WorldWideScience

Sample records for rf phase shifters

  1. Fast ferroelectric phase shifters for energy recovery linacs

    Directory of Open Access Journals (Sweden)

    S. Yu Kazakov

    2010-11-01

    Full Text Available Fast phase shifters are described that use a novel barium strontium titanate ceramic that can rapidly change its dielectric constant as an external bias voltage is changed. These phase shifters promise to reduce by ∼10 times the power requirements for the rf source needed to drive an energy recovery linac (ERL. Such phase shifters will be coupled with superconducting radiofrequency cavities so as to tune them to compensate for phase instabilities, whether beam-driven or those caused by microphonics. The most promising design is presented, which was successfully cold tested and demonstrated a switching speed of ∼30  ns for 77 deg, corresponding to <0.5  ns per deg of rf phase. Other crucial issues (losses, phase shift values, etc. are discussed.

  2. Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Xue, Weiqi

    2010-01-01

    We propose and demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator microring resonators. The phase-shifting range and the RF-power variation are analyzed. A maximum phase-shifting range of 0~600° is achieved by utilizing a dual-microring resonator...

  3. Figures of merit for microwave photonic phase shifters based on semiconductor optical amplifiers.

    Science.gov (United States)

    Sancho, Juan; Lloret, Juan; Gasulla, Ivana; Sales, Salvador; Capmany, José

    2012-05-07

    We theoretically and experimentally compare the performance of two fully tunable phase shifter structures based on semiconductor optical amplifiers (SOA) by means of several figures of merit common to microwave photonic systems. A single SOA stage followed by a tailored notch filter is compared with a cascaded implementation comprising three SOA-based phase shifter stages. Attention is focused on the assessment of the RF net gain, noise figure and nonlinear distortion. Recommendations on the performance optimization of this sort of approaches are detailed.

  4. MEMS based monolithic Phased array using 3-bit Switched-line Phase Shifter

    Directory of Open Access Journals (Sweden)

    A. Karmakr

    2017-10-01

    Full Text Available This article details the design of an electronically scanning phased array antenna with proposed fabrication process steps. Structure is based upon RF micro-electromechanical system (MEMS technology. Capacitive type shunt switches have been implemented here to cater high frequency operation. The architecture, which is deigned at 30 GHz, consists of 3-bit (11.25º, 22.5º and 45º integrated Switched-line phase shifter and a linearly polarized microstrip patch antenna. Detailed design tricks of the Ka-band phase shifter is outlined here. The whole design is targeted for future monolithic integration. So, the substrate of choice is High Resistive Silicon (ρ > 8kΩ-cm, tan δ =0.01 and ϵr =11.8. The overall circuit occupies an cross-sectional area of 20 × 5 mm2. The simulated results show that the phase shifter can provide nearly 11.25º/22.5º/45º phase shifts and their combinations at the expense of 1dB average insertion loss at 30 GHz for eight combinations. Practical fabrication process flow using surface micromachining is proposed here. Critical dimensions of the phased array structure is governed by the deign rules of the standard CMOS/MEMS foundry.

  5. Phase shifter for antenna beam steering

    Energy Technology Data Exchange (ETDEWEB)

    Jindal, Ravi, E-mail: rjindal21@gmail.com [Master’s(MS) in System Electronics and General Electrical, Ecole Polytechnique of university of Nantes France, IETR, Nantes (France); Razban, Tchanguiz, E-mail: tchanguiz.razban-haghighi@univ-nantes.fr [Electronics and Telecommunication Institute of Rennes (IETR-UMR 6164), Ecole Polytechnique of university of Nantes France, IETR, Nantes (France)

    2016-03-09

    Wide band Array Antenna operates in Ku-band (10.7-12.7 GHz) frequency composed of N×N radiating elements. This antenna aims at the reception of television satellite signals. The goal of this research is to provide better possibility of electronic beam control instead of manual or mechanical control, and design compact and low cost phase shifters to be inserted in the feeding network of this antenna. The electronic control of the phase shifter will allow the control of beam steering. The emphasis of this project will be done at the beginning on the design of a good phase shifter in Ku band. The aim of this research is to define, simulate, release and measure a continuous phase shifter. Better reflection loss, low transmission loss, low Cost of array antennas, large range of phase-shifter, phase flatness and bandwidth will be achieved by providing better gain.

  6. Phase shifter for antenna beam steering

    International Nuclear Information System (INIS)

    Jindal, Ravi; Razban, Tchanguiz

    2016-01-01

    Wide band Array Antenna operates in Ku-band (10.7-12.7 GHz) frequency composed of N×N radiating elements. This antenna aims at the reception of television satellite signals. The goal of this research is to provide better possibility of electronic beam control instead of manual or mechanical control, and design compact and low cost phase shifters to be inserted in the feeding network of this antenna. The electronic control of the phase shifter will allow the control of beam steering. The emphasis of this project will be done at the beginning on the design of a good phase shifter in Ku band. The aim of this research is to define, simulate, release and measure a continuous phase shifter. Better reflection loss, low transmission loss, low Cost of array antennas, large range of phase-shifter, phase flatness and bandwidth will be achieved by providing better gain.

  7. X-band 5-bit MMIC phase shifter with GaN HEMT technology

    Science.gov (United States)

    Sun, Pengpeng; Liu, Hui; Zhang, Zongjing; Geng, Miao; Zhang, Rong; Luo, Weijun

    2017-10-01

    The design approach and performance of a 5-bit digital phase shifter implemented with 0.25 μm GaN HEMT technology for X-band phased arrays are described. The switched filter and high-pass/low-pass networks are proposed in this article. For all 32 states of the 5-bit phase shifter, the RMS phase error less than 5.5°, RMS amplitude error less than 0.8 dB, insertion loss less than 12 dB and input/output return loss less than 8.5 dB are obtained overall 8-12 GHz. The continuous wave power capability is also measured, and a typical input RF P1dB data of 32 dBm is achieved at 8 GHz.

  8. Array Phase Shifters: Theory and Technology

    Science.gov (United States)

    Romanofsky, Robert R.

    2007-01-01

    While there are a myriad of applications for microwave phase shifters in instrumentation and metrology, power combining, amplifier linearization, and so on, the most prevalent use is in scanning phased-array antennas. And while this market continues to be dominated by military radar and tracking platforms, many commercial applications have emerged in the past decade or so. These new and potential applications span low-Earth-orbit (LEO) communications satellite constellations and collision warning radar, an aspect of the Intelligent Vehicle Highway System or Automated Highway System. In any case, the phase shifters represent a considerable portion of the overall antenna cost, with some estimates approaching 40 percent for receive arrays. Ferrite phase shifters continue to be the workhorse in military-phased arrays, and while there have been advances in thin film ferrite devices, the review of this device technology in the previous edition of this book is still highly relevant. This chapter will focus on three types of phase shifters that have matured in the past decade: GaAs MESFET monolithic microwave integrated circuit (MMIC), micro-electromechanical systems (MEMS), and thin film ferroelectric-based devices. A brief review of some novel devices including thin film ferrite phase shifters and superconducting switches for phase shifter applications will be provided. Finally, the effects of modulo 2 phase shift limitations, phase errors, and transient response on bit error rate degradation will be considered.

  9. Test devices for high temperature superconductor phase shifters

    International Nuclear Information System (INIS)

    Fath, U.; Hoefer, G.; Kratz, H.; Vogt, A.; Matz, H.; Dolata, R.; Herwig, R.; Neuhaus, M.; Marienhoff, P.; Scherer, T.; Jutzi, W.

    1993-01-01

    In this letter we report on analytical estimations of tunable resonators with distributed Josephson inductances, that means an array of rf-SQUIDs coupled to the resonator. The results are compared with numerical simulations and measurements. The estimations indicate that resonance frequency shifts of about 200 MHz for an operation frequency of 10 GHz are feasible. The quality factor Q of the resonator is strongly influenced by the I c R n product of the rf-SQUID junctions. Quality factors of about 300 may be realized for the above mentioned operation frequency and a junction I c R n product of 1mV. This restriction is detrimental to resonators but does not prevent the use of distributed Josephson inductances for phase shifters. The measured frequency shift of about 25 MHz is smaller than estimated, mainly due to higher critical currents which lead to a characteristic phase λ (λ 2πL sq I c /Φ 0 ) higher than the optimum λ ∼ 0.7/0.9. (orig.)

  10. 10–25 GHz frequency reconfigurable MEMS 5-bit phase shifter using push–pull actuator based toggle mechanism

    International Nuclear Information System (INIS)

    Dey, Sukomal; Koul, Shiban K

    2015-01-01

    This paper presents a frequency tunable 5-bit true-time-delay digital phase shifter using radio frequency microelectromechanical system (RF MEMS) technology. The phase shifter is based on the distributed MEMS transmission line (DMTL) concept utilizing a MEMS varactor. The main source of frequency tuning in this work is a bridge actuation mechanism followed by capacitance variation. Two stages of actuation mechanisms (push and pull) are used to achieve a 2:1 tuning ratio. Accurate control of the actuation voltage between the pull to push stages contributes differential phase shift over the band of interest. The functional behavior of the push–pull actuation over the phase shifter application is theoretically established, experimentally investigated and validated with simulation. The phase shifter is fabricated monolithically using a gold based surface micromachining process on an alumina substrate. The individual primary phase-bits (11.25°/22.5°/45°/90°/180°) that are the fundamental building blocks of the complete 5-bit phase shifter are designed, fabricated and experimentally characterized from 10–25 GHz for specific applications. Finally, the complete 5-bit phase shifter demonstrates an average phase error of 4.32°, 2.8°, 1° and 1.58°, an average insertion loss of 3.76, 4.1, 4.2 and 4.84 dB and an average return loss of 11.7, 12, 14 and 11.8 dB at 10, 12, 17.2 and 25 GHz, respectively. To the best of the authors’ knowledge, this is the first reported band tunable stand alone 5-bit phase shifter in the literature which can work over the large spectrum for different applications. The total area of the 5-bit phase shifter is 15.6 mm 2 . Furthermore, the cold-switched reliability of the unit cell and the complete 5-bit MEMS phase shifter are extensively investigated and presented. (paper)

  11. Design and development of a surface micro-machined push–pull-type true-time-delay phase shifter on an alumina substrate for Ka-band T/R module application

    International Nuclear Information System (INIS)

    Dey, Sukomal; Koul, Shiban K

    2012-01-01

    A radio frequency micro-electro-mechanical system (RF-MEMS) phase shifter based on the distributed MEMS transmission line (DMTL) concept towards maximum achievable phase shift with low actuation voltage with good figure of merit (FOM) is presented in this paper. This surface micro-machined analog DMTL phase shifter demonstrates low power consumption for implementation in a Ka-band transmit/receive (T/R) module. The push–pull-type switch has been designed and optimized with an analytical method and validated with simulation, which is the fundamental building block of the design of a true-time-delay phase shifter. Change in phase has been designed and optimized in push and pull states with reference to the up-state performance of the phase shifter. The working principle of this push–pull-type DMTL phase shifter has been comprehensively worked out. A thorough detail of the design and performance analysis of the phase shifter has been carried out with various structural parameters using commercially available simulation tools with reference to a change in phase shift and has been verified using a system level simulation. The phase shifter is fabricated on the alumina substrate, using a suspended gold bridge membrane with a surface micromachining process. Asymmetric behaviour of push–pull bridge configuration has been noted and a corresponding effect on mechanical, electrical and RF performances has been extensively investigated. It is demonstrated 114° dB −1 FOM over 0–40 GHz band, which is the highest achievable FOM from a unit cell on an alumina substrate reported so far. A complete phase shifter contributes to a continuous differential phase shift of 0°–360° over 0–40 GHz band with a minimum actuation voltage of 8.1 V which is the highest achievable phase shift with the lowest actuation voltage as per till date on the alumina substrate with good repeatability and return loss better than 11.5 dB over 0–40 GHz band. (paper)

  12. Experimental demonstration of 360 tunable RF phase shift using slow and fast light effects

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Capmany, Jose

    2009-01-01

    A microwave photonic phase shifter realizing 360º phase shift over a RF bandwidth of more than 10 GHz is demonstrated using optical filtering assisted slow and fast light effects in a cascaded structure of semiconductor optical amplifiers....

  13. Demonstration of an optical phased array using electro-optic polymer phase shifters

    Science.gov (United States)

    Hirano, Yoshikuni; Motoyama, Yasushi; Tanaka, Katsu; Machida, Kenji; Yamada, Toshiki; Otomo, Akira; Kikuchi, Hiroshi

    2018-03-01

    We have been investigating an optical phased array (OPA) using electro-optic (EO) polymers in phase shifters to achieve ultrafast optical beam steering. In this paper, we describe the basic structures of the OPA using EO polymer phase shifters and show the beam steering capability of the OPA. The designed OPA has a multimode interference (MMI) beam splitter and 8-channel polymer waveguides with EO polymer phase shifters. We compare 1 × 8 MMI and cascaded 1 × 2 MMI beam splitters numerically and experimentally, and then obtain uniform intensity outputs from the 1 × 8 beam splitter. We fabricate the EO polymer OPA with a 1 × 8 MMI beam splitter to prevent intensity dispersion due to radiation loss in bending waveguides. We also evaluate the optical beam steering capability of the fabricated OPA and found a 2.7° deflection of far-field patterns when applying a voltage difference of 25 V in adjacent phase shifters.

  14. Ku to V-band 4-bit MEMS phase shifter bank using high isolation SP4T switches and DMTL structures

    Science.gov (United States)

    Dey, Sukomal; Koul, Shiban K.; Poddar, Ajay K.; Rohde, Ulrich L.

    2017-10-01

    This work presents a micro-electro-mechanical system (MEMS) based on a wide-band 4-bit phase shifter using two back-to-back single-pole-four-throw (SP4T) switches and four different distributed MEMS transmission line (DMTL) structures that are implemented on 635 µm alumina substrate using surface micromachining process. An SP4T switch is designed with a series-shunt configuration and it demonstrates an average return loss of  >17 dB, an insertion loss of  28 dB up to 60 GHz. A maximum area of the SP4T switch is ~0.76 mm2. Single-pole-single-throw and SP4T switches are capable of handling 1 W of radio frequency (RF) power up to  >100 million cycles at 25° C; they can even sustained up to  >70 million cycles with 1 W at 85 °C. The proposed wide-band phase shifter works at 17 GHz (Ku-band), 25 GHz (K-band), 35 GHz (Ka-band) and 60 GHz (V-band) frequencies. Finally,a 4-bit phase shifter demonstrates an average insertion loss of  10 dB and maximum phase error of ~3.8° at 60 GHz frequency over 500 MHz bandwidth. Total area of the fabricated device is ~11 mm2. In addition, the proposed device works well up to  >107 cycles with 1 W of RF power. To the best of the author’s knowledge, this is the best reported wide-band MEMS 4-bit phase shifter in the literature that works with a constant resolution.

  15. A low-power RF system with accurate synchronization for a S-band RF-gun using a laser-triggered photocathode

    International Nuclear Information System (INIS)

    Otake, Y.; Naito, T.; Shintake, T.; Takata, K.; Takeuchi, Y.; Urakawa, J.; Yoshioka, M.; Akiyama, H.

    1992-01-01

    An S-band RF-gun using a laser-triggered photocathode and its low-power RF system have been constructed. The main elements of the low-power RF system comprise a 600-W amplifier, an amplitude modulator, a phase detector, a phase shifter and a frequency-divider module. Synchronization between the RF fields for acceleration and the mode-locked laser pulses for beam triggering are among the important points concerning the RF-gun. The frequency divider module which down-converts from 2856 MHz(RF) to 89.25 MHz(laser), and the electrical phase-shifter were specially developed for stable phase control. The phase jitter of the frequency divider should be less than 10 ps to satisfy our present requirements. The first experiments to trigger and accelerate beams with the above-mentioned system were carried out in January, 1992. (Author) 6 figs., 5 refs

  16. Practical use of the amplitude and phase modulation of a high-power RF pulse via feed-forward control

    International Nuclear Information System (INIS)

    Kawase, Keigo; Kato, Ryukou; Irizawa, Akinori; Isoyama, Goro; Kashiwagi, Shigeru

    2013-01-01

    A new feed-forward control system to precisely control the amplitude and phase of the pulsed RF power in an electron linear accelerator (linac) is developed to make the accelerating field constant. Fast variations and ripples in the amplitude and phase in the RF pulses are compensated by modulating the amplitude and phase in the low-level system with a variable attenuator and phase shifter. The system is innovated the overdrive technique, which is commonly used in analog circuits, to speed up the slow response of the phase shifter, while the control signals are digitally processed; thus, the method is a hybrid of analog and digital techniques. By using the new control system, we find that the peak-to-peak variations in the amplitude and phase are reduced from 11.6% to 0.4% and from 6.1 degrees to 0.3 degrees, respectively, in 7.6-μs-long RF pulses for the L-band electron linac at Osaka University. (author)

  17. Electrically Tunable Reflective Terahertz Phase Shifter Based on Liquid Crystal

    Science.gov (United States)

    Yang, Jun; Xia, Tianyu; Jing, Shuaicheng; Deng, Guangsheng; Lu, Hongbo; Fang, Yong; Yin, Zhiping

    2018-02-01

    We present a reflective spatial phase shifter which operates at terahertz regime above 325 GHz. The controllable permittivity of the nematic liquid crystals was utilized to realize a tunable terahertz (THz) reflective phase shifter. The reflective characteristics of the terahertz electromagnetic waves and the liquid crystal parameters were calculated and analyzed. We provide the simulation results for the effect of the incident angle of the plane wave on the reflection. The experiment was carried out considering an array consisting of 30 × 30 patch elements, printed on a 20 × 20 mm quartz substrate with 1-mm thickness. The phase shifter provides a tunable phase range of 300° over the frequency range of 325 to 337.6 GHz. The maximum phase shift of 331° is achieved at 330 GHz. The proposed phase shifter is a potential candidate for THz applications, particularly for reconfigurable reflectarrays.

  18. Analysis and Optimization of Thin Film Ferroelectric Phase Shifters

    Science.gov (United States)

    Romanofsky, Robert R.; VanKeuls, Fred W.; Warner, Joseph D.; Mueller, Carl H.; Alterovitz, Samuel A.; Miranda, Felix A.; Qureshi, A. Haq; Romanofsky, Robert R. (Technical Monitor)

    2000-01-01

    Microwave phase shifters have been fabricated from (YBa2Cu3O(7-delta) or Au)/SrTiO3 and Au/Ba(x)Sr(1-x)TiO3 films on LaAlO3 and MgO substrates. These coupled microstrip devices rival the performance of their semiconductor counter-parts parts at Ku- and K-band frequencies. Typical insertion loss for room temperature ferroelectric phase shifters at K-band is approximately equal 5 dB. An experimental and theoretical investigation of these novel devices explains the role of the ferroelectric film in overall device performance. A roadmap to the development of a 3 dB insertion loss phase shifter that would enable a new type of phased array antenna is discussed.

  19. Integrated 60GHz RF beamforming in CMOS

    CERN Document Server

    Yu, Yikun; van Roermund, Arthur H M

    2011-01-01

    ""Integrated 60GHz RF Beamforming in CMOS"" describes new concepts and design techniques that can be used for 60GHz phased array systems. First, general trends and challenges in low-cost high data-rate 60GHz wireless system are studied, and the phased array technique is introduced to improve the system performance. Second, the system requirements of phase shifters are analyzed, and different phased array architectures are compared. Third, the design and implementation of 60GHz passive and active phase shifters in a CMOS technology are presented. Fourth, the integration of 60GHz phase shifters

  20. Ka-Band, MEMS Switched Line Phase Shifters Implemented in Finite Ground Coplanar Waveguide

    Science.gov (United States)

    Scardelletti, Maximilian C.; Ponchak, George E.; Varaljay, Nicholas C.

    2005-01-01

    Ka-band MEMS switched line phase shifters implemented in finite ground coplanar waveguide are described in this paper. The phase shifters are constructed of single-pole double-throw (SPDT) switches with additional reference and phase offset transmission line lengths. The one- and two-bit phase shifters are fabricated on high resistivity (HR) silicon with a dielectric constant, Epsilon(sub T) = 11.7 and a substrate thickness, t = 500microns. The switching architectures integrated within the phase shifters consist of MEMS switches that are doubly anchored cantilever beam capacitive switches with additional high inductive sections (MEMS LC device). The SPDT switch is composed of a T-junction with a MEMS LC device at each output port. The one-bit phase shifter described in this paper has an insertion loss (IL) and return loss (RL) of 0.9 dB and 30 dB while the two-bit described has an IL and RL of 1.8 dB and 30 dB respectively. The one-bit phase shifter's designed offset phase is 22.5deg and actual measured phase shift is 21.8deg. The two-bit phase shifter's designed offset phase is 22.5deg, 45deg, and 67.5deg and the actual measured phase shifts are 21.4deg, 44.2deg, and 65.8deg, respectively.

  1. Development of optical phase shifter based on piezoelectric ceramic

    Science.gov (United States)

    Yu, Fusheng; Shen, Xiaoqin; Yao, Chunjuan; Leng, Changlin

    2005-02-01

    The phase shifter is necessary in the optical phase-shifting measurement. At present the phase shifter commonly used is approximately divided into the penetrance-type and the reflection-type. In this paper, a reflection-type phase shifter made of piezoelectric ceramic stackup assemble is developed. The assemble are constituted of the flat piezoelectric ceramic with parallel connection circuit and inline structure. The communication between the computer and MCU is by RS232. The D/A converter controlled by the MCU outputs 0~10V voltage. Then the voltage is amplified to 0~400V DC voltage by the designed linear DC amplifier. When this voltage loads on the piezoelectric ceramic stackup assemble, the assemble will axially extend 0~5mm. In this paper, the connecting types for the mechanical construction and circuit of the piezoelectric ceramic stackup assemble, the driving power and the DC amplifier with high linearity are all introduced. The whole system developed is standardized by using phase-interfering Michelson. The standardization and the practical application indicates that this system has excellent linearity and precision repeatability.

  2. Phase loop bandwidth measurements on the advanced photon source 352 MHz rf systems

    International Nuclear Information System (INIS)

    Horan, D.; Nassiri, A.; Schwartz, C.

    1997-01-01

    Phase loop bandwidth tests were performed on the Advanced Photon Source storage ring 352-MHz rf systems. These measurements were made using the HP3563A Control Systems Analyzer, with the rf systems running at 30 kilowatts into each of the storage ring cavities, without stored beam. An electronic phase shifter was used to inject approximately 14 degrees of stimulated phase shift into the low-level rf system, which produced measureable response voltage in the feedback loops without upsetting normal rf system operation. With the PID (proportional-integral-differential) amplifier settings at the values used during accelerator operation, the measurement data revealed that the 3-dB response for the cavity sum and klystron power-phase loops is approximately 7 kHz and 45 kHz, respectively, with the cavities the primary bandwidth-limiting factor in the cavity-sum loop. Data were taken at various PID settings until the loops became unstable. Crosstalk between the two phase loops was measured

  3. A Partially Magnetized Ferrite LTCC-Based SIW Phase Shifter for Phased Array Applications

    KAUST Repository

    Ghaffar, Farhan A.

    2015-06-01

    The theory and design of a half-mode substrate-integrated waveguide ferrite low-temperature cofired ceramic-based phase shifter are presented in this paper. Unlike typical ferrite-based designs, the biasing is done through embedded windings in a multi-layer substrate that not only obviates the requirement of bulky electromagnets, but also prevents loss of bias fields at the air-to-ferrite interface. The phase shifter is operated in the partially magnetized state of ferrite substrate. Through the combined effect of embedded windings, half-mode waveguide operation, and partially magnetized state, the required bias fields have been reduced by 90% as compared with conventional ferrite-based designs employing electromagnets. A complete analytical model, backed up by electromagnetic simulations and measured results from a prototype, is presented in this paper. The fabricated prototype demonstrates a phase shift of 83.2° at a center frequency of 13.1 GHz and a figure of merit of 83.2°/dB. As a proof-of-concept, the proposed phase shifter design is monolithically integrated with a two-element antenna array to demonstrate a measured beam steering of 30°. The phase shifter design is highly efficient in terms of required bias fields, and it has a small form factor and can be easily integrated with other electronic components and systems. © 1965-2012 IEEE.

  4. Bias-free spin-wave phase shifter for magnonic logic

    Energy Technology Data Exchange (ETDEWEB)

    Louis, Steven; Tyberkevych, Vasyl; Slavin, Andrei [Department of Physics, Oakland University, 2200 N. Squirrel Rd., Rochester, Michigan, 48309–4401 (United States); Lisenkov, Ivan, E-mail: ivan.lisenkov@phystech.edu [Department of Physics, Oakland University, 2200 N. Squirrel Rd., Rochester, Michigan, 48309–4401 (United States); Kotelnikov Institute of Radio-engineering and Electronics of RAS, 11–7 Mokhovaya st., Moscow, 125009 (Russian Federation); Nikitov, Sergei [Kotelnikov Institute of Radio-engineering and Electronics of RAS, 11–7 Mokhovaya st., Moscow, 125009 (Russian Federation); Moscow Institute of Physics and Technology, 9 Instituskij per., Dolgoprudny, 141700, Moscow Region (Russian Federation); Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov, 410012 (Russian Federation)

    2016-06-15

    A design of a magnonic phase shifter operating without an external bias magnetic field is proposed. The phase shifter uses a localized collective spin wave mode propagating along a domain wall “waveguide” in a dipolarly-coupled magnetic dot array with a chessboard antiferromagnetic (CAFM) ground state. It is demonstrated numerically that the remagnetization of a single magnetic dot adjacent to the domain wall waveguide introduces a controllable phase shift in the propagating spin wave mode without significant change to the mode amplitude. It is also demonstrated that a logic XOR gate can be realized in the same system.

  5. An Integrable SIW Phase Shifter in a Partially Magnetized Ferrite LTCC Package

    KAUST Repository

    Nafe, Ahmed

    2015-06-09

    There is a growing need for small size integrable phased antenna arrays for emerging satellite communications on-the-move applications. Traditional ferrite-based phase shifters are generally bulky due to the need of electromagnets for biasing, yielding them unsuitable for this kind of application. In this paper, a novel compact light-weight substrate integrated waveguide (SIW) based phase shifter realized in a multi-layer ferrite low-temperature co-fired ceramic package with embedded bias windings is reported. By using embedded windings and operating the material in a partially magnetized state, the required bias magnetic field could be significantly reduced from typically about 1000 Oe to less than 50 Oe. Moreover, the presented phase shifter has two modes of operations corresponding to two different biasing scenarios of the SIW, namely, symmetric and anti-symmetric bias. Under anti-symmetric bias, the phase shifter can achieve high nonreciprocal phase shift, whereas under symmetric bias, the phase shift is reciprocal, but the available phase shift is less than the anti-symmetric case. The fabricated prototype operates in the 11.5-13.5-GHz range and has a peak figure of merit (phase shift per decibel of loss) of 102°/dB and a maximum phase shift per unit length of 153°/cm, which are more than five times the previously reported figures for this technology. Due to the use of embedded windings, the presented phase shifter offers a huge size reduction from the order of cm3 to mm3, making it particularly useful for mobile phased-array applications. © 2015 IEEE.

  6. Rf System for the NLCTA

    International Nuclear Information System (INIS)

    Wang, J.W.; Adolphsen, C.; Eichner, J.; Fuller, R.W.; Gold, S.L.; Hanna, S.M.; Hoag, H.A.; Holmes, S.G.; Koontz, R.F.; Lavine, Theodore L.; Loewen, R.J.; Miller, R.H.; Nantista, C.D.; Pope, R.; Rifkin, J.; Ruth, R.D.; Tantawi, S.G.; Vlieks, A.E.; Wilson, Z.; Yeremian, A.

    2011-01-01

    This paper describes an X-Band RF system for the Next Linear Collider Test Accelerator. The RF system consists of a 90 MeV injector and a 540 MeV linac. The main components of the injector are two low-Q single-cavity prebunchers and two 0.9-m-long detuned accelerator sections. The linac system consists of six 1.8-m-long detuned and damped detuned accelerator sections powered in pairs. The rf power generation, compression, delivery, distribution and measurement systems consist of klystrons, SLEDII energy compression systems, rectangular waveguides, magic-T's, and directional couplers. The phase and amplitude for each prebuncher is adjusted via a magic-T type phase shifter/attenuator. Correct phasing between the two 0.9 m accelerator sections is obtained by properly aligning the sections and adjusting two squeeze type phase shifters. Bunch phase and bunch length can be monitored with special microwave cavities and measurement systems. The design, fabrication, microwave measurement, calibration, and operation of the sub-systems and their components are briefly presented.

  7. High-power RF controls for the NBS-Los Alamos racetrack microtron

    International Nuclear Information System (INIS)

    Young, L.M.; Biddl, R.S.

    1985-01-01

    The high-power rf system for the National Bureau of Standards (NBS)-Los Alamos racetrack microtron (RTM) uses waveguide power splitters and waveguide phase shifters to distribute rf power from a single 500-kw cw klystron to four side-coupled accelerating structures. The amplitude and phase of each structure is controlled by a feedback system that uses the waveguide variable power splitters, waveguide phase shifters, and klystron drive as the active control elements. The feedback controls on the capture section use low-level rf amplitude and phase controls on the rf drive to the klystron. These controls are very fast with an open loop gain bandwidth of approximately 40 kHz. The feedback loop is identical to the feedback loop used in the chopper/buncher system described in another paper at this conference

  8. Substrate Integrated Waveguide Based Phase Shifter and Phased Array in a Ferrite Low Temperature Co-fired Ceramic Package

    KAUST Repository

    Nafe, Ahmed A.

    2014-03-01

    Phased array antennas, capable of controlling the direction of their radiated beam, are demanded by many conventional as well as modern systems. Applications such as automotive collision avoidance radar, inter-satellite communication links and future man-portable satellite communication on move services require reconfigurable beam systems with stress on mobility and cost effectiveness. Microwave phase shifters are key components of phased antenna arrays. A phase shifter is a device that controls the phase of the signal passing through it. Among the technologies used to realize this device, traditional ferrite waveguide phase shifters offer the best performance. However, they are bulky and difficult to integrate with other system components. Recently, ferrite material has been introduced in Low Temperature Co-fired Ceramic (LTCC) multilayer packaging technology. This enables the integration of ferrite based components with other microwave circuitry in a compact, light-weight and mass producible package. Additionally, the recent concept of Substrate Integrated Waveguide (SIW) allowed realization of synthesized rectangular waveguide-like structures in planar and multilayer substrates. These SIW structures have been shown to maintain the merits of conventional rectangular waveguides such as low loss and high power handling capabilities while being planar and easily integrable with other components. Implementing SIW structures inside a multilayer ferrite LTCC package enables monolithic integration of phase shifters and phased arrays representing a true System on Package (SoP) solution. It is the objective of this thesis to pursue realizing efficient integrated phase shifters and phased arrays combining the above mentioned technologies, namely Ferrite LTCC and SIW. In this work, a novel SIW phase shifter in ferrite LTCC package is designed, fabricated and tested. The device is able to operate reciprocally as well as non-reciprocally. Demonstrating a measured maximum

  9. Theory and design of a half-mode SIW Ferrite LTCC phase shifter

    KAUST Repository

    Ghaffar, Farhan A.

    2015-05-01

    A half mode SIW based Ferrite LTCC phase shifter is presented in this work. A theoretical model to predict the phase shift in the partially magnetized state has been derived. Contrary to the bulky external magnets employed by conventional ferrite phase shifters for biasing, this design uses bias windings embedded within the ferrite substrate. This not only enables miniaturization but also reduces the required bias fields considerably by avoiding the demagnetization effect (fields lost at air-dielectric interface for external biasing schemes). The design is optimized with the aid of magnetostatic and microwave simulations which are later verified through measurements of a prototype. The fabricated phase shifter provides a differential phase shift of 110°/cm and an FoM of 55°/dB for an applied DC current of 240 mA.

  10. Intermodulation and harmonic distortion in slow light Microwave Photonic phase shifters based on Coherent Population Oscillations in SOAs.

    Science.gov (United States)

    Gasulla, Ivana; Sancho, Juan; Capmany, José; Lloret, Juan; Sales, Salvador

    2010-12-06

    We theoretically and experimentally evaluate the propagation, generation and amplification of signal, harmonic and intermodulation distortion terms inside a Semiconductor Optical Amplifier (SOA) under Coherent Population Oscillation (CPO) regime. For that purpose, we present a general optical field model, valid for any arbitrarily-spaced radiofrequency tones, which is necessary to correctly describe the operation of CPO based slow light Microwave Photonic phase shifters which comprise an electrooptic modulator and a SOA followed by an optical filter and supplements another recently published for true time delay operation based on the propagation of optical intensities. The phase shifter performance has been evaluated in terms of the nonlinear distortion up to 3rd order, for a modulating signal constituted of two tones, in function of the electrooptic modulator input RF power and the SOA input optical power, obtaining a very good agreement between theoretical and experimental results. A complete theoretical spectral analysis is also presented which shows that under small signal operation conditions, the 3rd order intermodulation products at 2Ω1 + Ω2 and 2Ω2 + Ω1 experience a power dip/phase transition characteristic of the fundamental tones phase shifting operation.

  11. High-power rf controls for the NBS-Los Alamos racetrack microtron

    International Nuclear Information System (INIS)

    Young, L.M.; Biddle, R.S.

    1985-01-01

    The high-power rf system for the National Bureau of Standards (NBS)-Los Alamos racetrack microtron (RTM) uses waveguide power splitters and waveguide phase shifters to distribute rf power from a single 500-kW cw klystron to four side-coupled accelerating structures. The amplitude and phase of each structure is controlled by a feedback system that uses the waveguide variable power splitters, waveguide phase shifters, and klystron drive as the active control elements. A block diagram of this system is shown, as is a subset of the complete system on which the measurements reported in this paper were performed. The feedback controls on the capture section use low-level rf amplitude and phase controls on the rf drive to the klystron. These controls are very fast with an open loop gain bandwidth of approximately 40 kHz. The feedback loop is identical to the feedback loop used in the chopper/buncher system described in another paper at this conference. 4 refs., 8 figs

  12. Investigating excitation-dependent and fringe-field effects of electromagnet and permanent-magnet phase shifters for a crossed undulator

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ting-Yi, E-mail: chung.albert@nsrrc.org.tw [National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Yang, Chih-Sheng; Chu, Yun-Liang; Lin, Fu-Yuan; Jan, Jyh-Chyuan [National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Hwang, Ching-Shiang [National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Department of Electrophysics, National Chiao Tung University, Hsinchu 30050, Taiwan (China)

    2017-04-01

    To enhance the flux density or to control polarization, a phase shifter was designed and used to modulate the phase matching between segmented undulators. A larger hysteresis loop causes, however, a repeatability issue in the phase matching; the fringe field of the phase shifter creates an extra magnetic-field error. The design of the phase shifter must therefore minimize the hysteresis loop and fringe field to maintain the phases exact and to ignore the crosstalk effect. Two critical issues are the hysteresis-loop problem and the fringe-field effect, which determine the radiation performance and the stability of the ring. To investigate these issues, a phase shifter was constructed to operate in accordance with electromagnetic- and permanent-type magnets; the results from the field measurements and shims are discussed here. The shimming algorithm and a compact permanent-magnet phase shifter that eliminates the issues are also presented.

  13. Silicon graphene waveguide tunable broadband microwave photonics phase shifter.

    Science.gov (United States)

    Capmany, José; Domenech, David; Muñoz, Pascual

    2014-04-07

    We propose the use of silicon graphene waveguides to implement a tunable broadband microwave photonics phase shifter based on integrated ring cavities. Numerical computation results show the feasibility for broadband operation over 40 GHz bandwidth and full 360° radiofrequency phase-shift with a modest voltage excursion of 0.12 volt.

  14. 360° tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator

    DEFF Research Database (Denmark)

    Pu, Minhao; Xue, Weiqi; Liu, Liu

    2010-01-01

    We demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator dual-microring resonators. A quasi-linear phase shift of 360° with ~2dB radio frequency power variation at a microwave frequency of 40GHz is obtained......We demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator dual-microring resonators. A quasi-linear phase shift of 360° with ~2dB radio frequency power variation at a microwave frequency of 40GHz is obtained...

  15. A Partially Magnetized Ferrite LTCC-Based SIW Phase Shifter for Phased Array Applications

    KAUST Repository

    Ghaffar, Farhan A.; Shamim, Atif

    2015-01-01

    The theory and design of a half-mode substrate-integrated waveguide ferrite low-temperature cofired ceramic-based phase shifter are presented in this paper. Unlike typical ferrite-based designs, the biasing is done through embedded windings in a

  16. All-optical phase shifter and switch near 1550nm using tungsten disulfide (WS2) deposited tapered fiber.

    Science.gov (United States)

    Wu, Kan; Guo, Chaoshi; Wang, Hao; Zhang, Xiaoyan; Wang, Jun; Chen, Jianping

    2017-07-24

    All-optical phase shifters and switches play an important role for various all-optical applications including all-optical signal processing, sensing and communication. In this paper, we demonstrate a fiber all-optical phase shifter using few-layer 2D material tungsten disulfide (WS 2 ) deposited on a tapered fiber. WS 2 absorbs injected 980 nm pump (control light) and generates heat, which changes the refractive index of both WS 2 and tapered fiber due to thermo-optic effect and achieves a maximum phase shift of 6.1π near 1550 nm. The device has a loss of 3.7 dB. By constructing a Mach-Zehnder interferometer with WS 2 based phase shifter in one arm, an all-optical switch is also obtained with an extinction ratio of 15 dB and a rise time of 7.3 ms. This all fiber low-cost and compact optical phase shifter and switch demonstrates the potential of 2D transition metal dichalcogenides for all-optical signal processing devices.

  17. Theory and design of a half-mode SIW Ferrite LTCC phase shifter

    KAUST Repository

    Ghaffar, Farhan A.; Shamim, Atif

    2015-01-01

    A half mode SIW based Ferrite LTCC phase shifter is presented in this work. A theoretical model to predict the phase shift in the partially magnetized state has been derived. Contrary to the bulky external magnets employed by conventional ferrite

  18. Analysis and comparison of different phase shifters for Stirling pulse tube cryocooler

    DEFF Research Database (Denmark)

    Lei, Tian; Pfotenhauer, John M.; Zhou, Wenjie

    2016-01-01

    Investigations of phase shifters and power recovery mechanisms are of sustainable interest for developing Stirling pulse tube cryocoolers (SPTC) with higher power density, more compact design and higher efficiency. This paper investigates the phase shifting capacity and the applications of four...

  19. Self-assembled monolayers and chemical derivatization of Ba0.5Sr0.5TiO3 thin films: Applications in phase shifter devices

    International Nuclear Information System (INIS)

    Morales-Cruz, Angel L.; Van Keuls, Fred W.; Miranda, Felix A.; Cabrera, Carlos R.

    2005-01-01

    Thin films of barium strontium titanate (Ba 1-x Sr x TiO 3 (BSTO)) have been used in coupled microstrip phase shifters (CMPS) for possible insertion in satellite and wireless communication platforms primarily because of their high dielectric constant, low loss, large tunability, and good structural stability. In an attempt to improve the figure of merit K (phase shift deg /dB of loss) of phase shifters, modification of the metal/BSTO interface of these devices has been done through surface modification of the BSTO layer using a self-assembled monolayer approach. The impact of this nanotechnology promises to reduce RF losses by improving the quality of the metal/BSTO interface. In this study, compounds such as 3-mercaptopropyltrimethoxysilane (MPS), 16-mercaptohexadecanois acid (MHDA) and 3-mercaptopropionic acid (MPA) were used to form the self-assembled monolayers on the BSTO surface. As a result of the previous modification, chemical derivatization of the self-assembled monolayers was done in order to increase the chain length. Chemical derivatization was done using 3-aminopropyltrimethoxysilane (APS) and 16-mercaptohexadecanoic acid. Surface chemical analysis was done to reveal the composition of the derivatization via X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared (FT-IR). Low and high frequencies measurements of phase shifters were done in order measure the performance of these devices for insertion in antennas. X-ray photoelectron spectroscopy characterization of modified BSTO thin films with MPS showed a binding energy peak at 162.9 eV, indicative of a possible S-O interaction: sulfur of the mercapto compound, MPS, used to modify the surface with the oxygen site of the BSTO thin film. This interaction is at higher binding energies compared with the thiolate interaction. This behavior is observed with the other mercapto compounds such as: MHDA and MPA. An FT-IR analysis present a band at 780 cm -1 , which is characteristic of an O

  20. A K-Band Low-Power Phase Shifter Based on Injection Locked Oscillator in 0.13 μm CMOS Technology

    Science.gov (United States)

    Qiu, Qi-Lin; Yu, Xiao-Peng; Sui, Wen-Quan

    2017-11-01

    In this paper, the design challenges of the injection-locked oscillator (ILO)-based phase shifter are reviewed and analyzed. The key design considerations such as the operating frequency, locking range, and linearity of the phase shifters are analysed in detail. It is possible to optimize the phase shifter in certain parameters such as ultra-low power while meeting the requirements of a certain system. As a design example, a K-band phase shifter is implemented using a commercial 0.13 μm CMOS technology, where a conventional LC tank based topology is implemented but optimised with a good balance among power consumption, working range, sensitivity, and silicon area, etc. Measurement results show that the proposed phase shift is able to work at 22-23.4 GHz with a range of 180∘ while consuming 3.14 mW from a 1.2 V supply voltage.

  1. High power RF transmission line component development

    International Nuclear Information System (INIS)

    Hong, B. G.; Hwang, C. K.; Bae, Y. D.; Yoon, J. S.; Wang, S. J.; Gu, S. H.; Yang, J. R.; Hahm, Y. S.; Oh, G. S.; Lee, J. R.; Lee, W. I.; Park, S. H.; Kang, M. S.; Oh, S. H.; Lee, W.I.

    1999-12-01

    We developed the liquid stub and phase shifter which are the key high RF power transmission line components. They show reliable operation characteristics and increased insulation capability, and reduced the size by using liquid (silicon oil, dielectric constant ε=2.72) instead of gas for insulating dielectric material. They do not have finger stock for the electric contact so the local temperature rise due to irregular contact and RF breakdown due to scratch in conductor are prevented. They can be utilized in broadcasting, radar facility which require high RF power transmission. Moreover, they are key components in RF heating system for fusion reactor. (author)

  2. High power RF transmission line component development

    Energy Technology Data Exchange (ETDEWEB)

    Hong, B. G.; Hwang, C. K.; Bae, Y. D.; Yoon, J. S.; Wang, S. J.; Gu, S. H.; Yang, J. R.; Hahm, Y. S.; Oh, G. S.; Lee, J. R.; Lee, W. I.; Park, S. H.; Kang, M. S.; Oh, S. H.; Lee, W.I

    1999-12-01

    We developed the liquid stub and phase shifter which are the key high RF power transmission line components. They show reliable operation characteristics and increased insulation capability, and reduced the size by using liquid (silicon oil, dielectric constant {epsilon}=2.72) instead of gas for insulating dielectric material. They do not have finger stock for the electric contact so the local temperature rise due to irregular contact and RF breakdown due to scratch in conductor are prevented. They can be utilized in broadcasting, radar facility which require high RF power transmission. Moreover, they are key components in RF heating system for fusion reactor. (author)

  3. RF MEMS theory, design, and technology

    CERN Document Server

    Rebeiz, Gabriel M

    2003-01-01

    Ultrasmall Radio Frequency and Micro-wave Microelectromechanical systems (RF MEMs), such as switches, varactors, and phase shifters, exhibit nearly zero power consumption or loss. For this reason, they are being developed intensively by corporations worldwide for use in telecommunications equipment. This book acquaints readers with the basics of RF MEMs and describes how to design practical circuits and devices with them. The author, an acknowledged expert in the field, presents a range of real-world applications and shares many valuable tricks of the trade.

  4. Microwave monolithic filter and phase shifter using magnetic nanostructures

    Science.gov (United States)

    Aslam, Shehreen; Khanna, Manoj; Veenugopal, Veerakumar; Kuanr, Bijoy K.

    2018-05-01

    Monolithic Microwave Integrated Circuit (MMIC) have major impact on the development of microwave communication technology. Transition metal based ferromagnetic nano-wired (FMNWs) substrate are of special interest in order to fabricate these MMIC devices. Their saturation magnetization is comparatively higher than ferrites which makes them suitable for high frequency (>10 ˜ 40 GHz) operation at zero or a small applied magnetic field. The CoFeB nanowires in anodic alumina templates were synthesized using three-electrode electro-deposition system. After electro-deposition, 1μm thick Cu layer was sputtered on the top surface of FMNW substrate and lithography was done to design microstrip lines. These microstrip transmission lines were tested for band-stop filters and phase shifters based on ferromagnetic resonance (FMR) over a wide applied magnetic field (H) range. It was observed that attenuation and frequency increase with the increase of magnetic field (upto 5.3 kOe). For phase shifter, the influence of magnetic material was studied for two frequency regions: (i) below FMR and (ii) above FMR. These two frequency regions were suitable for many practical device applications as the insertion loss was very less in these regions in comparison to resonance frequency regions. In the high frequency region (at 35 GHz), the optimal differential phase shift increased significantly to ˜ 250 deg/cm and around low frequency region (at 24 GHz), the optimal differential phase shift is ˜175 deg/cm at the highest field (H) value.

  5. Microwave monolithic filter and phase shifter using magnetic nanostructures

    Directory of Open Access Journals (Sweden)

    Shehreen Aslam

    2018-05-01

    Full Text Available Monolithic Microwave Integrated Circuit (MMIC have major impact on the development of microwave communication technology. Transition metal based ferromagnetic nano-wired (FMNWs substrate are of special interest in order to fabricate these MMIC devices. Their saturation magnetization is comparatively higher than ferrites which makes them suitable for high frequency (>10 ∼ 40 GHz operation at zero or a small applied magnetic field. The CoFeB nanowires in anodic alumina templates were synthesized using three-electrode electro-deposition system. After electro-deposition, 1μm thick Cu layer was sputtered on the top surface of FMNW substrate and lithography was done to design microstrip lines. These microstrip transmission lines were tested for band-stop filters and phase shifters based on ferromagnetic resonance (FMR over a wide applied magnetic field (H range. It was observed that attenuation and frequency increase with the increase of magnetic field (upto 5.3 kOe. For phase shifter, the influence of magnetic material was studied for two frequency regions: (i below FMR and (ii above FMR. These two frequency regions were suitable for many practical device applications as the insertion loss was very less in these regions in comparison to resonance frequency regions. In the high frequency region (at 35 GHz, the optimal differential phase shift increased significantly to ∼ 250 deg/cm and around low frequency region (at 24 GHz, the optimal differential phase shift is ∼175 deg/cm at the highest field (H value.

  6. Substrate Integrated Waveguide Based Phase Shifter and Phased Array in a Ferrite Low Temperature Co-fired Ceramic Package

    KAUST Repository

    Nafe, Ahmed A.

    2014-01-01

    that controls the phase of the signal passing through it. Among the technologies used to realize this device, traditional ferrite waveguide phase shifters offer the best performance. However, they are bulky and difficult to integrate with other system components

  7. An Integrable SIW Phase Shifter in a Partially Magnetized Ferrite LTCC Package

    KAUST Repository

    Nafe, Ahmed; Shamim, Atif

    2015-01-01

    , yielding them unsuitable for this kind of application. In this paper, a novel compact light-weight substrate integrated waveguide (SIW) based phase shifter realized in a multi-layer ferrite low-temperature co-fired ceramic package with embedded bias

  8. 16 kanałowy układ sterownika silników krokowych przesuwników fazy RF 1,3 GHz zasilających nadprzewodzące wnęki rezonansowe lasera na swobodnych elektronach FLASH

    CERN Document Server

    Kielar, E; Wierba, W

    2011-01-01

    The LLRF (Low Level Radio Frequency) System has to control also the RF coupling with the FLASH accelerator cavities. It is done remotely by controlling RF Phase Shifters driven by step motors. It was necessary to design the multichannel stepper motors driver controlled via Ethernet. The driver is built on the basis of low-power CMOS 8-bit AVR RISC microcontroller and the MODBUS protocol. The 16 drivers integrated on a single PCB allow for controlling 16 RF (Radio Frequency) Phase Shifters for the proper adjustment of the waveguides to cavities coupling.

  9. Multi-band phase shifter design using modified slotline configuration

    Science.gov (United States)

    Kulandhaisamy, Indhumathi; Rajendran, Dinesh Babu; Kanagasabai, Malathi; Gurusamy, Gunasekaran; Moorthy, Balaji; George, Jithila V.; Lawrance, Livya

    2017-01-01

    In this paper, an analog multiband phase shifter using slotline configuration is proposed. To implement the design, a pair of modified Split Ring Resonator (SRR) is employed. The periodic property of SRR provides multiband characteristics, whether the coupling slot gives the phase variations over the bands. The operation is well explained with an equivalent circuit model and its characteristics have been studied both in simulation and measurement. The prototype operates in 1.77-2.16, 3.5-3.97, 5.08-5.33, 6.43-6.93, and 8.01-8.59 GHz frequency bands which can be utilized for GSM, GPS, WLAN, C-band, and X-band applications, respectively.

  10. Studies of nitride- and oxide-based materials as absorptive shifters for embedded attenuated phase-shifting mask in 193 nm

    Science.gov (United States)

    Lin, Cheng-ming; Chang, Keh-wen; Lee, Ming-der; Loong, Wen-An

    1999-07-01

    Abstract-Five materials which are PdSixOy, CrAlxOy, SiNx, TiSixNy, and TiSixOyNz as absorptive shifters for attenuated phase-shifting mask in 193 nm wavelength lithography are presented. PdSixOy films were deposited by dual e-gun evaporation. CrAlxOy, TiSixNy and TiSixOyNz films were formed by plasma sputtering and SiNx films were formed with LPCVD. All of these materials are shown to be capable of achieving 4 percent - 15 percent transmittance in 193 nm with thickness that produce a 180 degrees phase shift. Under BCl3:Cl2 equals 14:70 sccm; chamber pressure 5 mtorr and RF power 1900W, the dry etching selectivity of TiSixNy over DQN positive resist and fused silica, were found to be 2:1 and 4,8:1 respectively. An embedded layer TiSixNy with 0.5 micrometers line/space was successfully patterned.

  11. Low absorption InP/InGaAs-MQW phase shifters for optical switching

    NARCIS (Netherlands)

    Vreeburg, C.G.M.; Smit, M.K.; Bachmann, M.; Kyburz, R.; Krähenbühl, R.; Gini, E.; Melchior, H.; Shi, L.; Spiekman, L.H.; Leijtens, X.J.M.

    1995-01-01

    InP/InGaAs-MQW phase shifters with low absorption loss and low electroabsorption loss have been realized. Phase shift efficiency for TE-polarized light at lambda =1.55 mu m was 6.8 degrees V/sup -1/ mm/sup -1/ with negligible absorption loss and at lambda =1.51 mu m the efficiency was 8.9 degrees

  12. Design Technology Aspects of the Millimeter Waveband Phase Shifter Development

    Directory of Open Access Journals (Sweden)

    E. V. Komissarova

    2015-01-01

    Full Text Available The aim of this paper is to develop a technique, which takes into consideration the design technology aspects to create a waveguide ferrite Faradays’ phase shifter (WFFPS of the shortwave part of the millimeter wave range. Only using the calculation and analysis techniques based on the electro-dynamic high-level models for designed devices enables us to solve this task successfully.In assembling the WFFPS, its individual parts are connected by dint of glue (rod, yokes, dielectric transition transformers. Thus the layers of glue, possible air gaps, and misalignment of individual parts, obviously have effect on the WFFPS characteristics and should be taken into account at the stage of device calculation and design. Therefore, the aim is to analyze the impact of these technology features on the characteristics of WFFPS.The calculation algorithm of the waveguide transition, which matches WFFPS with the waveguide transmission line or integrated phased array antenna (PAA element radiator in view of possible air or adhesive gaps apparition is based on the solving problem of diffraction of electromagnetic waves. Eigenvalue problem solution by Galerkin method must be preceded to the electromagnetic waves diffraction on the stepped waveguide transition by method of partial areas (Trefftz method solution. As a result, a system of linear inhomogeneous equations is determined. Its solution is the basis for the algorithm to define the numerical values of complex amplitudes of waves excited in all longitudinally uniform areas with a laterally nonuniform ferritedielectric filling, into which splits the waveguide ferrite phase shifter.To take into account the effect of air or glue gap arising when assembling the phase shifter, a designed calculation model is added by the transition step from a material having the same dielectric constant as that of the material filling the gap. The paper presents numerical investigation findings concerning the influence of

  13. Broadband microwave photonic fully tunable filter using a single heterogeneously integrated III-V/SOI-microdisk-based phase shifter.

    Science.gov (United States)

    Lloret, Juan; Morthier, Geert; Ramos, Francisco; Sales, Salvador; Van Thourhout, Dries; Spuesens, Thijs; Olivier, Nicolas; Fédéli, Jean-Marc; Capmany, José

    2012-05-07

    A broadband microwave photonic phase shifter based on a single III-V microdisk resonator heterogeneously integrated on and coupled to a nanophotonic silicon-on-insulator waveguide is reported. The phase shift tunability is accomplished by modifying the effective index through carrier injection. A comprehensive semi-analytical model aiming at predicting its behavior is formulated and confirmed by measurements. Quasi-linear and continuously tunable 2π phase shifts at radiofrequencies greater than 18 GHz are experimentally demonstrated. The phase shifter performance is also evaluated when used as a key element in tunable filtering schemes. Distortion-free and wideband filtering responses with a tuning range of ~100% over the free spectral range are obtained.

  14. Design and development of low level S-Band RF control system for IRFEL injector LINAC

    International Nuclear Information System (INIS)

    Mohania, Praveen; Mahawar, Ashish; Singh, Adarsh Pratap; Namdeo, Rajkumar; Baxy, Deodatta; Shrivastava, Purushottam

    2015-01-01

    A low level RF system has been designed and developed for phase and amplitude stabilization of S- Band microwave power being fed to fundamental buncher cavity and the injector LINAC structure of the Infra Red Free Electron Laser being developed at RRCAT Indore. The system uses analog phase shifters and voltage variable attenuators to control the phase and amplitude respectively, the control voltages for phase shifters and attenuators are generated using a 12 Bit ADC and is software controlled. The system has a slow feedback to correct phase and amplitude drifts occurring due to thermal variations and a fast feed forward mechanism to vary amplitude and phase of the output pulse to compensate beam loading and to shape the klystron output power. The present paper describes the design aspects of the LLRF system. (author)

  15. A divide-down RF source generation system for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Horan, D.; Lenkszus, F.; Laird, R.

    1997-01-01

    A divide-down rf source system has been designed and built at Argonne National Laboratory to provide harmonically-related and phase-locked rf source signals between the APS 352-MHz storage ring and booster synchrotron rf systems and the 9.77-MHz and 117-MHz positron accumulator ring rf systems. The design provides rapid switching capability back to individual rf synthesizers for each one. The system also contains a digital bucket phase shifter for injection bucket selection. Input 352-MHz rf from a master synthesizer is supplied to a VXI-based ECL divider board which produces 117-MHz and 9.77-MHz square-wave outputs. These outputs are passed through low-pass filters to produce pure signals at the required fundamental frequencies. These signals, plus signals at the same frequencies from independent synthesizers, are fed to an interface chassis where source selection is made via local/remote control of coaxial relays. This chassis also produces buffered outputs at each frequency for monitoring and synchronization of ancillary equipment

  16. Femtosecond precision measurement of laser–rf phase jitter in a photocathode rf gun

    International Nuclear Information System (INIS)

    Shi, Libing; Zhao, Lingrong; Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhu, Pengfei; Xiang, Dao

    2017-01-01

    We report on the measurement of the laser–rf phase jitter in a photocathode rf gun with femtosecond precision. In this experiment four laser pulses with equal separation are used to produce electron bunch trains; then the laser–rf phase jitter is obtained by measuring the variations of the electron bunch spacing with an rf deflector. Furthermore, we show that when the gun and the deflector are powered by the same rf source, it is possible to obtain the laser–rf phase jitter in the gun through measurement of the beam–rf phase jitter in the deflector. Based on these measurements, we propose an effective time-stamping method that may be applied in MeV ultrafast electron diffraction facilities to enhance the temporal resolution.

  17. Femtosecond precision measurement of laser–rf phase jitter in a photocathode rf gun

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Libing; Zhao, Lingrong; Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhu, Pengfei; Xiang, Dao, E-mail: dxiang@sjtu.edu.cn

    2017-03-21

    We report on the measurement of the laser–rf phase jitter in a photocathode rf gun with femtosecond precision. In this experiment four laser pulses with equal separation are used to produce electron bunch trains; then the laser–rf phase jitter is obtained by measuring the variations of the electron bunch spacing with an rf deflector. Furthermore, we show that when the gun and the deflector are powered by the same rf source, it is possible to obtain the laser–rf phase jitter in the gun through measurement of the beam–rf phase jitter in the deflector. Based on these measurements, we propose an effective time-stamping method that may be applied in MeV ultrafast electron diffraction facilities to enhance the temporal resolution.

  18. Study and development of an achromatic phase shifter for nulling interferometry

    International Nuclear Information System (INIS)

    Brachet, Frank

    2005-01-01

    The Darwin mission is a project of the European Space Agency that should allow around 2015 the search for extra-solar planets and a spectral analysis of their atmospheres to detect gases and particularly tracers of life. The basic concept of the instrument is a Bracewell nulling interferometer. It allows the high angular resolution and high dynamic range necessary to cancel the light coming from the star to keep the planetary one. The Darwin mission technological key-points require preliminary laboratory experiments to validate each element before any space application. Among these, the π achromatic phase shifter included in the interferometer to cancel the starlight has to be achromatic in the whole Darwin spectral band from 6 to 18 μm. There are many solutions to create this phase shift. This work presents the study and development of one of these techniques based on dispersive prisms and tested on the polychromatic test bench SYNAPSE. After an introduction of Darwin stakes, both from an exo-planetological and exobiological point of view, we introduce different achromatic phase shifter techniques. The concept based on prismatic dispersive plates is then detailed, along with the development of the SYNAPSE test bench working in near infrared. We finally show that this bench allowed to maintain rejection ratio better than 4 000 (corresponding to a 2,5.10 -4 stellar leaks level) in the whole K band (from 2 to 2,5 μm) during several minutes. These results also show that more than the absolute rejection ratio needed in the whole Darwin spectral band, their stability will be the real stake during observations. (author) [fr

  19. Four-to-one power combiner for 20 GHz phased array antenna using RADC MMIC phase shifters

    Science.gov (United States)

    1991-01-01

    The design and microwave simulation of two-to-one microstrip power combiners is described. The power combiners were designed for use in a four element phase array receive antenna subarray at 20 GHz. Four test circuits are described which were designed to enable testing of the power combiner and the four element phased array antenna. Test Circuit 1 enables measurement of the two-to-one power combiner. Test Circuit 2 enables measurement of the four-to-one power combiner. Test Circuit 3 enables measurement of a four element antenna array without phase shifting MMIC's in order to characterize the power combiner with the antenna patch-to-microstrip coaxial feedthroughs. Test circuit 4 is the four element phased array antenna including the RADC MMIC phase shifters and appropriate interconnects to provide bias voltages and control phase bits.

