WorldWideScience

Sample records for rf power gaas

  1. Initial test of an rf gun with a GaAs cathode installed

    International Nuclear Information System (INIS)

    Aulenbacher, K.; Bossart, R.; Braun, H.

    1996-09-01

    The operation of an rf gun with a GaAs crystal installed as the cathode has been tested in anticipation of eventually producing a polarized electron beam for a future e + /e - collider using an rf photoinjector

  2. n+ GaAs/AuGeNi-Au Thermocouple-Type RF MEMS Power Sensors Based on Dual Thermal Flow Paths in GaAs MMIC

    Directory of Open Access Journals (Sweden)

    Zhiqiang Zhang

    2017-06-01

    Full Text Available To achieve radio frequency (RF power detection, gain control, and circuit protection, this paper presents n+ GaAs/AuGeNi-Au thermocouple-type RF microelectromechanical system (MEMS power sensors based on dual thermal flow paths. The sensors utilize a conversion principle of RF power-heat-voltage, where a thermovoltage is obtained as the RF power changes. To improve the heat transfer efficiency and the sensitivity, structures of two heat conduction paths are designed: one in which a thermal slug of Au is placed between two load resistors and hot junctions of the thermocouples, and one in which a back cavity is fabricated by the MEMS technology to form a substrate membrane underneath the resistors and the hot junctions. The improved sensors were fabricated by a GaAs monolithic microwave integrated circuit (MMIC process. Experiments show that these sensors have reflection losses of less than −17 dB up to 12 GHz. At 1, 5, and 10 GHz, measured sensitivities are about 63.45, 53.97, and 44.14 µV/mW for the sensor with the thermal slug, and about 111.03, 94.79, and 79.04 µV/mW for the sensor with the thermal slug and the back cavity, respectively.

  3. n⁺ GaAs/AuGeNi-Au Thermocouple-Type RF MEMS Power Sensors Based on Dual Thermal Flow Paths in GaAs MMIC.

    Science.gov (United States)

    Zhang, Zhiqiang; Liao, Xiaoping

    2017-06-17

    To achieve radio frequency (RF) power detection, gain control, and circuit protection, this paper presents n⁺ GaAs/AuGeNi-Au thermocouple-type RF microelectromechanical system (MEMS) power sensors based on dual thermal flow paths. The sensors utilize a conversion principle of RF power-heat-voltage, where a thermovoltage is obtained as the RF power changes. To improve the heat transfer efficiency and the sensitivity, structures of two heat conduction paths are designed: one in which a thermal slug of Au is placed between two load resistors and hot junctions of the thermocouples, and one in which a back cavity is fabricated by the MEMS technology to form a substrate membrane underneath the resistors and the hot junctions. The improved sensors were fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process. Experiments show that these sensors have reflection losses of less than -17 dB up to 12 GHz. At 1, 5, and 10 GHz, measured sensitivities are about 63.45, 53.97, and 44.14 µ V/mW for the sensor with the thermal slug, and about 111.03, 94.79, and 79.04 µ V/mW for the sensor with the thermal slug and the back cavity, respectively.

  4. Linearization and efficiency enhancement techniques for silicon power amplifiers from RF to mmW

    CERN Document Server

    Kerhervé, Eric

    2015-01-01

    This book provides an overview of current efficiency enhancement and linearization techniques for silicon power amplifier designs. It examines the latest state of the art technologies and design techniques to address challenges for RF cellular mobile, base stations, and RF and mmW WLAN applications. Coverage includes material on current silicon (CMOS, SiGe) RF and mmW power amplifier designs, focusing on advantages and disadvantages compared with traditional GaAs implementations. With this book you will learn: The principles of linearization and efficiency improvement techniquesThe arch

  5. Final states in Si and GaAs via RF μSR spectroscopy

    International Nuclear Information System (INIS)

    Kreitzman, S.R.; Pfiz, T.; Riseman, T.M.; Brewer, J.H.; Williams, D.L.; Sun-Mack, S.; Estle, T.L.

    1991-01-01

    The ionization of muonium centers in Si and GaAs have been studied using radio frequency (RF) resonant techniques. In Si all three muonic centers are detectable by RF. No evidence was found for delayed Mu and Mu * states at any temperature. However, our results on the diamagnetic final state (μ f + ) show that it is composed of prompt fractions (as seen by conventional μSR) and delayed fractions arising from the ionization of Mu * and Mu. We observe a full μ f + fraction at 317 K when the Mu relaxation rate is above 10 μs -1 . GaAs differs from the situation in Si in that we observed only a partial conversion of Mu * and Mu to a μ + final state up to 310 K in spite of the fact that the transverse field relaxation rates become very high at 150 and 250 K respectively. (orig.)

  6. Final states in Si and GaAs via RF μSR spectroscopy

    Science.gov (United States)

    Kreitzman, S. R.; Pfiz, T.; Sun-Mack, S.; Riseman, T. M.; Brewer, J. H.; Williams, D. Ll.; Estle, T. L.

    1991-02-01

    The ionization of muonium centers in Si and GaAs have been studied using radio frequency (RF) resonant techniques. In Si all three muonic centers are detectable by RF. No evidence was found for delayed Mu and Mu* states at any temperature. However, our results on the diamagnetic final state (μ{f/+}) show that it is composed of prompt fractions (as seen by conventional μSR) and delayed fractions arising from the ionization of Mu* and Mu. We observe a full μ{f/+} fraction at 317 K when the Mu relaxation rate is above 10 μs-1. GaAs differs from the situation in Si in that we observed only a partial conversion of Mu* and Mu to a μ+ final state up to 310 K in spite of the fact that the transverse field relaxation rates become very high at 150 and 250 K respectively.

  7. Magnetic Properties of Fe(001) Thin Films on GaAs(001) Deposited by RF Magnetron Sputtering

    International Nuclear Information System (INIS)

    Ikeya, Hirokazu; Takahashi, Yutaka; Inaba, Nobuyuki; Kirino, Fumiyoshi; Ohtake, Mitsuru; Futamoto, Masaaki

    2011-01-01

    Fe thin films, down to 6 nm thick, were prepared on GaAs(001) substrates by RF magnetron sputtering. The x-ray diffraction (XRD) analyses show that the epitaxial thin films of Fe(001) were grown with cube-on-cube orientation on GaAs(001). Magnetic properties were investigated by vibrating sample magnetometry (VSM) and ferromagnetic resonance (FMR) spectroscopy. The magnetization curves obtained by applying in-plane magnetic fields indicate that easy (hard) direction is along [100] ([110]) and the saturation magnetization is close to the bulk values. The in-plane magnetic anisotropy measured by FMR shows four-fold symmetry, as expected for bcc Fe. We did not observe the in-plane uniaxial magnetic anisotropy reported on the MBE-grown Fe films on GaAs substrates.

  8. Rf power sources

    International Nuclear Information System (INIS)

    Allen, M.A.

    1988-01-01

    In this paper, the author reports on RF power sources for accelerator applications. The approach will be with particular customers in mind. These customers are high energy physicists who use accelerators as experimental tools in the study of the nucleus of the atom, and synchrotron light sources derived from electron or positron storage rings. The author pays close attention to electron- positron linear accelerators since the RF sources have always defined what is possible to achieve with these accelerators. Circular machines, cyclotrons, synchrotrons, etc. have usually not been limited by the RF power available and the machine builders have usually had their RF power source requirements met off the shelf. The main challenge for the RF scientist has been then in the areas of controls. An interesting example of this is in the Conceptual Design Report of the Superconducting Super Collider (SSC) where the RF system is described in six pages of text in a 700-page report. Also, the cost of that RF system is about one-third of a percent of the project's total cost. The RF system is well within the state of the art and no new power sources need to be developed. All the intellectual effort of the system designer would be devoted to the feedback systems necessary to stabilize beams during storage and acceleration, with the main engineering challenges (and costs) being in the superconducting magnet lattice

  9. A capacitive power sensor based on the MEMS cantilever beam fabricated by GaAs MMIC technology

    Science.gov (United States)

    Yi, Zhenxiang; Liao, Xiaoping

    2013-03-01

    In this paper, a novel capacitive power sensor based on the microelectromechanical systems (MEMS) cantilever beam at 8-12 GHz is proposed, fabricated and tested. The presented design can not only realize a cantilever beam instead of the conventional fixed-fixed beam, but also provide fine compatibility with the GaAs monolithic microwave integrated circuit (MMIC) process. When the displacement of the cantilever beam is very small compared with the initial height of the air gap, the capacitance change between the measuring electrode and the cantilever beam has an approximately linear dependence on the incident radio frequency (RF) power. Impedance compensating technology, by modifying the slot width of the coplanar waveguide transmission line, is adopted to minimize the effect of the cantilever beam on the power sensor; its validity is verified by the simulation of high frequency structure simulator software. The power sensor has been fabricated successfully by Au surface micromachining using polyimide as the sacrificial layer on the GaAs substrate. Optimization of the design with impedance compensating technology has resulted in a measured return loss of less than -25 dB and an insertion loss of around 0.1 dB at 8-12 GHz, which shows the slight effect of the cantilever beam on the microwave performance of this power sensor. The measured capacitance change starts from 0.7 fF to 1.3 fF when the incident RF power increases from 100 to 200 mW and an approximate linear dependence has been obtained. The measured sensitivities of the sensor are about 6.16, 6.27 and 6.03 aF mW-1 at 8, 10 and 12 GHz, respectively.

  10. A capacitive power sensor based on the MEMS cantilever beam fabricated by GaAs MMIC technology

    International Nuclear Information System (INIS)

    Yi, Zhenxiang; Liao, Xiaoping

    2013-01-01

    In this paper, a novel capacitive power sensor based on the microelectromechanical systems (MEMS) cantilever beam at 8–12 GHz is proposed, fabricated and tested. The presented design can not only realize a cantilever beam instead of the conventional fixed–fixed beam, but also provide fine compatibility with the GaAs monolithic microwave integrated circuit (MMIC) process. When the displacement of the cantilever beam is very small compared with the initial height of the air gap, the capacitance change between the measuring electrode and the cantilever beam has an approximately linear dependence on the incident radio frequency (RF) power. Impedance compensating technology, by modifying the slot width of the coplanar waveguide transmission line, is adopted to minimize the effect of the cantilever beam on the power sensor; its validity is verified by the simulation of high frequency structure simulator software. The power sensor has been fabricated successfully by Au surface micromachining using polyimide as the sacrificial layer on the GaAs substrate. Optimization of the design with impedance compensating technology has resulted in a measured return loss of less than −25 dB and an insertion loss of around 0.1 dB at 8–12 GHz, which shows the slight effect of the cantilever beam on the microwave performance of this power sensor. The measured capacitance change starts from 0.7 fF to 1.3 fF when the incident RF power increases from 100 to 200 mW and an approximate linear dependence has been obtained. The measured sensitivities of the sensor are about 6.16, 6.27 and 6.03 aF mW −1 at 8, 10 and 12 GHz, respectively. (paper)

  11. Characteristic performance of radio-frequency(RF) plasma heating using inverter RF power supplies

    International Nuclear Information System (INIS)

    Imai, Takahiro; Uesugi, Yoshihiko; Takamura, Shuichi; Sawada, Hiroyuki; Hattori, Norifumi

    2000-01-01

    High heat flux plasma are produced by high powe (∼14 kW) ICRF heating using inverter power supplies in the linear divertor simulator NAGDIS-II. The power flow of radiated rf power is investigated by a calorimetric method. Conventional power calculation using antenna voltage and current gives that about 70% of the rf power is radiated into the plasma. But increase of the heat load at the target and anode is about 10% of the rf power. Through this experiment, we find that about half of the rf power is lost at the antenna surface through the formation of rf induced sheath. And about 30% of the power is lost into the vacuum vessel through the charge exchange and elastic collision of ions with neutrals. (author)

  12. Review of pulsed rf power generation

    International Nuclear Information System (INIS)

    Lavine, T.L.

    1992-04-01

    I am going to talk about pulsed high-power rf generation for normal-conducting electron and positron linacs suitable for applications to high-energy physics in the Next Linear Collider, or NLC. The talk will cover some basic rf system design issues, klystrons and other microwave power sources, rf pulse-compression devices, and test facilities for system-integration studies

  13. New developments in RF power sources

    International Nuclear Information System (INIS)

    Miller, R.H.

    1994-06-01

    The most challenging rf source requirements for high-energy accelerators presently being studied or designed come from the various electron-positron linear collider studies. All of these studies except TESLA (the superconducting entry in the field) have specified rf sources with much higher peak powers than any existing tubes at comparable high frequencies. While circular machines do not, in general, require high peak power, the very high luminosity electron-positron rings presently being designed as B factories require prodigious total average rf power. In this age of energy conservation, this puts a high priority on high efficiency for the rf sources. Both modulating anodes and depressed collectors are being investigated in the quest for high efficiency at varying output powers

  14. Design Concepts for RF-DC Conversion in Particle Accelerator Systems

    CERN Document Server

    Caspers, F; Grudiev, A; Sapotta, H

    2010-01-01

    In many particle accelerators considerable amounts of RF power reaching the megawatt level are converted into heat in dummy loads. After an overview of RF power in the range 200 MHz to 1 GHz dissipated at CERN we discuss several developments that have come up in the past using vacuum tube technology for RF-DC conversion. Amongst those the developments of the cyclotron wave converter CWC appears most suitable. With the availability of powerful Schottky diodes the solid state converter aspect has to be addressed as well. One of the biggest problems of Schottky diode based structures is the junction capacity. GaAs and GaN Schottky diodes show a significant reduction of this junction capacity as compared to silicon. Small rectenna type converter units which have been already developed for microwave powered helicopters can be used in waveguides or with coaxial power dividers.

  15. High RF Power Production for CLIC

    CERN Document Server

    Syratchev, I; Adli, E; Taborelli, M

    2007-01-01

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and delivered to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability and main linac RF power needs. Another requirement is to provide local RF power termination in case of accelerating structure failure (ON/OFF capability). Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design

  16. Rf power sources

    International Nuclear Information System (INIS)

    Allen, M.A.

    1988-05-01

    This paper covers RF power sources for accelerator applications. The approach has been with particular customers in mind. These customers are high energy physicists who use accelerators as experimental tools in the study of the nucleus of the atom, and synchrotron light sources derived from electron or positron storage rings. This paper is confined to electron-positron linear accelerators since the RF sources have always defined what is possible to achieve with these accelerators. 11 refs., 13 figs

  17. RF characterization and testing of ridge waveguide transitions for RF power couplers

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajesh; Jose, Mentes; Singh, G.N. [Ion Accelerator Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Girish [Department of Electrical Engineering, IIT Bombay, Mumbai 400076,India (India); Bhagwat, P.V. [Ion Accelerator Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-12-01

    RF characterization of rectangular to ridge waveguide transitions for RF power couplers has been carried out by connecting them back to back. Rectangular waveguide to N type adapters are first calibrated by TRL method and then used for RF measurements. Detailed information is obtained about their RF behavior by measurements and full wave simulations. It is shown that the two transitions can be characterized and tuned for required return loss at design frequency of 352.2 MHz. This opens the possibility of testing and conditioning two transitions together on a test bench. Finally, a RF coupler based on these transitions is coupled to an accelerator cavity. The power coupler is successfully tested up to 200 kW, 352.2 MHz with 0.2% duty cycle.

  18. High-powered, solid-state rf systems

    International Nuclear Information System (INIS)

    Reid, D.W.

    1987-01-01

    Over the past two years, the requirement to supply megawatts of rf power for space-based applications at uhf and L-band frequencies has caused dramatic increases in silicon solid-state power capabilities in the frequency range from 10 to 3000 MHz. Radar and communications requirements have caused similar increases in gallium arsenide solid-state power capabilities in the frequency ranges from 3000 to 10,000 MHz. This paper reviews the present state of the art for solid-state rf amplifiers for frequencies from 10 to 10,000 MHz. Information regarding power levels, size, weight, and cost will be given. Technical specifications regarding phase and amplitude stability, efficiency, and system architecture will be discussed. Solid-stage rf amplifier susceptibility to radiation damage will also be examined

  19. High power RF oscillator with Marx generators

    International Nuclear Information System (INIS)

    Murase, Hiroshi; Hayashi, Izumi

    1980-01-01

    A method to maintain RF oscillation by using many Marx generators was proposed and studied experimentally. Many charging circuits were connected to an oscillator circuit, and successive pulsed charging was made. This successive charging amplified and maintained the RF oscillation. The use of vacuum gaps and high power silicon diodes improved the characteristics of RF current cut-off of the circuit. The efficiency of the pulsed charging from Marx generators to a condenser was theoretically investigated. The theoretical result showed the maximum efficiency of 0.98. The practical efficiency obtained by using a proposed circuit with a high power oscillator was in the range 0.50 to 0.56. The obtained effective output power of the RF pulses was 11 MW. The maximum holding time of the RF pulses was about 21 microsecond. (Kato, T.)

  20. High power rf component testing for the NLC

    International Nuclear Information System (INIS)

    Vlieks, A.E.; Fowkes, W.R.; Loewen, R.J.; Tantawi, S.G.

    1998-09-01

    In the Next Linear Collider (NLC), the high power rf components must be capable of handling peak rf power levels in excess of 600 MW. In the current view of the NLC, even the rectangular waveguide components must transmit at least 300 MW rf power. At this power level, peak rf fields can greatly exceed 100 MV/m. The authors present recent results of high power tests performed at the Accelerator Structure Test Area (ASTA) at SLAC. These tests are designed to investigate the rf breakdown limits of several new components potentially useful for the NLC. In particular, the authors tested a new TE 01 --TE 10 circular to rectangular wrap-around mode converter, a modified (internal fin) Magic Tee hybrid, and an upgraded flower petal mode converter

  1. Development and advances in conventional high power RF systems

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1995-06-01

    The development of rf systems capable of producing high peak power (hundreds of megawatts) at relatively short pulse lengths (0.1--5 microseconds) is currently being driven mainly by the requirements of future high energy linear colliders, although there may be applications to industrial, medical and research linacs as well. The production of high peak power rf typically involves four basic elements: a power supply to convert ac from the ''wall plug'' to dc; a modulator, or some sort of switching element, to produce pulsed dc power; an rf source to convert the pulsed dc to pulsed rf power; and possibly an rf pulse compression system to further enhance the peak rf power. Each element in this rf chain from wall plug to accelerating structure must perform with high efficiency in a linear collider application, such that the overall system efficiency is 30% or more. Basic design concepts are discussed for klystrons, modulators and rf pulse compression systems, and their present design status is summarized for applications to proposed linear colliders

  2. Embedded control system for high power RF amplifiers

    International Nuclear Information System (INIS)

    Sharma, Deepak Kumar; Gupta, Alok Kumar; Jain, Akhilesh; Hannurkar, P.R.

    2011-01-01

    RF power devices are usually very sensitive to overheat and reflected RF power; hence a protective interlock system is required to be embedded with high power solid state RF amplifiers. The solid state RF amplifiers have salient features of graceful degradation and very low mean time to repair (MTTR). In order to exploit these features in favour of lowest system downtime, a real-time control system is embedded with high power RF amplifiers. The control system is developed with the features of monitoring, measurement and network publishing of various parameters, historical data logging, alarm generation, displaying data to the operator and tripping the system in case of any interlock failure. This paper discusses the design philosophy, features, functions and implementation details of the embedded control system. (author)

  3. Series-Tuned High Efficiency RF-Power Amplifiers

    DEFF Research Database (Denmark)

    Vidkjær, Jens

    2008-01-01

    An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits.......An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits....

  4. High power RF systems for the BNL ERL project

    Energy Technology Data Exchange (ETDEWEB)

    Zaltsman, A.; Lambiase, R.

    2011-03-28

    The Energy Recovery Linac (ERL) project, now under construction at Brookhaven National Laboratory, requires two high power RF systems. The first RF system is for the 703.75 MHz superconducting electron gun. The RF power from this system is used to drive nearly half an Ampere of beam current to 2 MeV. There is no provision to recover any of this energy so the minimum amplifier power is 1 MW. It consists of 1 MW CW klystron, transmitter and power supplies, 1 MW circulator, 1 MW dummy load and a two-way power splitter. The second RF system is for the 703.75 MHz superconducting cavity. The system accelerates the beam to 54.7 MeV and recovers this energy. It will provide up to 50 kW of CW RF power to the cavity. It consists of 50 kW transmitter, circulator, and dummy load. This paper describes the two high power RF systems and presents the test data for both.

  5. Low reflectance high power RF load

    Science.gov (United States)

    Ives, R. Lawrence; Mizuhara, Yosuke M.

    2016-02-02

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  6. Design of an L-band normally conducting RF gun cavity for high peak and average RF power

    Energy Technology Data Exchange (ETDEWEB)

    Paramonov, V., E-mail: paramono@inr.ru [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Philipp, S. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Rybakov, I.; Skassyrskaya, A. [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Stephan, F. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany)

    2017-05-11

    To provide high quality electron bunches for linear accelerators used in free electron lasers and particle colliders, RF gun cavities operate with extreme electric fields, resulting in a high pulsed RF power. The main L-band superconducting linacs of such facilities also require a long RF pulse length, resulting in a high average dissipated RF power in the gun cavity. The newly developed cavity based on the proven advantages of the existing DESY RF gun cavities, underwent significant changes. The shape of the cells is optimized to reduce the maximal surface electric field and RF loss power. Furthermore, the cavity is equipped with an RF probe to measure the field amplitude and phase. The elaborated cooling circuit design results in a lower temperature rise on the cavity RF surface and permits higher dissipated RF power. The paper presents the main solutions and results of the cavity design.

  7. High Power RF Test Facility at the SNS

    CERN Document Server

    Kang, Yoon W; Campisi, Isidoro E; Champion, Mark; Crofford, Mark; Davis, Kirk; Drury, Michael A; Fuja, Ray E; Gurd, Pamela; Kasemir, Kay-Uwe; McCarthy, Michael P; Powers, Tom; Shajedul Hasan, S M; Stirbet, Mircea; Stout, Daniel; Tang, Johnny Y; Vassioutchenko, Alexandre V; Wezensky, Mark

    2005-01-01

    RF Test Facility has been completed in the SNS project at ORNL to support test and conditioning operation of RF subsystems and components. The system consists of two transmitters for two klystrons powered by a common high voltage pulsed converter modulator that can provide power to two independent RF systems. The waveguides are configured with WR2100 and WR1150 sizes for presently used frequencies: 402.5 MHz and 805 MHz. Both 402.5 MHz and 805 MHz systems have circulator protected klystrons that can be powered by the modulator capable of delivering 11 MW peak and 1 MW average power. The facility has been equipped with computer control for various RF processing and complete dual frequency operation. More than forty 805 MHz fundamental power couplers for the SNS superconducting linac (SCL) cavitites have been RF conditioned in this facility. The facility provides more than 1000 ft2 floor area for various test setups. The facility also has a shielded cave area that can support high power tests of normal conducti...

  8. Eighth CW and High Average Power RF Workshop

    CERN Document Server

    2014-01-01

    We are pleased to announce the next Continuous Wave and High Average RF Power Workshop, CWRF2014, to take place at Hotel NH Trieste, Trieste, Italy from 13 to 16 May, 2014. This is the eighth in the CWRF workshop series and will be hosted by Elettra - Sincrotrone Trieste S.C.p.A. (www.elettra.eu). CWRF2014 will provide an opportunity for designers and users of CW and high average power RF systems to meet and interact in a convivial environment to share experiences and ideas on applications which utilize high-power klystrons, gridded tubes, combined solid-state architectures, high-voltage power supplies, high-voltage modulators, high-power combiners, circulators, cavities, power couplers and tuners. New ideas for high-power RF system upgrades and novel ways of RF power generation and distribution will also be discussed. CWRF2014 sessions will start on Tuesday morning and will conclude on Friday lunchtime. A visit to Elettra and FERMI will be organized during the workshop. ORGANIZING COMMITTEE (OC): Al...

  9. High power RF transmission line component development

    International Nuclear Information System (INIS)

    Hong, B. G.; Hwang, C. K.; Bae, Y. D.; Yoon, J. S.; Wang, S. J.; Gu, S. H.; Yang, J. R.; Hahm, Y. S.; Oh, G. S.; Lee, J. R.; Lee, W. I.; Park, S. H.; Kang, M. S.; Oh, S. H.; Lee, W.I.

    1999-12-01

    We developed the liquid stub and phase shifter which are the key high RF power transmission line components. They show reliable operation characteristics and increased insulation capability, and reduced the size by using liquid (silicon oil, dielectric constant ε=2.72) instead of gas for insulating dielectric material. They do not have finger stock for the electric contact so the local temperature rise due to irregular contact and RF breakdown due to scratch in conductor are prevented. They can be utilized in broadcasting, radar facility which require high RF power transmission. Moreover, they are key components in RF heating system for fusion reactor. (author)

  10. High power RF transmission line component development

    Energy Technology Data Exchange (ETDEWEB)

    Hong, B. G.; Hwang, C. K.; Bae, Y. D.; Yoon, J. S.; Wang, S. J.; Gu, S. H.; Yang, J. R.; Hahm, Y. S.; Oh, G. S.; Lee, J. R.; Lee, W. I.; Park, S. H.; Kang, M. S.; Oh, S. H.; Lee, W.I

    1999-12-01

    We developed the liquid stub and phase shifter which are the key high RF power transmission line components. They show reliable operation characteristics and increased insulation capability, and reduced the size by using liquid (silicon oil, dielectric constant {epsilon}=2.72) instead of gas for insulating dielectric material. They do not have finger stock for the electric contact so the local temperature rise due to irregular contact and RF breakdown due to scratch in conductor are prevented. They can be utilized in broadcasting, radar facility which require high RF power transmission. Moreover, they are key components in RF heating system for fusion reactor. (author)

  11. Development of C-band High-Power Mix-Mode RF Window

    CERN Document Server

    Michizono, S; Matsumoto, T; Nakao, K; Takenaka, T

    2004-01-01

    High power c-band (5712 MHz) rf system (40 MW, 2 μs, 50 Hz) is under consideration for the electron-linac upgrade aimed for the super KEKB project. An rf window, which isolates the vacuum and pass the rf power, is one of the most important components for the rf system. The window consists of a ceramic disk and a pill-box housing. The mix-mode rf window is designed so as to decrease the electric field on the periphery of the ceramic disk. A resonant ring is assembled in order to examine the high-power transmission test. The window was tested up to the transmission power of 160 MW. The rf losses are also measured during the rf operation.

  12. RF power generation for future linear colliders

    International Nuclear Information System (INIS)

    Fowkes, W.R.; Allen, M.A.; Callin, R.S.; Caryotakis, G.; Eppley, K.R.; Fant, K.S.; Farkas, Z.D.; Feinstein, J.; Ko, K.; Koontz, R.F.; Kroll, N.; Lavine, T.L.; Lee, T.G.; Miller, R.H.; Pearson, C.; Spalek, G.; Vlieks, A.E.; Wilson, P.B.

    1990-06-01

    The next linear collider will require 200 MW of rf power per meter of linac structure at relatively high frequency to produce an accelerating gradient of about 100 MV/m. The higher frequencies result in a higher breakdown threshold in the accelerating structure hence permit higher accelerating gradients per meter of linac. The lower frequencies have the advantage that high peak power rf sources can be realized. 11.42 GHz appears to be a good compromise and the effort at the Stanford Linear Accelerator Center (SLAC) is being concentrated on rf sources operating at this frequency. The filling time of the accelerating structure for each rf feed is expected to be about 80 ns. Under serious consideration at SLAC is a conventional klystron followed by a multistage rf pulse compression system, and the Crossed-Field Amplifier. These are discussed in this paper

  13. RF Power Generation in LHC

    CERN Document Server

    Brunner, O C; Valuch, D

    2003-01-01

    The counter-rotating proton beams in the Large Hadron Collider (LHC) will be captured and then accelerated to their final energies of 2 x 7 TeV by two identical 400 MHz RF systems. The RF power source required for each beam comprises eight 300 kW klystrons. The output power of each klystron is fed via a circulator and a waveguide line to the input coupler of a single-cell super-conducting (SC) cavity. Four klystrons are powered by a 100 kV, 40A AC/DC power converter, previously used for the operation of the LEP klystrons. A five-gap thyratron crowbar protects the four klystrons in each of these units. The technical specification and measured performance of the various high-power elements are discussed. These include the 400MHz/300kW klystrons with emphasis on their group delay and the three-port circulators, which have to cope with peak reflected power levels up to twice the simultaneously applied incident power of 300 kW. In addition, a novel ferrite loaded waveguide absorber, used as termination for port No...

  14. High Power RF Transmitters for ICRF Applications on EAST

    International Nuclear Information System (INIS)

    Mao Yuzhou; Yuan Shuai; Zhao Yanping; Zhang Xinjun; Chen Gen; Cheng Yan; Wang Lei; Ju Songqing; Deng Xu; Qin Chengming; Yang Lei; Kumazawa, R.

    2013-01-01

    An Ion Cyclotron Range of Frequency (ICRF) system with a radio frequency (RF) power of 4 × 1.5 MW was developed for the Experimental Advanced Superconducting Tokamak (EAST). High RF power transmitters were designed as a part of the research and development (R and D) for an ICRF system with long pulse operation at megawatt levels in a frequency range of 25 MHz to 70 MHz. Studies presented in this paper cover the following parts of the high power transmitter: the three staged high power amplifier, which is composed of a 5 kW wideband solid state amplifier, a 100 kW tetrode drive stage amplifier and a 1.5 MW tetrode final stage amplifier, and the DC high voltage power supply (HVPS). Based on engineering design and static examinations, the RF transmitters were tested using a matched dummy load where an RF output power of 1.5 MW was achieved. The transmitters provide 6 MW RF power in primary phase and will reach a level up to 12 MW after a later upgrade. The transmitters performed successfully in stable operations in EAST and HT-7 devices. Up to 1.8 MW of RF power was injected into plasmas in EAST ICRF heating experiments during the 2010 autumn campaign and plasma performance was greatly improved.

  15. Advances in high-power rf amplifiers

    International Nuclear Information System (INIS)

    Tallerico, P.J.

    1979-01-01

    Several powerful accelerators and storage rings are being considered that will require tens or even hundreds of megawatts of continuous rf power. The economics of such large machines can be dictated by the cost and efficiency of the rf amplifiers. The overall design and performance of such narrow-band amplifiers, operating in the 50- to 1500-MHz region, are being theoretically studied as a function of frequency to determine the optimum rf amplifier output power, gain, efficiency, and dc power requirements. The state of the art for three types of amplifiers (gridded tubes, klystrons, and gyrocons) is considered and the development work necessary to improve each is discussed. The gyrocon is a new device, hence its various embodiments are discussed in detail. The Soviet designs are reviewed and the gyrocon's strengths and weaknesses are compared to other types of microwave amplifiers. The primary advantages of the gyrocon are the very large amount of power available from a single device and the excellent efficiency and stable operation. The klystron however, has much greater gain and is simpler mechanically. At very low frequencies, the small size of the gridded tube makes it the optimum choice for all but the most powerful systems

  16. Progress on a cryogenically cooled RF gun polarized electron source

    Energy Technology Data Exchange (ETDEWEB)

    Fliller, R.P., III; Edwards, H.; /Fermilab

    2006-08-01

    RF guns have proven useful in multiple accelerator applications. An RF gun capable of producing polarized electrons is an attractive electron source for the ILC or an electron-ion collider. Producing such a gun has proven elusive. The NEA GaAs photocathode needed for polarized electron production is damaged by the vacuum environment in an RF gun. Electron and ion back bombardment can also damage the cathode. These problems must be mitigated before producing an RF gun polarized electron source. In this paper we report continuing efforts to improve the vacuum environment in a normal conducting RF gun by cooling it with liquid nitrogen after a high temperature vacuum bake out. We also report on a design of a cathode preparation chamber to produce bulk GaAs photocathodes for testing in such a gun. Future directions are also discussed.

  17. Rf-to-dc power converters for wireless powering

    KAUST Repository

    Ouda, Mahmoud Hamdy

    2016-12-01

    Various examples are provided related to radio frequency (RF) to direct current (DC) power conversion. In one example, a RF-to-DC converter includes a fully cross-coupled rectification circuit including a pair of forward rectifying transistors and a feedback circuit configured to provide feedback bias signals to gates of the pair of forward rectifying transistors via feedback branch elements. In another example, a method includes receiving a radio frequency (RF) signal; rectifying the RF signal via a fully cross-coupled rectification circuit including a pair of forward rectifying transistors; and providing a DC output voltage from an output connection of the fully cross-coupled rectification circuit, where gating of the pair of forward rectifying transistors is controlled by feedback bias signals provided to gates of the pair of forward rectifying transistors via feedback branch elements.

  18. Glycol-Substitute for High Power RF Water Loads

    CERN Document Server

    Ebert, Michael

    2005-01-01

    In water loads for high power rf applications, power is dissipated directly into the coolant. Loads for frequencies below approx. 1GHz are ordinarily using an ethylene glycol-water mixture as coolant. The rf systems at DESY utilize about 100 glycol water loads with powers ranging up to 600kW. Due to the increased ecological awareness, the use of glycol is now considered to be problematic. In EU it is forbidden to discharge glycol into the waste water system. In case of cooling system leakages one has to make sure that no glycol is lost. Since it is nearly impossible to avoid any glycol loss in large rf systems, a glycol-substitute was searched for and found. The found sodium-molybdate based substitute is actually a additive for corrosion protection in water systems. Sodium-molybdate is ecologically harmless; for instance, it is also used as fertilizer in agriculture. A homoeopathic dose of 0.4% mixed into deionised water gives better rf absorption characteristics than a 30% glycol mixture. The rf coolant feat...

  19. RF Power Transfer, Energy Harvesting, and Power Management Strategies

    Science.gov (United States)

    Abouzied, Mohamed Ali Mohamed

    Energy harvesting is the way to capture green energy. This can be thought of as a recycling process where energy is converted from one form (here, non-electrical) to another (here, electrical). This is done on the large energy scale as well as low energy scale. The former can enable sustainable operation of facilities, while the latter can have a significant impact on the problems of energy constrained portable applications. Different energy sources can be complementary to one another and combining multiple-source is of great importance. In particular, RF energy harvesting is a natural choice for the portable applications. There are many advantages, such as cordless operation and light-weight. Moreover, the needed infra-structure can possibly be incorporated with wearable and portable devices. RF energy harvesting is an enabling key player for Internet of Things technology. The RF energy harvesting systems consist of external antennas, LC matching networks, RF rectifiers for ac to dc conversion, and sometimes power management. Moreover, combining different energy harvesting sources is essential for robustness and sustainability. Wireless power transfer has recently been applied for battery charging of portable devices. This charging process impacts the daily experience of every human who uses electronic applications. Instead of having many types of cumbersome cords and many different standards while the users are responsible to connect periodically to ac outlets, the new approach is to have the transmitters ready in the near region and can transfer power wirelessly to the devices whenever needed. Wireless power transfer consists of a dc to ac conversion transmitter, coupled inductors between transmitter and receiver, and an ac to dc conversion receiver. Alternative far field operation is still tested for health issues. So, the focus in this study is on near field. The goals of this study are to investigate the possibilities of RF energy harvesting from various

  20. Toward High-Power Klystrons With RF Power Conversion Efficiency on the Order of 90%

    CERN Document Server

    Baikov, Andrey Yu; Syratchev, Igor

    2015-01-01

    The increase in efficiency of RF power generation for future large accelerators is considered a high priority issue. The vast majority of the existing commercial high-power RF klystrons operates in the electronic efficiency range between 40% and 55%. Only a few klystrons available on the market are capable of operating with 65% efficiency or above. In this paper, a new method to achieve 90% RF power conversion efficiency in a klystron amplifier is presented. The essential part of this method is a new bunching technique - bunching with bunch core oscillations. Computer simulations confirm that the RF production efficiency above 90% can be reached with this new bunching method. The results of a preliminary study of an L-band, 20-MW peak RF power multibeam klystron for Compact Linear Collider with the efficiency above 85% are presented.

  1. The RF power system for the SNS linac

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Reass, W.A.

    1998-01-01

    The initial goal of the SNS project is to produce a 1 MW average beam of protons with short pulse lengths onto a neutron-producing target. The objective of the SNS RF system is to generate 117 MW peak of pulsed 805 MHz microwave power with an accelerated beam pulse length of 1.04 ms at a 60 Hz repetition rate. The power system must be upgradeable in peak power to deliver 2 MW average power to the neutron target. The RF system also requires about 3 MW peak of RF power at 402.5 MHz, but that system is not discussed here. The design challenge is to produce an RF system at minimum cost, that is very reliable and economical to operate. The combination of long pulses and high repetition rates make conventional solutions, such as the pulse transformer and transmission line method, very expensive. The klystron, with a modulating anode, and 1.5 MW of peak output power is the baseline RF amplifier, an 56 are required in the baseline design. The authors discuss four power system configurations that are the candidates for the design. The baseline design is a floating-deck modulating anode system. A second power system being investigated is the fast-pulsed power supply, that can be turned on and off with a rise time of under 0.1 ms. This could eliminate the need for a modulator, and drastically reduce the energy storage requirements. A third idea is to use a pulse transformer with a series IGBT switch and a bouncer circuit on the primary side, as was done for the TESLA modulator. A fourth method is to use a series IGBT switch at high voltage, and not use a pulse transformer. The authors discuss the advantages and problems of these four types of power systems, but they emphasize the first two

  2. High power RF systems for LEHIPA of ADS

    International Nuclear Information System (INIS)

    Pande, Manjiri; Shrotriya, Sandip; Sharma, Sonal; Rao, B.V.R.; Mishra, J.K.; Patel, Niranjan; Gupta, S.K.

    2011-01-01

    Worldwide accelerator driven sub-critical system (ADS) has generated a huge interest for various reasons. In India, as a part of accelerator driven sub-critical system (ADS) program, a normal conducting, low energy high intensity proton accelerator (LEHIPA) of energy 20 MeV and beam current of 30 mA is being developed in Bhabha Atomic Research Centre (BARC). LEHIPA comprises of Electron Cyclotron Resonance (ECR) ion source (50 KeV), Radio Frequency Quadrupole (RFQ) accelerator (3 MeV) and Drift tube Linac (DTL) 1 and 2 (10 MeV and 20 MeV respectively). As per the accelerator physics design, RFQ requires nearly 530 kW RF power while each of DTL need 900 kW. Each accelerating cavity will be driven by a one- megawatt (CW) klystron based high power RF (HPRF) system at 352.21 MHz. Three such RF systems will be developed. The RF system has been designed around five cavity klystron tube TH2089F (Thales make) capable of delivering 1 MW continuous wave power at 352.21 MHz. The klystron has a gain of 40 dB and efficiency around 62 %. Each of the RF system comprises of a low power solid state driver (∼ 100 W), klystron tube, harmonic filter, directional coupler, Y-junction circulator (AFT make), RF load and WR2300 wave guide based RF transmission line each of 1 MW capacity. It also includes other subsystems like bias supplies (high voltage (HV) and low voltage (LV)), HV interface system, interlock and protection circuits, dedicated low conductivity water-cooling, pulsing circuitry/mechanisms etc. WR 2300 based RF transmission line transmits and feeds the RE power from klystron source to respective accelerating cavity. This transmission line starts from second port of the circulator and consists of straight sections, full height to half height transition, magic Tee, termination load at the centre of magic tee, half height sections, directional couplers and RE windows. For X-ray shielding, klystron will be housed in a lead (3 mm) based shielded cage. This system set up has a

  3. High power tests of X-band RF windows at KEK

    Energy Technology Data Exchange (ETDEWEB)

    Otake, Yuji [Earthquake Research Inst., Tokyo Univ., Tokyo (Japan); Tokumoto, Shuichi; Kazakov, Sergei Yu.; Odagiri, Junichi; Mizuno, Hajime

    1997-04-01

    Various RF windows comprising a short pill-box, a long pill-box, a TW (traveling wave)-mode and three TE11-mode horn types have been developed for an X-band high-power pulse klystron with two output windows for JLC (Japan Linear Collider). The output RF power of the klystron is designed to be 130 MW with the 800 ns pulse duration. Since this X-band klystron has two output windows, the maximum RF power of the window must be over 85 MW. The design principle for the windows is to reduce the RF-power density and/or the electric-field strength at the ceramic part compared with that of an ordinary pill-box-type window. Their reduction is effective to increase the handling RF power of the window. To confirm that the difference among the electric-field strengths depends on their RF structures, High-power tests of the above-mentioned windows were successfully carried out using a traveling-wave resonator (TWR) for the horns and the TW-mode type and, installing them directly to klystron output waveguides for the short and long pill-box type. Based upon the operation experience of S-band windows, two kinds of ceramic materials were used for these tests. The TE11-mode 1/2{lambda}g-1 window was tested up to the RF peak-power of 84 MW with the 700 ns pulse duration in the TWR. (J.P.N)

  4. Peel-and-Stick Sensors Powered by Directed RF Energy

    Energy Technology Data Exchange (ETDEWEB)

    Lalau-Keraly, Christopher; Daniel, George; Lee, Joseph; Schwartz, David

    2017-08-30

    PARC, a Xerox Company, is developing a low-cost system of peel-and-stick wireless sensors that will enable widespread building environment sensor deployment with the potential to deliver up to 30% energy savings. The system is embodied by a set of RF hubs that provide power to automatically located sensor nodes, and relay data wirelessly to the building management system (BMS). The sensor nodes are flexible electronic labels powered by rectified RF energy transmitted by an RF hub and can contain multiple printed and conventional sensors. The system design overcomes limitations in wireless sensors related to power delivery, lifetime, and cost by eliminating batteries and photovoltaic devices. Sensor localization is performed automatically by the inclusion of a programmable multidirectional antenna array in the RF hub. Comparison of signal strengths while the RF beam is swept allows for sensor localization, reducing installation effort and enabling automatic recommissioning of sensors that have been relocated, overcoming a significant challenge in building operations. PARC has already demonstrated wireless power and temperature data transmission up to a distance of 20m with less than one minute between measurements, using power levels well within the FCC regulation limits in the 902-928 MHz ISM band. The sensor’s RF energy harvesting antenna achieves high performance with dimensions below 5cm x 9cm

  5. Indoor Wireless RF Energy Transfer for Powering Wireless Sensors

    Directory of Open Access Journals (Sweden)

    H. Visser

    2012-12-01

    Full Text Available For powering wireless sensors in buildings, rechargeable batteries may be used. These batteries will be recharged remotely by dedicated RF sources. Far-field RF energy transport is known to suffer from path loss and therefore the RF power available on the rectifying antenna or rectenna will be very low. As a consequence, the RF-to-DC conversion efficiency of the rectenna will also be very low. By optimizing not only the subsystems of a rectenna but also taking the propagation channel into account and using the channel information for adapting the transmit antenna radiation pattern, the RF energy transport efficiency will be improved. The rectenna optimization, channel modeling and design of a transmit antenna are discussed.

  6. Low power RF beam control electronics for the LEB

    International Nuclear Information System (INIS)

    Mestha, L.K.; Mangino, J.; Brouk, V.; Uher, T.; Webber, R.C.

    1993-05-01

    Beam Control Electronics for the Low Energy Booster (LEB) should provide a fine reference phase and frequency for the High Power RF System. Corrections applied on the frequency of the rf signal will reduce dipole synchrotron oscillations due to power supply regulation errors, errors in frequency source or errors in the cavity voltage. It will allow programmed beam radial position control throughout the LEB acceleration cycle. Furthermore the rf signal provides necessary connections during, adiabatic capture of the beam as injected into the LEB by the Linac and will guarantee LEB rf phase synchronism with the Medium Energy Booster (MEB) rf at a programmed time in the LEB cycle between a unique LEB bucket and a unique MEB bucket. We show in this paper a design and possible interfaces with other subsystems of the LEB such as the beam instrumentation, High Power RF Stations, global accelerator controls and the precision timing system. The outline of various components of the beam control system is also presented followed by some test results

  7. Rf power systems for the national synchrotron light source

    International Nuclear Information System (INIS)

    Dickinson, T.; Rheaume, R.H.

    1981-01-01

    The booster synchrotron and the two storage rings at the NSLS are provided with rf power systems of 3 kW, 50 kW, and 500 kW nominal output power, all at 53 MHz. This power is supplied by grounded grid tetrode amplifiers designed for television broadcast service. These amplifiers and associated power supplies, control and interlock systems, rf controls, and computer interface are described

  8. 1 GHz GaAs Buck Converter for High Power Amplifier Modulation Applications

    NARCIS (Netherlands)

    Busking, E.B.; Hek, A.P. de; Vliet, F.E. van

    2012-01-01

    A fully integrated 1 GHz buck converter output stage, including on-chip inductor and DC output filtering has been realized, in a standard high-voltage breakdown GaAs MMIC technology. This is a significant step forward in designing highspeed power control of supply-modulated HPAs (high power

  9. Outage Performance of Hybrid FSO/RF System with Low-Complexity Power Adaptation

    KAUST Repository

    Rakia, Tamer

    2016-02-26

    Hybrid free-space optical (FSO) / radio-frequency (RF) systems have emerged as a promising solution for high data- rate wireless communication systems. We consider truncated channel inversion based power adaptation strategy for coherent and non- coherent hybrid FSO/RF systems, employing an adaptive combining scheme. Specifically, we activate the RF link along with the FSO link when FSO link quality is unacceptable, and adaptively set RF transmission power to ensure constant combined signal-to-noise ratio at receiver terminal. Analytical expressions for the outage probability of the hybrid system with and without power adaptation are derived. Numerical examples show that, the hybrid FSO/RF systems with power adaptation achieve considerable outage performance improvement over conventional hybrid FSO/RF systems without power adaptation. © 2015 IEEE.

  10. Development of new S-band RF window for stable high-power operation in linear accelerator RF system

    Science.gov (United States)

    Joo, Youngdo; Lee, Byung-Joon; Kim, Seung-Hwan; Kong, Hyung-Sup; Hwang, Woonha; Roh, Sungjoo; Ryu, Jiwan

    2017-09-01

    For stable high-power operation, a new RF window is developed in the S-band linear accelerator (Linac) RF systems of the Pohang Light Source-II (PLS-II) and the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL). The new RF window is designed to mitigate the strength of the electric field at the ceramic disk and also at the waveguide-cavity coupling structure of the conventional RF window. By replacing the pill-box type cavity in the conventional RF window with an overmoded cavity, the electric field component perpendicular to the ceramic disk that caused most of the multipacting breakdowns in the ceramic disk was reduced by an order of magnitude. The reduced electric field at the ceramic disk eliminated the Ti-N coating process on the ceramic surface in the fabrication procedure of the new RF window, preventing the incomplete coating from spoiling the RF transmission and lowering the fabrication cost. The overmoded cavity was coupled with input and output waveguides through dual side-wall coupling irises to reduce the electric field strength at the waveguide-cavity coupling structure and the possibility of mode competitions in the overmoded cavity. A prototype of the new RF window was fabricated and fully tested with the Klystron peak input power, pulse duration and pulse repetition rate of 75 MW, 4.5 μs and 10 Hz, respectively, at the high-power test stand. The first mass-produced new RF window installed in the PLS-II Linac is running in normal operation mode. No fault is reported to date. Plans are being made to install the new RF window to all S-band accelerator RF modules of the PLS-II and PAL-XFEL Linacs. This new RF window may be applied to the output windows of S-band power sources like Klystron as wells as the waveguide windows of accelerator facilities which operate in S-band.

  11. Effects Of Environmental And Operational Stresses On RF MEMS Switch Technologies For Space Applications

    Science.gov (United States)

    Jah, Muzar; Simon, Eric; Sharma, Ashok

    2003-01-01

    Micro Electro Mechanical Systems (MEMS) have been heralded for their ability to provide tremendous advantages in electronic systems through increased electrical performance, reduced power consumption, and higher levels of device integration with a reduction of board real estate. RF MEMS switch technology offers advantages such as low insertion loss (0.1- 0.5 dB), wide bandwidth (1 GHz-100 GHz), and compatibility with many different process technologies (quartz, high resistivity Si, GaAs) which can replace the use of traditional electronic switches, such as GaAs FETS and PIN Diodes, in microwave systems for low signal power (x technologies, the unknown reliability, due to the lack of information concerning failure modes and mechanisms inherent to MEMS devices, create an obstacle to insertion of MEMS technology into high reliability applications. All MEMS devices are sensitive to moisture and contaminants, issues easily resolved by hermetic or near-hermetic packaging. Two well-known failure modes of RF MEMS switches are charging in the dielectric layer of capacitive membrane switches and contact interface stiction of metal-metal switches. Determining the integrity of MEMS devices when subjected to the shock, vibration, temperature extremes, and radiation of the space environment is necessary to facilitate integration into space systems. This paper will explore the effects of different environmental stresses, operational life cycling, temperature, mechanical shock, and vibration on the first commercially available RF MEMS switches to identify relevant failure modes and mechanisms inherent to these device and packaging schemes for space applications. This paper will also describe RF MEMS Switch technology under development at NASA GSFC.

  12. The Development of the Electrically Controlled High Power RF Switch and Its Application to Active RF Pulse Compression Systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan [Stanford Univ., CA (United States)

    2008-12-01

    In the past decades, there has been increasing interest in pulsed high power RF sources for building high-gradient high-energy particle accelerators. Passive RF pulse compression systems have been used in many applications to match the available RF sources to the loads requiring higher RF power but a shorter pulse. Theoretically, an active RF pulse compression system has the advantage of higher efficiency and compactness over the passive system. However, the key component for such a system an element capable of switching hundreds of megawatts of RF power in a short time compared to the compressed pulse width is still an open problem. In this dissertation, we present a switch module composed of an active window based on the bulk effects in semiconductor, a circular waveguide three-port network and a movable short plane, with the capability to adjust the S-parameters before and after switching. The RF properties of the switch module were analyzed. We give the scaling laws of the multiple-element switch systems, which allow the expansion of the system to a higher power level. We present a novel overmoded design for the circular waveguide three-port network and the associated circular-to-rectangular mode-converter. We also detail the design and synthesis process of this novel mode-converter. We demonstrate an electrically controlled ultra-fast high power X-band RF active window built with PIN diodes on high resistivity silicon. The window is capable of handling multi-megawatt RF power and can switch in 2-300ns with a 1000A current driver. A low power active pulse compression experiment was carried out with the switch module and a 375ns resonant delay line, obtaining 8 times compression gain with a compression ratio of 20.

  13. Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications

    Science.gov (United States)

    Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.

    1986-01-01

    A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.

  14. A describing function approach to bipolar RF-power amplifier simulation

    DEFF Research Database (Denmark)

    Vidkjær, Jens

    1981-01-01

    A method for fast and accurate computations of the primary performance parameters such as gain, efficiency, output power, and bandwidth in class-C biased RF-power amplifier stages is presented. The method is based on a describing function characterization of the RF-power transistor where the term...

  15. Advanced digital modulation: Communication techniques and monolithic GaAs technology

    Science.gov (United States)

    Wilson, S. G.; Oliver, J. D., Jr.; Kot, R. C.; Richards, C. R.

    1983-01-01

    Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case.

  16. RF power consumption emulation optimized with interval valued homotopies

    DEFF Research Database (Denmark)

    Musiige, Deogratius; Anton, François; Yatskevich, Vital

    2011-01-01

    This paper presents a methodology towards the emulation of the electrical power consumption of the RF device during the cellular phone/handset transmission mode using the LTE technology. The emulation methodology takes the physical environmental variables and the logical interface between...... the baseband and the RF system as inputs to compute the emulated power dissipation of the RF device. The emulated power, in between the measured points corresponding to the discrete values of the logical interface parameters is computed as a polynomial interpolation using polynomial basis functions....... The evaluation of polynomial and spline curve fitting models showed a respective divergence (test error) of 8% and 0.02% from the physically measured power consumption. The precisions of the instruments used for the physical measurements have been modeled as intervals. We have been able to model the power...

  17. A 12 GHz RF Power Source for the CLIC Study

    Energy Technology Data Exchange (ETDEWEB)

    Schirm, Karl; /CERN; Curt, Stephane; /CERN; Dobert, Steffen; /CERN; McMonagle, Gerard; /CERN; Rossat, Ghislain; /CERN; Syratchev, Igor; /CERN; Timeo, Luca; /CERN; Haase, Andrew /SLAC; Jensen, Aaron; /SLAC; Jongewaard, Erik; /SLAC; Nantista, Christopher; /SLAC; Sprehn, Daryl; /SLAC; Vlieks, Arnold; /SLAC; Hamdi, Abdallah; /Saclay; Peauger, Franck; /Saclay; Kuzikov, Sergey; /Nizhnii Novgorod, IAP; Vikharev, Alexandr; /Nizhnii Novgorod, IAP

    2012-07-03

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for CLIC accelerating structure testing. A design and fabrication contract for five klystrons at that frequency has been signed by different parties with SLAC. France (IRFU, CEA Saclay) is contributing a solid state modulator purchased in industry and specific 12 GHz RF network components to the CLIC study. RF pulses over 120 MW peak at 230 ns length will be obtained by using a novel SLED-I type pulse compression scheme designed and fabricated by IAP, Nizhny Novgorod, Russia. The X-band power test stand is being installed in the CLIC Test Facility CTF3 for independent structure and component testing in a bunker, but allowing, in a later stage, for powering RF components in the CTF3 beam lines. The design of the facility, results from commissioning of the RF power source and the expected performance of the Test Facility are reported.

  18. A 12 GHZ RF Power source for the CLIC study

    CERN Document Server

    Peauger, F; Curt, S; Doebert, S; McMonagle, G; Rossat, G; Schirm, KM; Syratchev, I; Timeo, L; Kuzikhov, S; Vikharev, AA; Haase, A; Sprehn, D; Jensen, A; Jongewaard, EN; Nantista, CD; Vlieks, A

    2010-01-01

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for CLIC accelerating structure testing. A design and fabrication contract for five klystrons at that frequency has been signed by different parties with SLAC. France (IRFU, CEA Saclay) is contributing a solid state modulator purchased in industry and specific 12 GHz RF network components to the CLIC study. RF pulses over 120 MW peak at 230 ns length will be obtained by using a novel SLED-I type pulse compression scheme designed and fabricated by IAP, Nizhny Novgorod, Russia. The X-band power test stand is being installed in the CLIC Test Facility CTF3 for independent structure and component testing in a bunker, but allowing, in a later stage, for powering RF components in the CTF3 beam lines. The design of the facility, results from commissioning of the RF power source and the expected performance of the Test Facility are reported.

  19. Testing a GaAs cathode in SRF gun

    International Nuclear Information System (INIS)

    Wang, E.; Kewisch, J.; Ben-Zvi, I.; Burrill, A.; Rao, T.; Wu, Q.; Holmes, D.

    2011-01-01

    RF electron guns with a strained superlattice GaAs cathode are expected to generate polarized electron beams of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode's surface and lower cathode temperature. We plan to install a bulk GaAs:Cs in a SRF gun to evaluate the performance of both the gun and the cathode in this environment. The status of this project is: In our 1.3 GHz 1/2 cell SRF gun, the vacuum can be maintained at nearly 10 -12 Torr because of cryo-pumping at 2K. With conventional activation of bulk GaAs, we obtained a QE of 10% at 532 nm, with lifetime of more than 3 days in the preparation chamber and have shown that it can survive in transport from the preparation chamber to the gun. The beam line has been assembled and we are exploring the best conditions for baking the cathode under vacuum. We report here the progress of our test of the GaAs cathode in the SRF gun. Future particle accelerators, such as eRHIC and the ILC require high-brightness, high-current polarized electrons. Strained superlattice GaAs:Cs has been shown to be an efficient cathode for producing polarized electrons. Activation of GaAs with Cs,O(F) lowers the electron affinity and makes it energetically possible for all the electrons, excited into the conduction band that drift or diffuse to the emission surface, to escape into the vacuum. Presently, all operating polarized electron sources, such as the CEBAF, are DC guns. In these devices, the excellent ultra-high vacuum extends the lifetime of the cathode. However, the low field gradient on the photocathode's emission surface of the DC guns limits the beam quality. The higher accelerating gradients, possible in the RF guns, generate a far better beam. Until recently, most RF guns operated at room temperature, limiting the vacuum to ∼10 -9 Torr. This destroys the GaAs's NEA surface. The SRF guns combine the excellent vacuum conditions of DC guns and the high accelerating

  20. RF power harvesting: a review on designing methodologies and applications

    Science.gov (United States)

    Tran, Le-Giang; Cha, Hyouk-Kyu; Park, Woo-Tae

    2017-12-01

    Wireless power transmission was conceptualized nearly a century ago. Certain achievements made to date have made power harvesting a reality, capable of providing alternative sources of energy. This review provides a summ ary of radio frequency (RF) power harvesting technologies in order to serve as a guide for the design of RF energy harvesting units. Since energy harvesting circuits are designed to operate with relatively small voltages and currents, they rely on state-of-the-art electrical technology for obtaining high efficiency. Thus, comprehensive analysis and discussions of various designs and their tradeoffs are included. Finally, recent applications of RF power harvesting are outlined.

  1. RF Power Requirements for PEFP SRF Cavity Test

    International Nuclear Information System (INIS)

    Kim, Han Sung; Seol, Kyung Tae; Kwon, Hyeok Jung; Cho, Yong Sub

    2011-01-01

    For the future extension of the PEFP (Proton Engineering Frontier Project) Proton linac, preliminary study on the SRF (superconducting radio-frequency) cavity is going on including a five-cell prototype cavity development to confirm the design and fabrication procedures and to check the RF and mechanical properties of a low-beta elliptical cavity. The main parameters of the cavity are like followings. - Frequency: 700 MHz - Operating mode: TM010 pi mode - Cavity type: Elliptical - Geometrical beta: 0.42 - Number of cells: 5 - Accelerating gradient: 8 MV/m - Epeak/Eacc: 3.71 - Bpeak/Eacc: 7.47 mT/(MV/m) - R/Q: 102.3 ohm - Epeak: 29.68 MV/m (1.21 Kilp.) - Geometrical factor: 121.68 ohm - Cavity wall thickness: 4.3 mm - Stiffening structure: Double ring - Effective length: 0.45 m For the test of the cavity at low temperature of 4.2 K, many subsystems are required such as a cryogenic system, RF system, vacuum system and radiation shielding. RF power required to generate accelerating field inside cavity depends on the RF coupling parameters of the power coupler and quality factor of the SRF cavity and the quality factor itself is affected by several factors such as operating temperature, external magnetic field level and surface condition. Therefore, these factors should be considered to estimate the required RF power for the SRF cavity test

  2. RF power source for the compact linear collider test facility (CTF3)

    CERN Document Server

    McMonagle, G; Brown, Peter; Carron, G; Hanni, R; Mourier, J; Rossat, G; Syratchev, I V; Tanner, L; Thorndahl, L

    2004-01-01

    The CERN CTF3 facility will test and demonstrate many vital components of CLIC (Compact Linear Collider). This paper describes the pulsed RF power source at 2998.55 MHz for the drive-beam accelerator (DBA), which produces a beam with an energy of 150 MeV and a current of 3.5 Amps. Where possible, existing equipment from the LEP preinjector, especially the modulators and klystrons, is being used and upgraded to achieve this goal. A high power RF pulse compression system is used at the output of each klystron, which requires sophisticated RF phase programming on the low level side to achieve the required RF pulse. In addition to the 3 GHz system two pulsed RF sources operating at 1.5 GHz are being built. The first is a wide-band, low power, travelling wave tube (TWT) for the subharmonic buncher (SHB) system that produces a train of "phase coded" subpulses as part of the injector scheme. The second is a high power narrow band system to produce 20 MW RF power to the 1.5 GHz RF deflectors in the delay loop situate...

  3. RF-MMW Dipole Antenna Arrays From Laser Illuminated GaAs

    National Research Council Canada - National Science Library

    Umphenour, D

    1998-01-01

    High resistivity photoconductive Gallium Arsenide (GaAs) can be used as elemental Hertzian dipole antenna arrays in which the time varying dipole current is produced by temporally modulating a laser (0.63um...

