WorldWideScience

Sample records for rf phase modulation

  1. Tunable RF photonic phase shifter based on optical DSB modulation and FBG filtering

    Science.gov (United States)

    Wei, Yongfeng; Huang, Shanguo; Sun, Kai; Gao, Xinlu; Gu, Wanyi

    2016-01-01

    A broadband RF photonic phase shifter that can achieve the tunable phase shift with little RF amplitude variation is presented. It is based on homodyne mixing technique. The beating between phase-modulated optical carrier and the sidebands can generate RF signal with desired phase shift. Results show the RF phase shifter can achieve a continuous phase shift with low amplitude variation.

  2. Effectiveness of rf phase modulation for increasing bunch length in electron storage rings

    Science.gov (United States)

    Orsini; Mosnier

    2000-04-01

    Aiming at increasing the apparent bunch length and hence the beam lifetime in electron storage rings, rf phase modulation near one parametric resonance has been experimentally investigated. Since the possible benefit of this technique depends greatly on the ring parameters, we studied the effect of such a modulation for different rf parameters on the longitudinal emittance. Theoretical predictions and results of simulations are compared and discussed. It is shown that synchrotron radiation tends to spoil the parametric resonance. In particular, a criterion for island survival has been found.

  3. Broadband photonic microwave phase shifter based on controlling two RF modulation sidebands via a Fourier-domain optical processor.

    Science.gov (United States)

    Yang, J; Chan, E H W; Wang, X; Feng, X; Guan, B

    2015-05-04

    An all-optical photonic microwave phase shifter that can realize a continuous 360° phase shift over a wide frequency range is presented. It is based on the new concept of controlling the amplitude and phase of the two RF modulation sidebands via a Fourier-domain optical processor. The operating frequency range of the phase shifter is largely increased compared to the previously reported Fourier-domain optical processor based phase shifter that uses only one RF modulation sideband. This is due to the extension of the lower RF operating frequency by designing the amplitude and phase of one of the RF modulation sidebands while the other sideband is designed to realize the required RF signal phase shift. The two-sideband amplitude-and-phase-control based photonic microwave phase shifter has a simple structure as it only requires a single laser source, a phase modulator, a Fourier-domain optical processor and a single photodetector. Investigation on the bandwidth limitation problem in the conventional Fourier-domain optical processor based phase shifter is presented. Comparisons between the measured phase shifter output RF amplitude and phase responses with theory, which show excellent agreement, are also presented for the first time. Experimental results demonstrate the full -180° to + 180° phase shift with little RF signal amplitude variation of less than 3 dB and with a phase deviation of less than 4° over a 7.5 GHz to 26.5 GHz frequency range, and the phase shifter exhibits a long term stable performance.

  4. First Results with a Fast Phase and Amplitude Modulator for High Power RF Application

    CERN Document Server

    Frischholz, Hans; Valuch, D; Weil, C

    2004-01-01

    In a high energy and high power superconducting proton linac, it is more economical to drive several cavities with a single high power transmitter rather than to use one transmitter per cavity. However, this option has the disadvantage of not permitting individual control for each cavity, which potentially leads to instabilities. Provided that it can be built at a reasonable cost, a fast phase and amplitude modulator inserted into each cavity feeder line can provide the necessary control capability. A prototype of such a device has been built, based on two fast and compact high power RF phase-shifters, magnetically biased by external coils. The design is described, together with the results obtained at high and low power levels.

  5. Bunch stabilization using rf phase modulation in the Intense Pulse Neutron Source (IPNS) Rapid Cycling Synchrotron (RCS).

    Energy Technology Data Exchange (ETDEWEB)

    Brumwell, F. R.; Dooling, J. C.; McMichael, G. E.

    1999-09-01

    Phase modulation (PM) is used to increase the current limit in the IPNS RCS. A device referred to as a scrambler introduces a small oscillating phase between the two RCS rf cavities at approximately twice the synchrotrons frequency, f{sub s}. The modulation introduced by the scrambler generates longitudinal oscillations in the bunch at 2f{sub s}. Modulations in the bunch are also observed transversely indicating a coupling between longitudinal and transverse motion. Comparing PM with amplitude modulation (AM), coupling to the beam is roughly equivalent at 2f{sub s}.

  6. Bidirectional Radio-Over-Fiber System With Phase-Modulation Downlink and RF Oscillator-Free Uplink Using a Reflective SOA

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Tafur Monroy, Idelfonso

    2008-01-01

    We propose and demonstrate a bidirectional radio-over-fiber (RoF) system based on a reflective semiconductor optical amplifier (RSOA). In this system, phase-modulated 5.25-GHz radio frequency (RF) carrying 850 Mb/s is used for the downstream signal. Optical envelope detection of 10-GHz RF carryin...

  7. RF Jitter Modulation Alignment Sensing

    Science.gov (United States)

    Ortega, L. F.; Fulda, P.; Diaz-Ortiz, M.; Perez Sanchez, G.; Ciani, G.; Voss, D.; Mueller, G.; Tanner, D. B.

    2017-01-01

    We will present the numerical and experimental results of a new alignment sensing scheme which can reduce the complexity of alignment sensing systems currently used, while maintaining the same shot noise limited sensitivity. This scheme relies on the ability of electro-optic beam deflectors to create angular modulation sidebands in radio frequency, and needs only a single-element photodiode and IQ demodulation to generate error signals for tilt and translation degrees of freedom in one dimension. It distances itself from current techniques by eliminating the need for beam centering servo systems, quadrant photodetectors and Gouy phase telescopes. RF Jitter alignment sensing can be used to reduce the complexity in the alignment systems of many laser optical experiments, including LIGO and the ALPS experiment.

  8. Dynamics of longitudinal phase-space modulations in an rf compressor for electron beams

    Directory of Open Access Journals (Sweden)

    M. Venturini

    2010-08-01

    Full Text Available Free-electron lasers operating in the UV or x-ray radiation spectrum require peak beam currents that are generally higher than those obtainable by present electron sources, thus making bunch compression necessary. Compression, however, may heighten the effects of collective forces and degrade the beam quality. In this paper we provide a framework for investigating some of these effects in rf compressors by focusing on the longitudinal dynamics of small-amplitude density perturbations, which have the potential to cause the disruptive appearance of the so-called microbunching instability. We develop a linear theory valid for low-to-moderate compression factors under the assumption of a 1D impedance model of longitudinal space charge and provide validation against macroparticle simulations.

  9. Direct RF modulation transmitter, sampling clock frequency setting method for direct RF modulation transmitter

    NARCIS (Netherlands)

    Fukuda, Shuichi; Nauta, Bram

    2013-01-01

    PROBLEM TO BE SOLVED: To provide a direct RF modulation transmitter capable of satisfying a radiation level regulation even without providing a SAW filter. SOLUTION: A direct RF modulation transmitter includes: digital/RF converters 105, 106 to which an I digital baseband signal, a Q digital baseb

  10. A new RF tagging pulse based on the Frank poly-phase perfect sequence

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Greferath, Marcus; Ringgaard, Steffen

    2014-01-01

    Radio frequency (RF) spectrally selective multiband pulses or tagging pulses, are applicable in a broad range of magnetic resonance methods. We demonstrate through simulations and experiments a new phase-modulation-only RF pulse for RF tagging based on the Frank poly-phase perfect sequence...

  11. RF waveguide phase-directed power combiners

    Energy Technology Data Exchange (ETDEWEB)

    Nantista, Christopher D.; Dolgashev, Valery A.; Tantawi, Sami G.

    2017-05-02

    High power RF phase-directed power combiners include magic H hybrid and/or superhybrid circuits oriented in orthogonal H-planes and connected using E-plane bends and/or twists to produce compact 3D waveguide circuits, including 8.times.8 and 16.times.16 combiners. Using phase control at the input ports, RF power can be directed to a single output port, enabling fast switching between output ports for applications such as multi-angle radiation therapy.

  12. Phase noise in RF and microwave amplifiers.

    Science.gov (United States)

    Boudot, Rodolphe; Rubiola, Enrico

    2012-12-01

    Understanding amplifier phase noise is a critical issue in many fields of engineering and physics, such as oscillators, frequency synthesis, telecommunication, radar, and spectroscopy; in the emerging domain of microwave photonics; and in exotic fields, such as radio astronomy, particle accelerators, etc. Focusing on the two main types of base noise in amplifiers, white and flicker, the power spectral density of the random phase φ(t) is Sφ(f) = b(0) + b(-1)/f. White phase noise results from adding white noise to the RF spectrum in the carrier region. For a given RF noise level, b(0) is proportional to the reciprocal of the carrier power P(0). By contrast, flicker results from a near-dc 1/f noise-present in all electronic devices-which modulates the carrier through some parametric effect in the semiconductor. Thus, b(-1) is a parameter of the amplifier, constant in a wide range of P(0). The consequences are the following: Connecting m equal amplifiers in parallel, b(-1) is 1/m times that of one device. Cascading m equal amplifiers, b(-1) is m times that of one amplifier. Recirculating the signal in an amplifier so that the gain increases by a power of m (a factor of m in decibels) as a result of positive feedback (regeneration), we find that b(-1) is m(2) times that of the amplifier alone. The feedforward amplifier exhibits extremely low b(-1) because the carrier is ideally nulled at the input of its internal error amplifier. Starting with an extensive review of the literature, this article introduces a system-oriented model which describes the phase flickering. Several amplifier architectures (cascaded, parallel, etc.) are analyzed systematically, deriving the phase noise from the general model. There follow numerous measurements of amplifiers using different technologies, including some old samples, and in a wide frequency range (HF to microwaves), which validate the theory. In turn, theory and results provide design guidelines and give suggestions for CAD and

  13. Cavity Voltage Phase Modulation MD

    CERN Document Server

    Mastoridis, Themistoklis; Molendijk, John; Timko, Helga; CERN. Geneva. ATS Department

    2016-01-01

    The LHC RF/LLRF system is currently configured for extremely stable RF voltage to minimize transient beam loading effects. The present scheme cannot be extended beyond nominal beam current since the demanded power would exceed the peak klystron power and lead to saturation. A new scheme has therefore been proposed: for beam currents above nominal (and possibly earlier), the cavity phase modulation by the beam will not be corrected (transient beam loading), but the strong RF feedback and One-Turn Delay feedback will still be active for loop and beam stability in physics. To achieve this, the voltage set point will be adapted for each bunch. The goal of this MD was to test a new algorithm that would adjust the voltage set point to achieve the cavity phase modulation that would minimize klystron forward power.

  14. 多路集成有机聚合物光子学射频移相器%Multiple Output Photonic RF Phase Shifter using a novel polymer nested Mach- Zehnder modulators configuration

    Institute of Scientific and Technical Information of China (English)

    吴志浩

    2011-01-01

    This paper demonstrates a new integrated photonic RF phase shifters in the optically controlled phased array radar system and analyses the characteristics and the operation of the device . This device involves a nested Mach - Zehnder modulator and realizes the phase control of each unit by itself; low loss; high stability of the optical output intensity. Measurements of these devices show that multioutputs are independent and have highly linear RF phases over 360° with negligible RF power fluctuation ( below 3 dB ) at the modulation frequency.%本文简要介绍一种新型的集成光子学射频移相器,并对移相器的工作原理及特点进行分析。该新型移相器能够实现对每一阵元的相移量进行独立的调控、相移线性度大、插入损耗小、相移精度和幅度稳定度高等优点。结果表明,输出的射频信号的功率波动小于3dB,得到360°连续线性相移。

  15. Phase Noise Influence in Optical OFDM Systems employing RF Pilot Tone for Phase Noise Cancellation

    OpenAIRE

    Jacobsen, Gunnar; Kazovsky, Leonid G.; Xu, TianHua; Popov, Sergei; Li, Jie; Zhang, Yimo; Friberg, Ari T.

    2016-01-01

    For coherent and direct-detection Orthogonal Frequency Division Multiplexed (OFDM) systems employing radio frequency (RF) pilot tone phase noise cancellation the influence of laser phase noise is evaluated. Novel analytical results for the common phase error and for the (modulation dependent) inter carrier interference are evaluated based upon Gaussian statistics for the laser phase noise. In the evaluation it is accounted for that the laser phase noise is filtered in the correlation signal d...

  16. Femtosecond precision measurement of laser-rf phase jitter in a photocathode rf gun

    Science.gov (United States)

    Shi, Libing; Zhao, Lingrong; Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhu, Pengfei; Xiang, Dao

    2017-03-01

    We report on the measurement of the laser-rf phase jitter in a photocathode rf gun with femtosecond precision. In this experiment four laser pulses with equal separation are used to produce electron bunch trains; then the laser-rf phase jitter is obtained by measuring the variations of the electron bunch spacing with an rf deflector. Furthermore, we show that when the gun and the deflector are powered by the same rf source, it is possible to obtain the laser-rf phase jitter in the gun through measurement of the beam-rf phase jitter in the deflector. Based on these measurements, we propose an effective time-stamping method that may be applied in MeV ultrafast electron diffraction facilities to enhance the temporal resolution.

  17. Digital RF phase detector for Linac in FEL accelerator

    Institute of Scientific and Technical Information of China (English)

    YU Lu-Yang; YIN Chong-Xian; LIU De-Kang

    2005-01-01

    The digital RF (Radio Frequency) phase detector based on commercial PXI (PCI eXtensions for Instrumentation) modules for the Linac is fully described in the paper. The DBM (Double Balance Mixer) is used as the phase detector and its control and data acquisition system is based on the PXI bus. The software adopts a curve fitting algorithm. The prototype has been tested in the laboratory and the good resolution, accuracy, reproducibility and reliability are expected. The system does not present the problems of analog solution.

  18. RF to millimeter wave integration and module technologies

    Science.gov (United States)

    Vähä-Heikkilä, T.

    2015-04-01

    Radio Frequency (RF) consumer applications have boosted silicon integrated circuits (IC) and corresponding technologies. More and more functions are integrated to ICs and their performance is also increasing. However, RF front-end modules with filters and switches as well as antennas still need other way of integration. This paper focuses to RF front-end module and antenna developments as well as to the integration of millimeter wave radios. VTT Technical Research Centre of Finland has developed both Low Temperature Co-fired Ceramics (LTCC) and Integrated Passive Devices (IPD) integration platforms for RF and millimeter wave integrated modules. In addition to in-house technologies, VTT is using module and component technologies from other commercial sources.

  19. Down-conversion IM-DD RF photonic link utilizing MQW MZ modulator.

    Science.gov (United States)

    Xu, Longtao; Jin, Shilei; Li, Yifei

    2016-04-18

    We present the first down-conversion intensity modulated-direct detection (IM-DD) RF photonic link that achieves frequency down-conversion using the nonlinear optical phase modulation inside a Mach-Zehnder (MZ) modulator. The nonlinear phase modulation is very sensitive and it can enable high RF-to-IF conversion efficiency. Furthermore, the link linearity is enhanced by canceling the nonlinear distortions from the nonlinear phase modulation and the MZ interferometer. Proof-of-concept measurement was performed. The down-conversion IM-DD link demonstrated 28dB improvement in distortion levels over that of a conventional IM-DD link using a LiNbO3 MZ modulator.

  20. Connect Global Positioning System RF Module

    Science.gov (United States)

    Franklin, Garth W.; Young, Lawrence E.; Ciminera, Michael A.; Tien, Jeffrey Y.; Gorelik, Jacob; Okihiro, Brian Bachman; Koelewyn, Cynthia L.

    2012-01-01

    The CoNNeCT Global Positioning System RF Module (GPSM) slice is part of the JPL CoNNeCT Software Defined Radio (SDR). CoNNeCT is the Communications, Navigation, and Net working reconfigurable Testbed project that is part of NASA's Space Communication and Nav igation (SCaN) Program. The CoNNeCT project is an experimental dem onstration that will lead to the advancement of SDRs and provide a path for new space communication and navigation systems for future NASA exploration missions. The JPL CoNNeCT SDR will be flying on the International Space Station (ISS) in 2012 in support of the SCaN CoNNeCT program. The GPSM is a radio-frequency sampler module (see Figure 1) that directly sub-harmonically samples the filtered GPS L-band signals at L1 (1575.42 MHz), L2 (1227.6 MHz), and L5 (1176.45 MHz). The JPL SDR receives GPS signals through a Dorne & Margolin antenna mounted onto a choke ring. The GPS signal is filtered against interference, amplified, split, and fed into three channels: L1, L2, and L5. In each of the L-band channels, there is a chain of bandpass filters and amplifiers, and the signal is fed through each of these channels to where the GPSM performs a one-bit analog-to-digital conversion (see Figure 2). The GPSM uses a sub-harmonic, single-bit L1, L2, and L5 sampler that samples at a clock rate of 38.656 MHz. The new capability is the down-conversion and sampling of the L5 signal when previous hardware did not provide this capability. The first GPS IIF Satellite was launched in 2010, providing the new L5 signal. With the JPL SDR flying on the ISS, it will be possible to demonstrate navigation solutions with 10-meter 3-D accuracy at 10-second intervals using a field-program mable gate array (FPGA)-based feedback loop running at 50 Hz. The GPS data bits will be decoded and used in the SDR. The GPSM will also allow other waveforms that are installed in the SDR to demonstrate various GNSS tracking techniques.

  1. RF phase stability in the 100-MeV proton linac operation

    Science.gov (United States)

    Seol, Kyung-Tae

    2015-02-01

    The 100-MeV proton linac of the Korea multi-purpose accelerator complex (KOMAC) has been operated to provide a proton beam to users. The 100-MeV linac consists of a 3-MeV radio-frequency quadrupole accelerator (RFQ), four 20-MeV drift-tube linac (DTL) tanks, two medium-energy beam-transmitter (MEBT) tanks, and seven 100-MeV DTL tanks. The requirements of the field stability are within ±1% in RF amplitude and ±1 degree in RF phase. The RF phase stability is influenced by a RF reference line, RF transmission lines, and a RF control system. The RF reference signal is chosen to be a 300-MHz local oscillator (LO) signal, and a rigid copper coaxial line with temperature control was installed for an RF reference distribution. A phase stability of ±0.1 degrees was measured under a temperature change of ±0.1 °C. A digital feedback control system with a field-programmable gate-array (FPGA) module was adopted for a high RF stability. The RF phase was maintained within ±0.1 degrees with a dummy cavity and was within ±0.3 degrees at RFQ operation. In the case of the 20-MeV DTL tanks, one klystron drives 4 tanks, and the input phases of 4 tanks were designed to be in phase. The input phases of 4 tanks were fixed within ±1 degree by adjusting a phase shifter in each waveguide.

  2. RF Phase Scan for Beam Energy Measurement of KOMAC DTL

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hansung; Kwon, Hyeokjung; Kim, Seonggu; Lee, Seokgeun; Cho, Yongsub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The energy gain through the drift tube linac is a function of the synchronous phase, therefore, the output beam energy from DTL can be affected by the RF phase setting in low-level RF (LLRF) system. The DTL at Korea Multi-purpose Accelerator Complex (KOMAC) consists of 11 tanks and the RF phase setting in each tank should be matched for synchronous acceleration in successive tanks. That means a proper setting of RF phase in each DTL tank is critical for efficient and loss-free operation. The matching RF phase can be determined based on the output energy measurement from the DTL tank. The beam energy can be measured by several methods. For example, we can use a bending magnet to determine the beam energy because the higher momentum of beam means the less deflection angle in the fixed magnetic field. By measuring the range of proton beam through a material with known stopping power also can be utilized to determine the beam energy. We used a well-known time-of-flight method to determine the output beam energy from the DTL tank by measuring beam phase with a beam position monitor (BPM). Based on the energy measurement results, proper RF operating point could be obtained. We performed a RF phase scan to determine the output beam energy from KOMAC DTL by using a time-of-flight method and to set RF operating point precisely. The measured beam energy was compared with a beam dynamics simulation and showed a good agreement. RF phase setting is critical issue for the efficient operation of the proton accelerator, we have a plan to implement and integrate the RF phase measurement system into an accelerator control system for future need.

  3. Laser-to-RF phase detection with femtosecond precision for remote reference phase stabilization in particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, Thorsten

    2017-05-15

    The operation of modern free-electron lasers (FELs) requires the synchronization of different accelerator subsystems with femtosecond precision. A pulsed optical synchronization system is for this reason operated at the Free-Electron Laser in Hamburg (FLASH) and it is under construction for the upcoming European X-ray Free-Electron Laser (XFEL). Laser pulses from the optical master oscillator are transmitted by timing stabilized optical fiberlinks to dedicated end stations along the accelerator. Devices which cannot operate with optical synchronization signals are instead conventionally synchronized with radio frequency (RF) reference signals. These signals are distributed in the accelerator by coaxial cables. Especially the low -level radio frequency (LLRF) system requires RF reference signals with femtosecond stability in order to meet nowadays femtosecond demands. Due to cable drifts and the length of the accelerators, this level of stability cannot be provided by conventional RF transport. A laser-to-RF (L2RF) phase detector has been invented, which allows to measure with femtosecond precision the relative phase between a phase stable optical pulse train from an optical fiberlink and an RF signal. The L2RF phase detector is based on an integrated MACH-ZEHNDER modulator (MZM) in which the phase error between both signals is encoded in an amplitude modulation of the optical pulse train. Different configurations, based on single output and dual output MZMs have been evaluated for different operation scenarios. A full mathematical representation of the chosen configuration has been derived. The impact of multiple error sources has been investigated. It has been proven that most error sources have only second or higher order influence on the detection principle which is a significant advantage over existing schemes. The invented L2RF phase detector is for example balanced and in its working point insensitive to power variations of the optical reference pulse train

  4. Phase Noise Influence in Optical OFDM Systems employing RF Pilot Tone for Phase Noise Cancellation

    Science.gov (United States)

    Jacobsen, Gunnar; Kazovsky, Leonid G.; Xu, Tianhua; Popov, Sergei; Li, Jie; Zhang, Yima; Friberg, Ari T.

    2011-06-01

    For coherent and direct-detection Orthogonal Frequency Division Multiplexed (OFDM) systems employing radio frequency (RF) pilot tone phase noise cancellation the influence of laser phase noise is evaluated. Novel analytical results for the common phase error and for the (modulation dependent) inter carrier interference are evaluated based upon Gaussian statistics for the laser phase noise. In the evaluation it is accounted for that the laser phase noise is filtered in the correlation signal detection. Numerical results are presented for OFDM systems with 4 and 16 PSK modulation, 200 OFDM bins and baud rate of 1 GS/s. It is found that about 225 km transmission is feasible for the coherent 4PSK-OFDM system over normal (G.652) fiber.

  5. Phase Noise Influence in Optical OFDM Systems employing RF Pilot Tone for Phase Noise Cancellation

    CERN Document Server

    Jacobsen, Gunnar; Xu, Tianhua; Popov, Sergei; Li, Jie; Zhang, Yimo; Friberg, Ari T

    2016-01-01

    For coherent and direct-detection Orthogonal Frequency Division Multiplexed (OFDM) systems employing radio frequency (RF) pilot tone phase noise cancellation the influence of laser phase noise is evaluated. Novel analytical results for the common phase error and for the (modulation dependent) inter carrier interference are evaluated based upon Gaussian statistics for the laser phase noise. In the evaluation it is accounted for that the laser phase noise is filtered in the correlation signal detection. Numerical results are presented for OFDM systems with 4 and 16 PSK modulation, 200 OFDM bins and baud rate of 1 GS/s. It is found that about 225 km transmission is feasible for the coherent 4PSK-OFDM system over normal (G.652) fiber.

  6. Next Generation Fast RF Interlock Module and ATCA Adapter for ILC High Availability RF Test Station Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, R

    2009-10-17

    High availability interlocks and controls are required for the ILC (International Linear Collider) L-Band high power RF stations. A new F3 (Fast Fault Finder) VME module has been developed to process both fast and slow interlocks using FPGA logic to detect the interlock trip excursions. This combination eliminates the need for separate PLC (Programmable Logic Controller) control of slow interlocks. Modules are chained together to accommodate as many inputs as needed. In the next phase of development the F3's will be ported to the new industry standard ATCA (Advanced Telecom Computing Architecture) crate (shelf) via a specially designed VME adapter module with IPMI (Intelligent Platform Management Interface). The goal is to demonstrate auto-failover and hot-swap for future partially redundant systems.

  7. Determination of RF source power in WPSN using modulated backscattering

    CERN Document Server

    Sreedhar, K

    2012-01-01

    A wireless sensor network (WSN) is a wireless network consisting of spatially distributed autonomous devices using sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants, at different locations. During RF transmission energy consumed by critically energy-constrained sensor nodes in a WSN is related to the life time system, but the life time of the system is inversely proportional to the energy consumed by sensor nodes. In that regard, modulated backscattering (MB) is a promising design choice, in which sensor nodes send their data just by switching their antenna impedance and reflecting the incident signal coming from an RF source. Hence wireless passive sensor networks (WPSN) designed to operate using MB do not have the lifetime constraints. In this we are going to investigate the system analytically. To obtain interference-free communication connectivity with the WPSN nodes number of RF sources is determined and analyzed i...

  8. Frequency Agile Wideband Phase Lock Loops for RF-FPGAs

    Science.gov (United States)

    2013-03-01

    defined radios (SDRs) (Borremans [9]), newer standards requiring low integrated phase noise ( WiMAX , LTE) (Tasca [10]), HomeRF SWAP networking...protocol (Willingham [3]), and WiMedia for UWB (Lanka [6]). Note that WiMAX , LTE, and WiMedia examples are research efforts reporting good performance to

  9. Vector Modulator for Phase Shifting in Passive Beamforming Wireless Systems

    Directory of Open Access Journals (Sweden)

    P.Sampath,

    2010-05-01

    Full Text Available This paper proposes vector modulator for changing the phase of a signal in passive beamforming system. Vector modulator is used to perform a phase shift function with added benefit of amplitude control. It is used to improve the directivity of RF waves in Wireless systems. Vector modulator is implemented for a center frequency of 902.5 MHz. The simulation is performed for individual blocks of the vector modulator and for vector modulator with JFET and MOSFET as controlling device in the variable attenuator of the vector modulator.

  10. DSP based coherent receiver for phase-modulated radio-over-fiber optical links

    DEFF Research Database (Denmark)

    Zibar, Darko; Tafur Monroy, Idelfonso; Peucheret, Christophe

    2008-01-01

    A novel DSP based coherent receiver for phase modulated radio-over-fiber optical links is reported. Using the proposed digital receiver, signal demodulation of 1.25 Gb/s ASK-modulated 10 GHz RF carrier is experimentally demonstrated.......A novel DSP based coherent receiver for phase modulated radio-over-fiber optical links is reported. Using the proposed digital receiver, signal demodulation of 1.25 Gb/s ASK-modulated 10 GHz RF carrier is experimentally demonstrated....

  11. Coherent Detection of Wavelength Division Multiplexed Phase-Modulated Radio-over-Fibre Signals

    DEFF Research Database (Denmark)

    Zibar, Darko; Yu, Xianbin; Peucheret, Christophe

    2008-01-01

    A WDM phase-modulated Radio-over-Fibre link using digital coherent detection is experimentally demonstrated. 3 times 50 Mb/s WDM transmission of a BPSK modulated 5 GHz RF carrier is achieved over 25 km.......A WDM phase-modulated Radio-over-Fibre link using digital coherent detection is experimentally demonstrated. 3 times 50 Mb/s WDM transmission of a BPSK modulated 5 GHz RF carrier is achieved over 25 km....

  12. Final Commissioning of the MICE RF Module Prototype with Production Couplers

    Energy Technology Data Exchange (ETDEWEB)

    Torun, Yagmur [IIT, Chicago; Anderson, Terry [Fermilab; Backfish, Michael [Fermilab; Bowring, Daniel [Fermilab; Freemire, Ben [IIT, Chicago (main); Hart, Terrence [Mississippi U.; Kochemirovskiy, Alexey [Illinois U., Chicago; Lane, Peter [IIT, Chicago; Luo, Tianhuan [LBNL, Berkeley; Moretti, Alfred [Fermilab; Neuffer, David [Fermilab; Peterson, David [Fermilab; Popovic, Milorad [Fermilab; Yonehara, Katsuya [Fermilab

    2016-06-01

    We report operational experience from the prototype RF module for the Muon Ionization Cooling Experiment (MICE) with final production couplers at Fermilab's MuCool Test Area. This is the last step in fully qualifying the RF modules for operation in the experiment at RAL.

  13. Composite pulses for RF phase encoded MRI: A simulation study.

    Science.gov (United States)

    Salajeghe, Somaie; Babyn, Paul; Sarty, Gordon E

    2017-02-01

    In B1 encoded MRI, a realistic non-linear phase RF encoding coil will generate an inhomogeneous B1 field that leads to spatially dependent flip angles. The non-linearity of the B1 phase gradient can be compensated for in the reconstruction, but B1 inhomogeneity remains a problem. The effect of B1 inhomogeneity on tip angles for conventional, B0 encoded MRI, may be minimized using composite pulses. The objective of this study was to explore the feasibility of using composite pulses with non-linear RF phase encoding coils and to identify the most appropriate composite pulse scheme. RF encoded signals were simulated via the Bloch equation for various symmetric, asymmetric and antisymmetric composite pulses. The simulated signals were reconstructed using a constrained least squares method. Root mean square reconstruction errors varied from 6% (for an asymmetric composite pulse) to 9.7% (for an antisymmetric composite pulse). An asymmetric composite pulse scheme created images with fewer artifacts than other composite pulse schemes in inhomogeneous B0 and B1 fields making it the best choice for decreasing the effects of spatially varying flip angles. This is contrary to the conclusion that antisymmetric composite pulses are the best ones to use for spin echo sequences in conventional, B0 encoded, MRI. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  14. Photonic downconversion for coherent phase-modulated radio-over-fiber links using free-running local oscillator

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Zibar, Darko; Schäffer, Christian G.

    2011-01-01

    A digital coherent receiver employing photonic downconversion is presented and experimentally demonstrated for phase-modulated radio-over-fiber optical links. Photonic downconversion adds additional advantages to optical phase modulated links by allowing demodulation of signals with RF carrier...

  15. Modulational instability of nematic phase

    Indian Academy of Sciences (India)

    T Mithun; K Porsezian

    2014-02-01

    We numerically observe the effect of homogeneous magnetic field on the modulationally stable case of polar phase in = 2 spinor Bose–Einstein condensates (BECs). Also we investigate the modulational instability of uniaxial and biaxial (BN) states of polar phase. Our observations show that the magnetic field triggers the modulational instability and demonstrate that irrespective of the magnetic field effect the uniaxial and biaxial nematic phases show modulational instability.

  16. RF Phase Stability and Electron Beam Characterization for the PLEIADES Thomson X-Ray Source

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W J; Hartemann, F V; Tremaine, A M; Springer, P T; Le Sage, G P; Barty, C P J; Rosenzweig, J B; Crane, J K; Cross, R R; Fittinghoff, D N; Gibson, D J; Slaughter, D R; Anderson, S

    2002-10-16

    We report on the performance of an S-band RF photocathode electron gun and accelerator for operation with the PLEIADES Thomson x-ray source at LLNL. To produce picosecond, high brightness x-ray pulses, picosecond timing, terahertz bandwidth diagnostics, and RF phase control are required. Planned optical, RF, x-ray and electron beam measurements to characterize the dependence of electron beam parameters and synchronization on RF phase stability are presented.

  17. High-Frequency Properties of Embedded Passives and Thermal Resistance in Organic Substrates for RF Module

    Directory of Open Access Journals (Sweden)

    Yusuke Kondo

    2010-01-01

    Full Text Available Radio Frequency (RF modules have been miniaturized to meet the demand for smaller and more enhanced handsets for wireless applications such as cellular phones. However, area for passive devices used in RF modules has made further miniaturization difficult. Passives embedded in substrates are now being studied intensively. In addition, circuit simulation technology has been developed that enables efficient designing of RF module circuits. Circuit designers, however, have limited database of organic substrates and embedded passives. Further, optimized thermal designs are required to prevent thermal resistance increase due to miniaturization of substrates. In this paper, we describe the high-frequency properties of the capacitors embedded in the organic substrates and present the equivalent circuit models of the embedded capacitors. We also present the thermal design of organic substrates applicable to RF modules.

  18. Very long pulse high-RF power test of a lower hybrid frequency antenna module

    Energy Technology Data Exchange (ETDEWEB)

    Goniche, M.; Brossaud, J.; Barral, C.; Berger-By, G.; Bibet, Ph.; Poli, S.; Rey, G.; Tonon, G. [Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Seki, M.; Obara, K. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1994-03-01

    Outgassing, induced by very long RF waves injection at high power density was studied in a module, able to be used for a lower hybrid frequency antenna. Good RF properties of the module are reported, however, resonance phenomena with strong absorption of RF power (15%) was observed at high temperature (T>400 deg C). A large outgassing data base is provided by the 75 shots cumulating 27 hours of RF injection. The comparison with previous experiments (Tore Supra and TdV prototype modules) confirm the effect of baking and results are consistent. Outgassing increases exponentially with -1/T, and a desorption model with an activation energy Ed {approx} 0.35 eV fits the data up to 400 deg C. In order to design vacuum pumping system for large lower hybrid frequency antenna, outgassing rates are given for different working temperatures. (author). 11 refs., 55 figs.

  19. Zero-field nuclear magnetic resonance in high field by modulated rf sequences.

    Science.gov (United States)

    Nishiyama, Yusuke; Yamazaki, Toshio

    2007-04-07

    The authors propose a novel approach to design and evaluate sequences for zero-field NMR spectra in high field (ZFHF) by using amplitude and phase modulated rf sequences. ZFHF provide sharp peaks for the dipolar interaction between two nuclear spins even if the orientation of the molecules is distributed. The internuclear distance r can be directly obtained from the peak position which is proportional to r-3. Numerous ZFHF sequences are obtained. A sequence is selected from them by the systematic evaluation of the sequences. The new ZFHF sequence is less affected by chemical shift anisotropy (CSA) than the previous sequences; the sequence can be used for systems with large CSA such as a dipolar coupled 13C-pair system under realistically high field. 13C ZFHF spectra of 13C2 diammonium succinate and 13C2 diammonium oxalate were observed under the 9.4 T field.

  20. A Wideband Supply Modulator for 20MHz RF Bandwidth Polar PAs in 65nm CMOS

    NARCIS (Netherlands)

    Shrestha, R.; van der Zee, Ronan A.R.; de Graauw, Anton; Nauta, Bram

    2009-01-01

    Polar modulated RF amplifiers have the potential to enhance efficiency while achieving sufficient linearity for a signal having non-constant envelope. However, switching modulators used in such architectures to generate the envelope signal are difficult to implement because of the high bandwidth and

  1. Joint Adaptive Modulation and Combining for Hybrid FSO/RF Systems

    KAUST Repository

    Rakia, Tamer

    2015-11-12

    In this paper, we present and analyze a new transmission scheme for hybrid FSO/RF communication system based on joint adaptive modulation and adaptive combining. Specifically, the data rate on the FSO link is adjusted in discrete manner according to the FSO link\\'s instantaneous received signal-to-noise-ratio (SNR). If the FSO link\\'s quality is too poor to maintain the target bit-error-rate, the system activates the RF link along with the FSO link. When the RF link is activated, simultaneous transmission of the same modulated data takes place on both links, where the received signals from both links are combined using maximal ratio combining scheme. In this case, the data rate of the system is adjusted according to the instantaneous combined SNRs. Novel analytical expression for the cumulative distribution function (CDF) of the received SNR for the proposed adaptive hybrid system is obtained. This CDF expression is used to study the spectral and outage performances of the proposed adaptive hybrid FSO/RF system. Numerical examples are presented to compare the performance of the proposed adaptive hybrid FSO/RF system with that of switch-over hybrid FSO/RF and FSO-only systems employing the same adaptive modulation schemes. © 2015 IEEE.

  2. A tunable rf SQUID manipulated as flux and phase qubits

    Energy Technology Data Exchange (ETDEWEB)

    Poletto, S; Lisenfeld, J; Lukashenko, A; Ustinov, A V [Physikalisches Institut, Universitaet Karlsruhe (Thailand), D-76131 Karlsruhe (Germany); Chiarello, F; Castellano, M G [Istituto di Fotonica e Nanotecnologie, CNR, 00156 Roma (Italy); Carelli, P [Dipartimento di Ingegneria Elettrica, Universita dell' Aquila, 67040 Monteluco di Roio (Italy)], E-mail: ustinov@physik.uni-karlsruhe.de

    2009-12-15

    We report on two different manipulation procedures of a tunable rf superconducting quantum interference device (SQUID). First, we operate this system as a flux qubit, where the coherent evolution between the two flux states is induced by a rapid change of the energy potential, turning it from a double well into a single well. The measured coherent Larmor-like oscillation of the retrapping probability in one of the wells has a frequency ranging from 6 to 20 GHz, with a theoretically expected upper limit of 40 GHz. Furthermore, here we also report a manipulation of the same device as a phase qubit. In the phase regime, the manipulation of the energy states is realized by applying a resonant microwave drive. In spite of the conceptual difference between these two manipulation procedures, the measured decay times of Larmor oscillation and microwave-driven Rabi oscillation are rather similar. Due to the higher frequency of the Larmor oscillations, the microwave-free qubit manipulation allows for much faster coherent operations.