  20. Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier.

    Science.gov (United States)

    Sancho, Juan; Lloret, Juan; Gasulla, Ivana; Sales, Salvador; Capmany, José

    2011-08-29

    A fully tunable microwave photonic phase shifter involving a single semiconductor optical amplifier (SOA) is proposed and demonstrated. 360° microwave phase shift has been achieved by tuning the carrier wavelength and the optical input power injected in an SOA while properly profiting from the dispersion feature of a conveniently designed notch filter. It is shown that the optical filter can be advantageously employed to switch between positive and negative microwave phase shifts. Numerical calculations corroborate the experimental results showing an excellent agreement.

  1. LEDA RF distribution system design and component test results

    International Nuclear Information System (INIS)

    Roybal, W.T.; Rees, D.E.; Borchert, H.L.; McCarthy, M.; Toole, L.

    1998-01-01

    The 350 MHz and 700 MHz RF distribution systems for the Low Energy Demonstration Accelerator (LEDA) have been designed and are currently being installed at Los Alamos National Laboratory. Since 350 MHz is a familiar frequency used at other accelerator facilities, most of the major high-power components were available. The 700 MHz, 1.0 MW, CW RF delivery system designed for LEDA is a new development. Therefore, high-power circulators, waterloads, phase shifters, switches, and harmonic filters had to be designed and built for this applications. The final Accelerator Production of Tritium (APT) RF distribution systems design will be based on much of the same technology as the LEDA systems and will have many of the RF components tested for LEDA incorporated into the design. Low power and high-power tests performed on various components of these LEDA systems and their results are presented here

  2. Developments on the RF system for the Fusion Materials Irradiation Test Facility accelerator

    International Nuclear Information System (INIS)

    Fazio, M.V.; Johnson, H.P.; Riggin, D.M.

    1979-01-01

    The rf system for the Fusion Materials Irradiation Test (FMIT) accelerator is currently in the design phase at the Los Alamos Scientific Laboratory (LASL). The 35-MeV, 100-mA deuteron beam will require approximately 6 MW of rf power at 80 MHz. The EIMAC 8973 power tetrode, capable of a 600-kW cw output, has been chosen as the final amplifier tube for each of 15 amplifier chains. The final power stage of each chain is designed to perform as a linear Class B amplifier. Each low-power rf system (less than or equal to 100W) is to be phase, amplitude, and frequency controlled to provide a drive signal for each high-power amplifier. Beam dynamics for particle acceleration and for minimal beam spill require each rf amplifier output to be phase controlled to +-1 0 . The amplitude of the accelerating field must be held to +-1%. A varactor-tuned electronic phase shifter and a linear phase detector are under development for use in this system. To complement hardware development, analog computer simulations are being performed to optimize the closed-loop control characteristics of the system

  3. Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Capmany, Jose

    2010-01-01

    In this work we demonstrate for the first time, to the best of our knowledge, a continuously tunable 360° microwave phase shifter spanning a microwave bandwidth of several tens of GHz (up to 40 GHz) by slow light effects. The proposed device exploits the phenomenon of coherent population oscillat...... of the suggested technique, dictated by the underlying physics, are also analyzed....

  4. Transmission Network Expansion Planning Considering Phase-Shifter Transformers

    Directory of Open Access Journals (Sweden)

    Celso T. Miasaki

    2012-01-01

    Full Text Available This paper presents a novel mathematical model for the transmission network expansion planning problem. Main idea is to consider phase-shifter (PS transformers as a new element of the transmission system expansion together with other traditional components such as transmission lines and conventional transformers. In this way, PS are added in order to redistribute active power flows in the system and, consequently, to diminish the total investment costs due to new transmission lines. Proposed mathematical model presents the structure of a mixed-integer nonlinear programming (MINLP problem and is based on the standard DC model. In this paper, there is also applied a specialized genetic algorithm aimed at optimizing the allocation of candidate components in the network. Results obtained from computational simulations carried out with IEEE-24 bus system show an outstanding performance of the proposed methodology and model, indicating the technical viability of using these nonconventional devices during the planning process.

  5. Calibration of the High Resolution Phase Shifter (HRPS) in Linac 3/Rex using a dedicated LabView program

    CERN Document Server

    Winsvold, D

    2013-01-01

    This is a document describing how to calibrate the High Resolution Phase Shifters of Linac 3 and REX. The document also describes how to do tests on the Delay Lines in Linac 2, 3 and REX, but these cannot be calibrated.

  6. MWP phase shifters integrated in PbS-SU8 waveguides.

    Science.gov (United States)

    Hervás, Javier; Suárez, Isaac; Pérez, Joaquín; Cantó, Pedro J Rodríguez; Abargues, Rafael; Martínez-Pastor, Juan P; Sales, Salvador; Capmany, José

    2015-06-01

    We present new kind of microwave phase shifters (MPS) based on dispersion of PbS colloidal quantum dots (QDs) in commercially available photoresist SU8 after a ligand exchange process. Ridge PbS-SU8 waveguides are implemented by integration of the nanocomposite in a silicon platform. When these waveguides are pumped at wavelengths below the band-gap of the PbS QDs, a phase shift in an optically conveyed (at 1550 nm) microwave signal is produced. The strong light confinement produced in the ridge waveguides allows an improvement of the phase shift as compared to the case of planar structures. Moreover, a novel ridge bilayer waveguide composed by a PbS-SU8 nanocomposite and a SU8 passive layer is proposed to decrease the propagation losses of the pump beam and in consequence to improve the microwave phase shift up to 36.5° at 25 GHz. Experimental results are reproduced by a theoretical model based on the slow light effect produced in a semiconductor waveguide due to the coherent population oscillations. The resulting device shows potential benefits respect to the current MPS technologies since it allows a fast tunability of the phase shift and a high level of integration due to its small size.

  7. RF phase distribution systems at the SLC

    International Nuclear Information System (INIS)

    Jobe, R.K.; Schwarz, H.D.

    1989-04-01

    Modern large linear accelerators require RF distribution systems with minimal phase drifts and errors. Through the use of existing RF coaxial waveguides, and additional installation of phase reference cables and monitoring equipment, stable RF distribution for the SLC has been achieved. This paper discusses the design and performance of SLAC systems, and some design considerations for future colliders. 6 refs., 4 figs

  8. The Influence of Optical Filtering on the Noise Performance of Microwave Photonic Phase Shifters Based on SOAs

    DEFF Research Database (Denmark)

    Lloret, Juan; Ramos, Francisco; Xue, Weiqi

    2011-01-01

    Different optical filtering scenarios involving microwave photonic phase shifters based on semiconductor optical amplifiers are investigated numerically as well as experimentally with respect to noise performance. Investigations on the role of the modulation depth and number of elements in cascad...... shifting stages are also carried out. Suppression of the noise level by more than 5 dB has been achieved in schemes based on band-pass optical filtering when three phase shifting stages are cascaded....

  9. Slow and fast light effects in semiconductor waveguides for applications in microwave photonics

    DEFF Research Database (Denmark)

    Xue, Weiqi; Chen, Yaohui; Öhman, Filip

    2009-01-01

    We review the theory of slow and fast light effects due to coherent population oscillations in semiconductor waveguides, and potential applications of these effects in microwave photonic systems as RF phase shifters. In order to satisfy the application requirement of 360º RF phase shift at differ......We review the theory of slow and fast light effects due to coherent population oscillations in semiconductor waveguides, and potential applications of these effects in microwave photonic systems as RF phase shifters. In order to satisfy the application requirement of 360º RF phase shift...

  10. 60 GHz 5-bit digital controlled phase shifter in a digital 40 nm CMOS technology without ultra-thick metals

    NARCIS (Netherlands)

    Gao, H.; Ying, K.; Matters-Kammerer, M.K.; Harpe, P.; Wang, B.; Liu, B.; Serdijn, W.A.; Baltus, P.G.M.

    2016-01-01

    A 5-bit digital controlled switch-type passive phase shifter realised in a 40 nm digital CMOS technology without ultra-thick metals for the 60 GHz Industrial, Scientific and Medical (ISM) band is presented. A patterned shielding with electromagnetic bandgap structure and a stacked metals method to

  11. Feedback system of the RF phase in KEK-ATF linac

    Energy Technology Data Exchange (ETDEWEB)

    Okugi, T.; Hayano, H.; Kuriki, M.; Naito, T. [Accelerator Laboratory, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2000-07-01

    KEK-ATF linac is built in the Assembly Hall for TRISTAN project in 1991. The thermal condition of the hall is not good enough for a stable linac operation, because the temperature of the klystron gallery is drifted by 1degC within one day. RF phase is also drifted by 3-5deg of the S-band frequency in day and night. In order to control the RF phase, we installed RF phase detectors, which have S/H circuit in order to use for pulsed RF. By using the phase detector, an RF phase feedback system was tested. It was found that a stable klystron operation could be performed within the phase drift of {+-}0.5deg in a day. (author)

  12. RF Phase Scan for Beam Energy Measurement of KOMAC DTL

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hansung; Kwon, Hyeokjung; Kim, Seonggu; Lee, Seokgeun; Cho, Yongsub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The energy gain through the drift tube linac is a function of the synchronous phase, therefore, the output beam energy from DTL can be affected by the RF phase setting in low-level RF (LLRF) system. The DTL at Korea Multi-purpose Accelerator Complex (KOMAC) consists of 11 tanks and the RF phase setting in each tank should be matched for synchronous acceleration in successive tanks. That means a proper setting of RF phase in each DTL tank is critical for efficient and loss-free operation. The matching RF phase can be determined based on the output energy measurement from the DTL tank. The beam energy can be measured by several methods. For example, we can use a bending magnet to determine the beam energy because the higher momentum of beam means the less deflection angle in the fixed magnetic field. By measuring the range of proton beam through a material with known stopping power also can be utilized to determine the beam energy. We used a well-known time-of-flight method to determine the output beam energy from the DTL tank by measuring beam phase with a beam position monitor (BPM). Based on the energy measurement results, proper RF operating point could be obtained. We performed a RF phase scan to determine the output beam energy from KOMAC DTL by using a time-of-flight method and to set RF operating point precisely. The measured beam energy was compared with a beam dynamics simulation and showed a good agreement. RF phase setting is critical issue for the efficient operation of the proton accelerator, we have a plan to implement and integrate the RF phase measurement system into an accelerator control system for future need.

  13. Phase calibration strategies for synchrotron RF signals

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, Aleksandr [TEMF, Technische Universitaet Darmstadt (Germany); Klingbeil, Harald [TEMF, Technische Universitaet Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Lens, Dieter [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2016-07-01

    For the FAIR facility that is currently under construction, the beam quality requirements impose several demands on the low-level RF (LLRF) systems. For example the phase error of the gap voltage of a specific RF cavity must be less than 1 . The RF reference signals for the FAIR synchrotron RF cavity systems are generated by direct digital synthesis modules (DDS) mounted in one crate called Group-DDS. In order to allow performing various multi-harmonic operations, each DDS unit operates at a certain mode defined by the harmonic number that can be changed during the operation. Since the DDS modules generate reference RF signals for different LLRF systems, the precise calibration of units to compensate the different phase response is of importance. The currently used calibration procedure is done with a fixed harmonic number for each module and uses the DDS module configured to the highest harmonic number as a reference. If the harmonic number of the DDS module is changed, one then has to repeat the calibration for the new values. Therefore, a new calibration method with respect to the absolute phases of DDS modules is under development and will be presented.

  14. Designing RF control subsystems using the VXIbus standard

    International Nuclear Information System (INIS)

    Stepp, J.D.; Vong, F.C.; Bridges, J.F.

    1993-01-01

    Various components are being designed to control the RF system of the 7-GeV Advanced Photon Source (APS). The associated control electronics (phase shifters, amplitude modulators, phase detectors, automatic tuning control, and local feedback control) are designed as modular cards with multiple channels for ease of replacement as well as for compact design. Various specifications of the VXIbus are listed and the method used to simplify the design of the control subsystem is shown. A commercial VXI interface board was used to speed the design cycle. Required manpower and actual task times are included. A discussion of the computer architecture and software development of the device drivers which allowed computer control from a VME processor located in a remote crate operating under the Experimental Physics and Industrial Controls Software (EPICS) program is also presented

  15. Phase Stable RF-over-fiber Transmission using Heterodyne Interferometry

    International Nuclear Information System (INIS)

    Wilcox, R.; Byrd, J.M.; Doolittle, L.; Huang, G.; Staples, J.W.

    2010-01-01

    New scientific applications require phase-stabilized RF distribution to multiple remote locations. These include phased-array radio telescopes and short pulse free electron lasers. RF modulated onto a CW optical carrier and transmitted via fiber is capable of low noise, but commercially available systems aren't long term stable enough for these applications. Typical requirements are for less than 50fs long term temporal stability between receivers, which is 0.05 degrees at 3GHz. Good results have been demonstrated for RF distribution schemes based on transmission of short pulses, but these require specialized free-space optics and high stability mechanical infrastructure. We report a method which uses only standard telecom optical and RF components, and achieves less than 20fs RMS error over 300m of standard single-mode fiber. We demonstrate stable transmission of 3GHz over 300m of fiber with less than 0.017 degree (17fs) RMS phase error. An interferometer measures optical phase delay, providing information to a feed-forward correction of RF phase.

  16. Room Temperature Thin Film Ba(x)Sr(1-x)TiO3 Ku-Band Coupled MicrostripPhase Shifters: Effects of Film Thickness, Doping, Annealing and Substrate Choice

    Science.gov (United States)

    VanKeuls, F. W.; Mueller, C. H.; Miranda, F. A.; Romanofsky, R. R.; Canedy, C. L.; Aggarwal, S.; Venkatesan, T.; Ramesh, R.; Horwitz, S.; Chang, W.

    1999-01-01

    We report on measurements taken on over twenty Ku-band coupled microstrip phase shifters (CMPS) using thin ferroelectric films of Ba(x)Sr(1-x)TiO3. This CMPS design is a recent innovation designed to take advantage of the high tunability and tolerate the high dielectric constant of ferroelectric films at Ku- and K-band frequencies. These devices are envisioned as a component in low-cost steerable beam phased area antennas, Comparisons are made between devices with differing film thickness, annealed vs unannealed, Mn-doped vs. undoped, and also substrates of LaAlO3 and MgO. A comparison between the CMPS structure and a CPW phase shifter was also made oil the same ferroelectric film.

  17. Electromagnetic characterization of photo-definable ferrite loaded polymers and their applications in micro-rectangular coaxial phase shifters

    Science.gov (United States)

    Sholiyi, Olusegun Samuel

    As the demand for smaller size, lighter weight, lower loss and cost of communications transmit and receive (T/R) modules increases, there is an urgent need to focus investigation to the major subsystem or components that can improve these parameters. Phase shifters contribute greatly to the cost of T/R modules, and thus this research investigation examines a new way to reduce the weight and cost by miniaturizing the phaser design. Characterization of hexaferrite powders compatible with the sequential multilayer micro-fabrication technology and numerical simulations of a novel rectangular micro-coaxial phase shifter are investigated. This effort aims to integrate ferrite material into a rectangular micro-coaxial waveguide at Ka-band using electromagnetic finite element numerical tools. The proposed technique exploits rectangular coaxial waveguide with a symmetrically placed inner signal conductor inside an outer conductor connected to the ground. Strontium ferrite-SU8 composite is used as an anisotropic material of choice in the modelled design. Numerical modeling is employed using High Frequency Structure Simulator, HFSS, a 3-D full wave electromagnetic solver for analyzing the performance of the device. Two model structures were designed for reciprocal and non-reciprocal applications. The first model (Model A) produced a tunable phase shift of almost 60 degrees /cm across 0 to 400 kA/m applied field and at 1800 Gauss. In model B, a non-reciprocal phase shift performance of 20 degrees /cm from a reference phase of 24 degrees at 0 A/m was realized at the same saturation magnetization. A return loss better than 20 dB and an insertion loss less than 1.5 dB were obtained for both models.

  18. rf beam-current, -phase, and -position monitors

    International Nuclear Information System (INIS)

    Young, L.

    1984-01-01

    A prototype rf beam monitor has been tested on the Racetrack Microtron's (RTM) 100 kV injector beam line at the National Bureau of Standards (NBS). This beam monitor is capable of measuring the current, the relative phase, and the position of the beam. The beam is bunched at 2380 MHz for acceleration by the linac in the injector beam line. This train of beam bunches passing through the beam monitor cavities excites the cavities at this resonance frequency of 2380 MHz. Probes in the cavities couple some of the beam-excited rf power out of the cavities. This rf power can be amplified if necessary and then analyzed by a double balanced mixer (DBM). The DBM can also be used as a phase detector. The effective shunt impedance of the cavities was measured with the CW beam. For the position monitor cavity, the shunt impedance is proportional to the displacement from the axis. The measured response of the prototype rf beam current monitor setup is a linear function of beam current. Response of the rf beam-position monitor is also shown

  19. Current-phase relations and noise in rf biased SQUIDS

    International Nuclear Information System (INIS)

    Jackel, L.D.; Clark, T.D.; Buhrman, R.A.

    1975-01-01

    An investigation was made of the effect of the weak link current-phase relation on noise in rf biased SQUIDs. Non-sinusoidal current-phase relations were observed in various weak links, and these non-sinusoidal relations were correlated with significantly increased intrinsic noise in the SQUID ring. The current-phase relation was also found to affect the amplitude of the rf SQUID ring dissipation. The result of an rf SQUID system noise analysis shows that, due to increased intrinsic noise and reduced ring dissipation, the minimum attainable noise for a SQUID ring having a very non-sinusoidal current-phase relation is considerably greater than for a ring with a sinusoidal relation

  20. Design and construction of the advanced photon source 352-MHz rf system switching control

    International Nuclear Information System (INIS)

    Horan, D.; Solita, L.; Reigle, D.; Dimonte, N.

    1997-01-01

    A switching control system has been designed and built to provide the capability of rapidly switching the waveguide and low-level cabling between different klystrons to operate the Advanced Photon Source storage ring in the event of a failure of a klystron system or to perform necessary repairs and preventative maintenance. The twelve possible modes of operation allow for complete redundancy of the booster synchrotron rf system and either a maximum of two storage ring rf systems to be completely off-line or one system to be used as a power source for an rf test stand. A programmable controller is used to send commands to intermediate control panels which interface to WR2300 waveguide switches and phase shifters, rf cavity interlock and low-level rf distribution systems, and klystron power supply controls for rapid reconfiguration of the rf systems in response to a mode-selection command. Mode selection is a local manual operation using a keyswitch arrangement which prevents more than one mode from being selected at a time. The programmable controller also monitors for hardware malfunction and guards against open-quotes hot-switchingclose quotes of the rf systems. The rf switching controls system is monitored via the Experimental Physics and Industrial Control System (EPICS) for remote system status check

  1. PASTA - An RF Phase and Amplitude Scan and Tuning Application

    CERN Document Server

    Galambos, J; Deibele, C; Henderson, S

    2005-01-01

    To assist the beam commissioning in the Spallation Neutron Source (SNS) linac, a general purpose RF tuning application has been written to help set RF phase and amplitude. It follows the signature matching procedure described in Ref.* The method involves varying an upstream Rf cavity amplitude and phase settings and comparing the measured downstream beam phase responses to model predictions. The model input for cavity phase and amplitude calibration and for the beam energy are varied to best match observations. This scheme has advantages over other RF tuning techniques of not requiring intercepting devices (e.g. Faraday Cups), and not being restricted to a small linear response regime near the design values. The application developed here is general and can be applied to different RF structure types in the SNS linac. Example applications in the SNS Drift Tube Linac (DTL) and Coupled Cavity Linac (CCL) structures will be shown.

  2. Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers.

    Science.gov (United States)

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2010-03-15

    In this work we demonstrate for the first time, to the best of our knowledge, a continuously tunable 360 degrees microwave phase shifter spanning a microwave bandwidth of several tens of GHz (up to 40 GHz). The proposed device exploits the phenomenon of coherent population oscillations, enhanced by optical filtering, in combination with a regeneration stage realized by four-wave mixing effects. This combination provides scalability: three hybrid stages are demonstrated but the technology allows an all-integrated device. The microwave operation frequency limitations of the suggested technique, dictated by the underlying physics, are also analyzed.

  3. Longitudinal tracking with phase and amplitude modulated rf

    International Nuclear Information System (INIS)

    Caussyn, D.D.; Ball, M.; Brabson, B.

    1993-06-01

    Synchrotron motion was induced by phase shifting the rf of the Indiana University Cyclotron Facility (IUCF) cooler-synchrotron. The resulting coherent-bunch motion was tracked in longitudinal phase space for as many as 700,000 turns, or for over 350 synchrotron oscillations. Results of recent experimental studies of longitudinal motion in which the rf phase and amplitude were harmonically modulated are also presented. Comparisons of experimental data with numerical simulations, assuming independent particle motion, are made. Observed multiparticle effects are also discussed

  4. The effect of phase difference between powered electrodes on RF plasmas

    International Nuclear Information System (INIS)

    Proschek, M; Yin, Y; Charles, C; Aanesland, A; McKenzie, D R; Bilek, M M; Boswell, R W

    2005-01-01

    This paper presents the results of measurements carried out on plasmas created in five different RF discharge systems. These systems all have two separately powered RF (13.56 MHz) electrodes, but differ in overall size and in the geometry of both vacuum chambers and RF electrodes or antennae. The two power supplies were synchronized with a phase-shift controller. We investigated the influence of the phase difference between the two RF electrodes on plasma parameters and compared the different system geometries. Single Langmuir probes were used to measure the plasma parameters in a region between the electrodes. Floating potential and ion density were affected by the phase difference and we found a strong influence of the system geometry on the observed phase difference dependence. Both ion density and floating potential curves show asymmetries around maxima and minima. These asymmetries can be explained by a phase dependence of the time evolution of the electrode-wall coupling within an RF-cycle resulting from the asymmetric system geometry

  5. Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers.

    Science.gov (United States)

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2009-04-01

    We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees.

  6. Laser-to-RF phase detection with femtosecond precision for remote reference phase stabilization in particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, Thorsten

    2017-05-15

    The operation of modern free-electron lasers (FELs) requires the synchronization of different accelerator subsystems with femtosecond precision. A pulsed optical synchronization system is for this reason operated at the Free-Electron Laser in Hamburg (FLASH) and it is under construction for the upcoming European X-ray Free-Electron Laser (XFEL). Laser pulses from the optical master oscillator are transmitted by timing stabilized optical fiberlinks to dedicated end stations along the accelerator. Devices which cannot operate with optical synchronization signals are instead conventionally synchronized with radio frequency (RF) reference signals. These signals are distributed in the accelerator by coaxial cables. Especially the low -level radio frequency (LLRF) system requires RF reference signals with femtosecond stability in order to meet nowadays femtosecond demands. Due to cable drifts and the length of the accelerators, this level of stability cannot be provided by conventional RF transport. A laser-to-RF (L2RF) phase detector has been invented, which allows to measure with femtosecond precision the relative phase between a phase stable optical pulse train from an optical fiberlink and an RF signal. The L2RF phase detector is based on an integrated MACH-ZEHNDER modulator (MZM) in which the phase error between both signals is encoded in an amplitude modulation of the optical pulse train. Different configurations, based on single output and dual output MZMs have been evaluated for different operation scenarios. A full mathematical representation of the chosen configuration has been derived. The impact of multiple error sources has been investigated. It has been proven that most error sources have only second or higher order influence on the detection principle which is a significant advantage over existing schemes. The invented L2RF phase detector is for example balanced and in its working point insensitive to power variations of the optical reference pulse train

  7. Laser-to-RF phase detection with femtosecond precision for remote reference phase stabilization in particle accelerators

    International Nuclear Information System (INIS)

    Lamb, Thorsten

    2017-05-01

    The operation of modern free-electron lasers (FELs) requires the synchronization of different accelerator subsystems with femtosecond precision. A pulsed optical synchronization system is for this reason operated at the Free-Electron Laser in Hamburg (FLASH) and it is under construction for the upcoming European X-ray Free-Electron Laser (XFEL). Laser pulses from the optical master oscillator are transmitted by timing stabilized optical fiberlinks to dedicated end stations along the accelerator. Devices which cannot operate with optical synchronization signals are instead conventionally synchronized with radio frequency (RF) reference signals. These signals are distributed in the accelerator by coaxial cables. Especially the low -level radio frequency (LLRF) system requires RF reference signals with femtosecond stability in order to meet nowadays femtosecond demands. Due to cable drifts and the length of the accelerators, this level of stability cannot be provided by conventional RF transport. A laser-to-RF (L2RF) phase detector has been invented, which allows to measure with femtosecond precision the relative phase between a phase stable optical pulse train from an optical fiberlink and an RF signal. The L2RF phase detector is based on an integrated MACH-ZEHNDER modulator (MZM) in which the phase error between both signals is encoded in an amplitude modulation of the optical pulse train. Different configurations, based on single output and dual output MZMs have been evaluated for different operation scenarios. A full mathematical representation of the chosen configuration has been derived. The impact of multiple error sources has been investigated. It has been proven that most error sources have only second or higher order influence on the detection principle which is a significant advantage over existing schemes. The invented L2RF phase detector is for example balanced and in its working point insensitive to power variations of the optical reference pulse train

  8. Method of phase space beam dilution utilizing bounded chaos generated by rf phase modulation

    Directory of Open Access Journals (Sweden)

    Alfonse N. Pham

    2015-12-01

    Full Text Available This paper explores the physics of chaos in a localized phase-space region produced by rf phase modulation applied to a double rf system. The study can be exploited to produce rapid particle bunch broadening exhibiting longitudinal particle distribution uniformity. Hamiltonian models and particle-tracking simulations are introduced to understand the mechanism and applicability of controlled particle diffusion. When phase modulation is applied to the double rf system, regions of localized chaos are produced through the disruption and overlapping of parametric resonant islands and configured to be bounded by well-behaved invariant tori to prevent particle loss. The condition of chaoticity and the degree of particle dilution can be controlled by the rf parameters. The method has applications in alleviating adverse space-charge effects in high-intensity beams, particle bunch distribution uniformization, and industrial radiation-effects experiments.

  9. A Ferrite LTCC-Based Monolithic SIW Phased Antenna Array

    KAUST Repository

    Nafe, Ahmed A.; Ghaffar, Farhan A.; Farooqui, Muhammad Fahad; Shamim, Atif

    2016-01-01

    In this work, we present a novel configuration for realizing monolithic SIW-based phased antenna arrays using Ferrite LTCC technology. Unlike the current common schemes for realizing SIW phased arrays that rely on surface-mount component (p-i-n diodes, etc) for controlling the phase of the individual antenna elements, here the phase is tuned by biasing of the ferrite filling of the SIW. This approach eliminates the need for mounting of any additional RF components and enables seamless monolithic integration of phase shifters and antennas in SIW technology. As a proof of concept, a two-element slotted SIW-based phased array is designed, fabricated and measured. The prototype exhibits a gain of 4.9 dBi at 13.2 GHz and a maximum E-plane beam-scanning of 28 degrees using external windings for biasing the phase shifters. Moreover, the array can achieve a maximum beam-scanning of 19 degrees when biased with small windings that are embedded in the package. This demonstration marks the first time a fully monolithic SIW-based phased array is realized in Ferrite LTCC technology and paves the way for future larger-size implementations.

  10. A Ferrite LTCC-Based Monolithic SIW Phased Antenna Array

    KAUST Repository

    Nafe, Ahmed

    2016-11-17

    In this work, we present a novel configuration for realizing monolithic SIW-based phased antenna arrays using Ferrite LTCC technology. Unlike the current common schemes for realizing SIW phased arrays that rely on surface-mount component (p-i-n diodes, etc) for controlling the phase of the individual antenna elements, here the phase is tuned by biasing of the ferrite filling of the SIW. This approach eliminates the need for mounting of any additional RF components and enables seamless monolithic integration of phase shifters and antennas in SIW technology. As a proof of concept, a two-element slotted SIW-based phased array is designed, fabricated and measured. The prototype exhibits a gain of 4.9 dBi at 13.2 GHz and a maximum E-plane beam-scanning of 28 degrees using external windings for biasing the phase shifters. Moreover, the array can achieve a maximum beam-scanning of 19 degrees when biased with small windings that are embedded in the package. This demonstration marks the first time a fully monolithic SIW-based phased array is realized in Ferrite LTCC technology and paves the way for future larger-size implementations.

  11. System control and data acquisition of the two new FWCD RF systems at DIII-D

    International Nuclear Information System (INIS)

    Harris, T.E.; Allen, J.C.; Cary, W.P. Petty, C.C.

    1995-10-01

    The Fast Wave Current Drive (FWCD) system at DIII-D has increased its available radio frequency (RF) power capabilities with the addition of two new high power transmitters along with their associated transmission line systems. A Sun Sparc-10 workstation, functioning as the FWCD operator console, is being used to control transmitter operating parameters and transmission line tuning parameters, along with acquiring data and making data available for integration into the DIII-D data acquisition system. Labview, a graphical user interface application, is used to manage and control the above processes. This paper will discuss the three primary branches of the FWCD computer control system: transmitter control, transmission line tuning control, and FWCD data acquisition. The main control program developed uses VXI, GPIB, CAMAC, Serial, and Ethernet protocols to blend the three branches together into one cohesive system. The control of the transmitters utilizes VXI technology to communicate with the transmitter's digital interface. A GPIB network allows for communication with various instruments and CAMAC crate controllers. CAMAC crates are located at each phase-shifter/stub-tuner station and are used to digitize transmission line parameters along with transmission line fault detection during RF transmission. The phase-shifter/stub-tuner stations are located through out the DIII-D facility and are controlled from the FWCD operator console via the workstation's Serial port. The Sun workstation has an Ethernet connection allowing for the utilization of the DIII-D data acquisition open-quotes Open Systemclose quotes architecture and of course providing communication with the rest of the world

  12. A new RF tagging pulse based on the Frank poly-phase perfect sequence

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Greferath, Marcus; Ringgaard, Steffen

    2014-01-01

    Radio frequency (RF) spectrally selective multiband pulses or tagging pulses, are applicable in a broad range of magnetic resonance methods. We demonstrate through simulations and experiments a new phase-modulation-only RF pulse for RF tagging based on the Frank poly-phase perfect sequence...

  13. Main results on the RF amplitude and phase regulation systems in operation at GANIL

    International Nuclear Information System (INIS)

    Joubert, A.; Ducoudret, B.; Labiche, J.C.; Loyant, J.M.

    1984-06-01

    The general features of the amplitude and phase regulations and their control systems are briefly reviewed. These feedback control systems are fully under the control of the main computer aided by dedicated CAMAC microprocessors for actions such as starting, parameters tuning or phase stability surveying. Numerous results obtained with spectrum analysis method give the actual RF purity and the residual modulation and crossmodulation noise level for all RF signals picked up in the RF resonators. A typical value for the noise immunity is 80 dB below the carrier at 100 Hz deviation. Another set of results gives the actual long term phase drift between resonators (< 0.2 RF degree within 6 hours). The stability of the RF phases is confirmed by on line beam phase measurements

  14. Microwave photonics processing controlling the speed of light in semiconductor waveguides

    DEFF Research Database (Denmark)

    Xue, Weiqi; Chen, Yaohui; Sales, Salvador

    2009-01-01

    We review the theory of slow and fast light effect in semiconductor waveguides and potential applications of these effects in microwave photonic systems as RF phase shifters. Recent applications as microwave photonic filters is presented. Also, in the presentation more applications like optoelect......We review the theory of slow and fast light effect in semiconductor waveguides and potential applications of these effects in microwave photonic systems as RF phase shifters. Recent applications as microwave photonic filters is presented. Also, in the presentation more applications like...

  15. RF phase focusing in portable x-band, linear accelerators

    International Nuclear Information System (INIS)

    Miller, R.H.; Deruyter, H.; Fowkes, W.R.; Potter, J.M.; Schonberg, R.G.; Weaver, J.N.

    1985-01-01

    In order to minimize the size and weight of the x-ray or neutron source for a series of portable radiographic linear accelerators, the x-ray head was packaged separately from the rest of the system and consists of only the linac accelerating structure, electron gun, built-in target, collimator, ion pump and an RF window. All the driving electronics and cooling are connected to the x-ray head through flexible waveguide, cables, and waterlines. The x-ray head has been kept small and light weight by using the RF fields for radial focusing, as well as for longitudinal bunching and accelerating the beam. Thus, no external, bulky magnetic focusing devices are required. The RF focusing is accomplished by alternating the sign of the phase difference between the RF and the beam and by tapering from cavity to cavity the magnitude of the buncher field levels. The former requires choosing the right phase velocity taper (mix of less than vp = c cavities) and the latter requires the right sizing of the cavity to cavity coupling smiles (irises)

  16. RF phase focusing in portable X-band, linear accelerators

    International Nuclear Information System (INIS)

    Miller, R.H.; Deruyter, H.; Fowkes, W.R.; Potter, J.W.; Schonberg, R.G.; Weaver, J.W.

    1985-01-01

    In order to minimize the size and weight of the x-ray or neutron source for a series of portable radiographic linear accelerators, the x-ray head was packaged separately from the rest of the system and consists of only the linac accelerating structure, electron gun, built-in target, collimator, ion pump and an RF window. All the driving electronics and cooling are connected to the x-ray head through flexible waveguide, cables, and waterlines. The x-ray head has been kept small and light weight by using the RF fields for radial focusing, as well as for longitudinal bunching and accelerating the beam. Thus, no external, bulky magnetic focusing devices are required. The RF focusing is accomplished by alternating the sign of the phase difference between the RF and the beam and by tapering from cavity to cavity the magnitude of the buncher field levels. The former requires choosing the right phase velocity taper (mix of less than vp=c cavities) and the latter requires the right sizing of the cavity to cavity coupling smiles (irises)

  17. Novel RF and microwave components employing ferroelectric and solid-state tunable capacitors for multi-functional wireless communication systems

    Science.gov (United States)

    Tombak, Ali

    The recent advancement in wireless communications demands an ever increasing improvement in the system performance and functionality with a reduced size and cost. This thesis demonstrates novel RF and microwave components based on ferroelectric and solid-state based tunable capacitor (varactor) technologies for the design of low-cost, small-size and multi-functional wireless communication systems. These include tunable lumped element VHF filters based on ferroelectric varactors, a beam-steering technique which, unlike conventional systems, does not require separate power divider and phase shifters, and a predistortion linearization technique that uses a varactor based tunable R-L-C resonator. Among various ferroelectric materials, Barium Strontium Titanate (BST) is actively being studied for the fabrication of high performance varactors at RF and microwave frequencies. BST based tunable capacitors are presented with typical tunabilities of 4.2:1 with the application of 5 to 10 V DC bias voltages and typical loss tangents in the range of 0.003--0.009 at VHF frequencies. Tunable lumped element lowpass and bandpass VHF filters based on BST varactors are also demonstrated with tunabilities of 40% and 57%, respectively. A new beam-steering technique is developed based on the extended resonance power dividing technique. Phased arrays based on this technique do not require separate power divider and phase shifters. Instead, the power division and phase shifting circuits are combined into a single circuit, which utilizes tunable capacitors. This results in a substantial reduction in the circuit complexity and cost. Phased arrays based on this technique can be employed in mobile multimedia services and automotive collision avoidance radars. A 2-GHz 4-antenna and a 10-GHz 8-antenna extended resonance phased arrays are demonstrated with scan ranges of 20 degrees and 18 degrees, respectively. A new predistortion linearization technique for the linearization of RF

  18. Ka-Band Rf Transmission Line Components for a High-Gradient Linear Accelerator. Final report

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2005-01-01

    High-power, high-vacuum prototypes of a variety of components for use at 34 GHz were developed. These include waveguide tapers, right-angle miter bends, windows, mode converters, power combiners, mode launchers, phase shifters, dual directional couplers, and loads. High-power, high-vacuum prototypes of all the components were built and tested up to 45 MW, using the Omega-P 34-GHz magnicon. Peak power limits for the components were determined using a quasi-optical rf pulse compressor, developed under a companion project. The components and the magnicon were configured into a user's facility for research and development by others on high-gradient accelerator structures for a future high-energy electron-positron collider.

  19. High-voltage Pulse-triggered SR Latch Level-Shifter Design Considerations

    DEFF Research Database (Denmark)

    Larsen, Dennis Øland; Llimos Muntal, Pere; Jørgensen, Ivan Harald Holger

    2014-01-01

    translating a signal from 0- 3 : 3 V to 87 : 5 - 100 V. The operation of this level-shifter is verified with measurements on a fabricated chip. The shortcomings of the implemented level-shifter in terms of power dissipation, transition delay, area, and startup behavior are then considered and an improved......This paper compares pulse-triggered level shifters with a traditional level-triggered topology for high-voltage ap- plications with supply voltages in the 50 V to 100 V range. It is found that the pulse-triggered SR (Set/Reset) latch level- shifter has a superior power consumption of 1800 W = MHz...... circuit is suggested which has been designed in three variants being able to translate the low-voltage 0- 3 : 3 V signal to 45 - 50 V, 85 - 90 V, and 95 - 100 V respectively. The improved 95 - 100 V level shifter achieves a considerably lower power consumption of 438 W = MHz along with a significantly...

  20. Optical signal processing using slow and fast light technologies

    DEFF Research Database (Denmark)

    Capmany, J.; Sales, Salvador; Xue, Weiqi

    2009-01-01

    We review the theory of slow and fat light effects due to coherent population oscillations in semiconductor waveguides, which can be potentially applied in microwave photonic systems as a RF phase shifters. In order to satisfy the application requirement of 360 degrees RF phase shift at different...

  1. Analysis and design of tunable wideband microwave photonics phase shifter based on Fabry-Perot cavity and Bragg mirrors in silicon-on-insulator waveguide.

    Science.gov (United States)

    Qu, Pengfei; Zhou, Jingran; Chen, Weiyou; Li, Fumin; Li, Haibin; Liu, Caixia; Ruan, Shengping; Dong, Wei

    2010-04-20

    We designed a microwave (MW) photonics phase shifter, consisting of a Fabry-Perot filter, a phase modulation region (PMR), and distributed Bragg reflectors, in a silicon-on-insulator rib waveguide. The thermo-optics effect was employed to tune the PMR. It was theoretically demonstrated that the linear MW phase shift of 0-2pi could be achieved by a refractive index variation of 0-9.68x10(-3) in an ultrawideband (about 38?GHz-1.9?THz), and the corresponding tuning resolution was about 6.92 degrees / degrees C. The device had a very compact size. It could be easily integrated in silicon optoelectronic chips and expected to be widely used in the high-frequency MW photonics field.

  2. X-band rf power production and deceleration in the two-beam test stand of the Compact Linear Collider test facility

    Directory of Open Access Journals (Sweden)

    E. Adli

    2011-08-01

    Full Text Available We discuss X-band rf power production and deceleration in the two-beam test stand of the CLIC test facility at CERN. The rf power is extracted from an electron drive beam by a specially designed power extraction structure. In order to test the structures at high-power levels, part of the generated power is recirculated to an input port, thus allowing for increased deceleration and power levels within the structure. The degree of recirculation is controlled by a splitter and phase shifter. We present a model that describes the system and validate it with measurements over a wide range of parameters. Moreover, by correlating rf power measurements with the energy lost by the electron beam, as measured in a spectrometer placed after the power extraction structure, we are able to identify system parameters, including the form factor of the electron beam. The quality of the agreement between model and reality gives us confidence to extrapolate the results found in the present test facility towards the parameter regime of CLIC.

  3. X-band rf power production and deceleration in the two-beam test stand of the Compact Linear Collider test facility

    CERN Document Server

    Adli, E; Dubrovskiy, A; Syratchev, I; Ruber, R; Ziemann, V

    2011-01-01

    We discuss X-band rf power production and deceleration in the two-beam test stand of the CLIC test facility at CERN. The rf power is extracted from an electron drive beam by a specially designed power extraction structure. In order to test the structures at high-power levels, part of the generated power is recirculated to an input port, thus allowing for increased deceleration and power levels within the structure. The degree of recirculation is controlled by a splitter and phase shifter. We present a model that describes the system and validate it with measurements over a wide range of parameters. Moreover, by correlating rf power measurements with the energy lost by the electron beam, as measured in a spectrometer placed after the power extraction structure, we are able to identify system parameters, including the form factor of the electron beam. The quality of the agreement between model and reality gives us confidence to extrapolate the results found in the present test facility towards the parameter reg...

  4. Level shifter for low power applications with body bias technique

    African Journals Online (AJOL)

    user

    In present work three new designs of level shifter in 0.35µm technology using body ... level shifters, namely conventional type-I, conventional type-II and contention mitigated have been improved by varying the ..... single-chip mobile processor.

  5. Edge effects in phase-shifting masks for 0.25-µm lithography

    Science.gov (United States)

    Wong, Alfred K. K.; Neureuther, Andrew R.

    1993-03-01

    The impact on image quality of scattering from phase-shifter edges and of interactions between phase-shifter and chrome edges is assessed using rigorous electromagnetic simulation. Effects of edge taper in phase-shift masks, spacing between phase-shifter and chrome edges, small outrigger features with a trench phase-shifter, and of the repair of phase defects by etching to 360 degree(s) are considered. Near field distributions and diffraction efficiencies are examined and images are compared with more approximate results from the commonly used Hopkins' theory of imaging.

  6. SHIFTER NO CINEMA: O HOMEM E O ANIMAL EM CENA

    Directory of Open Access Journals (Sweden)

    Ana Lucía Machado da Silva

    2016-01-01

    Full Text Available Shifter é um termo empregado na literatura paranormal americana para referir àpersonagem que se transforma em animal. Essa literatura passou a influenciar ocinema, como visto na série Crepúsculo (2008, 2009, 2010, 2011, 2012 e em A garotada capa vermelha (2011. Com base na pergunta até que ponto a condição shifter leva auma abertura para a animalidade, a discussão fundamenta-se nos Estudos Animais ebusca caracterizar a personagem shifter, bem como comparar essa personagem com ametamorfose ocorrida no filme ícone A marca da pantera, da versão de 1982.

  7. Phase synchronization of multiple klystrons in RF system

    International Nuclear Information System (INIS)

    Kwon, S.; Regan, A.; Wang, Y.M.; Rohlev, T.

    1998-01-01

    The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory will serve as the prototype for the low energy section of the Acceleration Production of Tritium (APT) accelerator. The first LEDA RF system includes three, 1.2 MW, 350 MHz, continuous wave, klystrons driving a radio frequency quadrupole (RFQ). A phase control loop is necessary for each individual klystron in order to guarantee the phase matching of these klystrons. To meet this objective, they propose adaptive PI controllers which are based on simple adaptive control. These controllers guarantee not only phase matching but also amplitude matching

  8. Accelerator physics and radiometric properties of superconducting wavelength shifters

    International Nuclear Information System (INIS)

    Scheer, Michael

    2008-01-01

    Subject of this thesis is the operation of wave-length shifters at electron storage rings and their use in radiometry. The basic aspects of the radiometry, the technical requirements, the influence of wave-length shifters on the storage ring, and results of first measurements are presented for a device installed at BESSY. Most of the calculations are carried out by the program WAVE, which has been developed within this thesis. WAVE allows to calculate the synchrotron radiation spectra of wavelength shifters within an relative uncertainty of 1/100000. The properties of wave-length shifters in terms of accelerator physics as well as a generating function for symplectic tracking calculations can also be calculated by WAVE. The later was implemented in the tracking code BETA to investigate the influence of insertion devices on the dynamic aperture and emittance of the storage ring. These studies led to the concept of alternating low- and high-beta-sections at BESSY-II, which allow to operate superconducting insertion devices without a significant distortion of the magnetic optics. To investigate the experimental aspects of the radiometry at wave-length shifters, a program based on the Monte-Carlo-code GEANT4 has been developed. It allows to simulate the radiometrical measurements and the absorption properties of detectors. With the developed codes first radiometrical measurements by the PTB have been analysed. A comparison of measurements and calculations show a reasonable agreement with deviations of about five percent in the spectral range of 40-60 keV behind a 1-mm-Cu filter. A better agreement was found between 20 keV and 80 keV without Cu filter. In this case the measured data agreed within a systematic uncertainty of two percent with the results of the calculations. (orig.)

  9. Recent Developments of Reflectarray Antennas for Reconfigurable Beams Using Surface-Mounted RF-MEMS

    Directory of Open Access Journals (Sweden)

    Eduardo Carrasco

    2012-01-01

    Full Text Available Some of the most recent developments in reconfigurable reflectarrays using surface-mounted RF-MEMS, which have been developed at the Universidad Politécnica de Madrid, are summarized in this paper. The results include reconfigurable elements based on patches aperture-coupled to delay lines in two configurations: single elements and gathered elements which form subarrays with common phase control. The former include traditional aperture-coupled elements and a novel wideband reflectarray element which has been designed using two stacked patches. The latter are proposed as a low cost solution for reducing the number of electronic control devices as well as the manufacturing complexity of large reflectarrays. The main advantages and drawbacks of the grouping are evaluated in both pencil and shaped-beam antennas. In all the cases, the effects of the MEMS switches and their assembly circuitry are evaluated when they are used in a 2-bit phase shifter which can be extended to more bits, demonstrating that the proposed elements can be used efficiently in reconfigurable-beam reflectarrays.

  10. Photonic integrated single-sideband modulator / frequency shifter based on surface acoustic waves

    DEFF Research Database (Denmark)

    Barretto, Elaine Cristina Saraiva; Hvam, Jørn Märcher

    2010-01-01

    Optical frequency shifters are essential components of many systems. In this paper, a compact integrated optical frequency shifter is designed making use of the combination of surface acoustic waves and Mach-Zehnder interferometers. It has a very simple operation setup and can be fabricated...

  11. Broadband homonuclear TOCSY with amplitude and phase-modulated RF mixing schemes

    International Nuclear Information System (INIS)

    Kirschstein, Anika; Herbst, Christian; Riedel, Kerstin; Carella, Michela; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2008-01-01

    We have explored the design of broadband scalar coupling mediated 13 C- 13 C and cross-relaxation suppressed 1 H- 1 H TOCSY sequences employing phase/amplitude modulated inversion pulses. Considering a variety of supercycles, pulsewidths and a RF field strength of 10 kHz, the Fourier coefficients defining the amplitude and phase modulation profiles of the 180 deg. pulses were optimised numerically so as to obtain efficient magnetisation transfer within the desired range of resonance offsets. The coherence transfer characteristics of the mixing schemes were assessed via numerical simulations and experimental measurements and were compared with commonly used sequences based on rectangular RF pulses. The efficacies of the clean 1 H- 1 H TOCSY sequences were also examined via numerical simulations for application to weakly oriented systems and sequences with efficient, broadband and clean dipolar transfer characteristics were identified. In general, the amplitude and phase modulated TOCSY sequences presented here have moderately better performance characteristics than the sequences currently employed in biomolecular NMR spectroscopy

  12. The rf sigmameter: A digital phase-locked technique for accurate long-range laser scanning

    International Nuclear Information System (INIS)

    Zhu, M.; Hall, J.L.

    1986-01-01

    The authors use a new version of a sigmameter, the two-channel field-widened rf sigmameter, to map optical frequency into the phase of an rf signal. This enables them to lock the laser frequency on the interferometer by using a phase-locked loop (PLL). Controlling the reference phase of the PLL electronically, they are able to scan the laser frequency over a long range step by step or with substeps. The systematic error of each substep is cancelled automatically when the authors change one step (which is ten substeps, for example), and that of each step is cancelled when they change the reference phase by 2π (which corresponds to 256 steps in their scheme)

  13. Design and Calibration of an RF Actuator for Low-Level RF Systems

    Science.gov (United States)

    Geng, Zheqiao; Hong, Bo

    2016-02-01

    X-ray free electron laser (FEL) machines like the Linac Coherent Light Source (LCLS) at SLAC require high-quality electron beams to generate X-ray lasers for various experiments. Digital low-level RF (LLRF) systems are widely used to control the high-power RF klystrons to provide a highly stable RF field in accelerator structures for beam acceleration. Feedback and feedforward controllers are implemented in LLRF systems to stabilize or adjust the phase and amplitude of the RF field. To achieve the RF stability and the accuracy of the phase and amplitude adjustment, low-noise and highly linear RF actuators are required. Aiming for the upgrade of the S-band Linac at SLAC, an RF actuator is designed with an I/Qmodulator driven by two digital-to-analog converters (DAC) for the digital LLRF systems. A direct upconversion scheme is selected for RF actuation, and an on-line calibration algorithm is developed to compensate the RF reference leakage and the imbalance errors in the I/Q modulator, which may cause significant phase and amplitude actuation errors. This paper presents the requirements on the RF actuator, the design of the hardware, the calibration algorithm, and the implementation in firmware and software and the test results at LCLS.

  14. A Time Modulated Printed Dipole Antenna Array for Beam Steering Application

    Directory of Open Access Journals (Sweden)

    Ruchi Gahley

    2017-01-01

    Full Text Available This paper presents time modulated beam steered antenna array without phase shifters. The beam steering is analyzed considering a two-element time modulated antenna array (TMAA of printed dipoles with microstrip via-hole balun. The proposed array resonates at the Industrial, Scientific, and Medical (ISM radio bands, 2.45 GHz and 5.8 GHz, and offers wide bandwidth inherited due to modified structure of ground plane. Array elements are excited by complex exponential excitation signal through broadband power divider and radio frequency (RF switches to achieve amplitude and phase variation without phase shifters. Differential Evolution algorithm is used to modify the time sequences of the RF switches connected to the antennas to generate radiation pattern with optimum dynamic efficiency by suppressing sideband radiations. Also switch-on time instant of RF switch connected to the subsequent element is modulated to steer the beam towards different directions. The proposed prototype is fabricated followed by parametric optimization. The fabrication results agree significantly well with simulated results.

  15. Solid state high power amplifier for driving the SLC injector klystron

    International Nuclear Information System (INIS)

    Judkins, J.G.; Clendenin, J.E.; Schwarz, H.D.

    1985-03-01

    The SLC injector klystron rf drive is now provided by a recently developed solid-state amplifier. The high gain of the amplifier permits the use of a fast low-power electronic phase shifter. Thus the SLC computer control system can be used to shift the phase of the high-power rf rapidly during the fill time of the injector accelerator section. These rapid phase shifts are used to introduce a phase-energy relationship in the accelerated electron pulse in conjunction with the operation of the injector bunch compressor. The amplifier, the method of controlling the rf phase, and the operational characteristics of the system are described. 5 refs., 4 figs

  16. Phase noise in RF and microwave amplifiers.

    Science.gov (United States)

    Boudot, Rodolphe; Rubiola, Enrico

    2012-12-01

    Understanding amplifier phase noise is a critical issue in many fields of engineering and physics, such as oscillators, frequency synthesis, telecommunication, radar, and spectroscopy; in the emerging domain of microwave photonics; and in exotic fields, such as radio astronomy, particle accelerators, etc. Focusing on the two main types of base noise in amplifiers, white and flicker, the power spectral density of the random phase φ(t) is Sφ(f) = b(0) + b(-1)/f. White phase noise results from adding white noise to the RF spectrum in the carrier region. For a given RF noise level, b(0) is proportional to the reciprocal of the carrier power P(0). By contrast, flicker results from a near-dc 1/f noise-present in all electronic devices-which modulates the carrier through some parametric effect in the semiconductor. Thus, b(-1) is a parameter of the amplifier, constant in a wide range of P(0). The consequences are the following: Connecting m equal amplifiers in parallel, b(-1) is 1/m times that of one device. Cascading m equal amplifiers, b(-1) is m times that of one amplifier. Recirculating the signal in an amplifier so that the gain increases by a power of m (a factor of m in decibels) as a result of positive feedback (regeneration), we find that b(-1) is m(2) times that of the amplifier alone. The feedforward amplifier exhibits extremely low b(-1) because the carrier is ideally nulled at the input of its internal error amplifier. Starting with an extensive review of the literature, this article introduces a system-oriented model which describes the phase flickering. Several amplifier architectures (cascaded, parallel, etc.) are analyzed systematically, deriving the phase noise from the general model. There follow numerous measurements of amplifiers using different technologies, including some old samples, and in a wide frequency range (HF to microwaves), which validate the theory. In turn, theory and results provide design guidelines and give suggestions for CAD and

  17. Microwave phase shifter with controllable power response based on slow-and fast-light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Capmany, Jose

    2009-01-01

    with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of 240° at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique...

  18. Longitudinal phase space characterization of the blow-out regime of rf photoinjector operation

    Directory of Open Access Journals (Sweden)

    J. T. Moody

    2009-07-01

    Full Text Available Using an experimental scheme based on a vertically deflecting rf deflector and a horizontally dispersing dipole, we characterize the longitudinal phase space of the beam in the blow-out regime at the UCLA Pegasus rf photoinjector. Because of the achievement of unprecedented resolution both in time (50 fs and energy (1.0 keV, we are able to demonstrate some important properties of the beams created in this regime such as extremely low longitudinal emittance, large temporal energy chirp, and the degrading effects of the cathode image charge in the longitudinal phase space which eventually leads to poorer beam quality. All of these results have been found in good agreement with simulations.

  19. An amplitude and phase control system for the TFTR rf heating sources

    International Nuclear Information System (INIS)

    Cutsogeorge, G.

    1989-04-01

    Feedback loops that control the amplitude and phase of the rf heating sources on TFTR are described. The method for providing arc protection is also discussed. Block diagrams and Bode plots are included. 6 figs

  20. Effect of wavelength shifters on water Cherenkov detectors

    Energy Technology Data Exchange (ETDEWEB)

    Badino, G; Galeotti, P; Periale, L; Saavedra, O; Turtelli, A [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Ist. di Fisica Generale)

    1981-06-15

    We report the results of a test showing that concentrations of approx. equal to 2 mg/l of wavelength shifter in water give almost the maximum efficiency of detection without losing the directionality of Cherenkov light.

  1. A development of time-resolved emulsion detector by multi-stage shifter

    International Nuclear Information System (INIS)

    Takahashi, Satoru; Aoki, Shigeki

    2017-01-01

    Nuclear emulsion is a powerful tracking device that can record the three-dimensional trajectory of charged particles within 1 μm spatial resolution. We are promoting GRAINE project which is 10 MeV-100 GeV cosmic γ-ray observations with a precise (0.08deg at 1-2 GeV) and polarization-sensitive large-aperture-area (∼10 m 2 ) emulsion telescope by repeating long duration balloon flights. We are developing multi-stage shifter which allows us to give a timing information to emulsion tracks with ∼seconds or below. The multi-stage shifter opened feasibilities of precise cosmic γ-ray observations, GRAINE, as well as precise measurements of ν-N interactions, J-PARC T60. ∼Millisecond time resolution in a balloon-borne experiment, ∼second time resolution for 126.7 days in an accelerator ν experiment and ∼10 6 time-resolved numbers are being achieved. New model of multi-stage shifter is also being developed for future experiments. (author)

  2. Engineering the Ideal Array (BRIEFING CHARTS)

    Science.gov (United States)

    2007-03-05

    48 V, f = 10 GHz GaN HEMT Transistor i t Dramatically higher: • Output power • Efficiency • Bandwidth GaN HEMT Power Amplifier lifi ...functions – RF amplifiers – 4-bit phase shifters – Amplitude controllers – Summing network – Power control – Latches for phase state – Address

  3. Electromagnetic modeling and characterization of an optically-controlled microwave phase shifterin GaAs integrated technology

    OpenAIRE

    Tripon-Canseliet, C.; Faci, S.; Deshours, F.; Algani, C.; Alquié, G.; Formont, S.; Chazelas, J.

    2005-01-01

    A state of the art of the modeling of microwave photoswitching devices is exposed. A new 3 D electromagnetic modeling allows the design of an optically-controlled microwave phase shifter microwave starting from the traditional circuit of a microwave photoswitch. Measurements of the parameters S of this optically-controlled microwave phase shifter attests the function of this circuit by optical way and highlights the interest of the integration of this new type of microwave phase shifters in ...

  4. Longitudinal phase space characterization of the blow-out regime of rf photoinjector operation

    OpenAIRE

    J. T. Moody; P. Musumeci; M. S. Gutierrez; J. B. Rosenzweig; C. M. Scoby

    2009-01-01

    Using an experimental scheme based on a vertically deflecting rf deflector and a horizontally dispersing dipole, we characterize the longitudinal phase space of the beam in the blow-out regime at the UCLA Pegasus rf photoinjector. Because of the achievement of unprecedented resolution both in time (50 fs) and energy (1.0 keV), we are able to demonstrate some important properties of the beams created in this regime such as extremely low longitudinal emittance, large temporal energy chirp, and ...

  5. Silicon Nano-Photonic Devices

    DEFF Research Database (Denmark)

    Pu, Minhao

    with the couplers, a silicon ridge waveguide is utilized in nonlinear all-optical signal processing for optical time division multiplexing (OTDM) systems. Record ultra-highspeed error-free optical demultiplexing and waveform sampling are realized and demonstrated for the rst time. Microwave phase shifters and notch...... lters based on tunable microring resonators are proposed and analyzed. Based on a single microring resonator, a maximum radio frequency (RF) phase shift of 336degrees is obtained, but with large power variation. By utilizing a dual-microring resonator, a RF phase shifting range larger than 2pi...