  4. Introduction to RF power amplifier design and simulation

    CERN Document Server

    Eroglu, Abdullah

    2015-01-01

    Introduction to RF Power Amplifier Design and Simulation fills a gap in the existing literature by providing step-by-step guidance for the design of radio frequency (RF) power amplifiers, from analytical formulation to simulation, implementation, and measurement. Featuring numerous illustrations and examples of real-world engineering applications, this book:Gives an overview of intermodulation and elaborates on the difference between linear and nonlinear amplifiersDescribes the high-frequency model and transient characteristics of metal-oxide-semiconductor field-effect transistorsDetails activ

  5. Progress on Using NEA Cathodes in an RF Gun

    CERN Document Server

    Fliller, Raymond P; Blüm, Hans; Edwards, Helen; Hüning, Markus; Schultheiss, Tom; Sinclair, Charles K

    2005-01-01

    RF guns have proven useful in multiple accelerator applications, and are an attractive electron source for the ILC. Using a NEA GaAs photocathode in such a gun allows for the production of polarized electron beams. However the lifetime of a NEA cathode in this environment is reduced by ion and electron bombardment and residual gas oxidation. We report progress made with studies to produce a RF gun using a NEA GaAs photocathode to produce polarized electron beams. Attempts to reduce the residual gas pressure in the gun are discussed. Initial measurements of ion flux through the cathode port are compared with simulations of ion bombardment. Future directions are also discussed.

  6. High-power RF controls for the NBS-Los Alamos racetrack microtron

    International Nuclear Information System (INIS)

    Young, L.M.; Biddl, R.S.

    1985-01-01

    The high-power rf system for the National Bureau of Standards (NBS)-Los Alamos racetrack microtron (RTM) uses waveguide power splitters and waveguide phase shifters to distribute rf power from a single 500-kw cw klystron to four side-coupled accelerating structures. The amplitude and phase of each structure is controlled by a feedback system that uses the waveguide variable power splitters, waveguide phase shifters, and klystron drive as the active control elements. The feedback controls on the capture section use low-level rf amplitude and phase controls on the rf drive to the klystron. These controls are very fast with an open loop gain bandwidth of approximately 40 kHz. The feedback loop is identical to the feedback loop used in the chopper/buncher system described in another paper at this conference

  7. EXCESS RF POWER REQUIRED FOR RF CONTROL OF THE SPALLATION NEUTRON SOURCE (SNS) LINAC, A PULSED HIGH-INTENSITY SUPERCONDUCTING PROTON ACCELERATOR

    International Nuclear Information System (INIS)

    Lynch, M.; Kwon, S.

    2001-01-01

    A high-intensity proton linac, such as that being planned for the SNS, requires accurate RF control of cavity fields for the entire pulse in order to avoid beam spill. The current design requirement for the SNS is RF field stability within ±0.5% and ±0.5 o [1]. This RF control capability is achieved by the control electronics using the excess RF power to correct disturbances. To minimize the initial capital costs, the RF system is designed with 'just enough' RF power. All the usual disturbances exist, such as beam noise, klystron/HVPS noise, coupler imperfections, transport losses, turn-on and turn-off transients, etc. As a superconducting linac, there are added disturbances of large magnitude, including Lorentz detuning and microphonics. The effects of these disturbances and the power required to correct them are estimated, and the result shows that the highest power systems in the SNS have just enough margin, with little or no excess margin

  8. Summary of the 3rd workshop on high power RF-systems for accelerators

    International Nuclear Information System (INIS)

    Sigg, P.K.

    2005-01-01

    The aim of this workshop was to bring together experts from the field of CW and high average power RF systems. The focus was on operational and reliability issues of high-power amplifiers using klystrons and tubes, large power supplies; as well as cavity design and low-level RF and feedback control systems. All these devices are used in synchrotron radiation facilities, high power linacs and collider rings, and cyclotrons. Furthermore, new technologies and their applications were introduced, amongst other: high power solid state amplifiers, IOT amplifiers, and high voltage power supplies employing solid state controllers/crowbars. Numerical methods for complete rf-field modeling of complex RF structures like cyclotrons were presented, as well as integrated RF-cavity designs (electro-magnetic fields and mechanical structure), using numerical methods. (author)

  9. High power RF window deposition apparatus, method, and device

    Science.gov (United States)

    Ives, Lawrence R.; Lucovsky, Gerald; Zeller, Daniel

    2017-07-04

    A process for forming a coating for an RF window which has improved secondary electron emission and reduced multipactor for high power RF waveguides is formed from a substrate with low loss tangent and desirable mechanical characteristics. The substrate has an RPAO deposition layer applied which oxygenates the surface of the substrate to remove carbon impurities, thereafter has an RPAN deposition layer applied to nitrogen activate the surface of the substrate, after which a TiN deposition layer is applied using Titanium tert-butoxide. The TiN deposition layer is capped with a final RPAN deposition layer of nitridation to reduce the bound oxygen in the TiN deposition layer. The resulting RF window has greatly improved titanium layer adhesion, reduced multipactor, and is able to withstand greater RF power levels than provided by the prior art.

  10. Feasibility Study for High Power RF – Energy Recovery in Particle Accelerators

    CERN Document Server

    Betz, Michael

    2010-01-01

    When dealing with particle accelerators, especially in systems with travelling wave structures and low beam loading, a substantial amount of RF power is dissipated in 50Ω termination loads. For the Super Proton Synchrotron (SPS) at Cern this is 69 % of the incident RF power or about 1 MW. Different ideas, making use of that otherwise dissipated power, are presented and their feasibility is reviewed. The most feasible one, utilizing an array of semiconductor based RF/DC modules, is used to create a design concept for energy recovery in the SPS. The modules are required to operate at high power, high efficiency and with low harmonic radiation. Besides the actual RF rectifier, they contain additional components to ensure a graceful degradation of the overall system. Different rectifier architectures and semiconductor devices are compared and the most suitable ones are chosen. Two prototype devices were built and operated with up to 400 W of pulsed RF power. Broadband measurements – capturing all harmonics up ...

  11. RF power sources for 5--15 TeV linear colliders

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1996-09-01

    After outlining the design of the NLC rf system at 1 TeV, the possibility of a leap in linear collider energy into the 5--15 TeV energy range is considered. To keep the active accelerator length and ac wall-plug power within reasonable bounds, higher accelerating gradients at higher rf frequencies will be necessary. Scaling relations are developed for basic rf system parameters as a function of frequency, and some specific parameter examples are given for colliders at 34 Ghz and 91 Ghz. Concepts for rf pulse compression system design and for high power microwave sources at 34 Ghz (for example sheet-beam and multiple-beam klystrons) are briefly discussed

  12. High power RF test of an 805 MHz RF cavity for a muon cooling channel

    International Nuclear Information System (INIS)

    Li, Derun; Corlett, J.; MacGill, R.; Rimmer, R.; Wallig, J.; Zisman, M.; Moretti, A.; Qian, Z.; Wu, V.; Summers, D.; Norem, J.

    2002-01-01

    We present recent high power RF test results on an 805 MHz cavity for a muon cooling experiment at Lab G in Fermilab. In order to achieve high accelerating gradient for large transverse emittance muon beams, the cavity design has adopted a pillbox like shape with 16 cm diameter beam iris covered by thin Be windows, which are demountable to allow for RF tests of different windows. The cavity body is made from copper with stiff stainless steel rings brazed to the cavity body for window attachments. View ports and RF probes are available for visual inspections of the surface of windows and cavity and measurement of the field gradient. Maximum of three thermo-couples can be attached to the windows for monitoring the temperature gradient on the windows caused by RF heating. The cavity was measured to have Q 0 of about 15,000 with copper windows and coupling constant of 1.3 before final assembling. A 12 MW peak power klystron is available at Lab G in Fermilab for the high power test. The cavity and coupler designs were performed using the MAFIA code in the frequency and the time domain. Numerical simulation results and cold test measurements on the cavity and coupler will be presented for comparisons

  13. Modeling high-power RF accelerator cavities with SPICE

    International Nuclear Information System (INIS)

    Humphries, S. Jr.

    1992-01-01

    The dynamical interactions between RF accelerator cavities and high-power beams can be treated on personal computers using a lumped circuit element model and the SPICE circuit analysis code. Applications include studies of wake potentials, two-beam accelerators, microwave sources, and transverse mode damping. This report describes the construction of analogs for TM mn0 modes and the creation of SPICE input for cylindrical cavities. The models were used to study continuous generation of kA electron beam pulses from a vacuum cavity driven by a high-power RF source

  14. A low-power RF system with accurate synchronization for a S-band RF-gun using a laser-triggered photocathode

    International Nuclear Information System (INIS)

    Otake, Y.; Naito, T.; Shintake, T.; Takata, K.; Takeuchi, Y.; Urakawa, J.; Yoshioka, M.; Akiyama, H.

    1992-01-01

    An S-band RF-gun using a laser-triggered photocathode and its low-power RF system have been constructed. The main elements of the low-power RF system comprise a 600-W amplifier, an amplitude modulator, a phase detector, a phase shifter and a frequency-divider module. Synchronization between the RF fields for acceleration and the mode-locked laser pulses for beam triggering are among the important points concerning the RF-gun. The frequency divider module which down-converts from 2856 MHz(RF) to 89.25 MHz(laser), and the electrical phase-shifter were specially developed for stable phase control. The phase jitter of the frequency divider should be less than 10 ps to satisfy our present requirements. The first experiments to trigger and accelerate beams with the above-mentioned system were carried out in January, 1992. (Author) 6 figs., 5 refs

  15. Optimized Envelope Tracking Power Supply for Tetra2 Base Station RF Power Amplifier

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2008-01-01

    An ultra-fast tracking power supply (UFTPS) for envelope tracking in a 50kHz 64-QAM Tetra2 base station power amplification system is demonstrated. A simple method for optimizing the step response of the PID+PD sliding-mode control system is presented and demonstrated, along with a PLL-based scheme...... application. Also demonstrated is the effect of non-zero UFTPS output impedance on envelope tracking performance. At 13W average (156W peak) RF output, a reduction of DC input power consumption from 93W (14% efficiency) to 54W (24% efficiency) is obtained by moving from a fixed RF power amplifier supply...

  16. Development of a large proton accelerator for innovative researches; development of high power RF source

    Energy Technology Data Exchange (ETDEWEB)

    Chung, K. H.; Lee, K. O.; Shin, H. M.; Chung, I. Y. [KAPRA, Seoul (Korea); Kim, D. I. [Inha University, Incheon (Korea); Noh, S. J. [Dankook University, Seoul (Korea); Ko, S. K. [Ulsan University, Ulsan (Korea); Lee, H. J. [Cheju National University, Cheju (Korea); Choi, W. H. [Korea Advanced Institute of Science and Technology, Taejeon (Korea)

    2002-05-01

    This study was performed with objective to design and develop the KOMAC proton accelerator RF system. For the development of the high power RF source for CCDTL(coupled cavity drift tube linac), the medium power RF system using the UHF klystron for broadcasting was integrated and with this RF system we obtained the basic design data, operation experience and code-validity test data. Based on the medium power RF system experimental data, the high power RF system for CCDTL was designed and its performed was analyzed. 16 refs., 64 figs., 27 tabs. (Author)

  17. Analysis of Passive RF-DC Power Rectification and Harvesting Wireless RF Energy for Micro-watt Sensors

    Directory of Open Access Journals (Sweden)

    Antwi Nimo

    2015-04-01

    Full Text Available In this paper, analytical modeling of passive rectifying circuits and the harvesting of electromagnetic (EM power from intentionally generated as well as from ubiquitous sources are presented. The presented model is based on the linearization of rectifying circuits. The model provides an accurate method of determining the output characteristics of rectifying circuits. The model was verified with Advance Design System (ADS Harmonic balance (HB simulations and measurements. The results from the presented model were in agreement with simulations and measurements. Consequently design considerations and trade-off of radio frequency (RF harvesters are discussed. To verify the exploitation of ambient RF power sources for operation of sensors, a dual-band antenna with a size of ~λ/4 at 900MHz and a passive dual-band rectifier that is able to power a commercial Thermo-Hygrometer requiring ~1.3V and 0.5MΩ from a global system for mobile communications (GSM base station is demonstrated. The RF power delivered by the receiving dual-band antenna at a distance of about 110 m from the GSM base station ranges from -27 dBm to -50 dBm from the various GSM frequency bands. Additionally, wireless range measurements of the RF harvesters in the industrial, scientific and medical (ISM band 868MHz is presented at indoor conditions.

  18. Influences of the RF power ratio on the optical and electrical properties of GZO thin films by DC coupled RF magnetron sputtering at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Shou [State Key Laboratory of Advanced Technology for Float Glass, Bengbu 233018 (China); Bengbu Design & Research Institute for Glass Industry, Bengbu 233018 (China); Yao, Tingting, E-mail: yaott0815@163.com [State Key Laboratory of Advanced Technology for Float Glass, Bengbu 233018 (China); Bengbu Design & Research Institute for Glass Industry, Bengbu 233018 (China); Yang, Yong; Zhang, Kuanxiang; Jiang, Jiwen; Jin, Kewu; Li, Gang; Cao, Xin; Xu, Genbao; Wang, Yun [State Key Laboratory of Advanced Technology for Float Glass, Bengbu 233018 (China); Bengbu Design & Research Institute for Glass Industry, Bengbu 233018 (China)

    2016-12-15

    Ga-doped zinc oxide (GZO) thin films were deposited by closed field unbalanced DC coupled RF magnetron sputtering system at room temperature. The RF sputtering power ratio was adjusted from 0% to 100%. The crystal structure, surface morphology, transmittance and electrical resistivity of GZO films mainly influenced by RF sputtering power ratio were investigated by X-ray diffractometer, scanning electronic microscope, ultraviolet-visible spectrophotometer and Hall effect measurement. The research results indicate that the increasing RF power ratio can effectively reduce the discharge voltage of system and increase the ionizing rate of particles. Meanwhile, the higher RF power ratio can increase the carrier mobility in GZO thin film and improve the optical and electrical properties of GZO thin film significantly. Within the optimal discharge voltage window, the film deposits at 80% RF power ratio exhibits the lowest resistivity of 2.6×10{sup −4} Ω cm. We obtain the GZO film with the best average optical transmittance is approximately 84% in the visible wavelength. With the increasing RF power ratio, the densification of GZO film is enhanced. The densification of GZO film is decrease when the RF power ratio is 100%.

  19. Design and manufacture of the RF power supply and RF transmission line for SANAEM project Prometheus

    Science.gov (United States)

    Turemen, G.; Ogur, S.; Ahiska, F.; Yasatekin, B.; Cicek, E.; Ozbey, A.; Kilic, I.; Unel, G.; Alacakir, A.

    2017-08-01

    A 1-5 MeV proton beamline is being built by the Turkish Atomic Energy Authority in collaboration with a number of graduate students from different universities. The primary goal of the project, is to acquire the design ability and manufacturing capability of all the components locally. SPP will be an accelerator and beam diagnostics test facility and it will also serve the detector development community with its low beam current. This paper discusses the design and construction of the RF power supply and the RF transmission line components such as its waveguide converters and its circulator. Additionally low and high power RF test results are presented to compare the performances of the locally produced components to the commercially available ones.

  20. RF power dependent formation of amorphous MoO3-x nanorods by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Navas, I.; Vinodkumar, R.; Detty, A.P.; Mahadevan Pillai, V.P.

    2009-01-01

    Full text: The fabrication of nanorods has received increasing attention for their unique physical and chemical properties and a wide range of potential applications such as photonics and nanoelectronics Molybdenum oxide nanorods with high activity can be used in a wide variety of applications such as cathodes in rechargeable batteries, field emission devices, solid lubricants, superconductors thermoelectric materials, and electrochromic devices. In this paper, amorphous MoO 3-x nanorods can find excellent applications in electrochromic and gas sensing have been successfully prepared by varying the R F power in R F Magnetron Sputtering system without heating the substrate; other parameters which are optimised in our earlier studies. We have found that the optimum RF power for nanorod formation is 200W. At a moderate RF power (200W), sputtering redeposition takes places constructively which leads to formation of fine nanorods. Large RF power creates high energetic ion bombardment on the grains surfaces which can lead to re-nucleation, so the grains become smaller and columnar growth is interrupted. Beyond the RF power 200W, the etching effect of the plasma became more severe and damaged the surface of the nanorods. All the molybdenum oxide films prepared are amorphous; the XRD patterns exhibit no characteristic peak corresponds to MoO 3 . The amorphous nature is preferred for good electrochromic colouration The spectroscopic properties of the nanorods have been investigated systematically using atomic force microscopy, x-ray diffraction, micro-Raman, UV-visible and photoluminescence (PL) spectroscopy. The films exhibit two emission bands; a near band edge UV emission and a defect related deep level visible emission

  1. A 35 GHz wireless millimeter-wave power sensor based on GaAs micromachining technology

    International Nuclear Information System (INIS)

    Wang, De-bo; Liao, Xiao-ping

    2012-01-01

    A novel MEMS wireless millimeter-wave power sensor based on GaAs MMIC technology is presented in this paper. The principle of this wireless millimeter-wave power sensor is explained. It is designed and fabricated using MEMS technology and the GaAs MMIC process. With the millimeter-wave power range from 0.1 to 80 mW, the sensitivity of the wireless millimeter-wave power sensor is about 0.246 mV mW −1 at 35 GHz. In order to verify the power detection capability, this wireless power sensor is mounted on a PCB which influences the microwave performance of the CPW-fed antenna including the return loss and the radiation pattern. The frequency-dependent characteristic and the degree-dependent characteristic of this wireless power sensor are researched. Furthermore, in addition to the combination of the advantages of CPW-fed antenna with the advantages of the thermoelectric power sensor, another significant advantage of this wireless millimeter-wave power sensor is that it can be integrated with MMICs and other planar connecting circuit structures with zero dc power consumption. These features make it suitable for various applications ranging from the environment or space radiation detection systems to radar receiver and transmitter systems. (paper)

  2. High-power rf controls for the NBS-Los Alamos racetrack microtron

    International Nuclear Information System (INIS)

    Young, L.M.; Biddle, R.S.

    1985-01-01

    The high-power rf system for the National Bureau of Standards (NBS)-Los Alamos racetrack microtron (RTM) uses waveguide power splitters and waveguide phase shifters to distribute rf power from a single 500-kW cw klystron to four side-coupled accelerating structures. The amplitude and phase of each structure is controlled by a feedback system that uses the waveguide variable power splitters, waveguide phase shifters, and klystron drive as the active control elements. A block diagram of this system is shown, as is a subset of the complete system on which the measurements reported in this paper were performed. The feedback controls on the capture section use low-level rf amplitude and phase controls on the rf drive to the klystron. These controls are very fast with an open loop gain bandwidth of approximately 40 kHz. The feedback loop is identical to the feedback loop used in the chopper/buncher system described in another paper at this conference. 4 refs., 8 figs

  3. HIGH POWER TESTS OF A MULTIMODE X-BAND RF DISTRIBUTION SYSTEMS

    International Nuclear Information System (INIS)

    Tantawi, S

    2004-01-01

    We present a multimode X-band rf pulse compression system suitable for the Next Linear Collider (NLC). The NLC main linacs operate at 11.424 GHz. A single NLC rf unit is required which produce 400 ns pulses with 600 MW of peak power. Each rf unit should power approximately 5 meters of accelerator structures. These rf units consist of two 75 MW klystrons and a dual-moded resonant delay line pulse compression system [1] that produce a flat output pulse. The pulse compression system components are all over moded and most components are design to operate with two modes at the same time. This approach allows increasing the power handling capabilities of the system while maintain a compact inexpensive system. We detail the design of this system and present experimental cold test results. The high power testing of the system is verified using four 50-MW solenoid focused klystrons. These Klystrons should be able to push the system beyond NLC requirements

  4. Novel rf power sensor based on capacitive MEMS technology

    NARCIS (Netherlands)

    Fernandez, L.J.; Visser, Eelke; Sesé, J.; Jansen, Henricus V.; Wiegerink, Remco J.; Flokstra, Jakob

    2003-01-01

    We present the theory, design, fabrication of and first measurements on a novel power for radio frequency (rf) signals, based on capacitive measurements. The novelty of this sensor is thtat it measures the force that is created between the rf signal and a grounded membrande suspended above the line

  5. Effect of RF power and substrate temperature on physical properties of Zr0.8Sn0.2TiO4 films by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Hsu Cheng-Shing; Huang Cheng-Liang

    2001-01-01

    Physical properties of rf-sputtered crystalline (Zr 0.8 Sn 0.2 )TiO 4 (ZST) thin films deposited on n-type Si(100) substrates at different rf powers and substrate temperatures have been investigated. The structural and morphological characteristics analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) were found to be sensitive to deposition conditions, such as rf power from 300 W to 400 W and substrate temperature (400degC, 450degC). Highly oriented ZST (111) and (002) perpendicular to the substrate surface were identified at a rf power of 400 W and a substrate temperature of 450degC. The selected-area diffraction pattern showed that the deposited films exhibited a polycrystalline microstructure. The grain size as well as the deposition rate of the film increased with the increase in both the rf power and the substrate temperature. The leakage current decreased with increasing rf power and substrate temperature. As rf power = 400 W and substrate temperature = 450degC, a leakage current of 7.2x10 -11 A was obtained at 1 V. (author)

  6. Ultra-broadband Nonlinear Microwave Monolithic Integrated Circuits in SiGe, GaAs and InP

    DEFF Research Database (Denmark)

    Krozer, Viktor; Johansen, Tom Keinicke; Djurhuus, Torsten

    2006-01-01

    .5 GHz and ≫ 10 GHz for SiGe BiCMOS and GaAs MMIC, respectively. Analysis of the frequency behaviour of frequency converting devices is presented for improved mixer design. Millimeter-wave front-end components for advanced microwave imaging and communications purposes have also been demonstrated......Analog MMIC circuits with ultra-wideband operation are discussed in view of their frequency limitation and different circuit topologies. Results for designed and fabricated frequency converters in SiGe, GaAs, and InP technologies are presented in the paper. RF type circuit topologies exhibit a flat...... conversion gain with a 3 dB bandwidth of 10 GHz for SiGe and in excess of 20 GHz for GaAs processes. The concurrent LO-IF isolation is better than -25 dB, without including the improvement due to the combiner circuit. The converter circuits exhibit similar instantaneous bandwidth at IF and RF ports of ≫ 7...

  7. A novel symmetrical microwave power sensor based on GaAs monolithic microwave integrated circuit technology

    International Nuclear Information System (INIS)

    Wang, De-bo; Liao, Xiao-ping

    2009-01-01

    A novel symmetrical microwave power sensor based on GaAs monolithic microwave integrated circuit (MMIC) technology is presented in this paper. In this power sensor, the left section inputs the microwave power, while the right section inputs the dc power. Because of the symmetrical structure, this power sensor is created to provide more accurate microwave power measurement capability without mismatch uncertainty and restrain temperature drift. The loss model is built and the loss voltage is 0.8 mV at 20 GHz when the input power is 100 mW. This power sensor is designed and fabricated using GaAs MMIC technology. And it is measured in the frequency range up to 20 GHz with the input power in the −20 dBm to 19 dBm range. Over the 19 dBm dynamic range, the sensitivity can achieve about 0.2 mV mW −1 . The difference between the input powers in the two sections is below 0.1% for equal output voltages. For an amplitude modulation measurement, the carrier frequency is the main factor to influence the measurement results. In short, the key aspect of this power sensor is that the microwave power measurement can be replaced by a dc power measurement with precise wideband

  8. Coating power RF components with TiN

    International Nuclear Information System (INIS)

    Kuchnir, M.; Hahn, E.

    1995-03-01

    A facility for coating RF power components with thin films of Ti and/or TiN has been in operation for some time at Fermilab supporting the Accelerator Division RF development work and the TESLA program. It has been experimentally verified that such coatings improve the performance of these components as far as withstanding higher electric fields. This is attributed to a reduction in the secondary electron emission coefficient of the surfaces when coated with a thin film containing titanium. The purpose of this Technical Memorandum is to describe the facility and the procedure used

  9. Milliwatt-level output power in the sub-terahertz range generated by photomixing in a GaAs photoconductor

    Science.gov (United States)

    Peytavit, E.; Lepilliet, S.; Hindle, F.; Coinon, C.; Akalin, T.; Ducournau, G.; Mouret, G.; Lampin, J.-F.

    2011-11-01

    It is shown from accurate on-wafer measurement that continuous wave output powers of 1.2 mW at 50 GHz and 0.35 mW at 305 GHz can be generated by photomixing in a low temperature grown GaAs photoconductor using a metallic mirror Fabry-Pérot cavity. The output power is improved by a factor of about 100 as compared to the previous works on GaAs photomixers. A satisfactory agreement between the theory and the experiment is obtained in considering both the contribution of the holes and the electrons to the total photocurrent.

  10. Effect on antenna structure of high power rf during plasma operation

    International Nuclear Information System (INIS)

    Haste, G.R.; Thomas, C.E.; Fadnek, A.; Carter, M.D.; Beaumont, B.; Becoulet, A.; Kuus, H.; Saoutic, B.

    1993-01-01

    High-power, long-pulse operation on the Tore Supra tokamak results in considerable stress on the plasma-facing components. The ICH antennas must deliver high-power rf(up to 4 MW per antenna) in this environment. The antenna structure is therefore subjected to the power flux resulting from the interaction between rf and the edge plasma. The structure's response during operation is described, as is the condition of the antenna after prolonged use

  11. A capacitive rf power sensor based on mems technology

    NARCIS (Netherlands)

    Fernandez, L.J.

    2005-01-01

    Existing power sensors for RF signals are based on thermistors, diodes and thermocouples. These power sensors are used as terminating devices and therefore they dissipate the complete incoming signal. Furthermore, new telecommunication systems require low weight, volume and power consumption and a

  12. X-band RF power sources for accelerator applications

    International Nuclear Information System (INIS)

    Kirshner, Mark F.; Kowalczyk, Richard D.; Wilsen, Craig B.; True, Richard B.; Simpson, Ian T.; Wray, John T.

    2011-01-01

    The majority of medical and industrial linear accelerators (LINACs) in use today operate at S-band. To reduce size and weight, these systems are gradually migrating toward X-band. The new LINACs will require suitable RF components to power them. In anticipation of this market, L-3 Communications Electron Devices Division (EDD) has recently developed a suite of RF sources operating at 9.3 GHz to complement our existing S-band product line. (author)

  13. Efficient Direct-Matching Rectenna Design for RF Power Transfer Applications

    Science.gov (United States)

    Keyrouz, Shady; Visser, Huib

    2013-12-01

    This paper presents the design, simulation, fabrication and measurements of a 50 ohm rectenna system. The paper investigates each part (in terms of input impedance) of the rectenna system starting from the antenna, followed by the matching network, to the rectifier. The system consists of an antenna, which captures the transmitted RF signal, connected to a rectifier which converts the AC captured signal into a DC power signal. For maximum power transfer, a matching network is designed between the rectifier and the antenna. At an input power level of -10 dBm, the system is able to achieve an RF/DC power conversion efficiency of 49.7%.

  14. Efficient Direct-Matching Rectenna Design for RF Power Transfer Applications

    International Nuclear Information System (INIS)

    Keyrouz, Shady; Visser, Huib

    2013-01-01

    This paper presents the design, simulation, fabrication and measurements of a 50 ohm rectenna system. The paper investigates each part (in terms of input impedance) of the rectenna system starting from the antenna, followed by the matching network, to the rectifier. The system consists of an antenna, which captures the transmitted RF signal, connected to a rectifier which converts the AC captured signal into a DC power signal. For maximum power transfer, a matching network is designed between the rectifier and the antenna. At an input power level of −10 dBm, the system is able to achieve an RF/DC power conversion efficiency of 49.7%

  15. Look at energy compression as an assist for high power rf production

    International Nuclear Information System (INIS)

    Birx, D.L.; Farkas, Z.D.; Wilson, P.B.

    1984-01-01

    The desire to construct electron linacs of higher and higher energies, coupled with the realities of available funding and real estate, has forced machine designers to reassess the limitations in both accelerator gradient (MeV/m) and energy. The gradients achieved in current radio-frequency (RF) linacs are sometimes set by electrical breakdown in the accelerating structure, but are in most cases determined by the RF power level available to drive the linac. In this paper we will not discuss RF power sources in general, but rather take a brief look at several energy compression schemes which might be of service in helping to make better use of the sources we employ. We will, however, diverge for a bit and discuss what the RF power requirements are. 12 references, 21 figures, 3 tables

  16. Development of an S-band high-power pillbox-type RF window

    International Nuclear Information System (INIS)

    Miura, A.; Matsumoto, H.

    1992-01-01

    We report on the development of RF windows used to handle a high transmission power up to 110 MW for the Japan Linear Collider. A detailed simulation on multipactoring has been carried out. The results were compared with cathode-luminescence on the surface of alumina RF windows experimentally observed with power transmission up to 200 MW. (Author) 10 refs., 9 figs

  17. The effect of phase difference between powered electrodes on RF plasmas

    International Nuclear Information System (INIS)

    Proschek, M; Yin, Y; Charles, C; Aanesland, A; McKenzie, D R; Bilek, M M; Boswell, R W

    2005-01-01

    This paper presents the results of measurements carried out on plasmas created in five different RF discharge systems. These systems all have two separately powered RF (13.56 MHz) electrodes, but differ in overall size and in the geometry of both vacuum chambers and RF electrodes or antennae. The two power supplies were synchronized with a phase-shift controller. We investigated the influence of the phase difference between the two RF electrodes on plasma parameters and compared the different system geometries. Single Langmuir probes were used to measure the plasma parameters in a region between the electrodes. Floating potential and ion density were affected by the phase difference and we found a strong influence of the system geometry on the observed phase difference dependence. Both ion density and floating potential curves show asymmetries around maxima and minima. These asymmetries can be explained by a phase dependence of the time evolution of the electrode-wall coupling within an RF-cycle resulting from the asymmetric system geometry

  18. Low-energy particle treatment of GaAs surface

    International Nuclear Information System (INIS)

    Pincik, E.; Ivanco, J.; Brunner, R.; Jergel, M.; Falcony, C.; Ortega, L.; Kucera, J. M.

    2002-01-01

    The paper presents results of a complex study of surface properties of high-doped (2x10 18 cm -3 ) and semi-insulating GaAs after an interaction with the particles coming from low-energy ion sources such as RF plasma and ion beams. The virgin samples were mechano-chemically polished liquid-encapsulated Czochralski-grown GaAs (100) oriented wafers. The crystals were mounted on the grounded electrode (holder). The mixture Ar+H 2 as well as O 2 and CF 4 were used as working gases: In addition, a combination of two different in-situ exposures was applied, such as e.g. hydrogen and oxygen. Structural, electrical and optical properties of the exposed surfaces were investigated using X-ray diffraction at grazing incidence, quasi-static and high-frequency C-V curve measurements, deep-level transient spectroscopy, photo-reflectance, and photoluminescence. Plasma and ion beam exposures were performed in a commercial RF capacitively coupled plasma equipment SECON XPL-200P and a commercial LPAI device, respectively. The evolution of surface properties as a function of the pressure of working gas and the duration of exposure was observed. (Authors)

  19. An RF energy harvesting power management circuit for appropriate duty-cycled operation

    Science.gov (United States)

    Shirane, Atsushi; Ito, Hiroyuki; Ishihara, Noboru; Masu, Kazuya

    2015-04-01

    In this study, we present an RF energy harvesting power management unit (PMU) for battery-less wireless sensor devices (WSDs). The proposed PMU realizes a duty-cycled operation that is divided into the energy charging time and discharging time. The proposed PMU detects two types of timing, thus, the appropriate timing for the activation can be recognized. The activation of WSDs at the proper timing leads to energy efficient operation and stable wireless communication. The proposed PMU includes a hysteresis comparator (H-CMP) and an RF signal detector (RF-SD) to detect the timings. The proposed RF-SD can operate without the degradation of charge efficiency by reusing the RF energy harvester (RF-EH) and H-CMP. The PMU fabricated in a 180 nm Si CMOS demonstrated the charge operation using the RF signal at 915 MHz and the two types of timing detection with less than 124 nW in the charge phase. Furthermore, in the active phase, the PMU generates a 0.5 V regulated power supply from the charged energy.

  20. A Long-Distance RF-Powered Sensor Node with Adaptive Power Management for IoT Applications.

    Science.gov (United States)

    Pizzotti, Matteo; Perilli, Luca; Del Prete, Massimo; Fabbri, Davide; Canegallo, Roberto; Dini, Michele; Masotti, Diego; Costanzo, Alessandra; Franchi Scarselli, Eleonora; Romani, Aldo

    2017-07-28

    We present a self-sustained battery-less multi-sensor platform with RF harvesting capability down to -17 dBm and implementing a standard DASH7 wireless communication interface. The node operates at distances up to 17 m from a 2 W UHF carrier. RF power transfer allows operation when common energy scavenging sources (e.g., sun, heat, etc.) are not available, while the DASH7 communication protocol makes it fully compatible with a standard IoT infrastructure. An optimized energy-harvesting module has been designed, including a rectifying antenna (rectenna) and an integrated nano-power DC/DC converter performing maximum-power-point-tracking (MPPT). A nonlinear/electromagnetic co-design procedure is adopted to design the rectenna, which is optimized to operate at ultra-low power levels. An ultra-low power microcontroller controls on-board sensors and wireless protocol, to adapt the power consumption to the available detected power by changing wake-up policies. As a result, adaptive behavior can be observed in the designed platform, to the extent that the transmission data rate is dynamically determined by RF power. Among the novel features of the system, we highlight the use of nano-power energy harvesting, the implementation of specific hardware/software wake-up policies, optimized algorithms for best sampling rate implementation, and adaptive behavior by the node based on the power received.

  1. A Long-Distance RF-Powered Sensor Node with Adaptive Power Management for IoT Applications

    Directory of Open Access Journals (Sweden)

    Matteo Pizzotti

    2017-07-01

    Full Text Available We present a self-sustained battery-less multi-sensor platform with RF harvesting capability down to −17 dBm and implementing a standard DASH7 wireless communication interface. The node operates at distances up to 17 m from a 2 W UHF carrier. RF power transfer allows operation when common energy scavenging sources (e.g., sun, heat, etc. are not available, while the DASH7 communication protocol makes it fully compatible with a standard IoT infrastructure. An optimized energy-harvesting module has been designed, including a rectifying antenna (rectenna and an integrated nano-power DC/DC converter performing maximum-power-point-tracking (MPPT. A nonlinear/electromagnetic co-design procedure is adopted to design the rectenna, which is optimized to operate at ultra-low power levels. An ultra-low power microcontroller controls on-board sensors and wireless protocol, to adapt the power consumption to the available detected power by changing wake-up policies. As a result, adaptive behavior can be observed in the designed platform, to the extent that the transmission data rate is dynamically determined by RF power. Among the novel features of the system, we highlight the use of nano-power energy harvesting, the implementation of specific hardware/software wake-up policies, optimized algorithms for best sampling rate implementation, and adaptive behavior by the node based on the power received.

  2. Design of resonant converter based DC power supply for RF amplifier

    International Nuclear Information System (INIS)

    Mohan, Kartik; Suthar, Gajendra; Dalicha, Hrushikesh; Agarwal, Rohit; Trivedi, R.G.; Mukherjee, Aparajita

    2017-01-01

    ITER require 20 MW of RF power to a large variety of plasmas in the Ion Cyclotron frequency range for heating and driving plasma current. Nine RF sources of 2.5MW RF power level each collectively will accomplish the above requirement. Each RF source consists of SSPA, driver and end stage, above which driver and end stage amplifier are tube (Tetrode/Diacrode) based which requires auxiliary DC power source viz. filament, screen grid and control grid DC power supply. DC power supply has some stringent requirements like low stored energy, fast turn off, and low ripple value, etc. This paper will focus only on Zero Current Switching (ZCS) resonant converter based buck converter. This can serve the purpose of control grid and screen grid DC power supply for above requirement. IGBT switch will be used at 20 kHz so as to lower the filter requirement hence low stored energy and ripple in the output voltage. ZCS operation will also assist us in reducing EMI/EMC effect. Design of resonant tank circuit is important aspect of the converter as it forms the backbone of the complete system and basis of selection of other important parameters as well hence mathematical model analysis with the help of circuit equations for various modes have been shown as a part of selection criteria. Peak current through the switch, duty cycle, switching frequency will be the design parameters for selecting resonant tank circuit

  3. Performance of the Crowbar of the LHC High Power RF System

    CERN Document Server

    Ravidà, G; Valuch, D

    2012-01-01

    The counter-rotating proton beams in the Large Hadron Collider (LHC) are captured and accelerated to their final energies by two identical 400 MHz Radio Frequency (RF) systems. The RF power source required for each beam comprises eight 300 kW klystrons. The output power of each klystron is fed via a circulator and a waveguide line to the input coupler of a single-cell superconducting (SC) cavity. Each unit of four klystrons is powered by a -100kV/40A AC/DC power converter. A fast protection system (crowbar) protects the four klystrons in each of these units. Although the LHC RF system has shown has very good performance, operational experience has shown that the five-gap double-ended thyratrons used in the crowbar system suffer, from time to time, from auto-firing, which result in beam dumps. This paper presents the recent results obtained with an alternative solution based on solid state thyristors. Comparative measurements with the thyratron are shown.

  4. New high power 200 MHz RF system for the LANSCE drift tube linac

    International Nuclear Information System (INIS)

    Lyles, J.; Friedrichs, C.; Lynch, M.

    1998-01-01

    The Los Alamos Neutron Science Center (LANSCE) linac provides an 800 MeV direct H + proton beam, and injects H - to the upgraded proton storage ring for charge accumulation for the Short Pulse Spallation Source. Accelerating these interlaced beams requires high average power from the 201.25 MHz drift tube linac (DTL) RF system. Three power amplifiers have operated at up to three Megawatts with 12% duty factor. The total number of electron power tubes in the RF amplifiers and their modulators has been reduced from fifty-two to twenty-four. The plant continues to utilize the original design of a tetrode driving a super power triode. Further increases in the linac duty factor are limited, in part, by the maximum dissipation ratings of the triodes. A description of the system modifications proposed to overcome these limitations includes new power amplifiers using low-level RF modulation for tank field control. The first high power Diacrode reg-sign is being delivered and a new amplifier cavity is being designed. With only eight power tubes, the new system will deliver both peak power and high duty factor, with lower mains power and cooling requirements. The remaining components needed for the new RF system will be discussed

  5. Power Adaptation Based on Truncated Channel Inversion for Hybrid FSO/RF Transmission With Adaptive Combining

    KAUST Repository

    Rakia, Tamer

    2015-07-23

    Hybrid free-space optical (FSO)/radio-frequency (RF) systems have emerged as a promising solution for high-data-rate wireless communications. In this paper, we consider power adaptation strategies based on truncated channel inversion for the hybrid FSO/RF system employing adaptive combining. Specifically, we adaptively set the RF link transmission power when FSO link quality is unacceptable to ensure constant combined signal-to-noise ratio (SNR) at the receiver. Two adaptation strategies are proposed. One strategy depends on the received RF SNR, whereas the other one depends on the combined SNR of both links. Analytical expressions for the outage probability of the hybrid system with and without power adaptation are obtained. Numerical examples show that the hybrid FSO/RF system with power adaptation achieves a considerable outage performance improvement over the conventional system.

  6. Power Adaptation Based on Truncated Channel Inversion for Hybrid FSO/RF Transmission With Adaptive Combining

    KAUST Repository

    Rakia, Tamer; Hong-Chuan Yang; Gebali, Fayez; Alouini, Mohamed-Slim

    2015-01-01

    Hybrid free-space optical (FSO)/radio-frequency (RF) systems have emerged as a promising solution for high-data-rate wireless communications. In this paper, we consider power adaptation strategies based on truncated channel inversion for the hybrid FSO/RF system employing adaptive combining. Specifically, we adaptively set the RF link transmission power when FSO link quality is unacceptable to ensure constant combined signal-to-noise ratio (SNR) at the receiver. Two adaptation strategies are proposed. One strategy depends on the received RF SNR, whereas the other one depends on the combined SNR of both links. Analytical expressions for the outage probability of the hybrid system with and without power adaptation are obtained. Numerical examples show that the hybrid FSO/RF system with power adaptation achieves a considerable outage performance improvement over the conventional system.

  7. Traveling wave linear accelerator with RF power flow outside of accelerating cavities

    Science.gov (United States)

    Dolgashev, Valery A.

    2016-06-28

    A high power RF traveling wave accelerator structure includes a symmetric RF feed, an input matching cell coupled to the symmetric RF feed, a sequence of regular accelerating cavities coupled to the input matching cell at an input beam pipe end of the sequence, one or more waveguides parallel to and coupled to the sequence of regular accelerating cavities, an output matching cell coupled to the sequence of regular accelerating cavities at an output beam pipe end of the sequence, and output waveguide circuit or RF loads coupled to the output matching cell. Each of the regular accelerating cavities has a nose cone that cuts off field propagating into the beam pipe and therefore all power flows in a traveling wave along the structure in the waveguide.

  8. Results of the SLAC LCLS Gun High-Power RF Tests

    International Nuclear Information System (INIS)

    Dowell, D.H.; Jongewaard, E.; Limborg-Deprey, C.; Schmerge, J.F.; Li, Z.; Xiao, L.; Wang, J.; Lewandowski, J.; Vlieks, A.

    2007-01-01

    The beam quality and operational requirements for the Linac Coherent Light Source (LCLS) currently being constructed at SLAC are exceptional, requiring the design of a new RF photocathode gun for the electron source. Based on operational experience at SLAC's GTF and SDL and ATF at BNL as well as other laboratories, the 1.6cell s-band (2856MHz) gun was chosen to be the best electron source for the LCLS, however a significant redesign was necessary to achieve the challenging parameters. Detailed 3-D analysis and design was used to produce near-perfect rotationally symmetric rf fields to achieve the emittance requirement. In addition, the thermo-mechanical design allows the gun to operate at 120Hz and a 140MV/m cathode field, or to an average power dissipation of 4kW. Both average and pulsed heating issues are addressed in the LCLS gun design. The first LCLS gun is now fabricated and has been operated with high-power RF. The results of these high-power tests are presented and discussed

  9. Development of a high-power RF cavity for the PEP-II B factory

    International Nuclear Information System (INIS)

    Rimmer, R.A.; Allen, M.A.; Saba, J.; Schwarz, H.

    1995-03-01

    The authors describe the development and fabrication of the first high-power RF cavity for PEP-II. Design choices and fabrication technologies for the first cavity and subsequent production cavities are described. Conditioning and high-power testing of the first and subsequent cavities are discussed, as well as integration of the cavity into modular RF systems for both high-energy and low-energy rings. Plans for installation of the cavity raft assemblies in the RF sections of the PEP tunnel are also considered

  10. Performance test of lower hybrid waveguide under long/high-RF power transmission

    International Nuclear Information System (INIS)

    Seki, Masami; Obara, Kenjiro; Maebara, Sunao

    1996-06-01

    Performance tests of a module for lower hybrid waveguides were carried out at the CEA Cadarache RF Test Facility. For the experiments the test module was fabricated by JAERI, the transmission line of the test bed was modified and the connection waveguides were manufactured by CEA. As the results, the thermal treatment by baking at a higher temperature was the most effective for reducing outgassing during injection of high RF power. The outgassing strongly depended on the temperature of the test module, but was independent to initial temperature. The RF injection reduced outgassing. The outgassing rate decreased to a low level of 10 -6 -10 -5 Pa m 3 /sec m 2 (10 -9 -10 -8 Torr 1/sec cm 2 ) at 400degC after 450degC-baking. The gas injection did not affect outgassing before and during RF injection. The baking under H 2 or D 2 gas atmosphere were not so effective for reducing outgassing rate. The outgassing rate did not depend on input RF power densities. The temperature in central part of the test module saturated to be ∼100degC by using of water cooling at a power level of 150 MW/m 2 RF injection, and a neutral gas pressure decreased gradually. In the water cooling case, the outgassing rate was very low less than 10 -7 Pa m 3 /sec m 2 (10 -10 Torr 1/sec cm 2 ). The steady state RF injection was demonstrated with water cooling. (author)

  11. Digitally Controlled Envelope Tracking Power Supply for an RF Power Amplifier

    DEFF Research Database (Denmark)

    Jakobsen, Lars Tønnes; Andersen, Michael Andreas E.

    2007-01-01

    due to clock frequency quantization. An envelope tracking power supply for an RF Power Amplifier (RFPA) can help improve system efficiency by reducing the power consumption of the RFPA. To show the advantage of the DiSOM over traditional counter based Digital PWM modulators two designs were compared...... in both simulation and by experiment. The results shows that the DiSOM could give an increase in open loop bandwidth by more than a factor of two and an reduce the closed loop output impedance of the power supply by a factor of 5 at the output filter resonance frequency....

  12. Modeling and design techniques for RF power amplifiers

    CERN Document Server

    Raghavan, Arvind; Laskar, Joy

    2008-01-01

    The book covers RF power amplifier design, from device and modeling considerations to advanced circuit design architectures and techniques. It focuses on recent developments and advanced topics in this area, including numerous practical designs to back the theoretical considerations. It presents the challenges in designing power amplifiers in silicon and helps the reader improve the efficiency of linear power amplifiers, and design more accurate compact device models, with faster extraction routines, to create cost effective and reliable circuits.

  13. Development and simulation of RF components for high power millimeter wave gyrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Pereyaslavets, M.; Sato, M.; Shimozuma, T.; Takita, Y.; Idei, H.; Kubo, S.; Ohkubo, K.; Hayashi, K.

    1996-11-01

    To test gyrotron RF components, efficient low-power generators for rotating high-order modes of high purity are necessary. Designs of generators for the TE{sub 15,3} mode at 84 GHz and for the TE{sub 31,8} mode at 168 GHz are presented and some preliminary test results are discussed. In addition, Toshiba gyrotron cavities at 168 GHz were analyzed for leakage of RF power in the beam tunnel. To decrease RF power leakage, the declination angle of the cut-off cavity cross section has to be decreased. A TE{sub 15,3} waveguide nonlinear uptaper is analyzed at 84 GHz as well as 168 GHz uptapers. Since the calculated conversion losses are slightly higher than designed value, an optimization of those uptapers may be required. (author)

  14. Evaluation of a new method of RF power coupling to acceleration cavity of charged particles accelerators

    Directory of Open Access Journals (Sweden)

    A M Poursaleh

    2017-08-01

    Full Text Available In this paper, the feasibility studty of a new method of RF power coupling to acceleration cavity of charged particles accelerator will be evaluated. In this method a slit is created around the accelerator cavity, and RF power amplifier modules is connected directly to the acceleration cavity. In fact, in this design, the cavity in addition to acting as an acceleration cavity, acts as a RF power combiner. The benefits of this method are avoiding the use of RF vacuum tubes, transmission lines, high power combiner and coupler. In this research, cylindrical and coaxial cavities were studied, and a small sample coaxial cavity is build by this method. The results of the resarch showed that compact, economical and safe RF accelerators can be achieved by the proposed method

  15. Outgassing studies of lower hybrid antenna module during CW high RF power injection

    International Nuclear Information System (INIS)

    Goniche, M.; Brossaud, J.; Berger-By, G.; Bibet, Ph.; Poli, S.; Rey, G.; Tonon, G.; Seki, M.; Obara, K.; Maebara, S.; Ikeda, Y.; Imai, T.; Nagashima, T.

    1994-01-01

    Outgassing, induced by very long RF waves injection (up to 6000s) at high power density, is studied with a module, able to be used for a lower hybrid frequency antenna. A large outgassing data base is provided by 75 shots cumulating 27 hours of RF injection. Outgassing rate is documented after different thermal pre-treatments, and in various conditions of cooling, RF power level. Relevant parameters are identified and values of outgassing rates are given in order to design pumping system for a large antenna. (author) 4 refs.; 7 figs.; 1 tab

  16. Interplay of the influence of oxygen partial pressure and rf power on ...

    Indian Academy of Sciences (India)

    2017-07-25

    Jul 25, 2017 ... extra heating) and low pressure p = 0.5 mTorr, varying the rf power density between P = 0.57 and 2.83 W cm−2 at different relative oxygen ... thin films are used as window layers in solar cells [1–3]. Sput- tering (especially rf ... defect density [11,12]. In the literature there are works reporting the effect of rf.

  17. Performance test of lower hybrid waveguide under long/high-RF power transmission

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Masami; Obara, Kenjiro; Maebara, Sunao [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; and others

    1996-06-01

    Performance tests of a module for lower hybrid waveguides were carried out at the CEA Cadarache RF Test Facility. For the experiments the test module was fabricated by JAERI, the transmission line of the test bed was modified and the connection waveguides were manufactured by CEA. As the results, the thermal treatment by baking at a higher temperature was the most effective for reducing outgassing during injection of high RF power. The outgassing strongly depended on the temperature of the test module, but was independent to initial temperature. The RF injection reduced outgassing. The outgassing rate decreased to a low level of 10{sup -6}-10{sup -5} Pa m{sup 3}/sec m{sup 2} (10{sup -9}-10{sup -8} Torr 1/sec cm{sup 2}) at 400degC after 450degC-baking. The gas injection did not affect outgassing before and during RF injection. The baking under H{sub 2} or D{sub 2} gas atmosphere were not so effective for reducing outgassing rate. The outgassing rate did not depend on input RF power densities. The temperature in central part of the test module saturated to be {approx}100degC by using of water cooling at a power level of 150 MW/m{sup 2} RF injection, and a neutral gas pressure decreased gradually. In the water cooling case, the outgassing rate was very low less than 10{sup -7} Pa m{sup 3}/sec m{sup 2} (10{sup -10} Torr 1/sec cm{sup 2}). The steady state RF injection was demonstrated with water cooling. (author).

  18. RF transport

    International Nuclear Information System (INIS)

    Choroba, Stefan

    2013-01-01

    This paper deals with the techniques of transport of high-power radiofrequency (RF) power from a RF power source to the cavities of an accelerator. Since the theory of electromagnetic waves in waveguides and of waveguide components is very well explained in a number of excellent text books it will limit itself on special waveguide distributions and on a number of, although not complete list of, special problems which sometimes occur in RF power transportation systems. (author)

  19. Design considerations for RF power amplifiers demonstrated through a GSM/EDGE power amplifier module

    NARCIS (Netherlands)

    Baltus, P.G.M.; Bezooijen, van A.; Huijsing, J.H.; Steyaert, M.; Roermund, van A.H.M.

    2002-01-01

    This paper describes the design considerations for RF power amplifiers in general, including trends in systems, linearity and efficiency, the PA environment, implementation is sues and technology. As an example a triple-band (900/1800/1900MHz) dual mode (GSMIEdge) power amplifier module is described

  20. High-power, solid-state rf source for accelerator cavities

    International Nuclear Information System (INIS)

    Vaughan, D.R.; Mols, G.E.; Reid, D.W.; Potter, J.M.

    1985-01-01

    During the past few years the Defense and Electronics Center of Westinghouse Electric Corporation has developed a solid-state, 250-kW peak, rf amplifier for use with the SPS-40 radar system. This system has a pulse length of 60 μs and operates across the frequency band from 400 to 450 MHz. Because of the potential use of such a system as an rf source for accelerator applications, a collaborative experiment was initiated between Los Alamos National Laboratory and Westinghouse to simulate the resonant load conditions of an accelerator cavity. This paper describes the positive results of that experiment as well as the solid-state amplifier architecture. It also explores the future of high-power, solid-state amplifiers as rf sources for accelerator structures

  1. Wideband Monolithic Microwave Integrated Circuit Frequency Converters with GaAs mHEMT Technology

    DEFF Research Database (Denmark)

    Krozer, Viktor; Johansen, Tom Keinicke; Djurhuus, Torsten

    2005-01-01

    We present monolithic microwave integrated circuit (MMIC) frequency converter, which can be used for up and down conversion, due to the large RF and IF port bandwidth. The MMIC converters are based on commercially available GaAs mHEMT technology and are comprised of a Gilbert mixer cell core...

  2. Wideband Monolithic Microwave Integrated Circuit Frequency Converters with GaAs mHEMT Technology

    OpenAIRE

    Krozer, Viktor; Johansen, Tom Keinicke; Djurhuus, Torsten; Vidkjær, Jens

    2005-01-01

    We present monolithic microwave integrated circuit (MMIC) frequency converter, which can be used for up and down conversion, due to the large RF and IF port bandwidth. The MMIC converters are based on commercially available GaAs mHEMT technology and are comprised of a Gilbert mixer cell core, baluns and combiners. Single ended and balanced configurations DC and AC coupled have been investigated. The instantaneous 3 dB bandwidth at both the RF and the IF port of the frequency converters is ∼ 2...

  3. LCLS-II high power RF system overview and progress

    Energy Technology Data Exchange (ETDEWEB)

    Yeremian, Anahid Dian

    2015-10-07

    A second X-ray free electron laser facility, LCLS-II, will be constructed at SLAC. LCLS-II is based on a 1.3 GHz, 4 GeV, continuous-wave (CW) superconducting linear accelerator, to be installed in the first kilometer of the SLAC tunnel. Multiple types of high power RF (HPRF) sources will be used to power different systems on LCLS-II. The main 1.3 GHz linac will be powered by 280 1.3 GHz, 3.8 kW solid state amplifier (SSA) sources. The normal conducting buncher in the injector will use four more SSAs identical to the linac SSAs but run at 2 kW. Two 185.7 MHz, 60 kW sources will power the photocathode dual-feed RF gun. A third harmonic linac section, included for linearizing the bunch energy spread before the first bunch compressor, will require sixteen 3.9 GHz sources at about 1 kW CW. A description and an update on all the HPRF sources of LCLS-II and their implementation is the subject of this paper.

  4. High power tests of dressed supconducting 1.3 GHz RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hocker, A.; Harms, E.R.; Lunin, A.; Sukhanov, A.; /Fermilab

    2011-03-01

    A single-cavity test cryostat is used to conduct pulsed high power RF tests of superconducting 1.3 GHz RF cavities at 2 K. The cavities under test are welded inside individual helium vessels and are outfitted ('dressed') with a fundamental power coupler, higher-order mode couplers, magnetic shielding, a blade tuner, and piezoelectric tuners. The cavity performance is evaluated in terms of accelerating gradient, unloaded quality factor, and field emission, and the functionality of the auxiliary components is verified. Test results from the first set of dressed cavities are presented here.

  5. Rf power amplification by energy storage and switching

    International Nuclear Information System (INIS)

    Vernon, W.

    1989-01-01

    This paper reports that during the last decade there have been several suggestions for RF storage and switching schemes. The principle behind these schemes is simply that energy from a source which is on for a long time at moderate power can be stored in a resonant cavity and dumped (switched) in a short time to yield higher power. This is also the basis of SLED which is driving the SLC, but the major difference is in the switching and the proposed power gains. In the case of SLED there is no switch only a phase agile RF source, and the maximum power gain is about a factor of 3. Proposed storage and switching schemes are often based on large ratios of charge to discharge times, say 5 μsec/50 nsec = 100 which could be the power amplification ratio. An early demonstration of the switching of a superconducting cavity was reported. It was observed that a peak power gain of 9 at low power levels with a cold cavity and a room-temperature switch. The switch was a He gas filled tube positioned in the leg of a waveguide T so that a η/2 stub turned into a η/4 stub when the gas broke down and became a good conductor. All switches encountered to date are some variant of this technique; the stubs reflects back an out-of-phase signal which cancels the one from the cavity so that no power escapes while the low-loss dielectric tube is non-conducting

  6. High-power RF cavity R ampersand D for the PEP-II B Factory

    International Nuclear Information System (INIS)

    Rimmer, R.; Lambertson, G.; Hodgson, J.

    1994-06-01

    We describe the development of a high-power test model of the 476 MHz RF cavity for the PEP-II B Factory. This cavity is designed to demonstrate the feasibility of a high-power design with higher-order mode (HOM) damping waveguides and the fabrication technologies involved, and it can also be used to evaluate aperture or loop couplers and various RF windows. Changes to the RF design to reduce peak surface heating are discussed and results of finite-element analyses of temperature and stress are presented. Fabrication methods for the prototype and subsequent production cavities are discussed

  7. Effects of rf power on chemical composition and surface roughness of glow discharge polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ling; He, Xiaoshan; Chen, Guo; Wang, Tao; Tang, Yongjian; He, Zhibing, E-mail: hezhibing802@163.com

    2016-03-15

    Graphical abstract: - Highlights: • The growth mechanism of defects in GDP films was studied upon plasma diagnosis. • Increasing rf power enhanced the etching effects of smaller-mass species. • The “void” defect was caused by high energy hydrocarbons bombardment on the surface. • The surface roughness was only 12.76 nm, and no “void” defect was observed at 30 W. - Abstract: The glow discharge polymer (GDP) films for laser fusion targets were successfully fabricated by plasma enhanced chemical vapor deposition (PECVD) at different radio frequency (rf) powers. The films were deposited using trans-2-butene (T{sub 2}B) mixed with hydrogen as gas sources. The composition and state of plasma were diagnosed by quadrupole mass spectrometer (QMS) and Langmuir probe during the deposition process. The composition, surface morphology and roughness were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and white-light interferometer (WLI), respectively. Based on these observation and analyses, the growth mechanism of defects in GDP films were studied. The results show that, at low rf power, there is a larger probability for secondary polymerization and formation of multi-carbon C-H species in the plasma. In this case, the surface of GDP film turns to be cauliflower-like. With the increase of rf power, the degree of ionization is high, the relative concentration of smaller-mass hydrocarbon species increases, while the relative concentration of larger-mass hydrocarbon species decreases. At higher rf power, the energy of smaller-mass species are high and the etching effects are strong correspondingly. The GDP film's surface roughness shows a trend of decrease firstly and then increase with the increasing rf power. At rf power of 30 W, the surface root-mean-square roughness (Rq) drops to the lowest value of 12.8 nm, and no “void” defect was observed.

  8. Peeled film GaAs solar cell development

    International Nuclear Information System (INIS)

    Wilt, D.M.; Thomas, R.D.; Bailey, S.G.; Brinker, D.J.; DeAngelo, F.L.

    1990-01-01

    Thin film, single crystal gallium arsenide (GaAs) solar cells could exhibit a specific power approaching 700 W/Kg including coverglass. A simple process has been described whereby epitaxial GaAs layers are peeled from a reusable substrate. This process takes advantage of the extreme selectivity (>10 6 ) of the etching rate of aluminum arsenide (AlAs) over GaAs in dilute hydrofloric acid (HF). The intent of this work is to demonstrate the feasibility of using the peeled film technique to fabricate high efficiency, low mass GaAs solar cells. We have successfully produced a peeled film GaAs solar cell. The device, although fractured and missing the aluminum gallium arsenide (Al x Ga 1 - x As) window and antireflective (AR) coating, had a Voc of 874 mV and a fill factor of 68% under AMO illumination

  9. Study on the RF power necessary to ignite plasma for the ICP test facility at HUST

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Haikun [School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan (China); State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan (China); Li, Dong; Wang, Chenre; Li, Xiaofei; Chen, Dezhi; Liu, Kaifeng; Zhou, Chi; Pan, Ruimin [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan (China)

    2015-10-15

    An Radio-Frequency (RF) Inductively Coupled Plasma (ICP) ion source test facility has been successfully developed at Huazhong University of Science and Technology (HUST). As part of a study on hydrogen plasma, the influence of three main operation parameters on the RF power necessary to ignite plasma was investigated. At 6 Pa, the RF power necessary to ignite plasma influenced little by the filament heating current from 5 A to 9 A. The RF power necessary to ignite plasma increased rapidly with the operation pressure decreasing from 8 Pa to 4 Pa. The RF power necessary to ignite plasma decreased with the number of coil turns from 6 to 10. During the experiments, plasma was produced with the electron density of the order of 10{sup 16}m{sup -3} and the electron temperature of around 4 eV. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Fundamental mode rf power dissipated in a waveguide attached to an accelerating cavity

    International Nuclear Information System (INIS)

    Kang, Y.W.

