The Treatment Of Peg 200 G L-1 On The Situbagendit And Ir-64 Variety 90.25 And 93.33 Respectively Compared To Control In Inpago-8 In Both Laboratory 75.75 And Greenhouse 80 . As Implementation To Increase Seed And Seedling Vigor Of Rice It Is A Best Practice To Use Peg Priming With 200 Gl-1 Solutions Depend Upon Varietal Response And We Suggest That More Research About The Effect Of Peg As Seed Priming Techniques On Seed Germination Behavior Of Many Grain Crops Is Needed To Confirm The Methodology.

  7. Inhibition of cadmium ion uptake in rice (Oryza sativa) cells by a wall-bound form of silicon.

    Science.gov (United States)

    Liu, Jian; Ma, Jie; He, Congwu; Li, Xiuli; Zhang, Wenjun; Xu, Fangsen; Lin, Yongjun; Wang, Lijun

    2013-11-01

    The stresses acting on plants that are alleviated by silicon (Si) range from biotic to abiotic stresses, such as heavy metal toxicity. However, the mechanism of stress alleviation by Si at the single-cell level is poorly understood. We cultivated suspended rice (Oryza sativa) cells and protoplasts and investigated them using a combination of plant nutritional and physical techniques including inductively coupled plasma mass spectrometry (ICP-MS), the scanning ion-selective electrode technique (SIET) and X-ray photoelectron spectroscopy (XPS). We found that most Si accumulated in the cell walls in a wall-bound organosilicon compound. Total cadmium (Cd) concentrations in protoplasts from Si-accumulating (+Si) cells were significantly reduced at moderate concentrations of Cd in the culture medium compared with those from Si-limiting (-Si) cells. In situ measurement of cellular fluxes of the cadmium ion (Cd(2+) ) in suspension cells and root cells of rice exposed to Cd(2+) and/or Si treatments showed that +Si cells significantly inhibited the net Cd(2+) influx, compared with that in -Si cells. Furthermore, a net negative charge (charge density) within the +Si cell walls could be neutralized by an increase in the Cd(2+) concentration in the measuring solution. A mechanism of co-deposition of Si and Cd in the cell walls via a [Si-wall matrix]Cd co-complexation may explain the inhibition of Cd ion uptake, and may offer a plausible explanation for the in vivo detoxification of Cd in rice. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  8. "Tinni" Rice ( Oryza rufipogon Griff.) Production: An Integrated Sociocultural Agroecosystem in Eastern Uttar Pradesh of India

    Science.gov (United States)

    Singh, Ranjay K.; Turner, Nancy J.; Pandey, C. B.

    2012-01-01

    This study reports how Traditional Ecological Knowledge (TEK) and informal cultural institutions have conserved key varieties of the wildgrowing rice, ` tinni' (red rice, or brownbeard rice, Oriza rufipogon Griff.), within the Bhar community of eastern Uttar Pradesh, India. The study was conducted, using conventional and participatory methods, in 10 purposively selected Bhar villages. Two distinct varieties of tinni (` tinni patali' and ` tinni moti') with differing habitats and phenotypic characters were identified. Seven microecosystems (Kari, Badaila, Chammo, Karmol, Bhainsiki, Bhainsala and Khodailia) were found to support these varieties in differing proportions. Tinni rice can withstand more extreme weather conditions (the highest as well as lowest temperatures and rainfall regimes) than the `genetically improved' varieties of rice ( Oriza sativa L.) grown in the region. Both tinni varieties are important bioresources for the Bhar's subsistence livelihoods, and they use distinctive conservation approaches in their maintenance. Bhar women are the main custodians of tinni rice agrobiodiversity, conserving tinni through an institution called Sajha. Democratic decision-making at meetings organized by village elders determines the market price of the tinni varieties. Overall, the indigenous institutions and women's participation seem to have provided safeguards from excessive exploitation of tinni rice varieties. The maintenance of tinni through cultural knowledge and institutions serves as an example of the importance of locally maintained crop varieties in contributing to people's resilience and food security in times of rapid social and environmental change.

  9. Effects of shading on starch pasting characteristics of indica hybrid rice (Oryza sativa L..

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available Rice is an important staple crop throughout the world, but environmental stress like low-light conditions can negatively impact crop yield and quality. Using pot experiments and field experiments, we studied the effects of shading on starch pasting viscosity and starch content with six rice varieties for three years, using the Rapid Visco Analyser to measure starch pasting viscosity. Shading at different growth stages and in different rice varieties all affected the starch pasting characteristics of rice. The effects of shading on starch pasting viscosity at middle and later growth stages were greater than those at earlier stages. Shading enhanced breakdown but reduced hold viscosity and setback at tillering-elongation stage. Most pasting parameters changed significantly with shading after elongation stage. Furthermore, the responses of different varieties to shading differed markedly. The change scope of starch pasting viscosity in Dexiang 4103 was rather small after heading, while that in IIyou 498 and Gangyou 906 was small before heading. We observed clear tendencies in peak viscosity, breakdown, and pasting temperature of the five rice varieties with shading in 2010 and 2011. Correlation analysis indicated that the rice amylose content was negatively correlated with breakdown, but was positively correlated with setback. Based on our results, IIyou 498, Gangyou 906, and Dexiang 4103 had higher shade endurance, making these varieties most suitable for high-quality rice cultivation in low-light regions.

  10. Effects of shading on starch pasting characteristics of indica hybrid rice (Oryza sativa L.).

    Science.gov (United States)

    Wang, Li; Deng, Fei; Ren, Wan-Jun; Yang, Wen-Yu

    2013-01-01

    Rice is an important staple crop throughout the world, but environmental stress like low-light conditions can negatively impact crop yield and quality. Using pot experiments and field experiments, we studied the effects of shading on starch pasting viscosity and starch content with six rice varieties for three years, using the Rapid Visco Analyser to measure starch pasting viscosity. Shading at different growth stages and in different rice varieties all affected the starch pasting characteristics of rice. The effects of shading on starch pasting viscosity at middle and later growth stages were greater than those at earlier stages. Shading enhanced breakdown but reduced hold viscosity and setback at tillering-elongation stage. Most pasting parameters changed significantly with shading after elongation stage. Furthermore, the responses of different varieties to shading differed markedly. The change scope of starch pasting viscosity in Dexiang 4103 was rather small after heading, while that in IIyou 498 and Gangyou 906 was small before heading. We observed clear tendencies in peak viscosity, breakdown, and pasting temperature of the five rice varieties with shading in 2010 and 2011. Correlation analysis indicated that the rice amylose content was negatively correlated with breakdown, but was positively correlated with setback. Based on our results, IIyou 498, Gangyou 906, and Dexiang 4103 had higher shade endurance, making these varieties most suitable for high-quality rice cultivation in low-light regions.

  11. The role of black rice (Oryza sativa L.) in the control of hypercholesterolemia in rats.

    Science.gov (United States)

    Salgado, Jocelem Mastrodi; Oliveira, Anderson Giovanni Candido de; Mansi, Débora Niero; Donado-Pestana, Carlos M; Bastos, Candido Ricardo; Marcondes, Fernanda Klein

    2010-12-01

    Cardiovascular disease is a serious public health problem; it is the first "cause of death" in Brazil and in developed countries. Thus, it is essential to search for alternative sources such as some functional foods to prevent and control the risks of this disease. The purpose of this study was to evaluate the lipidemic parameters in hypercholesterolemic rats fed diets containing black rice variety IAC 600 or unrefined rice. Adult male Wistar rats (Rattus norvegicus var. albinos) were used, weighing about 200-220 g. The animals were divided into four groups: the first received a control casein diet, the second received hypercholesterolemic diet, and the other two groups, after induction of hypercholesterolemia, received the test diets, the first containing 20% black rice and the second 20% unrefined, for 30 days. It was observed that diet containing black rice reduced the level of plasma cholesterol, triglycerides, and low-density lipoprotein. For high-density lipoprotein values, the diet that provided an increase in the levels was the black rice. The diet containing black rice was more effective in controlling the lipidemia in rats compared with the whole rice diet.

  12. Cadmium content of commercial and contaminated rice, Oryza sativa, in Thailand and potential health implications.

    Science.gov (United States)

    Zwicker, R; Promsawad, A; Zwicker, B M; Laoharojanaphand, S

    2010-03-01

    Thailand is the number one global exporter and among the top five producers of rice in the world. A significant increase in anthropogenic contamination in agricultural soils over the past few decades has lead to concerns with cadmium and its uptake in rice. The cadmium levels in Thai rice from different sources/areas were determined and used to estimate the potential health risks to consumers. The cadmium concentration in the commercial rice samples ranged from below the detection limit to 0.016 mg/kg. The cadmium concentrations in the contaminated rice samples ranged from a low of 0.007 mg/kg to a high of 0.579 mg/kg. Five of the calculated values exceed the proposed PTWI, with one value almost three times higher and two values almost double. The three highly elevated values are certainly a concern from a health standpoint. Ultimately, action is required to address the health implications resulting from the cadmium contamination in agricultural soils used for rice production in a few select areas of Thailand. Overall, this study indicates that the vast majority of rice produced, consumed and exported by Thailand is safe pertaining to cadmium content.

  13. Efeito da irradiação gama nas características físico-químicas e sensoriais do arroz (Oryza sativa L. e no desenvolvimento de Sitophilus oryzae L. Effect of gamma irradiation on physico-chemical and sensorial characteristics of rice (Oryza sativa L. and on the development of Sitophilus oryzae L.

    Directory of Open Access Journals (Sweden)

    Cíntia Fernanda Pedroso Zanão

    2009-03-01

    Full Text Available A pesquisa teve como objetivo verificar a viabilidade da radiação gama como método de conservação do arroz polido (Oryza sativa L.. As amostras foram irradiadas com doses 0,5; 1,0; 3,0; e 5,0 kGy. Foram realizadas análises da quebra do grão no beneficiamento, da longevidade e reprodução do Sitophilus oryzae L., a composição centesimal, o conteúdo de amilose aparente e propriedades de pasta dos amidos, e análises para cor (instrumental e análise sensorial do arroz cru e cozido. Foi utilizado teste de Tukey (p The objective of this research was to verify the viability of the gamma radiation as polished rice (Oryza sativa L. conservation method. The samples were irradiated with doses of 0.5; 1.0; 3.0; and 5.0 kGy. Analysis of the grain breakage during the enriching process, longevity and reproduction of the Sitophilus oryzae L., centesimal composition, apparent amylose content, starch paste properties, color (instrumental, and the sensorial evaluation of raw and cooked rice were performed. It was verified that the irradiation did not change the percentage of grain breakage during the enrichment process, and it caused a negative effect on the development of insects. The irradiation did not change significantly the centesimal composition and the apparent amylase content. The Tukey test (p < 0.05 was conducted to verify the differences between the treatments. Gamma irradiation affected the pasting properties of the rice flour. Pasting parameters as temperature, peak, final viscosity, and setback values showed decreasing values with irradiation doses. Differences were detected in the sensorial aspect among the samples, and the sample irradiated with the dose of 1.0 kGy presented greater averages. Regarding the instrumental color parameter, it was observed the difference in the values b* indicating that the rice changed the white color for yellowish with the increase in the irradiation dose. The irradiation dose of 1.0 kGy proved the best

  14. Influence of cadmium stress on root exudates of high cadmium accumulating rice line (Oryza sativa L.).

    Science.gov (United States)

    Fu, Huijie; Yu, Haiying; Li, Tingxuan; Zhang, Xizhou

    2018-04-15

    A hydroponic experiment with two different cadmium (Cd) accumulating rice lines of Lu527-8 (the high Cd accumulating rice line) and Lu527-4 (the normal rice line) was carried out to explore the links among Cd stress, root exudates and Cd accumulation. The results showed that (1) Cd stress increased quantities of organic acids, but had no effect on composition in root exudates of the two rice lines. In Cd treatments, the contents of every detected organic acid in root exudates of Lu527-8 were 1.76-2.43 times higher than those of Lu527-4. Significant positive correlations between organic acids contents and Cd contents in plants were observed in both rice lines, except that malic acid was only highly relevant to Lu527-8, but not to Lu527-4. (2) Both composition and quantities of amino acids in root exudates changed a lot under Cd stress and this change differed in two rice lines. In control, four amino acids (glutamic acid, glycine, tyrosine and histidine) were detected in two rice lines. Under Cd stress, eight amino acids in Lu527-8 and seven amino acids in Lu527-4 could be detected, among which phenylalanine was only secreted by Lu527-8 and alanine, methionine and lysine were secreted by both rice lines. The contents of those four newly secreted amino acids from Lu527-8 increased significantly with the increase of Cd dose and each had a high-positive correlation with Cd contents, but the same change did not appear in Lu527-4. The difference between two rice lines in secretion of organic acids and amino acids may be related to their different Cd uptake properties. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Morphological and Molecular Data Reveal Three Distinct Populations of Indian Wild Rice Oryza rufipogon Griff. Species Complex.

    Science.gov (United States)

    Singh, Balwant; Singh, Nisha; Mishra, Shefali; Tripathi, Kabita; Singh, Bikram P; Rai, Vandna; Singh, Ashok K; Singh, Nagendra K

    2018-01-01

    Wild relatives of crops possess adaptive mutations for agronomically important traits, which could play significant role in crop improvement for sustainable agriculture. However, global climate change and human activities pose serious threats to the natural habitats leading to erosion of genetic diversity of wild rice populations. The purpose of this study was to explore and characterize India's huge untapped wild rice diversity in Oryza rufipogon Griff. species complex from a wide range of ecological niches. We made strategic expeditions around diversity hot spots in 64 districts of nine different agro-climatic zones of the country and collected 418 wild rice accessions. Significant variation was observed among the accessions for 46 morphological descriptors, allowing classification into O. nivara, O. rufipogon , and O. sativa f. spontanea morpho-taxonomic groups. Genome-specific pSINE1 markers confirmed all the accessions having AA genome, which were further classified using ecotype-specific pSINE1 markers into annual, perennial, intermediate, and an unknown type. Principal component analysis revealed continuous variation for the morphological traits in each ecotype group. Genetic diversity analysis based on multi-allelic SSR markers clustered these accessions into three major groups and analysis of molecular variance for nine agro-climatic zones showed that 68% of the genetic variation was inherent amongst individuals while only 11% of the variation separated the zones, though there was significant correlation between genetic and spatial distances of the accessions. Model based population structure analysis using genome wide bi-allelic SNP markers revealed three sub-populations designated 'Pro-Indica,' 'Pro-Aus,' and 'Mid-Gangetic,' which showed poor correspondence with the morpho - taxonomic classification or pSINE1 ecotypes. There was Pan-India distribution of the 'Pro-Indica' and 'Pro-Aus' sub-populations across agro-climatic zones, indicating a more

  16. Morphological and Molecular Data Reveal Three Distinct Populations of Indian Wild Rice Oryza rufipogon Griff. Species Complex

    Science.gov (United States)

    Singh, Balwant; Singh, Nisha; Mishra, Shefali; Tripathi, Kabita; Singh, Bikram P.; Rai, Vandna; Singh, Ashok K.; Singh, Nagendra K.

    2018-01-01

    Wild relatives of crops possess adaptive mutations for agronomically important traits, which could play significant role in crop improvement for sustainable agriculture. However, global climate change and human activities pose serious threats to the natural habitats leading to erosion of genetic diversity of wild rice populations. The purpose of this study was to explore and characterize India’s huge untapped wild rice diversity in Oryza rufipogon Griff. species complex from a wide range of ecological niches. We made strategic expeditions around diversity hot spots in 64 districts of nine different agro-climatic zones of the country and collected 418 wild rice accessions. Significant variation was observed among the accessions for 46 morphological descriptors, allowing classification into O. nivara, O. rufipogon, and O. sativa f. spontanea morpho-taxonomic groups. Genome-specific pSINE1 markers confirmed all the accessions having AA genome, which were further classified using ecotype-specific pSINE1 markers into annual, perennial, intermediate, and an unknown type. Principal component analysis revealed continuous variation for the morphological traits in each ecotype group. Genetic diversity analysis based on multi-allelic SSR markers clustered these accessions into three major groups and analysis of molecular variance for nine agro-climatic zones showed that 68% of the genetic variation was inherent amongst individuals while only 11% of the variation separated the zones, though there was significant correlation between genetic and spatial distances of the accessions. Model based population structure analysis using genome wide bi-allelic SNP markers revealed three sub-populations designated ‘Pro-Indica,’ ‘Pro-Aus,’ and ‘Mid-Gangetic,’ which showed poor correspondence with the morpho-taxonomic classification or pSINE1 ecotypes. There was Pan-India distribution of the ‘Pro-Indica’ and ‘Pro-Aus’ sub-populations across agro-climatic zones

  17. Effect of integrated N management on the recovery of fertilizer N by rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Hazarika, S.; Sarkar, M.C.

    1996-01-01

    A field experiment was conducted in the kharif season of 1992 on a moderately well drained silt loam (Typic Ustochrept) to study the 15 N recovery from urea applied 60, 120 and 180 kg N/ha to flooded rice (var. Basmati-1) under various N management practices. The results revealed that green manure plus urea registered highest recovery of fertilizer N by rice. The application of coated calcium carbide along with urea reduced the N loss and increased the fertilizer N recovery by rice. Integrated use of manure and urea reduced the N loss to a considerable extent. Green manure was more efficient than farmyard manure in minimizing the loss of fertilizer N. The loss of fertilizer N increased with the increasing rate of urea application. All the sources of N were effective in influencing the N uptake and grain yield of rice but the variations among the sources were not significant. (author). 8 refs., 3 tabs

  18. Are habitat fragmentation, local adaptation and isolation-by-distance driving population divergence in wild rice Oryza rufipogon?

    Science.gov (United States)

    Zhao, Yao; Vrieling, Klaas; Liao, Hui; Xiao, Manqiu; Zhu, Yongqing; Rong, Jun; Zhang, Wenju; Wang, Yuguo; Yang, Ji; Chen, Jiakuan; Song, Zhiping

    2013-11-01

    Habitat fragmentation weakens the connection between populations and is accompanied with isolation by distance (IBD) and local adaptation (isolation by adaptation, IBA), both leading to genetic divergence between populations. To understand the evolutionary potential of a population and to formulate proper conservation strategies, information on the roles of IBD and IBA in driving population divergence is critical. The putative ancestor of Asian cultivated rice (Oryza sativa) is endangered in China due to habitat loss and fragmentation. We investigated the genetic variation in 11 Chinese Oryza rufipogon populations using 79 microsatellite loci to infer the effects of habitat fragmentation, IBD and IBA on genetic structure. Historical and current gene flows were found to be rare (mh  = 0.0002-0.0013, mc  = 0.007-0.029), indicating IBD and resulting in a high level of population divergence (FST  = 0.343). High within-population genetic variation (HE  = 0.377-0.515), relatively large effective population sizes (Ne  = 96-158), absence of bottlenecks and limited gene flow were found, demonstrating little impact of recent habitat fragmentation on these populations. Eleven gene-linked microsatellite loci were identified as outliers, indicating local adaptation. Hierarchical AMOVA and partial Mantel tests indicated that population divergence of Chinese O. rufipogon was significantly correlated with environmental factors, especially habitat temperature. Common garden trials detected a significant adaptive population divergence associated with latitude. Collectively, these findings imply that IBD due to historical rather than recent fragmentation, followed by local adaptation, has driven population divergence in O. rufipogon. © 2013 John Wiley & Sons Ltd.

  19. Market testing and consumer acceptance of irradiated rice (Oryza sativa indica Linn.)

    International Nuclear Information System (INIS)

    Ungsunantwiwat, Ampai; Sophonsa, Sombut

    2001-01-01

    Special grade A fragrant rice (Jasmine rice) of 13% moisture content was obtained from a local miller in Bangkok. Low density polyethylene, 29.5 cm in width x 45 cm in length and 200 micron in thickness, was used to pack the rice with a net weight of 5 kg. The irradiated food label was printed on one side of the bag to comply with food control regulations. The color and the ink for marking were tested for gamma radiation compatibility. A total of 800 bags of rice, with a total gross weight of 4,000 kg, were irradiated at a minimum absorbed dose at 0.5 kGy for insect disinfestation. Radiation treatment was carried out using a multi-purpose, carrier type gamma irradiator (Model JS-8900, Serial No. IR-155) located at the Thai Irradiation Center. Irradiated rice was distributed on a weekly basis to food stores in Bangkok and Pathum Thani, as well as to various governmental organizations and interested individuals. The product was sold at 60 bahts per bag (approx. US$ 2.4) to retailers. Various commercial brands of non-irradiated rice of 5 kg size, were available in the market at 52 to 78 bahts per bag (approx. US $ 2.08 to 3.12), depending on quality and brand name. During the distribution, a leaflet of educational information was given to the consumer. A simple questionnaire used in the marketing trial indicated that 72% of the consumers bought irradiated rice because of the good quality of the product based on visual inspection, and 28% of them were willing to try the new product. Most consumers preferred irradiated rice to chemical treatment (fumigation) for insect disinfestation. However, most consumers were not sure if they would like to buy irradiated rice again unless its cooking quality was acceptable. Market testing of irradiated rice in the upper-class market or supermarket was unsuccessful because of limitations in the sale and service conditions. To meet the requirement of the supermarket retailer, irradiated rice had to be supplied on a monthly basis, with

  20. Biosorption of aqueous lead (II) on rice straws (oryza sativa) by flash column process

    International Nuclear Information System (INIS)

    Khalid, H.N.; Hassan, M.U.; Jamil, N.; Ahmad, D.; Bushra, H.; Khatoon, S.

    2010-01-01

    Biosorption of Pb (II) on rice straws has been studied with the variation in the parameters and on modified rice straws by flash column process. Different parameters like particle size of adsorbent, initial concentration of metal ions, length and width of columns were studied. A comparative study of modification of adsorbent was also done for which rice straws were modified with EDTA, acids, bases, and volatile organic solvents. Base modified adsorbents have shown an increase in adsorption capacity while acid modified adsorbents proved to be the poor adsorbents for metal ions similarly ash of rice straws used as adsorbent given higher adsorption and EDTA modified adsorbents have shown least adsorption of metal ions. Polar volatile organic solvents modified adsorbent gave less adsorption efficiency and non polar adsorbent shown no influence on Pb (II) uptake capacity of rice straws. Rice straws proved to be the best biosorbent for Pb(II) in aqueous solution. The biosorption characteristics fit well with Langmuir and Freundlich isotherm. (author)

  1. Effect of microcystins on root growth, oxidative response, and exudation of rice (Oryza sativa).

    Science.gov (United States)

    Cao, Qing; Rediske, Richard R; Yao, Lei; Xie, Liqiang

    2018-03-01

    A 30 days indoor hydroponic experiment was carried out to evaluate the effect of microcystins (MCs) on rice root morphology and exudation, as well as bioaccumulation of MCs in rice. MCs were bioaccumulated in rice with the greatest concentrations being observed in the leaves (113.68μgg -1 Fresh weight (FW)) when exposed to 500μgL -1 MCs. Root activity at 500μgL -1 decreased 37%, compared to the control. MCs also induced disruption of the antioxidant system and lipid peroxidation in rice roots. Root growth was significantly inhibited by MCs. Root weight, length; surface area and volume were significantly decreased, as well as crown root number and lateral root number. After 30 days exposure to MCs, an increase was found in tartaric acid and malic acid while the other organic acids were not affected. Glycine, tyrosine, and glutamate were the only amino acids stimulated at MCs concentrations of 500μgL -1 . Similarly, dissolved organic carbon (DOC) and carbohydrate at 50 and 500μgL -1 treatments were significantly increased. The increase of DOC and carbohydrate in root exudates was due to rice root membrane permeability changes induced by MCs. Overall, this study indicated that MCs significantly inhibited rice root growth and affected root exudation. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Genotypic differences in arsenic, mercury, lead and cadmium in milled rice (Oryza sativa L.).

    Science.gov (United States)

    Jiang, Shuli; Shi, Chunhai; Wu, Jianguo

    2012-06-01

    The contents of arsenic, mercury, lead and cadmium in milled rice were determined. Among 216 genotypes, the As, Hg, Pb and Cd contents were ranged from 5.06 to 296.45, 2.46 to 65.85, 4.16 to 744.95 and 5.91 to 553.40 ng/g, respectively. Six genotypes with lower contents of toxic metal elements were selected. The averages of As and Pb contents for indica rice were higher than those of japonica rice, while the averages of Hg and Cd contents were in contrast. Compared with white brown rice, the milled rice from black and red brown rice contained lower contents of four elements. Significant negative correlation was found between As content and alkaline spread value. Significant correlations were observed between As and aspartic acid (Asp) content, Hg and Asp or leucine contents, Pb and cysteine or methionine contents. Cd content was significantly negatively correlated with protein and 14 amino acid contents.

  3. Hybridization study of wild rice Oryza glumaepatula with varieties of cultivated rice (O. sativa) and wild (O. grandiglumis)

    International Nuclear Information System (INIS)

    Villalobos Cascante, Eddier

    2015-01-01

    The process of interspecific hybridization of the wild species O. glumaepatula is studied with commercial varieties of the species O. sativa and O. grandiglumis, by morphological evaluation and hybrid flow cytometry. Hybrid plants were evaluated of cross between O. glumaepatula, located in the wetlands of Rio Medio Queso and two varieties of O. sativa, Puita Inta and CFX 18 resistant to a herbicide. The technique of Polymerase Chain Reaction Allele Specifies Oligonucleotide (PCR-ASO) was used to detect allelic mutations in the ALS gene conferring herbicide resistance, and it is confirmed the hybrid nature of the plants obtained at crossings. 68 hybrids were obtained: O. glumaepatula x P. Inta, 21 hybrids P. Inta x O. glumaepatula, 4 hybrids O. glumaepatula x CFX-18 and 15 hybrids CFX-18 x O. glumaepatula. 10 morphological descriptors of the genus Oryza were evaluated and determined that are indifferent to the direction and type of crossing, the hybrids resemble to the wild species O. glumaepatula for characters: height, panicle length and ligule length. All hybrids have showed similarity to commercial varieties in flag leaf length. Other characters evaluated in the hybrids have presented maternal effect, heterosis and intermediate values. The protocol of flow cytometry (FCM) is standardized species for Oryza genus analyzing nuclear DNA content of 106 samples of leaf tissue of wild species O. glumaepatula, O. grandiglumis; whose average has been of 0.73 picograms, and natural hybrids product of the cross of these species. The result has been intermediate compared with O. grandiglumis and O. glumaepatula that have made available to 1.0 picograms and 0.50 of DNA respectively. The molecular nature of the hybrids was confirmed in this way. (author) [es

  4. Suppressive effects of mycoviral proteins encoded by Magnaporthe oryzae chrysovirus 1 strain A on conidial germination of the rice blast fungus.

    Science.gov (United States)

    Urayama, Syun-Ichi; Kimura, Yuri; Katoh, Yu; Ohta, Tomoko; Onozuka, Nobuya; Fukuhara, Toshiyuki; Arie, Tsutomu; Teraoka, Tohru; Komatsu, Ken; Moriyama, Hiromitsu

    2016-09-02

    Magnaporthe oryzae chrysovirus 1 strain A (MoCV1-A) is the causal agent of growth repression and attenuated virulence (hypovirulence) of the rice blast fungus, Magnaporthe oryzae. We previously revealed that heterologous expression of the MoCV1-A ORF4 protein resulted in cytological damage to the yeasts Saccharomyces cerevisiae and Cryptococcus neoformans. Since the ORF4 protein is one of the components of viral particles, we evaluated the inhibitory effects of the purified virus particle against the conidial germination of M. oryzae, and confirmed its suppressive effects. Recombinant MoCV1-A ORF4 protein produced in Pichia pastoris was also effective for suppression of conidial germination of M. oryzae. MoCV1-A ORF4 protein sequence showed significant similarity to 6 related mycoviral proteins; Botrysphaeria dothidea chrysovirus 1, two Fusarium graminearum viruses, Fusarium oxysporum f. sp. dianthi mycovirus 1, Penicillium janczewski chrysovirus and Agaricus bisporus virus 1 in the Chrysoviridae family. Multiple alignments of the ORF4-related protein sequences showed that their central regions (210-591 aa in MoCV1-A ORF4) are relatively conserved. Indeed, yeast transformants expressing the conserved central region of MoCV1-A ORF4 protein (325-575 aa) showed similar impaired growth phenotypes as those observed in yeasts expressing the full-length MoCV1-A ORF4 protein. These data suggest that the mycovirus itself and its encoded viral protein can be useful as anti-fungal proteins to control rice blast disease caused by M. oryzae and other pathogenic fungi. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Agronomic and molecular evaluation of induced mutant rice (oryza sativa l.) lines in Egypt

    International Nuclear Information System (INIS)

    Sshehzad, T.; Allah, A.; Aallah, E.A.; Ammar, M.H.; Abdelkhalik, A.H.