  6. Automatic Phase Calibration for RF Cavities using Beam-Loading Signals

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, J. P. [Fermilab; Chase, B. E. [Fermilab

    2017-10-01

    Precise calibration of the cavity phase signals is necessary for the operation of any particle accelerator. For many systems this requires human in the loop adjustments based on measurements of the beam parameters downstream. Some recent work has developed a scheme for the calibration of the cavity phase using beam measurements and beam-loading however this scheme is still a multi-step process that requires heavy automation or human in the loop. In this paper we analyze a new scheme that uses only RF signals reacting to beam-loading to calculate the phase of the beam relative to the cavity. This technique could be used in slow control loops to provide real-time adjustment of the cavity phase calibration without human intervention thereby increasing the stability and reliability of the accelerator.

  7. MESSENGER Spacecraft Phase Scintillation due to Plasma ductting effect on RF beam propagation at Superior Solar Conjunction

    Science.gov (United States)

    Mosavi, N.; Sequeira, H.; Copeland, D.; Menyuk, C.

    2017-12-01

    We investigate the evolution of a radio frequency (RF) X-band signal as it propagates through the solar corona turbulence in superior solar conjunction at low Sun-Earth-Probe (SEP) angles.Data that was obtained during several MESSENGER (MErcury Surface, Space ENivornment, GEochmeisty, and Ranging) conjunctions reveal a short-term and long-term effect. Amplitude scintillation is evident on a short time scale. Phase scintillations are stronger, but occur over a longer time scale. We examine different possible phenomena in the solar plasma that could be the source of the different time scales of the amplitude and phase scintillations. We propose a theoretical model in which the amplitude scintillations are due to local fluctuations of the index of refraction that scatter the RF signal. These rapidly varying fluctuations randomly attenuate the signal without affecting its phase. By contrast, we propose a model in which phase fluctuations are due to long ducts in the solar plasma, streaming from the sun, that trap some parts of the RF signal. These ducts act as waveguides, changing the phase velocity of the RF beam as it travels a zigzag path inside a duct. When the radiated wave exits from a duct, its phase is changed with respect to the signal that did not pass through the duct, which can lead to destructive interference and carrier suppression. The trapping of the wave is random in nature and can be either a fast or slow process. The predictions of this model are consistent with observations.

  8. Performance of RF power and phase control on JT-60 LHRF heating system

    International Nuclear Information System (INIS)

    Fujii, T.; Ikeda, Y.; Imai, T.; Honda, M.; Kiyono, K.; Maebara, S.; Saigusa, M.; Sakamoto, K.; Sawahata, M.; Seki, M.

    1987-01-01

    The performance of RF power and phase control on the JT-60 LHRFD heating system are presented. The JT-60 LHRF heating system has three units of huge RF source with a total output of 24 MW, each unit consisting of eight amplifier chains. A high power klystron generating 1 MW for 10 s at 2 GHz is used in each chain. Automatic gain control is employed to regulate the output power not only against gain fluctuations in the chain but also against the unstable plasma load without any output circulator for the klystron

  9. Dye mixtures for ultrafast wavelength shifters

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, S.; Liu, L.; Palsule, C.; Borst, W.; Wigmans, R. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Physics; Barashkov, N. [Karpov Inst. of Physical Chemistry, Moscow (Russian Federation)

    1994-12-31

    Particle detectors based on scintillation processes have been used since the discovery of radium about 100 years ago. The fast signals that can be obtained with these detectors, although often considered a nice asset, were rarely essential for the success of experiments. However, the new generation of high energy particle accelerators require particle detectors with fast response time. The authors have produced fast wavelength shifters using mixtures of various Coumarin dyes with DCM in epoxy-polymers (DGEBA+HHPA) and measured the properties of these wavelength shifters. The particular mixtures were chosen because there is a substantial overlap between the emission spectrum of Coumarin and the absorption spectrum of DCM. The continuous wave and time-resolved fluorescence spectra have been studied as a function of component concentration to optimize the decay times, emission peaks and quantum yields. The mean decay times of these mixtures are in the range of 2.5--4.5 ns. The mean decay time increases with an increase in Coumarin concentration at a fixed DCM concentration or with a decrease in DCM concentration at a fixed Coumarin concentration. This indicates that the energy transfer is radiative at lower relative DCM concentrations and becomes non-radiative at higher DCM concentrations.

  10. Dye mixtures for ultrafast wavelength shifters

    International Nuclear Information System (INIS)

    Gangopadhyay, S.; Liu, L.; Palsule, C.; Borst, W.; Wigmans, R.

    1994-01-01

    Particle detectors based on scintillation processes have been used since the discovery of radium about 100 years ago. The fast signals that can be obtained with these detectors, although often considered a nice asset, were rarely essential for the success of experiments. However, the new generation of high energy particle accelerators require particle detectors with fast response time. The authors have produced fast wavelength shifters using mixtures of various Coumarin dyes with DCM in epoxy-polymers (DGEBA+HHPA) and measured the properties of these wavelength shifters. The particular mixtures were chosen because there is a substantial overlap between the emission spectrum of Coumarin and the absorption spectrum of DCM. The continuous wave and time-resolved fluorescence spectra have been studied as a function of component concentration to optimize the decay times, emission peaks and quantum yields. The mean decay times of these mixtures are in the range of 2.5--4.5 ns. The mean decay time increases with an increase in Coumarin concentration at a fixed DCM concentration or with a decrease in DCM concentration at a fixed Coumarin concentration. This indicates that the energy transfer is radiative at lower relative DCM concentrations and becomes non-radiative at higher DCM concentrations

  11. Low Level RF Including a Sophisticated Phase Control System for CTF3

    CERN Document Server

    Mourier, J; Nonglaton, J M; Syratchev, I V; Tanner, L

    2004-01-01

    CTF3 (CLIC Test Facility 3), currently under construction at CERN, is a test facility designed to demonstrate the key feasibility issues of the CLIC (Compact LInear Collider) two-beam scheme. When completed, this facility will consist of a 150 MeV linac followed by two rings for bunch-interleaving, and a test stand where 30 GHz power will be generated. In this paper, the work that has been carried out on the linac's low power RF system is described. This includes, in particular, a sophisticated phase control system for the RF pulse compressor to produce a flat-top rectangular pulse over 1.4 µs.

  12. Design of photonic phased array switches using nano electromechanical systems on silicon-on-insulator integration platform

    Science.gov (United States)

    Hussein, Ali Abdulsattar

    This thesis presents an introduction to the design and simulation of a novel class of integrated photonic phased array switch elements. The main objective is to use nano-electromechanical (NEMS) based phase shifters of cascaded under-etched slot nanowires that are compact in size and require a small amount of power to operate them. The structure of the switch elements is organized such that it brings the phase shifting elements to the exterior sides of the photonic circuits. The transition slot couplers, used to interconnect the phase shifters, are designed to enable biasing one of the silicon beams of each phase shifter from an electrode located at the side of the phase shifter. The other silicon beam of each phase shifter is biased through the rest of the silicon structure of the switch element, which is taken as a ground. Phased array switch elements ranging from 2x2 up to 8x8 multiple-inputs/multiple-outputs (MIMO) are conveniently designed within reasonable footprints native to the current fabrication technologies. Chapter one presents the general layout of the various designs of the switch elements and demonstrates their novel features. This demonstration will show how waveguide disturbances in the interconnecting network from conventional switch elements can be avoided by adopting an innovative design. Some possible applications for the designed switch elements of different sizes and topologies are indicated throughout the chapter. Chapter two presents the design of the multimode interference (MMI) couplers used in the switch elements as splitters, combiners and waveguide crossovers. Simulation data and design methodologies for the multimode couplers of interest are detailed in this chapter. Chapter three presents the design and analysis of the NEMS-operated phase shifters. Both simulations and numerical analysis are utilized in the design of a 0°-180° capable NEMS-operated phase shifter. Additionally, the response of some of the designed photonic phased

  13. Synchronization of RF fields of Indus 2 RF cavities for proper injection and acceleration of beam

    International Nuclear Information System (INIS)

    Tiwari, Nitesh; Bagduwal, Pritam S.; Lad, M.; Hannurkar, P.R.

    2009-01-01

    Indus-2 is a synchrotron light source with designed parameters of 2.5 GeV, 300 mA beam current. Four RF cavities fed from four RF power stations have been used for beam acceleration from 550 MeV to 2.5 GeV and synchrotron loss compensation. Particle should reach the RF cavity at the proper phase for proper acceptance of the beam in ring. At injection if the phase is not proper the acceptance efficiency reduces and the maximum stored current in the ring also gets limited. Equal contribution from four cavities at every value of current and energy level is very important. Improper phase will cause the imbalance of the power among different station hence will limit maximum stored current and reduce life time of the stored beam. Phase optimization was done in two-step, first at injection to have better injection rate and the stations were operated at the sufficient power for control loops to operate. Then at 2 GeV and 2.5 GeV energy so that beam extracts equal power from all four RF stations. Phase synchronization of all four cavities from injection to 2.5 GeV has already been done at 50 mA stored beam current. If phases of RF fields inside four RF cavities is not proper then beam will not see the total RF voltage as summation of all four cavity gap voltages, hence it is a very important parameter to be optimized and maintained during operation. (author)

  14. Improving the phase stability of the SLAC rf driveline network for SLC operation

    International Nuclear Information System (INIS)

    Weaver, J.N.; Hogg, H.A.

    1983-01-01

    Successful operation of the Stanford Linear Collider (SLC) will require greater phase stability from the two-mile long rf drive network than previous linac operation did. This paper discusses four proposed modifications of the present system that should help achieve the general objective to reduce all long term temperature and atmospheric pressure induced phase variations to less than 20 0 at 2856 MHz, so that the phase/amplitude detector subsystems, which will control the network output phases relative to a beam reference, will operate within their most accurate ranges

  15. Progress of the Moscow Meson Factory linac RF phase and amplitude control system

    International Nuclear Information System (INIS)

    Sharamentov, S.I.; Edachev, V.V.; Kvasha, A.I.; Belov, A.D.; Kuznetsov, V.V.

    1992-01-01

    The updated configuration of the MMF linac rf phase and amplitude control systems are presented. The structure of systems, controlling devices and specific feedback controller with Smith compensation and simulated feed-forward control loop are described. (Author) 2 refs., 5 figs

  16. Microprocessor-based control for independently-phased RF linac cavities

    International Nuclear Information System (INIS)

    Dawson, J.W.

    1979-01-01

    A microprocessor based system has been built to control the RF amplifiers associated with independently phased linac cavities. The system has an 8080A at each amplifier station, together with associated ROM, RAM, I/O, etc. At a central NOVA 3 computer an additional 8080A system is incorporated in the interface to the NOVA I/O bus. The NOVA interface is connected by a bus of eighteen twisted pairs to each amplifier station, providing bilateral transmission between each station and the NOVA. The system architecture, bus protocol, and operating characteristics are described

  17. RF Energy Compressor

    International Nuclear Information System (INIS)

    Farkas, Z.D.

    1980-02-01

    The RF Energy Compressor, REC described here, transforms cw rf into periodic pulses using an energy storage cavity, ESC, whose charging is controlled by 180 0 bi-phase modulation, PSK, and external Q switching, βs. Compression efficiency, C/sub e/, of 100% can be approached at any compression factor C/sub f/

  18. Research on effects of phase error in phase-shifting interferometer

    Science.gov (United States)

    Wang, Hongjun; Wang, Zhao; Zhao, Hong; Tian, Ailing; Liu, Bingcai

    2007-12-01

    Referring to phase-shifting interferometry technology, the phase shifting error from the phase shifter is the main factor that directly affects the measurement accuracy of the phase shifting interferometer. In this paper, the resources and sorts of phase shifting error were introduction, and some methods to eliminate errors were mentioned. Based on the theory of phase shifting interferometry, the effects of phase shifting error were analyzed in detail. The Liquid Crystal Display (LCD) as a new shifter has advantage as that the phase shifting can be controlled digitally without any mechanical moving and rotating element. By changing coded image displayed on LCD, the phase shifting in measuring system was induced. LCD's phase modulation characteristic was analyzed in theory and tested. Based on Fourier transform, the effect model of phase error coming from LCD was established in four-step phase shifting interferometry. And the error range was obtained. In order to reduce error, a new error compensation algorithm was put forward. With this method, the error can be obtained by process interferogram. The interferogram can be compensated, and the measurement results can be obtained by four-step phase shifting interferogram. Theoretical analysis and simulation results demonstrate the feasibility of this approach to improve measurement accuracy.

  19. Millimeter-wave pseudomorphic HEMT MMIC phased array components for space communications

    Science.gov (United States)

    Lan, G. L.; Pao, C. K.; Wu, C. S.; Mandolia, G.; Hu, M.; Yuan, S.; Leonard, Regis

    1991-01-01

    Recent advances in pseudomorphic HEMT MMIC (PMHEMT/MMIC) technology have made it the preferred candidate for high performance millimeter-wave components for phased array applications. This paper describes the development of PMHEMT/MMIC components at Ka-band and V-band. Specifically, the following PMHEMT/MMIC components will be described: power amplifiers at Ka-band; power amplifiers at V-band; and four-bit phase shifters at V-band. For the Ka-band amplifier, 125 mW output power with 5.5 dB gain and 21 percent power added efficiency at 2 dB compression point has been achieved. For the V-band amplifier, 112 mW output power with 6 dB gain and 26 percent power added efficiency has been achieved. And, for the V-band phase shifter, four-bit (45 deg steps) phase shifters with less than 8 dB insertion loss from 61 GHz to 63 GHz will be described.

  20. Accelerator physics and radiometric properties of superconducting wavelength shifters; Beschleunigerphysik und radiometrische Eigenschaften supraleitender Wellenlaengenschieber

    Energy Technology Data Exchange (ETDEWEB)

    Scheer, Michael

    2008-11-17

    Subject of this thesis is the operation of wave-length shifters at electron storage rings and their use in radiometry. The basic aspects of the radiometry, the technical requirements, the influence of wave-length shifters on the storage ring, and results of first measurements are presented for a device installed at BESSY. Most of the calculations are carried out by the program WAVE, which has been developed within this thesis. WAVE allows to calculate the synchrotron radiation spectra of wavelength shifters within an relative uncertainty of 1/100000. The properties of wave-length shifters in terms of accelerator physics as well as a generating function for symplectic tracking calculations can also be calculated by WAVE. The later was implemented in the tracking code BETA to investigate the influence of insertion devices on the dynamic aperture and emittance of the storage ring. These studies led to the concept of alternating low- and high-beta-sections at BESSY-II, which allow to operate superconducting insertion devices without a significant distortion of the magnetic optics. To investigate the experimental aspects of the radiometry at wave-length shifters, a program based on the Monte-Carlo-code GEANT4 has been developed. It allows to simulate the radiometrical measurements and the absorption properties of detectors. With the developed codes first radiometrical measurements by the PTB have been analysed. A comparison of measurements and calculations show a reasonable agreement with deviations of about five percent in the spectral range of 40-60 keV behind a 1-mm-Cu filter. A better agreement was found between 20 keV and 80 keV without Cu filter. In this case the measured data agreed within a systematic uncertainty of two percent with the results of the calculations. (orig.)

  1. Tevatron global radius and 0s system

    International Nuclear Information System (INIS)

    Bristol, S.; Kerns, C.; Kerns, Q.; Miller, H.W.

    1985-06-01

    It has been found to be practical to extract a turn-average measurement of bunch beam phase relative to cavity gap voltage. This 0s signal shows the bunch position on the rf wave throughout injection, acceleration and extraction, including coherent synchrotron oscillations when present. In turn, the time derivative of 0s is a direct measure of global radial position error. We use the 0s signal, driving a phase shifter in the rf low-level system, to damp coherent synchrotron oscillations. Design and operation will be discussed including single beam bunch operation if available. 8 refs., 5 figs

  2. The Spallation Neutron Source RF Reference System

    CERN Document Server

    Piller, Maurice; Crofford, Mark; Doolittle, Lawrence; Ma, Hengjie

    2005-01-01

    The Spallation Neutron Source (SNS) RF Reference System includes the master oscillator (MO), local oscillator(LO) distribution, and Reference RF distribution systems. Coherent low noise Reference RF signals provide the ability to control the phase relationships between the fields in the front-end and linear accelerator (linac) RF cavity structures. The SNS RF Reference System requirements, implementation details, and performance are discussed.

  3. Time stamp technique using a nuclear emulsion multi-stage shifter for gamma-ray telescope

    International Nuclear Information System (INIS)

    Takahashi, Satoru; Aoki, Shigeki; Rokujo, Hiroki; Hamada, Kaname; Komatsu, Masahiro; Morishima, Kunihiro; Nakamura, Mitsuhiro; Nakano, Toshiyuki; Niwa, Kimio; Sato, Osamu; Yoshioka, Teppei; Kodama, Koichi

    2010-01-01

    Nuclear emulsion has a potential use as a gamma-ray telescope with high angular resolution. For this application it is necessary to know the time when each track was recorded in the emulsion. In previous experiments using nuclear emulsion, various efforts were used to associate time to nuclear emulsion tracks and to improve the time resolution. Using a high speed readout system for nuclear emulsion together with a clock-based multi-stage emulsion shifter, we invented a technique to give a time-stamp to emulsion tracks and greatly improve the time resolution. A test experiment with a 2-stage shifter was used to demonstrate the principle of multi-stage shifting, and we achieved a time resolution 1.5 s for 12.1 h (about 1 part in 29 000) with the time stamp reliability 97% and the time stamp efficiency 98%. This multi-stage shifter can achieve the time resolution required for a gamma-ray telescope and can also be applied to another cosmic ray observations and accelerator experiments using nuclear emulsion.

  4. Design and development of Low Level RF (LLRF) control system

    International Nuclear Information System (INIS)

    Mandi, T.K.; Suman, S.; Pandey, H.K.; Bandyopadhyay, A.

    2015-01-01

    All the linear accelerator cavities of Radioactive Ion Beam have separate RF power amplifiers. In these accelerators, high stabilities of the order of ± 0.5% in amplitude and ± 0.5° in phase of RF signal inside the cavities are required for proper and efficient acceleration of RIB. For this purpose, a low level RF (LLRF) control system is being designed which includes amplitude and phase controllers to ensure efficient and stable operation of the RF accelerators. The RF output of the LLRF system is finally amplified and fed to the accelerator cavities. The LLRF system is based on IQ (In-phase and Quadrature) modulation-demodulation technique in which an IQ modulator and a demodulator has been used to control the amplitude and phase of the RF carrier signal. The HigH-speed DAC and ADC have been used for processing the in-phase (I) and quadrature-phase (Q) components of the RF signal. This system is a closed-loop feedback control system. The feedback signal is obtained from the pick-up of accelerator cavity. PID control method is used to regulate the amplitude and phase of the RF signal to the desired/set value. The control system is optimized for minimum response time with satisfactory performance. The transfer function of the PID controller and the RF cavity is compared with the transfer function of a first order system and the values of proportional gain (Kp), integral gain (Ti) and derivative gain (Td) are obtained from Matlab- Simulink Simulation. The PID controller has been implemented into a high speed microcontroller (LPC2478) for fast operation. A GUI has been developed in NI LabView software to monitor the Amplitude and Phase of the RF signal and control manually if required. The detailed design and development of the control system will be discussed in this paper. (author)

  5. Measured performance of the GTA rf systems

    International Nuclear Information System (INIS)

    Denney, P.M.; Jachim, S.P.

    1993-01-01

    This paper describes the performance of the RF systems on the Ground Test Accelerator (GTA). The RF system architecture is briefly described. Among the RF performance results presented are RF field flatness and stability, amplitude and phase control resolution, and control system bandwidth and stability. The rejection by the RF systems of beam-induced disturbances, such as transients and noise, are analyzed. The observed responses are also compared to computer-based simulations of the RF systems for validation

  6. Single-particle dynamics - RF acceleration

    International Nuclear Information System (INIS)

    Montague, B.W.

    1977-01-01

    In this paper the rf acceleration of both synchronous and non-synchronous particles is discussed and a simple linearized equation of small amplitude synchrotron oscillations is derived. Phase stability, the hamiltonian for synchrotron oscillations, oscillation amplitudes and adiabatic damping are then briefly discussed. The final sections of the paper contain a description of the basic principles of rf beam stacking in the longitudinal phase space of intersecting Storage Rings and a description of phase displacement acceleration which inspite of certain disadvantages, remains an attractive technique for proton storage rings. (B.D.)

  7. RF magnetron sputtered La3+-modified PZT thin films: Perovskite phase stabilization and properties

    International Nuclear Information System (INIS)

    Singh, Ravindra; Goel, T.C.; Chandra, Sudhir

    2008-01-01

    In this work, we report the preparation of lanthanum-modified lead zirconate titanate (PLZT) thin films in pure perovskite phase by RF magnetron sputtering. Various deposition parameters such as target-to-substrate spacing, sputtering gas composition, deposition temperature, post-deposition annealing temperature and time have been optimized to obtain PLZT films in pure perovskite phase. The films prepared in pure argon at 100 W RF power without external substrate heating exhibit pure perovskite phase after rapid thermal annealing (RTA) at 700 deg. C for 5 min. The film prepared at 225 deg. C substrate temperature also exhibits pure perovskite phase after RTA at 700 deg. C for 2 min. SIMS depth profile performed on one of the pure perovskite films (RTA at 700 deg. C for 5 min) shows very good stoichiometric uniformity of all elements of PLZT. The surface morphology of the films was examined using SEM and AFM. The dielectric, ferroelectric and electrical properties of the pure perovskite films were also investigated in detail. The remanent polarization for the films annealed at 700 deg. C for 5 and 2 min were found to be 15 and 13.5 μC cm -2 , respectively. Both the films have high DC resistivity of the order of 10 11 Ω cm at the electric field of ∼80 kV cm -1

  8. Active phase correction of high resolution silicon photonic arrayed waveguide gratings.

    Science.gov (United States)

    Gehl, M; Trotter, D; Starbuck, A; Pomerene, A; Lentine, A L; DeRose, C

    2017-03-20

    Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Therefore, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. Here we present the design and fabrication of compact silicon photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. Additionally, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.

  9. Phased-array radars

    Science.gov (United States)

    Brookner, E.

    1985-02-01

    The operating principles, technology, and applications of phased-array radars are reviewed and illustrated with diagrams and photographs. Consideration is given to the antenna elements, circuitry for time delays, phase shifters, pulse coding and compression, and hybrid radars combining phased arrays with lenses to alter the beam characteristics. The capabilities and typical hardware of phased arrays are shown using the US military systems COBRA DANE and PAVE PAWS as examples.

  10. The possibilities of constructing a very big Cherenkov detector with usage of a light spectrum shifters

    International Nuclear Information System (INIS)

    Akimov, Yu.K.

    1980-01-01

    A version of Cherenkov detector (V approximately 10 4 tonns) for nuclear instability searches and for neutrino investigations is suggested. The detector has a 4π-anticoincidence screen and is characterized by a relatively uniform sensitivity at a moderate number of photomultipliers. For light collecting the wavelength shifters are used which absorb blue light and reemit it in the green light. Wavelength shifters provide almost a one-order increase of light collecting. Detector possibilities are discussed [ru

  11. Concept of an interlaced phased array for beam switching

    Science.gov (United States)

    Reddy, C. A.; Janardhanan, K. V.; Mukundan, K. K.; Shenoy, K. S. V.

    1990-04-01

    A novel concept is described for feeding and phasing a large linear array of N antenna elements using only three or five feed points and phase shifters and still achieving beam switching. The idea consists of drastically reducing the number of input points by interlacing a small number of serially fed subarrays which are suitably phased. This so-called interlaced phased array (IPA) concept was tested using an array of 15 four-element Yagi antennas with a spacing equal to 0.8 wavelengths and found feasible. Some of the distinct advantages of the IPA in comparison with a conventional system of beam switching are reduced power loss, reduced phasing errors, reduced cost, increased reliability resulting from greatly reduced number of phase shifters, and better symmetry of off-zenith beams.

  12. Versatile rf controller

    International Nuclear Information System (INIS)

    Howard, D.

    1985-05-01

    The low level rf system developed for the new Bevatron local injector provides precise control and regulation of the rf phase and amplitude for three 200 MHz linac cavities. The main features of the system are: extensive use of inexpensive, off-the-shelf components, ease of maintenance, and adaptability to a wide range of operation frequencies. The system utilizes separate function, easily removed rf printed circuit cards interconnected via the edge connectors. Control and monitoring are available both locally and through the computer. This paper will describe these features as well as the few component changes that would be required to adapt the techniques to other operating frequencies. 2 refs

  13. Bunch Compression Stability Dependence on RF Parameters

    CERN Document Server

    Limberg, T

    2005-01-01

    In present designs for FEL's with high electron peak currents and short bunch lengths, higher harmonic RF systems are often used to optimize the final longitudinal charge distributions. This opens degrees of freedom for the choice of RF phases and amplitudes to achieve the necessary peak current with a reasonable longitudinal bunch shape. It had been found empirically that different working points result in different tolerances for phases and amplitudes. We give an analytical expression for the sensitivity of the compression factor on phase and amplitude jitter for a bunch compression scheme involving two RF systems and two magnetic chicanes as well numerical results for the case of the European XFEL.

  14. A self-adaptive feedforward rf control system for linacs

    International Nuclear Information System (INIS)

    Zhang Renshan; Ben-Zvi, I.; Xie Jialin

    1993-01-01

    The design and performance of a self-adaptive feedforward rf control system are reported. The system was built for the linac of the Accelerator Test Facility (ATF) at Brookhaven National Laboratory. Variables of time along the linac macropulse, such as field or phase are discretized and represented as vectors. Upon turn-on or after a large change in the operating-point, the control system acquires the response of the system to test signal vectors and generates a linearized system response matrix. During operation an error vector is generated by comparing the linac variable vectors and a target vector. The error vector is multiplied by the inverse of the system's matrix to generate a correction vector is added to an operating point vector. This control system can be used to control a klystron to produce flat rf amplitude and phase pulses, to control a rf cavity to reduce the rf field fluctuation, and to compensate the energy spread among bunches in a rf linac. Beam loading effects can be corrected and a programmed ramp can be produced. The performance of the control system has been evaluated on the control of a klystron's output as well as an rf cavity. Both amplitude and phase have been regulated simultaneously. In initial tests, the rf output from a klystron has been regulated to an amplitude fluctuation of less than ±0.3% and phase variation of less than ±0.6deg. The rf field of the ATF's photo-cathode microwave gun cavity has been regulated to ±5% in amplitude and simultaneously to ±1deg in phase. Regulating just the rf field amplitude in the rf gun cavity, we have achieved amplitude fluctuation of less than ±2%. (orig.)

  15. Multiscale simulation of neutron induced damage in tritium breeding blankets with different spectral shifters

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Hee; Joo, Han Gyu, E-mail: joohan@snu.ac.kr

    2013-10-15

    Highlights: • A multiscale defect simulation system tailored for neutron damage estimation is introduced. • The new recoil spectrum code can use the most recent ENDF-B/VII nuclear data. • The high energy cascades are broken into subcascades using the INCAS model. • OKMC simulation provides data for shear stress estimation using dislocation dynamics formula. • Demonstration is made with a fusion blanket design having different spectral shifters. -- Abstract: A multiscale material defect simulation established to evaluate neutron induced damages on metals is applied to an estimation of material degradation in helium cooled molten lithium blankets in which four different spectral shifter materials are examined as a means of maximizing the tritium breeding ratio through proper shaping of the neutron spectrum. The multiscale system consists of a Monte Carlo neutron transport code, a recoil spectrum generation code, a molecular dynamics code, a high energy cascade breakup model, an object kinetic Monte Carlo code, and a simple formula as the shear stress estimator. The average recoil energy of the primary knock-on atoms, the total concentration of the defects, average defect sizes, and the increase in shear stress after a certain irradiation time are calculated for each spectral shifter. Among the four proposed materials of B4C, Be, Graphite and TiC, B4C reveals the best shielding performance in terms of neutron radiation hardening. The result for the increase in shear stress after 100 days of irradiation indicates that the increased shear stress is 1.5 GPa for B4C which is about 40% less than that of the worst one, the graphite spectral shifter. The other damage indicators show consistent trends.

  16. Design and development of RF system for vertical test stand for characterization of superconducting RF cavities

    International Nuclear Information System (INIS)

    Mohania, Praveen; Rajput, Vikas; Baxy, Deodatta; Agrawal, Ankur; Mahawar, Ashish; Adarsh, Kunver; Singh, Pratap; Shrivastava, Purushottam

    2011-01-01

    RRCAT is developing a Vertical Test Stand (VTS) to test and qualify 1.3 GHz/650 MHz, SCRF Cavities in collaboration with Fermi National Accelerator Laboratory (FNAL) under Indian Institutions' Fermilab Collaboration. The technical details for VTS is being provided by FNAL, USA. The RF System of VTS needs to provide stable RF power to SCRF cavity with control of amplitude, relative phase and frequency. The incident, reflected, transmitted power and field decay time constant of the cavity are measured to evaluate cavity performance parameters (E, Qo). RF Power is supplied via 500 W Solid State amplifier, 1270-1310 MHz being developed by PHPMS, RRCAT. VTS system is controlled by PXI Platform and National Instruments LabVIEW software. Low Level RF (LLRF) system is used to track the cavity frequency using Phase Locked Loop (PLL). The system is comprised of several integrated functional modules which would be assembled, optimized, and tested separately. Required components and instruments have been identified and procurement for the same is underway. Inhouse development for the Solid State RF amplifier and instrument interfacing is in progress. This paper describes the progress on the development of the RF system for VTS. (author)

  17. Low-Level RF Control of Microphonics in Superconducting Spoke-Loaded Cavities

    International Nuclear Information System (INIS)

    Conway, Z.A.; Kelly, M.P.; Sharamentov, S.I.; Shepard, K.W.; Davis, G.; Delayen, Jean; Doolittle, Lawrence

    2007-01-01

    This paper presents the results of cw RF frequency control and RF phase-stabilization experiments performed with a piezoelectric fast tuner mechanically coupled to a superconducting, 345 MHz, < = 0.5 triple-spoke-loaded cavity operating at 4.2K. The piezoelectric fast tuner damped low-frequency microphonic-noise by an order of magnitude. Two methods of RF phase-stabilization were characterized: overcoupling with negative phase feedback, and also fast mechanical tuner feedback. The = 0.5 triple-spoke-loaded cavity RF field amplitude and phase errors were controlled to ±0.5% and ±30 respectively.

  18. Development of Phase Change Materials for RF Switch Applications

    Science.gov (United States)

    King, Matthew Russell

    For decades chalcogenide-based phase change materials (PCMs) have been reliably implemented in optical storage and digital memory platforms. Owing to the substantial differences in optical and electronic properties between crystalline and amorphous states, device architectures requiring a "1" and "0" or "ON" and "OFF" states are attainable with PCMs if a method for amorphizing and crystallizing the PCM is demonstrated. Taking advantage of more than just the binary nature of PCM electronic properties, recent reports have shown that the near-metallic resistivity of some PCMs allow one to manufacture high performance RF switches and related circuit technologies. One of the more promising RF switch technologies is the Inline Phase Change Switch (IPCS) which utilizes GeTe as the active material. Initial reports show that an electrically isolated, thermally coupled thin film heater can successfully convert GeTe between crystalline and amorphous states, and with proper design an RF figure of merit cutoff frequency (FCO) of 12.5 THz can be achieved. In order to realize such world class performance a significant development effort was undertaken to understand the relationship between fundamental GeTe properties, thin film deposition method and resultant device properties. Deposition pressure was found to be the most important deposition process parameter, as it was found to control Ge:Te ratio, oxygen content, Ar content, film density and surface roughness. Ultimately a first generation deposition process produced GeTe films with a crystalline resistivity of 3 ohm-mum. Upon implementing these films into IPCS devices, post-cycling morphological analysis was undertaken using STEM and related analyses. It was revealed that massive structural changes occur in the GeTe during switching, most notably the formation of an assembly of voids along the device centerline and large GeTe grains on either side of the so-called active region. Restructuring of this variety was tied to

  19. Large dielectric constant ({epsilon}/{epsilon}{sub 0}>6000) Ba{sub 0.4}Sr{sub 0.6}TiO{sub 3} thin films for high-performance microwave phase shifters

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, C. M. [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Rivkin, T. V. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Parilla, P. A. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Perkins, J. D. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Ginley, D. S. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Kozyrev, A. B. [Electrotechnical University of St. Petersburg, St. Petersburg, Russia 197376 (Russian Federation); Oshadchy, V. N. [Electrotechnical University of St. Petersburg, St. Petersburg, Russia 197376 (Russian Federation); Pavlov, A. S. [Electrotechnical University of St. Petersburg, St. Petersburg, Russia 197376 (Russian Federation)

    2000-04-03

    We deposited epitaxial Ba{sub 0.4}Sr{sub 0.6}TiO{sub 3} (BST) films via laser ablation on MgO and LaAlO{sub 3} (LAO) substrates for tunable microwave devices. Postdeposition anneals ({approx}1100 degree sign C in O{sub 2}) improved the morphology and overall dielectric properties of films on both substrates, but shifted the temperature of maximum dielectric constant (T{sub max}) up for BST/LAO and down for BST/MgO. These substrate-dependent T{sub max} shifts had opposite effects on the room-temperature dielectric properties. Overall, BST films on MgO had the larger maximum dielectric constant ({epsilon}/{epsilon}{sub 0}{>=}6000) and tunability ({delta}{epsilon}/{epsilon}{>=}65%), but these maxima occurred at 227 K. 30 GHz phase shifters made from similar films had figures of merit (ratio of maximum phase shift to insertion loss) of {approx}45 degree sign /dB and phase shifts of {approx}400 degree sign under 500 V ({approx}13 V/{mu}m) bias, illustrating their utility for many frequency-agile microwave devices. (c) 2000 American Institute of Physics.

  20. Bidirectional Radio-Over-Fiber System With Phase-Modulation Downlink and RF Oscillator-Free Uplink Using a Reflective SOA

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Tafur Monroy, Idelfonso

    2008-01-01

    We propose and demonstrate a bidirectional radio-over-fiber (RoF) system based on a reflective semiconductor optical amplifier (RSOA). In this system, phase-modulated 5.25-GHz radio frequency (RF) carrying 850 Mb/s is used for the downstream signal. Optical envelope detection of 10-GHz RF carryin......-effective. The experimental results indicate that after simultaneous transmission of downstream and upstream signals over 25-km fiber, the receiver sensitivities are -22 and -14.5 dBm, respectively....

  1. Design of an L-band normally conducting RF gun cavity for high peak and average RF power

    Energy Technology Data Exchange (ETDEWEB)

    Paramonov, V., E-mail: paramono@inr.ru [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Philipp, S. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Rybakov, I.; Skassyrskaya, A. [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Stephan, F. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany)

    2017-05-11

    To provide high quality electron bunches for linear accelerators used in free electron lasers and particle colliders, RF gun cavities operate with extreme electric fields, resulting in a high pulsed RF power. The main L-band superconducting linacs of such facilities also require a long RF pulse length, resulting in a high average dissipated RF power in the gun cavity. The newly developed cavity based on the proven advantages of the existing DESY RF gun cavities, underwent significant changes. The shape of the cells is optimized to reduce the maximal surface electric field and RF loss power. Furthermore, the cavity is equipped with an RF probe to measure the field amplitude and phase. The elaborated cooling circuit design results in a lower temperature rise on the cavity RF surface and permits higher dissipated RF power. The paper presents the main solutions and results of the cavity design.

  2. Pulsed rf excited spectrometer having improved pulse width control

    International Nuclear Information System (INIS)

    1977-01-01

    RF excitation for a spectrometer is obtained by pulse width modulating an RF carrier to produce the desired broadband RF exciting spectrum. The RF excitation includes a train of composite RF pulses, each composite pulse having a primary pulse portion of a first RF phase and a second pulse portion of a second RF phase opposite that of the first. In this manner, the finite rise and fall times of the primary pulse portion are compensated for by the corresponding rise and fall times of the secondary pulse portion. The primary pulse portion is lengthened by an amount equal to the secondary pulse portion so that the secondary pulse portion cancels the added primary pulse portion. In a spectrometer, the compensating second pulse component removes certain undesired side bands of the RF excitation caused by the finite rise and fall times of the applied RF pulses. The compensating second pulse component removes certain undesired side bands associated with each of the resonant lines of the excited resonance spectrum of the sample under analysis, particularly for wide band RF excitation

  3. GaAs MMIC elements in phased-array antennas

    Science.gov (United States)

    Leonard, Regis F.

    1988-01-01

    Over the last six years NASA Lewis Research Center has carried out a program aimed at the development of advanced monolithic microwave integrated circuit technology, principally for use in phased-array antenna applications. Arising out of the Advanced Communications Technology Satellite (ACTS) program, the initial targets of the program were chips which operated at 30 and 20 GHz. Included in this group of activities were monolithic power modules with an output of 2 watts at GHz, variable phase shifters at both 20 and 30 GHz, low noise technology at 30 GHz, and a fully integrated (phase shifter, variable gain amplifier, power amplifier) transmit module at 20 GHz. Subsequent developments are centered on NASA mission requirements, particularly Space Station communications systems and deep space data communications.

  4. MEMS Keys as a Way to Delay the Phase of the Microwave Range

    Directory of Open Access Journals (Sweden)

    Anton Antonenko

    2015-04-01

    Full Text Available The paper deals with a new type of phase shifter antennas scanned beam shows the principle of constructing controlled microwave phase shifters that have a low cost. Also, given the results of a theoretical study of the main characteristics of dependency - controlled phase shift and frequency band working on the design parameters and then refined by calculating finite element program CST Microwave Studio. These inexpensive scanned antenna can be used in radar centimeter and millimeter wavelengths in the frequency range 2 ¸ 30 GHz. The results of calculation of capacitive and inductive coupling during switching detector elements and the simulation results of the phase shift in passing through the phase shifter television signal containing includes microelectromechanical systems - manageable sections that have to change the direction of polarization of the signal. Thus for supplying voltage-controlled permanent magnet field is used. According to the simulation results, which are presented in the conclusions can be drawn about the development of the design of optimal geometric parameters, the values obtained for the results of the optimization modeling. However revealed a high quality factor switching phase.

  5. rf reference line for PEP

    International Nuclear Information System (INIS)

    Schwarz, H.D.; Weaver, J.N.

    1979-03-01

    A rf phase reference line in 6 segments around the 2200 meter circumference PEP storage ring is described. Each segment of the reference line is phase stabilized by its own independent feedback system, which uses an amplitude modulated reflection from the end of each line. The modulation is kept small and decoupled from the next segment to avoid crosstalk and significant modulation of the rf drive signal. An error evaluation of the system is made. The technical implementation and prototype performance are described. Prototype tests indicate that the phase error around the ring can be held below 1 degree with this relatively simple system

  6. rf reference line for PEP

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, H.D.; Weaver, J.N.

    1979-03-01

    A rf phase reference line in 6 segments around the 2200 meter circumference PEP storage ring is described. Each segment of the reference line is phase stabilized by its own independent feedback system, which uses an amplitude modulated reflection from the end of each line. The modulation is kept small and decoupled from the next segment to avoid crosstalk and significant modulation of the rf drive signal. An error evaluation of the system is made. The technical implementation and prototype performance are described. Prototype tests indicate that the phase error around the ring can be held below 1 degree with this relatively simple system.

  7. Simulation of synchrotron motion with rf noise

    International Nuclear Information System (INIS)

    Leemann, B.T.; Forest, E.; Chattopadhyay, S.

    1986-08-01

    The theoretical formulation is described that is behind an algorithm for synchrotron phase-space tracking with rf noise and some preliminary simulation results of bunch diffusion under rf noise obtained by actual tracking

  8. The LHC Low Level RF

    CERN Document Server

    Baudrenghien, Philippe; Molendijk, John Cornelis; Olsen, Ragnar; Rohlev, Anton; Rossi, Vittorio; Stellfeld, Donat; Valuch, Daniel; Wehrle, Urs

    2006-01-01

    The LHC RF consists of eight 400 MHz superconducting cavities per ring, with each cavity independently powered by a 300 kW klystron, via a circulator. The challenge for the Low Level is to cope with very high beam current (more than 1 A RF component) and achieve excellent beam lifetime (emittance growth time in excess of 25 hours). Each cavity has an associated Cavity Controller rack consisting of two VME crates which implement high gain RF Feedback, a Tuner Loop with a new algorithm, a Klystron Ripple Loop and a Conditioning system. In addition each ring has a Beam Control system (four VME crates) which includes a Frequency Program, Phase Loop, Radial Loop and Synchronization Loop. A Longitudinal Damper (dipole and quadrupole mode) acting via the 400 MHz cavities is included to reduce emittance blow-up due to filamentation from phase and energy errors at injection. Finally an RF Synchronization system implements the bunch into bucket transfer from the SPS into each LHC ring. When fully installed in 2007, the...

  9. A capacitive level shifter for high voltage (2.5kV)

    DEFF Research Database (Denmark)

    Andersen, Thomas; Andersen, Michael A. E.; Thomsen, Ole Cornelius

    2012-01-01

    with focus on low power consumption as well as low capacitive load between the floating half-bridge node and ground (output capacitance). The operation of the level-shifter is tested and verified by measurements on a prototype half-bridge gate driver. Results conclude stabile operation at 2.44kV, 50k...

  10. Frequency control of RF booster cavity in TRIUMF

    International Nuclear Information System (INIS)

    Fong, K.; Laverty, M.

    1993-01-01

    A booster is used in the TRIUMF cyclotron to increase the energy gain per turn for beam orbits corresponding to energies greater than 370 MeV. It operates at 92.24 MHz, the 4 th harmonic of the cyclotron main rf, and at a nominal voltage of 150 kV. Excitation is provided by a 90 kW rf system that is phase locked to the main rf. When the main rf is interrupted due to sparking or other causes, a controller built into the low frequency source of the booster rf system disables the phase-locked loop, and reconfigures the source as a temperature stabilized oscillator operating at the last locked frequency. When the cyclotron rf is restored it usually will be at different frequency. The oscillator tunes automatically to this new frequency. The acquisition time is extended by the controller to match the response time of the mechanical tuner in the cavity

  11. Tunable arbitrary unitary transformer based on multiple sections of multicore fibers with phase control.

    Science.gov (United States)

    Zhou, Junhe; Wu, Jianjie; Hu, Qinsong

    2018-02-05

    In this paper, we propose a novel tunable unitary transformer, which can achieve arbitrary discrete unitary transforms. The unitary transformer is composed of multiple sections of multi-core fibers with closely aligned coupled cores. Phase shifters are inserted before and after the sections to control the phases of the waves in the cores. A simple algorithm is proposed to find the optimal phase setup for the phase shifters to realize the desired unitary transforms. The proposed device is fiber based and is particularly suitable for the mode division multiplexing systems. A tunable mode MUX/DEMUX for a three-mode fiber is designed based on the proposed structure.

  12. RF current distribution and topology of RF sheath potentials in front of ICRF antennae

    International Nuclear Information System (INIS)

    Colas, L.; Heuraux, S.; Bremond, S.; Bosia, G.

    2005-01-01

    The 2D (radial/poloidal) spatial topology of RF-induced convective cells developing radially in front of ion cyclotron range of frequency (ICRF) antennae is investigated, in relation to the spatial distribution of RF currents over the metallic structure of the antenna. This is done via a Green's function, determined from the ICRF wave coupling equations, and well-suited to open field lines extending toroidally far away on both sides of the antenna. Using such formalism, combined with a full-wave calculation using the 3D antenna code ICANT (Pecoul S. et al 2000 Comput. Phys. Commun. 146 166-87), two classes of convective cells are analysed. The first one appears in front of phased arrays of straps, and depending on the strap phasing, its topology is interpreted using the poloidal profiles of either the RF current or the RF voltage of the strip line theory. The other class of convective cells is specific to antenna box corners and is evidenced for the first time. Based on such analysis, general design rules are worked out in order to reduce the RF-sheath potentials, which generalize those proposed in the earlier literature, and concrete antenna design options are tested numerically. The merits of aligning all strap centres on the same (tilted) flux tube, and of reducing the antenna box toroidal conductivity in its lower and upper parts, are discussed

  13. The amplitude and phase control of the ALS Storage Ring RF System

    International Nuclear Information System (INIS)

    Lo, C.C.; Taylor, B.; Baptiste, K.

    1995-03-01

    A 500MHz, 300KW Klystron power amplifier provides RF power to the ALS Storage Ring. In order to accommodate the amplitude and phase changes during beam stacking and decay, which demand continuously varying power levels from the Klystron, four loops are used to keep the system operating properly, with two of those loops dedicated to keeping the two cavity tuners on tune. Description of the control loops and their performance data will be given. Using the modulation anode of the Klystron in the amplitude loop will be discussed

  14. RF Phase Reference Distribution System for the TESLA Technology Based Projects

    CERN Document Server

    Czuba, K; Romaniuk, R S

    2013-01-01

    Since many decades physicists have been building particle accelerators and usually new projects became more advanced, more complicated and larger than predecessors. The importance and complexity of the phase reference distribution systems used in these accelerators have grown significantly during recent years. Amongst the most advanced of currently developed accelerators are projects based on the TESLA technology. These projects require synchronization of many RF devices with accuracy reaching femtosecond levels over kilometre distances. Design of a phase reference distribution system fulfilling such requirements is a challenging scientific task. There are many interdisciplinary problems which must be solved during the system design. Many, usually negligible issues, may became very important in such system. Furthermore, the design of a distribution system on a scale required for the TESLA technology based projects is a new challenge and there is almost no literature sufficiently covering this subject. This th...

  15. Rf system specifications for a linear accelerator

    International Nuclear Information System (INIS)

    Young, A.; Eaton, L.E.

    1992-01-01

    A linear accelerator contains many systems; however, the most complex and costly is the RF system. The goal of an RF system is usually simply stated as maintaining the phase and amplitude of the RF signal within a given tolerance to accelerate the charged particle beam. An RF system that drives a linear accelerator needs a complete system specification, which should contain specifications for all the subsystems (i.e., high-power RF, low-level RF, RF generation/distribution, and automation control). This paper defines a format for the specifications of these subsystems and discusses each RF subsystem independently to provide a comprehensive understanding of the function of each subsystem. This paper concludes with an example of a specification spreadsheet allowing one to input the specifications of a subsystem. Thus, some fundamental parameters (i.e., the cost and size) of the RF system can be determined

  16. Solid phase radioimmunoassay for quantitation of IgM rheumatoid factor (RF). Comparison with agglutination techniques and radioimmunoprecipitation polyethylene glycol assay (RIPEGA)

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, D.; Jaeger, L.; Hein, G.; Henzgen, M.; Fiebig, H.; Schlenvoigt, G.; Vogelsang, H. (Friedrich-Schiller-Universitaet, Jena (German Democratic Republic). Bereich Medizin; Karl-Marx-Universitaet, Leipzig (German Democratic Republic). Sektion Biowissenschaften)

    1985-01-01

    A solid-phase radioimmunoassay capable of detecting nanogram quantities of human IgM rheumatoid factor using a monoclonal anti-..mu..-chain antibody is described. Human IgG did not interfere with the detection of IgM RF by this method. The small nonspecific binding of nonRF IgM to the human IgG coated tubes utilized in the assay must be corrected for by assaying samples in parallel bovine serum albumin coated control tubes only in cases of deviation of IgM from normal range. 69 coded and randomly arranged sera from patients with rheumatoid arthritis (RA), nonrheumatic joint diseases and healthy adult control subjects were investigated by this method, agglutination techniques as well as RIPEGA. A good correlation between solid-phase radioimmunoassay and agglutination techniques was found. Patients with seropositive RA had significantly higher concentrations of IgM RF than seronegative RA patients or control subjects.

  17. High time resolution beam-based measurement of the rf-to-laser jitter in a photocathode rf gun

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2014-03-01

    Full Text Available Characterizing the rf-to-laser jitter in the photocathode rf gun and its possible origins is important for improving the synchronization and beam quality of the linac based on the photocathode rf gun. A new method based on the rf compression effect in the photocathode rf gun is proposed to measure the rf-to-laser jitter in the gun. By taking advantage of the correlation between the rf compression and the laser injection phase, the error caused by the jitter of the accelerating field in the gun is minimized and thus 10 fs time resolution is expected. Experimental demonstration at the Tsinghua Thomson scattering x-ray source with a time resolution better than 35 fs is reported in this paper. The experimental results are successfully used to obtain information on the possible cause of the jitter and the accompanying drifts.

  18. Fast digital feedback control systems for accelerator RF system using FPGA

    International Nuclear Information System (INIS)

    Bagduwal, Pritam Singh; Sharma, Dheeraj; Tiwari, Nitesh; Lad, M.; Hannurkar, P.R.

    2012-01-01

    Feedback control system plays important role for proper injection and acceleration of beam in particle accelerators by providing the required amplitude and phase stability of RF fields in accelerating structures. Advancement in the field of digital technology enables us to develop fast digital feedback control system for RF applications. Digital Low Level RF (LLRF) system offers the inherent advantages of Digital System like flexibility, adaptability, good repeatability and reduced long time drift errors compared to analog system. To implement the feedback control algorithm, I/Q control scheme is used. By properly sampling the down converted IF signal using fast ADC we get accurate feedback signal and also eliminates the need of two separate detectors for amplitude and phase detection. Controller is implemented in Vertex-4 FPGA. Codes for control algorithms which controls the amplitude and phase in all four quadrants with good accuracy are written in the VHDL. I/Q modulator works as common actuator for both amplitude and phase correction. Synchronization between RF, LO and ADC clock is indispensable and has been achieved by deriving the clock and LO signal from RF signal itself. Control system has been successfully tested in lab with phase and amplitude stability better then ±1% and ±1° respectively. High frequency RF signal is down converted to IF using the super heterodyne technique. Super heterodyne principal not only brings the RF signal to the Low IF frequency at which it can be easily processed but also enables us to use the same hardware and software for other RF frequencies with some minor modification. (author)

  19. Ferrite LTCC based phased array antennas

    KAUST Repository

    Ghaffar, Farhan A.

    2016-11-02

    Two phased array antennas realized in multilayer ferrite LTCC technology are presented in this paper. The use of embedded bias windings in these designs allows the negation of external magnets which are conventionally employed with bulk ferrite medium. This reduces the required magnetostatic field strength by 90% as compared to the traditional designs. The phase shifters are implemented using the SIW technology. One of the designs is operated in the half mode waveguide topology while the other design is based on standard full mode waveguide operation. The two phase shifter designs are integrated with two element patch antenna array and slotted SIW array respectively. The array designs demonstrate a beam steering of 30° and ±19° respectively for a current excitation of 200 mA. The designs, due to their small factor can be easily integrated in modern communication systems which is not possible in the case of bulk ferrite based designs.

  20. RF and microwave microelectronics packaging II

    CERN Document Server

    Sturdivant, Rick

    2017-01-01

    Reviews RF, microwave, and microelectronics assembly process, quality control, and failure analysis Bridges the gap between low cost commercial and hi-res RF/Microwave packaging technologies Engages in an in-depth discussion of challenges in packaging and assembly of advanced high-power amplifiers This book presents the latest developments in packaging for high-frequency electronics. It is a companion volume to “RF and Microwave Microelectronics Packaging” (2010) and covers the latest developments in thermal management, electrical/RF/thermal-mechanical designs and simulations, packaging and processing methods, and other RF and microwave packaging topics. Chapters provide detailed coverage of phased arrays, T/R modules, 3D transitions, high thermal conductivity materials, carbon nanotubes and graphene advanced materials, and chip size packaging for RF MEMS. It appeals to practicing engineers in the electronic packaging and high-frequency electronics domain, and to academic researchers interested in underst...

  1. Enhanced UV light detection using a p-terphenyl wavelength shifter

    Science.gov (United States)

    Joosten, S.; Kaczanowicz, E.; Ungaro, M.; Rehfuss, M.; Johnston, K.; Meziani, Z.-E.

    2017-10-01

    UV-glass photomultiplier tubes (PMTs) have poor photon detection efficiency for wavelengths below 300 nm due to the opaqueness of the window material. Costly quartz PMTs could be used to enhance the efficiency below 300 nm. A less expensive solution that dramatically improves this efficiency is the application of a thin film of a p-terphenyl (PT) wavelength shifter on UV-glass PMTs. This improvement was quantified for Photonis XP4500B PMTs for wavelengths between 200 nm and 400 nm. The gain factor ranges up to 5 . 4 ± 0 . 5 at a wavelength of 215 nm, with a material load of 110 ± 10 μg /cm2 (894 nm). The wavelength shifter was found to be fully transparent for wavelengths greater than 300 nm. The resulting gain in detection efficiency, when used in a typical C̆erenkov counter, was estimated to be of the order of 40%. Consistent coating quality was assured by a rapid gain testing procedure using narrow-band UV LEDs. Based on these results, 200 Photonis XP4500B PMTs were treated with PT for the upgraded low-threshold C̆erenkov counter (LTCC) to be used in the CEBAF Large Acceptance Spectrometer upgraded detector (CLAS12) at the Thomas Jefferson National Accelerator Facility.

  2. Low Level RF System for Jefferson Lab Cryomodule Test Facility

    International Nuclear Information System (INIS)

    Tomasz Plawski; Trent Allison; Jean Delayen; J. Hovater; Thomas Powers

    2003-01-01

    The Jefferson Lab Cryomodule Test Facility (CMTF) has been upgraded to test and commission SNS and CEBAF Energy Upgrade cryomodules. Part of the upgrade was to modernize the superconducting cavity instrumentation and control. We have designed a VXI based RF control system exclusively for the production testing of superconducting cavities. The RF system can be configured to work either in Phase Locked Loop (PLL) or Self Excited Loop (SEL) mode. It can be used to drive either SNS 805 MHz or CEBAF Energy Upgrade 1497 MHz superconducting cavities and can be operated in pulsed or continuous wave (CW) mode. The base design consists of RF-analog and digital sections. The RF-analog section includes a Voltage Control Oscillator (VCO), phase detector, IandQ modulator and ''low phase shift'' limiter. The digital section controls the analog section and includes ADC, FPGA, and DAC . We will discuss the design of the RF system and how it relates to the support of cavity testing

  3. Low-level RF control system issues for an ADTT accelerator

    International Nuclear Information System (INIS)

    Ziomek, C.D.; Regan, A.H.; Lynch, M.T.; Bowling, P.S.

    1994-01-01

    The RF control system for a charged-particle accelerator must maintain the correct amplitude and phase of RF field inside the accelerator cavity in the presence of perturbations, noises, and time varying system components. For an accelerator with heavy beam-loading, fluctuations in the beam current cause large perturbations to the RF field amplitude and phase that must be corrected by the RF control system. The ADTT applications require a high-current, heavily beam-loaded, continuous-wave (CW) accelerator. Additional concerns created by the CW operation include system start-up, beam interruption, and fault recovery. Also, the RF control system for an ADTT facility must include sophisticated automation to reduce the operator interaction and support. This paper describes an RF control system design that addresses these various issues by evaluation a combination of feedback and feed forward control techniques. Experience from the high-current Ground Test Accelerator (GTA) is drawn upon for this RF control system design. Comprehensive computer modeling with the Matrix x software has been used to predict the performance of this RF control system

  4. Measurement and analysis of reaction rate distributions of cores with spectrum shifter region

    International Nuclear Information System (INIS)

    Matsuura, Shigekazu; Shiroya, Seiji; Unesaki, Hironobu; Takeda, Toshikazu; Aizawa, Otohiko; Kanda, Keiji.

    1995-01-01

    A study for the neutronic characteristics of the spectrum-controlled neutron irradiation fields using various reflector materials was performed. Spectrum shifter regions were constructed in the upper reflector region of the solid moderated core (B-Core) of the Kyoto University Critical Assembly (KUCA). Beryllium, graphite and aluminum were selected as the loading materials for the spectrum shifter. Two tight-pitch lattice cores with different moderator-to-fuel volume ratio (V m /V f ) of 0.97 and 0.65 have been used. Axial reaction rate distributions of gold, nickel and indium wires were measured, and the spectrum index was defined as the Cd ratio of the gold wire and the ratio of gold reaction rate to nickel reaction rate. Using the conventional design calculation procedure, the experimental and calculated reaction rate and spectrum index show several disagreements. Detailed treatment of the neutron streaming effect, heterogeneous cell structure and depression factor are shown to be necessary for improving the agreement between experimental and calculated values. (author)

  5. Circuit model of the ITER-like antenna for JET and simulation of its control algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Durodié, Frédéric, E-mail: frederic.durodie@rma.ac.be; Křivská, Alena [LPP-ERM/KMS, TEC Partner, Brussels (Belgium); Dumortier, Pierre; Lerche, Ernesto [LPP-ERM/KMS, TEC Partner, Brussels (Belgium); JET, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Helou, Walid [CEA, IRFM, F-13108 St-Paul-Lez-Durance (France); Collaboration: EUROfusion Consortium

    2015-12-10

    The ITER-like Antenna (ILA) for JET [1] is a 2 toroidal by 2 poloidal array of Resonant Double Loops (RDL) featuring in-vessel matching capacitors feeding RF current straps in conjugate-T manner, a low impedance quarter-wave impedance transformer, a service stub allowing hydraulic actuator and water cooling services to reach the aforementioned capacitors and a 2nd stage phase-shifter-stub matching circuit allowing to correct/choose the conjugate-T working impedance. Toroidally adjacent RDLs are fed from a 3dB hybrid splitter. It has been operated at 33, 42 and 47MHz on plasma (2008-2009) while it presently estimated frequency range is from 29 to 49MHz. At the time of the design (2001-2004) as well as the experiments the circuit models of the ILA were quite basic. The ILA front face and strap array Topica model was relatively crude and failed to correctly represent the poloidal central septum, Faraday Screen attachment as well as the segmented antenna central septum limiter. The ILA matching capacitors, T-junction, Vacuum Transmission Line (VTL) and Service Stubs were represented by lumped circuit elements and simple transmission line models. The assessment of the ILA results carried out to decide on the repair of the ILA identified that achieving routine full array operation requires a better understanding of the RF circuit, a feedback control algorithm for the 2nd stage matching as well as tighter calibrations of RF measurements. The paper presents the progress in modelling of the ILA comprising a more detailed Topica model of the front face for various plasma Scrape Off Layer profiles, a comprehensive HFSS model of the matching capacitors including internal bellows and electrode cylinders, 3D-EM models of the VTL including vacuum ceramic window, Service stub, a transmission line model of the 2nd stage matching circuit and main transmission lines including the 3dB hybrid splitters. A time evolving simulation using the improved circuit model allowed to design and

  6. Circuit model of the ITER-like antenna for JET and simulation of its control algorithms

    Science.gov (United States)

    Durodié, Frédéric; Dumortier, Pierre; Helou, Walid; Křivská, Alena; Lerche, Ernesto

    2015-12-01

    The ITER-like Antenna (ILA) for JET [1] is a 2 toroidal by 2 poloidal array of Resonant Double Loops (RDL) featuring in-vessel matching capacitors feeding RF current straps in conjugate-T manner, a low impedance quarter-wave impedance transformer, a service stub allowing hydraulic actuator and water cooling services to reach the aforementioned capacitors and a 2nd stage phase-shifter-stub matching circuit allowing to correct/choose the conjugate-T working impedance. Toroidally adjacent RDLs are fed from a 3dB hybrid splitter. It has been operated at 33, 42 and 47MHz on plasma (2008-2009) while it presently estimated frequency range is from 29 to 49MHz. At the time of the design (2001-2004) as well as the experiments the circuit models of the ILA were quite basic. The ILA front face and strap array Topica model was relatively crude and failed to correctly represent the poloidal central septum, Faraday Screen attachment as well as the segmented antenna central septum limiter. The ILA matching capacitors, T-junction, Vacuum Transmission Line (VTL) and Service Stubs were represented by lumped circuit elements and simple transmission line models. The assessment of the ILA results carried out to decide on the repair of the ILA identified that achieving routine full array operation requires a better understanding of the RF circuit, a feedback control algorithm for the 2nd stage matching as well as tighter calibrations of RF measurements. The paper presents the progress in modelling of the ILA comprising a more detailed Topica model of the front face for various plasma Scrape Off Layer profiles, a comprehensive HFSS model of the matching capacitors including internal bellows and electrode cylinders, 3D-EM models of the VTL including vacuum ceramic window, Service stub, a transmission line model of the 2nd stage matching circuit and main transmission lines including the 3dB hybrid splitters. A time evolving simulation using the improved circuit model allowed to design and

  7. Preliminary design of the Neutron Spectral Shifter that is dedicated to the IFMIF Liquid Breeder Validation Module

    Energy Technology Data Exchange (ETDEWEB)

    Mas, A., E-mail: amassanchez@gmail.com; Mota, F.; Casal, N.; García, A.; Rapisarda, D.; Arroyo, J.M.; Molla, J.; Ibarra, A.