    1993-01-01

    An accelerating RF cavity usually requires accessory devices such as a tuner, a coupler, and a damper to perform properly. Since a device is attached to the wall of the cavity to have certain electrical coupling of the cavity field through the opening. RF power dissipation is involved. In a high power accelerating cavity, the RF power coupled and dissipated in the opening and in the device must be estimated to design a proper cooling system for the device. The single cell cavities of the APS storage ring will use the same accessories. These cavities are rotationally symmetric and the fields around the equator can be approximated with the fields of the cylindrical pillbox cavity. In the following, the coupled and dissipated fundamental mode RF power in a waveguide attached to a pillbox cavity is discussed. The waveguide configurations are (1) aperture-coupled cylindrical waveguide with matched load termination; (2) short-circuited cylindrical waveguide; and (3) E-probe or H-loop coupled coaxial waveguide. A short-circuited, one-wavelength coaxial structure is considered for the fundamental frequency rejection circuit of an H-loop damper

  11. An ultra-low-power RF transceiver for WBANs in medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Qi; Wu Nanjian [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Kuang Xiaofei, E-mail: nanjian@semi.ac.cn [College of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2011-06-15

    A 2.4 GHz ultra-low-power RF transceiver with a 900 MHz auxiliary wake-up link for wireless body area networks (WBANs) in medical applications is presented. The RF transceiver with an asymmetric architecture is proposed to achieve high energy efficiency according to the asymmetric communication in WBANs. The transceiver consists of a main receiver (RX) with an ultra-low-power free-running ring oscillator and a high speed main transmitter (TX) with fast lock-in PLL. A passive wake-up receiver (WuRx) for wake-up function with a high power conversion efficiency (PCE) CMOS rectifier is designed to offer the sensor node the capability of work-on-demand with zero standby power. The chip is implemented in a 0.18 {mu}m CMOS process. Its core area is 1.6 mm{sup 2}. The main RX achieves a sensitivity of -55 dBm at a 100 kbps OOK data rate while consuming just 210 {mu}A current from the 1 V power supply. The main TX achieves +3 dBm output power with a 4 Mbps/500 kbps/200 kbps data rate for OOK/4 FSK/2 FSK modulation and dissipates 3.25 mA/6.5 mA/6.5 mA current from a 1.8 V power supply. The minimum detectable RF input energy for the wake-up RX is -15 dBm and the PCE is more than 25%. (semiconductor integrated circuits)

  12. An ultra-low-power RF transceiver for WBANs in medical applications

    International Nuclear Information System (INIS)

    Zhang Qi; Wu Nanjian; Kuang Xiaofei

    2011-01-01

    A 2.4 GHz ultra-low-power RF transceiver with a 900 MHz auxiliary wake-up link for wireless body area networks (WBANs) in medical applications is presented. The RF transceiver with an asymmetric architecture is proposed to achieve high energy efficiency according to the asymmetric communication in WBANs. The transceiver consists of a main receiver (RX) with an ultra-low-power free-running ring oscillator and a high speed main transmitter (TX) with fast lock-in PLL. A passive wake-up receiver (WuRx) for wake-up function with a high power conversion efficiency (PCE) CMOS rectifier is designed to offer the sensor node the capability of work-on-demand with zero standby power. The chip is implemented in a 0.18 μm CMOS process. Its core area is 1.6 mm 2 . The main RX achieves a sensitivity of -55 dBm at a 100 kbps OOK data rate while consuming just 210 μA current from the 1 V power supply. The main TX achieves +3 dBm output power with a 4 Mbps/500 kbps/200 kbps data rate for OOK/4 FSK/2 FSK modulation and dissipates 3.25 mA/6.5 mA/6.5 mA current from a 1.8 V power supply. The minimum detectable RF input energy for the wake-up RX is -15 dBm and the PCE is more than 25%. (semiconductor integrated circuits)

  13. Medium Power 352 MHZ solid state pulsed RF amplifiers for the CERN LINAC4 Project

    CERN Document Server

    Broere, J; Gómez Martínez, Y; Rossi, M

    2011-01-01

    Economic, modular and highly linear pulsed RF amplifiers have recently been developed to be used for the three buncher cavities in the CERN Linac4. The amplifiers are water-cooled and can provide up to 33 kW pulsed RF Power, 1.5 ms pulse length and 50 Hz repetition rate. Furthermore a 60 kW unit is under construction to provide the required RF Power for the debuncher cavity. The concept is based on 1.2 kW RF power modules using the latest 6th generation LDMOS technology. For integration into the CERN control environment the amplifiers have an internal industrial controller, which will provide easy control and extended diagnostic functions. This paper describes the construction, performance, including linearity, phase stability and EMC compliance tests

  14. Application of quasi-optical approach to construct RF power supply for TeV linear colliders

    International Nuclear Information System (INIS)

    Saldin, E.L.; Sarantsev, V.P.; Schneidmiller, E.A.; Ulyanov, Yu.N.; Yurkov, M.V.

    1995-01-01

    An idea to use a quasi-optical approach for constructing an RF power supply for TeV linear e + e - colliders is developed. The RF source of the proposed scheme is composed of a large number of low-power RF amplifiers commutated by quasi-optical elements. The RF power of this source is transmitted to the accelerating structure of the collider by means of quasi-optical waveguides and mirrors. Such an approach enables one not only to decrease the required peak RF power by several orders of magnitude with respect to the traditional approach based on standard klystron technique, but also to achieve the required level of reliability, as it is based on well-developed technology of serial microwave devices. To illustrate the proposed scheme, a conceptual project of 2x500 GeV X-band collider is considered. Accelerating structure of the collider is of the standard travelling wave type and the RF source is assumed to be composed of 0.7 MW klystrons. All equipment of such a collider is placed in a tunnel of 12x6 m 2 cross section. It is shown that such a collider may be constructed at the present level of accelerator technique. ((orig.))

  15. Inductively coupled plasma etching of GaAs low loss waveguides for a traveling waveguide polarization converter, using chlorine chemistry

    Science.gov (United States)

    Lu, J.; Meng, X.; Springthorpe, A. J.; Shepherd, F. R.; Poirier, M.

    2004-05-01

    A traveling waveguide polarization converter [M. Poirier et al.] has been developed, which involves long, low loss, weakly confined waveguides etched in GaAs (epitaxially grown by molecular beam epitaxy), with electroplated ``T electrodes'' distributed along the etched floor adjacent to the ridge walls, and airbridge interconnect metallization. This article describes the development of the waveguide fabrication, based on inductively coupled plasma (ICP) etching of GaAs using Cl2 chemistry; the special processes required to fabricate the electrodes and metallization [X. Meng et al.], and the device characteristics [M. Poirier et al.], are described elsewhere. The required waveguide has dimensions nominally 4 μm wide and 2.1 μm deep, with dimensional tolerances ~0.1 μm across the wafer and wafer to wafer. A vertical etch profile with very smooth sidewalls and floors is required to enable the plated metal electrodes to be fabricated within 0.1 μm of the ridge. The ridges were fabricated using Cl2 ICP etching and a photoresist mask patterned with an I-line stepper; He backside cooling, combined with an electrostatic chuck, was employed to ensure good heat transfer to prevent resist reticulation. The experimental results showed that the ridge profile is very sensitive to ICP power and platen rf power. High ICP power and low platen power tend to result in more isotropic etching, whereas increasing platen power increases the photoresist etch rate, which causes rougher ridge sidewalls. No strong dependence of GaAs etch rate and ridge profile were observed with small changes in process temperature (chuck temperature). However, when the chuck temperature was decreased from 25 to 0 °C, etch uniformity across a 3 in. wafer improved from 6% to 3%. Photoresist and polymer residues present after the ICP etch were removed using a combination of wet and dry processes. .

  16. Inductively coupled plasma etching of GaAs low loss waveguides for a traveling waveguide polarization converter, using chlorine chemistry

    International Nuclear Information System (INIS)

    Lu, J.; Meng, X.; SpringThorpe, A.J.; Shepherd, F.R.; Poirier, M.

    2004-01-01

    A traveling waveguide polarization converter [M. Poirier et al.] has been developed, which involves long, low loss, weakly confined waveguides etched in GaAs (epitaxially grown by molecular beam epitaxy), with electroplated 'T electrodes' distributed along the etched floor adjacent to the ridge walls, and airbridge interconnect metallization. This article describes the development of the waveguide fabrication, based on inductively coupled plasma (ICP) etching of GaAs using Cl 2 chemistry; the special processes required to fabricate the electrodes and metallization [X. Meng et al.], and the device characteristics [M. Poirier et al.], are described elsewhere. The required waveguide has dimensions nominally 4 μm wide and 2.1 μm deep, with dimensional tolerances ∼0.1 μm across the wafer and wafer to wafer. A vertical etch profile with very smooth sidewalls and floors is required to enable the plated metal electrodes to be fabricated within 0.1 μm of the ridge. The ridges were fabricated using Cl 2 ICP etching and a photoresist mask patterned with an I-line stepper; He backside cooling, combined with an electrostatic chuck, was employed to ensure good heat transfer to prevent resist reticulation. The experimental results showed that the ridge profile is very sensitive to ICP power and platen rf power. High ICP power and low platen power tend to result in more isotropic etching, whereas increasing platen power increases the photoresist etch rate, which causes rougher ridge sidewalls. No strong dependence of GaAs etch rate and ridge profile were observed with small changes in process temperature (chuck temperature). However, when the chuck temperature was decreased from 25 to 0 deg. C, etch uniformity across a 3 in. wafer improved from 6% to 3%. Photoresist and polymer residues present after the ICP etch were removed using a combination of wet and dry processes

  17. Overview on thermal and mechanical challenges of high power RF electronic packaging

    NARCIS (Netherlands)

    Yuan, C.A.; Kregting, R.; Driel, W. van; Gielen, A.W.J.; Xiao, A.; Zhang, G.Q.

    2011-01-01

    High Power RF electronics is one of the essential parts for wireless communication, including the personal communication, broadcasting, microwave radar, etc. Moreover, high efficient high power electronics has entered the ISM market, such as the power generator of microwave oven. Power electronics

  18. Ambient RF energy scavenging: GSM and WLAN power density measurements

    NARCIS (Netherlands)

    Visser, H.J.; Reniers, A.C.F.; Theeuwes, J.A.C.

    2009-01-01

    To assess the feasibility of ambient RF energy scavenging, a survey of expected power density levels distant from GSM-900 and GSM-1800 base stations has been conducted and power density measurements have been performed in a WLAN environment. It appears that for distances ranging from 25 m to 100 m

  19. Performance of RF power and phase control on JT-60 LHRF heating system

    International Nuclear Information System (INIS)

    Fujii, T.; Ikeda, Y.; Imai, T.; Honda, M.; Kiyono, K.; Maebara, S.; Saigusa, M.; Sakamoto, K.; Sawahata, M.; Seki, M.

    1987-01-01

    The performance of RF power and phase control on the JT-60 LHRFD heating system are presented. The JT-60 LHRF heating system has three units of huge RF source with a total output of 24 MW, each unit consisting of eight amplifier chains. A high power klystron generating 1 MW for 10 s at 2 GHz is used in each chain. Automatic gain control is employed to regulate the output power not only against gain fluctuations in the chain but also against the unstable plasma load without any output circulator for the klystron

  20. Review of tearing mode stabilization by RF power in tokamaks

    International Nuclear Information System (INIS)

    Giruzzi, G.; Zabiego, M.; Zohm, H.

    1999-01-01

    Control of tearing modes by means of heating and current drive inside the magnetic islands is one of the most important applications of RF power in tokamak reactors. The theoretical basis of this concept is reviewed, focusing on aspects related to RF-plasma interaction. Applications to the stabilization of neoclassical tearing modes in ITER by Electron Cyclotron Current Drive are presented to illustrate the basic physical dependences. The most significant experimental results and prospects for future applications are also discussed

  1. High power RF performance test of an improved SiC load

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, W.H.; Kim, S.H.; Park, Y.J. [Pohang Accelerator Lab., Pohang Inst. of Sceince and Technology, Pohang (KR)] [and others

    1998-11-01

    Two prototypes of SiC loads sustaining a maximum peak power of 50 MW were fabricated by Nihon Koshuha Co. in Japan. The PAL conducted the high power RF performance tests of SiC loads to verify the operation characteristics for the application to the PLS Linac. The in-situ facility for the K 12 module was used for the test, which consists of a modulator and klystron system, waveguide network, vacuum and cooling system, and RF analyzing equipment. As the test results, no breakdown appeared up to 50 MW peak power of 1 {mu}s pulse width at a repetition rate of 50 Hz. However, as the peak power increased above 20 MW at 4 {mu}s with 10 Hz, the breakdown phenomena has been observed. Analysing the test results with the current operation power level of PLS Linac, it is confirmed that the SiC loads well satisfy the criteria of the PLS Linac operation. (author)

  2. RF subsystem design for microwave communication receivers

    Science.gov (United States)

    Bickford, W. J.; Brodsky, W. G.

    A system review of the RF subsystems of (IFF) transponders, tropscatter receivers and SATCOM receivers is presented. The quantity potential for S-band and X-band IFF transponders establishes a baseline requirement. From this, the feasibility of a common design for these and other receivers is evaluated. Goals are established for a GaAs MMIC (monolithic microwave integrated circuit) device and related local oscillator preselector and self-test components.

  3. Rf system modeling for the high average power FEL at CEBAF

    International Nuclear Information System (INIS)

    Merminga, L.; Fugitt, J.; Neil, G.; Simrock, S.

    1995-01-01

    High beam loading and energy recovery compounded by use of superconducting cavities, which requires tight control of microphonic noise, place stringent constraints on the linac rf system design of the proposed high average power FEL at CEBAF. Longitudinal dynamics imposes off-crest operation, which in turn implies a large tuning angle to minimize power requirements. Amplitude and phase stability requirements are consistent with demonstrated performance at CEBAF. A numerical model of the CEBAF rf control system is presented and the response of the system is examined under large parameter variations, microphonic noise, and beam current fluctuations. Studies of the transient behavior lead to a plausible startup and recovery scenario

  4. The UK High Power RF Faraday Partnership Industrial, Academia, and Public Collaboration

    International Nuclear Information System (INIS)

    Phelps, A.D.R.; Carter, R.G.; Clunie, D.; Bowater, S.P.; Ellis, D.; Gamble, D.; Large, T.; Lucas, W.; Pettit, C.; Poole, M. W.; Smith, H.; Smith, P.W.; Wilcox, D.M.

    2003-01-01

    The High Power Radio Frequency (HPRF) Faraday Partnership is a UK technology forum for all users, designers, developers and researchers of RF and microwave devices and systems. High power RF and microwave engineering are key enabling technologies in a wide range of industrial sectors. Formed in October 2001 and funded initially by the UK Department of Trade and Industry and the UK Particle Physics and Astronomy Research Council, the purpose of the HPRF Faraday Partnership is the development of a vibrant research, development and manufacturing base capable of exploiting opportunities in high power radio-frequency engineering. The partnership includes the key UK industrial companies, research laboratories and university research groups. The number of partners is constantly growing and already numbers over thirty. The partnership provides the enabling technology for future high power RF systems and their power supplies through its research programme. It is training people for the sector through PhD studentships and employment as Research Associates. It is planned to develop a Masters Training program. Support and involvement in research for companies in the supply chain is provided through a Partnership Office, a web site and through a range of government funded research schemes. The HPRF Faraday Partnership is seeking to establish more long term international research and development collaborations

  5. Study of a power coupler for superconducting RF cavities used in high intensity proton accelerator

    International Nuclear Information System (INIS)

    Souli, M.

    2007-07-01

    The coaxial power coupler needed for superconducting RF cavities used in the high energy section of the EUROTRANS driver should transmit 150 kW (CW operation) RF power to the protons beam. The calculated RF and dielectric losses in the power coupler (inner and outer conductor, RF window) are relatively high. Consequently, it is necessary to design very carefully the cooling circuits in order to remove the generated heat and to ensure stable and reliable operating conditions for the coupler cavity system. After calculating all type of losses in the power coupler, we have designed and validated the inner conductor cooling circuit using numerical simulations results. We have also designed and optimized the outer conductor cooling circuit by establishing its hydraulic and thermal characteristics. Next, an experiment dedicated to study the thermal interaction between the power coupler and the cavity was successfully performed at CRYOHLAB test facility. The critical heat load Qc for which a strong degradation of the cavity RF performance was measured leading to Q c in the range 3 W-5 W. The measured heat load will be considered as an upper limit of the residual heat flux at the outer conductor cold extremity. A dedicated test facility was developed and successfully operated for measuring the performance of the outer conductor heat exchanger using supercritical helium as coolant. The test cell used reproduces the realistic thermal boundary conditions of the power coupler mounted on the cavity in the cryo-module. The first experimental results have confirmed the excellent performance of the tested heat exchanger. The maximum residual heat flux measured was 60 mW for a 127 W thermal load. As the RF losses in the coupler are proportional to the incident RF power, we can deduce that the outer conductor heat exchanger performance is continued up to 800 kW RF power. Heat exchanger thermal conductance has been identified using a 2D axisymmetric thermal model by comparing

  6. Low power microwave tests on RF gun prototype of the Iranian Light Source Facility

    Directory of Open Access Journals (Sweden)

    A Sadeghipanah

    2017-08-01

    Full Text Available In this paper, we introduce RF electron gun of Iranian Light Source Facility (ILSF pre-injection system. Design, fabrication and low-power microwave tests results of the prototype RF electron gun have been described in detail. This paper also explains the tuning procedure of the prototype RF electron gun to the desired resonant frequency. The outcomes of this project brighten the path to the fabrication of the RF electron gun by the local industries  

  7. Wide-Range Adaptive RF-to-DC Power Converter for UHF RFIDs

    KAUST Repository

    Ouda, Mahmoud H.

    2016-07-27

    A wide-range, differential, cross-coupled rectifier is proposed with an extended dynamic range of input RF power that enables wireless powering from varying distances. The proposed architecture mitigates the reverse-leakage problem in conven- tional, cross-coupled rectifiers without degrading sensitivity. A prototype is designed for UHF RFID applications, and is imple- mented using 0.18 μ m CMOS technology. On-chip measurements demonstrate a sensitivity of − 18 dBm for 1 V output over a 100 k Ω load and a peak RF-to-DC power conversion efficiency of 65%. A conventional, fully cross-coupled rectifier is fabricated along- side for comparison and the proposed rectifier shows more than 2 × increase in dynamic range and a 25% boosting in output voltage than the conventional rectifier

  8. Spallation Neutron Source High Power RF Installation and Commissioning Progress

    CERN Document Server

    McCarthy, Michael P; Bradley, Joseph T; Fuja, Ray E; Gurd, Pamela; Hardek, Thomas; Kang, Yoon W; Rees, Daniel; Roybal, William; Young, Karen A

    2005-01-01

    The Spallation Neutron Source (SNS) linac will provide a 1 GeV proton beam for injection into the accumulator ring. In the normal conducting (NC) section of this linac, the Radio Frequency Quadupole (RFQ) and six drift tube linac (DTL) tanks are powered by seven 2.5 MW, 402.5 MHz klystrons and the four coupled cavity linac (CCL) cavities are powered by four 5.0 MW, 805 MHz klystrons. Eighty-one 550 kW, 805 MHz klystrons each drive a single cavity in the superconducting (SC) section of the linac. The high power radio frequency (HPRF) equipment was specified and procured by LANL and tested before delivery to ensure a smooth transition from installation to commissioning. Installation of RF equipment to support klystron operation in the 350-meter long klystron gallery started in June 2002. The final klystron was set in place in September 2004. Presently, all RF stations have been installed and high power testing has been completed. This paper reviews the progression of the installation and testing of the HPRF Sys...

  9. Simulation of RF power and multi-cusp magnetic field requirement for H{sup −} ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Manish [Ion Source Lab., Proton Linac & Superconducting Cavities Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Senecha, V.K., E-mail: kumarvsen@gmail.com [Ion Source Lab., Proton Linac & Superconducting Cavities Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Homi Bhabha National Institute, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Kumar, Rajnish; Ghodke, Dharmraj V. [Ion Source Lab., Proton Linac & Superconducting Cavities Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India)

    2016-12-01

    A computer simulation study for multi-cusp RF based H{sup −} ion source has been carried out using energy and particle balance equation for inductively coupled uniformly dense plasma considering sheath formation near the boundary wall of the plasma chamber for RF ion source used as high current injector for 1 Gev H{sup −} Linac project for SNS applications. The average reaction rates for different reactions responsible for H{sup −} ion production and destruction have been considered in the simulation model. The RF power requirement for the caesium free H{sup -} ion source for a maximum possible H{sup −} ion beam current has been derived by evaluating the required current and RF voltage fed to the coil antenna using transformer model for Inductively Coupled Plasma (ICP). Different parameters of RF based H{sup −} ion source like excited hydrogen molecular density, H{sup −} ion density, RF voltage and current of RF antenna have been calculated through simulations in the presence and absence of multicusp magnetic field to distinctly observe the effect of multicusp field. The RF power evaluated for different H{sup −} ion current values have been compared with the experimental reported results showing reasonably good agreement considering the fact that some RF power will be reflected from the plasma medium. The results obtained have helped in understanding the optimum field strength and field free regions suitable for volume emission based H{sup −} ion sources. The compact RF ion source exhibits nearly 6 times better efficiency compare to large diameter ion source.

  10. CORPORATE FEED WITH DUAL SEGMENT CIRCULAR POLARIZED ARRAY RECTENNA FOR LOW POWER RF ENERGY HARVESTING

    Directory of Open Access Journals (Sweden)

    CHIA CHAO KANG

    2016-06-01

    Full Text Available This paper focuses on the investigation of the level powers that can be scavenged from the ambient environment by using corporate feed with dual segment circular polarized antenna array . It will converts the received power to direct current (DC. Being a circular polarized antenna, it has higher inductance per unit area, a good Q-factor and compact capability. The design of corporate-series feed rectenna array is to achieve a high gain antenna and maximize the RF energy received by the rectenna system at ultra low power levels. The entire structure was investigated using a combination of harmonic balance nonlinear analysis and full wave electromagnetic field analysis. The results show that 5.0 dBi gain for circular polarized antenna array can be achieved at frequency 956 MHz. When the input power of 20 dBm fed into the transmitting antenna, the maximum distance for radio frequency (RF harvesting is 5.32m. The output DC voltage for various values of incident RF power is also presented. There are noticed reasonable agreements between the simulated and measured result and the works concludes that the investigation of RF energy harvesting system was successful.

  11. High-power rf pulse compression with SLED-II at SLAC

    International Nuclear Information System (INIS)

    Nantista, C.

    1993-04-01

    Increasing the peak rf power available from X-band microwave tubes by means of rf pulse compression is envisioned as a way of achieving the few-hundred-megawatt power levels needed to drive a next-generation linear collider with 50--100 MW klystrons. SLED-II is a method of pulse compression similar in principal to the SLED method currently in use on the SLC and the LEP injector linac. It utilizes low-los resonant delay lines in place of the storage cavities of the latter. This produces the added benefit of a flat-topped output pulse. At SLAC, we have designed and constructed a prototype SLED-II pulse-compression system which operates in the circular TE 01 mode. It includes a circular-guide 3-dB coupler and other novel components. Low-power and initial high-power tests have been made, yielding a peak power multiplication of 4.8 at an efficiency of 40%. The system will be used in providing power for structure tests in the ASTA (Accelerator Structures Test Area) bunker. An upgraded second prototype will have improved efficiency and will serve as a model for the pulse compression system of the NLCTA (Next Linear Collider Test Accelerator)

  12. The influence of RF power on the electrical properties of sputtered amorphous In—Ga—Zn—O thin films and devices

    International Nuclear Information System (INIS)

    Shi Junfei; Dong Chengyuan; Wu Jie; Chen Yuting; Zhan Runze; Dai Wenjun

    2013-01-01

    The influence of radio frequency (RF) power on the properties of magnetron sputtered amorphous indium gallium zinc oxide (a-IGZO) thin films and the related thin-film transistor (TFT) devices is investigated comprehensively. A series of a-IGZO thin films prepared with magnetron sputtering at various RF powers are examined. The results prove that the deposition rate sensitively depends on RF power. In addition, the carrier concentration increases from 0.91 × 10 19 to 2.15 × 10 19 cm −3 with the RF power rising from 40 to 80 W, which may account for the corresponding decrease in the resistivity of the a-IGZO thin films. No evident impacts of RF power are observed on the surface roughness, crystalline nature and stoichiometry of the a-IGZO samples. On the other hand, optical transmittance is apparently influenced by RF power where the extracted optical band-gap value increases from 3.48 to 3.56 eV with RF power varying from 40 to 80 W, as is supposed to result from the carrier-induced band-filling effect. The rise in RF power can also affect the performance of a-IGZO TFTs, in particular by increasing the field-effect mobility clearly, which is assumed to be due to the alteration of the extended states in a-IGZO thin films. (semiconductor devices)

  13. RF Energy Harvesting for Ubiquitous, Zero Power Wireless Sensors

    Directory of Open Access Journals (Sweden)

    Warda Saeed

    2018-01-01

    Full Text Available This paper presents a review of wireless power transfer (WPT followed by a comparison between ambient energy sources and an overview of different components of rectennas that are used for RF energy harvesting. Being less costly and environment friendly, rectennas are used to provide potentially inexhaustible energy for powering up low power sensors and portable devices that are installed in inaccessible areas where frequent battery replacement is difficult, if not impossible. The current challenges in rectenna design and a detailed comparison of state-of-the-art rectennas are also presented.

  14. Practical test of the LINAC4 RF power system

    CERN Document Server

    Schwerg, N

    2011-01-01

    The high RF power for the Linac4 accelerating structures will be generated by thirteen 1.3 MW klystrons, previously used for the CERN LEP accelerator, and six new klystrons of 2.8 MW all operating at a frequency of 352.2 MHz. The power distribution scheme features a folded magic tee feeding the power from one 2.8 MW klystron to two LEP circulators. We present first results from the Linac4 test place, validating the approach and the used components as well as reporting on the klystron re-tuning activities.

  15. Effects of rf power on electron density and temperature, neutral temperature, and Te fluctuations in an inductively coupled plasma

    International Nuclear Information System (INIS)

    Camparo, James; Fathi, Gilda

    2009-01-01

    Atomic clocks that fly on global-navigation satellites such as global positioning system (GPS) and Galileo employ light from low-temperature, inductively coupled plasmas (ICPs) for atomic signal generation and detection (i.e., alkali/noble-gas rf-discharge lamps). In this application, the performance of the atomic clock and the capabilities of the navigation system depend sensitively on the stability of the ICP's optical emission. In order to better understand the mechanisms that might lead to instability in these rf-discharge lamps, and hence the satellite atomic clocks, we studied the optical emission from a Rb/Xe ICP as a function of the rf power driving the plasma. Surprisingly, we found that the electron density in the plasma was essentially independent of increases in rf power above its nominal value (i.e., 'rf-power gain') and that the electron temperature was only a slowly varying function of rf-power gain. The primary effect of rf power was to increase the temperature of the neutrals in the plasma, which was manifested by an increase in Rb vapor density. Interestingly, we also found evidence for electron temperature fluctuations (i.e., fluctuations in the plasma's high-energy electron content). The variance of these fluctuations scaled inversely with the plasma's mean electron temperature and was consistent with a simple model that assumed that the total electron density in the discharge was independent of rf power. Taken as a whole, our results indicate that the electrons in alkali/noble-gas ICPs are little affected by slight changes in rf power and that the primary effect of such changes is to heat the plasma's neutral species.

  16. RF Wireless Power Transfer: Regreening Future Networks

    OpenAIRE

    Tran, Ha-Vu; Kaddoum, Georges

    2017-01-01

    Green radio communication is an emerging topic since the overall footprint of information and communication technology (ICT) services is predicted to triple between 2007 and 2020. Given this research line, energy harvesting (EH) and wireless power transfer (WPT) networks can be evaluated as promising approaches. In this paper, an overview of recent trends for future green networks on the platforms of EH and WPT is provided. By rethinking the application of radio frequency (RF)-WPT, a new conc...

  17. Battery-Powered RF Pre-Ionization System for the Caltech Magnetohydrodynamically-Driven Jet Experiment: RF Discharge Properties and MHD-Driven Jet Dynamics

    Science.gov (United States)

    Chaplin, Vernon H.

    This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed. Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure. The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel

  18. Very long pulse high-RF power test of a lower hybrid frequency antenna module

    International Nuclear Information System (INIS)

    Goniche, M.; Brossaud, J.; Barral, C.; Berger-By, G.; Bibet, Ph.; Poli, S.; Rey, G.; Tonon, G.; Seki, M.; Obara, K.

    1994-03-01

    Outgassing, induced by very long RF waves injection at high power density was studied in a module, able to be used for a lower hybrid frequency antenna. Good RF properties of the module are reported, however, resonance phenomena with strong absorption of RF power (15%) was observed at high temperature (T>400 deg C). A large outgassing data base is provided by the 75 shots cumulating 27 hours of RF injection. The comparison with previous experiments (Tore Supra and TdV prototype modules) confirm the effect of baking and results are consistent. Outgassing increases exponentially with -1/T, and a desorption model with an activation energy Ed ∼ 0.35 eV fits the data up to 400 deg C. In order to design vacuum pumping system for large lower hybrid frequency antenna, outgassing rates are given for different working temperatures. (author). 11 refs., 55 figs

  19. Very long pulse high-RF power test of a lower hybrid frequency antenna module

    Energy Technology Data Exchange (ETDEWEB)

    Goniche, M; Brossaud, J; Barral, C; Berger-By, G; Bibet, Ph; Poli, S; Rey, G; Tonon, G [Association Euratom-CEA, Centre d` Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Seki, M; Obara, K [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; and others

    1994-03-01

    Outgassing, induced by very long RF waves injection at high power density was studied in a module, able to be used for a lower hybrid frequency antenna. Good RF properties of the module are reported, however, resonance phenomena with strong absorption of RF power (15%) was observed at high temperature (T>400 deg C). A large outgassing data base is provided by the 75 shots cumulating 27 hours of RF injection. The comparison with previous experiments (Tore Supra and TdV prototype modules) confirm the effect of baking and results are consistent. Outgassing increases exponentially with -1/T, and a desorption model with an activation energy Ed {approx} 0.35 eV fits the data up to 400 deg C. In order to design vacuum pumping system for large lower hybrid frequency antenna, outgassing rates are given for different working temperatures. (author). 11 refs., 55 figs.

  20. Active high-power RF pulse compression using optically switched resonant delay lines

    International Nuclear Information System (INIS)

    Tantawi, S.G.; Ruth, R.D.; Vlieks, A.E.

    1996-11-01

    The authors present the design and a proof of principle experimental results of an optically controlled high power rf pulse compression system. The design should, in principle, handle few hundreds of Megawatts of power at X-band. The system is based on the switched resonant delay line theory. It employs resonant delay lines as a means of storing rf energy. The coupling to the lines is optimized for maximum energy storage during the charging phase. To discharge the lines, a high power microwave switch increases the coupling to the lines just before the start of the output pulse. The high power microwave switch, required for this system, is realized using optical excitation of an electron-hole plasma layer on the surface of a pure silicon wafer. The switch is designed to operate in the TE 01 mode in a circular waveguide to avoid the edge effects present at the interface between the silicon wafer and the supporting waveguide; thus, enhancing its power handling capability

  1. High power testing of a 17 GHz photocathode RF gun

    International Nuclear Information System (INIS)

    Chen, S.C.; Danly, B.G.; Gonichon, J.

    1995-01-01

    The physics and technological issues involved in high gradient particle acceleration at high microwave (RF) frequencies are under study at MIT. The 17 GHz photocathode RF gun has a 1 1/2 cell (π mode) room temperature cooper cavity. High power tests have been conducted at 5-10 MW levels with 100 ns pulses. A maximum surface electric field of 250 MV/m was achieved. This corresponds to an average on-axis gradient of 150 MeV/m. The gradient was also verified by a preliminary electron beam energy measurement. Even high gradients are expected in our next cavity design

  2. Rf-to-dc power converters for wireless powering

    KAUST Repository

    Ouda, Mahmoud Hamdy; Salama, Khaled N.

    2016-01-01

    feedback circuit configured to provide feedback bias signals to gates of the pair of forward rectifying transistors via feedback branch elements. In another example, a method includes receiving a radio frequency (RF) signal; rectifying the RF signal via a

  3. Dual-functional on-chip AlGaAs/GaAs Schottky diode for RF power detection and low-power rectenna applications.

    Science.gov (United States)

    Hashim, Abdul Manaf; Mustafa, Farahiyah; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul

    2011-01-01

    A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT) structure. Current-voltage (I-V) measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV) are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device's good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems.

  4. LTE modem power consumption, SAR and RF signal strength emulation

    DEFF Research Database (Denmark)

    Musiige, Deogratius; Vincent, Laulagnet; Anton, François

    2012-01-01

    This paper presents a new methodology for emulating the LTE modem power consumption, emitted SAR and RF signal strength when transmitting an LTE signal. The inputs of the methodology are: modem logical/protocol commands, time advance, near-field specifier, and antenna characteristics. The power...... emulation model(s) are computed by a two layer 451 neural network based on physical power measurements. SAR is emulated by polynomial interpolation models based on FDTD simulations. The accuracies of the mathematical function approximations for the emulation models of power and SAR are 5.19% and 3...

  5. Design and RF test result of High Power Hybrid Combiner for Helicon Wave Current Drive in KSTAR Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. Y.; Kim, H. J.; Wi, H. H.; Wang, S. J.; Kwak, J. G. [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    200 kW RF power will be injected to plasmas through the traveling wave antenna after combining four klystrons output powers using three hybrid combiners. Each klystron produces 60 kW output at the frequency of 500 MHz. RF power combiners commonly used to divide or combine output powers for various rf and microwave applications. It is divided into several types according to the design type such as Wilkinson combiner, radial and quadrature hybrid combiner. We designed high power hybrid combiners using 6-1/8 inch coaxial line. The power combiner has many advantages such as high isolation, low insertion loss and high power handling capability. In this paper design and rf test results of high power combiners will be described. High power combiners using three coaxial hybrid couplers will be utilized for effectively combining of 500 MHz, 200 kW output powers generated by four klystrons. We have designed, fabricated, and tested a 6-1/8 inch coaxial hybrid combiners at 500 MHz for efficiently off-axis Helicon wave current drive in KSTAR. Simulation and test results of high power coaxial hybrid combiners are good agreement.

  6. Transparent conducting Al-doped ZnO thin films prepared by magnetron sputtering with dc and rf powers applied in combination

    International Nuclear Information System (INIS)

    Minami, Tadatsugu; Ohtani, Yuusuke; Miyata, Toshihiro; Kuboi, Takeshi

    2007-01-01

    A newly developed Al-doped ZnO (AZO) thin-film magnetron-sputtering deposition technique that decreases resistivity, improves resistivity distribution, and produces high-rate depositions has been demonstrated by dc magnetron-sputtering depositions that incorporate rf power (dc+rf-MS), either with or without the introduction of H 2 gas into the deposition chamber. The dc+rf-MS preparations were carried out in a pure Ar or an Ar+H 2 (0%-2%) gas atmosphere at a pressure of 0.4 Pa by adding a rf component (13.56 MHz) to a constant dc power of 80 W. The deposition rate in a dc+rf-MS deposition incorporating a rf power of 150 W was approximately 62 nm/min, an increase from the approximately 35 nm/min observed in dc magnetron sputtering with a dc power of 80 W. A resistivity as low as 3x10 -4 Ω cm and an improved resistivity distribution could be obtained in AZO thin films deposited on substrates at a low temperature of 150 deg. C by dc+rf-MS with the introduction of hydrogen gas with a content of 1.5%. This article describes the effects of adding a rf power component (i.e., dc+rf-MS deposition) as well as introducing H 2 gas into dc magnetron-sputtering preparations of transparent conducting AZO thin films

  7. Low-Power RF SOI-CMOS Technology for Distributed Sensor Networks

    Science.gov (United States)

    Dogan, Numan S.

    2003-01-01

    The objective of this work is to design and develop Low-Power RF SOI-CMOS Technology for Distributed Sensor Networks. We briefly report on the accomplishments in this work. We also list the impact of this work on graduate student research training/involvement.

  8. Development and performance test of a new high power RF window in S-band PLS-II LINAC

    Science.gov (United States)

    Hwang, Woon-Ha; Joo, Young-Do; Kim, Seung-Hwan; Choi, Jae-Young; Noh, Sung-Ju; Ryu, Ji-Wan; Cho, Young-Ki

    2017-12-01

    A prototype of RF window was developed in collaboration with the Pohang Accelerator Laboratory (PAL) and domestic companies. High power performance tests of the single RF window were conducted at PAL to verify the operational characteristics for its application in the Pohang Light Source-II (PLS-II) linear accelerator (Linac). The tests were performed in the in-situ facility consisting of a modulator, klystron, waveguide network, vacuum system, cooling system, and RF analyzing equipment. The test results with Stanford linear accelerator energy doubler (SLED) have shown no breakdown up to 75 MW peak power with 4.5 μs RF pulse width at a repetition rate of 10 Hz. The test results with the current operation level of PLS-II Linac confirm that the RF window well satisfies the criteria for PLS-II Linac operation.

  9. Dual-Functional On-Chip AlGaAs/GaAs Schottky Diode for RF Power Detection and Low-Power Rectenna Applications

    Directory of Open Access Journals (Sweden)

    Abdul Manaf Hashim

    2011-08-01

    Full Text Available A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT structure. Current-voltage (I-V measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device’s good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems.

  10. Studies in RF power communication, SAR, and temperature elevation in wireless implantable neural interfaces.

    Directory of Open Access Journals (Sweden)

    Yujuan Zhao

    Full Text Available Implantable neural interfaces are designed to provide a high spatial and temporal precision control signal implementing high degree of freedom real-time prosthetic systems. The development of a Radio Frequency (RF wireless neural interface has the potential to expand the number of applications as well as extend the robustness and longevity compared to wired neural interfaces. However, it is well known that RF signal is absorbed by the body and can result in tissue heating. In this work, numerical studies with analytical validations are performed to provide an assessment of power, heating and specific absorption rate (SAR associated with the wireless RF transmitting within the human head. The receiving antenna on the neural interface is designed with different geometries and modeled at a range of implanted depths within the brain in order to estimate the maximum receiving power without violating SAR and tissue temperature elevation safety regulations. Based on the size of the designed antenna, sets of frequencies between 1 GHz to 4 GHz have been investigated. As expected the simulations demonstrate that longer receiving antennas (dipole and lower working frequencies result in greater power availability prior to violating SAR regulations. For a 15 mm dipole antenna operating at 1.24 GHz on the surface of the brain, 730 uW of power could be harvested at the Federal Communications Commission (FCC SAR violation limit. At approximately 5 cm inside the head, this same antenna would receive 190 uW of power prior to violating SAR regulations. Finally, the 3-D bio-heat simulation results show that for all evaluated antennas and frequency combinations we reach FCC SAR limits well before 1 °C. It is clear that powering neural interfaces via RF is possible, but ultra-low power circuit designs combined with advanced simulation will be required to develop a functional antenna that meets all system requirements.

  11. Effect of RF Interference on the Security-Reliability Trade-off Analysis of Multiuser Mixed RF/FSO Relay Networks with Power Allocation

    KAUST Repository

    Abd El-Malek, Ahmed

    2017-03-27

    In this paper, the impact of radio frequency (RF) cochannel interference (CCI) on the performance of multiuser mixed RF/free-space optical (FSO) relay network with opportunistic user scheduling under eavesdropping attack is studied. The considered system includes multiple users, one decode-and-forward relay, one destination, and an eavesdropper. In the analysis, the RF/FSO channels follow Nakagami-m/Gamma-Gamma fading models, respectively, with pointing errors on the FSO link. Exact closed-form expression for the system outage probability is derived. Then, an asymptotic expression for the outage probability is obtained at the high signal-to-interference-plus-noise ratio regime to get more insights on the system performance. Moreover, the obtained results are used to find the optimal transmission power in different turbulence conditions. The secrecy performance is studied in the presence of CCI at both the authorized relay and eavesdropper, where closed-form expressions are derived for the intercept probability. The physical layer security performance is enhanced using cooperative jamming models, where new closed-form expressions are derived for the intercept probability. Another power allocation optimization problem is formulated to find the optimal transmission and jamming powers. The derived analytical formulas are supported by numerical results to clarify the main contributions of this paper.

  12. Volterra series based predistortion for broadband RF power amplifiers with memory effects

    Institute of Scientific and Technical Information of China (English)

    Jin Zhe; Song Zhihuan; He Jiaming

    2008-01-01

    RF power amplifiers(PAs)are usually considered as memoryless devices in most existing predistortion techniques.However,in broadband communication systems,such as WCDMA,the PA memory effects are significant,and memoryless predistortion cannot linearize the PAs effectively.After analyzing the PA memory effects,a novel predistortion method based on the simplified Volterra series is proposed to linearize broadband RF PAs with memory effects.The indirect learning architecture is adopted to design the predistortion scheme and the recursive least squares algorithm with forgetting factor is applied to identify the parameters of the predistorter.Simulation results show that the proposed predistortion method can compensate the nonlinear distortion and memory effects of broadband RF PAs effectively.

  13. Technology development of solid state rf systems at 350 MHz and 325 MHz for RF accelerator

    International Nuclear Information System (INIS)

    Rama Rao, B.V.; Mishra, J.K.; Pande, Manjiri; Gupta, S.K.

    2011-01-01

    For decades vacuum tubes and klystrons have been used in high power application such as RF accelerators and broadcast transmitters. However, now, the solid-state technology can give power output in kilowatt regime. Higher RF power output can be achieved by combining several solid-state power amplifier modules using power combiners. This technology presents several advantages over traditional RF amplifiers, such as simpler start-up procedure, high modularity, high redundancy and flexibility, elimination of high voltage supplies and high power circulators, low operational cost, online maintenance without shut down of RF power station and no warm up time. In BARC, solid state amplifier technology development is being done both at 350 MHz and 325 MHz using RF transistors such as 1 kW LDMOS and 350 Watt VDMOS. Topology of input and output matching network in RF modules developed, consist of two L type matching sections with each section having a combination of series micro-strip line and parallel capacitor. The design is of equal Q for both the sections and of 25 ohm characteristics impedance of micro strip lines. Based on this, lengths of micro strips lines and values of shunt capacitors have been calculated. The calculated and simulated values of network elements have been compared. Similarly power combiners have been designed and developed based on Wilkinson techniques without internal resistors and using coaxial technology. This paper presents design and development of RF power amplifier modules, associated power combiner technologies and then integrated RF power amplifier. (author)

  14. Suppression of multipacting in high power RF couplers operating with superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ostroumov, P.N., E-mail: ostroumov@frib.msu.edu [Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824 (United States); Kazakov, S. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Morris, D.; Larter, T.; Plastun, A.S.; Popielarski, J.; Wei, J.; Xu, T. [Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824 (United States)

    2017-06-01

    Capacitive input couplers based on a 50 Ω coaxial transmission line are frequently used to transmit RF power to superconducting (SC) resonators operating in CW mode. It is well known that coaxial transmission lines are prone to multipacting phenomenon in a wide range of RF power level and operating frequency. The Facility for Rare Isotope Beams (FRIB) being constructed at Michigan State University includes two types of quarter wave SC resonators (QWR) operating at 80.5 MHz and two types of half wave SC resonators (HWR) operating at 322 MHz. As was reported in ref. [1] a capacitive input coupler used with HWRs was experiencing strong multipacting that resulted in a long conditioning time prior the cavity testing at design levels of accelerating fields. We have developed an insert into 50 Ω coaxial transmission line that provides opportunity to bias the RF coupler antenna and protect the amplifier from the bias potential in the case of breakdown in DC isolation. Two of such devices have been built and are currently used for the off-line testing of 8 HWRs installed in the cryomodule.

  15. Design of RF energy harvesting platforms for power management unit with start-up circuits

    Science.gov (United States)

    Costanzo, Alessandra; Masotti, Diego

    2013-12-01

    In this contribution we discuss an unconventional rectifier design dedicated to RF energy harvesting from ultra-low sources, such as ambient RF sources which are typically of the order of few to few tens of μW. In such conditions unsuccessful results may occur if the rectenna is directly connected to its actual load since either the minimum power or the minimum activation voltage may not be simultaneously available. For this reason a double-branch rectifier topology is considered for the power management unit (PMU), instead of traditional single-branch one. The new PMU, interposed between the rectenna and application circuits, allows the system to operate with significantly lower input power with respect to the traditional solution, while preserving efficiency during steady-state power conversion.

  16. Design of RF energy harvesting platforms for power management unit with start-up circuits

    International Nuclear Information System (INIS)

    Costanzo, Alessandra; Masotti, Diego

    2013-01-01

    In this contribution we discuss an unconventional rectifier design dedicated to RF energy harvesting from ultra-low sources, such as ambient RF sources which are typically of the order of few to few tens of μW. In such conditions unsuccessful results may occur if the rectenna is directly connected to its actual load since either the minimum power or the minimum activation voltage may not be simultaneously available. For this reason a double-branch rectifier topology is considered for the power management unit (PMU), instead of traditional single-branch one. The new PMU, interposed between the rectenna and application circuits, allows the system to operate with significantly lower input power with respect to the traditional solution, while preserving efficiency during steady-state power conversion

  17. Heat load of a GaAs photocathode in an SRF electron gun

    International Nuclear Information System (INIS)

    Wang Erdong; Zhao Kui; Jorg Kewisch; Ilan Ben-Zvi; Andrew Burrill; Trivini Rao; Wu Qiong; Animesh Jain; Ramesh Gupta; Doug Holmes

    2011-01-01

    A great deal of effort has been made over the last decades to develop a better polarized electron source for high energy physics. Several laboratories operate DC guns with a gallium arsenide photocathode, which yield a highly polarized electron beam. However, the beam's emittance might well be improved by using a superconducting radio frequency (SRF) electron gun, which delivers beams of a higher brightness than that from DC guns because the field gradient at the cathode is higher. SRF guns with metal and CsTe cathodes have been tested successfully. To produce polarized electrons, a Gallium-Arsenide photo-cathode must be used: an experiment to do so in a superconducting RF gun is under way at BNL. Since a bulk gallium arsenide (GaAs) photocathode is normal conducting, a problem arises from the heat load stemming from the cathode. We present our measurements of the electrical resistance of GaAs at cryogenic temperatures, a prediction of the heat load and verification by measuring the quality factor of the gun with and without the cathode at 2 K. We simulate heat generation and flow from the GaAs cathode using the ANSYS program. By following the findings with the heat load model, we designed and fabricated a new cathode holder (plug) to decrease the heat load from GaAs. (authors)

  18. Design and development of power supplies for high power IOT based RF amplifier

    International Nuclear Information System (INIS)

    Kumar, Yashwant; Kumari, S.; Ghosh, M.K.; Bera, A.; Sadhukhan, A.; Pal, S.S.; Khare, V.K.; Tiwari, T.P.; Thakur, S.K.; Saha, S.

    2013-01-01

    Design, development, circuit topology, function of system components and key system specifications of different power supplies for biasing electrodes of Thales Inductive Output Tube (IOT) based high power RF amplifier are presented in this paper. A high voltage power supply (-30 kV, 3.2A dc) with fast (∼microsecond) crowbar protection circuit is designed, developed and commissioned at VECC for testing the complete setup. Other power supplies for biasing grid electrode (300V, 0.5A dc) and Ion Pump (3 kV, 0.1mA dc) of IOT are also designed, developed and tested with actual load. A HV Deck (60kV Isolation) is specially designed in house to place these power supplies which are floating at 30 kV. All these power supplies are powered by an Isolation Transformer (5 kVA, 60 kV isolation) designed and developed in VECC. (author)

  19. Solid-state high voltage modulator and its application to rf source high voltage power supplies

    International Nuclear Information System (INIS)

    Tooker, J.F.; Huynh, P.; Street, R.W.

    2009-01-01

    A solid-state high voltage modulator is described in which series-connected insulated-gate bipolar transistors (IGBTs) are switched at a fixed frequency by a pulse width modulation (PWM) regulator, that adjusts the pulse width to control the voltage out of an inductor-capacitor filter network. General Atomics proposed the HV power supply (HVPS) topology of multiple IGBT modulators connected to a common HVdc source for the large number of 1 MW klystrons in the linear accelerator of the Accelerator Production of Tritium project. The switching of 24 IGBTs to obtain 20 kVdc at 20 A for short pulses was successfully demonstrated. This effort was incorporated into the design of a -70 kV, 80 A, IGBT modulator, and in a short-pulse test 12 IGBTs regulated -5 kV at 50 A under PWM control. These two tests confirm the practicality of solid-state IGBT modulators to regulate high voltage at reasonable currents. Tokamaks such as ITER require large rf heating and current drive systems with multiple rf sources. A HVPS topology is presented that readily adapts to the three rf heating systems on ITER. To take advantage of the known economy of scale for power conversion equipment, a single HVdc source feeds multiple rf sources. The large power conversion equipment, which is located outside, converts the incoming utility line voltage directly to the HVdc needed for the class of rf sources connected to it, to further reduce cost. The HVdc feeds a set of IGBT modulators, one for each rf source, to independently control the voltage applied to each source, maximizing operational flexibility. Only the modulators are indoors, close to the rf sources, minimizing the use of costly near-tokamak floor space.

  20. MIM capacitors with various Al2O3 thicknesses for GaAs RFIC application

    International Nuclear Information System (INIS)

    Zhou Jiahui; Xu Wenjun; Li Qi; Li Simin; He Zhiyi; Li Haiou; Chang Hudong; Liu Honggang; Liu Guiming

    2015-01-01

    The impact of various thicknesses of Al 2 O 3 metal—insulator—metal (MIM) capacitors on direct current and radio frequency (RF) characteristics is investigated. For 20 nm Al 2 O 3 , the fabricated capacitor exhibits a high capacitance density of 3850 pF/mm 2 and acceptable voltage coefficients of capacitance of 681 ppm/V 2 at 1 MHz. An outstanding VCC-α of 74 ppm/V 2 at 1 MHz, resonance frequency of 8.2 GHz and Q factor of 41 at 2 GHz are obtained by 100 nm Al 2 O 3 MIM capacitors. High-performance MIM capacitors using GaAs process and atomic layer deposition Al 2 O 3 could be very promising candidates for GaAs RFIC applications. (paper)

  1. Design of power supply system for the prototype RF-driven negative ion source for neutral beam injection application

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Caichao; Hu, Chundong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China); Wei, Jianglong, E-mail: jlwei@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Xie, Yahong; Xu, Yongjian; Liang, Lizhen; Chen, Shiyong; Liu, Sheng; Liu, Zhimin; Xie, Yuanlai [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-04-15

    Highlights: • A supporting power supply system was designed in details for a RF-driven prototype negative ion source at ASIPP. • The RF power supply for plasma generation adopts an all-solid-state power supply structure. • The extraction grid power supply adopts the pulse step modulator (PSM) technology. - Abstract: In order to study the generation and extraction of negative ions for neutral beam injection application, a prototype RF-driven negative ion source and the corresponding test bed are under construction at Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). The target of the negative ion source is extracting a negation ion beam of 350 A/m{sup 2} for 3600 s plasma duration and 100 s beam duration. According to the required parameters of test bed, the design of power supply system is put forward for earlier study. In this paper, the performance requirements and design schemes of RF power supply for plasma generation, impedance matching network, bias voltage power supply, and extraction voltage power supply for negative beam extraction are introduced in details. The schemes provide a reference for the construction of power supply system and lay a foundation for the next phase of experimental operation.

  2. Electron beam gun with kinematic coupling for high power RF vacuum devices

    Science.gov (United States)

    Borchard, Philipp

    2016-11-22

    An electron beam gun for a high power RF vacuum device has components joined by a fixed kinematic coupling to provide both precise alignment and high voltage electrical insulation of the components. The kinematic coupling has high strength ceramic elements directly bonded to one or more non-ductile rigid metal components using a high temperature active metal brazing alloy. The ceramic elements have a convex surface that mates with concave grooves in another one of the components. The kinematic coupling, for example, may join a cathode assembly and/or a beam shaping focus electrode to a gun stem, which is preferably composed of ceramic. The electron beam gun may be part of a high power RF vacuum device such as, for example, a gyrotron, klystron, or magnetron.

  3. Powering Autonomous Sensors An Integral Approach with Focus on Solar and RF Energy Harvesting

    CERN Document Server

    Penella-López, María Teresa

    2011-01-01

    Autonomous sensors transmit data and power their electronics without using cables. They can be found in e.g. wireless sensor networks (WSNs) or remote acquisition systems. Although primary batteries provide a simple design for powering autonomous sensors, they present several limitations such as limited capacity and power density, and difficulty in predicting their condition and state of charge. An alternative is to extract energy from the ambient (energy harvesting). However, the reduced dimensions of most autonomous sensors lead to a low level of available power from the energy transducer. Thus, efficient methods and circuits to manage and gather the energy are a must. An integral approach for powering autonomous sensors by considering both primary batteries and energy harvesters is presented. Two rather different forms of energy harvesting are also dealt with: optical (or solar) and radiofrequency (RF). Optical energy provides high energy density, especially outdoors, whereas RF remote powering is possibly...

  4. Fabrication and characterization of n-AlGaAs/ GaAs Schottky diode for rectennas device application

    International Nuclear Information System (INIS)

    Norfarariyanti Parimon; Abdul Manaf Hashim; Farahiyah Mustafa

    2009-01-01

    Full text: Schottky diode was designed and fabricated on n-AlGaAs/GaAs high electron mobility transistor (HEMT) structure for rectennas device application. Rectennas is one of the most potential devices to form the wireless power supply which is really good at converting microwaves to DC. The processing steps used in the fabrication of Schottky diode were the conventional steps used in standard GaAs processing. Current?voltage (I-V) measurements showed that the device had rectifying properties with a barrier height of 0.5468 eV for Ni/Au metallization. The fabricated Schottky diode detected RF signals and the cut-off frequency up to 20 GHz was estimated in direct injection experiments. These preliminary results will provide a breakthrough for the direct integration with antenna towards realization of rectennas device application. (author)

  5. A high-power rf linear accelerator for FELS [free-electron lasers

    International Nuclear Information System (INIS)

    Sheffield, R.L.; Watson, J.M.

    1987-01-01

    This paper describes the design of a high average current rf linear accelerator suitable for driving short-wavelength free-electron lasers (FEL). It is concluded that the design of a room-temperature rf linear acelerator that can meet the stringent requirements of a high-power short-wavelength FEL appears possible. The accelerator requires the use of an advanced photoelectric injector that is under development; the accelerator components, however, do not require appreciable development. At these large beam currents, low-frequency, large-bore room-temperature cavities can be highly efficient and give all specified performance with minimal risk. 20 refs

  6. Suppressing RF breakdown of powerful backward wave oscillator by field redistribution

    Directory of Open Access Journals (Sweden)

    W. Song

    2012-03-01

    Full Text Available An over mode method for suppressing the RF breakdown on metal surface of resonant reflector cavity in powerful backward wave oscillator is investigated. It is found that the electric field is redistributed and electron emission is restrained with an over longitudinal mode cavity. Compared with the general device, a frequency band of about 5 times wider and a power capacity of at least 1.7 times greater are obtained. The results were verified in an X-band high power microwave generation experiment with the output power near 4 gigawatt.

  7. Developments and directions in 200 MHz very high power RF at LAMPF

    International Nuclear Information System (INIS)

    Cliff, R.; Bush, E.D.; DeHaven, R.A.; Harris, H.W.; Parsons, M.

    1991-01-01

    The Los Alamos Meson Physics Facility (LAMPF), is a linear particle accelerator a half-mile long. It produces an 800 million electron- volt hydrogen-ion beam at an average current of more than one milliamp. The first RF section of the accelerator consists of four Alvarez drift-tube structures. Each of these structures is excited by an amplifier module at a frequency of 201.25 MHz. These amplifiers operate at a duty of 13 percent or more and at peak pulsed power levels of about 2.5 million watts. The second RF accelerator section consists of forty-four side-coupled-cavity structures. Each of these is excited by an amplifier module at a frequency of 805 MHz. These amplifiers operate at a duty of up to 12 percent and at peak pulsed power levels of about 1.2 million watts. The relatively high average beam current in the accelerator places a heavy demand upon components in the RF systems. The 201-MHz modules have always required a large share of maintenance efforts. In recent years, the four 201.25 MHz modules have been responsible for more than twice as much accelerator down-time as have the forty-four 805 MHz modules. This paper reviews recent, ongoing, and planned improvements in the 201-MHz systems. The Burle Industries 7835 super power triode is used in the final power amplifiers of each of the 201-MHz modules. This tube has been modified for operation at LAMPF by the addition of Penning ion vacuum''pumps.'' This has enabled more effective tube conditioning and restarting. A calorimetry system of high accuracy is in development to monitor tube plate-power dissipation

  8. Reliability impact of RF tube technology for the NPB

    International Nuclear Information System (INIS)

    Bueck, J.C.

    1989-01-01

    Two reliability options, redundancy and operating margin, are examined to determine their effect on power system configurations using RF tube technology (klystron and klystrode) powered Neutral Particle Beam weapons. Redundance is addressed by providing an additional identical RF tube to the tubes required to power an accelerator RF element (DTL section, RFQ, or CCL). RF elements do not share RF power with other RF elements. Operating margin provides increased reliability by sizing the RF tubes such that tube operating levels may be increased compensate for the loss of a tube. It is shown that power system mass is affected by the choice of reliability measures, that higher power tubes coupled with higher power RF elements may mitigate mass increases, and that redundancy appears preferable to operating margin as a method of improving RF system reliability

  9. Design development and testing of high voltage power supply with crowbar protection for IOT based RF amplifier system in VECC

    Science.gov (United States)

    Thakur, S. K.; Kumar, Y.

    2018-05-01

    This paper described the detailed design, development and testing of high voltage power supply (‑30 kV, 3.2 A) and different power supplies for biasing electrodes of Inductive Output Tube (IOT) based high power Radio Frequency (RF) amplifier. This IOT based RF amplifier is further used for pursuing research and development activity in superconducting RF cavity project at Variable Energy Cyclotron Centre (VECC) Kolkata. The state-of-the-art technology of IOT-based high power RF amplifier is designed, developed, and tested at VECC which is the first of its kind in India. A high voltage power supply rated at negative polarity of 30 kV dc/3.2 A is required for biasing cathode of IOT with crowbar protection circuit. This power supply along with crowbar protection system is designed, developed and tested at VECC for testing the complete setup. The technical difficulties and challenges occured during the design of cathode power supply, its crowbar protection techniques along with other supported power supplies i.e. grid and ion pump power supplies are discussed in this paper.

  10. Availability, reliability and logistic support studies of the RF power system design options for the IFMIF accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Bargallo, E., E-mail: enric.bargallo-font@upc.edu [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Giralt, A.; Martinez, G. [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Weber, M.; Regidor, D.; Arroyo, J.M. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid (Spain); Abal, J.; Dies, J.; Tapia, C.; De Blas, A. [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Mendez, P.; Ibarra, A.; Molla, J. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid (Spain)

    2013-10-15

    Highlights: ► Current RF system design based on tetrodes chains is evaluated. ► Alternative solid state power amplifiers RF system design is analyzed. ► Both designs are compared in terms of availability, logistics and cost. ► It is concluded that solid state option presents relevant improvements. -- Abstract: The current design of the radio frequency (RF) power system for the International Fusion Materials Irradiation Facility (IFMIF) is based upon tetrodes technology. Due to the improvement in the solid state amplifiers technology, the possibility of using this option for IFMIF RF system is becoming a very competitive alternative presenting from the beginning several advantages in terms of availability, reliability and logistics. The current design based on RF tetrodes chains leads no room for substantial improvements in terms of availability being the requirement for the RF system hard to achieve. The principal goals of this paper are to use RAMI (Reliability, Availability, Maintainability and Inspectionability) analysis in the solid state amplifier design, and to compare the availability, reliability and logistic performances for both alternatives.

  11. Availability, reliability and logistic support studies of the RF power system design options for the IFMIF accelerator

    International Nuclear Information System (INIS)

    Bargallo, E.; Giralt, A.; Martinez, G.; Weber, M.; Regidor, D.; Arroyo, J.M.; Abal, J.; Dies, J.; Tapia, C.; De Blas, A.; Mendez, P.; Ibarra, A.; Molla, J.

    2013-01-01

    Highlights: ► Current RF system design based on tetrodes chains is evaluated. ► Alternative solid state power amplifiers RF system design is analyzed. ► Both designs are compared in terms of availability, logistics and cost. ► It is concluded that solid state option presents relevant improvements. -- Abstract: The current design of the radio frequency (RF) power system for the International Fusion Materials Irradiation Facility (IFMIF) is based upon tetrodes technology. Due to the improvement in the solid state amplifiers technology, the possibility of using this option for IFMIF RF system is becoming a very competitive alternative presenting from the beginning several advantages in terms of availability, reliability and logistics. The current design based on RF tetrodes chains leads no room for substantial improvements in terms of availability being the requirement for the RF system hard to achieve. The principal goals of this paper are to use RAMI (Reliability, Availability, Maintainability and Inspectionability) analysis in the solid state amplifier design, and to compare the availability, reliability and logistic performances for both alternatives

  12. Effects of various deposition times and RF powers on CdTe thin film growth using magnetron sputtering

    Science.gov (United States)

    Ghorannevis, Z.; Akbarnejad, E.; Ghoranneviss, M.