    2011-01-01

    The present study was conducted at the farm of the Rice Research and Training Center, Sakha, Kafr El-Sheikh, Egypt, during 2000-2007 rice sowing seasons. Five rice varieties viz., Giza 171, Giza 175, Giza 176, Giza 181 and GZ 1368 were the most widely grown Japonica and Indica types in Egypt during the last period, possesses at that time many positive agronomic characteristics including wide adaptability, high yield potential, tolerance to stresses and good eating quality. But with the passage of time it has lost its vigor. In Rice Research Program, Egypt, dry seeds of the above mentioned varieties were treated with different doses of gamma rays (100, 200, 300, 400, and 500 Gy) for raising M1 generation. M1 plants were established by transplanting in the year 2000 season. One hundred independent lines have been advanced to M5 generation enabling evaluation of quantitative traits by replicated trials and promising lines were selected and tested in multi-location trials as M6, M7 and M8 generations. Morphological variations at vegetative and reproductive stages including plant type and various physiological characters were observed in the five populations. The mutant lines characteristics consisted of better resistance to lodging, blast disease, high yield potential, as well as early maturity. Results from yield trials and molecular assessments indicated that the mutants differed genetically from their parents. So, these mutants could be used as a donor parents in rice breeding program and some of them can be recommended as new rice varieties suitable for rice belt in Egypt. (author)

  6. Comparison of volatile and non-volatile metabolites in rice wine fermented by Koji inoculated with Saccharomycopsis fibuligera and Aspergillus oryzae.

    Science.gov (United States)

    Son, Eun Yeong; Lee, Sang Mi; Kim, Minjoo; Seo, Jeong-Ah; Kim, Young-Suk

    2018-07-01

    This study investigated volatile and nonvolatile metabolite profiles of makgeolli (a traditional rice wine in Korea) fermented by koji inoculated with Saccharomycopsis fibuligera and/or Aspergillus oryzae. The enzyme activities in koji were also examined to determine their effects on the formation of metabolites. The contents of all 18 amino acids detected were the highest in makgeolli fermented by S. fibuligera CN2601-09, and increased after combining with A. oryzae CN1102-08, unlike the contents of most fatty acids. On the other hand, major volatile metabolites were fusel alcohols, acetate esters, and ethyl esters. The contents of most fusel alcohols and acetate esters were the highest in makgeolli fermented by S. fibuligera CN2601-09, for which the protease activity was the highest, leading to the largest amounts of amino acods. The makgeolli samples fermented only by koji inoculated with S. fibuligera could be discriminated on PCA plots from the makgeolli samples fermented in combination with A. oryzae. In the case of nonvolatile metabolites, all amino acids and some metabolites such as xylose, 2-methylbenzoic acid, and oxalic acid contributed mainly to the characteristics of makgeolli fermented by koji inoculated with S. fibuligera and A. oryzae. These results showed that the formations of volatile and nonvolatile metabolites in makgeolli can be significantly affected by microbial strains with different enzyme activities in koji. To our knowledge, this study is the first report on the effects of S. fibuligera strains on the formation of volatile and non-volatile metabolites in rice wine, facilitating their use in brewing rice wine. Copyright © 2018. Published by Elsevier Ltd.

  7. Comparison of gene co-networks reveals the molecular mechanisms of the rice (Oryza sativa L.) response to Rhizoctonia solani AG1 IA infection.

    Science.gov (United States)

    Zhang, Jinfeng; Zhao, Wenjuan; Fu, Rong; Fu, Chenglin; Wang, Lingxia; Liu, Huainian; Li, Shuangcheng; Deng, Qiming; Wang, Shiquan; Zhu, Jun; Liang, Yueyang; Li, Ping; Zheng, Aiping

    2018-05-05

    Rhizoctonia solani causes rice sheath blight, an important disease affecting the growth of rice (Oryza sativa L.). Attempts to control the disease have met with little success. Based on transcriptional profiling, we previously identified more than 11,947 common differentially expressed genes (TPM > 10) between the rice genotypes TeQing and Lemont. In the current study, we extended these findings by focusing on an analysis of gene co-expression in response to R. solani AG1 IA and identified gene modules within the networks through weighted gene co-expression network analysis (WGCNA). We compared the different genes assigned to each module and the biological interpretations of gene co-expression networks at early and later modules in the two rice genotypes to reveal differential responses to AG1 IA. Our results show that different changes occurred in the two rice genotypes and that the modules in the two groups contain a number of candidate genes possibly involved in pathogenesis, such as the VQ protein. Furthermore, these gene co-expression networks provide comprehensive transcriptional information regarding gene expression in rice in response to AG1 IA. The co-expression networks derived from our data offer ideas for follow-up experimentation that will help advance our understanding of the translational regulation of rice gene expression changes in response to AG1 IA.

  8. Calibration and evaluation of the ORYZA-APSIM crop model for upland rice in Brazil

    OpenAIRE

    LORENÇONI, Rogério; DOURADO NETO, Durval; HEINEMANN, Alexandre Bryan

    2010-01-01

    Objetivou-se com este trabalho calibrar o modelo ORYZA-APSIM e avaliar o seu desempenho na simulação do desenvolvimento, crescimento e produtividade da variedade cultivada de arroz de terras altas BRS-Primavera para as diferentes regiões produtoras dessa cultura. Na calibração foram definidas: as unidades de calor efetivo diário (HU); as taxas de desenvolvimento fenológico para cada estádio (DVR); as frações da massa de matéria seca das folhas (MSf), colmos (MS C) e órgãos armazenadores (paní...

  9. Agro-ecological variations of sheath rot disease of rice caused by Sarocladium oryzae and DNA fingerprinting of the pathogen's population structure.

    Science.gov (United States)

    Tajul Islam Chowdhury, M; Salim Mian, M; Taher Mia, M A; Rafii, M Y; Latif, M A

    2015-12-28

    To examine the impact of regional and seasonal variations on the incidence and severity of sheath rot, a major seed-borne disease of rice caused by Sarocladium oryzae, data on incidence and severity were collected from 27 selected fields in the Gazipur, Rangpur, Bogra, Chittagong, Comilla, Gopalgonj, Jessore, Manikgonj, and Bhola districts of Bangladesh in rain-fed and irrigated conditions. Cultural variability of 29 pathogen isolates obtained from 8 different locations was studied on potato dextrose agar (PDA) and genetic variability was determined by DNA fingerprinting using variable number tandem repeat-polymerase chain reaction markers. Overall, disease incidence and severity were higher in irrigated rice. Disease incidence and severity were highest in the Bhola district in rain-fed rice and lowest in irrigated rice. Mycelial growth of 29 representative isolates was found to vary on PDA and the isolates were divided into 6 groups. The range of the overall size of conidia of the selected isolates was 2.40-7.20 x 1.20-2.40 μm. Analysis of the DNA fingerprint types of the 29 isolates of S. oryzae, obtained from the amplification reactions, revealed 10 fingerprinting types (FPTs) that were 80% similar. FPT-1 was the largest group and included 13 isolates (44.8%), while FPT-2 was the third largest group and included 3 isolates. Each of FPT-3, 4, 5, and 6 included only 1 isolate. We observed no relationship between cultural and genetic groupings.

  10. Identification and quantification of flavonoids in yellow grain mutant of rice (Oryza sativa L.).

    Science.gov (United States)

    Kim, Backki; Woo, Sunmin; Kim, Mi-Jung; Kwon, Soon-Wook; Lee, Joohyun; Sung, Sang Hyun; Koh, Hee-Jong

    2018-02-15

    Flavonoids are naturally occurring phenolic compounds with potential health-promoting activities. Although anthocyanins and phenolic acids in coloured rice have been investigated, few studies have focused on flavonoids. Herein, we analysed flavonoids in a yellow grain rice mutant using UHPLC-DAD-ESI-Q-TOF-MS, and identified 19 flavonoids by comparing retention times and accurate mass measurements. Among them, six flavonoids, isoorientin, isoorientin 2″-O-glucoside, vitexin 2″-O-glucoside, isovitexin, isoscoparin 2″-O-glucoside and isoscoparin, were isolated and fully identified from the yellow grain rice mutant, and the levels were significantly higher than wild-type, with isoorientin particularly abundant in mutant embryo. Significant differences in total phenolic compounds and antioxidant activity were observed in mutant rice by DPPH, FRAP and TEAC assays. The results suggest that the representative six flavonoids may play an important role in colouration and antioxidant activity of embryo and endosperm tissue. The findings provide insight into flavonoid biosynthesis and the possibility of improving functionality in rice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Biallelic and Genome Wide Association Mapping of Germanium Tolerant Loci in Rice (Oryza sativa L..

    Directory of Open Access Journals (Sweden)

    Partha Talukdar

    Full Text Available Rice plants accumulate high concentrations of silicon. Silicon has been shown to be involved in plant growth, high yield, and mitigating biotic and abiotic stresses. However, it has been demonstrated that inorganic arsenic is taken up by rice through silicon transporters under anaerobic conditions, thus the ability to efficiently take up silicon may be considered either a positive or a negative trait in rice. Germanium is an analogue of silicon that produces brown lesions in shoots and leaves, and germanium toxicity has been used to identify mutants in silicon and arsenic transport. In this study, two different genetic mapping methods were performed to determine the loci involved in germanium sensitivity in rice. Genetic mapping in the biparental cross of Bala × Azucena (an F6 population and a genome wide association (GWA study with 350 accessions from the Rice Diversity Panel 1 were conducted using 15 μM of germanic acid. This identified a number of germanium sensitive loci: some co-localised with previously identified quantitative trait loci (QTL for tissue silicon or arsenic concentration, none co-localised with Lsi1 or Lsi6, while one single nucleotide polymorphism (SNP was detected within 200 kb of Lsi2 (these are genes known to transport silicon, whose identity was discovered using germanium toxicity. However, examining candidate genes that are within the genomic region of the loci detected above reveals genes homologous to both Lsi1 and Lsi2, as well as a number of other candidate genes, which are discussed.

  12. A Quantitative Acetylomic Analysis of Early Seed Development in Rice (Oryza sativa L.).

    Science.gov (United States)

    Wang, Yifeng; Hou, Yuxuan; Qiu, Jiehua; Li, Zhiyong; Zhao, Juan; Tong, Xiaohong; Zhang, Jian

    2017-06-27

    PKA (protein lysine acetylation) is a critical post-translational modification that regulates various developmental processes, including seed development. However, the acetylation events and dynamics on a proteomic scale in this process remain largely unknown, especially in rice early seed development. We report the first quantitative acetylproteomic study focused on rice early seed development by employing a mass spectral-based (MS-based), label-free approach. A total of 1817 acetylsites on 1688 acetylpeptides from 972 acetylproteins were identified in pistils and seeds at three and seven days after pollination, including 268 acetyproteins differentially acetylated among the three stages. Motif-X analysis revealed that six significantly enriched motifs, such as (DxkK), (kH) and (kY) around the acetylsites of the identified rice seed acetylproteins. Differentially acetylated proteins among the three stages, including adenosine diphosphate (ADP) -glucose pyrophosphorylases (AGPs), PDIL1-1 (protein disulfide isomerase like 1-1), hexokinases, pyruvate dehydrogenase complex (PDC) and numerous other regulators that are extensively involved in the starch and sucrose metabolism, glycolysis/gluconeogenesis, tricarboxylic acid (TCA) cycle and photosynthesis pathways during early seed development. This study greatly expanded the rice acetylome dataset, and shed novel insight into the regulatory roles of PKA in rice early seed development.

  13. Salinity induced metabolic changes in rice (oryza sativa l.) seeds during germination

    International Nuclear Information System (INIS)

    Shereen, A.; Ansari, R.; Raza, A.; Mumtaz, S.; Khan, M.A.; Khan, M.A.

    2011-01-01

    Six inbred lines of rice exhibiting differential tolerance to salinity were exposed to 0, 50, 75, 100 and 200 mM NaCl for 24, 48, 72 and 96 h. The salinity induced metabolic changes (solute leakage, K efflux and a-amylase activity) were studied during germination. Germination of rice seeds was not affected by NaCl concentration less than 100 mM. At higher salinity levels (100 and 200 mM NaCl), a delay of 3-6 days in germination was observed. In the present study, comparatively higher values of solute leakage were observed in those lines in which germination was comparatively affected more adversely (sensitive). Sodium chloride reduced alpha-amylase activity in germinating rice seeds to varying degree even at low NaCl concentrations (50 and 75 mM), where germination was not affected greatly. The tolerant lines exhibited higher enzymatic activity than the sensitive ones. (author)

  14. Nitrogen fertilizer management for tidal submergence tolerant landrace rice (Oryza sativa L. cultivars

    Directory of Open Access Journals (Sweden)

    M.A.A. Mamun

    2017-12-01

    Full Text Available In tidal submergence ecosystem, nitrogen (N is a crucial nutrient for improved and sustainable rice production. Therefore, a series of on-farm and on-station field experiments were conducted to develop a suitable N management practice for tidal submergence tolerant landrace aman rice. In on-farm, urea deep placement (UDP through urea super granule before panicle initiation (PI stage was compared with no fertilizer application. Similarly, five N fertilizer management practices viz. (i. two splits of prilled urea (PU, (ii. UDP at 10 DAT, (iii. UDP before PI, (iv. full dose PU before PI and (v. No urea (control were compared at on-station trial. Tidal submergence tolerance aman rice varieties (Rajashail, Kutiagni, Sadamota and Lalmota were used as testing materials. In on farm experiment, aman cultivars produced 2.0–2.5 t ha−1 grain without N fertilizer. But, cultivated Rajashail, Kutiagni, Sadachikon, Sadapajam, Lalmota and Sadamota gave 3.0–3.5 t ha−1 grain yield with the UDP before PI in tidal prone areas. Though UDP required fertilizer and application cost but it gave profit upto 22,000 BDT ha−1 (Bangladeshi Taka. In on-station experiment, UDP before PI stage significantly increased rice yield and economic return although it was comparable to two splits of PU and top dressing of PU before PI stage. However, UDP at 10 DAT increased straw yield but failed to increase grain yield even compared to control. It could be concluded that UDP before PI stage of rice is an effective method for increasing rice yield and farm income in tidal prone areas.

  15. Improvement of efficient in vitro regeneration potential of mature callus induced from Malaysian upland rice seed (Oryza sativa cv. Panderas).

    Science.gov (United States)

    Mohd Din, Abd Rahman Jabir; Iliyas Ahmad, Fauziah; Wagiran, Alina; Abd Samad, Azman; Rahmat, Zaidah; Sarmidi, Mohamad Roji

    2016-01-01

    A new and rapid protocol for optimum callus production and complete plant regeneration has been assessed in Malaysian upland rice (Oryza sativa) cv. Panderas. The effect of plant growth regulator (PGR) on the regeneration frequency of Malaysian upland rice (cv. Panderas) was investigated. Mature seeds were used as a starting material for callus induction experiment using various concentrations of 2,4-D and NAA. Optimal callus induction frequency at 90% was obtained on MS media containing 2,4-D (3 mg L(-1)) and NAA (2 mg L(-1)) after 6 weeks while no significant difference was seen on tryptophan and glutamine parameters. Embryogenic callus was recorded as compact, globular and light yellowish in color. The embryogenic callus morphology was further confirmed with scanning electron microscopy (SEM) analysis. For regeneration, induced calli were treated with various concentrations of Kin (0.5-1.5 mg L(-1)), BAP, NAA and 0.5 mg L(-1) of TDZ. The result showed that the maximum regeneration frequency (100%) was achieved on MS medium containing BAP (0.5 mg L(-1)), Kin (1.5 mg L(-1)), NAA (0.5 mg L(-1)) and TDZ (0.5 mg L(-1)) within four weeks. Developed shoots were successfully rooted on half strength MS free hormone medium and later transferred into a pot containing soil for acclimatization. This cutting-edge finding is unique over the other existing publishable data due to the good regeneration response by producing a large number of shoots.

  16. Evaluation and characterization of advanced rice mutant line of rice (Oryza sativa), MR219-4 and MR219-9 under drought condition

    International Nuclear Information System (INIS)

    Abdul Rahim Harun; Zarith Shafika Kamarudin; Abdullah, M.Z.; Anna, L.P.K.; Sobri Hussain; Rusli Ibrahim; Khairuddin abdul Rahim

    2012-01-01

    Two advance rice mutant lines, MR219-4 and MR219-9 derived from mutagenesis of Oryza sativa cv. MR219 with gamma radiation at 300 Gy were evaluated in simulated drought condition in the greenhouse at Malaysian Nuclear Agency. The mutants were evaluated simultaneously with ARN1, a drought resistant variety and MR211 a susceptible cultivar as a check. Randomized complete block design with three replicates was used in the experiment. The evaluation and selection were done based on leaf rolling and leaf drying as well as other agronomic traits, such as, number of tillers per plant, plant height, flag leaf area, grain weight per plant, grain yield per plant, 100-grain weight, harvest index, panicle length and plant biomass. The mutants MR219-4 showed moderate tolerance and MR219-9 showed tolerance to drought respectively as compare to the check variety (ARN1, MR211) and control MR219. Leaf rolling, leaf drying, days to flowering and days to maturity are valuable secondary traits that may provide additional information for selection because of associating with the plant survival under water stress. Further research on expression of drought-tolerant lines under different drought conditions is essential in order to identify particular traits that are associated with drought tolerance and high yield potential. Similarly the importance of secondary traits, relative to other putative traits for drought tolerance, needs to be tested in various environments. (author)

  17. Assessment of genetic diversity of Xanthomonas oryzae pv. oryzae

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@Bacterial blight of rice, caused by Xanthomonas oryzae pv. Oryzae(Xoo. ), is one of the major rice diseases in China. Making clear the shift of genetic diversity of the pathogen will provide important information for rice breeding. Strains collected from 11 provinces located in Southern region of the Changjiang River in China were assessed by using inoculation method and IS-PCR(Insertion Sequence-Based Polymerase Chain Reaction) analysis.

  18. Characterization and genetic mapping of a Photoperiod-sensitive dwarf 1 locus in rice (Oryza sativa L.).

    Science.gov (United States)

    Li, Riqing; Xia, Jixing; Xu, Yiwei; Zhao, Xiucai; Liu, Yao-Guang; Chen, Yuanling

    2014-01-01

    Plant height is an important agronomic trait for crop architecture and yield. Most known factors determining plant height function in gibberellin or brassinosteroid biosynthesis or signal transduction. Here, we report a japonica rice (Oryza sativa ssp. japonica) dominant dwarf mutant, Photoperiod-sensitive dwarf 1 (Psd1). The Psd1 mutant showed impaired cell division and elongation, and a severe dwarf phenotype under long-day conditions, but nearly normal growth in short-day. The plant height of Psd1 mutant could not be rescued by gibberellin or brassinosteroid treatment. Genetic analysis with R1 and F2 populations determined that Psd1 phenotype was controlled by a single dominant locus. Linkage analysis with 101 tall F2 plants grown in a long-day season, which were derived from a cross between Psd1 and an indica cultivar, located Psd1 locus on chromosome 1. Further fine-mapping with 1017 tall F2 plants determined this locus on an 11.5-kb region. Sequencing analysis of this region detected a mutation site in a gene encoding a putative lipid transfer protein; the mutation produces a truncated C-terminus of the protein. This study establishes the genetic foundation for understanding the molecular mechanisms regulating plant cell division and elongation mediated by interaction between genetic and environmental factors.

  19. Effects of gamma radiation on the response of the rice weevil, sitophilus oryzae to heat and humidity

    International Nuclear Information System (INIS)

    Wakid, A.M.; Hilmy, N.M.; El-Monairy, O.M.

    1991-01-01

    The rice weevil, sitophilus oryzae L.was irradiated with 4 doses of gamma radiation (20,40,60 and 80 krad) and then examined for its response towards two different temperatures (45 and 25 degree C) or humidities (10 and 70% R.H.) For this purpose, two different apparatus were used. Each two temperature or humidity combinations were given to the weevils at the same time. The irradiated insects with 20 or 40 krad showed a marked increase in their speed at the warm side (45 degree C) than the controls. Those irradiated with 60 and 80 krad decreased their speed to about the control level. When the irradiated weevils were given the choice between 45 degree C and 25 degree C, their intensity of reaction towards the cooler side was decreased with increasing the doses. The rate of movement at 10% R.H. was not changed at 20 krad. However, at 40, 60 or 80 krad, it was increased with increasing the dose. The intensity of reaction of the irradiated weevils increased towards the dry side with increasing the dose.2 tab

  20. Ethylene is not involved in adaptive responses to flooding in the Amazonian wild rice species Oryza grandiglumis.

    Science.gov (United States)

    Okishio, Takuma; Sasayama, Daisuke; Hirano, Tatsuya; Akimoto, Masahiro; Itoh, Kazuyuki; Azuma, Tetsushi

    2015-02-01

    The Amazonian wild rice Oryza grandiglumis has two contrasting adaptation mechanisms to flooding submergence: a quiescence response to complete submergence at the seedling stage and an escape response based on internodal elongation to partial submergence at the mature stage. We investigated possible factors that trigger these responses. In stem segments excised from mature O. grandiglumis plants, complete submergence only slightly promoted internodal elongation with increased ethylene levels in the internodes, while partial submergence substantially promoted internodal elongation without increased ethylene levels in the internodes. Incubation of non-submerged stem segments under a continuous flow of humidified ethylene-free air promoted internodal elongation to the same extent as that observed for partially submerged segments. Applied ethylene had little effect on the internodal elongation of non-submerged segments irrespective of humidity conditions. These results indicate that the enhanced internodal elongation of submerged O. grandiglumis plants is not triggered by ethylene accumulated during submergence but by the moist surroundings provided by submergence. The growth of shoots in O. grandiglumis seedlings was not promoted by ethylene or complete submergence, as is the case in O. sativa cultivars possessing the submergence-tolerant gene SUB1A. However, because the genome of O. grandiglumis lacks the SUB1A gene, the quiescence response of O. grandiglumis seedlings to complete submergence may be regulated by a mechanism distinct from that involved in the response of submergence-tolerant O. sativa cultivars. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Black rice (Oryza sativa L.) extracts induce osteoblast differentiation and protect against bone loss in ovariectomized rats.

    Science.gov (United States)

    Jang, Woo-Seok; Seo, Cho-Rong; Jang, Hwan Hee; Song, No-Joon; Kim, Jong-Keun; Ahn, Jee-Yin; Han, Jaejoon; Seo, Woo Duck; Lee, Young Min; Park, Kye Won

    2015-01-01

    Osteoporosis, an age associated skeletal disease, exhibits increased adipogenesis at the expense of osteogenesis from common osteoporotic bone marrow cells. In this study, black rice (Oryza sativa L.) extracts (BRE) were identified as osteogenic inducers. BRE stimulated the alkaline phosphatase (ALP) activity in both C3H10T1/2 and primary bone marrow cells. Similarly, BRE increased mRNA expression of ALP and osterix. Oral administration of BRE in OVX rats prevented decreases in bone density and strength. By contrast, BRE inhibited adipocyte differentiation of mesenchymal C3H10T1/2 cells and prevented increases in body weight and fat mass in high fat diet fed obese mice, further suggesting the dual effects of BRE on anti-adipogenesis and pro-osteogenesis. UPLC analysis identified cyanidin-3-O-glucoside and peonidin-3-O-glucoside as main anti-adipogenic effectors but not for pro-osteogenic induction. In mechanism studies, BRE selectively stimulated Wnt-driven luciferase activities. BRE treatment also induced Wnt-specific target genes such as Axin2, WISP2, and Cyclin D1. Taken together, these data suggest that BRE is a potentially useful ingredient to protect against age related osteoporosis and diet induced obesity.

  2. Whole-plant mineral partitioning during the reproductive development of rice (Oryza sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Sperotto, R.A.; Vasconcelos, M.W.; Grusak, M.A.; Fett, J.

    2017-07-01

    Minimal information exists on whole-plant dynamics of mineral flow. Understanding these phenomena in a model plant such as rice could help in the development of nutritionally enhanced cultivars. A whole-plant mineral accumulation study was performed in rice (cv. Kitaake), using sequential harvests during reproductive development panicle exertion, grain filling, and full maturity stages in order to characterize mineral accumulation in roots, non-flag leaves, flag leaves, stems/sheaths, and panicles. Partition quotient analysis showed that Fe, Zn, Cu and Ni are preferentially accumulated in roots; Mn and Mg are accumulated in leaves; Mo, Ca, and S in roots and leaves; and K in roots, leaves and stems/sheaths. Correlation analysis indicated that changes in the concentrations of mineral pairs Fe-Mn, K-S, Fe-Ni, Cu-Mg, Mn-Ni, S-Mo, Mn-Ca, and Mn-Mg throughout the reproductive development of rice were positively correlated in all four of the above ground organs evaluated, with Fe-Mn and K-S being positively correlated also in roots, which suggest that root-to-shoot transfer is not driven simply by concentrations in roots. These analyses will serve as a starting point for a more detailed examination of mineral transport and accumulation in rice plants.

  3. OsCHX14 is Involved in the K+ Homeostasis in Rice (Oryza sativa) Flowers

    NARCIS (Netherlands)

    Chen, Y.; Miller, A.J.; Luo, B.; Wang, M.; Zhu, Z.; Ouwerkerk, P.B.F.

    2016-01-01

    Previously we showed in the osjar1 mutants that the lodicule senescence which controls the closing of rice flowers was delayed. This resulted in florets staying open longer when compared with the wild type. The gene OsJAR1 is silenced in osjar1 mutants and is a key member of the jasmonic acid (JA)

  4. Methods of developing core collections based on the predicted genotypic value of rice ( Oryza sativa L.).

    Science.gov (United States)

    Li, C T; Shi, C H; Wu, J G; Xu, H M; Zhang, H Z; Ren, Y L

    2004-04-01

    The selection of an appropriate sampling strategy and a clustering method is important in the construction of core collections based on predicted genotypic values in order to retain the greatest degree of genetic diversity of the initial collection. In this study, methods of developing rice core collections were evaluated based on the predicted genotypic values for 992 rice varieties with 13 quantitative traits. The genotypic values of the traits were predicted by the adjusted unbiased prediction (AUP) method. Based on the predicted genotypic values, Mahalanobis distances were calculated and employed to measure the genetic similarities among the rice varieties. Six hierarchical clustering methods, including the single linkage, median linkage, centroid, unweighted pair-group average, weighted pair-group average and flexible-beta methods, were combined with random, preferred and deviation sampling to develop 18 core collections of rice germplasm. The results show that the deviation sampling strategy in combination with the unweighted pair-group average method of hierarchical clustering retains the greatest degree of genetic diversities of the initial collection. The core collections sampled using predicted genotypic values had more genetic diversity than those based on phenotypic values.

  5. Variation of DNA methylation patterns associated with gene expression in rice (Oryza sativa) exposed to cadmium.

    Science.gov (United States)

    Feng, Sheng Jun; Liu, Xue Song; Tao, Hua; Tan, Shang Kun; Chu, Shan Shan; Oono, Youko; Zhang, Xian Duo; Chen, Jian; Yang, Zhi Min

    2016-12-01

    We report genome-wide single-base resolution maps of methylated cytosines and transcriptome change in Cd-exposed rice. Widespread differences were identified in CG and non-CG methylation marks between Cd-exposed and Cd-free rice genomes. There are 2320 non-redundant differentially methylated regions detected in the genome. RNA sequencing revealed 2092 DNA methylation-modified genes differentially expressed under Cd exposure. More genes were found hypermethylated than those hypomethylated in CG, CHH and CHG (where H is A, C or T) contexts in upstream, gene body and downstream regions. Many of the genes were involved in stress response, metal transport and transcription factors. Most of the DNA methylation-modified genes were transcriptionally altered under Cd stress. A subset of loss of function mutants defective in DNA methylation and histone modification activities was used to identify transcript abundance of selected genes. Compared with wide type, mutation of MET1 and DRM2 resulted in general lower transcript levels of the genes under Cd stress. Transcripts of OsIRO2, OsPR1b and Os09g02214 in drm2 were significantly reduced. A commonly used DNA methylation inhibitor 5-azacytidine was employed to investigate whether DNA demethylation affected physiological consequences. 5-azacytidine provision decreased general DNA methylation levels of selected genes, but promoted growth of rice seedlings and Cd accumulation in rice plant. © 2016 John Wiley & Sons Ltd.