  3. Experimental demonstration of 360 tunable RF phase shift using slow and fast light effects

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Capmany, Jose;

    2009-01-01

    A microwave photonic phase shifter realizing 360º phase shift over a RF bandwidth of more than 10 GHz is demonstrated using optical filtering assisted slow and fast light effects in a cascaded structure of semiconductor optical amplifiers....

  4. LEIR RF Voltage Calibration using Phase Space Tomography

    CERN Document Server

    Hancock, S; Findlay, A

    2010-01-01

    The influence on convergence of the rf voltage input into the iterative algorithm of the Tomoscope has been used to confirm that the voltage calibration used in the digital cavity servo at LEIR is valid to better than 10%. Under the right conditions, this novel beam-based determination of rf voltage using tomography can be extraordinarily precise.

  5. RF photonics technology for phased array antenna applications

    NARCIS (Netherlands)

    Meijerink, A.; Roeloffzen, C.G.H.; Marpaung, D.A.I.; Zhuang, L.; Etten, van W.C.; Leinse, A.; Hoekman, M.; Heideman, R.G.

    2008-01-01

    One of the key research topics of the Telecommunication Engineering (TE) Group at the University of Twente (UT) is RF Photonics. The aim of this field is to develop schemes that utilize the advantages of optical technology for performing RF functions in wireless communication systems. Examples of su

  6. Modulation improvements in the 201 MHZ RF generators at LAMPF

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, W M; Lyles, J T.M.; Harris, H W

    1992-01-01

    Radio-frequency generators, operating at 201 MHz, power the first four stages of the Los Alamos Meson Physics Facility (LAMPF) accelerator. Each generator consists of four stages of seriesconnected, vacuum-tube amplifiers. The modulation scheme for each stage is different. The fist amplifier is a grid-modulated tetrode that produces 500 W peak-power. The second amplifier is a drive-modulated tetrode that produces 5 kill peak-power. The third stage is a grid- and plate-modulated tetrode that produces 130 kill peak-power. The last stage is a plate-modulated triode that produces 2.5 MW peak power. A modernization program has been initiated to improve the reliability of each of these stages. The first two stages of each generator are being replaced with a single, drive-modulated, solid-state amplifier. Specifications for the amplifier design, and requirements for integration into the system are presented. The third stage will be converted to a drive-modulated system using the current tetrode. This modification involves the development of a 17-kV, 15-A switching supply to replace the present plate-modulator. Design requirements for this switching supply are presented. The final stage will remain plate-modulated but will contain a new driver unit for the modulator tube.

  7. Space-time delta-sigma modulation for reception of multiple simultaneous independent RF beams

    Science.gov (United States)

    Rong, Guoguang; Black, Bruce A.; Siahmakoun, Azad Z.

    2005-09-01

    In this paper we introduce and analyze a multiple-RF-beam beamformer in receive mode utilizing the principle of space-time delta-sigma modulation. This principle is based on sampling input signals in both time and space and converting the sampled signals into a digital format by delta-sigma conversion. Noise shaping is achieved in 2D frequency domain. We show that the modulator can receive signals of narrow and wide bandwidths with steering capability, can receive multiple beams, and establish tradeoffs between sampling in time and in space. The ability of the modulator to trade off between time and space provides an effective way to sample high frequency RF signals without down conversion. In addition, a space-time delta-sigma modulator has better performance than a solely temporal delta-sigma modulator (for the same filter order), as is typically used in communication systems to digitize the down-converted analog signals.

  8. Tailored RF Pulse Modulation for RF Refocussed Variable Flip Angle MRI

    Science.gov (United States)

    Shah, Ajit S.; Ortendahl, Douglas A.; Carlson, Joseph W.; Kramer, David M.; Crooks, Larry E.

    1989-05-01

    Advances in Magnetice Resonance Imaging (MRI) techniques have recently made MRI the imaging modality of choice for many applications of clinical imaging. MRI provides the diagnosing clinician a non-invasive method for obtaining soft tissue differentiation with sub-millimeter resolution. Clinical MRI techniques include 3-dimensional imaging, spectroscopic imaging, arterial angiography and cardiac imaging. One MRI technique which has recently gained popularity is a class of protocols known as variable/partial flip angle MRI. Partial flip angle MRI techniques are useful because of their ability to vary contrast between tissues and/or maintain a particular level of contrast with a reduction in acquisition time [1]. Variable flip angle techniques differ from conventional MRI protocols in that the initial RF excitation/rotation pulse is not constrained to a 90 degree rotation of the longitudinal magnetization. Instead, the initial excitation flip angle is calculated to provide improved contrast between two tissues and/or maximize the intensity of a particular tissue. For tissues with reduced TR/T1 ratios, variable flip angle techniques may also be used to increase the image signal to noise within a localized region.

  9. Study on the RF Set Point for the PEFP DTL by using a phase scan method

    Science.gov (United States)

    Jang, Ji-Ho; Kwon, Hyeok-Jung; Cho, Yong-Sub

    2012-12-01

    The drift tube linac (DTL) is used to accelerate proton beams from 20 MeV to 100 MeV in the linear accelerator of the Proton Engineering Frontier Project (PEFP). The phase scan signature method is a common technique to determine the radio-frequency (rf) set point, including the rf amplitude and phase, in DTL tanks. In this work, we applied the phase scan method to the first tank of the PEFP's DTL in order to study the procedure for determining the rf set point by using artificial experimental data generated by using the PARMILA code.

  10. Solid-State Modulators for RF and Fast Kickers

    CERN Document Server

    Cook, Edward; Brooksby, Craig A; Cassel, Richard; De Lamare, Jeffrey E; Gower, Edward J; Hawkins, Steven; Hickman, Bradley C; Nguyen, Minh N; Pappas, Chris

    2005-01-01

    As the capabilities of solid-state devices increase, these devices are being incorporated into modulator designs for high voltage accelerator applications. Solid-state modulators based on inductive adder circuit topology have demonstrated great versatility with regard to pulse width and pulse repetition rate while maintaining fast pulse rise and fall times. Additionally, these modulators are capable of being scaled to higher output voltage and power levels. An explanation of the basic circuit operation will be presented as well as test data of several different hardware systems.

  11. Optically envelope detected QAM and QPSK RF modulated signals in hybrid wireless-fiber systems

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Prince, Kamau; Seoane, Jorge;

    2009-01-01

    from a 1.6 GHz carrier frequency to an IF at 500 MHz, requiring no high frequency local oscillator and mixer at the remote base station. This result proves the feasibility of optical envelope detection for complex modulation formats of RF signals for hybrid wireless-fiber transmission links....

  12. Sensitivity Enhancement in Field-Modulated CW ENDOR via RF Bandwidth Broadening

    Science.gov (United States)

    Hoffman, B. M.; Derose, V. J.; Ong, J. L.; Davoust, C. E.

    In low-temperature ENDOR studies it is common to modulate the magnetic field at ν mod ˜ 100 kHz and to observe the ENDOR response as a change in the dispersion-mode rapid-passage EPR signal as decoded at ν mod. The sensitivity of this procedure can be increased by incoherently broadening the bandwidth of the applied RF through mixing of the RF carrier signal with a white-noise source of variable bandwidth. This technique has been explored by monitoring the amplitude and width of ENDOR signals as a function of the RF bandwidth and power, in the case of the 57Fe signals from a metalloprotein and 14N, 1H signals from two Cu(II) compounds. The RF band broadening has produced signal enhancements of over threefold. The results are interpreted in terms of a competition between (i) an increase in the number of spin packets excited within the inhomogeneously broadened ENDOR line and () a reduction in the response per packet. Simple analysis leads to equations for the variation in the ENDOR response with incident RF power and bandwidth that are scaled by a saturation RF power and an effective spin-packet width, respectively.

  13. Single-Chip Fully Integrated Direct-Modulation CMOS RF Transmitters for Short-Range Wireless Applications

    Directory of Open Access Journals (Sweden)

    M. Jamal Deen

    2013-08-01

    Full Text Available Ultra-low power radio frequency (RF transceivers used in short-range application such as wireless sensor networks (WSNs require efficient, reliable and fully integrated transmitter architectures with minimal building blocks. This paper presents the design, implementation and performance evaluation of single-chip, fully integrated 2.4 GHz and 433 MHz RF transmitters using direct-modulation power voltage-controlled oscillators (PVCOs in addition to a 2.0 GHz phase-locked loop (PLL based transmitter. All three RF transmitters have been fabricated in a standard mixed-signal CMOS 0.18 µm technology. Measurement results of the 2.4 GHz transmitter show an improvement in drain efficiency from 27% to 36%. The 2.4 GHz and 433 MHz transmitters deliver an output power of 8 dBm with a phase noise of −122 dBc/Hz at 1 MHz offset, while drawing 15.4 mA of current and an output power of 6.5 dBm with a phase noise of −120 dBc/Hz at 1 MHz offset, while drawing 20.8 mA of current from 1.5 V power supplies, respectively. The PLL transmitter delivers an output power of 9 mW with a locking range of 128 MHz and consumes 26 mA from 1.8 V power supply. The experimental results demonstrate that the RF transmitters can be efficiently used in low power WSN applications.

  14. High RF power test of a CFC antenna module for lower hybrid current drive

    Energy Technology Data Exchange (ETDEWEB)

    Maebara, S.; Seki, M.; Ikeda, Y.; Kiyono, K.; Suganuma, K.; Imai, T. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Goniche, M.; Bibet, Ph.; Brossaud, J.; Cano, V.; Kazarian-Vibert, F.; Froissard, P.; Rey, G. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1998-07-01

    A mock-up of a 3.7 GHz Lower Hybrid Current Drive (LHCD) antenna module was fabricated from Carbon Fibre Composite (CFC) for the development of heat resistive low Z front facing the plasma. This 2 divided waveguide module is made from CFC plates and rods which are Cu-plated to reduce the RF losses. The withstand-voltage, the RF properties and the outgassing rates for long pulses and high RF power were tested at the Lower Hybrid test bed facility of Cadarache. A reference module made from Dispersion Strengthened Copper (DSC) was also fabricated. After the short pulse conditioning, long pulses with a power density ranging between 50 and 150 MW/m{sup 2} were performed with no breakdowns on the CFC module. It was also checked that the highest power density, up to 150 MW/m{sup 2}, could be transmitted when the waveguides are filled with H2 at a pressure of 5 x 10{sup -2} Pa. During a long pulse, the power reflection coefficient remains low in the 0.8-1.3 % range and no significant change in the reflection coefficient is measured after the thermal cycling provided by the long pulse operation. From thermocouple measurements, RF losses of the copper coated CFC and the DSC modules were compared. No significant differences were measured. From pressure measurements, it was found that the outgassing rate of Cu-plated CFC is about 6-7 times larger than of DSC at 300 deg.C. It is concluded that a CFC module is an attractive candidate for the hardening of the tip of the LHCD antenna. (author)

  15. High RF power test of a lower hybrid module mock-up in carbon fiber composite

    Energy Technology Data Exchange (ETDEWEB)

    Goniche, M.; Bibet, P.; Brossaud, J.; Cano, V.; Froissard, P.; Kazarian, F.; Rey, G. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Maebara, S.; Kiyono, K.; Seki, M.; Suganuma, K.; Ikeda, Y.; Imai, T. [Japan Atomic Energy Research Inst., Tokyo (Japan). Dept. of Fusion Facility

    1999-02-01

    A mock-up module of a Lower Hybrid Current Drive antenna module of a Carbon Fiber Composite (CFC) was fabricated for the development of heat resistive front facing the plasma. This module is made from CFC plates and rods which are copper coated to reduce the RF losses. The withstand-voltage, the RF properties and outgassing rates for long pulses and high RF power were tested at the Lower Hybrid test bed facility of Cadarache. After the short pulse conditioning, long pulses with a power density ranging between 50 and 150 MW/m{sup 2} were performed with no breakdowns. During these tests, the module temperaturewas increasing from 100-200 deg. C to 400-500 deg. C. It was also checked that high power density, up to 150 MW/m{sup 2}, could be transmitted when the waveguides are filled with H{sub 2} at a pressure of 5 x 10{sup -2} Pa. No significant change in the reflection coefficient is measured after the long pulse operation. During a long pulse, the power reflection increases during the pulse typically from 0.8% to 1.3%. It is concluded that the outgassing rate of Cu-plated CFC is about 6 times larger than of Dispersion Strengthened Copper (DSC) module at the module temperature of 300 deg. C. No significant increase of the global outgassing of the CFC module was measured after hydrogen pre-filling. After the test, visual inspection revealed that peeling of the copper coating occurred at one end of the module only on a very small area (0.2 cm{sup 2}). It is assessed that a CFC module is an attractive candidate for the hardening of the tip of the LHCD antenna. (authors)

  16. Ultrabroadband phased-array radio frequency (RF) receivers based on optical techniques

    Science.gov (United States)

    Overmiller, Brock M.; Schuetz, Christopher A.; Schneider, Garrett; Murakowski, Janusz; Prather, Dennis W.

    2014-03-01

    Military operations require the ability to locate and identify electronic emissions in the battlefield environment. However, recent developments in radio detection and ranging (RADAR) and communications technology are making it harder to effectively identify such emissions. Phased array systems aid in discriminating emitters in the scene by virtue of their relatively high-gain beam steering and nulling capabilities. For the purpose of locating emitters, we present an approach realize a broadband receiver based on optical processing techniques applied to the response of detectors in conformal antenna arrays. This approach utilizes photonic techniques that enable us to capture, route, and process the incoming signals. Optical modulators convert the incoming signals up to and exceeding 110 GHz with appreciable conversion efficiency and route these signals via fiber optics to a central processing location. This central processor consists of a closed loop phase control system which compensates for phase fluctuations induced on the fibers due to thermal or acoustic vibrations as well as an optical heterodyne approach for signal conversion down to baseband. Our optical heterodyne approach uses injection-locked paired optical sources to perform heterodyne downconversion/frequency identification of the detected emission. Preliminary geolocation and frequency identification testing of electronic emissions has been performed demonstrating the capabilities of our RF receiver.

  17. EEPN and CD study for coherent optical nPSK and nQAM systems with RF pilot based phase noise compensation.

    Science.gov (United States)

    Jacobsen, Gunnar; Xu, Tianhua; Popov, Sergei; Li, Jie; Friberg, Ari T; Zhang, Yimo

    2012-04-09

    A radio frequency (RF) carrier can be used to mitigate the phase noise impact in n-level PSK and QAM systems. The systems performance is influenced by the use of an RF pilot carrier to accomplish phase noise compensation through complex multiplication in combination with discrete filters to compensate for the chromatic dispersion (CD). We perform a detailed study comparing two filters for the CD compensation namely the fixed frequency domain equalizer (FDE) filter and the adaptive least-mean-square (LMS) filter. The study provides important novel physical insight into the equalization enhanced phase noise (EEPN) influence on the system bit-error-rate (BER) versus optical signal-to-noise-ratio (OSNR) performance. Important results of the analysis are that the FDE filter position relative to the RF carrier phase noise compensation module provides a possibility for choosing whether the EEPN from the Tx or the LO laser influences the system quality. The LMS filter works very inefficiently when placed prior to the RF phase noise compensation stage of the Rx whereas it works much more efficiently and gives almost the same performance as the FDE filter when placed after the RF phase noise compensation stage.

  18. RF-modulated pulsed fiber optic lidar transmitter for improved underwater imaging and communications

    Science.gov (United States)

    Kimpel, F.; Chen, Y.; Fouron, J.-L.; Akbulut, M.; Engin, D.; Gupta, S.

    2011-03-01

    We present results on the design, development and initial testing of a fiber-optic based RF-modulated lidar transmitter operating at 532nm, for underwater imaging application in littoral waters. The design implementation is based on using state-of-the-art high-speed FPGAs, thereby producing optical waveforms with arbitrary digital-RF-modulated pulse patterns with carrier frequencies >= 3GHz, with a repetition rate of 0.5-1MHz, and with average powers >=5W (at 532nm). Use of RF-modulated bursts above 500MHz, instead of single optical pulse lidar detection, reduces the effect of volumetric backscatter for underwater imaging application, leading to an improved signal-to-noise-ratio (SNR) and contrast, for a given range. Initial underwater target detection tests conducted at Patuxent River Naval Air Station, MD, in a large water-tank facility, validates the advantages of this hybrid-lidar-radar (HLR) approach for improved underwater imaging, over a wide range of turbidity levels and both white and black targets. The compact, robust and power-efficient fiber laser architecture lends very well to lidar sensor integration on unmanned-underwater-vehicle (UUV) platforms. HLR transmitters can also provide similar advantages in active-sensing situations dominated by continuous backscatter, e.g. underwater communications, imaging through smoke and fire environment, rotor-craft landing in degraded visual environment, and pointing-tracking of active-EO sensors through fog.

  19. Digital coherent receiver for phase modulated radio-over-fibre optical links

    DEFF Research Database (Denmark)

    Zibar, Darko; Yu, Xianbin; Peucheret, Christophe

    2009-01-01

    A novel digital signal processing-based coherent receiver for phase-modulated radio-over-fiber (RoF) optical links is presented and demonstrated experimentally. Error-free demodulation of 50-Mbaud binary phase-shift keying (BPSK) and quadrature phase-shift keying data signal modulated on a 5-GHz...... radio-frequency (RF) carrier is experimentally demonstrated using the proposed digital coherent receiver. Additionally, a wavelength-division-multiplexing (WDM) phase-modulated RoF optical link is experimentally demonstrated. A 3 x50 Mb/s WDM transmission of a BPSK modulated 5-GHz RF carrier is achieved...... over 25 km for the WDM channel spacing of 12.5 and 25 GHz, respectively....

  20. ANALYSIS AND MEASUREMENT OF LARGE DYNAMIC RANGE RF SWITCH INTER-MODULATION

    Institute of Scientific and Technical Information of China (English)

    Han Zhouan

    2008-01-01

    Radio Frequency (RF) switch circuit is the basic part of microwave devices and systems. The non-linearity distortion figure is necessary in the field of large dynamic range of signal. This letter analyzes the basic switch circuit and its inter-modulation, and studies in detail the measurement methods and systems of RF switch intercept point. It has provided cascaded simulation testing methods,which can accurately measure the PF switch, of which the second or third order intercept point value is above 75dB and 60dB, respectively. As the testing results are consistent with the theoretical analyses,it proves that the validity of the method satisfies the requirements of large scaled linearity measurement in engineering.

  1. Development of 3 kW at 325 MHz solid-state RF power amplifier using four power amplifier modules

    Science.gov (United States)

    Ramarao, B. V.; Sonal, S.; Mishra, J. K.; Pande, M.; Singh, P.; Kumar, G.; Mukherjee, J.

    2014-01-01

    A high power solid-state RF power amplifier of 3 kW at 325 MHz has been developed using only four RF power amplifier modules of 850 W power output each. The design and characterization of RF power modules have been presented. A four way Wilkinson power combiner adds the output of four power amplifier modules with a total transmission loss of less than 6%. The combined power amplifier has a power gain of 20.2 dB at 1-dB compression point, and the corresponding output power is 2.8 kW at 325 MHz. The drain efficiency of the power amplifier is 65.3% at 3 kW. All the harmonics of this amplifier are below -40 dBc. The amplifier has better characteristics like fewer numbers of active devices per kilo watt, high efficiency, high gain, and ruggedness etc for RF accelerator applications.

  2. Optoelectronic Infrastructure for RF/Optical Phased Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Optoelectronic integrated holds the key to higher performance, reduced mass and radiation-hard space systems. A special need is increased flexibility of phased...

  3. Optoelectronic Infrastructure for RF/Optical Phased Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Optoelectronic integrated circuits offer radiation-hard solutions for satellite systems with much improved SWPB (size, weight, power and bandwidth). The phased array...

  4. Model polymer etching and surface modification by a time modulated RF plasma jet: role of atomic oxygen and water vapor

    Science.gov (United States)

    Luan, P.; Knoll, A. J.; Wang, H.; Kondeti, V. S. S. K.; Bruggeman, P. J.; Oehrlein, G. S.

    2017-01-01

    The surface interaction of a well-characterized time modulated radio frequency (RF) plasma jet with polystyrene, poly(methyl methacrylate) and poly(vinyl alcohol) as model polymers is investigated. The RF plasma jet shows fast polymer etching but mild chemical modification with a characteristic carbonate ester and NO formation on the etched surface. By varying the plasma treatment conditions including feed gas composition, environment gaseous composition, and treatment distance, we find that short lived species, especially atomic O for Ar/1% O2 and 1% air plasma and OH for Ar/1% H2O plasma, play an essential role for polymer etching. For O2 containing plasma, we find that atomic O initiates polymer etching and the etching depth mirrors the measured decay of O atoms in the gas phase as the nozzle-surface distance increases. The etching reaction probability of an O atom ranging from 10-4 to 10-3 is consistent with low pressure plasma research. We also find that adding O2 and H2O simultaneously into Ar feed gas quenches polymer etching compared to adding them separately which suggests the reduction of O and OH density in Ar/O2/H2O plasma.

  5. Sliding force measurements of the LHC RF contact Plug In Modules at 15 K and in UHV

    CERN Document Server

    Artoos, K; Renaglia, T; CERN. Geneva. TS Department

    2008-01-01

    Some sliding RF contacts mounted in the Plug In Modules in the LHC interconnects failed during a thermal cycle between 4.2 K and room temperature. Some of the gold-coated copper-beryllium RF fingers buckled during the warm up of the machine, indicating that one or more parameters during operation (e.g. the friction coefficient) could be different from what was used in the calculations. This report describes the measurement of the longitudinal forces acting on the sliding RF fingers at operating vacuum and temperatures.

  6. Beam-Switch Transient Effects in the RF Path of the ICAPA Receive Phased Array Antenna

    Science.gov (United States)

    Sands, O. Scott

    2003-01-01

    When the beam of a Phased Array Antenna (PAA) is switched from one pointing direction to another, transient effects in the RF path of the antenna are observed. Testing described in the report has revealed implementation-specific transient effects in the RF channel that are associated with digital clocking pulses that occur with transfer of data from the Beam Steering Controller (BSC) to the digital electronics of the PAA under test. The testing described here provides an initial assessment of the beam-switch phenomena by digitally acquiring time series of the RF communications channel, under CW excitation, during the period of time that the beam switch transient occurs. Effects are analyzed using time-frequency distributions and instantaneous frequency estimation techniques. The results of tests conducted with CW excitation supports further Bit-Error-Rate (BER) testing of the PAA communication channel.

  7. Broadband RF-amplitude-dependent flip angle pulses with linear phase slope.

    Science.gov (United States)

    Koos, Martin R M; Feyrer, Hannes; Luy, Burkhard

    2017-09-01

    Pulse sequences in NMR spectroscopy sometimes require the application of pulses with effective flip angles different from 90° and 180°. Previously (Magn. Reson. Chem. 2015, 53, 886-893), offset-compensated broadband excitation pulses with RF-amplitude-dependent effective flip angles (RADFA) were introduced that are applicable in such cases. However, especially RF-amplitude-restricted RADFA pulses turned out to perform not as good as desired in terms of achievable bandwidths. Here, a class of RF-amplitude-restricted RADFA pulses with linear phase slope is introduced that allows excitation over much larger bandwidths with better performance. In this theoretical work, the basic principle of the pulse class is explained, their physical limits explored, and their properties, also compared with other pulse classes, discussed in detail. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  8. A directly phase-modulated light source

    CERN Document Server

    Yuan, Z L; Lucamarini, M; Roberts, G L; Dynes, J F; Shields, A J

    2016-01-01

    The art of imparting information onto a light wave by optical signal modulation is fundamental to all forms of optical communication. Among many schemes, direct modulation of laser diodes stands out as a simple, robust, and cost effective method. However, the simultaneous changes in intensity, frequency and phase are a drawback which has prevented its application in the field of secure quantum communication. Here, we propose and experimentally demonstrate a directly phase-modulated light source which overcomes the main disadvantages associated with direct modulation and is suitable for diverse applications such as coherent communications and quantum cryptography. The source separates the tasks of phase preparation and pulse generation between a pair of semiconductor lasers leading to very pure phase states. Moreover, the cavity enhanced electro-optic effect enables the first example of sub-volt halfwave phase modulation at high signal rates. The source is compact, stable and versatile, and we show its potenti...

  9. Low Power Universal Direct Conversion Transmit and Receive (UTR) RF Module for Software Defined Radios Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Conventional software defined radio (SDR) backend signal processors are limited by apriori system definitions and respectively chosen RF hardware. Ideally, the RF...

  10. nRF24L01射频模块驱动程序设计%Design of nRF24L01 RF module driver

    Institute of Scientific and Technical Information of China (English)

    严林祥; 张红雨

    2013-01-01

    文中基于微处理器S3C2440和嵌入式Linux操作系统,介绍了一种利用SPI控制器控制nRF24L01射频模块的驱动程序设计.讨论了nRF24L01射频模块的硬件电路,采用字符设备驱动的开发流程设计了射频模块的驱动程序.最终实现了nRF24L01射频模块之间的通信,该射频模块在2.45G无线通信领域中有着广泛的应用前景.

  11. Development of 3 kW at 325 MHz solid-state RF power amplifier using four power amplifier modules

    Energy Technology Data Exchange (ETDEWEB)

    Ramarao, B.V., E-mail: bvram@barc.gov.in [Ion Accelerator Development Division, Bhabha Atomic Research Center, Mumbai 400085 (India); Sonal, S.; Mishra, J.K.; Pande, M.; Singh, P. [Ion Accelerator Development Division, Bhabha Atomic Research Center, Mumbai 400085 (India); Kumar, G.; Mukherjee, J. [Indian Institute of Technology, Powai, Mumbai 400076 (India)

    2014-01-21

    A high power solid-state RF power amplifier of 3 kW at 325 MHz has been developed using only four RF power amplifier modules of 850 W power output each. The design and characterization of RF power modules have been presented. A four way Wilkinson power combiner adds the output of four power amplifier modules with a total transmission loss of less than 6%. The combined power amplifier has a power gain of 20.2 dB at 1-dB compression point, and the corresponding output power is 2.8 kW at 325 MHz. The drain efficiency of the power amplifier is 65.3% at 3 kW. All the harmonics of this amplifier are below −40 dBc. The amplifier has better characteristics like fewer numbers of active devices per kilo watt, high efficiency, high gain, and ruggedness etc for RF accelerator applications. -- Highlights: • High gain power amplifier, power gain at 20 dB. • High efficiency amplifier, efficiency >65%. • Minimum number of modules per kilo watt power output. • Heat sink with modules on both side, high density.

  12. Involvement of mammalian RF-amide peptides and their receptors in the modulation of nociception in rodents

    Directory of Open Access Journals (Sweden)

    Safia eAyachi

    2014-10-01

    Full Text Available Mammalian RF-amide peptides, which all share a conserved carboxyl-terminal Arg-Phe-NH2 sequence, constitute a family of five groups of neuropeptides that are encoded by five different genes. They act through five G protein-coupled receptors and each group of peptide binds to and activates mostly one receptor: RF-amide related peptide (RFRP group binds to NPFFR1, neuropeptide FF (NPFF group to NPFFR2, pyroglutamylated RF-amide peptide (QRFP group to QRFPR, prolactin releasing peptide (PrRP group to PrRPR, and kisspeptin group to Kiss1R. These peptides and their receptors have been involved in the modulation of several functions including reproduction, feeding and cardiovascular regulation. Data from the literature now provide emerging evidence that all RF-amide peptides and their receptors are also involved in the modulation of nociception. This review will present the current knowledge on the involvement in rodents of the different mammalian RF-amide peptides and their receptors in the modulation of nociception in basal and chronic pain conditions as well as their modulatory effects on the analgesic effects of opiates.

  13. Phase-Modulated Optical Communication Systems

    CERN Document Server

    Ho, Keang-Po

    2005-01-01

    Fiber-optic communication systems have revolutionized our telecommunication infrastructures – currently, almost all telephone land-line, cellular, and internet communications must travel via some form of optical fibers. In these transmission systems, neither the phase nor frequency of the optical signal carries information – only the intensity of the signal is used. To transmit more information in a single optical carrier, the phase of the optical carrier must be explored. As a result, there is renewed interest in phase-modulated optical communications, mainly in direct-detection DPSK signals for long-haul optical communication systems. When optical amplifiers are used to maintain certain signal level among the fiber link, the system is limited by amplifier noises and fiber nonlinearities. Phase-Modulated Optical Communication Systems surveys this newly popular area, covering the following topics: The transmitter and receiver for phase-modulated coherent lightwave systems Method for performance analysis o...

  14. Stable Optical Phase Modulation with Micromirrors

    CERN Document Server

    Knoernschild, Caleb; Maunz, Peter; Crain, Stephen; Kim, Jungsang

    2011-01-01

    We measure the motional fluctuations of a micromechanical mirror using a Michelson interferometer, and demonstrate its interferometric stability. The position stability of the micromirror is dominated by the thermal mechanical noise of the structure. With this level of stability, we utilize the micromirror to realize an ideal optical phase modulator by simply reflecting light off the mirror and modulating its position. The resonant frequency of the modulator can be tuned by applying a voltage between the mirror and an underlying electrode. Full modulation depth of +/-\\pi is achieved when the mirror resonantly excited with a sinusoidal voltage at an amplitude of 11V.

  15. Low Power Universal Direct Conversion Transmit and Receive (UTR) RF Module for Software Defined Radios Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Conventional software defined radio (SDR) backend signal processors are limited by a priori system definition and RF hardware. Ideally, advanced SDR RF front-end...

  16. Symmetry, phase modulation and nonlinear waves

    CERN Document Server

    Bridges, Thomas J

    2017-01-01

    Nonlinear waves are pervasive in nature, but are often elusive when they are modelled and analysed. This book develops a natural approach to the problem based on phase modulation. It is both an elaboration of the use of phase modulation for the study of nonlinear waves and a compendium of background results in mathematics, such as Hamiltonian systems, symplectic geometry, conservation laws, Noether theory, Lagrangian field theory and analysis, all of which combine to generate the new theory of phase modulation. While the build-up of theory can be intensive, the resulting emergent partial differential equations are relatively simple. A key outcome of the theory is that the coefficients in the emergent modulation equations are universal and easy to calculate. This book gives several examples of the implications in the theory of fluid mechanics and points to a wide range of new applications.

  17. Cantilever RF-MEMS for monolithic integration with phased array antennas on a PCB

    Science.gov (United States)

    Aguilar-Armenta, C. J.; Porter, S. J.

    2015-12-01

    This article presents the development and operation of a novel electrostatic metal-to-metal contact cantilever radio-frequency microelectromechanical system (RF-MEMS) switch for monolithic integration with microstrip phased array antennas (PAAs) on a printed circuit board. The switch is fabricated using simple photolithography techniques on a Rogers 4003c substrate, with a footprint of 200 µm × 100 µm, based on a 1 µm-thick copper cantilever. An alternative wet-etching technique for effectively releasing the cantilever is described. Electrostatic and electromagnetic measurements show that the RF-MEMS presents an actuation voltage of 90 V for metal-to-metal contact, an isolation of -8.7 dB, insertion loss of -2.5 dB and a return loss of -15 dB on a 50 Ω microstrip line at 12.5 GHz. For proof-of-concept, a beam-steering 2 × 2 microstrip PAA, based on two 1-bit phase shifters suitable for the monolithic integration of the RF-MEMS, has been designed and measured at 12.5 GHz. Measurements show that the beam-steering system presents effective radiation characteristics with scanning capabilities from broadside towards 29° in the H-plane.

  18. Phase-Modulation Laser Interference Microscopy

    DEFF Research Database (Denmark)

    Brazhe, Alexey; Brazhe, Nadezda; Maximov, G. V.

    2008-01-01

    We describe how phase-modulation laser interference microscopy and wavelet analysis can be applied to noninvasive nonstained visualization and study of the structural and dynamical properties of living cells. We show how phase images of erythrocytes can reveal the difference between various...

  19. Inkjet-/3D-/4D-printed autonomous wearable RF modules for biomonitoring, positioning and sensing applications

    Science.gov (United States)

    Bito, Jo; Bahr, Ryan; Hester, Jimmy; Kimionis, John; Nauroze, Abdullah; Su, Wenjing; Tehrani, Bijan; Tentzeris, Manos M.

    2017-05-01

    In this paper, numerous inkjet-/3D-/4D-printed wearable flexible antennas, RF electronics, modules and sensors fabricated on paper and other polymer (e.g. LCP) substrates are introduced as a system-level solution for ultra-low-cost mass production of autonomous Biomonitoring, Positioning and Sensing applications. This paper briefly discusses the state-of-the-art area of fully-integrated wearable wireless sensor modules on paper or flexible LCP and show the first ever 4D sensor module integration on paper, as well as numerous 3D and 4D multilayer paper-based and LCP-based RF/microwave, flexible and wearable structures, that could potentially set the foundation for the truly convergent wireless sensor ad-hoc "on-body networks of the future with enhanced cognitive intelligence and "rugged" packaging. Also, some challenges concerning the power sources of "nearperpetual" wearable RF modules, including flexible miniaturized batteries as well as power-scavenging approaches involving electromagnetic and solar energy forms are discuessed. The final step of the paper will involve examples from mmW wearable (e.g. biomonitoring) antennas and RF modules, as well as the first examples of the integration of inkjet-printed nanotechnology-based (e.g.CNT) sensors on paper and organic substrates for Internet of Things (IoT) applications. It has to be noted that the paper will review and present challenges for inkjetprinted organic active and nonlinear devices as well as future directions in the area of environmentally-friendly "green") wearable RF electronics and "smart-skin conformal sensors.

  20. Phase retrieval by coherent modulation imaging

    Science.gov (United States)

    Zhang, Fucai; Chen, Bo; Morrison, Graeme R.; Vila-Comamala, Joan; Guizar-Sicairos, Manuel; Robinson, Ian K.

    2016-11-01

    Phase retrieval is a long-standing problem in imaging when only the intensity of the wavefield can be recorded. Coherent diffraction imaging is a lensless technique that uses iterative algorithms to recover amplitude and phase contrast images from diffraction intensity data. For general samples, phase retrieval from a single-diffraction pattern has been an algorithmic and experimental challenge. Here we report a method of phase retrieval that uses a known modulation of the sample exit wave. This coherent modulation imaging method removes inherent ambiguities of coherent diffraction imaging and uses a reliable, rapidly converging iterative algorithm involving three planes. It works for extended samples, does not require tight support for convergence and relaxes dynamic range requirements on the detector. Coherent modulation imaging provides a robust method for imaging in materials and biological science, while its single-shot capability will benefit the investigation of dynamical processes with pulsed sources, such as X-ray free-electron lasers.

  1. Phase retrieval by coherent modulation imaging

    Science.gov (United States)

    Zhang, Fucai; Chen, Bo; Morrison, Graeme R.; Vila-Comamala, Joan; Guizar-Sicairos, Manuel; Robinson, Ian K.

    2016-01-01

    Phase retrieval is a long-standing problem in imaging when only the intensity of the wavefield can be recorded. Coherent diffraction imaging is a lensless technique that uses iterative algorithms to recover amplitude and phase contrast images from diffraction intensity data. For general samples, phase retrieval from a single-diffraction pattern has been an algorithmic and experimental challenge. Here we report a method of phase retrieval that uses a known modulation of the sample exit wave. This coherent modulation imaging method removes inherent ambiguities of coherent diffraction imaging and uses a reliable, rapidly converging iterative algorithm involving three planes. It works for extended samples, does not require tight support for convergence and relaxes dynamic range requirements on the detector. Coherent modulation imaging provides a robust method for imaging in materials and biological science, while its single-shot capability will benefit the investigation of dynamical processes with pulsed sources, such as X-ray free-electron lasers. PMID:27857061

  2. Analog RF-optic performance of 60 GHz electroabsorption duplexer module

    Science.gov (United States)

    Sim, J. S.; Choi, K. S.; Chung, Y. D.; Kim, S. B.; Kim, J.; Kang, Y. S.

    2006-09-01

    We proposed the vertical mode coupling structure (VMCS) for monolithic integration of optoelectronic devices. The electroabsorption duplexer (EAD) chip was fabricated by monolithically integrating both a waveguide photodiode (PD) and an electroabsorption modulator (EAM) in association with traveling wave electrodes. Using an EAD we presented a transceiver (TR x) module for dual functions of both electrical-to-optical (E/O) and optical-to-electrical (O/E) conversions at 60GHz band. The responsivity and the extinction ration of the EAD were 0.72 A/W and 20 dB at -4 V dc, respectively. The coupling loss between the optical fiber and the device facet was as small as 1.96 dB. The small signal 3 dB bandwidth of E/O and O/E response was 25 GHz and 8 GHz, respectively. We also investigated the issues of RF packaging in which the optoelectronic and electronic amplifier devices were co-packaged in a single housing.

  3. BPSK optical mm-wave signal generation by septupling frequency via a single optical phase modulator

    Science.gov (United States)

    Wu, Peng; Ma, Jianxin

    2016-09-01

    In this paper, we have proposed a novel and simple scheme to generate the BPSK optical millimeter wave (MMW) signal with frequency septupling by using an optical phase modulator (PM) and a wavelength selective switch (WSS). In this scheme, the PM is driven by a radio frequency (RF) BPSK signal at the optimized modulation index of 4.89 to assure the 4th and 3rd-order sidebands have equal amplitudes. An wavelength selective switch (WSS) is used to abstract the -4th and +3rd-order sidebands from the spectrum generated by RF BPSK signal modulating the lightwave to form the BPSK optical MMW signal with frequency septupling the driving RF signal. In these two tones, only the +3rd-order sideband bears the BPSK signal while the -4th-order sideband is unmodulated since the phase information is canceled by the even times multiplication of the phase of BPSK signal. The MMW signal can avoid the pulse walk-off effect and the amplitude fading effect caused by the fiber chromatic dispersion. By adjusting the modulation index to assure the two tones have equal amplitude, the generated optical MMW signal has the maximal opto-electrical conversion efficiency and good transmission performance.