    2016-09-01

    Cadmium telluride (CdTe) is a p-type II-VI compound semiconductor, which is an active component for producing photovoltaic solar cells in the form of thin films, due to its desirable physical properties. In this study, CdTe film was deposited using the radio frequency (RF) magnetron sputtering system onto a glass substrate. To improve the properties of the CdTe film, effects of two experimental parameters of deposition time and RF power were investigated on the physical properties of the CdTe films. X-ray Diffraction (XRD), atomic force microscopy (AFM) and spectrophotometer were used to study the structural, morphological and optical properties of the CdTe samples grown at different experimental conditions, respectively. Our results suggest that film properties strongly depend on the experimental parameters and by optimizing these parameters, it is possible to tune the desired structural, morphological and optical properties. From XRD data, it is found that increasing the deposition time and RF power leads to increasing the crystallinity as well as the crystal sizes of the grown film, and all the films represent zinc blende cubic structure. Roughness values given from AFM images suggest increasing the roughness of the CdTe films by increasing the RF power and deposition times. Finally, optical investigations reveal increasing the film band gaps by increasing the RF power and the deposition time.

  13. High power test of RF window and coaxial line in vacuum

    International Nuclear Information System (INIS)

    Sun, D.; Champion, M.; Gormley, M.; Kerns, Q.; Koepke, K.; Moretti, A.

    1993-01-01

    Primary rf input couplers for the superconducting accelerating cavities of the TESLA electron linear accelerator test to be performed at DESY, Hamburg, Germany are under development at both DESY and Fermilab. The input couplers consist of a WR650 waveguide to coaxial line transition with an integral ceramic window, a coaxial connection to the superconducting accelerating cavity with a second ceramic window located at the liquid nitrogen heat intercept location, and bellows on both sides of the cold window to allow for cavity motion during cooldown, coupling adjustments and easier assembly. To permit in situ high peak power processing of the TESLA superconducting accelerating cavities, the input couplers are designed to transmit nominally 1 ms long, 2 MW peak, 1.3 GHz rf pulses from the WR650 waveguide at room temperature to the cavities at 1.8 K. The coaxial part of the Fermilab TESLA input coupler design has been tested up to 1.7 MW using the prototype 805 MHz rf source located at the A0 service building of the Tevatron. The rf source, the testing system and the test results are described

  14. Design, development and operational experience of radio frequency (RF) power systems/technologies for LEHIPA and 400 keV RFQ

    International Nuclear Information System (INIS)

    Pande, Manjiri; Shrotriya, Sandip; Patel, Niranjan

    2015-01-01

    The important technology development for ion accelerators of 'accelerator driven sub critical reactor system (ADS) is being done under the program of Department of Atomic Energy (DAE). In BARC (BARC) of DAE, technology development of 400 keV radio frequency quadrupole (RFQ) accelerator is done and a 20 MeV - low energy high intensity proton accelerator (LEHIPA) is under development. A 400 KeV deuteron RFQ accelerator is already developed at BARC and its 60 kW radio frequency (RF) power system required for beam acceleration has been designed, developed and tested both in CW mode and in pulse mode for full power of 60 leW. It has been successfully integrated with RFQ via 6-1/8'', 50 ohm RF transmission line, to accelerate proton beam up to 200 KeV energy and deuteron beam to 400 KeV energy. LEHIPA requires about 3 MW of RF power for its operation. So, three 1 MW, 352 MHz RF systems based on klystron will be developed for RFQ and two DTLs. The klystron based RF system for 3 MeV RFQ is under commissioning. Its various subsystems like energy less and insulated gate bipolar transistor (IGBT) based high voltage and low voltage bias supplies, a critical and fast protection and control system - handling various types of field signals, fast acting hard wired instrumentation circuits for critical signals, 100 kV crowbar with its circuits, pulsing circuits and RF circuits have been successfully designed, developed and integrated with klystron. Latest technology development of solid state RF amplifiers at 325 MHz and 350 MHz for normal and super conducting accelerators has attained a certain power level. This paper will discuss all these high power RF systems in detail. (author)

  15. Lightweight, Light-Trapped, Thin GaAs Solar Cells for Spacecraft Applications.

    Science.gov (United States)

    1995-10-05

    improve the efficiency of this type of cell. 2 The high efficiency and light weight of the cover glass supported GaAs solar cell can have a significant...is a 3-mil cover glass and 1-mil silicone adhesive on the front surface of the GaAs solar cell. Power Output 3000 400 -{ 2400 { N 300 S18200 W/m2...the ultra-thin, light-trapped GaAs solar ceill 3. Incorporate light trapping. 0 external quantum efficiency at 850 nm increased by 5.2% 4. Develop

  16. Outage Performance of Hybrid FSO/RF System with Low-Complexity Power Adaptation

    KAUST Repository

    Rakia, Tamer; Yang, Hong-Chuan; Gebali, Fayez; Alouini, Mohamed-Slim

    2016-01-01

    Hybrid free-space optical (FSO) / radio-frequency (RF) systems have emerged as a promising solution for high data- rate wireless communication systems. We consider truncated channel inversion based power adaptation strategy for coherent and non

  17. Microscopic investigation of RF surfaces of 3 GHz niobium accelerator cavities following RF processing

    International Nuclear Information System (INIS)

    Graber, J.; Barnes, P.; Flynn, T.; Kirchgessner, J.; Knobloch, J.; Moffat, D.; Muller, H.; Padamsee, H.; Sears, J.

    1993-01-01

    RF processing of Superconducting accelerating cavities is achieved through a change in the electron field emission (FE) characteristics of the RF surface. The authors have examined the RF surfaces of several single-cell 3 GHz cavities, following RF processing, in a Scanning Electron Microscope (SEM). The RF processing sessions included both High Peak Power (P ≤ 50 kW) pulsed processing, and low power (≤ 20 W) continuous wave processing. The experimental apparatus also included a thermometer array on the cavity outer wall, allowing temperature maps to characterize the emission before and after RF processing gains. Multiple sites have been located in cavities which showed improvements in cavity behavior due to RF processing. Several SEM-located sites can be correlated with changes in thermometer signals, indicating a direct relationship between the surface site and emission reduction due to RF processing. Information gained from the SEM investigations and thermometry are used to enhance the theoretical model of RF processing

  18. High-power RF window design for the PEP-II B Factory

    International Nuclear Information System (INIS)

    Neubauer, M.; Hodgson, J.; Ng, C.; Schwarz, H.; Skarpaas, K.; Kroll, N.; Rimmer, R.

    1994-06-01

    We describe the design of RF windows to transmit up to 500 kW CW to the PEP-II 476 MHz cavities. RF analysis of the windows using high-frequency simulation codes are described. These provide information about the power loss distribution in the ceramic and tim matching properties of the structure. Finite-element analyses of the resulting temperature distribution and thermal stresses are presented. Fabrication methods including a proposed scheme to compensate for thermal expansion s are discussed and hardware tests to validate this approach are described. The effects of surface coatings (intentional and otherwise) and the application of air cooling are considered

  19. Two-Way Multiuser Mixed RF/FSO Relaying: Performance Analysis and Power Allocation

    KAUST Repository

    Al-Eryani, Yasser F.

    2018-03-21

    In this paper, the performance of two-way multiuser mixed radio frequency/free space optical (RF/FSO) relay networks with opportunistic user scheduling and asymmetric channel fading is studied. RF links are used to conduct data transmission between users and relay node, while a FSO link is used to conduct data transmission on the last-mile communication link between the relay node and base station. The RF links are assumed to follow a Rayleigh fading model, while the FSO links are assumed to follow a unified Gamma-Gamma atmospheric turbulence fading model with pointing error. First, closed-form expressions for the exact outage probability, asymptotic (high signal-to-noise ratio) outage probability, average symbol error rate, and average ergodic channel capacity are derived assuming a heterodyne detection scheme. The asymptotic results are used to conduct a power optimization algorithm where expressions for optimal transmission power values for the transmitting nodes are provided. Additionally, performance comparisons between the considered two-way-relaying (TWR) network and the oneway- relaying (OWR) network are provided and discussed. Also, the impact of several system parameters, including number of users, pointing errors, atmospheric turbulence conditions, and outage probability threshold on the overall network performance are investigated. All the theoretical results are validated by Monte Carlo simulations. The results show that the TWR scheme almost doubles the network ergodic capacity compared to that of the OWR scheme with the same outage performance. Additionally, it is shown that under weak-to-moderate weather turbulence conditions and small pointing error, the outage probability is dominated by the RF downlink with a neglected effect for the user selection process at the RF uplink transmission. However, for severe pointing error, the outage probability is dominated by the FSO uplink/downlink transmission.

  20. High power rf amplifiers for accelerator applications: The large orbit gyrotron and the high current, space charge enhanced relativistic klystron

    International Nuclear Information System (INIS)

    Stringfield, R.M.; Fazio, M.V.; Rickel, D.G.; Kwan, T.J.T.; Peratt, A.L.; Kinross-Wright, J.; Van Haaften, F.W.; Hoeberling, R.F.; Faehl, R.; Carlsten, B.; Destler, W.W.; Warner, L.B.

    1991-01-01

    Los Alamos is investigating a number of high power microwave (HPM) sources for their potential to power advanced accelerators. Included in this investigation are the large orbit gyrotron amplifier and oscillator (LOG) and the relativistic klystron amplifier (RKA). LOG amplifier development is newly underway. Electron beam power levels of 3 GW, 70 ns duration, are planned, with anticipated conversion efficiencies into RF on the order of 20 percent. Ongoing investigations on this device include experimental improvement of the electron beam optics (to allow injection of a suitable fraction of the electron beam born in the gun into the amplifier structure), and computational studies of resonator design and RF extraction. Recent RKA studies have operated at electron beam powers into the device of 1.35 GW in microsecond duration pulses. The device has yielded modulated electron beam power approaching 300 MW using 3-5 kW of RF input drive. RF powers extracted into waveguide have been up to 70 MW, suggesting that more power is available from the device than has been converted to-date in the extractor

  1. High RF power test of a CFC antenna module for lower hybrid current drive

    International Nuclear Information System (INIS)

    Maebara, S.; Seki, M.; Ikeda, Y.; Kiyono, K.; Suganuma, K.; Imai, T.; Goniche, M.; Bibet, Ph.; Brossaud, J.; Cano, V.; Kazarian-Vibert, F.; Froissard, P.; Rey, G.

    1998-01-01

    A mock-up of a 3.7 GHz Lower Hybrid Current Drive (LHCD) antenna module was fabricated from Carbon Fibre Composite (CFC) for the development of heat resistive low Z front facing the plasma. This 2 divided waveguide module is made from CFC plates and rods which are Cu-plated to reduce the RF losses. The withstand-voltage, the RF properties and the outgassing rates for long pulses and high RF power were tested at the Lower Hybrid test bed facility of Cadarache. A reference module made from Dispersion Strengthened Copper (DSC) was also fabricated. After the short pulse conditioning, long pulses with a power density ranging between 50 and 150 MW/m 2 were performed with no breakdowns on the CFC module. It was also checked that the highest power density, up to 150 MW/m 2 , could be transmitted when the waveguides are filled with H2 at a pressure of 5 x 10 -2 Pa. During a long pulse, the power reflection coefficient remains low in the 0.8-1.3 % range and no significant change in the reflection coefficient is measured after the thermal cycling provided by the long pulse operation. From thermocouple measurements, RF losses of the copper coated CFC and the DSC modules were compared. No significant differences were measured. From pressure measurements, it was found that the outgassing rate of Cu-plated CFC is about 6-7 times larger than of DSC at 300 deg.C. It is concluded that a CFC module is an attractive candidate for the hardening of the tip of the LHCD antenna. (author)

  2. Preparation of metastable bcc permalloy epitaxial thin films on GaAs(011)B3 single-crystal substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Higuchi, Jumpei; Yabuhara, Osamu; Kirino, Fumiyoshi; Futamoto, Masaaki

    2011-01-01

    Permalloy (Py) single-crystal films with bcc structure were obtained on GaAs(011) B3 single-crystal substrates by ultra high vacuum rf magnetron sputtering. The film growth and the detailed film structures were investigated by refection high energy electron diffraction and pole figure X-ray diffraction. bcc-Py films epitaxially grow on the substrates in the orientation relationship of Py(011)[011-bar] bcc || GaAs(011)[011-bar] B3 . The lattice constant of bcc-Py film is determined to be a = 0.291 nm. With increasing the film thickness, parts of the bcc crystal transform into more stable fcc structure by atomic displacement parallel to the bcc{011} close-packed planes. The resulting film thus consists of a mixture of bcc and fcc crystals. The phase transformation mechanism is discussed based on the experimental results. The in-plane magnetization properties reflecting the magnetocrystalline anisotropy of bcc-Py crystal are observed for the Py films grown on GaAs(011) B3 substrates.

  3. OFDM RF power-fading circumvention for long-reach WDM-PON.

    Science.gov (United States)

    Chow, C W; Yeh, C H; Sung, J Y

    2014-10-06

    We propose and demonstrate an orthogonal frequency division multiplexing (OFDM) radio-frequency (RF) power-fading circumvention scheme for long-reach wavelength-division-multiplexed passive-optical-network (LR-WDM-PON); hence the same capacity of 40 Gb/s can be provided to all the optical-networking-units (ONUs) in the LR-WDM-PON. Numerical analysis and proof-of-concept experiment are performed.

  4. Development of high power CW and pulsed RF test facility based on 1 MW, 352.2 MHz klystron amplifier

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Tripathi, Akhilesh; Upadhyay, Rinki; Rao, J.N.; Tiwari, Ashish; Jain, Akhilesh; Lad, M.R.; Hannurkar, P.R.

    2013-01-01

    A high power 1 MW, 352.2 MHz RF Test facility having CW and Pulse capability is being developed at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore for performance evaluation of various RF components, accelerating structures and related subsystems. Thales make 1 MW, 352.2 MHz klystron amplifier (TH 2089) will be employed in this high power test facility, which is thoroughly tested for its performance parameters at rated operating conditions. Auxiliary power supplies like filament, electromagnet, ion pump and mod anode power supply as well as 200 W solid state driver amplifier necessary for this high power test facility have been developed. A high voltage floating platform is created for floating filament and mod anode power supplies. Interconnection of various power supplies and other subsystems of this test facility are being carried out. A high voltage 100 kV, 25 Amp DC crowbar less power supply and low conductivity water (LCW) plant required for this klystron amplifier are in advanced stage of development. NI make cRIO 9081 real time (RT) controller based control and interlock system has been developed to realize proper sequence of operation of various power supplies and to monitor the status of crucial parameters in this test facility. This RF test facility will provide confidence for development of RF System of future accelerators like SNS and ADSS. (author)

  5. Hybrid silicon mode-locked laser with improved RF power by impedance matching

    Science.gov (United States)

    Tossoun, Bassem; Derickson, Dennis; Srinivasan, Sudharsanan; Bowers, John

    2015-02-01

    We design and discuss an impedance matching solution for a hybrid silicon mode-locked laser diode (MLLD) to improve peak optical power coming from the device. In order to develop an impedance matching solution, a thorough measurement and analysis of the MLLD as a function of bias on each of the laser segments was carried out. A passive component impedance matching network was designed at the operating frequency of 20 GHz to optimize RF power delivery to the laser. The hybrid silicon laser was packaged together in a module including the impedance matching circuit. The impedance matching design resulted in a 6 dB (electrical) improvement in the detected modulation spectrum power, as well as approximately a 10 dB phase noise improvement, from the MLLD. Also, looking ahead to possible future work, we discuss a Step Recovery Diode (SRD) driven impulse generator, which wave-shapes the RF drive to achieve efficient injection. This novel technique addresses the time varying impedance of the absorber as the optical pulse passes through it, to provide optimum optical pulse shaping.

  6. Two-Photon Pumped Synchronously Mode-Locked Bulk GaAs Laser

    Science.gov (United States)

    Cao, W. L.; Vaucher, A. M.; Ling, J. D.; Lee, C. H.

    1982-04-01

    Pulses 7 picoseconds or less in duration have been generated from a bulk GaAs crystal by a synchronous mode-locking technique. The GaAs crystal was optically pumped by two-photon absorption of the emission from a mode-locked Nd:glass laser. Two-photon absorption as the means of excitation increases the volume of the gain medium by increasing the pene-tration depth of the pump intensity, enabling generation of intra-cavity pulses with peak power in the megawatt range. Tuning of the wavelength of the GaAs emission is achieved by varying the temperature. A tuning range covering 840 nm to 885 nm has been observed over a temperature range from 97°K to 260°K. The intensity of the GaAs emission has also been observed to decrease as the temperature of the crystal is increased.

  7. Ultracompact Implantable Design With Integrated Wireless Power Transfer and RF Transmission Capabilities.

    Science.gov (United States)

    Sun, Guilin; Muneer, Badar; Li, Ying; Zhu, Qi

    2018-04-01

    This paper presents an ultracompact design of biomedical implantable devices with integrated wireless power transfer (WPT) and RF transmission capabilities for implantable medical applications. By reusing the spiral coil in an implantable device, both RF transmission and WPT are realized without the performance degradation of both functions in ultracompact size. The complete theory of WPT based on magnetic resonant coupling is discussed and the design methodology of an integrated structure is presented in detail, which can guide the design effectively. A system with an external power transmitter and implantable structure is fabricated to validate the proposed approach. The experimental results show that the implantable structure can receive power wirelessly at 39.86 MHz with power transfer efficiency of 47.2% and can also simultaneously radiate at 2.45 GHz with an impedance bandwidth of 10.8% and a gain of -15.71 dBi in the desired direction. Furthermore, sensitivity analyses are carried out with the help of experiment and simulation. The results reveal that the system has strong tolerance to the nonideal conditions. Additionally, the specific absorption rate distribution is evaluated in the light of strict IEEE standards. The results reveal that the implantable structure can receive up to 115 mW power from an external transmitter and radiate 6.4 dB·m of power safely.

  8. Medium and Short Wave RF Energy Harvester for Powering Wireless Sensor Networks.

    Science.gov (United States)

    Leon-Gil, Jesus A; Cortes-Loredo, Agustin; Fabian-Mijangos, Angel; Martinez-Flores, Javier J; Tovar-Padilla, Marco; Cardona-Castro, M Antonia; Morales-Sánchez, Alfredo; Alvarez-Quintana, Jaime

    2018-03-03

    Internet of Things (IoT) is an emerging platform in which every day physical objects provided with unique identifiers are connected to the Internet without requiring human interaction. The possibilities of such a connected world enables new forms of automation to make our lives easier and safer. Evidently, in order to keep billions of these communicating devices powered long-term, a self-sustainable operation is a key point for realization of such a complex network. In this sense, energy-harvesting technologies combined with low power consumption ICs eliminate the need for batteries, removing an obstacle to the success of the IoT. In this work, a Radio Frequency (RF) energy harvester tuned at AM broadcast has been developed for low consumption power devices. The AM signals from ambient are detected via a high-performance antenna-free LC circuit with an efficiency of 3.2%. To maximize energy scavenging, the RF-DC conversion stage is based on a full-wave Cockcroft-Walton voltage multiplier (CWVM) with efficiency up to 90%. System performance is evaluated by rating the maximum power delivered into the load via its output impedance, which is around 62 μW, although power level seems to be low, it is able to power up low consumption devices such as Leds, portable calculators and weather monitoring stations.

  9. Computational analysis of the maximum power point for GaAs sub-cells in InGaP/GaAs/Ge triple-junction space solar cells

    International Nuclear Information System (INIS)

    Cappelletti, M A; Cédola, A P; Peltzer y Blancá, E L

    2014-01-01

    The radiation resistance in InGaP/GaAs/Ge triple-junction solar cells is limited by that of the middle GaAs sub-cell. In this work, the electrical performance degradation of different GaAs sub-cells under 1 MeV electron irradiation at fluences below 4 × 10 15 cm −2 has been analyzed by means of a computer simulation. The numerical simulations have been carried out using the one-dimensional device modeling program PC1D. The effects of the base and emitter carrier concentrations of the p- and n-type GaAs structures on the maximum power point have been researched using a radiative recombination lifetime, a damage constant for the minority carrier lifetime and carrier removal rate models. An analytical model has been proposed, which is useful to either determine the maximum exposure time or select the appropriate device in order to ensure that the electrical parameters of different GaAs sub-cells will have a satisfactory response to radiation since they will be kept above 80% with respect to the non-irradiated values. (paper)

  10. Development of L-band pillbox RF window

    International Nuclear Information System (INIS)

    Takeuchi, Y.; Fukuda, S.; Hisamatsu, H.; Saito, Y.; Takahashi, A.

    1994-01-01

    A pillbox RF output window was developed for the L-band pulsed klystron for the Japanese Hadron Project (JHP) 1-GeV proton linac. The window was designed to withstand a peak RF power of 6 MW, where the pulse width is 600 μsec and the repetition rate is 50 Hz. A high power model was fabricated using an alumina ceramic which has a low loss tangent of 2.5x10 -5 . A high power test was successfully performed up to a 113 kW RF average power with a 4 MW peak power, a 565 μsec pulse width and a 50 Hz repetition rate. By extrapolating the data of this high power test, the temperature rise of the ceramic is estimated low enough at the full RF power of 6 MW. Thus this RF window is expected to satisfy the specifications of the L-band Klystron. (author)

  11. Microfluidic stretchable RF electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2010-12-07

    Stretchable electronics is a revolutionary technology that will potentially create a world of radically different electronic devices and systems that open up an entirely new spectrum of possibilities. This article proposes a microfluidic based solution for stretchable radio frequency (RF) electronics, using hybrid integration of active circuits assembled on flex foils and liquid alloy passive structures embedded in elastic substrates, e.g. polydimethylsiloxane (PDMS). This concept was employed to implement a 900 MHz stretchable RF radiation sensor, consisting of a large area elastic antenna and a cluster of conventional rigid components for RF power detection. The integrated radiation sensor except the power supply was fully embedded in a thin elastomeric substrate. Good electrical performance of the standalone stretchable antenna as well as the RF power detection sub-module was verified by experiments. The sensor successfully detected the RF radiation over 5 m distance in the system demonstration. Experiments on two-dimensional (2D) stretching up to 15%, folding and twisting of the demonstrated sensor were also carried out. Despite the integrated device was severely deformed, no failure in RF radiation sensing was observed in the tests. This technique illuminates a promising route of realizing stretchable and foldable large area integrated RF electronics that are of great interest to a variety of applications like wearable computing, health monitoring, medical diagnostics, and curvilinear electronics.

  12. High-Bandwidth, High-Efficiency Envelope Tracking Power Supply for 40W RF Power Amplifier Using Paralleled Bandpass Current Sources

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2005-01-01

    This paper presents a high-performance power conversion scheme for power supply applications that require very high output voltage slew rates (dV/dt). The concept is to parallel 2 switching bandpass current sources, each optimized for its passband frequency space and the expected load current....... The principle is demonstrated with a power supply, designed for supplying a 40 W linear RF power amplifier for efficient amplification of a 16-QAM modulated data stream...

  13. RF MEMS

    Indian Academy of Sciences (India)

    At the bare die level the insertion loss, return loss and the isolation ... ing and packaging of a silicon on glass based RF MEMS switch fabricated using DRIE. ..... follows the power law based on the asperity deformation model given by Pattona & ... Surface mount style RF packages (SMX series 580465) from Startedge Corp.

  14. Joint Load Balancing and Power Allocation for Hybrid VLC/RF Networks

    KAUST Repository

    Obeed, Mohanad

    2018-01-15

    In this paper, we propose and study a new joint load balancing (LB) and power allocation (PA) scheme for a hybrid visible light communication (VLC) and radio frequency (RF) system consisting of one RF\\\\access point (AP) and multiple VLC\\\\APs. An iterative algorithm is proposed to distribute the users on the APs and distribute the powers of these APs on their users. In PA subproblem, an optimization problem is formulated to allocate the power of each AP to the connected users for the total achievable data rates maximization. It is proved that the PA optimization problem is concave but not easy to tackle. Therefore, we provide a new algorithm to obtain the optimal dual variables after formulating them in terms of each other. Then, the users that are connected to the overloaded APs and receive less data rates start seeking for other APs that offer higher data rates. Users with lower data rates continue re-connecting from AP to other to balance the load only if this travel increases the summation of the achievable data rates and enhances the system fairness. The numerical results demonstrate that the proposed algorithms improve the system capacity and system fairness with fast convergence.

  15. Joint Load Balancing and Power Allocation for Hybrid VLC/RF Networks

    KAUST Repository

    Obeed, Mohanad; Salhab, Anas M.; Zummo, Salam A.; Alouini, Mohamed-Slim

    2018-01-01

    In this paper, we propose and study a new joint load balancing (LB) and power allocation (PA) scheme for a hybrid visible light communication (VLC) and radio frequency (RF) system consisting of one RF\\access point (AP) and multiple VLC\\APs. An iterative algorithm is proposed to distribute the users on the APs and distribute the powers of these APs on their users. In PA subproblem, an optimization problem is formulated to allocate the power of each AP to the connected users for the total achievable data rates maximization. It is proved that the PA optimization problem is concave but not easy to tackle. Therefore, we provide a new algorithm to obtain the optimal dual variables after formulating them in terms of each other. Then, the users that are connected to the overloaded APs and receive less data rates start seeking for other APs that offer higher data rates. Users with lower data rates continue re-connecting from AP to other to balance the load only if this travel increases the summation of the achievable data rates and enhances the system fairness. The numerical results demonstrate that the proposed algorithms improve the system capacity and system fairness with fast convergence.

  16. Rectifier Design Challenges for RF Wireless Power Transfer and Energy Harvesting Systems

    Directory of Open Access Journals (Sweden)

    A. Collado

    2017-06-01

    Full Text Available The design of wireless power transfer (WPT and energy harvesting (EH solutions poses different challenges towards achieving maximum RF-DC conversion efficiency in these systems. This paper covers several selected challenges when developing WPT and electromagnetic EH solutions, such as the design of multiband and broadband rectifiers, the minimization of the effect that load and input power variations may have on the system performance and finally the most optimum power combining mechanisms that can be used when dealing with multi-element rectifiers.

  17. Fabrication of Very High Efficiency 5.8 GHz Power Amplifiers using AlGaN HFETs on SiC Substrates for Wireless Power Transmission

    Science.gov (United States)

    Sullivan, Gerry

    2001-01-01

    For wireless power transmission using microwave energy, very efficient conversion of the DC power into microwave power is extremely important. Class E amplifiers have the attractive feature that they can, in theory, be 100% efficient at converting, DC power to RF power. Aluminum gallium nitride (AlGaN) semiconductor material has many advantageous properties, relative to silicon (Si), gallium arsenide (GaAs), and silicon carbide (SiC), such as a much larger bandgap, and the ability to form AlGaN/GaN heterojunctions. The large bandgap of AlGaN also allows for device operation at higher temperatures than could be tolerated by a smaller bandgap transistor. This could reduce the cooling requirements. While it is unlikely that the AlGaN transistors in a 5.8 GHz class E amplifier can operate efficiently at temperatures in excess of 300 or 400 C, AlGaN based amplifiers could operate at temperatures that are higher than a GaAs or Si based amplifier could tolerate. Under this program, AlGaN microwave power HFETs have been fabricated and characterized. Hybrid class E amplifiers were designed and modeled. Unfortunately, within the time frame of this program, good quality HFETs were not available from either the RSC laboratories or commercially, and so the class E amplifiers were not constructed.

  18. Performance analysis of a low power low noise tunable band pass filter for multiband RF front end

    International Nuclear Information System (INIS)

    Manjula, J.; Malarvizhi, S.

    2014-01-01

    This paper presents a low power tunable active inductor and RF band pass filter suitable for multiband RF front end circuits. The active inductor circuit uses the PMOS cascode structure as the negative transconductor of a gyrator to reduce the noise voltage. Also, this structure provides possible negative resistance to reduce the inductor loss with wide inductive bandwidth and high resonance frequency. The RF band pass filter is realized using the proposed active inductor with suitable input and output buffer stages. The tuning of the center frequency for multiband operation is achieved through the controllable current source. The designed active inductor and RF band pass filter are simulated in 180 nm and 45 nm CMOS process using the Synopsys HSPICE simulation tool and their performances are compared. The parameters, such as resonance frequency, tuning capability, noise and power dissipation, are analyzed for these CMOS technologies and discussed. The design of a third order band pass filter using an active inductor is also presented. (semiconductor integrated circuits)

  19. Operational Performance and Improvements to the RF Power Sources for the Compact Linear Collider Test Facility (CTF3) at CERN

    CERN Document Server

    McMonagle, Gerard

    2006-01-01

    The CERN CTF3 facility is being used to test and demonstrate key technical issues for the CLIC (Compact Linear Collider) study. Pulsed RF power sources are essential elements in this test facility. Klystrons at S-band (29998.55 GHz), in conjunction with pulse compression systems, are used to power the Drive Beam Accelerator (DBA) to achieve an electron beam energy of 150 MeV. The L-Band RF system, includes broadband Travelling Wave Tubes (TWTs) for beam bunching with 'phase coded' sub pulses in the injector and a narrow band high power L-Band klystron powering the transverse 1.5GHz RF deflector in the Delay Loop immediately after the DBA. This paper describes these different systems and discusses their operational performance.

  20. Operational performance and improvements to the rf power sources for the Compact Linear Collider Test Facility (CTF3) at CERN

    CERN Document Server

    McMonagle, Gerard

    2006-01-01

    The CERN CTF3 facility is being used to test and demonstrate key technical issues for the CLIC (Compact Linear Collider) study. Pulsed RF power sources are essential elements in this test facility. Klystrons at S-band (29998.55 GHz), in conjunction with pulse compression systems, are used to power the Drive Beam Accelerator (DBA) to achieve an electron beam energy of 150 MeV. The L-Band RF system, includes broadband Travelling Wave Tubes (TWTs) for beam bunching with 'phase coded' sub pulses in the injector and a narrow band high power L-Band klystron powering the transverse 1.5 GHz RF deflector in the Delay Loop immediately after the DBA. This paper describes these different systems and discusses their operational performance.

  1. High voltage power supplies for ITER RF heating and current drive systems

    International Nuclear Information System (INIS)

    Gassmann, T.; Arambhadiya, B.; Beaumont, B.; Baruah, U.K.; Bonicelli, T.; Darbos, C.; Purohit, D.; Decamps, H.; Albajar, F.; Gandini, F.; Henderson, M.; Kazarian, F.; Lamalle, P.U.; Omori, T.; Parmar, D.; Patel, A.; Rathi, D.; Singh, N.P.

    2011-01-01

    The RF heating and current drive (H and CD) systems to be installed for the ITER fusion machine are the electron cyclotron (EC), ion cyclotron (IC) and, although not in the first phase of the project, lower hybrid (LH). These systems require high voltage, high current power supplies (HVPS) in CW operation. These HVPS should deliver around 50 MW electrical power to each of the RF H and CD systems with stringent requirements in terms of accuracy, voltage ripple, response time, turn off time and fault energy. The PSM (Pulse Step Modulation) technology has demonstrated over the past 20 years its ability to fulfill these requirements in many industrial facilities and other fusion reactors and has therefore been chosen as reference design for the IC and EC HVPS systems. This paper describes the technical specifications, including interfaces, the resulting constraints on the design, the conceptual design proposed for ITER EC and IC HVPS systems and the current status.

  2. Cu Pillar Low Temperature Bonding and Interconnection Technology of for 3D RF Microsystem

    Science.gov (United States)

    Shi, G. X.; Qian, K. Q.; Huang, M.; Yu, Y. W.; Zhu, J.

    2018-03-01

    In this paper 3D interconnects technologies used Cu pillars are discussed with respect to RF microsystem. While 2.5D Si interposer and 3D packaging seem to rely to cu pillars for the coming years, RF microsystem used the heterogeneous chip such as GaAs integration with Si interposers should be at low temperature. The pillars were constituted by Cu (2 micron) -Ni (2 micron) -Cu (3 micron) -Sn (1 micron) multilayer metal and total height is 8 micron on the front-side of the wafer by using electroplating. The wafer backside Cu pillar is obtained by temporary bonding, thinning and silicon surface etching. The RF interposers are stacked by Cu-Sn eutectic bonding at 260 °C. Analyzed the reliability of different pillar bonding structure.

  3. High-power CO laser with RF discharge for isotope separation employing condensation repression

    Science.gov (United States)

    Baranov, I. Ya.; Koptev, A. V.

    2008-10-01

    High-power CO laser can be the effective tool in such applications as isotope separation using the free-jet CRISLA method. The way of transfer from CO small-scale experimental installation to industrial high-power CO lasers is proposed through the use of a low-current radio-frequency (RF) electric discharge in a supersonic stream without an electron gun. The calculation model of scaling CO laser with RF discharge in supersonic stream was developed. The developed model allows to calculate parameters of laser installation and optimize them with the purpose of reception of high efficiency and low cost of installation as a whole. The technical decision of industrial CO laser for isotope separation employing condensation repression is considered. The estimated cost of laser is some hundred thousand dollars USA and small sizes of laser head give possibility to install it in any place.

  4. Gallium arsenide digital integrated circuits for controlling SLAC CW-RF systems

    International Nuclear Information System (INIS)

    Ronan, M.T.; Lee, K.L.; Corredoura, P.; Judkins, J.G.

    1989-01-01

    In order to fill the PEP and SPEAR storage rings with beams from the SLC linac and damping rings, precise control of the linac subharmonic buncher and the damping ring RF is required. Recently several companies have developed resettable GaAs master/slave D-type flip-flops which are capable of operating at frequencies of 3 GHz and higher. Using these digital devices as frequency dividers, one can phase shift the SLAC CW-RF systems to optimize the timing for filling the storage rings. The authors have evaluated the performance of integrated circuits from two vendors for our particular application. Using microstrip circuit techniques, they have built and operated in the accelerator several chassis to synchronize a reset signal from the storage rings to the SLAC 2.856 GHz RF and to phase shift divide-by-four and divide-by-sixteen frequency dividers to the nearest 350 psec bucket required for filling

  5. Gallium arsenide digital integrated circuits for controlling SLAC CW-RF systems

    International Nuclear Information System (INIS)

    Ronan, M.T.; Lee, K.L.; Corredoura, P.; Judkins, J.G.

    1988-10-01

    In order to fill the PEP and SPEAR storage rings with beams from the SLC linac and damping rings, precise control of the linac subharmonic buncher and the damping ring RF is required. Recently several companies have developed resettable GaAs master/slave D-type flip-flops which are capable of operating at frequencies of 3 GHz and higher. Using these digital devices as frequency dividers, one can phase shift the SLAC CW-RF systems to optimize the timing for filling the storage rings. We have evaluated the performance of integrated circuits from two vendors for our particular application. Using microstrip circuit techniques, we have built and operated in the accelerator several chassis to synchronize a reset signal from the storage rings to the SLAC 2.856 GHz RF and to phase shift divide-by-four and divide-by-sixteen frequency dividers to the nearest 350 psec bucket required for filling. 4 refs., 4 figs., 2 tabs

  6. Nucleation and Growth of GaN on GaAs (001) Substrates

    International Nuclear Information System (INIS)

    Drummond, Timothy J.; Hafich, Michael J.; Heller, Edwin J.; Lee, Stephen R.; Liliental-Weber, Zuzanna; Ruvimov, Sergei; Sullivan, John P.

    1999-01-01

    The nucleation of GaN thin films on GaAs is investigated for growth at 620 ''C. An rf plasma cell is used to generate chemically active nitrogen from N 2 . An arsenic flux is used in the first eight monolayer of nitride growth to enhance nucleation of the cubic phase. Subsequent growth does not require an As flux to preserve the cubic phase. The nucleation of smooth interfaces and GaN films with low stacking fault densities is dependent upon relative concentrations of active nitrogen species in the plasma and on the nitrogen to gallium flux ratio

  7. An optimized junctionless GAA MOSFET design based on multi-objective computation for high-performance ultra-low power devices

    International Nuclear Information System (INIS)

    Bendib, T.; Djeffal, F.; Meguellati, M.

    2014-01-01

    An analytical investigation has been proposed to study the subthreshold behavior of junctionless gates all around (JLGAA) MOSFET for nanoscale CMOS analog applications. Based on 2-D analytical analysis, a new subthreshold swing model for short-channel JLGAA MOSFETs is developed. The analysis has been used to calculate the subthreshold swing and to compare the performance of the investigated design and conventional GAA MOSFET, where the comparison of device architectures shows that the JLGAA MOSFET exhibits a superior performance with respect to the conventional inversion-mode GAA MOSFET in terms of the fabrication process and electrical behavior in the subthreshold domain. The analytical models have been validated by 2-D numerical simulations. The proposed analytical models are used to formulate the objectives functions. The overall objective function is formulated by means of a weighted sum approach to search the optimal electrical and dimensional device parameters in order to obtain the better scaling capability and the electrical performance of the device for ultra-low power applications. (semiconductor devices)

  8. High voltage power supplies for INDUS-2 RF system

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Hannurkar, P.R.

    2003-01-01

    The RF system of Indus-2 employs klystron amplifiers operating at 505.812 MHz. A precession controlled high voltage DC supply of appropriate rating is needed for each klystron amplifier, as its bias supply. Since internal flashover and arcing are common with the operation of these klystrons and stored energies beyond particular limit inside its bias power supply is detrimental to this device, a properly designed crowbar is incorporated between each klystron and its power supply. This crowbar bypass these stored energies and helps protecting klystron under any of these unfavorable conditions. In either case, power supply sees a near short circuit across its load. So, its power circuit is designed to reduce the fault current level and its various components are also designed to withstand these fault currents, as and when it appears. Finally, operation of these high voltage power supplies (HVPS) generates lot of harmonics on the source side, which distort the input waveform substantially and reduces the input power factor also. Source multiplication between two power supplies are planned to improve upon above parameters and suitable detuned line filters are incorporated to keep the input voltage total harmonics distortion (THD) below 5 % and input power factor (IFF) near unity. (author)

  9. A 30 KW RF power amplifier for the RFQ accelerator (Paper No. CP 27)

    International Nuclear Information System (INIS)

    Luktuke, R.D.; Garud, A.N.; Murthy, P.N.K.; Sethi, R.C.

    1990-01-01

    A radio frequency quadrupole (RFQ) accelerator, to accelerate deuterons to an energy of 150 keV with beam current of 20 mA, has been designed and is under construction. This accelerator needs approximately 30 kW of RF power to generate the desired voltage of 55 kV on the electrodes, at a frequency of 45 MHz. The power amplifier is designed with four stages of RF amplification using vacuum tubes. The first two stages are built with the tubes 6146 and BEL 250 CX, to deliver about 100 watts power to the grid circuit of the pre driver. The pre driver (EIMAC 5 CX 1500 A) and the driver (BEL 4000 CX) give an output power of about 5kW, at the grid of the high power amplifier. All the four tubes operate in class A/AB mode. The high power amplifier has been designed and is being built around the BEL power tetrode tube CQK-50-2. The output from the high power amplifier is fed to the RFQ, via a matching network to tranform the plate impedance to 50 ohm loop impedeance at the RFQ. The paper presents the design aspects of the high power amplifier, matching network and the results obtained for the earlier stages. (author). 3 refs., 3 tabs., 2 figs

  10. A new structure for comparing surface passivation materials of GaAs solar cells

    Science.gov (United States)

    Desalvo, Gregory C.; Barnett, Allen M.

    1989-01-01

    The surface recombination velocity (S sub rec) for bare GaAs is typically as high as 10 to the 6th power to 10 to the 7th power cm/sec, which dramatically lowers the efficiency of GaAs solar cells. Early attempts to circumvent this problem by making an ultra thin junction (xj less than .1 micron) proved unsuccessful when compared to lowering S sub rec by surface passivation. Present day GaAs solar cells use an GaAlAs window layer to passivate the top surface. The advantages of GaAlAs in surface passivation are its high bandgap energy and lattice matching to GaAs. Although GaAlAs is successful in reducing the surface recombination velocity, it has other inherent problems of chemical instability (Al readily oxidizes) and ohmic contact formation. The search for new, more stable window layer materials requires a means to compare their surface passivation ability. Therefore, a device structure is needed to easily test the performance of different passivating candidates. Such a test device is described.

  11. Investigations of DC power supplies with optoelectronic transducers and RF energy converters

    Science.gov (United States)

    Guzowski, B.; Gozdur, R.; Bernacki, L.; Lakomski, M.

    2016-04-01

    Fiber Distribution Cabinets (FDC) monitoring systems are increasingly popular. However it is difficult to realize such system in passive FDC, due to lack of source of power supply. In this paper investigation of four different DC power supplies with optoelectronic transducers is described. Two converters: photovoltaic power converter and PIN photodiode can convert the light transmitted through the optical fiber to electric energy. Solar cell and antenna RF-PCB are also tested. Results presented in this paper clearly demonstrate that it is possible to build monitoring system in passive FDC. During the tests maximum obtained output power was 11 mW. However all converters provided enough power to excite 32-bit microcontroller with ARM-cores and digital thermometer.

  12. Pulsed rf systems for large storage rings

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1979-03-01

    The possibility is considered that by using a pulsed rf system a substantial reduction can be made in the rf power requirement for the next generation of large storage rings. For a ring with a sufficiently large circumference, the time between bunch passages, T/sub b/, can exceed the cavity filling time, T/sub f/. As the ratio T/sub b//T/sub f/ increases, it is clear that at some point the average power requirement can be reduced by pulsing the rf to the cavities. In this mode of operation, the rf power is turned on a filling time or so before the arrival of a bunch and is switched off again at the time of bunch passage. There is no rf energy in the accelerating structure, and hence no power dissipation, for most of the period between bunches

  13. X-band rf power production and deceleration in the two-beam test stand of the Compact Linear Collider test facility

    Directory of Open Access Journals (Sweden)

    E. Adli

    2011-08-01

    Full Text Available We discuss X-band rf power production and deceleration in the two-beam test stand of the CLIC test facility at CERN. The rf power is extracted from an electron drive beam by a specially designed power extraction structure. In order to test the structures at high-power levels, part of the generated power is recirculated to an input port, thus allowing for increased deceleration and power levels within the structure. The degree of recirculation is controlled by a splitter and phase shifter. We present a model that describes the system and validate it with measurements over a wide range of parameters. Moreover, by correlating rf power measurements with the energy lost by the electron beam, as measured in a spectrometer placed after the power extraction structure, we are able to identify system parameters, including the form factor of the electron beam. The quality of the agreement between model and reality gives us confidence to extrapolate the results found in the present test facility towards the parameter regime of CLIC.

  14. X-band rf power production and deceleration in the two-beam test stand of the Compact Linear Collider test facility

    CERN Document Server

    Adli, E; Dubrovskiy, A; Syratchev, I; Ruber, R; Ziemann, V

    2011-01-01

    We discuss X-band rf power production and deceleration in the two-beam test stand of the CLIC test facility at CERN. The rf power is extracted from an electron drive beam by a specially designed power extraction structure. In order to test the structures at high-power levels, part of the generated power is recirculated to an input port, thus allowing for increased deceleration and power levels within the structure. The degree of recirculation is controlled by a splitter and phase shifter. We present a model that describes the system and validate it with measurements over a wide range of parameters. Moreover, by correlating rf power measurements with the energy lost by the electron beam, as measured in a spectrometer placed after the power extraction structure, we are able to identify system parameters, including the form factor of the electron beam. The quality of the agreement between model and reality gives us confidence to extrapolate the results found in the present test facility towards the parameter reg...

  15. Low temperature rf sputtering deposition of (Ba, Sr) TiO3 thin film with crystallization enhancement by rf power supplied to the substrate

    International Nuclear Information System (INIS)

    Yoshimaru, Masaki; Takehiro, Shinobu; Abe, Kazuhide; Onoda, Hiroshi

    2005-01-01

    The (Ba, Sr) TiO 3 thin film deposited by radio frequency (rf) sputtering requires a high deposition temperature near 500 deg. C to realize a high relative dielectric constant over of 300. For example, the film deposited at 330 deg. C contains an amorphous phase and shows a low relative dielectric constant of less than 100. We found that rf power supplied not only to the (Ba, Sr) TiO 3 sputtering target, but also to the substrate during the initial step of film deposition, enhanced the crystallization of the (Ba, Sr) TiO 3 film drastically and realized a high dielectric constant of the film even at low deposition temperatures near 300 deg. C. The 50-nm-thick film with only a 10 nm initial layer deposited with the substrate rf biasing is crystallized completely and shows a high relative dielectric constant of 380 at the deposition temperature of 330 deg. C. The (Ba, Sr) TiO 3 film deposited at higher temperatures (upwards of 400 deg. C) shows preferred orientation, while the film deposited at 330 deg. C with the 10 nm initial layer shows a preferred orientation on a -oriented ruthenium electrode. The unit cell of (Ba, Sr) TiO 3 (111) plane is similar to that of ruthenium (001) plane. We conclude that the rf power supplied to the substrate causes ion bombardments on the (Ba, Sr) TiO 3 film surface, which assists the quasiepitaxial growth of (Ba, Sr) TiO 3 film on the ruthenium electrode at low temperatures of less than 400 deg. C

  16. Low temperature rf sputtering deposition of (Ba, Sr) TiO3 thin film with crystallization enhancement by rf power supplied to the substrate

    Science.gov (United States)

    Yoshimaru, Masaki; Takehiro, Shinobu; Abe, Kazuhide; Onoda, Hiroshi

    2005-05-01

    The (Ba, Sr) TiO3 thin film deposited by radio frequency (rf) sputtering requires a high deposition temperature near 500 °C to realize a high relative dielectric constant over of 300. For example, the film deposited at 330 °C contains an amorphous phase and shows a low relative dielectric constant of less than 100. We found that rf power supplied not only to the (Ba, Sr) TiO3 sputtering target, but also to the substrate during the initial step of film deposition, enhanced the crystallization of the (Ba, Sr) TiO3 film drastically and realized a high dielectric constant of the film even at low deposition temperatures near 300 °C. The 50-nm-thick film with only a 10 nm initial layer deposited with the substrate rf biasing is crystallized completely and shows a high relative dielectric constant of 380 at the deposition temperature of 330 °C. The (Ba, Sr) TiO3 film deposited at higher temperatures (upwards of 400 °C) shows preferred orientation, while the film deposited at 330 °C with the 10 nm initial layer shows a preferred orientation on a -oriented ruthenium electrode. The unit cell of (Ba, Sr) TiO3 (111) plane is similar to that of ruthenium (001) plane. We conclude that the rf power supplied to the substrate causes ion bombardments on the (Ba, Sr) TiO3 film surface, which assists the quasiepitaxial growth of (Ba, Sr) TiO3 film on the ruthenium electrode at low temperatures of less than 400 °C.

  17. Influence of RF power on the properties of sputtered ZnO:Al thin films

    Energy Technology Data Exchange (ETDEWEB)

    Antony, Aldrin; Carreras, Paz; Keitzl, Thomas; Roldan, Ruben; Nos, Oriol; Frigeri, Paolo; Asensi, Jose Miguel; Bertomeu, Joan [Grup d' Energia Solar, Universitat de Barcelona (Spain)

    2010-07-15

    Transparent conducting, aluminium doped zinc oxide thin films (ZnO:Al) were deposited by radio frequency (RF) magnetron sputtering. The RF power was varied from 60 to 350 W whereas the substrate temperature was kept at 160 C. The structural, electrical and optical properties of the as-deposited films were found to be influenced by the deposition power. The X-ray diffraction analysis showed that all the films have a strong preferred orientation along the [001] direction. The crystallite size was varied from 14 to 36 nm, however no significant change was observed in the case of lattice constant. The optical band gap varied in the range 3.44-3.58 eV. The lowest resistivity of 1.2 x 10{sup -3}{omega} cm was shown by the films deposited at 250 W. The mobility of the films was found to increase with the deposition power. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. A highly sensitive RF-to-DC power converter with an extended dynamic range

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed; Ouda, Mahmoud H.; Salama, Khaled N.

    2017-01-01

    This paper proposes a highly sensitive RF-to-DC power converter with an extended dynamic range that is designed to operate at the medical band 433 MHz and simulated using 0.18 μm CMOS technology. Compared to the conventional fully cross

  19. An updated overview of the LEB RF system

    International Nuclear Information System (INIS)

    Rogers, J.D.; Ferrell, J.H.; Curbow, J.E.; Friedrichs, C.

    1992-01-01

    Each of the Low Energy Booster (LEB) rf systems consists of the following major subsystems: a vacuum tube final rf amplifier driven by a solid state rf amplifier, a ferrite-tuned rf cavity used to bunch and accelerate the beam, a low-level rf system including rf feedback systems, a computer-based supervisory control system, and associated power supplies. The LEB rf system is broadband with the exception of the rf cavity, which is electronically tuned from approximately 47.5 MHz to 59.7 MHz in 50 ms. The design and development status of the LEB rf system is presented, with particular emphasis on the cavity and tuner, and the tuner bias power supply

  20. Mechanical Design and Fabrication of a New RF Power Amplifier for LANSCE

    International Nuclear Information System (INIS)

    Chen, Zukun

    2011-01-01

    A Full-scale prototype of a new 201.25 MHz RF Final Power Amplifier (FPA) for Los Alamos Neutron Science Center (LANSCE) has been designed, fabricated, assembled and installed in the test facility. This prototype was successfully tested and met the physics and electronics design criteria. The team faced design and manufacturing challenges, having a goal to produce 2 MW peak power at 13% duty factor, at the elevation of over 2 km in Los Alamos. The mechanical design of the final power amplifier was built around a Thales TH628 Diacrode R , a state-of-art tetrode power tube. The main structure includes Input circuit, Output circuit, Grid decoupling circuit, Output coupler, Tuning pistons, and a cooling system. Many types of material were utilized to make this new RF amplifier. The fabrication processes of the key components were completed in the Prototype Fabrication Division shop at Los Alamos National Laboratory. The critical plating procedures were achieved by private industry. The FPA mass is nearly 600 kg and installed in a beam structural support stand. In this paper, we summarize the FPA design basis and fabrication, plating, and assembly process steps with necessary lifting and handling fixtures. In addition, to ensure the quality of the FPA support structure a finite element analysis with seismic design forces has also been carried out.

  1. Mechanical Design and Fabrication of a New RF Power Amplifier for LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zukun [Los Alamos National Laboratory

    2011-01-01

    A Full-scale prototype of a new 201.25 MHz RF Final Power Amplifier (FPA) for Los Alamos Neutron Science Center (LANSCE) has been designed, fabricated, assembled and installed in the test facility. This prototype was successfully tested and met the physics and electronics design criteria. The team faced design and manufacturing challenges, having a goal to produce 2 MW peak power at 13% duty factor, at the elevation of over 2 km in Los Alamos. The mechanical design of the final power amplifier was built around a Thales TH628 Diacrode{sup R}, a state-of-art tetrode power tube. The main structure includes Input circuit, Output circuit, Grid decoupling circuit, Output coupler, Tuning pistons, and a cooling system. Many types of material were utilized to make this new RF amplifier. The fabrication processes of the key components were completed in the Prototype Fabrication Division shop at Los Alamos National Laboratory. The critical plating procedures were achieved by private industry. The FPA mass is nearly 600 kg and installed in a beam structural support stand. In this paper, we summarize the FPA design basis and fabrication, plating, and assembly process steps with necessary lifting and handling fixtures. In addition, to ensure the quality of the FPA support structure a finite element analysis with seismic design forces has also been carried out.

  2. Design, construction and test of RF solid state power amplifier for IRANCYC-10

    Science.gov (United States)

    Azizi, H.; Dehghan, M.; Abbasi Davani, F.; Ghasemi, F.

    2018-03-01

    In this paper, design, simulation and construction of a high power amplifier to provide the required power of a cyclotron accelerator (IRANCYC-10) is presented step-by-step. The Push-Pull designed amplifier can generate 750 W at the operating frequency of 71 MHz continous wave (CW). In this study, achieving the best efficiency of the amplifier, as well as reducing overall volume using baluns, were two important goals. The new offered water-cooled heat sink was used for cooling the amplifier which increases the operating life of the transistor. The gain and PAE of the SSPA were obtained 20 dB and 77.7%, respectively. The simulated and measured RF results are in good agreement with each other. The results show that, using an RF transformer in matching impedance of matching networks, it causes a smaller size and also a better amplifier performance.

  3. The Effects of RF Sputtering Power and Gas Pressure on Structural and Electrical Properties of ITiO Thin Film

    Directory of Open Access Journals (Sweden)

    Accarat Chaoumead

    2012-01-01

    Full Text Available Transparent conductive titanium-doped indium oxide (ITiO films were deposited on corning glass substrates by RF magnetron sputtering method. The effects of RF sputtering power and Ar gas pressure on the structural and electrical properties of the films were investigated experimentally, using a 2.5 wt% TiO2-doped In2O3 target. The deposition rate was in the range of around 20~60 nm/min under the experimental conditions of 5~20 mTorr of gas pressure and 220~350 W of RF power. The lowest volume resistivity of 1.2×10−4  Ω-cm and the average optical transmittance of 75% were obtained for the ITiO film, prepared at RF power of 300 W and Ar gas pressure of 15 mTorr. This volume resistivity of 1.2×10−4  Ω-cm is low enough as a transparent conducting layer in various electrooptical devices, and it is comparable with that of ITO or ZnO:Al conducting layer.

  4. A new slip stacking RF system for a twofold power upgrade of Fermilab's Accelerator Complex

    Energy Technology Data Exchange (ETDEWEB)

    Madrak, Robyn [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2014-05-15

    Fermilab's Accelerator Complex has been recently upgraded, in order to increase the 120 GeV proton beam power on target from about 400 kW to over 700 kW for NOvA and other future intensity frontier experiments. One of the key ingredients of the upgrade is the offloading of some Main Injector synchrotron operations - beam injection and RF manipulation called ''slip stacking'' - to the 8GeV Recycler Ring, which had until recently been used only for low-intensity antiproton storage and cooling. This required construction of two new 53 MHz RF systems for the slip-stacking manipulations. The cavities operate simultaneously at Vpeak ≲150 kV, but at slightly different frequencies (Δf=1260 Hz). Their installation was completed in September 2013. This article describes the novel solutions used in the design of the new cavities, their tuning system, and the associated high power RF system. First results showing effective operation of the RF system, beam capture and successful slip-stacking in the Recycler Ring are presented.

  5. Characterization of Energy Availability in RF Energy Harvesting Networks

    Directory of Open Access Journals (Sweden)

    Daniela Oliveira

    2016-01-01

    Full Text Available The multiple nodes forming a Radio Frequency (RF Energy Harvesting Network (RF-EHN have the capability of converting received electromagnetic RF signals in energy that can be used to power a network device (the energy harvester. Traditionally the RF signals are provided by high power transmitters (e.g., base stations operating in the neighborhood of the harvesters. Admitting that the transmitters are spatially distributed according to a spatial Poisson process, we start by characterizing the distribution of the RF power received by an energy harvester node. Considering Gamma shadowing and Rayleigh fading, we show that the received RF power can be approximated by the sum of multiple Gamma distributions with different scale and shape parameters. Using the distribution of the received RF power, we derive the probability of a node having enough energy to transmit a packet after a given amount of charging time. The RF power distribution and the probability of a harvester having enough energy to transmit a packet are validated through simulation. The numerical results obtained with the proposed analysis are close to the ones obtained through simulation, which confirms the accuracy of the proposed analysis.

  6. Characterization of core/shell structures based on CdTe and GaAs nanocrystalline layers deposited on SnO2 microwires

    Science.gov (United States)

    Ghimpu, L.; Ursaki, V. V.; Pantazi, A.; Mesterca, R.; Brâncoveanu, O.; Shree, Sindu; Adelung, R.; Tiginyanu, I. M.; Enachescu, M.

    2018-04-01

    We report the fabrication and characterization of SnO2/CdTe and SnO2/GaAs core/shell microstructures. CdTe or GaAs shell layers were deposited by radio-frequency (RF) magnetron sputtering on core SnO2 microwires synthesized by a flame-based thermal oxidation method. The produced structures were characterized by scanning electron microscopy (SEM), high-resolution scanning transmission electron microscope (HR-STEM), X-ray diffraction (XRD), Raman scattering and FTIR spectroscopy. It was found that the SnO2 core is of the rutile type, while the shells are composed of CdTe or GaAs nanocrystallites of zincblende structure with the dimensions of crystallites in the range of 10-20 nm. The Raman scattering investigations demonstrated that the quality of the porous nanostructured shell is improved by annealing at temperatures of 420-450 °C. The prospects of implementing these microstructures in intrinsic type fiber optic sensors are discussed.

  7. Femtosecond precision measurement of laser–rf phase jitter in a photocathode rf gun

    International Nuclear Information System (INIS)

    Shi, Libing; Zhao, Lingrong; Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhu, Pengfei; Xiang, Dao

    2017-01-01

    We report on the measurement of the laser–rf phase jitter in a photocathode rf gun with femtosecond precision. In this experiment four laser pulses with equal separation are used to produce electron bunch trains; then the laser–rf phase jitter is obtained by measuring the variations of the electron bunch spacing with an rf deflector. Furthermore, we show that when the gun and the deflector are powered by the same rf source, it is possible to obtain the laser–rf phase jitter in the gun through measurement of the beam–rf phase jitter in the deflector. Based on these measurements, we propose an effective time-stamping method that may be applied in MeV ultrafast electron diffraction facilities to enhance the temporal resolution.

  8. Femtosecond precision measurement of laser–rf phase jitter in a photocathode rf gun

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Libing; Zhao, Lingrong; Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhu, Pengfei; Xiang, Dao, E-mail: dxiang@sjtu.edu.cn

    2017-03-21

    We report on the measurement of the laser–rf phase jitter in a photocathode rf gun with femtosecond precision. In this experiment four laser pulses with equal separation are used to produce electron bunch trains; then the laser–rf phase jitter is obtained by measuring the variations of the electron bunch spacing with an rf deflector. Furthermore, we show that when the gun and the deflector are powered by the same rf source, it is possible to obtain the laser–rf phase jitter in the gun through measurement of the beam–rf phase jitter in the deflector. Based on these measurements, we propose an effective time-stamping method that may be applied in MeV ultrafast electron diffraction facilities to enhance the temporal resolution.

  9. Reducing Energy Degradation Due to Back-bombardment Effect with Modulated RF Input in S-band Thermionic RF Gun

    Science.gov (United States)

    Kii, Toshiteru; Nakai, Yoko; Fukui, Toshio; Zen, Heishun; Kusukame, Kohichi; Okawachi, Norihito; Nakano, Masatsugu; Masuda, Kai; Ohgaki, Hideaki; Yoshikawa, Kiyoshi; Yamazaki, Tetsuo

    2007-01-01

    Energy degradation due to back-bombardment effect is quite serious to produce high-brightness electron beam with long macro-pulse with thermionic rf gun. To avoid the back-bombardment problem, a laser photo cathode is used at many FEL facilities, but usually it costs high and not easy to operate. Thus we have studied long pulse operation of the rf gun with thermionic cathode, which is inexpensive and easy to operate compared to the photocathode rf gun. In this work, to reduce the energy degradation, we controlled input rf power amplitude by controlling pulse forming network of the power modulator for klystron. We have successfully increased the pulse duration up to 4 μs by increasing the rf power from 7.8 MW to 8.5 MW during the macro pulse.

  10. Development of multi-channel high power rectangular RF window for LHCD system employing high temperature vacuum brazing technique

    International Nuclear Information System (INIS)

    Sharma, P K; Ambulkar, K K; Parmar, P R; Virani, C G; Thakur, A L; Joshi, L M; Nangru, S C

    2010-01-01

    A 3.7 GHz., 120 kW (pulsed), lower hybrid current drive (LHCD) system is employed to drive non-inductive plasma current in ADITYA tokamak. The rf power is coupled to the plasma through grill antenna and is placed in vacuum environment. A vacuum break between the pressurized transmission line and the grill antenna is achieved with the help of a multi (eight) channel rectangular RF vacuum window. The phasing between adjacent channels of 8-channel window (arranged in two rows) is important for launching lower hybrid waves and each channel should have independent vacuum window so that phase information is retained. The geometrical parameter of the grill antenna, like periodicity (9mm), channel dimensions (cross sectional dimension of 76mm x 7mm), etc. is to be maintained. These design constraint demanded a development of a multi channel rectangular RF vacuum window. To handle rf losses and thermal effects, high temperature vacuum brazing techniques is desired. Based on the above requirements we have successfully developed a multi channel rectangular rf vacuum window employing high temperature vacuum brazing technique. During the development process we could optimize the chemical processing parameters, brazing process parameters, jigs and fixtures for high temperature brazing and leak testing, etc. Finally the window is tested for low power rf performance using VNA. In this paper we would present the development of the said window in detail along with its mechanical, vacuum and rf performances.