  6. Accumulation and distribution of polycyclic aromatic hydrocarbons in rice (Oryza sativa)

    International Nuclear Information System (INIS)

    Tao, S.; Jiao, X.C.; Chen, S.H.; Liu, W.X.; Coveney, R.M.; Zhu, L.Z.; Luo, Y.M.

    2006-01-01

    Various tissues of rice plants were sampled from a PAH contaminated site in Tianjin, China at different growth stages of the ripening period and analyzed for PAHs. PAHs were much higher in roots than in the exposed tissues. Grains and internodes accumulated much smaller amounts of PAHs than leaves, hulls or ear axes. No specific gradient trends along roots, stem, ear axes, and grains were observed, suggesting that systematic translocation among them is unlikely. Over the ripening period, PAH concentrations were increased in rice roots and decreased in most above-ground tissues. Significant correlations between PAH and lipid contents can only be observed during full mature stage. The spectra of individual PAH compounds in rice organs including roots were similar to those in air, rather than those in soil. There was also a significant correlation between bioconcentration factor (BCF, plant over air) and octanol/air partitioning coefficient (K oa ). - PAHs in various tissues of rice plants from various growth stages were investigated

  7. Metabolism and prebiotics activity of anthocyanins from black rice (Oryza sativa L.) in vitro.

    Science.gov (United States)

    Zhu, Yongsheng; Sun, Hanju; He, Shudong; Lou, Qiuyan; Yu, Min; Tang, Mingming; Tu, Lijun

    2018-01-01

    Anthocyanins are naturally active substances. In this study, anthocyanins from black rice were obtained by membrane filtration and column chromatography separation. Five anthocyanin monomers in black rice extract were identified by HPLC-MS/MS, and the major anthocyanin monomer (cyanidin-3-glucoside, C3G) was purified by preparative HPLC (Pre-HPLC). The proliferative effects of the anthocyanins on Bifidobacteria and Lactobacillus were investigated by determining the media pH, bacterial populations and metabolic products. After anaerobic incubation at 37 °C for 48 h, not only the pH of the media containing C3G was lower than that of the extract of black rice anthocyanin (BRAE), but the numbers of both Bifidobacteria and Lactobacillus were also significantly increased. Furthermore, hydroxyphenylpropionic, hydroxyphenylacetic, and hydroxybenzoic acids and other metabolites were detected by GC-MS in vitro. Our results revealed that the anthocyanins and anthocyanin monomers from black rice had prebiotic activity and they were metabolized into several small molecules by Bifidobacteria and Lactobacillus.

  8. Carbon footprint of the rice (Oryza sativa production system in the municipality of Campoalegre, Huila, Colombia

    Directory of Open Access Journals (Sweden)

    Hernán J. Andrade

    2014-01-01

    Full Text Available Carbon footprint is a useful tool to estimate the impact of any production system on climate change, specifically in the net emission or fixation of greenhouse gasses (GHG. The rice cropping system has a large food, social and economical importance in the world; however, it is a net GHG-emitting productive system. The objective of this study was estimating the carbon footprint of the rice production in Campoalegre, Huila, Colombia. A total of 21 rice productive units, located at less than 15 kmfrom the center of the municipality and with gravity irrigation, was selected. Through semi-structured interviews, all activities that emit GHGs, from land preparation to harvest grain, were investigated. It was consulted to producers and managers about the use of nitrogen fertilizers and fossil fuels and the yield of rice grain in each production unit. Factor of emission and warming-equivalence among GHG recommended by Intergovernmental Panel on Climate Change were employed. Carbon fixation rates estimated in Tolima were used to found alternative systems for mitigation of these emissions. It was found a total emission of 998.1 ± 365.3 kg CO2e/ha/cycle (163.3 ± 55.8 kg CO2e/t, having nitrogen fertilization being the greatest contribution (65%. Mitigation of this GHG emission would imply the establishment and management of 0.5 ha of cacao plantations without shade trees or coffee plantations with shade trees or 1.4 ha of monoculture coffee plantations.

  9. DNA demethylation activates genes in seed maternal integument development in rice (Oryza sativa L.).

    Science.gov (United States)

    Wang, Yifeng; Lin, Haiyan; Tong, Xiaohong; Hou, Yuxuan; Chang, Yuxiao; Zhang, Jian

    2017-11-01

    DNA methylation is an important epigenetic modification that regulates various plant developmental processes. Rice seed integument determines the seed size. However, the role of DNA methylation in its development remains largely unknown. Here, we report the first dynamic DNA methylomic profiling of rice maternal integument before and after pollination by using a whole-genome bisulfite deep sequencing approach. Analysis of DNA methylation patterns identified 4238 differentially methylated regions underpin 4112 differentially methylated genes, including GW2, DEP1, RGB1 and numerous other regulators participated in maternal integument development. Bisulfite sanger sequencing and qRT-PCR of six differentially methylated genes revealed extensive occurrence of DNA hypomethylation triggered by double fertilization at IAP compared with IBP, suggesting that DNA demethylation might be a key mechanism to activate numerous maternal controlling genes. These results presented here not only greatly expanded the rice methylome dataset, but also shed novel insight into the regulatory roles of DNA methylation in rice seed maternal integument development. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Breeding and characterization of homokaryotic heteroplasmic male sterile lines in rice (oryza sativa)

    International Nuclear Information System (INIS)

    Mei, Q.; Zhou, X.; Liu, C.

    2011-01-01

    Twelve different Cytoplasmic Male-Sterile (CMS) lines were crossed with 18 rice varieties. From the hybrid with japonica rice Nongken 58, twelve homokaryotic-heteroplasmic male sterile lines were developed in B7F1 after successive back crossing and selection for stable male sterility and desirable agronomic traits such as flowering habit and high out crossing rate. The experimental results demonstrated that expression of the CMS factors were influenced by the corresponding nuclear genes. Three pollen abortion types, including the typical, the spherical and the stained abortion, were observed in the homokaryotic-heteroplasmic male sterile lines. Formation of the aborted pollen grains was influenced by the interaction among specific cytoplasmic and the corresponding nuclear genes. As the CMS carriers, these homokaryotic-heteroplasmic lines will have significant impact on the utilization of multiple types of CMS in hybrid rice breeding. What is more important is that these CMS lines are the invaluable materials for the investigation of the molecular mechanism of CMS formation in rice. (author)

  11. Enzymatic properties of the glycine D-alanine [corrected] aminopeptidase of Aspergillus oryzae and its activity profiles in liquid-cultured mycelia and solid-state rice culture (rice koji).

    Science.gov (United States)

    Marui, Junichiro; Matsushita-Morita, Mayumi; Tada, Sawaki; Hattori, Ryota; Suzuki, Satoshi; Amano, Hitoshi; Ishida, Hiroki; Yamagata, Youhei; Takeuchi, Michio; Kusumoto, Ken-Ichi

    2012-01-01

    The gdaA gene encoding S12 family glycine-D-alanine aminopeptidase (GdaA) was found in the industrial fungus Aspergillus oryzae. GdaA shares 43% amino acid sequence identity with the D-aminopeptidase of the Gram-negative bacterium Ochrobactrum anthropi. GdaA purified from an A. oryzae gdaA-overexpressing strain exhibited high D-stereospecificity and efficiently released N-terminal glycine and D-alanine of substrates in a highly specific manner. The optimum pH and temperature were 8 to 9 and 40°C, respectively. This enzyme was stable under alkaline conditions at pH 8 to 11 and relatively resistant to acidic conditions until pH 5.0. The chelating reagent EDTA, serine protease inhibitors such as AEBSF, benzamidine, TPCK, and TLCK, and the thiol enzyme inhibitor PCMB inhibited the enzyme. The aminopeptidase inhibitor bestatin did not affect the activity. GdaA was largely responsible for intracellular glycine and D-alanine aminopeptidase activities in A. oryzae during stationary-phase growth in liquid media. In addition, the activity increased in response to the depletion of nitrogen or carbon sources in the growth media, although the GdaA-independent glycine aminopeptidase activity highly increased simultaneously. Aminopeptidases of A. oryzae attract attention because the enzymatic release of a variety of amino acids and peptides is important for the enhancement of the palatability of fermented foods. GdaA activity was found in extracts of a solid-state rice culture of A. oryzae (rice koji), which is widely used as a starter culture for Japanese traditional fermented foods, and was largely responsible for the glycine and D-alanine aminopeptidase activity detected at a pH range of 6 to 9.

  12. Impact of postharvest drying conditions on in vitro starch digestibility and estimated glycemic index of cooked non-waxy long-grain rice (Oryza sativa L.).

    Science.gov (United States)

    Donlao, Natthawuddhi; Ogawa, Yukiharu

    2017-02-01

    Wet paddy needs to be dried to reduce its moisture content after harvesting. In this study, effects of postharvest drying condition on in vitro starch digestibility and estimated glycemic index of cooked rice (Oryza sativa L.) were investigated. Varying drying conditions, i.e. hot-air drying at 40, 65, 90 and 115 °C, and sun drying were applied to raw paddy. After husking and polishing, polished grains were cooked using an electric rice cooker. Cooked samples were analyzed for their moisture content and amount of resistant and total starch. Five samples in both intact grain and slurry were digested under simulated in vitro gastrointestinal digestion process. The in vitro starch digestion rate was measured and the hydrolysis index (HI) and estimated glycemic index (eGI) were calculated. Cooked rice obtained from hot-air drying showed relatively lower HI and eGI than that obtained from sun-drying. Among samples from hot-air drying treatment, eGI of cooked rice decreased with increasing drying temperature, except for the drying temperature of 115 °C. As a result, cooked rice from the hot-air drying at 90 °C showed lowest eGI. The results indicated that cooked rice digestibility was affected by postharvest drying conditions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Breeding for blast-disease-resistant and high-yield Thai jasmine rice (Oryza sativa L. cv. KDML 105) mutants using low-energy ion beams

    Science.gov (United States)

    Mahadtanapuk, S.; Teraarusiri, W.; Phanchaisri, B.; Yu, L. D.; Anuntalabhochai, S.

    2013-07-01

    Low-energy ion beam was applied on mutation induction for plant breeding of blast-disease-resistant Thai jasmine rice (Oryza sativa L. cv. KDML 105). Seeds of the wild-type rice were bombarded in vacuum by nitrogen ion beam at energy of 60-80 keV to a beam fluence range of 2 × 1016-2 × 1017 ions/cm2. The ion-bombarded rice seeds were grown in soil for 2 weeks as transplanted rice in plastic pots at 1 seedling/pot. The seedlings were then screened for blast resistance by Pyricularia grisea inoculation with 106 spores/ml concentrations. The blast-resistant rice mutant was planted up to F6 generation with the consistent phenotypic variation. The high percentage of the blast-disease-resistant rice was analyzed with DNA fingerprint. The HAT-RAPD (high annealing temperature-random amplified polymorphic DNA) marker revealed the modified polymorphism fragment presenting in the mutant compared with wild type (KDML 105). The cDNA fingerprints were investigated and the polymorphism fragment was subcloned into pGEM-T easy vector and then sequenced. The sequence of this fragment was compared with those already contained in the database, and the fragment was found to be related to the Spotted leaf protein 11 (Spl11).

  14. Over-Expression of the Pikh Gene with a CaMV 35S Promoter Leads to Improved Blast Disease (Magnaporthe oryzae) Tolerance in Rice

    Science.gov (United States)

    Azizi, Parisa; Rafii, Mohd Y.; Abdullah, Siti N. A.; Hanafi, Mohamed M.; Maziah, M.; Sahebi, Mahbod; Ashkani, Sadegh; Taheri, Sima; Jahromi, Mohammad F.

    2016-01-01

    Magnaporthe oryzae is a rice blast fungus and plant pathogen that causes a serious rice disease and, therefore, poses a threat to the world's second most important food security crop. Plant transformation technology has become an adaptable system for cultivar improvement and to functionally analyze genes in plants. The objective of this study was to determine the effects (through over-expressing and using the CaMV 35S promoter) of Pikh on MR219 resistance because it is a rice variety that is susceptible to the blast fungus pathotype P7.2. Thus, a full DNA and coding DNA sequence (CDS) of the Pikh gene, 3172 bp, and 1206 bp in length, were obtained through amplifying the gDNA and cDNA template from a PH9-resistant rice variety using a specific primer. Agrobacterium-mediated transformation technology was also used to introduce the Pikh gene into the MR219 callus. Subsequently, transgenic plants were evaluated from the DNA to protein stages using polymerase chain reaction (PCR), semi-quantitative RT-PCR, real-time quantitative PCR and high performance liquid chromatography (HPLC). Transgenic plants were also compared with a control using a real-time quantification technique (to quantify the pathogen population), and transgenic and control plants were challenged with the local most virulent M. oryzae pathotype, P7.2. Based on the results, the Pikh gene encodes a hydrophilic protein with 18 sheets, 4 helixes, and 21 coils. This protein contains 401 amino acids, among which the amino acid sequence from 1 to 376 is a non-cytoplasmic region, that from 377 to 397 is a transmembrane region, and that from 398 to 401 is a cytoplasmic region with no identified disordered regions. The Pikh gene was up-regulated in the transgenic plants compared with the control plants. The quantity of the amino acid leucine in the transgenic rice plants increased significantly from 17.131 in the wild-type to 47.865 mg g−1 in transgenic plants. The M. oryzae population was constant at 31, 48

  15. Over-Expression of the Pikh Gene with a CaMV 35S Promoter Leads to Improved Blast Disease (Magnaporthe oryzae) Tolerance in Rice.

    Science.gov (United States)

    Azizi, Parisa; Rafii, Mohd Y; Abdullah, Siti N A; Hanafi, Mohamed M; Maziah, M; Sahebi, Mahbod; Ashkani, Sadegh; Taheri, Sima; Jahromi, Mohammad F

    2016-01-01

    Magnaporthe oryzae is a rice blast fungus and plant pathogen that causes a serious rice disease and, therefore, poses a threat to the world's second most important food security crop. Plant transformation technology has become an adaptable system for cultivar improvement and to functionally analyze genes in plants. The objective of this study was to determine the effects (through over-expressing and using the CaMV 35S promoter) of Pikh on MR219 resistance because it is a rice variety that is susceptible to the blast fungus pathotype P7.2. Thus, a full DNA and coding DNA sequence (CDS) of the Pikh gene, 3172 bp, and 1206 bp in length, were obtained through amplifying the gDNA and cDNA template from a PH9-resistant rice variety using a specific primer. Agrobacterium-mediated transformation technology was also used to introduce the Pikh gene into the MR219 callus. Subsequently, transgenic plants were evaluated from the DNA to protein stages using polymerase chain reaction (PCR), semi-quantitative RT-PCR, real-time quantitative PCR and high performance liquid chromatography (HPLC). Transgenic plants were also compared with a control using a real-time quantification technique (to quantify the pathogen population), and transgenic and control plants were challenged with the local most virulent M. oryzae pathotype, P7.2. Based on the results, the Pikh gene encodes a hydrophilic protein with 18 sheets, 4 helixes, and 21 coils. This protein contains 401 amino acids, among which the amino acid sequence from 1 to 376 is a non-cytoplasmic region, that from 377 to 397 is a transmembrane region, and that from 398 to 401 is a cytoplasmic region with no identified disordered regions. The Pikh gene was up-regulated in the transgenic plants compared with the control plants. The quantity of the amino acid leucine in the transgenic rice plants increased significantly from 17.131 in the wild-type to 47.865 mg g(-1) in transgenic plants. The M. oryzae population was constant at 31, 48

  16. Identification of microRNAs in Response to Drought in Common Wild Rice (Oryza rufipogon Griff.) Shoots and Roots.

    Science.gov (United States)

    Zhang, Jing-Wen; Long, Yan; Xue, Man-de; Xiao, Xing-Guo; Pei, Xin-Wu

    2017-01-01

    Drought is the most important factor that limits rice production in drought-prone environments. Plant microRNAs (miRNAs) are involved in biotic and abiotic stress responses. Common wild rice (Oryza rufipogon Griff.) contains abundant drought-resistant genes, which provide an opportunity to explore these excellent resources as contributors to improve rice resistance, productivity, and quality. In this study, we constructed four small RNA libraries, called CL and CR from PEG6000-free samples and DL and DR from PEG6000-treated samples, where 'R' indicates the root tissue and 'L' indicates the shoot tissue. A total of 200 miRNAs were identified to be differentially expressed under the drought-treated conditions (16% PEG6000 for 24 h), and the changes in the miRNA expression profile of the shoot were distinct from those of the root. At the miRNA level, 77 known miRNAs, which belong to 23 families, including 40 up-regulated and 37 down-regulated in the shoot, and 85 known miRNAs in 46 families, including 65 up-regulated and 20 down-regulated in the root, were identified as differentially expressed. In addition, we predicted 26 new miRNA candidates from the shoot and 43 from the root that were differentially expressed during the drought stress. The quantitative real-time PCR analysis results were consistent with high-throughput sequencing data. Moreover, 88 miRNAs that were differentially-expressed were predicted to match with 197 targets for drought-stress. Our results suggest that the miRNAs of O. rufipogon are responsive to drought stress. The differentially expressed miRNAs that are tissue-specific under drought conditions could play different roles in the regulation of the auxin pathway, the flowering pathway, the drought pathway, and lateral root formation. Thus, the present study provides an account of tissue-specific miRNAs that are involved in the drought adaption of O. rufipogon.

  17. Modulation of platelet functions by crude rice (Oryza sativa) bran policosanol extract.

    Science.gov (United States)

    Wong, Wai-Teng; Ismail, Maznah; Imam, Mustapha Umar; Zhang, Yi-Da

    2016-07-28

    Rice bran is bioactive-rich and has proven health benefits for humans. Moreover, its source, the brown rice has antioxidant, hypolipidemic and other functional properties that are increasingly making it a nutritional staple especially in Asian countries. This study investigated the antiplatelet aggregation mechanisms of crude hexane/methanolic rice bran extract, in which policosanol was the targeted bioactive. Platelets play a vital role in pathogenesis of atherosclerosis and cardiovascular diseases, and their increased activities could potentially cause arterial thrombus formation or severe bleeding disorders. Thus, in this study, platelet aggregation and adhesion of platelets to major components of basal lamina were examined in vitro. In addition, cellular protein secretion was quantified as a measurement of platelet activation. Adenosine diphosphate (ADP), collagen, and arachidonic acid (AA)-induced aggregation were studied using the microtiter technique. Rat platelets were pre-treated with various concentrations of policosanol extract, and the adhesion of platelets onto collagen- and laminin-coated surface (extracellular matrix) was studied using the acid phosphatase assay. The effect of crude policosanol extract on released proteins from activated platelets was measured using modified Lowry determination method. Rice bran policosanol extract significantly inhibited in vitro platelet aggregation induced by different agonists in a dose dependent manner. The IC50 of ADP-, collagen-, and AA-induced platelet aggregation were 533.37 ± 112.16, 635.94 ± 78.45 and 693.86 ± 70.57 μg/mL, respectively. The present study showed that crude rice bran policosanol extract significantly inhibited platelet adhesion to collagen in a dose dependent manner. Conversely, at a low concentration of 15.625 μg/mL, the extract significantly inhibited platelet adhesion to laminin stimulated by different platelet agonists. In addition to the alteration of cell adhesive

  18. Improvement of photosynthesis in rice (Oryza sativa L.) by inserting the C4 pathway.

    Science.gov (United States)

    Karki, Shanta; Rizal, Govinda; Quick, William Paul

    2013-10-28

    To boost food production for a rapidly growing global population, crop yields must significantly increase. One of the avenues being recently explored is the improvement of photosynthetic capacity by installing the C4 photosynthetic pathway into C3 crops like rice to drastically increase their yield. Crops with an enhanced photosynthetic mechanism would better utilize the solar radiation that can be translated into yield. This subsequently will help in producing more grain yield, reduce water loss and increase nitrogen use efficiency especially in hot and dry environments. This review provides a summary of the factors that need to be modified in rice so that the C4 pathway can be introduced successfully. It also discusses the differences between the C3 and C4 photosynthetic pathways in terms of anatomy, biochemistry and genetics.

  19. Analysis of a brittle-culm mutant of rice (Oryza sativa) induced bay gamma rays

    International Nuclear Information System (INIS)

    Doat, Jacqueline; Marie, R.

    1977-01-01

    An unexpected ''brittle-culm'' mutant has been screened in the progeny of the rice cultivar ''Balilla 28'' after a seed treatment by gamma rays from a Cobalt-60 source. This property proved hereditable and true-breeding. It does not affect the high resistance to lodging of rice plants. Important difference were pointed out between control and mutant lines in cellulose content and 1 p. cent NaOH extracts: ''brittle-culm'' straw contains less cellulose and shows a degradation of glucid coupounds. The brittleness of plant tissues appears to be correlated with a partial depolymerization of cellulose, associated with a possible transformation from alpha- to beta- or gamma-cellulose [fr

  20. Late nitrogen application enhances spikelet number in indica hybrid rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Wei Zhou

    Full Text Available ABSTRACT To increase rice yield potential, field experiments were conducted in farmers’ paddies in 2011 and 2012 to evaluate the effects of different nitrogen applications on the yield and panicle components of three typical indica hybrid rice varieties in Sichuan Province. The number of grains per panicle resulting from late nitrogen application (LA was 12 % greater than that obtained from traditional nitrogen application (TA; this increase was the main source of improvements in yield. The number of surviving and differentiated spikelets (NSS and NDiS resulting from LA was significantly higher than that measured under TA, especially for the Fyou498 cultivar, where the NSS and NDiS increased by 15 % and 14 %, respectively. Compared with TA, the number of degenerated secondary branches and the percentage of degenerated secondary branches (NDeSB and PDeSB were significantly reduced by 9 % and 11 %, respectively, by LA. This is the first study to demonstrate that an increase in NSS and a decrease in NDeSB lead to yield-improving effects attributable to LA. The grain yields of different varieties ranged from 9225.6 to 9408.7 kg ha−1, the PDeSB was as high as 31 %, and the number of surviving secondary branches (NSSB was significantly and positively correlated with NSS. These data indicate that the yield of indica hybrid rice has considerable potential for being improved, and increasing NSSB is key to increasing NSS and improving the grain yield. These improvements should be pursued so as to increase the yield of hybrid rice to ensure both food security and sustainable agricultural development.

  1. MORPHO-MOLECULAR SCREENING OF RICE (ORYZA SATIVA L. GENOTYPES AT SEEDLING STAGE FOR SALT TOLERANCE

    Directory of Open Access Journals (Sweden)

    Ali Julfiker Md. Masud

    2014-10-01

    Full Text Available Providing adequate food to meet an escalating population is one of the gravest problems the humankind is now facing. To resolve this crisis identification of salt tolerant rice variety is very vital. So, in this research, ten rice genotypes were used to screen salinity tolerance at the seedling stage in hydroponic system using SSR markers. Salinity screening was done at glasshouse following IRRI standard protocol using two setups of salinized and non-salinized conditions. Genotypes under controlled condition had longer root and shoot length then salt stress genotypes. Parental polymorphism survey was done with ten SSR markers viz., RM336, RM510, RM7075, RM407, RM3201b, RM10748, AP3206f, RM3412, RM585, RM11504 and all were selected to evaluate salt tolerance in rice genotypes. The number of alleles per locus ranged from 3 (AP3206f to 9 (RM336, with an average of 6.1 alleles across 10 loci obtained in the study. The polymorphic information content values ranged from of 0.54 (AP3206f to a high of 0.86 (RM336 with an average of 0.74. The pair-wise comparisons of Nei’s (1973 genetic distance (D between varieties were computed from combined data for the 10 primers, ranged from 0.30 to 0.90 with an average of 0.86, while the similarity index based analysis ranged from 0.00 to 0.70. Finally, the FL-478, FL-378, Binadhan-8 and Binadhan-10 were selected as salt tolerant because they showed tolerance in phenotypic analysis. These phenotypically selected tolerant genotypes could be used for the selection of suitable parents and development of salt tolerant rice varieties.

  2. Enhancing tolerance of rice (Oryza sativa) to simulated acid rain by exogenous abscisic acid.

    Science.gov (United States)

    Wu, Xi; Liang, Chanjuan

    2017-02-01

    Abscisic acid (ABA) regulates much important plant physiological and biochemical processes and induces tolerance to different stresses. Here, we studied the regulation of exogenous ABA on adaptation of rice seedlings to simulated acid rain (SAR) stress by measuring biomass dry weight, stomatal conductance, net photosynthesis rate, nutrient elements, and endogenous hormones. The application of 10 μM ABA alleviated the SAR-induced inhibition on growth, stomatal conductance, net photosynthesis rate, and decreases in contents of nutrient (K, Mg, N, and P) and hormone (auxin, gibberellins, and zeatin). Moreover, 10 μM ABA could stimulate the Ca content as signaling molecules under SAR stress. Contrarily, the application of 100 μM ABA aggravated the SAR-induced inhibition on growth, stomatal conductance, net photosynthesis rate, and contents of nutrient and hormone. The results got after a 5-day recovery (without SAR) show that exogenous 10 μM ABA can promote self-restoration process in rice whereas 100 μM ABA hindered the restoration by increasing deficiency of nutrients and disturbing the balance of hormones. These results confirmed that exogenous ABA at proper concentration could enhance the tolerance of rice to SAR stress.

  3. Association between QTLs and morphological traits toward sheath blight resistance in rice (Oryza sativa L.)

    Science.gov (United States)

    Hossain, Md Kamal; Jena, Kshirod Kumar; Bhuiyan, Md Atiqur Rahman; Wickneswari, Ratnam

    2016-01-01

    Sheath blight is considered the most significant disease of rice and causes enormous yield losses over the world. Breeding for resistant varieties is the only viable option to combat the disease efficiently. Seventeen diverged rice genotypes along with 17 QTL-linked SSR markers were evaluated under greenhouse conditions. Pearson’s correlation showed only the flag leaf angle had a significant correlation with sheath blight resistance under greenhouse screening. Multivariate analysis based on UPGMA clustering and principal component analysis (PCA) indicated that the flag leaf angle, flag leaf length, and plant compactness were significantly associated with the following SSR marker alleles: RM209 (116,130), RM202 (176), RM224 (126), RM257 (156), RM426 (175), and RM6971 (196), which are linked to the SB QTLs: QRlh11, qSBR11-3, qSBR11-1, qSBR9-1, qShB3-2, and qSB-9. A Mantel test suggested a weak relationship between the observed phenotypes and allelic variation patterns, implying the independent nature of morphological and molecular variations. Teqing and Tetep were found to be the most resistant cultivars. IR65482-4-136-2-2, MR219-4, and MR264 showed improved resistance potentials. These results suggest that the morphological traits and QTLs which have been found to associate with sheath blight resistance are a good choice to enhance resistance through pyramiding either 2 QTLs or QTLs and traits in susceptible rice cultivars. PMID:27795687

  4. Raps markers for genetic diversity analysis in rice (Oryza sativa L)

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, A; Fuentes, Jorge L [Centro de Estudios Aplicados al Desarrollo Nuclear, La Habana (Cuba); Deus, Juan E [Instituto de Investigaciones del Arroz, Habana (Cuba); Duque, Maria C [Centro Internacional de la Agricultura Tropical. Proyecto de Arroz , Cali (Colombia)

    1999-07-01

    The establishment of relationships between genotypes existing in gene banks that may be used in new crosses, and about genetic diversity in available germplasm, is very useful for plant breeders. In this work, a genetic diversity analysis among 20 varieties of the Cuban rice germplasm bank was performed by using RAPD markers. Twenty four decamer primers were screened which produced 61 polymorphic bands out of 105 consistent and reproducible amplified fragments (58.1 %). The proportion of polymorphic bands varied for each primer, with an average of 3 polymorphic bands per primer, these results agreed with previous reports on RAPD polymorphism in rice germplasm. Depending on the primer, 1 to 7 distinct patterns were obtained among the screened genotypes. Pair-wise genetic distances between genotypes were computed based on Dice's coefficient. Three major, statistically robust groups were obtained in the UPGMA dendrogram (A, B and C) which clearly corresponded to different genetic pools. Additionally, more insight could be gained according to the sub-grouping pattern within group A, which included the principal semi-dwarf commercial varieties. The present study allowed to prove the efficiency of RAPD markers for genetic diversity analysis in closely related germplasm, particularly for the semi-dwarf Cuban commercial rice cultivars. Also, the existence of a narrow genetic base among these varieties has been confirmed, pointing at the urgent necessity of widen it.

  5. Raps markers for genetic diversity analysis in rice (Oryza sativa L)

    International Nuclear Information System (INIS)

    Alvarez, A.; Fuentes, Jorge L.; Deus, Juan E.; Duque, Maria C.