  4. Directly Phase-Modulated Light Source

    Science.gov (United States)

    Yuan, Z. L.; Fröhlich, B.; Lucamarini, M.; Roberts, G. L.; Dynes, J. F.; Shields, A. J.

    2016-07-01

    The art of imparting information onto a light wave by optical signal modulation is fundamental to all forms of optical communication. Among many schemes, direct modulation of laser diodes stands out as a simple, robust, and cost-effective method. However, the simultaneous changes in intensity, frequency, and phase have prevented its application in the field of secure quantum communication. Here, we propose and experimentally demonstrate a directly phase-modulated light source which overcomes the main disadvantages associated with direct modulation and is suitable for diverse applications such as coherent communications and quantum cryptography. The source separates the tasks of phase preparation and pulse generation between a pair of semiconductor lasers leading to very pure phase states. Moreover, the cavity-enhanced electro-optic effect enables the first example of subvolt half-wave phase modulation at high signal rates. The source is compact, stable, and versatile, and we show its potential to become the standard transmitter for future quantum communication networks based on attenuated laser pulses.

  5. Experimental demonstration of a digital maximum likelihood based feedforward carrier recovery scheme for phase-modulated radio-over-fibre links

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Zibar, Darko; Yu, Xianbin

    2008-01-01

    Maximum likelihood based feedforward RF carrier synchronization scheme is proposed for a coherently detected phase-modulated radio-over-fiber link. Error-free demodulation of 100 Mbit/s QPSK modulated signal is experimentally demonstrated after 25 km of fiber transmission.......Maximum likelihood based feedforward RF carrier synchronization scheme is proposed for a coherently detected phase-modulated radio-over-fiber link. Error-free demodulation of 100 Mbit/s QPSK modulated signal is experimentally demonstrated after 25 km of fiber transmission....

  6. Neural network surface acoustic wave RF signal processor for digital modulation recognition.

    Science.gov (United States)

    Kavalov, Dimitar; Kalinin, Victor

    2002-09-01

    An architecture of a surface acoustic wave (SAW) processor based on an artificial neural network is proposed for an automatic recognition of different types of digital passband modulation. Three feed-forward networks are trained to recognize filtered and unfiltered binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) signals, as well as unfiltered BPSK, QPSK, and 16 quadrature amplitude (16QAM) signals. Performance of the processor in the presence of additive white Gaussian noise (AWGN) is simulated. The influence of second-order effects in SAW devices, phase, and amplitude errors on the performance of the processor also is studied.

  7. Digital coherent receiver employing photonic downconversion for phase modulated radio-over-fibre links

    DEFF Research Database (Denmark)

    Zibar, Darko; Caballero Jambrina, Antonio; Guerrero Gonzalez, Neil

    2009-01-01

    A digital coherent receiver employing photonic downconversion is presented and experimentally demonstrated for phase-modulated radio-over-fibre optical links. The receiver is capable of operating at frequencies exceeding the bandwidth of electrical analog-to-digital converter by using photonic...... downconversion to translate the high-frequency input RF signal to the operating frequency range of the analog-to-digital converter. First, using linear digital demodulation scheme we measure SFDR of the link at microwave frequency of 5 GHz. Thereafter, successful signal demodulation of 50 Mbit/s binary phase...... shift keying (BPSK) modulated data signal at 5 GHz RF carrier frequency is experimentally demonstrated by using an analog-to-digital converter with only 1 GHz bandwidth. We successfully demonstrate signal demodulation, using the proposed digital coherent receiver with photonic downconversion, after 40...

  8. ACCELERATORS: Tuning of RF amplitude and phase for the drift tube linac in J-PARC

    Science.gov (United States)

    Shen, Guo-Bao; Masanori, Ikegami

    2009-07-01

    The J-PARC linac has three DTL tanks to accelerate the negative hydrogen ions from 3 MeV to 50 MeV. The RF phase and amplitude are adjusted for each cavity with a phase scan method within the accuracy of 1? in phase and 1% in amplitude. The experimental results show a remarkable agreement with the numerical model within a sufficient margin in the tuning of the last two DTL tanks. However, a notable discrepancy between the experiment and the numerical model is seen in the tuning of the first DTL tank. After studying with a three-dimensional multi-particle simulation, the generation of the low energy component and the pronounced filamentation are identified as the main causes of the discrepancy. The optimization of the tuning scheme is also discussed to attain the tuning goal accuracy for the first DTL tank.

  9. Tuning of RF amplitude and phase for the drift tube linac in J-PARC

    Institute of Scientific and Technical Information of China (English)

    SHEN Guo-Bao; Masanori Ikegami

    2009-01-01

    The J-PARC linac has three DTL tanks to accelerate the negative hydrogen ions from 3 MeV to 50 MeV. The RF phase and amplitude are adjusted for each cavity with a phase scan method within the accuracy of 1°in phase and 1% in amplitude. The experimental results show a remarkable agreement with the numerical model within a sufficient margin in the tuning of the last two DTL tanks. However, a notable discrepancy between the experiment and the numerical model is seen in the tuning of the first DTL tank. After studying with a three-dimensional multi-particle simulation, the generation of the low energy component and the pronounced filamentation are identified as the main causes of the discrepancy. The optimization of the tuning scheme is also discussed to attain the tuning goal accuracy for the first DTL tank.

  10. Delay-Modulated RF Tag System Concept Using Ultrawideband Noise Radar Waveforms

    OpenAIRE

    2011-01-01

    Radio frequency (RF) tags have been widely used in inventory tracking, environmental monitoring, battlefield situational awareness, and combat identification due to their low cost, small size, and wireless functionality. This paper explores the application of active RF tags in outdoor environments responding to random noise radar interrogations with predetermined messages. A conceptual system design for communication between radar and RF tags using ultrawideband (UWB) noise waveforms is propo...

  11. Basics of RF electronics

    CERN Document Server

    Gallo, A

    2011-01-01

    RF electronics deals with the generation, acquisition and manipulation of high-frequency signals. In particle accelerators signals of this kind are abundant, especially in the RF and beam diagnostics systems. In modern machines the complexity of the electronics assemblies dedicated to RF manipulation, beam diagnostics, and feedbacks is continuously increasing, following the demands for improvement of accelerator performance. However, these systems, and in particular their front-ends and back-ends, still rely on well-established basic hardware components and techniques, while down-converted and acquired signals are digitally processed exploiting the rapidly growing computational capability offered by the available technology. This lecture reviews the operational principles of the basic building blocks used for the treatment of high-frequency signals. Devices such as mixers, phase and amplitude detectors, modulators, filters, switches, directional couplers, oscillators, amplifiers, attenuators, and others are d...

  12. Microwave breakdown in air for multi-carrier, modulated or stochastically time varying RF fields

    CERN Document Server

    Jordan, U; Anderson, D; Lisak, M; Olsson, T

    2003-01-01

    An investigation is made of the threshold for microwave breakdown in air in situations where the microwave power is strongly modulated or stochastically varying in time as, e.g. in communication systems based on multi-carrier operation where interference between the carriers may cause occasional high power peaks in the microwave power. Thresholds are established for the scenario of coherent and co-phased carriers as well as for breakdown in an electric field with a stochastically varying amplitude.

  13. Backward and forward walking use different patterns of phase-dependent modulation of cutaneous reflexes in humans

    NARCIS (Netherlands)

    Duysens, J.E.J.; Tax, A.A.M.; Murrer, L.; Dietz, V.

    1996-01-01

    1. The phase-dependent modulation of medium-latency (P2) (70-80 ms) responses in semitendinosus (ST), biceps femoris (BF), rectus femoris (RF), and tibialis anterior (TA) was studied with the use of low-intensity stimulation (2 times perception threshold) of the sural nerve. The shocks were given in

  14. Phase multistability of self-modulated oscillations

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Postnov, D.E.; Nekrasov, A.M.

    2002-01-01

    The paper examines the type of multistability that one can observe in the synchronization of two oscillators when the systems individually display self-modulation or other types of multicrest wave forms. The investigation is based on a phase reduction method and on the calculation of phase maps...... for vanishing and finite coupling strengths, respectively. Various phase-locked patterns are observed. In the presence of a frequency mismatch, the two-parameter bifurcation analysis reveals a set of synchronization regions inserted one into the other. Numerical examples using a generator with inertial...

  15. Linewidth tolerance of digital coherent receiver using Viterbi & Viterbi RF carrier recovery for radio-over-fibre links

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Zibar, Darko; Larsen, Knud J.

    2009-01-01

    for phase-modulated RoF optical links (2). The RF signal processing in (2) is performed using maximum likelihood RF carrier phase estimation (2). In this paper, we investigate the performance of the proposed digital coherent receiver in (2) using feedforward Viterbi & Viterbi RF carrier recovery algorithm...

  16. A low-noise delta-sigma phase modulator for polar transmitters.

    Science.gov (United States)

    Zhou, Bo

    2014-01-01

    A low-noise phase modulator, using finite-impulse-response (FIR) filtering embedded delta-sigma (ΔΣ) fractional-N phase-locked loop (PLL), is fabricated in 0.18 μ m CMOS for GSM/EDGE polar transmitters. A simplified digital compensation filter with inverse-FIR and -PLL features is proposed to trade off the transmitter noise and linearity. Experimental results show that the presented architecture performs RF phase modulation well with 20 mW power dissipation from 1.6 V supply and achieves the root-mean-square (rms) and peak phase errors of 4° and 8.5°, respectively. The measured and simulated phase noises of -104 dBc/Hz and -120 dBc/Hz at 400-kHz offset from 1.8-GHz carrier frequency are observed, respectively.

  17. A Low-Noise Delta-Sigma Phase Modulator for Polar Transmitters

    Directory of Open Access Journals (Sweden)

    Bo Zhou

    2014-01-01

    Full Text Available A low-noise phase modulator, using finite-impulse-response (FIR filtering embedded delta-sigma (ΔΣ fractional-N phase-locked loop (PLL, is fabricated in 0.18 μm CMOS for GSM/EDGE polar transmitters. A simplified digital compensation filter with inverse-FIR and -PLL features is proposed to trade off the transmitter noise and linearity. Experimental results show that the presented architecture performs RF phase modulation well with 20 mW power dissipation from 1.6 V supply and achieves the root-mean-square (rms and peak phase errors of 4° and 8.5°, respectively. The measured and simulated phase noises of −104 dBc/Hz and −120 dBc/Hz at 400-kHz offset from 1.8-GHz carrier frequency are observed, respectively.

  18. An autonomous battery-less sensor module powered by piezoelectric energy harvesting with RF transmission of multiple measurement signals

    Science.gov (United States)

    Ferrari, Marco; Ferrari, Vittorio; Guizzetti, Michele; Marioli, Daniele

    2009-08-01

    An energy-autonomous battery-less sensor module is presented, entirely powered by a piezoelectric energy converter driven by mechanical vibrations from the environment. The module manages and stores the converted energy, interfaces to one or more passive sensors and periodically sends the corresponding measurement signals over a radio-frequency (RF) link. As an additional variant, the module can send a programmable identification (ID) code on the RF carrier, in order to enable module tagging and tracking by the external receiver unit. The module's general architecture is presented and the strategy used for sensor signal conditioning and transmission is illustrated. The architecture and principle have been experimentally validated on a fabricated prototype including a piezoelectric bimorph converter, two passive sensors made by a resistive-capacitive sensor pair and purposely designed electronic circuitry based on low-power off-the-shelf components. In the tested experimental conditions, the prototype features a typical time interval between measurement-and-transmission events of a few tens of seconds, with event durations of the order of tens of milliseconds, corresponding to an operation duty cycle of the order of 0.1%. Peak power consumption during transmission is of the order of 20 mW and operative range is of the order of meters in a laboratory environment. The obtained results show that the proposed approach has attractive characteristics because of the total absence of batteries and, despite the inherent intermittent operation, provides significant measurement performances in terms of achievable sensitivity and resolution.

  19. RF and microwave microelectronics packaging II

    CERN Document Server

    Sturdivant, Rick

    2017-01-01

    Reviews RF, microwave, and microelectronics assembly process, quality control, and failure analysis Bridges the gap between low cost commercial and hi-res RF/Microwave packaging technologies Engages in an in-depth discussion of challenges in packaging and assembly of advanced high-power amplifiers This book presents the latest developments in packaging for high-frequency electronics. It is a companion volume to “RF and Microwave Microelectronics Packaging” (2010) and covers the latest developments in thermal management, electrical/RF/thermal-mechanical designs and simulations, packaging and processing methods, and other RF and microwave packaging topics. Chapters provide detailed coverage of phased arrays, T/R modules, 3D transitions, high thermal conductivity materials, carbon nanotubes and graphene advanced materials, and chip size packaging for RF MEMS. It appeals to practicing engineers in the electronic packaging and high-frequency electronics domain, and to academic researchers interested in underst...

  20. SIMULATIVE ANALYSIS OF OSNR AND RECEIVED ELECTRIC RF POWER OF A ROF SYSTEM HAVING VARIABLE FIBER LENGTH, USING DIFFERENT MODULATION TECHNIQUES AND OPTICAL AMPLIFIERS

    Directory of Open Access Journals (Sweden)

    KARANBIR SINGH,

    2011-05-01

    Full Text Available In this paper, we analyzed OSNR and received electric RF power of a RoF communication system having variable fiber length, using direct and external modulation techniques and different optical amplifiers. In this work, we have compared and measured the OSNR and received optical power of the RoF system for different modulation techniques, i.e. direct and external modulation. Further, we also compared the received electric RF power for variable fiber lengths for direct and external modulation using different optical amplifiers, i.e. EDFAand SOA. We observe an increase of –11 dB (approx. in the received RF power for External modulation compared to direct modulation with EDFA.

  1. Phase modulation pseudocolor encoding ghost imaging

    Institute of Scientific and Technical Information of China (English)

    段德洋; 张路; 杜少将; 夏云杰

    2015-01-01

    We present a ghost imaging scheme that can obtain a good pseudocolor image of black-and-white objects. The essential idea is to use the multi-wavelength thermal light source and the phase modulation pseudocolor encoding technique, which overcomes the disadvantages of other methods involved the spatial filtering. Therefore, the pseudocolor ghost image achieved by this imaging scheme is better than that obtained by other methods in brightness, color, and signal-to-noise ratio.

  2. Simultaneous amplitude and phase modulation by a discrete phase-only filter.

    Science.gov (United States)

    Goto, Hiroomi; Konishi, Tsuyoshi; Itoh, Kazuyoshi

    2009-03-01

    We propose a simultaneous amplitude and phase modulation method by a discrete phase-only filter. The proposed amplitude-phase filter can be realized by a discrete phase modulation of the diffractive optical element as well as a continuous phase modulation of the liquid crystal spatial light modulator. The fabricated amplitude-phase filter that has the six phase modulation levels shows a transfer efficiency of 75% regardless of the polarization state of the incident light. By using the proposed amplitude-phase filter, we demonstrate a temporal waveform conversion from sech(2) to super-Gaussian, which requires both amplitude and phase modulations.

  3. All-Digital RF Phase-Locked Loops Exploiting Phase Prediction

    NARCIS (Netherlands)

    Zhuang, J.; Staszewski, R.B.

    2014-01-01

    This paper presents an all-digital phase-locked loop (ADPLL) architecture in a new light that allows it to significantly save power through complexity reduction of its phase locking and detection mechanisms. The natural predictive nature of the ADPLL to estimate next edge occurrence of the reference

  4. All-Digital RF Phase-Locked Loops Exploiting Phase Prediction

    NARCIS (Netherlands)

    Zhuang, J.; Staszewski, R.B.

    2014-01-01

    This paper presents an all-digital phase-locked loop (ADPLL) architecture in a new light that allows it to significantly save power through complexity reduction of its phase locking and detection mechanisms. The natural predictive nature of the ADPLL to estimate next edge occurrence of the reference

  5. Ultra-secure RF Tags for Safeguards and Security - SBIR Phase II Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Twogood, Richard E [Dirac Solutions Inc., Pleasanton, CA (United States)

    2015-01-27

    This is the Final Report for the DOE Phase II SBIR project “Ultra-secure RF Tags for Safeguards and Security.” The topics covered herein include technical progress made, progress against the planned milestones and deliverables, project outcomes (results, collaborations, intellectual property, etc.), and a discussion on future expectations of deployment and impacts of the results of this work. In brief, all planned work for the project was successfully completed, on or ahead of schedule and on budget. The major accomplishment was the successful development of a very advanced passive ultra-secure RFID tag system with combined security features unmatched by any commercially available ones. These tags have high-level dynamic encrypted authentication, a novel tamper-proofing mechanism, system software including graphical user interfaces and networking, and integration with a fiber-optic seal mechanism. This is all accomplished passively (with no battery) by incorporating sophisticated hardware in the tag which harvests the energy from the RFID readers that are interrogating the tag. Based on initial feedback (and deployments) at DOE’s Lawrence Livermore National Laboratory (LLNL), it is anticipated these tags and their offspring will meet DOE and international community needs for highly secure RFID systems. Beyond the accomplishment of those original objectives for the ultra-secure RF tags, major new spin-off thrusts from the original work were identified and successfully pursued with the cognizance of the DOE sponsor office. In particular, new classes of less sophisticated RFID tags were developed whose lineage derives from the core R&D thrusts of this SBIR. These RF “tag variants” have some, but not necessarily all, of the advanced characteristics described above and can therefore be less expensive and meet far wider markets. With customer pull from the DOE and its national laboratories, new RFID tags and systems (including custom readers and software) for

  6. A continuously tunable microwave photonic notch filter with complex coefficient based on phase modulation

    Science.gov (United States)

    Xu, Dong; Cao, Ye; Tong, Zheng-rong; Yang, Jing-peng

    2017-01-01

    A continuously tunable microwave photonic notch filter with complex coefficient based on phase modulation is proposed and demonstrated. The complex coefficient is generated using a Fourier-domain optical processor (FD-OP) to control the amplitude and phase of the optical carrier and radio-frequency (RF) phase modulation sidebands. By controlling the FD-OP, the frequency response of the filter can be tuned in the full free spectral range ( FSR) without changing the shape and the FSR of the frequency response. The results show that the center frequency of the notch filter can be continuously tuned from 17.582 GHz to 29.311 GHz with FSR of 11.729 GHz. The shape of the frequency response keeps unchanged when the phase is tuned.

  7. Monolithically integrated heterodyne optical phase-lock loop with RF XOR phase detector.

    Science.gov (United States)

    Steed, Robert J; Pozzi, Francesca; Fice, Martyn J; Renaud, Cyril C; Rogers, David C; Lealman, Ian F; Moodie, David G; Cannard, Paul J; Lynch, Colm; Johnston, Lilianne; Robertson, Michael J; Cronin, Richard; Pavlovic, Leon; Naglic, Luka; Vidmar, Matjaz; Seeds, Alwyn J

    2011-10-10

    We present results for an heterodyne optical phase-lock loop (OPLL), monolithically integrated on InP with external phase detector and loop filter, which phase locks the integrated laser to an external source, for offset frequencies tuneable between 0.6 GHz and 6.1 GHz. The integrated semiconductor laser emits at 1553 nm with 1.1 MHz linewidth, while the external laser has a linewidth less than 150 kHz. To achieve high quality phase locking with lasers of these linewidths, the loop delay has been made less than 1.8 ns. Monolithic integration reduces the optical path delay between the laser and photodiode to less than 20 ps. The electronic part of the OPLL was implemented using a custom-designed feedback circuit with a propagation delay of ~1 ns and an open-loop bandwidth greater than 1 GHz. The heterodyne signal between the locked slave laser and master laser has phase noise below -90 dBc/Hz for frequency offsets greater than 20 kHz and a phase error variance in 10 GHz bandwidth of 0.04 rad2.

  8. Modulation of Muscle Atrophy, Fatigue and MLC Phosphorylation by MuRF1 as Indicated by Hindlimb Suspension Studies on MuRF1-KO Mice

    Directory of Open Access Journals (Sweden)

    Siegfried Labeit

    2010-01-01

    Full Text Available MuRF1 is a member of the TRIM/RBCC superfamily, a gene family that encompasses a large variety of proteins, all sharing the conserved TRIM (Tripartite Motive sequential array of RING, B-box, and coiled-coil domains. Within this family, MuRF1(also named TRIM63 is a specialized member that contributes to the development of muscle atrophy and sarcopenia. Here we studied MuRF1's role in muscle atrophy during muscle unloading induced by hindlimb suspension. Consistent with previous studies, we found that MuRF1 inactivation leads to an attenuated muscle atrophy response. The amount of protection was higher as compared to the denervation model, and within the 10 day-suspension period the soleus muscle was spared from atrophy in MuRF1-KO mice. Contractility studies on hindlimb suspended muscle tissues suggested that MuRF1's functions extend beyond muscle trophicity and implicate MuRF1 in muscle fatigue and MLC phosphorylation control: soleus muscle from MuRF1-KO mice fatigued significantly faster and in addition showed a reduced posttetanic twitch potentiation. Thus the present work further established the role of MuRF1 in muscle atrophy and for the first time shows that MuRF1 plays a role in muscle fatigue and twitch potentiation.

  9. Phase and amplitude stability of a pulsed RF system on the example of the CLIC drive beam LINAC

    CERN Document Server

    AUTHOR|(CDS)2132320; Prof. BANTEL, Michael

    The CLIC drive beam accelerator consists of the Drive Beam Injector (DBI) and two Drive Beam Linacs (DBLs). The drive beam injector is composed of a thermionic electron source, 3 Sub Harmonic Bunchers (SHBs), a pre-buncher, and several acceleration structures. In the electron source the DC electron beam is produced from a thermionic cathode. The following buncher cavities group ("bunch") the electrons to be accelerated by RF later on. Each electron bunch has an energy of 140 keV, a length of 3 mm, and a charge qb = 8.4 nC. Afterwards the electrons are accelerated in the 1 GHz accelerating structures up to 50MeV. The pulsed Radio Frequency (RF) power for this acceleration is provided by 1 GHz, 20MW modulator-klystron units, one per acceleration structure. A klystron is an RF amplifier based on a linear-beam vacuum tube. The high voltage modulator supplies the acceleration voltage to this tube. A DC electron beam gets modulated with an input signal, the modulation enhances in a drift space, and finally the powe...

  10. Photonic aided bandpass sampling in coherent phase modulated radio-over-fiber links

    Science.gov (United States)

    Cao, Minghua; Li, Jianqiang; Dai, Jian; Dai, Yitang; Yin, Feifei; Zhou, Yue; Xu, Kun

    2016-06-01

    We have experimentally presented a digital coherent receiver employing photonic aided bandpass sampling technology for phase-modulated radio-over-fiber (RoF) links. An optical intensity modulator (IM) is utilized as the bandpass sampler which performs encoded on-off keyed pulse sequence on the optical local oscillator. Quaternary Phase Shift Keying (QPSK) modulated data signal with 20 MHz bandwidth at 5.2 GHz, 10.2 GHz and 15.2 GHz RF carrier frequency is experimentally demonstrated to be successfully detected by using balanced photodiodes (BPDs) with only 800 MHz analog bandwidth. It demonstrates that the required analog bandwidth of BPDs and ADCs can be dramatically reduced in a direct sampled coherent RoF communications system.

  11. Monodomain Blue Phase Liquid Crystal Layers for Phase Modulation

    Science.gov (United States)

    Oton, E.; Netter, E.; Nakano, T.; D.-Katayama, Y.; Inoue, F.

    2017-03-01

    Liquid crystal “Blue Phases” (BP) have evolved, in the last years, from a scientific curiosity to emerging materials for new photonic and display applications. They possess attractive features over standard nematic liquid crystals, like submillisecond switching times and polarization- independent optical response. However, BPs still present a number of technical issues that prevent their use in practical applications: their phases are only found in limited temperature ranges, thus requiring stabilization of the layers; stabilized BP layers are inhomogeneous and not uniformly oriented, which worsen the optical performance of the devices. It would be essential for practical uses to obtain perfectly aligned and oriented monodomain BP layers, where the alignment and orientation of the cubic lattice are organized in a single 3D structure. In this work we have obtained virtually perfect monodomain BP layers and used them in devices for polarization independent phase modulation. We demonstrate that, under applied voltage, well aligned and oriented layers generate smoother and higher values of the phase shift than inhomogeneous layers, while preserving polarization independency. All BP devices were successfully stabilized in BPI phase, maintaining the layer monodomain homogeneity at room temperature, covering the entire area of the devices with a unique BP phase.

  12. Monodomain Blue Phase Liquid Crystal Layers for Phase Modulation

    Science.gov (United States)

    Oton, E.; Netter, E.; Nakano, T.; D.-Katayama, Y.; Inoue, F.

    2017-01-01

    Liquid crystal “Blue Phases” (BP) have evolved, in the last years, from a scientific curiosity to emerging materials for new photonic and display applications. They possess attractive features over standard nematic liquid crystals, like submillisecond switching times and polarization- independent optical response. However, BPs still present a number of technical issues that prevent their use in practical applications: their phases are only found in limited temperature ranges, thus requiring stabilization of the layers; stabilized BP layers are inhomogeneous and not uniformly oriented, which worsen the optical performance of the devices. It would be essential for practical uses to obtain perfectly aligned and oriented monodomain BP layers, where the alignment and orientation of the cubic lattice are organized in a single 3D structure. In this work we have obtained virtually perfect monodomain BP layers and used them in devices for polarization independent phase modulation. We demonstrate that, under applied voltage, well aligned and oriented layers generate smoother and higher values of the phase shift than inhomogeneous layers, while preserving polarization independency. All BP devices were successfully stabilized in BPI phase, maintaining the layer monodomain homogeneity at room temperature, covering the entire area of the devices with a unique BP phase. PMID:28281691

  13. Quasi-phase-matched electro-optic modulators for high-speed signal processing

    Science.gov (United States)

    Toney, James E.; Stenger, Vincent E.; Busch, James; Pontius, Peter; Clabough, Michael; Pollick, Andrea; Sriram, Sri

    2013-01-01

    This paper reports on the design, fabrication and testing of quasi-phase-matched (QPM) lithium niobate electro-optic modulators optimized for the 40-60 GHz frequency range. The device used a single-drive, coplanar-waveguide (cpw) electrode structure that provided a good balance between impedance and RF loss, and a DC Vπ.L product of approximately 10 V.cm. Ferroelectric domain engineering enabled push-pull operation with a single drive, while achieving low chirp. A custom developed pulsed poling process was used to fabricate periodic domain QPM structures in lithium niobate. QPM periods were in the range of 3 mm to 4.5 mm, depending on the design frequency. The pulse method enabled precise domain definition with a minimum of overpoling. Low-loss diffused optical waveguides were fabricated by an annealed proton exchange (APE) process. By operating in both co-propagating and counter-propagating modes, the QPM devices can be used to implement dual band RF bandpass filters simultaneously covering both 10-20 GHz and 40-60 GHz frequency bands. Arrays of QPM device structures demonstrated in this work form the basis for a reconfigurable RF photonic filter. The RF photonic QPM technology enables efficient concurrent antenna remoting and filtering functionality. Applications of the technology include fiber radio for cellular access and finite impulse response filters for wideband electronic warfare receivers.

  14. RF Transceiver Design for MIMO Wireless Communications

    CERN Document Server

    Mohammadi, Abbas

    2012-01-01

    This practical resource offers a thorough examination of RF transceiver design for MIMO communications.  Offering a practical view on MIMO wireless systems, this book extends fundamental concepts on classic wireless transceiver design techniques to MIMO transceivers. This helps reader gain a very comprehensive understanding of the subject. This in-depth volume describes many theoretical and implementation challenges on MIMO transceivers and provides the practical solutions for these issues. This comprehensive book provides thorough descriptions of MIMO theoretical concepts, MIMO single carrier and OFDM modulation, RF transceiver design concepts, power amplifier, MIMO transmitter design techniques and their RF impairments, MIMO receiver design methods, RF impairments study including nonlinearity, DC-offset, I/Q imbalance and phase noise and their compensation in OFDM and MIMO techniques. In addition, it provides the most practical techniques to realize RF front-ends in MIMO systems. This book is supported wit...

  15. Plastering. Pre-Apprenticeship Phase 2 Training. Student Training Modules.

    Science.gov (United States)

    Hamblen, Ron

    These 20 Student Training Modules on plastering comprise one of nine sets of self-paced learning modules developed for Pre-Apprenticeship Phase 2 Training. (A companion instructor's guide is available separately as CE 031 569.) The modules are designed to impart trade knowledge and skills to the student. Each module contains some or all of the…

  16. Phase-modulation transmission system for quantum cryptography.

    Science.gov (United States)

    Mérolla, J M; Mazurenko, Y; Goedgebuer, J P; Porte, H; Rhodes, W T

    1999-01-15

    We describe a new method for quantum key distribution that utilizes phase modulation of sidebands of modulation by use of integrated electro-optic modulators at the transmitting and receiving modules. The system is shown to produce constructive or destructive interference with unity visibility, which should allow quantum cryptography to be carried out with high flexibility by use of conventional devices.

  17. Qualitative Analysis of Self Phase Modulation (SPM

    Directory of Open Access Journals (Sweden)

    Ruby Verma

    2013-03-01

    Full Text Available Optical fiber changed the way of communication. In comparison with wireless communication, optical fiber communication is very fast and reliable. It is more secure but costly. Optical fiber uses the principle of total internal reflection for transmission. Optical fiber has core and cladding with different refractive index and major portion of the signal goes through the core. But due macro and micro bending, chromatic dispersion is observed.In this paper, we have analyzed self phase modulation in an optical fiber system and discussed how it causes dispersion in input signal. These effects are simulated using OPTISYSTEM tool at a bit rate of 10Gbps and analysed using eye pattern method with respect to bit error rate and Q factor. Simulation results from the OPTISYSTEM tool are also compared with the numerical analysis of nonlinear Schrodinger equation, which is simulated in MATLAB

  18. Optical A/D Quantizer Scheme Based on Parallel Phase Modulators

    Institute of Scientific and Technical Information of China (English)

    LI Zheng

    2005-01-01

    A high-speed and high-resolution optical A/D quantizer is proposed. Its architecture is discussed. Bit circuits are built by using the phase modulators in parallel. Based on the different character of the half-wave voltage for every phase modulator and the polarized bias design of incident light, the RF input signal is coded and transmitted in the form of optical digital signal. According to the principle of the architecture, the high-resolution quantizers with 8-bit and 12-bit, et al. are built, which operate at 100 GS/s.Their quantization noise is invariable almost with bit circuits increasing. The simulation result of 4-bit A/D quantizer is also given.

  19. Novel RF Interrogation of a Fiber Bragg Grating Sensor Using Bidirectional Modulation of a Mach-Zehnder Electro-Optical Modulator

    Science.gov (United States)

    Choi, Sang-Jin; Mao, Wankai; Pan, Jae-Kyung

    2013-01-01

    We propose and experimentally demonstrate the novel radio-frequency (RF) interrogation of a fiber Bragg grating (FBG) sensor using bidirectional modulation of a Mach-Zehnder electro-optical modulator (MZ-EOM). Based on the microwave photonic technique and active detection, the transfer function of the proposed system was obtained, and the time delay was calculated from the change in the free spectral range (FSR) at different wavelengths over the optimal measuring range. The results show that the time delay and the wavelength variation have a good linear relationship, with a gradient of 9.31 ps/nm. An actual measurement taken with a sensing FBG for temperature variation shows the relationship with a gradient of 0.93 ps/10 °C. The developed system could be used for FBG temperature or strain sensing and other multiplexed sensor applications. PMID:23820744

  20. Novel RF Interrogation of a Fiber Bragg Grating Sensor Using Bidirectional Modulation of a Mach-Zehnder Electro-Optical Modulator

    Directory of Open Access Journals (Sweden)

    Jae-Kyung Pan

    2013-07-01

    Full Text Available We propose and experimentally demonstrate the novel radio-frequency (RF interrogation of a fiber Bragg grating (FBG sensor using bidirectional modulation of a Mach-Zehnder electro-optical modulator (MZ-EOM. Based on the microwave photonic technique and active detection, the transfer function of the proposed system was obtained, and the time delay was calculated from the change in the free spectral range (FSR at different wavelengths over the optimal measuring range. The results show that the time delay and the wavelength variation have a good linear relationship, with a gradient of 9.31 ps/nm. An actual measurement taken with a sensing FBG for temperature variation shows the relationship with a gradient of 0.93 ps/10 °C. The developed system could be used for FBG temperature or strain sensing and other multiplexed sensor applications.

  1. Modulation efficiency of double-phase hologram complex light modulation macro-pixels.

    Science.gov (United States)

    Choi, Sujin; Roh, Jinyoung; Song, Hoong; Sung, Geeyoung; An, Jungkwuen; Seo, Wontaek; Won, Kanghee; Ungnapatanin, Jesada; Jung, Myounghoon; Yoon, Yongzoon; Lee, Hong-Seok; Oh, Chang-Hyun; Hahn, Joonku; Kim, Hwi

    2014-09-01

    The modulation efficiency of the double-phase hologram macro-pixel that is designed for complex modulation of light waves is defined and analyzed. The scale-down of the double-phase hologram macro-pixel associated with the construction of complex spatial light modulators is discussed.

  2. Coupling mechanisms in inductive discharges with RF substrate bias driven at consecutive harmonics with adjustable relative phase

    Science.gov (United States)

    Steinberger, Thomas; Berger, Birk; Schulze, Julian; Schuengel, Edmund; Koepke, Mark

    2016-09-01

    Hybrid combinations of inductive and capacitive RF discharges are commonly used for plasma etching because the inductive coupling ensures a high plasma density, while the capacitive coupling allows the control of the ion bombardment energy at the substrate. We experimentally study the coupling mechanisms between the two driving-voltage sources in such a plasma driven inductively at 13.56 MHz and capacitively at 27.12 MHz in argon and neon at low pressure. We find that the resulting DC self-bias can be controlled via the Electrical Asymmetry Effect by adjusting the relative phase between the two driving harmonics in the E-mode. Langmuir probe measurements and Phase Resolved Optical Emission Spectroscopy (PROES) reveal that the addition of the applied RF-bias in the plasma acts as a catalyst for the transition between E- and H-mode. PROES measurements generally show that the electron power absorption dynamics are affected by the relative phase between the two driving voltage waveforms and by the ratio of the inductive to the capacitive driving powers. Finally, the ion flux-energy distribution function is measured at the RF-powered electrode and found also to be affected by coupling effects.

  3. Device Length Dependency of Cross Gain Modulation and Cross Phase Modulation in Semiconductor Optical Amplifier

    Institute of Scientific and Technical Information of China (English)

    Tomonori; Yazaki; Ryo; Inohara; Kosuke; Nishimura; Munefumi; Tsurusawa; Masashi; Usami

    2003-01-01

    The cross gain modulation, the cross phase modulation and their recovery time in the SOAs with the various lengths were experimentally investigated. It was found that these values strongly depended on the device length.

  4. XPM-induced degradation of multilevel phase modulated channel caused by neighboring NRZ modulated channels

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee; Schiellerup, G.; Peucheret, Christophe

    2008-01-01

    The impact of XPM from NRZ modulated channels on an 8-level phase modulated channel in a WDM system was investigated. Requirements on launch power are found. 400 km transmission was achieved with negligible penalty.......The impact of XPM from NRZ modulated channels on an 8-level phase modulated channel in a WDM system was investigated. Requirements on launch power are found. 400 km transmission was achieved with negligible penalty....

  5. Wavelength conversion based on cross-phase modulation in a semiconductor Mach-Zehnder modulator

    DEFF Research Database (Denmark)

    Liu, Fenghai; Zheng, Xueyan; Oxenløwe, Leif Katsuo

    2001-01-01

    Wavelength conversion based on cross-phase modulation in a reversely biased semiconductor Mach-Zehnder modulator is proposed and successfully demonstrated in a commercial device. The converted signals exhibit extinction ratio >13 dB and penalty......Wavelength conversion based on cross-phase modulation in a reversely biased semiconductor Mach-Zehnder modulator is proposed and successfully demonstrated in a commercial device. The converted signals exhibit extinction ratio >13 dB and penalty...

  6. An RF-input outphasing power amplifier with RF signal decomposition network

    OpenAIRE

    Barton, Taylor W.; Perreault, David J.

    2015-01-01

    This work presents an outphasing power amplifier that directly amplifies a modulated RF input. The approach eliminates the need for multiple costly IQ modulators and baseband signal component separation found in conventional outphasing power amplifier systems, which have previously required both an RF carrier input and a separate baseband input to synthesize a modulated RF output. A novel RF signal decomposition network enables direct RF-input / RF-output outphasing by directly synthesizing t...