  11. Development of multi-channel high power rectangular RF window for LHCD system employing high temperature vacuum brazing technique

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, P K; Ambulkar, K K; Parmar, P R; Virani, C G; Thakur, A L [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Joshi, L M; Nangru, S C, E-mail: pramod@ipr.res.i [Central Electronics Engineering Research Institute, Pilani, Rajasthan 333 031 (India)

    2010-02-01

    A 3.7 GHz., 120 kW (pulsed), lower hybrid current drive (LHCD) system is employed to drive non-inductive plasma current in ADITYA tokamak. The rf power is coupled to the plasma through grill antenna and is placed in vacuum environment. A vacuum break between the pressurized transmission line and the grill antenna is achieved with the help of a multi (eight) channel rectangular RF vacuum window. The phasing between adjacent channels of 8-channel window (arranged in two rows) is important for launching lower hybrid waves and each channel should have independent vacuum window so that phase information is retained. The geometrical parameter of the grill antenna, like periodicity (9mm), channel dimensions (cross sectional dimension of 76mm x 7mm), etc. is to be maintained. These design constraint demanded a development of a multi channel rectangular RF vacuum window. To handle rf losses and thermal effects, high temperature vacuum brazing techniques is desired. Based on the above requirements we have successfully developed a multi channel rectangular rf vacuum window employing high temperature vacuum brazing technique. During the development process we could optimize the chemical processing parameters, brazing process parameters, jigs and fixtures for high temperature brazing and leak testing, etc. Finally the window is tested for low power rf performance using VNA. In this paper we would present the development of the said window in detail along with its mechanical, vacuum and rf performances.

  12. Simulation of spatially dependent excitation rates and power deposition in RF discharges for plasma processing

    International Nuclear Information System (INIS)

    Kushner, M.J.; Anderson, H.M.; Hargis, P.J.

    1985-01-01

    In low pressure, radio frequency (RF) discharges of the type used in plasma processing of semiconductor materials, the rate of electron impact excitation and energy transfer processes depends upon both the phase of the RF excitation and position in the discharge. Electron impact collisions create radicals that diffuse or drift to the surfaces of interest where they are adsorbed or otherwise react. To the extent that these radicals have a finite lifetime, their transport time from point of creation to surface of interest is an important parameter. The spatial dependence of the rate of the initial electron impact collisions is therefore also an important parameter. The power that sustains the discharge is coupled into the system by two mechanisms: a high energy e-beam component of the electron distribution resulting from electrons falling through or being accelerated by the sheaths, and by joule heating in the body of the plasma. In this paper, the authors discuss the spatial dependence of excitation rates and the method of power deposition iin RF discharges of the type used for plasma processing

  13. A no-load RF calorimeter

    Science.gov (United States)

    Chernoff, R. C.

    1975-01-01

    The described device can be used to measure the output of any dc powered RF source. No dummy load is required for the measurements. The device is, therefore, called the 'no-load calorimeter' (NLC). The NLC measures the power actually fed to the antenna or another useful load. It is believed that the NLC can compete successfully with directional coupler type systems in measuring the output of high-power RF sources.

  14. The drive beam pulse compression system for the CLIC RF power source

    CERN Document Server

    Corsini, R

    1999-01-01

    The Compact LInear Collider (CLIC) is a high energy (0.5 to 5 TeV) e ± linear collider that uses a high- current electron beam (the drive beam) for 30 GHz RF power production by the Two-Beam Acceleration (TBA) method. Recently, a new cost­effective and efficient generation scheme for the drive beam has been developed. A fully­loaded normal­conducting linac operating at lower frequency (937 MHz) generates and accelerates the drive beam bunches, and a compression system composed of a delay­line and two combiner rings produces the proper drive beam time structure for RF power generation in the drive beam decelerator. In this paper, a preliminary design of the whole compression system is presented. In particular, the fundamental issue of preserving the bunch quality along the complex is studied and its impact on the beam parameters and on the various system components is assessed. A first design of the rings and delay­line lattice, including path length tuning chicanes, injection and extraction regions is a...

  15. Preparation of metastable bcc permalloy epitaxial thin films on GaAs(011){sub B3} single-crystal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Mitsuru, E-mail: ohtake@futamoto.elect.chuo-u.ac.jp [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Higuchi, Jumpei; Yabuhara, Osamu [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan); Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2011-09-30

    Permalloy (Py) single-crystal films with bcc structure were obtained on GaAs(011){sub B3} single-crystal substrates by ultra high vacuum rf magnetron sputtering. The film growth and the detailed film structures were investigated by refection high energy electron diffraction and pole figure X-ray diffraction. bcc-Py films epitaxially grow on the substrates in the orientation relationship of Py(011)[011-bar]{sub bcc} || GaAs(011)[011-bar]{sub B3}. The lattice constant of bcc-Py film is determined to be a = 0.291 nm. With increasing the film thickness, parts of the bcc crystal transform into more stable fcc structure by atomic displacement parallel to the bcc{l_brace}011{r_brace} close-packed planes. The resulting film thus consists of a mixture of bcc and fcc crystals. The phase transformation mechanism is discussed based on the experimental results. The in-plane magnetization properties reflecting the magnetocrystalline anisotropy of bcc-Py crystal are observed for the Py films grown on GaAs(011){sub B3} substrates.

  16. Design and development of RF system for vertical test stand for characterization of superconducting RF cavities

    International Nuclear Information System (INIS)

    Mohania, Praveen; Rajput, Vikas; Baxy, Deodatta; Agrawal, Ankur; Mahawar, Ashish; Adarsh, Kunver; Singh, Pratap; Shrivastava, Purushottam

    2011-01-01

    RRCAT is developing a Vertical Test Stand (VTS) to test and qualify 1.3 GHz/650 MHz, SCRF Cavities in collaboration with Fermi National Accelerator Laboratory (FNAL) under Indian Institutions' Fermilab Collaboration. The technical details for VTS is being provided by FNAL, USA. The RF System of VTS needs to provide stable RF power to SCRF cavity with control of amplitude, relative phase and frequency. The incident, reflected, transmitted power and field decay time constant of the cavity are measured to evaluate cavity performance parameters (E, Qo). RF Power is supplied via 500 W Solid State amplifier, 1270-1310 MHz being developed by PHPMS, RRCAT. VTS system is controlled by PXI Platform and National Instruments LabVIEW software. Low Level RF (LLRF) system is used to track the cavity frequency using Phase Locked Loop (PLL). The system is comprised of several integrated functional modules which would be assembled, optimized, and tested separately. Required components and instruments have been identified and procurement for the same is underway. Inhouse development for the Solid State RF amplifier and instrument interfacing is in progress. This paper describes the progress on the development of the RF system for VTS. (author)

  17. SEMICONDUCTOR DEVICES: Structural and electrical characteristics of lanthanum oxide gate dielectric film on GaAs pHEMT technology

    Science.gov (United States)

    Chia-Song, Wu; Hsing-Chung, Liu

    2009-11-01

    This paper investigates the feasibility of using a lanthanum oxide thin film (La2O3) with a high dielectric constant as a gate dielectric on GaAs pHEMTs to reduce gate leakage current and improve the gate to drain breakdown voltage relative to the conventional GaAs pHEMT. An E/D mode pHEMT in a single chip was realized by selecting the appropriate La2O3 thickness. The thin La2O3 film was characterized: its chemical composition and crystalline structure were determined by X-ray photoelectron spectroscopy and X-ray diffraction, respectively. La2O3 exhibited good thermal stability after post-deposition annealing at 200, 400 and 600 °C because of its high binding-energy (835.6 eV). Experimental results clearly demonstrated that the La2O3 thin film was thermally stable. The DC and RF characteristics of Pt/La2O3/Ti/Au gate and conventional Pt/Ti/Au gate pHEMTs were examined. The measurements indicated that the transistor with the Pt/La2O3/Ti/Au gate had a higher breakdown voltage and lower gate leakage current. Accordingly, the La2O3 thin film is a potential high-k material for use as a gate dielectric to improve electrical performance and the thermal effect in high-power applications.

  18. High-power RF window and coupler development for the PEP-II B Factory

    International Nuclear Information System (INIS)

    Neubauer, M.; Fant, K.; Hodgson, J.; Judkins, J.; Schwarz, H.; Rimmer, R.A.

    1995-05-01

    We describe the fabrication and testing of the RF windows designed to transmit power to the PEP-II 476 MHz cavities. Design choices to maximize the reliability of the window are discussed. Fabrication technologies for the window are described and finite-element analysis of the assembly process is presented. Conditioning and high-power testing of the window are discussed. Design of the coupler assembly including the integration of the window and other components is reported

  19. Effects of an RF limiter on TEXTOR's edge plasmas

    International Nuclear Information System (INIS)

    Boedo, J.A.; Sakawa, Y.; Gray, D.S.; Mank, G.; Noda, N.

    1997-01-01

    Studies directed towards the reduction of particle and heat fluxes to plasma facing components by the application of ponderomotive forces generated by radio frequency (RF) are being conducted in TEXTOR. A modified poloidal limiter is used as an antenna with up to 3 kW of RF power; the data obtained show that the plasma is repelled by the RF ponderomotive potential. The density is reduced by a factor of 2-4 and the radial decay length is substantially altered. The density near the limiter decays exponentially with RF power. The electron temperature profile changes, with the decay length becoming longer (almost flat) during the RF. The temperature in the scrape off layer (SOL) increases and its increase is roughly proportional to the RF power until it saturates, suggesting that the heating efficiency drops with power, and that improved performance is to be expected at higher powers. (orig.)

  20. Power excitation by the use of a rf wiggler

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1992-01-01

    It is well-known that there are difficulties to obtain rf power sources of significant amount for frequencies larger than 3 GHz. Yet, rf sources in the centimeter/millimeter wavelength range would be very useful to drive, for example, high-gradient accelerating linacs for electron-positron linear colliders. We would like to propose an alternative method to produce such radiation. It makes use of a short electron bunch traveling along the axis of a waveguide which is at the same time excited by a TM propagating electromagnetic wave. It is well known that radiation can be obtained by wiggling the motion of the electrons in a direction perpendicular to the main one. The wiggling action can be included by electromagnetic fields in a fashion similar to the one caused by wiggler magnets. We found that an interesting mode of operation is to drive the waveguide with an excitation frequency very close to the cut off. For such excitation, the corresponding e.m. wave travels with a very large phase velocity which in turn has the effect to increase the wiggling action on the electron bunch. Our method, to be effective, relies also on the coherence of the radiation; that is the bunch length is taken to be considerably shorter than the radiated wavelength. In this case, the total power radiated should be proportional to the square of the total number of electrons in the bunch. The paper concludes with possible modes of operation, a list of performance parameters and a proposed experimental set-up

  1. Synchronization of RF fields of Indus 2 RF cavities for proper injection and acceleration of beam

    International Nuclear Information System (INIS)

    Tiwari, Nitesh; Bagduwal, Pritam S.; Lad, M.; Hannurkar, P.R.

    2009-01-01

    Indus-2 is a synchrotron light source with designed parameters of 2.5 GeV, 300 mA beam current. Four RF cavities fed from four RF power stations have been used for beam acceleration from 550 MeV to 2.5 GeV and synchrotron loss compensation. Particle should reach the RF cavity at the proper phase for proper acceptance of the beam in ring. At injection if the phase is not proper the acceptance efficiency reduces and the maximum stored current in the ring also gets limited. Equal contribution from four cavities at every value of current and energy level is very important. Improper phase will cause the imbalance of the power among different station hence will limit maximum stored current and reduce life time of the stored beam. Phase optimization was done in two-step, first at injection to have better injection rate and the stations were operated at the sufficient power for control loops to operate. Then at 2 GeV and 2.5 GeV energy so that beam extracts equal power from all four RF stations. Phase synchronization of all four cavities from injection to 2.5 GeV has already been done at 50 mA stored beam current. If phases of RF fields inside four RF cavities is not proper then beam will not see the total RF voltage as summation of all four cavity gap voltages, hence it is a very important parameter to be optimized and maintained during operation. (author)

  2. Design of 250-MW CW RF system for APT

    International Nuclear Information System (INIS)

    Rees, D.

    1997-01-01

    The design for the RF systems for the APT (Accelerator Production of Tritium) proton linac will be presented. The linac produces a continuous beam power of 130 MW at 1300 MeV with the installed capability to produce up to a 170 MW beam at 1700 MeV. The linac is comprised of a 350 MHz RFQ to 7 MeV followed in sequence by a 700 MHz coupled-cavity drift tube linac, coupled-cavity linac, and superconducting (SC) linac to 1700 MeV. At the 1700 MeV, 100 mA level the linac requires 213 MW of continuous-wave (CW) RF power. This power will be supplied by klystrons with a nominal output power of 1.0 MW. 237 kystrons are required with all but three of these klystrons operating at 700 MHz. The klystron count includes redundancy provisions that will be described which allow the RF systems to meet an operational availability in excess of 95 percent. The approach to achieve this redundancy will be presented for both the normal conducting (NC) and SC accelerators. Because of the large amount of CW RF power required for the APT linac, efficiency is very important to minimize operating cost. Operation and the RF system design, including in-progress advanced technology developments which improve efficiency, will be discussed. RF system performance will also be predicted. Because of the simultaneous pressures to increase RF system reliability, reduce tunnel envelope, and minimize RF system cost, the design of the RF vacuum windows has become an important issue. The power from a klystron will be divided into four equal parts to minimize the stress on the RF vacuum windows. Even with this reduction, the RF power level at the window is at the upper boundary of the power levels employed at other CW accelerator facilities. The design of a 350 MHz, coaxial vacuum window will be presented as well as test results and high power conditioning profiles. The transmission of 950 kW, CW, power through this window has been demonstrated with only minimal high power conditioning

  3. AN ALTERNATIVE APPROACH TO LOW FREQUENCY RF ACCELERATORS AND POWER SOURCES

    International Nuclear Information System (INIS)

    ZHAO, Y.

    2001-01-01

    The Muon Collider and Neutrino Factory projects require low frequency rf cavities because the size and emittance of the muon beam is much larger than is usual for electron or proton beams. The range of 30 MHz to 200 MHz is of special interest. However, the size of an accelerator with low frequency will be impractically large if it is simply scaled up from usual designs. In addition, to get very high peak power in this range is difficult. Presented in this paper is an alternative structure that employs a quasi-lumped inductance that can significantly reduce the transverse size while keeping high gradient. Also addressed is a power compression scheme with a thyratron. This gives a possible solution to provide very high peak power

  4. Rf Station For Ion Beam Staking In Hirfl-csr

    CERN Document Server

    Arbuzov, V S; Bushuev, A A; Dranichnikov, A N; Gorniker, E I; Kendjebulatov, E K; Kondakov, A A; Kondaurov, M; Kruchkov, Ya G; Krutikhin, S A; Kurkin, G Ya; Mironenko, L A; Motygin, S V; Osipov, V N; Petrov, V M; Pilan, Andrey M; Popov, A M; Rashenko, V V; Selivanov, A N; Shteinke, A R; Vajenin, N F

    2004-01-01

    BINP has developed and produced the RF station for Institute of Modern Physics (IMP), Lanzhou, China, for multipurpose accelerator complex with electron cooling. The RF station will be used for accumulation of ion beams in the main ring of the system. It was successfully tested in IMP and installed into the main accelerator ring of the complex. The RF station includes accelerating RF cavity and RF power generator with power supplies. The station works within frequency range 6.0 - 14.0 MHz, maximum voltage across the accelerating gap of the RF cavity - 20 kV. In the RF cavity the 200 VNP ferrite is utilized. A residual gas pressure in vacuum chamber does not exceed 2,5E-11 mbar. Maximum output power of the RF generator 25 kW. The data acquisition and control of the RF station is based on COMPACT - PCI bus and provides all functions of monitoring and control.

  5. Development of 650 MHz solid state RF amplifier for proton accelerator

    International Nuclear Information System (INIS)

    Jain, Akhilesh; Sharma, Deepak; Gupta, Alok; Tiwari, Ashish; Rao, Nageswar; Sekar, Vasanthi; Lad, M.; Hannurkar, P.R.; Gupta, P.D.

    2011-01-01

    Design and development of 30 kW high powers RF source at 650 MHz, using solid RF state technology, has been initiated at RRCAT. The indigenous technology development efforts will be useful for the proposed high power proton accelerators for SNS/ADS applications. In this 650 MHz amplifier scheme, 30 kW CW RF power will be generated using modular combination of 8 kW amplifier units. Necessary studies were carried out for device selection, choice of amplifier architecture and design of high power combiners and dividers. Presently RF amplifier delivering 250 W at 650 MHz has been fabricated and tested. Towards development of high power RF components, design and engineering prototyping of 16-port power combiner, directional coupler and RF dummy loads has been completed. The basic 8 kW amplifier unit is designed to provide power gain of 50 dB, bandwidth of 20 MHz and spurious response below 30 dB from fundamental signal. Based on the results of circuit simulation studies and engineering prototyping of amplifier module, two RF transistor viz. MRF3450 and MRF 61K were selected as solid state active devices. Impedance matching network in amplifier module is designed using balanced push pull configuration with transmission line BALUN. Due to high circulating current near drain side, metal clad RF capacitors were selected which helps in avoiding hot spot from output transmission path, ensuring continuous operation at rated RF power without damage to RF board. 350 W circulator is used to protect the RF devices from reflected power. Based on the prototype design and measured performance, one of these RF transistors will be selected to be used as workhorse for all amplifier modules. Two amplifier modules are mounted on water cooled copper heat-sink ensuring proper operating temperature for reliable and safe operation of amplifier. Also real time control system and data logger has been developed to provide DAQ and controls in each rack. For power combining and power measurement

  6. A comprehensive study of cryogenic cooled millimeter-wave frequency multipliers based on GaAs Schottky-barrier varactors

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Rybalko, Oleksandr; Zhurbenko, Vitaliy

    2018-01-01

    The benefit of cryogenic cooling on the performance of millimeter-wave GaAs Schottky-barrier varactor-based frequency multipliers has been studied. For this purpose, a dedicated compact model of a GaAs Schottky-barrier varactor using a triple-anode diode stack has been developed for use...... with a commercial RF and microwave CAD tool. The model implements critical physical phenomena such as thermionic-field emission current transport at cryogenic temperatures, temperature dependent mobility, reverse breakdown, self-heating, and high-field velocity saturation effects. A parallel conduction model...... is employed in order to include the effect of barrier inhomogeneities which is known to cause deviation from the expected I--V characteristics at cryogenic temperatures. The developed model is shown to accurately fit the I--V --T dataset from 25 to 295 K measured on the varactor diode stack. Harmonic balance...

  7. A CMOS RF-to-DC Power Converter With 86% Efficiency and -19.2-dBm Sensitivity

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed; Ouda, Mahmoud H.; Salama, Khaled N.

    2018-01-01

    This paper proposes an RF-to-dc power converter for ambient wireless powering that is efficient, highly sensitive, and less dependent on the load resistance with an extended dynamic range. The proposed rectifier utilizes a variable biasing technique to control the conduction of the rectifying transistors selectively, hence minimizing the leakage current; unlike the prior work that has a fixed feedback resistors, which limits the efficient operation to a relatively high RF power and causes a drop in the peak power conversion efficiency (PCE). The proposed design is fabricated using a 0.18-μm standard CMOS technology and occupies an area of 8800 μm². The measurement results show an 86% PCE and -19.2-dBm (12 μW) sensitivity when operating at the medical band 433 MHz with a 100-kΩ load. Furthermore, the PCE is 66%, and the sensitivity is -18.2 dBm (15.1 μW) when operating at UHF 900 MHz with a 100-kΩ load.

  8. A CMOS RF-to-DC Power Converter With 86% Efficiency and -19.2-dBm Sensitivity

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed

    2018-01-09

    This paper proposes an RF-to-dc power converter for ambient wireless powering that is efficient, highly sensitive, and less dependent on the load resistance with an extended dynamic range. The proposed rectifier utilizes a variable biasing technique to control the conduction of the rectifying transistors selectively, hence minimizing the leakage current; unlike the prior work that has a fixed feedback resistors, which limits the efficient operation to a relatively high RF power and causes a drop in the peak power conversion efficiency (PCE). The proposed design is fabricated using a 0.18-μm standard CMOS technology and occupies an area of 8800 μm². The measurement results show an 86% PCE and -19.2-dBm (12 μW) sensitivity when operating at the medical band 433 MHz with a 100-kΩ load. Furthermore, the PCE is 66%, and the sensitivity is -18.2 dBm (15.1 μW) when operating at UHF 900 MHz with a 100-kΩ load.

  9. RF power absorption by plasma of low pressure low power inductive discharge located in the external magnetic field

    Science.gov (United States)

    Kralkina, E. A.; Rukhadze, A. A.; Nekliudova, P. A.; Pavlov, V. B.; Petrov, A. K.; Vavilin, K. V.

    2018-03-01

    Present paper is aimed to reveal experimentally and theoretically the influence of magnetic field strength, antenna shape, pressure, operating frequency and geometrical size of plasma sources on the ability of plasma to absorb the RF power characterized by the equivalent plasma resistance for the case of low pressure RF inductive discharge located in the external magnetic field. The distinguishing feature of the present paper is the consideration of the antennas that generate not only current but charge on the external surface of plasma sources. It is shown that in the limited plasma source two linked waves can be excited. In case of antennas generating only azimuthal current the waves can be attributed as helicon and TG waves. In the case of an antenna with the longitudinal current there is a surface charge on the side surface of the plasma source, which gives rise to a significant increase of the longitudinal and radial components of the RF electric field as compared with the case of the azimuthal antenna current.

  10. Electrical and Optical Characterization of Sputtered Silicon Dioxide, Indium Tin Oxide, and Silicon Dioxide/Indium Tin Oxide Antireflection Coating on Single-Junction GaAs Solar Cells

    Directory of Open Access Journals (Sweden)

    Wen-Jeng Ho

    2017-06-01

    Full Text Available This study characterized the electrical and optical properties of single-junction GaAs solar cells coated with antireflective layers of silicon dioxide (SiO2, indium tin oxide (ITO, and a hybrid layer of SiO2/ITO applied using Radio frequency (RF sputtering. The conductivity and transparency of the ITO film were characterized prior to application on GaAs cells. Reverse saturation-current and ideality factor were used to evaluate the passivation performance of the various coatings on GaAs solar cells. Optical reflectance and external quantum efficiency response were used to evaluate the antireflective performance of the coatings. Photovoltaic current-voltage measurements were used to confirm the efficiency enhancement obtained by the presence of the anti-reflective coatings. The conversion efficiency of the GaAs cells with an ITO antireflective coating (23.52% exceeded that of cells with a SiO2 antireflective coating (21.92%. Due to lower series resistance and higher short-circuit current-density, the carrier collection of the GaAs cell with ITO coating exceeded that of the cell with a SiO2/ITO coating.

  11. Design of an RF Antenna for a Large-Bore, High Power, Steady State Plasma Processing Chamber for Material Separation

    International Nuclear Information System (INIS)

    Rasmussen, D.A.; Freeman, R.L.

    2001-01-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC, (Contractor), and Archimedes Technology Group, (Participant) is to evaluate the design of an RF antenna for a large-bore, high power, steady state plasma processing chamber for material separation. Criteria for optimization will be to maximize the power deposition in the plasma while operating at acceptable voltages and currents in the antenna structure. The project objectives are to evaluate the design of an RF antenna for a large-bore, high power, steady state plasma processing chamber for material separation. Criteria for optimization will be to maximize the power deposition in the plasma while operating at acceptable voltages and currents in the antenna structure

  12. Dependence of RF power on the content and configuration of hydrogen in amorphous hydrogenated silicon by reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Imura, T; Ushita, K; Mogi, K; Hiraki, A [Osaka Univ., Suita (Japan). Faculty of Engineering

    1981-06-01

    Infrared absorption spectra at stretching bands of Si-H were investigated in hydrogenated amorphous silicon fabricated by reactive sputtering in the atmosphere of Ar and H/sub 2/ (10 mole%) at various input rf powers in the range from 0.8 to 3.8 W/cm/sup 2/. Hydrogen content mainly due to the configuration of Si=H/sub 2/ in the film increased with the decreasing rf power, as the deposition rate was decreased. On the other hand, the quantity of the monohydride (Si-H) configuration depended less on the power. Attachment of hydrogen molecules onto the fresh and reactive surface of silicon deposited successively was proposed for possible process of hydrogen incusion into amorphous silicon resulting in Si=H/sub 2/ configuration. The photoconductivity increased as the input power became higher, when the deposition rate also increased linearly with the power.

  13. 1 MW, 352.2 MHz, CW and Pulsed RF test stand

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Tripathi, Akhilesh; Upadhyay, Rinki; Tyagi, Rajiv; Hannurkar, P.R.

    2011-01-01

    A 1 MW, 352.2 MHz, RF test stand based on Thales make TH 2089 klystron amplifier is being developed at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore for characterization and qualification of RF components, cavities and related subsystems. Provision to vary RF power from 50 kW to 1 MW with adequate flexibility for testing wide range of HV components, RF components and cavities is incorporated in this test stand. The paper presents a brief detail of various power supplies like high voltage cathode bias power supply, modulating anode power supply, filament power supply, electromagnet power supplies and ion pump power supplies along with their interconnections for biasing TH 2089 klystron amplifier. A digital control and interlock system is being developed to realize proper sequence of operation of various power supplies and to monitor the status of crucial parameters in this test set up. This RF test stand will be a unique national facility, capable of providing both CW and pulse RF power for realizing reliable RF power sources for various projects including the development of high energy proton linac under ADSS program of the Department of Atomic Energy. (author)

  14. Design of RF system for CYCIAE-230 superconducting cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhiguo, E-mail: bitbearAT@hotmail.com; Ji, Bin; Fu, Xiaoliang; Cao, Xuelong; Zhao, Zhenlu; Zhang, Tinajue

    2017-05-11

    The CYCIAE230 is a low-current, compact superconducting cyclotron designed for proton therapy. The Radio Frequency system consists of four RF cavities and applies second harmonic to accelerate beams. The driving power for the cavity system is estimated to be approximately 150 kW. The LLRF controller is a self-made device developed and tested at low power using a small-scale cavity model. In this paper, the resonator systems of an S.C. cyclotron in history are reviewed. Contrary to those RF systems, the cavities of the CYCIAE230 cyclotron connect two opposite dees. Two high-power RF windows are included in the system. Each window carries approximately 75 kW RF power from the driver to the cavities. Thus, the RF system for the CY-CIAE230 cyclotron is operated in driven push–pull mode. The two-way amplifier-coupler-cavity systems are operated with approximately the same amount of RF power but 180° out of phase compared with each other. The design, as well as the technical advantage and limitations of this operating mode, of the CYCIAE230 cyclotron RF system is analyzed.

  15. Design of RF system for CYCIAE-230 superconducting cyclotron

    Science.gov (United States)

    Yin, Zhiguo; Ji, Bin; Fu, Xiaoliang; Cao, Xuelong; Zhao, Zhenlu; Zhang, Tinajue

    2017-05-01

    The CYCIAE230 is a low-current, compact superconducting cyclotron designed for proton therapy. The Radio Frequency system consists of four RF cavities and applies second harmonic to accelerate beams. The driving power for the cavity system is estimated to be approximately 150 kW. The LLRF controller is a self-made device developed and tested at low power using a small-scale cavity model. In this paper, the resonator systems of an S.C. cyclotron in history are reviewed. Contrary to those RF systems, the cavities of the CYCIAE230 cyclotron connect two opposite dees. Two high-power RF windows are included in the system. Each window carries approximately 75 kW RF power from the driver to the cavities. Thus, the RF system for the CY-CIAE230 cyclotron is operated in driven push-pull mode. The two-way amplifier-coupler-cavity systems are operated with approximately the same amount of RF power but 180° out of phase compared with each other. The design, as well as the technical advantage and limitations of this operating mode, of the CYCIAE230 cyclotron RF system is analyzed.

  16. Investigation of the influence of growth parameters on self-catalyzed ITO nanowires by high RF-power sputtering

    Science.gov (United States)

    Li, Qiang; Zhang, Yuantao; Feng, Lungang; Wang, Zuming; Wang, Tao; Yun, Feng

    2018-04-01

    Tin-doped indium oxide (ITO) nanowires are successfully fabricated using a radio frequency (RF) sputtering technique with a high RF power of 250 W. The fabrication of the ITO nanowires is optimized through the study of oxygen flow rates, temperatures and RF power. The difference in the morphology of the ITO nanowires prepared by using a new target and a used target is observed and the mechanism for the difference is discussed in detail. A hollow structure and air voids within the nanowires are formed during the process of the nanowire growth. The ITO nanowires fabricated by this method demonstrated good conductivity (15 Ω sq-1) and a transmittance of more than 64% at a wavelength longer than 550 nm after annealing. Furthermore, detailed microstructure studies show that the ITO nanowires exhibit a large number of oxygen vacancies. As a result, it is expected that they can be useful for the fabrication of gas sensor devices.

  17. A capacitive membrane MEMS microwave power sensor in the X-band based on GaAs MMIC technology

    International Nuclear Information System (INIS)

    Su Shi; Liao Xiaoping

    2009-01-01

    This paper presents the modeling, fabrication, and measurement of a capacitive membrane MEMS microwave power sensor. The sensor measures microwave power coupled from coplanar waveguide (CPW) transmission lines by a MEMS membrane and then converts it into a DC voltage output by using thermopiles. Since the fabrication process is fully compatible with the GaAs monolithic microwave integrated circuit (MMIC) process, this sensor could be conveniently embedded into MMIC. From the measured DC voltage output and S-parameters, the average sensitivity in the X-band is 225.43 μV/mW, while the reflection loss is below -14 dB. The MEMS microwave power sensor has good linearity with a voltage standing wave ration of less than 1.513 in the whole X-band. In addition, the measurements using amplitude modulation signals prove that the modulation index directly influences the output DC voltage.

  18. Design and Calibration of an RF Actuator for Low-Level RF Systems

    Science.gov (United States)

    Geng, Zheqiao; Hong, Bo

    2016-02-01

    X-ray free electron laser (FEL) machines like the Linac Coherent Light Source (LCLS) at SLAC require high-quality electron beams to generate X-ray lasers for various experiments. Digital low-level RF (LLRF) systems are widely used to control the high-power RF klystrons to provide a highly stable RF field in accelerator structures for beam acceleration. Feedback and feedforward controllers are implemented in LLRF systems to stabilize or adjust the phase and amplitude of the RF field. To achieve the RF stability and the accuracy of the phase and amplitude adjustment, low-noise and highly linear RF actuators are required. Aiming for the upgrade of the S-band Linac at SLAC, an RF actuator is designed with an I/Qmodulator driven by two digital-to-analog converters (DAC) for the digital LLRF systems. A direct upconversion scheme is selected for RF actuation, and an on-line calibration algorithm is developed to compensate the RF reference leakage and the imbalance errors in the I/Q modulator, which may cause significant phase and amplitude actuation errors. This paper presents the requirements on the RF actuator, the design of the hardware, the calibration algorithm, and the implementation in firmware and software and the test results at LCLS.

  19. Nonlinear plasma experiments in geospace with gigawatts of RF power at HAARP

    Energy Technology Data Exchange (ETDEWEB)

    Sheerin, J. P., E-mail: jsheerin@emich.edu [Physics and Astronomy, Eastern Michigan Univ., Ypsilanti, MI 48197 (United States); Cohen, Morris B., E-mail: mcohen@gatech.edu [Electrical and Computer Engineering, Georgia Tech, Atlanta, GA 30332-0250 (United States)

    2015-12-10

    The ionosphere is the ionized uppermost layer of our atmosphere (from 70 – 500 km altitude) where free electron densities yield peak critical frequencies in the HF (3 – 30 MHz) range. The ionosphere thus provides a quiescent plasma target, stable on timescales of minutes, for a whole host of active plasma experiments. High power RF experiments on ionospheric plasma conducted in the U.S. have been reported since 1970. The largest HF transmitter built to date is the HAARP phased-array HF transmitter near Gakona, Alaska which can deliver up to 3.6 Gigawatts (ERP) of CW RF power in the range of 2.8 – 10 MHz to the ionosphere with microsecond pointing, power modulation, and frequency agility. With an ionospheric background thermal energy in the range of only 0.1 eV, this amount of power gives access to the highest regimes of the nonlinearity (RF intensity to thermal pressure) ratio. HAARP’s unique features have enabled the conduct of a number of unique nonlinear plasma experiments in the interaction region of overdense ionospheric plasma including generation of artificial aurorae, artificial ionization layers, VLF wave-particle interactions in the magnetosphere, parametric instabilities, stimulated electromagnetic emissions (SEE), strong Langmuir turbulence (SLT) and suprathermal electron acceleration. Diagnostics include the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, spacecraft radio beacons, HF receivers to record stimulated electromagnetic emissions (SEE) and telescopes and cameras for optical emissions. We report on short timescale ponderomotive overshoot effects, artificial field-aligned irregularities (AFAI), the aspect angle dependence of the intensity of the HF-enhanced plasma line, and production of suprathermal electrons. One of the primary missions of HAARP, has been the generation of ELF (300 – 3000 Hz) and VLF (3 – 30 kHz) radio waves which are guided to global distances in the Earth

  20. Linear collider RF: Introduction and summary

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1995-01-01

    The relation of acceleration gradient with RF frequency is examined, and approximate general RF power requirements are derived. Considerations of efficiency and cost are discussed. RF Sources, presented at the conference, are reviewed. Overall efficiencies of the linear collider proposals are compared. copyright 1995 American Institute of Physics

  1. RF extraction issues in the relativistic klystron amplifiers

    Science.gov (United States)

    Serlin, Victor; Friedman, Moshe; Lampe, Martin; Hubbard, Richard F.

    1994-05-01

    Relativistic klystron amplifiers (RKAs) were successfully operated at NRL in several frequency regimes and power levels. In particular, an L-band RKA was optimized for high- power rf extraction into the atmosphere and an S-band RKA was operated, both in a two-beam and a single-beam configuration. At L-band the rf extraction at maximum power levels (>= 15 GW) was hindered by pulse shortening and poor repeatability. Preliminary investigation showed electron emission in the radiating horn, due to very high voltages associated with the multi-gigawatt rf power levels. This electron current constituted an electric load in parallel with the radiating antenna, and precipitated the rf pulse collapse. At S-band the peak extracted power reached 1.7 GW with power efficiency approximately 50%. However, pulse shortening limited the duration to approximately 50 nanoseconds. The new triaxial RKA promises to solve many of the existing problems.

  2. Heat load of a P-doped GaAs photocathode in SRF electron gun

    International Nuclear Information System (INIS)

    Wang, E.; Ben-Zvi, I.; Kewisch, J.; Burrill, A.; Rao, T.; Wu, Q.; Jain, A.; Gupta, R.; Holmes, D.

    2010-01-01

    Many efforts were made over the last decades to develop a better polarized electron source for the high energy physics. Several laboratories operate DC guns with the Gallium-Arsenide photo-cathode, which yield a highly polarized electron beam. However, the beam's emittance might well be improved using a Superconducting RF electron gun, which delivers beams of higher brightness than DC guns does, because the field gradient at the cathode is higher. SRF guns with metal cathodes and CsTe cathodes have been tested successfully. To produce polarized electrons, a Gallium-Arsenide photo-cathode must be used: an experiment to do so in a superconducting RF gun is under way at BNL. Since the cathode will be normal conducting, the problem about the heat load stemming from the cathode arises. We present our measurements of the electrical resistance of GaAs at cryogenic temperatures, a prediction of the heat load and the verification by measuring the quality factor of the gun with and without cathode.

  3. Improved power simulation of AlGaN/GaN HEMT at class-AB operation via an RF drain—source current correction method

    International Nuclear Information System (INIS)

    Pongthavornkamol Tiwat; Pang Lei; Yuan Ting-Ting; Liu Xin-Yu

    2014-01-01

    A new modified Angelov current—voltage characteristic model equation is proposed to improve the drain—source current (I ds ) simulation of an AlGaN/GaN-based (gallium nitride) high electron mobility transistor (AlGaN/GaN-based HEMT) at high power operation. Since an accurate radio frequency (RF) current simulation is critical for a correct power simulation of the device, in this paper we propose a method of AlGaN/GaN high electron mobility transistor (HEMT) nonlinear large-signal model extraction with a supplemental modeling of RF drain—source current as a function of RF input power. The improved results of simulated output power, gain, and power added efficiency (PAE) at class-AB quiescent bias of V gs = −3.5 V, V ds = 30 V with a frequency of 9.6 GHz are presented. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. High total dose proton irradiation effects on silicon NPN rf power transistors

    International Nuclear Information System (INIS)

    Bharathi, M. N.; Praveen, K. C.; Prakash, A. P. Gnana; Pushpa, N.

    2014-01-01

    The effects of 3 MeV proton irradiation on the I-V characteristics of NPN rf power transistors were studied in the dose range of 100 Krad to 100 Mrad. The different electrical characteristics like Gummel, current gain and output characteristics were systematically studied before and after irradiation. The recovery in the I-V characteristics of irradiated NPN BJTs were studied by isochronal and isothermal annealing methods

  5. High total dose proton irradiation effects on silicon NPN rf power transistors

    Energy Technology Data Exchange (ETDEWEB)

    Bharathi, M. N.; Praveen, K. C.; Prakash, A. P. Gnana, E-mail: gnanaprakash@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore-570006, Karnataka (India); Pushpa, N. [Department of PG Studies in Physics, JSS College, Ooty Road, Mysore-570025, Karnataka (India)

    2014-04-24

    The effects of 3 MeV proton irradiation on the I-V characteristics of NPN rf power transistors were studied in the dose range of 100 Krad to 100 Mrad. The different electrical characteristics like Gummel, current gain and output characteristics were systematically studied before and after irradiation. The recovery in the I-V characteristics of irradiated NPN BJTs were studied by isochronal and isothermal annealing methods.

  6. A Self-Powered Hybrid Energy Scavenging System Utilizing RF and Vibration Based Electromagnetic Harvesters

    International Nuclear Information System (INIS)

    Uluşan, H; Gharehbaghi, K; Külah, H; Zorlu, Ö; Muhtaroğlu, A

    2015-01-01

    This study presents a novel hybrid system that combines the power generated simultaneously by a vibration-based Electromagnetic (EM) harvester and a UHF band RF harvester. The novel hybrid scavenger interface uses a power management circuit in 180 nm CMOS technology to step-up and to regulate the combined output. At the first stage of the system, the RF harvester generates positive DC output with a 7-stage threshold compensated rectifier, while the EM harvester generates negative DC output with a self-powered AC/DC negative doubler circuit. At the second stage, the generated voltages are serially added, stepped-up with an on-chip charge pump circuit, and regulated to a typical battery voltage of 3 V. Test results indicate that the hybrid operation enables generation of 9 μW at 3 V output for a wide range of input stimulations, which could not be attained with either harvesting mode by itself. Moreover the hybrid system behaves as a typical battery, and keeps the output voltage stable at 3 V up to 18 μW of output power. The presented system is the first battery-like harvester to our knowledge that generates energy from two independent sources and regulates the output to a stable DC voltage. (paper)

  7. Pulse GaAs field transistor amplifier with subnanosecond time transient

    International Nuclear Information System (INIS)

    Sidnev, A.N.

    1987-01-01

    Pulse amplifier on fast field effect GaAs transistors with Schottky barrier is described. The amplifier contains four cascades, the first three of which are made on combined transistors on the common-drain circuit. The last cascade is made on high-power field effect GaAs transistor for coordination with 50 ohm load. The amplifier operates within the range of input signals from 0.5 up to 100 mV with repetition frequency up to 16 Hz, The gain of the amplifier is ≅ 20 dB. The setting time at output pulses amplitude up to 1 V constitutes ∼ 0.2 ns

  8. Modeling and Design of Graphene GaAs Junction Solar Cell

    Directory of Open Access Journals (Sweden)

    Yawei Kuang

    2015-01-01

    Full Text Available Graphene based GaAs junction solar cell is modeled and investigated by Silvaco TCAD tools. The photovoltaic behaviors have been investigated considering structure and process parameters such as substrate thickness, dependence between graphene work function and transmittance, and n-type doping concentration in GaAs. The results show that the most effective region for photo photogenerated carriers locates very close to the interface under light illumination. Comprehensive technological design for junction yields a significant improvement of power conversion efficiency from 0.772% to 2.218%. These results are in good agreement with the reported experimental work.

  9. Simplified RF power system for Wideroe-type linacs

    International Nuclear Information System (INIS)

    Fugitt, J.; Howard, D.; Crosby, F.; Johnson, R.; Nolan, M.; Yuen, G.

    1981-03-01

    The RF system for the SuperHILAC injector linac was designed and constructed for minimum system complexity, wide dynamic range, and ease of maintenance. The final amplifier is close coupled to the linac and operates in an efficient semilinear mode, eliminating troublesome transmission lines, modulators, and high level regulators. The system has been operated at over 250 kW, 23 MHz with good regulation. The low level RF electronics are contained in a single chassis adjacent to the RF control computer, which monitors all important operating parameters. A unique 360 0 phase and amplitude modular is used for precise control and regulation of the accelerating voltage

  10. Quantum efficiency temporal response and lifetime of a GaAs cathode in SRF electron gun

    International Nuclear Information System (INIS)

    Wang, E.; Ben-Zvi, I.; Kewisch, J.; Burrill, A.; Rao, T.; Wu, Q.; Holmes, D.

    2010-01-01

    RF electron guns with a strained super lattice GaAs cathode can generate polarized electron beam of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode's surface. In a normal conducting RF gun, the extremely high vaccum required by these cathodes can not be met. We report on an experiment with a superconducting SRF gun, which can maintain a vacuum of nearly 10-12 torr because of cryo-pumping at the temperature of 4.2K. With conventional activation, we obtained a QE of 3% at 532 nm, with lifetime of nearly 3 days in the preparation chamber. We plan to use this cathode in a 1.3 GHz 1/2 cell SRF gun to study its performance. In addition, we studied the multipacting at the location of cathode. A new model based on the Forkker-Planck equation which can estimate the bunch length of the electron beam is discussed in this paper. Future particle accelerators such as eRHIC and ILC require high brightness, high current polarized electrons Recently, using a superlattice crystal, the maximum polarization of 95% was reached. Activation with Cs,O lowers the electron affinity and makes it energetically possible for all the electrons excited in to the conduction band and reach the surface to escape into the vacuum. Presently the polarized electron sources are based on DC gun, such as that at the CEBAF at Jlab. In these devices, the life time of the cathode is extended due to the reduced back bombardment in their UHV conditions. However, the low accelerating gradient of the DC guns lead to poor longitudinal emittance. The higher accelerating gradient of the RF gun generates low emittance beams. Superconducting RF guns combine the excellent vacuum conditions of the DC guns with the higher accelerating gradients of the RF guns and provide potentially a long lived cathode with very low transverse and longitudinal emittance. In our work at BNL, we successfully activated the GaAs. The quantum efficient is 3% at 532 nm and is expected

  11. Quantum efficiency temporal response and lifetime of a GaAs cathode in SRF electron gun

    Energy Technology Data Exchange (ETDEWEB)

    Wang, E.; Ben-Zvi, I.; Kewisch, J.; Burrill, A.; Rao, T.; Wu, Q.; Holmes, D.

    2010-05-23

    RF electron guns with a strained super lattice GaAs cathode can generate polarized electron beam of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode's surface. In a normal conducting RF gun, the extremely high vaccum required by these cathodes can not be met. We report on an experiment with a superconducting SRF gun, which can maintain a vacuum of nearly 10-12 torr because of cryo-pumping at the temperature of 4.2K. With conventional activation, we obtained a QE of 3% at 532 nm, with lifetime of nearly 3 days in the preparation chamber. We plan to use this cathode in a 1.3 GHz 1/2 cell SRF gun to study its performance. In addition, we studied the multipacting at the location of cathode. A new model based on the Forkker-Planck equation which can estimate the bunch length of the electron beam is discussed in this paper. Future particle accelerators such as eRHIC and ILC require high brightness, high current polarized electrons Recently, using a superlattice crystal, the maximum polarization of 95% was reached. Activation with Cs,O lowers the electron affinity and makes it energetically possible for all the electrons excited in to the conduction band and reach the surface to escape into the vacuum. Presently the polarized electron sources are based on DC gun, such as that at the CEBAF at Jlab. In these devices, the life time of the cathode is extended due to the reduced back bombardment in their UHV conditions. However, the low accelerating gradient of the DC guns lead to poor longitudinal emittance. The higher accelerating gradient of the RF gun generates low emittance beams. Superconducting RF guns combine the excellent vacuum conditions of the DC guns with the higher accelerating gradients of the RF guns and provide potentially a long lived cathode with very low transverse and longitudinal emittance. In our work at BNL, we successfully activated the GaAs. The quantum efficient is 3% at 532 nm and is

  12. Transient beam loading and rf power distribution in the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Raka, E.C.

    1986-01-01

    Transient beam loading will occur in the SSC at injection as the fifteen individual batches from the High Energy Booster are loaded box-car fashion into the main rings. Periodic transient beam loading will be present also at injection due to the gaps between the successive batches as well as the gap that remains to be filled. Even after the rings have been ''filled'' there will remain the abort gap of 3.1 μsec. This can produce significant modulation of the phase and amplitude of the rf voltage seen by those bunches immediately following it unless corrective measures are taken. Two different methods of reducing this modulation will be discussed, each of which put certain requirements on the rf power distribution system

  13. RF Energy Harvesting Peel-and-Stick Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Lalau-Keraly, Christopher [PARC; Schwartz, David; Daniel, George; Lee, Joseph

    2017-08-29

    PARC, a Xerox Company, is developing a low-cost system of peel-and-stick wireless sensors that will enable widespread building environment sensor deployment with the potential to deliver up to 30% energy savings. The system is embodied by a set of RF hubs that provide power to the automatically located sensor nodes, and relays data wirelessly to the building management system (BMS). The sensor nodes are flexible electronic labels powered by rectified RF energy transmitted by a RF hub and can contain multiple printed and conventional sensors. The system design overcomes limitations in wireless sensors related to power delivery, lifetime, and cost by eliminating batteries and photovoltaic devices. The sensor localization is performed automatically by the inclusion of a programmable multidirectional antenna array in the RF hub. Comparison of signal strengths when the RF beam is swept allows for sensor localization, further reducing installation effort and enabling automatic recommissioning of sensors that have been relocated, overcoming a significant challenge in building operations. PARC has already demonstrated wireless power and temperature data transmission up to a distance of 20m with a duty cycle less than a minute between measurements, using power levels well within the FCC regulation limits in the 902-928 MHz ISM band. The sensor’s RF energy harvesting antenna dimensions was less than 5cmx9cm, demonstrating the possibility of small form factor for the sensor nodes.

  14. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  15. Development and energization of IOT based RF amplifier

    International Nuclear Information System (INIS)

    Mandal, A.; Som, S.; Raj, P.R.; Manna, S.K.; Ghosh, S.; Seth, S.; Thakurta, S.; Thakur, S.K.; Saha, S.; Panda, U.S.

    2013-01-01

    A 704 MHz IOT based CW RF amplifier has been developed in VECC. It can also be used with proper tuning to power cavity modules operating at 650 MHz in high energy high intensity proton linear accelerator proposed to be built for ADSS/SNS programme in India and Project-X at Fermilab, USA. This IOT based amplifier provides up to 60 kW continuous wave RF power at 700 MHz. It required various power supplies, LCW cooling and forced air cooling for its operation. The auxiliary power supplies like Grid, Filament and Ion-pump, are floated and mounted on an isolated frame, i.e., HV deck. The mains inputs are electrically isolated by means of isolation transformer. Also, a Programmable Logic Controller (PLC) based interlocks along with high voltage collector power supply has been designed and developed for the safe operation of the RF amplifier. This paper discusses about various developments and energization of the IOT based RF amplifier with high power dummy load. (author)

  16. A highly sensitive RF-to-DC power converter with an extended dynamic range

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed

    2017-10-24

    This paper proposes a highly sensitive RF-to-DC power converter with an extended dynamic range that is designed to operate at the medical band 433 MHz and simulated using 0.18 μm CMOS technology. Compared to the conventional fully cross-coupled rectifier, the proposed design offers 3.2× the dynamic range. It is also highly sensitive and requires −18 dBm of input power to produce a 1 V-output voltage when operating with a 100 kΩ load. Furthermore, the proposed design offers an open circuit sensitivity of −23.4 dBm and a peak power conversion efficiency of 67%.

  17. Electron diode oscillators for high-power RF generation

    International Nuclear Information System (INIS)

    Humphries, S.

    1989-01-01

    Feedback oscillators have been used since the invention of the vacuum tube. This paper describes the extension of these familiar circuits to the regime of relativistic electron beam diodes. Such devices have potential application for the generation of high power RF radiation in the range 50-250 MHz, 1-10 GW with 20-60% conversion efficiency. This paper reviews the theory of the oscillator and the results of a design study. Calculations for the four-electrode diode with EGUN and EBQ show that good modulations of 30 kA electron beam at 600 kV can be achieved with moderate field stress on the electrodes. Conditions for oscillation have been studied with an in-house transmission line code. A design for a 7.5 GW oscillator at 200 MHz with 25% conversion efficiency is presented

  18. GaAs low-energy X-ray radioluminescence nuclear battery

    Science.gov (United States)

    Zhang, Zheng-Rong; Liu, Yun-Peng; Tang, Xiao-Bin; Xu, Zhi-Heng; Yuan, Zi-Cheng; Liu, Kai; Chen, Wang

    2018-01-01

    The output properties of X-ray radioluminescence (RL) nuclear batteries with different phosphor layers were investigated by using low-energy X-ray. Results indicated that the values of electrical parameters increased as the X-ray energy increased, and the output power of nuclear battery with ZnS:Cu phosphor layer was greater than those of batteries with ZnS:Ag, (Zn,Cd)S:Cu or Y2O3:Eu phosphor layers under the same excitation conditions. To analyze the RL effects of the phosphor layers under X-ray excitation, we measured the RL spectra of the different phosphor layers. Their fluorescence emissions were absorbed by the GaAs device. In addition, considering luminescence utilization in batteries, we introduced an aluminum (Al) film between the X-ray emitter and phosphor layer. Al film is a high performance reflective material and can increase the fluorescence reaching the GaAs photovoltaic device. This approach significantly improved the output power of the battery.

  19. Lithium compensation of GaAs

    International Nuclear Information System (INIS)

    Alexiev, D.; Tavendale, A.J.

    1988-08-01

    Defects generated following Li diffusion into GaAs were studied by optical deep level transient spectroscopy (ODLTS) and deep level transient spectroscopy (DLTS). In an exploratory series of experiments, the effect of Li diffusion on existing trap spectra, defect generation and as a means for the compensation of GaAs was studied. The variables included diffusion temperature, initial trap spectra of GaAs and annealing periods. Detailed measurements of trap energies were made

  20. Advancement of In-Flight Alumina Powder Spheroidization Process with Water Droplet Injection Using a Small Power DC-RF Hybrid Plasma Flow System

    Science.gov (United States)

    Jang, Juyong; Takana, Hidemasa; Park, Sangkyu; Nishiyama, Hideya

    2012-09-01

    The correlation between plasma thermofluid characteristics and alumina powder spheroidization processes with water droplet injection using a small power DC-RF hybrid plasma flow system was experimentally clarified. Micro-sized water droplets with a low water flow rate were injected into the tail of thermal plasma flow so as not to disturb the plasma flow directly. Injected water droplets were vaporized in the thermal plasma flow and were transported upstream in the plasma flow to the torch by the backflow. After dissociation of water, the production of hydrogen was detected by the optical emission spectroscopy in the downstream RF plasma flow. The emission area of the DC plasma jet expanded and elongated in the vicinity of the RF coils. Additionally, the emission area of RF plasma flow enlarged and was visible as red emission in the downstream RF plasma flow in the vicinity below the RF coils due to hydrogen production. Therefore, the plasma flow mixed with produced hydrogen increased the plasma enthalpy and the highest spheroidization rate of 97% was obtained at a water flow rate of 15 Sm l/min and an atomizing gas flow rate of 8 S l/min using a small power DC-RF hybrid plasma flow system.

  1. Design of a low-power 433/915-MHz RF front-end with a current-reuse common-gate LNA

    International Nuclear Information System (INIS)

    Jing Yiou; Lu Huaxiang

    2013-01-01

    This paper presents a wideband RF front-end with novel current-reuse wide band low noise amplifier (LNA), current-reuse V—I converter, active double balanced mixer and transimpedance amplifier for short range device (SRD) applications. With the proposed current-reuse LNA, the DC consumption of the front-end reduces considerably while maintaining sufficient performance needed by SRD devices. The RF front-end was fabricated in 0.18 μm RFCMOS process and occupies a silicon area of just 0.11 mm 2 . Operating in 433 MHz band, the measurement results show the RF front-end achieves a conversion gain of 29.7 dB, a double side band noise figure of 9.7 dB, an input referenced third intercept point of −24.9 dBm with only 1.44 mA power consumption from 1.8 V supply. Compared to other reported front-ends, it has an advantage in power consumption. (semiconductor integrated circuits)

  2. Binary rf pulse compression experiment at SLAC

    International Nuclear Information System (INIS)

    Lavine, T.L.; Spalek, G.; Farkas, Z.D.; Menegat, A.; Miller, R.H.; Nantista, C.; Wilson, P.B.

    1990-06-01

    Using rf pulse compression it will be possible to boost the 50- to 100-MW output expected from high-power microwave tubes operating in the 10- to 20-GHz frequency range, to the 300- to 1000-MW level required by the next generation of high-gradient linacs for linear for linear colliders. A high-power X-band three-stage binary rf pulse compressor has been implemented and operated at the Stanford Linear Accelerator Center (SLAC). In each of three successive stages, the rf pulse-length is compressed by half, and the peak power is approximately doubled. The experimental results presented here have been obtained at low-power (1-kW) and high-power (15-MW) input levels in initial testing with a TWT and a klystron. Rf pulses initially 770 nsec long have been compressed to 60 nsec. Peak power gains of 1.8 per stage, and 5.5 for three stages, have been measured. This corresponds to a peak power compression efficiency of about 90% per stage, or about 70% for three stages, consistent with the individual component losses. The principle of operation of a binary pulse compressor (BPC) is described in detail elsewhere. We recently have implemented and operated at SLAC a high-power (high-vacuum) three-stage X-band BPC. First results from the high-power three-stage BPC experiment are reported here

  3. Strong coupling between bi-dimensional electron gas and nitrogen localized states in heavily doped GaAs1-xN x structures

    International Nuclear Information System (INIS)

    Hamdouni, A.; Bousbih, F.; Ben Bouzid, S.; Oueslati, M.; Chtourou, R.; Harmand, J.C.

    2005-01-01

    We report a low-temperature photoluminescence spectra (LTPL) of GaAs 1-x N x layers and two-dimension electron gas (2DEG) GaAs 1-x N x /AlGaAs modulation doped heterostructure grown on GaAs substrates by molecular beam epitaxy (MBE) with low nitrogen content [N] = 2 x 10 18 cm -3 . At low temperature, PL spectra of GaAs 1-x N x layers are governed by several features associate to the excitons bound to nitrogen complexes, these features disappear in (2DEG) GaAs 1-x N x /AlGaAs modulation doped heterostructure and the PL peak energy decrease with the laser power excitation. This effect is explained by the strongly coupling of the (2DEG) fundamental state with the nitrogen localized states. An activated energy of about 55 meV is deduced by photoluminescence measurements in the 10-300 K range for a laser power excitation P = 6 W/cm 2

  4. Operational Performance and Improvements to the RF Power Sources for the Compact Linear Collider Test Facility (CTF3) at CERN

    OpenAIRE

    McMonagle, Gerard

    2006-01-01

    The CERN CTF3 facility is being used to test and demonstrate key technical issues for the CLIC (Compact Linear Collider) study. Pulsed RF power sources are essential elements in this test facility. Klystrons at S-band (29998.55 GHz), in conjunction with pulse compression systems, are used to power the Drive Beam Accelerator (DBA) to achieve an electron beam energy of 150 MeV. The L-Band RF system, includes broadband Travelling Wave Tubes (TWTs) for beam bunching with 'phase coded' sub pulses ...

  5. Commissioning of the 400 MHz LHC RF System

    CERN Document Server

    Ciapala, Edmond; Baudrenghien, P; Brunner, O; Butterworth, A; Linnecar, T; Maesen, P; Molendijk, J; Montesinos, E; Valuch, D; Weierud, F

    2008-01-01

    The installation of the 400 MHz superconducting RF system in LHC is finished and commissioning is under way. The final RF system comprises four cryo-modules each with four cavities in the LHC tunnel straight section round IP4. Also underground in an adjacent cavern shielded from the main tunnel are the sixteen 300 kW klystron RF power sources with their high voltage bunkers, two Faraday cages containing RF feedback and beam control electronics, and racks containing all the slow controls. The system and the experience gained during commissioning will be described. In particular, results from conditioning the cavities and their movable main power couplers and the setting up of the low level RF feedbacks will be presented.

  6. Discussion of high brightness rf linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1987-01-01

    The fundamental aspects of high-brightness rf linacs are outlined, showing the breadth and complexity of the technology and indicating that synergism with advancements in other areas is important. Areas of technology reviewed include ion sources, injectors, rf accelerator structures, beam dynamics, rf power, and automatic control

  7. Elements of the system for RF power input into linear accelerator-injector for booster

    International Nuclear Information System (INIS)

    Mazurov, E.V.; Mal'tsev, I.G.; Shalashov, I.M.

    1981-01-01

    The elements of the original system for RF power input into 30 MeV linear accelerator-injector for the IHEP proton synchrotron booster are considered. A 3 dB coaxial directional coupler (T-bridge) is describedd. The characteristics of the bridge containing elements and the parameters of ballast matched load are given [ru

  8. High RF power test of a lower hybrid module mock-up in Carbon Fiber Composite

    International Nuclear Information System (INIS)

    Maebara, Sunao; Kiyono, Kimihiro; Seki, Masami

    1997-11-01

    A mock-up module of a Lower Hybrid Current Drive antenna module of a Carbon Fiber Composite (CFC) was fabricated for the development of heat resistive front facing the plasma. This module is made from CFC plates and rods which are copper coated to reduce the RF losses. The withstand-voltage, the RF properties and outgassing rates for long pulses and high RF power were tested at the Lower Hybrid test bed facility of Cadarache. After the short pulse conditioning, long pulses with a power density ranging between 50 and 150 MW/m 2 were performed with no breakdowns. During these tests, the module temperature was increasing from 100-200degC to 400-500degC. It was also checked that high power density, up to 150 MW/m 2 , could be transmitted when the waveguides are filled with H 2 at a pressure of 5 x 10 -2 Pa. No significant change in the reflection coefficient is measured after the long pulse operation. During a long pulse, the power reflection increases during the pulse typically from 0.8 % to 1.3 %. It is concluded that the outgassing rate of Cu-plated CFC is about 6-7 times larger than of Dispersion Strengthened Copper (DSC) module at the module temperature of 300degC. No significant increase of the global outgassing of the CFC module was measured after hydrogen prefilling. After the test, visual inspection revealed that peeling of the copper coating occurred at one end of the module only on a very small area (0.2 cm 2 ). It is assessed that a CFC module is an attractive candidate for the hardening of the tip of the LHCD antenna. (author)

  9. High RF power test of a lower hybrid module mock-up in carbon fiber composite

    International Nuclear Information System (INIS)

    Goniche, M.; Bibet, P.; Brossaud, J.; Cano, V.; Froissard, P.; Kazarian, F.; Rey, G.; Maebara, S.; Kiyono, K.; Seki, M.; Suganuma, K.; Ikeda, Y.; Imai, T.