    1999-01-01

    The establishment of relationships between genotypes existing in gene banks that may be used in new crosses, and about genetic diversity in available germplasm, is very useful for plant breeders. In this work, a genetic diversity analysis among 20 varieties of the Cuban rice germplasm bank was performed by using RAPD markers. Twenty four decamer primers were screened which produced 61 polymorphic bands out of 105 consistent and reproducible amplified fragments (58.1 %). The proportion of polymorphic bands varied for each primer, with an average of 3 polymorphic bands per primer, these results agreed with previous reports on RAPD polymorphism in rice germplasm. Depending on the primer, 1 to 7 distinct patterns were obtained among the screened genotypes. Pair-wise genetic distances between genotypes were computed based on Dice's coefficient. Three major, statistically robust groups were obtained in the UPGMA dendrogram (A, B and C) which clearly corresponded to different genetic pools. Additionally, more insight could be gained according to the sub-grouping pattern within group A, which included the principal semi-dwarf commercial varieties. The present study allowed to prove the efficiency of RAPD markers for genetic diversity analysis in closely related germplasm, particularly for the semi-dwarf Cuban commercial rice cultivars. Also, the existence of a narrow genetic base among these varieties has been confirmed, pointing at the urgent necessity of widen it

  6. Strong shift in the diazotrophic endophytic bacterial community inhabiting rice (Oryza sativa) plants after flooding.

    Science.gov (United States)

    Ferrando, Lucía; Fernández Scavino, Ana

    2015-09-01

    Flooding impacts soil microbial communities, but its effect on endophytic communities has rarely been explored. This work addresses the effect of flooding on the abundance and diversity of endophytic diazotrophic communities on rice plants established in a greenhouse experiment. The nifH gene was significantly more abundant in roots after flooding, whereas the nifH gene copy numbers in leaves were unaffected and remained low. The PCA (principal component analysis) of T-RFLP (terminal restriction fragment length polymorphism) profiles indicated that root communities of replicate plots were more similar and diverse after flooding than before flooding. The nifH libraries obtained by cloning and 454 pyrosequencing consistently showed a remarkable shift in the diazotrophic community composition after flooding. Gammaproteobacteria (66-98%), mainly of the genus Stenotrophomonas, prevailed in roots before flooding, whereas Betaproteobacteria was the dominant class (26-34%) after flooding. A wide variety of aerotolerant and anaerobic diazotrophic bacteria (e.g. Dechloromonas, Rhodopseudomonas, Desulfovibrio, Geobacter, Chlorobium, Spirochaeta, Selenomonas and Dehalobacter) with diverse metabolic traits were retrieved from flooded rice roots. These findings suggest that endophytic communities could be significantly impacted by changes in plant-soil conditions derived from flooding during rice cropping. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. The effect of the external medium on the gravitropic curvature of rice (Oryza sativa, Poaceae) roots

    Science.gov (United States)

    Staves, M. P.; Wayne, R.; Leopold, A. C.

    1997-01-01

    The roots of rice seedlings, growing in artificial pond water, exhibit robust gravitropic curvature when placed perpendicular to the vector of gravity. To determine whether the statolith theory (in which intracellular sedimenting particles are responsible for gravity sensing) or the gravitational pressure theory (in which the entire protoplast acts as the gravity sensor) best accounts for gravity sensing in rice roots, we changed the physical properties of the external medium with impermeant solutes and examined the effect on gravitropism. As the density of the external medium is increased, the rate of gravitropic curvature decreases. The decrease in the rate of gravicurvature cannot be attributed to an inhibition of growth, since rice roots grown in 100 Osm/m3 (0.248 MPa) solutions of different densities all support the same root growth rate but inhibit gravicurvature increasingly with increasing density. By contrast, the sedimentation rate of amyloplasts in the columella cells is unaffected by the external density. These results are consistent with the gravitational pressure theory of gravity sensing, but cannot be explained by the statolith theory.

  8. Evaporation kinetics of surfactant solution droplets on rice (Oryza sativa) leaves

    Science.gov (United States)

    Cao, Li-Dong; Zheng, Li; Xu, Jun; Li, Feng-Min; Huang, Qi-Liang

    2017-01-01

    The dynamics of evaporating sessile droplets on hydrophilic or hydrophobic surfaces is widely studied, and many models for these processes have been developed based on experimental evidence. However, few research has been explored on the evaporation of sessile droplets of surfactant or pesticide solutions on target crop leaves. Thus, in this paper the impact of surfactant concentrations on contact angle, contact diameter, droplet height, and evolution of the droplets’ evaporative volume on rice leaf surfaces have been investigated. The results indicate that the evaporation kinetics of surfactant droplets on rice leaves were influenced by both the surfactant concentrations and the hydrophobicity of rice leaf surfaces. When the surfactant concentration is lower than the surfactant CMC (critical micelle concentration), the droplet evaporation time is much longer than that of the high surfactant concentration. This is due to the longer existence time of a narrow wedge region under the lower surfactant concentration, and such narrow wedge region further restricts the droplet evaporation. Besides, our experimental data are shown to roughly collapse onto theoretical curves based on the model presented by Popov. This study could supply theoretical data on the evaporation of the adjuvant or pesticide droplets for practical applications in agriculture. PMID:28472108

  9. Phylogenetic diversity of culturable endophytic fungi in Dongxiang wild rice (Oryza rufipogon Griff), detection of polyketide synthase gene and their antagonistic activity analysis.

    Science.gov (United States)

    Wang, Ya; Gao, Bo Liang; Li, Xi Xi; Zhang, Zhi Bin; Yan, Ri Ming; Yang, Hui Lin; Zhu, Du

    2015-11-01

    The biodiversity of plant endophytic fungi is enormous, numerous competent endophytic fungi are capable of providing different forms of fitness benefits to host plants and also could produce a wide array of bioactive natural products, which make them a largely unexplored source of novel compounds with potential bioactivity. In this study, we provided a first insights into revealing the diversity of culturable endophytic fungi in Dongxiang wild rice (Oryza rufipogon Griff.) from China using rDNA-ITS phylogenetic analysis. Here, the potential of fungi in producing bioactive natural products was estimated based on the beta-ketosynthase detected in the polyketide synthase (PKS) gene cluster and on the bioassay of antagonistic activity against two rice phytopathogens Thanatephorus cucumeris and Xanthomonas oryzae. A total of 229 endophytic fungal strains were validated in 19 genera. Among the 24 representative strains, 13 strains displayedantagonistic activity against the phytopathogens. Furthermore, PKS genes were detected in 9 strains, indicating their potential for synthesising PKS compounds. Our study confirms the phylogenetic diversity of endophytic fungi in O. rufipogon G. and highlights that endophytic fungi are not only promising resources of biocontrol agents against phytopathogens of rice plants, but also of bioactive natural products and defensive secondary metabolites. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  10. Mitigation of Cd accumulation in paddy rice (Oryza sativa L.) by Fe fertilization.

    Science.gov (United States)

    Chen, Zhe; Tang, Ye-Tao; Yao, Ai-Jun; Cao, Jian; Wu, Zhuo-Hao; Peng, Zhe-Ran; Wang, Shi-Zhong; Xiao, Shi; Baker, Alan J M; Qiu, Rong-Liang

    2017-12-01

    Cadmium uptake in rice is believed to be mediated by the Fe transport system. Phyto-available Cd can be changed by Fe fertilization of substrates. This work investigated whether and how Fe fertilization affects mitigation of Cd accumulation in paddy rice. A 90-d soil column experiment was conducted to study the change of Cd and Fe availability in soil after Fe fertilization (ionic and chelated Fe). A low-Cd accumulating cultivar (TY116) and a high-Cd accumulating cultivar (JY841) were grown in two Cd-polluted paddy soils amended with chelated Fe fertilizers. Additionally, both cultivars were grown in hydroponics to compare Fe-related gene expression in EDDHAFe-deficient and EDDHAFe-sufficient roots. The column experiment showed that EDTANa 2 Fe(II) and EDDHAFe(III) fertilization had a better mitigation effect on soil Cd availability compared to FeSO 4 ·7H 2 O. Moreover, the field experiment demonstrated that these two chelated fertilizations could reduce Cd concentrations in brown rice by up to 80%. Iron concentrations in the brown rice were elevated by Fe chelates. Compared to EDDHAFe(III), EDTANa 2 Fe(II) fertilization had a stronger mitigation effect by generating more EDTANa 2 Cd(II) in the soil solution to decrease phyto-available Cd in the soil. While EDDHAFe(III) fertilization could increase soil pH and decrease soil Eh which contributed to decreasing phyto-available Cd in a contaminated soil. In the hydroponic experiment, Fe sufficiency significantly reduced Cd concentrations in above-ground organs. In some cases, the expression of OsIRT1, OsNRAMP1 and OsNRAMP5 was inhibited under Fe sufficiency relative to Fe deficiency conditions. These results suggest that mitigation of rice Cd by Fe chelate fertilization results from a decrease in available Cd in substrates and the inhibition of the expression of several Fe-related genes in the IRT and NRAMP families. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Identity, diversity, and molecular phylogeny of the endophytic mycobiota in the roots of rare wild rice (Oryza granulate) from a nature reserve in Yunnan, China.

    Science.gov (United States)

    Yuan, Zhi-Lin; Zhang, Chu-Long; Lin, Fu-Cheng; Kubicek, Christian P

    2010-03-01

    Rice (Oryza sativa L.) is, on a global scale, one of the most important food crops. Although endophytic fungi and bacteria associated with rice have been investigated, little is known about the endophytic fungi of wild rice (Oryza granulate) in China. Here we studied the root endophytic mycobiota residing in roots of O. granulate by the use of an integrated approach consisting of microscopy, cultivation, ecological indices, and direct PCR. Microscopy confirmed the ubiquitousness of dark septate endophytes (DSEs) and sclerotium-like structures in root tissues. Isolations from 204 root segments from 15 wild rice plants yielded 58 isolates, for which 31 internal transcribed spacer (ITS)-based genotypes were recorded. The best BLAST match indicated that 34.5% of all taxa encountered may represent hitherto undescribed species. Most of the fungi were isolated with a very low frequency. Calculation of ecological indices and estimation of taxon accumulation curves indicated a high diversity of fungal species. A culture-independent approach was also performed to analyze the endophytic fungal community. Three individual clone libraries were constructed. Using a threshold of 90% similarity, 35 potentially different sequences (phylotypes) were found among 186 positive clones. Phylogenetic analysis showed that frequently detected clones were classified as Basidiomycota, and 60.2% of total analyzed clones were affiliated with unknown taxa. Exophiala, Cladophialophora, Harpophora, Periconia macrospinosa, and the Ceratobasidium/Rhizoctonia complex may act as potential DSE groups. A comparison of the fungal communities characterized by the two approaches demonstrated distinctive fungal groups, and only a few taxa overlapped. Our findings indicate a complex and rich endophytic fungal consortium in wild rice roots, thus offering a potential bioresource for establishing a novel model of plant-fungal mutualistic interactions.

  12. MoDUO1, a Duo1-like gene, is required for full virulence of the rice blast fungus Magnaporthe oryzae.

    Science.gov (United States)

    Peng, Haowen; Feng, Youjun; Zhu, Xiaohui; Lan, Xiuwan; Tang, Mei; Wang, Jinzi; Dong, Haitao; Chen, Baoshan

    2011-12-01

    Duo1, a major component of the Dam1 complex which has been found in two species of yeast (the budding yeast Saccharomyces cerevisae and the fission yeast Schizosaccharomyces pombe), is involved in mitosis-related chromosome segregation, while its relevance to pathogenicity in filamentous fungi remains unclear. This report elucidated this very fact in the case of the rice blast fungus Magnaporthe oryzae. A gene designated MoDUO1 that encodes a Duo1-like homolog (MoDuo1) was discovered in the M. oryzae genome. Two types of MoDUO1 mutants were obtained using genetic approaches of Agrobacterium-mediated gene disruption and homologous recombination. Both disruption and deletion of MoDUO1 can exert profound effects on the formation pattern of conidiophores and conidial morphology, such as abnormal nucleic numbers in conidia and delayed extension of infectious hyphae. Intriguingly, plant infection assays demonstrated that inactivation of MoDUO1 significantly attenuates the virulence in its natural host rice leaves, and functional complementation can restore it. Subcellular localization assays showed that MoDuo1 is mainly distributed in the cytosol of fungal cells. Proteomics-based investigation revealed that the expression of four mitosis-related proteins is shut down in the MoDUO1 mutant, suggesting that MoDuo1 may have a function in mitosis. In light of the fact that Duo1 orthologs are widespread in plant and human fungal pathogens, our finding may represent a common mechanism underlying fungal virulence. To the best of our knowledge, this is the first example of linking a Duo1-like homolog to the pathogenesis of a pathogenic fungus, which might provide clues to additional studies on the role of Dam1 complex in M. oryzae and its interaction with rice.

  13. Molecular evolution of the endosperm starch synthesis pathway genes in rice (Oryza sativa L.) and its wild ancestor, O. rufipogon L.

    Science.gov (United States)

    Yu, Guoqin; Olsen, Kenneth M; Schaal, Barbara A

    2011-01-01

    The evolution of metabolic pathways is a fundamental but poorly understood aspect of evolutionary change. One approach for understanding the complexity of pathway evolution is to examine the molecular evolution of genes that together comprise an integrated metabolic pathway. The rice endosperm starch biosynthetic pathway is one of the most thoroughly characterized metabolic pathways in plants, and starch is a trait that has evolved in response to strong selection during rice domestication. In this study, we have examined six key genes (AGPL2, AGPS2b, SSIIa, SBEIIb, GBSSI, ISA1) in the rice endosperm starch biosynthesis pathway to investigate the evolution of these genes before and after rice domestication. Genome-wide sequence tagged sites data were used as a neutral reference to overcome the problems of detecting selection in species with complex demographic histories such as rice. Five variety groups of Oryza sativa (aus, indica, tropical japonica, temperate japonica, aromatic) and its wild ancestor (O. rufipogon) were sampled. Our results showed evidence of purifying selection at AGPL2 in O. rufipogon and strong evidence of positive selection at GBSSI in temperate japonica and tropical japonica varieties and at GBSSI and SBEIIb in aromatic varieties. All the other genes showed a pattern consistent with neutral evolution in both cultivated rice and its wild ancestor. These results indicate the important role of positive selection in the evolution of starch genes during rice domestication. We discuss the role of SBEIIb and GBSSI in the evolution of starch quality during rice domestication and the power and limitation of detecting selection using genome-wide data as a neutral reference.

  14. Germination and plantlet regeneration of encapsulated microshoots of aromatic rice (Oryza sativa L. Cv. MRQ 74).

    Science.gov (United States)

    Taha, Rosna Mat; Saleh, Azani; Mahmad, Noraini; Hasbullah, Nor Azlina; Mohajer, Sadegh

    2012-01-01

    Plant tissues such as somatic embryos, apical shoot tips, axillary shoot buds, embryogenic calli, and protocom-like bodies are potential micropropagules that have been considered for creating synthetic seeds. In the present study, 3-5 mm microshoots of Oryza sativa L. Cv. MRQ 74 were used as explant sources for obtaining synthetic seeds. Microshoots were induced from stem explants on Murashige and Skoog (MS) medium supplemented with 1.5 mg/L benzylaminopurine (BAP). They were encapsulated in 3% (w/v) sodium alginate, 3% sucrose, 0.1 mg/L BAP, and 0.1 mg/L α-Naphthalene acetic acid (NAA). Germination and plantlet regeneration of the encapsulated seeds were tested by culturing them on various germination media. The effect of storage period (15-30 days) was also investigated. The maximum germination and plantlet regeneration (100.0%) were recorded on MS media containing 3% sucrose and 0.8% agar with and without 0.1 mg/L BAP. However, a low germination rate (6.67%) was obtained using top soil as a sowing substrate. The germination rate of the encapsulated microshoots decreased from 93.33% to 3.33% after 30 days of storage at 4°C in the dark. Therefore, further research is being done to improve the germination rate of the synthetic seeds.

  15. Germination and Plantlet Regeneration of Encapsulated Microshoots of Aromatic Rice (Oryza sativa L. Cv. MRQ 74

    Directory of Open Access Journals (Sweden)

    Rosna Mat Taha

    2012-01-01

    Full Text Available Plant tissues such as somatic embryos, apical shoot tips, axillary shoot buds, embryogenic calli, and protocom-like bodies are potential micropropagules that have been considered for creating synthetic seeds. In the present study, 3–5 mm microshoots of Oryza sativa L. Cv. MRQ 74 were used as explant sources for obtaining synthetic seeds. Microshoots were induced from stem explants on Murashige and Skoog (MS medium supplemented with 1.5 mg/L benzylaminopurine (BAP. They were encapsulated in 3% (w/v sodium alginate, 3% sucrose, 0.1 mg/L BAP, and 0.1 mg/L α-Naphthalene acetic acid (NAA. Germination and plantlet regeneration of the encapsulated seeds were tested by culturing them on various germination media. The effect of storage period (15–30 days was also investigated. The maximum germination and plantlet regeneration (100.0% were recorded on MS media containing 3% sucrose and 0.8% agar with and without 0.1 mg/L BAP. However, a low germination rate (6.67% was obtained using top soil as a sowing substrate. The germination rate of the encapsulated microshoots decreased from 93.33% to 3.33% after 30 days of storage at 4°C in the dark. Therefore, further research is being done to improve the germination rate of the synthetic seeds.

  16. Yield-enhancing heterotic QTL transferred from wild species to cultivated rice Oryza sativa L.

    Science.gov (United States)

    Gaikwad, Kiran B; Singh, Naveen; Bhatia, Dharminder; Kaur, Rupinder; Bains, Navtej S; Bharaj, Tajinder S; Singh, Kuldeep

    2014-01-01

    Utilization of "hidden genes" from wild species has emerged as a novel option for enrichment of genetic diversity for productivity traits. In rice we have generated more than 2000 lines having introgression from 'A' genome-donor wild species of rice in the genetic background of popular varieties PR114 and Pusa44 were developed. Out of these, based on agronomic acceptability, 318 lines were used for developing rice hybrids to assess the effect of introgressions in heterozygous state. These introgression lines and their recurrent parents, possessing fertility restoration ability for wild abortive (WA) cytoplasm, were crossed with cytoplasmic male sterile (CMS) line PMS17A to develop hybrids. Hybrids developed from recurrent parents were used as checks to compare the performance of 318 hybrids developed by hybridizing alien introgression lines with PMS17A. Seventeen hybrids expressed a significant increase in yield and its component traits over check hybrids. These 17 hybrids were re-evaluated in large-size replicated plots. Of these, four hybrids, viz., ILH299, ILH326, ILH867 and ILH901, having introgressions from O. rufipogon and two hybrids (ILH921 and ILH951) having introgressions from O. nivara showed significant heterosis over parental introgression line, recurrent parents and check hybrids for grain yield-related traits. Alien introgressions were detected in the lines taken as male parents for developing six superior hybrids, using a set of 100 polymorphic simple sequence repeat (SSR) markers. Percent introgression showed a range of 2.24 from in O. nivara to 7.66 from O. rufipogon. The introgressed regions and their putative association with yield components in hybrids is reported and discussed.

  17. Tagging of four Rf genes with selective genotyping analysis in rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Yarahmadi Saeid

    2017-01-01

    Full Text Available Wild abortive type of cytoplasmic male sterility (WA-CMS is commercially used for hybrid rice seed production. The linked markers can be used for selection of plants with desirable traits. Tagging of Rf genes was carried out using recessive and dominant class analysis in a large F2 population from the cross IR58025A×IR42686R. Pollen fertility and seed setting were evaluated at the flowering and maturity stages, respectively. Forty-seven highly sterile and 23 fertile homozygous plants were selected from F2 population for molecular marker assay. Four Rf genes identified in a good restorer line with high-quality derived from a random mating composite population at the International Rice Research Institute (IRRI. The genetic distance from Rf3 locus with flanking markers RM443 and RM315 on chromosome 1 was 3.7 and 21.2 cM, respectively. RM258, RM591, RM271 and RM6737 on the long arm of chromosome 10 were linked with the Rf6 gene with distance of 7.4, 22.6, 6 and 2.9 cM, respectively. Rf6 was flanked by RM6737 and RM591. The Rf4 gene located on chromosome 7 was linked with RM6344 at a genetic distance of 10.6 cM. RM519 and RM7003 were linked with other Rf gene on chromosome 12 at a genetic distance of 8.5 and 20.8 cM, respectively. Closely linked markers identified in this study could be used for marker assisted selection in a hybrid rice breeding program. A new Rf locus on chromosome 12 that designated Rf7 was linked with RM7003 and RM519.

  18. Identification and characterization of salt responsive miRNA-SSR markers in rice (Oryza sativa).

    Science.gov (United States)

    Mondal, Tapan Kumar; Ganie, Showkat Ahmad

    2014-02-10

    Salinity is an important abiotic stress that affects agricultural production and productivity. It is a complex trait that is regulated by different molecular mechanisms. miRNAs are non-coding RNAs which are highly conserved and regulate gene expression. Simple sequence repeats (SSRs) are robust molecular markers for studying genetic diversity. Although several SSR markers are available now, challenge remains to identify the trait-specific SSRs which can be used for marker assisted breeding. In order to understand the genetic diversity of salt responsive-miRNA genes in rice, SSR markers were mined from 130 members of salt-responsive miRNA genes of rice and validated among the contrasting panels of tolerant as well as susceptible rice genotypes, each with 12 genotypes. Although 12 miR-SSRs were found to be polymorphic, only miR172b-SSR was able to differentiate the tolerant and susceptible genotypes in 2 different groups. It had also been found that miRNA genes were more diverse in susceptible genotypes than the tolerant one (as indicated by polymorphic index content) which might interfere to form the stem-loop structure of premature miRNA and their subsequent synthesis in susceptible genotypes. Thus, we concluded that length variations of the repeats in salt responsive miRNA genes may be responsible for a possible sensitivity to salinity adaptation. This is the first report of characterization of trait specific miRNA derived SSRs in plants. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Isolation of a novel mutant gene for soil-surface rooting in rice (Oryza sativa L.).

    Science.gov (United States)

    Hanzawa, Eiko; Sasaki, Kazuhiro; Nagai, Shinsei; Obara, Mitsuhiro; Fukuta, Yoshimichi; Uga, Yusaku; Miyao, Akio; Hirochika, Hirohiko; Higashitani, Atsushi; Maekawa, Masahiko; Sato, Tadashi

    2013-11-20

    Root system architecture is an important trait affecting the uptake of nutrients and water by crops. Shallower root systems preferentially take up nutrients from the topsoil and help avoid unfavorable environments in deeper soil layers. We have found a soil-surface rooting mutant from an M2 population that was regenerated from seed calli of a japonica rice cultivar, Nipponbare. In this study, we examined the genetic and physiological characteristics of this mutant. The primary roots of the mutant showed no gravitropic response from the seedling stage on, whereas the gravitropic response of the shoots was normal. Segregation analyses by using an F2 population derived from a cross between the soil-surface rooting mutant and wild-type Nipponbare indicated that the trait was controlled by a single recessive gene, designated as sor1. Fine mapping by using an F2 population derived from a cross between the mutant and an indica rice cultivar, Kasalath, revealed that sor1 was located within a 136-kb region between the simple sequence repeat markers RM16254 and 2935-6 on the terminal region of the short arm of chromosome 4, where 13 putative open reading frames (ORFs) were found. We sequenced these ORFs and detected a 33-bp deletion in one of them, Os04g0101800. Transgenic plants of the mutant transformed with the genomic fragment carrying the Os04g0101800 sequence from Nipponbare showed normal gravitropic responses and no soil-surface rooting. These results suggest that sor1, a rice mutant causing soil-surface rooting and altered root gravitropic response, is allelic to Os04g0101800, and that a 33-bp deletion in the coding region of this gene causes the mutant phenotypes.

  20. GENETICS OF BROWN PLANTHOPPER (NILAPARVATA LUGENS STAL.) RESISTANCE IN ELITE DONORS OF RICE (ORYZA SATIVA L.)

    OpenAIRE

    B BALAKRISHNA; P V SATAYANARAYANA

    2013-01-01

    The inheritance of resistance to the brown planthopper (BPH) in four BPH resistant donors of rice i. e., Sinna Sivappu, Sudu Hondarawala, PTB 33 and BM 71 was studied both in field and greenhouse conditions. The F2 population of crosses involving donors Sinna Sivappu, Sudu Hondarawala and PTB 33 fit into the ratio of 13:3 indicating the resistance to BPH was controlled by two genes i. e., one dominant and one recessive gene segregating independent to each other. The F2 populat...

  1. Competition between rice (Oryza sativa L.) and (barnyardgrass (Echinochloa crus-galli (L.) P. Beauv.) as affected by methanol foliar application.

    Science.gov (United States)

    Rezaeieh, Alireza D; Aminpanah, Hashem; Sadeghi, Seyed M

    2015-01-01

    Pot experiment was conducted in Iran, to evaluate the effect of methanol on competition between rice (Oryza sativa) and barnyardgrass (Echinochloa crus-galli). The experiment was conducted as a randomized complete block design with a factorial treatment arrangement and three replicates. Factors were two aqueous methanol foliar applications (0, and 14% v/v) and five rice: barnyardgrass ratios (100:0, 75:25, 50:50, 25:6, and 0:100). Replacement series diagrams for aboveground dry weight illustrated that 'Shiroudi' was more competitive than barnyardgrass as averaged across methanol foliar applications. When methanol was not sprayed, the lines for 'Shiroudi' and barnyardgrass intersected at 75:25 rice: barnyardgrass ratio, but when methanol was sprayed at 14% v/v, the lines for 'Shiroudi' and barnyardgrass intersect at the left of the 75:25 rice: barnyardgrass mixture proportion. These indicate that methanol application reduced competitive ability of 'Shiroudi' against barnyardgrass for aboveground biomass accumulation. At the same time, Methanol foliar application significantly reduced the relative crowding coefficient of 'Shiroudi' while simultaneously it significantly increased the relative crowding coefficient of barnyard grass. This indicates that methanol foliar application reduced the competitive ability of 'Shiroudi' against barnyardgrass for shoot biomass accumulation. This experiment illustrated that foliar spray of aqueous methanol can not be recommended for rice under weedy conditions.

  2. Risk assessment of potentially toxic element pollution in soils and rice (Oryza sativa) in a typical area of the Yangtze River Delta

    International Nuclear Information System (INIS)

    Hang Xiaoshuai; Wang Huoyan; Zhou Jianmin; Ma Chengling; Du Changwen; Chen Xiaoqin

    2009-01-01

    Soil pollution with potentially toxic elements (PTEs) resulting from rapid industrial development has caused major concerns. Selected PTEs and their accumulation and distribution in soils and rice (Oryza sativa) collected from Changshu, east China, were analyzed to evaluate the potential health risk to the local population. The soils were primarily contaminated with Hg, followed by Cu, Cd, Pb, and Zn. The concentrations of Pb, Hg, and Cd of 46, 32, and 1 rice samples exceeded their national maximum allowable levels in foods, respectively. Spatial distributions of total Cr, Cu, Pb, Zn, and Cd in soils shared similar geographical trends. The risk assessment of PTEs through rice consumption suggests that the concentrations of Cu, Pb, and Cd in some rice samples exceed their reference oral dose for adults and children. In general, there was no target hazard quotient value of any individual element that was greater than 1, but hazard index values for adults and children were 1.726 and 1.523, respectively. - Industrial development has led to increased risk from potentially toxic elements in soils and rice.

  3. Reduction of aflatoxin-beta/sub 1/ and ochratoxin-A levels in polished basmati rice (oryza sativa linn.) by different cooking methods

    International Nuclear Information System (INIS)

    Hussain, A.; Luttfullah, G.