  7. Robust quantum data locking from phase modulation

    Science.gov (United States)

    Lupo, Cosmo; Wilde, Mark M.; Lloyd, Seth

    2014-08-01

    Quantum data locking is a uniquely quantum phenomenon that allows a relatively short key of constant size to (un)lock an arbitrarily long message encoded in a quantum state, in such a way that an eavesdropper who measures the state but does not know the key has essentially no information about the message. The application of quantum data locking in cryptography would allow one to overcome the limitations of the one-time pad encryption, which requires the key to have the same length as the message. However, it is known that the strength of quantum data locking is also its Achilles heel, as the leakage of a few bits of the key or the message may in principle allow the eavesdropper to unlock a disproportionate amount of information. In this paper we show that there exist quantum data locking schemes that can be made robust against information leakage by increasing the length of the key by a proportionate amount. This implies that a constant size key can still lock an arbitrarily long message as long as a fraction of it remains secret to the eavesdropper. Moreover, we greatly simplify the structure of the protocol by proving that phase modulation suffices to generate strong locking schemes, paving the way to optical experimental realizations. Also, we show that successful data locking protocols can be constructed using random code words, which very well could be helpful in discovering random codes for data locking over noisy quantum channels.

  8. Design and Development of Amplitude and phase measurement of RF signal with Digital I-Q Demodulator

    Science.gov (United States)

    Soni, Dipal; Rajnish, Kumar; Verma, Sriprakash; Patel, Hriday; Trivedi, Rajesh; Mukherjee, Aparajita

    2017-04-01

    ITER-India, working as a nodal agency from India for ITER project [1], is responsible to deliver one of the packages, called Ion Cyclotron Heating & Current Drive (ICH&CD) - Radio Frequency Power Sources (RFPS). RFPS is having two cascaded amplifier chains (10 kW, 130 kW & 1.5 MW) combined to get 2.5 MW RF power output. Directional couplers are inserted at the output of each stage to extract forward power and reflected power as samples for measurement of amplitude and phase. Using passive mixer, forward power and reflected power are down converted to 1MHz Intermediate frequency (IF). This IF signal is used as an input to the Digital IQ Demodulator (DIQDM). DIQDM is realized using National Instruments make PXI hardware & LabVIEW software tool. In this paper, Amplitude and Phase measurement of RF signal with DIQDM technique is described. Also test results with dummy signals and signal generated from low power RF systems is discussed here.

  9. Phase-only spatial light modulation by the reverse phase contrast method

    DEFF Research Database (Denmark)

    Glückstad, J.; Mogensen, P.C.; Eriksen, R.L.

    2002-01-01

    A new approach to phase-only spatial light modulation is proposed in which a given amplitude pattern can be converted into a spatially identical binary phase pattern. A spatial filtering approach is applied to transform spatial amplitude modulation into spatial phase modulation using the Reverse...... Phase Contrast (RPC) method. The analytical method for achieving this is outlined and experimental results are shown for the generation of a binary phase-only distribution using an amplitude spatial light modulator and a phase-only spatial filter....

  10. RF Operation for the 100MeV Proton Linac

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Kyung Tae; Kwon, Hyeok Jung; Kim, Dae Il; Kim, Han Sung; Song, Young Gi; Jang, Ji Ho; Cho, Yong Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The RF systems for the 100MeV linac were constructed. The HPRF system including klystrons, circulators, high power dummy loads, and waveguide components was installed at the klystron gallery, and the LLRF control systems including a commercial FPGA module and a LLRF analog chassis were also installed. The phase stability of the RF reference line was measured with S11 phase under temperature control. The RF systems for 100MeV linac have been operated for a beam commissioning, and the 100MeV proton beam has been supplied to users currently. The RF systems of the 100MeV proton linac for the KOMAC (KOrea Multi-purpose Accelerator Complex) were installed at the Gyeong-ju site. The 100MeV linac consists of a 3MeV RFQ, a 20MeV DTL with four tanks, two MEBT tanks, and seven 100MeV DTL tanks. For the 100MeV linac, nine sets of LLRF control systems and the HPRF systems including 1MW klystrons, circulators and waveguide components have been installed at the klystron gallery, and four high voltage converter modulators to drive nine klystrons have been installed at the modulator room. A RF reference system distributing 300MHz LO signal to each RF control system has also been installed with a temperature control system at the klystron gallery. The requirement of RF field control is within +/- 1% in RF amplitude and +/- 1 degree in RF phase. The RF systems have been operated for the beam commissioning. The installation and operation of the RF system for the 100MeV proton linac are presented in this paper.

  11. Improved manufacturing techniques for rf and laser hardening of missile domes, phase 1

    Science.gov (United States)

    Pawlewicz, W. T.; Mann, I. B.; Martin, P. M.; Hays, D. D.; Graybeal, A. G.

    1982-07-01

    The adaptation of an existing Pacific Northwest Laboratory (PNL) optical coating capability developed for high power fusion laser applications to the case of RF and laser hardening of plastic missile domes used by US Army (MICOM) is reported. RF hardening of Hellfire and Copperhead 1.06 micron missile domes by use of transparent conductive Indium Tin Oxide (ITO) coatings is demonstrated. The project involved adaptation of a coating material and process developed for flat glass components used in fusion lasers to the case of hemispherical or conical heat sensitive plastic domes used on laser guided missiles. Specific ITO coating property goals are an electrical sheet resistance of 10 ohms/square, a coated dome transmission of 80% or more at 1.06 micron wavelength (compared to 90% for a bare dome), and good adhesion. The sheet resistance goal of 10 ohms/square was expected to result in an RF attenuation of 30 dB at the frequencies of importance.

  12. Fiber Ring Laser In-cavity Phase Modulation

    Institute of Scientific and Technical Information of China (English)

    YU Benli; QIAN Jingren; LUO Jiatong; YANG Yinghai

    2001-01-01

    In this paper, experimental results of the in-cavity phase modulation induced by dithering PZT is reported. The dithering PZT can produce strong phase modulation, reshaping the laser output spectrum, but does not affect the laser linewidth, which is measured by homodyne method.

  13. WDM Phase-Modulated Millimeter-Wave Fiber Systems

    DEFF Research Database (Denmark)

    Yu, Xianbin; Prince, Kamau; Gibbon, Timothy Braidwood

    2012-01-01

    This chapter presents a computer simulation case study of two typical WDM phase-modulated millimeter-wave systems. The phase-modulated 60 GHz fiber multi-channel transmission systems employ single sideband (SSB) and double sideband subcarrier modulation (DSB-SC) schemes and present one of the lat......This chapter presents a computer simulation case study of two typical WDM phase-modulated millimeter-wave systems. The phase-modulated 60 GHz fiber multi-channel transmission systems employ single sideband (SSB) and double sideband subcarrier modulation (DSB-SC) schemes and present one...... of the latest research efforts in the rapidly emerging Radio-over-Fiber (RoF) application space for in-house access networks....

  14. Phase-modulating lasers toward on-chip integration.

    Science.gov (United States)

    Kurosaka, Yoshitaka; Hirose, Kazuyoshi; Sugiyama, Takahiro; Takiguchi, Yu; Nomoto, Yoshiro

    2016-07-26

    Controlling laser-beam patterns is indispensable in modern technology, where lasers are typically combined with phase-modulating elements such as diffractive optical elements or spatial light modulators. However, the combination of separate elements is not only a challenge for on-chip miniaturisation but also hinders their integration permitting the switchable control of individual modules. Here, we demonstrate the operation of phase-modulating lasers that emit arbitrarily configurable beam patterns without requiring any optical elements or scanning devices. We introduce a phase-modulating resonator in a semiconductor laser, which allows the concurrent realisation of lasing and phase modulation. The fabricated devices are on-chip-sized, making them suitable for integration. We believe this work will provide a breakthrough in various laser applications such as switchable illumination patterns for bio-medical applications, structured illuminations, and even real three-dimensional or highly realistic displays, which cannot be realised with simple combinations of conventional devices or elements.

  15. Stability of barrier buckets with zero RF-barrier separations

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab

    2005-03-01

    A barrier bucket with very small separation between the rf barriers (relative to the barrier widths) or even zero separation has its synchrotron tune decreasing rather slowly from a large value towards the boundary of the bucket. As a result, large area at the bucket edges can become unstable under the modulation of rf voltage and/or rf phase. In addition, chaotic regions may form near the bucket center and extend outward under increasing modulation. Application is made to those barrier buckets used in the process of momentum mining at the Fermilab Recycler Ring.

  16. Electron bunch energy and phase feed-forward stabilization system for the Mark V RF-linac free-electron laser.

    Science.gov (United States)

    Hadmack, M R; Jacobson, B T; Kowalczyk, J M D; Lienert, B R; Madey, J M J; Szarmes, E B

    2013-06-01

    An amplitude and phase compensation system has been developed and tested at the University of Hawai'i for the optimization of the RF drive system to the Mark V free-electron laser. Temporal uniformity of the RF drive is essential to the generation of an electron beam suitable for optimal free-electron laser performance and the operation of an inverse Compton scattering x-ray source. The design of the RF measurement and compensation system is described in detail and the results of RF phase compensation are presented. Performance of the free-electron laser was evaluated by comparing the measured effects of phase compensation with the results of a computer simulation. Finally, preliminary results are presented for the effects of amplitude compensation on the performance of the complete system.

  17. Characterization of a custom-built RF coil for a high-resolution phase-contrast magnetic resonance velocimeter

    Science.gov (United States)

    Yang, Byungkuen; Cho, Jee-Hyun; Song, Simon

    2016-11-01

    For the use of clinical purpose magnetic resonance velocimeter (MRV) is a versatile flow visualization technique in that it allows opaque flow, complex geometry, no use of tracer particles and facile fast non-invasive measurements of 3 dimensional and 3 component velocity vectors. However, the spatial resolution of a commercial MR machine is lower than optics-based techniques like PIV. On the other hand, the use of MRV for clinical purposes like cardiovascular flow visualization requires accurate measurements or estimations on wall shear stress (WSS) with a high spatial resolution. We developed a custom-built solenoid RF coil for phase-contrast (PC) MRV to improve its resolution. We compared signal-to-noise ratio, WSS estimations, partial volume effects near wall between the custom RF coil and a commercial coil. Also, a Hagen-Poiseuille flow was analyzed with the custom RF coil. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2016R1A2B3009541).

  18. Signal interference RF photonic bandstop filter.

    Science.gov (United States)

    Aryanfar, Iman; Choudhary, Amol; Shahnia, Shayan; Pagani, Mattia; Liu, Yang; Marpaung, David; Eggleton, Benjamin J

    2016-06-27

    In the microwave domain, signal interference bandstop filters with high extinction and wide stopbands are achieved through destructive interference of two signals. Implementation of this filtering concept using RF photonics will lead to unique filters with high performance, enhanced tuning range and reconfigurability. Here we demonstrate an RF photonic signal interference filter, achieved through the combination of precise synthesis of stimulated Brillouin scattering (SBS) loss with advanced phase and amplitude tailoring of RF modulation sidebands. We achieve a square-shaped, 20-dB extinction RF photonic filter over a tunable bandwidth of up to 1 GHz with a central frequency tuning range of 16 GHz using a low SBS loss of ~3 dB. Wideband destructive interference in this novel filter leads to the decoupling of the filter suppression from its bandwidth and shape factor. This allows the creation of a filter with all-optimized qualities.

  19. Coherent Population Trapping Induced by Phase Modulated and Fluctuating Fields

    Institute of Scientific and Technical Information of China (English)

    WANG Jian; HU Xiang-Ming

    2007-01-01

    We examine the effects of cross correlated phase fluctuations on the coherent population trapping (CPT) induced by a pair of phase-modulated fields with equal modulation frequencies in a three-level A system. The maximal coherence of -0.5, which appears when CPT occurs for equal modulation indices, is preserved in the presence of the critically cross-correlated fluctuations. Unexpectedly, the non-maximal coherence, which is established when CPT is obtained for different modulation indices, is significantly enhanced due to the critically cross-correlated fluctuations.

  20. Highly birefringent crystal for Raman transitions with phase modulators

    Science.gov (United States)

    Arias, Nieves; Abediyeh, Vahide; Hamzeloui, Saeed; Jeronimo-Moreno, Yasser; Gomez, Eduardo

    2016-05-01

    We present a system to excite Raman transitions with minimum phase noise. The system uses a phase modulator to generate the phase locked beams required for the transition. We use a long calcite crystal to filter out one of the sidebands, avoiding the cancellation that appears at high detunings for phase modulation. The measured phase noise is limited by the quality of the microwave synthesizer. We use the calcite crystal a second time to produce a co-propagating Raman pair with perpendicular polarizations to drive velocity insensitive Raman transitions. Support from CONACYT and Fundacion Marcos Moshinsky.

  1. InGaAsP/InP DH Ridge Waveguide Phase Modulator with High Modulation Efficiency

    Institute of Scientific and Technical Information of China (English)

    Young; Tae; Byun; Hwa; Sun; Park; Sung; Jin; Kim; Deok; Ha; Woo; Jong; Chang; Yi; Yoshiaki; Nakano

    2003-01-01

    The P-p-n-N InGaAsP/InP ridge waveguide phase modulator has been fabricated and investigated at a wavelength of 1550nm. The phase modulation efficiency measured by the Fabry-Perot resonance method is as high as 34°/V·mm for TE mode. The QEO effect becomes dominant from - 4V to - 8V.

  2. InGaAsP/InP DH Ridge Waveguide Phase Modulator with High Modulation Efficiency

    Institute of Scientific and Technical Information of China (English)

    Young Tae Byun; Hwa Sun Park; Sung Jin Kim; Deok Ha Woo; Jong Chang Yi; Yoshiaki Nakano

    2003-01-01

    The P-p-n-N InGaAsP/InP ridge waveguide phase modulator has been fabricated and investigated at a wavelength of 1550nm. The phase modulation efficiency measured by the Fabry-Perot resonance method is as high as 34°/V.mm for TE mode. The QEO effect becomes dominant from -4V to -8V.

  3. The Design of a Five-Cell Superconducting RF Module with a PBG Coupler Cell

    Energy Technology Data Exchange (ETDEWEB)

    Arsenyev, Sergey A [Los Alamos National Laboratory; Simakov, Evgenya I [Los Alamos National Laboratory

    2012-08-29

    We discuss the problem of incorporating a Photonic Band Gap (PBG) cell into a superconducting accelerating module of 5 cells designed for the operational frequency of 2.1 GHz. The reason for using a PBG cell is to provide a good accelerating mode confinement and good Higher Order Mode (HOM) suppression. PBG cell can potentially be used for placing HOM and fundamental mode couplers. However, because of the naturally higher ratio of the peak magnetic field to the accelerating field in the PBG cell, it should be designed to operate at a lower accelerating gradient than the other cells of the module. This ensures that the probability of quench in the PBG cell would be no higher than in other elliptical cells of the structure.

  4. High-Efficiency Resonant RF Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams

    CERN Document Server

    Seo, P -N; Bowman, J D; Chupp, T E; Crawford, C; Dabaghyan, M; Dawkins, M; Freedman, S J; Gentile, T; Gericke, M T; Gillis, R C; Greene, G L; Hersman, F W; Jones, G L; Kandes, M; Lamoreaux, S; Lauss, B; Leuschner, M B; Mahurin, R; Mason, M; Mei, J; Mitchell, G S; Nann, H; Page, S A; Penttila, S I; Ramsay, W D; Bacci, A Salas; Santra, S; Sharma, M; Smith, T B; Snow, W M; Wilburn, W S; Zhu, H

    2007-01-01

    We have developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to RF neutron spin flippers based on adiabatic fast passage. The spin rotator does not change the kinetic energy of the neutrons and leaves the neutron beam phase space unchanged to high precision. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically-polarized 3He neutron spin filters. The efficiency of the spin rotator was measured to be 98.0+/-0.8% on resonance for neutron energies from 3.3 to 18.4 meV over the full phase space of the beam. As an example of the application of this device to an experiment we describe the integration of the RF spin rotator into an app...

  5. Improved manufacturing techniques for RF and laser hardening of missile domes. Phase I. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Pawlewicz, W.T.; Mann, I.B.; Martin, P.M.; Hays, D.D.; Graybeal, A.G.

    1982-07-01

    This report summarizes key results and accomplishements during the first year of a Manufacturing Methods and Technology project to adapt an existing Pacific Northwest Laboratory (PNL) optical coating capability developed for high-power fusion-laser applications to the case of rf and laser hardening of plastic missile domes used by the US Army (MICOM). The primary objective of the first year's work was to demonstrate rf hardening of Hellfire and Copperhead 1.06-micron missile domes by use of transparent conductive Indium Tin Oxide (ITO) coatings. The project thus involved adaptation of a coating material and process developed for flat glass components used in fusion lasers to the case of hemispherical or conical heat-sensitive plastic domes used on laser-guided missiles. Specific ITO coating property goals were an electrical sheet resistance of 10 Ohms/square, a coated-dome transmission of 80% or more at 1.06 micron wavelength (compared to 90% for a bare dome), and good adhesion. The sheet resistance goal of 10 Ohms/square was expected to result in an rf attenuation of 30 dB at the frequencies of importance.

  6. Open-Loop Wide-Bandwidth Phase Modulation Techniques

    Directory of Open Access Journals (Sweden)

    Nitin Nidhi

    2011-01-01

    Full Text Available The ever-increasing growth in the bandwidth of wireless communication channels requires the transmitter to be wide-bandwidth and power-efficient. Polar and outphasing transmitter topologies are two promising candidates for such applications, in future. Both these architectures require a wide-bandwidth phase modulator. Open-loop phase modulation presents a viable solution for achieving wide-bandwidth operation. An overview of prior art and recent approaches for phase modulation is presented in this paper. Phase quantization noise cancellation was recently introduced to lower the out-of-band noise in a digital phase modulator. A detailed analysis on the impact of timing and quantization of the cancellation signal is presented. Noise generated by the transmitter in the receive band frequency poses another challenge for wide-bandwidth transmitter design. Addition of a noise transfer function notch, in a digital phase modulator, to reduce the noise in the receive band during phase modulation is described in this paper.

  7. Uncovering introductory astronomy students' conceptual modules of lunar phases

    Science.gov (United States)

    Lindell, Rebecca; Traxler, Adrienne

    2017-01-01

    Brewe, Bruun and Bearden developed Module Analysis of Multiple Choice Responses (MAMCR) methodology for using network analysis to uncover the underlying conceptual modules of student performance on multiple-choice assessments. The Lunar Phases Concept Inventory (LPCI) assesses students understanding of lunar phases across 8 separate dimensions of understanding based on the results of a detailed qualitative phenomenology of college students' understanding of lunar phases. Unlike many concept inventories, the LPCI has multiple items for each dimension of understanding and each response corresponds to either the scientifically correct answer or to an alternative idea uncovered from the qualitative investigation. In this study, we have combined MAMCR with the database of nearly 2000 LPCI pre-test results. We will report on the preliminary different conceptual modules of lunar phases and the relationship of these modules to previous qualitative research.

  8. All-optical phase modulation for integrated interferometric biosensors.

    Science.gov (United States)

    Dante, Stefania; Duval, Daphné; Sepúlveda, Borja; González-Guerrero, Ana Belen; Sendra, José Ramón; Lechuga, Laura M

    2012-03-26

    We present the theoretical and the experimental implementation of an all-optical phase modulation system in integrated Mach-Zehnder Interferometers to solve the drawbacks related to the periodic nature of the interferometric signal. Sensor phase is tuned by modulating the emission wavelength of low-cost commercial laser diodes by changing their output power. FFT deconvolution of the signal allows for direct phase readout, immune to sensitivity variations and to light intensity fluctuations. This simple phase modulation scheme increases the signal-to-noise ratio of the measurements in one order of magnitude, rendering in a sensor with a detection limit of 1.9·10⁻⁷ RIU. The viability of the all-optical modulation approach is demonstrated with an immunoassay detection as a biosensing proof of concept.

  9. Terahertz cross-phase modulation of an optical mode

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Novitsky, Andrey; Zalkovskij, Maksim

    2013-01-01

    We discuss an optical scheme which facilitates modulation of an optical waveguide mode by metallic-nanoslit-enhanced THz radiation. The waveguide mode acquires an additional phase shift due to THz nonlinearity with fields reachable in experiments.......We discuss an optical scheme which facilitates modulation of an optical waveguide mode by metallic-nanoslit-enhanced THz radiation. The waveguide mode acquires an additional phase shift due to THz nonlinearity with fields reachable in experiments....

  10. Tunable dispersion compensation using phase modulation in receiver part

    DEFF Research Database (Denmark)

    Siahlo, Andrei; Clausen, Anders; Oxenløwe, Leif Katsuo

    2004-01-01

    A novel method of tuneable dispersion compensation at which phase modulation is applied in the receiver part is proposed for OTDM systems. Compensation of dispersion of 3.2 ps/nm at 160 Gb/s OTDM transmission is demonstrated.......A novel method of tuneable dispersion compensation at which phase modulation is applied in the receiver part is proposed for OTDM systems. Compensation of dispersion of 3.2 ps/nm at 160 Gb/s OTDM transmission is demonstrated....

  11. Free space millimeter wave-coupled electro-optic high speed nonlinear polymer phase modulator with in-plane slotted patch antennas.

    Science.gov (United States)

    Park, D H; Pagán, V R; Murphy, T E; Luo, J; Jen, A K-Y; Herman, W N

    2015-04-06

    We report in-plane slotted patch antenna-coupled electro-optic phase modulators with a carrier-to-sideband ratio (CSR) of 22 dB under an RF power density of 120 W/m(2) and a figure of merit of 2.0 W(-1/2) at the millimeter wave frequencies of 36-37 GHz based on guest-host type of second-order nonlinear polymer SEO125. CSR was improved more than 20 dB by using a SiO(2) protection layer. We demonstrate detection of 3 GHz modulation of the RF carrier. We also derive closed-form expressions for the modulated phase of optical wave and carrier-to-sideband ratio. Design, simulation, fabrication, and experimental results are discussed.

  12. High-efficiency Resonant rf Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Seo, P. -N. [Los Alamos National Laboratory (LANL); Barron-Palos, L. [Arizona State University; Bowman, J. D. [Los Alamos National Laboratory (LANL); Chupp, T. E. [University of Michigan; Crawford, C. [University of Tennessee, Knoxville (UTK); Dabaghyan, M. [University of New Hampshire; Dawkins, M. [Indiana University; Freedman, S. J. [University of California; Gentile, T. R. [National Institute of Standards and Technology (NIST); Gericke, M. T. [University of Manitoba, Canada; Gillis, R. C. [University of Manitoba, Canada; Greene, G. L. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Hersman, F. W. [University of New Hampshire; Jones, G. L. [Hamilton College, New York; Kandes, M. [University of Michigan; Lamoreaux, S. [Los Alamos National Laboratory (LANL); Lauss, B. [University of California, Berkeley; Leuschner, M. B. [Indiana University; Mahurin, R. [University of Tennessee, Knoxville (UTK); Mason, M. [University of New Hampshire; Mei, J. [Indiana University; Mitchell, G. S. [Los Alamos National Laboratory (LANL); Nann, H. [Indiana University; Page, S. A. [University of Manitoba, Canada; Penttila, S. I. [Los Alamos National Laboratory (LANL); Ramsay, W. D. [University of Manitoba & TRIUMF, Canada; Salas Bacci, A. [Los Alamos National Laboratory (LANL); Santra, S. [Indiana University; Sharma, M. [University of Michigan; Smith, T. B. [University of Dayton, Ohio; Snow, W. [Indiana University; Wilburn, W. S. [Los Alamos National Laboratory (LANL); Zhu, H. [University of New Hampshire

    2008-01-01

    High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPD Gamma experiment, a search for the small parity-violating {gamma}-ray asymmetry A{sub Y} in polarized cold neutron capture on parahydrogen, is one example. For the NPD Gamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized {sup 3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8 {+-} 0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPD Gamma experiment are considered.

  13. Method to measure the phase modulation characteristics of a liquid crystal spatial light modulator.

    Science.gov (United States)

    Wu, Yunlong; Nie, Jinsong; Shao, Li

    2016-11-01

    The universal liquid crystal spatial light modulator (LC-SLM) is widely used in many aspects of optical studies. The working principles and applications of LC-SLM were introduced briefly. The traditional Twyman-Green interference method, which was used to measure the phase modulation characteristics of a liquid spatial light modulator, had some obvious disadvantages in practice. To avoid these issues, the traditional Twyman-Green interference method was improved. Also, a new method to process interference fringes and measure the shift distances and cycles automatically by computers was proposed. The phase modulation characteristics of P512-1064 LC-SLM produced by the Meadowlark Company were measured to verify the validity of the newly proposed method. In addition, in order to compensate and correct the nonlinear characteristics of the phase modulation curve, three universal inverse interpolation methods were utilized. The root mean squared error and residual sum of squares between the calibrated phase modulation curve and the ideal phase modulation curve were reduced obviously by taking advantage of the inverse interpolation methods. Subsequently, the method of shape-preserving subsection cubic interpolation had acquired the best performance with high computation efficiency. Experiments have been performed to verify the validity of the interpolation method. The experimental results showed that the phase modulation characteristics of LC-LSM could be acquired and calibrated automatically with convenience and high efficiency by utilizing the newly proposed processing method.

  14. Size-controllable synthesis and bandgap modulation of single-layered RF-sputtered bismuth nanoparticles

    Science.gov (United States)

    Wu, Bin-Kun; Chern, Ming-Yau; Lee, Hsin-Yen

    2014-05-01

    We here report a simple and efficient method to grow single-layer bismuth nanoparticles (BiNPs) with various sizes on glass substrates. Optimal conditions were found to be 200°C and 0.12 W/cm2 at a growth rate of 6 Å/s, with the deposition time around 40 s. Scanning electron microscope (SEM) images were used to calculate the particle size distribution statistics, and high-resolution X-ray diffraction (XRD) patterns were used to examine the chemical interactions between BiNPs and the substrates. By measuring the transmission spectra within the range of 300 to 1,000 nm, we found that the optical bandgap can be modulated from 0.45 to 2.63 eV by controlling the size of these BiNPs. These interesting discoveries offer an insight to explore the dynamic nature of nanoparticles.

  15. Evaluation of Modulation Schemes for Three-Phase to Three-Phase Matrix Converters

    DEFF Research Database (Denmark)

    Helle, Lars; Larsen, Kim B.; Joergensen, Allan Holm

    2004-01-01

    This paper presents a method for evaluating different modulation schemes employed with three-phase to three-phase matrix converters. The evaluation method addresses three important modulator characteristics: the output waveform quality, the input waveform quality and the switching losses associated...... on the output load angle. This new modulation approach is applicable whenever the output voltage reference is below half the input voltage, and the output voltage quality is then superior to that of the conventional space vector modulation scheme. The functionality of the new modulation scheme is validated...

  16. Technology development of RF MEMS switches on printed circuit boards

    Science.gov (United States)

    Chang, Hung-Pin

    Today, some engineers have shifted their focus on the micro-electro-mechanical system (MEMS) to pursue better technological advancements. Recent development in RF MEMS technologies have lead to superior switch characteristics, i.e., very low insertion loss, very low power requirements, and high isolation comparing to the conventional semiconductor devices. This success has promised the potential of MEMS to revolutionize RF and microwave system implementation for the next generation of communication applications. However, RF MEMS switches integrated monolithically with various RF functional components on the same substrate to create multifunctional and reconfigurable complete communication systems remains to be a challenge research topic due to the concerns of the high cost of packaging process and the high cost of RF matching requirements in module board implementation. Furthermore, the fabrication of most RF MEMS switches requires thickness control and surface planarization of wide metal lines prior to deposition of a metal membrane bridge, which poses a major challenge to manufacturability. To ease the fabrication of RF MEMS switches and to facilitate their integration with other RF components such as antennas, phase delay lines, tunable filters, it is imperative to develop a manufacturable RF MEMS switch technology on a common substrate housing all essential RF components. Development of a novel RF MEMS technology to build a RF MEMS switch and provide a system-level packaging on microwave laminated printed circuit boards (PCBs) are proposed in this dissertation. Two key processes, high-density inductively coupled plasma chemical vapor deposition (HDICP CVD) for low temperature dielectric deposition, and compressive molding planarization (COMP) for the temporary sacrificial polymer planarization have been developed for fabricating RF MEMS switches on PCBs. Several membrane-type capacitive switches have been fabricated showing excellent RF performance and dynamic

  17. RF Photonic, In-Situ, Real-Time Phased Array Antenna Calibration System

    Science.gov (United States)

    2010-11-22

    amplifier ( EDFA ) and distributed through a 16-fiber ribbon cable to an array of photodiodes. Within the optical distribution network (ODN), the amplitude...subsystem consists of a laser source externally modulated with a MZM. The modulated signal is amplified with an EDFA providing ample power to split

  18. Considerations of digital phase modulation for narrowband satellite mobile communication

    Science.gov (United States)

    Grythe, Knut

    1990-01-01

    The Inmarsat-M system for mobile satellite communication is specified as a frequency division multiple access (FDMA) system, applying Offset Quadrature Phase Shift Keying (QPSK) for transmitting 8 kbit/sec in 10 kHz user channel bandwidth. We consider Digital Phase Modulation (DPM) as an alternative modulation format for INMARSAT-M. DPM is similar to Continuous Phase Modulation (CPM) except that DPM has a finite memory in the premodular filter with a continuous varying modulation index. It is shown that DPM with 64 states in the VA obtains a lower bit error rate (BER). Results for a 5 kHz system, with the same 8 kbit/sec transmitted bitstream, is also presented.

  19. The effect of input phase modulation to a phase-sensitive optical amplifier

    CERN Document Server

    Li, Tian; Horrom, Travis; Jones, Kevin M; Lett, Paul D

    2016-01-01

    Many optical applications depend on amplitude modulating optical beams using devices such as acousto-optical modulators (AOMs) or optical choppers. Methods to add amplitude modulation (AM) often inadvertently impart phase modulation (PM) onto the light as well. While this PM is of no consequence to many phase-insensitive applications, phase-sensitive processes can be affected. Here we study the effects of input phase and amplitude modulation on the output of a quantum-noise limited phase-sensitive optical amplifier (PSA) realized in hot $^{85}$Rb vapor. We investigate the dependence of PM on AOM alignment and demonstrate a novel approach to quantifying PM by using the PSA as a diagnostic tool. We then use this method to measure the alignment-dependent PM of an optical chopper which arises due to diffraction effects as the chopper blade passes through the optical beam.

  20. The effect of deposition parameters on the phase of TiO{sub 2} films grown by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ji Chon; Song, Kyu Jeong [Chonbuk National University, Jeonju (Korea, Republic of); Park, Chan [Seoul National University, Seoul (Korea, Republic of)

    2014-12-15

    TiO{sub 2} thin films were deposited on Si substrates by using conventional radio-frequency (RF) magnetron sputtering with either metallic Ti or TiO{sub 2} targets, and the effect of the deposition parameters (substrate temperature (T{sub s}), RF sputtering power, gas flow ratio of O{sub 2}/(Ar+O{sub 2}) and deposition time) on the phase of the film was investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to obtain information on the phase of the films and on the surface image/thickness of films, respectively. TiO{sub 2} films deposited at a T{sub s} higher than 300 .deg. C by using a metallic Ti target showed the dominant presence of the rutile phase. For films grown at a constant T{sub s} of 300 .deg. C with different gas flow ratios of O{sub 2}/(Ar+O{sub 2}), the amount of the rutile phase gradually decreased as the oxygen gas flow was decreased. The anatase phase, however, was formed when the O{sub 2}/(Ar+O{sub 2}) was 0.2. On the other hand, for TiO{sub 2} films deposited at T{sub s}'s between 50 .deg. C and 200 .deg. C with an O{sub 2}/(Ar+O{sub 2}) of 0.1 by using a TiO{sub 2} target, both the anatase and the rutile phases gradually decreased as the T{sub s} was increased. For TiO{sub 2} films deposited with various gas flow ratios of O{sub 2}/(Ar+O{sub 2}) between 0 and 0.4 at a constant T{sub s} of 200 .deg. C by using a TiO{sub 2} target, the anatase phase gradually decreased, but the rutile phase gradually increased, as the gas flow ratio was increased.

  1. High-power Microwave Pulse Compression of Klystrons by Phase-Modulation of High-Q Storage Cavities

    CERN Document Server

    Bossart, Rudolf; Mourier, J; Syratchev, I V; Tanner, L

    2004-01-01

    At the CERN linear electron accelerators LIL and CTF, the peak RF power from the 3GHz-klystrons was doubled by means of LIPS microwave pulse compressors. To produce constant RF power from the cavity-based pulse compressors, the klystrons were driven by a fast RF-phase modulation program. For the CLIC Test Facility CTF3, a new type of a Barrel Open Cavity (BOC) with a high quality factor Q0 has been developed. Contrary to LIPS with two resonant cavities, BOC operates with a single cavity supporting two orthogonal resonant modes TM 10,1,1 in the same cavity. For both LIPS and BOC storage cavities, it is important that the RF power reflected back to the klystron is minimal. This implies that the resonant frequencies, Q-factors and coupling factors of the two resonant modes of a pulse compressor are closely matched, and that the resonant frequencies are accurate to within a few KHz. The effects of small differences between the two orthogonal modes of the BOC cavity have been investigated. The dynamic pulse respon...

  2. A PIN diode controlled dual-tuned MRI RF coil and phased array for multi nuclear imaging

    Science.gov (United States)

    Ha, Seunghoon; Hamamura, Mark J.; Nalcioglu, Orhan; Tugan Muftuler, L.

    2010-05-01

    MR imaging of nuclei other than hydrogen has been used to investigate metabolism in humans and animals. However, MRI observable nuclei other than hydrogen are not as abundant and as a result the image SNR is lower. Dual-tuned radio frequency (RF) coils are developed for these studies in which high-resolution structural images are acquired using hydrogen and metabolic information is acquired by exciting the other nucleus. Using a dual-tuned coil, the experimenter avoids the inconvenience of moving the patient out and replacing the RF coil for imaging different nuclei. This also eliminates image registration problems. However, the common scheme of using trap circuits for dual-tuned operation results in increased coil losses as well as problems in obtaining optimal tuning and matching at both frequencies. Here, a new approach is presented using PIN diodes to switch the coil between two resonance frequencies. This design eliminates the need for the trap circuit and associated losses from the self-resistance of the trap circuit inductors. At the operating frequencies we used, the equivalent series resistance of an inductor is higher than that of the PIN diodes. In order to test the efficacy of this new approach, we first built two surface coils of identical geometry, one with the conventional trap circuits and one with the PIN diode switches. We also studied the performances of both coils when the coils are divided into shorter conductors segments by adding more tuning elements. It is known that dividing the coil into shorter conductor segments helps reduce radiation and electric field losses. We explored this effect for both coils at both operating frequencies. Finally, a dual-tuned receive-only phased array was designed and built with the PIN diode circuit to switch between two resonance frequencies. A conventional dual-tuned birdcage coil was designed and built to transmit RF power. A unique feature of this coil is that the RF power is fed through two separate sets

  3. Digital Monopulse Receivers for Phase Modulated Signals

    Science.gov (United States)

    2005-04-14

    Mateo Burgos-García, Gema Ferreiro-Collar, Alberto Asensio Ló Grupo de Microondas y Dpto. Señales, Sistemas y Radio E.T.S.I. Telecomunic Universidad...Politécnica d Ciudad Universitaria 28040 Madrid, Spa Email: mateo@gmr.ssr. Digital Monopulse Rec Modulated Si T ∆ Σ Z1(t) Z2(t)log-amplifier of each...Microondas y Radar Dpto. Señales, Sistemas y Radiocomunicaciones E.T.S.I. Telecomunicación Universidad Politécnica de Madrid Ciudad Universitaria s/n

  4. Optimal space communication techniques. [a discussion of delta modulation, pulse code modulation, and phase locked systems

    Science.gov (United States)

    Schilling, D. L.

    1975-01-01

    Encoding of video signals using adaptive delta modulation (DM) was investigated, along with the error correction of DM encoded signals corrupted by thermal noise. Conversion from pulse code modulation to delta modulation was studied; an expression for the signal to noise ratio of the DM signal derived was achieved by employing linear, 2-sample, interpolation between sample points. A phase locked loop using a nonlinear processor in lieu of a loop filter is discussed.

  5. Design Considerations for Phased Array Modules

    Science.gov (United States)

    1980-11-01

    basica )ly designed for C7 operation. In pulsed mode of oporation however, peak pov:e%.’ of 150:7 at 10.52GHz wras obtained for psoc pulse lengths and...repeating the above calculations with the appropriate value of referer:ce phase ýP applied to each element. Bearing in mind the tedious algebra involved in

  6. PSB beam longitudinal blow-up by phase modulation with the digital LLRF prototype system

    CERN Document Server

    Angoletta, M E; Butterworth, A; Findlay, A; Jaussi, M; Leinonen, P; Molendijk, J; Sanchez-Quesada, J

    2014-01-01

    The PSB will be upgraded to a new, Digital Low-Level RF (DLLRF) system in 2014 at the injectors’ restart after LS1. This DLLRF is an evolution of that successfully deployed in LEIR and comprises new hardware, software and implementation strategies. Machine development studies have been carried out in the PSB over recent years with the existing LEIR-style hardware installed in PSB ring four. These studies have allowed testing approaches and validating implementation strategies. This note focuses on a series of MDs carried out during the 2011 run where a new implementation of the longitudinal beam blow-up obtained by phase modulation was tested. Test results and effects on the beam are show for a CNGS-type beam. Finally, an overview is given of the final longitudinal blow-up implementation planned with the new hardware, which will be operationally deployed in 2014.