    1999-02-01

    A mock-up module of a Lower Hybrid Current Drive antenna module of a Carbon Fiber Composite (CFC) was fabricated for the development of heat resistive front facing the plasma. This module is made from CFC plates and rods which are copper coated to reduce the RF losses. The withstand-voltage, the RF properties and outgassing rates for long pulses and high RF power were tested at the Lower Hybrid test bed facility of Cadarache. After the short pulse conditioning, long pulses with a power density ranging between 50 and 150 MW/m 2 were performed with no breakdowns. During these tests, the module temperature was increasing from 100-200 deg. C to 400-500 deg. C. It was also checked that high power density, up to 150 MW/m 2 , could be transmitted when the waveguides are filled with H 2 at a pressure of 5 x 10 -2 Pa. No significant change in the reflection coefficient is measured after the long pulse operation. During a long pulse, the power reflection increases during the pulse typically from 0.8% to 1.3%. It is concluded that the outgassing rate of Cu-plated CFC is about 6 times larger than of Dispersion Strengthened Copper (DSC) module at the module temperature of 300 deg. C. No significant increase of the global outgassing of the CFC module was measured after hydrogen pre-filling. After the test, visual inspection revealed that peeling of the copper coating occurred at one end of the module only on a very small area (0.2 cm 2 ). It is assessed that a CFC module is an attractive candidate for the hardening of the tip of the LHCD antenna. (authors)

  10. Analysis on RF parameters of nanoscale tunneling field-effect transistor based on InAs/InGaAs/InP heterojunctions.

    Science.gov (United States)

    Woo, Sung Yun; Yoon, Young Jun; Cho, Seongjae; Lee, Jung-Hee; Kang, In Man

    2013-12-01

    Tunneling field-effect transistors (TFETs) based on the quantum mechanical band-to-band tunneling (BTBT) have advantages such as low off-current and subthreshold swing (S) below 60 mV/dec at room temperature. For these reasons, TFETs are considered as promising devices for low standby power (LSTP) applications. On the other hand, silicon (Si)-based TFETs have a drawback in low on-state current (lon) drivability. In this work, we suggest a gate-all-around (GAA) TFET based on compound semiconductors to improve device performances. The proposed device materials consist of InAs (source), InGaAs (channel), and InP (drain). According to the composition (x) of Ga in In1-xGa(x)As layer of the channel region, simulated devices have been investigated in terms of both direct-current (DC) and RF parameters including tunneling rate, transconductance (g(m)), gate capacitance (Cg), intrinsic delay time (tau), cut-off frequency (fT) and maximum oscillation frequency (f(max)). In this study, the obtained maximum values of tau, fT, and f(max) for GAA InAs/In0.9Ga0.1As/InP heterojunction TFET were 21.2 fs, 7 THz, and 18 THz, respectively.

  11. RF Processing of the Couplers for the SNS Superconducting Cavities

    International Nuclear Information System (INIS)

    Y.Kang; I.E. Campisi; D. Stout; A. Vassioutchenko; M. Stirbet; M. Drury; T. Powers

    2005-01-01

    All eighty-one fundamental power couplers for the 805 MHz superconducting cavities of the SNS linac have been RF conditioned and installed in the cryomodules successfully. The couplers were RF processed at JLAB or at the SNS in ORNL: more than forty couplers have been RF conditioned in the SNS RF Test Facility (RFTF) after the first forty couplers were conditioned at JLAB. The couplers were conditioned up to 650 kW forward power at 8% duty cycle in traveling and standing waves. They were installed on the cavities in the cryomodules and then assembled with the airside waveguide transitions. The couplers have been high power RF tested with satisfactory accelerating field gradients in the cooled cavities

  12. Preferential adsorption of gallium on GaAs(111)B surfaces during the initial growth of Au-assisted GaAs nanowires

    International Nuclear Information System (INIS)

    Shu Haibo; Chen Xiaoshuang; Ding Zongling; Dong Ruibin; Lu Wei

    2010-01-01

    The mechanism of the preferential adsorption of Ga on GaAs(111)B surfaces during the initial growth of Au-assisted GaAs nanowires is studied by using first-principles calculations within density functional theory. The calculated results show that Au preadsorption on GaAs(111)B surface significantly enhances the stability of the Ga adatom in comparison with the adsorption of Ga on clean GaAs(111)B surface. The stabilization of the Ga adatom is due to charge transfers from the Ga 4p and 4s states to the Au 6s and As 4p states. The number of Ga adatoms stabilized on GaAs(111)B surfaces depends on the size of surface Au cluster. The reason is that Au acted as an electron acceptor on GaAs(111)B surface assists the charge transfer of Ga adatoms for filling the partial unoccupied bands of GaAs(111)B surface. Our results are helpful to understand the growth of Au-assisted GaAs nanowires.

  13. Investigation of growth parameters influence on self-catalyzed ITO nanowires by high RF-power sputtering.

    Science.gov (United States)

    Li, Qiang; Zhang, Yuantao; Feng, Lungang; Wang, Zuming; Wang, Tao; Yun, Feng

    2018-02-15

    ITO nanowires have been successfully fabricated using a radio-frequency sputtering technique with a high RF-power of 250W. The fabrication of the ITO nanowires has been optimized through the study of oxygen flow rates, temperatures and RF-power. The difference in the morphology of the ITO nanowires prepared by using a new target and a used target has been first observed and the mechanism for the difference has been discussed in detail. A hollow structure and air voids within the nanowires are formed during the process of the nanowire growth. The ITO nanowires fabricated by this method has demonstrated good conductivity (15Ω/sq) and a transmittance of more than 64% at a wavelength longer than 550nm after annealing. Furthermore, detailed microstructure studies show that the ITO nanowires exhibit a large number of oxygen vacancies. As a result, it is expected that they can be useful for the fabrication of gas sensor devices. © 2018 IOP Publishing Ltd.

  14. Wirelessly powered microfluidic dielectrophoresis devices using printable RF circuits.

    Science.gov (United States)

    Qiao, Wen; Cho, Gyoujin; Lo, Yu-Hwa

    2011-03-21

    We report the first microfluidic device integrated with a printed RF circuit so the device can be wirelessly powered by a commercially available RFID reader. For conventional dielectrophoresis devices, electrical wires are needed to connect the electric components on the microchip to external equipment such as power supplies, amplifiers, function generators, etc. Such a procedure is unfamiliar to most clinicians and pathologists who are used to working with a microscope for examination of samples on microscope slides. The wirelessly powered device reported here eliminates the entire need for wire attachments and external instruments so the operators can use the device in essentially the same manner as they do with microscope slides. The integrated circuit can be fabricated on a flexible plastic substrate at very low cost using a roll-to-roll printing method. Electrical power at 13.56 MHz transmitted by a radio-frequency identification (RFID) reader is inductively coupled to the printed RFIC and converted into 10 V DC (direct current) output, which provides sufficient power to drive a microfluidic device to manipulate biological particles such as beads and proteins via the DC dielectrophoresis (DC-DEP) effect. To our best knowledge, this is the first wirelessly powered microfluidic dielectrophoresis device. Although the work is preliminary, the device concept, the architecture, and the core technology are expected to stimulate many efforts in the future and transform the technology to a wide range of clinical and point-of-care applications. This journal is © The Royal Society of Chemistry 2011

  15. rf coupler technology for fusion applications

    International Nuclear Information System (INIS)

    Hoffman, D.J.

    1983-01-01

    Radio frequency (rf) oscillations at critical frequencies have successfully provided a means to convey power to fusion plasmas due to the electrical-magnetic properties of the plasma. While large rf systems to couple power to the plasma have been designed, built, and tested, the main link to the plasma, the coupler, is still in an evolutionary stage of development. Design and fabrication of optimal antennas for fusion applications are complicated by incomplete characterizations of the harsh plasma environment and of coupling mechanisms. A brief description of rf coupler technology required for plasma conditions is presented along with an assessment of the status and goals of coupler development

  16. ADX: a high field, high power density, advanced divertor and RF tokamak

    Science.gov (United States)

    LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.

    2015-05-01

    The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept

  17. Compact high efficiency, light weight 200-800 MHz high power RF source

    International Nuclear Information System (INIS)

    Shrader, M.B.; Preist, D.H.

    1985-01-01

    There has long been a need for a new more efficient less bulky high power RF power source to drive accelerators in the 200 to 800 MHz region. Results on a recent 5-year EIMAC sponsored R and D program which have lead to the introduction of the Klystrode for UHF television and troposcatter applications indicate that at power levels of 1MW or more efficiencies in excess of 75% can be obtained at 450 MHz. Efficiencies of this order coupled with potential size and weight parameters which are a fraction of those of existing high power UHF generators open up new applications which heretofore would have been impractical if not impossible. Measurements at 470 MHz on existing Klystrodes are given. Projected operating conditions for a 1MW 450 MHz Klystrode having an overall length of 60 inches and a total tube, circuit, and magnet weight of 250 pounds is presented

  18. Tunable Q-Factor RF Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, Mario D. [Fermilab; Yonehara, Katsuya [Fermilab; Moretti, Alfred [Fermilab; Kazakevitch, Gregory [Fermilab

    2018-01-01

    Intense neutrino beam is a unique probe for researching beyond the standard model. Fermilab is the main institution to produce the most powerful and widespectrum neutrino beam. From that respective, a radiation robust beam diagnostic system is a critical element in order to maintain the quality of the neutrino beam. Within this context, a novel radiation-resistive beam profile monitor based on a gasfilled RF cavity is proposed. The goal of this measurement is to study a tunable Qfactor RF cavity to determine the accuracy of the RF signal as a function of the quality factor. Specifically, measurement error of the Q-factor in the RF calibration is investigated. Then, the RF system will be improved to minimize signal error.

  19. Practical RF system design

    CERN Document Server

    Egan, William F

    2003-01-01

    he ultimate practical resource for today's RF system design professionals Radio frequency components and circuits form the backbone of today's mobile and satellite communications networks. Consequently, both practicing and aspiring industry professionals need to be able to solve ever more complex problems of RF design. Blending theoretical rigor with a wealth of practical expertise, Practical RF System Design addresses a variety of complex, real-world problems that system engineers are likely to encounter in today's burgeoning communications industry with solutions that are not easily available in the existing literature. The author, an expert in the field of RF module and system design, provides powerful techniques for analyzing real RF systems, with emphasis on some that are currently not well understood. Combining theoretical results and models with examples, he challenges readers to address such practical issues as: * How standing wave ratio affects system gain * How noise on a local oscillator will affec...

  20. Optimizing RF energy transport : channel modelling and transmit antenna and rectenna design

    NARCIS (Netherlands)

    Visser, H.J.

    2012-01-01

    For powering wireless sensors in buildings rechargeable batteries may be used, being charged remotely by dedicated RF sources. RF energy transport suffers from path loss and therefore the RF power available on a rectenna will be very low. As a consequence, the RF-to-DC conversion efficiency will

  1. The RF Design of an HOM Polarized RF Gun for the ILC

    International Nuclear Information System (INIS)

    Wang, J.W.; Clendenin, J.E.; Colby, E.R.; Miller, R.A.; Lewellen, J.W.

    2006-01-01

    The ILC requires a polarized electron beam. While a highly polarized beam can be produced by a GaAs-type cathode in a DC gun of the type currently in use at SLAC, JLAB and elsewhere, the ILC injector system can be simplified and made more efficient if a GaAs-type cathode can be combined with a low emittance RF gun. Since this type of cathode is known to be extremely sensitive to vacuum contamination including back bombardment by electrons and ions, any successful polarized RF gun must have a significantly improved operating vacuum compared to existing RF guns. We present a new RF design for an L-Band normal conducting (NC) RF gun for the ILC polarized electron source. This design incorporates a higher order mode (HOM) structure, whose chief virtue in this application is an improved conductance for vacuum pumping on the cathode. Computer simulation models have been used to optimize the RF parameters with two principal goals: first to minimize the required RF power; second to reduce the peak surface field relative to the field at the cathode in order to suppress field emitted electron bombardment. The beam properties have been simulated initially using PARMELA. Vacuum and other practical issues for implementing this design are discussed

  2. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    International Nuclear Information System (INIS)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-01-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012 © . RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance

  3. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Science.gov (United States)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012©. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  4. Analysis of RF section of 250 kW CW C-Band high power klystron

    International Nuclear Information System (INIS)

    Badola, Richa; Kaushik, Meenu; Baloda, Suman; Kirti; Vrati; Lamba, O.S.; Joshi, L.M.

    2012-01-01

    Klystron is a microwave tube which is used as a power amplifier in various applications like radar, particle accelerators and thermonuclear reactors. The paper deals with the analysis of RF section of 250 kW CW C band high power klystron for 50 to 60 kV beam voltage The simulation is done using Poisson's superfish and AJ disk software's Design of cavity is done using superfish. The result of superfish is used to decide the dimensions of the geometry of the cavity and AJ disk is used to determined the centre to centre distances between the cavities in order to obtain the desired powers. (author)

  5. Design optimization of GaAs betavoltaic batteries

    International Nuclear Information System (INIS)

    Chen Haiyanag; Jiang Lan; Chen Xuyuan

    2011-01-01

    GaAs junctions are designed and fabricated for betavoltaic batteries. The design is optimized according to the characteristics of GaAs interface states and the diffusion length in the depletion region of GaAs carriers. Under an illumination of 10 mCi cm -2 63 Ni, the open circuit voltage of the optimized batteries is about ∼0.3 V. It is found that the GaAs interface states induce depletion layers on P-type GaAs surfaces. The depletion layer along the P + PN + junction edge isolates the perimeter surface from the bulk junction, which tends to significantly reduce the battery dark current and leads to a high open circuit voltage. The short circuit current density of the optimized junction is about 28 nA cm -2 , which indicates a carrier diffusion length of less than 1 μm. The overall results show that multi-layer P + PN + junctions are the preferred structures for GaAs betavoltaic battery design.

  6. Liquid Metal Droplet and Micro Corrugated Diaphragm RF-MEMS for reconfigurable RF filters

    Science.gov (United States)

    Irshad, Wasim

    Widely Tunable RF Filters that are small, cost-effective and offer ultra low power consumption are extremely desirable. Indeed, such filters would allow drastic simplification of RF front-ends in countless applications from cell phones to satellites in space by replacing switched-array of static acoustic filters and YIG filters respectively. Switched array of acoustic filters are de facto means of channel selection in mobile applications such as cell phones. SAW and BAW filters satisfy most criteria needed by mobile applications such as low cost, size and power consumption. However, the trade-off is a significant loss of 3-4 dB in modern cell phone RF front-end. This leads to need for power-hungry amplifiers and short battery life. It is a necessary trade-off since there are no better alternatives. These devices are in mm scale and consume mW. YIG filters dominate applications where size or power is not a constraint but demand excellent RF performance like low loss and high tuning ratio. These devices are measured in inches and require several watts to operate. Clearly, a tunable RF filter technology that would combine the cost, size and power consumption benefits of acoustic filters with excellent RF performance of YIG filters would be extremely desirable and imminently useful. The objective of this dissertation is to develop such a technology based upon RF-MEMS Evanescent-mode cavity filter. Two highly novel RF-MEMS devices have been developed over the course of this PhD to address the unique MEMS needs of this technology. The first part of the dissertation is dedicated to introducing the fundamental concepts of tunable cavity resonators and filters. This includes the physics behind it, key performance metrics and what they depend on and requirements of the MEMS tuners. Initial gap control and MEMS attachment method are identified as potential hurdles towards achieving very high RF performance. Simple and elegant solutions to both these issues are discussed in

  7. An ultra-high-speed direct digital frequency synthesizer implemented in GaAs HBT technology

    International Nuclear Information System (INIS)

    Chen Gaopeng; Wu Danyu; Jin Zhi; Liu Xinyu

    2010-01-01

    This paper presents a 10-GHz 8-bit direct digital synthesizer (DDS) microwave monolithic integrated circuit implemented in 1 μm GaAs HBT technology. The DDS takes a double-edge-trigger (DET) 8-stage pipeline accumulator with sine-weighted DAC-based ROM-less architecture, which can maximize the utilization ratio of the GaAs HBT's high-speed potential. With an output frequency up to 5 GHz, the DDS gives an average spurious free dynamic range of 23.24 dBc through the first Nyquist band, and consumes 2.4 W of DC power from a single -4.6 V DC supply. Using 1651 GaAs HBT transistors, the total area of the DDS chip is 2.4 x 2.0 mm 2 . (semiconductor integrated circuits)

  8. Effects produced in GaAs by MeV ion bombardment

    International Nuclear Information System (INIS)

    Wie, C.R.

    1985-01-01

    The first part of this thesis presents work performed on the ionizing energy beam induced adhesion enhancement of thin (approx.500 A) Au films on GaAs substrates. The ionizing beam, employed in the present thesis, is the MeV ions (i.e., 16 O, 19 F, and 35 Cl), with energies between 1 and 20 MeV. Using the Scratch test for adhesion measurement, and ESCA for chemical analysis of the film substrate interface, the native oxide layer at the interface is shown to play an important role in the adhesion enhancement by the ionizing radiation. A model is discussed that explains the experimental data on the dependence of adhesion enhancement on the energy which was deposited into electronic processes at the interface. The second part of the thesis presents research results on the radiation damage in GaAs crystals produced by MeV ions. Lattice parameter dilatation in the surface layers of the GaAs crystals becomes saturated after a high dose bombardment at room temperature. The strain produced by nuclear collisions is shown to relax partially due to electronic excitation (with a functional dependence on the nuclear and electronic stopping power of bombarding ions. Data on the GaAs and GaP crystals suggest that low temperature recovery stage defects produce major crystal distortion

  9. RF pulse compression in the NLC test accelerator at SLAC

    International Nuclear Information System (INIS)

    Lavine, T.L.

    1995-01-01

    At the Stanford Linear Accelerator Center (SLAC), the authors are designing a Next Linear Collider (NLC) with linacs powered by X-band klystrons with rf pulse compression. The design of the linac rf system is based on X-band prototypes which have been tested at high power, and on a systems-integration test - the Next Linear Collider Test Accelerator (NLCTA) - which is currently under construction at SLAC. This paper discusses some of the systems implications of rf pulse compression, and the use of pulse compression in the NLCTA, both for peak power multiplication and for controlling, by rf phase modulation, intra-pulse variations in the linac beam energy

  10. RF System description for the ground test accelerator radio-frequency quadrupole

    International Nuclear Information System (INIS)

    Regan, A.H.; Brittain, D.; Rees, D.E.; Ziomek, D.

    1992-01-01

    This paper describes the RF system being used to provide RF power and to control the cavity field for the ground test accelerator (GTA) radio-frequency quadrupole (RFQ). The RF system consists of a low-level RF (LLRF) control system, and RF Reference generation subsystem, and a tetrode as a high-power amplifier (HPA) that can deliver up to 300 kW of peak power to the RFQ cavity at a 2% duty factor. The LLRF control system implements in-phase and quadrature (I and Q) control to maintain the cavity field within tolerances of 0.5% in amplitude and 0.5 degrees in phase in the presence of beam-induced instabilities

  11. Compression and radiation of high-power short rf pulses. II. A novel antenna array design with combined compressor/radiator elements

    KAUST Repository

    Sirenko, Kostyantyn

    2011-01-01

    The paper discusses the radiation of compressed high power short RF pulses using two different types of antennas: (i) A simple monopole antenna and (ii) a novel array design, where each of the elements is constructed by combining a compressor and a radiator. The studies on the monopole antenna demonstrate the possibility of a high power short RF pulse\\'s efficient radiation even using simple antennas. The studies on the novel array design demonstrate that a reduced size array with lower pulse distortion and power decay can be constructed by assembling the array from elements each of which integrates a compressor and a radiator. This design idea can be used with any type of antenna array; in this work it is applied to a phased array.

  12. Rf and space-charge induced emittances in laser-driven rf guns

    International Nuclear Information System (INIS)

    Kim, Kwang-Je; Chen, Yu-Jiuan.

    1988-10-01

    Laser-driven rf electron guns are potential sources of high-current, low-emittance, short bunch-length electron beams, which are required for many advanced accelerator applications, such as free-electron lasers and injectors for high-energy machines. In such guns the design of which was pioneered at Los Alamos National Laboratory and which is currently being developed at several other laboratories, a high-power laser beam illuminates a photo-cathode surface placed on an end wall of an rf cavity. The main advantages of this type of gun are that the time structure of the electron beam is controlled by the laser, eliminating the need for bunchers, and that the electric field in rf cavities can be made very strong, so that the effects due to space-charge repulsion can be minimized. In this paper, we present an approximate but simple analysis for the transverse and longitudinal emittances in rf guns that takes into account both the time variation of the rf field and the space-charge effect. The results are compared and found to agree well with those from simulation. 7 refs., 6 figs

  13. LEDA RF distribution system design and component test results

    International Nuclear Information System (INIS)

    Roybal, W.T.; Rees, D.E.; Borchert, H.L.; McCarthy, M.; Toole, L.

    1998-01-01

    The 350 MHz and 700 MHz RF distribution systems for the Low Energy Demonstration Accelerator (LEDA) have been designed and are currently being installed at Los Alamos National Laboratory. Since 350 MHz is a familiar frequency used at other accelerator facilities, most of the major high-power components were available. The 700 MHz, 1.0 MW, CW RF delivery system designed for LEDA is a new development. Therefore, high-power circulators, waterloads, phase shifters, switches, and harmonic filters had to be designed and built for this applications. The final Accelerator Production of Tritium (APT) RF distribution systems design will be based on much of the same technology as the LEDA systems and will have many of the RF components tested for LEDA incorporated into the design. Low power and high-power tests performed on various components of these LEDA systems and their results are presented here

  14. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Energy Technology Data Exchange (ETDEWEB)

    Rimjaem, S., E-mail: sakhorn.rimjaem@cmu.ac.th [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand); Kusoljariyakul, K.; Thongbai, C. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand)

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012{sup ©}. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  15. Lower hybrid current drive and heating experiments at the 1 MW rf power level on Alcator C

    International Nuclear Information System (INIS)

    Porkolab, M.; Lloyd, B.; Schuss, J.J.

    1983-07-01

    Lower hybrid current drive experiments were carried out in the density range 1.0 x 10 13 less than or equal to anti n(cm -3 ) less than or equal to 1.0 x 10 14 , at magnetic fields 6.0 less than or equal to B(T) less than or equal to 10. Using one 16 waveguide array, plasma currents of 150 to 200 kA have been driven by rf powers up to 600 kW for times greater than 100 msec at anti n/sub e/ up to 5 x 10 13 cm -3 . With two arrays at anti n/sub e/ approx. = 4.3 x 10 13 cm -3 at B/sub T/ = 10 T, plasma currents of 160 kA have been maintained by the rf power for 300 msec with zero loop voltage and constant internal inductance

  16. Can we estimate the cellular phone RF peak output power with a simple experiment?

    Science.gov (United States)

    Fioreze, Maycon; dos Santos Junior, Sauli; Goncalves Hönnicke, Marcelo

    2016-07-01

    Cellular phones are becoming increasingly useful tools for students. Since cell phones operate in the microwave bandwidth, they can be used to motivate students to demonstrate and better understand the properties of electromagnetic waves. However, since these waves operate at higher frequencies (L-band, from 800 MHz to 2 GHz) it is not simple to detect them. Usually, expensive real-time high frequency oscilloscopes are required. Indirect measurements are also possible through heat-based and diode-detector-based radio-frequency (RF) power sensors. Another didactic and intuitive way is to explore a simple and inexpensive detection system, based on the interference effect caused in the electronic circuit of TV and PC soundspeakers, and to try to investigate different properties of the cell phones’ RF electromagnetic waves, such as its power and modulated frequency. This manuscript proposes a trial to quantify these measurements, based on a simple Friis equation model and the time constant of the circuit used in the detection system, in order to show it didactically to the students and even allow them also to explore such a simple detection system at home.

  17. Can we estimate the cellular phone RF peak output power with a simple experiment?

    International Nuclear Information System (INIS)

    Fioreze, Maycon; Hönnicke, Marcelo Goncalves; Dos Santos Junior, Sauli

    2016-01-01

    Cellular phones are becoming increasingly useful tools for students. Since cell phones operate in the microwave bandwidth, they can be used to motivate students to demonstrate and better understand the properties of electromagnetic waves. However, since these waves operate at higher frequencies (L-band, from 800 MHz to 2 GHz) it is not simple to detect them. Usually, expensive real-time high frequency oscilloscopes are required. Indirect measurements are also possible through heat-based and diode-detector-based radio-frequency (RF) power sensors. Another didactic and intuitive way is to explore a simple and inexpensive detection system, based on the interference effect caused in the electronic circuit of TV and PC soundspeakers, and to try to investigate different properties of the cell phones’ RF electromagnetic waves, such as its power and modulated frequency. This manuscript proposes a trial to quantify these measurements, based on a simple Friis equation model and the time constant of the circuit used in the detection system, in order to show it didactically to the students and even allow them also to explore such a simple detection system at home. (paper)

  18. ORIC RF system: preparation for HHIRF

    International Nuclear Information System (INIS)

    Mosko, S.W.; Rylander, J.D.; Schulze, G.K.

    1977-01-01

    The integration of the Oak Ridge Isochronous Cyclotron (ORIC) into the Holifield Heavy Ion Research Facility (HHIRF) requires several rf system modifications to permit injection of ion beams from the 25 MV tandem electrostatic accelerator into ORIC. A new dee eliminates structural interference with the injected beam path and provides an opportunity to improve the mechanical stability of the resonator and to reduce rf voltage gradients in areas susceptible to sparking. Space for structural improvements is realized by reducing the ion beam aperture from 4.8 cm to 2.4 cm. The complexity of the original ORIC rf power system was substantially reduced. A new broadband solid state driver amplifier between the frequency synthesizer and the main power amplifier eliminates most circuit tuning and permits the use of a new simplified dee rf voltage regulator loop. Most of the remaining instrumentation and control circuitry is TTL compatible and will eventually tie to the ORIC computer control system through a CAMAC interface

  19. Rf system specifications for a linear accelerator

    International Nuclear Information System (INIS)

    Young, A.; Eaton, L.E.

    1992-01-01

    A linear accelerator contains many systems; however, the most complex and costly is the RF system. The goal of an RF system is usually simply stated as maintaining the phase and amplitude of the RF signal within a given tolerance to accelerate the charged particle beam. An RF system that drives a linear accelerator needs a complete system specification, which should contain specifications for all the subsystems (i.e., high-power RF, low-level RF, RF generation/distribution, and automation control). This paper defines a format for the specifications of these subsystems and discusses each RF subsystem independently to provide a comprehensive understanding of the function of each subsystem. This paper concludes with an example of a specification spreadsheet allowing one to input the specifications of a subsystem. Thus, some fundamental parameters (i.e., the cost and size) of the RF system can be determined

  20. RF windows used at s-band pulsed klystrons in KEK linac

    Energy Technology Data Exchange (ETDEWEB)

    Michizono, S.; Saito, Y. [KEK, National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1997-04-01

    The breakdown of the alumina RF-windows used in high-power klystrons is one of the most serious problems in the development of klystrons. This breakdown results from excess heating of alumina due to multipactor bombardments and/or localized RF dissipations. A statistical research of window materials was carried out, and high-power tests were performed in order to develop RF windows having high durability for the KEKB klystrons. The breakdown mechanism of RF windows is being considered. An improved RF window installed in a KEKB klystron is also being tested. (J.P.N)

  1. Microstructure and characterization of Al-doped ZnO films prepared by RF power sputtering on Al and ZnO targets

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Chun-An [Department of Mechanical Engineering, National Central University, Taiwan (China); Lin, Jing-Chie, E-mail: jclincom@cc.ncu.edu.tw [Department of Mechanical Engineering, National Central University, Taiwan (China); Institute of Material Science and Engineering, National Central University, Taiwan (China); Chang, Yu-Fong [Department of Mechanical Engineering, National Central University, Taiwan (China); Chyou, San-Der [Power Research Institute, Taiwan Power Company, Taiwan (China); Peng, Kun-Cheng [Department of Materials Science and Engineering, Mingchi University of Technology, Taiwan (China)

    2012-06-01

    Al-doped zinc oxide (AZO) transparent conductive films were prepared on a glass substrate using a magnetron sputtering system with a pure zinc oxide (ZnO) target and a pure Al target sputtered using radio frequency (RF) power. The RF power was set at 100 W for the ZnO target and varied from 20 to 150 W for the Al target. The morphology of the thin films was examined by field-emission scanning electron microscope (FE-SEM), and their composition was analyzed by the equipped energy-dispersive X-ray spectroscopy (EDS). The cross section of the films determined through FE-SEM indicated that their thickness was around 650 nm. EDS analysis revealed that the Al-dopant concentration of the AZO films increased in the following order: 0.85 at.% (20 W) < 1.60 at.% (40 W) < 3.52 at.% (100 W) < 4.34 at.% (150 W). Analysis of the films using X-ray diffractometer (XRD) indicated that all films had a wurtzite structure with a texture of (0 0 2). High-resolution transmission electron microscopy (HRTEM) revealed a number of defects in the films, such as stacking faults and dislocations. Ultraviolet photoelectron spectroscopy (UPS) was used to estimate the optical energy gap (E{sub g}) for the AZO thin films. The energy gap increases from 3.39 to 3.58 eV as the RF power applied to the Al target increase. The electrical resistivity of the films decreased from 3.43 Multiplication-Sign 10{sup -2} {Omega} cm to 3.29 Multiplication-Sign 10{sup -3} {Omega} cm as the RF power increased from 20 to 150 W when a four-point probe was used to investigate. Atomic force microscope (AFM) revealed that the surface roughness of the films increased with increasing RF power. The average optical transmittance of the films was determined by UV-visible spectrometer. The films are suitable for use as transparent conductive oxide films in the optoelectronic industry. A decrease in the electrical resistivity of the film with increasing Al-dopant concentration was ascribed to an increase in the carrier

  2. Development of a movable plunger tuner for the high-power RF cavity for the PEP-II B-factory

    International Nuclear Information System (INIS)

    Schwarz, H.D.; Fant, K.; Judkins, J.G.

    1997-05-01

    A 10 cm diameter by 5 cm travel plunger tuner was developed for the PEP-II RF copper cavity system. The single cell cavity including the tuner is designed to operate up to 150 kW of dissipated RF power are specially placed 8.5 cm away from the inside wall of the cavity to avoid fundamental and higher order mode resonances. The spring fingers are made of dispersion-strengthened copper to accommodate relatively high heating. The design, alignment, testing and performance of the tuner is described

  3. Evaluation of gamma ray durability and its application of shielded RF tags

    International Nuclear Information System (INIS)

    Teraura, Nobuyuki; Ito, Kunio; Kobayashi, Daisuke; Sakurai, Kouichi

    2015-01-01

    In this study, the RF (Radio Frequency) tag with radiation shield is developed and its gamma ray durability is evaluated. RFID (RF Identification) is a radio-wave-based identification technology that can be used for various items. RF tags find use in many applications, including item tracing, access control, etc. RF tags can be classified as active RF tags, which have inbuilt voltaic cells, and passive RF tags without these cells. Passive RF tags, known for their low price and durability, are used in various fields. For instance, they are used for equipment maintenance in factories and thermal power plants. Several frequencies are used for RF tags. Further, RF tagging on the UHF (Ultra High Frequency) frequencies allows a communication range of approximately 10 m, and thus, remote reading is possible. When used in radiation environments such as in nuclear power plants, remote reading can contribute to the reduction of radiation exposure. However, because semiconductors are the primary elements used in the manufacture of RF tags, they can be damaged by radiation, and operational errors can occur. Therefore, this technology has not been used in environments affected by relatively high radiation levels. Therefore, in nuclear power plants, the use of RF tags is limited in areas of low radiation levels. In our study, we develop and manufacture a new RF tag with a radiation shield cover that provides error correction functionality. It is expected that radiation shielded RF tags will improve the radiation-proof feature, and its application range will be expanded. Using the radiation-proof RF tag, we have conducted radiation durability tests. These tests are of two types: one using low energy gamma ray, and the other using high-energy gamma ray. Experimental results are then analyzed. The number of applications for radiation shielded RF tags is considerably increasing, because it can be used in various radiation environments other than nuclear power plants as well, such as

  4. Important requirements for RF generators for Accelerator-Driven Transmutation Technologies (ADTT)

    International Nuclear Information System (INIS)

    Lynch, M.T.; Tallerico, P.J.; Lawrence, G.P.

    1994-01-01

    All Accelerator-Driven Transmutation applications require very large amounts of RF Power. For example, one version of a Plutonium burning system requires an 800-MeV, 80-mA, proton accelerator running at 100% duty factor. This accelerator requires approximately 110-MW of continuous RF power if one assumes only 10% reserve power for control of the accelerator fields. In fact, to minimize beam spill, the RF controls may need as much as 15 to 20% of reserve power. In addition, unlike an electron accelerator in which the beam is relativistic, a failed RF station can disturb the synchronism of the beam, possibly shutting down the entire accelerator. These issues and more lead to a set of requirements for the RF generators which are stringent, and in some cases, conflicting. In this paper, we will describe the issues and requirements, and outline a plan for RF generator development to meet the needs of the Accelerator-Driven Transmutation Technologies. The key issues which will be discussed include: operating efficiency, operating linearity, effect on the input power grid, bandwidth, gain, reliability, operating voltage, and operating current

  5. ISR RF cavities

    CERN Multimedia

    1983-01-01

    In each ISR ring the radiofrequency cavities were installed in one 9 m long straight section. The RF system of the ISR had the main purpose to stack buckets of particles (most of the time protons)coming from the CPS and also to accelerate the stacked beam. The installed RF power per ring was 18 kW giving a peak accelerating voltage of 20 kV. The system had a very fine regulation feature allowing to lower the voltage down to 75 V in a smooth and well controlled fashion.

  6. RF pulse compression in the NLC test accelerator at SLAC

    International Nuclear Information System (INIS)

    Lavine, T.L.

    1995-01-01

    At the Stanford Linear Accelerator Center (SLAC), we are designing a Next Linear Collider (NLC) with linacs powered by X-band klystrons with rf pulse compression. The design of the linac rf system is based on X-band prototypes which have been tested at high power, and on a systems-integration test---the Next Linear Collider Test Accelerator (NLCTA)---which is currently under construction at SLAC. This paper discusses some of the systems implications of rf pulse compression, and the use of pulse compression in the NLCTA, both for peak power multiplication and for controlling, by rf phase modulation, intra-pulse variations in the linac beam energy. copyright 1995 American Institute of Physics

  7. Influence of RF power on performance of sputtered a-IGZO based liquid crystal cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, G.M., E-mail: wu@mail.cgu.edu.tw; Sahoo, A.K.; Liu, C.Y.

    2015-12-01

    The influence of radio-frequency (RF) power on sputter-deposited amorphous indium gallium zinc oxide (a-IGZO) films and the corresponding liquid crystal cell performances have been investigated. The inorganic films were used as alternative alignment layers for liquid crystal display cells. The columnar growth of film was achieved by non-contact, fixed oblique deposition using RF sputtering at the power of 50 W, 60 W and 70 W. The experiments have been carried out to compare the physical characteristics with those of the traditional polyimide (PI) alignment layers used for liquid crystal cells. The cell performances in voltage-transmittance, contrast ratio, and response time were all evaluated. The liquid crystal pretilt angle has been determined to be about 13° using 70 W power deposited a-IGZO film. It was 6° for the 60 W deposited film and only 1.5° for the PI alignment film. The experimental cell rise time and fall time was 1.25 ms and 2.96 ms, respectively. Thus, a very quick response time of 4.21 ms has been achieved. It was about 6.62 ms for the PI alignment control cell. - Highlights: • Radio-frequency power of indium gallium zinc oxide film deposition was studied. • The oblique deposition technique was used to prepare the alignment layers. • The liquid crystal pretilt angle was about 13° using 70 W. • The corresponding liquid crystal cells exhibited fast response time at 4.21 ms. • The cells showed low threshold voltage of 1.78 V and excellent contrast ratio.

  8. An Optimized 2.4GHz RF Power Amplifier Performance for WLAN System

    International Nuclear Information System (INIS)

    Ali, Mohammed H; Chakrabarty, C K; Hock, Goh C; Abdalla, Ahmed N

    2013-01-01

    Recently, the design of RF power amplifiers (PAs) for modern wireless systems are faced with a difficult tradeoff for example, cellphone; battery lifetime is largely determined by the power efficiency of the PA and high spectral efficiency which have ability to transmit data at the highest possible rate for a given channel bandwidth. This paper presents the design a multi stage class AB power Amplifier with high power added efficiency (PAE) and acceptable linearity for the WLAN applications. The open-circuited third harmonic control circuit enhances the efficiency of the PA without deteriorating the linearity of class-AB mode of the PA. The voltage and current waveforms are simulated to evaluate the appropriate operation for the modes. The effectiveness of the proposed controller has been verified by comparing proposed method with another methods using simulation study under a variety of conditions. The proposed circuit operation for a WLAN signals delivers a power-added efficiency (PAE) of 37.6% is measured at 31.6-dBm output power while dissipating 34.61 mA from a 1.8V supply. Finally, the proposed PA is show a good and acceptable result for the WLAN system.

  9. An Optimized 2.4GHz RF Power Amplifier Performance for WLAN System

    Science.gov (United States)

    Ali, Mohammed H.; Chakrabarty, C. K.; Abdalla, Ahmed N.; Hock, Goh C.

    2013-06-01

    Recently, the design of RF power amplifiers (PAs) for modern wireless systems are faced with a difficult tradeoff for example, cellphone; battery lifetime is largely determined by the power efficiency of the PA and high spectral efficiency which have ability to transmit data at the highest possible rate for a given channel bandwidth. This paper presents the design a multi stage class AB power Amplifier with high power added efficiency (PAE) and acceptable linearity for the WLAN applications. The open-circuited third harmonic control circuit enhances the efficiency of the PA without deteriorating the linearity of class-AB mode of the PA. The voltage and current waveforms are simulated to evaluate the appropriate operation for the modes. The effectiveness of the proposed controller has been verified by comparing proposed method with another methods using simulation study under a variety of conditions. The proposed circuit operation for a WLAN signals delivers a power-added efficiency (PAE) of 37.6% is measured at 31.6-dBm output power while dissipating 34.61 mA from a 1.8V supply. Finally, the proposed PA is show a good and acceptable result for the WLAN system.

  10. An RF power amplifier with inter-metal-shuffled capacitor for inter-stage matching in a digital CMOS process

    Energy Technology Data Exchange (ETDEWEB)

    Feng Xiaoxing; Zhang Xing; Ge Binjie; Wang Xin' an, E-mail: wangxa@szpku.edu.c [Key Laboratory of Integrated Microsystems, Shenzhen Graduate School of Peking University, Shenzhen 518055 (China)

    2009-06-01

    One challenge of the implementation of fully-integrated RF power amplifiers into a deep submicro digital CMOS process is that no capacitor is available, especially no high density capacitor. To address this problem, a two-stage class-AB power amplifier with inter-stage matching realized by an inter-metal coupling capacitor is designed in a 180-nm digital CMOS process. This paper compares three structures of inter-metal coupling capacitors with metal-insulator-metal (MIM) capacitor regarding their capacitor density. Detailed simulations are carried out for the leakage, the voltage dependency, the temperature dependency, and the quality factor between an inter-metal shuffled (IMS) capacitor and an MIM capacitor. Finally, an IMS capacitor is chosen to perform the inter-stage matching. The techniques are validated via the design and implement of a two-stage class-AB RF power amplifier for an UHF RFID application. The PA occupies 370 x 200 mum{sup 2} without pads in the 180-nm digital CMOS process and outputs 21.1 dBm with 40% drain efficiency and 28.1 dB power gain at 915 MHz from a single 3.3 V power supply.

  11. An RF power amplifier with inter-metal-shuffled capacitor for inter-stage matching in a digital CMOS process

    International Nuclear Information System (INIS)

    Feng Xiaoxing; Zhang Xing; Ge Binjie; Wang Xin'an

    2009-01-01

    One challenge of the implementation of fully-integrated RF power amplifiers into a deep submicro digital CMOS process is that no capacitor is available, especially no high density capacitor. To address this problem, a two-stage class-AB power amplifier with inter-stage matching realized by an inter-metal coupling capacitor is designed in a 180-nm digital CMOS process. This paper compares three structures of inter-metal coupling capacitors with metal-insulator-metal (MIM) capacitor regarding their capacitor density. Detailed simulations are carried out for the leakage, the voltage dependency, the temperature dependency, and the quality factor between an inter-metal shuffled (IMS) capacitor and an MIM capacitor. Finally, an IMS capacitor is chosen to perform the inter-stage matching. The techniques are validated via the design and implement of a two-stage class-AB RF power amplifier for an UHF RFID application. The PA occupies 370 x 200 μm 2 without pads in the 180-nm digital CMOS process and outputs 21.1 dBm with 40% drain efficiency and 28.1 dB power gain at 915 MHz from a single 3.3 V power supply.

  12. 1.5 MW RF Load for ITER

    International Nuclear Information System (INIS)

    Ives, Robert Lawrence; Marsden, David; Collins, George; Karimov, Rasul; Mizuhara, Max; Neilson, Jeffrey

    2016-01-01

    Calabazas Creek Research, Inc. developed a 1.5 MW RF load for the ITER fusion research facility currently under construction in France. This program leveraged technology developed in two previous SBIR programs that successfully developed high power RF loads for fusion research applications. This program specifically focused on modifications required by revised technical performance, materials, and assembly specification for ITER. This program implemented an innovative approach to actively distribute the RF power inside the load to avoid excessive heating or arcing associated with constructive interference. The new design implemented materials and assembly changes required to meet specifications. Critical components were built and successfully tested during the program.

  13. 1.5 MW RF Load for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Ives, Robert Lawrence [Calabazas Creek Research, Inc., San Mateo, CA (United States); Marsden, David [Calabazas Creek Research, Inc., San Mateo, CA (United States); Collins, George [Calabazas Creek Research, Inc., San Mateo, CA (United States); Karimov, Rasul [Calabazas Creek Research, Inc., San Mateo, CA (United States); Mizuhara, Max [Calabazas Creek Research, Inc., San Mateo, CA (United States); Neilson, Jeffrey [Lexam Research, Redwood City, CA (United States)

    2016-09-01

    Calabazas Creek Research, Inc. developed a 1.5 MW RF load for the ITER fusion research facility currently under construction in France. This program leveraged technology developed in two previous SBIR programs that successfully developed high power RF loads for fusion research applications. This program specifically focused on modifications required by revised technical performance, materials, and assembly specification for ITER. This program implemented an innovative approach to actively distribute the RF power inside the load to avoid excessive heating or arcing associated with constructive interference. The new design implemented materials and assembly changes required to meet specifications. Critical components were built and successfully tested during the program.

  14. An RF-to-DC energy harvester for co-integration in a low-power 2.4 GHz transceiver frontend

    NARCIS (Netherlands)

    Masuch, J.; Delgado-Restituto, M.; Milosevic, D.; Baltus, P.G.M.

    2012-01-01

    A 2.4 GHz energy harvester for co-integration into a low-power transceiver (TRx) operating at the same frequency is presented. An RF switch decouples the harvester from the TRx and keeps the performance degradation of the TRx low, i.e. 0.2 dB reduced output power in Tx-mode and 0.4 dB reduced

  15. Operational experience with -20 kV, 5 A DC power supply in Indus-2 RF system

    International Nuclear Information System (INIS)

    Tyagi, R.K.; Tripathi, A.; Upadhyay, R.; Badapanda, M.K.; Lad, M.

    2015-01-01

    An AC regulator based -20 kV, 5 A DC power supply is employed to bias 60 kW, 505.8 MHz klystron amplifier in Indus-2 RF system. A three terminal triggered spark gap based crowbar along with suitable limiting elements is incorporated at the output of the power supply for protection of sensitive klystron amplifier during load arcing conditions. Wire burn test is carried out on this power supply along with crowbar to ensure that the stored energy dumped into klystron during its arcing is less than 20 Joule. Various protection circuits like over voltage, over current, under voltage, phase failure, thermal overload and transformer oil over temperature protection have been incorporated in this power supply. Preventive maintenance of the power supply is carried out at regular intervals to ensure that it operates satisfactorily during actual operation.This includes checking the breakdown strength of transformer oil, drying of Silica gels in transformer breathers, checking of all electrical connections and cleaning of all high voltage components. The calibration of various meters, checking the setting of various protection-interlock cards and checking the healthiness of crowbar system are also done at regular intervals. During operation, crucial performance parameters of this power supply along with various interlock signals are continuously monitored. Suitable arrangement has been made to operate this supply either in local mode as well as in remote mode. This power supply is operating satisfactorily with klystron amplifier in Indus-2 RF system in round the clock mode for last 15 years and its operational experience are presented in this paper. (author)

  16. Racetrack microtron rf system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Keffeler, D.R.

    1985-01-01

    The rf system for the National Bureau of Standards (NBS)/Los Alamos cw racetrack microtron is described. The low-power portion consists of five 75-W amplifers that drive two input ports in each of two chopper deflection cavities and one port in the prebuncher cavity. A single 500-kW klystron drives four separate 2380-MHz cavity sections: the two main accelerator sections, a capture section, and a preaccelerator section. The phases and amplitudes in all cavities are controlled by electronic or electromechanical controls. The 1-MW klystron power supply and crowbar system were purchased as a unit; several modifications are described that improve power-supply performance. The entire rf system has been tested and shipped to the NBS, and the chopper-buncher system has been operated with beam at the NBS. 5 refs., 2 figs

  17. An Implantable Cardiovascular Pressure Monitoring System with On-Chip Antenna and RF Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Yu-Chun Liu

    2015-08-01

    Full Text Available An implantable wireless system with on-chip antenna for cardiovascular pressure monitor is studied. The implantable device is operated in a batteryless manner, powered by an external radio frequency (RF power source. The received RF power level can be sensed and wirelessly transmitted along with blood pressure signal for feedback control of the external RF power. The integrated electronic system, consisting of a capacitance-to-voltage converter, an adaptive RF powering system, an RF transmitter and digital control circuitry, is simulated using a TSMC 0.18 μm CMOS technology. The implanted RF transmitter circuit is combined with a low power voltage-controlled oscillator resonating at 5.8 GHz and a power amplifier. For the design, the simulation model is setup using ADS and HFSS software. The dimension of the antenna is 1 × 0.6 × 4.8 mm3 with a 1 × 0.6 mm2 on-chip circuit which is small enough to place in human carotid artery.

  18. Physical Layer Security Enhancement in Multiuser Mixed RF#x002F;FSO Relay Networks under RF Interference

    KAUST Repository

    El-Malek, Ahmed H. Abd; Salhab, Anas M.; Zummo, Salam A.; Alouini, Mohamed-Slim

    2017-01-01

    In this paper, the impact of radio frequency (RF) co-channel interference (CCI) on the performance of multiuser (MU) mixed RF#x002F;free space optical (FSO) relay network with opportunistic user scheduling is studied. In the considered system, a user is opportunistically selected to communicate with a single destination through an amplify-and- forward (AF) relay in the presence of a single passive eavesdropper. The RF#x002F;FSO channel models are assumed to follow Rayleigh#x002F;Gamma-Gamma fading models, respectively with pointing errors and identical RF CCI signals. Exact closed-form expression for the system outage probability is derived. Then, an asymptotic expression for the outage probability is obtained at the high signal- to-interference-plus-noise ratio (SINR) regime. The asymptotic results are used to formulate a power allocation problem to obtain optimal RF transmission power. Then, the secrecy performance is studied in the presence of CCI at both the authorized relay and eavesdropper by obtaining exact and asymptotic closed-form expressions for the intercept probability. The derived analytical formulas herein are supported by numerical and simulation results to clarify the main contributions of the work.

  19. Physical Layer Security Enhancement in Multiuser Mixed RF#x002F;FSO Relay Networks under RF Interference

    KAUST Repository

    El-Malek, Ahmed H. Abd

    2017-05-12

    In this paper, the impact of radio frequency (RF) co-channel interference (CCI) on the performance of multiuser (MU) mixed RF#x002F;free space optical (FSO) relay network with opportunistic user scheduling is studied. In the considered system, a user is opportunistically selected to communicate with a single destination through an amplify-and- forward (AF) relay in the presence of a single passive eavesdropper. The RF#x002F;FSO channel models are assumed to follow Rayleigh#x002F;Gamma-Gamma fading models, respectively with pointing errors and identical RF CCI signals. Exact closed-form expression for the system outage probability is derived. Then, an asymptotic expression for the outage probability is obtained at the high signal- to-interference-plus-noise ratio (SINR) regime. The asymptotic results are used to formulate a power allocation problem to obtain optimal RF transmission power. Then, the secrecy performance is studied in the presence of CCI at both the authorized relay and eavesdropper by obtaining exact and asymptotic closed-form expressions for the intercept probability. The derived analytical formulas herein are supported by numerical and simulation results to clarify the main contributions of the work.

  20. Singularities of current-voltage characteristics of GaAs films fabricated by pulsed ions ablation

    International Nuclear Information System (INIS)

    Kabyshev, A.V.; Konusov, F.V.; Lozhnikov, S.N.; Remnev, G.E.; Saltymakov, M.S.

    2009-01-01

    A singularities and advantages of the optical, photoelectric and electrical properties of GaAs in comparison with other available materials for electronics, for example, silicon allow to manufacture on it base the devices having an advanced characteristics. The GaAs for electronics, obtained from the dense ablation plasma, possess some preferences as compared to material manufactured by traditional methods of vacuum deposition. The electrical characteristics of GaAs produced by chemical deposition were extensively studied. Purpose of this work is investigation the current-voltage characteristics of thin films of GaAs, deposited on polycrystalline corundum (polycor) from plasma forming the power ions bunch and determination of the thermal vacuum annealing effect on photoelectric and electrical properties of films. Peculiarities of optical, photoelectric and current-voltage characteristics of films obtained by ions ablation are determined by deposition conditions and resistance of initial target GaAs. The transitions between the states with low- and high conduction were revealed directly after deposition in films having the optical properties similar to amorphous materials and/or after annealing in films with properties similar to initial target GaAs. Behavior of current-voltage characteristics at vacuum annealing correlates with Schottky barrier height and photosensitivity and is accompanies of the transport mechanism change. The stable properties of films are formed at its dark conduction 10 -10 -10 -8 s and after annealing at T an =600-700 K. (authors)

  1. Effect of RF Parameters on Breakdown Limits in High-Vacuum X-Band Structures

    International Nuclear Information System (INIS)

    Dolgashev, Valery A.

    2003-01-01

    RF breakdown is one of the major factors determining performance of high power rf components and rf sources. RF breakdown limits working power and produces irreversible surface damage. The breakdown limit depends on the rf circuit, structure geometry, and rf frequency. It is also a function of the input power, pulse width, and surface electric and magnetic fields. In this paper we discuss multi-megawatt operation of X-band rf structures at pulse width on the order of one microsecond. These structures are used in rf systems of high gradient accelerators. Recent experiments at Stanford Linear Accelerator Center (SLAC) have explored the functional dependence of breakdown limit on input power and pulse width. The experimental data covered accelerating structures and waveguides. Another breakdown limit of accelerating structures was associated with high magnetic fields found in waveguide-to-structure couplers. To understand and quantify these limits we simulated 3D structures with the electrodynamics code Ansoft HFSS and the Particle-In-Cell code MAGIC3D. Results of these simulations together with experimental data will be discussed in this paper

  2. Status of 174 MHz RF system for BEP

    International Nuclear Information System (INIS)

    Biryuchevsky, Yu.A.; Gorniker, E.I.; Kendjebulatov, E.K.; Krutikhin, S.A.; Kurkin, G.Ya.; Petrov, V.M.; Pilan, A.M.

    2012-01-01

    The new RF system for the BEP storage ring (which is an injector of VEPP-2000 accelerating complex) will increase the particles energy in the BEP from 0.9 to 1 GeV. RF system operates at a frequency of 174 MHz and consists of an accelerating cavity, RF power generator and control system.

  3. Multilayers of GaAs/Mn deposited on a substrate of GaAs (001)

    International Nuclear Information System (INIS)

    Bernal-Salamanca, M; Pulzara-Mora, A; Rosales-Rivera, A; Molina-Valdovinos, S; Melendez-Lira, M; Lopez-Lopez, M

    2009-01-01

    In this work GaAs/Mn multilayers were deposited on GaAs (001) substrates by R.F magnetron sputtering technique, varying the deposition time (tg). Scanning electron and atomic force Microscopy studies were realized on the surface of the samples in order to determine the morphology and average roughness. X-ray diffraction spectra show that our samples tend to do amorphous. Raman spectroscopy at room temperature was employed to analyze the structural properties of the samples. We found that for a GaAs film taken as reference, the Raman spectra is dominated by the transverse (TO) and longitudinal (LO) modes located at 266 cm -1 and 291 cm -1 , respectively. However, for the GaAs/Mn multilayers the TO and LO modes decrease dramatically, and the Mn Raman modes in the range of 100 cm -1 and 250 cm -1 are evidenced. Additional new peaks located around 650 and 690 cm -1 are only observed for the samples with high Mn content. By using the mass reduced model we estimate that the Mn related peaks are located at 650.2 cm -1 and 695.2 cm -1 , in good agreement with the experimental data, these peaks are correlated with excitations due to (Mn) m As n localized structures.

  4. Modeling and design of a capacitive microwave power sensor for X-band applications based on GaAs technology

    Science.gov (United States)

    Cui, Yan; Liao, Xiaoping

    2012-05-01

    In the work, modeling and design of a capacitive microwave power sensor employing the MEMS plate with clamped-clamped and free-free edges are presented. A novel analytical model of the sensor is established in detail. Through the function of mode shapes presented, the natural frequency can be solved by the Rayleigh-Ritz method. And based on the generalized coordinate introduced, the displacement of the plate with the irradiation of microwave power can be solved. Furthermore, the sensitivity for the power is also derived. Then the detailed consideration of the design and simulation of the microwave characteristic of the sensor are also presented. The linearly graded ground planar in the coplanar waveguide is employed to avoid step discontinuity. The fabrication process is compatible with GaAs MMIC technology completely, also described in detail. The measurement of the proposed sensor indicates a sensitivity of 7.2 fF W-1 and superior return and insertion losses (S11 and S21), less than -22.16 dB and -0.25 dB, respectively, up to 12 GHz, suggesting that it can be available for microwave power detecting in the X-band frequency range.

  5. Modeling and design of a capacitive microwave power sensor for X-band applications based on GaAs technology

    International Nuclear Information System (INIS)

    Cui, Yan; Liao, Xiaoping

    2012-01-01

    In the work, modeling and design of a capacitive microwave power sensor employing the MEMS plate with clamped–clamped and free–free edges are presented. A novel analytical model of the sensor is established in detail. Through the function of mode shapes presented, the natural frequency can be solved by the Rayleigh–Ritz method. And based on the generalized coordinate introduced, the displacement of the plate with the irradiation of microwave power can be solved. Furthermore, the sensitivity for the power is also derived. Then the detailed consideration of the design and simulation of the microwave characteristic of the sensor are also presented. The linearly graded ground planar in the coplanar waveguide is employed to avoid step discontinuity. The fabrication process is compatible with GaAs MMIC technology completely, also described in detail. The measurement of the proposed sensor indicates a sensitivity of 7.2 fF W −1 and superior return and insertion losses (S 11 and S 21 ), less than −22.16 dB and −0.25 dB, respectively, up to 12 GHz, suggesting that it can be available for microwave power detecting in the X-band frequency range. (paper)

  6. rf beam-current, -phase, and -position monitors

    International Nuclear Information System (INIS)

    Young, L.

    1984-01-01

    A prototype rf beam monitor has been tested on the Racetrack Microtron's (RTM) 100 kV injector beam line at the National Bureau of Standards (NBS). This beam monitor is capable of measuring the current, the relative phase, and the position of the beam. The beam is bunched at 2380 MHz for acceleration by the linac in the injector beam line. This train of beam bunches passing through the beam monitor cavities excites the cavities at this resonance frequency of 2380 MHz. Probes in the cavities couple some of the beam-excited rf power out of the cavities. This rf power can be amplified if necessary and then analyzed by a double balanced mixer (DBM). The DBM can also be used as a phase detector. The effective shunt impedance of the cavities was measured with the CW beam. For the position monitor cavity, the shunt impedance is proportional to the displacement from the axis. The measured response of the prototype rf beam current monitor setup is a linear function of beam current. Response of the rf beam-position monitor is also shown

  7. Spin dynamics in GaAs and (110)-GaAs heterostructures; Spindynamik in GaAs und (110)-GaAs-Heterostrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Oertel, Stefan

    2012-07-01

    This thesis investigates the spin dynamics in both bulk GaAs and (llO)GaAs heterostructures using time- and polarization-resolved photoluminescence spectroscopy. In bulk GaAs the spin relaxation t ime is measured for the first time in the high temperature regime from 280 K to 400 K and is compared to numerical calculations. The numerical calculations are based on the spin relaxation theory of the Dyakonov-Perel mechanism effected by momentum scattering with polar optical phonons and electron-electron scattering and are in good agreement with the experimental results. Measurements of the dependence on the electron density serve to determine the energy dependent proportional factor between the electron density and the effective electron-electron scattering time. Also in bulk GaAs the interaction between the electron spin system and the nuclear spin system is investigated. The measured electron Lande g-factor under the influence of the nuclear magnetic field is used as an indicator to monitor the temporal evolution of the nuclear magnetic field under sustained dynamic nuclear polarization. Measurements with polarization modulated excitation enable the determination of the relevant time scale at which dynamic nuclear polarization takes place. Furthermore, the temporal evolution of the measured electron Lande g-factor shows the complex interplay of the dynamic nuclear polarization, the nuclear spin diffusion and the nuclear spin relaxation. In symmetric (110)-GaAs quantum wells the dependence of the inplane anisotropy of the electron Lande g-factor on the quantum well thickness is determined experimentally. The measurements are in very good agreement with calculations based upon k . p-theory and reveal a maximum of the anisotropy at maximum carrier localization in the quantum well. The origin of the anisotropy that is not present in symmetric (001) quantum wells is qualitatively described by means of a simplified model based on fourth-order perturbation theory. A

  8. Correction of the calculation of beam loading based in the RF power diffusion equation

    International Nuclear Information System (INIS)

    Silva, R. da.

    1980-01-01

    It is described an empirical correction based upon experimental datas of others authors in ORELA, GELINA and SLAC accelerators, to the calculation of the energy loss due to the beam loading effect as stated by the RF power diffusion equation theory an accelerating structure. It is obtained a dependence of this correction with the electron pulse full width half maximum, but independent of the electron energy. (author) [pt

  9. Low power rf system for the ALS Linac

    International Nuclear Information System (INIS)

    Lo, C.C.; Taylor, B.; Lancaster, H.

    1991-05-01

    The Linear Accelerator (Linac) in the Advanced Light Source (ALS) is designed to provide either single or multiple bunchers of 50 MeV electrons for the booster synchrotron. Three cavities are used in the Linac for electron bunching. The two subharmonic bunching cavities operate at 124.914 MHz and 499.654 MHz respectively. The S Band buncher operates at 2.997924 GHz. The low level RF system includes a master signal source, RF burst generators, signal phase control, timing trigger generators and a water temperature control system. The design and performance of the system will be described. 7 refs., 3 figs

  10. RF and microwave microelectronics packaging II

    CERN Document Server

    Sturdivant, Rick

    2017-01-01

    Reviews RF, microwave, and microelectronics assembly process, quality control, and failure analysis Bridges the gap between low cost commercial and hi-res RF/Microwave packaging technologies Engages in an in-depth discussion of challenges in packaging and assembly of advanced high-power amplifiers This book presents the latest developments in packaging for high-frequency electronics. It is a companion volume to “RF and Microwave Microelectronics Packaging” (2010) and covers the latest developments in thermal management, electrical/RF/thermal-mechanical designs and simulations, packaging and processing methods, and other RF and microwave packaging topics. Chapters provide detailed coverage of phased arrays, T/R modules, 3D transitions, high thermal conductivity materials, carbon nanotubes and graphene advanced materials, and chip size packaging for RF MEMS. It appeals to practicing engineers in the electronic packaging and high-frequency electronics domain, and to academic researchers interested in underst...

  11. A design and performance analysis tool for superconducting RF systems

    International Nuclear Information System (INIS)

    Schilcher, T.; Simrock, S.N.; Merminga, L.; Wang, D.X.