    2014-10-15

    The International Fusion Materials Irradiation Facility (IFMIF) has a D-Li neutron stripping source that provides typical fusion irradiation conditions for material testing. The Liquid Breeder Validation Module (LBVM) is one of the medium flux test modules of the IFMIF that is used to account for some of the DEMO liquid breeder blanket R and D needs. Previous analyses have shown that the main irradiation parameters (He (appm)/dpa and H (appm)/dpa) in the medium flux area of the IFMIF can be improved to fit the expected parameters in the DEMO reactor for functional materials of liquid breeder blankets. Therefore, the design of an additional module, called the Neutron Spectral Shifter (NSS), has been considered to optimize the irradiation conditions of LBVM experiments. The proposed concept consists of supported tungsten plates working as a shifter material inside a steel structure. This design assures the mechanical integrity of the different components and it fulfills the neutronic requirements as well as the cooling capability. This present paper summarizes the work devoted to the design of the LBVM Neutron Spectral Shifter as well as the results of neutronic, thermo-hydraulic, mechanical and safety studies carried out to validate the design.

  8. RF System description for the ground test accelerator radio-frequency quadrupole

    International Nuclear Information System (INIS)

    Regan, A.H.; Brittain, D.; Rees, D.E.; Ziomek, D.

    1992-01-01

    This paper describes the RF system being used to provide RF power and to control the cavity field for the ground test accelerator (GTA) radio-frequency quadrupole (RFQ). The RF system consists of a low-level RF (LLRF) control system, and RF Reference generation subsystem, and a tetrode as a high-power amplifier (HPA) that can deliver up to 300 kW of peak power to the RFQ cavity at a 2% duty factor. The LLRF control system implements in-phase and quadrature (I and Q) control to maintain the cavity field within tolerances of 0.5% in amplitude and 0.5 degrees in phase in the presence of beam-induced instabilities

  9. Low power RF beam control electronics for the LEB

    International Nuclear Information System (INIS)

    Mestha, L.K.; Mangino, J.; Brouk, V.; Uher, T.; Webber, R.C.

    1993-05-01

    Beam Control Electronics for the Low Energy Booster (LEB) should provide a fine reference phase and frequency for the High Power RF System. Corrections applied on the frequency of the rf signal will reduce dipole synchrotron oscillations due to power supply regulation errors, errors in frequency source or errors in the cavity voltage. It will allow programmed beam radial position control throughout the LEB acceleration cycle. Furthermore the rf signal provides necessary connections during, adiabatic capture of the beam as injected into the LEB by the Linac and will guarantee LEB rf phase synchronism with the Medium Energy Booster (MEB) rf at a programmed time in the LEB cycle between a unique LEB bucket and a unique MEB bucket. We show in this paper a design and possible interfaces with other subsystems of the LEB such as the beam instrumentation, High Power RF Stations, global accelerator controls and the precision timing system. The outline of various components of the beam control system is also presented followed by some test results

  10. The FELIX RF system

    International Nuclear Information System (INIS)

    Manintveld, P.; Delmee, P.F.M.; Geer, C.A.J. van der; Meddens, B.J.H.; Meer, A.F.G. van der; Amersfoort, P.W. van

    1992-01-01

    The performance of the RF system for the Free Electron Laser for Infrared eXperiments (FELIX) is discussed. The RF system provides the input power for a triode gun (1 GHz, 100 W), a prebuncher (1 GHz, 10 kW), a buncher (3 GHz, 20 MW), and two linacs (3 GHz, 8 MW each). The pulse length in the system is 20 μs. The required electron beam stability imposes the following demands on the RF system: a phase stability better than 0.3 deg for the 1 GHz signals and better than 1 deg for the 3 GHz signals; the amplitude stability has to be better than 1% for the 1 GHz and better than 0.2% for the 3 GHz signals. (author) 3 refs.; 6 figs

  11. Femto-second synchronisation with a waveguide interferometer

    Science.gov (United States)

    Dexter, A. C.; Smith, S. J.; Woolley, B. J.; Grudiev, A.

    2018-03-01

    CERN's compact linear collider CLIC requires crab cavities on opposing linacs to rotate bunches of particles into alignment at the interaction point (IP). These cavities are located approximately 25 metres either side of the IP. The luminosity target requires synchronisation of their RF phases to better than 5 fs r.m.s. This is to be achieved by powering both cavities from one high power RF source, splitting the power and delivering it along two waveguide paths that are controlled to be identical in length to within a micrometre. The waveguide will be operated as an interferometer. A high power phase shifter for adjusting path lengths has been successfully developed and operated in an interferometer. The synchronisation target has been achieved in a low power prototype system.

  12. Control electronics of the PEP RF system

    International Nuclear Information System (INIS)

    Pellegrin, J.L.; Schwarz, H.

    1981-01-01

    The operation of the major components used for controlling the phase and field level of the PEP RF cavities is described. The control electronics of one RF station is composed of several control loops: each cavity has a tuners' servo loop which maintains the frequency constant and also keeps the fields of each cavity balanced; the total gap voltage developed by a pair of cavities is regulated by a gap voltage controller; finally, the phase variation along the amplification chain, the klystron and the cavities are compensated by a phase lock loop. The design criteria of each loop are set forth and the circuit implementation and test results are presented

  13. Analog techniques in CEBAF's RF control system

    International Nuclear Information System (INIS)

    Hovater, C.; Fugitt, J.

    1989-01-01

    Recent developments in high-speed analog technology have progressed into the areas of traditional RF technology. Diode related devices are being replaced by analog IC's in the CEBAF RF control system. Complex phase modulators and attenuators have been successfully tested at 70 MHz. They have three advantages over existing technology: lower cost, less temperature sensitivity, and more linearity. RF signal conditioning components and how to implement the new analog IC's will be covered in this paper. 4 refs., 5 figs

  14. Analog techniques in CEBAF'S RF control system

    International Nuclear Information System (INIS)

    Hovater, C.; Fugitt, J.

    1989-01-01

    Recent developments in high-speed analog technology have progressed into the areas of traditional rf technology. Diode-related devices are being replaced by analog IC's in the CEBAF rf control system. Complex phase modulators and attenuators have been successfully tested at 70 MHz. They have three advantages over existing technology: lower cost, less temperature sensitivity, and more linearity. Rf signal conditioning components and how to implement the new analog IC's will be covered in this paper. 4 refs., 5 figs

  15. Modeling and simulation of Indus-2 RF feedback control system

    International Nuclear Information System (INIS)

    Sharma, D.; Bagduwal, P.S.; Tiwari, N.; Lad, M.; Hannurkar, P.R.

    2012-01-01

    Indus-2 synchrotron radiation source has four RF stations along with their feedback control systems. For higher beam energy and current operation amplitude and phase feedback control systems of Indus-2 are being upgraded. To understand the behaviour of amplitude and phase control loop under different operating conditions, modelling and simulation of RF feedback control system is done. RF cavity baseband I/Q model has been created due to its close correspondence with actual implementation and better computational efficiency which makes the simulation faster. Correspondence between cavity baseband and RF model is confirmed by comparing their simulation results. Low Level RF (LLRF) feedback control system simulation is done using the same cavity baseband I/Q model. Error signals are intentionally generated and response of the closed loop system is observed. Simulation will help us in optimizing parameters of upgraded LLRF system for higher beam energy and current operation. (author)

  16. Silicon photonics thermal phase shifter with reduced temperature range

    Science.gov (United States)

    Lentine, Anthony L; Kekatpure, Rohan D; DeRose, Christopher; Davids, Paul; Watts, Michael R

    2013-12-17

    Optical devices, phased array systems and methods of phase-shifting an input signal are provided. An optical device includes a microresonator and a waveguide for receiving an input optical signal. The waveguide includes a segment coupled to the microresonator with a coupling coefficient such that the waveguide is overcoupled to the microresonator. The microresonator received the input optical signal via the waveguide and phase-shifts the input optical signal to form an output optical signal. The output optical signal is coupled into the waveguide via the microresonator and transmitted by the waveguide. At an operating point of the optical device, the coupling coefficient is selected to reduce a change in an amplitude of the output optical signal and to increase a change in a phase of the output optical signal, relative to the input optical signal.

  17. Integrated nanophotonic frequency shifter on the silicon-organic hybrid (SOH) platform for laser vibrometry

    International Nuclear Information System (INIS)

    Lauermann, M.; Weimann, C.; Palmer, R.; Schindler, P. C.; Koeber, S.; Freude, W.; Koos, C.; Rembe, C.

    2014-01-01

    We demonstrate a waveguide-based frequency shifter on the silicon photonic platform, enabling frequency shifts up to 10 GHz. The device is realized by silicon-organic hybrid (SOH) integration. Temporal shaping of the drive signal allows the suppression of spurious side-modes by more than 23 dB

  18. Integrated nanophotonic frequency shifter on the silicon-organic hybrid (SOH) platform for laser vibrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lauermann, M.; Weimann, C.; Palmer, R.; Schindler, P. C. [Institute of Photonics and Quantum Electronics, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Koeber, S.; Freude, W., E-mail: christian.koos@kit.edu; Koos, C., E-mail: christian.koos@kit.edu [Institute of Photonics and Quantum Electronics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany and Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Rembe, C. [Polytec GmbH, 76337 Waldbronn (Germany)

    2014-05-27

    We demonstrate a waveguide-based frequency shifter on the silicon photonic platform, enabling frequency shifts up to 10 GHz. The device is realized by silicon-organic hybrid (SOH) integration. Temporal shaping of the drive signal allows the suppression of spurious side-modes by more than 23 dB.

  19. Installation and Commissioning of a 6-Tesla Superconducting Wavelength Shifter at Taiwan Light Source

    International Nuclear Information System (INIS)

    Chang, C.H.; Chang, H.P.; Chen, Jenny; Chen, J.R.; Fan, T.C.; Hwang, C.S.; Hsiung, G.Y.; Hsu, K.T.; Kuo, C.C.; Luo, G.H.; Wang, D.J.; Wang, M.H.

    2005-01-01

    The Taiwan Light Source (TLS) is the first third-generation light source in Asia. The storage ring has six straight sections one section for injection, one for the RF cavities and diagnostic instrumentation and four sections for insertion devices, which are U5, U9, EPU and W20. Generating high-energy X-ray photons is a high priority at TLS. A single hybrid type wiggler is associated with three beam lines to serve X-ray users. The installed Superconducting Wavelength Shifter (SWLS) is very compact in size and can produce very high-energy photons. The injection section at TLS can barely accommodate the SWLS. The expected multipole components of the SWLS are strong, shrink the dynamic aperture; perturb the beta function, and reduce the beam lifetime. The increase in the synchrotron radiation by the SWLS also changes beam emittance and increases the energy spread. The influence of SWLS on the low-energy, 1.5 GeV, storage-ring should not be neglected. The downstream kicker with the water-cooled copper mask must be modified to prevent a potential meltdown of the welding junction of the ceramic chamber because the heat load is high. The 1.2 μs half-sine pulse field of the kicker is then altered by the copper-made radiation mask, which is installed inside the ceramic chamber. The operating capability of cryogenic system is established to ensure the smooth commissioning of the SWLS. The magnetic field mapping, the dynamic aperture simulation data and commissioning results will be presented and discussed herein

  20. Low jitter RF distribution system

    Science.gov (United States)

    Wilcox, Russell; Doolittle, Lawrence; Huang, Gang

    2012-09-18

    A timing signal distribution system includes an optical frequency stabilized laser signal amplitude modulated at an rf frequency. A transmitter box transmits a first portion of the laser signal and receive a modified optical signal, and outputs a second portion of the laser signal and a portion of the modified optical signal. A first optical fiber carries the first laser signal portion and the modified optical signal, and a second optical fiber carries the second portion of the laser signal and the returned modified optical signal. A receiver box receives the first laser signal portion, shifts the frequency of the first laser signal portion outputs the modified optical signal, and outputs an electrical signal on the basis of the laser signal. A detector at the end of the second optical fiber outputs a signal based on the modified optical signal. An optical delay sensing circuit outputs a data signal based on the detected modified optical signal. An rf phase detect and correct signal circuit outputs a signal corresponding to a phase stabilized rf signal based on the data signal and the frequency received from the receiver box.

  1. Rf system considerations for a large hadron collider

    International Nuclear Information System (INIS)

    Raka, E.

    1988-01-01

    In this paper, we shall discuss how we arrive at a particular choice of voltage and frequency; the type of acceleration structure that would be suitable for obtaining the required voltage and resonant impedance; static beam loading including a simplified beam stability criterion involving the beam current and total rf system shunt impedance; the basic principle of rf phase and frequency control loops; and the effect of rf noise and its interaction with these loops. Finally, we shall consider the need for and design of rf systems to damp independently coherent oscillations of individual bunches or groups of bunches. 30 refs., 17 figs., 2 tabs

  2. Effects of RF pulse profile and intra-voxel phase dispersion on MR fingerprinting with balanced SSFP readout.

    Science.gov (United States)

    Chiu, Su-Chin; Lin, Te-Ming; Lin, Jyh-Miin; Chung, Hsiao-Wen; Ko, Cheng-Wen; Büchert, Martin; Bock, Michael

    2017-09-01

    To investigate possible errors in T1 and T2 quantification via MR fingerprinting with balanced steady-state free precession readout in the presence of intra-voxel phase dispersion and RF pulse profile imperfections, using computer simulations based on Bloch equations. A pulse sequence with TR changing in a Perlin noise pattern and a nearly sinusoidal pattern of flip angle following an initial 180-degree inversion pulse was employed. Gaussian distributions of off-resonance frequency were assumed for intra-voxel phase dispersion effects. Slice profiles of sinc-shaped RF pulses were computed to investigate flip angle profile influences. Following identification of the best fit between the acquisition signals and those established in the dictionary based on known parameters, estimation errors were reported. In vivo experiments were performed at 3T to examine the results. Slight intra-voxel phase dispersion with standard deviations from 1 to 3Hz resulted in prominent T2 under-estimations, particularly at large T2 values. T1 and off-resonance frequencies were relatively unaffected. Slice profile imperfections led to under-estimations of T1, which became greater as regional off-resonance frequencies increased, but could be corrected by including slice profile effects in the dictionary. Results from brain imaging experiments in vivo agreed with the simulation results qualitatively. MR fingerprinting using balanced SSFP readout in the presence of intra-voxel phase dispersion and imperfect slice profile leads to inaccuracies in quantitative estimations of the relaxation times. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Theory and experiment studies of the 1,4-bis(4-methoxylstyryl)benzene as a wavelength shifter of liquid scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhanlong [School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, Mianyang 621010 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zhu, Jiayi [Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, Mianyang 621010 (China); Bi, Yutie, E-mail: biyutie@sina.com [Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, Mianyang 621010 (China); Xu, Yewei [School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Zhang, Qianfeng [Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, Mianyang 621010 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zhang, Xing [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Junjiang [Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Zhang, Lin, E-mail: zhlmy@sina.com [School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, Mianyang 621010 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)

    2017-03-15

    A novel wavelength shifter of the 1,4-bis(4-methoxylstyryl)benzene (bis-4-MOSB) was synthesized by employing the classical Horner-Wadsworth-Emmons reaction. Feasible analysis of the bis-4-MOSB as the wavelength shifter in a ternary liquid scintillator, in which p-xylene (PX) was as the solvent and 2,5-diphenyloxazole (PPO) was as the primary fluor, was carried out. The optimum prescription with 3.5 g/L PPO and 25 mg/L bis-4-MOSB was obtained with regard to the light yield. A series of characterization tests based on the optimal formulation were performed. Compared with the 1,4-bis(2-methylstyryl)benzene (bis-MSB), the maximum absorption peak at 356 nm and maximum emission peak at 421 nm in n-hexane with the red shift of 10 nm and 3 nm, respectively, were measured accordingly. The light yield characterized by using a relative measurement method achieved as high as 75.85% of the anthracene crystal. A brief density functional calculation was conducted to have an insight into the electronic structure characteristic of the bis-4-MOSB in the scintillation process. - Graphic abstract: In our work, 1,4-bis(4-methoxylstyryl)benzene (bis-4-MOSB), as a novel wavelength shifter of liquid scintillator, was designed and synthesized. A comparison including absorption spectra and electronic structure characteristic between bis-4-MOSB and bis-MSB were conducted. Its maximum emission peak lied at 421 nm in n-hexane was corresponded to the maximum response range wavelength of PMT for the bis-4-MOSB. Furthermore, compared with the bis-MSB, the wavelength shifter of bis-4-MOSB showed a better luminescence performance.

  4. Theory and experiment studies of the 1,4-bis(4-methoxylstyryl)benzene as a wavelength shifter of liquid scintillator

    International Nuclear Information System (INIS)

    Zheng, Zhanlong; Zhu, Jiayi; Bi, Yutie; Xu, Yewei; Zhang, Qianfeng; Zhang, Xing; Li, Junjiang; Zhang, Lin

    2017-01-01

    A novel wavelength shifter of the 1,4-bis(4-methoxylstyryl)benzene (bis-4-MOSB) was synthesized by employing the classical Horner-Wadsworth-Emmons reaction. Feasible analysis of the bis-4-MOSB as the wavelength shifter in a ternary liquid scintillator, in which p-xylene (PX) was as the solvent and 2,5-diphenyloxazole (PPO) was as the primary fluor, was carried out. The optimum prescription with 3.5 g/L PPO and 25 mg/L bis-4-MOSB was obtained with regard to the light yield. A series of characterization tests based on the optimal formulation were performed. Compared with the 1,4-bis(2-methylstyryl)benzene (bis-MSB), the maximum absorption peak at 356 nm and maximum emission peak at 421 nm in n-hexane with the red shift of 10 nm and 3 nm, respectively, were measured accordingly. The light yield characterized by using a relative measurement method achieved as high as 75.85% of the anthracene crystal. A brief density functional calculation was conducted to have an insight into the electronic structure characteristic of the bis-4-MOSB in the scintillation process. - Graphic abstract: In our work, 1,4-bis(4-methoxylstyryl)benzene (bis-4-MOSB), as a novel wavelength shifter of liquid scintillator, was designed and synthesized. A comparison including absorption spectra and electronic structure characteristic between bis-4-MOSB and bis-MSB were conducted. Its maximum emission peak lied at 421 nm in n-hexane was corresponded to the maximum response range wavelength of PMT for the bis-4-MOSB. Furthermore, compared with the bis-MSB, the wavelength shifter of bis-4-MOSB showed a better luminescence performance.

  5. Optimization of the wavelength shifter ratio in a polystyrene based plastic scintillator through energy spectrum analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ye Won; Kim, Myung Soo; Yoo, Hyun Jun; Lee, Dae Hee; Cho, Gyu Seong [Dept. of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of); Moon, Myung Kook [Neutron Instrumentation Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-02-15

    The scintillation efficiency of the polystyrene based plastic scintillator depends on the ratio of the wavelength shifters, organic fluors (PPO and POPOP). Thus, 24 samples of the plastic scintillator were fabricated in order to find out the optimum ratio of the wavelength shifters in the plastic scintillator. The fabricated plastic scintillators were trimmed through a cutting and polishing process. They were used in gamma energy spectrum measurement with the {sup 137}Cs emitting monoenergy photon with 662 keV for the comparison of the scintillation efficiency. As a result, it was found out that the scintillator sample with 1.00 g of PPO (2,5-Diphenyloxazole) and 0.50 g of POPOP (1,4-Bis(5-phnyl-2oxidazolyl)benzene) dissolved in 100 g of styrene solution has the optimum ratio in terms of the light yield of the polystyrene based plastic scintillator.

  6. Microprocessor controller for phasing the accelerator

    International Nuclear Information System (INIS)

    Howry, S.K.; Wilmunder, A.R.

    1977-03-01

    A microprocessor controller is being developed to perform automatic phasing of the SLAC accelerator. It will replace the existing relay/analog boxes which are ten years old. The new system is all solid state except for the stepping motors that drive the phase shifters. A description is given of the components of the system, the control algorithm, microprocessor hardware and software design and development, and interaction with SLAC's computer control system

  7. Design study on an independently-tunable-cells thermionic RF gun

    International Nuclear Information System (INIS)

    Hama, H.; Tanaka, T.; Hinode, F.; Kawai, M.

    2006-01-01

    Characteristics of a thermionic RF gun have been studied by a 3-D simulation code developed using an FDTD (Finite Difference Time Domain) method as a Maxwell's equations solver. The gun is consists of two independent power feeding cavities, so that we call it independently-tunable-cells (ITC)'-RF gun. The first cell is the cathode cell and the second one is an accelerating cell. The ITC gun can be operated at various modes of different RF-power ratio and phase between two cavities. Simulation study shows a velocity-bunching like effect may be occurred in the gun, so that the short pulse beam from the thermionic RF gun is a better candidate to produce the coherent THz synchrotron radiation. Expected bunch length with a total charge of ∼20 pC (1% energy width from the top energy) is around 200 fs (fwhm). Even the beam energy extracted from the gun is varied by which the input powers are changed, almost same shape of the longitudinal phase space can be produced by tuning the phase. (author)

  8. Ultra-secure RF Tags for Safeguards and Security - SBIR Phase II Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Twogood, Richard E [Dirac Solutions Inc., Pleasanton, CA (United States)

    2015-01-27

    This is the Final Report for the DOE Phase II SBIR project “Ultra-secure RF Tags for Safeguards and Security.” The topics covered herein include technical progress made, progress against the planned milestones and deliverables, project outcomes (results, collaborations, intellectual property, etc.), and a discussion on future expectations of deployment and impacts of the results of this work. In brief, all planned work for the project was successfully completed, on or ahead of schedule and on budget. The major accomplishment was the successful development of a very advanced passive ultra-secure RFID tag system with combined security features unmatched by any commercially available ones. These tags have high-level dynamic encrypted authentication, a novel tamper-proofing mechanism, system software including graphical user interfaces and networking, and integration with a fiber-optic seal mechanism. This is all accomplished passively (with no battery) by incorporating sophisticated hardware in the tag which harvests the energy from the RFID readers that are interrogating the tag. Based on initial feedback (and deployments) at DOE’s Lawrence Livermore National Laboratory (LLNL), it is anticipated these tags and their offspring will meet DOE and international community needs for highly secure RFID systems. Beyond the accomplishment of those original objectives for the ultra-secure RF tags, major new spin-off thrusts from the original work were identified and successfully pursued with the cognizance of the DOE sponsor office. In particular, new classes of less sophisticated RFID tags were developed whose lineage derives from the core R&D thrusts of this SBIR. These RF “tag variants” have some, but not necessarily all, of the advanced characteristics described above and can therefore be less expensive and meet far wider markets. With customer pull from the DOE and its national laboratories, new RFID tags and systems (including custom readers and software) for

  9. The absolute age of SE-RF-6 (Ngamanie) and its relation to SE-RF-2 (Nenumbo) : two decorated lapita sites in the southeast Solomon Islands

    International Nuclear Information System (INIS)

    Green, R.C.; Jones, M.

    2007-01-01

    The relative age of SE-RF-6, SE-RF-2 and SE-SZ-8, three decorative phase Lapita sites in the Reef/Santa Cruz region of the Outer Easter Islands of Solomon Islands, has been the subject of dispute. A review of the evidence recovered from SE-RF-6 (Ngamanie), in conjunction with a Bayesian calibration model, supports the notion that it postdates the nearby site of SE-RF-2 (Nenumbo). We conclude that the SE-RF-6 represents an occupation of 50 to 100 years duration (compared with 50 or less for SE-RF-2), beginning some time in the interval 2470-2910 BP. (author). 22 refs., 4 figs., 3 tabs

  10. An RF energy harvesting power management circuit for appropriate duty-cycled operation

    Science.gov (United States)

    Shirane, Atsushi; Ito, Hiroyuki; Ishihara, Noboru; Masu, Kazuya

    2015-04-01

    In this study, we present an RF energy harvesting power management unit (PMU) for battery-less wireless sensor devices (WSDs). The proposed PMU realizes a duty-cycled operation that is divided into the energy charging time and discharging time. The proposed PMU detects two types of timing, thus, the appropriate timing for the activation can be recognized. The activation of WSDs at the proper timing leads to energy efficient operation and stable wireless communication. The proposed PMU includes a hysteresis comparator (H-CMP) and an RF signal detector (RF-SD) to detect the timings. The proposed RF-SD can operate without the degradation of charge efficiency by reusing the RF energy harvester (RF-EH) and H-CMP. The PMU fabricated in a 180 nm Si CMOS demonstrated the charge operation using the RF signal at 915 MHz and the two types of timing detection with less than 124 nW in the charge phase. Furthermore, in the active phase, the PMU generates a 0.5 V regulated power supply from the charged energy.

  11. Feed forward control: An implementation at CIRFEL

    International Nuclear Information System (INIS)

    Krishnaswamy, J.; Lehrman, I.S.; Hartley, R.

    1995-01-01

    An integral part of the Compact InfraRed Free Electron LASER (CIRFEL) is control of the phase and amplitude stability in the RF power system. We have implemented such a Feed Forward system using the LabView software package, by National Instruments. We will discuss implementation and performance data of the Feed Forward control of the RF power system at CIRFEL. We will also briefly discuss some conditions under which the problem is ill-conditioned, and what idealizations can be made to remedy these ill-conditioned systems. Using an arbitrary function generator, we generate a driving signal for a voltage-controlled attenuator at the input side of the RF system, and we monitor the RF voltage in cell I of the photocathode gun using a digital storage oscilliscope in averaging mode. The system is stable enough to use data from one shot to modify the inputs for future shots. After downloading the averaged data to a personal computer via a GPIB (IEEE 488) bus, we use a simple linear transformation on the difference waveform between the current shot and the target to produce a correction signal. This signal is added to the driving signal in the arbitrary function generator, and the process is repeated until we get the flatness we need in the output signals from cell 1. The system for phase control is similar, with a voltage-controlled phase shifter replacing the attenuator, and monitoring of the RF phase in cell I replacing the monitoring of RF voltage. By repeatedly alternating between correcting the RF voltage (equivalent to correcting the RF power) and RF phase in cell 1, we are able to achieve simultaneous phase variations of <±1 degrees and amplitude variations of <±0.1% over a 3μsec pulse

  12. Electromagnetic considerations for RF current density imaging [MRI technique].

    Science.gov (United States)

    Scott, G C; Joy, M G; Armstrong, R L; Henkelman, R M

    1995-01-01

    Radio frequency current density imaging (RF-CDI) is a recent MRI technique that can image a Larmor frequency current density component parallel to B(0). Because the feasibility of the technique was demonstrated only for homogeneous media, the authors' goal here is to clarify the electromagnetic assumptions and field theory to allow imaging RF currents in heterogeneous media. The complete RF field and current density imaging problem is posed. General solutions are given for measuring lab frame magnetic fields from the rotating frame magnetic field measurements. For the general case of elliptically polarized fields, in which current and magnetic field components are not in phase, one can obtain a modified single rotation approximation. Sufficient information exists to image the amplitude and phase of the RF current density parallel to B(0) if the partial derivative in the B(0) direction of the RF magnetic field (amplitude and phase) parallel to B(0) is much smaller than the corresponding current density component. The heterogeneous extension was verified by imaging conduction and displacement currents in a phantom containing saline and pure water compartments. Finally, the issues required to image eddy currents are presented. Eddy currents within a sample will distort both the transmitter coil reference system, and create measurable rotating frame magnetic fields. However, a three-dimensional electro-magnetic analysis will be required to determine how the reference system distortion affects computed eddy current images.

  13. High-powered, solid-state rf systems

    International Nuclear Information System (INIS)

    Reid, D.W.

    1987-01-01

    Over the past two years, the requirement to supply megawatts of rf power for space-based applications at uhf and L-band frequencies has caused dramatic increases in silicon solid-state power capabilities in the frequency range from 10 to 3000 MHz. Radar and communications requirements have caused similar increases in gallium arsenide solid-state power capabilities in the frequency ranges from 3000 to 10,000 MHz. This paper reviews the present state of the art for solid-state rf amplifiers for frequencies from 10 to 10,000 MHz. Information regarding power levels, size, weight, and cost will be given. Technical specifications regarding phase and amplitude stability, efficiency, and system architecture will be discussed. Solid-stage rf amplifier susceptibility to radiation damage will also be examined

  14. Commissioning experience with the PEP-II low-level RF system

    International Nuclear Information System (INIS)

    Corredoura, P.; Allison, S.; Claus, R.; Ross, W.; Sapozhnikov, L.; Schwarz, H.D.; Tighe, R.; Yee, C.; Ziomek, C.

    1997-05-01

    The low-level RF system for PEP-II is a modular design housed in a VXI environment and supported by EPICS. All signal processing and control is done at baseband using in-phase and quadrature (IQ) techniques. Remotely configurable RF feedback loops are used to control coupled-bunch instabilities driven by the accelerating mode of the RF cavities. A programmable DSP based feedback loop is implemented to control phase variations across the klystron due to the required adjustment of the cathode voltage to limit cathode power dissipation. The DSP loop also adaptively cancels modulations caused by klystron power supply ripple at selected power line harmonics between 60 Hz and 10 kHz. The system contains a built-in baseband network analyzer which allows remote measurement of the RF feedback loop transfer functions and automated configuration of these loops. This paper presents observations and measured data from the system

  15. Global stability of phase lock near a chaotic crisis in the rf-biased Josephson junction

    International Nuclear Information System (INIS)

    Kautz, R.L.

    1987-01-01

    The global stability of phase lock in the rf-biased Josephson junction is studied through digital simulations. Global stability is determined by calculating the lifetime of the phase-locked state in the presence of thermal noise. This lifetime, the mean time required for thermal noise to induce a 2π phase slip, increases exponentially with inverse temperature in the limit of low temperatures, and the low-temperature asymptote can be parametrized in terms of an activation energy E-script and an attempt time tau 0 . The activation energy is a useful measure of global stability for both periodic and chaotic phase-locked states. The behavior of E-script and tau 0 is studied over a range of critical-current densities which take the system from a region of harmonic motion through a period-doubling cascade and into a region of phase-locked chaotic behavior which is ended by a chaotic crisis. At the crisis point, the activation energy goes to zero and the attempt time goes to infinity. The results are used to determine the optimum critical-current density for series-array voltage standards

  16. An offset tone based gain stabilization technique for mixed-signal RF measurement systems

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Gopal, E-mail: gjos@barc.gov.in [BARC, Mumbai 400085 (India); Motiwala, Paresh D.; Randale, G.D.; Singh, Pitamber [BARC, Mumbai 400085 (India); Agarwal, Vivek; Kumar, Girish [IIT Bombay, Powai, Mumbai 400076 (India)

    2015-09-21

    This paper describes a gain stabilization technique for a RF signal measurement system. A sinusoidal signal of known amplitude, phase and close enough in frequency is added to the main, to be measured RF signal at the input of the analog section. The system stabilizes this offset tone in the digital domain, as it is sampled at the output of the analog section. This process generates a correction factor needed to stabilize the magnitude of the gain of the analog section for the main RF signal. With the help of a simple calibration procedure, the absolute amplitude of the main RF signal can be measured. The technique is especially suited for a system that processes signals around a single frequency, employs direct signal conversion into the digital domain, and processes subsequent steps in an FPGA. The inherent parallel signal processing in an FPGA-based implementation allows a real time stabilization of the gain. The effectiveness of the technique is derived from the fact, that the gain stabilization stamped to the main RF signal measurement branch requires only a few components in the system to be inherently stable. A test setup, along with experimental results is presented from the field of RF instrumentation for particle accelerators. Due to the availability of a phase synchronized RF reference signal in these systems, the measured phase difference between the main RF and the RF reference is also stabilized using this technique. A scheme of the signal processing is presented, where a moving average filter has been used to filter out not only the unwanted frequencies, but also to separate the main RF signal from the offset tone signal. This is achieved by a suitable choice of sampling and offset tone frequencies. The presented signal processing scheme is suitable to a variety of RF measurement applications.

  17. A simple, tunable, and highly sensitive radio-frequency sensor.

    Science.gov (United States)

    Cui, Yan; Sun, Jiwei; He, Yuxi; Wang, Zheng; Wang, Pingshan

    2013-08-05

    We report a radio frequency (RF) sensor that exploits tunable attenuators and phase shifters to achieve high-sensitivity and broad band frequency tunability. Three frequency bands are combined to enable sensor operations from ∼20 MHz to ∼38 GHz. The effective quality factor ( Q eff ) of the sensor is as high as ∼3.8 × 10 6 with 200  μ l of water samples. We also demonstrate the measurement of 2-proponal-water-solution permittivity at 0.01 mole concentration level from ∼1 GHz to ∼10 GHz. Methanol-water solution and de-ionized water are used to calibrate the RF sensor for the quantitative measurements.

  18. Los Alamos free-electron laser (FEL) rf system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Lynch, M.T.

    1985-01-01

    The FEL rf system was designed for 3.6-MW rf pulses from two klystrons to drive two linacs and one deflection cavity at 1300 MHz. Two 108.33-MHz subharmonic buncher cavities and one fundamental buncher were also built, each powered by a 5-kW amplifier. A single phase-coherent source drives the various amplifiers as well as the grid of the electron gun, which is pulsed at 21.67 MHz. The initial buncher system did not work as well as expected, and the first linac tank required more rf power than anticipated. The light output was extremely sensitive to amplitude and phase errors. More powerful klystrons were developed and installed, and a method was discovered for operating a single subharmonic buncher and allowing the first linac to complete the bunching process. This paper shows the actual configuration used to operate the laser and discusses future improvements

  19. RF power source for the compact linear collider test facility (CTF3)

    CERN Document Server

    McMonagle, G; Brown, Peter; Carron, G; Hanni, R; Mourier, J; Rossat, G; Syratchev, I V; Tanner, L; Thorndahl, L

    2004-01-01

    The CERN CTF3 facility will test and demonstrate many vital components of CLIC (Compact Linear Collider). This paper describes the pulsed RF power source at 2998.55 MHz for the drive-beam accelerator (DBA), which produces a beam with an energy of 150 MeV and a current of 3.5 Amps. Where possible, existing equipment from the LEP preinjector, especially the modulators and klystrons, is being used and upgraded to achieve this goal. A high power RF pulse compression system is used at the output of each klystron, which requires sophisticated RF phase programming on the low level side to achieve the required RF pulse. In addition to the 3 GHz system two pulsed RF sources operating at 1.5 GHz are being built. The first is a wide-band, low power, travelling wave tube (TWT) for the subharmonic buncher (SHB) system that produces a train of "phase coded" subpulses as part of the injector scheme. The second is a high power narrow band system to produce 20 MW RF power to the 1.5 GHz RF deflectors in the delay loop situate...

  20. Low-level rf system for the AGS Light Ion Program

    International Nuclear Information System (INIS)

    Kovarik, V.; Ahrens, L.; Barton, D.S.; Frankel, R.; Otis, A.; Pope, D.; Pritsker, M.; Raka, E.; Warkentien, R.

    1987-01-01

    The new low level rf system for the light ion acceleration program features direct digital control of a phase continuous rf synthesizer clocked by finite changes in the B field. The system, its operation and testing are described. The system covers the complete rf frequency range and switches over from single cavity acceleration to multiple cavity acceleration with no beam loss. It also switches from the programmed drive to the normal bootstrap system

  1. Rf system description for the ground test accelerator radio-frequency quadrupole

    International Nuclear Information System (INIS)

    Regan, A.H.; Brittain, D.; Rees, D.E.; Ziomek, D.

    1992-01-01

    This paper describes the RF system being used to provide RF power and to control the cavity field used for the ground test accelerator (GTA) radio-frequency quadrupole (RFQ). The RF system consists of a low-level RF (LLRF) control system that uses a tetrode as a high-power amplifier (HPA) as part of its plant to deliver up to 300 kW of peak power to the RFQ at a 2% duty factor. The LLRF control system implements in-phase and quadrature (I ampersand Q) control to maintain the cavity field within tolerances of 0.5% in amplitude and 0.5 degrees in phase in the presence of beam-induced instabilities. This paper describes the identified components and presents measured performance data. The user interface with the systems is described, and cavity field measurements are included

  2. Development of RF System Model for CERN Linac2 Tanks

    CERN Document Server

    Joshi, G; Vretenar, M; Kumar, G; Agarwal, V

    2010-01-01

    An RF system model has been created for the CERN Linac2 Tanks. RF systems in this linac have both single and double feed architectures. The main elements of these systems are: RF power amplifier, main resonator, feed-line and the amplitude and phase feedback loops. The model of the composite system is derived by suitably concatenating the models of these individual sub-systems. For computational efficiency the modeling has been carried out in the base band. The signals are expressed in in-phase - quadrature domain, where the response of the resonator is expressed using two linear differential equations, making it valid for large signal conditions. MATLAB/SIMULINK has been used for creating the model. The model has been found useful in predicting the system behaviour, especially during the transients. In the paper we present the details of the model, highlighting the methodology, which could be easily extended to multiple feed RF systems.

  3. Proposed rf system for the fusion materials irradiation test facility

    International Nuclear Information System (INIS)

    Fazio, M.V.; Johnson, H.P.; Hoffert, W.J.; Boyd, T.J.

    1979-01-01

    Preliminary rf system design for the accelerator portion of the Fusion Materials Irradiation Test (FMIT) Facility is in progress. The 35-MeV, 100-mA, cw deuteron beam will require 6.3 MW rf power at 80 MHz. Initial testing indicates the EIMAC 8973 tetrode is the most suitable final amplifier tube for each of a series of 15 amplifier chains operating at 0.5-MW output. To satisfy the beam dynamics requirements for particle acceleration and to minimize beam spill, each amplifier output must be controlled to +-1 0 in phase and the field amplitude in the tanks must be held within a 1% tolerance. These tolerances put stringent demands on the rf phase and amplitude control system

  4. Reconfigurable Wave Velocity Transmission Lines for Phased Arrays

    Science.gov (United States)

    Host, Nick; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix

    2013-01-01

    Phased array antennas showcase many advantages over mechanically steered systems. However, they are also more complex, heavy and most importantly costly. This presentation paper presents a concept which overcomes these detrimental attributes by eliminating all of the phase array backend (including phase shifters). Instead, a wave velocity reconfigurable transmission line is used in a series fed array arrangement to allow phase shifting with one small (100mil) mechanical motion. Different configurations of the reconfigurable wave velocity transmission line are discussed and simulated and experimental results are presented.

  5. Stability of barrier buckets with zero RF-barrier separations

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab

    2005-03-01

    A barrier bucket with very small separation between the rf barriers (relative to the barrier widths) or even zero separation has its synchrotron tune decreasing rather slowly from a large value towards the boundary of the bucket. As a result, large area at the bucket edges can become unstable under the modulation of rf voltage and/or rf phase. In addition, chaotic regions may form near the bucket center and extend outward under increasing modulation. Application is made to those barrier buckets used in the process of momentum mining at the Fermilab Recycler Ring.

  6. Function of bunching segment in multi-cell RF gun

    International Nuclear Information System (INIS)

    Yang Xingfan; Xu Zhou Liu Xisan

    2001-01-01

    With a bunching segment and a shortened first cell, the 4 + 1/2 cell RF gun produced in CAEP has been proved experimentally to be effective in reducing electron back bombardment. The analysis of the electric field distribution and electron motion in bunching segment of multi-cell RF gun is presented. The electron capture efficiency and electron trajectory with different initial phase are calculated using Runge-Kutta method. The function of the bunching segment is discussed. The calculated parameters of the 4 + 1/2 cell RF gun agree well with the experimental results

  7. RF MEMS: status of the industry and roadmaps

    Science.gov (United States)

    Bouchaud, Jeremie; Wicht, Henning

    2005-01-01

    Microsystems for Radio Frequency applications, known as RF MEMS, have entered the commercialization phase in 2003. Bulk Acoustic Wave filters are already produced in series and first commercial samples of switches are available. On the other hand, reliability and packaging problems are still a major hurdle especially for switches and tunable capacitors. Will RF MEMS hold their promise to be one of the future major businesses for MEMS? The presentation will give an overview on RF MEMS applications and market players. WTC will highlight technical challenges that still have to be solved to open mass markets such as mobile telephony and WLAN. WTC will also present applications of RF MEMS and opportunities in niche markets with high added value like military and space applications. WTC will provide a regional analysis and compare R&D focus and public funding situation in North America, Europe and Asia. Finally, WTC will present an updated product roadmap market forecast for RF MEMS devices for the 2004-2008 time period.

  8. Theory, analysis and design of RF interferometric sensors

    CERN Document Server

    Nguyen, Cam

    2012-01-01

    Theory, Analysis and Design of RF Interferometric Sensors presents the theory, analysis and design of RF interferometric sensors. RF interferometric sensors are attractive for various sensing applications that require every fine resolution and accuracy as well as fast speed. The book also presents two millimeter-wave interferometric sensors realized using RF integrated circuits. The developed millimeter-wave homodyne sensor shows sub-millimeter resolution in the order of 0.05 mm without correction for the non-linear phase response of the sensor's quadrature mixer. The designed millimeter-wave double-channel homodyne sensor provides a resolution of only 0.01 mm, or 1/840th of the operating wavelength, and can inherently suppress the non-linearity of the sensor's quadrature mixer. The experimental results of displacement and velocity measurement are presented as a way to demonstrate the sensing ability of the RF interferometry and to illustrate its many possible applications in sensing. The book is succinct, ye...

  9. Measurements of RF-induced sol modifications in Tore Supra tokamak

    International Nuclear Information System (INIS)

    Kubic, Martin; Gunn, James P.; Colas, Laurent; Heuraux, Stephane; Faudot, Eric

    2012-01-01

    Since spring 2011, one of the three ion cyclotron resonance heating (ICRH) antennas in the Tore Supra (TS) tokamak is equipped with a new type of Faraday screen (FS). Results from Radio Frequency (RF) simulations of the new Faraday screen suggest the innovative structure with cantilevered bars and 'shark tooth' openings significantly changes the current flow pattern on the front of the antenna which in turn reduces the RF potential and RF electrical field in particular parallel to the magnetic field lines which contributes to generating RF sheaths. Effects of the new FS operation on RF-induced scrape-off layer (SOL) modifications are studied for different plasma and antenna configurations - scans of strap power ratio imbalance, phasing, injected power and SOL density. (authors)

  10. Simplified RF power system for Wideroe-type linacs

    International Nuclear Information System (INIS)

    Fugitt, J.; Howard, D.; Crosby, F.; Johnson, R.; Nolan, M.; Yuen, G.

    1981-03-01

    The RF system for the SuperHILAC injector linac was designed and constructed for minimum system complexity, wide dynamic range, and ease of maintenance. The final amplifier is close coupled to the linac and operates in an efficient semilinear mode, eliminating troublesome transmission lines, modulators, and high level regulators. The system has been operated at over 250 kW, 23 MHz with good regulation. The low level RF electronics are contained in a single chassis adjacent to the RF control computer, which monitors all important operating parameters. A unique 360 0 phase and amplitude modular is used for precise control and regulation of the accelerating voltage

  11. RF pulse compression in the NLC test accelerator at SLAC

    International Nuclear Information System (INIS)

    Lavine, T.L.

    1995-01-01

    At the Stanford Linear Accelerator Center (SLAC), the authors are designing a Next Linear Collider (NLC) with linacs powered by X-band klystrons with rf pulse compression. The design of the linac rf system is based on X-band prototypes which have been tested at high power, and on a systems-integration test - the Next Linear Collider Test Accelerator (NLCTA) - which is currently under construction at SLAC. This paper discusses some of the systems implications of rf pulse compression, and the use of pulse compression in the NLCTA, both for peak power multiplication and for controlling, by rf phase modulation, intra-pulse variations in the linac beam energy

  12. DDS-based control loops for the RF system at INFN-LNS

    International Nuclear Information System (INIS)

    Caruso, A.; Calabretta, L.; Cosentino, G.; Sparta, A.; Speziale, F.

    2005-01-01

    In the last two years a new radio-frequency source generator has been working to synthesize the driving sinusoidal signals of the RF systems at LNS. This device is based on Direct Digital Synthesis (DDS) technique. Every time you need a constant relation of phase between several RF signals, our DDS-based multiple frequencies generator produces these high frequency waveforms. The good results of this DDS synthesizer technique, make us feel confident that we can develop a new DDS control system for the various RF equipment. The AD9852/54 a commercial DDS microchip, will be the core of this new control system. The component allows, through digital ports, the manipulation of the frequency, amplitude and phase of the developed RF-carrier without any interruption to the latter. In this way we would have a complete DDS control system capable of stabilizing amplitude, phase and tuning ensuring the present stability of the analog control loops. The remaining operations, such as turning on/off and protection of the system will be performed at the same time. The prototype of this new DDS control, its technical performances and the experimental results will be presented in this paper. (author)

  13. Development of RF non-IQ sampling module for Helium RFQ LLRF system

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae-Seong; Ahn, Tae-Sung; Kim, Seong-Gu; Kwon, Hyeok-Jung; Kim, Han-Sung; Song, Young-Gi; Seol, Kyung-Tae; Cho, Yong-Sub [KOMAC, Gyeongju (Korea, Republic of)

    2015-05-15

    KOMAC (Korea Multi-purpose Accelerator Complex) has a plan to develop the helium irradiation system. This system includes the Ion source, LEBT, RFQ, MEBT systems to transport helium particles to the target. Especially, the RFQ (Radio Frequency Quadrupole) system should receive the 200MHz RF within 1% amplitude error stability. For supplying stable 200MHz RF to the RFQ, the low-level radio frequency (LLRF) should be controlled by control system. The helium RFQ LLRF control system adopted non- IQ sampling method to sample the analog input RF. Sampled input data will be calculated to get the I, Q values. These I, Q values will be used to monitor the amplitude and phase of the RF signal. In this paper, non-IQ sampling logic and amplitude and phase calculating logic of the FPGA will be introduced. Using Xilinx ISE design suite which is tool for developing the FPGA logic module, non-IQ sampling module and amplitude and phase computing module developed. In the future, PI gain module and frequency error computing module will be developed.

  14. Experimental studies of emittance growth and energy spread in a photocathode RF gun

    International Nuclear Information System (INIS)

    Yang, J.; Sakai, F.; Okada, Y.; Yorozu, M.; Yanagida, T.; Endo, A.

    2002-01-01

    In this paper we report on a low emittance electron source, based on a photocathode RF gun, a solenoid magnet and a subsequent linac. The dependencies of the beam transverse emittance and relative energy spread with respect to the laser injection phase of the radio-frequency (RF) gun, the RF phase of the linac and the bunch charge were investigated experimentally. It was found that a lower beam emittance is observed when the laser injection phase in the RF gun is low. The emittance increases almost linearly with the bunch charge under a constant solenoid magnetic field. The corrected relative energy spread of the beam is not strongly dependent on the bunch charge. Finally, an optimal normalized rms transverse emittance of 1.91±0.28 πmm mrad at a bunch charge of 0.6 nC was obtained when the RF gun was driven by a picosecond Nd:YAG laser. A corrected relative rms energy spread of 0.2-0.25% at a bunch charge of 0.3-2 nC was obtained after the beam was accelerated to 14 MeV by the subsequent linac

  15. Experimental studies of emittance growth and energy spread in a photocathode RF gun

    CERN Document Server

    Yang, J; Okada, Y; Yorozu, M; Yanagida, T; Endo, A

    2002-01-01

    In this paper we report on a low emittance electron source, based on a photocathode RF gun, a solenoid magnet and a subsequent linac. The dependencies of the beam transverse emittance and relative energy spread with respect to the laser injection phase of the radio-frequency (RF) gun, the RF phase of the linac and the bunch charge were investigated experimentally. It was found that a lower beam emittance is observed when the laser injection phase in the RF gun is low. The emittance increases almost linearly with the bunch charge under a constant solenoid magnetic field. The corrected relative energy spread of the beam is not strongly dependent on the bunch charge. Finally, an optimal normalized rms transverse emittance of 1.91+-0.28 pi mm mrad at a bunch charge of 0.6 nC was obtained when the RF gun was driven by a picosecond Nd:YAG laser. A corrected relative rms energy spread of 0.2-0.25% at a bunch charge of 0.3-2 nC was obtained after the beam was accelerated to 14 MeV by the subsequent linac.

  16. High pressure gas scintillation drift chambers with wave-shifter fiber readout

    International Nuclear Information System (INIS)

    Parsons, A.; Edberg, T.K.; Sadoulet, B.; Weiss, S.; Wilkerson, J.; Hurley, K.; Lin, R.P.

    1990-01-01

    The authors present results from a prototype high pressure xenon gas scintillation drift chamber using a novel wave-shifter fiber readout scheme. They have measured the primary scintillation light yield to be one photon per 76 ± 12 eV deposited energy. They present initial results of our chamber for the two-interaction separation (< 4 mm in the drift direction, ∼ 7 mm orthogonal to the drift); for the position resolution (< 400 μm rms in the plane orthogonal to the drift direction); and for the energy resolution (ΔE/E < 6% FWHM at 122 keV)

  17. Particle Simulations of a Thermionic RF Gun with Gridded Triode Structure for Reduction of Back-Bombardment

    CERN Document Server

    Kusukame, K; Kii, T; Masuda, K; Nakai, Y; Ohgaki, H; Yamazaki, T; Yoshikawa, K; Zen, H

    2005-01-01

    Thermionic RF guns show advantageous features compared with photocathode ones such as easy operation and much higher repetition rate of micropulses, both of which are suitable for their application to high average power FELs. They however suffer from the back-bombardment effect [1], i.e., in conventional RF guns, electrons are extracted from cathode also in the latter half of accelerating phase and tend to back-stream to hit the cathode, and as a result the macropulse duration is limited down to severalμsec Against this adverse effect in thermionic RF guns, introduction of the triode structure has been proposed [2], where the accelerating phase and amplitude nearby the cathode can be controlled regardless of the phase of the first accelerating cell in the conventional RF gun. Our one-dimensional particle simulation results predict that the back-bombardment power can be reduced by 99 % only with 30-40 kW RF power fed to the grid in the present triode structure with an optimal phase difference from th...

  18. Locking Lasers to RF in an Ultrafast FEL

    International Nuclear Information System (INIS)

    Wilcox, R.; Huang, G.; Doolittle, L.; White, W.; Frisch, J.; Coffee, R.

    2010-01-01

    Using a novel, phase-stabilized RF-over-fiber scheme, they transmit 3GHz over 300m with 27fs RMS error in 250kHz bandwidth over 12 hours, and phase lock a laser to enable ultrafast pump-probe experiments. Free-electron lasers (FELs) are capable of producing short-duration (< 10fs), high-energy X-ray pulses for a range of scientific applications. The recently activated Linac Coherent Light Source (LCLS) FEL facility at SLAC will support experiments which require synchronized light pulses for pump-probe schemes. They developed and operated a fiber optic RF transmission system to synchronize lasers to the emitted X-ray pulses, which was used to enable the first pump-probe experiments at the LCLS.

  19. RF Gun Optimization Study

    International Nuclear Information System (INIS)

    Alicia Hofler; Pavel Evtushenko

    2007-01-01

    Injector gun design is an iterative process where the designer optimizes a few nonlinearly interdependent beam parameters to achieve the required beam quality for a particle accelerator. Few tools exist to automate the optimization process and thoroughly explore the parameter space. The challenging beam requirements of new accelerator applications such as light sources and electron cooling devices drive the development of RF and SRF photo injectors. A genetic algorithm (GA) has been successfully used to optimize DC photo injector designs at Cornell University [1] and Jefferson Lab [2]. We propose to apply GA techniques to the design of RF and SRF gun injectors. In this paper, we report on the initial phase of the study where we model and optimize a system that has been benchmarked with beam measurements and simulation

  20. Design of the 3.7 GHz, 500 kW CW circulator for the LHCD system of the SST-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, Harish V., E-mail: hvdixit48@yahoo.com [Veermata Jijabai Technological Institute, Mumbai, Maharashtra 400019 (India); Jadhav, Aviraj R. [Veermata Jijabai Technological Institute, Mumbai, Maharashtra 400019 (India); Jain, Yogesh M. [Institute for Plasma Research, Gandhinagar, Gujarat 382428 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094 (India); Cheeran, Alice N. [Veermata Jijabai Technological Institute, Mumbai, Maharashtra 400019 (India); Gupta, Vikas [Vidyavardhini' s College of Engineering and Technology, Vasai, Maharashtra 401202 (India); Sharma, P.K. [Institute for Plasma Research, Gandhinagar, Gujarat 382428 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094 (India)

    2017-06-15

    Highlights: • Design of a 500 kW CW circulator for LHCD system at 3.7 GHz. • Mechanism for thermal management of ferrite tile. • Scheme for uniform magnetisation of the ferrite tiles. • Design of high CW power CW quadrature and 180 ° hybrid coupler. - Abstract: Circulators are used in high power microwave systems to protect the vacuum source against reflection. The Lower Hybrid Current Drive (LHCD) system of SST-1 tokamak commissioned at IPR, Gandhinagar in India comprises of four high power circulators to protect klystrons (supplying 500 kW CW each at 3.7 GHz) which power the system. This paper presents the design of a Differential Phase Shift Circulator (DPSC) capable of handling 500 kW CW power at 3.7 GHz so that four circulators can be used to protect the four available klystrons. As the DPSC is composed by three main components, viz., magic tee, ferrite phase shifter and 3 dB hybrid coupler, the designing of each of the proposed components is described. The design of these components is carried out factoring various multiphysics aspects of RF, heating due to high CW power and magnetic field requirement of the ferrite phase shifter. The primary objective of this paper is to present the complete RF, magnetic and thermal design of a high CW power circulator. All the simulations have been carried out in COMSOL Multiphysics. The designed circulator exhibits an insertion loss of 0.13 dB with a worst case VSWR of 1.08:1. The total length of the circulator is 3 m.

  1. Phased-array design for MST and ST radars

    Science.gov (United States)

    Ecklund, W. L.

    1986-01-01

    All of the existing radar systems fully dedicated to clear-air radar studies use some type of phased-array antennas. The effects of beam-steering techniques including feed networks and phase shifters; sidelobe control; ground-clutter suppression; low altitude coverage; arrays with integrated radiating elements and feed networks; analysis of coaxial-collinear antennas; use of arrays with multiple beams; and array testing and measure on structural design of the antenna are discussed.

  2. Design of RF system for CYCIAE-230 superconducting cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhiguo, E-mail: bitbearAT@hotmail.com; Ji, Bin; Fu, Xiaoliang; Cao, Xuelong; Zhao, Zhenlu; Zhang, Tinajue

    2017-05-11

    The CYCIAE230 is a low-current, compact superconducting cyclotron designed for proton therapy. The Radio Frequency system consists of four RF cavities and applies second harmonic to accelerate beams. The driving power for the cavity system is estimated to be approximately 150 kW. The LLRF controller is a self-made device developed and tested at low power using a small-scale cavity model. In this paper, the resonator systems of an S.C. cyclotron in history are reviewed. Contrary to those RF systems, the cavities of the CYCIAE230 cyclotron connect two opposite dees. Two high-power RF windows are included in the system. Each window carries approximately 75 kW RF power from the driver to the cavities. Thus, the RF system for the CY-CIAE230 cyclotron is operated in driven push–pull mode. The two-way amplifier-coupler-cavity systems are operated with approximately the same amount of RF power but 180° out of phase compared with each other. The design, as well as the technical advantage and limitations of this operating mode, of the CYCIAE230 cyclotron RF system is analyzed.

  3. Design of RF system for CYCIAE-230 superconducting cyclotron

    Science.gov (United States)

    Yin, Zhiguo; Ji, Bin; Fu, Xiaoliang; Cao, Xuelong; Zhao, Zhenlu; Zhang, Tinajue

    2017-05-01

    The CYCIAE230 is a low-current, compact superconducting cyclotron designed for proton therapy. The Radio Frequency system consists of four RF cavities and applies second harmonic to accelerate beams. The driving power for the cavity system is estimated to be approximately 150 kW. The LLRF controller is a self-made device developed and tested at low power using a small-scale cavity model. In this paper, the resonator systems of an S.C. cyclotron in history are reviewed. Contrary to those RF systems, the cavities of the CYCIAE230 cyclotron connect two opposite dees. Two high-power RF windows are included in the system. Each window carries approximately 75 kW RF power from the driver to the cavities. Thus, the RF system for the CY-CIAE230 cyclotron is operated in driven push-pull mode. The two-way amplifier-coupler-cavity systems are operated with approximately the same amount of RF power but 180° out of phase compared with each other. The design, as well as the technical advantage and limitations of this operating mode, of the CYCIAE230 cyclotron RF system is analyzed.