  7. Cylindrical PVF2 film based fiber optic phase modulator - Phase shift nonlinearity and frequency response

    Science.gov (United States)

    Sudarshanam, V. S.; Claus, Richard O.

    1993-03-01

    A new cylindrical coil configuration for polyvinylidene flouride (PVF2) film based fiber optic phase modulator is studied for the frequency response and nonlinearity of phase shift at the resonance frequency. This configuration, hitherto unapproached for PVF2 film modulators, offers resonance at well defined, controllable and higher frequencies than possible for the flat-strip configuration. Two versions of this configuration are presented that differ strongly in both the resonance frequency and the phase shift nonlinearity coefficient.

  8. Crystal structure of the commensurately modulated ζ phase of PAMC

    DEFF Research Database (Denmark)

    Harris, P.; Larsen, F.K.; Lebech, B.

    1994-01-01

    The commensurately modulated zeta low-temperature phase of bis(propylammonium) tetrachloromanganate(II), [NH3(C3H7)]2MnCl4, has been determined at 8 K. a = 7.437 (5), b = 7.082 (5), c = 13.096 (8) Angstrom, alpha = 105.59 (1)degrees. Superspace group P2(1)/b(0 beta 0)(1) over bar s, with beta = 1...... phase, indicating a 'lock-in' and phase shift between adjacent modulated layers. The modulation waves do not change much from the values of the epsilon phase, which confirms the lock-in of the modulation vector; only some components of the modulations of the propylammonium chains appear....../3, V = 664.4, Z = 2 D-x = 1.58 g cm(-3) Mo K alpha radiation, lambda = 0.71069 Angstrom, mu = 17.99 cm(-1) F(000) = 326, wR(F) = 0.064 for 1444 main reflections and wR(F) = 0.089 for 248 satellite reflections. The modulation vector flips and locks into a commensurate value compared with the epsilon...

  9. Phase Regeneration of a BPSK Data Signal Using a Lithium Niobate Phase Modulator

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Da Ros, Francesco; Galili, Michael

    2015-01-01

    We propose a scheme for phase regeneration of an optical binary phase shift keying (BPSK) data signal using a Lithium Niobate (LiNbO3) phase modulator. The scheme is based on heterodyne detection of the BPSK data signal with a continuous wave local oscillator (CW-LO). Carrier recovery...... is then achieved in the electrical domain using a ×2 frequency-multiplier and a narrow-band filtering scheme. Subsequently, a superposition of the recovered carrier and the heterodyne detected data signal is used to modulate the CW-LO in a LiNbO3 phase modulator. The result is a parametric mixing process...... in the optical domain, leading to a phase-regenerated BPSK data signal by the coherent superposition with a phase-inverted copy. The proposed scheme constitutes a compact and stable setup, where active phase-stabilization of the electrical data- and carrier-paths can potentially be avoided. An analytical...

  10. Cross modulation interference in CDMA RF receiver%CDMA射频接收机中的交调干扰

    Institute of Scientific and Technical Information of China (English)

    付志慧; 李哲

    2012-01-01

    The nonlinearity of LNA(low noise amplifier) which have caused the problem of cross modulation interference in CDMA(Code Division Multiple Access) RF receiver is studied.Based on the CDMA cell phone,simultaneously using CDMA single-tone desensitization test,the factors which trigger the interference are qualitatively analyzed,simultaneously the wanted IIP3(input third-order intercept point) of LNA for CDMA cellular is designed: +7.8 dBm.Making use of the IP3 test,the agreement between the calculation and the actual value is verified.The results showed that the IIP3 of LNA determined the cross modulation interference.The smaller the product to make,the greater IIP3 value we need.%针对CDMA(Code Division Multiple Access)射频接收机中LNA(low noise amplifier)的非线性度引发的交调干扰问题,本文基于CDMA手机平台,结合CDMA单音抗扰度实验,定性地分析了交调干扰的产生过程以及此干扰对射频单音指标的影响。并利用单音裕量值计算出了满足CDMA BC0(cellular)频段的LNA IIP3(inputthird-order intercept point)指标:+7.8dBm。同时进行IP3(third-order intercept point)实验验证IIP3计算值与实际值的一致性。分析表明射频接收机中的交调干扰是发射泄露的信号与邻道单音干扰信号交叉调制产生。LNA的线性度指标IIP3对交调干扰起决定性作用。要使交调产物越小,所需要的IIP3值越大。

  11. CLIC Main Linac Beam-Loading Compensation by Drive Beam Phase Modulation

    CERN Document Server

    Corsini, R; Syratchev, I V

    1999-01-01

    The CLIC final focus momentum acceptance of ± 0.5 % limits the bunch-to-bunch energy variation in the main beam to less than ± 0.1 %, since the estimated single-bunch contribution is ± 0.4 %. On the other hand, a relatively high beam-loading of the main accelerating structures (about 16 %) is unavoidable in order to optimize the RF-to-beam efficiency. Therefore, a compensation method is needed to reduce the resulting bunch-to-bunch energy spread of the main beam. Up to now, it has been planned to obtain the RF pulse shape needed for compensation by means of a charge ramp in the drive beam pulse. On the other hand, the use of constant-current drive beam pulses would make the design and operation of the drive beam injector considerably simpler. In this paper we present a possible solution adapted to the CLIC two-beam scheme with constant-current pulses, based on phase modulation of the drive beam bunches.

  12. NEW SELF-MIXING MICROINTERFEROMETER BASED ON EXTERNAL PHASE MODULATION

    Institute of Scientific and Technical Information of China (English)

    GUO Dongmei; WANG Ming

    2007-01-01

    A new self-mixing micro-interferometer based on external phase modulation is presented.Self-mixing interference occurs in a laser diode (LD) by reflecting the light from a mirror-like target in front of the laser. Sinusoidal phase modulation of the beam is obtained by an electro-optic crystal (EOC) in the external cavity. The phase of the interference signal is demodulated by Fourier analysis method. The combination of the modulation and demodulation decreases the sensitivity of the instrument to fluctuations of the laser power and the noise induced by environment. Experimentally, the new micro-interferometer is applied to measure the micro-displacement of a high precision commercial PZT with an accuracy of<10 nm.

  13. Detector Modules for the CMS Pixel Phase 1 Upgrade

    CERN Document Server

    Zhu, De Hua; Berger, Pirmin; Meinhard, Maren Tabea; Starodumov, Andrey; Tavolaro, Vittorio Raoul

    2017-01-01

    The CMS Pixel phase 1 upgrade detector consists of 1184 modules with new design. An important part of the production is the module qualification and calibration, ensuring their proper functionality within the detector. This paper summarizes the qualification and calibration results of modules used in the innermost two detector layers with focus on methods using module-internal calibration signals. Extended characterizations on pixel level such as electronic noise and bump bond connectivity, optimization of operational parameters, sensor quality and thermal stress resistance were performed using a customized setup with controlled environment. It could be shown that the selected modules have on average $0.55 \\mathrm{ {}^{0\\!}\\!/\\!_{00} }\\, \\pm \\, 0.01 \\mathrm{ {}^{0\\!}\\!/\\!_{00} }\\,$ defective pixels and that all performance parameters stay within their specifications.

  14. Optical parameters induced by phase transformation in RF magnetron sputtered TiO2 nanostructured thin films

    Directory of Open Access Journals (Sweden)

    Prabitha B. Nair

    2014-06-01

    Full Text Available Pure TiO2 thin films were deposited onto quartz substrates using a ceramic TiO2 target at an elevated substrate temperature of 573 K by RF magnetron sputtering, and an analysis of structural, optical and photoluminescence characteristics of the films upon phase transformation is reported in this paper. Structural investigations using X-ray diffraction revealed that the as-deposited film was amorphous in nature. Thermal annealing for 2 h at 873 K in air resulted in the formation of anatase phase, and a phase transformation to rutile was observed at 1073 K. An increase in grain size and an improvement in crystallinity were also observed on annealing. Rod- like rutile crystallites were observed in the SEM images of the film annealed at 1273 K. As-deposited films and films annealed up to 1073 K were highly transparent in the visible region with a transparency >80%. Optical band gap of the films decreased upon thermal annealing which is attributed to phase transformation from amorphous to anatase and then to rutile. Optical parameters such as refractive index, optical conductivity and optical dielectric constant increased with increase in annealing temperature. Since rutile is the optically active phase, the superior refractive index of the film annealed at 1073 K along with its high transparency in visible region suggests the application of this film in antireflective coatings. Photoluminescence emission of maximum intensity was observed for the film annealed at 873 K, which exhibits anatase phase. Intense blue emission observed in this film makes it suitable for use in optoelectronic display devices.

  15. Optical parameters induced by phase transformation in RF magnetron sputtered TiO2 nanostructured thin films

    Institute of Scientific and Technical Information of China (English)

    Prabitha B.Nair; V.B.Justinvictor; Georgi P.Daniel; K.Joy; K.C.James Raju; David Devraj Kumar; P.V.Thomas

    2014-01-01

    Pure TiO2 thin films were deposited onto quartz substrates using a ceramic TiO2 target at an elevated substrate temperature of 573 K by RF magnetron sputtering, and an analysis of structural, optical and photoluminescence characteristics of the films upon phase transformation is reported in this paper. Structural investigations using X-ray diffraction revealed that the as-deposited film was amorphous in nature. Thermal annealing for 2 h at 873 K in air resulted in the formation of anatase phase, and a phase transformation to rutile was observed at 1073 K. An increase in grain size and an improvement in crystallinity were also observed on annealing. Rod-like rutile crystallites were observed in the SEM images of the film annealed at 1273 K. As-deposited films and films annealed up to 1073 K were highly transparent in the visible region with a transparency 4 80%. Optical band gap of the films decreased upon thermal annealing which is attributed to phase transformation from amorphous to anatase and then to rutile. Optical parameters such as refractive index, optical conductivity and optical dielectric constant increased with increase in annealing temperature. Since rutile is the optically active phase, the superior refractive index of the film annealed at 1073 K along with its high transparency in visible region suggests the application of this film in antireflective coatings. Photoluminescence emission of maximum intensity was observed for the film annealed at 873 K, which exhibits anatase phase. Intense blue emission observed in this film makes it suitable for use in optoelectronic display devices.

  16. Enabling Technologies for Direct Detection Optical Phase Modulation Formats

    Science.gov (United States)

    Xu, Xian

    Phase modulation formats are believed to be one of the key enabling techniques for next generation high speed long haul fiber-optic communication systems due to the following main advantages: (1) with a balanced detection, a better receiver sensitivity over conventional intensity modulation formats, e.g., a ˜3-dB sensitivity improvement using differential phase shift keying (DPSK) and a ˜1.3-dB sensitivity improvement using differential quadrature phase shift keying (DQPSK); (2) excellent robustness against fiber nonlinearities; (3) high spectrum efficiency when using multilevel phase modulation formats, such as DQPSK. As the information is encoded in the phase of the optical field, the phase modulation formats are sensitive to the phase-related impairments and the deterioration induced in the phase-intensity conversion. This consequently creates new challenging issues. The research objective of this thesis is to depict some of the challenging issues and provide possible solutions. The first challenge is the cross-phase modulation (XPM) penalty for the phase modulated channels co-propagating with the intensity modulated channels. The penalty comes from the pattern dependent intensity fluctuations of the neighboring intensity modulated channels being converted into phase noise in the phase modulation channels. We propose a model to theoretically analyze the XPM penalty dependence on the walk off effect. From this model, we suggest that using fibers with large local dispersion or intentionally introducing some residual dispersion per span would help mitigate the XPM penalty. The second challenge is the polarization dependent frequency shift (PDf) induced penalty during the phase-intensity conversion. The direct detection DPSK is usually demodulated in a Mach-Zehnder delay interferometer (DI). The polarization dependence of DI introduces a PDf causing a frequency offset between the laser's frequency and the transmissivity peak of DI, degrading the demodulated DPSK

  17. Phase modulation mode of scanning ion conductance microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng; Zhang, Changlin [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Lianqing, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu; Wang, Yuechao; Yang, Yang [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Guangyong, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

    2014-08-04

    This Letter reports a phase modulation (PM) mode of scanning ion conductance microscopy. In this mode, an AC current is directly generated by an AC voltage between the electrodes. The portion of the AC current in phase with the AC voltage, which is the current through the resistance path, is modulated by the tip-sample distance. It can be used as the input of feedback control to drive the scanner in Z direction. The PM mode, taking the advantages of both DC mode and traditional AC mode, is less prone to electronic noise and DC drift but maintains high scanning speed. The effectiveness of the PM mode has been proven by experiments.

  18. Mechanical modulation method for ultrasensitive phase measurements in photonics biosensing.

    Science.gov (United States)

    Patskovsky, S; Maisonneuve, M; Meunier, M; Kabashin, A V

    2008-12-22

    A novel polarimetry methodology for phase-sensitive measurements in single reflection geometry is proposed for applications in optical transduction-based biological sensing. The methodology uses altering step-like chopper-based mechanical phase modulation for orthogonal s- and p- polarizations of light reflected from the sensing interface and the extraction of phase information at different harmonics of the modulation. We show that even under a relatively simple experimental arrangement, the methodology provides the resolution of phase measurements as low as 0.007 deg. We also examine the proposed approach using Total Internal Reflection (TIR) and Surface Plasmon Resonance (SPR) geometries. For TIR geometry, the response appears to be strongly dependent on the prism material with the best values for high refractive index Si. The detection limit for Si-based TIR is estimated as 10(-5) in terms Refractive Index Units (RIU) change. SPR geometry offers much stronger phase response due to a much sharper phase characteristics. With the detection limit of 3.2*10(-7) RIU, the proposed methodology provides one of best sensitivities for phase-sensitive SPR devices. Advantages of the proposed method include high sensitivity, simplicity of experimental setup and noise immunity as a result of a high stability modulation.

  19. Phase-visibility modulating interferometry by binary non-quadrature amplitude modulation with neutral density filters

    Science.gov (United States)

    Rivera-Ortega, Uriel; Meneses-Fabian, Cruz; Rodriguez-Zurita, Gustavo; Robledo-Sanchez, Carlos

    2014-04-01

    An alternative method for phase retrieval based on spatial and binary non-quadrature amplitude modulation (NQAM) is presented. This proposal is based on the superposition of a probe beam with a reference beam modulated in phase and amplitude (PAM) by NQAM, which is implemented by two neutral density filters (NDF) in a three-beam Mach-Zehnder interferometer (MZI). The principal advantage of this proposal lies in an analytical relationship between the variations of phase and visibility in an interferogram with the variations in the amplitudes of the reference beams used to implement NQAM; thus, the interferograms can be normalized and their introduced phase variations can be known from the measured intensities. Consequently it is possible to successfully retrieve the object phase. It is worthy to note that this method is capable of accepting that the phase and visibility variations in the interferograms could be spatial functions.

  20. Code-modulated interferometric imaging system using phased arrays

    Science.gov (United States)

    Chauhan, Vikas; Greene, Kevin; Floyd, Brian

    2016-05-01

    Millimeter-wave (mm-wave) imaging provides compelling capabilities for security screening, navigation, and bio- medical applications. Traditional scanned or focal-plane mm-wave imagers are bulky and costly. In contrast, phased-array hardware developed for mass-market wireless communications and automotive radar promise to be extremely low cost. In this work, we present techniques which can allow low-cost phased-array receivers to be reconfigured or re-purposed as interferometric imagers, removing the need for custom hardware and thereby reducing cost. Since traditional phased arrays power combine incoming signals prior to digitization, orthogonal code-modulation is applied to each incoming signal using phase shifters within each front-end and two-bit codes. These code-modulated signals can then be combined and processed coherently through a shared hardware path. Once digitized, visibility functions can be recovered through squaring and code-demultiplexing operations. Pro- vided that codes are selected such that the product of two orthogonal codes is a third unique and orthogonal code, it is possible to demultiplex complex visibility functions directly. As such, the proposed system modulates incoming signals but demodulates desired correlations. In this work, we present the operation of the system, a validation of its operation using behavioral models of a traditional phased array, and a benchmarking of the code-modulated interferometer against traditional interferometer and focal-plane arrays.

  1. Controlling the object phase for g-factor reduction in phase-Constrained parallel MRI using spatially selective RF pulses.

    Science.gov (United States)

    Kettinger, Adam O; Kannengiesser, Stephan A R; Breuer, Felix A; Vidnyanszky, Zoltan; Blaimer, Martin

    2017-09-01

    Parallel imaging generally entails a reduction in the signal-to-noise ratio of the final image. Phase-constrained methods aim to improve reconstruction quality by using symmetry properties of k-space. Noise amplification in phase-constrained reconstruction depends heavily on the object background phase. The purpose of this work is to present a new approach of using tailored radiofrequency pulses to optimize the object phase distribution in order to maximize the benefit of phase-constrained reconstruction, and to minimize the noise amplification. Intrinsic object phase and coil sensitivity profiles are measured in a prescan. Optimal phase distribution is computed to maximize signal-to-noise ratio in the given setup. Tailored radiofrequency pulses are designed to introduce the optimal phase map in the following accelerated acquisitions, subsequently reconstructed by phase-constrained methods. The potential of the method is demonstrated in vivo with in-plane accelerated (8x) and simultaneous multislice (3x) acquisitions. Mean g-factors are reduced by up to a factor of 2 compared with conventional techniques when an appropriate phase-constrained reconstruction is applied to phase-optimized acquisitions, enhancing the signal-to-noise ratio of the final images and the visibility of small details. Combining phase-constrained reconstruction and phase optimization by tailored radiofrequency pulses can provide notable improvement in the signal-to-noise ratio and reconstruction quality of accelerated MRI. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Low jitter RF distribution system

    Science.gov (United States)

    Wilcox, Russell; Doolittle, Lawrence; Huang, Gang

    2012-09-18

    A timing signal distribution system includes an optical frequency stabilized laser signal amplitude modulated at an rf frequency. A transmitter box transmits a first portion of the laser signal and receive a modified optical signal, and outputs a second portion of the laser signal and a portion of the modified optical signal. A first optical fiber carries the first laser signal portion and the modified optical signal, and a second optical fiber carries the second portion of the laser signal and the returned modified optical signal. A receiver box receives the first laser signal portion, shifts the frequency of the first laser signal portion outputs the modified optical signal, and outputs an electrical signal on the basis of the laser signal. A detector at the end of the second optical fiber outputs a signal based on the modified optical signal. An optical delay sensing circuit outputs a data signal based on the detected modified optical signal. An rf phase detect and correct signal circuit outputs a signal corresponding to a phase stabilized rf signal based on the data signal and the frequency received from the receiver box.

  3. Phase shifting mask modulated laser patterning on graphene

    Science.gov (United States)

    Gao, Fan; Liu, Fengyuan; Ye, Ziran; Sui, Chenghua; Yan, Bo; Cai, Pinggen; Lv, Bin; Li, Yun; Chen, Naibo; Zheng, Youdou; Shi, Yi

    2017-01-01

    A one-step graphene patterning method is developed in this paper. A phase shifting mask is used to modulate incident laser beam spatially and generate graphene patterns by laser heating. Periodic graphene nanoribbon and nanomesh structures are fabricated by employing 1D and 2D phase shifting masks, respectively. The noncontact, simple procedure, easy handling and economic properties of this method make it promising towards graphene-based device fabrication.

  4. 10 GHz pulse source for 640 Gbit/s OTDM based on phase modulator and self-phase modulation

    DEFF Research Database (Denmark)

    Hu, Hao; Mulvad, Hans Christian Hansen; Peucheret, Christophe

    2011-01-01

    to compensate the chirp. The non-linear pulse compression stages are based on self-phase modulation (SPM) in dispersion-flattened highly non-linear fibers (DF-HNLF). The pulse source is tunable over the C-band with negligible pedestal. © 2011 Optical Society of America....... the high pulse quality. The pulse source is based on a linear pulse compression stage followed by two polarization-independent non-linear pulse compression stages. The linear pulse compression stage relies on a phase modulator, which is used to generate linear chirp and followed by a dispersive element...

  5. Particle modulations to turbulence in two-phase round jets

    Institute of Scientific and Technical Information of China (English)

    Bing Wang; Huiqiang Zhang; Yi Liu; Xiaofen Yan; Xilin Wang

    2009-01-01

    The particle modulations to turbulence in round jets were experimentally studied by means of two-phase velocity measurements with Phase Doppler Anemometer (PDA). Laden with very large particles, no significant attenuations of turbulence intensities were measured in the far-fields, due to small two-phase slip velocities and particle Reynolds number. The gas-phase turbulence is enhanced by particles in the near-fields, but it is significantly attenuated by the small particles in the far-fields. The smaller particles have a more profound effect on the attenuation of turbulence intensities. The enhancements or attenuations of turbulence intensities in the far-fields depends on the energy production, transport and dissipation mechanisms between the two phases, which are determined by the particle prop-erties and two-phase velocity slips. The non-dimensional parameter CTI is introduced to represent the change of turbulence intensity.

  6. Optimized tracking of RF carriers with phase noise, including Pioneer 10 results

    Science.gov (United States)

    Vilnrotter, V. A.; Hurd, W. J.; Brown, D. H.

    1987-01-01

    The ability to track very weak signals from distant spacecraft is limited by the phase instabilities of the received signal and of the local oscillator employed by the receiver. These instabilities ultimately limit the minimum loop bandwidth that can be used in a phase-coherent receiver, and hence limit the ratio of received carrier power to noise spectral density which can be tracked phase coherently. A method is presented for near real time estimation of the received carrier phase and additive noise spectrum, and optimization of the phase locked loop bandwidth. The method was used with the breadboard Deep Space Network (DSN) Advanced Receiver to optimize tracking of very weak signals from the Pioneer 10 spacecraft, which is now more distant that the edge of the solar system. Tracking with bandwidths of 0.1 Hz to 1.0 Hz reduces tracking signal threshold and increases carrier loop signal to noise ratio (SNR) by 5 dB to 15 dB compared to the 3 Hz bandwidth of the receivers now used operationally in the DSN. This will enable the DSN to track Pioneer 10 until its power sources fails near the end of the century.

  7. Charge modulation as fingerprints of phase-string triggered interference

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zheng; Tian, Chushun; Jiang, Hong-Chen; Qi, Yang; Weng, Zheng-Yu; Zaanen, Jan

    2015-07-07

    Charge order appears to be an ubiquitous phenomenon in doped Mott insulators, which is currently under intense experimental and theoretical investigations particularly in the high T c cuprates. This phenomenon is conventionally understood in terms of Hartree-Fock-type mean-field theory. Here we demonstrate a mechanism for charge modulation which is rooted in the many-particle quantum physics arising in the strong coupling limit. Specifically, we consider the problem of a single hole in a bipartite t - J ladder. As a remnant of the fermion signs, the hopping hole picks up subtle phases pending the fluctuating spins, the so-called phase-string effect. We demonstrate the presence of charge modulations in the density matrix renormalization group solutions which disappear when the phase strings are switched off. This form of charge modulation can be understood analytically in a path-integral language with a mean-field-like approximation adopted, showing that the phase strings give rise to constructive interferences leading to self-localization. When the latter occurs, left- and right-moving propagating modes emerge inside the localization volume and their interference is responsible for the real space charge modulation.

  8. Coherence control of pulse trains by spectral phase modulation

    Science.gov (United States)

    Ding, Chaoliang; Koivurova, Matias; Turunen, Jari; Setälä, Tero; Friberg, Ari T.

    2017-09-01

    We propose a technique to control the spectral and temporal coherence properties of pulsed beams of light via time-dependent manipulation of the spectral phase. Modulation schemes for the generation of partially coherent pulse trains from a train of fully coherent pulses are presented. The feasibility of experimental realization of the method is confirmed by numerical estimates.

  9. Phase-controlled superconducting heat-flux quantum modulator

    Science.gov (United States)

    Giazotto, F.; Martínez-Pérez, M. J.

    2012-09-01

    We theoretically put forward the concept of a phase-controlled superconducting heat-flux quantum modulator. Its operation relies on phase-dependent heat current predicted to occur in temperature-biased Josephson tunnel junctions. The device behavior is investigated as a function of temperature bias across the junctions, bath temperature, and junctions asymmetry as well. In a realistic Al-based setup the structure could provide temperature modulation amplitudes up to ˜50 mK with flux-to-temperature transfer coefficients exceeding ˜125 mK/Φ0 below 1 K, and temperature modulation frequency of the order of a few MHz. The proposed structure appears as a promising building-block for the implementation of caloritronic devices operating at cryogenic temperatures.

  10. Optical phase encryption by phase contrast using electrically addressed spatial light modulator

    Science.gov (United States)

    Nishchal, Naveen Kumar; Joseph, Joby; Singh, Kehar

    2003-03-01

    We report the use of an electrically addressed liquid crystal spatial light modulator (EALCSLM) operating in the phase mode as a phase-contrast filter (PCF). As an application, an optical phase encryption system has been implemented. We encrypt and decrypt a two-dimensional phase image obtained from an amplitude image. Encrypted image is holographically recorded in a Barium titanate crystal and is then decrypted by generating through phase conjugation, a conjugate of the encrypted image. The decrypted phase image is converted into an amplitude image using an EASLM as a PCF. The idea has been supported by the experimental results.

  11. A new technique for RF distribution

    Energy Technology Data Exchange (ETDEWEB)

    Madrak, Robyn; Wildman, David

    2014-07-01

    For independent phase and amplitude control, RF cavities are often driven by one power source per cavity. In many cases it would be advantageous in terms of cost to instead use one higher power source for many cavities. Vector modulators have been developed, which, when used with a single source provide for the independent phase and amplitude control which would have been otherwise lost. The key components of these vector modulators are a novel type of phase shifter — adjustable fast phase shifters with perpendicularly biased garnets. The vector modulators have been constructed and used with a single klystron in a 3.4 MeV test linac to successfully accelerate proton beam.

  12. A Method and an Apparatus for Generating a Phase-Modulated Wave Front of Electromagnetic Radiation

    DEFF Research Database (Denmark)

    2002-01-01

    The present invention provides a method and a system for generating a phase-modulated wave front. According to the present invention, the spatial phase-modulation is not performed on the different parts of the wave front individually as in known POSLMs. Rather, the spatial phase-modulation of the......The present invention provides a method and a system for generating a phase-modulated wave front. According to the present invention, the spatial phase-modulation is not performed on the different parts of the wave front individually as in known POSLMs. Rather, the spatial phase......-modulation of the present invention is performed by generating an amplitude modulation in the wave front, Fourier or Fresnel transforming the amplitude modulated wave front, filtering Fourier or Fresnel components of the Fourier or Fresnel distribution with a spatial filter such as a phase contrast filter, and regenerating...... the wave front whereby the initial amplitude modulation has transformed into a phase-modulation....

  13. Phase microscopy of technical and biological samples through random phase modulation with a difuser

    DEFF Research Database (Denmark)

    Almoro, Percival; Pedrini, Giancarlo; Gundu, Phanindra Narayan

    2010-01-01

    A technique for phase microscopy using a phase diffuser and a reconstruction algorithm is proposed. A magnified specimen wavefront is projected on the diffuser plane that modulates the wavefront into a speckle field. The speckle patterns at axially displaced planes are sampled and used in an iter...

  14. Phase matching of high order harmonic generation using dynamic phase modulation caused by a non-collinear modulation pulse

    Science.gov (United States)

    Cohen, Oren; Kapteyn, Henry C.; Mumane, Margaret M.

    2010-02-16

    Phase matching high harmonic generation (HHG) uses a single, long duration non-collinear modulating pulse intersecting the driving pulse. A femtosecond driving pulse is focused into an HHG medium (such as a noble gas) to cause high-harmonic generation (HHG), for example in the X-ray region of the spectrum, via electrons separating from and recombining with gas atoms. A non-collinear pulse intersects the driving pulse within the gas, and modulates the field seen by the electrons while separated from their atoms. The modulating pulse is low power and long duration, and its frequency and amplitude is chosen to improve HHG phase matching by increasing the areas of constructive interference between the driving pulse and the HHG, relative to the areas of destructive interference.

  15. Establishing a Common Phase Reference for Comparing Synthetic Data to RF Range Measurements

    Science.gov (United States)

    2010-05-01

    processes using Theodolite laser measurements. I. INTRODUCTION In order to accurately compare synthetic and measured data, a common phase...utilizing a Theodolite (Sokkia Total Station Set 230R). Reflective targets were placed on the front, back and side walls of the chamber and measured with...the Theodolite and used as reference points. A 31” square flat plate was mounted on the pylon rotator and “peaked” using the radar to establish a

  16. Microfluidic stretchable RF electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2010-12-07

    Stretchable electronics is a revolutionary technology that will potentially create a world of radically different electronic devices and systems that open up an entirely new spectrum of possibilities. This article proposes a microfluidic based solution for stretchable radio frequency (RF) electronics, using hybrid integration of active circuits assembled on flex foils and liquid alloy passive structures embedded in elastic substrates, e.g. polydimethylsiloxane (PDMS). This concept was employed to implement a 900 MHz stretchable RF radiation sensor, consisting of a large area elastic antenna and a cluster of conventional rigid components for RF power detection. The integrated radiation sensor except the power supply was fully embedded in a thin elastomeric substrate. Good electrical performance of the standalone stretchable antenna as well as the RF power detection sub-module was verified by experiments. The sensor successfully detected the RF radiation over 5 m distance in the system demonstration. Experiments on two-dimensional (2D) stretching up to 15%, folding and twisting of the demonstrated sensor were also carried out. Despite the integrated device was severely deformed, no failure in RF radiation sensing was observed in the tests. This technique illuminates a promising route of realizing stretchable and foldable large area integrated RF electronics that are of great interest to a variety of applications like wearable computing, health monitoring, medical diagnostics, and curvilinear electronics.

  17. Optical signal monitoring in phase modulated optical fiber transmission systems

    Science.gov (United States)

    Zhao, Jian

    Optical performance monitoring (OPM) is one of the essential functions for future high speed optical networks. Among the parameters to be monitored, chromatic dispersion (CD) is especially important since it has a significant impact on overall system performance. In this thesis effective CD monitoring approaches for phase-shift keying (PSK) based optical transmission systems are investigated. A number of monitoring schemes based on radio frequency (RF) spectrum analysis and delay-tap sampling are proposed and their performance evaluated. A method for dispersion monitoring of differential phase-shift keying (DPSK) signals based on RF power detection is studied. The RF power spectrum is found to increase with the increase of CD and decrease with polarization mode dispersion (PMD). The spectral power density dependence on CD is studied theoretically and then verified through simulations and experiments. The monitoring sensitivity for nonreturn-to-zero differential phase-shift keying (NRZ-DPSK) and return-to-zero differential phase-shift keying (RZ-DPSK) based systems can reach 80ps/nm/dB and 34ps/nm/dB respectively. The scheme enables the monitoring of differential group delay (DGD) and CD simultaneously. The monitoring sensitivity of CD and DGD can reach 56.7ps/nm/dB and 3.1ps/dB using a bandpass filter. The effects of optical signal-to-noise ratio (OSNR), DGD, fiber nonlinearity and chirp on the monitoring results are investigated. Two RF pilot tones are employed for CD monitoring of DPSK signals. Specially selected pilot tone frequencies enable good monitoring sensitivity with minimum influence on the received signals. The dynamic range exceeding 35dB and monitoring sensitivity up to 9.5ps/nm/dB are achieved. Asynchronous sampling technique is employed for CD monitoring. A signed CD monitoring method for 10Gb/s NRZ-DPSK and RZ-DPSK systems using asynchronous delay-tap sampling technique is studied. The demodulated signals suffer asymmetric waveform distortion if

  18. Temporally modulated phase retrieval method for weak temporal phase measurement of laser pulses

    CERN Document Server

    Qiao, Zhi; Wang, Xiaochao; Jing, Yuanyuan; Fan, Wei; Lin, Zunqi

    2016-01-01

    The measurement of weak temporal phase for picosecond and nanosecond laser pulses is important but quite difficult. We propose a simple iterative algorithm, which is based on a temporally movable phase modulation process, to retrieve the weak temporal phase of laser pulses. This unambiguous method can achieve a high accuracy and simultaneously measure the weak temporal phase and temporal profile of pulses, which are almost transform-limited. Detailed analysis shows that this iterative method has valuable potential applications in the characterization of pulses with weak temporal phase.

  19. Bit-error-rate performance analysis of self-heterodyne detected radio-over-fiber links using phase and intensity modulation

    DEFF Research Database (Denmark)

    Yin, Xiaoli; Yu, Xianbin; Tafur Monroy, Idelfonso

    2010-01-01

    We theoretically and experimentally investigate the performance of two self-heterodyne detected radio-over-fiber (RoF) links employing phase modulation (PM) and quadrature biased intensity modulation (IM), in term of bit-error-rate (BER) and optical signal-to-noise-ratio (OSNR). In both links, self......-heterodyne receivers perform down-conversion of radio frequency (RF) subcarrier signal. A theoretical model including noise analysis is constructed to calculate the Q factor and estimate the BER performance. Furthermore, we experimentally validate our prediction in the theoretical modeling. Both the experimental...

  20. Bit-error-rate performance analysis of self-heterodyne detected radio-over-fiber links using phase and intensity modulation

    DEFF Research Database (Denmark)

    Yin, Xiaoli; Yu, Xianbin; Tafur Monroy, Idelfonso

    2010-01-01

    -heterodyne receivers perform down-conversion of radio frequency (RF) subcarrier signal. A theoretical model including noise analysis is constructed to calculate the Q factor and estimate the BER performance. Furthermore, we experimentally validate our prediction in the theoretical modeling. Both the experimental......We theoretically and experimentally investigate the performance of two self-heterodyne detected radio-over-fiber (RoF) links employing phase modulation (PM) and quadrature biased intensity modulation (IM), in term of bit-error-rate (BER) and optical signal-to-noise-ratio (OSNR). In both links, self...

  1. Rancang Bangun Vacuum Cleaner Dengan Pengendali Nirkabel Menggunakan Modul Rf Data Transceiver Ys-1020ub Berbasis Mikrokontroler At89s52

    Directory of Open Access Journals (Sweden)

    IGAP Raka Agung

    2012-12-01

    Full Text Available Kebersihan merupakan hal yang sangat penting untuk menjaga kesehatan kita, khususnya kebersihan rumah. Rumah yang bersih sangat mempengaruhi kesehatan para penghuninya. Debu adalah kotoran yang paling sering mengotori rumah kita terutama pada bagian lantai. Setiap hari kita harus membersihkan rumah dari debu yang ada pada lantai untuk menjaga kebersihan sekaligus kesehatan kita. Dalam membersihkan lantai rumah dari  debu sering menyita banyak waktu dan tenaga. Vacuum cleaner terkendali nirkabel menggunakan Modul RF Data Transceiver YS-1020UB berbasis mikrokontroler AT89S52 merupakan salah satu solusi untuk membersihkan lantai rumah dari kotoran debu.  Vacuum cleaner ini menggunakan enam buah motor DC yaitu dua motor DC penyedot debu, dua motor DC penentu arah maju, mundur, belok kanan, dan belok kiri, serta dua motor DC penentu arah geser kanan dan geser kiri.  Vacuum cleaner ini dapat dikendalikan dengan dua mode operasi yaitu mode manual dan otomatis. Pada mode manual vacuum cleaner ini dikendalikan menggunakan remote control, dengan tranmisi nirkabel memakai transceiver YS-1020UB. Sedangkan pada mode otomatis  vacuum cleaner ini menggunakan empat buah sensor jarak untuk menghindari tabrakan pada dinding.  Vacuum cleaner dengan pengendali nirkabel menggunakan modul RF Data Transceiver YS-1020UB berbasis mikrokontroler AT89S52 sudah bisa membersihkan debu lantai sehingga lantai bersih dari debu.

  2. Large conditional single-photon cross-phase modulation

    CERN Document Server

    Beck, Kristin M; Duan, Yiheng; Vuletić, Vladan

    2015-01-01

    Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by $\\pi$ through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of up to $\\pi/3$ between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. With a moderate improvement in cavity finesse, our system can reach a coherent phase shift of $\\pi$ at low loss, enabling deterministic and universal photonic quantum logic.

  3. Towards a FPGA-controlled deep phase modulation interferometer

    CERN Document Server

    Terán, M; Gesa, L l; Mateos, I; Gibert, F; Karnesis, N; Ramos-Castro, J; Schwarze, T S; Gerberding, O; Heinzel, G; Guzmán, F; Nofrarias, M

    2014-01-01

    Deep phase modulation interferometry was proposed as a method to enhance homodyne interferometers to work over many fringes. In this scheme, a sinusoidal phase modulation is applied in one arm while the demodulation takes place as a post-processing step. In this contribution we report on the development to implement this scheme in a fiber coupled interferometer controlled by means of a FPGA, which includes a LEON3 soft-core processor. The latter acts as a CPU and executes a custom made application to communicate with a host PC. In contrast to usual FPGA-based designs, this implementation allows a real-time fine tuning of the parameters involved in the setup, from the control to the post-processing parameters.