    1997-01-01

    Superconducting rf systems are usually operated with continuous rf power or with rf pulse lengths exceeding 1 ms to maximize the overall wall plug power efficiency. Typical examples are CEBAF at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) and the TESLA Test Facility at DESY. The long pulses allow for effective application of feedback to stabilize the accelerating field in presence of microphonics, Lorentz force detuning, and fluctuations of the beam current. In this paper the authors describe a set of tools to be used with MATLAB and SIMULINK, which allow to analyze the quality of field regulation for a given design. The tools include models for the cavities, the rf power source, the beam, sources of field perturbations, and the rf feedback system. The rf control relevant electrical and mechanical characteristics of the cavity are described in form of time-varying state space models. The power source is modeled as a current generator and includes saturation characteristics and noise.An arbitrary time structure can be imposed on the beam current to reflect a macro-pulse structure and bunch charge fluctuations. For rf feedback several schemes can be selected: Traditional amplitude and phase control as well as I/Q control. The choices for the feedback controller include analog or digital approaches and various choices of frequency response. Feed forward can be added to further suppress repetitive errors. The results of a performance analysis of the CEBAF and the TESLA Linac rf system using these tools are presented

  12. A 700 MHZ, 1 MW CW RF System for a FEL 100mA RF Photoinjector

    CERN Document Server

    Roybal, William; Reass, William; Rees, Daniel; Tallerico, Paul J; Torrez, Phillip A

    2005-01-01

    This paper describes a 700 MHz, 1 Megawatt CW, high efficiency klystron RF system utilized for a Free Electron Laser (FEL) high-brightness electron photoinjector (PI). The E2V klystron is mod-anode tube that operates with a beam voltage of 95 kV. This tube, operating with a 65% efficiency, requires ~96 watts of input power to produce in excess of 1 MW of output power. This output drives the 3rd cell of a 2½-cell, p-mode PI cavity through a pair of planar waveguide windows. Coupling is via a ridge-loaded tapered waveguide section and "dog-bone" iris. This paper will present the design of the RF, RF transport, coupling, and monitoring/protection systems that are required to support CW operations of the 100 mA cesiated, semi-porous SiC photoinjector.

  13. Structural and electrical properties of sputtering power and gas pressure on Ti-dope In2O3 transparent conductive films by RF magnetron sputtering

    Science.gov (United States)

    Chaoumead, Accarat; Joo, Bong-Hyun; Kwak, Dong-Joo; Sung, Youl-Moon

    2013-06-01

    Transparent conductive titanium-doped indium oxide (ITiO) films were deposited on Corning glass substrates by RF magnetron sputtering method. The effects of RF sputtering power and Ar gas pressure on the structural and electrical properties of the films were investigated experimentally, using a 2.5 wt% TiO2-doped In2O3 target. The deposition rate was in the range of around 20-60 nm/min under the experimental conditions of 5-20 mTorr of gas pressure and 220-350 W of RF power. The lowest resistivity of 1.2 × 10-4 Ω cm, the average optical transmittance of 75%, the high hall mobility of 47.03 cm2/V s and the relatively low carrier concentration of 1.15E+21 cm-3 were obtained for the ITiO film, prepared at RF power of 300 W and Ar gas pressure of 15 mTorr. This resistivity of 1.2 × 10-4 Ω cm is low enough as a transparent conducting layer in various electro-optical devices and it is comparable with that of ITO or ZnO:Al conducting layer.

  14. Nitridation of porous GaAs by an ECR ammonia plasma

    International Nuclear Information System (INIS)

    Naddaf, M; Hullavarad, S S; Ganesan, V; Bhoraskar, S V

    2006-01-01

    The effect of surface porosity of GaAs on the nature of growth of GaN, by use of plasma nitridation of GaAs, has been investigated. Porous GaAs samples were prepared by anodic etching of n-type (110) GaAs wafers in HCl solution. Nitridation of porous GaAs samples were carried out by using an electron-cyclotron resonance-induced ammonia plasma. The formation of mixed phases of GaN was investigated using the grazing angle x-ray diffraction method. A remarkable improvement in the intensity of photoluminescence (PL) compared with that of GaN synthesized by direct nitriding of GaAs surface has been observed. The PL intensity of nitrided porous GaAs at the temperature of 380 deg. C was found to be about two orders of magnitude higher as compared with the directly nitrided GaAs at the temperature of 500 deg. C. The changes in the morphology of nitrided porous GaAs have been investigated using both scanning electron microscopy and atomic force microscopy

  15. Nitridation of porous GaAs by an ECR ammonia plasma

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, M [Center for Advanced Studies in Material Science and Solid State Physics, University of Pune, Pune 411 007 (India); Department of Physics, Atomic Energy Commission of Syria, PO Box 6091, Damascus (Syrian Arab Republic); Hullavarad, S S [Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Ganesan, V [Inter University Consortium, Indore (India); Bhoraskar, S V [Center for Advanced Studies in Material Science and Solid State Physics, University of Pune, Pune 411 007 (India)

    2006-02-15

    The effect of surface porosity of GaAs on the nature of growth of GaN, by use of plasma nitridation of GaAs, has been investigated. Porous GaAs samples were prepared by anodic etching of n-type (110) GaAs wafers in HCl solution. Nitridation of porous GaAs samples were carried out by using an electron-cyclotron resonance-induced ammonia plasma. The formation of mixed phases of GaN was investigated using the grazing angle x-ray diffraction method. A remarkable improvement in the intensity of photoluminescence (PL) compared with that of GaN synthesized by direct nitriding of GaAs surface has been observed. The PL intensity of nitrided porous GaAs at the temperature of 380 deg. C was found to be about two orders of magnitude higher as compared with the directly nitrided GaAs at the temperature of 500 deg. C. The changes in the morphology of nitrided porous GaAs have been investigated using both scanning electron microscopy and atomic force microscopy.

  16. Nitridation of porous GaAs by an ECR ammonia plasma

    Science.gov (United States)

    Naddaf, M.; Hullavarad, S. S.; Ganesan, V.; Bhoraskar, S. V.

    2006-02-01

    The effect of surface porosity of GaAs on the nature of growth of GaN, by use of plasma nitridation of GaAs, has been investigated. Porous GaAs samples were prepared by anodic etching of n-type (110) GaAs wafers in HCl solution. Nitridation of porous GaAs samples were carried out by using an electron-cyclotron resonance-induced ammonia plasma. The formation of mixed phases of GaN was investigated using the grazing angle x-ray diffraction method. A remarkable improvement in the intensity of photoluminescence (PL) compared with that of GaN synthesized by direct nitriding of GaAs surface has been observed. The PL intensity of nitrided porous GaAs at the temperature of 380 °C was found to be about two orders of magnitude higher as compared with the directly nitrided GaAs at the temperature of 500 °C. The changes in the morphology of nitrided porous GaAs have been investigated using both scanning electron microscopy and atomic force microscopy.

  17. Development of low emittance high brightness electron beams and rf accelerating structures

    International Nuclear Information System (INIS)

    Pellegrini, C.

    1991-01-01

    The main goals of this project were the construction of an S-band RF photoinjector for the production of a high brightness electron beam, and the development of a new type of RF accelerator structure; the Plane wave transformer. By the end of October 1991 the photoinjector had been built, its RF characteristics had been measured at low power, and an initial test of the gun at high RF power had been done. The Plane Wave Transformer had also been built and tested at lower power. In both cases the results obtained are mostly in agreement with the expected and calculated behavior

  18. Performance Analysis of RF-FSO Multi-Hop Networks

    KAUST Repository

    Makki, Behrooz

    2017-05-12

    We study the performance of multi-hop networks composed of millimeter wave (MMW)-based radio frequency (RF) and free-space optical (FSO) links. The results are obtained in the cases with and without hybrid automatic repeat request (HARQ). Taking the MMW characteristics of the RF links into account, we derive closed-form expressions for the network outage probability. We also evaluate the effect of various parameters such as power amplifiers efficiency, number of antennas as well as different coherence times of the RF and the FSO links on the system performance. Finally, we present mappings between the performance of RF- FSO multi-hop networks and the ones using only the RF- or the FSO-based communication, in the sense that with appropriate parameter settings the same outage probability is achieved in these setups. The results show the efficiency of the RF-FSO setups in different conditions. Moreover, the HARQ can effectively improve the outage probability/energy efficiency, and compensate the effect of hardware impairments in RF-FSO networks. For common parameter settings of the RF-FSO dual- hop networks, outage probability 10^{-4} and code rate 3 nats-per-channel-use, the implementation of HARQ with a maximum of 2 and 3 retransmissions reduces the required power, compared to the cases with no HARQ, by 13 and 17 dB, respectively.

  19. Solar heating of GaAs nanowire solar cells.

    Science.gov (United States)

    Wu, Shao-Hua; Povinelli, Michelle L

    2015-11-30

    We use a coupled thermal-optical approach to model the operating temperature rise in GaAs nanowire solar cells. We find that despite more highly concentrated light absorption and lower thermal conductivity, the overall temperature rise in a nanowire structure is no higher than in a planar structure. Moreover, coating the nanowires with a transparent polymer can increase the radiative cooling power by 2.2 times, lowering the operating temperature by nearly 7 K.

  20. Measurements of RF-induced sol modifications in Tore Supra tokamak

    International Nuclear Information System (INIS)

    Kubic, Martin; Gunn, James P.; Colas, Laurent; Heuraux, Stephane; Faudot, Eric

    2012-01-01

    Since spring 2011, one of the three ion cyclotron resonance heating (ICRH) antennas in the Tore Supra (TS) tokamak is equipped with a new type of Faraday screen (FS). Results from Radio Frequency (RF) simulations of the new Faraday screen suggest the innovative structure with cantilevered bars and 'shark tooth' openings significantly changes the current flow pattern on the front of the antenna which in turn reduces the RF potential and RF electrical field in particular parallel to the magnetic field lines which contributes to generating RF sheaths. Effects of the new FS operation on RF-induced scrape-off layer (SOL) modifications are studied for different plasma and antenna configurations - scans of strap power ratio imbalance, phasing, injected power and SOL density. (authors)

  1. The Legal Investigation Peculiarities in RF Constitutional Court

    Directory of Open Access Journals (Sweden)

    Natal'ya V. Lebedeva

    2012-11-01

    Full Text Available The article features the legal proceedings between Federal Bodies, Entities of Russian Federation, and supreme bodies of RF entities which are both of theoretical and practical interests to powers of RF Constitutional Court.

  2. Modulator considerations for the SNS RF system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Reass, W.A.

    1998-01-01

    The Spallation Neutron Source (SNS) is an intense neutron source for neutron scattering experiments. The project is in the research stage, with construction funding beginning next year. The SNS is comprised of an ion source, a 1,000 MeV, H - linear accelerator, an accumulator ring, a neutron producing target, and experimental area to utilize the scattering of the neutrons. The linear accelerator is RF driven, and the peak beam current is 27 mA and the beam duty factor is 5.84%. The peak RF power required is 104 MW, and the H - beam pulse length is 0.97 ms at a 60 Hz repetition rate. The RF pulses must be about 0.1 ms longer than the beam pulses, due to the Q of the accelerating cavities, and the time required to establish control of the cavity fields. The modulators for the klystrons in this accelerator are discussed in this paper. The SNS is designed to be expandable, so the beam power can be doubled or even quadrupled in the future. One of the double-power options is to double the beam pulse length and duty factor. The authors are specifying the klystrons to operate in this twice-duty-factor mode, and the modulator also should be expandable to 2 ms pulses at 60 Hz. Due to the long pulse length and low RF frequency of 805 MHz, the klystron power is specified at 2.5 MW peak, and the RF system will have 56 klystrons at 805 MHz, and three 1.25 MW peak power klystrons at 402.5 MHz for the low energy portion of the accelerator. The low frequency modulators are conventional floating-deck modulation anode control systems

  3. Joint Optimization of Power Allocation and Load Balancing for Hybrid VLC/RF Networks

    KAUST Repository

    Obeed, Mohanad; Salhab, Anas; Zummo, Salam A.; Alouini, Mohamed-Slim

    2018-01-01

    In this paper, we propose and study a new joint load balancing (LB) and power allocation (PA) scheme for a hybrid visible light communication (VLC) and radio frequency (RF) system consisting of one RF access point (AP) and multiple VLC APs. An iterative algorithm is proposed to distribute users on APs and distribute the powers of the APs on their users. In the PA subproblem, an optimization problem is formulated to allocate the power of each AP to the connected users for total achievable data rate maximization. In this subproblem, we propose a new efficient algorithm that finds optimal dual variables after formulating them in terms of each other. This new algorithm provides faster convergence and better performance than the traditional subgradient method. In addition, it does not depend on the step size or the initial values of the variables, which we look for, as the subgradient does. Then, we start with the user of the minimum data rate seeking another AP that offers a higher data rate for that user. Users with lower data rates continue reconnecting from one AP to another to balance the load only if this travel increases the summation of the achievable data rates and enhances the system fairness. Two approaches are proposed to have the joint PA and LB performed: a main approach that considers the exact interference information for all users, and a suboptimal approach that aims to decrease the complexity of the first approach by considering only the approximate interference information of users. The numerical results demonstrate that the proposed algorithms improve the system capacity and system fairness with fast convergence.

  4. Joint Optimization of Power Allocation and Load Balancing for Hybrid VLC/RF Networks

    KAUST Repository

    Obeed, Mohanad

    2018-04-18

    In this paper, we propose and study a new joint load balancing (LB) and power allocation (PA) scheme for a hybrid visible light communication (VLC) and radio frequency (RF) system consisting of one RF access point (AP) and multiple VLC APs. An iterative algorithm is proposed to distribute users on APs and distribute the powers of the APs on their users. In the PA subproblem, an optimization problem is formulated to allocate the power of each AP to the connected users for total achievable data rate maximization. In this subproblem, we propose a new efficient algorithm that finds optimal dual variables after formulating them in terms of each other. This new algorithm provides faster convergence and better performance than the traditional subgradient method. In addition, it does not depend on the step size or the initial values of the variables, which we look for, as the subgradient does. Then, we start with the user of the minimum data rate seeking another AP that offers a higher data rate for that user. Users with lower data rates continue reconnecting from one AP to another to balance the load only if this travel increases the summation of the achievable data rates and enhances the system fairness. Two approaches are proposed to have the joint PA and LB performed: a main approach that considers the exact interference information for all users, and a suboptimal approach that aims to decrease the complexity of the first approach by considering only the approximate interference information of users. The numerical results demonstrate that the proposed algorithms improve the system capacity and system fairness with fast convergence.

  5. Lasertron, a pulsed RF-source using laser triggered photocathode

    International Nuclear Information System (INIS)

    Yoshioka, Masakazu.

    1988-12-01

    A new pulsed RF-source, 'Lasertron', are being developed as a possible RF-power source for future electron-positron linear colliders. In a series of systematic study, a prototype lasertron has been fabricated and tested. A peak power of 80 kW is attained at 2.856 GHz RF-frequency in 1-μs time duration. This paper describes the experimental results of the lasertron including the developments of the photocathode and the laser system. Test results are compared with the analysis of beam dynamics in the lasertron. (author)

  6. Advances in gallium arsenide monolithic microwave integrated-circuit technology for space communications systems

    Science.gov (United States)

    Bhasin, K. B.; Connolly, D. J.

    1986-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. In this paper, current developments in GaAs MMIC technology are described, and the status and prospects of the technology are assessed.

  7. Impact of GaAs buffer thickness on electronic quality of GaAs grown on graded Ge/GeSi/Si substrates

    International Nuclear Information System (INIS)

    Carlin, J. A.; Ringel, S. A.; Fitzgerald, E. A.; Bulsara, M.; Keyes, B. M.

    2000-01-01

    Minority carrier lifetimes and interface recombination velocities for GaAs grown on a Si wafer using compositionally graded GeSi buffers have been investigated as a function of GaAs buffer thickness using monolayer-scale control of the GaAs/Ge interface nucleation during molecular beam epitaxy. The GaAs layers are free of antiphase domain disorder, with threading dislocation densities measured by etch pit density of 5x10 5 -2x10 6 cm -2 . Analysis indicates no degradation in either minority carrier lifetime or interface recombination velocity down to a GaAs buffer thickness of 0.1 μm. In fact, record high minority carrier lifetimes exceeding 10 ns have been obtained for GaAs on Si with a 0.1 μm GaAs buffer. Secondary ion mass spectroscopy reveals that cross diffusion of Ga, As, and Ge at the GaAs/Ge interface formed on the graded GeSi buffers are below detection limits in the interface region, indicating that polarity control of the GaAs/Ge interface formed on GeSi/Si substrates can be achieved. (c) 2000 American Institute of Physics

  8. Three-dimensional lattice rotation in GaAs nanowire growth on hydrogen-silsesquioxane covered GaAs (001) using molecular beam epitaxy

    Science.gov (United States)

    Tran, Dat Q.; Pham, Huyen T.; Higashimine, Koichi; Oshima, Yoshifumi; Akabori, Masashi

    2018-05-01

    We report on crystallographic behaviors of inclined GaAs nanowires (NWs) self-crystallized on GaAs (001) substrate. The NWs were grown on hydrogen-silsesquioxane (HSQ) covered substrates using molecular beam epitaxy (MBE). Commonly, the epitaxial growth of GaAs B (B-polar) NWs is prominently observed on GaAs (001); however, we yielded a remarkable number of epitaxially grown GaAs A (A-polar) NWs in addition to the majorly obtained B-polar NWs. Such NW orientations are always accompanied by a typical inclined angle of 35° from (001) plane. NWs with another inclined angle of 74° were additionally observed and attributed to be -oriented, not in direct epitaxial relation with the substrate. Such 74° NWs' existence is related to first-order three-dimensional (3D) lattice rotation taking place at the very beginning of the growth. It turns out that spatially 60° lattice rotation around directions at GaAs seeds is essentially in charge of A- and B-polar 74° NWs. Transmission electron microscope observations reveal a high density of twinning in the B-polar NWs and twin-free characteristic in the A-polar NWs.

  9. Removal of NO {sub x} by microwave reactor with ammonium bicarbonate and Ga-A zeolites at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Z.S. [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)]. E-mail: weizaishan98@163.com; Du, Z.Y. [School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Lin, Z.H. [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); He, H.M. [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Qiu, R.L. [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2007-08-15

    Microwave reactor with the mixture of ammonium bicarbonate (NH{sub 4}HCO{sub 3}) and Ga-A zeolites was set up to study the removal of nitrogen oxides (NO {sub x} ) from waste gas with excess oxygen concentration (14-19%) at low temperature (80-120 deg. C). The results showed that the microwave reactor filled with NH{sub 4}HCO{sub 3} and Ga-A zeolites could reduce NO {sub x} to nitrogen with the best purifying efficiency of 95.45% and the best denitrification amount of 89.28 mg h{sup -1}. The optimal microwave power and residence time (RT) on denitrification was 259-280 W and 0.259 s, respectively. Microwave denitrification effect of the experiment using ammonium bicarbonate and Ga-A zeolites was much higher than that using ammonium bicarbonate or Ga-A zeolites only. The mechanism for microwave-induced NO {sub x} reduction can be explained as the microwave-induced catalytic reaction between NO {sub x} and ammonium bicarbonate with Ga-A zeolites being the catalyst and microwave absorbent.

  10. RF system considerations for large high-duty-factor linacs

    International Nuclear Information System (INIS)

    Lynch, M.T.; Ziomek, C.D.; Tallerico, P.J.; Regan, A.H.; Eaton, L.; Lawrence, G.

    1994-01-01

    RF systems are often a major cost item for linacs, but this is especially true for large high-duty-factor linacs (up to and including CW) such as the Accelerator for Production of Tritium (APT) or the Accelerator for Transmutation of nuclear Waste (ATW). In addition, the high energy and high average beam current of these machines (approximately 1 GeV, 100--200 mA) leads to a need for excellent control of the accelerating fields in order to minimize the possibility of beam loss in the accelerator and the resulting activation. This paper will address the key considerations and limitations in the design of the RF system. These considerations impact the design of both the high power RF components and the RF controls. As might be expected, the two concerns sometimes lead to conflicting design requirements. For example minimum RF operating costs lead to a desire for operation near saturation of the high power RF generators in order to maximize the operating efficiency. Optimal control of the RF fields leads to a desire for maximum overdrive capability in those same generators in order to respond quickly to disturbances of the accelerator fields

  11. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    Directory of Open Access Journals (Sweden)

    Oliver Weinberger

    Full Text Available The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation.Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated.Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit.Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants.

  12. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    Science.gov (United States)

    Winter, Lukas; Dieringer, Matthias A.; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M.; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf

    2016-01-01

    Introduction The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Methods Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Results Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Conclusion Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants. PMID:27598923

  13. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    Science.gov (United States)

    Weinberger, Oliver; Winter, Lukas; Dieringer, Matthias A; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf

    2016-01-01

    The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants.

  14. RF-Trapped Chip Scale Helium Ion Pump (RFT-CHIP)

    Science.gov (United States)

    2016-04-06

    utilizes two operation states: an ion extraction state and an RF electron trapping state. A high power RF switch S1 (RF- LAMBDA RFSP2TRDC06G, DC-6 GHz...integrated in time. The electric potential is obtained by solution of Poisson’s equation using an incomplete LU BiConjugate Gradient sparse matrix

  15. Plasma edge cooling during RF heating

    International Nuclear Information System (INIS)

    Suckewer, S.; Hawryluk, R.J.

    1978-01-01

    A new approach to prevent the influx of high-Z impurities into the core of a tokamak discharge by using RF power to modify the edge plasma temperature profile is presented. This concept is based on spectroscopic measurements on PLT during ohmic heating and ATC during RF heating. A one dimensional impurity transport model is used to interpret the ATC results

  16. Structure and homoepitaxial growth of GaAs(6 3 1)

    International Nuclear Information System (INIS)

    Mendez-Garcia, V.H.; Ramirez-Arenas, F.J.; Lastras-Martinez, A.; Cruz-Hernandez, E.; Pulzara-Mora, A.; Rojas-Ramirez, J.S.; Lopez-Lopez, M.

    2006-01-01

    We have studied the surface atomic structure of GaAs(6 3 1), and the GaAs growth by molecular beam epitaxy (MBE) on this plane. After the oxide desorption process at 585 deg. Creflection high-energy electron diffraction (RHEED) showed along the [-1 2 0] direction a 2x surface reconstruction for GaAs(6 3 1)A, and a 1x pattern was observed for GaAs(6 3 1)B. By annealing the substrates for 60 min, we observed that on the A surface appeared small hilly-like features, while on GaAs(6 3 1)B surface pits were formed. For GaAs(6 3 1)A, 500 nm-thick GaAs layers were grown at 585 deg. C. The atomic force microscopy (AFM) images at the end of growth showed the self-formation of nanoscale structures with a pyramidal shape enlarged along the [5-9-3] direction. Transversal views of the bulk-truncated GaAs(6 3 1) surface model showed arrays of atomic grooves along this direction, which could influence the formation of the pyramidal structures

  17. The FELIX RF system

    International Nuclear Information System (INIS)

    Manintveld, P.; Delmee, P.F.M.; Geer, C.A.J. van der; Meddens, B.J.H.; Meer, A.F.G. van der; Amersfoort, P.W. van

    1992-01-01

    The performance of the RF system for the Free Electron Laser for Infrared eXperiments (FELIX) is discussed. The RF system provides the input power for a triode gun (1 GHz, 100 W), a prebuncher (1 GHz, 10 kW), a buncher (3 GHz, 20 MW), and two linacs (3 GHz, 8 MW each). The pulse length in the system is 20 μs. The required electron beam stability imposes the following demands on the RF system: a phase stability better than 0.3 deg for the 1 GHz signals and better than 1 deg for the 3 GHz signals; the amplitude stability has to be better than 1% for the 1 GHz and better than 0.2% for the 3 GHz signals. (author) 3 refs.; 6 figs

  18. The electronic and optical properties of quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs: a first-principles study.

    Science.gov (United States)

    Ma, Xiaoyang; Li, Dechun; Zhao, Shengzhi; Li, Guiqiu; Yang, Kejian

    2014-01-01

    First-principles calculations based on density functional theory have been performed for the quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs. Using the state-of-the-art computational method with the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional, electronic, and optical properties were obtained, including band structures, density of states (DOSs), dielectric function, absorption coefficient, refractive index, energy loss function, and reflectivity. It is found that the lattice constant of GaAs1-x-y N x Bi y alloy with y/x =1.718 can match to GaAs. With the incorporation of N and Bi into GaAs, the band gap of GaAs1-x-y N x Bi y becomes small and remains direct. The calculated optical properties indicate that GaAs1-x-y N x Bi y has higher optical efficiency as it has less energy loss than GaAs. In addition, it is also found that the electronic and optical properties of GaAs1-x-y N x Bi y alloy can be further controlled by tuning the N and Bi compositions in this alloy. These results suggest promising applications of GaAs1-x-y N x Bi y quaternary alloys in optoelectronic devices.

  19. RF link for Implanted Medical Devices (IMDs) and Sub-GHz Inductive Power Transmission

    OpenAIRE

    Diet , Antoine; Koulouridis , Satvros; Le Bihan , Yann; Luu , Quang-Trung; Meyer , Olivier; Pichon , Lionel; Biancheri-Astier , Marc

    2017-01-01

    International audience; Ce travail s'inscrit dan sune etude exploratoire sur les possibilités de télé-alimentation RF des implants médicaux et/ou de communication entre eux. En effet, la durée de fonctionnement de certains implants avec batterie rend leur utilisation critique car il ne faut pas privilégier une intervention chirurgicale lourde s'il est possible d'agir de manière non-invasive. La transmission d'énergie sans fil ou WPT (Wireless Power Transfer) est au cœur de nombreuses autres t...

  20. Alternative RF coupling configurations for H− ion sources

    International Nuclear Information System (INIS)

    Briefi, S.; Fantz, U.; Gutmann, P.

    2015-01-01

    RF heated sources for negative hydrogen ions both for fusion and accelerators require very high RF powers in order to achieve the required H − current what poses high demands on the RF generators and the RF circuit. Therefore it is highly desirable to improve the RF efficiency of the sources. This could be achieved by applying different RF coupling concepts than the currently used inductive coupling via a helical antenna, namely Helicon coupling or coupling via a planar ICP antenna enhanced with ferrites. In order to investigate the feasibility of these concepts, two small laboratory experiments have been set up. The PlanICE experiment, where the enhanced inductive coupling is going to be investigated, is currently under assembly. At the CHARLIE experiment systematic measurements concerning Helicon coupling in hydrogen and deuterium are carried out. The investigations show that a prominent feature of Helicon discharges occurs: the so-called low-field peak. This is a local improvement of the coupling efficiency at a magnetic field strength of a few mT which results in an increased electron density and dissociation degree. The full Helicon mode has not been achieved yet due to the limited available RF power and magnetic field strength but it might be sufficient for the application of the coupling concept to ion sources to operate the discharge in the low-field-peak region

  1. Design and construction of a 500 KW CW, 400 MHz klystron to be used as RF power source for LHC/RF component tests

    CERN Document Server

    Frischholz, Hans; Pearson, C

    1998-01-01

    A 500 kW cw klystron operating at 400 MHz was developed and constructed jointly by CERN and SLAC for use as a high-power source at CERN for testing LHC/RF components such as circulators, RF absorbers and superconducting cavities with their input couplers. The design is a modification of the 353 MHz SLAC PEP-I klystron. More than 80% of the original PEP-I tube parts could thus be incorporated in the LHC test klystron which resulted in lower engineering costs as well as reduced development and construction time. The physical length between cathode plane and upper pole plate was kept unchanged so that a PEP-I tube focusing solenoid, available at CERN, could be re-used. With the aid of the klystron simulation codes JPNDISK and CONDOR, the design of the LHC tube was accomplished, which resulted in a tube with noticeably higher efficiency than its predecessor, the PEP-I klystron. The integrated cavities were redesigned using SUPERFISH and the output coupling circuit, which also required redesigning, was done with t...

  2. Subnanosecond linear GaAs photoconductive switching, revision 1

    Science.gov (United States)

    Druce, R. L.; Pocha, M. D.; Griffin, K. L.; Hofer, W. W.

    Research was conducted in photoconductive switching for the purpose of generating subnanosecond pulses in the 25 to 50kV range. The very fast recombination rates of Gallium Arsenide (GaAs) was exploited to explore the potential of GaAs as a closing and opening switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). The closing time of a linear GaAs switch is theoretically limited by the characteristics of the laser pulse used to activate the switch (the carrier generation time in GaAs is (approx. 10(-14) sec) while the opening time is theoretically limited by the recombination time of the carriers. The recombination time is several ns for commercially available semi-insulating GaAs. Doping or neutron irradiation can reduce the recombination time to less than 100 ps. Switch closing times of less than 200 ps with a 100 ps duration laser pulse and opening times of less than 400 ps with neutron irradiated GaAs at fields of tens of kV/cm was observed. The illumination source was a Nd:YAG laser operating at 1.06 microns.

  3. Klystron 'efficiency loop' for the ALS storage ring RF system

    International Nuclear Information System (INIS)

    Kwiatkowski, Slawomir; Julian, Jim; Baptiste, Kenneth

    2002-01-01

    The recent energy crisis in California has led us to investigate the high power RF systems at the Advanced Light Source (ALS) in order to decrease the energy consumption and power costs. We found the Storage Ring Klystron Power Amplifier system operating as designed but with significant power waste. A simple proportional-integrator (PI) analog loop, which controls the klystron collector beam current, as a function of the output RF power, has been designed and installed. The design considerations, besides efficiency improvement, were to interface to the existing system without major expense. They were to also avoid the klystron cathode power supply filter's resonance in the loop's dynamics, and prevent a conflict with the existing Cavity RF Amplitude Loop dynamics. This efficiency loop will allow us to save up to 700 MW-hours of electrical energy per year and increase the lifetime of the klystron

  4. Surface science analysis of GaAs photocathodes following sustained electron beam delivery

    Directory of Open Access Journals (Sweden)

    V. Shutthanandan

    2012-06-01

    Full Text Available Degradation of the photocathode materials employed in photoinjectors represents a challenge for sustained operation of nuclear physics accelerators and high power free electron lasers (FEL. Photocathode quantum efficiency degradation is due to residual gases in the electron source vacuum system being ionized and accelerated back to the photocathode. These investigations are a first attempt to characterize the nature of the photocathode degradation, and employ multiple surface and bulk analysis techniques to investigate damage mechanisms including sputtering of the Cs-oxidant surface monolayer, other surface chemistry effects, and ion implantation. Surface and bulk analysis studies were conducted on two GaAs photocathodes, which were removed from the JLab FEL DC photoemission gun after delivering electron beam, and two control samples. The analysis techniques include helium ion microscopy, Rutherford backscattering spectrometry (RBS, atomic force microscopy, and secondary ion mass spectrometry (SIMS. In addition, two high-polarization strained superlattice GaAs photocathode samples, one removed from the continuous electron beam accelerator facility (CEBAF photoinjector and one unused, were also analyzed using transmission electron microscopy (TEM and SIMS. It was found that heat cleaning the FEL GaAs wafer introduces surface roughness, which seems to be reduced by prolonged use. The bulk GaAs samples retained a fairly well organized crystalline structure after delivering beam but show evidence of Cs depletion on the surface. Within the precision of the SIMS and RBS measurements, the data showed no indication of hydrogen implantation or lattice damage from ion back bombardment in the bulk GaAs wafers. In contrast, SIMS and TEM measurements of the strained superlattice photocathode show clear crystal damage in the wafer from ion back bombardment.

  5. Design, fabrication and low power RF testing of a prototype beta=1, 1050 MHz cavity developed for electron linac

    International Nuclear Information System (INIS)

    Sarkar, S.; Mondal, J.; Mittal, K.C.

    2013-01-01

    A single cell 1050 MHz β = 1 elliptical cavity has been designed for possible use in High energy electron accelerator. A prototype Aluminium cavity has been fabricated by die punch method and low power testing of the cavity has been carried out by using VNA. The fundamental mode frequency of the prototype cavity is found out to be 1051.38 MHz and Q (loaded) and Q0 values corresponding to 2 modes are 8439 and 10013 respectively. Cell to cell coupling coefficient is 1.82 % from measurement which matches with the designed value (1.84%). The higher order mode frequencies are also measured and electric field of the cavity is confirmed by bead pull method. Low power RF measurements on the prototype cavity indicate that the critical RF parameters (Qo, f, Kc etc) for the cavity are consistent with the designed value. (author)

  6. Multiband RF circuits and techniques for wireless transmitters

    CERN Document Server

    Chen, Wenhua; Ghannouchi, Fadhel M

    2016-01-01

    This book introduces systematic design methods for passive and active RF circuits and techniques, including state-of-the-art digital enhancement techniques. As the very first book dedicated to multiband RF circuits and techniques, this work provides an overview of the evolution of transmitter architecture and discusses current digital predistortion techniques. Readers will find a collection of novel research ideas and new architectures in concurrent multiband power dividers, power amplifiers and related digital enhancement techniques. This book will be of great interest to academic researchers, R&D engineers, wireless transmitter and protocol designers, as well as graduate students who wish to learn the core architectures, principles and methods of multiband RF circuits and techniques. .

  7. Multilayers of GaAs/Mn deposited on a substrate of GaAs (001)

    Energy Technology Data Exchange (ETDEWEB)

    Bernal-Salamanca, M; Pulzara-Mora, A; Rosales-Rivera, A [Laboratorio de Magnetismo y Materiales Avanzados, Universidad Nacional de Colombia, Sede Manizales, A.A. 127 (Colombia); Molina-Valdovinos, S; Melendez-Lira, M [Physics Department, Centro de Investigacion y Estudios Avanzados del IPN, Av. IPN No. 2508, Apartado Postal 14-740, 07000 Mexico D.F (Mexico); Lopez-Lopez, M, E-mail: aopulzaram@unal.edu.c [Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Apartado Postal 1-1010, Queretaro 76000 (Mexico)

    2009-05-01

    In this work GaAs/Mn multilayers were deposited on GaAs (001) substrates by R.F magnetron sputtering technique, varying the deposition time (tg). Scanning electron and atomic force Microscopy studies were realized on the surface of the samples in order to determine the morphology and average roughness. X-ray diffraction spectra show that our samples tend to do amorphous. Raman spectroscopy at room temperature was employed to analyze the structural properties of the samples. We found that for a GaAs film taken as reference, the Raman spectra is dominated by the transverse (TO) and longitudinal (LO) modes located at 266 cm{sup -1} and 291 cm{sup -1}, respectively. However, for the GaAs/Mn multilayers the TO and LO modes decrease dramatically, and the Mn Raman modes in the range of 100 cm{sup -1} and 250 cm{sup -1} are evidenced. Additional new peaks located around 650 and 690 cm {sup -1} are only observed for the samples with high Mn content. By using the mass reduced model we estimate that the Mn related peaks are located at 650.2 cm{sup -1} and 695.2 cm{sup -1}, in good agreement with the experimental data, these peaks are correlated with excitations due to (Mn){sub m}As{sub n} localized structures.

  8. Rf System for the NLCTA

    International Nuclear Information System (INIS)

    Wang, J.W.; Adolphsen, C.; Eichner, J.; Fuller, R.W.; Gold, S.L.; Hanna, S.M.; Hoag, H.A.; Holmes, S.G.; Koontz, R.F.; Lavine, Theodore L.; Loewen, R.J.; Miller, R.H.; Nantista, C.D.; Pope, R.; Rifkin, J.; Ruth, R.D.; Tantawi, S.G.; Vlieks, A.E.; Wilson, Z.; Yeremian, A.

    2011-01-01

    This paper describes an X-Band RF system for the Next Linear Collider Test Accelerator. The RF system consists of a 90 MeV injector and a 540 MeV linac. The main components of the injector are two low-Q single-cavity prebunchers and two 0.9-m-long detuned accelerator sections. The linac system consists of six 1.8-m-long detuned and damped detuned accelerator sections powered in pairs. The rf power generation, compression, delivery, distribution and measurement systems consist of klystrons, SLEDII energy compression systems, rectangular waveguides, magic-T's, and directional couplers. The phase and amplitude for each prebuncher is adjusted via a magic-T type phase shifter/attenuator. Correct phasing between the two 0.9 m accelerator sections is obtained by properly aligning the sections and adjusting two squeeze type phase shifters. Bunch phase and bunch length can be monitored with special microwave cavities and measurement systems. The design, fabrication, microwave measurement, calibration, and operation of the sub-systems and their components are briefly presented.

  9. Normal Conducting RF Cavity for MICE

    International Nuclear Information System (INIS)

    Li, D.; DeMello, A.; Virostek, S.; Zisman, M.; Summers, D.

    2010-01-01

    Normal conducting RF cavities must be used for the cooling section of the international Muon Ionization Cooling Experiment (MICE), currently under construction at Rutherford Appleton Laboratory (RAL) in the UK. Eight 201-MHz cavities are needed for the MICE cooling section; fabrication of the first five cavities is complete. We report the cavity fabrication status including cavity design, fabrication techniques and preliminary low power RF measurements.

  10. Reduction of field emission in superconducting cavities with high power pulsed RF

    International Nuclear Information System (INIS)

    Graber, J.; Crawford, C.; Kirchgessner, J.; Padamsee, H.; Rubin, D.; Schmueser, P.

    1994-01-01

    A systematic study is presented of the effects of pulsed high power RF processing (HPP) as a method of reducing field emission (FE) in superconducting radio frequency (SRF) cavities to reach higher accelerating gradients for future particle accelerators. The processing apparatus was built to provide up to 150 kW peak RF power to 3 GHz cavities, for pulse lengths from 200 μs to 1 ms. Single-cell and nine-cell cavities were tested extensively. The thermal conductivity of the niobium for these cavities was made as high as possible to ensure stability against thermal breakdown of superconductivity. HPP proves to be a highly successful method of reducing FE loading in nine-cell SRF cavities. Attainable continuous wave (CW) fields increase by as much as 80% from their pre-HPP limits. The CW accelerating field achieved with nine-cell cavities improved from 8-15 MV/m with HPP to 14-20 MV/m. The benefits are stable with subsequent exposure to dust-free air. More importantly, HPP also proves effective against new field emission subsequently introduced by cold and warm vacuum ''accidents'' which admitted ''dirty'' air into the cavities. Clear correlations are obtained linking FE reduction with the maximum surface electric field attained during processing. In single cells the maximums reached were E peak =72 MV/m and H peak =1660 Oe. Thermal breakdown, initiated by accompanying high surface magnetic fields is the dominant limitation on the attainable fields for pulsed processing, as well as for final CW and long pulse operation. To prove that the surface magnetic field rather than the surface electric fields is the limitation to HPP effectiveness, a special two-cell cavity with a reduced magnetic to electric field ratio is successfully tested. During HPP, pulsed fields reach E peak =113 MV/m (H peak =1600 Oe) and subsequent CW low power measurement reached E peak =100 MV/m, the highest CW field ever measured in a superconducting accelerator cavity. ((orig.))

  11. Developmental efforts of RF collinear load for 10 MeV, 6 kW travelling wave Linac

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Kumar, Harish; Soni, R.K.; Dwivedi, Jishnu; Thakurta, A.C.; Wanmode, Y.D.; Pareek, Prashant; Senthil Kumar, S; Shinde, R.S.

    2015-01-01

    RRCAT is developing a 10 MeV, 6 kW Travelling Wave Electron Linac for radiation processing applications. The remnant RF power from the Linac structure is taken out by output RF coupler and absorbed by the waveguide load. RF collinear load is an improved technique for absorption of the remnant RF power. It replaces the output RF coupler, RF window and waveguide load leading to reduction in size of magnetic elements and less transverse beam instabilities. In addition, it uses the remnant RF power to increase the electron beam energy. The collinear load consists of a number of copper cavities coated with microwave absorbing material at inner surfaces and brazed to the Linac structure at the end. Development of the collinear load has been started at RRCAT and a prototype low power collinear load using Kanthal (FeCrAl alloy) coating has been developed. Further works are going on the development of high power collinear load using FeSiAl alloy. The paper describes the development of the Kanthal based prototype low power collinear load as well as the works for the development of FeSiAl alloy based high power collinear load. (author)

  12. Commissioning experience with the PEP-II low-level RF system

    International Nuclear Information System (INIS)

    Corredoura, P.; Allison, S.; Claus, R.; Ross, W.; Sapozhnikov, L.; Schwarz, H.D.; Tighe, R.; Yee, C.; Ziomek, C.

    1997-05-01

    The low-level RF system for PEP-II is a modular design housed in a VXI environment and supported by EPICS. All signal processing and control is done at baseband using in-phase and quadrature (IQ) techniques. Remotely configurable RF feedback loops are used to control coupled-bunch instabilities driven by the accelerating mode of the RF cavities. A programmable DSP based feedback loop is implemented to control phase variations across the klystron due to the required adjustment of the cathode voltage to limit cathode power dissipation. The DSP loop also adaptively cancels modulations caused by klystron power supply ripple at selected power line harmonics between 60 Hz and 10 kHz. The system contains a built-in baseband network analyzer which allows remote measurement of the RF feedback loop transfer functions and automated configuration of these loops. This paper presents observations and measured data from the system

  13. Dependence of beam emittance on plasma electrode temperature and rf-power, and filter-field tuning with center-gapped rod-filter magnets in J-PARC rf-driven H− ion source

    International Nuclear Information System (INIS)

    Ueno, A.; Koizumi, I.; Ohkoshi, K.; Ikegami, K.; Takagi, A.; Yamazaki, S.; Oguri, H.

    2014-01-01

    The prototype rf-driven H − ion-source with a nickel plated oxygen-free-copper (OFC) plasma chamber, which satisfies the Japan Proton Accelerator Research Complex (J-PARC) 2nd stage requirements of a H − ion beam current of 60 mA within normalized emittances of 1.5 π mm mrad both horizontally and vertically, a flat top beam duty factor of 1.25% (500 μs × 25 Hz) and a life-time of more than 50 days, was reported at the 3rd international symposium on negative ions, beams, and sources (NIBS2012). The experimental results of the J-PARC ion source with a plasma chamber made of stainless-steel, instead of nickel plated OFC used in the prototype source, are presented in this paper. By comparing these two sources, the following two important results were acquired. One was that the about 20% lower emittance was produced by the rather low plasma electrode (PE) temperature (T PE ) of about 120 °C compared with the typically used T PE of about 200 °C to maximize the beam current for the plasma with the abundant cesium (Cs). The other was that by using the rod-filter magnets with a gap at each center and tuning the gap-lengths, the filter-field was optimized and the rf-power necessary to produce the J-PARC required H − ion beam current was reduced typically 18%. The lower rf-power also decreases the emittances

  14. Beyond the Interconnections: Split Manufacturing in RF Designs

    Directory of Open Access Journals (Sweden)

    Yu Bi

    2015-08-01

    Full Text Available With the globalization of the integrated circuit (IC design flow of chip fabrication, intellectual property (IP piracy is becoming the main security threat. While most of the protection methods are dedicated for digital circuits, we are trying to protect radio-frequency (RF designs. For the first time, we applied the split manufacturing method in RF circuit protection. Three different implementation cases are introduced for security and design overhead tradeoffs, i.e., the removal of the top metal layer, the removal of the top two metal layers and the design obfuscation dedicated to RF circuits. We also developed a quantitative security evaluation method to measure the protection level of RF designs under split manufacturing. Finally, a simple Class AB power amplifier and a more sophisticated Class E power amplifier are used for the demonstration through which we prove that: (1 the removal of top metal layer or the top two metal layers can provide high-level protection for RF circuits with a lower request to domestic foundries; (2 the design obfuscation method provides the highest level of circuit protection, though at the cost of design overhead; and (3 split manufacturing may be more suitable for RF designs than for digital circuits, and it can effectively reduce IP piracy in untrusted off-shore foundries.

  15. Electrodeposition of Metal on GaAs Nanowires

    Science.gov (United States)

    Liu, Chao; Einabad, Omid; Watkins, Simon; Kavanagh, Karen

    2010-10-01

    Copper (Cu) electrical contacts to freestanding gallium arsenide (GaAs) nanowires have been fabricated via electrodeposition. The nanowires are zincblende (111) oriented grown epitaxially on n-type Si-doped GaAs (111)B substrates by gold-catalyzed Vapor Liquid Solid (VLS) growth in a metal organic vapour phase epitaxy (MOVPE) reactor. The epitaxial electrodeposition process, based on previous work with bulk GaAs substrates, consists of a substrate oxide pre-etch in dilute ammonium-hydroxide carried out prior to galvanostatic electrodeposition in a pure Cu sulphate aqueous electrolyte at 20-60^oC. For GaAs nanowires, we find that Cu or Fe has a preference for growth on the gold catalyst avoiding the sidewalls. After removing gold, both metals still prefer to grow only on top of the nanowire, which has the largest potential field.

  16. Diffusion of $^{52}$Mn in GaAs

    CERN Multimedia

    2002-01-01

    Following our previous diffusion studies performed with the modified radiotracer technique, we propose to determine the diffusion of Mn in GaAs under intrinsic conditions in a previously un-investigated temperature region. The aim of the presently proposed experiments is twofold. \\begin{itemize} \\item A quantitative study of Mn diffusion in GaAs at low Mn concentrations would be decisive in providing new information on the diffusion mechanism involved. \\item As Ga vacancies are expected to be involved in the Mn diffusion process it can be predicted that also the GaAs material growth technique most likely plays a role. To clarify this assumption diffusion experiments will be conducted for GaAs material grown by two different techniques. \\end{itemize} For such experiments we ask for two runs of 3 shifts (total of 6 shifts) with $^{52}$Mn$^{+}$ ion beam.

  17. A high-efficiency, low-noise power solution for a dual-channel GNSS RF receiver

    International Nuclear Information System (INIS)

    Shi Jian; Mo Taishan; Gan Yebing; Ma Chengyan; Ye Tianchun; Le Jianlian

    2012-01-01

    A high-efficiency low-noise power solution for a dual-channel GNSS RF receiver is presented. The power solution involves a DC—DC buck converter and a followed low-dropout regulator (LDO). The pulse-width-modulation (PWM) control method is adopted for better noise performance. An improved low-power high-frequency PWM control circuit is proposed, which halves the average quiescent current of the buck converter to 80 μA by periodically shutting down the OTA. The size of the output stage has also been optimized to achieve high efficiency under a light load condition. In addition, a novel soft-start circuit based on a current limiter has been implemented to avoid inrush current. Fabricated with commercial 180-nm CMOS technology, the DC—DC converter achieves a peak efficiency of 93.1% under a 2 MHz working frequency. The whole receiver consumes only 20.2 mA from a 3.3 V power supply and has a noise figure of 2.5 dB. (semiconductor integrated circuits)

  18. Practical use of the amplitude and phase modulation of a high-power RF pulse via feed-forward control

    International Nuclear Information System (INIS)

    Kawase, Keigo; Kato, Ryukou; Irizawa, Akinori; Isoyama, Goro; Kashiwagi, Shigeru

    2013-01-01

    A new feed-forward control system to precisely control the amplitude and phase of the pulsed RF power in an electron linear accelerator (linac) is developed to make the accelerating field constant. Fast variations and ripples in the amplitude and phase in the RF pulses are compensated by modulating the amplitude and phase in the low-level system with a variable attenuator and phase shifter. The system is innovated the overdrive technique, which is commonly used in analog circuits, to speed up the slow response of the phase shifter, while the control signals are digitally processed; thus, the method is a hybrid of analog and digital techniques. By using the new control system, we find that the peak-to-peak variations in the amplitude and phase are reduced from 11.6% to 0.4% and from 6.1 degrees to 0.3 degrees, respectively, in 7.6-μs-long RF pulses for the L-band electron linac at Osaka University. (author)

  19. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    OpenAIRE

    Weinberger, Oliver; Winter, Lukas; Dieringer, Matthias A.; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M.; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf

    2016-01-01

    INTRODUCTION: The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. METHODS: Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each...

  20. Subnanosecond, high voltage photoconductive switching in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L. (Lawrence Livermore National Lab., CA (USA)); O' Bannon, B.J. (Rockwell International Corp., Anaheim, CA (USA))

    1990-01-01

    We are conducting research on the switching properties of photoconductive materials to explore their potential for generating high-power microwaves (HPM) and for high rep-rate switching. We have investigated the performance of Gallium Arsenide (GaAs) in linear mode (the conductivity of the device follows the optical pulse) as well as an avalanche-like mode (the optical pulse only controls switch closing). Operating in the linear mode, we have observed switch closing times of less than 200 ps with a 100 ps duration laser pulse and opening times of less than 400 ps at several kV/cm fields using neutron irradiated GaAs. In avalanche and lock-on modes, high fields are switched with lower laser pulse energies, resulting in higher efficiencies; but with measurable switching delay and jitter. We are currently investigating both large area (1 cm{sup 2}) and small area (<1 mm{sup 2}) switches illuminated by AlGaAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 {mu}m.

  1. Electron-beam direct drive for rf accelerator cavities

    International Nuclear Information System (INIS)

    Nahemow, M.D.; Humphries, S. Jr.

    1987-01-01

    This paper describes a Program to Demonstrate Electron-Beam Direct Drive for Radio Frequency (RF) Linear Accelerators at the Westinghouse R and D Center. The experimental program was undertaken using an existing electron beam facility at the Westinghouse R and C Center to demonstrate the potential of the Direct Drive RF Cavities for High Power Beams concept discussed as part of a program to develop a viable alternate concept for driving RF linear accelerators

  2. Los Alamos free-electron laser (FEL) rf system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Lynch, M.T.

    1985-01-01

    The FEL rf system was designed for 3.6-MW rf pulses from two klystrons to drive two linacs and one deflection cavity at 1300 MHz. Two 108.33-MHz subharmonic buncher cavities and one fundamental buncher were also built, each powered by a 5-kW amplifier. A single phase-coherent source drives the various amplifiers as well as the grid of the electron gun, which is pulsed at 21.67 MHz. The initial buncher system did not work as well as expected, and the first linac tank required more rf power than anticipated. The light output was extremely sensitive to amplitude and phase errors. More powerful klystrons were developed and installed, and a method was discovered for operating a single subharmonic buncher and allowing the first linac to complete the bunching process. This paper shows the actual configuration used to operate the laser and discusses future improvements

  3. Subnanosecond linear GaAs photoconductive switching: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L.; Hofer, W.W.

    1989-01-01

    We are conducting research in photoconductive switching for the purpose of generating subnanosecond pulses in the 25--50kV range. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as a closing and opening switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). The closing time of a linear GaAs switch is theoretically limited by the characteristics of the laser pulse used to activate the switch (the carrier generation time in GaAs is /approximately/10/sup /minus/14/ sec) while the opening time is theoretically limited by the recombination time of the carriers. The recombination time is several ns for commercially available semi-insulating GaAs. Doping or neutron irradiation can reduce the recombination time to less than 100 ps. We have observed switch closing times of less than 200 ps with a 100 ps duration laser pulse and opening times of less than 400 ps with neutron irradiated GaAs at fields of tens of kV/cm. The illumination source was a Nd:YAG laser operating at 1.06 /mu/m. 4 refs., 11 figs.

  4. Analytic analysis on asymmetrical micro arcing in high plasma potential RF plasma systems

    International Nuclear Information System (INIS)

    Yin, Y; McKenzie, D R; Bilek, M M M

    2006-01-01

    We report experimental and analytical results on asymmetrical micro arcing in a RF (radio frequency) plasma. Micro arcing, resulting from high plasma potential, in RF plasma was found to occur only on the grounded electrode for a variety of electrode and surface configurations. The analytic derivation was based on a simple RF time-dependent Child-Langmuir sheath model and electric current continuity. We found that the minimum potential difference in one RF period across the grounded electrode sheath depends on the area ratio of the grounded electrode to the powered electrode. As the area ratio increases, the minimum potential difference across a sheath increases for the grounded electrode but not for the RF powered electrode. We showed that discharge time in micro arcing is more than 100 RF periods; thus the presence of a continuous high electric field in one RF cycle results in micro arcing on the grounded electrode. However, the minimum potential difference in one RF period across the powered electrode sheath is always small so that it prevents micro arcing occurring even though the average sheath voltage can be large. This simple analytic model is consistent with particle-in-cell simulation results

  5. Optimization of an RF driven H- ion source

    International Nuclear Information System (INIS)

    Leung, K.N.; DiVergilio, W.F.; Hauck, C.A.; Kunkel, W.B.; McDonald, D.S.

    1991-04-01

    A radio-frequency driven multicusp source has recently been developed to generate volume-produced H - ion beams with extracted current density higher than 200 mA/cm 2 . We have improved the output power of the rf generator and the insulation coating of the antenna coil. We have also optimized the antenna positions and geometry and the filter magnetic field for high power pulsed operation. A total H - current of 30 mA can be obtained with a 5.4-mm-diam extraction aperture and with an rf input power of 50 kW. 4 refs., 5 figs

  6. Improvement of In-Flight Alumina Spheroidization Process Using a Small Power Argon DC-RF Hybrid Plasma Flow System by Helium Mixture

    Science.gov (United States)

    Takana, Hidemasa; Jang, Juyong; Igawa, Junji; Nakajima, Tomoki; Solonenko, Oleg P.; Nishiyama, Hideya

    2011-03-01

    For the further improvement of in-flight alumina spheroidization process with a low-power direct-current radiofrequency (DC-RF) hybrid plasma flow system, the effect of a small amount of helium gas mixture in argon main gas and also the effect of increasing DC nozzle diameter on powder spheroidization ratio have been experimentally clarified with correlating helium gas mixture percentage, plasma enthalpy, powder in-flight velocity, and temperature. The alumina spheroidization ratio increases by helium gas mixture as a result of enhancement of plasma enthalpy. The highest spheroidization ratio is obtained by 4% mixture of helium in central gas with enlarging nozzle diameter from 3 to 4 mm, even under the constant low input electric power given to a DC-RF hybrid plasma flow system.

  7. Investigation and Prediction of RF Window Performance in APT Accelerators

    International Nuclear Information System (INIS)

    Humphries, S. Jr.

    1997-01-01

    The work described in this report was performed between November 1996 and May 1997 in support of the APT (Accelerator Production of Tritium) Program at Los Alamos National Laboratory. The goal was to write and to test computer programs for charged particle orbits in RF fields. The well-documented programs were written in portable form and compiled for standard personal computers for easy distribution to LANL researchers. They will be used in several APT applications including the following. Minimization of multipactor effects in the moderate β superconducting linac cavities under design for the APT accelerator. Investigation of suppression techniques for electron multipactoring in high-power RF feedthroughs. Modeling of the response of electron detectors for the protection of high power RF vacuum windows. In the contract period two new codes, Trak-RF and WaveSim, were completed and several critical benchmark etests were carried out. Trak-RF numerically tracks charged particle orbits in combined electrostatic, magnetostatic and electromagnetic fields. WaveSim determines frequency-domain RF field solutions and provides a key input to Trak-RF. The two-dimensional programs handle planar or cylindrical geometries. They have several unique characteristics

  8. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  9. Development of a novel rf waveguide vacuum valve

    CERN Document Server

    Grudiev, A

    2006-01-01

    The development of a novel rf waveguide vacuum valve is presented. The rf design is based on the use of TE0n modes of circular waveguides. In the device, the TE01 mode at the input is converted into a mixture of several TE0n modes which provide low-loss rf power transmission across the vacuum valve gap, these modes are then converted back into the TE01 mode at the output. There are a number of advantages associated with the absence of surface fields in the region of the valve: • Possibility to use commercially available vacuum valves equipped with two specially designed mode converter sections. • No necessity for an rf contact between these two sections. • Increased potential for high power rf transmission. This technology can be used for all frequencies for which vacuum waveguides are used. In rectangular waveguides, mode converters from the operating mode into the TE01 mode and back again are necessary. Experimental results for the 30 GHz valves developed for the CLIC Test Facility 3 (CTF3) a...

  10. Rf system description for the ground test accelerator radio-frequency quadrupole

    International Nuclear Information System (INIS)

    Regan, A.H.; Brittain, D.; Rees, D.E.; Ziomek, D.

    1992-01-01

    This paper describes the RF system being used to provide RF power and to control the cavity field used for the ground test accelerator (GTA) radio-frequency quadrupole (RFQ). The RF system consists of a low-level RF (LLRF) control system that uses a tetrode as a high-power amplifier (HPA) as part of its plant to deliver up to 300 kW of peak power to the RFQ at a 2% duty factor. The LLRF control system implements in-phase and quadrature (I ampersand Q) control to maintain the cavity field within tolerances of 0.5% in amplitude and 0.5 degrees in phase in the presence of beam-induced instabilities. This paper describes the identified components and presents measured performance data. The user interface with the systems is described, and cavity field measurements are included

  11. Designing of RF ion source and the power sources system

    International Nuclear Information System (INIS)

    Rusdiyanto.

    1978-01-01

    An RF ion source prototype is being developed for the particle accelerator at the Gama Research Centre. Supply of the gas is fed into the plasma chamber by means of neadle valve system. Magnetic field strength of about 500 gauss is applied to the system to improve the ionization efficiency. Components and spare parts of the RF ion source are made based on locally available materials and are discussed in this report. (author)

  12. Remote PECVD silicon nitride films with improved electrical properties for GaAs P-HEMT passivation

    CERN Document Server

    Sohn, M K; Kim, K H; Yang, S G; Seo, K S

    1998-01-01

    In order to obtain thin silicon nitride films with excellent electrical and mechanical properties, we employed RPECVD (Remote Plasma Enhanced Chemical Vapor Deposition) process which produces less plasma-induced damage than the conventional PECVD. Through the optical and electrical measurements of the deposited films, we optimized the various RPECVD process parameters. The optimized silicon nitride films showed excellent characteristics such as small etch rate (approx 33 A/min by 7:1 BHF), high breakdown field (>9 MV/cm), and low compressive stress (approx 3.3x10 sup 9 dyne/cm sup 2). We successfully applied thin RPECVD silicon nitride films to the surface passivation of GaAs pseudomorphic high electron mobility transistors (P-HEMTs) with negligible degradations in DC and RF characteristics.

  13. Development of the RF cavity for the SKKUCY-9 compact cyclotron

    International Nuclear Information System (INIS)

    Shin, Seungwook; Lee, Jongchul; LEE, Byeong-No; Ha, Donghyup; Namgoong, Ho; Chai, Jongseo

    2015-01-01

    A 9 MeV compact cyclotron, named SKKUCY-9, for a radiopharmaceutical compound especially fludeoxyglucose (FDG) production for a positron emission tomography (PET) machine was developed at Sungkyunkwan University. H − ions which are produced from a Penning Ionization Gauge(PIG) ion source, travel through a normal conducting radio frequency (RF) cavity which operates at 83.2 MHz for an acceleration and electro-magnet for a beam focusing until the ions acquire energy of about 9 MeV. For installation at a small local hospital, our SKKUCY-9 cyclotron is developed to be compact and light-weight, comparable to conventional medical purpose cyclotrons. For compactness, we adapted a deep valley and large angle hill type for the electro-magnet design. Normally a RF cavity is installed inside of the empty space of the magnet valley region, which is extremely small in our case. We faced problems such as difficulties of installing the RF cavity, low Q-value. Despite of those difficulties, a compact RF cavity and its system including a RF power coupler to feed amplified RF power to the RF cavity and a fine tuner to compensate RF frequency variations was successfully developed and tested

  14. Development of the RF cavity for the SKKUCY-9 compact cyclotron

    Science.gov (United States)

    Shin, Seungwook; Lee, Jongchul; LEE, Byeong-No; Ha, Donghyup; Namgoong, Ho; Chai, Jongseo

    2015-09-01

    A 9 MeV compact cyclotron, named SKKUCY-9, for a radiopharmaceutical compound especially fludeoxyglucose (FDG) production for a positron emission tomography (PET) machine was developed at Sungkyunkwan University. H- ions which are produced from a Penning Ionization Gauge(PIG) ion source, travel through a normal conducting radio frequency (RF) cavity which operates at 83.2 MHz for an acceleration and electro-magnet for a beam focusing until the ions acquire energy of about 9 MeV. For installation at a small local hospital, our SKKUCY-9 cyclotron is developed to be compact and light-weight, comparable to conventional medical purpose cyclotrons. For compactness, we adapted a deep valley and large angle hill type for the electro-magnet design. Normally a RF cavity is installed inside of the empty space of the magnet valley region, which is extremely small in our case. We faced problems such as difficulties of installing the RF cavity, low Q-value. Despite of those difficulties, a compact RF cavity and its system including a RF power coupler to feed amplified RF power to the RF cavity and a fine tuner to compensate RF frequency variations was successfully developed and tested.