    2009-01-01

    Rice (Oryza sativa Linn) is one of the basic diets of Pakistan. The aim of present study was to evaluate the effect of different cooking methods on the levels of aflatoxin-B/sub 1/ (AFB.) and ochratoxin-A (OTA). For this purpose the rice samples were artificially contaminated with AFB1 and ochratoxin-A (OTA) individually and simultaneously. The samples were then submitted to three different cooking methods i.e. normal cooking, cooking in an excess of water and in a microwave oven. After treatment, the both toxins were determined by thin layer chromatography (TLC) technique. The highest myco toxin reductions were observed when rice samples cooked in excess water (87.5 % for AFB1 and 86.6 % for OTA), followed by normal cooking (84.0 % for AFB, and 83.0 % for OTA) and microwave oven cooking (72.5 % for AFB1 and 82.4 % for OTA). The samples artificially contaminated with both AFB1 and OTA, the highest reductions were also observed for rice cooked in excess water (87.5 and 83.0 %) than cooked by normal cooking (82.5 and 766 %), and by microwave oven cooking (77.6 and 75.9 %). The rates of toxin reduction were relatively lower in samples artificially simultaneously contaminated with AFB1 and OTA, than the rice samples contaminated with AFB. and OTA individually. (author)

  4. Control of brown spot pathogen of rice (Bipolaris oryzae using some phenolic antioxidants Controle da macha-parda do arroz (Bipolaris oryzae pelo emprego de antioxidantes fenólicos

    Directory of Open Access Journals (Sweden)

    Y.M. Shabana

    2008-09-01

    Full Text Available Bipolaris oryzae is the causal agent of rice brown spot disease and is responsible for significant economic losses. In order to control this disease, three phenolic antioxidants were tested (salicylic acid, benzoic acid and hydroquinone. The antifungal activity of the tested substances were investigated against B. oryzae at different concentrations in vitro, as well as the efficacy of their exogenous application in controlling rice brown spot disease under field conditions. In vitro, benzoic acid or salicylic acid at 9 mM completely inhibited the growth of B. oryzae. Under field conditions, spraying of benzoic acid at 20 mM led to a significant reduction in disease severity (DS and disease incidence (DI on the plant leaves, in addition to a significant increase in the grain yield and its components. Some biochemical responses were also detected, where the application of the previous treatment led to a significant increase in the total photosynthetic pigments (chlorophyll a and b and carotenoids in rice leaves and in the total carbohydrate and protein contents of the yielded grains.Bipolaris oryzae é o agente causador da doença mancha-parda do arroz e é responsável por significativas perdas econômicas. Três antioxidantes fenólicos (ácido salicílico, ácido benzóico e hidroquinona foram avaliados para o controle dessa doença do arroz. A atividade antifúngica destes compostos foi avaliada in vitro contra B. oryzae em diferentes concentrações e a eficiência de sua aplicação exógena no controle da mancha-parda foi avaliada em condições de campo. Nos ensaios in vitro, os ácidos benzóico e salicílico a 9 mM inibiram completamente a multiplicação de B. oryzae. Em condições de campo, a aspersão de ácido benzóico a 20 mM causou uma redução significativa na gravidade e incidência da doença na folhas da planta, além de aumentar significativamente o rendimento dos grãos e seus componentes. Algumas respostas bioqu

  5. Distribution, genetic diversity and potential spatiotemporal scale of alien gene flow in crop wild relatives of rice (Oryza spp.) in Colombia.

    Science.gov (United States)

    Thomas, Evert; Tovar, Eduardo; Villafañe, Carolina; Bocanegra, José Leonardo; Moreno, Rodrigo

    2017-12-01

    Crop wild relatives (CWRs) of rice hold important traits that can contribute to enhancing the ability of cultivated rice (Oryza sativa and O. glaberrima) to produce higher yields, cope with the effects of climate change, and resist attacks of pests and diseases, among others. However, the genetic resources of these species remain dramatically understudied, putting at risk their future availability from in situ and ex situ sources. Here we assess the distribution of genetic diversity of the four rice CWRs known to occur in Colombia (O. glumaepatula, O. alta, O. grandiglumis, and O. latifolia). Furthermore, we estimated the degree of overlap between areas with suitable habitat for cultivated and wild rice, both under current and predicted future climate conditions to assess the potential spatiotemporal scale of potential gene flow from GM rice to its CWRs. Our findings suggest that part of the observed genetic diversity and structure, at least of the most exhaustively sampled species, may be explained by their glacial and post-glacial range dynamics. Furthermore, in assessing the expected impact of climate change and the potential spatiotemporal scale of gene flow between populations of CWRs and GM rice we find significant overlap between present and future suitable areas for cultivated rice and its four CWRs. Climate change is expected to have relatively limited negative effects on the rice CWRs, with three species showing opportunities to expand their distribution ranges in the future. Given (i) the sparse presence of CWR populations in protected areas (ii) the strong suitability overlap between cultivated rice and its four CWRs; and (iii) the complexity of managing and regulating areas to prevent alien gene flow, the first priority should be to establish representative ex situ collections for all CWR species, which currently do not exist. In the absence of studies under field conditions on the scale and extent of gene flow between cultivated rice and its Colombian

  6. Biochemical indicators of root damage in rice (Oryza sativa) genotypes under zinc deficiency stress.

    Science.gov (United States)

    Lee, Jae-Sung; Wissuwa, Matthias; Zamora, Oscar B; Ismail, Abdelbagi M

    2017-11-01

    Zn deficiency is one of the major soil constraints currently limiting rice production. Although recent studies demonstrated that higher antioxidant activity in leaf tissue effectively protects against Zn deficiency stress, little is known about whether similar tolerance mechanisms operate in root tissue. In this study we explored root-specific responses of different rice genotypes to Zn deficiency. Root solute leakage and biomass reduction, antioxidant activity, and metabolic changes were measured using plants grown in Zn-deficient soil and hydroponics. Solute leakage from roots was higher in sensitive genotypes and linked to membrane damage caused by Zn deficiency-induced oxidative stress. However, total root antioxidant activity was four-fold lower than in leaves and did not differ between sensitive and tolerant genotypes. Root metabolite analysis using gas chromatography-mass spectrometry and high performance liquid chromatography indicated that Zn deficiency triggered the accumulation of glycerol-3-phosphate and acetate in sensitive genotypes, while less or no accumulation was seen in tolerant genotypes. We suggest that these metabolites may serve as biochemical indicators of root damage under Zn deficiency.

  7. Quantitative proteomic analysis of the rice (Oryza sativa L. salt response.

    Directory of Open Access Journals (Sweden)

    Jianwen Xu

    Full Text Available Salt stress is one of most serious limiting factors for crop growth and production. An isobaric Tags for Relative and Absolute Quantitation (iTRAQ approach was used to analyze proteomic changes in rice shoots under salt stress in this study. A total of 56 proteins were significantly altered and 16 of them were enriched in the pathways of photosynthesis, antioxidant and oxidative phosphorylation. Among these 16 proteins, peroxiredoxin Q and photosystem I subunit D were up-regulated, while thioredoxin M-like, thioredoxin x, thioredoxin peroxidase, glutathione S-transferase F3, PSI subunit H, light-harvesting antenna complex I subunits, chloroplast chaperonin, vacuolar ATP synthase subunit H, and ATP synthase delta chain were down-regulated. Moreover, physiological data including total antioxidant capacity, peroxiredoxin activity, chlorophyll a/b content, glutathione S-transferase activity, reduced glutathione content and ATPase activity were consistent with changes in the levels of these proteins. The levels of the mRNAs encoding these proteins were also analyzed by real-time quantitative reverse transcription PCR, and approximately 86% of the results were consistent with the iTRAQ data. Importantly, our data suggest the important role of PSI in balancing energy supply and ROS generation under salt stress. This study provides information for an improved understanding of the function of photosynthesis and PSI in the salt-stress response of rice.

  8. Inheritance of Gelatinization Temperature and Gel Consistency in Rice (Oryza sativa L.)

    Science.gov (United States)

    Kiani; Sh.; Ranjbar, G. A.; Kazemitabar, S. K.; Jelodar, N. B.; Nowrozi, M.; Bagheri, N.

    Gelatinization Temperature (GT) and Gel Consistency (GC) are important traits in determination of rice quality. In present study four rice cultivars namely Sang-e-Tarrom, Gerdeh, IR229 and IRRI2 have been utilized in hybridization as parents. In order to know about genetic characteristics and inheritance of the related traits, direct and reciprocal crosses have been conducted between parents Sang-e-Tarrom and Gerdeh and between IR229 and IRRI2. Inheritance of related traits have been studied in direct and reciprocal hybridizations for hard, intermediate and soft GC, low and high GT. For these evaluations P1, P2, F1, F2, BC1, BC2 generations and their reciprocal crosses have been utilized in present study. Results showed that gene hard GC dominates on intermediate and soft and also intermediate GT dominates on low. From direct and reciprocal crosses Gerdeh x Sang-e-Tarrom and IR229 x IRRI2 have been illustrated that GC and GT expressions are under monogenic control of one major gene corresponding with several modifier genes. Gene dosage effects play a tremendously important and effective role in segregation production among traits. Regarding to the obtained results selections can effectively be performed in later segregation generations for GC and in early generations for GT.

  9. Performance of Mentik Wangi rice (Oryza sativa, L.) M2 generation from gamma ray irradiation

    Science.gov (United States)

    Yunus, A.; Parjanto; Nandariyah; Wulandari, S.

    2018-03-01

    The objective of this research is to produce Mentik Wangi rice with shorter flowering age, shorter rice stem and high yield. This research was conducted in Palur Village, Mojolaban Sub-district, Sukoharjo District, from April to August 2016. This research used descriptive method, performed by observing each individual and comparing to the control average. Observational variables included plant height, total number of tillers, number of productive tillers, panicle length, number of grain per panicle, panicle density index, 1,000 filled seed weight, seed weight of cluster, flowering age and M2 mutant selection. The results showed that there were several plants indicated mutation, there were 7 plants indicate short stem mutation with height 85 cm to 97 cm. The plants which indicated short flowering age were 5 weeks after planting up to 6 weeks after planting. The mutated plants indicating of the highest number of productive tillers which were 27 up to 36. Each component result includes total number of tillers, number of productive tillers, number of grain of panicle as well as the weight of 1000 seeds in the plant indicated some mutation that has a high level of diversity in each treatment.

  10. Response difference of transgenic and conventional rice (Oryza sativa) to nanoparticles (γFe₂O₃).

    Science.gov (United States)

    Gui, Xin; Deng, Yingqing; Rui, Yukui; Gao, Binbin; Luo, Wenhe; Chen, Shili; Nhan, Le Van; Li, Xuguang; Liu, Shutong; Han, Yaning; Liu, Liming; Xing, Baoshan

    2015-11-01

    Nanoparticles (NPs) are an increasingly common contaminant in agro-environments, and their potential effect on genetically modified (GM) crops has been largely unexplored. GM crop exposure to NPs is likely to increase as both technologies develop. To better understand the implications of nanoparticles on GM plants in agriculture, we performed a glasshouse study to quantify the uptake of Fe2O3 NPs on transgenic and non-transgenic rice plants. We measured nutrient concentrations, biomass, enzyme activity, and the concentration of two phytohormones, abscisic acid (ABA) and indole-3-acetic acid (IAA), and malondialdehyde (MDA). Root phytohormone inhibition was positively correlated with Fe2O3 NP concentrations, indicating that Fe2O3 had a significant influence on the production of these hormones. The activities of antioxidant enzymes were significantly higher as a factor of low Fe2O3 NP treatment concentration and significantly lower at high NP concentrations, but only among transgenic plants. There was also a positive correlation between the treatment concentration of Fe2O3 and iron accumulation, and the magnitude of this effect was greatest among non-transgenic plants. The differences in root phytohormone production and antioxidant enzyme activity between transgenic and non-transgenic rice plants in vivo suggests that GM crops may react to NP exposure differently than conventional crops. It is the first study of NPs that may have an impact on GM crops, and a realistic significance for food security and food safety.

  11. Nitrogen cycling in a flooded-soil ecosystem planted to rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Reddy, K.R.

    1982-01-01

    15 N studies of various aspects of the nitrogen cycle in a flooded rice ecosystem on Crowley silt loam soil in Louisiana were reviewed to construct a mass balance model of the nitrogen cycle for this system. Nitrogen transformations modeled included 1) net ammonification (0.22 mg NH 4+ -N kg dry soil - 1 day - 1 ). 2) net nitrification (207 mg NO 3- -N kg dry soil - 1 day - 1 ). 3) denitrification (0.37 mg N kg dry soil - 1 day - 1 ), and 4) biological N 2 fixation (0.16 mg N kg dry soil - 1 day - 1 ). Nitrogen inputs included 1) application of fertilizers, 2) incorporation of crop residues, 3) biological N 2 fixation, and 4) deposition. Nitrogen outputs included 1) crop removal, 2) gaseous losses from NH 3 volatilization and simultaneous occurrence of nitrification-denitrification, and 3) leaching and runoff. Mass balance calculations indicated that 33% of the available inorganic nitrogen was recovered by rice, and the remaining nitrogen was lost from the system. Losses of N due to ammonia volatilization were minimal because fertilizer-N was incorporated into the soil. A significant portion of inorganic-N was lost by ammonium diffusion from the anaerobic layer to the aerobic layer in response to a concentration gradient and subsequent nitrification in the aerobic layer followed by nitrate diffusion into the anaerobic layer and denitrification into gaseous end products. Leaching and surface runoff losses were minimal. (orig.)

  12. Classification of glutinous rice (Oryza sativa L.) starches based on X-ray diffraction pattern

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q.; Abe, T.; Ando, H.; Sasahara, T.

    1993-07-01

    This study was carried out to analyse the cultivar variability of the X-ray diffraction pattern of glutinous rice starches. Four peaks in the X-ray diffractograms were identified, i.e. 3b, 4a, 4b and 6a. The four peaks were measured from the base line for 71 cultivars and three M{sub 3} lines which were irradiated by γ-rays at the rates of 10, 20 and 30 kr, respectively. Glutinous rice starches were classified into two types by discriminant analysis based on the values of 3b/4b, 4a/4b and 6a/4b. The X-ray diffraction type of the three cultivars did not change with the cultivation areas of different latitude, while that of eleven cultivars varied. Degree of crystallinity was estimated using the formula, (I{sub max} — I{sub i})/I{sub max} where I{sub max} is the maximum height from background intensity line among cultivars, and I{sub i} represents the four peaks. These ratios indicated that the changes in the order of crystallinity were similar to those with the water content and/or hydration and temperature for gelatinization among and/or within cultivars. (author)

  13. Association mapping for yield and grain quality traits in rice (Oryza sativa L.)

    Science.gov (United States)

    2010-01-01

    Association analysis was applied to a panel of accessions of Embrapa Rice Core Collection (ERiCC) with 86 SSR and field data from two experiments. A clear subdivision between lowland and upland accessions was apparent, thereby indicating the presence of population structure. Thirty-two accessions with admixed ancestry were identified through structure analysis, these being discarded from association analysis, thus leaving 210 accessions subdivided into two panels. The association of yield and grain-quality traits with SSR was undertaken with a mixed linear model, with markers and subpopulation as fixed factors, and kinship matrix as a random factor. Eight markers from the two appraised panels showed significant association with four different traits, although only one (RM190) maintained the marker-trait association across years and cultivation. The significant association detected between amylose content and RM190 was in agreement with previous QTL analyses in the literature. Herein, the feasibility of undertaking association analysis in conjunction with germplasm characterization was demonstrated, even when considering low marker density. The high linkage disequilibrium expected in rice lines and cultivars facilitates the detection of marker-trait associations for implementing marker assisted selection, and the mining of alleles related to important traits in germplasm. PMID:21637426

  14. Promissory rice mutants (Oryza sativa L.) obtained by Gamma Rays induction in Peru

    International Nuclear Information System (INIS)

    Heros, E.; Gomez, L.

    2015-01-01

    To improve the available rice cultivars in Peru under irrigated conditions, it was tried the rice seed Amazonas and Capirona, cultivars adapted to irrigated conditions in highland jungle, both characterized for late maturity (140-150 days). The doses were: 150-250-350 Gy that induced mutants with different characteristics to the original cultivar like: early maturity, shorter, high yield and milling quality. In Amazonas cultivar were selected 72 mutants of the M 2 generation with agronomy value and continue in evaluation only the mutant (M35-20). There were applied the same doses of gamma rays with the cultivar Capirona, there is much radiosensitivity at high doses, they were selected two early mutants (MC 35-21 and MC 35-123-3) with an early life cycle days (15 days) than parental cultivar. Two mutants tolerant to salinity (12 dSm). Six mutants are still under evaluation, two of them (MC 25-23-1 and MC 35-45-4) have better yields with performances of 9.1 t ha -1 versus 6.6 t ha -1 . These mutants show lodging and shattering resistance. (Author)

  15. Physiochemical properties and cooking quality of long and short rice (Oryza sativa) grains

    International Nuclear Information System (INIS)

    Elbashir, L. T. M.

    2005-01-01

    Five rice grain samples namely long (American (Parboiled rice), A; Pakistan, P and Thailand, T) and short (Egyptian, E and Sudanese, S) types were investigated for their physicochemical and cooking quality characteristics. Investigations showed that rice grain of the two types had a length of 6.73 mm (A), 7.49 mm (P), 7.05 mm (T), 5.46 mm (E) and 5.64 mm (S); width of 2.08 mm (A), 1.73 mm (P), 2.06 mm (T), 2.66 mm (E) and 2.73 mm (S); thickness of 1.59 mm (A), 1.50 mm (P), 1.67 mm (T), 1.93 mm (E) and 1.83 mm (S) and length/width (L/w) ratio 3.24 (A), 4.35(P), 3.43 (T), 2.06 (E) and 2.07 (S). The L/W ratios obtained were used for determination of grain shapes. The shapes determined were slender for the long type samples and bold for the short type samples. Density values were 1.43 g/ml (A), 1.48 g/ml (P), 1.45 g/ml (T), 1.46 g/ml (E) and 1.46 g/ml (S). Paste viscosity increased from out of scale (A), 12 cm (P), 11.5 cm (T), 5.50 cm (S) to 4.50 cm (E).1000 kernel weight values were 16.67 g (A), 14.53 g (P), 18.89 g (T), 18.47 g (E) and 18.32 (S). Broken ratios obtained were 3.62 (A), 0.31 (P), 1.58 (T), 6.39 (E) and 6.54 (S). Also investigations showed that rice grains contained 8.6%-10.9% moisture, 0.3%-0.6%, ash, 0.22-0.48% fiber, 6.2%- 8.0% protein, and 0.5%-1.0 % oil. Cooking reduced the starch percentages from 59.82%-64.27% to the range of 43.97%-55.47% for both types. For all types of rice amylose seems to be lower (24.00%-31.50%) than amylopectin (31.66%-39.57%). Cooking reduced both amylose (13.83%-18.67%) and amylopectin (26.30%-34.32%) content, however, it increased the amylopectin content (39.64%) of the Sudanese, S sample. Alkali spreading values were 3 (A), 1-2 (P), 1-2 (T), 6-7(E) and 6-7 for (S) and their gelatinization temperature (G T) was classified as high - intermediate (70-74 C degree) for A, high G T (75-79 C degree) for P and T, while E and S were classified as having low G T (55-69 C degree). Gel consistency (GC) values were 86.00 mm, 41

  16. Physiochemical properties and cooking quality of long and short rice (Oryza sativa) grains

    Energy Technology Data Exchange (ETDEWEB)

    Elbashir, L T. M. [Department of Food Science and Technology, Faculty of Agriculture, University of Khartoum, Khartoum (Sudan)

    2005-01-01

    Five rice grain samples namely long (American (Parboiled rice), A; Pakistan, P and Thailand, T) and short (Egyptian, E and Sudanese, S) types were investigated for their physicochemical and cooking quality characteristics. Investigations showed that rice grain of the two types had a length of 6.73 mm (A), 7.49 mm (P), 7.05 mm (T), 5.46 mm (E) and 5.64 mm (S); width of 2.08 mm (A), 1.73 mm (P), 2.06 mm (T), 2.66 mm (E) and 2.73 mm (S); thickness of 1.59 mm (A), 1.50 mm (P), 1.67 mm (T), 1.93 mm (E) and 1.83 mm (S) and length/width (L/w) ratio 3.24 (A), 4.35(P), 3.43 (T), 2.06 (E) and 2.07 (S). The L/W ratios obtained were used for determination of grain shapes. The shapes determined were slender for the long type samples and bold for the short type samples. Density values were 1.43 g/ml (A), 1.48 g/ml (P), 1.45 g/ml (T), 1.46 g/ml (E) and 1.46 g/ml (S). Paste viscosity increased from out of scale (A), 12 cm (P), 11.5 cm (T), 5.50 cm (S) to 4.50 cm (E).1000 kernel weight values were 16.67 g (A), 14.53 g (P), 18.89 g (T), 18.47 g (E) and 18.32 (S). Broken ratios obtained were 3.62 (A), 0.31 (P), 1.58 (T), 6.39 (E) and 6.54 (S). Also investigations showed that rice grains contained 8.6%-10.9% moisture, 0.3%-0.6%, ash, 0.22-0.48% fiber, 6.2%- 8.0% protein, and 0.5%-1.0 % oil. Cooking reduced the starch percentages from 59.82%-64.27% to the range of 43.97%-55.47% for both types. For all types of rice amylose seems to be lower (24.00%-31.50%) than amylopectin (31.66%-39.57%). Cooking reduced both amylose (13.83%-18.67%) and amylopectin (26.30%-34.32%) content, however, it increased the amylopectin content (39.64%) of the Sudanese, S sample. Alkali spreading values were 3 (A), 1-2 (P), 1-2 (T), 6-7(E) and 6-7 for (S) and their gelatinization temperature (G T) was classified as high - intermediate (70-74 C degree) for A, high G T (75-79 C degree) for P and T, while E and S were classified as having low G T (55-69 C degree). Gel consistency (GC) values were 86.00 mm, 41

  17. Identification of Novel and Conserved miRNAs from Extreme Halophyte, Oryza coarctata, a Wild Relative of Rice.

    Science.gov (United States)

    Mondal, Tapan Kumar; Ganie, Showkat Ahmad; Debnath, Ananda Bhusan

    2015-01-01

    Oryza coarctata, a halophyte and wild relative of rice, is grown normally in saline water. MicroRNAs (miRNAs) are non-coding RNAs that play pivotal roles in every domain of life including stress response. There are very few reports on the discovery of salt-responsive miRNAs from halophytes. In this study, two small RNA libraries, one each from the control and salt-treated (450 mM NaCl for 24 h) leaves of O. coarctata were sequenced, which yielded 338 known and 95 novel miRNAs. Additionally, we used publicly available transcriptomics data of O. coarctata which led to the discovery of additional 48 conserved miRNAs along with their pre-miRNA sequences through in silico analysis. In total, 36 known and 7 novel miRNAs were up-regulated whereas, 12 known and 7 novel miRNAs were down-regulated under salinity stress. Further, 233 and 154 target genes were predicted for 48 known and 14 novel differentially regulated miRNAs respectively. These targets with the help of gene ontology analysis were found to be involved in several important biological processes that could be involved in salinity tolerance. Relative expression trends of majority of the miRNAs as detected by real time-PCR as well as predicted by Illumina sequencing were found to be coherent. Additionally, expression of most of the target genes was negatively correlated with their corresponding miRNAs. Thus, the present study provides an account of miRNA-target networking that is involved in salinity adaption of O. coarctata.

  18. Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.).

    Science.gov (United States)

    Ou, Xiufang; Zhang, Yunhong; Xu, Chunming; Lin, Xiuyun; Zang, Qi; Zhuang, Tingting; Jiang, Lili; von Wettstein, Diter; Liu, Bao

    2012-01-01

    DNA methylation is sensitive and responsive to stressful environmental conditions. Nonetheless, the extent to which condition-induced somatic methylation modifications can impose transgenerational effects remains to be fully understood. Even less is known about the biological relevance of the induced epigenetic changes for potentially altered well-being of the organismal progenies regarding adaptation to the specific condition their progenitors experienced. We analyzed DNA methylation pattern by gel-blotting at genomic loci representing transposable elements and protein-coding genes in leaf-tissue of heavy metal-treated rice (Oryza sativa) plants (S0), and its three successive organismal generations. We assessed expression of putative genes involved in establishing and/or maintaining DNA methylation patterns by reverse transcription (RT)-PCR. We measured growth of the stressed plants and their unstressed progenies vs. the control plants. We found (1) relative to control, DNA methylation patterns were modified in leaf-tissue of the immediately treated plants, and the modifications were exclusively confined to CHG hypomethylation; (2) the CHG-demethylated states were heritable via both maternal and paternal germline, albeit often accompanying further hypomethylation; (3) altered expression of genes encoding for DNA methyltransferases, DNA glycosylase and SWI/SNF chromatin remodeling factor (DDM1) were induced by the stress; (4) progenies of the stressed plants exhibited enhanced tolerance to the same stress their progenitor experienced, and this transgenerational inheritance of the effect of condition accompanying heritability of modified methylation patterns. Our findings suggest that stressful environmental condition can produce transgenerational epigenetic modifications. Progenies of stressed plants may develop enhanced adaptability to the condition, and this acquired trait is inheritable and accord with transmission of the epigenetic modifications. We suggest

  19. The variety mixture strategy assessed in a G × G experiment with rice and the blast fungus Magnaporthe oryzae.

    Science.gov (United States)

    Gallet, Romain; Bonnot, François; Milazzo, Joëlle; Tertois, Christophe; Adreit, Henri; Ravigné, Virginie; Tharreau, Didier; Fournier, Elisabeth

    2013-01-01

    Frequent and devastating epidemics of parasites are one of the major issues encountered by modern agriculture. To manage the impact of pathogens, resistant plant varieties have been selected. However, resistances are overcome by parasites requiring the use of pesticides and causing new economical and food safety issues. A promising strategy to maintain the epidemic at a low level and hamper pathogen's adaptation to varietal resistance is the use of mixtures of varieties such that the mix will form a heterogeneous environment for the parasite. A way to find the good combination of varieties that will actually constitute a heterogeneous environment for pathogens is to look for genotype × genotype (G × G) interactions between pathogens and plant varieties. A pattern in which pathogens have a high fitness on one variety and a poor fitness on other varieties guarantees the efficiency of the mixture strategy. In the present article, we inoculated 18 different genotypes of the fungus Magnaporthe oryzae on three rice plant varieties showing different levels of partial resistance in order to find a variety combination compatible with the requirements of the variety mixture strategy, i.e., showing appropriate G × G interactions. We estimated the success of each plant-fungus interaction by measuring fungal fitness and three fungal life history traits: infection success, within-host growth, sporulation capacity. Our results show the existence of G × G interactions between the two varieties Ariete and CO39 on all measured traits and fungal fitness. We also observed that these varieties have different resistance mechanisms; Ariete is good at controlling infection success of the parasite but is not able to control its growth when inside the leaf, while CO39 shows the opposite pattern. We also found that Maratelli's resistance has been eroded. Finally, correlation analyses demonstrated that not all infectious traits are positively correlated.

  20. The variety mixture strategy assessed in a GXG experiment with rice and the blast fungus Magnaporthe oryzae

    Directory of Open Access Journals (Sweden)

    Romain eGallet

    2014-01-01

    Full Text Available Frequent and devastating epidemics of parasites are one of the major issues encountered by modern agriculture. To manage the impact of pathogens, resistant plant varieties have been selected. However, resistances are overcome by parasites requiring the use of pesticides and causing new economical and food safety issues. A promising strategy to maintain the epidemic at a low level and hamper pathogen’s adaptation to varietal resistance is the use of mixtures of varieties such that the mix will form a heterogeneous environment for the parasite. A way to find the good combination of varieties that will actually constitute a heterogeneous environment for pathogens is to look for genotype x genotype (GxG interactions between pathogens and plant varieties. A pattern in which pathogens have a high fitness on one variety and a poor fitness on other varieties guarantees the efficiency of the mixture strategy.In the present article, we inoculated 18 different genotypes of the fungus Magnaporthe oryzae on three rice plant varieties showing different levels of partial resistance in order to find a variety combination compatible with the requirements of the variety mixture strategy, i.e. showing appropriate GxG interactions. We estimated the success of each plant-fungus interaction by measuring fungal fitness and three fungal life history traits: infection success, within-host growth, sporulation capacity. Our results show the existence of GxG interactions between the two varieties Ariete and CO39 on all measured traits and fungal fitness. We also observed that these varieties have different resistance mechanisms; Ariete is good at controlling infection success of the parasite but is not able to control its growth when inside the leaf, while CO39 show the opposite pattern. We also found that Maratelli’s resistance has been eroded. Finally, correlation analyses demonstrated that not all infectious traits are positively correlated.

  1. Effects of timing and severity of salinity stress on rice (Oryza sativa L.) yield, grain composition, and starch functionality.