  4. Conceptual design of independently tunable cells RF gun with external injecting structure

    International Nuclear Information System (INIS)

    Liang Junjun; Feng Guangyao; Pei Yuanji; Pang Jian

    2012-01-01

    To obtain the micro-pulse bunch with the order of hundred femtoseconds length and high repetition rate, the pa- per proposes the independently tunable cells (ITC) RF gun, which has a double-cell structure with the cells being power fed independently. By choosing appropriate feeding power and phase of the two cells, this ITC-RF gun can achieve bunches of excellent characteristics. Additionally, the application of a-magnet and laser system can be avoided, which leads to more compact layout. An external injecting ITC-RF gun (DC-ITC-RF gun) structure is designed accordingly. The external injecting structure can increase beam current, decrease energy spread, and cancel the back-bombardment effect almost completely. By means of 1-D and 3- D beam dynamics calculation with different structure parameters, a group of RF parameters are obtained for better beam characteristics. Then the paper designs a pre-injector so that particles can be accelerated to 10 MeV. By choosing appropriate feeding power and incident particle phase for the pre-injector, the bunch length can be further compressed. (authors)

  5. Stabilizing effect of a double-harmonic RF system in the CERN PS

    International Nuclear Information System (INIS)

    Bhat, C.; Caspers, F.; Damerau, H.; Hancock, S.; Mahner, E.; Zimmermann, F.

    2009-01-01

    Motivated by the discussions on scenarios for LHC upgrades, beam studies on the stability of flat bunches in a double-harmonic RF system have been conducted in the CERN Proton Synchrotron (PS). Injecting nearly nominal LHC beam intensity per cycle, 18 bunches are accelerated on harmonic h = 21 to 26GeV with the 10MHz RF system. On the flat-top, all bunches are then transformed to flat bunches by adiabatically adding RF voltage at h = 42 from a 20 MHz cavity in anti-phase to the h = 21 system. The voltage ratio V (h42)/V (h21) of about 0.5 was set according to simulations. For the next 140 ms, longitudinal profiles show stable bunches in the double-harmonic RF bucket until extraction. Without the second harmonic component, coupled-bunch oscillations are observed. The flatness of the bunches along the batch is analyzed as a measure of the relative phase error between the RF systems due to beam loading. The results of beam dynamics simulations and their comparison with the measured data are presented

  6. Immunochemical determination of cellular content of translation release factor RF4 in Escherichia coli

    DEFF Research Database (Denmark)

    Andersen, Lars Dyrskjøt; Manuel Palacios Moreno, Juan; Clark, Brian F. C.

    1999-01-01

    of the stop codons, and RF3 is known to accelerate the overall termination process. Release factor RF4 is a protein involved in the release of the mRNA and tRNA from the ribosomal complex. Furthermore, RF4 is involved in the proofreading in the elongation step of protein biosynthesis. The cellular contents...... of RF1, RF2, and RF3 were determined earlier. Here we report the cellular content of RF4 in Escherichia coli to be approximately 16,500 molecules per cell. The cells were grown in a rich medium and harvested in the beginning of the exponential growth phase. The quantifications were performed by using...

  7. Embedded software for the CEBAF RF Control Module

    International Nuclear Information System (INIS)

    Lahti, G.; Ashkenazi, I.; West, C.; Morgan, B.

    1991-01-01

    The CEBAF accelerator control system employs a distributed computer strategy. As part of this strategy, the RF control sub-system uses 342 RF Control Modules, one for each of four warm section beam forming cavities (i.e., choppers, buncher, capture) and 338 superconducting accelerating cavities. Each control module has its own microprocessor, which provides local intelligence to automatically control over 100 parameters, while keeping the user interface simple. The microprocessor controls analog and digital I/O, including the phase and gradient section, high power amplifier (HPA), and interlocks. Presently, the embedded code is used to commission the 14 RF control modules in the injector. This paper describes the operational experience of this complex real-time control system

  8. RF pulse compression in the NLC test accelerator at SLAC

    International Nuclear Information System (INIS)

    Lavine, T.L.

    1995-01-01

    At the Stanford Linear Accelerator Center (SLAC), we are designing a Next Linear Collider (NLC) with linacs powered by X-band klystrons with rf pulse compression. The design of the linac rf system is based on X-band prototypes which have been tested at high power, and on a systems-integration test---the Next Linear Collider Test Accelerator (NLCTA)---which is currently under construction at SLAC. This paper discusses some of the systems implications of rf pulse compression, and the use of pulse compression in the NLCTA, both for peak power multiplication and for controlling, by rf phase modulation, intra-pulse variations in the linac beam energy. copyright 1995 American Institute of Physics

  9. Adaptive feedforward in the LANL rf control system

    International Nuclear Information System (INIS)

    Ziomek, C.D.

    1992-01-01

    This paper describes an adaptive feedforward system that corrects repetitive errors in the amplitude and phase of the RF field of a pulsed accelerator. High-frequency disturbances that are beyond the effective bandwidth of the RF field feedback control system can be eliminated with a feedforward system. Many RF field disturbances for a pulsed accelerator are repetitive, occurring at the same relative time in every pulse. This design employs digital signal processing hardware to adaptively determine and track the control signals required to eliminate the repetitive errors in the feedback control system. In order to provide the necessary high-frequency response, the adaptive feedforward hardware provides the calculated control signal prior to the repetitive disturbance that it corrects. This system has been demonstrated to reduce the transient disturbances caused by beam pulses. Furthermore, it has been shown to negate high-frequency phase and amplitude oscillations in a high-power klystron amplifier caused by PFN ripple on the high-voltage. The design and results of the adaptive feedforward system are presented

  10. SAR processing with stepped chirps and phased array antennas.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2006-09-01

    Wideband radar signals are problematic for phased array antennas. Wideband radar signals can be generated from series or groups of narrow-band signals centered at different frequencies. An equivalent wideband LFM chirp can be assembled from lesser-bandwidth chirp segments in the data processing. The chirp segments can be transmitted as separate narrow-band pulses, each with their own steering phase operation. This overcomes the problematic dilemma of steering wideband chirps with phase shifters alone, that is, without true time-delay elements.

  11. Study of RF system of Hefei storage ring under injection

    International Nuclear Information System (INIS)

    Xu Hongliang; Wang Lin; Li Yongjun; Huang Guirong; Zhang Pengfei; Li Weimin; Liu Zuping; He Duohui

    2004-01-01

    In this paper, the beam loading effect of RF system and the conditions of Robinson instability are analyzed in detail. By the study of the injection beam intensity limit dependent on detune angle and visible detune angle, it is found that the storage ring can be injected to more than 300 mA current intensity to attain the design target of phase II project in the lower energy injection situation of Hefei Storage Ring if a certain power is feed in the RF cavity and a certain tuning angle of the RF cavity is set

  12. Design and modeling of a 17 GHz photocathode RF gun

    International Nuclear Information System (INIS)

    Lin, C.L.; Chen, S.C.; Wurtele, J.S.; Temkin, R.; Danly, B.

    1991-01-01

    The performance of a high-frequency (17 GHz), high accelerating gradient (250 MV/m) photocathode RF gun is studied with the particle-in-cell code MAGIC. For the parameter regime of interest, i.e. bunch charge smaller than 1 nC and bunch length shorter than 2 ps, space-charge forces and finite bunch length effects are less significant in determining the beam quality than nonlinear RF forces are. The cavity geometry, RF phase for photoemission, cathode size, and current density are being optimized to obtain high quality beams. Preliminary results are presented

  13. High-efficiency resonant rf spin rotator with broad phase space acceptance for pulsed polarized cold neutron beams

    Directory of Open Access Journals (Sweden)

    P.-N. Seo

    2008-08-01

    Full Text Available High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPDGamma experiment, a search for the small parity-violating γ-ray asymmetry A_{γ} in polarized cold neutron capture on parahydrogen, is one example. For the NPDGamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5  cm×9.5  cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized ^{3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8±0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPDGamma experiment are considered.

  14. Performance Evaluation of Analog Beamforming with Hardware Impairments for mmW Massive MIMO Communication in an Urban Scenario

    Directory of Open Access Journals (Sweden)

    Sonia Gimenez

    2016-09-01

    Full Text Available The use of massive multiple-input multiple-output (MIMO techniques for communication at millimeter-Wave (mmW frequency bands has become a key enabler to meet the data rate demands of the upcoming fifth generation (5G cellular systems. In particular, analog and hybrid beamforming solutions are receiving increasing attention as less expensive and more power efficient alternatives to fully digital precoding schemes. Despite their proven good performance in simple setups, their suitability for realistic cellular systems with many interfering base stations and users is still unclear. Furthermore, the performance of massive MIMO beamforming and precoding methods are in practice also affected by practical limitations and hardware constraints. In this sense, this paper assesses the performance of digital precoding and analog beamforming in an urban cellular system with an accurate mmW channel model under both ideal and realistic assumptions. The results show that analog beamforming can reach the performance of fully digital maximum ratio transmission under line of sight conditions and with a sufficient number of parallel radio-frequency (RF chains, especially when the practical limitations of outdated channel information and per antenna power constraints are considered. This work also shows the impact of the phase shifter errors and combiner losses introduced by real phase shifter and combiner implementations over analog beamforming, where the former ones have minor impact on the performance, while the latter ones determine the optimum number of RF chains to be used in practice.

  15. Down-conversion IM-DD RF photonic link utilizing MQW MZ modulator.

    Science.gov (United States)

    Xu, Longtao; Jin, Shilei; Li, Yifei

    2016-04-18

    We present the first down-conversion intensity modulated-direct detection (IM-DD) RF photonic link that achieves frequency down-conversion using the nonlinear optical phase modulation inside a Mach-Zehnder (MZ) modulator. The nonlinear phase modulation is very sensitive and it can enable high RF-to-IF conversion efficiency. Furthermore, the link linearity is enhanced by canceling the nonlinear distortions from the nonlinear phase modulation and the MZ interferometer. Proof-of-concept measurement was performed. The down-conversion IM-DD link demonstrated 28dB improvement in distortion levels over that of a conventional IM-DD link using a LiNbO3 MZ modulator.

  16. Racetrack microtron rf system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Keffeler, D.R.

    1985-01-01

    The rf system for the National Bureau of Standards (NBS)/Los Alamos cw racetrack microtron is described. The low-power portion consists of five 75-W amplifers that drive two input ports in each of two chopper deflection cavities and one port in the prebuncher cavity. A single 500-kW klystron drives four separate 2380-MHz cavity sections: the two main accelerator sections, a capture section, and a preaccelerator section. The phases and amplitudes in all cavities are controlled by electronic or electromechanical controls. The 1-MW klystron power supply and crowbar system were purchased as a unit; several modifications are described that improve power-supply performance. The entire rf system has been tested and shipped to the NBS, and the chopper-buncher system has been operated with beam at the NBS. 5 refs., 2 figs

  17. Gain physics of rf-linac-driven xuv free-electron lasers

    International Nuclear Information System (INIS)

    Goldstein, J.C.; McVey, B.D.; Newnam, B.E.

    1986-01-01

    In an rf-linac-driven xuv free-electron laser oscillator, the gain depends on the details of the shape of the electron beam's phase-space distribution, particularly the distribution of electrons in the transverse (to the direction of propagation) position and velocity coordinates. This strong dependence occurs because the gain in this device is inhomogeneously broadened. Our previous theoretical studies have assumed that the transverse phase space distribution is a product of uncorrelated Gaussian functions. In the present work, we shall present the results of a theoretical study of the gain for non-Gaussian phase-space distributions. Such distributions arise either from a better representation of the electron beam from an rf-linac or from an emittance filter applied to the beam after the linac

  18. Sequential modelling of ICRF wave near RF fields and asymptotic RF sheaths description for AUG ICRF antennas

    Directory of Open Access Journals (Sweden)

    Jacquot Jonathan

    2017-01-01

    Full Text Available A sequence of simulations is performed with RAPLICASOL and SSWICH to compare two AUG ICRF antennas. RAPLICASOL outputs have been used as input to SSWICH-SW for the AUG ICRF antennas. Using parallel electric field maps and the scattering matrix produced by RAPLICASOL, SSWICH-SW, reduced to its asymptotic part, is able to produce a 2D radial/poloidal map of the DC plasma potential accounting for the antenna input settings (total power, power balance, phasing. Two models of antennas are compared: 2-strap antenna vs 3-strap antenna. The 2D DC potential structures are correlated to structures of the parallel electric field map for different phasing and power balance. The overall DC plasma potential on the 3-strap antenna is lower due to better global RF currents compensation. Spatial proximity between regions of high RF electric field and regions where high DC plasma potentials are observed is an important factor for sheath rectification.

  19. Current sustaining by RF travelling field in a collisional toroidal plasma

    International Nuclear Information System (INIS)

    Fukuda, Masaji; Matsuura, Kiyokata

    1978-01-01

    The relation between the current generated by RF travelling field and the absorbed power is studied in a collisional toroidal plasma, parameters being phase velocity and filling gap pressure or electron collision frequency. It is observed at a low magnetic field that the current is proportional to the plasma conductivity and an effective electromotive force, which is a new concept introduced on the basis of fluid model; the electromotive force is proportional to the absorbed RF power and inversely proportional to the plasma density and the phase velocity of the travelling field. (author)

  20. Current sustaining by RF travelling field in a collisional toroidal plasma

    International Nuclear Information System (INIS)

    Fukuda, Masaji; Matsuura, Kiyokata.

    1977-06-01

    The relation between the current generation by RF travelling field and the accompanied power absorption is studied in a collisional toroidal plasma, parameters being phase velocity and filling gas pressure or electron collision frequency. It is observed at a low magnetic field that the current is proportional to the plasma conductivity and an effective electromotive force, which is a new concept introduced on the basis of fluid model; the electromotive force is proportional to the absorbed RF power and inversely proportional to the plasma density and the phase velocity of the travelling field. (auth.)

  1. A numerical study of emittance growths in RF guns

    CERN Document Server

    Masuda, K; Sobajima, M; Kitagaki, J; Ohnishi, M; Toku, H; Yoshikawa, K

    1999-01-01

    A beam with greatly reduced emittance is required for further improvements of FELs, in particular, for FELs of shorter wavelengths, and of narrower bandwidths. From this viewpoint, the BNL/SLAC/UCLA 1.6-cell S-band photocathode RF gun performance characteristics were calculated, first in order to evaluate what may contribute to the emittance growths in photocathode RF guns. We developed an RF gun to produce an electron beam with an extremely low emittance, by using a 2-D simulation code. It is found that, by optimizing the laser injection phase, the drive laser spot radius and the cavity shape around the laser spot, the beam emittance by the 1.6-cell RF gun can be greatly reduced to 2.1 pi mm mrad, from the previous 4.4 pi mm mrad of the original shape.

  2. RF control hardware design for CYCIAE-100 cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhiguo, E-mail: bitbearAT@hotmail.com; Fu, Xiaoliang; Ji, Bin; Zhao, Zhenlu; Zhang, Tianjue; Li, Pengzhan; Wei, Junyi; Xing, Jiansheng; Wang, Chuan

    2015-11-21

    The Beijing Radioactive Ion-beam Facility project is being constructed by BRIF division of China Institute of Atomic Energy. In this project, a 100 MeV high intensity compact proton cyclotron is built for multiple applications. The first successful beam extraction of CYCIAE-100 cyclotron was done in the middle of 2014. The extracted proton beam energy is 100 MeV and the beam current is more than 20 μA. The RF system of the CYCIAE-100 cyclotron includes two half-wavelength cavities, two 100 kW tetrode amplifiers and power transmission line systems (all above are independent from each other) and two sets of Low Level RF control crates. Each set of LLRF control includes an amplitude control unit, a tuning control unit, a phase control unit, a local Digital Signal Process control unit and an Advanced RISC Machines based EPICS IOC unit. These two identical LLRF control crates share one common reference clock and take advantages of modern digital technologies (e.g. DSP and Direct Digital Synthesizer) to achieve closed loop voltage and phase regulations of the dee-voltage. In the beam commission, the measured dee-voltage stability of RF system is better than 0.1% and phase stability is better than 0.03°. The hardware design of the LLRF system will be reviewed in this paper.

  3. Design and development of PLC based offline impedance matching system for ICRH experiment

    International Nuclear Information System (INIS)

    Joshi, Ramesh; Jadav, H.M.; Mali, Aniruddh; Kulkarni, S.V.

    2015-01-01

    Ion Cyclotron Resonance Heating (ICRH) transmission line has two impedance matching networks, one for offline matching which has been employed before experimental shot. Another is online impedance matching which has been employed during experimental shot. Offline matching network consists of two static stubs, coarse tuner and coarse phase shifter identical in both transmission lines. There are motorized arrangement installed in each stubs and phase shifters. Both stubs are being used to vary transmission line length. Phase shifter is used to match the frequency of generated RF power. Programmable Logic Controller (PLC) based automation and control technique has been designed and developed for the system. Offline matching should be operated below 1 kHz frequency in order to move stepper motors. Program generates required square pulses which employed to motor controller to move either in upward or downward direction. In existing system this operation has been carried out using VME. To reduce the load on VME, PLC based system has been designed and integrated with main DAC system. WinCC software has been used (as SCADA/HMI) to develop front end GUI which communicates with OPC server. Further, OPC communicates with PLC for control of motorized arrangement. This paper describes technical details,design and development of PLC based offline matching system using WinCC as user interface. The communication between WinCC application and hardware devices was realized by OPC technique. The developed system has friendly graphical user interface, high-level automation and comprehensive function such as experimental process control. The system was proved to be reliable and accurate in practical application. (author)

  4. Electronics for the control of the rf system

    International Nuclear Information System (INIS)

    Pellegrin, J.L.; Schwarz, H.

    1980-03-01

    This note describes the operation of the major components used for controlling the phase and the field level of the PEP rf cavities. The block diagram of one rf station is decomposed into several control loops: each cavity has a tuners' servo loop which maintains the frequency constant and also keeps the field of each cell at the same level; the total gap voltage developed by a pair of cavities is obeying the command of the gap voltage controller; finally, the phase variation along the amplification chain and the klystron are compensated by a phase lock loop. The design criteria of each loop are set forth and the circuit implementation and test results are presented. The purpose of this report is to acquaint interested people with the design philosophy and to allow them to evaluate the capabilities of this system and its behavior during operation of the machine. 5 refs., 16 figs

  5. Particle tracking code of simulating global RF feedback

    International Nuclear Information System (INIS)

    Mestha, L.K.

    1991-09-01

    It is well known in the ''control community'' that a good feedback controller design is deeply rooted in the physics of the system. For example, when accelerating the beam we must keep several parameters under control so that the beam travels within the confined space. Important parameters include the frequency and phase of the rf signal, the dipole field, and the cavity voltage. Because errors in these parameters will progressively mislead the beam from its projected path in the tube, feedback loops are used to correct the behavior. Since the feedback loop feeds energy to the system, it changes the overall behavior of the system and may drive it to instability. Various types of controllers are used to stabilize the feedback loop. Integrating the beam physics with the feedback controllers allows us to carefully analyze the beam behavior. This will not only guarantee optimal performance but will also significantly enhance the ability of the beam control engineer to deal effectively with the interaction of various feedback loops. Motivated by this theme, we developed a simple one-particle tracking code to simulate particle behavior with feedback controllers. In order to achieve our fundamental objective, we can ask some key questions: What are the input and output parameters? How can they be applied to the practical machine? How can one interface the rf system dynamics such as the transfer characteristics of the rf cavities and phasing between the cavities? Answers to these questions can be found by considering a simple case of a single cavity with one particle, tracking it turn-by-turn with appropriate initial conditions, then introducing constraints on crucial parameters. Critical parameters are rf frequency, phase, and amplitude once the dipole field has been given. These are arranged in the tracking code so that we can interface the feedback system controlling them

  6. Adaptive feed forward in the LANL RF control system

    International Nuclear Information System (INIS)

    Ziomek, C.D.

    1992-01-01

    This paper describes an adaptive feed forward system that corrects repetitive errors in the amplitude and phase of the RF field of a pulsed accelerator. High-frequency disturbances that are beyond the effective bandwidth of the RF-field feedback control system can be eliminated with a feed forward system. Many RF-field disturbances for a pulsed accelerator are repetitive, occurring at the same relative time in every pulse. This design employs digital signal processing hardware to adaptively determine and track the control signals required to eliminate the repetitive errors in the feedback control system. In order to provide the necessary high-frequency response, the adaptive feed forward hardware provides the calculated control signal prior to the repetitive disturbance that it corrects. This system has been demonstrated to reduce the transient disturbances caused by beam pulses. Furthermore, it has been shown to negate high-frequency phase and amplitude oscillations in a high-power klystron amplifier caused by PFN ripple on the high-voltage. The design and results of the adaptive feed forward system are presented. (Author) 3 figs., 2 refs

  7. RF pulse compression development

    International Nuclear Information System (INIS)

    Farkas, Z.D.; Weaver, J.N.

    1987-10-01

    The body of this paper discusses the theory and some rules for designing a multistage Binary Energy Compressor (BEC) including its response to nonstandard phase coding, describes some proof-of-principle experiments with a couple of low power BECs, presents the design parameters for some sample linear collider rf systems that could possibly use a BEC to advantage and outlines in the conclusion some planned R and D efforts. 8 refs., 26 figs., 4 tabs

  8. PEP-II RF cavity revisited

    International Nuclear Information System (INIS)

    Rimmer, R.A.; Koehler, G.; Li, D.; Hartman, N.; Folwell, N.; Hodgson, J.; Ko, K.; McCandless, B.

    1999-01-01

    This report describes the results of numerical simulations of the PEP-II RF cavity performed after the completion of the construction phase of the project and comparisons are made to previous calculations and measured results. These analyses were performed to evaluate new calculation techniques for the HOM distribution and RF surface heating that were not available at the time of the original design. These include the use of a high frequency electromagnetic element in ANSYS and the new Omega 3P code to study wall losses, and the development of broadband time domain simulation methods in MAFIA for the HOM loading. The computed HOM spectrum is compared with cavity measurements and observed beam-induced signals. The cavity fabrication method is reviewed, with the benefit of hindsight, and simplifications are discussed

  9. Battery-Powered RF Pre-Ionization System for the Caltech Magnetohydrodynamically-Driven Jet Experiment: RF Discharge Properties and MHD-Driven Jet Dynamics

    Science.gov (United States)

    Chaplin, Vernon H.

    This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed. Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure. The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel

  10. Novel Optical Processor for Phased Array Antenna.

    Science.gov (United States)

    1992-10-20

    parallel glass slide into the signal beam optical loop. The parallel glass acts like a variable phase shifter to the signal beam simulating phase drift...A list of possible designs are given as follows , _ _ Velocity fa (100dB/cm) Lumit Wavelength I M2I1 TeO2 Longi 4.2 /m/ns about 3 GHz 1.4 4m 34 Fast...subject to achievable acoustic frequency, the preferred materials are the slow shear wave in TeO2 , the fast shear wave in TeO2 or the shear waves in

  11. Engineering design and fabrication of X-Band components

    CERN Document Server

    Filippova, M; Solodko, A; Riddone, G; Syratchev, I

    2011-01-01

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.994 GHz permitting beam independent power production using klystrons for the accelerating structure testing. X-band klystron test facilities at 11.424 GHz are operated at SLAC and at KEK [1], and they are used by the CLIC study in the framework of the X-band structure collaboration for testing accelerating structures scaled to that frequency [2]. CERN is currently building a klystron test-stand operating at 11.994 GHz. In addition X-FEL projects at PSI and Sincrotrone Trieste operate at 11.4 GHz. Therefore several RF components accommodating frequencies from 11.424 to 11.994 GHz are required. The engineering design of these RF components (high power and compact loads, bi-directional couplers, X-band splitters, hybrids, phase shifters, variable power attenuators) and the main fabrication processes are presented here.

  12. Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers.

    Science.gov (United States)

    Chin, Sanghoon; Thévenaz, Luc; Sancho, Juan; Sales, Salvador; Capmany, José; Berger, Perrine; Bourderionnet, Jérôme; Dolfi, Daniel

    2010-10-11

    We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters.

  13. A diffusive thermal phase shifter; Dephaseur thermique diffusif

    Energy Technology Data Exchange (ETDEWEB)

    Lachal, B; Hollmuller, P; Zgraggen, J -M [Universite de Geneve, Centre universitaire d' etude des problemes de l' energie(CUEPE), Geneva (Switzerland)

    2004-07-01

    The investigations carried out in this project show that dephasing a thermal oscillation carried by an air flow by utilizing the heat exchange with a diffusive heat store made of thin layers, is possible without any significant damping of the oscillation. The practical application of this phenomenon, with a time shift of 8 to 12 hours, looks particularly attractive for space cooling of buildings during summertime or in hot climates. The possibilities of dephasing completely a thermal wave (i.e. by a half period) carried by a stream of air have been investigated both theoretically by model calculations and experimentally by building two prototypes. Promising results have been obtained for the case of a daily phase shift. In the case of a summer-winter shift the required volumes and lengths seem too large to enable such a storage system becoming cost effective.

  14. Beam-Based Procedures for RF Guns

    CERN Document Server

    Krasilnikov, Mikhail; Grabosch, H J; Hartrott, Michael; Hui Han, Jang; Miltchev, Velizar; Oppelt, Anne; Petrosyan, Bagrat; Staykov, Lazar; Stephan, Frank

    2005-01-01

    A wide range of rf photo injector parameters has to be optimized in order to achieve an electron source performance as required for linac based high gain FELs. Some of the machine parameters can not be precisely controlled by direct measurements, whereas the tolerance on them is extremely tight. Therefore, this should be met with beam-based techniques. Procedures for beam-based alignment (BBA) of the laser on the photo cathode as well as solenoid alignment have been developed. They were applied at the Photo Injector Test facility at DESY Zeuthen (PITZ) and at the photo injector of the VUV-FEL at DESY Hamburg. A field balance of the accelerating mode in the 1 ½ cell gun cavity is one of the key beam dynamics issues of the rf gun. Since no direct field measurement in the half and full cell of the cavity is available for the PITZ gun, a beam-based technique to determine the field balance has been proposed. A beam-based rf phase monitoring procedure has been developed as well.

  15. SLAC collider injector, RF-drive synchronization and trigger electronics, and 15-AMP thermionic-gun development

    International Nuclear Information System (INIS)

    Koontz, R.; Miller, R.; McKinney, T.; Wilmunder, A.

    1981-02-01

    The rf drive system for the Collider Injector Development (EL CID) including laser timing, subharmonic buncher drive and phasing, and accelerator rf drive is described. The rf synchronized master trigger generation scheme for the collider is outlined. Also, a 15 amp peak, 200 kV short pulse gun being developed at SLAC as a backup to the Sinclair laser gun is described

  16. Numerical simulation study on new RF system of Hefei storage ring

    International Nuclear Information System (INIS)

    Xu Hongliang; Wang Lin; Huang Guirong; Zhang Pengfei; Li Weimin; Liu Zuping; He Duohui

    2005-01-01

    The two injection ways of new RF system of Hefei storage ring were discussed. In the process of both large detuning injection and tuning injection, the variation of tuning angle and visual detuning angle with beam current intensity was analyzed. The calculation results show that the two injection ways are manipulable for new RF system in phase II project of Hefei storage ring. (author)

  17. Trapping and cooling of rf-dressed atoms in a quadrupole magnetic field

    International Nuclear Information System (INIS)

    Morizot, O; Alzar, C L Garrido; Pottie, P-E; Lorent, V; Perrin, H

    2007-01-01

    We observe the spontaneous evaporation of atoms confined in a bubble-like radio frequency (rf)-dressed trap (Zobay and Garraway 2001 Phys. Rev. Lett. 86 1195; 2004 Phys. Rev. A 69 023605). The atoms are confined in a quadrupole magnetic trap and are dressed by a linearly polarized rf field. The evaporation is related to the presence of holes in the trap, at the positions where the rf coupling vanishes, due to its vectorial character. The final temperature results from a competition between residual heating and evaporation efficiency, which is controlled via the height of the holes with respect to the bottom of the trap. The experimental data are modelled by a Monte Carlo simulation predicting a small increase in phase-space density limited by the heating rate. This increase was within the phase-space density determination uncertainty of the experiment

  18. Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation.

    Science.gov (United States)

    Gellie, Pierre; Barbieri, Stefano; Lampin, Jean-François; Filloux, Pascal; Manquest, Christophe; Sirtori, Carlo; Sagnes, Isabelle; Khanna, Suraj P; Linfield, Edmund H; Davies, A Giles; Beere, Harvey; Ritchie, David

    2010-09-27

    We demonstrate that the cavity resonance frequency - the round-trip frequency - of Terahertz quantum cascade lasers can be injection-locked by direct modulation of the bias current using an RF source. Metal-metal and single-plasmon waveguide devices with roundtrip frequencies up to 35GHz have been studied, and show locking ranges above 200MHz. Inside this locking range the laser round-trip frequency is phase-locked, with a phase noise determined by the RF-synthesizer. We find a square-root dependence of the locking range with RF-power in agreement with classical injection-locking theory. These results are discussed in the context of mode-locking operation.

  19. Plasma diagnosis of RF discharge by using impedance measurement

    International Nuclear Information System (INIS)

    Huang Jianjun; Teuner, D.

    2001-01-01

    It is presented that the method known from network analysis with home-made probe and experimental setup to measure current, voltage and phase angle of RF discharge in He gas more accurately. The sheath thickness and the real and imaginary parts of the plasma impedance were obtained by using the equivalent circuit model and taking account stray capacitances of the set-up. In addition, making use of Godyak's RF discharge simple model, the electron density in the discharge was calculated at different pressure and current density

  20. A design concept for an MMIC (Monolithic Microwave Integrated Circuit) microstrip phased array

    Science.gov (United States)

    Lee, Richard Q.; Smetana, Jerry; Acosta, Roberto

    1987-01-01

    A conceptual design for a microstrip phased array with monolithic microwave integrated circuit (MMIC) amplitude and phase controls is described. The MMIC devices used are 20 GHz variable power amplifiers and variable phase shifters recently developed by NASA contractors for applications in future Ka proposed design, which concept is for a general NxN element array of rectangular lattice geometry. Subarray excitation is incorporated in the MMIC phased array design to reduce the complexity of the beam forming network and the number of MMIC components required.

  1. Low power rf system for the ALS Linac

    International Nuclear Information System (INIS)

    Lo, C.C.; Taylor, B.; Lancaster, H.

    1991-05-01

    The Linear Accelerator (Linac) in the Advanced Light Source (ALS) is designed to provide either single or multiple bunchers of 50 MeV electrons for the booster synchrotron. Three cavities are used in the Linac for electron bunching. The two subharmonic bunching cavities operate at 124.914 MHz and 499.654 MHz respectively. The S Band buncher operates at 2.997924 GHz. The low level RF system includes a master signal source, RF burst generators, signal phase control, timing trigger generators and a water temperature control system. The design and performance of the system will be described. 7 refs., 3 figs

  2. Gallium arsenide digital integrated circuits for controlling SLAC CW-RF systems

    International Nuclear Information System (INIS)

    Ronan, M.T.; Lee, K.L.; Corredoura, P.; Judkins, J.G.

    1989-01-01

    In order to fill the PEP and SPEAR storage rings with beams from the SLC linac and damping rings, precise control of the linac subharmonic buncher and the damping ring RF is required. Recently several companies have developed resettable GaAs master/slave D-type flip-flops which are capable of operating at frequencies of 3 GHz and higher. Using these digital devices as frequency dividers, one can phase shift the SLAC CW-RF systems to optimize the timing for filling the storage rings. The authors have evaluated the performance of integrated circuits from two vendors for our particular application. Using microstrip circuit techniques, they have built and operated in the accelerator several chassis to synchronize a reset signal from the storage rings to the SLAC 2.856 GHz RF and to phase shift divide-by-four and divide-by-sixteen frequency dividers to the nearest 350 psec bucket required for filling

  3. Gallium arsenide digital integrated circuits for controlling SLAC CW-RF systems

    International Nuclear Information System (INIS)

    Ronan, M.T.; Lee, K.L.; Corredoura, P.; Judkins, J.G.

    1988-10-01

    In order to fill the PEP and SPEAR storage rings with beams from the SLC linac and damping rings, precise control of the linac subharmonic buncher and the damping ring RF is required. Recently several companies have developed resettable GaAs master/slave D-type flip-flops which are capable of operating at frequencies of 3 GHz and higher. Using these digital devices as frequency dividers, one can phase shift the SLAC CW-RF systems to optimize the timing for filling the storage rings. We have evaluated the performance of integrated circuits from two vendors for our particular application. Using microstrip circuit techniques, we have built and operated in the accelerator several chassis to synchronize a reset signal from the storage rings to the SLAC 2.856 GHz RF and to phase shift divide-by-four and divide-by-sixteen frequency dividers to the nearest 350 psec bucket required for filling. 4 refs., 4 figs., 2 tabs

  4. Wideband aperture array using RF channelizers and massively parallel digital 2D IIR filterbank

    Science.gov (United States)

    Sengupta, Arindam; Madanayake, Arjuna; Gómez-García, Roberto; Engeberg, Erik D.

    2014-05-01

    Wideband receive-mode beamforming applications in wireless location, electronically-scanned antennas for radar, RF sensing, microwave imaging and wireless communications require digital aperture arrays that offer a relatively constant far-field beam over several octaves of bandwidth. Several beamforming schemes including the well-known true time-delay and the phased array beamformers have been realized using either finite impulse response (FIR) or fast Fourier transform (FFT) digital filter-sum based techniques. These beamforming algorithms offer the desired selectivity at the cost of a high computational complexity and frequency-dependant far-field array patterns. A novel approach to receiver beamforming is the use of massively parallel 2-D infinite impulse response (IIR) fan filterbanks for the synthesis of relatively frequency independent RF beams at an order of magnitude lower multiplier complexity compared to FFT or FIR filter based conventional algorithms. The 2-D IIR filterbanks demand fast digital processing that can support several octaves of RF bandwidth, fast analog-to-digital converters (ADCs) for RF-to-bits type direct conversion of wideband antenna element signals. Fast digital implementation platforms that can realize high-precision recursive filter structures necessary for real-time beamforming, at RF radio bandwidths, are also desired. We propose a novel technique that combines a passive RF channelizer, multichannel ADC technology, and single-phase massively parallel 2-D IIR digital fan filterbanks, realized at low complexity using FPGA and/or ASIC technology. There exists native support for a larger bandwidth than the maximum clock frequency of the digital implementation technology. We also strive to achieve More-than-Moore throughput by processing a wideband RF signal having content with N-fold (B = N Fclk/2) bandwidth compared to the maximum clock frequency Fclk Hz of the digital VLSI platform under consideration. Such increase in bandwidth is

  5. High Power RF Transmitters for ICRF Applications on EAST

    International Nuclear Information System (INIS)

    Mao Yuzhou; Yuan Shuai; Zhao Yanping; Zhang Xinjun; Chen Gen; Cheng Yan; Wang Lei; Ju Songqing; Deng Xu; Qin Chengming; Yang Lei; Kumazawa, R.

    2013-01-01

    An Ion Cyclotron Range of Frequency (ICRF) system with a radio frequency (RF) power of 4 × 1.5 MW was developed for the Experimental Advanced Superconducting Tokamak (EAST). High RF power transmitters were designed as a part of the research and development (R and D) for an ICRF system with long pulse operation at megawatt levels in a frequency range of 25 MHz to 70 MHz. Studies presented in this paper cover the following parts of the high power transmitter: the three staged high power amplifier, which is composed of a 5 kW wideband solid state amplifier, a 100 kW tetrode drive stage amplifier and a 1.5 MW tetrode final stage amplifier, and the DC high voltage power supply (HVPS). Based on engineering design and static examinations, the RF transmitters were tested using a matched dummy load where an RF output power of 1.5 MW was achieved. The transmitters provide 6 MW RF power in primary phase and will reach a level up to 12 MW after a later upgrade. The transmitters performed successfully in stable operations in EAST and HT-7 devices. Up to 1.8 MW of RF power was injected into plasmas in EAST ICRF heating experiments during the 2010 autumn campaign and plasma performance was greatly improved.

  6. RF transport

    International Nuclear Information System (INIS)

    Choroba, Stefan

    2013-01-01

    This paper deals with the techniques of transport of high-power radiofrequency (RF) power from a RF power source to the cavities of an accelerator. Since the theory of electromagnetic waves in waveguides and of waveguide components is very well explained in a number of excellent text books it will limit itself on special waveguide distributions and on a number of, although not complete list of, special problems which sometimes occur in RF power transportation systems. (author)

  7. Digital base-band rf control system for the superconducting Darmstadt electron linear accelerator

    Directory of Open Access Journals (Sweden)

    M. Konrad

    2012-05-01

    Full Text Available The accelerating field in superconducting cavities has to be stabilized in amplitude and phase by a radio-frequency (rf control system. Because of their high loaded quality factor superconducting cavities are very susceptible for microphonics. To meet the increased requirements with respect to accuracy, availability, and diagnostics, the previous analog rf control system of the superconducting Darmstadt electron linear accelerator S-DALINAC has been replaced by a digital rf control system. The new hardware consists of two components: An rf module that converts the signal from the cavity down to the base-band and a field-programmable gate array board including a soft CPU that carries out the signal processing steps of the control algorithm. Different algorithms are used for normal-conducting and superconducting cavities. To improve the availability of the control system, techniques for automatic firmware and software deployment have been implemented. Extensive diagnostic features provide the operator with additional information. The architecture of the rf control system as well as the functionality of its components will be presented along with measurements that characterize the performance of the system, yielding, e.g., an amplitude stabilization down to (ΔA/A_{rms}=7×10^{-5} and a phase stabilization of (Δϕ_{rms}=0.8° for superconducting cavities.

  8. Four-way rf beam separator

    International Nuclear Information System (INIS)

    Neil, V.K.

    1982-01-01

    A method for separating a continuous beam of relativistic particles into four pulsed beams is investigated theoretically. The separation is periodic with period 2π/#betta# so that each of the four beams consists of current pulses of duration π/#betta#. The separation is accomplished by a series of rf cavities in the beam line. The cavities operate in the TM 110 and have frequencies, #betta#, 3#betta#, 5#betta#, 7#betta#, etc. The transverse momentum imparted to the beam particles results in a time-dependent displacement of the beam centroid at a position downstream of the cavity array. The mathematical limitations imposed by truncating a Fourier series are discussed, and an expression derived for the necessary phase and amplitude of each cavity. The rf induced by the beam in the cavities is treated in detail, and does not appear to be a serious problem

  9. Improving the beam quality of rf guns by correction of rf and space-charge effects

    International Nuclear Information System (INIS)

    Serafini, L.

    1992-01-01

    In this paper we describe two possible strategies to attain ultra-low emittance electron beam generation by laser-driven RF guns. The first one is based on the exploitation of multi-mode resonant cavities to neutralize the emittance degradation induced by RF effects. Accelerating cigar-like (long and thin) electron bunches in multi-mode operated RF guns the space charge induced emittance is strongly decreased at the same time: high charged bunches, as typically requested by future TeV e - e + colliders, can be delivered by the gun at a quite low transverse emittance and good behaviour in the longitudinal phase space, so that they can be magnetically compressed to reach higher peak currents. The second strategy consists in using disk-like electron bunches, produced by very short laser pulses illuminating the photocathode. By means of an analytical study a new regime has been found, where the normalized transverse emittance scales like the inverse of the peak current, provided that the laser pulse intensity distribution is properly shaped in the transverse direction. Preliminary numerical simulations confirm the analytical predictions and show that the minimum emittance achievable is set up, in this new regime, by the wake-field interaction between the bunch and the cathode metallic wall

  10. RF tuning system for superconducting cyclotron at VECC

    International Nuclear Information System (INIS)

    Mandal, Aditya; Som, S.; Pal, Saikat; Seth, S.; Mukherjee, A.K.; Gangopadhyay, P.; Prasad, J.S.; Raj, P.R.; Manna, S.K.; Banerjee, M.; Krishnaiah, K.V.; Maskawade, S.; Saha, M.S.; Biswas, S.; Panda, Umashakar

    2009-01-01

    The RF system of Superconducting cyclotron at VECC has operational frequency 9-27 MHz. It has three numbers of tunable rf amplifier cavities as well as six numbers of tunable Main resonant cavities. RF tuning system takes care of movement of nine stepper motor based sliding short movement and hydraulic driven three coupling capacitors and three trimmer capacitors. The PC-based stepper motor controlled sliding short movement system has positional accuracy of around 20 micron and PC-based hydraulically driven couplers and trimmers system has 10 micron positional accuracy. The RF power is capacitively coupled to the dee (accelerating electrode) of the main resonant cavity through Coupler (Coupling capacitor). The coupling capacitor is used to match the impedance of the main resonant cavity to the 50 Ohm output impedance of final RF power amplifier. Trimmer capacitor operates in closed loop for the adjustment of cavity phase variation arising due to temperature variation and beam loading of the cavity. Coupler can travel 100 mm. and trimmer has 20 mm. travels. A PLC based PID control system has been developed for positional control of the coupler and trimmer. One position control mode of trimmer is same as coupling capacitor and another is velocity control mode. Velocity control mode operates in close-loop. The positional data of different frequencies of nine stepper motors and three coupling capacitors are stored in a database. (author)

  11. Multi-step capacitor discharges as an RF generator

    International Nuclear Information System (INIS)

    Hotta, Eiki; Yamamoto, Shunji; Ishii, Shozo; Hayashi, Izumi

    1979-01-01

    A variety of methods have been developed for large output radio frequency (RF) generators to heat and stabilize high temperature plasma. As the generators for this purpose, capacitor discharge, cable discharge, and oscillation with electronic tubes are considered. Here, a new RF generator is reported, which utilizes capacitor discharge to extract heavy current, and solves the difficulty of short duration by employing multistep discharges. The authors solved the problem of frequency decrease in capacitor discharge by cutting off the unnecessary capacitors reasonably from the load circuit, using the additional circuit for shunting current and vacuum gap switches. The vacuum gap switches and the trigger system are described together with the RF generator manufactured. The generator was fabricated to be rather compact for its large output and simple in circuitry as compared with conventional oscillator systems. The shortcomings are frequency variation and the improper phase of switching the next step in to cause instability, when the load change occurs. It would be difficult to operate the generator in a RF range of more than about 10 MHz due to jitter of the vacuum gap switches and others. (Wakatsuki, Y.)

  12. Stress-Matched RF and Thermal Control Coatings for Membrane Antennas, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of multi-meter diameter radiofrequency (RF) antennas for NASA and DoD will have a significant impact of future space programs. Polymer membrane...

  13. Chemical compositions of spherical titanium powders prepared by RF induction plasma

    International Nuclear Information System (INIS)

    Gu Zhongtao; Jin Yuping; Ye Gaoying

    2012-01-01

    Spherical titanium powders were prepared by RF induction plasma technology. The particle size is essentially un- changed, while the particle size distribution is relatively narrow after spheroidization processing. X-ray diffraction (XRD) random testing of the spherical titanium powders shows no structure and phase changes. The content of O, H, N and C decreases, while the content of Ti increases slightly. It indicates that spheroidization with RF plasma can enhance powder purity. (authors)

  14. Digital low level RF control system for the DESY TTF VUV-FEL Linac

    International Nuclear Information System (INIS)

    Ayvazyan, V.; Choroba, S.; Matyushin, A.; Moeller, G.; Petrosyan, G.; Rehlich, K.; Simrock, S.N.; Vetrov, P.

    2005-01-01

    In the RF system for the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting cavities are operated in pulsed mode and high accelerating gradients close to the performance limit. The RF control of the cavity fields to the level of 10 -4 for amplitude and 0.1 degree for phase however presents a significant technical challenge due to the narrow bandwidth of the cavities which results in high sensitivity to perturbations of the resonance frequency by mechanical vibrations (microphonics) and Lorenz force detuning. The VUV-FEL Linac RF control system employs a completely digital feedback system to provide flexibility in the control algorithms, precise calibration of the accelerating field vector-sum, and extensive diagnostics and exception handling capabilities. The RF control algorithm is implemented in DSP (Digital Signal Processor) firmware and DOOCS (Distributed Object Oriented Control System) servers. The RF control system design objectives are discussed. Hardware and software design of the DSP based RF control are presented. (orig.)

  15. Digital low level RF control system for the DESY TTF VUV-FEL Linac

    Energy Technology Data Exchange (ETDEWEB)

    Ayvazyan, V.; Choroba, S.; Matyushin, A.; Moeller, G.; Petrosyan, G.; Rehlich, K.; Simrock, S.N.; Vetrov, P.

    2005-07-01

    In the RF system for the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting cavities are operated in pulsed mode and high accelerating gradients close to the performance limit. The RF control of the cavity fields to the level of 10{sup -4} for amplitude and 0.1 degree for phase however presents a significant technical challenge due to the narrow bandwidth of the cavities which results in high sensitivity to perturbations of the resonance frequency by mechanical vibrations (microphonics) and Lorenz force detuning. The VUV-FEL Linac RF control system employs a completely digital feedback system to provide flexibility in the control algorithms, precise calibration of the accelerating field vector-sum, and extensive diagnostics and exception handling capabilities. The RF control algorithm is implemented in DSP (Digital Signal Processor) firmware and DOOCS (Distributed Object Oriented Control System) servers. The RF control system design objectives are discussed. Hardware and software design of the DSP based RF control are presented. (orig.)

  16. RF-sheath assessment of ICRF antenna geometry for long pulses

    International Nuclear Information System (INIS)

    Colas, L.; Bremond, S.

    2003-01-01

    Monitoring powered ion cyclotron resonance frequency (ICRF) antennas in magnetic fusion devices has revealed localized modifications of the plasma edge in the antenna shadow, most of them probably related to an enhanced polarization of the scrape-off layer (SOL) through radio-frequency (RF) sheath rectification. Although tolerable on present short RF pulses, sheaths should be minimized, as they may hinder proper operation of steady-state antennas and other subsystems connected magnetically to them, such as lower hybrid grills. As a first step towards mitigating RF sheaths in the design of future antennas, the present paper analyses the spatial structure of sheath potential maps in their vicinity, in relation with the 3D topology of RF near fields and the geometry of antenna front faces. Various combinations of poloidal radiating straps are first considered, and results are confronted to those inferred from transmission line theory. The dependence of sheath potentials on RF voltages or RF currents is studied. The role of RF near-field symmetries along tilted field lines is stressed to interpret such effects as that of strap phasing. A generalization of the 'dipole effect' is proposed. With similar arguments, the behavior of Faraday screen corners, where hot spots concentrate on Tore-Supra (TS), is then studied. The merits of aligning the antenna structure with the tilted magnetic field are thus discussed. The effect of switching from TS (high RF voltage near corners) to ITER-like electrical configurations of the straps (high voltage near equatorial plane) is also analyzed. (authors)

  17. A design and performance analysis tool for superconducting RF systems

    International Nuclear Information System (INIS)

    Schilcher, T.; Simrock, S.N.; Merminga, L.; Wang, D.X.

    1997-01-01

    Superconducting rf systems are usually operated with continuous rf power or with rf pulse lengths exceeding 1 ms to maximize the overall wall plug power efficiency. Typical examples are CEBAF at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) and the TESLA Test Facility at DESY. The long pulses allow for effective application of feedback to stabilize the accelerating field in presence of microphonics, Lorentz force detuning, and fluctuations of the beam current. In this paper the authors describe a set of tools to be used with MATLAB and SIMULINK, which allow to analyze the quality of field regulation for a given design. The tools include models for the cavities, the rf power source, the beam, sources of field perturbations, and the rf feedback system. The rf control relevant electrical and mechanical characteristics of the cavity are described in form of time-varying state space models. The power source is modeled as a current generator and includes saturation characteristics and noise.An arbitrary time structure can be imposed on the beam current to reflect a macro-pulse structure and bunch charge fluctuations. For rf feedback several schemes can be selected: Traditional amplitude and phase control as well as I/Q control. The choices for the feedback controller include analog or digital approaches and various choices of frequency response. Feed forward can be added to further suppress repetitive errors. The results of a performance analysis of the CEBAF and the TESLA Linac rf system using these tools are presented

  18. Rf power sources

    International Nuclear Information System (INIS)

    Allen, M.A.

    1988-01-01

    In this paper, the author reports on RF power sources for accelerator applications. The approach will be with particular customers in mind. These customers are high energy physicists who use accelerators as experimental tools in the study of the nucleus of the atom, and synchrotron light sources derived from electron or positron storage rings. The author pays close attention to electron- positron linear accelerators since the RF sources have always defined what is possible to achieve with these accelerators. Circular machines, cyclotrons, synchrotrons, etc. have usually not been limited by the RF power available and the machine builders have usually had their RF power source requirements met off the shelf. The main challenge for the RF scientist has been then in the areas of controls. An interesting example of this is in the Conceptual Design Report of the Superconducting Super Collider (SSC) where the RF system is described in six pages of text in a 700-page report. Also, the cost of that RF system is about one-third of a percent of the project's total cost. The RF system is well within the state of the art and no new power sources need to be developed. All the intellectual effort of the system designer would be devoted to the feedback systems necessary to stabilize beams during storage and acceleration, with the main engineering challenges (and costs) being in the superconducting magnet lattice

  19. Performance of an rf beam monitor on the NBS-Los Alamos racetrack microtron

    International Nuclear Information System (INIS)

    Young, L.M.; Cutler, R.I.

    1985-01-01

    A prototype rf beam-position, current, and phase monitor has been used on the 100-keV injector beamline of the racetrack microtron (RTM) where performance was measured with the chopped and bunched beam. This monitor works with both a pulsed beam and a cw beam. The pulsed beam consists of beam pulses with a FWHM of 40 ns. The rf beam monitor was tested with beam currents from approx. 50 to 600 μA. The rf beam monitor will be described and its performance will be reported. 6 refs., 5 figs

  20. Synchronization of femtosecond laser pulses and RF signal by using a Sagnac loop Mach-Zehnder interferometer

    International Nuclear Information System (INIS)

    Dai Hui; Hajima, Ryoichi

    2008-11-01

    For future advanced energy recovery linac to generate femtosecond X-ray pulses, precise synchronization between sub-systems is highly desired. Typical synchronization methods based on direct photo detection are limited by detector nonlinearities, which lead to amplitude-to-phase conversion and introduce excess timing jitter. In this paper, we experimentally demonstrate an optical-electronic mixed phase lock loop to synchronize the RF signal and laser pulses. In this synchronism setup, a Sagnac-loop Mach-Zehnder interferometer has been used to suppress the excess noise of direct photo detection. This scheme transfers the timing information into a intensity imbalance between the two output beams of the interferometer. As experimental demonstration, the single side-band phase noise of RF signal from the VCO is locked to the mode-locked Ti:Sapphire laser in the spectrum covering the range of 10 kHz to 1 MHz. This synchronization scheme greatly reduces the phase noise and timing jitter of the RF signal. (author)

  1. Low Power Universal Direct Conversion Transmit and Receive (UTR) RF Module for Software Defined Radios, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Conventional software defined radio (SDR) backend signal processors are limited by apriori system definitions and respectively chosen RF hardware. Ideally, the RF...

  2. PULSE INTENSITY CENTERING FOR ADAPTIVE ADJUSTMENT OF PHASE SHIFTER COORDINATION

    Directory of Open Access Journals (Sweden)

    V. Shuts

    2012-01-01

    Full Text Available The existing methods for traffic flow control at a main road have a number of disadvantages. Flow control optimization with the help of adaptive regulation presupposes setting-up of transport detectors. The paper proposes an adaptive method on the basis on a phase adjustment of traffic lights on main street.

  3. Phase-specific Surround suppression in Mouse Primary Visual Cortex Correlates with Figure Detection Behavior Based on Phase Discontinuity.

    Science.gov (United States)

    Li, Fengling; Jiang, Weiqian; Wang, Tian-Yi; Xie, Taorong; Yao, Haishan

    2018-05-21

    In the primary visual cortex (V1), neuronal responses to stimuli within the receptive field (RF) are modulated by stimuli in the RF surround. A common effect of surround modulation is surround suppression, which is dependent on the feature difference between stimuli within and surround the RF and is suggested to be involved in the perceptual phenomenon of figure-ground segregation. In this study, we examined the relationship between feature-specific surround suppression of V1 neurons and figure detection behavior based on figure-ground feature difference. We trained freely moving mice to perform a figure detection task using figure and ground gratings that differed in spatial phase. The performance of figure detection increased with the figure-ground phase difference, and was modulated by stimulus contrast. Electrophysiological recordings from V1 in head-fixed mice showed that the increase in phase difference between stimuli within and surround the RF caused a reduction in surround suppression, which was associated with an increase in V1 neural discrimination between stimuli with and without RF-surround phase difference. Consistent with the behavioral performance, the sensitivity of V1 neurons to RF-surround phase difference could be influenced by stimulus contrast. Furthermore, inhibiting V1 by optogenetically activating either parvalbumin (PV)- or somatostatin (SOM)-expressing inhibitory neurons both decreased the behavioral performance of figure detection. Thus, the phase-specific surround suppression in V1 represents a neural correlate of figure detection behavior based on figure-ground phase discontinuity. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. New low-level rf system for the Fermilab Booster synchrotron

    International Nuclear Information System (INIS)

    Kerns, C.; Crisp, J.; Kerns, Q.; Miller, H.

    1987-03-01

    This paper describes the Booster low-level rf system that was constructed to meet these recently added requirements: (1) synthesizer controlled capture frequency at injection, (2) very low-phase noise over the machine cycle, (3) smooth phase-lock of beam to an external reference frequency and (4) ability to accelerate either a full turn or partial turn of beam

  5. RF current generation near the ion cyclotron frequency

    International Nuclear Information System (INIS)

    Watkins, J.G.

    1982-01-01

    An experiment has been conducted to measure unipolar currents driven by directional radio frequency waves in a cylindrical plasma mirror machine near the ion cyclotron frequency. The directional waves were launched using a four phase helical coupler which allowed the selection of both azimuthal mode number (m = +1) and direction of wave propagation. Plasma diagnostics include electron density measurements (4 mm microwave interferometer), electron temperature measurements (floating double probe), wave amplitude and coupling measurements (magnetic probes). RF power measurements (RF voltage and current probes) and RF driven plasma current measurements (Rogowski loops and current transformers). End electrodes provided a necessary external return path and an alternate method for measuring the current. Theoretical work includes an analytic approximation to the nonlinear problem of a particle in a traveling wave and computer simulations that extend this result. Nonlinear particle drifts other than trapping were found both with and without the presence of particle collisions

  6. Simulation of proton RF capture in the AGS Booster

    International Nuclear Information System (INIS)

    Khiari, F.Z.; Luccio, A.U.; Weng, W.T.

    1988-01-01

    RF capture of the proton beam in the AGS Booster has been simulated with the longitudinal phase-space tracking code ESME. Results show that a capture in excess of 95% can be achieved with multiturn injection of a chopped beam

  7. RF Measurement Concepts

    CERN Document Server

    Caspers, F

    2014-01-01

    For the characterization of components, systems and signals in the radiofrequency (RF) and microwave ranges, several dedicated instruments are in use. In this article the fundamentals of the RF signal techniques are discussed. The key element in these front ends is the Schottky diode which can be used either as a RF mixer or as a single sampler. The spectrum analyser has become an absolutely indispensable tool for RF signal analysis. Here the front end is the RF mixer as the RF section of modern spectrum analyses has a ra ther complex architecture. The reasons for this complexity and certain working principles as well as limitations are discussed. In addition, an overview of the development of scalar and vector signal analysers is given. For the determination of the noise temperature of a one-port and the noise figure of a two-port, basic concepts and relations are shown as well as a brief discussion of commonly used noise-measurement techniques. In a further part of this article the operating principles of n...

  8. Loss of Landau Damping for Inductive Impedance in a Double RF System

    CERN Document Server

    Argyropoulos, T; Burov, A

    2013-01-01

    In this paper the thresholds of the loss of Landau damping due to the presence of inductive impedance in a single and double harmonic RF systems are determined, both from calculations and particle simulations. A high harmonic RF system, operating in bunch lengthening mode is used in many accelerators with space charge or inductive impedance to reduce the peak line density or stabilize the beam. An analytical approach, based on emerging of the discrete Van Kampen modes, shows that improved stability in a double RF system can be achieved only below some critical value of longitudinal emittance. Above this threshold, a phase shift of more than 15 degrees between the two RF components is proven necessary to stabilize the bunch. These results, confirmed also by particle simulations, now are able to explain observations during the pp operation of the SPS. The thresholds in bunch shortening mode as well as in a single RF case are compared with this regime.

  9. Development of an item bank for the EORTC Role Functioning Computer Adaptive Test (EORTC RF-CAT)

    DEFF Research Database (Denmark)

    Gamper, Eva-Maria; Petersen, Morten Aa.; Aaronson, Neil

    2016-01-01

    a computer-adaptive test (CAT) for RF. This was part of a larger project whose objective is to develop a CAT version of the EORTC QLQ-C30 which is one of the most widely used HRQOL instruments in oncology. METHODS: In accordance with EORTC guidelines, the development of the RF-CAT comprised four phases...... with good psychometric properties. The resulting item bank exhibits excellent reliability (mean reliability = 0.85, median = 0.95). Using the RF-CAT may allow sample size savings from 11 % up to 50 % compared to using the QLQ-C30 RF scale. CONCLUSIONS: The RF-CAT item bank improves the precision...

  10. Microscopic investigation of RF surfaces of 3 GHz niobium accelerator cavities following RF processing

    International Nuclear Information System (INIS)

    Graber, J.; Barnes, P.; Flynn, T.; Kirchgessner, J.; Knobloch, J.; Moffat, D.; Muller, H.; Padamsee, H.; Sears, J.