  15. Annealing-induced Fe oxide nanostructures on GaAs

    OpenAIRE

    Lu, Y X; Ahmad, E; Xu, Y B; Thompson, S M

    2005-01-01

    We report the evolution of Fe oxide nanostructures on GaAs(100) upon pre- and post-growth annealing conditions. GaAs nanoscale pyramids were formed on the GaAs surface due to wet etching and thermal annealing. An 8.0-nm epitaxial Fe film was grown, oxidized, and annealed using a gradient temperature method. During the process the nanostripes were formed, and the evolution has been demonstrated using transmission and reflection high energy electron diffraction, and scanning electron microscopy...

  16. RF Design of the LCLS Gun

    International Nuclear Information System (INIS)

    Limborg-Deprey, C.

    2010-01-01

    Final dimensions for the LCLS RF gun are described. This gun, referred to as the LCLS gun, is a modified version of the UCLA/BNL/SLAC 1.6 cell S-Band RF gun (1), referred to as the prototype gun. The changes include a larger mode separation (15 MHz for the LCLS gun vs. 3.5 MHz for the prototype gun), a larger radius at the iris between the 2 cells, a reduced surface field on the curvature of the iris between the two cells, Z power coupling, increased cooling channels for operation at 120 Hz, dual rf feed, deformation tuning of the full cell, and field probes in both cells. Temporal shaping of the klystron pulse, to reduce the average power dissipated in the gun, has also been adopted. By increasing the mode separation, the amplitude of the 0-mode electric field on the cathode decreases from 10% of the peak on axis field for the prototype gun to less than 3% for the LCLS gun for the steady state fields. Beam performance is improved as shown by the PARMELA simulations. The gun should be designed to accept a future load lock system. Modifications follow the recommendations of our RF review committee (2). Files and reference documents are compiled in Section IV.

  17. Beam self-excited rf cavity driver for a deflector or focusing system

    International Nuclear Information System (INIS)

    Wadlinger, E.A.

    1996-01-01

    A bunched beam from and accelerator can excite and power an rf cavity which then drives either a deflecting or focusing (including nonlinear focusing) rf cavity with and amplitude related to beam current. Rf power, generated when a bunched beam loses energy to an rf field when traversing an electric field that opposes the particle's motion, is used to drive a separate (or the same) cavity to either focus or deflect the beam. The deflected beam can be stopped by an apertures or directed to a different area of a target depending on beam current. The beam-generated rf power can drive a radio-frequency quadrupole (RFQ) that can change the focusing properties of a beam channel as a function of beam current (space- charge force compensation or modifying the beam distribution on a target). An rf deflector can offset a beam to a downstream sextupole, effectively producing a position-dependent quadrupole field. The combination of rf deflector plus sextupole will produce a beam current dependent quadropole-focusing force. A static quadrupole magnet plus another rf deflector can place the beam back on the optic axis. This paper describes the concept, derives the appropriate equations for system analysis, and fives examples. A variation on this theme is to use the wake field generated in an rf cavity to cause growth in the beam emittance. The beam current would then be apertured by emittance defining slits

  18. Beam self-excited rf cavity driver for a deflector or focusing system

    International Nuclear Information System (INIS)

    Wadlinger, E.A.

    1996-01-01

    A bunched beam from an accelerator can excite and power an rf cavity which then drives either a deflecting or focusing (including nonlinear focusing) rf cavity with an amplitude related to beam current. Rf power, generated when a bunched beam loses energy to an rf field when traversing an electric field that opposes the particle's motion, is used to drive a separate (or the same) cavity to either focus or deflect the beam. The deflected beam can be stopped by an aperture or directed to a different area of a target depending on beam current. The beam-generated rf power can drive a radiofrequency quadrupole that can change the focusing properties of a beam channel as a function of beam current (space-charge-force compensation or modifying the beam distribution on a target). An rf deflector can offset a beam to a downstream sextupole, effectively producing a position-dependent quadrupole field. The combination of rf deflector plus sextupole will produce a beam current dependent quadrupole-focusing force. A static quadrupole magnet plus another rf deflector can place the beam back on the optic axis. This paper describes the concept, derives the appropriate equations for system analysis, and gives examples. A variation on this theme is to use the wake field generated in an rf cavity to cause growth in the beam emittance. The beam current would then be apertured by emittance defining slits. (author)

  19. Asymmetric focusing study from twin input power couplers using realistic rf cavity field maps

    Directory of Open Access Journals (Sweden)

    Colwyn Gulliford

    2011-03-01

    Full Text Available Advanced simulation codes now exist that can self-consistently solve Maxwell’s equations for the combined system of an rf cavity and a beam bunch. While these simulations are important for a complete understanding of the beam dynamics in rf cavities, they require significant time and computing power. These techniques are therefore not readily included in real time simulations useful to the beam physicist during beam operations. Thus, there exists a need for a simplified algorithm which simulates realistic cavity fields significantly faster than self-consistent codes, while still incorporating enough of the necessary physics to ensure accurate beam dynamics computation. To this end, we establish a procedure for producing realistic field maps using lossless cavity eigenmode field solvers. This algorithm incorporates all relevant cavity design and operating parameters, including beam loading from a nonrelativistic beam. The algorithm is then used to investigate the asymmetric quadrupolelike focusing produced by the input couplers of the Cornell ERL injector cavity for a variety of beam and operating parameters.

  20. Half-Watt average power femtosecond source spanning 3-8 µm based on subharmonic generation in GaAs

    Science.gov (United States)

    Smolski, Viktor; Vasilyev, Sergey; Moskalev, Igor; Mirov, Mike; Ru, Qitian; Muraviev, Andrey; Schunemann, Peter; Mirov, Sergey; Gapontsev, Valentin; Vodopyanov, Konstantin

    2018-06-01

    Frequency combs with a wide instantaneous spectral span covering the 3-20 µm molecular fingerprint region are highly desirable for broadband and high-resolution frequency comb spectroscopy, trace molecular detection, and remote sensing. We demonstrate a novel approach for generating high-average-power middle-infrared (MIR) output suitable for producing frequency combs with an instantaneous spectral coverage close to 1.5 octaves. Our method is based on utilizing a highly-efficient and compact Kerr-lens mode-locked Cr2+:ZnS laser operating at 2.35-µm central wavelength with 6-W average power, 77-fs pulse duration, and high 0.9-GHz repetition rate; to pump a degenerate (subharmonic) optical parametric oscillator (OPO) based on a quasi-phase-matched GaAs crystal. Such subharmonic OPO is a nearly ideal frequency converter capable of extending the benefits of frequency combs based on well-established mode-locked pump lasers to the MIR region through rigorous, phase- and frequency-locked down conversion. We report a 0.5-W output in the form of an ultra-broadband spectrum spanning 3-8 µm measured at 50-dB level.

  1. Low modulation index RF signal detection for a passive UHF RFID transponder

    International Nuclear Information System (INIS)

    Liu Zhongqi; Zhang Chun; Li Yongming; Wang Zhihua

    2009-01-01

    In a typical RFID system the reader transmits modulated RF power to provide both data and energy for the passive transponder. Low modulation index RF energy is preferable for an adequate tag power supply and increase in communication range but gives rise to difficulties for near-field conventional demodulation. Therefore, a novel ASK demodulator for minimum 20% modulation index RF signal detection over a range of 23 dB is presented. Thanks to the proposed innovative divisional linear conversion from the power into voltage signal, the detection sensitivity is ensured over a wide power range with low power consumption of 8.6 μW. The chip is implemented in UMC 0.18 μm mix-mode CMOS technology, and the chip area is 0.06 mm 2 .

  2. Development of nanocrystalline Indium Tin Oxide (ITO) thin films using RF-magnetron sputtering

    International Nuclear Information System (INIS)

    Tamilselvan, N.; Thilakan, Periyasamy

    2013-01-01

    ITO thin films have been deposited on glass substrate using RF Magnetron puttering Technique from the pre-synthesized ITO target. The sputtering parameters such as the deposition temperature, gas composition and the RF power densities were varied. X-ray diffraction studies revealed that the crystallization of the films is mostly depending on the RF power density and substrate temperature. Crystallized films exhibited a change in the preferred orientation from (111) plane to (100) plane at specific conditions such as high RF power density and high oxygen mixing to the plasma. Change in the film microstructure and a shift in the optical bandgap were recorded from the SEM and UV-Visible measurements respectively. (author)

  3. Synthesis of GaAs quantum dots on Si-layers on AlGaAs films grown on GaAs(100) substrates

    International Nuclear Information System (INIS)

    Mendez-Garcia, V. H.; Zamora-Peredo, L.; Saucedo-Zeni, N.

    2002-01-01

    In this work we report a novel method for obtaining GaAs quantum dots by molecular beam epitaxy (MBE) on an AlGaAs underlying film. We propose to use a Si monolayer (ML) grown on AlGaAs, in order to induce a 3D nucleation during the GaAs overgrowth. The samples were prepared in a Riber 32P MBE system employing undoped Si-GaAs(100) substrates. First, a 500 nm thick layer of Al x Ga 1-x As was grown with a nominal concentration x=0.35. Several samples were grown in order to analyze the effects of changing the Si interlayer thickness, and the amount of GaAs overgrowth, on the final structures. Previous to the Si-exposure, the AlGaAs presented a (1x3) surface reconstruction which gradually turned to a (3x1) structure when the Si-thickness was 1 ML, as observed in the reflection high-energy electron diffraction (RHEED) patterns. When the GaAs overgrowth started on this surface, transmission RHEED spots appeared and showed a considerable increase in intensity until reaching a maximum. This behavior is typical from a 3D island growth. If the GaAs overgrowth continues, the initial streaky RHEED patterns recovered indicating a 2D-growth. Thus, we prepared a sample stopping the GaAs overgrowth at the time when the diffraction 3D spot reached the maximum intensity, equivalent to 2ML of GaAs. The sample surface was analyzed in air by atomic force microscopy (AFM). Islands of 1.5 nm-height and 20x20 nm of base were clearly observed, these dimensions are suitable for applications in quantum dots. (Authors)

  4. Performance Analysis of ARQ-Based RF-FSO Links

    KAUST Repository

    Makki, Behrooz

    2017-02-22

    We study the performance of hybrid radio-frequency (RF) and free-space optical (FSO) links using automatic repeat request (ARQ). We derive closed-form expressions for the throughput and outage probability with different channel models. We also evaluate the effect of adaptive power allocation between the ARQ retransmissions on the system performance. The results show that joint implementation of the RF and FSO links leads to substantial performance improvement, compared to the cases with only the RF or the FSO link.

  5. Adaptive Digital Predistortion Schemes to Linearize RF Power Amplifiers with Memory Effects

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peng; WU Si-liang; ZHANG Qin

    2008-01-01

    To compensate for nonlinear distortion introduced by RF power amplifiers (PAs) with memory effects, two correlated models, namely an extended memory polynomial (EMP) model and a memory lookup table (LUT) model, are proposed for predistorter design. Two adaptive digital predistortion (ADPD) schemes with indirect learning architecture are presented. One adopts the EMP model and the recursive least square (RLS) algorithm, and the other utilizes the memory LUT model and the least mean square (LMS) algorithm. Simulation results demonstrate that the EMP-based ADPD yields the best linearization performance in terms of suppressing spectral regrowth. It is also shown that the ADPD based on memory LUT makes optimum tradeoff between performance and computational complexity.

  6. Electron Beam Energy Compensation by Controlling RF Pulse Shape

    CERN Document Server

    Kii, T; Kusukame, K; Masuda, K; Nakai, Y; Ohgaki, H; Yamazaki, T; Yoshikawa, K; Zen, H

    2005-01-01

    We have studied on improvement of electron beam macropulse properties from a thermionic RF gun. Though a thermionic RF gun has many salient features, there is a serious problem that back-bombardment effect worsens quality of the beam. To reduce beam energy degradation by this effect, we tried to feed non-flat RF power into the gun. As a result, we successfully obtained about 1.5 times longer macropulse and two times larger total charge per macropulse. On the other hand, we calculated transient evolution of RF power considering non-constant beam loading. The beam loading is evaluated from time evolution of cathode temperature, by use of one dimensional heat conduction model and electron trajectories' calculations by a particle simulation code. Then we found good agreement between the experimental and calculation results. Furthermore, with the same way, we studied the electron beam output dependence on the cathode radius.

  7. ICH antenna development on the ORNL RF Test Facility

    International Nuclear Information System (INIS)

    Gardner, W.L.; Bigelow, T.S.; Haste, G.R.; Hoffman, D.J.; Livesey, R.L.

    1987-01-01

    A compact resonant loop antenna is installed on the ORNL Radio Frequency Test Facility (RFTF). Facility characteristics include a steady-state magnetic field of ∼ 0.5 T at the antenna, microwave-generated plasmas with n e ∼ 10 12 cm -3 and T e ∼ 8 eV, and 100 kW of 25-MHz rf power. The antenna is tunable from ∼22--75 MHz, is designed to handle ≥1 MW of rf power, and can be moved 5 cm with respect to the port flange. Antenna characteristics reported and discussed include the effect of magnetic field on rf voltage breakdown at the capacitor, the effects of magnetic field and plasma on rf voltage breakdown between the radiating element and the Faraday shield, the effects of graphite on Faraday shield losses, and the efficiency of coupling to the plasma. 2 refs., 4 figs

  8. RF system developments for CW and/or long pulse linacs

    International Nuclear Information System (INIS)

    Lynch, M.

    1998-01-01

    High Power Proton Linacs are under development or proposed for development at Los Alamos and elsewhere. By current standards these linacs all require very large amounts of RF power. The Accelerator for Production of Tritium (APT) is a CW accelerator with an output current and energy of 100 mA and 1,700 MeV, respectively. The Spallation Neutron Source (SNS), in its ultimate configuration, is a pulsed accelerator with an average output power of 4 MW of beam. Other accelerators such as those that address transmutation and upgrades to LANSCE have similar requirements. For these high average power applications, the RF systems represent approximately half of the total cost of the linac and are thus key elements in the design and configuration of the accelerator. Los Alamos is fortunate to be actively working on both APT and SNS. For these programs the author is pursuing a number of component developments which are aimed at one or more of the key issues for large RF systems: technical performance, capital cost, reliability, and operating efficiency. This paper briefly describes some of the linac applications and then provides updates on the key RF developments being pursued

  9. Effect of RF Interference on the Security-Reliability Trade-off Analysis of Multiuser Mixed RF/FSO Relay Networks with Power Allocation

    KAUST Repository

    Abd El-Malek, Ahmed H.; Salhab, Anas; Zummo, Salam; Alouini, Mohamed-Slim

    2017-01-01

    In this paper, the impact of radio frequency (RF) cochannel interference (CCI) on the performance of multiuser mixed RF/free-space optical (FSO) relay network with opportunistic user scheduling under eavesdropping attack is studied. The considered

  10. A conceptual design of the RF system for the NSP high intensity proton accelerator at JAERI

    International Nuclear Information System (INIS)

    Chishiro, Etsuji; Kusano, Joichi; Mizumoto, Motoharu; Touchi, Yutaka; Kaneko, Hiroshi; Takado, Hiroshi; Sawada, Junichi

    1999-03-01

    JAERI has been proposing the Neutron Science Project which aims at exploring the fields of basic science and nuclear technology using a high power spallation neutron source. The neutron source will be driven by a high intensity linear accelerator with an energy of 1.5 GeV and an average beam current of 5.33 mA and beam power of 8 MW. The RF system for the accelerator consists of a high-energy accelerator part and a low energy accelerator part. The maximum RF power requirements at the high and low energy accelerator parts are 25 MW and 8.3 MW, respectively. In this report, we describe the conceptual design of the RF system. In the low energy accelerator part, we estimated the requirement for the high-power amplifier tube and made the basis design for RF components. In the high energy accelerator part, we studied the effect of tuning errors, Lorentz forces and microphonics in the superconducting cavity. We calculated the klystron efficiency and supply power in the arrangement of where one klystron distributes the RF power to four cavities. We also considered an IOT RF system. Finally, we describe the electrical capacity and quantity of cooling water in the RF system. (author)

  11. Static and dynamical valence-charge-density properties of GaAs

    International Nuclear Information System (INIS)

    Pietsch, U.

    1993-01-01

    Owing to the close neighbourhood of Ga and As in Mendeleev's table, GaAs shows two fundamental classes of X-ray structure amplitudes distinguished by their extremely different scattering power. They are differently sensitive to the valence electron density (VED) redistribution caused by the chemical bond and must be measured by different experimental methods. Using such data, both the VED and the difference electron densities (DED) are calculated here. Comparison with theoretical densities shows that the VED is characterized by covalent, ionic and metallic contributions. The DED constructed from GaAs and Ge data demonstrates the electronic response caused by a ''protonic'' charge transfer between both f.c.c. sublattices as well as the transition from a purely covalent to a mixed covalent-ionic bond. Especially the charge-density accumulation between nearest neighbours (bond charge (BC)) depends on the distance between the bonding atoms and changes under the influence of any lattice deformation. This phenomenon is described by a BC-transfer model. Its direct experimental proof is given by measuring the variation of the scattering power of weak reflections under the influence of an external electric field. This experiment demonstrates that the ionicity of the bond changes in addition to the BC variation. (orig.)

  12. RF Loads for Energy Recovery

    CERN Document Server

    Federmann, S; Caspers, F

    2012-01-01

    Different conceptional designs for RF high power loads are presented. One concept implies the use of solid state rectifier modules for direct RF to DC conversion with efficiencies beyond 80%. In addition, robust metallic low-Q resonant structures, capable of operating at high temperatures (>150 ◦C) are discussed. Another design deals with a very high temperature (up to 800 ◦C) air cooled load using a ceramic foam block inside a metal enclosure. This porous ceramic block is the microwave absorber and is not brazed to the metallic enclosure.

  13. A graphene/single GaAs nanowire Schottky junction photovoltaic device.

    Science.gov (United States)

    Luo, Yanbin; Yan, Xin; Zhang, Jinnan; Li, Bang; Wu, Yao; Lu, Qichao; Jin, Chenxiaoshuai; Zhang, Xia; Ren, Xiaomin

    2018-05-04

    A graphene/nanowire Schottky junction is a promising structure for low-cost high-performance optoelectronic devices. Here we demonstrate a graphene/single GaAs nanowire Schottky junction photovoltaic device. The Schottky junction is fabricated by covering a single layer graphene onto an n-doped GaAs nanowire. Under 532 nm laser excitation, the device exhibits a high responsivity of 231 mA W-1 and a short response/recover time of 85/118 μs at zero bias. Under AM 1.5 G solar illumination, the device has an open-circuit voltage of 75.0 mV and a short-circuit current density of 425 mA cm-2, yielding a remarkable conversion efficiency of 8.8%. The excellent photovoltaic performance of the device is attributed to the strong built-in electric field in the Schottky junction as well as the transparent property of graphene. The device is promising for self-powered high-speed photodetectors and low-cost high-efficiency solar cells.

  14. Two-Way Multiuser Mixed RF/FSO Relaying: Performance Analysis and Power Allocation

    KAUST Repository

    Al-Eryani, Yasser F.; Salhab, Anas; Zummo, Salam A.; Alouini, Mohamed-Slim

    2018-01-01

    In this paper, the performance of two-way multiuser mixed radio frequency/free space optical (RF/FSO) relay networks with opportunistic user scheduling and asymmetric channel fading is studied. RF links are used to conduct data transmission between

  15. Low modulation index RF signal detection for a passive UHF RFID transponder

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhongqi [Department of Electronic Engineering, Tsinghua University, Beijing 100084 (China); Zhang Chun; Li Yongming; Wang Zhihua, E-mail: liu-zq04@mails.tsinghua.edu.c [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China)

    2009-09-15

    In a typical RFID system the reader transmits modulated RF power to provide both data and energy for the passive transponder. Low modulation index RF energy is preferable for an adequate tag power supply and increase in communication range but gives rise to difficulties for near-field conventional demodulation. Therefore, a novel ASK demodulator for minimum 20% modulation index RF signal detection over a range of 23 dB is presented. Thanks to the proposed innovative divisional linear conversion from the power into voltage signal, the detection sensitivity is ensured over a wide power range with low power consumption of 8.6 {mu}W. The chip is implemented in UMC 0.18 {mu}m mix-mode CMOS technology, and the chip area is 0.06 mm{sup 2}.

  16. Simulation of 6 1/8 inch rigid coaxial RF transmission line

    International Nuclear Information System (INIS)

    Soni, Atul; Pande, M.M.; Rao, M.K.V.; Handu, V.K.

    2006-01-01

    A radio frequency (RF) transmission line has been designed based upon rigid coaxial 6 1/8 , 50-ohm line for coupling the RF power from its source to 400 KeV radio frequency quadrupole (RFQ) accelerator. Simulation and analysis have been carried out to evaluate various RF parameters of the line. (author)

  17. Remote RF Battery Charging

    NARCIS (Netherlands)

    Visser, H.J.; Pop, V.; Op het Veld, J.H.G.; Vullers, R.J.M.

    2011-01-01

    The design of a remote RF battery charger is discussed through the analysis and design of the subsystems of a rectenna (rectifying antenna): antenna, rectifying circuit and loaded DC-to-DC voltage (buck-boost) converter. Optimum system power generation performance is obtained by adopting a system

  18. A survey of the urban radiofrequency (RF) environment

    International Nuclear Information System (INIS)

    Tell, Richard A.; Kavet, Robert

    2014-01-01

    In 1980, Tell and Mantiply published a study of radiofrequency (RF) fields measured across 15 major metropolitan areas in the USA. They required a van fully equipped with instrumentation and computing capability for their measurements. This study aimed to assess whether and how hand-held instrumentation available today would facilitate and enhance the efficiency of large-scale surveys of ambient RF fields. In addition, the data would provide a suggestion as to how the profile of ambient RF fields has changed with respect to frequency content and magnitude. Not unexpectedly, the relative power densities were orders of magnitude lower than the Federal Communications Commission's (FCC) maximum permissible exposure (MPE) for the general public, with a maximum time-averaged value across the VHF-FM-UHF-cellular bands of 0.12 % of the MPE (AM's contribution was negligible). In both the 1980 and the present study, the power density in the FM band was a major contributor to overall power density, but over time, power densities in the VHF and UHF band decreased and increased, respectively. From the perspective of absolute power density, the wideband values in the 1980 study, this study and any number of assessments conducted in European nations are not generally different from one another. (authors)

  19. Compression and radiation of high-power short rf pulses. II. A novel antenna array design with combined compressor/radiator elements

    KAUST Repository

    Sirenko, Kostyantyn; Pazynin, Vadim L.; Sirenko, Yu K.; Bagci, Hakan

    2011-01-01

    The paper discusses the radiation of compressed high power short RF pulses using two different types of antennas: (i) A simple monopole antenna and (ii) a novel array design, where each of the elements is constructed by combining a compressor and a

  20. Design study on an independently-tunable-cells thermionic RF gun

    International Nuclear Information System (INIS)

    Hama, H.; Tanaka, T.; Hinode, F.; Kawai, M.

    2006-01-01

    Characteristics of a thermionic RF gun have been studied by a 3-D simulation code developed using an FDTD (Finite Difference Time Domain) method as a Maxwell's equations solver. The gun is consists of two independent power feeding cavities, so that we call it independently-tunable-cells (ITC)'-RF gun. The first cell is the cathode cell and the second one is an accelerating cell. The ITC gun can be operated at various modes of different RF-power ratio and phase between two cavities. Simulation study shows a velocity-bunching like effect may be occurred in the gun, so that the short pulse beam from the thermionic RF gun is a better candidate to produce the coherent THz synchrotron radiation. Expected bunch length with a total charge of ∼20 pC (1% energy width from the top energy) is around 200 fs (fwhm). Even the beam energy extracted from the gun is varied by which the input powers are changed, almost same shape of the longitudinal phase space can be produced by tuning the phase. (author)

  1. Compact rf polarizer and its application to pulse compression systems

    Directory of Open Access Journals (Sweden)

    Matthew Franzi

    2016-06-01

    Full Text Available We present a novel method of reducing the footprint and increasing the efficiency of the modern multi-MW rf pulse compressor. This system utilizes a high power rf polarizer to couple two circular waveguide modes in quadrature to a single resonant cavity in order to replicate the response of a traditional two cavity configuration using a 4-port hybrid. The 11.424 GHz, high-Q, spherical cavity has a 5.875 cm radius and is fed by the circularly polarized signal to simultaneously excite the degenerate TE_{114} modes. The overcoupled spherical cavity has a Q_{0} of 9.4×10^{4} and coupling factor (β of 7.69 thus providing a loaded quality factor Q_{L} of 1.06×10^{4} with a fill time of 150 ns. Cold tests of the polarizer demonstrated good agreement with the numerical design, showing transmission of -0.05  dB and reflection back to the input rectangular WR 90 waveguide less than -40  dB over a 100 MHz bandwidth. This novel rf pulse compressor was tested at SLAC using XL-4 Klystron that provided rf power up to 32 MW and generated peak output power of 205 MW and an average of 135 MW over the discharged signal. A general network analysis of the polarizer is discussed as well as the design and high power test of the rf pulse compressor.

  2. Electrode pattern design for GaAs betavoltaic batteries

    International Nuclear Information System (INIS)

    Chen Haiyang; Yin Jianhua; Li Darang

    2011-01-01

    The sensitivities of betavoltaic batteries and photovoltaic batteries to series and parallel resistance are studied. Based on the study, an electrode pattern design principle of GaAs betavoltaic batteries is proposed. GaAs PIN junctions with and without the proposed electrode pattern are fabricated and measured under the illumination of 63 Ni. Results show that the proposed electrode can reduce the backscattering and shadowing for the beta particles from 63 Ni to increase the GaAs betavoltaic battery short circuit currents effectively but has little impact on the fill factors and ideal factors.

  3. Multi-Physics Analysis of the Fermilab Booster RF Cavity

    International Nuclear Information System (INIS)

    Awida, M.; Reid, J.; Yakovlev, V.; Lebedev, V.; Khabiboulline, T.; Champion, M.

    2012-01-01

    After about 40 years of operation the RF accelerating cavities in Fermilab Booster need an upgrade to improve their reliability and to increase the repetition rate in order to support a future experimental program. An increase in the repetition rate from 7 to 15 Hz entails increasing the power dissipation in the RF cavities, their ferrite loaded tuners, and HOM dampers. The increased duty factor requires careful modelling for the RF heating effects in the cavity. A multi-physic analysis investigating both the RF and thermal properties of Booster cavity under various operating conditions is presented in this paper.

  4. The LHC Low Level RF

    CERN Document Server

    Baudrenghien, Philippe; Molendijk, John Cornelis; Olsen, Ragnar; Rohlev, Anton; Rossi, Vittorio; Stellfeld, Donat; Valuch, Daniel; Wehrle, Urs

    2006-01-01

    The LHC RF consists of eight 400 MHz superconducting cavities per ring, with each cavity independently powered by a 300 kW klystron, via a circulator. The challenge for the Low Level is to cope with very high beam current (more than 1 A RF component) and achieve excellent beam lifetime (emittance growth time in excess of 25 hours). Each cavity has an associated Cavity Controller rack consisting of two VME crates which implement high gain RF Feedback, a Tuner Loop with a new algorithm, a Klystron Ripple Loop and a Conditioning system. In addition each ring has a Beam Control system (four VME crates) which includes a Frequency Program, Phase Loop, Radial Loop and Synchronization Loop. A Longitudinal Damper (dipole and quadrupole mode) acting via the 400 MHz cavities is included to reduce emittance blow-up due to filamentation from phase and energy errors at injection. Finally an RF Synchronization system implements the bunch into bucket transfer from the SPS into each LHC ring. When fully installed in 2007, the...

  5. Redefinition of the self-bias voltage in a dielectrically shielded thin sheath RF discharge

    Science.gov (United States)

    Ho, Teck Seng; Charles, Christine; Boswell, Rod

    2018-05-01

    In a geometrically asymmetric capacitively coupled discharge where the powered electrode is shielded from the plasma by a layer of dielectric material, the self-bias manifests as a nonuniform negative charging in the dielectric rather than on the blocking capacitor. In the thin sheath regime where the ion transit time across the powered sheath is on the order of or less than the Radiofrequency (RF) period, the plasma potential is observed to respond asymmetrically to extraneous impedances in the RF circuit. Consequently, the RF waveform on the plasma-facing surface of the dielectric is unknown, and the behaviour of the powered sheath is not easily predictable. Sheath circuit models become inadequate for describing this class of discharges, and a comprehensive fluid, electrical, and plasma numerical model is employed to accurately quantify this behaviour. The traditional definition of the self-bias voltage as the mean of the RF waveform is shown to be erroneous in this regime. Instead, using the maxima of the RF waveform provides a more rigorous definition given its correlation with the ion dynamics in the powered sheath. This is supported by a RF circuit model derived from the computational fluid dynamics and plasma simulations.

  6. rf experiments on PLT

    International Nuclear Information System (INIS)

    Hosea, J.; Wilson, J.R.; Hooke, W.

    1986-01-01

    A variety of rf experiments are being conducted on PLT in order to explore rf techniques which could improve tokamak performance parameters. Of special importance are the studies of ion Bernstein wave (IBW) heating, lower hybrid MHD stabilization and electron heating, down-shifted electron cyclotron heating, and fast wave current drive. Ion Bernstein wave heating results at modest power indicate that the particle confinement time could be enhanced relative to that for fast wave heating in the ion cyclotron range of frequencies (ICRF) and neutral beam heating. At these power levels a conclusive determination of energy confinement scaling with power cannot yet be given. Central sawtooth and m = 1 MHD stabilization is being obtained with centrally peaked lower hybrid (LH) current drive and the central electron temperature is peaking to values (approx.5 keV) well outside the bounds of ''profile consistency.'' In this case the electron energy confinement is apparently increased relative to the ohmic value. The production of relativistic electrons via heating at the down-shifted electron cyclotron (EC) frequency is found to be consistent with theoretical predictions and lends support to the use of this method for heating in relatively high magnetic field devices

  7. Conceptual design of independently tunable cells RF gun with external injecting structure

    International Nuclear Information System (INIS)

    Liang Junjun; Feng Guangyao; Pei Yuanji; Pang Jian

    2012-01-01

    To obtain the micro-pulse bunch with the order of hundred femtoseconds length and high repetition rate, the pa- per proposes the independently tunable cells (ITC) RF gun, which has a double-cell structure with the cells being power fed independently. By choosing appropriate feeding power and phase of the two cells, this ITC-RF gun can achieve bunches of excellent characteristics. Additionally, the application of a-magnet and laser system can be avoided, which leads to more compact layout. An external injecting ITC-RF gun (DC-ITC-RF gun) structure is designed accordingly. The external injecting structure can increase beam current, decrease energy spread, and cancel the back-bombardment effect almost completely. By means of 1-D and 3- D beam dynamics calculation with different structure parameters, a group of RF parameters are obtained for better beam characteristics. Then the paper designs a pre-injector so that particles can be accelerated to 10 MeV. By choosing appropriate feeding power and incident particle phase for the pre-injector, the bunch length can be further compressed. (authors)

  8. RF Processing Experience with the GTF Prototype RF Gun

    International Nuclear Information System (INIS)

    Schmerge, J.F.

    2010-01-01

    The SSRL Gun Test Facility (GTF) was built to develop a high brightness electron injector for the LCLS and has been operational since 1996. A total of five different metal cathodes (4 Cu and 1 Mg) have been installed on the GTF gun. The rf processing history with the different cathodes will be presented including peak field achieved at the cathode. The LCLS gun is intended to operate at 120 MV/m and fields up to 140 MV/m have been achieved in the GTF gun. After installing a new cathode the number of rf pulses required to reach 120 MV/m is approximately 5-10 million. Total emitted dark current and Fowler Nordheim plots are also shown over the life of the cathode. The GTF photo-injector gun is an S-band standing-wave structure, with two resonant cavities and an intervening thick washer (Figure 1). The flat, back wall of the first cavity is a copper plate that serves as photocathode when illuminated with ultraviolet light from a pulsed, high-power laser. RF power enters the gun through an iris on the outer wall of the second cavity, and is coupled to the first through the axial opening of the washer. The first cavity is often referred to as a half cell, because its full-cell length has been truncated by the cathode plate and the second cavity is called the full cell. The gun is designed to operate in a π mode, with the peak field on axis in each cell approximately equal. The maximum in the half cell occurs at the cathode, and in the full cell near the center of the cavity. The field profile and tuning procedures are discussed in a separate tech note (1).

  9. An analog RF gap voltage regulation system for the Advanced Photon Source storage ring

    International Nuclear Information System (INIS)

    Horan, D.

    1999-01-01

    An analog rf gap voltage regulation system has been designed and built at Argonne National Laboratory to maintain constant total storage ring rf gap voltage, independent of beam loading and cavity tuning effects. The design uses feedback control of the klystron mod-anode voltage to vary the amount of rf power fed to the storage ring cavities. The system consists of two independent feedback loops, each regulating the combined rf gap voltages of eight storage ring cavities by varying the output power of either one or two rf stations, depending on the mode of operation. It provides full operator control and permissive logic to permit feedback control of the rf system output power only if proper conditions are met. The feedback system uses envelope-detected cavity field probe outputs as the feedback signal. Two different methods of combining the individual field probe signals were used to generate a relative DC level representing one-half of the total storage ring rf voltage, an envelope-detected vector sum of the field probe rf signals, and the DC sum of individual field probe envelope detector outputs. The merits of both methods are discussed. The klystron high-voltage power supply (HVPS) units are fitted with an analog interface for external control of the mod-anode voltage level, using a four-quadrant analog multiplier to modulate the HVPS mod-anode voltage regulator set-point in response to feedback system commands

  10. KEY COMPARISON: Final report on CCEM key comparison CCEM.RF-K10.CL (GT-RF/99-2) 'Power in 50 Ω coaxial lines, frequency: 50 MHz to 26 GHz' measurement techniques and results

    Science.gov (United States)

    Janik, Dieter; Inoue, T.; Michaud, A.

    2006-01-01

    This report summarizes the results and the measuring methods of an international key comparison between twelve national metrology institutes (NMIs) and is concerning the calibration factor of RF power sensors in the coaxial 3.5 mm line for frequencies up to 26 GHz. Two RF power travelling standards fitted with male PC 3.5 mm connectors were measured at seven frequencies. The following NMIs participated: NMIJ (Japan), NRC (Canada), NIST (USA), METAS (Switzerland), CSIR-NML (South Africa), NMIA (Australia), NPL (UK), SiQ (Slovenia), IEN (Italy), VNIIFTRI (Russian Federation), SPRING (Singapore) and PTB (Germany), as the pilot laboratory. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  11. Beam test with the HIMAC RF control system

    International Nuclear Information System (INIS)

    Kanazawa, M.; Sato, K.; Itano, A.

    1992-01-01

    RF system of the HIMAC synchrotron has been developed and tested in the factory. With the high power system, we could sweep the acceleration frequency from 1MHz to 8MHz with the acceleration voltage of 6KV. The performance of the RF control system has been confirmed with a developed simulator of the synchrotron oscillation. Following these two tests in the factory, we had a beam test of the RF control system at TARN-II in INS (Institute for Nuclear Study, University of Tokyo). This paper describes the beam test and its results. (author)

  12. Microwave frequency detector at X-band using GaAs MMIC technology

    International Nuclear Information System (INIS)

    Zhang Jun; Liao Xiaoping; Jiao Yongchang

    2009-01-01

    The design, fabrication, and experimental results of an MEMS microwave frequency detector are presented for the first time. The structure consists of a microwave power divider, two CPW transmission lines, a microwave power combiner, an MEMS capacitive power sensor and a thermopile. The detector has been designed and fabricated on GaAs substrate using the MMIC process at the X-band successfully. The MEMS capacitive power sensor is used for detecting the high power signal, while the thermopile is used for detecting the low power signal. Signals of 17 and 10 dBm are measured over the X-band. The sensitivity is 0.56 MHz/fF under 17 dBm by the capacitive power sensor, and 6.67 MHz/μV under 10 dBm by the thermopile, respectively. The validity of the presented design has been confirmed by the experiment.

  13. Telemetry Standards, RCC Standard 106-17, Chapter 28, RF Network Management

    Science.gov (United States)

    2017-07-01

    transmission capacity management • Handoff management • Power management - TBD • Link and RF Traffic Loading Status 28.2.3 Epoch Structure The RF network...physical media (i.e., the wireless RF network). On the transmission side, it is responsible for framing IP packets for physical transmission (adding in...Structure .................................................................................................. 28-3 28.2.4 Transmission Opportunities

  14. Excitation power dependence of photoluminescence spectra of GaSb type-II quantum dots in GaAs grown by droplet epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kawazu, T., E-mail: KAWAZU.Takuya@nims.go.jp; Noda, T.; Sakuma, Y. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Sakaki, H. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya 468-8511 (Japan)

    2016-04-15

    We investigated the excitation power P dependence of photoluminescence (PL) spectra of GaSb type-II quantum dots (QDs) in GaAs grown by droplet epitaxy. We prepared two QD samples annealed at slightly different temperatures (380 {sup o}C and 400 {sup o}C) and carried out PL measurements. The 20 {sup o}C increase of the annealing temperature leads to (1) about 140 and 60 times stronger wetting layer (WL) luminescence at low and high P, (2) about 45% large energy shift of QD luminescence with P, and (3) the different P dependence of the PL intensity ratio between the QD and the WL. These differences of the PL characteristics are explained by the effects of the WL.

  15. Burst annealing of high temperature GaAs solar cells

    Science.gov (United States)

    Brothers, P. R.; Horne, W. E.

    1991-01-01

    One of the major limitations of solar cells in space power systems is their vulnerability to radiation damage. One solution to this problem is to periodically heat the cells to anneal the radiation damage. Annealing was demonstrated with silicon cells. The obstacle to annealing of GaAs cells was their susceptibility to thermal damage at the temperatures required to completely anneal the radiation damage. GaAs cells with high temperature contacts and encapsulation were developed. The cells tested are designed for concentrator use at 30 suns AMO. The circular active area is 2.5 mm in diameter for an area of 0.05 sq cm. Typical one sun AMO efficiency of these cells is over 18 percent. The cells were demonstrated to be resistant to damage after thermal excursions in excess of 600 C. This high temperature tolerance should allow these cells to survive the annealing of radiation damage. A limited set of experiments were devised to investigate the feasibility of annealing these high temperature cells. The effect of repeated cycles of electron and proton irradiation was tested. The damage mechanisms were analyzed. Limitations in annealing recovery suggested improvements in cell design for more complete recovery. These preliminary experiments also indicate the need for further study to isolate damage mechanisms. The primary objective of the experiments was to demonstrate and quantify the annealing behavior of high temperature GaAs cells. Secondary objectives were to measure the radiation degradation and to determine the effect of repeated irradiation and anneal cycles.

  16. Burst annealing of high temperature GaAs solar cells

    International Nuclear Information System (INIS)

    Brothers, P.R.; Horne, W.E.

    1991-01-01

    One of the major limitations of solar cells in space power systems is their vulnerability to radiation damage. One solution to this problem is to periodically heat the cells to anneal the radiation damage. Annealing was demonstrated with silicon cells. The obstacle to annealing of GaAs cells was their susceptibility to thermal damage at the temperatures required to completely anneal the radiation damage. GaAs cells with high temperature contacts and encapsulation were developed. The cells tested are designed for concentrator use at 30 suns AMO. The circular active area is 2.5 mm in diameter for an area of 0.05 sq cm. Typical one sun AMO efficiency of these cells is over 18 percent. The cells were demonstrated to be resistant to damage after thermal excursions in excess of 600 degree C. This high temperature tolerance should allow these cells to survive the annealing of radiation damage. A limited set of experiments were devised to investigate the feasibility of annealing these high temperature cells. The effect of repeated cycles of electron and proton irradiation was tested. The damage mechanisms were analyzed. Limitations in annealing recovery suggested improvements in cell design for more complete recovery. These preliminary experiments also indicate the need for further study to isolate damage mechanisms. The primary objective of the experiments was to demonstrate and quantify the annealing behavior of high temperature GaAs cells. Secondary objectives were to measure the radiation degradation and to determine the effect of repeated irradiation and anneal cycles

  17. An Automated 476 MHz RF Cavity Processing Facility at SLAC

    CERN Document Server

    McIntosh, P; Schwarz, H

    2003-01-01

    The 476 MHz accelerating cavities currently used at SLAC are those installed on the PEP-II B-Factory collider accelerator. They are designed to operate at a maximum accelerating voltage of 1 MV and are routinely utilized on PEP-II at voltages up to 750 kV. During the summer of 2003, SPEAR3 will undergo a substantial upgrade, part of which will be to replace the existing 358.54 MHz RF system with essentially a PEP-II high energy ring (HER) RF station operating at 476.3 MHz and 3.2 MV (or 800 kV/cavity). Prior to installation, cavity RF processing is required to prepare them for use. A dedicated high power test facility is employed at SLAC to provide the capability of conditioning each cavity up to the required accelerating voltage. An automated LabVIEW based interface controls and monitors various cavity and test stand parameters, increasing the RF fields accordingly such that stable operation is finally achieved. This paper describes the high power RF cavity processing facility, highlighting the features of t...

  18. Subnanosecond photoconductive switching in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L.

    1991-04-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential GaAs to act as a closing switch in ``avalanche`` mode at high fields. We have observed switch closing times of less than 200 psec with a 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into ``avalanche`` mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large area (1 sq cm) and small area (< 1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300--1300 psec at voltages of 6--35 kV. We will present experimental results for linear, lock on and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation. 3 refs.

  19. Subnanosecond photoconductive switching in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L.

    1991-04-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential GaAs to act as a closing switch in avalanche'' mode at high fields. We have observed switch closing times of less than 200 psec with a 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into avalanche'' mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large area (1 sq cm) and small area (< 1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300--1300 psec at voltages of 6--35 kV. We will present experimental results for linear, lock on and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation. 3 refs.

  20. Subnanosecond photoconductive switching in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L.

    1990-01-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential of GaAs to act as a closing switch in avalanche'' mode at high fields. We have observed switch closing times of less than 200 psec with 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into an avalanche'' mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large are (1 sq cm) and small area (<1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300--1300 psec at voltages of 6-35 kV. We will present experimental results for linear, lock on and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation. 3 refs., 11 figs.

  1. Subnanosecond photoconductive switching in GaAs

    Science.gov (United States)

    Druce, R. L.; Pocha, M. D.; Griffin, K. L.

    1991-04-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential GaAs to act as a closing switch in 'avalanche' mode at high fields. We have observed switch closing times of less than 200 psec with a 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into 'avalanche' mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large area (1 sq cm) and small area (less than 1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300-1300 psec at voltages of 6-35 kV. We will present experimental results for linear, lock on, and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation.

  2. SPS RF System Amplifier plant

    CERN Multimedia

    1977-01-01

    The picture shows a 2 MW, 200 MHz amplifier plant with feeder lines. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X.

  3. DOE planning workshop on rf theory and computations

    International Nuclear Information System (INIS)

    1984-01-01

    The purpose of the two-day workshop-meeting was to review the status of rf heating in magnetic fusion plasmas and to determine the outstanding problems in this area. The term rf heating was understood to encompass not only bulk plasma heating by externally applied electromagnetic power but also current generation in toroidal plasmas and generation of thermal barriers in tandem mirror plasmas

  4. Panel fabrication utilizing GaAs solar cells

    Science.gov (United States)

    Mardesich, N.

    1984-01-01

    The development of the GaAs solar cells for space applications is described. The activities in the fabrication of GaAs solar panels are outlined. Panels were fabricated while introducing improved quality control, soldering laydown and testing procedures. These panels include LIPS II, San Marco Satellite, and a low concentration panel for Rockwells' evaluation. The panels and their present status are discussed.

  5. Test results of the Los Alamos ferrite-tuned rf cavity

    International Nuclear Information System (INIS)

    Friedrichs, C.C.; Spalek, G.; Carlini, R.D.; Smythe, W.R.

    1987-03-01

    An rf accelerating cavity appropriate for use in a 20% frequency bandwidth synchrotron has been designed, fabricated, and is now being tested at Los Alamos. The cavity-amplifier system was designed to produce a peak rf gap voltage of 90 kV over the range from 50 to 60 MHz. Special features of the system are the transversely biased ferrite tuner, capacitive coupling of the amplifier to the cavity, and a 15-cm beam pipe. High-power rf testing of the cavity-amplifier system started in August 1986, using an adjustable dc power supply to bias the ferrite. This paper describes the cavity-amplifier circuit and the test results to the present time. Future plans are also discussed

  6. 10 MeV RF electron linac for industrial applications

    International Nuclear Information System (INIS)

    2017-01-01

    Electron linacs have found numerous applications in the field of radiation processing on an industrial scale. High power RF electron linacs are commonly used for food irradiation, medical sterilization, cross-linking of polymers, etc. For this purpose, the 10 MeV RF linac has been indigenously designed, developed, commissioned and is being used regularly at 3 kW beam power. This paper gives a brief description of the linac and its utilization for various applications. Safety considerations and regulatory aspects of the linac are also discussed

  7. Design, Fabrication and High Power RF Test of a C-band Accelerating Structure for Feasibility Study of the SPARC photo-injector energy upgrade

    CERN Document Server

    Alesini, D.; Di Pirro, G.; Di Raddo, R.; Ferrario, M.; Gallo, A.; Lollo, V.; Marcellini, F.; Higo, T.; Kakihara, K.; Matsumoto, S.; Campogiani, G.; Mostacci, A.; Palumbo, L.; Persichelli, S.; Spizzo, V.; Verdú-Andrés, S.

    2011-01-01

    The energy upgrade of the SPARC photo-injector from 160 to more than 260 MeV will be done by replacing a low gradient 3m S-Band structure with two 1.4m high gradient C-band structures. The structures are travelling wave, constant impedance sections, have symmetric waveguide input couplers and have been optimized to work with a SLED RF input pulse. A prototype with a reduced number of cells has been fabricated and tested at high power in KEK (Japan) giving very good performances in terms of breakdown rates (10^6 bpp/m) at high accelerating gradient (>50 MV/m). The paper illustrates the design criteria of the structures, the fabrication procedure and the high power RF test results.

  8. RF MEMS theory, design, and technology

    CERN Document Server

    Rebeiz, Gabriel M

    2003-01-01

    Ultrasmall Radio Frequency and Micro-wave Microelectromechanical systems (RF MEMs), such as switches, varactors, and phase shifters, exhibit nearly zero power consumption or loss. For this reason, they are being developed intensively by corporations worldwide for use in telecommunications equipment. This book acquaints readers with the basics of RF MEMs and describes how to design practical circuits and devices with them. The author, an acknowledged expert in the field, presents a range of real-world applications and shares many valuable tricks of the trade.

  9. Effect of R.F. Power to the Structural Properties of ZnO Thin Films Deposited by Magnetron Sputtering

    International Nuclear Information System (INIS)

    Sin, N.D.M.; Rusop, M.

    2011-01-01

    The effect of RF power variation (100 watt∼400 watt ) on the zinc oxide (ZnO) thin films electrical, optical and structural properties were examined using current voltage (I-V) measurement, UV-Vis-NIR spectrophotometer, x-ray diffraction (XRD) and atomic force microscope (AFM). ZnO thin films were prepared at room temperature in pure argon atmosphere by a RF magnetron sputtering using ZnO target. The resistivity of thin film show the lowest at 300 watt. The absorption coefficient spectra obtained from UV-Vis-NIR spectrophotometer measurement show all films have low absorbance in visible and near infrared (IR) region but have high UV absorption properties using UV-VIS spectrophotometer (JASCO 670) . Highly oriented ZnO thin films [002] direction were obtained by using Rigaku Ultima IV. (author)

  10. Preparation of GaAs photocathodes at low temperature

    International Nuclear Information System (INIS)

    Mulhollan, G.; Clendenin, J.; Tang, H.

    1996-10-01

    The preparation of an atomically clean surface is a necessary step in the formation of negative electron affinity (NEA) GaAs. Traditional methods to this end include cleaving, heat cleaning and epitaxial growth. Cleaving has the advantage of yielding a fresh surface after each cleave, but is limited to small areas and is not suitable for specialized structures. Heat cleaning is both simple and highly successful, so it is used as a preparation method in virtually all laboratories employing a NEA source on a regular basis. Due to its high cost and complexity, epitaxial growth of GaAs with subsequent in vacuo transfer is not a practical solution for most end users of GaAs as a NEA electron source. While simple, the heating cleaning process has a number of disadvantages. Here, a variety of cleaning techniques related to preparation of an atomically clean GaAs surface without heating to 600 C are discussed and evaluated

  11. Superconductivity and its pressure variation in GaAs

    International Nuclear Information System (INIS)

    Nirmala Louis, C.; Jayam, Sr. Gerardin; Amalraj, A.

    2005-01-01

    The electronic band structure, metallization, phase transition and superconducting transition of gallium arsenide under pressure are studied using TB-LMTO method. Metallization occurs via indirect closing of band gap between Γ and X points. GaAs becomes superconductor under high pressure but before that it undergoes structural phase transition from ZnS phase to NaCl phase. The ground state properties are analyzed by fitting the calculated total energies to the Birch-Murnaghan's equation of state. The superconducting transition temperatures (T c ) obtained as a function of pressure for both the ZnS and NaCl structures and GaAs comes under the class of pressure induced superconductor. When pressure is increased T c increases in both the normal and high pressure structures. The dependence of T c on electron-phonon mass enhancement factor λ shows that GaAs is an electron-phonon-mediated superconductor. Also it is found that GaAs retained in their normal structure under high pressure give appreciably high T c . (author)

  12. RF tuning system for superconducting cyclotron at VECC

    International Nuclear Information System (INIS)

    Mandal, Aditya; Som, S.; Pal, Saikat; Seth, S.; Mukherjee, A.K.; Gangopadhyay, P.; Prasad, J.S.; Raj, P.R.; Manna, S.K.; Banerjee, M.; Krishnaiah, K.V.; Maskawade, S.; Saha, M.S.; Biswas, S.; Panda, Umashakar

    2009-01-01

    The RF system of Superconducting cyclotron at VECC has operational frequency 9-27 MHz. It has three numbers of tunable rf amplifier cavities as well as six numbers of tunable Main resonant cavities. RF tuning system takes care of movement of nine stepper motor based sliding short movement and hydraulic driven three coupling capacitors and three trimmer capacitors. The PC-based stepper motor controlled sliding short movement system has positional accuracy of around 20 micron and PC-based hydraulically driven couplers and trimmers system has 10 micron positional accuracy. The RF power is capacitively coupled to the dee (accelerating electrode) of the main resonant cavity through Coupler (Coupling capacitor). The coupling capacitor is used to match the impedance of the main resonant cavity to the 50 Ohm output impedance of final RF power amplifier. Trimmer capacitor operates in closed loop for the adjustment of cavity phase variation arising due to temperature variation and beam loading of the cavity. Coupler can travel 100 mm. and trimmer has 20 mm. travels. A PLC based PID control system has been developed for positional control of the coupler and trimmer. One position control mode of trimmer is same as coupling capacitor and another is velocity control mode. Velocity control mode operates in close-loop. The positional data of different frequencies of nine stepper motors and three coupling capacitors are stored in a database. (author)

  13. Ultra-thin flexible GaAs photovoltaics in vertical forms printed on metal surfaces without interlayer adhesives

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Juho; Song, Kwangsun; Kim, Namyun; Lee, Jongho, E-mail: jong@gist.ac.kr [School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005 (Korea, Republic of); Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005 (Korea, Republic of); Hwang, Jeongwoo [Photonic Bio Research Center, Korea Photonics Technology Institute (KOPTI), 9 Cheomdanventure-ro 108beon-gil, Gwangju 61007 (Korea, Republic of); Shin, Jae Cheol [Department of Physics, Yeungnam University, Gyeongsan, Gyeongbuk 38541 (Korea, Republic of)

    2016-06-20

    Wearable flexible electronics often require sustainable power sources that are also mechanically flexible to survive the extreme bending that accompanies their general use. In general, thinner microelectronic devices are under less strain when bent. This paper describes strategies to realize ultra-thin GaAs photovoltaics through the interlayer adhesiveless transfer-printing of vertical-type devices onto metal surfaces. The vertical-type GaAs photovoltaic devices recycle reflected photons by means of bottom electrodes. Systematic studies with four different types of solar microcells indicate that the vertical-type solar microcells, at only a quarter of the thickness of similarly designed lateral-type cells, generate a level of electric power similar to that of thicker cells. The experimental results along with the theoretical analysis conducted here show that the ultra-thin vertical-type solar microcells are durable under extreme bending and thus suitable for use in the manufacturing of wearable flexible electronics.

  14. Simulation of quantum dots size and spacing effect for intermediate band solar cell application based on InAs quantum dots arrangement in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Hendra, P. I. B., E-mail: ib.hendra@gmail.com; Rahayu, F., E-mail: ib.hendra@gmail.com; Darma, Y., E-mail: ib.hendra@gmail.com [Physical Vapor Deposition Laboratory, Physics of Material Electronics Research, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Intermediate band solar cell (IBSC) has become a promising technology in increasing solar cell efficiency. In this work we compare absorption coefficient profile between InAs quantum dots with GaAs bulk. We calculate the efficiency of GaAs bulk and GaAs doped with 2, 5, and 10 nm InAs quantum dot. Effective distances in quantum dot arrangement based on electron tunneling consideration were also calculated. We presented a simple calculation method with low computing power demand. Results showed that arrangement of quantum dot InAs in GaAs can increase solar cell efficiency from 23.9 % initially up to 60.4%. The effective distance between two quantum dots was found 2 nm in order to give adequate distance to prevent electron tunneling and wave functions overlap.

  15. Structural and optical properties of vapor-etched porous GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Smida, A.; Laatar, F. [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Hassen, M., E-mail: mhdhassen@yahoo.fr [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Higher Institute of Applied Science and Technology of Sousse, City Taffala (Ibn Khaldun), 4003 Sousse (Tunisia); Ezzaouia, H. [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia)

    2016-08-15

    This paper consists to present first results concerning the structure of porous GaAs layer (por-GaAs-L) prepared by using HF/HNO{sub 3} as acidic solution in vapor etching (VE) method. In order to clarify this method, we detail here its principle and explain how por-GaAs-Ls are formed, taking into account the influencing of the exposure time of the GaAs substrate to the acid vapor. The etched GaAs layers have been investigated by UV–visible and PL analysis. One porous layer was performed to be characterised by Atomic Force Microscopy (AFM), FTIR spectroscopy, and X-Ray Diffraction (XRD). The porous structure was constituted by a nanocrystals with an average size about 6 nm. These nanocrystals were calculated from XRD peak using Scherrer's formula, AFM imaging, and also by using effective mass approximation model from effective band gap. - Highlights: • Porous GaAs layer was prepared by using Vapor etching (VE) method. • Effect of VE duration on the microstructural optical properties of the GaAs substrate • Porous structure of GaAs layer was demonstrated by using SEM and AFM microscopy.

  16. Structural and optical properties of vapor-etched porous GaAs

    International Nuclear Information System (INIS)

    Smida, A.; Laatar, F.; Hassen, M.; Ezzaouia, H.

    2016-01-01

    This paper consists to present first results concerning the structure of porous GaAs layer (por-GaAs-L) prepared by using HF/HNO 3 as acidic solution in vapor etching (VE) method. In order to clarify this method, we detail here its principle and explain how por-GaAs-Ls are formed, taking into account the influencing of the exposure time of the GaAs substrate to the acid vapor. The etched GaAs layers have been investigated by UV–visible and PL analysis. One porous layer was performed to be characterised by Atomic Force Microscopy (AFM), FTIR spectroscopy, and X-Ray Diffraction (XRD). The porous structure was constituted by a nanocrystals with an average size about 6 nm. These nanocrystals were calculated from XRD peak using Scherrer's formula, AFM imaging, and also by using effective mass approximation model from effective band gap. - Highlights: • Porous GaAs layer was prepared by using Vapor etching (VE) method. • Effect of VE duration on the microstructural optical properties of the GaAs substrate • Porous structure of GaAs layer was demonstrated by using SEM and AFM microscopy.

  17. A systems study of an RF power source for a 1 TeV next linear collider based upon the relativistic-klystron two-beam accelerator

    International Nuclear Information System (INIS)

    Yu, S.; Goffeney, N.; Deadrick, F.

    1994-11-01

    A systems study, including physics, engineering and costing, has been conducted to assess the feasibility of a relativistic-klystron two-beam-accelerator (RK-TBA) system as a RF power source candidate for a 1 TeV linear collider. Several key issues associated with a realizable RK-TBA system have been addressed, and corresponding schemes have been developed and examined quantitatively. A point design example has been constructed to present a concrete conceptual design which has acceptable transverse and longitudinal beam stability properties. The overall efficiency of RF production for such a power source is estimated to be 36%, and the cost of the full system is estimated to be less than 1 billion dollars

  18. Effect of surface microstructure and wettability on plasma protein adsorption to ZnO thin films prepared at different RF powers

    Energy Technology Data Exchange (ETDEWEB)

    Huang Zhanyun; Chen Min; Chen Dihu [State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275 (China); Pan Shirong, E-mail: stscdh@mail.sysu.edu.c [Artificial Heart Lab, the 1st Affiliate Hospital of Sun Yat-Sen University, Guangzhou 510080 (China)

    2010-10-01

    In this paper, the adsorption behavior of plasma proteins on the surface of ZnO thin films prepared by radio frequency (RF) sputtering under different sputtering powers was studied. The microstructures and surface properties of the ZnO thin films were investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible optical absorption spectroscopy and contact angle techniques. The results show that the ZnO thin films have better orientation of the (0 0 2) peak with increasing RF power, especially at around 160 W, and the optical band gap of the ZnO films varies from 3.2 to 3.4 eV. The contact angle test carried out by the sessile drop technique denoted a hydrophobic surface of the ZnO films, and the surface energy and adhesive work of the ZnO thin films decreased with increasing sputtering power. The amounts of human fibrinogen (HFG) and human serum albumin (HSA) adsorbing on the ZnO films and reference samples were determined by using enzyme-linked immunosorbent assay (ELISA). The results show that fewer plasma proteins and a smaller HFG/HSA ratio adsorb on the ZnO thin films' surface.

  19. Comparisons of single event vulnerability of GaAs SRAMS

    Science.gov (United States)

    Weatherford, T. R.; Hauser, J. R.; Diehl, S. E.

    1986-12-01

    A GaAs MESFET/JFET model incorporated into SPICE has been used to accurately describe C-EJFET, E/D MESFET and D MESFET/resistor GaAs memory technologies. These cells have been evaluated for critical charges due to gate-to-drain and drain-to-source charge collection. Low gate-to-drain critical charges limit conventional GaAs SRAM soft error rates to approximately 1E-6 errors/bit-day. SEU hardening approaches including decoupling resistors, diodes, and FETs have been investigated. Results predict GaAs RAM cell critical charges can be increased to over 0.1 pC. Soft error rates in such hardened memories may approach 1E-7 errors/bit-day without significantly reducing memory speed. Tradeoffs between hardening level, performance and fabrication complexity are discussed.

  20. Design aspects of 13.56MHz, 1kW, CW-RF oscillator for plasma production

    International Nuclear Information System (INIS)

    Kumar, Sunil; Kadia, Bhavesh; Singh, Raj; Varia, Atul; Srinivas, Y S S; Kulkarni, S V

    2010-01-01

    RF produced plasma has many applications in plasma processing and also it is useful in studying the fundamental characteristics of the plasma. A 1KW RF Hartley oscillator is designed and tested at 13.56 MHz. This has been built at RF section of Institute for Plasma Research by using EIMAC (3CX1200A7) triode tube. The RF source is operated in the grounded cathode mode. Triode 3CX1200A7 is operated in class AB and the feedback is Cathode grounded. The tube has sufficient margin in terms of plate dissipation and Grid dissipation that makes it suitable to withstand momentarily load mismatch. To optimize the RF source along with HVDC power supply many mechanical and electrical aspects have been thought of to enhance the overall quality of the system. This source mainly has three sections (The RF section, HVDC Power supply and soft start Filament Power supply). The system is compact and is housed in a 80 cm x 60 cm x 1800 cm aluminum panel. This paper describes the specifications, design criteria, circuit used, operating parameters of 1KW Oscillator along with HVDC power supply with necessary interlocks, tests conducted and results obtained of this 1 KW grounded grid Hartley Oscillator on 50 ohm dummy load. This system has been tested for 8 hours of continuous operation without any appreciable deterioration of the RF output power.