  4. Dynamic phase-control of a rising sun magnetron using modulated and continuous current

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Gutierrez, Sulmer, E-mail: sulmer.a.fernandez.gutierrez@intel.com [Intel Corporation, 2111 NE 25th Ave, Hillsboro, Oregon 97214 (United States); Browning, Jim [Department of Electrical and Computer Engineering, Boise State University, Boise, Idaho 83725 (United States); Lin, Ming-Chieh [Department of Electrical and Biomedical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Smithe, David N. [Tech-X Corporation, 5621 Arapahoe Ave, Boulder, Colorado 80303 (United States); Watrous, Jack [Confluent Sciences, LLC, Albuquerque, New Mexico 87111 (United States)

    2016-01-28

    Phase-control of a magnetron is studied via simulation using a combination of a continuous current source and a modulated current source. The addressable, modulated current source is turned ON and OFF at the magnetron operating frequency in order to control the electron injection and the spoke phase. Prior simulation work using a 2D model of a Rising Sun magnetron showed that the use of 100% modulated current controlled the magnetron phase and allowed for dynamic phase control. In this work, the minimum fraction of modulated current source needed to achieve a phase control is studied. The current fractions (modulated versus continuous) were varied from 10% modulated current to 100% modulated current to study the effects on phase control. Dynamic phase-control, stability, and start up time of the device were studied for all these cases showing that with 10% modulated current and 90% continuous current, a phase shift of 180° can be achieved demonstrating dynamic phase control.

  5. Phase-dependent modulation of corticospinal excitability during the observation of the initial phase of gait.

    Science.gov (United States)

    Takahashi, Makoto; Uchida, Natsuko; Yoshida, Mami; Liang, Nan; Nakazawa, Kimitaka; Sekikawa, Kiyokazu; Inamizu, Tsutomu; Hamada, Hironobu

    2014-12-01

    This study was undertaken to identify the temporal characteristics of corticospinal excitability of tibialis anterior muscle during the observation of the initial phase of gait. For this purpose, using transcranial magnetic stimulation, we recorded motor evoked potentials (MEPs) during the observation of the second step of an actor's first three steps of gait initiation with (complex gait) or without (normal gait) an obstacle and unstable surface. The results demonstrate that (1) MEPs during the observation of the initial phase of normal gait were significantly increased only at early swing phase, but not other phases (mid-swing, heel contact, mid-stance, and heel off) and (2) MEPs during the observation of the initial phase of complex gait were significantly increased at early swing and also at mid-swing and heel contact phases. These findings provide the first evidence that corticospinal excitability during the observation of gait, especially the initial phase, is modulated in phase- and motor-demanded-dependent manners.

  6. Residual intensity modulation in resonator fiber optic gyros with sinusoidal wave phase modulation

    Institute of Scientific and Technical Information of China (English)

    Di-qing YING; Qiang LI; Hui-lian MA; Zhong-he JIN

    2014-01-01

    We present how residual intensity modulation (RIM) affects the performance of a resonator fiber optic gyro (R-FOG) through a sinusoidal wave phase modulation technique. The expression for the R-FOG system’s demodulation curve under RIM is obtained. Through numerical simulation with different RIM coefficients and modulation frequencies, we find that a zero deviation is induced by the RIM effect on the demodulation curve, and this zero deviation varies with the RIM coefficient and modulation frequency. The expression for the system error due to this zero deviation is derived. Simulation results show that the RIM-induced error varies with the RIM coefficient and modulation frequency. There also exists optimum values for the RIM coefficient and modulation frequency to totally eliminate the RIM-induced error, and the error increases as the RIM coefficient or modulation frequency deviates from its optimum value;however, in practical situations, these two parameters would not be exactly fixed but fluctuate from their respective optimum values, and a large system error is induced even if there exists a very small deviation of these two critical parameters from their optimum values. Simulation results indicate that the RIM-induced error should be con-sidered when designing and evaluating an R-FOG system.

  7. Comprehensive research on self phase modulation based optical delay systems

    Institute of Scientific and Technical Information of China (English)

    Yang Ai-Ying; Sun Yu-Nan

    2010-01-01

    This paper comprehensively investigates the properties of self phase modulation based optical delay systems consisting of dispersion compensation fibre and highly nonlinear fibres.It researches into the impacts of power level launched into highly nonlinear fibres,conversion wavelength,dispersion slope,modulation format and optical filter bandwidth on the overall performance of optical delay systems.The results reveal that,if the power launched into highly nonlinear fibres is fixed,the time delay generally varies linearly with the conversion wavelength,but jumps intermittently at some conversion wavelengths.However,the time delay varies semi-periodically with the power launched into highly nonlinear fibres.The dispersion slope of highly nonlinear fibres has significant influence on the time delay,especially for the negative dispersion slope.The time delay differs with modulation formats due to the different combined interaction of nonlinearity and dispersion in fibres.The bandwidth of the optical filters also greatly affects the time delay because it determines the bandwidth of the passed signal in the self phase modulation based time delay systems.The output signal quality of the overall time delay systems depends on the conversion wavelength and input power level.The optimisation of the power level and conversion wavelength to provide the best output signal quality is made at the end of this paper.

  8. Phase modulated solitary waves controlled by bottom boundary condition

    CERN Document Server

    Mukherjee, Abhik

    2014-01-01

    A forced KdV equation is derived to describe weakly nonlinear, shallow water surface wave propagation over non trivial bottom boundary condition. We show that different functional forms of bottom boundary conditions self-consistently produce different forced kdV equations as the evolution equations for the free surface. Solitary wave solutions have been analytically obtained where phase gets modulated controlled by bottom boundary condition whereas amplitude remains constant.

  9. Conversion of phase-modulated signals to amplitude-modulated signals in SOAs due to mirror reflections

    DEFF Research Database (Denmark)

    Blaaberg, Søren; Mørk, Jesper

    2009-01-01

    We present theoretical results that show conversion of phase modulated signals to amplitude modulated signals in an SOA. Large-signal and small-signal calculations show significant conversion responses caused by even minute reflections at the end mirrors.......We present theoretical results that show conversion of phase modulated signals to amplitude modulated signals in an SOA. Large-signal and small-signal calculations show significant conversion responses caused by even minute reflections at the end mirrors....

  10. Phase microscopy of technical and biological samples through random phase modulation with a difuser

    DEFF Research Database (Denmark)

    Almoro, Percival; Pedrini, Giancarlo; Gundu, Phanindra Narayan

    2010-01-01

    A technique for phase microscopy using a phase diffuser and a reconstruction algorithm is proposed. A magnified specimen wavefront is projected on the diffuser plane that modulates the wavefront into a speckle field. The speckle patterns at axially displaced planes are sampled and used...... in an iterative phase retrieval algorithm based on a wave-propagation equation. The technique offers a whole-field and high-resolution wavefront reconstruction of unstained microstructures. Phase maps of photoresist targets and human cheek cells are obtained to demonstrate the effectiveness of our method. (C......) 2010 Optical Society of America...

  11. Natural transformation and phase variation modulation in Neisseria meningitidis.

    Science.gov (United States)

    Alexander, Heather L; Richardson, Anthony R; Stojiljkovic, Igor

    2004-05-01

    Neisseria meningitidis has evolved the ability to control the expression-state of numerous genes by phase variation. It has been proposed that the process aids this human pathogen in coping with the diversity of microenvironments and host immune systems. Therefore, increased frequencies of phase variation may augment the organism's adaptability and virulence. In this study, we found that DNA derived from various neisserial co-colonizers of the human nasopharynx increased N. meningitidis switching frequencies, indicating that heterologous neisserial DNA modulates phase variation in a transformation-dependent manner. In order to determine whether the effect of heterologous DNA was specific to the Hb receptor, HmbR, we constructed a Universal Rates of Switching cassette (UROS). With this cassette, we demonstrated that heterologous DNA positively affects phase variation throughout the meningococcal genome, as UROS phase variation frequencies were also increased in the presence of neisserial DNA. Overexpressing components of the neisserial mismatch repair system partially alleviated DNA-induced changes in phase variation frequencies, thus implicating mismatch repair titration as a cause of these transformation-dependent increases in switching. The DNA-dependent effect on phase variation was transient and may serve as a mechanism for meningococcal genetic variability that avoids the fitness costs encountered by global mutators.

  12. Narrow-linewidth chirped frequency comb from a frequency-shifted feedback Ti:sapphire laser seeded by a phase-modulated single-frequency fiber laser.

    Science.gov (United States)

    Brandl, Matthias F; Mücke, Oliver D

    2010-12-15

    Frequency-shifted feedback (FSF) lasers have emerged as powerful tools for precision distance metrology. At the output of a Michelson interferometer, the detected rf spectra of the FSF laser light contain a length-dependent heterodyne beat signal whose linewidth ultimately limits the achievable accuracy of length measurements. Here, we demonstrate a narrow-linewidth chirped frequency comb from an FSF Ti:sapphire ring laser seeded by a phase-modulated, ultra-low-phase-noise, single-frequency fiber laser. We experimentally investigate the influence of the seed laser linewidth on the resulting width and shape of the length-dependent rf beat signal. An ultranarrow heterodyne beat linewidth of <20 Hz is observed.

  13. Linear, Low Noise Microwave Photonic Systems using Phase and Frequency Modulation

    Science.gov (United States)

    2012-05-11

    a monolithically integrated widely-tunable laser- phase modulator ,” in Proc. Optical Fiber Communication Conf. OFC 2004, vol. 2, 2004. [92] M. N... modulation efficiency experimental setup. . . . . . . . . . . . . . 70 5.5 DBR FM modulation efficiency versus frequency. . . . . . . . . . . . 71 v 5.6...Phase-noise limited noise figure for FM DBR lasers from measured modulation efficiency and linewidth. . . . . . . . . . . . . . . . . . . . 71 5.7

  14. Research on Feature Extraction of Composite Pseudocode Phase Modulation-Carrier Frequency Modulation Signal Based on PWD Transform

    Institute of Scientific and Technical Information of China (English)

    LI Ming-zi; ZHAO Hui-chang

    2008-01-01

    The identification features of composite pseudocode phase modulation and carry frequency modulation signal in-clude pseudocode and modulation frequency. In this paper, PWD is used to extract these features. First, the feature of pseudocode is extracted using the amplitude output of PWD and the correlation filter technology. Then the feature of fre-quency modulation is extracted by way of PWD analysis on the signal processed by anti-phase operation according to the extracted feature of pseudo code, i.e. position information of changed abruptly point of phase. The simulation result shows that both the features of frequency modulation and phase change position caused by the pseudocode phase modula-tion can be extracted effectively for SNR = 3 dB.

  15. Measurement of characteristics and phase modulation accuracy increase of LC SLM "HoloEye PLUTO VIS"

    Science.gov (United States)

    Bondareva, A. P.; Cheremkhin, P. A.; Evtikhiev, N. N.; Krasnov, V. V.; Starikov, R. S.; Starikov, S. N.

    2014-09-01

    Phase liquid crystal spatial light modulators (LC SLM) are actively integrated in various optical systems for dynamic diffractive optical elements imaging. To achieve the best performance, high stability and linearity of phase modulation is required. This article presents results of measurement of characteristics and phase modulation accuracy increase of state of the art LC SLM with HD resolution "HoloEye PLUTO VIS".

  16. Phase 1 pixel modules production and High Density Interconnect testing

    CERN Document Server

    Still, Joseph

    2014-01-01

    During the first run of the LHC, luminosity peaked at $1 \\times 10^{34} cm^{-2}s^{-1}$ with $ \\approx 50 ns$ bunch spacing a pile-up of about 25, or simultaneous inelastic collisions per crossing, occur in the CMS experiment. However after the upgrade of of the LHC during long shut down 1, luminosity, and therefore pile-up. Therefore the CMS pixel tracker has to be upgraded to be able to operate correctly under this news stronger constraints. That is how this CERN Summer Student project, which took place at the CERN Meyrin site, comes within the framework of the pixel detector upgrade in the CMS experiment with a work aimed on the phase 1 of pixel modules production and tests of the HDI. The production and tests of the HDI were held in cleanroom facilities. This included first hand as well as to work on pixel modules building and performing size and flatness tests on them, and on a other hand testing several HDIs. At first, prototypes modules were assembled before real modules building. Another aspect of work...

  17. MICS Asia Phase II - Sensitivity to the aerosol module

    CERN Document Server

    Sartelet, Karine; Sportisse, Bruno

    2007-01-01

    In the framework of the model inter-comparison study - Asia Phase II (MICS2), where eight models are compared over East Asia, this paper studies the influence of different parameterizations used in the aerosol module on the aerosol concentrations of sulfate and nitrate in PM10. An intracomparison of aerosol concentrations is done for March 2001 using different configurations of the aerosol module of one of the model used for the intercomparison. Single modifications of a reference setup for model configurations are performed and compared to a reference case. These modifications concern the size distribution, i.e. the number of sections, and physical processes, i.e. coagulation, condensation/evaporation, cloud chemistry, heterogeneous reactions and sea-salt emissions. Comparing monthly averaged concentrations at different stations, the importance of each parameterization is first assessed. It is found that sulfate concentrations are little sensitive to sea-salt emissions and to whether condensation is computed...

  18. Parallel phase modulation scheme for interferometric gravitational-wave detectors.

    Science.gov (United States)

    Hartman, M T; Quetschke, V; Tanner, D B; Reitze, D H; Mueller, G

    2014-11-17

    Advanced LIGO (aLIGO) requires multiple frequency sidebands to disentangle all of the main interferometer's length signals. This paper presents the results of a risk reduction experiment to produce two sets of frequency sidebands in parallel, avoiding mixed 'sidebands on sidebands'. Two phase modulation frequencies are applied to separate Electro-Optic Modulators (EOMs), with one EOM in each of the two arms of a Mach-Zehnder interferometer. In this system the Mach-Zehnder's arm lengths are stabilized to reduce relative intensity noise in the recombined carrier beam by feeding a corrective control signal back to the Rubidium Titanyl Phosphate (RTP) EOM crystals to drive the optical path length difference to zero. This setup's use of the RTP crystals as length actuators provides enough bandwidth in the feedback to meet arm length stability requirements for aLIGO.

  19. Simulation of synchrotron motion with rf noise

    Energy Technology Data Exchange (ETDEWEB)

    Leemann, B.T.; Forest, E.; Chattopadhyay, S.

    1986-08-01

    The theoretical formulation is described that is behind an algorithm for synchrotron phase-space tracking with rf noise and some preliminary simulation results of bunch diffusion under rf noise obtained by actual tracking.

  20. Scale-free brain ensemble modulated by phase synchronization

    Institute of Scientific and Technical Information of China (English)

    Dan WU; Chao-yi LI; Jie LIU; Jing LU; De-zhong YAO

    2014-01-01

    To listen to brain activity as a piece of music, we proposed the scale-free brainwave music (SFBM) technology, which could translate the scalp electroencephalogram (EEG) into music notes according to the power law of both EEG and music. In the current study, this methodology was further extended to a musical ensemble of two channels. First, EEG data from two selected channels are translated into musical instrument digital interface (MIDI) sequences, where the EEG parameters modulate the pitch, duration, and volume of each musical note. The phase synchronization index of the two channels is computed by a Hilbert transform. Then the two MIDI sequences are integrated into a chorus according to the phase synchronization index. The EEG with a high synchronization index is represented by more consonant musical intervals, while the low index is expressed by inconsonant musical intervals. The brain ensemble derived from real EEG segments illustrates differences in harmony and pitch distribution during the eyes-closed and eyes-open states. Furthermore, the scale-free phenomena exist in the brainwave ensemble. Therefore, the scale-free brain ensemble modulated by phase synchronization is a new attempt to express the EEG through an auditory and musical way, and it can be used for EEG monitoring and bio-feedback.

  1. A Wideband 2x13-bit All-Digital I/Q RF-DAC

    NARCIS (Netherlands)

    Alavi, S.M.; Staszewski, R.B.; De Vreede, L.C.N.; Long, J.R.

    2014-01-01

    This paper presents a wideband 2 13-bit in-phase/quadrature-phase (I/Q) RF digital-to-analog converter-based all-digital modulator realized in 65-nm CMOS. The isolation between I and Q paths is guaranteed employing 25% duty-cycle differential quadrature clocks. With a 1.3-V supply and an on-chip pow

  2. Novel modulated Hexatic Phases in Symmetric Liquid Crystal Dimers

    OpenAIRE

    Date, R; Luckhurst, G.; Shuman, M.; Seddon, J

    1995-01-01

    Homologues of the dimeric α,ω-bis(4-n-alkylanilinebenzylidene-4'-oxy)alkanes (m.OnO.m) have been synthesised with spacer lengths n ranging from 9 to 12 methylene units and with terminal alkyl chain lengths m of 10, 12 and 14. Characterisation of these materials has been carried out by X-ray diffraction, differential scanning calorimetry and optical microscopy. In six of these compounds a novel modulated tilted hexatic phase, denoted S1, has been identified, in which the smectic layers have a ...

  3. Modulated phases of graphene quantum Hall polariton fluids

    Science.gov (United States)

    Pellegrino, Francesco M. D.; Giovannetti, Vittorio; MacDonald, Allan H.; Polini, Marco

    2016-11-01

    There is a growing experimental interest in coupling cavity photons to the cyclotron resonance excitations of electron liquids in high-mobility semiconductor quantum wells or graphene sheets. These media offer unique platforms to carry out fundamental studies of exciton-polariton condensation and cavity quantum electrodynamics in a regime, in which electron-electron interactions are expected to play a pivotal role. Here, focusing on graphene, we present a theoretical study of the impact of electron-electron interactions on a quantum Hall polariton fluid, that is a fluid of magneto-excitons resonantly coupled to cavity photons. We show that electron-electron interactions are responsible for an instability of graphene integer quantum Hall polariton fluids towards a modulated phase. We demonstrate that this phase can be detected by measuring the collective excitation spectra, which is often at a characteristic wave vector of the order of the inverse magnetic length.

  4. New space vector modulation technique for single-phase multilevel converters

    OpenAIRE

    León Galván, José Ignacio; Portillo Guisado, Ramón Carlos; García Franquelo, Leopoldo; Vázquez Pérez, Sergio; Carrasco Solís, Juan Manuel; Domínguez, E

    2007-01-01

    Single-phase multilevel converters are suitable for medium power applications as photovoltaic systems and switched reluctance machines. An overview of possible modulation methods including carrier-based pulse width modulation and space vector modulation techniques for multilevel single-phase converters is presented. A new space vector modulation for this type of converters is proposed. This space vector modulation method is very simple presenting low computational cost. Different solutions fo...

  5. Generation of coherent and frequency-lock multi-carriers using cascaded phase modulators and recirculating frequency shifter for Tb/s optical communication.

    Science.gov (United States)

    Zhang, Junwen; Chi, Nan; Yu, Jianjun; Shao, Yufeng; Zhu, Jiangbo; Huang, Bo; Tao, Li

    2011-07-04

    We investigate to generate coherent and frequency-lock optical multi-carriers by using cascaded phase modulators and recirculating frequency shifter (RFS) based on an EDFA loop. The phase and amplitude relation of RF signals on two cascaded phase modulators and the impact of EDFA gain are investigated. Experimental results are in good agreement with the theoretical analysis. The performance of 113 coherent and frequency-lock subcarriers with tone-to-noise ratio larger than 26dB and amplitude difference of 5dB obtained after a tilt filter covering totally 22.6nm shows that this scheme is a promising technique for the coming Tb/s optical communication.

  6. Finding non-eclipsing binaries through pulsational phase modulation

    Science.gov (United States)

    Murphy, Simon J.; Bedding, Timothy R.; Shibahashi, Hiromoto; Kurtz, Donald W.; Kjeldsen, Hans

    2015-09-01

    We present a method for finding binaries among pulsating stars that were observed by the Kepler Mission. We use entire four-year light curves to accurately measure the frequencies of the strongest pulsation modes, then track the pulsation phases at those frequencies in 10-d segments. This produces a series of time-delay measurements in which binarity is apparent as a periodic modulation whose amplitude gives the projected light travel time across the orbit. Fourier analysis of this time-delay curve provides the parameters of the orbit, including the period, eccentricity, angle of ascending node and time of periastron passage. Differentiating the time-delay curve yields the full radial-velocity curve directly from the Kepler photometry, without the need for spectroscopy. We show examples with delta Scuti stars having large numbers of pulsation modes, including one system in which both components of the binary are pulsating. The method is straightforward to automate, thus radial velocity curves can be derived for hundreds of non-eclipsing binary stars from Kepler photometry alone. This contribution is based largely upon the work by Murphy et al. [1], describing the phase-modulation method in detail.

  7. NSLS-II RF SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Rose, J.; Gash, W.; Holub, B.; Kawashima, Y.; Ma, H.; Towne, N.; Yeddulla, M.

    2011-03-28

    The NSLS-II is a new third generation light source being constructed at Brookhaven Lab. The storage ring is optimized for low emittance by use of damping wigglers to reduce the emittance to below 1 nm-rad. The RF systems are designed to provide stable beam through tight RF phase and amplitude stability requirements.

  8. Impacts of cross-phase modulation on modulation instability of Airy pulses

    Science.gov (United States)

    Cheng, Yingkai; Fu, Xiquan; Bai, Yanfeng

    2016-10-01

    The modulation instability (MI) of Airy pulses with the influence of cross-phase modulation is studied based on the coupled nonlinear Schrödinger equations in nonlinear media. The main lobe of Airy pulses can be manifested as breakup of MI under interaction with higher power pumped solitons, although the power of Airy pulses is small. By comparing the main lobe's gain spectrum of MI, the gain spectrum has gradually improved with the increase of power of pumped solitons. The gain spectrum of MI of the main lobe is inversely proportional to the truncation coefficient, and then it gradually approaches to that of Gauss pulses with the truncation coefficient increasing to 1. For the side lobes of Airy pulses, there are similar MI but smaller gain spectrum than the main lobe when the pumped solitons is overlapping with corresponding ones of Airy pulses.

  9. FPGA-based RF interference reduction techniques for simultaneous PET-MRI.

    Science.gov (United States)

    Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V

    2016-05-07

    The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II (D) PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field

  10. FPGA-based RF interference reduction techniques for simultaneous PET–MRI

    Science.gov (United States)

    Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V

    2016-01-01

    Abstract The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET–MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling–decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion IID PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field

  11. FPGA-based RF interference reduction techniques for simultaneous PET-MRI

    Science.gov (United States)

    Gebhardt, P.; Wehner, J.; Weissler, B.; Botnar, R.; Marsden, P. K.; Schulz, V.

    2016-05-01

    The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II D PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution

  12. Spectral changes induced by a phase modulator acting as a time lens

    Energy Technology Data Exchange (ETDEWEB)

    Plansinis, B. W. [Univ. of Rochester, Rochester, NY (United States). Inst. of Optics.; Donaldson, W. R. [Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics; Agrawal, G. P. [Univ. of Rochester, Rochester, NY (United States). Inst. of Optics; Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics.

    2015-07-06

    We show both numerically and experimentally that a phase modulator, acting as a time lens in the Fourier-lens configuration, can induce spectral broadening, narrowing, or shifts, depending on the phase of the modulator cycle. These spectral effects depend on the maximum phase shift that can be imposed by the modulator. In our numerical simulations, pulse spectrum could be compressed by a factor of 8 for a 30 rad phase shift. Experimentally, spectral shifts over a 1.35 nm range and spectral narrowing and broadening by a factor of 2 were demonstrated using a lithium niobate phase modulator with a maximum phase shift of 16 rad at a 10 GHz modulation frequency. All spectral changes were accomplished without employing optical nonlinear effects such as self- or cross-phase modulation.

  13. Five-cell superconducting RF module with a PBG coupler cell: design and cold testing of the copper prototype

    Energy Technology Data Exchange (ETDEWEB)

    Arsenyev, Sergey Andreyevich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Simakov, Evgenya Ivanovna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shchegolkov, Dmitry [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boulware, Chase [Niowave, Lansing, MI (United States); Grimm, Terry [Niowave, Lansing, MI (United States); Rogacki, Adam [Niowave, Lansing, MI (United States)

    2015-04-29

    We report the design and experimental data for a copper prototype of a superconducting radio-frequency (SRF) accelerator module. The five-cell module has an incorporated photonic band gap (PBG) cell with couplers. The purpose of the PBG cell is to achieve better higher order mode (HOM) damping, which is vital for preserving the quality of high-current electron beams. Better HOM damping raises the current threshold for beam instabilities in novel SRF accelerators. The PBG design also increases the real-estate gradient of the linac because both HOM damping and the fundamental power coupling can be done through the PBG cell instead of on the beam pipe via complicated end assemblies. First, we will discuss the design and accelerating properties of the structure. The five-cell module was optimized to provide good HOM damping while maintaining the same accelerating properties as conventional elliptical-cell modules. We will then discuss the process of tuning the structure to obtain the desired accelerating gradient profile. Finally, we will list measured quality factors for the accelerating mode and the most dangerous HOMs.

  14. On the theory of photocathode rf guns

    Institute of Scientific and Technical Information of China (English)

    GAO Jie

    2009-01-01

    In this paper we give a set of analytical formulae to describe the characteristics of photocathode rf guns at any rf frequencies, such as energy, energy spread, bunch length, out going current, and emittance etc.as functions of the laser injection phase, which are useful in the design and practical operation of rf guns.

  15. QPSK Modulator with Continuous Phase and Fast Response Based on Phase-Locked Loop

    Directory of Open Access Journals (Sweden)

    L. Kirasamuthranon

    2017-06-01

    Full Text Available Among M-phase shift keying (M-PSK schemes, quadrature phase-shift keying (QPSK is used most often because of its efficient bandwidth consumption. However, in comparison with minimum-shift keying, which has continuous phase transitions, QPSK requires a higher bandwidth to transmit a signal. This article focuses on the phase transitions in QPSK signals, and a QPSK modulator based on a phase-locked loop (PLL is proposed. The PLL circuit in the proposed system differs from that of conventional PLL circuits because a three-input XOR gate and a summing circuit are used. With these additional components, the proposed PLL provides a continuous phase change in the QPSK signal. Consequently, the required bandwidth for transmitting the QPSK signal when using the proposed circuit is less than that for a conventional QPSK signal with a discontinuous phase. The analytical results for the proposed system in the time domain agree well with the experimental and simulation results of the circuit. Both the theoretical and experimental results thus confirm that the proposed technique can be realized in real-world applications.

  16. Analytical Assessment of the Q-Factor due to Cross-Phase Modulation (XPM)

    Institute of Scientific and Technical Information of China (English)

    Stephan; Pachnicke; Edgar; Voges

    2003-01-01

    The paper describes the impact of cross-phase modulation on NRZ modulated WDM systems. The impairments due to XPM will be related to a Q-factor and the effects of dispersion management will be covered.

  17. Quantitative EEG Signatures through Amplitude and Phase Modulation Patterns.

    Science.gov (United States)

    Myers, Mark H; Padmanabha, Akaash

    2017-01-01

    Cortical spatiotemporal signal patterns based on object recognition can be discerned from visual stimulation. These are in the form of amplitude modulation (AM) and phase modulation (PM) patterns, which contain perceptual information gathered from sensory input. A high-density Electroencephalograph (EEG) device consisting of 48 electrodes with a spacing of 5 mm was utilized to measure frontal lobe activity in order to capture event-related potentials from visual stimuli. Four randomized stimuli representing different levels of salient responsiveness were measured to determine if mild stimuli can be discerned from more extreme stimuli. AM/PM response patterns were detected between mild and more salient stimuli across participants. AM patterns presented distinct signatures for each stimulus. AM patterns had the highest number of incidents detected in the middle of the frontal lobe. Through this work, we can expand our encyclopedia of neural signatures to object recognition, and provide a broader understanding of quantitative neural responses to external stimuli. The results provide a quantitative approach utilizing spatiotemporal patterns to analyze where distinct AM patterns can be linked to object perception.

  18. Simulation of mm-wave signal generation using phase modulation in ROF system

    Institute of Scientific and Technical Information of China (English)

    ZHANG da-peng; YU Chong-xiu; XIN Xiang-jun; MA Jian-xin; ZHANG Jin-long

    2009-01-01

    The generation of optical millimeter waves via the improved phase modulator in a RoF system and the transmission char-acter of the signal are thenretically investigated. A new phase modulating scheme is proposed, in which the sidebands are separated by wave length demultiplexer and one of them doesn't feed digital signals, thereby the phase wake-off is restrained.

  19. Wavelength-domain RF photonic signal processing

    Science.gov (United States)

    Gao, Lu

    This thesis presents a novel approach to RF-photonic signal processing applications based on wavelength-domain optical signal processing techniques using broadband light sources as the information carriers, such as femtosecond lasers and white light sources. The wavelength dimension of the broadband light sources adds an additional degree of freedom to conventional optical signal processing systems. Two novel wavelength-domain optical signal processing systems are presented and demonstrated in this thesis. The first wavelength-domain RF photonic signal processing system is a wavelength-compensated squint-free photonic multiple beam-forming system for wideband RF phased-array antennas. Such a photonic beam-forming system employs a new modulation scheme developed in this thesis, which uses traveling-wave tunable filters to modulate wideband RF signals onto broadband optical light sources in a frequency-mapped manner. The wavelength dimension of the broadband light sources provides an additional dimension in the wavelength-compensated Fourier beam-forming system for mapping the received RF frequencies to the linearly proportional optical frequencies, enabling true-time-delay beam forming, as well as other novel RF-photonic signal processing functions such as tunable filtering and frequency down conversion. A new slow-light mechanism, the SLUGGISH light, has also been discovered with an effective slow-light velocity of 86 m/s and a record time-bandwidth product of 20. Experimental demonstration of true-time-delay beam forming based on the SLUGGISH light effect has also been presented in this thesis. In the second wavelength-domain RF photonic signal processing system, the wavelength dimension increases the information carrying capacity by spectrally multiplexing multiple wavelength channels in a wavelength-division-multiplexing fiber-optic communication system. A novel ultrafast all-optical 3R (Re-amplification, Retiming, Re-shaping) wavelength converter based on

  20. Calibration of Two Difrerent Types of Modulators for an Application in Spectroscopic Phase Modulated Ellipsometry

    Science.gov (United States)

    Kouko, S. L.; Llinares, C.

    1995-08-01

    In order to choose a photoelastic modulator for an application in spectroscopic phase modulated ellipsometry a complete calibration of two different types of photoelastic modulators is achieved. First the model that describes the behavior of each of them is accurately determined since the calibration procedure depends on it. Both modulators behave as a static strain model with a phase shift of the form δ = δ_0 + {\\cal A}sin ω t. Using the suitable procedures, the driving voltage V_mod and the static strain δ_0 of both devices are accurately determined as a function of the wavelength from 0.25 μm to 0.75 μm. A method to reduce the errors due to incorrect settings of the modulation voltage and the static birefringence is also proposed. An accuracy check of the calibration done by comparing the indexes of refraction of two silica prisms obtained with our ellipsometer and with the high precision goniometer method shows a very good agreement. Dans le but de choisir un modulateur photoélastique pour une application en ellipsométrie spectroscopique à modulation de phase, le calibrage de deux modulateurs a été réalisé. Dans un premier temps, le modèle décrivant chacun des modulateurs a été déterminé avec précision vu que la procédure de calibrage dépend de celui-ci : les deux modulateurs fonctionnent suivant le modèle avec biréfringence statique ayant un déphasage de la forme δ = δ_0 + {\\cal A}sin ω t. En utilisant les procédures de calibrage appropriées, la tension de pilotage V_mod et la biréfringence statique δ_0 ont été déterminées avec précision en fonction de la longueur d'onde dans la gamme spectrale s'étendant de 0,25 μm à 0,75 μm. Une méthode pour réduire les erreurs dues au calibrage de la tension de modulation et à la biréfringence résiduelle est également proposée. Un test de la précision du calibrage fait en comparant les indices de réfraction de deux prismes de silice obtenus avec notre ellipsomètre et avec

  1. Direction/location estimation and modulation detection for RF sources using steerable 3D IIR digital beam filters

    Science.gov (United States)

    Udayanga, Nilan; Madanayake, Arjuna; Wijenayake, Chamith

    2014-05-01

    A planar antenna array based feature detection scheme is proposed to estimate the directional, location and modulation information pertaining to radio sources in a cognitive radio environment. The proposed system employs multiple direction estimation stations and a fusion station. Planar antenna arrays and three-dimensional (3-D) infinite impulse response (IIR) digital filters are employed to perform volume scanning of the radio environment, leading to a spatial power profile, which is subjected to peak detection in order to estimate the direction of arrival corresponding to each source. Cyclosationay feature detection is then performed along each direction to estimate the frequency and modulation information. Two simulation examples are provided to verify the feasibility of the proposed approach.

  2. Extension of Measurable Region of Object Vibration Phasor in Phase-Modulated TV Holographic Interferometry: Experiment

    Science.gov (United States)

    Kojima, Kentaro; Miyazaki, Takeshi; Nojima, Ken; Yamamoto, Hirotaka; Sasaki, Yasuhito

    2004-03-01

    In this paper, we present an experiment based on the previously reported theory concerning the extension of the measurable region of object vibration phasor in phase-modulated TV holographic interferometry. This theory is based on the following facts: (1) the modulation of speckle interference image is proportional to the Bessel function, (2) its argument indicates the distance between the phasors of phase modulation and object vibration in the complex plane, and (3) the modulation increases as the Bessel function argument approaches zero. The phase modulation phasor is scanned, and at each pixel, one seeks the phase modulation phasor producing the maximum modulation. From the modulations produced by four phase modulation phasors adjacent to the sought phase modulation phasor, the object vibration phasor can be calculated. We analyzed the vibration of a phosphor-bronze rectangular plate with free sides, which were vibrated at the center by a piezoelectric transducer (PZT). Twenty-one phase modulation phasors were employed. The results of measurement were presented, and it was confirmed that the object vibration phasor can be measured in the wider region based on the theory concerning the extension of the measurable region.

  3. Frequency Modulation Induced by using the Linear Phase Modulation Method used in a Resonator Micro-optic Gyro

    Institute of Scientific and Technical Information of China (English)

    HONG Ling-Fei; ZHANG Chun-Xi; FENG Li-Shuang; YU Huai-Yong; LEI Ming

    2012-01-01

    Resonator micro-optic gyro (R-MOG) sensing rotation angular-velocity is based on Sagnac effect.We present a frequency modulation (FM) induced by the analog triangle-waveform phase modulation (ATAW-PM) technique in an R-MOG.Compared with the traditional serrodyne phase modulation or digital phase modulation methods,the proposed modulation technique has the intrinsic advantage in free of sweeping-back or step-effect induced pulse noise.The influence on dynamic range and resolution of the R-MOG by the parameters of analog trianglewaveform is theoretically analyzed.Experiments are carried out on an R-MOG composed of an integrated optic resonator with a free spectral range (FSR) and a fitness (F) of 1.6GHz and 61,respectively.Dynamic range of ±500 deg/s and bias drift of 0.6 deg/s over 1 h and 0.05 deg/s for 60 s are reliably obtained.%Resonator micro-optic gyro (R-MOG) sensing rotation angular-velocity is based on Sagnac effect. We present a frequency modulation (FM) induced by the analog triangle-waveform phase modulation (ATAW-PM) technique in an R-MOG. Compared with the traditional serrodyne phase modulation or digital phase modulation methods, the proposed modulation technique has the intrinsic advantage in free of sweeping-back or step-effect induced pulse noise. The influence on dynamic range and resolution of the R-MOG by the parameters of analog triangle-waveform is theoretically analyzed. Experiments are carried out on an R-MOG composed of an integrated optic resonator with a free spectral range (FSR) and a Btness (F) of 1.6 GHz and 61, respectively. Dynamic range of ±500 deg/s and bias drift of 0.6deg/s over 1 h and 0.05deg/s for 60s are reliably obtained.

  4. Design of a piezoelectric transducer cylindrical phase modulator for simulating acoustic emission signals

    Institute of Scientific and Technical Information of China (English)

    HE Cunfu; HANG Lijun; WU Bin

    2007-01-01

    To conveniently carry out the pipeline leak experiment in a laboratory,leak acoustic signals are simulated by using the converse piezoelectric effect of a piezoelectric transducer (PZT) cylindrical phase modulator.On the basis of the piezoelectric equations and electromechanical equivalence principle,the transfer function of a PZT cylindrical phase modulator is delivered.A PZT cylindrical phase modulator is designed,and the numerical simulation is conducted.Results prove that the PZT cylindrical phase modulator can effectively simulate leak acoustic emission signals when the frequency is lower than 25 KHz.

  5. Highly Sensitive Electro-Optic Modulators

    Energy Technology Data Exchange (ETDEWEB)

    DeVore, Peter S [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    There are very important diagnostic and communication applications that receive faint electrical signals to be transmitted over long distances for capture. Optical links reduce bandwidth and distance restrictions of metal transmission lines; however, such signals are only weakly imprinted onto the optical carrier, resulting in low fidelity transmission. Increasing signal fidelity often necessitates insertion of radio-frequency (RF) amplifiers before the electro-optic modulator, but (especially at high frequencies) RF amplification results in large irreversible distortions. We have investigated the feasibility of a Sensitive and Linear Modulation by Optical Nonlinearity (SALMON) modulator to supersede RF-amplified modulators. SALMON uses cross-phase modulation, a manifestation of the Kerr effect, to enhance the modulation depth of an RF-modulated optical wave. This ultrafast process has the potential to result in less irreversible distortions as compared to a RF-amplified modulator due to the broadband nature of the Kerr effect. Here, we prove that a SALMON modulator is a feasible alternative to an RFamplified modulator, by demonstrating a sensitivity enhancement factor greater than 20 and significantly reduced distortion.