    1993-01-01

    RF processing of Superconducting accelerating cavities is achieved through a change in the electron field emission (FE) characteristics of the RF surface. The authors have examined the RF surfaces of several single-cell 3 GHz cavities, following RF processing, in a Scanning Electron Microscope (SEM). The RF processing sessions included both High Peak Power (P ≤ 50 kW) pulsed processing, and low power (≤ 20 W) continuous wave processing. The experimental apparatus also included a thermometer array on the cavity outer wall, allowing temperature maps to characterize the emission before and after RF processing gains. Multiple sites have been located in cavities which showed improvements in cavity behavior due to RF processing. Several SEM-located sites can be correlated with changes in thermometer signals, indicating a direct relationship between the surface site and emission reduction due to RF processing. Information gained from the SEM investigations and thermometry are used to enhance the theoretical model of RF processing

  11. Dynamics of RF captured cooled proton beams

    International Nuclear Information System (INIS)

    Kells, W.; Mills, F.

    1983-01-01

    In the course of electron cooling experiments at the Electron Cooling Ring (ECR) at Fermilab, several peculiar features of the longitudinal phase space of cold protons (200 MeV) captured in RF buckets were observed. Here we present the experimental facts, present a simple theory, and summarize computer simulation results which support the theory and facts

  12. Recoupling and decoupling of nuclear spin interactions at high MAS frequencies: numerical design of CNnν symmetry-based RF pulse schemes

    International Nuclear Information System (INIS)

    Herbst, Christian; Herbst, Jirada; Kirschstein, Anika; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2009-01-01

    The CN n ν class of RF pulse schemes, commonly employed for recoupling and decoupling of nuclear spin interactions in magic angle spinning solid state NMR studies of biological systems, involves the application of a basic 'C' element corresponding to an RF cycle with unity propagator. In this study, the design of CN n ν symmetry-based RF pulse sequences for achieving 13 C- 13 C double-quantum dipolar recoupling and through bond scalar coupling mediated 13 C- 13 C chemical shift correlation has been examined at high MAS frequencies employing broadband, constant-amplitude, phase-modulated basic 'C' elements. The basic elements were implemented as a sandwich of a small number of short pulses of equal duration with each pulse characterised by an RF phase value. The phase-modulation profile of the 'C' element was optimised numerically so as to generate efficient RF pulse sequences. The performances of the sequences were evaluated via numerical simulations and experimental measurements and are presented here

  13. Self-calibrating interferometer

    International Nuclear Information System (INIS)

    Nussmeier, T.A.

    1982-01-01

    A self-calibrating interferometer is disclosed which forms therein a pair of Michelson interferometers with one beam length of each Michelson interferometer being controlled by a common phase shifter. The transfer function measured from the phase shifter to either of a pair of detectors is sinusoidal with a full cycle for each half wavelength of phase shifter travel. The phase difference between these two sinusoidal detector outputs represents the optical phase difference between a path of known distance and a path of unknown distance

  14. Quantum disentanglement and phase measurements

    International Nuclear Information System (INIS)

    Buzek, V.; Hillery, M.

    1995-01-01

    A 50:50 beam splitter disentangles a two-mode squeezed vacuum state into two single-mode squeezed vacuum states. With the proper choice of parameters these two single-mode states will be identical. If one is passed through a device which shifts its phase, then the phases of the shifted and reference (unshifted) modes can be determined by the Vogel-Schleich technique. In this way the phase difference, i.e. the phase shift, can be measured to an accuracy of 1/N, where N is the total number of photons coming into the beam splitter. An improved scheme is also proposed involving the disentanglement of a shifted two-mode squeezed vacuum state. This leads to two shifted squeezed vacuum states at the output of the beam splitter. If one of these is passed through the phase shifter, then by performing homodyne measurements on the shifted and unshifted modes the phase shift can again be determined to an accuracy of 1/N. (author) 4 figs., 14 refs

  15. Superconducting 7 T Wave Length Shifter for BESSY-II

    CERN Document Server

    Borovikov, V M; Fedurin, M G; Repkov, V V; Karpov, G V; Kulipanov, G N; Kuzin, M V; Mezentsev, N A; Shkaruba, V A; Krämer, Dietrich; Richter, D

    2001-01-01

    A superconducting 3-pole Wave Length Shifter (WLS) with a maximum field of 7 T was fabricated and tested by BINP in collaboration with BESSY-II. The radiation point is fixed in the center of WLS at any field level by using two correctors. The magnetic field is stabilized with an accuracy of 10 sup - sup 4 at 7 T by a feedback system based on NMR probes and magnetic flux pumps. Persistent current operation mode is enabled by using superconducting persistent keys. The magnetic field homogeneity of 10 sup - sup 4 at 7 T is obtained as a result of shimming in the aperture of the magnet. A protection system based on cold diodes and dump resistors prevents the destruction of superconducting coils during the quench. Two screens with temperatures of 20 and 60 K cooled by cooling machine, two recondensers, HTSC current leads and cevlar suspensions of helium volume are used to decrease liquid helium consumption. The main features and operating mode of the WLS are described.

  16. RF field control for KAON Factory booster cavities

    International Nuclear Information System (INIS)

    Craig, S.T.; de Jong, M.S.

    1990-11-01

    A conceptual design is developed for control of the KAON Factory Booster rf accelerating fields. This design addresses control of cavity: tuning, voltage amplitude, and voltage phase angle. Time-domain simulations were developed to evaluated the proposed controllers. These simulations indicated that adequate tuning performance can be obtained with the combination of adaptive feed-forward and proportional feedback control. Voltage amplitude and voltage phase can be adequately controlled using non-adaptive feedforward and proportional feedback control

  17. RF beam control system for the Brookhaven Relativistic Heavy Ion Collider, RHIC

    International Nuclear Information System (INIS)

    Brennan, J.M.; Campbell, A.; DeLong, J.; Hayes, T.; Onillon, E.; Rose, J.; Vetter, K.

    1998-01-01

    The Relativistic Heavy Ion Collider, RHIC, is two counter-rotating rings with six interaction points. The RF Beam Control system for each ring will control two 28 MHz cavities for acceleration, and five 197 MHz cavities for preserving the 5 ns bunch length during 10 hour beam stores. Digital technology is used extensively in: Direct Digital Synthesis of rf signals and Digital Signal Processing for, the realization of state-variable feedback loops, real-time calculation of rf frequency, and bunch-by-bunch phase measurement of the 120 bunches. DSP technology enables programming the parameters of the feedback loops in order to obtain closed-loop dynamics that are independent of synchrotron frequency

  18. RF Beam control system for the Brookhaven relativistic heavy ion collider, RHIC

    International Nuclear Information System (INIS)

    Brennan, J.M.; Campbell, A.; Delong, J.; Hayes, T.; Onillon, E.; Rose, J.; Vetter, K.

    1998-01-01

    The Relativistic Heavy Ion Collider, RHIC, is two counter-rotating rings with six interaction points. The RF Beam Control system for each ring will control two 28 MHz cavities for acceleration, and five 197 MHz cavities for preserving the 5 ns bunch length during 10 hour beam stores. Digital technology is used extensively in: Direct Digital Synthesis of rf signals and Digital Signal Processing for, the realization of state-variable feedback loops, real-time calculation of rf frequency, and bunch-by-bunch phase measurement of the 120 bunches. DSP technology enables programming the parameters of the feedback loops in order to obtain closed-loop dynamics that are independent of synchrotron frequency

  19. Final Report for Grant of Properties of Magnetic Multilayer and Microstructures

    National Research Council Canada - National Science Library

    Camley, R

    2002-01-01

    ...) Microwave Response of Microstructures Filters and Phase Shifters. Here we looked at exchange-spring systems, mictrostrip and coplanar notch filters and phase shifters using metallic ferromagnets. 3...

  20. General overview of the APS low-level rf control system

    International Nuclear Information System (INIS)

    Stepp, J.D.; Bridges, J.F.

    1993-01-01

    This paper describes the proposed low-level rf system of the positron accumulator ring (PAR), the injector synchrotron, and the storage ring of the 7-GeV Advanced Photon Source. Four rf systems are described since the PAR consists of a fundamental frequency system at 9.8 MHz and a harmonic system at 117 MHz. A block diagram of an accelerating unit is shown and descriptions of various control loops are made (including amplitude control, phase control, and cavity tuning control). Also, a brief overview of the computer interface is given

  1. Self-consistent particle distribution of a bunched beam in RF field

    CERN Document Server

    Batygin, Y K

    2002-01-01

    An analytical solution for the self-consistent particle equilibrium distribution in an RF field with transverse focusing is found. The solution is attained in the approximation of a high brightness beam. The distribution function in phase space is determined as a stationary function of the energy integral. Equipartitioning of the beam distribution between degrees of freedom follows directly from the choice of the stationary distribution function. Analytical expressions for r-z equilibrium beam profile and maximum beam current in RF field are obtained.

  2. Development and Performance Analysis of a Photonics-Assisted RF Converter for 5G Applications

    Science.gov (United States)

    Borges, Ramon Maia; Muniz, André Luiz Marques; Sodré Junior, Arismar Cerqueira

    2017-03-01

    This article presents a simple, ultra-wideband and tunable radiofrequency (RF) converter for 5G cellular networks. The proposed optoelectronic device performs broadband photonics-assisted upconversion and downconversion using a single optical modulator. Experimental results demonstrate RF conversion from DC to millimeter waves, including 28 and 38 GHz that are potential frequency bands for 5G applications. Narrow linewidth and low phase noise characteristics are observed in all generated RF carriers. An experimental digital performance analysis using different modulation schemes illustrates the applicability of the proposed photonics-based device in reconfigurable optical wireless communications.

  3. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    International Nuclear Information System (INIS)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-01-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012 © . RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance

  4. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Science.gov (United States)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012©. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  5. RF characterization and testing of ridge waveguide transitions for RF power couplers

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajesh; Jose, Mentes; Singh, G.N. [Ion Accelerator Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Girish [Department of Electrical Engineering, IIT Bombay, Mumbai 400076,India (India); Bhagwat, P.V. [Ion Accelerator Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-12-01

    RF characterization of rectangular to ridge waveguide transitions for RF power couplers has been carried out by connecting them back to back. Rectangular waveguide to N type adapters are first calibrated by TRL method and then used for RF measurements. Detailed information is obtained about their RF behavior by measurements and full wave simulations. It is shown that the two transitions can be characterized and tuned for required return loss at design frequency of 352.2 MHz. This opens the possibility of testing and conditioning two transitions together on a test bench. Finally, a RF coupler based on these transitions is coupled to an accelerator cavity. The power coupler is successfully tested up to 200 kW, 352.2 MHz with 0.2% duty cycle.

  6. RF field control for Kaon Factory booster cavities

    International Nuclear Information System (INIS)

    Craig, S.T.; de Jong, M.S.

    1992-08-01

    A conceptual design is developed for control of the Kaon Factory booster rf accelerating fields. This design addresses control of cavity: tuning, voltage amplitude, and voltage phase angle. Time-domain simulations were developed to evaluate the proposed controllers. These simulations indicate that adequate tuning performance can be obtained with the combination of adaptive feed forward and proportional feedback control. Voltage amplitude and voltage phase can be adequately controlled using non-adaptive feed forward and proportional feedback control. (Author) (figs., tabs.)

  7. PEP-II RF Cavity Revisited (LCC-0032)

    Energy Technology Data Exchange (ETDEWEB)

    Rimmer, R.

    2004-03-23

    This report describes the results of numerical simulations of the PEP-II RF cavity performed after the completion of the construction phase of the project and comparisons are made to previous calculations and measured results. These analyses were performed to evaluate new calculation techniques for the HOM distribution and RF surface heating that were not available at the time of the original design. These include the use of a high frequency electromagnetic element in ANSYS and the new Omega 3P code to study wall losses, and the development of broadband time domain simulation methods in MAFIA for the HOM loading. The computed HOM spectrum is compared with cavity measurements and observed beam-induced signals. The cavity fabrication method is reviewed, with the benefit of hindsight, and simplifications are discussed.

  8. Construction of a resonant loop with the ICRF antenna for KSTAR

    International Nuclear Information System (INIS)

    Bae, Young Dug; Jeong, Sung Un; Yoon, Jae Sung; Hong, Bong Geon

    2003-01-01

    The antenna of the KSTAR ICRF heating system consists of four current straps, each of which is grounded at the center, and has two coaxial ports, one at each end. The top and bottom ports of each strap are fed by one transmitter. The two ports are connected at tee connector to form a resonant loop, and the coaxial feed line from the transmitter is connected to the tee. One resonant loop with the proto-type antenna is built at the RF test stand in KAERI. It is composed with one current strap, one tee connector and two arms connecting them. Each arm consists of a 6-inch vacuum transmission line, a vacuum feed through, a part of pressurized 9-inch coaxial line, and an adjustable phase shifter to cover wide frequency range of 25-60 MHz. Total electrical length is changeable from 45 to 51 m. Many voltage probes and directional couplers are installed to measure RF voltage of the standing wave, power flow and phase difference. Resonant and matching conditions are investigated for various frequencies

  9. Reconfigurable Transmission Line for a Series-Fed Ku-Band Phased Array Using a Single Feed

    Science.gov (United States)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda. Felix, A.

    2013-01-01

    The paper presents a novel approach to realize a lowcost phased array using a simple feeding mechanism. Specifically, a single coplanar stripline (CPS) transmission line is used to feed the antenna array elements. By controlling the CPS's dielectric properties using a movable dielectric plunger, scanning is achieved. Due to its simplicity, single feed, and no phase shifters, this approach leads to a dramatic reduction in cost which does not scale for larger arrays.

  10. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Energy Technology Data Exchange (ETDEWEB)

    Rimjaem, S., E-mail: sakhorn.rimjaem@cmu.ac.th [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand); Kusoljariyakul, K.; Thongbai, C. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand)

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012{sup ©}. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  11. The RF Design of an HOM Polarized RF Gun for the ILC

    International Nuclear Information System (INIS)

    Wang, J.W.; Clendenin, J.E.; Colby, E.R.; Miller, R.A.; Lewellen, J.W.

    2006-01-01

    The ILC requires a polarized electron beam. While a highly polarized beam can be produced by a GaAs-type cathode in a DC gun of the type currently in use at SLAC, JLAB and elsewhere, the ILC injector system can be simplified and made more efficient if a GaAs-type cathode can be combined with a low emittance RF gun. Since this type of cathode is known to be extremely sensitive to vacuum contamination including back bombardment by electrons and ions, any successful polarized RF gun must have a significantly improved operating vacuum compared to existing RF guns. We present a new RF design for an L-Band normal conducting (NC) RF gun for the ILC polarized electron source. This design incorporates a higher order mode (HOM) structure, whose chief virtue in this application is an improved conductance for vacuum pumping on the cathode. Computer simulation models have been used to optimize the RF parameters with two principal goals: first to minimize the required RF power; second to reduce the peak surface field relative to the field at the cathode in order to suppress field emitted electron bombardment. The beam properties have been simulated initially using PARMELA. Vacuum and other practical issues for implementing this design are discussed

  12. Accurate modeling of complete functional RF blocks: CHAMELEON RF

    NARCIS (Netherlands)

    Janssen, H.H.J.M.; Niehof, J.; Schilders, W.H.A.; Ciuprina, G.; Ioan, D.

    2007-01-01

    Next-generation nano-scale RF-IC designs have an unprecedented complexity and performance that will inevitably lead to costly re-spins and loss of market opportunities. In order to cope with this, the aim of the European Framework 6 CHAMELEON RF project is to develop methodologies and prototype

  13. Performance analysis of fusion nuclear-data benchmark experiments for light to heavy materials in MeV energy region with a neutron spectrum shifter

    International Nuclear Information System (INIS)

    Murata, Isao; Ohta, Masayuki; Miyamaru, Hiroyuki; Kondo, Keitaro; Yoshida, Shigeo; Iida, Toshiyuki; Ochiai, Kentaro; Konno, Chikara

    2011-01-01

    Nuclear data are indispensable for development of fusion reactor candidate materials. However, benchmarking of the nuclear data in MeV energy region is not yet adequate. In the present study, benchmark performance in the MeV energy region was investigated theoretically for experiments by using a 14 MeV neutron source. We carried out a systematical analysis for light to heavy materials. As a result, the benchmark performance for the neutron spectrum was confirmed to be acceptable, while for gamma-rays it was not sufficiently accurate. Consequently, a spectrum shifter has to be applied. Beryllium had the best performance as a shifter. Moreover, a preliminary examination of whether it is really acceptable that only the spectrum before the last collision is considered in the benchmark performance analysis. It was pointed out that not only the last collision but also earlier collisions should be considered equally in the benchmark performance analysis.

  14. Silicon Micromachining in RF and Photonic Applications

    Science.gov (United States)

    Lin, Tsen-Hwang; Congdon, Phil; Magel, Gregory; Pang, Lily; Goldsmith, Chuck; Randall, John; Ho, Nguyen

    1995-01-01

    Texas Instruments (TI) has developed membrane and micromirror devices since the late 1970s. An eggcrate space membrane was used as the spatial light modulator in the early years. Discrete micromirrors supported by cantilever beams created a new era for micromirror devices. Torsional micromirror and flexure-beam micromirror devices were promising for mass production because of their stable supports. TI's digital torsional micromirror device is an amplitude modulator (known as the digital micromirror device (DMD) and is in production development, discussed elsewhere. We also use a torsional device for a 4 x 4 fiber-optic crossbar switch in a 2 cm x 2 cm package. The flexure-beam micromirror device is an analog phase modulator and is considered more efficient than amplitude modulators for use in optical processing systems. TI also developed millimeter-sized membranes for integrated optical switches for telecommunication and network applications. Using a member in radio frequency (RF) switch applications is a rapidly growing area because of the micromechanical device performance in microsecond-switching characteristics. Our preliminary membrane RF switch test structure results indicate promising speed and RF switching performance. TI collaborated with MIT for modeling of metal-based micromachining.

  15. RF MEMS

    Indian Academy of Sciences (India)

    At the bare die level the insertion loss, return loss and the isolation ... ing and packaging of a silicon on glass based RF MEMS switch fabricated using DRIE. ..... follows the power law based on the asperity deformation model given by Pattona & ... Surface mount style RF packages (SMX series 580465) from Startedge Corp.

  16. Progress on the RF Coupling Coil Module Design for the MICE Channel

    International Nuclear Information System (INIS)

    Li, D.; Green, M.A.; Virostek, S.P.; Zisman, M.S.; Lau, W.; White, A.E.; Yang, S.Q.

    2005-01-01

    We describe the progress on the design of the RF coupling coil (RFCC) module for the international Muon Ionization Cooling Experiment (MICE) at Rutherford Appleton Laboratory (RAL) in the UK. The MICE cooling channel design consists of one SFOFO cell that is similar to that of the US Study-II of a neutrino factory. The MICE RFCC module comprises a superconducting solenoid, mounted around four normal conducting 201.25-MHz RF cavities. Each cavity has a pair of thin curved beryllium windows to close the conventional open beam irises, which allows for independent control of the phase in each cavity and for the RF power to be fed separately. The coil package that surrounds the RF cavities is mounted on a vacuum vessel. The RF vacuum is shared between the cavities and the vacuum vessel around the cavities such that there is no differential pressure on the thin beryllium windows. This paper discusses the design progress of the RFCC module and the fabrication progress of a prototype 201.25-MHz cavity

  17. RF and constructional issues in the RFQ for the CERN laser ion source

    International Nuclear Information System (INIS)

    Bourquin, P.; Pirkl, W.; Umstatter, H.-H.

    1996-01-01

    An expandable RFQ has been designed and built. Its length can be modified in steps to match the different phases of the Laser Ion Source (LIS) study. This paper describes the basic design approach, the field simulations using MAFIA, the establishment of a lumped-element equivalent circuit using PSPICE, model measurements, RF cold measurements and the strategy to trim longitudinal field flatness. Results of RF power tests are also given. (author)

  18. Optimization of a lower hybrid current drive launcher for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Belo, Jorge H.C.M., E-mail: jbelo@ipfn.ist.utl.pt [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Goniche, Marc; Hillairet, Julien [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Bizarro, João P.S. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2015-10-15

    Highlights: • Reflection, directivity and E-fields of LHCD PAM launchers for ITER investigated. • Wide range of antenna parameters (junction lengths; phase-shifter heights) regarded. • Broad range of edge plasma considered: from the cut-off density to ELM activity. • Trade-offs between plasma density, reflection coefficient and E-field are necessary. • Additional margins for integration of the launcher in ITER may be achieved. - Abstract: An international R&D program for lower-hybrid current drive (LHCD) in ITER is being conducted to deliver 20 MW (CW) using 500 kW klystrons at 5 GHz, with N{sub ||peak} = 2.0 ± 0.2 for different plasma scenarios. The launcher is based on the passive-active mulitjunction (PAM), a concept more resilient to conditions expected at the plasma edge, notably densities close to cut-off (n{sub ec}) and ELM activity, which lead to significant and abrupt reflection of RF power from the plasma, but even under which it may still attain extremely low power reflection coefficients at the input (R ∼ 1%). It has also a robust and shielded structure; is suitable for long-pulse operation; and has been validated experimentally on FTU and Tore Supra. Here the focus is on the PAM section of the launcher, and the objective is to explore, under broad plasma loading – from n{sub ec} to 10 n{sub ec} – the impact that design parameters such as the junction lengths, phase-shifter heights, and output waveguide widths have on its performance, particularly on R and on the E-fields inside its waveguides; and to explore also a configuration with a different phase-shifter arrangement, the so-called alternative design.

  19. Emittance growth in laser-driven RF electron guns

    International Nuclear Information System (INIS)

    Kim, K.J.

    1989-01-01

    A simple analysis for the evolution of the electron-beam phase space distribution in laser-driven rf guns is presented. In particular, formulas are derived for the transverse and longitudinal emittances at the exit of the gun. The results are compared and found to agree well with those from simulation. (Author). 9 refs.; 4 figs

  20. Single-Chip Multiple-Frequency RF MEMS Resonant Platform for Wireless Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel, single-chip, multiple-frequency platform for RF/IF filtering and clock reference based on contour-mode aluminum nitride (AlN) MEMS piezoelectric resonators...

  1. Rf beam control for the AGS Booster

    International Nuclear Information System (INIS)

    Brennan, J.M.

    1994-01-01

    RF beam control systems for hadron synchrotrons have evolved over the past three decades into an essentially standard design. The key difference between hadron and lepton machines is the absence of radiation damping and existence of significant frequency variation in the case of hadrons. Although the motion of the hadron in the potential well of the rf wave is inherently stable it is not strongly damped. Damping must be provided by electronic feedback through the accelerating system. This feedback is typically called the phase loop. The technology of the rf beam control system for the AGS Booster synchrotron is described. First, the overall philosophy of the design is explained in terms of a conventional servo system that regulates the beam horizontal position in the vacuum chamber. The concept of beam transfer functions is fundamental to the mathematics of the design process and is reviewed. The beam transfer functions required for this design are derived from first principles. An overview of the beam signal pick-ups and high level rf equipment is given. The major subsystems, the frequency program, the heterodyne system, and beam feedback loops, are described in detail. Beyond accelerating the beam, the rf system must also synchronize the bunches in the Booster to the buckets in the AGS before transfer. The technical challenge in this process is heightened by the need to accomplish synchronization while the frequency is still changing. Details of the synchronization system are given. This report is intended to serve two purposes. One is to document the hardware and performance of the systems that have been built. The other is to serve as a tutorial vehicle from which the non-expert can not only learn the details of this system but also learn the principles of beam control that have led to the particular design choices made

  2. Rf beam control for the AGS Booster

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, J.M.

    1994-09-26

    RF beam control systems for hadron synchrotrons have evolved over the past three decades into an essentially standard design. The key difference between hadron and lepton machines is the absence of radiation damping and existence of significant frequency variation in the case of hadrons. Although the motion of the hadron in the potential well of the rf wave is inherently stable it is not strongly damped. Damping must be provided by electronic feedback through the accelerating system. This feedback is typically called the phase loop. The technology of the rf beam control system for the AGS Booster synchrotron is described. First, the overall philosophy of the design is explained in terms of a conventional servo system that regulates the beam horizontal position in the vacuum chamber. The concept of beam transfer functions is fundamental to the mathematics of the design process and is reviewed. The beam transfer functions required for this design are derived from first principles. An overview of the beam signal pick-ups and high level rf equipment is given. The major subsystems, the frequency program, the heterodyne system, and beam feedback loops, are described in detail. Beyond accelerating the beam, the rf system must also synchronize the bunches in the Booster to the buckets in the AGS before transfer. The technical challenge in this process is heightened by the need to accomplish synchronization while the frequency is still changing. Details of the synchronization system are given. This report is intended to serve two purposes. One is to document the hardware and performance of the systems that have been built. The other is to serve as a tutorial vehicle from which the non-expert can not only learn the details of this system but also learn the principles of beam control that have led to the particular design choices made.

  3. Stimulated resonance Raman spectroscopy: An alternative to laser-rf double resonance for ion spectroscopy

    International Nuclear Information System (INIS)

    Young, L.; Dinneen, T.; Mansour, N.B.

    1988-01-01

    Stimulated resonance Raman spectroscopy is presented as an alternative to laser-rf double resonance for obtaining high-precision measurements in ion beams. By use of a single-phase modulated laser beam to derive the two required fields, the laser--ion-beam alignment is significantly simplified. In addition, this method is especially useful in the low-frequency regime where the laser-rf double-resonance method encounters difficulties due to modifications of the ion-beam velocity distribution. These modifications, which result from interaction with the traveling rf wave used to induce magnetic dipole transitions, are observed and quantitatively modeled

  4. PPO-ethanol system as wavelength shifter for the Cherenkov counting technique using a liquid scintillation counter

    International Nuclear Information System (INIS)

    Takiue, M.; Fujii, H.; Ishikawa, H.

    1984-01-01

    2,5-diphenyloxazole (PPO) has been proposed as a wavelength shifter for Cherenkov counting. Since PPO is not incorporated with water, we have introduced the fluor into water in the form of micelle using a PPO-ethanol system. This technique makes it possible to obtain a high Cherenkov counting efficiency under stable sample conditions, attributed to the proper spectrometric features of the PPO. The 32 P Cherenkov counting efficiency (68.4%) obtained from this technique is 1.62 times as large as that measured with a conventional Cherenkov technique. (orig.)

  5. Some issues on the RF system in the 3 GeV Fermilab pre-booster

    International Nuclear Information System (INIS)

    Ng, K. Y.

    1998-01-01

    Some issues are presented on the rf system in the future Fermilab prebooster, which accelerates 4 bunches each containing 0.25 x 10 14 protons from 1 to 3 GeV kinetic energy. The problem of beam loading is discussed. The proposal of having a non-tunable fixed-frequency rf system is investigated. Robinson's criteria for phase stability are checked and possible Robinson instability growth is computed

  6. Multi-cell disk-and-ring tapered structure for compact RF linacs

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A.V.; Boucher, S.; Kutsaev, S. [RadiaBeam Systems LLC, 1713 Stewart Street, Santa Monica, CA 90404, US (United States); Hartzell, J. [RadiaBeam Technologies, LLC, 1717 Stewart Street, Santa Monica, CA 90404, US (United States); Savin, E. [RadiaBeam Technologies, LLC, 1717 Stewart Street, Santa Monica, CA 90404, US (United States); National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation)

    2016-09-11

    A tubular disk-and-ring, tapered accelerating structure for small electron linacs and MicroLinacs is considered. It consists of metal and dielectric elements inserted into a metallic tube to eliminate multi-cell, multi-step brazing. The structure enables a wide range of phase velocities (including non-relativistic), a wide bandwidth allowing large number of cells (for standing wave mode) or short filling time (for traveling wave mode), combination of compensated and purely π-mode cells, alternative periodic focusing built-in to the RF structure (the disks), and combining of RF and vacuum windows. RF and accelerating performance of such a long structure having up to four dozens cells is analyzed. Some of beam dynamics, thermal, and vacuum aspects of the structure and MicroLinac performance are considered as well.

  7. Multi-cell disk-and-ring tapered structure for compact RF linacs

    International Nuclear Information System (INIS)

    Smirnov, A.V.; Boucher, S.; Kutsaev, S.; Hartzell, J.; Savin, E.

    2016-01-01

    A tubular disk-and-ring, tapered accelerating structure for small electron linacs and MicroLinacs is considered. It consists of metal and dielectric elements inserted into a metallic tube to eliminate multi-cell, multi-step brazing. The structure enables a wide range of phase velocities (including non-relativistic), a wide bandwidth allowing large number of cells (for standing wave mode) or short filling time (for traveling wave mode), combination of compensated and purely π-mode cells, alternative periodic focusing built-in to the RF structure (the disks), and combining of RF and vacuum windows. RF and accelerating performance of such a long structure having up to four dozens cells is analyzed. Some of beam dynamics, thermal, and vacuum aspects of the structure and MicroLinac performance are considered as well.

  8. Ultra Linear Low-loss Varactors & Circuits for Adaptive RF Systems

    NARCIS (Netherlands)

    Huang, C.

    2010-01-01

    With the evolution of wireless communication, varactors can play an important role in enabling adaptive transceivers as well as phase-diversity systems. This thesis presents various varactor diode-based circuit topologies that facilitate RF adaptivity. The proposed varactor configurations can act as

  9. RF System Modelling for the JLab 12 GeV Upgrade and RIA

    International Nuclear Information System (INIS)

    Alicia Hofler; Jean Delayen; Hovater, J.; Stefan Simrock

    2003-01-01

    Jefferson Lab is using the MATLAB/Simulink library for RF systems developed for TTF as a tool to develop a model of its 12 GeV upgrade and the Rare Isotope Accelerator (RIA) to study the behavior and performance of the RF control system. The library includes elements describing a superconducting cavity with mechanical modes excited by Lorentz Force effects and a klystron including saturation characteristics. It can be applied to gradient and phase or in-phase and quadrature control for cavities operating in either a self-excited loop or generator driven mode. We will provide an overview of the theory behind the library components and present initial modeling results for Jefferson Lab's 12 GeV Upgrade and the RIA systems

  10. Characterization of gaseous species in scanning atmospheric rf plasma with transmission infrared spectroscopy

    International Nuclear Information System (INIS)

    Kim, Seong H.; Kim, Jeong Hoon; Kang, Bang-Kwon

    2008-01-01

    A scanning atmospheric radio-frequency (rf) plasma was analyzed with transmission infrared (IR) spectroscopy. The IR analyses were made for the plasmas used for hydrophobic coating deposition and superhydrophobic coating deposition processes. Since the rf plasma was generated in a small open space with a high gas flow rate in ambient air, the density of gas-phase molecules was very high and the plasma-generated reactive species seemed to undergo various reactions in the gas phase. So, the transmission IR spectra of the scanning atmospheric rf plasma were dominated by gas-phase reaction products, rather than plasma-generated intermediate species. In the CH 4 /He plasma used for hydrophobic coating deposition, C 2 H 6 , C 2 H 2 , and a small amount of C 2 H 4 as well as CO were detected in transmission IR. The intensities of these peaks increased as the rf power increased. The CO formation is due to the activation of oxygen and water in the air. In the CF 4 /H 2 /He plasma used for deposition of superhydrophobic coatings, C 2 F 6 , CF 3 H, COF 2 , and HF were mainly detected. When the H 2 /CF 4 ratio was ∼0.5, the consumption of CF 4 was the highest. As the H 2 /CF 4 ratio increased higher, the C 2 F 6 production was suppressed while the CF 3 H peak grew and the formation of CH 4 were detected. In both CH 4 /He and CF 4 /H 2 /He plasma systems, the undissociated feed gas molecules seem to be highly excited vibrationally and rotationally. The information on plasma-generated reactive species and their reactions was deduced from the distribution of these gas-phase reaction products

  11. The external Q factor of a dual-feed coupling for superconducting radio frequency cavities: Theoretical and experimental studies

    Science.gov (United States)

    Dai, J.; Belomestnykh, S.; Ben-Zvi, I.; Xu, Wencan

    2013-11-01

    We propose a theoretical model based on network analysis to study the external quality factor (Q factor) of dual-feed coupling for superconducting radio-frequency (SRF) cavities. Specifically, we apply our model to the dual-feed 704 MHz half-cell SRF gun for Brookhaven National Laboratory's prototype Energy Recovery Linac (ERL). The calculations show that the external Q factor of this dual-feed system is adjustable from 104 to 109 provided that the adjustment range of a phase shifter covers 0°-360°. With a period of 360°, the external Q factor of the coupling system changes periodically with the phase difference between the two coupling arms. When the RF phase of both coupling arms is adjusted simultaneously in the same direction, the external Q factor of the system also changes periodically, but with a period of 180°.

  12. Timing and low-level rf system for an x-ray laser

    Directory of Open Access Journals (Sweden)

    Yuji Otake

    2016-02-01

    Full Text Available An x-ray free-electron laser (XFEL, SACLA, designed to open up new science, was constructed for generating coherent x rays with a peak power of more than 10 GW and a very short pulse of below 30 fs. This feature demands a very highly short-term temporal stability of less than 50 fs to the acceleration rf field of SACLA. For this reason, we developed a timing and low-level rf (LLRF system for SACLA based on that of the SPring8 compact SASE source (SCSS test accelerator for verifying the feasibility of an XFEL. The performance of the system using the in-phase and quadrature rf manipulation method was improved from SCSS’s system. Since the facility length of SACLA is 700 m, which is 10 times longer than that of the SCSS test accelerator, a phase-stabilized optical-fiber system designed to transmit time standard rf signals with low loss was also developed and deployed. This optical-fiber system equips fiber optical-length feedback control in order to mitigate environmental effects, such as temperature and humidity changes. On the other hand, the demanded maximum rf temporal stability is less than 50 fs, which is almost 10 times smaller than that of the SCSS test accelerator. Hence, reducing electric noise and increasing the temperature stability around timing and LLRF instruments were necessary and realized with a very low-noise power supply and a hemathermal 19-inch enclosure. The short-term temporal performance of the timing LLRF system finally attained a temporal stability of less than 13.6 fs in rms measured by a beam arrival-time measurement. This stability greatly helps to achieve the stable x-ray lasing of SACLA for routine operation during user experiments.

  13. Single-Chip Fully Integrated Direct-Modulation CMOS RF Transmitters for Short-Range Wireless Applications

    Directory of Open Access Journals (Sweden)

    M. Jamal Deen

    2013-08-01

    Full Text Available Ultra-low power radio frequency (RF transceivers used in short-range application such as wireless sensor networks (WSNs require efficient, reliable and fully integrated transmitter architectures with minimal building blocks. This paper presents the design, implementation and performance evaluation of single-chip, fully integrated 2.4 GHz and 433 MHz RF transmitters using direct-modulation power voltage-controlled oscillators (PVCOs in addition to a 2.0 GHz phase-locked loop (PLL based transmitter. All three RF transmitters have been fabricated in a standard mixed-signal CMOS 0.18 µm technology. Measurement results of the 2.4 GHz transmitter show an improvement in drain efficiency from 27% to 36%. The 2.4 GHz and 433 MHz transmitters deliver an output power of 8 dBm with a phase noise of −122 dBc/Hz at 1 MHz offset, while drawing 15.4 mA of current and an output power of 6.5 dBm with a phase noise of −120 dBc/Hz at 1 MHz offset, while drawing 20.8 mA of current from 1.5 V power supplies, respectively. The PLL transmitter delivers an output power of 9 mW with a locking range of 128 MHz and consumes 26 mA from 1.8 V power supply. The experimental results demonstrate that the RF transmitters can be efficiently used in low power WSN applications.

  14. Characteristic performance of radio-frequency(RF) plasma heating using inverter RF power supplies

    International Nuclear Information System (INIS)

    Imai, Takahiro; Uesugi, Yoshihiko; Takamura, Shuichi; Sawada, Hiroyuki; Hattori, Norifumi

    2000-01-01

    High heat flux plasma are produced by high powe (∼14 kW) ICRF heating using inverter power supplies in the linear divertor simulator NAGDIS-II. The power flow of radiated rf power is investigated by a calorimetric method. Conventional power calculation using antenna voltage and current gives that about 70% of the rf power is radiated into the plasma. But increase of the heat load at the target and anode is about 10% of the rf power. Through this experiment, we find that about half of the rf power is lost at the antenna surface through the formation of rf induced sheath. And about 30% of the power is lost into the vacuum vessel through the charge exchange and elastic collision of ions with neutrals. (author)

  15. Simulations of S-band RF gun with RF beam control

    Science.gov (United States)

    Barnyakov, A. M.; Levichev, A. E.; Maltseva, M. V.; Nikiforov, D. A.

    2017-08-01

    The RF gun with RF control is discussed. It is based on the RF triode and two kinds of the cavities. The first cavity is a coaxial cavity with cathode-grid assembly where beam bunches are formed, the second one is an accelerating cavity. The features of such a gun are the following: bunched and relativistic beams in the output of the injector, absence of the back bombarding electrons, low energy spread and short length of the bunches. The scheme of the injector is shown. The electromagnetic field simulation and longitudinal beam dynamics are presented. The possible using of the injector is discussed.

  16. Control system analysis for the perturbed linear accelerator rf system

    CERN Document Server

    Sung Il Kwon

    2002-01-01

    This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller.

  17. CONTROL SYSTEM ANALYSIS FOR THE PERTURBED LINEAR ACCELERATOR RF SYSTEM

    International Nuclear Information System (INIS)

    SUNG-IL KWON; AMY H. REGAN

    2002-01-01

    This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller

  18. Evaluation of RF properties by orifice design for IFMIF RFQ

    International Nuclear Information System (INIS)

    Maebara, Sunao; Sugimoto, Masayoshi

    2005-03-01

    Orifices for the IFMIF RFQ have been designed and fabricated, and RF properties have been evaluated by a network analyzer. The designed orifices were installed into a vacuum port of the 1.1m-long RFQ mock-up module, and the resonant frequency and the phase difference between cavities were measured for a quadrupole operation mode of TE 210 . It was found that the RF properties are not affected on condition that slit direction with the same direction of current flow at the RFQ wall. Orifice conductance from 0.22 to 0.25 m 3 /sec by nitrogen conversion at room temperature was designed, and an ultimate pressure level of 5x10 -7 [Pa] was evaluated for the 4.1m-long central module for the IFMIF RFQ. It was concluded that the designed orifices are effective for RF properties and vacuum conductance in the IFMIF RFQ. (author)

  19. Rare Variants in Genes Encoding MuRF1 and MuRF2 Are Modifiers of Hypertrophic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ming Su

    2014-05-01

    Full Text Available Modifier genes contribute to the diverse clinical manifestations of hypertrophic cardiomyopathy (HCM, but are still largely unknown. Muscle ring finger (MuRF proteins are a class of muscle-specific ubiquitin E3-ligases that appear to modulate cardiac mass and function by regulating the ubiquitin-proteasome system. In this study we screened all the three members of the MuRF family, MuRF1, MuRF2 and MuRF3, in 594 unrelated HCM patients and 307 healthy controls by targeted resequencing. Identified rare variants were confirmed by capillary Sanger sequencing. The prevalence of rare variants in both MuRF1 and MuRF2 in HCM patients was higher than that in control subjects (MuRF1 13/594 (2.2% vs. 1/307 (0.3%, p = 0.04; MuRF2 22/594 (3.7% vs. 2/307 (0.7%; p = 0.007. Patients with rare variants in MuRF1 or MuRF2 were younger (p = 0.04 and had greater maximum left ventricular wall thickness (p = 0.006 than those without such variants. Mutations in genes encoding sarcomere proteins were present in 19 (55.9% of the 34 HCM patients with rare variants in MuRF1 and MuRF2. These data strongly supported that rare variants in MuRF1 and MuRF2 are associated with higher penetrance and more severe clinical manifestations of HCM. The findings suggest that dysregulation of the ubiquitin-proteasome system contributes to the pathogenesis of HCM.

  20. rf impedance of the accelerating beam gap and its significance to the TRIUMF rf system

    International Nuclear Information System (INIS)

    Poirier, R.

    1979-03-01

    The rf system at TRIUMF is now operating with the highest Q, the lowest rf leakage into the beam gap, the best voltage stability, and the lowest resonator strongback temperatures ever measured since it was first put into operation. This paper describes the calculation of the rf impedance of the beam gap and its correlation to the rf problems encountered, which eventually led to modifications to the flux guides and resonator tips to accomplish the improved operation of the rf system

  1. Metastable bcc Fe-Mn alloys produced by rf sputtering

    International Nuclear Information System (INIS)

    Sumiyama, Kenji; Kadono, Masaru; Nakamura, Yoji

    1981-01-01

    Fe sub(1-x)Mn sub(x) alloy films obtained by rf sputtering technique have been investigated by X-ray diffraction, magnetization and Moessbauer effect measurements. The single bcc phase extends up to about x = 0.2, while a bcc-fcc mixed phase appears for x = 0.2 - 0.26. The lattice constants of the bcc phase are about 0.5% larger than those of the bulk specimens. The magnetization decreases monotonically with increasing x in the bcc phase, while it decreases sharply in the bcc-fcc mixed phase. These results are consistent with the Moessbauer spectra of these alloy films. The volume fraction of bcc and fcc phases has been estimated from Moessbauer analyses as well as magnetization measurements. (author)

  2. Inductive current startup in large tokamaks with expanding minor radius and RF assist

    International Nuclear Information System (INIS)

    Borowski, S.K.

    1983-01-01

    Auxiliary RF heating of electrons before and during the current rise phase of a large tokamak, such as the Fusion Engineering Device, is examined as a means of reducing both the initiation loop voltage and resistive flux expenditure during startup. Prior to current initiation, 1 to 2 MW of electron cyclotron resonance heating power at approx.90 GHz is used to create a small volume of high conductivity plasma (T/sub e/ approx. = 100 eV, n/sub e/ approx. = 10 19 m -3 ) near the upper hybrid resonance (UHR) region. This plasma conditioning permits a small radius (a 0 approx.< 0.4 m) current channel to be established with a relatively low initial loop voltage (approx.< 25 V as opposed to approx.100 V without RF assist). During the subsequent plasma expansion and current ramp phase, additional RF power is introduced to reduce volt-second consumption due to plasma resistance. To study the preheating phase, a near classical particle and energy transport model is developed to estimate the electron heating efficiency in a currentless toroidal plasma. The model assumes that preferential electron heating at the UHR leads to the formation of an ambipolar sheath potential between the neutral plasma and the conducting vacuum vessel and limiter

  3. Injection Bucket Jitter Compensation Using Phase Lock System at Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Seiya, K. [Fermilab; Drennan, C. [Fermilab; Pellico, W. [Fermilab; Chaurize, S. [Fermilab

    2017-05-12

    The extraction bucket position in the Fermilab Booster is controlled with a cogging process that involves the comparison of the Booster rf count and the Recycler Ring revolution marker. A one rf bucket jitter in the ex-traction bucket position results from the variability of the process that phase matches the Booster to the Recycler. However, the new slow phase lock process used to lock the frequency and phase of the Booster rf to the Recycler rf has been made digital and programmable and has been modified to correct the extraction notch position. The beam loss at the Recycler injection has been reduced by 20%. Beam studies and the phase lock system will be discussed in this paper.

  4. Simulation experiment on low-level RF control for dual-harmonic acceleration at CSNS RCS

    International Nuclear Information System (INIS)

    Shen Sirong; Li Xiao; Zhang Chunlin; Sun Hong; Tang Jingyu

    2013-01-01

    The design and test of the low-level RF (LLRF) control system for the dual-harmonic acceleration at the rapid cycling synchrotron (RCS) of China Spallation Neutron Source (CSNS) at phase Ⅰ is introduced. In order to implement the mode switch from the second harmonic to the fundamental during the acceleration cycle for one of the eight RF cavities, the LLRF system for the cavity has been designed differently from the others. Several technical measures such as the opening of the control loops during the mode switch and the reclosing of two tuning circuits of the RF amplifier at different moments, have been taken. The experimental results on the testing platform based on an RF prototype show good dynamic performance of the LLRF system and prove the feasibility of dual-harmonic operation. (authors)

  5. A novel multi-actuation CMOS RF MEMS switch

    Science.gov (United States)

    Lee, Chiung-I.; Ko, Chih-Hsiang; Huang, Tsun-Che

    2008-12-01

    This paper demonstrates a capacitive shunt type RF MEMS switch, which is actuated by electro-thermal actuator and electrostatic actuator at the same time, and than latching the switching status by electrostatic force only. Since thermal actuators need relative low voltage compare to electrostatic actuators, and electrostatic force needs almost no power to maintain the switching status, the benefits of the mechanism are very low actuation voltage and low power consumption. Moreover, the RF MEMS switch has considered issues for integrated circuit compatible in design phase. So the switch is fabricated by a standard 0.35um 2P4M CMOS process and uses wet etching and dry etching technologies for postprocess. This compatible ability is important because the RF characteristics are not only related to the device itself. If a packaged RF switch and a packaged IC wired together, the parasitic capacitance will cause the problem for optimization. The structure of the switch consists of a set of CPW transmission lines and a suspended membrane. The CPW lines and the membrane are in metal layers of CMOS process. Besides, the electro-thermal actuators are designed by polysilicon layer of the CMOS process. So the RF switch is only CMOS process layers needed for both electro-thermal and electrostatic actuations in switch. The thermal actuator is composed of a three-dimensional membrane and two heaters. The membrane is a stacked step structure including two metal layers in CMOS process, and heat is generated by poly silicon resistors near the anchors of membrane. Measured results show that the actuation voltage of the switch is under 7V for electro-thermal added electrostatic actuation.

  6. Medium Power 352 MHZ solid state pulsed RF amplifiers for the CERN LINAC4 Project

    CERN Document Server

    Broere, J; Gómez Martínez, Y; Rossi, M

    2011-01-01

    Economic, modular and highly linear pulsed RF amplifiers have recently been developed to be used for the three buncher cavities in the CERN Linac4. The amplifiers are water-cooled and can provide up to 33 kW pulsed RF Power, 1.5 ms pulse length and 50 Hz repetition rate. Furthermore a 60 kW unit is under construction to provide the required RF Power for the debuncher cavity. The concept is based on 1.2 kW RF power modules using the latest 6th generation LDMOS technology. For integration into the CERN control environment the amplifiers have an internal industrial controller, which will provide easy control and extended diagnostic functions. This paper describes the construction, performance, including linearity, phase stability and EMC compliance tests

  7. Microfluidic stretchable RF electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2010-12-07

    Stretchable electronics is a revolutionary technology that will potentially create a world of radically different electronic devices and systems that open up an entirely new spectrum of possibilities. This article proposes a microfluidic based solution for stretchable radio frequency (RF) electronics, using hybrid integration of active circuits assembled on flex foils and liquid alloy passive structures embedded in elastic substrates, e.g. polydimethylsiloxane (PDMS). This concept was employed to implement a 900 MHz stretchable RF radiation sensor, consisting of a large area elastic antenna and a cluster of conventional rigid components for RF power detection. The integrated radiation sensor except the power supply was fully embedded in a thin elastomeric substrate. Good electrical performance of the standalone stretchable antenna as well as the RF power detection sub-module was verified by experiments. The sensor successfully detected the RF radiation over 5 m distance in the system demonstration. Experiments on two-dimensional (2D) stretching up to 15%, folding and twisting of the demonstrated sensor were also carried out. Despite the integrated device was severely deformed, no failure in RF radiation sensing was observed in the tests. This technique illuminates a promising route of realizing stretchable and foldable large area integrated RF electronics that are of great interest to a variety of applications like wearable computing, health monitoring, medical diagnostics, and curvilinear electronics.

  8. Rf and space-charge induced emittances in laser-driven rf guns

    International Nuclear Information System (INIS)

    Kim, Kwang-Je; Chen, Yu-Jiuan.

    1988-10-01

    Laser-driven rf electron guns are potential sources of high-current, low-emittance, short bunch-length electron beams, which are required for many advanced accelerator applications, such as free-electron lasers and injectors for high-energy machines. In such guns the design of which was pioneered at Los Alamos National Laboratory and which is currently being developed at several other laboratories, a high-power laser beam illuminates a photo-cathode surface placed on an end wall of an rf cavity. The main advantages of this type of gun are that the time structure of the electron beam is controlled by the laser, eliminating the need for bunchers, and that the electric field in rf cavities can be made very strong, so that the effects due to space-charge repulsion can be minimized. In this paper, we present an approximate but simple analysis for the transverse and longitudinal emittances in rf guns that takes into account both the time variation of the rf field and the space-charge effect. The results are compared and found to agree well with those from simulation. 7 refs., 6 figs

  9. Barrier rf systems in synchrotrons

    International Nuclear Information System (INIS)

    Bhat, Chandra M.

    2004-01-01

    Recently, many interesting applications of the barrier RF system in hadron synchrotrons have been realized. A remarkable example of this is the development of longitudinal momentum mining and implementation at the Fermilab Recycler for extraction of low emittance pbars for the Tevatron shots. At Fermilab, we have barrier RF systems in four different rings. In the case of Recycler Ring, all of the rf manipulations are carried out using a barrier RF system. Here, the author reviews various uses of barrier rf systems in particle accelerators including some new schemes for producing intense proton beam and possible new applications

  10. Digital low level rf control system with four different intermediate frequencies for the International Linear Collider

    Science.gov (United States)

    Wibowo, Sigit Basuki; Matsumoto, Toshihiro; Michizono, Shinichiro; Miura, Takako; Qiu, Feng; Liu, Na

    2017-09-01

    A field programmable gate array-based digital low level rf (LLRF) control system will be used in the International Linear Collider (ILC) in order to satisfy the rf stability requirements. The digital LLRF control system with four different intermediate frequencies has been developed to decrease the required number of analog-to-digital converters in this system. The proof of concept of this technique was demonstrated at the Superconducting RF Test Facility in the High Energy Accelerator Research Organization, Japan. The amplitude and phase stability has fulfilled the ILC requirements.

  11. Practical RF system design

    CERN Document Server

    Egan, William F

    2003-01-01

    he ultimate practical resource for today's RF system design professionals Radio frequency components and circuits form the backbone of today's mobile and satellite communications networks. Consequently, both practicing and aspiring industry professionals need to be able to solve ever more complex problems of RF design. Blending theoretical rigor with a wealth of practical expertise, Practical RF System Design addresses a variety of complex, real-world problems that system engineers are likely to encounter in today's burgeoning communications industry with solutions that are not easily available in the existing literature. The author, an expert in the field of RF module and system design, provides powerful techniques for analyzing real RF systems, with emphasis on some that are currently not well understood. Combining theoretical results and models with examples, he challenges readers to address such practical issues as: * How standing wave ratio affects system gain * How noise on a local oscillator will affec...

  12. Calculation of wake field and couple impedance of upgraded and old RF cavity in Hefei electron storage ring

    International Nuclear Information System (INIS)

    Xu Hongliang; Wang Lin; Sun Baogen; Li Weimin; Liu Jinying; He Duohui

    2003-01-01

    The phase II upgrading project of Hefei 800 MeV electron storage ring is being done, and the important component of the project, the RF cavity, will be finished soon. The old RF cavity with many disadvantages will be replaced by the new one. To estimate the effect of RF cavity coupling impedance to storing bunch intensity fully, the wake potential and the broad band couple impedance of RF cavity were calculated with MAFIA program. And the calculation results were compared between new and old cavity, it is found that the impedance of the new is bigger than that of the old

  13. Direct RF modulation transmitter, sampling clock frequency setting method for direct RF modulation transmitter

    NARCIS (Netherlands)

    Fukuda, Shuichi; Nauta, Bram

    2013-01-01

    PROBLEM TO BE SOLVED: To provide a direct RF modulation transmitter capable of satisfying a radiation level regulation even without providing a SAW filter. SOLUTION: A direct RF modulation transmitter includes: digital/RF converters 105, 106 to which an I digital baseband signal, a Q digital

  14. Direct RF modulation transmitter, sampling clock frequency setting method for direct RF modulation transmitter

    NARCIS (Netherlands)

    Fukuda, Shuichi; Nauta, Bram

    2014-01-01

    PROBLEM TO BE SOLVED: To provide a direct RF modulation transmitter capable of satisfying a radiation level regulation even without providing a SAW filter. SOLUTION: A direct RF modulation transmitter includes: digital/RF converters 105, 106 to which an I digital baseband signal, a Q digital

  15. In-line digital holography with phase-shifting Greek-ladder sieves

    Science.gov (United States)

    Xie, Jing; Zhang, Junyong; Zhang, Yanli; Zhou, Shenlei; Zhu, Jianqiang

    2018-04-01

    Phase shifting is the key technique in in-line digital holography, but traditional phase shifters have their own limitations in short wavelength regions. Here, phase-shifting Greek-ladder sieves with amplitude-only modulation are introduced into in-line digital holography, which are essentially a kind of diffraction lens with three-dimensional array diffraction-limited foci. In the in-line digital holographic experiment, we design two kinds of sieves by lithography and verify the validity of their phase-shifting function by measuring a 1951 U.S. Air Force resolution test target and three-dimensional array foci. With advantages of high resolving power, low cost, and no limitations at shorter wavelengths, phase-shifting Greek-ladder sieves have great potential in X-ray holography or biochemical microscopy for the next generation of synchrotron light sources.

  16. RF feedback for KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Ezura, Eizi; Yoshimoto, Shin-ichi; Akai, Kazunori [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    This paper describes the present status of the RF feedback development for the KEK B-Factory (KEKB). A preliminary experiment concerning the RF feedback using a parallel comb-filter was performed through a choke-mode cavity and a klystron. The RF feedback has been tested using the beam of the TRISTAN Main Ring, and has proved to be effective in damping the beam instability. (author)

  17. Substrate integrated ferrite phase shifters and active frequency selective surfaces

    International Nuclear Information System (INIS)

    Cahill, B.M.

    2002-01-01

    There are two distinct parts to this thesis; the first investigates the use of ferrite tiles in the construction of printed phase shifting transmission lines, culminating in the design of two compact electromagnetic controlled beam steered patch and slot antenna arrays. The second part investigates the use of active frequency selective surfaces (AFSS), which are later used to cover a uPVC constructed enclosure. Field intensity measurements are taken from within the enclosure to determine the dynamic screening effectiveness. Trans Tech G-350 Ferrite is investigated to determine its application in printed microstrip and stripline phase shifting transmission lines. 50-Ohm transmission lines are constructed using the ferrite tile and interfaced to Rogers RT Duroid 5870 substrate. Scattering parameter measurements are made under the application of variable magnetic fields to the ferrite. Later, two types of planar microwave beam steering antennas are constructed. The first uses the ferrites integrated into the Duroid as microstrip lines with 3 patch antennas as the radiating elements. The second uses stripline transmission lines, with slot antennas as the radiating sources etched into the ground plane of the triplate. Beam steering is achieved by the application of an external electromagnet. An AFSS is constructed by the interposition of PIN diodes into a dipole FSS array. Transmission response measurements are then made for various angles of electromagnetic wave incidence. Two states of operation exist: when a current is passed through the diodes and when the diodes are switched off. These two states form a high pass and band stop space filter respectively. An enclosure covered with the AFSS is constructed and externally illuminated in the range 2.0 - 2.8GHz. A probe antenna inside the enclosure positioned at various locations through out the volume is used to establish the effective screening action of the AFSS in 3 dimensional space. (author)

  18. Development of multi-channel high power rectangular RF window for LHCD system employing high temperature vacuum brazing technique

    International Nuclear Information System (INIS)

    Sharma, P K; Ambulkar, K K; Parmar, P R; Virani, C G; Thakur, A L; Joshi, L M; Nangru, S C

    2010-01-01

    A 3.7 GHz., 120 kW (pulsed), lower hybrid current drive (LHCD) system is employed to drive non-inductive plasma current in ADITYA tokamak. The rf power is coupled to the plasma through grill antenna and is placed in vacuum environment. A vacuum break between the pressurized transmission line and the grill antenna is achieved with the help of a multi (eight) channel rectangular RF vacuum window. The phasing between adjacent channels of 8-channel window (arranged in two rows) is important for launching lower hybrid waves and each channel should have independent vacuum window so that phase information is retained. The geometrical parameter of the grill antenna, like periodicity (9mm), channel dimensions (cross sectional dimension of 76mm x 7mm), etc. is to be maintained. These design constraint demanded a development of a multi channel rectangular RF vacuum window. To handle rf losses and thermal effects, high temperature vacuum brazing techniques is desired. Based on the above requirements we have successfully developed a multi channel rectangular rf vacuum window employing high temperature vacuum brazing technique. During the development process we could optimize the chemical processing parameters, brazing process parameters, jigs and fixtures for high temperature brazing and leak testing, etc. Finally the window is tested for low power rf performance using VNA. In this paper we would present the development of the said window in detail along with its mechanical, vacuum and rf performances.

  19. Development of multi-channel high power rectangular RF window for LHCD system employing high temperature vacuum brazing technique

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, P K; Ambulkar, K K; Parmar, P R; Virani, C G; Thakur, A L [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Joshi, L M; Nangru, S C, E-mail: pramod@ipr.res.i [Central Electronics Engineering Research Institute, Pilani, Rajasthan 333 031 (India)

    2010-02-01

    A 3.7 GHz., 120 kW (pulsed), lower hybrid current drive (LHCD) system is employed to drive non-inductive plasma current in ADITYA tokamak. The rf power is coupled to the plasma through grill antenna and is placed in vacuum environment. A vacuum break between the pressurized transmission line and the grill antenna is achieved with the help of a multi (eight) channel rectangular RF vacuum window. The phasing between adjacent channels of 8-channel window (arranged in two rows) is important for launching lower hybrid waves and each channel should have independent vacuum window so that phase information is retained. The geometrical parameter of the grill antenna, like periodicity (9mm), channel dimensions (cross sectional dimension of 76mm x 7mm), etc. is to be maintained. These design constraint demanded a development of a multi channel rectangular RF vacuum window. To handle rf losses and thermal effects, high temperature vacuum brazing techniques is desired. Based on the above requirements we have successfully developed a multi channel rectangular rf vacuum window employing high temperature vacuum brazing technique. During the development process we could optimize the chemical processing parameters, brazing process parameters, jigs and fixtures for high temperature brazing and leak testing, etc. Finally the window is tested for low power rf performance using VNA. In this paper we would present the development of the said window in detail along with its mechanical, vacuum and rf performances.