    Science.gov (United States)

    Thitisaksakul, Maysaya; Tananuwong, Kanitha; Shoemaker, Charles F; Chun, Areum; Tanadul, Orn-u-ma; Labavitch, John M; Beckles, Diane M

    2015-03-04

    The aim of this work was to examine agronomic, compositional, and functional changes in rice (Oryza sativa L. cv. Nipponbare) grains from plants grown under low-to-moderate salinity stress in the greenhouse. Plants were grown in sodium chloride-containing soil (2 or 4 dS/m(2) electrical conductivity), which was imposed 4-weeks after transplant (called Seedling EC2 and EC4) or after the appearance of the anthers (called Anthesis EC2 and EC4). The former simulates field conditions while the latter permits observation of the isolated effect of salt on grain filling processes. Key findings of this study are the following: (i) Plants showed adaptive responses to prolonged salt treatment with no negative effects on grain weight or fertility. Seedling EC2 plants had more panicles and enhanced caryopsis dimensions, while surprisingly, Seedling EC4 plants did not differ from the control group in the agronomic parameters measured. (ii) Grain starch increased in Seedling EC4 (32.6%) and Anthesis EC2 (39%), respectively, suggesting a stimulatory effect of salt on starch accumulation. (iii) The salinity treatment of 2 dS/m(2) was better tolerated at anthesis than the 4 dS/m(2) treatment as the latter led to reduced grain weight (28.8%) and seed fertility (19.4%) and compensatory increases in protein (20.1%) and nitrogen (19.8%) contents. (iv) Although some salinity treatments led to changes in starch content, these did not alter starch fine structure, morphology, or composition. We observed no differences in reducing sugar and amylose content or starch granule size distribution among any of the treatments. The only alterations in starch were limited to small changes in thermal properties and glucan chain distribution, which were only seen in the Anthesis EC4 treatment. This similarity of compositional and functional features was supported by multivariate analysis of all variables measured, which suggested that differences due to treatments were minimal. Overall, this study

  2. microRNAs targeting DEAD-box helicases are involved in salinity stress response in rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Macovei Anca

    2012-10-01

    Full Text Available Abstract Background Rice (Oryza sativa L., one of the most important food crop in the world, is considered to be a salt-sensitive crop. Excess levels of salt adversely affect all the major metabolic activities, including cell wall damage, cytoplasmic lysis and genomic stability. In order to cope with salt stress, plants have evolved high degrees of developmental plasticity, including adaptation via cascades of molecular networks and changes in gene expression profiles. Posttranscriptional regulation, through the activity of microRNAs, also plays an important role in the plant response to salinity conditions. MicroRNAs are small endogenous RNAs that modulate gene expression and are involved in the most essential physiological processes, including plant development and adaptation to environmental changes. Results In the present study, we investigated the expression profiles of osa-MIR414, osa-MIR408 and osa-MIR164e along with their targeted genes, under salinity stress conditions in wild type and transgenic rice plants ectopically expressing the PDH45 (Pea DNA Helicase gene. The present miRNAs were predicted to target the OsABP (ATP-Binding Protein, OsDSHCT (DOB1/SK12/helY-like DEAD-box Helicase and OsDBH (DEAD-Box Helicase genes, included in the DEAD-box helicase family. An in silico characterization of the proteins was performed and the miRNAs predicted targets were validated by RLM-5′RACE. The qRT-PCR analysis showed that the OsABP, OsDBH and OsDSHCT genes were up-regulated in response to 100 and 200 mM NaCl treatments. The present study also highlighted an increased accumulation of the gene transcripts in wild type plants, with the exception of the OsABP mRNA which showed the highest level (15.1-fold change compared to control in the transgenic plants treated with 200 mM NaCl. Salinity treatments also affected the expression of osa-MIR414, osa-MIR164e and osa-MIR408, found to be significantly down-regulated, although the changes in mi

  3. Identification and utilization of cleistogamy gene cl7(t) in rice (Oryza sativa L.).

    Science.gov (United States)

    Ni, Da-Hu; Li, Juan; Duan, Yong-Bo; Yang, Ya-Chun; Wei, Peng-Cheng; Xu, Rong-Fang; Li, Chun-Rong; Liang, Dan-Dan; Li, Hao; Song, Feng-Shun; Ni, Jin-Long; Li, Li; Yang, Jian-Bo

    2014-05-01

    Gene transformation is an important method for improvement of plants into elite varieties. However, the possibility of gene flow between genetically modified (GM) crops and similar species is a serious public issue that may potentially endanger ecological stability. Cleistogamy is expected to be an ideal genetic tool for preventing transgene propagation from GM crops. A rice mutant, cl7(t), was created by ethyl methanesulfonate mutagenesis. The mutant exhibited cleistogamy, and had closed spikelets, reduced plant height, and altered morphology of the leaves, panicle, and seeds. Anatomical investigations revealed that the cl7(t) mutant contained more vascular bundles and thicker stems than the wild type, which increased the mechanical strength of its internodes, and anti-lodging ability. Further studies demonstrated that the force required to open the lemma and palea was higher in the cl7(t) mutant, and there was weak swelling ability in the lodicules, which leads to cleistogamy. Allelic analyses and complementation tests indicated that cl7(t) was a novel allele of dep2, a mutant that was previously reported to have similar panicle morphology. Sequence analysis showed that cl7(t) had a single nucleotide substitution (C to A) in the third exon that leads to a Ser substitution with a stop codon, giving a truncated DEP2 protein. Quantitative RT-PCR and in situ hybridization tests demonstrated that there was lower CL7(t) expression level in the spikelets and weaker CL7(t) signals in the lodicules of the cl7(t) mutant compared with wild type, which implies that CL7(t) might participate in the development of lodicules. To improve the agronomic traits of cl7(t) to fit the needs of field production, the cl7(t) mutant was crossed with an intermediate-type rice variety named Guanghui102, which bears some important agronomic traits, including increased grain numbers and high rate of seed setting. Through multi-generational pedigree selection, cleistogamy lines with improved

  4. Protocol for in vitro somatic embryogenesis and regeneration of rice (Oryza sativa L.).

    Science.gov (United States)

    Verma, Dipti; Joshi, Rohit; Shukla, Alok; Kumar, Pramod

    2011-12-01

    Development of highly efficient and reproducible plant regeneration system has tremendous potential to provide improved technology to assist in genetic transformation of indica rice cultivars for their further exploitation in selection. For the development of a highly reproducible regeneration system through somatic embryogenesis, mature embryos of highly popular rice cultivars i.e., Govind (for rainfed areas), Pusa Basmati-1 (aromatic basmati) and Jaya (for irrigated areas) were used. Optimum callus formation (%) to MS medium supplemented with 2, 4-D was obtained at 12.0 microM in Govind, 14.0 microM in Jaya and 15.0 microM in Pusa Basmati-1. All the cultivars showed good proliferation on MS medium without hormone. In Govind, highest embryogenic response was observed in MS medium supplemented with 2, 4-D (0.4 microM) + kinetin (0.4 microM), while in Pusa Basmati-1 with 2, 4-D (0.4 microM) + kinetin (2.0 microM) and in Jaya on hormone-free MS medium. Excellent embryo regeneration in Govind was observed on MS medium supplemented with low concentrations (1.1 microM) of BAP or hormone-free MS medium, while in Pusa Basmati-1 and Jaya embryogenesis was observed on MS medium supplemented with higher concentration of BAP (2.2 microM). Similarly, maximum plantlets with proliferated roots were observed in Govind on hormone-free MS medium, while in Pusa Basmati-1 and Jaya on MS medium supplemented with high concentration of NAA (4.0 microM). Developed plantlets were further successfully acclimatized and grown under pot culture up to maturity. Further the yield potential of in vitro developed plants was accessed at par to the direct seeded one under pot culture. Present, protocol standardizes somatic embryogenesis and efficient regeneration of agronomically important, high yielding and diverse indica rice cultivars which can be utilized as an efficient tool for molecular studies and genetic transformation in future.

  5. Biogenic synthesis, characterization of silver nanoparticles using multani mitti (fullers earth), tomato (solanum lycopersicum) seeds, rice husk (oryza sativa) and evaluation of their potential antimicrobial activity

    International Nuclear Information System (INIS)

    Dar, P.; Hina, A.; Anwar, J.

    2016-01-01

    The synthesis of silver nanoparticles of three different biogenic materials Multani mitti (Fullers earth), Tomato (Solanum lycopersicum) seeds, Rice Husk (Oryza sativa) was carried out. The possible presence and variability of comprehensive biomolecules in these materials turned as capping and reducing agents which optimize the reduction rate and stabilization of silver nanoparticles. Characterizations were determined by using ultraviolet-visible (UV-Vis) spectroscopy, Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Stable silver nanoparticles of average size 4.6, 41.1 and 10.6 nm were obtained for Multani mitti, tomato seeds and rice husk respectively. Phenolic and carboxylic biomolecules were identified as active reducing agents of Ag+2 to Ag0. The antimicrobial activity was carried out against Klebsiella pneumonia, Salmonella enterica, Escherichia coli and Staphylococcus aureus strains by using well diffusion method. Maximum zone of inhibition (ZOI) was found against Staphylococcus aureus by all of the three biogenic materials. (author)

  6. Extraction And Stability Of Natural Colorant From Red Glutinous Rice Bran (Oryza Sativa Glutinosa

    Directory of Open Access Journals (Sweden)

    Tirza Hanum

    2001-04-01

    Full Text Available Three extraction methods were studied to isolate natural colorant from red glutinous rice bran. Stability of extracts in relation to processing conditions and in the model beverages was determined at room temperature. Identifications of anthocyanidins was performed using reversed phase HPLC. Extraction method using acidified methanol solvent showed the highest yield (260,24+28,64 mg/100g. HPLC patern indicated the presence of six major anthocyanidins, two of them were identified as apigenidin and apigenin. Stability of anthocyanin colorant was higher in a lower acid condition and was reduced to the lowest value of 49,4, 65,4, 40,8 and 36,6% by high temperature, UV light, sunlight, and the presence of oxidator agent. respectively. Retention of antocyanin in tanin and ascorbic acid added into the model beverages was lower than in protein containing beverage or control.

  7. Mutagenic effects of β-rays on rice (oryza sativa L.)

    International Nuclear Information System (INIS)

    Wang Cailian; Chen Qiufang; Shen Mei; Xu Gang

    1994-07-01

    The mutagenic effects of 14 C and some other mutagenic factors were compared, and the relationships between mutagenic effects of 14 C and treated stages, doses and methods were studied with different rice varieties as test materials. The mutation rates of heading date and plant height were observed in M 2 . The results showed that the mutagenic effects of 14 C were better than those of other mutagenic factors tested. It is most effective for inducing early-maturing mutation to treat plants with the doses of 333 x 10 4 Bq/plant at the stage of pollen mother cell formation; but for dwarf mutation , they were treated with 74 x 10 4 Bq/plant at the stage of pistil and stamen formation to pollen mother cell formation. As a best treating method, Na 2 14 CO 3 solution was injected to plant bases

  8. Identification of dominant male sterile mutants in rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Zhu Xudong; Rutger, J.N.

    2000-01-01

    Genetic male sterile mutants 1783 and 1789 were selected from US variety Orion and Kaybonnet seeds treated by gamma irradiation. Investigation of fertility characterization of pollen and spikelets of these mutants were made by progeny tests in 1783 M 7 and 1789 M 6 generations. The results showed that genetic male sterile mutants 1783 and 1789 with the fertility segregating of 1 sterile: 1 fertile were controlled by a single dominant gene. The pollen staining of mutants characterized partial sterility. Open-pollinated seed set was about 30% and bagged seed set was only 0.3%-3.5%. It is concluded that dominant genetic male sterile is a useful tool in improvement of population for rice breeding

  9. Non-linked inhibitory gene controls a disease mimicking mutant in rice [Oryza sativa L.

    International Nuclear Information System (INIS)

    Jambhulkar, S.J.; Joshua, D.C.; Goswamy, D.G.

    2001-01-01

    A gamma ray induced disease mimicking mutant called luchai lesion was isolated in the rice variety White Luchai 112. The appearance of small light red lesions and their development continued from seedling to flowering. The lesions appeared gradually on older leaves and their uncontrolled spread eventually lead to leaf senescence. They resembled the disease spots caused by Magnaporthe grisea. However, pathological studies ruled out the possibility of pathogen mediated disease symptoms. Genetic studies revealed that lesions were governed by a dominant gene; however, their expression was suppressed in presence of a non-linked inhibitory gene. It is hypothesised that the plant cells of the mutant are able to sense inbuilt spontaneous signals leading to lesion development, but in presence of an inhibitory gene the signals are suppressed by perturbation in the signal transduction pathway [it

  10. Silicon treatment to rice (oryza sativa l. cv 'gopumbyeo') plants during different growth periods and its effects on growth and grain yield

    International Nuclear Information System (INIS)

    Kim, Y.H.; Waqas, M.; Kamran, M.

    2012-01-01

    Silicon (Si) has been considered a beneficial element for plant growth. We have assessed the effects of Si application on rice (Oryza sativa L.) growth and its grain yield at field level. For this, we performed two experiments. In experiment 1, we applied Si of three different concentrations (liquid Si-10, 25 and 36%) to the seedbed of rice before transplantation into paddy field. The results of this experiment showed that Si application to rice seedbeds did not affected the rice plant height and shoot fresh weight but its application significantly increased the pushing resistance of rice plants from 12.2-16.7% as compared with water applied control plants. The lodging index of Si treated rice plants significantly decreased (13.7% on LS-25) as compared with control. Similarly, Si treated plants had significantly higher yield. Upon Si treatment (LS-36), the grain yield per 10 acre and panicles per plant were 15.1% and 6. 3% higher than the water treated control plants respectively. The best concentration (LS-36%) revealed in the first experiment was foliar applied at 10 days before heading stage, initial tilling stage and panicle initiation stage to the rice leaves and we observed that shoot biomass was not significantly different between control and Si treated plants. However, significantly higher pushing resistance (10.5%-13.8%) and plant height (12.2%-16.7%) were observed while lower lodging index (7.6-7.8%) was recorded for Si treated plants as compared to control plants. Similarly, Si application increased the number of panicles per plant as well as the grain yield per 10 acre as compared to control. In conclusion, the Si application can significantly regulate plant growth and yield if applied at proper time with feasible concentration. (author)

  11. Breeding for blast-disease-resistant and high-yield Thai jasmine rice (Oryza sativa L. cv. KDML 105) mutants using low-energy ion beams

    International Nuclear Information System (INIS)

    Mahadtanapuk, S.; Teraarusiri, W.; Phanchaisri, B.; Yu, L.D.; Anuntalabhochai, S.

    2013-01-01

    Highlights: •N-ion beam bombarded Thai jasmine rice seeds to induce mutation. •Mutants with blast-disease resistance and high yield were screened. •Gene involved in the blast-disease resistance was analyzed. •The gene responsible for the resistance was linked to Spotted leaf protein 11. -- Abstract: Low-energy ion beam was applied on mutation induction for plant breeding of blast-disease-resistant Thai jasmine rice (Oryza sativa L. cv. KDML 105). Seeds of the wild-type rice were bombarded in vacuum by nitrogen ion beam at energy of 60–80 keV to a beam fluence range of 2 × 10 16 –2 × 10 17 ions/cm 2 . The ion-bombarded rice seeds were grown in soil for 2 weeks as transplanted rice in plastic pots at 1 seedling/pot. The seedlings were then screened for blast resistance by Pyricularia grisea inoculation with 10 6 spores/ml concentrations. The blast-resistant rice mutant was planted up to F6 generation with the consistent phenotypic variation. The high percentage of the blast-disease-resistant rice was analyzed with DNA fingerprint. The HAT-RAPD (high annealing temperature-random amplified polymorphic DNA) marker revealed the modified polymorphism fragment presenting in the mutant compared with wild type (KDML 105). The cDNA fingerprints were investigated and the polymorphism fragment was subcloned into pGEM-T easy vector and then sequenced. The sequence of this fragment was compared with those already contained in the database, and the fragment was found to be related to the Spotted leaf protein 11 (Spl11)

  12. Breeding for blast-disease-resistant and high-yield Thai jasmine rice (Oryza sativa L. cv. KDML 105) mutants using low-energy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Mahadtanapuk, S. [School of Agriculture and Natural Resources, University of Phayao, Phayao 56000 (Thailand); Teraarusiri, W. [Central Laboratory, University of Phayao, Phayao 56000 (Thailand); Phanchaisri, B. [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@frnf.science.cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Anuntalabhochai, S., E-mail: burinka@hotmail.com [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-07-15

    Highlights: •N-ion beam bombarded Thai jasmine rice seeds to induce mutation. •Mutants with blast-disease resistance and high yield were screened. •Gene involved in the blast-disease resistance was analyzed. •The gene responsible for the resistance was linked to Spotted leaf protein 11. -- Abstract: Low-energy ion beam was applied on mutation induction for plant breeding of blast-disease-resistant Thai jasmine rice (Oryza sativa L. cv. KDML 105). Seeds of the wild-type rice were bombarded in vacuum by nitrogen ion beam at energy of 60–80 keV to a beam fluence range of 2 × 10{sup 16}–2 × 10{sup 17} ions/cm{sup 2}. The ion-bombarded rice seeds were grown in soil for 2 weeks as transplanted rice in plastic pots at 1 seedling/pot. The seedlings were then screened for blast resistance by Pyricularia grisea inoculation with 10{sup 6} spores/ml concentrations. The blast-resistant rice mutant was planted up to F6 generation with the consistent phenotypic variation. The high percentage of the blast-disease-resistant rice was analyzed with DNA fingerprint. The HAT-RAPD (high annealing temperature-random amplified polymorphic DNA) marker revealed the modified polymorphism fragment presenting in the mutant compared with wild type (KDML 105). The cDNA fingerprints were investigated and the polymorphism fragment was subcloned into pGEM-T easy vector and then sequenced. The sequence of this fragment was compared with those already contained in the database, and the fragment was found to be related to the Spotted leaf protein 11 (Spl11)

  13. Diazotrophic bacteria isolated from wild rice Oryza glumaepatula (Poaceae in the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Paulo Ivan Fernandes Júnior

    2013-06-01

    Full Text Available The association of wild grasses with diazotrophic bacteria in Brazilian biomes is poorly understood. The isolation and characterization of bacteria associated with wild grasses can contribute to understand the diazotrophic ecology as well as to identify bacteria with biotechnological applications. In this study, we isolated and characterized diazotrophic bacterial isolates from Oryza glumaepatula collected in Cerrado and Forest areas of the Amazon in Roraima State, Brazil. Healthy O. glumepatula plants were collected at five sampling sites at Forest and seven at Cerrado, respectively. The plants were collected at the Cerrado areas in September 2008 while the Forest plants were collected in June/2008 and April/2009. The plants and the soil adhering to the roots were transferred to pots and grown for 35 days in greenhouse conditions. During the harvest, the shoots and the roots were crushed separately in a saline solution; the suspension was diluted serially and inoculated in Petri dishes containing Dyg’s medium. All distinct bacterial colonies were purified in the same medium. The diazotrophic capacity of each bacterium in microaerophilic conditions was assessed in semisolid BMGM medium. In addition, the pellicles forming bacterial isolates were also evaluated by PCR amplification for nifH gene. The diversity of nifH+ bacteria was analyzed by Box-PCR fingerprinting. For selected strains, the growth promoting capacity of O. sativa as a model plant was also evaluated. A total of 992 bacterial isolates were obtained. Fifty- one bacteria were able to form pellicles in the semisolid medium and 38 also positively amplified the 360bp nifH gene fragment. Among the 38 nifH+ isolates, 24 were obtained from the shoots, while 14 originated from the roots. The Box-PCR profiles showed that the bacterial isolates obtained in this study presented a low similarity with the reference strains belonging to the Herbaspirillum, Azospirillum and Burkholderia genus

  14. Diazotrophic bacteria isolated from wild rice Oryza glumaepatula (Poaceae) in the Brazilian Amazon.

    Science.gov (United States)

    Júnior, Paulo Ivan Fernandes; Pereira, Gilmara Maria Duarte; Perin, Liamara; da Silva, Luana Mesquita; Baraúna, Alexandre Cardoso; Alvess, Francilene Muniz; Passos, Samuel Ribeiro; Zilli, Jerri Edson

    2013-06-01

    The association of wild grasses with diazotrophic bacteria in Brazilian biomes is poorly understood. The isolation and characterization of bacteria associated with wild grasses can contribute to understand the diazotrophic ecology as well as to identify bacteria with biotechnological applications. In this study, we isolated and characterized diazotrophic bacterial isolates from Oryza glumaepatula collected in Cerrado and Forest areas of the Amazon in Roraima State, Brazil. Healthy O. glumepatula plants were collected at five sampling sites at Forest and seven at Cerrado, respectively. The plants were collected at the Cerrado areas in September 2008 while the Forest plants were collected in June/2008 and April/2009. The plants and the soil adhering to the roots were transferred to pots and grown for 35 days in greenhouse conditions. During the harvest, the shoots and the roots were crushed separately in a saline solution; the suspension was diluted serially and inoculated in Petri dishes containing Dyg's medium. All distinct bacterial colonies were purified in the same medium. The diazotrophic capacity of each bacterium in microaerophilic conditions was assessed in semisolid BMGM medium. In addition, the pellicles forming bacterial isolates were also evaluated by PCR amplification for nifH gene. The diversity of nifH bacteria was analyzed by Box-PCR fingerprinting. For selected strains, the growth promoting capacity of O. sativa as a model plant was also evaluated. A total of 992 bacterial isolates were obtained. Fifty-one bacteria were able to form pellicles in the semisolid medium and 38 also positively amplified the 360 bp nifH gene fragment. Among the 38 nifH+ isolates, 24 were obtained from the shoots, while 14 originated from the roots. The Box-PCR profiles showed that the bacterial isolates obtained in this study presented a low similarity with the reference strains belonging to the Herbaspirillum, Azospirillum and Burkholderia genus. The growth

  15. Using the concept of pseudo amino acid composition to predict resistance gene against Xanthomonas oryzae pv. oryzae in rice: an approach from chaos games representation.

    Science.gov (United States)

    Jingbo, Xia; Silan, Zhang; Feng, Shi; Huijuan, Xiong; Xuehai, Hu; Xiaohui, Niu; Zhi, Li

    2011-09-07

    To evaluate the possibility of an unknown protein to be a resistant gene against Xanthomonas oryzae pv. oryzae, a different mode of pseudo amino acid composition (PseAAC) is proposed to formulate the protein samples by integrating the amino acid composition, as well as the Chaos games representation (CGR) method. Some numerical comparisons of triangle, quadrangle and 12-vertex polygon CGR are carried to evaluate the efficiency of using these fractal figures in classifiers. The numerical results show that among the three polygon methods, triangle method owns a good fractal visualization and performs the best in the classifier construction. By using triangle + 12-vertex polygon CGR as the mathematical feature, the classifier achieves 98.13% in Jackknife test and MCC achieves 0.8462. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Identification of Cell Wall Synthesis Regulatory Genes Controlling Biomass Characteristics and Yield in Rice (Oryza Sativa)

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Zhaohua PEng [Mississippi State University; Ronald, Palmela [UC-Davis; Wang, Guo-Liang [The Ohio State University

    2013-04-26

    This project aims to identify the regulatory genes of rice cell wall synthesis pathways using a cell wall removal and regeneration system. We completed the gene expression profiling studies following the time course from cell wall removal to cell wall regeneration in rice suspension cells. We also completed, total proteome, nuclear subproteome and histone modification studies following the course from cell wall removal and cell wall regeneration process. A large number of differentially expressed regulatory genes and proteins were identified. Meanwhile, we generated RNAi and over-expression transgenic rice for 45 genes with at least 10 independent transgenic lines for each gene. In addition, we ordered T-DNA and transposon insertion mutants for 60 genes from Korea, Japan, and France and characterized the mutants. Overall, we have mutants and transgenic lines for over 90 genes, exceeded our proposed goal of generating mutants for 50 genes. Interesting Discoveries a) Cell wall re-synthesis in protoplasts may involve a novel cell wall synthesis mechanism. The synthesis of the primary cell wall is initiated in late cytokinesis with further modification during cell expansion. Phragmoplast plays an essential role in cell wall synthesis. It services as a scaffold for building the cell plate and formation of a new cell wall. Only one phragmoplast and one new cell wall is produced for each dividing cell. When the cell wall was removed enzymatically, we found that cell wall re-synthesis started from multiple locations simultaneously, suggesting that a novel mechanism is involved in cell wall re-synthesis. This observation raised many interesting questions, such as how the starting sites of cell wall synthesis are determined, whether phragmoplast and cell plate like structures are involved in cell wall re-synthesis, and more importantly whether the same set of enzymes and apparatus are used in cell wall re-synthesis as during cytokinesis. Given that many known cell wall

  17. Selection of rice mutants Oryza Sativa L. with tolerance to saline grounds

    International Nuclear Information System (INIS)

    Hernandez Aguero, L.A.

    2001-01-01

    A selection of rice mutants with tolerance to salinity, took place in the Escuela de Ciencias Agrarias de la Universidad Nacional de Heredia, in conditions of hothouse starting from a population of M2 segregative seed, coming from commercial seed radiated with Co 60 gamma rays. The studied segregatives were: Setesa-9, Experimental II and Experimental I. For making this selection, the seed M2 was planted in plastic trays with saline soil with electrical conductivity values from 8 to 10 mmhos/cm. In each case, non-radiated original seed was used as control. After 22 days the seedling germinated, an evaluation was made and it was seen that any of the controls had resisted to the saline stress, and only those segregatives resistent to salinity survived. These were the next ones: 9 individuals of Setesa, 10 of the Experimental II, and 9 of Experimental I. The index of selection obtained was: 3.6, 4.0 y 3.6 respectively. In a second phase of the experiment, the seedling selected as salinity resistant, were taken to the ground were they were developed for getting the M3 mutant seed tolerant to salinity. The plants were individually harvested in the ground and each one had a specific identification. Then, weight and number data, fertile grain and ineffectives of the M3 seed were taken. After, for corroborating the capacity of tolerance to salinity, M3 seed was planted in flowerpots with saline soil with a value of electrical conductivity between 8 and 10 mmhos/cm. After data were analyzed, it was proved that some rice mutants had a profit of even 28 grams for 1000 grams as: ExpI-17, ExpI-15, ExpI-08, ExpII-22, ExpII-08, ExpII-30 and Se-9-14, Se-9-39 and Se-9-10. Therefore, the methodology utilized showed being effective and efficient for the objectives of the work [es

  18. A resistance locus in the American heirloom rice variety Carolina Gold Select is triggered by TAL effectors with diverse predicted targets and is effective against African strains of Xanthomonas oryzae pv. oryzicola.

    Science.gov (United States)

    Triplett, Lindsay R; Cohen, Stephen P; Heffelfinger, Christopher; Schmidt, Clarice L; Huerta, Alejandra I; Tekete, Cheick; Verdier, Valerie; Bogdanove, Adam J; Leach, Jan E

    2016-09-01

    The rice pathogens Xanthomonas oryzae pathovar (pv.) oryzae and pv. oryzicola produce numerous transcription activator-like (TAL) effectors that increase bacterial virulence by activating expression of host susceptibility genes. Rice resistance mechanisms against TAL effectors include polymorphisms that prevent effector binding to susceptibility gene promoters, or that allow effector activation of resistance genes. This study identifies, in the heirloom variety Carolina Gold Select, a third mechanism of rice resistance involving TAL effectors. This resistance manifests through strong suppression of disease development in response to diverse TAL effectors from both X. oryzae pathovars. The resistance can be triggered by an effector with only 3.5 central repeats, is independent of the composition of the repeat variable di-residues that determine TAL effector binding specificity, and is independent of the transcriptional activation domain. We determined that the resistance is conferred by a single dominant locus, designated Xo1, that maps to a 1.09 Mbp fragment on chromosome 4. The Xo1 interval also confers complete resistance to the strains in the African clade of X. oryzae pv. oryzicola, representing the first dominant resistance locus against bacterial leaf streak in rice. The strong phenotypic similarity between the TAL effector-triggered resistance conferred by Xo1 and that conferred by the tomato resistance gene Bs4 suggests that monocots and dicots share an ancient or convergently evolved mechanism to recognize analogous TAL effector epitopes. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  19. Transformation of haploid, microspore-derived cell suspension protoplasts of rice (Oryza sativa L.).

    Science.gov (United States)

    Chaïr, H; Legavre, T; Guiderdoni, E

    1996-06-01

    We compared the transient activity of three cereal gene-derived promoter-gus fusions and the efficiency of selection mediated by three different selectable genes in a polyethylene glycol transformation system with haploid cell suspension protoplasts of rice. The maize ubiquitin promoter was found to be the most active in transformed protoplasts, and selection on ammonium glufosinate mediated by the bar gene was the most efficient for producing resistant calluses. Cotransformation of protoplasts with two separate plasmids carrying the gus and the bar genes, at either a 2∶1 or 1∶1 ratio, led to 0.8 × 10(-5) and 1.6 × 10(-5) resistant callus recovery frequencies and 59.7 and 37.9 cotransformation efficiencies respectively. No escapes were detected in dot blot analyses of 100 resistant calluses with a probe consisting of the bar coding region. Cotransformation efficiency, based on resistance to basta and β-glucuronidase staining of the leaf tissue of 115 regenerated plants, was 47%. Resistance tests and Southern analysis of seed progenies of three diploid transgenic plants demonstrated homozygous integration of multiple copies of the transgene at one locus at least in the first plant, heterozygous integration at one locus in the second plant and heterozygous integration at two loci in the third plant.