  6. Waveguide Phase Modulator for Integrated Planar Lightwave Circuits in KTP Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort proposes the development of a potassium titanyl phosphate (KTP) waveguide phase modulator for future integration into a Planar Lightwave...

  7. Novel design of an all-cryogenic RF pound circuit

    DEFF Research Database (Denmark)

    Basu, Ronni; Wang, R. T.; Dick, G. J.

    2005-01-01

    We report on the design, construction and test of a new all-cryogenic RF Pound circuit used to stabilize a 100 MHz VCXO. Here, all active and passive RF components used to accomplish the phase modulation and detect a PM to AM conversion have been installed into the cryogenic environment. In conju......We report on the design, construction and test of a new all-cryogenic RF Pound circuit used to stabilize a 100 MHz VCXO. Here, all active and passive RF components used to accomplish the phase modulation and detect a PM to AM conversion have been installed into the cryogenic environment....... In conjunction with a high-Q cryogenic sapphire resonator a Pound discriminator sensitivity of 0.1 mV/Hz was seen experimentally. Based on this sensitivity and the noise properties of the pre-amplifier of the Pound signal, we calculate a limit of the oscillator's Allan deviation as low as 4middot10-16/radictau...

  8. Carrier suppression in quadruple frequency modulation by cascaded optical external modulators for millimeter-wave generation

    Institute of Scientific and Technical Information of China (English)

    Xue Feng; Wei Zhang; Xiaoming Liu

    2009-01-01

    The optical carrier suppression in optical quadruple frequency modulation by cascaded external modulators is investigated theoretically and experimentally. Theoretical analysis demonstrates that the optical carrier suppression ratio is related with not only the initial phase difference of electrical signals applied on the two modulators, but also the optical phase shift between the two modulators. The maximum suppression ratio can be achieved when the total phase difference is equal to nπ+π/2(n=1,2…),which is verified by experiments. By properly controlling the total phase shift, 40-GHz millimeter-wave is generated by using a 10-GHz radio frequency (RF) source and the modulators.

  9. Phase-modulated shaping of narrowband type-I parametric down-converted photons

    CERN Document Server

    Joseph1, A T; Pike2, E R; Sarkar2, S

    2006-01-01

    We present a general theoretical description of the temporal shaping of narrowband noncollinear type-I down-converted photons using a spectral phase filter with a symmetric phase distribution. By manipulating the spectral phase of the signal or idler photon, we demonstrate control of the correlation time and shape of the two-photon wave function with modulation frequency and modulation depth of the phase distribution.

  10. Experimental Study of RF-excited Diffusion Cooled Off-axis Unstable Resonator with High Frequency Modulation in a Waveguide CO2 Laser

    Institute of Scientific and Technical Information of China (English)

    Abdul Rauf; ZHOU Xiao-guang; ZHANG Heng-li; XIN Jian-guo

    2007-01-01

    The experimental study of the laser beam parameters of the pulse repetitive RF-excited diffusion cooled waveguide CO2 laser are presented. The measurements are carried out for the pumping pulse duration of 100 μs and pulse repetitive rates 5 - 14 kHz. The average power density delivered to the active medium is 76 W/cm3. Three types of the pulses,namely the square, the sine and the triangular ones have been applied at the input as pumping pulses and their effects on the output power and the delay time have been studied. The output power of the radiation versus input power, pressure of the laser gas mixture and modulation frequency has been investigated. The results indicate that the output peak power for the three types of pulses increases with increase of the pressure of the laser gas mixture and with the input power where as it decreases with the repetition frequency. The delay time of the output pulse decreases with the increase of the repetition frequency and input power, where as it increases with the increase of the pressure of the laser gas mixture. The behavior of the output power and the delay time with duty cycle for square pulse has also been investigated.

  11. Conversion of a transverse density modulation into a longitudinal phase space modulation using an emittance exchange technique

    CERN Document Server

    Sun, Y -E; Johnson, A; Lumpkin, A; Ruan, J; Thurman-Keup, R

    2010-01-01

    We report on an experiment to produce a train of sub-picosecond microbunches using a transverse-to-longitudinal emittance exchange technique. The generation of a modulation on the longitudinal phase space is done by converting an initial horizontal modulation produced using a multislits mask. The preliminary experimental data clearly demonstrate the conversion process. To date only the final energy modulation has been measured. However numerical simulations, in qualitative agreement with the measurements, indicate that the conversion process should also introduce a temporal modulation.

  12. Enhanced Cross-Phase Modulation via Phase Control in a Quantum dot Nanostructure

    Institute of Scientific and Technical Information of China (English)

    郝向英; 郑安寿; 王英; 李小刚

    2012-01-01

    A four-level quantum dot (QD) nanostructure interacting with four fields (two weak near-infrared (NIR) pulses and two control fields) forms the well-known double-cascade configuration.We investigate the cross-phase modulation (XPM) between the two NIR pulses.The results show,in such a closed-loop scheme,that the XPM can be greatly enhanced,while the linear absorption and two-photon absorption (gain) can be efficiently depressed by tuning the relative phase among the applied fields.This protocol may have potential applications in NIR all-optical switch design and quantum information processing with the solid-state materials.

  13. RF transformer

    Science.gov (United States)

    Smith, James L.; Helenberg, Harold W.; Kilsdonk, Dennis J.

    1979-01-01

    There is provided an improved RF transformer having a single-turn secondary of cylindrical shape and a coiled encapsulated primary contained within the secondary. The coil is tapered so that the narrowest separation between the primary and the secondary is at one end of the coil. The encapsulated primary is removable from the secondary so that a variety of different capacity primaries can be utilized with one secondary.

  14. Corticospinal modulations during bimanual movement with different relative phases

    Directory of Open Access Journals (Sweden)

    Yoshifumi eNomura

    2016-03-01

    Full Text Available The purpose of this study was to investigate corticospinal modulation of bimanual movement with different relative phases (RPs. The participants rhythmically abducted and adducted the right index finger (unimanual movement or both index fingers (bimanual movement with a cyclic duration of 1 s. The RP of bimanual movement, defined as the time difference between one hand movement and the other hand movement, was 0°, 90°, or 180°. Motor evoked potentials in the right flexor dorsal interosseous muscle elicited by transcranial magnetic stimulation were obtained during unimanual or bimanual movement. Corticospinal excitability in the first dorsal interosseous muscle during bimanual movement with 90° RP was higher than that during unimanual movement or bimanual movement with 0° or 180° RP. The correlation between muscle activity level and corticospinal excitability during bimanual movement with 90° RP was smaller than that during unimanual movement or bimanual movement with 0° or 180° RP. The higher corticospinal excitability during bimanual movement with 90° RP may be caused by the greater effort expended to execute a difficult task, the involvement of interhemispheric interaction, a motor binding process, or task acquisition. The lower dependency of corticospinal excitability on the muscle activity level during bimanual movement with 90° RP may reflect the minor corticospinal contribution to bimanual movement with an RP that is not in the attractor state.

  15. L2 Orthogonal Space Time Code for Continuous Phase Modulation

    CERN Document Server

    Hesse, Matthias; Deneire, Luc

    2008-01-01

    To combine the high power efficiency of Continuous Phase Modulation (CPM) with either high spectral efficiency or enhanced performance in low Signal to Noise conditions, some authors have proposed to introduce CPM in a MIMO frame, by using Space Time Codes (STC). In this paper, we address the code design problem of Space Time Block Codes combined with CPM and introduce a new design criterion based on L2 orthogonality. This L2 orthogonality condition, with the help of simplifying assumption, leads, in the 2x2 case, to a new family of codes. These codes generalize the Wang and Xia code, which was based on pointwise orthogonality. Simulations indicate that the new codes achieve full diversity and a slightly better coding gain. Moreover, one of the codes can be interpreted as two antennas fed by two conventional CPMs using the same data but with different alphabet sets. Inspection of these alphabet sets lead also to a simple explanation of the (small) spectrum broadening of Space Time Coded CPM.

  16. A review of single-phase grid-connected inverters for photovoltaic modules

    DEFF Research Database (Denmark)

    Kjaer, Soren Baekhoej; Pedersen, John Kim; Blaabjerg, Frede

    2005-01-01

    This review focuses on inverter technologies for connecting photovoltaic (PV) modules to a single-phase grid. The inverters are categorized into four classifications: 1) the number of power processing stages in cascade; 2) the type of power decoupling between the PV module(s) and the single...

  17. Cognitive digital receiver for burst mode phase modulated radio over fiber links

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Zibar, Darko; Tafur Monroy, Idelfonso

    2010-01-01

    A novel cognitive receiver for modulation format recognition with reconfigurable carrier recovery scheme is proposed and experimentally demonstrated for phase modulated radio-over-fibre links. Demodulation of burst-mode mixed modulation formats (PSK and QAM) is demonstrated after 40km...

  18. All-optical $\\mathcal{PT}$-symmetric amplitude to phase modulator

    CERN Document Server

    Gutiérrez, Oscar Ignacio Zaragoza; Rodríguez-Lara, B M

    2015-01-01

    We study electromagnetic field propagation through a planar three-waveguide coupler with linear gain and loss, in a configuration that is the optical analog of a quantum $\\mathcal{PT}$-symmetric system, and provide its closed-form analytic propagator. At an specific propagation length, we show that the device provides all-optical amplitude to phase modulation with a $\\pi$ modulation range, if an extra binary phase is allowed in the reference signal, as well as phase to amplitude modulation, with an amplitude modulation range that depends linearly on the gain-to-coupling ratio of the system.

  19. A novel modulation and direct detection scheme of optical phase shift keying

    Institute of Scientific and Technical Information of China (English)

    Yongcai Yang(杨永才); Wolfgang Vogel

    2004-01-01

    This paper introduces a new modulation and direct detection scheme of optical phase shift keying (PSK)which is simple and practical in fiber optical communication. A phase modulator is used to modulate a continuous wave (CW) laser source and return-to-zero (RZ) signal that is changed from the initial transmitting information is used to control a phase modulator to form a optical PSK signal. In the receiver terminal, just add a signal delayed a half of one bit to itself so that the initial information can be restored.

  20. Moscow Meson Factory DTL RF System Upgrade

    CERN Document Server

    Esin, S K; Kvasha, A I; Serov, V L

    2004-01-01

    The last paper devoted to description of the first part (DTL) RF system of Moscow Meson Factory upgrade was published in the Proceedings of PAC95 Conference in Dallas. Since then some new works directed at improvement of reliability and efficiency of the RF system were carried out. Among them there are a new powerful pulse triode “Katran” installed in the output RF power amplifiers (PA) of three channels, modifications of the anode modulator control circuit and crow-bar system, a new additional RF channel for RF supply of RFQ and some alterations in placing of the anode modulator equipment decreasing a level of interference’s at crow-bar circuits. Some new checked at MMF RF channels ideas concerning of PA tuning are of interest for people working in this sphere of activity.

  1. Combined Transmission of Baseband NRZ-DQPSK and Phase Modulated Radio-over-Fibre

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee; Yu, Xianbin; Tafur Monroy, Idelfonso

    2008-01-01

    21.4 Gbit/s baseband DQPSK and 1.25 Gbit/s phase modulated RoF was transmitted over 80 km SSMF using polarization multiplexing.......21.4 Gbit/s baseband DQPSK and 1.25 Gbit/s phase modulated RoF was transmitted over 80 km SSMF using polarization multiplexing....

  2. Channel Capacity of DWDM Networks with Cross-phase Modulation Effect

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In dense wavelength division multiplexing(DWDM) optical transmission systems, cross phase modulation(XPM) due to Kerr effect causes phase shift and intensity modulation in each channel, which will lead the channel capacity to be a random variable. An expression of the channel capacity dealing with XPM effect is presented, and the correctness and accuracy of this method are demonstrated by numerical simulation.

  3. A robust optical phase modulated 60 GHz RoF WDM system

    DEFF Research Database (Denmark)

    Yu, Xianbin; Kozuch, Wojciech; Turkiewicz, Jaroslaw

    2010-01-01

    robust 4-channel WDM optical phase modulated 60GHz wireless fiber system is proposed and simulated. In this system, a Fabry-Perot (FP) frequency interleaver is designed to suppress optical carriers for 60GHz signal generation. The simulated results show that this phase modulated WDM system...

  4. Affects of binary and continuous phase modulations on the structure of Bessel beams

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2010-09-01

    Full Text Available The authors implement a novel technique to operate a phase-only spatial light modulator (SLM) in amplitude mode, allowing them to reproduce Durnin’s ring slit on a liquid crystal display (LCD). The affects of binary and continuous phase modulations...

  5. Nonlinearity and Phase Noise Tolerant 75-110 GHz Signal over Fiber System Using Phase Modulation Technique

    DEFF Research Database (Denmark)

    Deng, Lei; Pang, Xiaodan; Zhang, Xu

    2013-01-01

    We report on the transmission of 8 Gb/s 0 dB PAPR 16QAM-OFDM W-band (75-110 GHz) signals over 22.8km SMF without phase noise compensation by using a phase modulator in the optical heterodyne up-convertor.......We report on the transmission of 8 Gb/s 0 dB PAPR 16QAM-OFDM W-band (75-110 GHz) signals over 22.8km SMF without phase noise compensation by using a phase modulator in the optical heterodyne up-convertor....

  6. Phase-dependent modulation of percutaneously elicited multisegmental muscle responses after spinal cord injury

    OpenAIRE

    Dy, Christine J.; Gerasimenko, Yury P.; Edgerton, V Reggie; Dyhre-Poulsen, Poul; Courtine, Grégoire; Harkema, Susan J.

    2010-01-01

    Phase-dependent modulation of monosynaptic reflexes has been reported for several muscles of the lower limb of uninjured rats and humans. To assess whether this step-phase-dependent modulation can be mediated at the level of the human spinal cord, we compared the modulation of responses evoked simultaneously in multiple motor pools in clinically complete spinal cord injury (SCI) compared with noninjured (NI) individuals. We induced multisegmental responses of the soleus, medial gastrocnemius,...

  7. RF power source for the compact linear collider test facility (CTF3)

    CERN Document Server

    McMonagle, G; Brown, Peter; Carron, G; Hanni, R; Mourier, J; Rossat, G; Syratchev, I V; Tanner, L; Thorndahl, L

    2004-01-01

    The CERN CTF3 facility will test and demonstrate many vital components of CLIC (Compact Linear Collider). This paper describes the pulsed RF power source at 2998.55 MHz for the drive-beam accelerator (DBA), which produces a beam with an energy of 150 MeV and a current of 3.5 Amps. Where possible, existing equipment from the LEP preinjector, especially the modulators and klystrons, is being used and upgraded to achieve this goal. A high power RF pulse compression system is used at the output of each klystron, which requires sophisticated RF phase programming on the low level side to achieve the required RF pulse. In addition to the 3 GHz system two pulsed RF sources operating at 1.5 GHz are being built. The first is a wide-band, low power, travelling wave tube (TWT) for the subharmonic buncher (SHB) system that produces a train of "phase coded" subpulses as part of the injector scheme. The second is a high power narrow band system to produce 20 MW RF power to the 1.5 GHz RF deflectors in the delay loop situate...

  8. Modulated liquid-crystal phases induced by polarity: Twist-bend, splay-bend, and blue phases

    Science.gov (United States)

    Selinger, Jonathan; Shamid, Shaikh; Allender, David

    2014-03-01

    Nematic liquid crystals exhibit flexoelectric couplings between polar order and gradients in the director field. When the couplings become strong enough, the uniform nematic phase can become unstable to the formation of a modulated polar phase. The question is then: What is the structure of the modulated polar phase? Classic work by Meyer and further studies by Dozov predicted two possible structures, known as twist-bend and splay-bend. One of these predictions, the twist-bend phase, has recently been identified in experiments on bent-core liquid crystals. Here, we investigate modulated polar phases through a combination of Landau theory and lattice simulations. We find a range of possibilities, including the twist-bend and splay-bend phases as well as polar blue phases, with 2D or 3D modulations of the director field and the polar order. We compare these polar blue phases with chiral blue phases, and discuss opportunities for observing them experimentally. Supported by NSF DMR-1106014.

  9. Optimize the modulation response of twisted-nematic liquid crystal displays as pure phase spatial light modulators

    Science.gov (United States)

    Ma, Baiheng; Peng, Fei; Kang, Mingwu; Zhou, Jiawu

    2014-11-01

    Twisted-nematic liquid crystal displays (TN-LCD) are widely used in numerous research fields of optics working as spatial light modulators. Approaches to obtaining desired intensity or phase modulation by TN-LCD have been extensively studied based on the knowledge of TN-LCD's internal structure parameters, e.g., the orientation of LC molecules at the surfaces, the twist angle, the thickness of the LC layer, and the birefringence of the material. Generally TN-LCD placed between two linear polarizers (P) produces coupled intensity and phase modulation. To obtain the commonly used pure phase modulation, quarter wave plates (QWP) are often used in front of and/or behind the LCD. In this paper, we present a method to optimize the optical modulation properties of the TN-LCD to obtain pure phase modulation in the configuration of P-QWP-LCD-QWP-P each with proper orientation. Firstly an improved method for determining the Jones matrix of the TN-LCD without knowing its internal parameters is presented, which is based on the macroscopical Jones matrix descriptions for TN-LCD, linear polarizer and QWP. Only three sets of intensity measurements are needed for the complete determination of the TN-LCD's Jones matrix for a single wavelength. Then Jones matrix calculations are carried out to determine the orientations of the polarizers and QWPs for pure phase modulation response. In addition, we prove that the phase modulation depth (PMD) of the TN-LCD can be further increased provided that the mean intensity transmission is decreased to a lower level, which is very useful when the TN-LCD is used as a phase modulator and the ratio between the intensities of the desired diffracted order relative to the other diffracted orders is required higher. Experimental results coincide well with the optical modulation properties of the TN-LCD predicted by our determined Jones matrix. In contrast to the traditional method which requires knowledge of the TN-LCD's internal structure parameters

  10. Suppression of phase-induced intensity noise in fibre optic delay line signal processors using an optical phase modulation technique.

    Science.gov (United States)

    Chan, Erwin H W

    2010-10-11

    A technique that can suppress the dominant phase-induced intensity noise in fibre optic delay line signal processors is presented. It is based on phase modulation of the optical carrier to distribute the phase noise at the information band into a high frequency band which can be filtered out. This technique is suitable for suppressing the phase noise in various delay line structures and for integrating in the conventional fibre optic links. It can also suppress the coherent interference effect at the same time. A model for predicting the amount of phase noise reduction in various delay line structures using the optical phase modulation technique is presented for the first time and is experimentally verified. Experimental results demonstrate the technique can achieve a large phase noise reduction in various fibre optic delay line signal processors.

  11. DC SQUID RF magnetometer with 200 MHz bandwidth

    Science.gov (United States)

    Talanov, Vladimir; Lettsome, Nesco; Orozco, Antonio; Cawthorne, Alfred; Borzenets, Valery

    2012-02-01

    Because of periodic flux-to-voltage transfer function, Superconducting QUantum Interference Device (SQUID) magnetometers operate in a closed-loop regime [1], which linearizes the response, and increases the dynamic range and sensitivity. However, a transmission line delay between the SQUID and electronics fundamentally limits the closed-loop bandwidth at 20 MHz [1], although the intrinsic bandwidth of SQUIDs is in gigahertz range. We designed a DC SQUID based RF magnetometer capable of wideband sensing coherent magnetic fields up to 200 MHz. To overcome the closed-loop bandwidth limitation, we utilized a low-frequency flux-modulated closed-loop to simultaneously lock the quasi-static magnetic flux and provide AC bias for the RF flux. The SQUID RF voltage is processed by RF electronics based on a double lock-in technique. This yields a signal proportional to the amplitude and phase of the RF magnetic flux, with more than four decades of a linear response. For YBaCuO SQUID on bi-crystal SrTiO substrate at 77 K we achieved a flux noise density of 4 μφ0/Hz at 190 MHz, which is similar to that measured at kHz frequencies with conventional flux-locked loop. [1] D. Drung, et al., Supercond. Sci. Technol. 19, S235 (2006).

  12. Investigations on the electron bunch distribution in the longitudinal phase space at a laser driven RF electron source for the European X-FEL

    Energy Technology Data Exchange (ETDEWEB)

    Roensch, Juliane

    2010-01-15

    The Photoinjector Test facility at DESY, Zeuthen site, (PITZ) is aiming for the optimization of electron guns for SAS-FELs. For this it is necessary to investigate the characteristics of the six dimensional phase space of the bunch produced by a photoinjector. This thesis is focused on the analysis of the longitudinal properties of the electron bunch distribution, this means the temporal current distribution and the momentum distribution as well as the correlation of both properties. The complete distribution of the electron bunch in longitudinal phase space of a photoinjector was measured directly for the first time at a beam momentum of about 5 MeV/c, using an existing apparatus. This system had been designed for an accelerating gradient of 40 MV/m. Its subcomponents were analysed to understand sources of uncertainties of the measurement system. The usage of higher accelerating gradients in the gun (60 MV/m, resulting in a beam momentum of about 6.8 MeV/c) demands major modifications of the existing measurement system for the longitudinal phase space distribution. An upgrade of the facility by an additional accelerating cavity required the design of further longitudinal diagnostics systems for the analysis at higher momenta (up to 40 MeV/c). Measurements of the longitudinal beam properties to determine the influence of different operation parameters, like RF launch phase, charge, accelerating field gradient and laser distribution were performed and compared to simulations. (orig.)

  13. High-power MUTC photodetectors for RF photonic links

    Science.gov (United States)

    Estrella, Steven; Johansson, Leif A.; Mashanovitch, Milan L.; Beling, Andreas

    2016-02-01

    High power photodiodes are needed for a range of applications. The high available power conversion efficiency makes these ideal for antenna remoting applications, including high power, low duty-cycle RF pulse generation. The compact footprint and fiber optic input allow densely packed RF aperture arrays with low cross-talk for phased high directionality emitters. Other applications include linear RF photonic links and other high dynamic range optical systems. Freedom Photonics has developed packaged modified uni-traveling carrier (MUTC) photodetectors for high-power applications. Both single and balanced photodetector pairs are mounted on a ceramic carrier, and packaged in a compact module optimized for high power operation. Representative results include greater than 100 mA photocurrent, >100m W generated RF power and >20 GHz bandwidth. In this paper, we evaluate the saturation and bandwidth of these single ended and balanced photodetectors for detector diameter in the 16 μm to 34 μm range. Packaged performance is compared to chip performance. Further new development towards the realization of <100GHz packaged photodetector modules with optimized high power performance is described. Finally, incorporation of these photodetector structures in novel photonic integrated circuits (PICs) for high optical power application areas is outlined.

  14. Development of Low Level RF Control Systems for Superconducting Heavy Ion Linear Accelerators, Electron Synchrotrons and Storage Rings

    CERN Document Server

    Aminov, Bachtior; Kolesov, Sergej; Pekeler, Michael; Piel, Christian; Piel, Helmut

    2005-01-01

    Since 2001 ACCEL Instruments is supplying low level RF control systems together with turn key cavity systems. The early LLRF systems used the well established technology based on discrete analogue amplitude and phase detectors and modulators. Today analogue LLRF systems can make use of advanced vector demodulators and modulators combined with a fast computer controlled analogue feed back loop. Feed forward control is implemented to operate the RF cavity in an open loop mode or to compensate for predictable perturbations. The paper will introduce the general design philosophy and show how it can be adapted to different tasks as controlling a synchrotron booster nc RF system at 500 MHz, or superconducting storage ring RF cavities, as well as a linear accelerator at 176 MHz formed by a chain of individually driven and controlled superconducting λ/2 cavities.

  15. Automated procedures for the assembly of the CMS Phase 1 upgrade pixel modules

    Science.gov (United States)

    Wade, Alex; CMS Collaboration

    2016-03-01

    The Phase 1 upgrade of the pixel tracker for the CMS experiment requires the assembly of approximately 1000 modules consisting of pixel sensors bump bonded to readout chips. The precision assembly of modules in this volume is made possible using several robotic processes for dispensing epoxy,positioning of sensor components, automatic wire-bonding and robotic deposition of elastomer for wire bond encapsulation. We will describe the these processes in detail, along with the measurements that quanitfy the quality of assembled modules, and describe the subsequent steps in which the sensor modules are used in the construction of the Phase 1 pixel tracker. With support from USCMS.

  16. Impact of Spectral Filter on Phase Modulation Pulse in Fiber Front End System

    Institute of Scientific and Technical Information of China (English)

    LI Jing; JING Feng; WANG Jian-Jun; XU Dang-Peng; LIN Hong-Huan; GENG Yuan-Chao; LI Ming-Zhong; DENG Ying; ZHU Na; ZHANG Rui

    2011-01-01

    The transmission characteristics of phase modulation pulse transmitted through the filter in the power amplifier are investigated theoretically and experimentally. The narrow bandpass filter can induce large temporal modula-tion depth for the phase modulation pulse and induce double amplitude modulation(AM)if the frequency shift is lower than half bandwidth of the signal spectrum. We should choose a wider bandwidth filter to minimize the impact of the filter on the output pulse and suppress the amplified spontaneous emission(ASE) for the power fiber amplifier. These results are of benefit to the design of the fiber front end system.

  17. Phase retrieval based on cosine grating modulation and transport of intensity equation

    Science.gov (United States)

    Chen, Ya-ping; Zhang, Quan-bing; Cheng, Hong; Qian, Yi; Lv, Qian-qian

    2016-10-01

    In order to calculate the lost phase from the intensity information effectively, a new method of phase retrieval which based on cosine grating modulation and transport of intensity equation is proposed. Firstly, the cosine grating is loaded on the spatial light modulator in the horizontal and vertical direction respectively, and the corresponding amplitude of the light field is modulated. Then the phase is calculated by its gradient which is extracted from different direction modulation light illumination. The capability of phase recovery of the proposed method in the presence of noise is tested by simulation experiments. And the results show that the proposed algorithm has a better resilience than the traditional Fourier transform algorithm at low frequency noise. Furthermore, the phase object of different scales can be retrieved using the proposed algorithm effectively by changing the frequency of cosine grating, which can control the imaging motion expediently.

  18. Walking phase modulates H-reflex amplitude in flexor carpi radialis.

    Science.gov (United States)

    Domingo, Antoinette; Klimstra, Marc; Nakajima, Tsuyoshi; Lam, Tania; Hundza, Sandra R

    2014-01-01

    It is well established that remote whole-limb rhythmic movement (e.g., cycling or stepping) induces suppression of the Hoffman (H-) reflex evoked in stationary limbs. However, the dependence of reflex amplitude on the phase of the movement cycle (i.e., phase-dependence) has not been consistent across this previous research. The authors investigated the phase-dependence of flexor carpi radialis (FCR) H-reflex amplitudes during active walking and in kinematically matched static postures across the gait cycle. FCR H-reflexes were elicited in the stationary forearm with electrical stimulation to the median nerve. Significant phase-dependent modulation occurred during walking when the gait cycle was examined with adequate phase resolution. The suppression was greatest during midstance and midswing, suggesting increased ascending communication during these phases. There was no phase-dependent modulation in static standing postures and no correlation between lower limb background electromyography levels and H-reflex amplitude during active walking. This evidence, along with previous research demonstrating no phase modulation during passive walking, suggests that afferent feedback associated with joint position and leg muscle activation levels are not the sole source of the phase modulation seen during active walking. Possible sources of phase modulation include combinations of afferent feedback related to active movement or central motor commands or both.

  19. Three-Phase Modulated Pole Machine Topologies Utilizing Mutual Flux Paths

    DEFF Research Database (Denmark)

    Washington, Jamie G.; Atkinson, Glynn J.; Baker, Nick J.

    2012-01-01

    This paper discusses three-phase topologies for modulated pole machines (MPMs). The authors introduce a new threephase topology, which takes advantage of mutual flux paths; this is analyzed using 3-D finite-element methods and compared to a three-phase topology using three single-phase units...... both performance and constructional benefits over prior MPM topologies....

  20. Suppression of stimulated Brillouin scattering with phase modulator in soliton pulse compression

    Institute of Scientific and Technical Information of China (English)

    Bo Lü; Taorong Gong; Ming Chen; Muguang Wang; Tangjun Li; Genxiang Chen; Shuisheng Jian

    2009-01-01

    A phase modulator is employed in the scheme of soliton pulse compression with dispersion shifted fiber (DSF). Stimulated Brillouin scattering (SBS) effect, as a negative influence here, can be dramatically suppressed after optical phase modulation. The experimental result shows that the launched power required for high-order soliton pulse compression has been significantly increased by 11 dB under the condition of 100-MHz phase modulation. Accordingly, the experiment of picosecond pulse compression generated from electro-absorption sampling window (EASW) has also been implemented.

  1. Modulated magnetic phase of structurally heterogeneous easy-plane weak ferromagnets

    Science.gov (United States)

    Dzhuraev, D. R.; Niyazov, L. N.; Sokolov, B. Yu.

    2016-06-01

    The modulated magnetic phase of a structurally heterogeneous easy-plane weak ferromagnet is considered in terms of the thermodynamic Landau theory of phase transitions. The temperature and field dependences of the main magnetic order modulation parameters are determined. The results obtained are compared with the experimental data obtained for the orientational phase transition into a modulated magnetic state that occurs in hematite and iron borate crystals doped with diamagnetic ions to create structural heterogeneity. The proposed theoretical model is shown to describe the entire set of experimental results consistently with some exceptions.

  2. Hyperresolving phase-only filters with an optically addressable liquid crystal spatial light modulator.

    Science.gov (United States)

    McOrist, J; Sharma, M D; Sheppard, C J R; West, E; Matsuda, K

    2003-01-01

    Hyperresolving (sometimes called 'superresolving' or 'ultraresolving') phase-only filters can be generated using an optically addressable liquid crystal spatial light modulator. This approach avoids the problems of low efficiency, and coupling between amplitude and phase modulation, that arise when using conventional liquid crystal modulators. When addressed by a programmed light intensity distribution, it allows filters to be changed rapidly to modify the response of a system or permit the investigation of different filter designs. In this paper we present experimental hyperresolved images obtained using an optically addressable parallel-aligned nematic LCD with two zone Toraldo type phase-only filters. The images are compared with theoretical predictions.

  3. Gauss linear frequency modulation wavelet transforms and its application to seismic phases identification

    Institute of Scientific and Technical Information of China (English)

    刘希强; 周惠兰; 曹文海; 李红; 李永红; 季爱东

    2002-01-01

    Based on the characteristics of gradual change style seismic signal onset which has more high frequency signal components but less magnitude, this paper selects Gauss linear frequency modulation wavelet as base function to study the change characteristics of Gauss linear frequency modulation wavelet transform with difference wavelet and signal parameters, analyzes the error origin of seismic phases identification on the basis of Gauss linear frequency modulation wavelet transform, puts forward a kind of new method identifying gradual change style seismic phases with background noise which is called fixed scale wavelet transform ratio, and presents application examples about simulation digital signal and actual seismic phases recording onsets identification.

  4. Supercontinuum Generation Enhanced by Cross-phase Modulation in Dispersion-flattened and Decreasing Fiber

    Institute of Scientific and Technical Information of China (English)

    XU Wen-cheng; XU Yong-zhao; YU Bing-tao; CUI Hu; CHEN Yong-zhu; LIU Song-hao

    2005-01-01

    Supercontinuum spectrum generation in a dispersion-flattened and decreasing fiber with two orthogonally polarized pulses was simulated and calculated. The research results indicated that the supercontinuum spectrum generated by two orthogonally polarized pulses is wider and flatter than that generated by single polarized pulse due to cross-phase modulation. The cross-phase modulation effect can enhance the supercontinuum spectrum generation. When the pump power of the input pulse is lower, the enhancement of supercontinuum spectrum generation by cross-phase modulation effect is more significant.

  5. Phase-dependent modulation of percutaneously elicited multisegmental muscle responses after spinal cord injury.

    Science.gov (United States)

    Dy, Christine J; Gerasimenko, Yury P; Edgerton, V Reggie; Dyhre-Poulsen, Poul; Courtine, Grégoire; Harkema, Susan J

    2010-05-01

    Phase-dependent modulation of monosynaptic reflexes has been reported for several muscles of the lower limb of uninjured rats and humans. To assess whether this step-phase-dependent modulation can be mediated at the level of the human spinal cord, we compared the modulation of responses evoked simultaneously in multiple motor pools in clinically complete spinal cord injury (SCI) compared with noninjured (NI) individuals. We induced multisegmental responses of the soleus, medial gastrocnemius, tibialis anterior, medial hamstring, and vastus lateralis muscles in response to percutaneous spinal cord stimulation over the Th11-Th12 vertebrae during standing and stepping on a treadmill. Individuals with SCI stepped on a treadmill with partial body-weight support and manual assistance of leg movements. The NI group demonstrated phase-dependent modulation of evoked potentials in all recorded muscles with the modulation of the response amplitude corresponding with changes in EMG amplitude in the same muscle. The SCI group demonstrated more variation in the pattern of modulation across the step cycle and same individuals in the SCI group could display responses with a magnitude as great as that of modulation observed in the NI group. The relationship between modulation and EMG activity during the step cycle varied from noncorrelated to highly correlated patterns. These findings demonstrate that the human lumbosacral spinal cord can phase-dependently modulate motor neuron excitability in the absence of functional supraspinal influence, although with much less consistency than that in NI individuals.

  6. Equalization Technique for Balancing the Modulation Ratio Characteristics of the Single-Phase-to-Three-Phase Matrix Converter

    Directory of Open Access Journals (Sweden)

    Vengadeshwaran Velu

    2016-01-01

    Full Text Available Three-phase system has numerous advantages over the single-phase system in terms of instantaneous power, stability, and cost. Three-phase systems are not available in every location particularly in remote rural areas, hill stations, low voltage distribution homes, and so forth. Having a system that is capable of converting directly the readily available single-phase system to three phases will have greater usability in various applications. The routine techniques adopted in the direct ac-ac single-phase-to-three-phase converters do not yield the best desired outputs because of their complexity in the segregation process and bidirectional nature of the input signal. Other initiatives use ac-dc-ac converters which are huge and costly due to dc link energy storage devices. Further, none of these systems provide a convincing result in producing the standard three-phase output voltages that are 120° away from each other. This paper proposes an effective direct ac-ac single-phase-to-three-phase conversion technique based on space vector pulse width modulation based matrix converter system that produces a convincing three-phase output signals from a single-phase source with balanced modulation index characteristics. The details of the scientific programming adopted on the proposed technique were presented.

  7. 160 Gb/s Silicon All-Optical Data Modulator based on Cross Phase Modulation

    DEFF Research Database (Denmark)

    Hu, Hao; Pu, Minhao; Ji, Hua

    2012-01-01

    We have demonstrated 160 Gb/s all-optical data modulation with an extinction ratio of 18.5 dB based on XPM in a silicon nanowire. Error free performance is achieved for the optically modulated 160 Gb/s signal.......We have demonstrated 160 Gb/s all-optical data modulation with an extinction ratio of 18.5 dB based on XPM in a silicon nanowire. Error free performance is achieved for the optically modulated 160 Gb/s signal....

  8. Overview of the RF Systems for LCLS

    CERN Document Server

    McIntosh, Peter; Boyce, Richard; Emma, Paul; Hill, Alan; Rago, Carl

    2005-01-01

    The Linac Coherent Light Source (LCLS) at SLAC, when it becomes operational in 2009, will provide its user community with an X-ray source many orders of magnitude brighter than anything available in the world at that time. The electron beam acceleration will be provided by existing and new RF systems capable of maintaining the amplitude and phase stability of each bunch to extremely tight tolerances. RF feedback control of the various RF systems will be fundamental in ensuring the beam arrives at the LCLS undulator at precisely the required energy and phase. This paper details the requirements for RF stability for the various LCLS RF systems and also highlights proposals for how these injector and Linac RF systems can meet these constraints.

  9. The generation of flat-top beams by complex amplitude modulation with a phase-only spatial light modulator

    CSIR Research Space (South Africa)

    Hendriks, A

    2012-08-01

    Full Text Available amplitude modulation of the light, i.e., in amplitude and phase. We outline the theoretical concept, and then illustrate its use with the example of the laser beam shaping of Gaussian beams into flat-top beams. We quantify the performance of this approach...

  10. Direct UV written Michelson interferometer for RZ signal generation using phase-to-intensity modulation conversion

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Geng, Yan; Zsigri, Beata

    2005-01-01

    An integrated Michelson delay interferometer structure making use of waveguide gratings as reflective elements is proposed and fabricated by direct ultraviolet writing. Successful return-to-zero alternate-mark-inversion signal generation using phase-to-intensity modulation conversion...

  11. Nonlinear Pulse Compression and Reshaping Using Cross-Phase Modulation in a Dispersion-Shifted Fiber

    Institute of Scientific and Technical Information of China (English)

    S.; W.; Chan; K.; K.; Chow; C.; Shu

    2003-01-01

    Nonlinear pulse compression has been demonstrated by cross-phase modulation in a dispersion-shifted fiber. The output is obtained from filtering of the broadened optical spectrum and a pulse width reduction from 61 to 28 ps is achieved.