  20. Flattened optical frequency-locked multi-carrier generation by cascading one DML and one phase modulator driven by different RF frequency clocks

    International Nuclear Information System (INIS)

    Li, Xinying; Yu, Jianjun; Zhang, Junwen; Chi, Nan

    2013-01-01

    We propose a novel scheme for flattened optical frequency-locked multi-carrier generation based on one directly modulated laser (DML) and one phase modulator (PM) in cascade driven by different sinusoidal radio-frequency (RF) clocks. We experimentally demonstrate that when the clock frequencies for the cascaded DML and the PM are respectively 12.5 GHz and 25 GHz, over 24 optical subcarriers can be generated with 12.5-GHz frequency spacing and amplitude fluctuation less than 3 dB. Furthermore, the number of generated optical subcarriers can be further increased when we increase the driving power for the DML. (letter)

  1. Significant effect of substrate temperature on the phase structure, optical and electrical properties of RF sputtered CIGS films

    Energy Technology Data Exchange (ETDEWEB)

    Yu Zhou; Yan Yong; Li Shasha; Zhang Yanxia; Yan Chuanpeng; Liu Lian; Zhang Yong [Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, Superconductivity and New energy R and D Center (SNERDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); Zhao Yong, E-mail: yzhao@swjtu.edu.cn [Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, Superconductivity and New energy R and D Center (SNERDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Secondary phase exist in the RF sputtered CIGS films as it deposited at 150 Degree-Sign C and 500 Degree-Sign C. Black-Right-Pointing-Pointer CIGS films deposited beyond 350 Degree-Sign C show (1 1 2) prefer orientation. Black-Right-Pointing-Pointer E{sub g} of the CIGS films increased with the increase of substrate temperature. Black-Right-Pointing-Pointer Conductivity of the films is affected by 'variable range hopping' mechanism. - Abstract: This work studied the effect of substrate temperature on the phase structure, optical and electrical properties of the one-step radio frequency sputtered Cu(In,Ga)Se{sub 2} (CIGS) thin films. X-ray diffraction (XRD) analysis revealed that all the deposited CIGS films are chalcopyrite phase with polycrystalline structure. The films deposited beyond the substrate temperature of 350 Degree-Sign C show (1 1 2) prefer orientation. Raman spectra reveal that the 150 Degree-Sign C deposited CIGS film coexists with Cu{sub 2-x}Se phase and the 500 Degree-Sign C deposited film contains ordered defect compound (ODC) phase. With the increase of substrate temperature, energy band gap of the CIGS film increase from 0.99 to 1.27 eV. Films deposited at higher temperature exhibit larger electrical conductivity. Conductivity of the CIGS films is dominated by 'variable range hopping' mechanism. The disorder in our CIGS the films is associated with the formation of intrinsic defects such as V{sub Se} and In{sub Cu} for their low formation energy.

  2. An MR/MRI compatible core holder with the RF probe immersed in the confining fluid

    Science.gov (United States)

    Shakerian, M.; Balcom, B. J.

    2018-01-01

    An open frame RF probe for high pressure and high temperature MR/MRI measurements was designed, fabricated, and tested. The open frame RF probe was installed inside an MR/MRI compatible metallic core holder, withstanding a maximum pressure and temperature of 5000 psi and 80 °C. The open frame RF probe was tunable for both 1H and 19F resonance frequencies with a 0.2 T static magnetic field. The open frame structure was based on simple pillars of PEEK polymer upon which the RF probe was wound. The RF probe was immersed in the high pressure confining fluid during operation. The open frame structure simplified fabrication of the RF probe and significantly reduced the amount of polymeric materials in the core holder. This minimized the MR background signal detected. Phase encoding MRI methods were employed to map the spin density of a sulfur hexafluoride gas saturating a Berea core plug in the core holder. The SF6 was imaged as a high pressure gas and as a supercritical fluid.

  3. RF plasma nitriding of severely deformed iron-based alloys

    International Nuclear Information System (INIS)

    Ferkel, H.; Glatzer, M.; Estrin, Y.; Valiev, R.Z.; Blawert, C.; Mordike, B.L.

    2003-01-01

    The effect of severe plastic deformation by cold high pressure torsion (HPT) on radio frequency (RF) plasma nitriding of pure iron, as well as St2K50 and X5CrNi1810 steels was investigated. Nitriding was carried out for 3 h in a nitrogen atmosphere at a pressure of 10 -5 bar and temperatures of 350 and 400 deg. C. Nitrided specimens were analysed by scanning electron microscopy (SEM), X-ray diffraction and micro hardness measurements. It was found that HPT enhances the effect of nitriding leading almost to doubling of the thickness of the nitrided layer for pure iron and the high alloyed steel. The largest increase in hardness was observed when HPT was combined with RF plasma nitriding at 350 deg. C. In the case of pure iron, the X-ray diffraction spectra showed the formation of ε and γ' nitrides in the compound layer, with a preferential formation of γ' at the expense of the α-phase at the higher nitriding temperature. The corresponding surface hardness was up to 950 HV0.01. While the HPT-processed St2K50 exhibits both nitride phases after nitriding at 350 deg. C, only the γ'-phase was observed after nitriding at 400 deg. C. A surface hardness of up to 1050 HV0.01 was measured for this steel. The high alloyed steel X5CrNi1810 exhibited the highest increase in surface hardness when HPT was combined with nitriding at 350 deg. C. The surface hardness of this steel was greater than 1400 HV0.025. The XRD analyses indicate the formation of the expanded austenite (S-phase) in the surface layer as a result of RF plasma nitriding. Furthermore, after HPT X5CrNi1810 was transformed completely into deformation martensite which did not transform back to austenite under thermochemical treatment. However, in the case of nitriding of the HPT-processed high alloyed steel at 400 deg. C, the formation of the S-phase was less pronounced. In view of the observed XRD peak broadening, the formation of nitrides, such as e.g. CrN, cannot be ruled out

  4. Photonics applications in high-capacity data link terminals

    Science.gov (United States)

    Shi, Zan; Foshee, James J.

    2001-12-01

    Radio systems and, in particular, RF data link systems are evolving toward progressively more bandwidth and higher data rates. For many military RF data link applications the data transfer requirements exceed one Gigabit per second. Airborne collectors need to transfer sensor information and other large data files to ground locations and other airborne terminals, including the rel time transfer of files. It is a challenge to the system designer to provide a system design, which meets the RF link budget requirements for a one Gigabit per second data link; and there is a corresponding challenge in the development of the terminal architecture and hardware. The utilization of photonic circuitry and devices as a part of the terminal design offers the designer some alternatives to the conventional RF hardware design within the radio. Areas of consideration for the implementation of photonic technology include Gigabit per second baseband data interfaces with fiber along with the associated clocking rates and extending these Gigabit data rates into the radio for optical processing technology; optical interconnections within the individual circuit boards in the radio; and optical backplanes to allow the transfer of not only the Gigabit per second data rates and high speed clocks but other RF signals within the radio. True time delay using photonics in phased array antennas has been demonstrated and is an alternative to the conventional phase shifter designs used in phased array antennas, and remoting of phased array antennas from the terminal electronics in the Ku and Ka frequency bands using fiber optics as the carrier to minimize the RF losses, negate the use of the conventional waveguides, and allow the terminal equipment to be located with other electronic equipment in the aircraft suitable for controlled environment, ready access, and maintenance. The various photonics design alternatives will be discussed including specific photonic design approaches. Packaging

  5. Traveling wave accelerating structures with a large phase advance

    International Nuclear Information System (INIS)

    Paramonov, V.V.

    2012-01-01

    The cells RF parameters for the well known Disk Loaded Waveguide (DLW) are considered in higher pass bands of TM01 wave, providing operating phase advance between 180 o - 1230 o per cell. With an appropriate shape optimization and some additional elements proposed traveling wave structures with such large phase advance overlap the classical first band DLW in RF efficiency. Examples of proposed structures together with RF and dispersion properties are presented.

  6. RF feedback simulation results for PEP-II

    International Nuclear Information System (INIS)

    Tighe, R.; Corredoura, P.

    1995-06-01

    A model of the RF feedback system for PEP-II has been developed to provide time-domain simulation and frequency-domain analysis of the complete system. The model includes the longitudinal beam dynamics, cavity fundamental resonance, feedback loops, and the nonlinear klystron operating near saturation. Transients from an ion clearing gap and a reference phase modulation from the longitudinal feedback system are also studied. Growth rates are predicted and overall system stability examined

  7. Secondary emission yield at low-primary energies of magnetic materials for anti-multipactor applications

    CERN Document Server

    Aguilera, L; Olano, L; Casas, A; Morales, P; Vázquez, M; Galán, L; Caspers, F; Costa-Pinto, P; Taborelli, M; Raboso, D

    2014-01-01

    Secondary electron emission processes under electron bombardment are central to many effects at surfaces and interfaces, and to many in vacuum high power RF electronic devices where multipactor can be very intense [1,2]. Ferrite materials are usually used in microwave components used in space telecommunication systems, as circulators, phase-shifters, switches, and isolators. The physics of the multipactor phenomenon existing in microwave devices based on ferrite materials is an important issue and it is urgent to be researched [3]. One difficulty in the analysis of the multipactor effect in RF components containing ferrite lies on the fact that this material is an anysotropic magnetic medium controlled by an applied permanent magnetic field, which is used to magnetize the ferrite material. SEY and other properties (structure, magnetic behaviour,...) of soft-magnetic materials were studied in this work. MnZn soft ferrites magnets are suitable in the situation of frequency < 3MHz, low loss and high μi. Comp...

  8. RF Front End Based on MEMS Components for Miniaturized Digital EVA Radio, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, AlphaSense, Inc. and the Carnegie Mellon University propose to develop a RF receiver front end based on CMOS-MEMS components for miniaturized...

  9. High-gradient normal-conducting RF structures for muon cooling channels

    International Nuclear Information System (INIS)

    Corlett, J.N.; Green, M.A.; Hartman, N.; Ladran, A.; Li, D.; MacGill, R.; Rimmer, R.; Moretti, A.; Jurgens, T.; Holtkamp, N.; Black, E.; Summers, D.; Booke, M.

    2001-01-01

    We present a status report on the research and development of high-gradient normal-conducting RF structures for the ionization cooling of muons in a neutrino factory or muon collider. High-gradient RF structures are required in regions enclosed in strong focusing solenoidal magnets, precluding the application of superconducting RF technology [1]. We propose using linear accelerating structures, with individual cells electromagnetically isolated, to achieve the required gradients of over 15 MV/m at 201 MHz and 30 MV/m at 805 MHz. Each cell will be powered independently, and cell length and drive phase adjusted to optimize shunt impedance of the assembled structure. This efficient design allows for relatively small field enhancement on the structure walls, and an accelerating field approximately 1.7 times greater than the peak surface field. The electromagnetic boundary of each cell may be provided by a thin Be sheet, or an assembly of thin-walled metal tubes. Use of thin, low-Z materials will allow passage of the muon beams without significant deterioration in beam quality due to scattering. R and D in design and analysis of robust structures that will operate under large electric and magnetic fields and RF current heating are discussed, including the experimental program based in a high-power test laboratory developed for this purpose

  10. Tunable Q-Factor RF Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, Mario D. [Fermilab; Yonehara, Katsuya [Fermilab; Moretti, Alfred [Fermilab; Kazakevitch, Gregory [Fermilab

    2018-01-01

    Intense neutrino beam is a unique probe for researching beyond the standard model. Fermilab is the main institution to produce the most powerful and widespectrum neutrino beam. From that respective, a radiation robust beam diagnostic system is a critical element in order to maintain the quality of the neutrino beam. Within this context, a novel radiation-resistive beam profile monitor based on a gasfilled RF cavity is proposed. The goal of this measurement is to study a tunable Qfactor RF cavity to determine the accuracy of the RF signal as a function of the quality factor. Specifically, measurement error of the Q-factor in the RF calibration is investigated. Then, the RF system will be improved to minimize signal error.

  11. RF cavities of CESAR (2 MeV electron storage ring).

    CERN Multimedia

    Service Photo; CERN PhotoLab

    1968-01-01

    RF cavity. There were 2 identical ones: one for stacking (accumulation) procedures; the other for scanning with "empty buckets" (measurement of beam density distribution). Both were operated at h=2 (2nd harmonic of the revolution frequency), i.e. at around 24.4 MHz. Voltage, frequency and phase were programmed with analogue circuits.

  12. Quantum decay of metastable current states in rf squids

    International Nuclear Information System (INIS)

    Dmitrenko, I.M.; Khlus, V.A.; Tsoj, C.M.; Shnyrkov, V.I.

    1985-01-01

    Quantum decay of metastable current states in a rf SQUID superconducting ring of a hysteresis mode are considered. Point contacts are used as a Josephson weak link. The first derivative of rf IVC, dVsub(T)/dIsub(RF), is measured which gives the dependence of the density of decay probability on the amplitude of magnetic flux oscillations in the ring. The temperature dependence of probability distribution width between 4.2 and 0.5 K suggests that for most of high-ohmic contacts Nb-Nb, Nb-Ag-Nb the quantum mechanisms of decay become dominant beginning with the temperature of about 2 K. The experimental parameters of distribution of decay probability in the quantum limit are compared to those calculated by the theory of macroscopic quantum tunneling in the limit of high and low dissipation. The experimental values of probability density distribution width and characteristic quantum temperature are higher than the theoretical ones, the fact can be attributed to the deviation of current-phase relation of contact from a sinusoidal one. Besides, some contacts seem to correspond to the case of an intermediate value of dissipation. As the frequency of rf oscillations varies from 30 to 6 MHz, the distribution width remains unchanged in accordance with the theory of quantum tunneling decay of metastable current state in the ring in the limit of high damping. At low temperatures (T approximately 0.5 K), and rather small damping coefficient, the density of probability displays anomalous peaks when the amplitude of rf oscillations is lower considerably than the critical vaiue of magnetic flux in the ring

  13. Advanced RF and microwave functions based on an integrated optical frequency comb source.

    Science.gov (United States)

    Xu, Xingyuan; Wu, Jiayang; Nguyen, Thach G; Shoeiby, Mehrdad; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2018-02-05

    We demonstrate advanced transversal radio frequency (RF) and microwave functions based on a Kerr optical comb source generated by an integrated micro-ring resonator. We achieve extremely high performance for an optical true time delay aimed at tunable phased array antenna applications, as well as reconfigurable microwave photonic filters. Our results agree well with theory. We show that our true time delay would yield a phased array antenna with features that include high angular resolution and a wide range of beam steering angles, while the microwave photonic filters feature high Q factors, wideband tunability, and highly reconfigurable filtering shapes. These results show that our approach is a competitive solution to implementing reconfigurable, high performance and potentially low cost RF and microwave signal processing functions for applications including radar and communication systems.

  14. Modeling and Characterization of VCOs with MOS Varactors for RF Transceivers

    Directory of Open Access Journals (Sweden)

    Siu Chris

    2006-01-01

    Full Text Available As more broadband wireless standards are introduced and ratified, the complexity of wireless communication systems increases, which necessitates extra care and vigilance in their design. In this paper, various aspects of popular voltage-controlled oscillators (VCOs as key components in RF transceivers are discussed. The importance of phase noise of these key blocks in the overall performance of RF transceivers is highlighted. Varactors are identified as an important component of LC-based oscillators. A new model for accumulation-mode MOS varactors is introduced. The model is experimentally verified through measurements on LC-based VCOs designed in a standard m CMOS process.

  15. Rf system modeling for the high average power FEL at CEBAF

    International Nuclear Information System (INIS)

    Merminga, L.; Fugitt, J.; Neil, G.; Simrock, S.

    1995-01-01

    High beam loading and energy recovery compounded by use of superconducting cavities, which requires tight control of microphonic noise, place stringent constraints on the linac rf system design of the proposed high average power FEL at CEBAF. Longitudinal dynamics imposes off-crest operation, which in turn implies a large tuning angle to minimize power requirements. Amplitude and phase stability requirements are consistent with demonstrated performance at CEBAF. A numerical model of the CEBAF rf control system is presented and the response of the system is examined under large parameter variations, microphonic noise, and beam current fluctuations. Studies of the transient behavior lead to a plausible startup and recovery scenario

  16. Using crosscorrelation to mitigate analog/RF impairments for integrated spectrum analyzers

    NARCIS (Netherlands)

    Oude Alink, M.S.; Klumperink, Eric A.M.; Kokkeler, Andre B.J.; Ru, Z.; Cheng, W.; Nauta, Bram

    2013-01-01

    An integrated spectrum analyzer is useful for built-in self-test purposes, software-defined radios, or dynamic spectrum access in cognitive radio. The analog/RF performance is impaired by a number of factors, including thermal noise, phase noise, and nonlinearity. In this paper, we present an

  17. RF guns: a review

    International Nuclear Information System (INIS)

    Travier, C.

    1990-06-01

    Free Electron Lasers and future linear colliders require very bright electron beams. Conventional injectors made of DC guns and RF bunchers have intrinsic limitations. The recently proposed RF guns have already proven their capability to produce bright beams. The necessary effort to improve further these performances and to gain reliability is now undertaken by many laboratories. More than twenty RF gun projects both thermionic and laser-driven are reviewed. Their specific characteristics are outlined and their nominal performances are given

  18. RF SQUID in the nonhysteretic regime with k2Ql>1

    International Nuclear Information System (INIS)

    Dmitrenko, I.M.; Tsoi, G.M.; Shnyrkov, V.I.; Kartsovnik, V.V.

    1982-01-01

    Experimental measurements of current-voltage, current-phase, amplitude-frequency, phase-frequency, and signal characteristics of an rf SQUID operating at a frequency of 30 MHz in the nonhysteretic regime (1 = 2πL 0 I 0 /phi/sub o/ 2 Ql>1. Here I 0 is the critical current of the weak link, L 0 is the SQUID ring inductance, k is the coefficient of coupling of the SQUID ring to a resonant tank circuit of quality Q, and phi 0 is the magnetic flux quantum. A numerical analysis of the above characteristics for all relevant parameter values close to those occurring under experimental conditions was performed for qualitative comparison with theory. The main difference from the traditional nonhysteretic regime of SQUID operation (k 2 Q1 12 V/Wb for the single-valued region of the signal characteristics. The results suggest that considerable improvement of rf SQUID resolution is possible in the regime k 2 Ql>1

  19. Taxes, cost and demand shifters as determinants in the regional gasoline price formation process: Evidence from Spain

    International Nuclear Information System (INIS)

    Bello, Alejandro; Contín-Pilart, Ignacio

    2012-01-01

    This paper examines the pass-through of regional tax changes and spot price variations to regional gasoline prices in Spain. It also analyzes the impact of all major cost and demand shifters that contribute to regional gasoline price formation. To address these research issues, a reduced form price equation using monthly time-series cross-sectional (TSCS) data from January 2004 through December 2008 is estimated. Strong and consistent evidence of full shifting of regional tax changes to regional gasoline prices is found. Gasoline spot price changes are more than proportionally passed through to retail prices. In addition, the empirical evidence shows, on the one hand, that regional gasoline price differences before taxes continue to be quite narrow and, on the other hand, that there is still a margin for larger gasoline price differences among regions. This suggest that “traditional practices” from the monopoly era (i.e. relatively uniform regional gasoline prices) persist after the market has been liberalized, which may have been facilitated by the strong and uniform presence of the major Spanish-based refining companies in the retail sector over the whole country. - Highlights: ► The paper analyzes the impact of all major demand and cost shifters that contribute to regional gasoline price formation. ► It shows that the relatively uniform regional gasoline prices persist after the Spanish gasoline market has been liberalized. ► It shows that regional tax changes are fully passed on to regional gasoline prices. ► It also shows that gasoline spot price changes are fully passed on to consumer prices.

  20. Analysis of emittance compensation and simulation results to photo-cathode RF gun

    CERN Document Server

    LiuShengGuang

    2002-01-01

    The emittance compensation technology will be used on the photo-cathode RF gun for Shanghai SDUV-FEL. The space charge force and its effect on electron beam transverse emittance in RF gun is studied, the principle of emittance compensation in phase-space is discussed. The authors have designed a compensation solenoid and calculated its magnetic field distribution. Its performance has been studied by the code PARMELA. A simulation result indicates that the normalized transverse RMS emittance for electron beam of 1.5 nC is 1.612 pi mm centre dot mrad, electron energy E = 5.71 MeV

  1. A low-level rf control system for a quarter-wave resonator

    Science.gov (United States)

    Kim, Jongwon; Hwang, Churlkew

    2012-06-01

    A low-level rf control system was designed and built for an rf deflector, which is a quarter wave resonator, and was designed to deflect a secondary electron beam to measure the bunch length of an ion beam. The deflector has a resonance frequency near 88 MHz, its required phase stability is approximately ±1° and its amplitude stability is less than ±1%. The control system consists of analog input and output components and a digital system based on a field-programmable gate array for signal processing. The system is cost effective, while meeting the stability requirements. Some basic properties of the control system were measured. Then, the capability of the rf control was tested using a mechanical vibrator made of a dielectric rod attached to an audio speaker system, which could induce regulated perturbations in the electric fields of the resonator. The control system was flexible so that its parameters could be easily configured to compensate for the disturbance induced in the resonator.

  2. Intelligent low-level RF system by non-destructive beam monitoring device for cyclotrons

    Science.gov (United States)

    Sharifi Asadi Malafeh, M. S.; Ghergherehchi, M.; Afarideh, H.; Chai, J. S.; Yoon, Sang Kim

    2016-04-01

    The project of a 10 MeV PET cyclotron accelerator for medical diagnosis and treatment was started at Amirkabir University of Technology in 2012. The low-level RF system of the cyclotron accelerator is designed to stabilize acceleration voltage and control the resonance frequency of the cavity. In this work an Intelligent Low Level Radio Frequency Circuit or ILLRF, suitable for most AVF cyclotron accelerators, is designed using a beam monitoring device and narrow band tunable band-pass filter. In this design, the RF phase detection does not need signal processing by a microcontroller.

  3. Performance enhancement of high-field asymmetric waveform ion mobility spectrometry by applying differential-RF-driven operation mode.

    Science.gov (United States)

    Zeng, Yue; Tang, Fei; Zhai, Yadong; Wang, Xiaohao

    2017-09-01

    The traditional operation mode of high-field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) uses a one-way radio frequency (RF) voltage input as the dispersion voltage. This requires a high voltage input and limits power consumption reduction and miniaturization of instruments. With higher dispersion voltages or larger compensation voltages, there also exist problems such as low signal intensity or the fact that the dispersion voltage is no longer much larger than the compensation voltage. In this paper, a differential-RF-driven operation mode of FAIMS is proposed. The two-way RF is used to generate the dispersion field, and a phase difference is added between the two RFs to generate a single step waveform field. Theoretical analysis, and experimental results from an ethanol sample, showed that the peak positions of the ion spectra changed linearly (R 2 = 0.9992) with the phase difference of the two RFs in the differential-RF-driven mode and that the peak intensity of the ion spectrum could be enhanced by more than eight times for ethanol ions. In this way, it is possible to convert the ion spectrum peaks outside the separation or compensation voltage range into a detectable range, by changing the phase difference. To produce the same separation electric field, the high-voltage direct current input voltage can be maximally reduced to half of that in the traditional operation mode. Without changing the drift region size or drift condition, the differential-RF-driven operation mode can reduce power consumption, increase signal-to-noise ratio, extend the application range of the dispersion voltage and compensation voltage, and improve FAIMS detection performance.

  4. Serum LH-RF and LH levels after synthetic LH-RF administration in man as measured by radioimmunoassays

    International Nuclear Information System (INIS)

    Shiina, Masaki; Makino, Tsunehisa; Nakamura, Yukio; Iizuka, Rihachi

    1975-01-01

    Using a radioimmunoassay (RIA) which is sensitive and highly specific to lutenizing hormone releasing factors (LRF, LH-RF), diminution of an exogeously administered synthetic LH-RF in the blood and the movement of LH released into the blood from the anterior lobe of hypopysis were examined on healthy adult males. The blood LH-RF level after an intravenous administration of 200 μg of synthetic LH-RF reached a maximum (mean, 35.0 ng/ml serum) 2.5 minutes after administration, followed by a rapid decrease, and was as low as 1.0 ng/ml serum 30 minutes after administration. The diminution of the exogenous LH-RF from the blood was rapidest 2.5-15 minutes after administration (t1/2=3.9 minutes) and slowest (t1/2=7.9 minutes) 15-30 minutes after administration. On the other hand, when 200 μg of the synthetic LH-RF was administered intramuscularly, LH-RF appeared only slightly in the blood 2.5 minutes after administration, and the maximum level (10 minutes after administration) was only 1.6 ng/ml serum. It diminished from the blood drawing lenient curve. The blood LH level continued to rise significantly starting 5 minutes after administration of 200 μg of the synthetic LH-RF both in intravenous and intramuscular cases, showing hardly any differences between them. The blood endogenous LH-RF level prior to the synthetic LH-RF administration was below the measurable sensitivity (10 pg/tupe). (Mukohata, S.)

  5. High-brightness rf linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1986-01-01

    The issue of high brightness and its ramifications in linacs driven by radio-frequency fields is discussed. A history of the RF linacs is reviewed briefly. Some current applications are then examined that are driving progress in RF linacs. The physics affecting the brightness of RF linacs is then discussed, followed by the economic feasibility of higher brightness machines

  6. Final Report for 'Design calculations for high-space-charge beam-to-RF conversion'

    International Nuclear Information System (INIS)

    Smithe, David N.

    2008-01-01

    Accelerator facility upgrades, new accelerator applications, and future design efforts are leading to novel klystron and IOT device concepts, including multiple beam, high-order mode operation, and new geometry configurations of old concepts. At the same time, a new simulation capability, based upon finite-difference 'cut-cell' boundaries, has emerged and is transforming the existing modeling and design capability with unparalleled realism, greater flexibility, and improved accuracy. This same new technology can also be brought to bear on a difficult-to-study aspect of the energy recovery linac (ERL), namely the accurate modeling of the exit beam, and design of the beam dump for optimum energy efficiency. We have developed new capability for design calculations and modeling of a broad class of devices which convert bunched beam kinetic energy to RF energy, including RF sources, as for example, klystrons, gyro-klystrons, IOT's, TWT's, and other devices in which space-charge effects are important. Recent advances in geometry representation now permits very accurate representation of the curved metallic surfaces common to RF sources, resulting in unprecedented simulation accuracy. In the Phase I work, we evaluated and demonstrated the capabilities of the new geometry representation technology as applied to modeling and design of output cavity components of klystron, IOT's, and energy recovery srf cavities. We identified and prioritized which aspects of the design study process to pursue and improve in Phase II. The development and use of the new accurate geometry modeling technology on RF sources for DOE accelerators will help spark a new generational modeling and design capability, free from many of the constraints and inaccuracy associated with the previous generation of 'stair-step' geometry modeling tools. This new capability is ultimately expected to impact all fields with high power RF sources, including DOE fusion research, communications, radar and other

  7. Semi-analytical model of filtering effects in microwave phase shifters based on semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Chen, Yaohui; Xue, Weiqi; Öhman, Filip

    2008-01-01

    We present a model to interpret enhanced microwave phase shifts based on filter assisted slow and fast light effects in semiconductor optical amplifiers. The model also demonstrates the spectral phase impact of input optical signals.......We present a model to interpret enhanced microwave phase shifts based on filter assisted slow and fast light effects in semiconductor optical amplifiers. The model also demonstrates the spectral phase impact of input optical signals....

  8. Neoclassical effects on RF current drive in tokamaks

    International Nuclear Information System (INIS)

    Yoshioka, K.; Antonsen, T.M. Jr.

    1986-01-01

    Neoclassical effects on RF current drive which arise because of the inhomogeneity of the magnetic field in tokamak devices are analysed. A bounce averaged 2-D Fokker-Planck equation is derived from the drift kinetic equation and is solved numerically. The model features current drive due to a strong RF wave field. The efficiency of current drive by electron cyclotron waves is significantly reduced when the waves are absorbed at the low magnetic field side of a given flux surface, whereas the efficiency remains at the same level as in the homogeneous ideal plasma when the waves are absorbed at the high field side. The efficiency of current drive by fast waves (compressional Alfven waves) with low phase velocity (vsub(parallel)/vsub(th)<1) is significantly degraded by neoclassical effects, no matter where the wave is absorbed, and the applicability of this wave seems, therefore, to be doubtful. (author)

  9. RF radiation safety handbook

    International Nuclear Information System (INIS)

    Kitchen, Ronald.

    1993-01-01

    Radio frequency radiation can be dangerous in a number of ways. Hazards include electromagnetic compatibility and interference, electro-explosive vapours and devices, and direct effects on the human body. This book is a general introduction to the sources and nature of RF radiation. It describes the ways in which our current knowledge, based on relevant safety standards, can be used to safeguard people from any harmful effects of RF radiation. The book is designed for people responsible for, or concerned with, safety. This target audience will primarily be radio engineers, but includes those skilled in other disciplines including medicine, chemistry or mechanical engineering. The book covers the problems of RF safety management, including the use of measuring instruments and methods, and a review of current safety standards. The implications for RF design engineers are also examined. (Author)

  10. Pregnant women models analyzed for RF exposure and temperature increase in 3T RF shimmed birdcages.

    Science.gov (United States)

    Murbach, Manuel; Neufeld, Esra; Samaras, Theodoros; Córcoles, Juan; Robb, Fraser J; Kainz, Wolfgang; Kuster, Niels

    2017-05-01

    MRI is increasingly used to scan pregnant patients. We investigated the effect of 3 Tesla (T) two-port radiofrequency (RF) shimming in anatomical pregnant women models. RF shimming improves B 1 + uniformity, but may at the same time significantly alter the induced current distribution and result in large changes in both the level and location of the absorbed RF energy. In this study, we evaluated the electrothermal exposure of pregnant women in the third, seventh, and ninth month of gestation at various imaging landmarks in RF body coils, including modes with RF shimming. Although RF shimmed configurations may lower the local RF exposure for the mother, they can increase the thermal load on the fetus. In worst-case configurations, whole-body exposure and local peak temperatures-up to 40.8°C-are equal in fetus and mother. Two-port RF shimming can significantly increase the fetal exposure in pregnant women, requiring further research to derive a very robust safety management. For the time being, restriction to the CP mode, which reduces fetal SAR exposure compared with linear-horizontal polarization modes, may be advisable. Results from this study do not support scanning pregnant patients above the normal operating mode. Magn Reson Med 77:2048-2056, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  11. Development of new S-band RF window for stable high-power operation in linear accelerator RF system

    Science.gov (United States)

    Joo, Youngdo; Lee, Byung-Joon; Kim, Seung-Hwan; Kong, Hyung-Sup; Hwang, Woonha; Roh, Sungjoo; Ryu, Jiwan

    2017-09-01

    For stable high-power operation, a new RF window is developed in the S-band linear accelerator (Linac) RF systems of the Pohang Light Source-II (PLS-II) and the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL). The new RF window is designed to mitigate the strength of the electric field at the ceramic disk and also at the waveguide-cavity coupling structure of the conventional RF window. By replacing the pill-box type cavity in the conventional RF window with an overmoded cavity, the electric field component perpendicular to the ceramic disk that caused most of the multipacting breakdowns in the ceramic disk was reduced by an order of magnitude. The reduced electric field at the ceramic disk eliminated the Ti-N coating process on the ceramic surface in the fabrication procedure of the new RF window, preventing the incomplete coating from spoiling the RF transmission and lowering the fabrication cost. The overmoded cavity was coupled with input and output waveguides through dual side-wall coupling irises to reduce the electric field strength at the waveguide-cavity coupling structure and the possibility of mode competitions in the overmoded cavity. A prototype of the new RF window was fabricated and fully tested with the Klystron peak input power, pulse duration and pulse repetition rate of 75 MW, 4.5 μs and 10 Hz, respectively, at the high-power test stand. The first mass-produced new RF window installed in the PLS-II Linac is running in normal operation mode. No fault is reported to date. Plans are being made to install the new RF window to all S-band accelerator RF modules of the PLS-II and PAL-XFEL Linacs. This new RF window may be applied to the output windows of S-band power sources like Klystron as wells as the waveguide windows of accelerator facilities which operate in S-band.

  12. An updated overview of the LEB RF system

    International Nuclear Information System (INIS)

    Rogers, J.D.; Ferrell, J.H.; Curbow, J.E.; Friedrichs, C.

    1992-01-01

    Each of the Low Energy Booster (LEB) rf systems consists of the following major subsystems: a vacuum tube final rf amplifier driven by a solid state rf amplifier, a ferrite-tuned rf cavity used to bunch and accelerate the beam, a low-level rf system including rf feedback systems, a computer-based supervisory control system, and associated power supplies. The LEB rf system is broadband with the exception of the rf cavity, which is electronically tuned from approximately 47.5 MHz to 59.7 MHz in 50 ms. The design and development status of the LEB rf system is presented, with particular emphasis on the cavity and tuner, and the tuner bias power supply

  13. Electron beam and rf characterization of a low-emittance X-band photoinjector

    Directory of Open Access Journals (Sweden)

    D. J. Gibson

    2001-09-01

    Full Text Available Detailed experimental studies of the first operation of an X-band (8.547 GHz rf photoinjector are reported. The rf characteristics of the device are first described, as well as the tuning technique used to ensure operation of the 11/2-cell rf gun in the balanced π-mode. The characterization of the photoelectron beam produced by the rf gun includes: measurements of the bunch charge as a function of the laser injection phase, yielding information about the quantum efficiency of the Cu photocathode ( 2×10^{-5} for a surface field of 100 MV/m; measurements of the beam energy (1.5–2 MeV and relative energy spread ( Δγ/γ_{0}=1.8±0.2% using a magnetic spectrometer; measurements of the beam 90% normalized emittance, which is found to be ɛ_{n}=1.65π mm mrad for a charge of 25 pC; and measurements of the bunch duration ( <2 ps. Coherent synchrotron radiation experiments at Ku-band and Ka-band confirm the extremely short duration of the photoelectron bunch and a peak power scaling quadratically with the bunch charge.

  14. Adaptive Nonlinear RF Cancellation for Improved Isolation in Simultaneous Transmit–Receive Systems

    Science.gov (United States)

    Kiayani, Adnan; Waheed, Muhammad Zeeshan; Anttila, Lauri; Abdelaziz, Mahmoud; Korpi, Dani; Syrjala, Ville; Kosunen, Marko; Stadius, Kari; Ryynanen, Jussi; Valkama, Mikko

    2018-05-01

    This paper proposes an active radio frequency (RF) cancellation solution to suppress the transmitter (TX) passband leakage signal in radio transceivers supporting simultaneous transmission and reception. The proposed technique is based on creating an opposite-phase baseband equivalent replica of the TX leakage signal in the transceiver digital front-end through adaptive nonlinear filtering of the known transmit data, to facilitate highly accurate cancellation under a nonlinear TX power amplifier (PA). The active RF cancellation is then accomplished by employing an auxiliary transmitter chain, to generate the actual RF cancellation signal, and combining it with the received signal at the receiver (RX) low noise amplifier (LNA) input. A closed-loop parameter learning approach, based on the decorrelation principle, is also developed to efficiently estimate the coefficients of the nonlinear cancellation filter in the presence of a nonlinear TX PA with memory, finite passive isolation, and a nonlinear RX LNA. The performance of the proposed cancellation technique is evaluated through comprehensive RF measurements adopting commercial LTE-Advanced transceiver hardware components. The results show that the proposed technique can provide an additional suppression of up to 54 dB for the TX passband leakage signal at the RX LNA input, even at considerably high transmit power levels and with wide transmission bandwidths. Such novel cancellation solution can therefore substantially improve the TX-RX isolation, hence reducing the requirements on passive isolation and RF component linearity, as well as increasing the efficiency and flexibility of the RF spectrum use in the emerging 5G radio networks.

  15. Design study of a low-emittance high-repetition rate thermionic rf gun

    Directory of Open Access Journals (Sweden)

    A. Opanasenko

    2017-05-01

    Full Text Available We propose a novel gridless continuous-wave radiofrequency (rf thermionic gun capable of generating nC ns electron bunches with a rms normalized slice emittance close to the thermal level of 0.3 mm mrad. In order to gate the electron emission, an externally heated thermionic cathode is installed into a stripline-loop conductor. Two high-voltage pulses propagating towards each other in the stripline-loop overlap in the cathode region and create a quasielectrostatic field gating the electron emission. The repetition rate of pulses is variable and can reach up to one MHz with modern solid-state pulsers. The stripline attached to a rf gun cavity wall has with the wall a common aperture that allows the electrons to be injected into the rf cavity for further acceleration. Thanks to this innovative gridless design, simulations suggest that the bunch emittance is approximately at the thermal level after the bunch injection into the cavity provided that the geometry of the cathode and aperture are properly designed. Specifically, a concave cathode is adopted to imprint an Ƨ-shaped distribution onto the beam transverse phase-space to compensate for an S-shaped beam distribution created by the spherical aberration of the aperture-cavity region. In order to compensate for the energy spread caused by rf fields of the rf gun cavity, a 3rd harmonic cavity is used. A detailed study of the electrodynamics of the stripline and rf gun cavity as well as the beam optics and bunch dynamics are presented.

  16. RF gun using laser-triggered photocathode

    International Nuclear Information System (INIS)

    Akiyama, H.; Otake, Y.; Naito, T.; Takeuchi, Y.; Yoshioka, M.

    1992-01-01

    An RF gun using laser-triggered photocathode has many advantages as an injector of the linear colliders since it can generate a low emittance and high current pulsed beam. The experimental facility for the RF gun, such as an RF system, a laser system and a photocathode have been fabricated to study the fundamental characteristics. The dynamics of the RF gun has also studied by the 1D sheet beam model. (author)

  17. Simulation and characterization of the RF system and global stability analysis at the REGAE linear electron accelerator

    International Nuclear Information System (INIS)

    Mayet, Frank

    2012-12-01

    LAOLA (LAboratory for Laser- and beam-driven plasma Acceleration), is a collaboration between groups from DESY and the University of Hamburg. Its mission is to complement basic research in the relatively new field of plasma wakefield acceleration (PWA) by an explicit combination with DESY's conventional, modern accelerators. The linear electron accelerator REGAE is designed to produce sub 10 fs low charge electron bunches with ultra-low emittance at a repetition rate of 50 Hz. The planned experiments include femtosecond electron diffraction (R.J. Dwayne Miller), as well as the probing of laser induced plasma wakefields with well characterized bunches (LAOLA). They all require high bunch time of flight stability down to 10 fs. The REGAE machine consists of two RF cavities, both fed by a single klystron. While the first one - the gun cavity - is used for acceleration of the electrons, the second one - the buncher cavity - can be used to reduce the electron bunch length. This scheme only works for a specific RF phase relation between the two cavities. This thesis is split into two parts. In the first one the implications of the unique two cavity design on day-to-day machine operation are analyzed. To this end an analytical model of the RF system is developed, which is necessary for understanding how to individually adjust the cavity phases. In the second part the influence of the setup on time of flight stability is discussed with an emphasis on phase jitter compensation. RF phase stability measurements reveal that the current machine setup allows for a time of flight stability down to 50 fs right after the gun.

  18. Simulation and characterization of the RF system and global stability analysis at the REGAE linear electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Mayet, Frank

    2012-12-15

    LAOLA (LAboratory for Laser- and beam-driven plasma Acceleration), is a collaboration between groups from DESY and the University of Hamburg. Its mission is to complement basic research in the relatively new field of plasma wakefield acceleration (PWA) by an explicit combination with DESY's conventional, modern accelerators. The linear electron accelerator REGAE is designed to produce sub 10 fs low charge electron bunches with ultra-low emittance at a repetition rate of 50 Hz. The planned experiments include femtosecond electron diffraction (R.J. Dwayne Miller), as well as the probing of laser induced plasma wakefields with well characterized bunches (LAOLA). They all require high bunch time of flight stability down to 10 fs. The REGAE machine consists of two RF cavities, both fed by a single klystron. While the first one - the gun cavity - is used for acceleration of the electrons, the second one - the buncher cavity - can be used to reduce the electron bunch length. This scheme only works for a specific RF phase relation between the two cavities. This thesis is split into two parts. In the first one the implications of the unique two cavity design on day-to-day machine operation are analyzed. To this end an analytical model of the RF system is developed, which is necessary for understanding how to individually adjust the cavity phases. In the second part the influence of the setup on time of flight stability is discussed with an emphasis on phase jitter compensation. RF phase stability measurements reveal that the current machine setup allows for a time of flight stability down to 50 fs right after the gun.

  19. Multiple channel space lattice focusing and features of its use in applied RF linac

    International Nuclear Information System (INIS)

    Kushin, V.; Plotnikov, S.; Zarubin, A.; Bondarev, B.; Durkin, A.

    2000-01-01

    Nowadays the use of multiple channel accelerator systems is well known with some hundred channels helps us to increase total beam intensity proportional to the number of channels while the divergence of the total beam is roughly equal to the divergence of single channel. The accelerator structure for multiple beam linac must provide both transversal and longitudinal stability for every small beam taking into account Coulomb interactions of all the micro beams. The most convenient for accelerator structures with 100 and more beams are the systems that use RF focusing such as RFQ, APF and DTL with rectangular profiles. The common disadvantage of all those systems is connected with decreasing of focusing forces of RF field with particle velocity increase. Our analysis shows that the disadvantage may be overcome in structures with rectangular profiles. For this purpose some additional thin (3-5 mm) focusing electrodes called space lattices (SL) must be arranged within accelerator gaps. The distance between these electrodes is chosen roughly equal to the thickness of additional electrodes. The number of the electrodes must be increased with length of accelerator gaps and may be equal n=1,2...6 and even more. The arrangement of n thin electrodes in accelerator gaps helps us to reach qualitative change of accelerator structure parameters. Firstly, they make n times amplification of the sign-alternate component of RF focusing field without appreciable influence to phasing action of accelerating field. Secondly, introducing of additional electrodes that divide the gap on n small accelerator gaps provides beams shielding from each other within the region of beam acceleration in RF fields between drift tubes. The analysis shows that if n=4-6, it is possible to reach transversal stability of all particles independently of their input phases in RF field. On the other hand, the analysis shows that adiabatic change of synchronous phase at the input stage of acceleration helps us

  20. SWITCHED REFERENCE PHASE LOCK LOOP (SRPLL)

    International Nuclear Information System (INIS)

    KERNER, T.

    2001-01-01

    The Brookhaven National Laboratory Relativistic Heavy Ion Collider (RHIC) has two beam synchronous event links (BSL), one for each ring, which use the 28 MHz ring low level rf to distribute event codes synchronously with a precise phase relationship to the beam. During a cogging reset just before injection, the low level rf sine wave is interrupted which causes the BSL receivers to lose lock. Lock loss in turn causes false triggers and other undesirable-effects on the beam position monitors (BPM), ionization profile monitors (IPM), the tune meter and various experiments which use the BSLs. To rectify these problems, a SRPLL has been inserted between the beam synchronous master and the low level rf source. The SRPLL inserts a frequency and phase continuous splice over the dead-band gap in the rf source created during a cogging reset. The splice removes the gap and prevents the distributed BSL receivers from losing lock

  1. BRS 369RF and BRS 370RF: Glyphosate tolerant, high-yielding upland cotton cultivars for central Brazilian savanna

    Directory of Open Access Journals (Sweden)

    Camilo de Lelis Morello

    2015-12-01

    Full Text Available BRS 369RF and BRS 370RF were developed by the EMBRAPA as a part of efforts to create high-yielding germplasm with combinations of transgenic traits. BRS 369RF and BRS 370RF are midseason cultivars and have yield stability, adaptation to the central Brazilian savanna, good fiber quality and tolerance to glyphosate herbicide.

  2. Application of new simulation algorithms for modeling rf diagnostics of electron clouds

    International Nuclear Information System (INIS)

    Veitzer, Seth A.; Smithe, David N.; Stoltz, Peter H.

    2012-01-01

    Traveling wave rf diagnostics of electron cloud build-up show promise as a non-destructive technique for measuring plasma density and the efficacy of mitigation techniques. However, it is very difficult to derive an absolute measure of plasma density from experimental measurements for a variety of technical reasons. Detailed numerical simulations are vital in order to understand experimental data, and have successfully modeled build-up. Such simulations are limited in their ability to reproduce experimental data due to the large separation of scales inherent to the problem. Namely, one must resolve both rf frequencies in the GHz range, as well as the plasma modulation frequency of tens of MHz, while running for very long simulations times, on the order of microseconds. The application of new numerical simulation techniques allow us to bridge the simulation scales in this problem and produce spectra that can be directly compared to experiments. The first method is to use a plasma dielectric model to measure plasma-induced phase shifts in the rf wave. The dielectric is modulated at a low frequency, simulating the effects of multiple bunch crossings. This allows simulations to be performed without kinetic particles representing the plasma, which both speeds up the simulations as well as reduces numerical noise from interpolation of particle charge and currents onto the computational grid. Secondly we utilize a port boundary condition model to simultaneously absorb rf at the simulation boundaries, and to launch the rf into the simulation. This method improves the accuracy of simulations by restricting rf frequencies better than adding an external (finite) current source to drive rf, and absorbing layers at the boundaries. We also explore the effects of non-uniform plasma densities on the simulated spectra.

  3. CESAR, 2 MeV electron storage ring; construction period; RF cavity.

    CERN Multimedia

    Service Photo; CERN PhotoLab

    1962-01-01

    RF cavity. There were 2 identical ones: one for stacking (accumulation) procedures; the other for scanning with "empty buckets" (measurement of beam density distribution). Both were operated at h=2 (2nd harmonic of the revolution frequency), i.e. at around 24.4 MHz. Voltage, frequency and phase were programmed with analogue circuits.

  4. Low frequency rf current drive

    International Nuclear Information System (INIS)

    Hershkowitz, N.

    1992-01-01

    An unshielded antenna for rf heating has been developed and tested during this report period. In addition to design specifications being given, some experimental results are presented utilizing: (1) an unprotected Faraday shield, (2) insulating guard limiters, (3) unshielded antenna experiments, (4) method for detecting small rf driven currents, (5) rf fast wave current drive experiments, (6) alfven wave interactions with electrons, and (7) machine conditioning, impurity generation and density control

  5. Superconducting resonator used as a beam phase detector

    Directory of Open Access Journals (Sweden)

    S. I. Sharamentov

    2003-05-01

    Full Text Available Beam-bunch arrival time has been measured for the first time by operating superconducting cavities, normally part of the linac accelerator array, in a bunch-detecting mode. The very high Q of the superconducting cavities provides high sensitivity and allows for phase-detecting low-current beams. In detecting mode, the resonator is operated at a very low field level comparable to the field induced by the bunched beam. Because of this, the rf field in the cavity is a superposition of a “pure” (or reference rf and the beam-induced signal. A new method of circular phase rotation (CPR, allowing extraction of the beam phase information from the composite rf field was developed. Arrival time phase determination with CPR is better than 1° (at 48 MHz for a beam current of 100 nA. The electronics design is described and experimental data are presented.

  6. Inductive current startup in large tokamaks with expanding minor radius and rf assist

    International Nuclear Information System (INIS)

    Borowski, S.K.

    1984-02-01

    Auxiliary rf heating of electrons before and during the current-rise phase of a large tokamak, such as the Fusion Engineering Device (R = 4.8 m, a = 1.3 m, sigma = 1.6, B/sub T/ = 3.62 T), is examined as a means of reducing both the initiation loop voltage and resistive flux expenditure during startup. Prior to current initiation, 1 to 2 MW of electron cyclotron resonance heating power at approx. 90 GHz is used to create a small volume of high conductivity plasma (T/sub e/ approx. = 100 eV, n/sub e/ approx. = 10 19 m -3 ) near the upper hybrid resonance (UHR) region. This plasma conditioning permits a small radius (a 0 approx. = 0.2 to 0.4 m) current channel to be established with a relatively low initial loop voltage (less than or equal to 25 V as opposed to approx. 100 V without rf assist). During the subsequent plasma expansion and current ramp phase, a combination of rf heating (up to 5 MW) and current profile control leads to a substantial savings in volt-seconds by: (1) minimizing the resistive flux consumption; and (2) maintaining the internal flux at or near the flat profile limit

  7. Comparative Analysis of Carbon Plasma in Arc and RF Reactors

    International Nuclear Information System (INIS)

    Todorovic-Markovic, B.; Markovic, Z.; Mohai, I.; Szepvolgyi, J.

    2004-01-01

    Results on studies of molecular spectra emitted in the initial stages of fullerene formation during the processing of graphite powder in induction RF reactor and evaporation of graphite electrodes in arc reactor are presented in this paper. It was found that C2 radicals were dominant molecular species in both plasmas. C2 radicals have an important role in the process of fullerene synthesis. The rotational-vibrational temperatures of C2 and CN species were calculated by fitting the experimental spectra to the simulated ones. The results of optical emission study of C2 radicals generated in carbon arc plasma have shown that rotational temperature of C2 species depends on carbon concentration and current intensity significantly. The optical emission study of induction RF plasma and SEM analysis of graphite powder before and after plasma treatment have shown that evaporation of the processed graphite powder depends on feed rate and composition of gas phase significantly. Based on the obtained results, it was concluded that in the plasma region CN radicals could be formed by the reaction of C2 species with atomic nitrogen at smaller loads. At larger feed rate of graphite powder, CN species were produced by surface reaction of the hot carbon particles with nitrogen atoms. The presence of nitrogen in induction RF plasma reduces the fullerene yield significantly. The fullerene yield obtained in two different reactors was: 13% in arc reactor and 4.1% in induction RF reactor. However, the fullerene production rate was higher in induction RF reactor-6.4 g/h versus 1.7 g/h in arc reactor

  8. Cavity Voltage Phase Modulation MD blocks 3 and 4

    CERN Document Server

    Mastoridis, T; Butterworth, A; Molendijk, J; Tuckmantel, J

    2013-01-01

    The LHC RF/LLRF system is currently setup for extremely stable RF voltage to minimize transient beam loading effects. The present scheme cannot be extended beyond nominal beam current since the demanded power would push the klystrons to saturation. For beam currents above nominal (and possibly earlier), the cavity phase modulation by the beam (transient beam loading) will not be corrected, but the strong RF feedback and One-Turn Delay feedback will still be active for RF loop and beam stability in physics. To achieve this, the voltage set point should be adapted for each bunch. The goal of these MDs was to test thefirmware version of an iterative algorithm that adjusts the voltage set point to achieve the optimal phase modulation for klystron forward power considerations.

  9. RF Application of High Temperature Single Domain Superconductors

    International Nuclear Information System (INIS)

    Ferendeci, M.

    2004-01-01

    Large single domain YBa2Cu3Ox materials have been successfully fabricated with superb RF properties by employing the seeded-melt growth (SMG) method. Commercially available Y-123 and Y-211 phase precursor powders were mixed thoroughly and pressed into various solid and cavity shapes. The solid pieces were then diced into cylindrical flat plates and polished. Following the growth procedure, the materials were then oxygenated in an oven for at least 7 days. The plates were then used as a part of a dielectric resonator cavity and the surface resistances were measured. The cavities were also tested in a closed cycle cryo cooler. The cavity resonance frequencies for the TM010 and TE111 modes, and the corresponding quality factors (Q values) were measured. From the measured Q values, the surface resistances of the cavity surfaces were calculated. Experimentally measured surface resistance values and various combinations of cavity structures for realizing highly selective RF filters will be presented

  10. Rf beam loading in the Brookhaven AGS with booster injection

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Raka, E.; Weng, W.T.

    1992-01-01

    Multi-batch bunched beam loading during injection from the Booster to the AGS will be discussed. The full intensity beam injection to the upgraded AGS rf system with beam phase and radial feedbacks will be studied. It is shown that a beam phase feedback is necessary in order to guarantee a predictable hewn behavior after the first batch injection, otherwise the initial phase deviation for the following batch injections cannot be controlled. However, the effectiveness of the phase feedback control of the transient beam loading may be limited by an emittance blow up in the process. It is shown that a fast power amplifier feedback with a moderate gain can significantly reduce the transient effect of the bunched beam injection

  11. RF measurements I: signal receiving techniques

    CERN Document Server

    Caspers, F

    2011-01-01

    For the characterization of components, systems and signals in the RF and microwave range, several dedicated instruments are in use. In this paper the fundamentals of the RF-signal sampling technique, which has found widespread applications in 'digital' oscilloscopes and sampling scopes, are discussed. The key element in these front-ends is the Schottky diode which can be used either as an RF mixer or as a single sampler. The spectrum analyser has become an absolutely indispensable tool for RF signal analysis. Here the front-end is the RF mixer as the RF section of modern spectrum analysers has a rather complex architecture. The reasons for this complexity and certain working principles as well as limitations are discussed. In addition, an overview of the development of scalar and vector signal analysers is given. For the determination of the noise temperature of a one-port and the noise figure of a two-port, basic concepts and relations are shown. A brief discussion of commonly used noise measurement techniq...

  12. Implications of ITER requirements on R and D of RF heating and current drive systems

    International Nuclear Information System (INIS)

    Bosia, G.

    2002-01-01

    A strategic, rather than auxiliary role is assigned to H and CD systems in ITER-FEAT, as all operation phases are driven and controlled by heating and current drive (H and CD) systems. RF systems (Electron Cyclotron, Ion Cyclotron and Lower Hybrid), planned to contribute for ∼60% of ITER auxiliary power (72 MW), still require different level of pre-industrial technology development to operate in ITER at the required level of efficiency and religiosite. In this paper, RF H and CD systems technical and operational issues are reviewed and future R and D actions at CEA-Cadarache discussed, with the aim of providing a demonstration of all RF H and CD systems, within the current ITER construction time scale. The need and the economical advantage of an early on- and off- plasma design validation program for ITER-like RF devices (such as launcher and/or power sources), is also discussed with the aim of identifying and resolving operational issues. (author)

  13. The new JET phased ICRH array: first experiments and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Bures, M; Bhatnagar, V; Brown, T; Fechner, B; Gormezano, C; Kaye, A; Lennholm, M; Righi, E; Rimini, F; Sibley, A; Start, D; Wade, T [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Goulding, R [Oak Ridge National Lab., TN (United States); Lamalle, P [Ecole Royale Militaire, Brussels (Belgium). Lab. de Physique des Plasmas; Nguyen, F [CEA Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France)

    1994-07-01

    New ICRH antennas on JET were designed to couple to the new JET divertor plasma configurations and to improve the Fast Wave Current Drive (FWCD) capabilities. The A2 antenna consists of 4 straps whose currents can be phased at arbitrary angles. The real time automatic tuning acts on frequency, line length (line phase shifters) and stub length. Provision is made for the coupling resistance/plasma position feedback to accommodate the fast changes in antenna loading. The first coupling, tuning and heating results are reported in 0{pi}0{pi}, 0000 and 00{pi}{pi} phasing. A new antenna model is described, which was developed to simulate the measured antenna loading in terms of plasma parameters and to provide a starting point for the real time automatic tuning. 5 refs., 4 figs.

  14. Technology development of solid state rf systems at 350 MHz and 325 MHz for RF accelerator

    International Nuclear Information System (INIS)

    Rama Rao, B.V.; Mishra, J.K.; Pande, Manjiri; Gupta, S.K.

    2011-01-01

    For decades vacuum tubes and klystrons have been used in high power application such as RF accelerators and broadcast transmitters. However, now, the solid-state technology can give power output in kilowatt regime. Higher RF power output can be achieved by combining several solid-state power amplifier modules using power combiners. This technology presents several advantages over traditional RF amplifiers, such as simpler start-up procedure, high modularity, high redundancy and flexibility, elimination of high voltage supplies and high power circulators, low operational cost, online maintenance without shut down of RF power station and no warm up time. In BARC, solid state amplifier technology development is being done both at 350 MHz and 325 MHz using RF transistors such as 1 kW LDMOS and 350 Watt VDMOS. Topology of input and output matching network in RF modules developed, consist of two L type matching sections with each section having a combination of series micro-strip line and parallel capacitor. The design is of equal Q for both the sections and of 25 ohm characteristics impedance of micro strip lines. Based on this, lengths of micro strips lines and values of shunt capacitors have been calculated. The calculated and simulated values of network elements have been compared. Similarly power combiners have been designed and developed based on Wilkinson techniques without internal resistors and using coaxial technology. This paper presents design and development of RF power amplifier modules, associated power combiner technologies and then integrated RF power amplifier. (author)

  15. Liquid Metal Droplet and Micro Corrugated Diaphragm RF-MEMS for reconfigurable RF filters

    Science.gov (United States)

    Irshad, Wasim

    Widely Tunable RF Filters that are small, cost-effective and offer ultra low power consumption are extremely desirable. Indeed, such filters would allow drastic simplification of RF front-ends in countless applications from cell phones to satellites in space by replacing switched-array of static acoustic filters and YIG filters respectively. Switched array of acoustic filters are de facto means of channel selection in mobile applications such as cell phones. SAW and BAW filters satisfy most criteria needed by mobile applications such as low cost, size and power consumption. However, the trade-off is a significant loss of 3-4 dB in modern cell phone RF front-end. This leads to need for power-hungry amplifiers and short battery life. It is a necessary trade-off since there are no better alternatives. These devices are in mm scale and consume mW. YIG filters dominate applications where size or power is not a constraint but demand excellent RF performance like low loss and high tuning ratio. These devices are measured in inches and require several watts to operate. Clearly, a tunable RF filter technology that would combine the cost, size and power consumption benefits of acoustic filters with excellent RF performance of YIG filters would be extremely desirable and imminently useful. The objective of this dissertation is to develop such a technology based upon RF-MEMS Evanescent-mode cavity filter. Two highly novel RF-MEMS devices have been developed over the course of this PhD to address the unique MEMS needs of this technology. The first part of the dissertation is dedicated to introducing the fundamental concepts of tunable cavity resonators and filters. This includes the physics behind it, key performance metrics and what they depend on and requirements of the MEMS tuners. Initial gap control and MEMS attachment method are identified as potential hurdles towards achieving very high RF performance. Simple and elegant solutions to both these issues are discussed in

  16. A thermodynamical analysis of rf current drive with fast electrons

    Energy Technology Data Exchange (ETDEWEB)

    Bizarro, João P. S., E-mail: bizarro@ipfn.tecnico.ulisboa.pt [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2015-08-15

    The problem of rf current drive (CD) by pushing fast electrons with high-parallel-phase-velocity waves, such as lower-hybrid (LH) or electron-cyclotron (EC) waves, is revisited using the first and second laws, the former to retrieve the well-known one-dimensional (1D) steady-state CD efficiency, and the latter to calculate a lower bound for the rate of entropy production when approaching steady state. The laws of thermodynamics are written in a form that explicitly takes care of frictional dissipation and are thus applied to a population of fast electrons evolving under the influence of a dc electric field, rf waves, and collisions while in contact with a thermal, Maxwellian reservoir with a well-defined temperature. Besides the laws of macroscopic thermodynamics, there is recourse to basic elements of kinetic theory only, being assumed a residual dc electric field and a strong rf drive, capable of sustaining in the resonant region, where waves interact with electrons, a raised fast-electron tail distribution, which becomes an essentially flat plateau in the case of the 1D theory for LHCD. Within the 1D model, particularly suited for LHCD as it solely retains fast-electron dynamics in velocity space parallel to the ambient magnetic field, an H theorem for rf CD is also derived, which is written in different forms, and additional physics is recovered, such as the synergy between the dc and rf power sources, including the rf-induced hot conductivity, as well as the equation for electron-bulk heating. As much as possible 1D results are extended to 2D, to account for ECCD by also considering fast-electron velocity-space dynamics in the direction perpendicular to the magnetic field, which leads to a detailed discussion on how the definition of an rf-induced conductivity may depend on whether one works at constant rf current or power. Moreover, working out the collisional dissipated power and entropy-production rate written in terms of the fast-electron distribution, it

  17. Synergistic retention strategy of RGD active targeting and radiofrequency-enhanced permeability for intensified RF & chemotherapy synergistic tumor treatment.