  20. Radiation effect in another culture rice (Oryza Sativa L.) variety Krispo-38

    International Nuclear Information System (INIS)

    Montepeque, R.; Molina, L.G.; Lopez, J.J.; Pazos, W.; Ramirez, J.

    1993-01-01

    Seeds of the rice variety Krispo-38 were irradiated with 0, 100, 200, 300 and 400 Gray (Gy) and sown in the greenhouse. From each treatment, others containing uninucleate pollen grains were collected and cultured on a N6 agar medium with 5% sucrose concentration and supplemented with mg/l naphthalene acetic acid (NAA), 1 mg/l kinetin and 1 mg/l 2,4 dichlorophenoxyacetic acid (2,4-D). The pollen grains were induced to develop callus. The percentage of others that produced calli varied from 0.8 for the 400-Gy treatment to 3.3% for the control. The calli were transferred to N6 medium with 3% sucrose concentration, supplemented with 0.5 mg/l NAA and 1 mg/l kinetin. The percentage of calli that produced green plants varied from 1.9 for the 300-Gy treatment to 10.5 for the 200 Gy treatment. Plants developed in 2-5 weeks after callus transplant. A total of 101 green plants was obtained

  1. [Inheritance of bc1 gene in intersubspecific hybrids of rice (Oryza sativa L.)].

    Science.gov (United States)

    Lü, Chuan-Gen; Zong, Shou-Yu; Zhao, Ling; Qi, Qing-Ming; Zou, Jiang-Shi; Ikehashi, Hiroshi

    2004-10-01

    Distorted segregation of the brittle culm-1 gene (bc1) on rice chromosome 3 was found with greatly increased or decreased frequency of bc1 bc1 genotype in inter-subspecific hybrids, although the gene normally transmitted to its offspring following the Mendelian Law in intra-subspecific hybrids. In a combination of Kamairazu//Ketan Nangka/Kamairazu,an increased frequency of bc1 bc1 in F1, normal segregation in F2, and increased and decreased frequency in a few F3 and F4 lines were observed. In a cross of IR36/Kamairazu, decreased frequency in F2, both normal and decreased segregations in F3 and F4, and a few lines of increased ratio in F4 were found. In F2 of Ketan Nangka/IR36//Kamairazu, increased and decreased and normal segregations were all observed. There was no significant correlation between the frequency of bc1 bc1 and pollen fertility. It implied that distorted segregation of bc1 was caused by selective fertilization of male gametes, which were governed by gametophyte genes of ga2, ga3 and ga14 on chromosome 3.

  2. Behavior of Foliares Applications of Humus Mixed with the NPK in Rice Cultivation (Oryza Sativa L..

    Directory of Open Access Journals (Sweden)

    Rolando Saborit Reyes

    2013-12-01

    Full Text Available Taking into consideration the observation of one green yellowsh clorosis in the plantations of rice, after the cold campaings and the disminishing of the agricultural efficiency of the cerial in areas of Saint Elena Land belonging to the fortified cooperatove of credits and service (FCCS Camilo Cienfuegos in Las Nuevas, La Sierpe, Province of Sancti – Spiritus, were done foliars aplications with mineral fertilizing as, N.P.K to different doses and moments of applications, in order to obtain alternative of nutrition for the cultivation, the work was done on a green yellowish ferralitic ground since 2009 to 2011, using LP-5 cultivation doing the sowing by the method of transplantation, fertilization. It was done mixing 49L. ha-¹ of liquid warm humus with 0.35 Kg. ha-¹ of nitrogen, phosphorus and potassium. The results shown that the use of the foliar fertilization with liquid worm humus mixed with the N.P.K minerals, increased the efficiency, obtaining 5.3t. ha-¹ as an average in different variants used. The economic analysis showed that the treatment with 40% of nitrogen was reduced with seven foliars applications, it was highest to the witness N.P.K in 1.5t . ha-¹ of the grain obtaining a relative benefit of 4264.55 pesos by hectarea.

  3. Response of plasma membrane H+-ATPase in rice (Oryza sativa) seedlings to simulated acid rain.

    Science.gov (United States)

    Liang, Chanjuan; Ge, Yuqing; Su, Lei; Bu, Jinjin

    2015-01-01

    Understanding the adaptation of plants to acid rain is important to find feasible approaches to alleviate such damage to plants. We studied effects of acid rain on plasma membrane H(+)-ATPase activity and transcription, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate during stress and recovery periods. Simulated acid rain at pH 5.5 did not affect plasma membrane H(+)-ATPase activity, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate. Plasma membrane H(+)-ATPase activity and transcription in leaves treated with acid rain at pH 3.5 was increased to maintain ion homeostasis by transporting excessive H(+) out of cells. Then intracellular H(+) was close to the control after a 5-day recovery, alleviating damage on membrane and sustaining photosynthetic efficiency and growth. Simulated acid rain at pH 2.5 inhibited plasma membrane H(+)-ATPase activity by decreasing the expression of H(+)-ATPase at transcription level, resulting in membrane damage and abnormal intracellular H(+), and reduction in photosynthetic efficiency and relative growth rate. After a 5-day recovery, all parameters in leaves treated with pH 2.5 acid rain show alleviated damage, implying that the increased plasma membrane H(+)-ATPase activity and its high expression were involved in repairing process in acid rain-stressed plants. Our study suggests that plasma membrane H(+)-ATPase can play a role in adaptation to acid rain for rice seedlings.

  4. Primary study on lesion mimic mutants of rice (oryza sativa L.)

    International Nuclear Information System (INIS)

    Hao Zhongna; Zhang Hongzhi; Tao Rongixang

    2007-01-01

    Nineteen lesion mimic mutants (xsl1-19) of japonica rice Xiushui11 were obtained by γ-rays irradiation treatment. All mutants belonged to whole life lesion mimic. Lesion mimic of mutants didn't largen after tillering stage, leaves didn't wither, and no effect on the plants exsert spikes and seed. When the highest temperature in day exceeded 32 degree C in seedling stage, lesion mimic of all mutant expect xsl19 disappeared. Under 32 degree C, lesion mimic would appear gradually, and symptoms weren't inhibited by high temperature after 5 leaf stage. The plant heights of all lesion mimic mutants were 47.56-63.54 cm in the tillering stage, and that of CK was 83.75 cm; but the dwarf phenomenon of mutants only appeared before tillering stage, and didn't affect plant heights finally; the heading dates of mutants were the same to the CK, the ear length of all mutants were 9.43-15.19 cm, and that of CK was 16.41 cm; the total grain quantity per spike of all mutants were 88.17-165.33, and those of xsl19 and CK were 49.50 and 76.17. The results showed all lesion mimic mutants except xsl19 had short spikes and total grain quantity per spike increasing. All lesion mimic mutants were susceptible to Magnaporthe grisea, and they had no relationship with resistance. (authors)

  5. The adaptability of upland rice waxy mutant (Oryza sativa L.) to marginal land in Batumarta

    International Nuclear Information System (INIS)

    Dwimahyani, Ita; Mitrosuhardjo, M.M.

    1998-01-01

    A field experiment had been conducted at Batumarta, Lampung Province to test the adaptability of upland rice waxy mutant (DT 20.11.84) at marginal land. Similar experiments had also been conducted in fertilize soil at Ps. Jumat, Jakarta and Citayam, Kabupaten Bogor. Agronomic evaluation such as number of tiller, panicle length number of seeds per tiller, and weight of 1000 grains from waxy mutant line, which were cultivated at Batumarta showed adaptability was better than the original variety (Danau Tempe). Grains yield of waxy mutant line per ha at marginal land (Batubara) was higher than Danau Tempe i.e 2,34 and 1,89 ton/ha respectively. In addition to grain yield of waxy mutant line at Psr Jumat, Jakarta and Citayam, Bogor was lower than Danau Tempe. The Low of grain yield that waxy mutant compared with the original variety line was caused by number of tiller and panicle length of waxy mutant line also low. Results of experiment can be concluded that waxy mutant line was favourable growing at marginal land when compared with the original variety. (author)

  6. Characterization of four RecQ homologues from rice (Oryza sativa L. cv. Nipponbare)

    International Nuclear Information System (INIS)

    Saotome, Ai; Kimura, Seisuke; Mori, Yoko; Uchiyama, Yukinobu; Morohashi, Kengo; Sakaguchi, Kengo

    2006-01-01

    The RecQ family of DNA helicases is conserved throughout the biological kingdoms. In this report, we have characterized four RecQ homologues clearly expressed in rice. OsRecQ1, OsRecQ886, and OsRecQsim expressions were strongly detected in meristematic tissues. Transcription of the OsRecQ homologues was differentially induced by several types of DNA-damaging agents. The expression of four OsRecQ homologues was induced by MMS and bleomycin. OsRecQ1 and OsRecQ886 were induced by H 2 O 2 , and MitomycinC strongly induced the expression of OsRecQ1. Transient expression of OsRecQ/GFP fusion proteins demonstrated that OsRecQ2 and OsRecQ886 are found in nuclei, whereas OsRecQ1 and OsRecQsim are found in plastids. Neither OsRecQ1 nor OsRecQsim are induced by light. These results indicate that four of the RecQ homologues have different and specific functions in DNA repair pathways, and that OsRecQ1 and OsRecQsim may not involve in plastid differentiation but different aspects of a plastid-specific DNA repair system

  7. A genome-wide association study of a global rice panel reveals resistance in Oryza sativa to root-knot nematodes.

    Science.gov (United States)

    Dimkpa, Stanley O N; Lahari, Zobaida; Shrestha, Roshi; Douglas, Alex; Gheysen, Godelieve; Price, Adam H

    2016-02-01

    The root-knot nematode Meloidogyne graminicola is one of the most serious nematode pests worldwide and represents a major constraint on rice production. While variation in the susceptibility of Asian rice (Oryza sativa) exists, so far no strong and reliable resistance has been reported. Quantitative trait loci for partial resistance have been reported but no underlying genes have been tagged or cloned. Here, 332 accessions of the Rice Diversity Panel 1 were assessed for gall formation, revealing large variation across all subpopulations of rice and higher susceptibility in temperate japonica accessions. Accessions Khao Pahk Maw and LD 24 appeared to be resistant, which was confirmed in large pot experiments where no galls were observed. Detailed observations on these two accessions revealed no nematodes inside the roots 2 days after inoculation and very few females after 17 days (5 in Khao Pahk Maw and 100 in the susceptible controls). These two cultivars appear ideal donors for breeding root-knot nematode resistance. A genome-wide association study revealed 11 quantitative trait loci, two of which are close to epistatic loci detected in the Bala x Azucena population. The discussion highlights a small number of candidate genes worth exploring further, in particular many genes with lectin domains and genes on chromosome 11 with homology to the Hordeum Mla locus. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. Effect of peanut shell and wheat straw biochar on the availability of Cd and Pb in a soil-rice (Oryza sativa L.) system.

    Science.gov (United States)

    Xu, Chao; Chen, Hao-Xiang; Xiang, Qian; Zhu, Han-Hua; Wang, Shuai; Zhu, Qi-Hong; Huang, Dao-You; Zhang, Yang-Zhu

    2018-01-01

    Soil amendments, such as biochar, have been used to enhance the immobilization of heavy metals in contaminated soil. A pot experiment was conducted to immobilize the available cadmium (Cd) and lead (Pb) in soil using peanut shell biochar (PBC) and wheat straw biochar (WBC), and to observe the accumulation of these heavy metals in rice (Oryza sativa L.). The application of PBC and WBC led to significantly higher pH, soil organic carbon (SOC), and cation exchange capacity (CEC) in paddy soil, while the content of MgCl 2 -extractable Cd and Pb was lower than that of untreated soil. MgCl 2 -extractable Cd and Pb showed significant negative correlations with pH, SOC, and CEC (p rice plants. Specially, when compared to the corresponding concentrations in rice grown in control soils, 5% PBC addition lowered Cd and Pb concentrations in grains by 22.9 and 12.2%, respectively, while WBC addition lowered them by 29.1 and 15.0%, respectively. Compared to Pb content, Cd content was reduced to a greater extent in grain by PBC and WBC. These results suggest that biochar application is effective for immobilizing Cd and Pb in contaminated paddy soil, and reduces their bioavailability in rice. Biochar could be used as a soil amendment for the remediation of soils contaminated with heavy metals.

  9. Determination of Optimal Harvest Time of Chuchung Variety Green Rice(®) (Oryza sativa L.) with High Contents of GABA, γ-Oryzanol, and α-Tocopherol.

    Science.gov (United States)

    Kim, Hoon; Kim, Oui-Woung; Ha, Ae Wha; Park, Soojin

    2016-06-01

    In our previous study, an early-maturing variety of rice (Oryza sativa L.), Jinbu can have feature with unique green color, various phytochemicals as well as nutritive components by the optimal early harvesting, called Green Rice(®) (GR). The aims of the present field experiments were to evaluate the changes in the weight of 1,000 kernels, yield, and contents of proximate and bioactive compounds in Chuchung, a mid-late maturing variety, during the pre-harvest maturation of rough rice and to research the appropriate harvest time and potent bioactivity of Chuchung GR. The weights of 1,000 kernels of Chuchung GR dramatically increased until 27 days after heading (DAH). The yields of Chuchung GR declined after 27 DAH and significantly declined to 0.0% after 45 DAH. The caloric value and total mineral contents were higher in the GR than in the full ripe stage, the brown rice (BR). In the GR, the contents of bioactive compounds, such as γ-aminobutyric acid, γ-oryzanol, and α-tocopherol, were much higher (P<0.05) than those in the BR, specifically during 24~27 DAH. Therefore, bioactive Chuchung GR can be produced with a reasonable yield at 24~27 DAH and it could be useful for applications in various nutritive and functional food products.

  10. Determination of Optimal Harvest Time of Chuchung Variety Green Rice® (Oryza sativa L.) with High Contents of GABA, γ-Oryzanol, and α-Tocopherol

    Science.gov (United States)

    Kim, Hoon; Kim, Oui-Woung; Ha, Ae Wha; Park, Soojin

    2016-01-01

    In our previous study, an early-maturing variety of rice (Oryza sativa L.), Jinbu can have feature with unique green color, various phytochemicals as well as nutritive components by the optimal early harvesting, called Green Rice® (GR). The aims of the present field experiments were to evaluate the changes in the weight of 1,000 kernels, yield, and contents of proximate and bioactive compounds in Chuchung, a mid-late maturing variety, during the pre-harvest maturation of rough rice and to research the appropriate harvest time and potent bioactivity of Chuchung GR. The weights of 1,000 kernels of Chuchung GR dramatically increased until 27 days after heading (DAH). The yields of Chuchung GR declined after 27 DAH and significantly declined to 0.0% after 45 DAH. The caloric value and total mineral contents were higher in the GR than in the full ripe stage, the brown rice (BR). In the GR, the contents of bioactive compounds, such as γ-aminobutyric acid, γ-oryzanol, and α-tocopherol, were much higher (P<0.05) than those in the BR, specifically during 24~27 DAH. Therefore, bioactive Chuchung GR can be produced with a reasonable yield at 24~27 DAH and it could be useful for applications in various nutritive and functional food products. PMID:27390725

  11. Evaluation of Oryza sativa x O. glaberrima derived progenies for ...

    African Journals Online (AJOL)

    USER

    2010-06-28

    Jun 28, 2010 ... The genus Oryza has two cultivated species, Asian rice (Oryza sativa L.) and African rice (Oryza glaberrima Steud.) and 22 wild species. O. glaberrima is low yielding but has useful genes for resistance to biotic and abiotic stresses. Introgression lines derived from backcrossing of O. sativa x O. glaberrima,.

  12. Characterization of N2-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes.

    Science.gov (United States)

    Banik, Avishek; Mukhopadhaya, Subhra Kanti; Dangar, Tushar Kanti

    2016-03-01

    The diversity of endophytic and epiphytic diazotrophs in different parts of rice plants has specificity to the niche (i.e. leaf, stem and root) of different genotypes and nutrient availability of the organ. Inoculation of the indigenous, polyvalent diazotrophs can facilitate and sustain production of non-leguminous crops like rice. Therefore, N2-fixing plant growth promoting bacteria (PGPB) were isolated from different parts of three Indian cultivated [Oryza sativa L. var. Sabita (semi deep/deep water)/Swarna (rain fed shallow lowland)/Swarna-Sub1(submergence tolerant)] and a wild (O. eichingeri) rice genotypes which respond differentially to nitrogenous fertilizers. Thirty-five isolates from four rice genotypes were categorized based on acetylene reduction assay on nitrogenase activity, biochemical tests, BIOLOG and 16S rRNA gene sequencing. The bacteria produced 9.36-155.83 nmole C2H4 mg(-1) dry bacteria h(-1) and among them nitrogenase activity of 11 potent isolates was complemented by nifH-sequence analysis. Phylogenetic analysis based on 16S rDNA sequencing divided them into five groups (shared 95-100 % sequence homology with type strains) belonging to five classes-alpha (Ancylobacter, Azorhizobium, Azospirillum, Rhizobium, Bradyrhizobium, Sinorhizobium, Novosphingobium, spp.), beta (Burkholderia sp.), gamma (Acinetobacter, Aeromonas, Azotobacter, Enterobacter, Klebsiella, Pantoea, Pseudomonas, Stenotrophomonas spp.) Proteobacteria, Bacilli (Bacillus, Paenibacillus spp.) and Actinobacteria (Microbacterium sp.). Besides, all bacterial strains possessed the intrinsic PGP traits of like indole (0.44-7.4 µg ml(-1)), ammonia (0.18-6 mmol ml(-1)), nitrite (0.01-3.4 mol ml(-1)), and siderophore (from 0.16-0.57 μmol ml(-1)) production. Inoculation of rice (cv. Swarna) seedlings with selected isolates had a positive impact on plant growth parameters like shoot and root elongation which was correlated with in vitro PGP attributes. The results indicated that the

  13. Interactions of rice (Oryza sativa L.) and PAH-degrading bacteria (Acinetobacter sp.) on enhanced dissipation of spiked phenanthrene and pyrene in waterlogged soil.

    Science.gov (United States)

    Gao, Y; Yu, X Z; Wu, S C; Cheung, K C; Tam, N F Y; Qian, P Y; Wong, M H

    2006-12-15

    The effects of cultivation of rice (Oryza sativa L.) and PAH-degrading bacteria (Acinetobacter sp.) separately, and in combination, on the dissipation of spiked phenanthrene and pyrene (0, 50+50, 100+100, 200+200 mg kg(-1)) in waterlogged soil were studied using pot trials. The population of introduced PAH-degrading bacteria remained at 10(5) CFU g(-1) dry soil after 20 days of treatment with Acinetobacter sp. only, but increased to 10(6) when planted with rice simultaneously. Shoot and root biomass of rice when grown alone was adversely affected by spiked PAHs, but significantly increased by 2-55% and 8-409%, respectively, when inoculated with Acinetobacter sp.. Phenanthrene and pyrene concentrations in roots ranged from 1-27 and 20-98 mg kg(-1), respectively, while their concentrations in shoots were generally lower than 0.2 mg kg(-1). The dissipation of phenanthrene was mainly due to abiotic loss as 70-78% phenanthrene was lost from the control soil at the end of 80 days, while removal of 86-87% phenanthrene had been achieved after 40 days in the treatment co-cultivated with Acinetobacter sp. and rice. Compared with the control where only 6-15% of pyrene was removed from soil, a much higher dissipation of pyrene (43-62%) was attained for the treatments co-cultivated with Acinetobacter sp. and rice at the end of 80 days. The results demonstrated that co-cultivation of rice and PAH-degrading bacteria may have a great potential to accelerate the bioremediation process of PAH-contaminated soil under waterlogged conditions.

  14. Do Si/As ratios in growth medium affect arsenic uptake, arsenite efflux and translocation of arsenite in rice (Oryza sativa)?

    Science.gov (United States)

    Zhang, Min; Zhao, Quanli; Xue, Peiying; Zhang, Shijie; Li, Bowen; Liu, Wenju

    2017-10-01

    Silicon (Si) may decrease the uptake and accumulation of arsenic (As) in rice. However, the effects of Si/As ratios in growth medium on arsenic uptake, arsenite efflux to the external medium and translocation of arsenite in rice are currently unclear. Rice seedlings (Oryza sativa L.) were exposed to nutrient solutions with 10 μM arsenite [As(III)] or 10 μM arsenate [As(V)] to explore the influence of different silicic acid concentrations (0, 10, 100, 1000 μM) on arsenic uptake and translocation of arsenite with or without 91 μM phosphate for 24 h. Arsenic speciation was determined in nutrient solutions, roots, and shoots. In the arsenite treatments, different Si/As ratios (1:1, 10:1, 100:1) did not affect As(III) uptake by rice roots, however they did inhibit translocation of As(III) from roots to shoots significantly (P rice roots and shoots. A Si/As ratio of 100:1 reduced As(III) translocation from roots to shoots markedly without phosphate. When phosphate was supplied, As(III) translocation from roots to shoots was significantly inhibited by Si/As ratios of 10:1 and 100:1. The results indicated that in the presence of P, different silicic acid concentrations did not impact arsenite uptake and transport in rice when arsenite was supplied. However, a Si/As ratio of 100:1 inhibited As(V) uptake, as well as As(III) efflux and translocation from roots to shoots when arsenate was supplied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Combining ability analysis for yield and related traits in basmati rice (oryza sativa L.)

    International Nuclear Information System (INIS)

    Saleem, M.Y.; Haq, M.A.; Mirza, J.I.

    2010-01-01

    Line X tester experiment was conducted to evaluate the performance of 27 F1 hybrids along with 12 parents in Basmati rice. Analysis of variance revealed highly significant differences among treatments, parents, parents vs. crosses and crosses for number of tillers per plant, panicle length, number of grains per panicle, fertility percentage, 1000-grain weight and yield per plant. Lines were significant for number of tillers per plant, number of grains per panicle and 1000-grain weight while testers and lines X testers were significant for all the traits. The estimates of variance of specific combining ability effects, ratio of variance of general combining ability to specific combining ability and degree of dominance indicated preponderance of non-additive gene effects for each trait. On over all basis, role of testers in the expression of most of the yield components was more than lines and line X tester interaction. However, line X tester interaction contributed more than lines and testers for yield per plant. Three lines viz., Basmati 2000, Super Basmati and Kashmir Basmati and one tester Basmati-385 were identified as good general combiners based on their mean performance and GCA effects for yield and its various traits. Hybrids like Basmati Pak X Basmati-385, Super Basmati X Basmati-385, DM-107-4 X Basmati-385, Basmati 2000 X EL-30- 2-1, Basmati 2000 X DM-25, DM-16-5-1 X Basmati-385 and Kashmir Basmati X DM-25 showed high mean performance, SCA effects and heterobeltiosis for grain yield and are proposed for heterosis breeding. (author)

  16. Rice as commodity and anti-commodity

    NARCIS (Netherlands)

    Richards, P.

    2016-01-01

    On the Upper West Africa coast rice belongs to two species — African rice (Oryza glaberrima Steud.) and Asian rice (Oryza sativa L.). African rice was domesticated in the region, perhaps three millennia ago, from a presumed wild ancestor, O. barthii. Asian rice was introduced via trans-Saharan

  17. Studies in tissue culture of some indigenous rice (Oryza glaberrima Steud.) accessions in Ghana

    International Nuclear Information System (INIS)

    Diawuoh, R.G.

    2011-01-01

    A study was conducted with the aim of developing separate protocols for callus induction and plant regeneration from different parts of three O. glaberrima accessions indigenous to Ghana. The three O. glaberrima accessions, Guame, N/4 and SARI 1 were assessed for their callus induction and plant regeneration ability from leaf segments, mature dehusked seeds and anthers on different concentrations of plant growth regulators, incorporated into Murashige and Skoog, (1962) (MS) basal medium. For leaf segments, callus was induced on MS supplemented with (0-10) mg/l 2,4-D. Callus induction frequency was significantly (p≤0.05) different among accessions, as well as among the 2,4-dichlorophenoxyacetic acid (2,4-D) levels tested. Highest callus induction frequency was exhibited at a concentration of 6 mg/l 2,4-D for all accessions tested. Callus obtained was sub-cultured on regeneration medium consisting of MS supplemented with (1:0-5) mg.l NAA:BAP. Plant regeneration was nil. Instead, prolific root formation was observed. For mature dehusked seeds, callus induction medium consisted of MS supplemented with (0-6) mg/l 2,4-D. All tested accessions exhibited highest callus frequency at 4 mg/l 2,4-D. Similarly callus induction frequency was significantly (p≤0.05) different among accessions, as well as among concentrations of 2,4-D tested. Calli obtained were sub-cultured on MS medium supplemented with (0-2.5) mg/l 6-benzylaminopurine (BAP) and exhibited the highest regeneration frequency on medium containing 2.0 mg/l BAP. However, callus induced on a concentration of 3 mg/l 2,4-D and sub-cultured on a concentration of 2 mg/l BAP gave the best response n terms of shoot proliferation, growth and root development and therefore were considered to be the optimum concentrations for callus induction and plant regeneration respectively. Plantlet regeneration was achieved only in accession N/4 while Guame and SARI 1 exhibited poor regeneration response. Among the three rice

  18. Authenticity of rice (Oryza sativa L.) geographical origin based on analysis of C, N, O and S stable isotope ratios: a preliminary case report in Korea, China and Philippine.

    Science.gov (United States)

    Chung, Ill-Min; Kim, Jae-Kwang; Prabakaran, Mayakrishnan; Yang, Jin-Hee; Kim, Seung-Hyun

    2016-05-01

    Although rice (Oryza sativa L.) is the third largest food crop, relatively fewer studies have been reported on rice geographical origin based on light element isotope ratios in comparison with other foods such as wine, beef, juice, oil and milk. Therefore this study tries to discriminate the geographical origin of the same rice cultivars grown in different Asian countries using the analysis of C, N, O and S stable isotope ratios and chemometrics. The δ(15) NAIR , δ(18) OVSMOW and δ(34) SVCDT values of brown rice were more markedly influenced by geographical origin than was the δ(13) CVPDB value. In particular, the combination of δ(18) OVSMOW and δ(34) SVCDT more efficiently discriminated rice geographical origin than did the remaining combinations. Principal component analysis (PCA) revealed a clear discrimination between different rice geographical origins but not between rice genotypes. In particular, the first components of PCA discriminated rice cultivated in the Philippines from rice cultivated in China and Korea. The present findings suggest that analysis of the light element isotope composition combined with chemometrics can be potentially applicable to discriminate rice geographical origin and also may provide a valuable insight into the control of improper or fraudulent labeling regarding the geographical origin of rice worldwide. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  19. Open-pit coal-mining effects on rice paddy soil composition and metal bioavailability to Oryza sativa L. plants in Cam Pha, northeastern Vietnam.

    Science.gov (United States)

    Martinez, Raul E; Marquez, J Eduardo; Hòa, Hoàng Thị Bích; Gieré, Reto

    2013-11-01

    This study quantified Cd, Pb, and Cu content, and the soil-plant transfer factors of these elements in rice paddies within Cam Pha, Quang Ninh province, northeastern Vietnam. The rice paddies are located at a distance of 2 km from the large Coc Sau open-pit coal mine. Electron microprobe analysis combined with backscattered electron imaging and energy-dispersive spectroscopy revealed a relatively high proportion of carbon particles rimmed by an iron sulfide mineral (probably pyrite) in the quartz-clay matrix of rice paddy soils at 20-30 cm depth. Bulk chemical analysis of these soils revealed the presence of Cd, Cu, and Pb at concentrations of 0.146±0.004, 23.3±0.1, and 23.5±0.1 mg/kg which exceeded calculated background concentrations of 0.006±0.004, 1.9±0.5, and 2.4±1.5 mg/kg respectively at one of the sites. Metals and metalloids in Cam Pha rice paddy soils, including As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn, were found in concentrations ranging from 0.2±0.1 to 140±3 mg/kg, which were in close agreement with toxic metal contents in mine tailings and Coc Sau coal samples, suggesting mining operations as a major cause of paddy soil contamination. Native and model Oryza sativa L. rice plants were grown in the laboratory in a growth medium to which up to 1.5 mg/kg of paddy soil from Cam Pha was added to investigate the effects on plant growth. A decrease in growth by up to 60% with respect to a control sample was found for model plants, whereas a decrease of only 10% was observed for native (Nep cai hoa vang variety) rice plants. This result suggests an adaptation of native Cam Pha rice plants to toxic metals in the agricultural lands. The Cd, Cu, and Pb contents of the native rice plants from Cam Pha paddies exceeded permitted levels in foods. Cadmium and Pb were highest in the rice plant roots with concentrations of 0.84±0.02 and 7.7±0.3 mg/kg, suggesting an intake of these metals into the rice plant as shown, for example, by Cd and Pb concentrations of 0

  20. A model explaining genotypic and ontogenetic variation of leaf photosynthetic rate in rice (Oryza sativa) based on leaf nitrogen content and stomatal conductance.