    Science.gov (United States)

    Zhang, Kun; Li, Pei; He, Yaping; Bo, Xiaowan; Li, Xiaolong; Li, Dandan; Chen, Hangrong; Xu, Huixiong

    2016-08-01

    Despite gaining increasing attention, chelation of multiple active targeting ligands greatly increase the formation probability of protein corona, disabling active targeting. To overcome it, a synergistic retention strategy of RGD-mediated active targeting and radiofrequency (RF) electromagnetic field-enhanced permeability has been proposed here. It is validated that such a special synergistic retention strategy can promote more poly lactic-co-glycolic acid (PLGA)-based capsules encapsulating camptothecin (CPT) and solid DL-menthol (DLM) to enter and retain in tumor in vitro and in vivo upon exposure to RF irradiation, receiving an above 8 fold enhancement in HeLa retention. Moreover, the PLGA-based capsules can respond RF field to trigger the entrapped DLM to generate solid-liquid-gas (SLG) tri-phase transformation for enhancing RF ablation and CPT release. Therefore, depending on the enhanced RF ablation and released CPT and the validated synergistic retention effect, the inhibitory outcome for tumor growth has gained an over 10-fold improvement, realizing RF ablation & chemotherapy synergistic treatment against HeLa solid tumor, which indicates a significant promise in clinical RF ablation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Cavity Voltage Phase Modulation MD

    CERN Document Server

    Mastoridis, Themistoklis; Molendijk, John; Timko, Helga; CERN. Geneva. ATS Department

    2016-01-01

    The LHC RF/LLRF system is currently configured for extremely stable RF voltage to minimize transient beam loading effects. The present scheme cannot be extended beyond nominal beam current since the demanded power would exceed the peak klystron power and lead to saturation. A new scheme has therefore been proposed: for beam currents above nominal (and possibly earlier), the cavity phase modulation by the beam will not be corrected (transient beam loading), but the strong RF feedback and One-Turn Delay feedback will still be active for loop and beam stability in physics. To achieve this, the voltage set point will be adapted for each bunch. The goal of this MD was to test a new algorithm that would adjust the voltage set point to achieve the cavity phase modulation that would minimize klystron forward power.

  19. RF sensor for multiphase flow measurement through an oil pipeline

    Science.gov (United States)

    Wylie, S. R.; Shaw, A.; Al-Shamma'a, A. I.

    2006-08-01

    We have developed, in conjunction with Solartron ISA, an electromagnetic cavity resonator based sensor for multiphase flow measurement through an oil pipeline. This sensor is non-intrusive and transmits low power (10 mW) radio frequencies (RF) in the range of 100-350 MHz and detects the pipeline contents using resonant peaks captured instantaneously. The multiple resonances from each captured RF spectrum are analysed to determine the phase fractions in the pipeline. An industrial version of the sensor for a 102 mm (4 inch) diameter pipe has been constructed and results from this sensor are compared to those given by simulations performed using the electromagnetic high frequency structure simulator software package HFSS. This paper was presented at the 13th International Conference on Sensors and held in Chatham, Kent, on 6-7 September 2005.

  20. Additive manufactured Ti6Al4V scaffolds with the RF- magnetron sputter deposited hydroxyapatite coating

    International Nuclear Information System (INIS)

    Chudinova, E; Surmeneva, M; Surmenev, R; Koptioug, A; Scoglund, P

    2016-01-01

    Present paper reports on the results of surface modification of the additively manufactured porous Ti6Al4V scaffolds. Radio frequency (RF) magnetron sputtering was used to modify the surface of the alloy via deposition of the biocompatible hydroxyapatite (HA) coating. The surface morphology, chemical and phase composition of the HA-coated alloy were studied. It was revealed that RF magnetron sputtering allows preparing a homogeneous HA coating onto the entire surface of scaffolds. (paper)

  1. Linear collider RF: Introduction and summary

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1995-01-01

    The relation of acceleration gradient with RF frequency is examined, and approximate general RF power requirements are derived. Considerations of efficiency and cost are discussed. RF Sources, presented at the conference, are reviewed. Overall efficiencies of the linear collider proposals are compared. copyright 1995 American Institute of Physics

  2. RF and feedback systems

    International Nuclear Information System (INIS)

    Boussard, D.

    1994-01-01

    The radiofrequency system of the Tau Charm Factory accelerating 10 11 particles per bunch and a circulating current of 0.5 A is presented. In order to produce the very short bunches required, the RF system of TCF must provide a large RF voltage (8 MV) at a frequency in the neighbourhood of 400-500 MHz. It appears very attractive to produce the high voltage required with superconducting cavities, for which wall losses are negligible. A comparison between the sc RF system proposed and a possible copper system run at an average 1 MV/m, shows the clear advantage of sc cavities for TCF. (R.P.). 2 figs,. 1 tab

  3. Integration of the PHIN RF Gun into the CLIC Test Facility

    CERN Document Server

    Döbert, Steffen

    2006-01-01

    CERN is a collaborator within the European PHIN project, a joint research activity for Photo injectors within the CARE program. A deliverable of this project is an rf Gun equipped with high quantum efficiency Cs2Te cathodes and a laser to produce the nominal beam for the CLIC Test Facility (CTF3). The nominal beam for CTF3 has an average current of 3.5 A, 1.5 GHz bunch repetition frequency and a pulse length of 1.5 ìs (2332 bunches) with quite tight stability requirements. In addition a phase shift of 180 deg is needed after each train of 140 ns for the special CLIC combination scheme. This rf Gun will be tested at CERN in fall 2006 and shall be integrated as a new injector into the CTF3 linac, replacing the existing injector consisting of a thermionic gun and a subharmonic bunching system. The paper studies the optimal integration into the machine trying to optimize transverse and longitudinal phase space of the beam while respecting the numerous constraints of the existing accelerator. The presented scheme...

  4. High-quality electron pulse generation from a laser photocathode RF gun

    International Nuclear Information System (INIS)

    Yang, Jinfeng; Sakai, Fumio; Aoki, Yasushi

    1999-01-01

    A laser photocathode RF gun system was developed for ultra short X-ray pulse generation via the inverse Compton scattering. The gun is a BNL-type S-band RF gun and the performance test of the gun was performed at the Linear Accelerator Facility in the Institute of Scientific and Industries Research, Osaka University. The gun system produced 115 pC electron bunches with the energy of 1.6 MeV under the condition of RF peak power of 1.5 MW and laser pulse energy of 65 μJ. The quantum efficiency and dark current were obtained to be 10 -5 and 0.6 nA at the repetition rate of 10 Hz, respectively. The energy and charge of the electron bunch were measured as a function of laser injection phase. Furthermore, the electron bunches were accelerated up to 117 MeV by three s-band TW linacs and the energy monochromaticity (ΔE/E) of the beam was 1.2%. The transverse emittance was also experimentally investigated at the end of the linacs. (author)

  5. [Development of RF coil of permanent magnet mini-magnetic resonance imager and mouse imaging experiments].

    Science.gov (United States)

    Hou, Shulian; Xie, Huantong; Chen, Wei; Wang, Guangxin; Zhao, Qiang; Li, Shiyu

    2014-10-01

    In the development of radio frequency (RF) coils for better quality of the mini-type permanent magnetic resonance imager for using in the small animal imaging, the solenoid RF coil has a special advantage for permanent magnetic system based on analyses of various types.of RF coils. However, it is not satisfied for imaging if the RF coils are directly used. By theoretical analyses of the magnetic field properties produced from the solenoid coil, the research direction was determined by careful studies to raise further the uniformity of the magnetic field coil, receiving coil sensitivity for signals and signal-to-noise ratio (SNR). The method had certain advantages and avoided some shortcomings of the other different coil types, such as, birdcage coil, saddle shaped coil and phased array coil by using the alloy materials (from our own patent). The RF coils were designed, developed and made for keeled applicable to permanent magnet-type magnetic resonance imager, multi-coil combination-type, single-channel overall RF receiving coil, and applied for a patent. Mounted on three instruments (25 mm aperture, with main magnetic field strength of 0.5 T or 1.5 T, and 50 mm aperture, with main magnetic field strength of 0.48 T), we performed experiments with mice, rats, and nude mice bearing tumors. The experimental results indicated that the RF receiving coil was fully applicable to the permanent magnet-type imaging system.

  6. Low temperature rf sputtering deposition of (Ba, Sr) TiO3 thin film with crystallization enhancement by rf power supplied to the substrate

    International Nuclear Information System (INIS)

    Yoshimaru, Masaki; Takehiro, Shinobu; Abe, Kazuhide; Onoda, Hiroshi

    2005-01-01

    The (Ba, Sr) TiO 3 thin film deposited by radio frequency (rf) sputtering requires a high deposition temperature near 500 deg. C to realize a high relative dielectric constant over of 300. For example, the film deposited at 330 deg. C contains an amorphous phase and shows a low relative dielectric constant of less than 100. We found that rf power supplied not only to the (Ba, Sr) TiO 3 sputtering target, but also to the substrate during the initial step of film deposition, enhanced the crystallization of the (Ba, Sr) TiO 3 film drastically and realized a high dielectric constant of the film even at low deposition temperatures near 300 deg. C. The 50-nm-thick film with only a 10 nm initial layer deposited with the substrate rf biasing is crystallized completely and shows a high relative dielectric constant of 380 at the deposition temperature of 330 deg. C. The (Ba, Sr) TiO 3 film deposited at higher temperatures (upwards of 400 deg. C) shows preferred orientation, while the film deposited at 330 deg. C with the 10 nm initial layer shows a preferred orientation on a -oriented ruthenium electrode. The unit cell of (Ba, Sr) TiO 3 (111) plane is similar to that of ruthenium (001) plane. We conclude that the rf power supplied to the substrate causes ion bombardments on the (Ba, Sr) TiO 3 film surface, which assists the quasiepitaxial growth of (Ba, Sr) TiO 3 film on the ruthenium electrode at low temperatures of less than 400 deg. C

  7. Low temperature rf sputtering deposition of (Ba, Sr) TiO3 thin film with crystallization enhancement by rf power supplied to the substrate

    Science.gov (United States)

    Yoshimaru, Masaki; Takehiro, Shinobu; Abe, Kazuhide; Onoda, Hiroshi

    2005-05-01

    The (Ba, Sr) TiO3 thin film deposited by radio frequency (rf) sputtering requires a high deposition temperature near 500 °C to realize a high relative dielectric constant over of 300. For example, the film deposited at 330 °C contains an amorphous phase and shows a low relative dielectric constant of less than 100. We found that rf power supplied not only to the (Ba, Sr) TiO3 sputtering target, but also to the substrate during the initial step of film deposition, enhanced the crystallization of the (Ba, Sr) TiO3 film drastically and realized a high dielectric constant of the film even at low deposition temperatures near 300 °C. The 50-nm-thick film with only a 10 nm initial layer deposited with the substrate rf biasing is crystallized completely and shows a high relative dielectric constant of 380 at the deposition temperature of 330 °C. The (Ba, Sr) TiO3 film deposited at higher temperatures (upwards of 400 °C) shows preferred orientation, while the film deposited at 330 °C with the 10 nm initial layer shows a preferred orientation on a -oriented ruthenium electrode. The unit cell of (Ba, Sr) TiO3 (111) plane is similar to that of ruthenium (001) plane. We conclude that the rf power supplied to the substrate causes ion bombardments on the (Ba, Sr) TiO3 film surface, which assists the quasiepitaxial growth of (Ba, Sr) TiO3 film on the ruthenium electrode at low temperatures of less than 400 °C.

  8. Stochastic cooling with a double rf system

    International Nuclear Information System (INIS)

    Wei, Jie.

    1992-01-01

    Stochastic cooling for a bunched beam of hadrons stored in an accelerator with a double rf system of two different frequencies has been investigated. The double rf system broadens the spread in synchrotron-oscillation frequency of the particles when they mostly oscillate near the center of the rf bucket. Compared with the ease of a single rf system, the reduction rates of the bunch dimensions are significantly increased. When the rf voltage is raised, the reduction rate, instead of decreasing linearly, now is independent of the ratio of the bunch area to the bucket area. On the other hand, the spread in synchrotron-oscillation frequency becomes small with the double rf system, if the longitudinal oscillation amplitudes of the particles are comparable to the dimension of the rf bucket. Consequently, stochastic cooling is less effective when the bunch area is close to the bucket area

  9. RF Group Annual Report 2011

    CERN Document Server

    Angoletta, M E; Betz, M; Brunner, O; Baudrenghien, P; Calaga, R; Caspers, F; Ciapala, E; Chambrillon, J; Damerau, H; Doebert, S; Federmann, S; Findlay, A; Gerigk, F; Hancock, S; Höfle, W; Jensen, E; Junginger, T; Liao, K; McMonagle, G; Montesinos, E; Mastoridis, T; Paoluzzi, M; Riddone, G; Rossi, C; Schirm, K; Schwerg, N; Shaposhnikova, E; Syratchev, I; Valuch, D; Venturini Delsolaro, W; Völlinger, C; Vretenar, M; Wuensch, W

    2012-01-01

    The highest priority for the RF group in 2011 was to contribute to a successful physics run of the LHC. This comprises operation of the superconducting 400 MHz accelerating system (ACS) and the transverse damper (ADT) of the LHC itself, but also all the individual links of the injector chain upstream of the LHC – Linac2, the PSB, the PS and the SPS – don’t forget that it is RF in all these accelerators that truly accelerates! A large variety of RF systems had to operate reliably, often near their limit. New tricks had to be found and implemented to go beyond limits; not to forget the equally demanding operation with Pb ions using in addition Linac3 and LEIR. But also other physics users required the full attention of the RF group: CNGS required in 2011 beams with very short, intense bunches, AD required reliable deceleration and cooling of anti-protons, Isolde the post-acceleration of radioactive isotopes in Rex, just to name a few. In addition to the supply of beams for physics, the RF group has a num...

  10. Rf probe technology for the next generation of technological plasmas

    International Nuclear Information System (INIS)

    Law, V.J.; Kenyon, A.J.; Thornhill, N.F.; Seeds, A.J.; Batty, I.

    2001-01-01

    We describe radio frequency (rf) analysis of technological plasmas at the 13.56 MHz fundamental drive frequency and integer narrow-band harmonics up to n = 9. In particular, we demonstrate the use of harmonic amplitude information as a process end-point diagnostic. Using very high frequency (vhf) techniques, we construct non-invasive ex situ remote-coupled probes: a diplexer, an equal-ratio-arm bridge, and a dual directional coupler used as a single directional device. These probes bolt into the plasma-tool 50 Ω transmission-line between the rf generator and matching network, and hence do not require modification of the plasma tool. The 50 Ω probe environment produces repeatable measurements of the chamber capacitance and narrow-band harmonic amplitude with an end-point detection sensitivity corresponding to a 2 dB change in the harmonic amplitude with the removal of 1 cm 2 of photoresist. The methodology and design of an instrument for the measurement of the plasma-tool frequency response, and the plasma harmonic amplitude and phase response are examined. The instrument allows the monitoring of the plasma phase delay, plasma-tool short- and long-term ageing, and process end-point prediction. (author)

  11. Prototype phase and amplitude feedback-control systems for the FMIT accelerator

    International Nuclear Information System (INIS)

    Fazio, M.V.; Patton, R.D.

    1983-01-01

    The phase and amplitude feedback-control systems for the Fusion Materials irradiation Test (FMIT) accelerator have been successfully prototyped and tested. The testing was performed at low power with two 100-W rf systems driving a high-Q resonant cavity at 80 MHz. The control systems can maintain the cavity field amplitude to within +-1% and the phase to within +-1 0 of the set-point values. When there are multiple rf systems independently driving a resonant cavity through individual drive loops, amplitude matching and proper phasing between the outputs of each rf system are essential for proper system operation. Experimental results are presented

  12. Rf power sources

    International Nuclear Information System (INIS)

    Allen, M.A.

    1988-05-01

    This paper covers RF power sources for accelerator applications. The approach has been with particular customers in mind. These customers are high energy physicists who use accelerators as experimental tools in the study of the nucleus of the atom, and synchrotron light sources derived from electron or positron storage rings. This paper is confined to electron-positron linear accelerators since the RF sources have always defined what is possible to achieve with these accelerators. 11 refs., 13 figs

  13. Beam Dynamics Simulation of Photocathode RF Electron Gun at the PBP-CMU Linac Laboratory

    Science.gov (United States)

    Buakor, K.; Rimjaem, S.

    2017-09-01

    Photocathode radio-frequency (RF) electron guns are widely used at many particle accelerator laboratories due to high quality of produced electron beams. By using a short-pulse laser to induce the photoemission process, the electrons are emitted with low energy spread. Moreover, the photocathode RF guns are not suffered from the electron back bombardment effect, which can cause the limited electron current and accelerated energy. In this research, we aim to develop the photocathode RF gun for the linac-based THz radiation source. Its design is based on the existing gun at the PBP-CMU Linac Laboratory. The gun consists of a one and a half cell S-band standing-wave RF cavities with a maximum electric field of about 60 MV/m at the centre of the full cell. We study the beam dynamics of electrons traveling through the electromagnetic field inside the RF gun by using the particle tracking program ASTRA. The laser properties i.e. transverse size and injecting phase are optimized to obtain low transverse emittance. In addition, the solenoid magnet is applied for beam focusing and emittance compensation. The proper solenoid magnetic field is then investigated to find the optimum value for proper emittance conservation condition.

  14. Experiments on the rf surface resistance of the perovskite superconductors at 3 GHz

    International Nuclear Information System (INIS)

    Hein, M.; Klein, N.; Mueller, G.; Piel, H.; Roeth, R.W.

    1988-01-01

    Since the discovery of the perovskite superconductors many experiments to explore their physical properties have been performed and various potential applications have been considered. The high critical temperature of more than 90 K obtained with Y 1 Ba 2 Cu 3 O/sub 7-δ/ (Y may be substituted by other rare earth elements) makes these superconductors interesting for applications in microwave technology. This has focused the authors interest on the investigation of their rf properties. Due to the sensitivity of the rf surface resistance to surface impurities and remaining non superconducting phases rf measurements are a good means to provide useful information about the quality of sample preparation and about physical properties of the superconductor itself. This contribution reports on the experimental determination of the rf surface resistance of Y 1 Ba 2 Cu 3 O/sub 7-δ/ and Eu 1 Ba 2 Cu 3 O/sub 7-δ/ in the normal and superconducting state at 3 GHz. In the first chapter the preparation of the ceramic samples and initial dc experiments are described. The main part of the paper describes the rf measurements which are performed in a superconducting niobium host cavity. The obtained results for both the surface resistance and the high field performance are discussed with respect to the preparation of the samples and regarding possible applications. 7 references, 7 figures, 2 tables

  15. Operator interface for the PEP-II low level RF control system

    International Nuclear Information System (INIS)

    Allison, S.; Claus, R.

    1997-05-01

    This paper focuses on the operational aspects of the low level RF control system being built for the PEP-II storage rings at SLAC. Subsystems requiring major operational considerations include displays for monitor and control from UNIX workstations, slow feedback loops and control sequences residing on microprocessors, and various client applications in the existing SLAC Linear Collider (SLC) control system. Since commissioning of PEP-II RF is currently in-progress, only those parts of the control system used during this phase are discussed in detail. Based on past experience with the SLC control system, it is expected that effort expended during commissioning on a solid user interface will result in smoother transition to full reliable 24-hour-a-day operation

  16. Digital Receiver Phase Meter

    Science.gov (United States)

    Marcin, Martin; Abramovici, Alexander

    2008-01-01

    The software of a commercially available digital radio receiver has been modified to make the receiver function as a two-channel low-noise phase meter. This phase meter is a prototype in the continuing development of a phase meter for a system in which radiofrequency (RF) signals in the two channels would be outputs of a spaceborne heterodyne laser interferometer for detecting gravitational waves. The frequencies of the signals could include a common Doppler-shift component of as much as 15 MHz. The phase meter is required to measure the relative phases of the signals in the two channels at a sampling rate of 10 Hz at a root power spectral density measurements in laser metrology of moving bodies. To illustrate part of the principle of operation of the phase meter, the figure includes a simplified block diagram of a basic singlechannel digital receiver. The input RF signal is first fed to the input terminal of an analog-to-digital converter (ADC). To prevent aliasing errors in the ADC, the sampling rate must be at least twice the input signal frequency. The sampling rate of the ADC is governed by a sampling clock, which also drives a digital local oscillator (DLO), which is a direct digital frequency synthesizer. The DLO produces samples of sine and cosine signals at a programmed tuning frequency. The sine and cosine samples are mixed with (that is, multiplied by) the samples from the ADC, then low-pass filtered to obtain in-phase (I) and quadrature (Q) signal components. A digital signal processor (DSP) computes the ratio between the Q and I components, computes the phase of the RF signal (relative to that of the DLO signal) as the arctangent of this ratio, and then averages successive such phase values over a time interval specified by the user.

  17. TRANSIENT BEAM LOADING EFFECTS IN RF SYSTEMS IN JLEIC

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haipeng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Guo, Jiquan [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Rimmer, Robert A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wang, Shaoheng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    The pulsed electron bunch trains generated from the Continuous Electron Beam Accelerator Facility (CEBAF) linac to inject into the proposed Jefferson Lab Electron Ion Collider (JLEIC) e-ring will produce transient beam loading effects in the Superconducting Radio Frequency (SRF) systems that, if not mitigated, could cause unacceptably large beam energy deviation in the injection capture, or exceed the energy acceptance of CEBAF’s recirculating arcs. In the electron storage ring, the beam abort or ion clearing gaps or uneven bucket filling can cause large beam phase transients in the (S)RF cavity control systems and even beam loss due to Robinson instability. We have first analysed the beam stability criteria in steady state and estimated the transient effect in Feedforward and Feedback RF controls. Initial analytical models for these effects are shown for the design of the JLEIC e-ring from 3GeV to 12GeV.

  18. Low reflectance high power RF load

    Science.gov (United States)

    Ives, R. Lawrence; Mizuhara, Yosuke M.

    2016-02-02

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  19. Design of inductively detuned RF extraction cavities for the Relativistic Klystron Two Beam Accelerator

    International Nuclear Information System (INIS)

    Henestroza, E.; Yu, S.S.; Li, H.

    1995-04-01

    An inductively detuned traveling wave cavity for the Relativistic Klystron Two Beam Accelerator expected to extract high RF power at 11. 424 GHz for the 1 TeV Center of Mass Next Linear Collider has been designed. Longitudinal beam dynamics studies led to the following requirements on cavity design: (a) Extraction of 360 MW of RF power with RF component of the current being 1.15 kAmps at 11.424 GHz, (b) Inductively detuned traveling wave cavity with wave phase velocity equal to 4/3 the speed of light, (c) Output cavity with appropriate Q ext and eigenfrequency for proper matching. Furthermore, transverse beam dynamics require low shunt impedances to avoid the beam break-up instability. We describe the design effort to meet these criteria based on frequency-domain and time-domain computations using 2D- and 3D- electromagnetic codes

  20. RF applications in digital signal processing

    CERN Document Server

    Schilcher, T

    2008-01-01

    Ever higher demands for stability, accuracy, reproducibility, and monitoring capability are being placed on Low-Level Radio Frequency (LLRF) systems of particle accelerators. Meanwhile, continuing rapid advances in digital signal processing technology are being exploited to meet these demands, thus leading to development of digital LLRF systems. The rst part of this course will begin by focusing on some of the important building-blocks of RF signal processing including mixer theory and down-conversion, I/Q (amplitude and phase) detection, digital down-conversion (DDC) and decimation, concluding with a survey of I/Q modulators. The second part of the course will introduce basic concepts of feedback systems, including examples of digital cavity eld and phase control, followed by radial loop architectures. Adaptive feed-forward systems used for the suppression of repetitive beam disturbances will be examined. Finally, applications and principles of system identi cation approaches will be summarized.

  1. Review of pulsed rf power generation

    International Nuclear Information System (INIS)

    Lavine, T.L.

    1992-04-01

    I am going to talk about pulsed high-power rf generation for normal-conducting electron and positron linacs suitable for applications to high-energy physics in the Next Linear Collider, or NLC. The talk will cover some basic rf system design issues, klystrons and other microwave power sources, rf pulse-compression devices, and test facilities for system-integration studies

  2. PEP-II RF System Operation and Performance

    International Nuclear Information System (INIS)

    McIntosh, P.

    2005-01-01

    The Low Energy Ring (LER) and High Energy Ring (HER) RF systems have operated now on PEP-II since July 1998 and have assisted in breaking all design luminosity records back in June 2001. Luminosity on PEP-II has steadily increased since then as a consequence of larger e+ and e- beam currents being accumulated. This has meant that the RF systems have inevitably been driven harder, not only to achieve these higher stored beam currents, but also to reliably keep the beams circulating whilst at the same time minimizing the number of aborts due to RF system faults. This paper details the current PEP-II RF system configurations for both rings, as well as future upgrade plans spanning the next 3-5 years. Limitations of the current RF system configurations are presented, highlighting improvement projects which will target specific areas within the RF systems to ensure that adequate operating overheads are maintained and reliable operation is assured. The Low Energy Ring (LER) and High Energy Ring (HER) RF systems have operated now on PEP-II since July 1998 and have assisted in breaking all design luminosity records back in June 2001. Luminosity on PEP-II has steadily increased since then as a consequence of larger e+ and e- beam currents being accumulated. This has meant that the RF systems have inevitably been driven harder, not only to achieve these higher stored beam currents, but also to reliably keep the beams circulating whilst at the same time minimizing the number of aborts due to RF system faults. This paper details the current PEP-II RF system configurations for both rings, as well as future upgrade plans spanning the next 3-5 years. Limitations of the current RF system configurations are presented, highlighting improvement projects which will target specific areas within the RF systems to ensure that adequate operating overheads are maintained and reliable operation is assured

  3. RF-Station control crate

    International Nuclear Information System (INIS)

    Beuzekom, M.G. van; Es, J.T. van.

    1992-01-01

    This report gives a description of the electronic control-system for the RF-station of AmPS. The electronics form the connection between the computer-system and the hardware of the RF-station. Only the elements of the systems which are not described in the other NIKHEF-reports are here discussed in detail. (author). 7 figs

  4. RF front-end world class designs

    CERN Document Server

    Love, Janine

    2009-01-01

    All the design and development inspiration and direction a harware engineer needs in one blockbuster book! Janine Love site editor for RF Design Line,columnist, and author has selected the very best RF design material from the Newnes portfolio and has compiled it into this volume. The result is a book covering the gamut of RF front end design from antenna and filter design fundamentals to optimized layout techniques with a strong pragmatic emphasis. In addition to specific design techniques and practices, this book also discusses various approaches to solving RF front end design problems and h

  5. RCS estimation of linear and planar dipole phased arrays approximate model

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    In this book, the RCS of a parallel-fed linear and planar dipole array is derived using an approximate method. The signal propagation within the phased array system determines the radar cross section (RCS) of phased array. The reflection and transmission coefficients for a signal at different levels of the phased-in scattering array system depend on the impedance mismatch and the design parameters. Moreover the mutual coupling effect in between the antenna elements is an important factor. A phased array system comprises of radiating elements followed by phase shifters, couplers, and terminating load impedance. These components lead to respective impedances towards the incoming signal that travels through them before reaching receive port of the array system. In this book, the RCS is approximated in terms of array factor, neglecting the phase terms. The mutual coupling effect is taken into account. The dependence of the RCS pattern on the design parameters is analyzed. The approximate model is established as a...

  6. Investigation of MIM Diodes for RF Applications

    KAUST Repository

    Khan, Adnan

    2015-01-01

    zero bias condition as well as the possibility of realizing them through printing makes them attractive for (Radio Frequency) RF applications. However, MIM diodes have not been explored much for RF applications. One reason preventing their widespread RF

  7. RF sheaths for arbitrary B field angles

    Science.gov (United States)

    D'Ippolito, Daniel; Myra, James

    2014-10-01

    RF sheaths occur in tokamaks when ICRF waves encounter conducting boundaries and accelerate electrons out of the plasma. Sheath effects reduce the efficiency of ICRF heating, cause RF-specific impurity influxes from the edge plasma, and increase the plasma-facing component damage. The rf sheath potential is sensitive to the angle between the B field and the wall, the ion mobility and the ion magnetization. Here, we obtain a numerical solution of the non-neutral rf sheath and magnetic pre-sheath equations (for arbitrary values of these parameters) and attempt to infer the parametric dependences of the Child-Langmuir law. This extends previous work on the magnetized, immobile ion regime. An important question is how the rf sheath voltage distributes itself between sheath and pre-sheath for various B field angles. This will show how generally previous estimates of the rf sheath voltage and capacitance were reasonable, and to improve the RF sheath BC. Work supported by US DOE grants DE-FC02-05ER54823 and DE-FG02-97ER54392.

  8. Practical guide to RF-MEMS

    CERN Document Server

    Iannacci, Jacopo

    2013-01-01

    Closes the gap between hardcore-theoretical and purely experimental RF-MEMS books. The book covers, from a practical viewpoint, the most critical steps that have to be taken in order to develop novel RF-MEMS device concepts. Prototypical RF-MEMS devices, both including lumped components and complex networks, are presented at the beginning of the book as reference examples, and these are then discussed from different perspectives with regard to design, simulation, packaging, testing, and post-fabrication modeling. Theoretical concepts are introduced when necessary to complement the practical

  9. The CEBAF RF Separator System Upgrade

    International Nuclear Information System (INIS)

    Hovater, J.; Mark Augustine; Al Guerra; Richard Nelson; Robert Terrell; Mark Wissmann

    2004-01-01

    The CEBAF accelerator uses RF deflecting cavities operating at the third sub-harmonic (499 MHz) of the accelerating frequency (1497 MHz) to ''kick'' the electron beam to the experimental halls. The cavities operate in a TEM dipole mode incorporating mode enhancing rods to increase the cavity's transverse shunt impedance [1]. As the accelerators energy has increased from 4 GeV to 6 GeV the RF system, specifically the 1 kW solid-state amplifiers, have become problematic, operating in saturation because of the increased beam energy demands. Two years ago we began a study to look into replacement for the RF amplifiers and decided to use a commercial broadcast Inductive Output Tube (IOT) capable of 30 kW. The new RF system uses one IOT amplifier on multiple cavities as opposed to one amplifier per cavity as was originally used. In addition, the new RF system supports a proposed 12 GeV energy upgrade to CEBAF. We are currently halfway through the upgrade with three IOTs in operation and the remaining one nearly installed. This paper reports on the new RF system and the IOT performance

  10. Superconducting RF activities at Cornell University

    International Nuclear Information System (INIS)

    Kirchgessner, J.; Moffat, D.; Padamsee, H.; Rubin, D.; Sears, J.; Shu, Q.S.

    1990-01-01

    This paper outlines the RF superconductivity research and development work that has taken place at Cornell Laboratory of Nuclear Studies over the past years. The work that has been performed since the last RF superconductivity workshop is emphasized together with a discussion of the direction of future efforts. Past work is summarized first, focusing on research and development activities in the area of RF superconductivity. Superconducting TeV linear collider is then discussed focusing on the application of superconducting RF to a future TeV linear collider. Linear collider structure development is then described centering on the development of a simpler (thereby cheaper) structure for a TeV linear collider. B-factory with superconducting RF is outlined focusing on the formulation of a conceptual design for a B-factory. B-factory structure development is discussed in relation to the advancement in the capability of SC cavities to carry beam currents of several amperes necessary for a high luminosity storage ring. High gradients are discussed as the key to the realization of a high energy superconducting linac or a superconducting RF B-factory. (N.K.)

  11. Phase and amplitude detection system for the Stanford Linear Accelerator

    International Nuclear Information System (INIS)

    Fox, J.D.; Schwarz, H.D.

    1983-01-01

    A computer controlled phase and amplitude detection system to measure and stabilize the rf power sources in the Stanford Linear Accelerator is described. This system measures the instantaneous phase and amplitude of a 1 microsecond 2856 MHz rf pulse and will be used for phase feedback control and for amplitude and phase jitter detection. This paper discusses the measurement system performance requirements for the operation of the Stanford Linear Collider, and the design and implementation of the phase and amplitude detection system. The fundamental software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system

  12. An rf separator for cloud muons at TRIUMF

    International Nuclear Information System (INIS)

    Macdonald, J.A.; Blackmore, E.W.; Bryman, D.A.; Doornbos, J.; Erdman, K.L.; Pearce, R.M.; Poirier, R.L.; Poutissou, J-M.; Spuller, J.

    1983-03-01

    A particle separator utilizing a magnetic field crossed with an rf electric field has been built and incorporated into the M9 secondary channel to produce a clean negative muon beam at 77 MeV/c +- 5 %. The separator is driven at the main cyclotron frequency (23 MHz) and is phase locked to the primary proton beam. Separation is achieved by using the temporal and velocity differences between the muons produced near the production target (cloud muons), and the pion and electron contaminants in the beam

  13. Far-field RF energy transfer and harvesting

    NARCIS (Netherlands)

    Visser, H.J.; Vullers, R.; Briand, D.; Yeatman, E.; Roundy, S.

    2015-01-01

    This chapter deals with radio frequency (RF) energy transfer over a distance. After explaining the differences between nonradiative and radiative RF energy transfer, the chapter gives definitions for transfer and harvesting. Nonradiative RF energy transfer is mostly employed in inductive systems,

  14. All-optically tunable waveform synthesis by a silicon nanowaveguide ring resonator coupled with a photonic-crystal fiber frequency shifter

    KAUST Repository

    Savvin, Aleksandr D.

    2011-03-01

    A silicon nanowaveguide ring resonator is combined with a photonic-crystal fiber (PCF) frequency shifter to demonstrate an all-optically tunable synthesis of ultrashort pulse trains, modulated by ultrafast photoinduced free-carrier generation in the silicon resonator. Pump-probe measurements performed with a 50-fs, 625-nm second-harmonic output of a Cr:forsterite laser, used as a carrier-injecting pump, and a 1.50-1.56-μm frequency-tunable 100-fs soliton output of a photonic-crystal fiber, serving as a probe, resolve tunable ultrafast oscillatory features in the silicon nanowaveguide resonator response. © 2010 Elsevier B.V. All rights reserved.

  15. All-optically tunable waveform synthesis by a silicon nanowaveguide ring resonator coupled with a photonic-crystal fiber frequency shifter

    KAUST Repository

    Savvin, Aleksandr D.; Melnikov, Vasily; Fedotov, Il'ya V.; Fedotov, Andrei B.; Perova, Tatiana S.; Zheltikov, Aleksei M.

    2011-01-01

    A silicon nanowaveguide ring resonator is combined with a photonic-crystal fiber (PCF) frequency shifter to demonstrate an all-optically tunable synthesis of ultrashort pulse trains, modulated by ultrafast photoinduced free-carrier generation in the silicon resonator. Pump-probe measurements performed with a 50-fs, 625-nm second-harmonic output of a Cr:forsterite laser, used as a carrier-injecting pump, and a 1.50-1.56-μm frequency-tunable 100-fs soliton output of a photonic-crystal fiber, serving as a probe, resolve tunable ultrafast oscillatory features in the silicon nanowaveguide resonator response. © 2010 Elsevier B.V. All rights reserved.

  16. Development of Low Level RF Control Systems for Superconducting Heavy Ion Linear Accelerators, Electron Synchrotrons and Storage Rings

    CERN Document Server

    Aminov, Bachtior; Kolesov, Sergej; Pekeler, Michael; Piel, Christian; Piel, Helmut

    2005-01-01

    Since 2001 ACCEL Instruments is supplying low level RF control systems together with turn key cavity systems. The early LLRF systems used the well established technology based on discrete analogue amplitude and phase detectors and modulators. Today analogue LLRF systems can make use of advanced vector demodulators and modulators combined with a fast computer controlled analogue feed back loop. Feed forward control is implemented to operate the RF cavity in an open loop mode or to compensate for predictable perturbations. The paper will introduce the general design philosophy and show how it can be adapted to different tasks as controlling a synchrotron booster nc RF system at 500 MHz, or superconducting storage ring RF cavities, as well as a linear accelerator at 176 MHz formed by a chain of individually driven and controlled superconducting λ/2 cavities.

  17. Reliability impact of RF tube technology for the NPB

    International Nuclear Information System (INIS)

    Bueck, J.C.

    1989-01-01

    Two reliability options, redundancy and operating margin, are examined to determine their effect on power system configurations using RF tube technology (klystron and klystrode) powered Neutral Particle Beam weapons. Redundance is addressed by providing an additional identical RF tube to the tubes required to power an accelerator RF element (DTL section, RFQ, or CCL). RF elements do not share RF power with other RF elements. Operating margin provides increased reliability by sizing the RF tubes such that tube operating levels may be increased compensate for the loss of a tube. It is shown that power system mass is affected by the choice of reliability measures, that higher power tubes coupled with higher power RF elements may mitigate mass increases, and that redundancy appears preferable to operating margin as a method of improving RF system reliability

  18. Transient and Steady-State Analysis of Nonlinear RF and Microwave Circuits

    Directory of Open Access Journals (Sweden)

    Zhu Lei(Lana

    2006-01-01

    Full Text Available This paper offers a review of simulation methods currently available for the transient and steady-state analysis of nonlinear RF and microwave circuits. The most general method continues to be the time-marching approach used in Spice, but more recent methods based on multiple time dimensions are particularly effective for RF and microwave circuits. We derive nodal formulations for the most widely used multiple time dimension methods. We put special emphasis on methods for the analysis of oscillators based in the warped multitime partial differential equations (WaMPDE approach. Case studies of a Colpitts oscillator and a voltage controlled Clapp-Gouriet oscillator are presented and discussed. The accuracy of the amplitude and phase of these methods is investigated. It is shown that the exploitation of frequency-domain latency reduces the computational effort.

  19. ISR RF cavities

    CERN Multimedia

    1983-01-01

    In each ISR ring the radiofrequency cavities were installed in one 9 m long straight section. The RF system of the ISR had the main purpose to stack buckets of particles (most of the time protons)coming from the CPS and also to accelerate the stacked beam. The installed RF power per ring was 18 kW giving a peak accelerating voltage of 20 kV. The system had a very fine regulation feature allowing to lower the voltage down to 75 V in a smooth and well controlled fashion.

  20. Ability of Rf5 and Rf6 to Restore Fertility of Chinsurah Boro II-type Cytoplasmic Male Sterile Oryza Sativa (ssp. Japonica) Lines.

    Science.gov (United States)

    Zhang, Honggen; Che, Jianlan; Ge, Yongshen; Pei, Yan; Zhang, Lijia; Liu, Qiaoquan; Gu, Minghong; Tang, Shuzhu

    2017-12-01

    Three-line Oryza sativa (ssp. japonica) hybrids have been developed mainly using Chinsurah Boro II (BT)-type cytoplasmic male sterility (CMS). The Rf1 gene restores the fertility of BT-type CMS lines, and is the only fertility restorer gene (Rf) that has been used to produce three-line japonica hybrids. Using more Rf genes to breed BT-type restorer lines may broaden the genetic diversity of the restorer lines, and represents a viable approach to improve the heterosis level of BT-type japonica hybrids. We identified two major Rf genes from '93-11' that are involved in restoring the fertility of BT-type CMS plants. These genes were identified from resequenced chromosome segment substitution lines derived from a cross between the japonica variety 'Nipponbare' and the indica variety '93-11'. Molecular mapping results revealed that these genes were Rf5 and Rf6, which are the Rf genes that restore fertility to Honglian-type CMS lines. The BT-type F 1 hybrids with either Rf5 or Rf6 exhibited normal seed setting rates, but F 1 plants carrying Rf6 showed more stable seed setting rates than those of plants carrying Rf5 under heat-stress conditions. Furthermore, the seed setting rates of F 1 hybrids carrying both Rf5 and Rf6 were more stable than that of F 1 plants carrying only one Rf gene. Rf6 is an important genetic resource for the breeding of BT-type japonica restorer lines. Our findings may be useful for breeders interested in developing BT-type japonica hybrids.

  1. Reducing Energy Degradation Due to Back-bombardment Effect with Modulated RF Input in S-band Thermionic RF Gun

    Science.gov (United States)

    Kii, Toshiteru; Nakai, Yoko; Fukui, Toshio; Zen, Heishun; Kusukame, Kohichi; Okawachi, Norihito; Nakano, Masatsugu; Masuda, Kai; Ohgaki, Hideaki; Yoshikawa, Kiyoshi; Yamazaki, Tetsuo

    2007-01-01

    Energy degradation due to back-bombardment effect is quite serious to produce high-brightness electron beam with long macro-pulse with thermionic rf gun. To avoid the back-bombardment problem, a laser photo cathode is used at many FEL facilities, but usually it costs high and not easy to operate. Thus we have studied long pulse operation of the rf gun with thermionic cathode, which is inexpensive and easy to operate compared to the photocathode rf gun. In this work, to reduce the energy degradation, we controlled input rf power amplitude by controlling pulse forming network of the power modulator for klystron. We have successfully increased the pulse duration up to 4 μs by increasing the rf power from 7.8 MW to 8.5 MW during the macro pulse.

  2. SPEAR 2 RF SYSTEM LOADS

    International Nuclear Information System (INIS)

    2002-01-01

    The design and performance of higher order mode (HOM) dampers for the SPEAR 2 RF system is presented. The SPEAR beam had experienced occasional periods of instability due to transverse oscillations which were driven by HOMs in the RF cavities. A substantial fraction of this RF energy was coupled out of the cavity into the waveguide connecting the cavity to the klystron. This waveguide was modified by adding a stub of smaller cross section, terminated by a ferrite tile load, to the system. Design considerations of the load, and its effect on HOMs and beam stability will be discussed

  3. Phase and amplitude stability of a pulsed RF system on the example of the CLIC drive beam LINAC

    CERN Document Server

    AUTHOR|(CDS)2132320; Prof. BANTEL, Michael

    The CLIC drive beam accelerator consists of the Drive Beam Injector (DBI) and two Drive Beam Linacs (DBLs). The drive beam injector is composed of a thermionic electron source, 3 Sub Harmonic Bunchers (SHBs), a pre-buncher, and several acceleration structures. In the electron source the DC electron beam is produced from a thermionic cathode. The following buncher cavities group ("bunch") the electrons to be accelerated by RF later on. Each electron bunch has an energy of 140 keV, a length of 3 mm, and a charge qb = 8.4 nC. Afterwards the electrons are accelerated in the 1 GHz accelerating structures up to 50MeV. The pulsed Radio Frequency (RF) power for this acceleration is provided by 1 GHz, 20MW modulator-klystron units, one per acceleration structure. A klystron is an RF amplifier based on a linear-beam vacuum tube. The high voltage modulator supplies the acceleration voltage to this tube. A DC electron beam gets modulated with an input signal, the modulation enhances in a drift space, and finally the powe...

  4. Multimoded rf delay line distribution system for the Next Linear Collider

    Directory of Open Access Journals (Sweden)

    S. G. Tantawi

    2002-03-01

    Full Text Available The delay line distribution system is an alternative to conventional pulse compression, which enhances the peak power of rf sources while matching the long pulse of those sources to the shorter filling time of accelerator structures. We present an implementation of this scheme that combines pairs of parallel delay lines of the system into single lines. The power of several sources is combined into a single waveguide delay line using a multimode launcher. The output mode of the launcher is determined by the phase coding of the input signals. The combined power is extracted from the delay line using mode-selective extractors, each of which extracts a single mode. Hence, the phase coding of the sources controls the output port of the combined power. The power is then fed to the local accelerator structures. We present a detailed design of such a system, including several implementation methods for the launchers, extractors, and ancillary high power rf components. The system is designed so that it can handle the 600 MW peak power required by the Next Linear Collider design while maintaining high efficiency.

  5. Beam dynamics and rf evolution in a multistage klystron-like free- electron laser

    International Nuclear Information System (INIS)

    Ohnuma, S.

    1991-01-01

    Current understandings of beam dynamics and RF evolution in a klystron-like free-electron laser are present. Phase sensitiveness to injection jitters estimated by existing two theories is discussed. BBU suppression due to linear detuning is proposed as an alternative of ever proposed techniques. 13 refs., 2 figs., 1 tab

  6. Discussion of high brightness rf linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1987-01-01

    The fundamental aspects of high-brightness rf linacs are outlined, showing the breadth and complexity of the technology and indicating that synergism with advancements in other areas is important. Areas of technology reviewed include ion sources, injectors, rf accelerator structures, beam dynamics, rf power, and automatic control

  7. Broadband direct RF digitization receivers

    CERN Document Server

    Jamin, Olivier

    2014-01-01

    This book discusses the trade-offs involved in designing direct RF digitization receivers for the radio frequency and digital signal processing domains.  A system-level framework is developed, quantifying the relevant impairments of the signal processing chain, through a comprehensive system-level analysis.  Special focus is given to noise analysis (thermal noise, quantization noise, saturation noise, signal-dependent noise), broadband non-linear distortion analysis, including the impact of the sampling strategy (low-pass, band-pass), analysis of time-interleaved ADC channel mismatches, sampling clock purity and digital channel selection. The system-level framework described is applied to the design of a cable multi-channel RF direct digitization receiver. An optimum RF signal conditioning, and some algorithms (automatic gain control loop, RF front-end amplitude equalization control loop) are used to relax the requirements of a 2.7GHz 11-bit ADC. A two-chip implementation is presented, using BiCMOS and 65nm...

  8. Coherent Frequency Shifter, Optical Isolator, Lasers on an Integrated Platform for Cold Atom Microsystems

    Science.gov (United States)

    2017-10-11

    frequency shifting with < 10 % leakage ; (5) experimental demonstration achieving frequency shifting with < 3 dB forward optical loss; (6) 29.3 dBm RF...using heterodyne detection . (b) 100 MHz up-conversion, 20 dB side lobe suppression. (c) 100 MHz down-conversion, 14 dB side lobe suppression...shifting with < 10 % leakage ; (5) experimental demonstration achieving frequency shifting with < 3 dB forward optical loss; (6) 29.3 dBm RF power

  9. Ageing studies of wavelength shifter fibers for the TILECAL/ATLAS experiment

    International Nuclear Information System (INIS)

    Silva, J.; Maio, A.; Pina, J.; Santos, J.; Saraiva, J.G.

    2007-01-01

    Natural and accelerated ageing studies for the different components of the TILECAL calorimeter, of the ATLAS experiment, play a central role in forecasting the evolution of the detector's performance throughout its operating life. It is possible that the operation of ATLAS will be extended by 5 years in an upgraded LHC scenario. Such prospect makes these studies even more important, in order to assess the contribution of the natural ageing in relation to the other processes inducing performance loss in the optical components. Among other activities in this LHC/CERN collaboration, the Lisbon calorimetry group is involved in studying the impact of radiation damage and natural ageing in optical characteristics of the TILECAL wavelength shifter (WLS) optical fibers and scintillators, and to reevaluate the light budget of the tile/fiber system. The light yield and the attenuation length of the WLS and scintillating optical fibers are measured using an X-Y table. Results are presented for several sets of WLS optical fibers (Kuraray Y11(200)MSJ) whose characteristics have been monitored since 1999. Most of those 338 fibers are from the mass production for the TILECAL detector: 208 non-aluminized 200 cm fibers, from several production batches, and 128 batch no. 6 aluminized fibers, with lengths ranging from 114 to 207 cm

  10. A Thin Lens Model for Charged-Particle RF Accelerating Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Christopher K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    Presented is a thin-lens model for an RF accelerating gap that considers general axial fields without energy dependence or other a priori assumptions. Both the cosine and sine transit time factors (i.e., Fourier transforms) are required plus two additional functions; the Hilbert transforms the transit-time factors. The combination yields a complex-valued Hamiltonian rotating in the complex plane with synchronous phase. Using Hamiltonians the phase and energy gains are computed independently in the pre-gap and post-gap regions then aligned using the asymptotic values of wave number. Derivations of these results are outlined, examples are shown, and simulations with the model are presented.

  11. A segmented scintillator-lead photon calorimeter using a double wavelength shifter optical readout system

    International Nuclear Information System (INIS)

    Fent, J.; Fessler, H.; Freund, P.; Gebauer, H.J.; Polakos, P.; Pretzl, K.P.; Schouten, T.; Seyboth, P.; Seyerlein, J.

    1982-11-01

    The construction and performance of a prototype scintillator-lead photon calorimeter using a double wavelength shifter optical readout is described. The calorimeter is divided into 4 individual cells each consisting of 44 layers of 3 mm lead plus 1 cm thick scintillator. The edges of each scintillator plate are covered by acrylic bars doped with a wavelength shifting material. The light produced in each scintillator plate is first converted in these bars, then converted a second time in a set of acrylic rods which run longitudinally through the calorimeter along the corners of each calorimeter cell. A photomultiplier is attached to each of these rods at the back end of the calorimeter. The energy resolution obtained with incident electrons in the energy range of 2-30 GeV is sigma/E = 0.12/√E. The uniformity of response across the front face of each cell was measured. Showers within each cell can be localised with an accuracy of better than sigma = 7 mm. (orig.)

  12. Rf Station For Ion Beam Staking In Hirfl-csr

    CERN Document Server

    Arbuzov, V S; Bushuev, A A; Dranichnikov, A N; Gorniker, E I; Kendjebulatov, E K; Kondakov, A A; Kondaurov, M; Kruchkov, Ya G; Krutikhin, S A; Kurkin, G Ya; Mironenko, L A; Motygin, S V; Osipov, V N; Petrov, V M; Pilan, Andrey M; Popov, A M; Rashenko, V V; Selivanov, A N; Shteinke, A R; Vajenin, N F

    2004-01-01

    BINP has developed and produced the RF station for Institute of Modern Physics (IMP), Lanzhou, China, for multipurpose accelerator complex with electron cooling. The RF station will be used for accumulation of ion beams in the main ring of the system. It was successfully tested in IMP and installed into the main accelerator ring of the complex. The RF station includes accelerating RF cavity and RF power generator with power supplies. The station works within frequency range 6.0 - 14.0 MHz, maximum voltage across the accelerating gap of the RF cavity - 20 kV. In the RF cavity the 200 VNP ferrite is utilized. A residual gas pressure in vacuum chamber does not exceed 2,5E-11 mbar. Maximum output power of the RF generator 25 kW. The data acquisition and control of the RF station is based on COMPACT - PCI bus and provides all functions of monitoring and control.

  13. New developments in RF power sources

    International Nuclear Information System (INIS)

    Miller, R.H.

    1994-06-01

    The most challenging rf source requirements for high-energy accelerators presently being studied or designed come from the various electron-positron linear collider studies. All of these studies except TESLA (the superconducting entry in the field) have specified rf sources with much higher peak powers than any existing tubes at comparable high frequencies. While circular machines do not, in general, require high peak power, the very high luminosity electron-positron rings presently being designed as B factories require prodigious total average rf power. In this age of energy conservation, this puts a high priority on high efficiency for the rf sources. Both modulating anodes and depressed collectors are being investigated in the quest for high efficiency at varying output powers

  14. Multi-level RF identification system

    Science.gov (United States)

    Steele, Kerry D.; Anderson, Gordon A.; Gilbert, Ronald W.

    2004-07-20

    A radio frequency identification system having a radio frequency transceiver for generating a continuous wave RF interrogation signal that impinges upon an RF identification tag. An oscillation circuit in the RF identification tag modulates the interrogation signal with a subcarrier of a predetermined frequency and modulates the frequency-modulated signal back to the transmitting interrogator. The interrogator recovers and analyzes the subcarrier signal and determines its frequency. The interrogator generates an output indicative of the frequency of the subcarrier frequency, thereby identifying the responding RFID tag as one of a "class" of RFID tags configured to respond with a subcarrier signal of a predetermined frequency.

  15. Using a modified 3D-printer for mapping the magnetic field of RF coils designed for fetal and neonatal imaging.

    Science.gov (United States)

    Vavoulas, Alexander; Vaiopoulos, Nicholas; Hedström, Erik; Xanthis, Christos G; Sandalidis, Harilaos G; Aletras, Anthony H

    2016-08-01

    An experimental setup for characterizing the magnetic field of MRI RF coils was proposed and tested. The setup consisted of a specially configured 3D-printer, a network analyzer and a mid-performance desktop PC. The setup was tested on a single loop RF coil, part of a phased array for fetal imaging. Then, the setup was used for determining the magnetic field characteristics of a high-pass birdcage coil used for neonatal MR imaging with a vertical static field. The scattering parameter S21, converted into power ratio, was used for mapping the B1 magnetic field. The experimental measurements from the loop coil were close to the theoretical results (R=0.924). A high degree of homogeneity was measured for the neonatal birdcage RF coil. The development of MR RF coils is time consuming and resource intensive. The proposed experimental setup provides an alternative method for magnetic field characterization of RF coils used in MRI. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. High power RF oscillator with Marx generators

    International Nuclear Information System (INIS)

    Murase, Hiroshi; Hayashi, Izumi

    1980-01-01

    A method to maintain RF oscillation by using many Marx generators was proposed and studied experimentally. Many charging circuits were connected to an oscillator circuit, and successive pulsed charging was made. This successive charging amplified and maintained the RF oscillation. The use of vacuum gaps and high power silicon diodes improved the characteristics of RF current cut-off of the circuit. The efficiency of the pulsed charging from Marx generators to a condenser was theoretically investigated. The theoretical result showed the maximum efficiency of 0.98. The practical efficiency obtained by using a proposed circuit with a high power oscillator was in the range 0.50 to 0.56. The obtained effective output power of the RF pulses was 11 MW. The maximum holding time of the RF pulses was about 21 microsecond. (Kato, T.)

  17. Status of RF superconductivity at Argonne

    International Nuclear Information System (INIS)

    Shepard, K.W.

    1990-01-01

    Development of a superconducting slow-wave structures began at Argonne National Laboratory (ANL) in 1971, and led to the first superconducting heavy-ion linac (ATLAS - the Argonne Tandem-Linac Accelerator System). The Physics Division at ANL has continued to develop superconducting RF technology for accelerating heavy-ions, with the result that the linac has been in an almost continuous process of upgrade and expansion. In 1987, the Engineering Physics Division at ANL began developing of superconducting RF components for the acceleration of high-brightness proton and deuterium beams. The two divisions collaborate in work on several applications of RF superconductivity, and also in work to develop the technology generally. The present report briefly describes major features of the superconducting heavy-ion linac (very-low-velocity superconducting linac, positive ion injector), proton accelerating structures (superconducting resonant cavities for acceleration of high-current proton and deuteron beams, RF properties of oxide superconductors), and future work. Both divisions expect to continue a variety of studies, frequently in collaboration, to advance the basic technology of RF superconductivity. (N.K.)

  18. Additive manufacturing of RF absorbers

    Science.gov (United States)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  19. RF BREAKDOWN STUDIES USING PRESSURIZED CAVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland

    2014-09-21

    Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Part of the problem is that RF breakdown in an evacuated cavity involves a complex mixture of effects, which include the geometry, metallurgy, and surface preparation of the accelerating structures and the make-up and pressure of the residual gas in which plasmas form. Studies showed that high gradients can be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas, as needed for muon cooling channels, without the need for long conditioning times, even in the presence of strong external magnetic fields. This positive result was expected because the dense gas can practically eliminate dark currents and multipacting. In this project we used this high pressure technique to suppress effects of residual vacuum and geometry that are found in evacuated cavities in order to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. One of the interesting and useful outcomes of this project was the unanticipated collaborations with LANL and Fermilab that led to new insights as to the operation of evacuated normal-conducting RF cavities in high external magnetic fields. Other accomplishments included: (1) RF breakdown experiments to test the effects of SF6 dopant in H2 and He gases with Sn, Al, and Cu electrodes were carried out in an 805 MHz cavity and compared to calculations and computer simulations. The heavy corrosion caused by the SF6 components led to the suggestion that a small admixture of oxygen, instead of SF6, to the hydrogen would allow the same advantages without the corrosion in a practical muon beam line. (2) A

  20. Analysis and software development for controlling RF signal generator proton cyclotron Decy-13 using DDS Technique

    International Nuclear Information System (INIS)

    Prajitno

    2012-01-01

    Analysis and manufacture of computer programs for controlling the signal generator Radio Frequency (RF) proton cyclotron Decy-13 have been done. Signal generator uses a technique Direct Digital Synthesiser (DDS) which settings must be done with software. Signal generator consists of electronic modules which are: DDS, micro controller ATmega16, amplifier RF.dan ± 12 Vdc power supply. Function of the programs that have been made is to set the DDS module, namely: output frequency, step frequency and phase settings and displays the operating parameters of the DDS and the RF amplifier on the monitor screen. Computer programs created with Visual Basic and has been tested to control the RF signal generator to send data serially to the module ATmega16 and receives data to be displayed on the monitor screen. Testing sending and receiving data is done with a baudrate of 1200 bps to 19200 bps with perfect results. Computer programs that have been made equipped with a Human Machine Interface to provide values parameter input on the DDS operations. (author)