    Science.gov (United States)

    Ohsumi, Akihiro; Hamasaki, Akihiro; Nakagawa, Hiroshi; Yoshida, Hiroe; Shiraiwa, Tatsuhiko; Horie, Takeshi

    2007-02-01

    Identification of physiological traits associated with leaf photosynthetic rate (Pn) is important for improving potential productivity of rice (Oryza sativa). The objectives of this study were to develop a model which can explain genotypic variation and ontogenetic change of Pn in rice under optimal conditions as a function of leaf nitrogen content per unit area (N) and stomatal conductance (g(s)), and to quantify the effects of interaction between N and g(s) on the variation of Pn. Pn, N and g(s) were measured at different developmental stages for the topmost fully expanded leaves in ten rice genotypes with diverse backgrounds grown in pots (2002) and in the field (2001 and 2002). A model of Pn that accounts for carboxylation and CO diffusion processes, and assumes that the ratio of internal conductance to g(s) is constant, was constructed, and its goodness of fit was examined. Considerable genotypic differences in Pn were evident for rice throughout development in both the pot and field experiments. The genotypic variation of Pn was correlated with that of g(s) at a given stage, and the change of Pn with plant development was closely related to the change of N. The variation of g(s) among genotypes was independent of that of N. The model explained well the variation in Pn of the ten genotypes grown under different conditions at different developmental stages. Conclusions The response of Pn to increased N differs with g(s), and the increase in Pn of genotypes with low g(s) is smaller than that of genotypes with high g(s). Therefore, simultaneous improvements of these two traits are essential for an effective breeding of rice genotypes with increased Pn.

  1. Reactive oxygen species induced by heat stress during grain filling of rice (Oryza sativa L.) are involved in occurrence of grain chalkiness.

    Science.gov (United States)

    Suriyasak, Chetphilin; Harano, Keisuke; Tanamachi, Koichiro; Matsuo, Kazuhiro; Tamada, Aina; Iwaya-Inoue, Mari; Ishibashi, Yushi

    2017-09-01

    Heat stress during grain filling increases rice grain chalkiness due to increased activity of α-amylase, which hydrolyzes starch. In rice and barley seeds, reactive oxygen species (ROS) produced after imbibition induce α-amylase activity via regulation of gibberellin (GA) and abscisic acid (ABA) levels during seed germination. Here, we examined whether ROS is involved in induction of grain chalkiness by α-amylase in developing rice grains under heat stress. To elucidate the role of ROS in grain chalkiness, we grew post-anthesis rice plants (Oryza sativa L. cv. Koshihikari) under control (25°C) or heat stress (30°C) conditions with or without antioxidant (dithiothreitol) treatment. The developing grains were analyzed for expression of NADPH oxidases, GA biosynthesis genes (OsGA3ox1, OsGA20ox1), ABA catabolism genes (OsABA8'OH1, OsABA8'OH2) and an α-amylase gene (OsAmy3E), endogenous H 2 O 2 content and the grain quality. In grains exposed to heat stress, the expression of NADPH oxidase genes (especially, OsRbohB, OsRbohD, OsRbohF and OsRbohI) and the ROS content increased. Heat stress also increased the expression of OsGA3ox1, OsGA20ox1, OsABA8'OH1, OsABA8'OH2 and OsAmy3E. On the other hand, dithiothreitol treatment reduced the effects of heat stress on the expression of these genes and significantly reduced grain chalkiness induced by heat stress. These results suggest that, similar to cereal seed germination mechanism, ROS produced under heat stress is involved in α-amylase induction in maturating rice grains through GA/ABA metabolism, and consequently caused grain chalkiness. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. A novel epistatic interaction at two loci causing hybrid male sterility in an inter-subspecific cross of rice (Oryza sativa L.).

    Science.gov (United States)

    Kubo, Takahiko; Yamagata, Yoshiyuki; Eguchi, Maki; Yoshimura, Atsushi

    2008-12-01

    Postzygotic reproductive isolation (RI) often arises in inter-subspecific crosses as well as inter-specific crosses of rice (Oryza sativa L.). To further understand the genetic architecture of the postzygotic RI, we analyzed genes causing hybrid sterility and hybrid breakdown in a rice inter-subspecific cross. Here we report hybrid male sterility caused by epistatic interaction between two novel genes, S24 and S35, which were identified on rice chromosomes 5 and 1, respectively. Genetic analysis using near-isogenic lines (NILs) carrying IR24 (ssp. indica) segments with Asominori (ssp. japonica) genetic background revealed a complicated aspect of the epistasis. Allelic interaction at the S24 locus in the heterozygous plants caused abortion of male gametes carrying the Asominori allele (S24-as) independent of the S35 genotype. On the other hand, male gametes carrying the Asominori allele at the S35 locus (S35-as) showed abortion only when the IR24 allele at the S24 locus (S24-ir) was concurrently introgressed into the S35 heterozygous plants, indicating that the sterility phenotype due to S35 was dependent on the S24 genotype through negative epistasis between S24-ir and S35-as alleles. Due to the interaction between S24 and S35, self-pollination of the double heterozygous plants produced pollen-sterile progeny carrying the S24-ir/S24-ir S35-as/S35-ir genotype in addition to the S24 heterozygous plants. This result suggests that the S35 gene might function as a modifier of S24. This study presents strong evidence for the importance of epistatic interaction as a part of the genetic architecture of hybrid sterility in rice. In addition, it suggests that diverse systems have been developed as postzygotic RI mechanisms within the rice.

  3. Reduced arsenic accumulation in indica rice (Oryza sativa L.) cultivar with ferromanganese oxide impregnated biochar composites amendments.

    Science.gov (United States)

    Lin, Lina; Gao, Minling; Qiu, Weiwen; Wang, Di; Huang, Qing; Song, Zhengguo

    2017-12-01

    The effects of biochar (BC) and ferromanganese oxide biochar composites (FMBC 1 and FMBC 2 ) on As (Arsenic) accumulation in rice were determined using a pot experiment. Treatments with BC or FMBC improved the dry weights of rice roots, stems, leaves, and grains in soils containing different As contamination levels. Compared to BC treatment, FMBC treatments significantly reduced As accumulation in different parts of the rice plants (P rice can be attributed to As(III) to As(V) oxidation by ferro - manganese binary oxide, which increased the As adsorbed by FMBC. Furthermore, Fe and Mn plaques on the rice root surface decreased the transport of As in rice. Taken together, our results demonstrated the applicability of FMBC as a potential measure for reducing As accumulation in rice, improving the amino acid content of rice grains, and effectively remediating As-polluted soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Cadmium accumulation characteristics of low-cadmium rice (Oryza sativa L.) line and F1 hybrids grown in cadmium-contaminated soils.

    Science.gov (United States)

    Li, Kun; Yu, Haiying; Li, Tingxuan; Chen, Guangdeng; Huang, Fu

    2017-07-01

    Cadmium (Cd) pollution has threatened severely to food safety and human health. A pot experiment and a field experiment were conducted to investigate the difference of Cd accumulation between rice (Oryza sativa L.) lines and F 1 hybrids in Cd-contaminated soils. The adverse effect on biomass of rice lines was greater than that of F 1 hybrids under Cd treatments in the pot experiment. The variations of Cd concentration among rice cultivars in different organs were smaller in stem and leaf, but larger in root and ear. Average proportion of Cd in root of F 1 hybrids was 1.39, 1.39, and 1.16 times higher than those of rice lines at the treatment of 1, 2, and 4 mg Cd kg -1 soil, respectively. Cd concentrations in ear of F 1 hybrids were significantly lower than rice lines with the reduction from 29.24 to 50.59%. Cd concentrations in brown rice of all F 1 hybrids were less than 0.2 mg kg -1 at 1 mg Cd kg -1 soil, in which Lu98A/YaHui2816, 5406A/YaHui2816, and C268A/YaHui2816 could be screened out as cadmium-safe cultivars (CSCs) for being safe even at 2 mg Cd kg -1 soil. C268A/YaHui2816 showed the lowest Cd concentration in root among F 1 hybrids, while Lu98A/YaHui2816 and 5406A/YaHui2816 showed lower capability of Cd translocation from root to shoot under Cd exposure, which eventually caused the lower Cd accumulation in brown rice. The lower level of Cd translocation contributed to reducing the accumulation of Cd in brown rice had been validated by the field experiment. Thus, Lu98A/YaHui2816, 5406A/YaHui2816, and C268A/YaHui2816 could be considered as potential CSCs to cultivate in Cd-contaminated soils (<2 mg Cd kg -1 soil).

  5. Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica genome: new insights from bioinformatics analysis

    Directory of Open Access Journals (Sweden)

    Chepyshko Hanna

    2012-07-01

    Full Text Available Abstract Background GDSL esterases/lipases are a newly discovered subclass of lipolytic enzymes that are very important and attractive research subjects because of their multifunctional properties, such as broad substrate specificity and regiospecificity. Compared with the current knowledge regarding these enzymes in bacteria, our understanding of the plant GDSL enzymes is very limited, although the GDSL gene family in plant species include numerous members in many fully sequenced plant genomes. Only two genes from a large rice GDSL esterase/lipase gene family were previously characterised, and the majority of the members remain unknown. In the present study, we describe the rice OsGELP (Oryza sativa GDSL esterase/lipase protein gene family at the genomic and proteomic levels, and use this knowledge to provide insights into the multifunctionality of the rice OsGELP enzymes. Results In this study, an extensive bioinformatics analysis identified 114 genes in the rice OsGELP gene family. A complete overview of this family in rice is presented, including the chromosome locations, gene structures, phylogeny, and protein motifs. Among the OsGELPs and the plant GDSL esterase/lipase proteins of known functions, 41 motifs were found that represent the core secondary structure elements or appear specifically in different phylogenetic subclades. The specification and distribution of identified putative conserved clade-common and -specific peptide motifs, and their location on the predicted protein three dimensional structure may possibly signify their functional roles. Potentially important regions for substrate specificity are highlighted, in accordance with protein three-dimensional model and location of the phylogenetic specific conserved motifs. The differential expression of some representative genes were confirmed by quantitative real-time PCR. The phylogenetic analysis, together with protein motif architectures, and the expression profiling were

  6. Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105).

    Science.gov (United States)

    Rungin, Siriwan; Indananda, Chantra; Suttiviriya, Pavinee; Kruasuwan, Worarat; Jaemsaeng, Ratchaniwan; Thamchaipenet, Arinthip

    2012-10-01

    An endophytic Streptomyces sp. GMKU 3100 isolated from roots of a Thai jasmine rice plant (Oryza sativa L. cv. KDML105) showed the highest siderophore production on CAS agar while phosphate solubilization and IAA production were not detected. A mutant of Streptomyces sp. GMKU 3100 deficient in just one of the plant growth promoting traits, siderophore production, was generated by inactivation of a desD-like gene encoding a key enzyme controlling the final step of siderophore biosynthesis. Pot culture experiments revealed that rice and mungbean plants inoculated with the wild type gave the best enhancement of plant growth and significantly increased root and shoot biomass and lengths compared with untreated controls and siderophore-deficient mutant treatments. Application of the wild type in the presence or absence of ferric citrate significantly promoted plant growth of both plants. The siderophore-deficient mutant clearly showed the effect of this important trait involved in plant-microbe interaction in enhancement of growth in rice and mungbean plants supplied with sequestered iron. Our results highlight the value of a substantial understanding of the relationship of the plant growth promoting properties of endophytic actinomycetes to the plants. Endophytic actinomycetes, therefore, can be applied as potentially safe and environmentally friendly biofertilizers in agriculture.

  7. CRISPR/Cas9-Mediated Gene Editing in Rice (Oryza sativa L. japonica cv. Katy) for Stable Resistance against Blast Fungus (Magnaporthe oryzae)

    Science.gov (United States)

    Rice blast is a recurring and devastating disease in the USA and worldwide. In the USA, the blast-resistance (R) genes found in a tropical japonica cultivar, Katy, reduce blast damages from 1990 to present. The cultivar is still used as a principal donor of blast R genes in developing numerous elit...

  8. The rice terpene synthase gene OsTPS19 functions as an (S)-limonene synthase in planta, and its overexpression leads to enhanced resistance to the blast fungus Magnaporthe oryzae.

    Science.gov (United States)

    Chen, Xujun; Chen, Hao; Yuan, Joshua S; Köllner, Tobias G; Chen, Yuying; Guo, Yufen; Zhuang, Xiaofeng; Chen, Xinlu; Zhang, Yong-Jun; Fu, Jianyu; Nebenführ, Andreas; Guo, Zejian; Chen, Feng

    2018-03-06

    Rice blast disease, caused by the fungus Magnaporthe oryzae, is the most devastating disease of rice. In our ongoing characterization of the defence mechanisms of rice plants against M. oryzae, a terpene synthase gene OsTPS19 was identified as a candidate defence gene. Here, we report the functional characterization of OsTPS19, which is up-regulated by M. oryzae infection. Overexpression of OsTPS19 in rice plants enhanced resistance against M. oryzae, while OsTPS19 RNAi lines were more susceptible to the pathogen. Metabolic analysis revealed that the production of a monoterpene (S)-limonene was increased and decreased in OsTPS19 overexpression and RNAi lines, respectively, suggesting that OsTPS19 functions as a limonene synthase in planta. This notion was further supported by in vitro enzyme assays with recombinant OsTPS19, in which OsTPS19 had both sesquiterpene activity and monoterpene synthase activity, with limonene as a major product. Furthermore, in a subcellular localization experiment, OsTPS19 was localized in plastids. OsTPS19 has a highly homologous paralog, OsTPS20, which likely resulted from a recent gene duplication event. We found that the variation in OsTPS19 and OsTPS20 enzyme activities was determined by a single amino acid in the active site cavity. The expression of OsTPS20 was not affected by M. oryzae infection. This indicates functional divergence of OsTPS19 and OsTPS20. Lastly, (S)-limonene inhibited the germination of M. oryzae spores in vitro. OsTPS19 was determined to function as an (S)-limonene synthase in rice and plays a role in defence against M. oryzae, at least partly, by inhibiting spore germination. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss

    International Nuclear Information System (INIS)

    Wang, M.Y.; Chen, A.K.; Wong, M.H.; Qiu, R.L.; Cheng, H.; Ye, Z.H.

    2011-01-01

    Cadmium (Cd) uptake and tolerance were investigated among 20 rice cultivars based on a field experiment (1.2 mg Cd kg -1 in soil) and a soil pot trial (control, 100 mg Cd kg -1 ), and rates of radial oxygen loss (ROL) were measured under a deoxygenated solution. Significant differences were found among the cultivars in: (1) brown rice Cd concentrations (0.11-0.29 mg kg -1 ) in a field soil, (2) grain Cd tolerance (34-113%) and concentrations (2.1-6.5 mg kg -1 ) in a pot trial, and (3) rates of ROL (15-31 mmol O 2 kg -1 root d.w. h -1 ). Target hazard quotients were calculated for the field experiment to assess potential Cd risk. Significant negative relationships were found between rates of ROL and concentrations of Cd in brown rice or straw under field and greenhouse conditions, indicating that rice cultivars with higher rates of ROL had higher capacities for limiting the transfer of Cd to rice and straw. - Highlights: → There are significant differences in brown rice Cd concentrations and rates of ROL among the rice cultivars. → The rates of ROL are significantly correlated with concentrations of Cd in brown rice. → Rice cultivars with higher rates of ROL have higher capacities for limiting the transfer of Cd to rice and straw. - Rice cultivars with high rates of ROL tended to accumulate low Cd in grains.

  10. In-vitro evaluation of fungicides, plant extracts and bio-control agents against rice blast pathogen magnaporthe oryzae couch

    International Nuclear Information System (INIS)

    Hajano, J.U.D.; Lodhi, M.; Pathan, M.A.; Khanzada, A.; Shah, G.S.

    2012-01-01

    Among 5 fungicides viz., Thiophanate-methyl, Carbendazim, Fosetyl-aluminium, Mancozeb and Copper oxychloride, used against the Magnaporthe oryzae, only Mancozeb appeared as the highly effective fungicide that completely inhibited the mycelial growth of the fungus. All other fungicides showed little effect at higher concentrations. The extracts of garlic (Allium sativum L.), neem (Azadirachta indica L.) and calatropis (Calotropis procera L.) when used against M. oryzae by food poisoning method, only higher dose of garlic completely inhibited the mycelial growth of the test fungus. Six bio-control agents viz., Trichoderma harzianum, Trichoderma polysporum, Trichoderma pseudokoningii, Gliocladium virens, Paecilomyces variotii and Paecilomyces lilacinus were used. Maximum mycelial inhibition of M. oryzae was provided by P. lilacinus followed by Trichoderma spp. (author)

  11. Calibração e avaliação do modelo ORYZA-APSIM para o arroz de terras altas no Brasil Calibration and evaluation of the ORYZA-APSIM crop model for upland rice in Brazil

    Directory of Open Access Journals (Sweden)

    Rogério Lorençoni

    2010-12-01

    Full Text Available Objetivou-se com este trabalho calibrar o modelo ORYZA-APSIM e avaliar o seu desempenho na simulação do desenvolvimento, crescimento e produtividade da variedade cultivada de arroz de terras altas BRS-Primavera para as diferentes regiões produtoras dessa cultura. Na calibração foram definidas: as unidades de calor efetivo diário (HU; as taxas de desenvolvimento fenológico para cada estádio (DVR; as frações da massa de matéria seca das folhas (MSf, colmos (MS C e órgãos armazenadores (panículas (MSp, e os parâmetros para calcular a área foliar específica (AEF simulada durante o ciclo da cultura. Na avaliação foram comparados os valores simulados com os observados do desenvolvimento fenológico (número de dias da emergência ao florescimento e do crescimento da cultura (massa de matéria seca total da parte aérea (MSt índice de área foliar (IAF e a produtividade (P. O modelo apresentou desempenho satisfatório na simulação do desenvolvimento fenológico para regiões próximas ao da calibração. Para latitudes próximas ao equador, como Teresina, PI, o desempenho fenológico foi insatisfatório. Para o crescimento, nos dois experimentos, o índice de área foliar (IAF simulado diferiu do observado, e a MSt simulada foi semelhante a observada, mas diferiu entre o florescimento e a maturidade fisiológica. A MSf simulada foi satisfatória no primeiro experimento e regular no segundo. Isso é devido ao modelo superestimar os efeitos da deficiência hídrica que ocorreram durante a condução do segundo experimento. Entretanto, o modelo ORYZA-APSIM apresentou bom desempenho na simulação da ordem de produtividade ao nível de significância de 5%.This study was carried out with the purpose of calibranting the ORYZA-APSIM crop model and evaluating its performance to simulate the development, growth and yield of upland rice variety BRS-Primavera in the production area of upland rice in Brazil. Acording to the following

  12. Enhanced production of protease by mutagenized strain of aspergillus oryzae in solid substrate fermentation of rice bran

    International Nuclear Information System (INIS)

    Yousif, M.; Irfan, M.; Baig, S.; Iqbal, A.

    2010-01-01

    Neutral protease activity of parent strain of Aspergellus oryzae was enhanced by UV and chemical mutagenization with ethyl methane sulphonate (EMS). After screening, a hyper producing strain was isolated and found effective for tile production of neutral protease as compared to the parent strain of Aspergellus oryzae. Solid substrate fermentation was carried out in 250ml conical flask with 45 % initial moisture contents at a temperature of 30 deg. C for 72 flours. Under the optimum conditions maximum yield of neutral protease obtained was 662.61+-0.36 U/gds, Almost all the organic nitrogen supplements favored the enzyme production while sucrose proved as a best carbon source. (author)

  13. Environmental Response and Genomic Regions Correlated with Rice Root Growth and Yield under Drought in the OryzaSNP Panel across Multiple Study Systems.

    Directory of Open Access Journals (Sweden)

    Len J Wade

    Full Text Available The rapid progress in rice genotyping must be matched by advances in phenotyping. A better understanding of genetic variation in rice for drought response, root traits, and practical methods for studying them are needed. In this study, the OryzaSNP set (20 diverse genotypes that have been genotyped for SNP markers was phenotyped in a range of field and container studies to study the diversity of rice root growth and response to drought. Of the root traits measured across more than 20 root experiments, root dry weight showed the most stable genotypic performance across studies. The environment (E component had the strongest effect on yield and root traits. We identified genomic regions correlated with root dry weight, percent deep roots, maximum root depth, and grain yield based on a correlation analysis with the phenotypes and aus, indica, or japonica introgression regions using the SNP data. Two genomic regions were identified as hot spots in which root traits and grain yield were co-located; on chromosome 1 (39.7-40.7 Mb and on chromosome 8 (20.3-21.9 Mb. Across experiments, the soil type/ growth medium showed more correlations with plant growth than the container dimensions. Although the correlations among studies and genetic co-location of root traits from a range of study systems points to their potential utility to represent responses in field studies, the best correlations were observed when the two setups had some similar properties. Due to the co-location of the identified genomic regions (from introgression block analysis with QTL for a number of previously reported root and drought traits, these regions are good candidates for detailed characterization to contribute to understanding rice improvement for response to drought. This study also highlights the utility of characterizing a small set of 20 genotypes for root growth, drought response, and related genomic regions.

  14. Isolation and characterization of a Ds-tagged rice (Oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway.

    Science.gov (United States)

    Margis-Pinheiro, Marcia; Zhou, Xue-Rong; Zhu, Qian-Hao; Dennis, Elizabeth S; Upadhyaya, Narayana M

    2005-03-01

    We have isolated a severe dwarf transposon (Ds) insertion mutant in rice (Oryza sativa L.), which could be differentiated early in the seedling stage by reduced shoot growth and dark green leaves, and later by severe dwarfism and failure to initiate flowering. These mutants, however, showed normal seed germination and root growth. One of the sequences flanking Ds, rescued from the mutant, was of a chromosome 4-located putative ent-kaurene synthase (KS) gene, encoding the enzyme catalyzing the second step of the gibberellin (GA) biosynthesis pathway. Dwarf mutants were always homozygous for this Ds insertion and no normal plants homozygous for this mutation were recovered in the segregating progeny, indicating that the Ds insertion mutation is recessive. As mutations in three recently reported rice GA-responsive dwarf mutant alleles and the dwarf mutation identified in this study mapped to the same locus, we designate the corresponding gene OsKS1. The osks1 mutant seedlings were responsive to exogenous gibberellin (GA3). OsKS1 transcripts of about 2.3 kb were detected in leaves and stem of wild-type plants, but not in germinating seeds or roots, suggesting that OsKS1 is not involved in germination or root growth. There are at least five OsKS1-like genes in the rice genome, four of which are also represented in rice expressed sequence tag (EST) databases. All OsKS1-like genes are transcribed with different expression patterns. ESTs corresponding to all six OsKS genes are represented in other cereal databases including barley, wheat and maize, suggesting that they are biologically active.

  15. Microwave radiation effects on the different stages of Sitophilus oryzae (Linne, 1763) (Coleoptera, Curculionidae) evolutive cycle in rice, focusing its control

    International Nuclear Information System (INIS)

    Franco, Jose G.; Franco, Suely S.H.; Franco, Caio H.; Arthur, Paula B.; Arthur, Valter

    2013-01-01

    As insects increase in radio tolerance as they develop and usually several developmental stages of pest may present in grain shipped commodity, it is important to know the microwave radiation susceptibility of stages of the target insect before the establishment of microwave radiation quarantine treatments. The current research had the aim to evaluate the microwave radiation effects on several phases of the rice weevil evolution cycle (S.oryzae), focusing its control. This specie is considered as on of the most serious worldwide pests for stored grains. The tests have been done in glass vials with 250 grams of whole grain (brown) rice and the irradiation was done in a 2,450 MHz commercial microwave oven, model Carousel II (potency of 800W). It was determined the exposure time needed to each phase control for the insect evolutive cycle, concluding that the immature phases (larvae and pupae), contained inside the rice, are more sensitive, requiring only 100 seconds to obtain 100% control while the egg phase requires a longer exposure (130 seconds). Referring to the grown phase, the time required to attain the lethal dose was 160 seconds. All the exposure time have been irradiated with a low potency (240 W). It also displayed that to greater quantities of rice (1.0 kg), with egg presence and forming a 2.0-centimeter layer on the microwave plate surface, it required an exposure time of 180 seconds. Therefore, in a more effective way, we can recommend these 180 seconds exposure time to the control of all phases concerning the insect evolutive cycle. (author)

  16. Development of a quantitative pachytene chromosome map and its unification with somatic chromosome and linkage maps of rice (Oryza sativa L.).

    Science.gov (United States)

    Ohmido, Nobuko; Iwata, Aiko; Kato, Seiji; Wako, Toshiyuki; Fukui, Kiichi

    2018-01-01

    A quantitative pachytene chromosome map of rice (Oryza sativa L.) was developed using imaging methods. The map depicts not only distribution patterns of chromomeres specific to pachytene chromosomes, but also the higher order information of chromosomal structures, such as heterochromatin (condensed regions), euchromatin (decondensed regions), the primary constrictions (centromeres), and the secondary constriction (nucleolar organizing regions, NOR). These features were image analyzed and quantitatively mapped onto the map by Chromosome Image Analyzing System ver. 4.0 (CHIAS IV). Correlation between H3K9me2, an epigenetic marker and formation and/or maintenance of heterochromatin, thus was, clearly visualized. Then the pachytene chromosome map was unified with the existing somatic chromosome and linkage maps by physically mapping common DNA markers among them, such as a rice A genome specific tandem repeat sequence (TrsA), 5S and 45S ribosomal RNA genes, five bacterial artificial chromosome (BAC) clones, four P1 bacteriophage artificial chromosome (PAC) clones using multicolor fluorescence in situ hybridization (FISH). Detailed comparison between the locations of the DNA probes on the pachytene chromosomes using multicolor FISH, and the linkage map enabled determination of the chromosome number and short/long arms of individual pachytene chromosomes using the chromosome number and arm assignment designated for the linkage map. As a result, the quantitative pachytene chromosome map was unified with two other major rice chromosome maps representing somatic prometaphase chromosomes and genetic linkages. In conclusion, the unification of the three rice maps serves as an indispensable basic information, not only for an in-depth comparison between genetic and chromosomal data, but also for practical breeding programs.

  17. Microwave radiation effects on the different stages of Sitophilus oryzae (Linne, 1763) (Coleoptera, Curculionidae) evolutive cycle in rice, focusing its control

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Jose G.; Franco, Suely S.H., E-mail: gilmita@uol.com.br, E-mail: zegilmar60@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Franco, Caio H.; Arthur, Paula B.; Arthur, Valter, E-mail: caiohaddadfranco@lnbio.cnpem.com.br, E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Radiobiologia e Ambiente

    2013-07-01

    As insects increase in radio tolerance as they develop and usually several developmental stages of pest may present in grain shipped commodity, it is important to know the microwave radiation susceptibility of stages of the target insect before the establishment of microwave radiation quarantine treatments. The current research had the aim to evaluate the microwave radiation effects on several phases of the rice weevil evolution cycle (S.oryzae), focusing its control. This specie is considered as on of the most serious worldwide pests for stored grains. The tests have been done in glass vials with 250 grams of whole grain (brown) rice and the irradiation was done in a 2,450 MHz commercial microwave oven, model Carousel II (potency of 800W). It was determined the exposure time needed to each phase control for the insect evolutive cycle, concluding that the immature phases (larvae and pupae), contained inside the rice, are more sensitive, requiring only 100 seconds to obtain 100% control while the egg phase requires a longer exposure (130 seconds). Referring to the grown phase, the time required to attain the lethal dose was 160 seconds. All the exposure time have been irradiated with a low potency (240 W). It also displayed that to greater quantities of rice (1.0 kg), with egg presence and forming a 2.0-cen