  12. Sinusoidal Phase-Modulating Fabry-Perot Interferometer for Angular Displacement Measurement

    Institute of Scientific and Technical Information of China (English)

    Caini Zhang; Xiangzhao Wang

    2003-01-01

    In this paper, a sinusoidal phase-modulating Fabry-Perot interferometer is proposed to measure angular displacement.The usefulness of the interferometer is demonstrated by simulations and experiments.

  13. Sinusoidal Phase-Modulating Fabry-Perot Interferometer for Angular Displacement Measurement

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, a sinusoidal phase-modulating Fabry-Perot interferometer is proposed to measure angular displacement. The usefulness of the interferometer is demonstrated by simulations and experiments.

  14. Sinusoidal phase-modulating laser diode interferometer for real-time surface profile measurement

    Institute of Scientific and Technical Information of China (English)

    Guotian He; Xiangzhao Wang; Aijun Zeng; Feng Tang

    2007-01-01

    A sinusoidal phase-modulating (SPM) laser diode (LD) interferometer for real-time surface profile measurement is proposed and its principle is analyzed. The phase signal of the surface profile is detected from the sinusoidal phase-modulating interference signal using a real-time phase detection circuit. For 60 × 60 measurement points of the surface profile, the measuring time is 10 ms. A root mean square (RMS) measurement repeatability of 3.93 nm is realized, and the measurement resolution reaches 0.19 nm.

  15. Heterodyne technique for measuring the amplitude and phase transfer functions of an optical modulator

    DEFF Research Database (Denmark)

    Romstad, Francis Pascal; Birkedal, Dan; Mørk, Jesper

    2002-01-01

    In this letter, we propose a technique based on heterodyne detection for accurately and simultaneously measuring the amplitude and phase transfer functions of an optical modulator. The technique is used to characterize an InGaAsp multiple quantum-well electroabsorption modulator. From...

  16. Photoassociation dynamics driven by second- and third-order phase-modulated laser fields

    Science.gov (United States)

    Wang, Meng; Chen, Mao-Du; Hu, Xue-Jin; Li, Jing-Lun; Cong, Shu-Lin

    2016-05-01

    We investigate theoretically the photoassociation dynamics of ultracold 85Rb atoms driven by second- and third-order phase-modulated laser fields. The interplay between the second-order and third-order terms of the phase-modulated pulse has an obvious influence on photoassociation dynamics. The different combinations of the second-order and third-order phase coefficients lead to different pulse shapes. Most of the molecular population in the excited electronic state driven only by the third-order phase pulses can be distributed in a single vibrational level. The second-order term of the phase-modulated pulse can change the instantaneous frequency, and therefore the final population is distributed on several resonant vibrational levels, instead of concentrating on a single level. Although the second- and third-order phase-modulated pulse covers more resonant vibrational levels, the total population on the resonant vibrational levels is much smaller than that controlled only by the third-order phase pulse. In particular, the third-order term of the phase-modulated pulse can weaken the ‘multiple interaction’ to some degree.

  17. Measurements of the temporal and spatial phase variations of a 33 GHz pulsed free electron laser amplifier and application to high gradient RF acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Volfbeyn, P.; Bekefi, G. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-12-31

    We report the results of temporal and spatial measurements of phase of a pulsed free electron laser amplifier (FEL) operating in combined wiggler and axial guide magnetic fields. The 33 GHz FEL is driven by a mildly relativistic electron beam (750 kV, 90-300 A, 30 ns) and generates 61 MW of radiation with a high power magnetron as the input source. The phase is measured by an interferometric technique from which frequency shifting is determined. The results are simulated with a computer code. Experimental studies on a CERN-CLIC 32.98 GHz 26-cell high gradient accelerating section (HGA) were carried out for input powers from 0.1 MW to 35 MW. The FEL served as the r.f. power source for the HGA. The maximum power in the transmitted pulse was measured to be 15 MW for an input pulse of 35 MW. The theoretically calculated shunt impedance of 116 M{Omega}/m predicts a field gradient of 65 MeV/m inside the HGA. For power levels >3MW the pulse transmitted through the HGA was observed to be shorter than the input pulse and pulse shortening became more serious with increasing power input. At the highest power levels the output pulse length (about 5 nsec) was about one quarter of the input pulse length. Various tests suggest that these undesirable effects occur in the input coupler to the HGA. Light and X-ray production inside the HGA have been observed.

  18. Phase Modulation for postcompensation of dispersion in 160-Gb/s systems

    DEFF Research Database (Denmark)

    Siahlo, Andrei; Clausen, A. T.; Oxenløwe, Leif Katsuo

    2005-01-01

    Tunable postcompensation of second-order dispersion by sinusoidal phase modulation is realized for a 160-Gb/s optical transmission system. Accumulated dispersions with magnitudes up to 4 ps/nm are compensated in the receiver end.......Tunable postcompensation of second-order dispersion by sinusoidal phase modulation is realized for a 160-Gb/s optical transmission system. Accumulated dispersions with magnitudes up to 4 ps/nm are compensated in the receiver end....

  19. Spectral Compression of Intense Femtosecond Pulses by Self Phase Modulation in Silica Glass

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Zhou, Binbin; Bache, Morten

    2012-01-01

    We experimentally demonstrate spectral compression of mJ fs pulses by self phase modulation in silica glass. Spectral narrowing by factor 2.4 of near-transform-limited pulses is shown, with good agreement between experiment and numerical simulation.......We experimentally demonstrate spectral compression of mJ fs pulses by self phase modulation in silica glass. Spectral narrowing by factor 2.4 of near-transform-limited pulses is shown, with good agreement between experiment and numerical simulation....

  20. Distributed MIMO Antenna Architecture for Wireless-over- Fiber Backhaul with Multicarrier Optical Phase Modulation

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Wong, Shing-Wa; Zibar, Darko

    2011-01-01

    A novel optical phase-modulated wireless-over-fiber backhaul architecture for next generation cellular network is presented and experimentally demonstrated for high capacity wireless multicarrier uplink transmission on a single wavelength.......A novel optical phase-modulated wireless-over-fiber backhaul architecture for next generation cellular network is presented and experimentally demonstrated for high capacity wireless multicarrier uplink transmission on a single wavelength....

  1. Phase modulation spectroscopy of space-charge wave resonances in Bi12SiO20

    DEFF Research Database (Denmark)

    Vasnetsov, M.; Buchhave, Preben; Lyuksyutov, S.

    1997-01-01

    A new experimental method for the study of resonance effects and space-charge wave excitation in photorefractive Bi12SiO20 crystals by using a combination of frequency detuning and phase modulation technique has been developed. The accuracy of the method allows a detection of resonance peaks...... and revealed its resonance dependence. A minimum of electric current through the sample corresponds to the main resonance detected by phase modulation technique....

  2. Asymmetrically pumped Bragg scattering with the effects of nonlinear phase modulation

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; Friis, Søren Michael Mørk; Reddy, Dileep V.

    2014-01-01

    We derive exact solutions to asymmetrically pumped Bragg scattering with nonlinear phase-modulation (NPM) and show that this setup allows for the frequency conversion of many temporal modes, while reducing the effects due to NPM.......We derive exact solutions to asymmetrically pumped Bragg scattering with nonlinear phase-modulation (NPM) and show that this setup allows for the frequency conversion of many temporal modes, while reducing the effects due to NPM....

  3. Surface phase defects induced downstream laser intensity modulation in high-power laser facility

    Institute of Scientific and Technical Information of China (English)

    Xin Zhang; Wei Zhou; Wanjun Dai; Dongxia Hu; Xuewei Deng; Wanqing Huang; Lidan Zhou; Qiang Yuan; Xiaoxia Huang; De’en Wang; Ying Yang

    2016-01-01

    Optics surface phase defects induced intensity modulation in high-power laser facility for inertial confinement fusion research is studied. Calculations and experiments reveal an exact mapping of the modulation patterns and the optics damage spot distributions from the surface phase defects. Origins are discussed during the processes of optics manufacturing and diagnostics, revealing potential improvements for future optics manufacturing techniques and diagnostic index, which is meaningful for fusion level laser facility construction and its operation safety.

  4. Experimental Demonstration of Capacity-Achieving Phase-Shifted Superposition Modulation

    DEFF Research Database (Denmark)

    Estaran Tolosa, Jose Manuel; Zibar, Darko; Caballero Jambrina, Antonio

    2013-01-01

    We report on the first experimental demonstration of phase-shifted superposition modulation (PSM) for optical links. Successful demodulation and decoding is obtained after 240 km transmission for 16-, 32- and 64-PSM.......We report on the first experimental demonstration of phase-shifted superposition modulation (PSM) for optical links. Successful demodulation and decoding is obtained after 240 km transmission for 16-, 32- and 64-PSM....

  5. On The Use of A Phase Modulation Method for Decorrelation in Acoustic Feedback Cancellation

    DEFF Research Database (Denmark)

    Guo, Meng; Jensen, Søren Holdt; Jensen, Jesper

    2012-01-01

    of decorrelation. In this work, we study a subband phase modulation method, which was originally proposed for decorrelation in multichannel acoustic echo cancellation systems. We determine if this method is effective for decorrelation in acoustic feedback cancellation systems by comparing it to a structurally...... similar frequency shifting decorrelation method. We show that the phase modulation method is suitable for decorrelation in a hearing aid acoustic feedback cancellation system, although the frequency shifting method is in general slightly more effective....

  6. Brillouin suppression in a fiber optical parametric amplifier by combining temperature distribution and phase modulation

    DEFF Research Database (Denmark)

    Lorenzen, Michael Rodas; Noordegraaf, Danny; Nielsen, Carsten Vandel

    2008-01-01

    We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation.......We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation....

  7. RF Loads for Energy Recovery

    CERN Document Server

    Federmann, S; Caspers, F

    2012-01-01

    Different conceptional designs for RF high power loads are presented. One concept implies the use of solid state rectifier modules for direct RF to DC conversion with efficiencies beyond 80%. In addition, robust metallic low-Q resonant structures, capable of operating at high temperatures (>150 ◦C) are discussed. Another design deals with a very high temperature (up to 800 ◦C) air cooled load using a ceramic foam block inside a metal enclosure. This porous ceramic block is the microwave absorber and is not brazed to the metallic enclosure.

  8. High power solid state rf amplifier for proton accelerator.

    Science.gov (United States)

    Jain, Akhilesh; Sharma, Deepak Kumar; Gupta, Alok Kumar; Hannurkar, P R

    2008-01-01

    A 1.5 kW solid state rf amplifier at 352 MHz has been developed and tested at RRCAT. This rf source for cw operation will be used as a part of rf system of 100 MeV proton linear accelerator. A rf power of 1.5 kW has been achieved by combining output power from eight 220 W rf amplifier modules. Amplifier modules, eight-way power combiner and divider, and directional coupler were designed indigenously for this development. High efficiency, ease of fabrication, and low cost are the main features of this design.

  9. A low-phase-noise wide-band CMOS quadrature VCO for multi-standard RF front-ends

    DEFF Research Database (Denmark)

    Fard, Ali; Andreani, Pietro

    2005-01-01

    A low phase noise CMOS LC quadrature VCO (QVCO) with a wide frequency range of 3.6-5.6 GHz, designed in a standard 0.18 μm process for multi-standard front-ends, is presented. A significant advantage of the topology is the larger oscillation amplitude when compared to other conventional QVCO...... structures. The QVCO is compared to a double cross-coupled LC-tank differential oscillator, both in theory and experiments, for evaluation of its phase noise, providing a good insight into its performance. The measured data displays up to 2 dBc/Hz lower phase noise in the 1/f2 region for the QVCO, when...... consuming twice the current of the differential VCO, based on an identical LC-tank. Experimental results on the QVCO show a phase noise level of -127.5 dBc/Hz at 3 MHz offset from a 5.6 GHz carrier while dissipating 8 mA of current, resulting in a figure of merit of 181.3 dBc/Hz....

  10. Wideband phase-locked loop circuit with real-time phase correction for frequency modulation atomic force microscopy

    OpenAIRE

    Fukuma, Takeshi; Yoshioka, Shunsuke; Asakawa, Hitoshi

    2011-01-01

    We have developed a wideband phase-locked loop (PLL) circuit with real-time phase correction for high-speed and accurate force measurements by frequency modulation atomic force microscopy (FM-AFM) in liquid. A high-speed operation of FM-AFM requires the use of a high frequency cantilever which, however, increases frequency-dependent phase delay caused by the signal delay within the cantilever excitation loop. Such phase delay leads to an error in the force measurements by FM-AFM especially wi...

  11. A phase-locked laser system based on modulation technique for atom interferometry

    CERN Document Server

    Li, Wei; Song, Ningfang; Xu, Xiaobin; Lu, Xiangxiang

    2016-01-01

    We demonstrate a Raman laser system based on phase modulation technology and phase feedback control. The two laser beams with frequency difference of 6.835 GHz are modulated using electro-optic and acousto-optic modulators, respectively. Parasitic frequency components produced by the electro-optic modulator are filtered using a Fabry-Perot Etalon. A straightforward phase feedback system restrains the phase noise induced by environmental perturbations. The phase noise of the laser system stays below -125 rad2/Hz at frequency offset higher than 500 kHz. Overall phase noise of the laser system is evaluated by calculating the contribution of the phase noise to the sensitivity limit of a gravimeter. The results reveal that the sensitivity limited by the phase noise of our laser system is lower than that of a state-of-art optical phase-lock loop scheme when a gravimeter operates at short pulse duration, which makes the laser system a promising option for our future application of atom interferometer.

  12. A phase-locked laser system based on double direct modulation technique for atom interferometry

    Science.gov (United States)

    Li, Wei; Pan, Xiong; Song, Ningfang; Xu, Xiaobin; Lu, Xiangxiang

    2017-02-01

    We demonstrate a laser system based on phase modulation technology and phase feedback control. The two laser beams with frequency difference of 6.835 GHz are modulated using electro-optic and acousto-optic modulators, respectively. Parasitic frequency components produced by the electro-optic modulator are filtered using a Fabry-Perot Etalon. A straightforward phase feedback system restrains the phase noise induced by environmental perturbations. The phase noise of the laser system stays below -125 rad2/Hz at frequency offset higher than 500 kHz. Overall phase noise of the laser system is evaluated by calculating the contribution of the phase noise to the sensitivity limit of a gravimeter. The results reveal that the sensitivity limited by the phase noise of our laser system is lower than that of a state-of-the-art optical phase-lock loop scheme when a gravimeter operates at short pulse duration, which makes the laser system a promising option for our future application of atom interferometer.

  13. Novel electro-optical phase modulator based on GaInAs/InP modulation-doped quantum-well structures

    DEFF Research Database (Denmark)

    Thirstrup, C.

    1992-01-01

    A novel electro-optical phase modulator working at 1.55 µm is analyzed and proposed. It is shown by a numerical model that in a GaInAs/InP pn-nin-pn multiple-quantum-well waveguide structure, large optical phase modulation can be obtained at small intensity modulation and with improved performance...... compared to what is achieved in quantum confined Stark effect modulators of the same material system. The device proposed is based on a modulation of the quasi-Fermi energies of the electrons in the GaInAs quantum wells. This operational principle allows GHz modulation frequencies. Applied Physics Letters...

  14. Hidden phase in a two-dimensional Sn layer stabilized by modulation hole doping

    Science.gov (United States)

    Ming, Fangfei; Mulugeta, Daniel; Tu, Weisong; Smith, Tyler S.; Vilmercati, Paolo; Lee, Geunseop; Huang, Ying-Tzu; Diehl, Renee D.; Snijders, Paul C.; Weitering, Hanno H.

    2017-03-01

    Semiconductor surfaces and ultrathin interfaces exhibit an interesting variety of two-dimensional quantum matter phases, such as charge density waves, spin density waves and superconducting condensates. Yet, the electronic properties of these broken symmetry phases are extremely difficult to control due to the inherent difficulty of doping a strictly two-dimensional material without introducing chemical disorder. Here we successfully exploit a modulation doping scheme to uncover, in conjunction with a scanning tunnelling microscope tip-assist, a hidden equilibrium phase in a hole-doped bilayer of Sn on Si(111). This new phase is intrinsically phase separated into insulating domains with polar and nonpolar symmetries. Its formation involves a spontaneous symmetry breaking process that appears to be electronically driven, notwithstanding the lack of metallicity in this system. This modulation doping approach allows access to novel phases of matter, promising new avenues for exploring competing quantum matter phases on a silicon platform.

  15. Performance Analysis of Different Modulation Formats in Optical Communication

    Science.gov (United States)

    Singh, Kulwinder; Singh, Maninder; Bhatia, Kamaljit Singh; Ryait, Hardeep Singh

    2016-06-01

    In this paper, we demonstrated the variation of different parameters with quadrature amplitude modulation (QAM) and differential phase shift key (DPSK) sequence generator, which generates modulated signals, in data transmission for communication and analysed that how the difference of these sequence generators effect its resonant frequency (RF) value, eye diagram and electrical constellation representation of the system.

  16. Design-oriented analytic model of phase and frequency modulated optical links

    Science.gov (United States)

    Monsurrò, Pietro; Saitto, Antonio; Tommasino, Pasquale; Trifiletti, Alessandro; Vannucci, Antonello; Cimmino, Rosario F.

    2016-07-01

    An analytic design-oriented model of phase and frequency modulated microwave optical links has been developed. The models are suitable for design of broadband high dynamic range optical links for antenna remoting and optical beamforming, where noise and linearity of the subsystems are a concern Digital filter design techniques have been applied to the design of optical filters working as frequency discriminator, that are the bottleneck in terms of linearity for these systems. The models of frequency modulated, phase modulated, and coherent I/Q link have been used to compare performance of the different architectures in terms of linearity and SFDR.

  17. Acoustically modulated x-ray phase contrast imaging.

    Science.gov (United States)

    Hamilton, Theron J; Bailat, Claude J; Rose-Petruck, Christoph; Diebold, Gerald J

    2004-11-07

    We report the use of ultrasonic radiation pressure with phase contrast x-ray imaging to give an image proportional to the space derivative of a conventional phase contrast image in the direction of propagation of an ultrasonic beam. Intense ultrasound is used to exert forces on objects within a body giving displacements of the order of tens to hundreds of microns. Subtraction of images made with and without the ultrasound field gives an image that removes low spatial frequency features and highlights high frequency features. The method acts as an acoustic 'contrast agent' for phase contrast x-ray imaging, which in soft tissue acts to highlight small density changes.

  18. X-Parameter Based Modelling of Polar Modulated Power Amplifiers

    DEFF Research Database (Denmark)

    Wang, Yelin; Nielsen, Troels Studsgaard; Sira, Daniel

    2013-01-01

    X-parameters are developed as an extension of S-parameters capable of modelling non-linear devices driven by large signals. They are suitable for devices having only radio frequency (RF) and DC ports. In a polar power amplifier (PA), phase and envelope of the input modulated signal are applied...... at separate ports and the envelope port is neither an RF nor a DC port. As a result, X-parameters may fail to characterise the effect of the envelope port excitation and consequently the polar PA. This study introduces a solution to the problem for a commercial polar PA. In this solution, the RF-phase path...

  19. Transparent building-integrated PV modules. Phase 1: Comprehensive report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-28

    This Comprehensive Report encompasses the activities that have been undertaken by Kiss + Cathcart, Architects, in conjunction with Energy Photovoltaics, Incorporated (EPV), to develop a flexible patterning system for thin-film photovoltaic (PV) modules for building applications. There are two basic methods for increasing transparency/light transmission by means of patterning the PV film: widening existing scribe lines, or scribing a second series of lines perpendicular to the first. These methods can yield essentially any degree of light transmission, but both result in visible patterns of light and dark on the panel surface. A third proposed method is to burn a grid of dots through the films, independent of the normal cell scribing. This method has the potential to produce a light-transmitting panel with no visible pattern. Ornamental patterns at larger scales can be created using combinations of these techniques. Kiss + Cathcart, Architects, in conjunction with EPV are currently developing a complementary process for the large-scale lamination of thin-film PVs, which enables building integrated (BIPV) modules to be produced in sizes up to 48 in. x 96 in. Flexible laser patterning will be used for three main purposes, all intended to broaden the appeal of the product to the building sector: To create semitransparent thin-film modules for skylights, and in some applications, for vision glazing.; to create patterns for ornamental effects. This application is similar to fritted glass, which is used for shading, visual screening, graphics, and other purposes; and to allow BIPV modules to be fabricated in various sizes and shapes with maximum control over electrical characteristics.

  20. Soliton Formation in Whispering-Gallery-Mode Resonators via Input Phase Modulation

    CERN Document Server

    Taheri, Hossein; Wiesenfeld, Kurt; Adibi, Ali

    2014-01-01

    We propose a method for soliton formation in whispering-gallery-mode (WGM) resonators through input phase modulation. Our numerical simulations of a variant of the Lugiato-Lefever equation suggest that modulating the input phase at a frequency equal to the resonator free-spectral-range and at modest modulation depths provides a deterministic route towards soliton formation in WGM resonators without undergoing a chaotic phase. We show that the generated solitonic state is sustained when the modulation is turned off adiabatically. Our results support parametric seeding as a powerful means of control, besides input pump power and pump-resonance detuning, over frequency comb generation in WGM resonators. Our findings also help pave the path towards ultra-short pulse formation on a chip.

  1. The effect of ambipolar electric fields on the electron heating in capacitive RF plasmas

    CERN Document Server

    Schulze, J; Derzsi, A; Korolov, I; Schuengel, E

    2016-01-01

    We investigate the electron heating dynamics in electropositive argon and helium capacitively coupled RF discharges driven at 13.56 MHz by Particle in Cell simulations and by an analytical model. The model allows to calculate the electric field outside the electrode sheaths, space and time resolved within the RF period. Electrons are found to be heated by strong ambipolar electric fields outside the sheath during the phase of sheath expansion in addition to classical sheath expansion heating. By tracing individual electrons we also show that ionization is primarily caused by electrons that collide with the expanding sheath edge multiple times during one phase of sheath expansion due to backscattering towards the sheath by collisions. A synergistic combination of these different heating events during one phase of sheath expansion is required to accelerate an electron to energies above the threshold for ionization. The ambipolar electric field outside the sheath is found to be time modulated due to a time modul...

  2. DUAL THREE-PHASE ADJUSTABLE SPEED DRIVE WITH SYNCHRONIZED SPACE-VECTOR MODULATION

    Directory of Open Access Journals (Sweden)

    Oleschuk V.I.

    2008-04-01

    Full Text Available Split-phase symmetrical motor drive on the base of two voltage source inverters, controlled by algorithms of synchronized pulse width modulation (PWM, has been investigated. Simulation results are presented for dual three-phase power conversion systems with continuous, discontinuous and combined versions of synchronized PWM.

  3. Multipacket Reception in Wireless Ad Hoc Networks Based on CDMA and Polynomial Phase-modulating Sequences

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ji-dong; Wang Bao-yun; ZHENG Bao-yu

    2004-01-01

    Based on the polynomial phase-modulating sequences algorithm, this paper presents two schemes for the application of CDMA with polynomial phase signals to improve the signal separation performance. Simulation results illustrate the proposed approach have 1~3 dB improvement about signal-to-interference and noise ratio in most environment, compared with the PPS algorithm.

  4. Integrated quasi-phase-matched second-harmonic generator and electro-optic phase modulator for low-noise phase-sensitive amplification.

    Science.gov (United States)

    Enbutsu, Koji; Umeki, Takeshi; Tadanaga, Osamu; Asobe, Masaki; Takenouchi, Hirokazu

    2015-07-15

    We propose a quasi-phase-matched second-harmonic generator integrated with an electro-optic phase modulator in a directly bonded LiNbO3 (DB-LN) waveguide to obtain high signal-to-noise ratio (SNR) pump light for a phase-sensitive amplifier (PSA). This integrated device exhibits 1-MHz modulation and 1-W second-harmonic-generation properties sufficient for phase-locking between the signal and pump and for PSA gain, respectively. A novel PSA configuration based on the high-input-power tolerance of the device helps to suppress the noise from the erbium-doped fiber amplifier used for pump-light generation and leads to an improvement of the SNR of the pump light. The SNR improvement was confirmed by comparing the noise figure of a PSA employing the DB-LN waveguide with that of a PSA using a Ti-diffused LN waveguide modulator.

  5. Wideband phase-locked loop circuit with real-time phase correction for frequency modulation atomic force microscopy

    Science.gov (United States)

    Fukuma, Takeshi; Yoshioka, Shunsuke; Asakawa, Hitoshi

    2011-07-01

    We have developed a wideband phase-locked loop (PLL) circuit with real-time phase correction for high-speed and accurate force measurements by frequency modulation atomic force microscopy (FM-AFM) in liquid. A high-speed operation of FM-AFM requires the use of a high frequency cantilever which, however, increases frequency-dependent phase delay caused by the signal delay within the cantilever excitation loop. Such phase delay leads to an error in the force measurements by FM-AFM especially with a low Q factor. Here, we present a method to compensate this phase delay in real time. Combined with a wideband PLL using a subtraction-based phase comparator, the method allows to perform an accurate and high-speed force measurement by FM-AFM. We demonstrate the improved performance by applying the developed PLL to three-dimensional force measurements at a mica/water interface.

  6. Intrachannel cross-phase modulation-induced phase shift in high-speed dispersion-managed optical fiber transmission system

    Science.gov (United States)

    Syed, Nitu; Faisal, Mohammad

    2013-12-01

    We investigate the intrachannel cross-phase modulation (IXPM)-induced phase shift in optical return-to-zero pulse propagating in a periodically dispersion-managed long-haul optical fiber transmission line. Necessary dynamical equations for various pulse parameters have been derived using variational analysis to estimate the phase shift. These equations are solved by the Runge-Kutta method. The analytical result is verified by numerical simulation based on split-step Fourier method. We therefore explore the effects of various parameters, such as transmission distance, input power, duty cycle, dispersion map strength, and residual dispersion, on phase shift for a 40 Gb/s single-channel transmission system. We also check the impact of variation of bit rate on phase shift. We find that IXPM-induced phase shift can be mitigated by proper adjustment of dispersion management and different pulse parameters like duty cycle, dispersion map strength, and peak power.

  7. Remarks on nonlinear relation among phases and frequencies in modulational instabilities of parallel propagating Alfven waves

    CERN Document Server

    Nariyuki, Y; Nariyuki, Yasuhiro; Hada, Tohru

    2006-01-01

    Nonlinear relations among frequencies and phases in modulational instability of circularly polarized Alfven waves are discussed, within the context of one dimensional, dissipation-less, unforced fluid system. We show that generation of phase coherence is a natural consequence of the modulational instability of Alfven waves. Furthermore, we quantitatively evaluate intensity of wave-wave interaction by using bi-coherence, and also by computing energy flow among wave modes, and demonstrate that the energy flow is directly related to the phase coherence generation.

  8. Coherent storage and phase modulation of single hard-x-ray photons using nuclear excitons.

    Science.gov (United States)

    Liao, Wen-Te; Pálffy, Adriana; Keitel, Christoph H

    2012-11-09

    The coherent storage and phase modulation of x-ray single-photon wave packets in the resonant scattering of light off nuclei is theoretically investigated. We show that by switching off and on again the magnetic field in the nuclear sample, phase-sensitive storage of photons in the keV regime can be achieved. Corresponding π phase modulation of the stored photon can be accomplished if the retrieving magnetic field is rotated by 180°. The development of such x-ray single-photon control techniques is a first step towards forwarding quantum optics and quantum information to shorter wavelengths and more compact photonic devices.

  9. Phase modulation parallel optical delay detector for microwave angle-of-arrival measurement with accuracy monitored

    CERN Document Server

    Cao, Z; Lu, R; Boom, H P A van den; Tangdiongga, E; Koonen, A M J

    2014-01-01

    A novel phase modulation parallel optical delay detector is proposed for microwave angle-of-arrival (AOA) measurement with accuracy monitored by using only one dual-electrode Mach-Zenhder modulator. A theoretical model is built up to analyze the proposed system including measurement accuracy monitoring. The spatial delay measurement is translated into the phase shift between two replicas of a microwave signal. Thanks to the accuracy monitoring, the phase shifts from 5{\\deg} to 165{\\deg} are measured with less than 3.1{\\deg} measurement error.

  10. Time-division phase modulated single-photon interference in a Sagnac interferometer

    Institute of Scientific and Technical Information of China (English)

    WU Guang; ZHOU Chunyuan; ZENG Heping

    2003-01-01

    We introduce a stable, long-distance single- photon Sagnac interferometer, which has a balanced configuration to efficiently compensate phase drift caused by change of the fiber-optic path. By using time-division phase modulation, single-photon interference was realized at 1550 nm in a 5-km-long as well as 27-km-long Sagnac fiber loops, with a fringe visibility higher than 90% and long-term stability. The stable performance of the single-photon interference indicated that the time-division phase-modulated Sag- nac interferometer might readily lead to practical applications in single-photon routing and quantum cryptography.

  11. Modulation Schemes of Multi-phase Three-Level Z-Source Inverters

    DEFF Research Database (Denmark)

    Gao, F.; Loh, P.C.; Blaabjerg, Frede;

    2007-01-01

    This paper investigates the modulation schemes of three-level multiphase Z-source inverters with either two Z-source networks or single Z-source network connected between the dc sources and inverter circuitry. With the proper offset added for achieving both desired four-leg operation and optimized...... harmonic performance, the proposed modulation schemes of four-leg three-level Z-source inverters can satisfy the expected buck-boost operation under unbalanced modulation conditions. Except of the modulation complexity hidden in the four-leg inverters, five-phase three-level Z-source inverters show totally...... different modulation requirement and output performance. For clearly illustrating the detailed modulation process, time domain analysis instead of the traditional multi-dimensional space vector demonstration is assumed which reveals the right way to insert shoot-through durations in the switching sequence...

  12. Pattern manipulation via on-chip phase modulation between orbital angular momentum beams

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huanlu [Department of Electrical and Electronic Engineering, University of Bristol, University Walk, Bristol BS8 1TR (United Kingdom); School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LP (United Kingdom); Strain, Michael J. [School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LP (United Kingdom); Wolfson Centre, Institute of Photonics, University of Strathclyde, 106 Rottenrow East, Glasgow G4 0NW (United Kingdom); Meriggi, Laura; Sorel, Marc [School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LP (United Kingdom); Chen, Lifeng; Zhu, Jiangbo; Cicek, Kenan [Department of Electrical and Electronic Engineering, University of Bristol, University Walk, Bristol BS8 1TR (United Kingdom); Wang, Jianwei; Thompson, Mark G. [Centre for Quantum Photonics, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1UB (United Kingdom); Cai, Xinlun, E-mail: caixlun5@mail.sysu.edu.cn [Centre for Quantum Photonics, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1UB (United Kingdom); State Key Laboratory of Optoelectronic Materials and Technologies and School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Yu, Siyuan, E-mail: s.yu@bristol.ac.uk [Department of Electrical and Electronic Engineering, University of Bristol, University Walk, Bristol BS8 1TR (United Kingdom); State Key Laboratory of Optoelectronic Materials and Technologies and School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2015-08-03

    An integrated approach to thermal modulation of relative phase between two optical vortices with opposite chirality has been demonstrated on a silicon-on-insulator substrate. The device consists of a silicon-integrated optical vortex emitter and a phase controlled 3 dB coupler. The relative phase between two optical vortices can be actively modulated on chip by applying a voltage on the integrated heater. The phase shift is shown to be linearly proportional to applied electrical power, and the rotation angle of the interference pattern is observed to be inversely proportional to topological charge. This scheme can be used in lab-on-chip, communications and sensing applications. It can be intentionally implemented with other modulation elements to achieve more complicated applications.

  13. Effect of Phase Shifted Frequency Modulation on Two Level Atom-Field Interaction

    Institute of Scientific and Technical Information of China (English)

    K.V. Priyesh; Ramesh Babu Thayyullathil

    2012-01-01

    We have studied the effect of phase shifted frequency modulation on two level atom with field interaction using Jaynes-Cummings model. Here the frequency of the interacting field is sinusoidally varying with time with a constant phase. Due to the presence of phase in the frequency modulation, the variation of population inversion with time is different from the standard case. There are no exact collapses and revivals in the variation of population inversion but it oscillates sinusoidally with time. In coherent field atom interaction the population inversion behaves as in the case of Fock state atom interaction, when frequency modulation with a non zero phase is applied. The study done with squeezed field has shown the same behavior of the population inversion.

  14. Optical phase modulator utilizing a transparent piezofilm for use with the extrinsic fiber interferometer

    Science.gov (United States)

    Sudarshanam, V. S.; Claus, Richard O.

    1993-03-01

    A piezoelectnc polyvinylidene flouride (PVF2) film with transparent indium tin oxide electrode metallization is placed directly in the path of a single mode fiber output, to form an extrinsic optical interferometer. This device can be used concurrently with another extrinsic inteferometer on a fiber directional coupler to generate a carrier phase modulation on which the signal phase shift is superimposed. Experimental results of the induced phase shifting coefficient are presented for two arrangements of the piezofilm differing in their boundary clamping conditions.

  15. Sample-specific conductance fluctuations modulated by the superconducting phase

    NARCIS (Netherlands)

    den Hartog, SG; Kapteyn, CMA; van Wees, BJ; Klapwijk, TM; Borghs, G

    1998-01-01

    We present an overview of sample-specific transport properties tuned by the superconducting phase difference between two superconductors connected to a disordered 2-dimensional electron gas (2DEG). We demonstrate a crossover from ensemble-averaged to sample-specific resistance oscillations of a T-sh

  16. Characteristics of phase-averaged equations for modulated wave groups

    NARCIS (Netherlands)

    Klopman, G.; Petit, H.A.H.; Battjes, J.A.

    2000-01-01

    The project concerns the influence of long waves on coastal morphology. The modelling of the combined motion of the long waves and short waves in the horizontal plane is done by phase-averaging over the short wave motion and using intra-wave modelling for the long waves, see e.g. Roelvink (1993). Th

  17. FPGA-based phase control of acousto-optic modulator Fourier synthesis system through gradient descent phase-locking algorithm.

    Science.gov (United States)

    Underwood, Kenneth J; Jones, Andrew M; Gopinath, Juliet T

    2015-06-20

    We present a new application of the stochastic parallel gradient descent (SPGD) algorithm to fast active phase control in a Fourier synthesis system. Pulses (4.9 ns) with an 80 MHz repetition rate are generated by feedback from a single phase-sensitive metric. Phase control is applied via fast current modulation of a tapered amplifier using an SPGD algorithm realized on a field-programmable gate array (FPGA). The waveforms are maintained by constant active feedback from the FPGA. We also discuss the extension of this technique to many more semiconductor laser emitters in a diode laser array.

  18. Nonlinear phase shifts of modulated light waves with slow and superluminal group delay in stimulated Brillouin scattering.

    Science.gov (United States)

    Arditi, Tal; Granot, Er'el; Sternklar, Shmuel

    2007-09-15

    Brillouin amplification with counterpropagating modulated pump and Stokes light leads to nonlinear modulation-phase shifts of the interacting intensity waves. This is due to a partial transformation of the nonmodulated light component at the input into modulated light at the output as a result of a mixing process with the counterpropagating modulated component of the pump and results in an advance or delay of the input modulation. This occurs for interactions over less than half of a modulation wavelength. Milliwatts of power in a kilometer of standard single-mode fiber give significant tunability of the modulation phase.

  19. Fast phase switching within the bunch train of the PHIN photo-injector at CERN using fiber-optic modulators on the drive laser

    CERN Document Server

    Divall Csatari, M; Bolzon, B; Bravin, E; Chevallay, E; Dobert, S; Drozdy, A; Fedosseev, V; Hessler, C; Lefevre, T; Livesley, S; Losito, R; Mete, O; Petrarca, M; Rabiller, A N

    2011-01-01

    The future Compact Linear Collider (CLIC) e^-/e^+ collider is based on the two-beam acceleration concept, whereby interleaving electron bunches of the drive beam through a delay loop and combiner rings as well as high peak RF power at 12GHz are created locally to accelerate a second beam, the main beam. One of the main objectives of the currently operational CLIC Test Facility (CTF3) is to demonstrate beam combination from 1.5GHz to 12GHz, which requires satellite-free fast phase-switching of the drive beam with sub-ns speed. The PHIN photo-injector, with the photo-injector laser, provides flexibility in the time structure of the electron bunches produced, by direct manipulation of the laser pulses. A novel fiber modulator-based phase-switching technique allows clean and fast phase-switch at 1.5GHz. This paper describes the switching system based on fiber-optic modulators, and the measurements carried out on both the laser and the electron beam to verify the scheme.

  20. Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

    Science.gov (United States)

    Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman

    2016-02-01

    Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.

  1. Large resistivity modulation in mixed-phase metallic systems

    Science.gov (United States)

    Lee, Yeonbae; Liu, Zhiqi; Heron, John; Clarkson, James; Hong, Jeongmin; Ko, Changhyun; Biegalski, Michael; Aschauer, Ulrich; Hsu, Shang-Lin; Nowakowski, Mark; Wu, Junqiao; Christen, Hans; Salahuddin, Sayeef; Bokor, Jeffrey; Spaldin, Nicola; Schlom, Darrell; Ramesh, Ramamoorthy

    2015-03-01

    We have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a ``giant'' electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films comprise coexisting ferromagnetic and antiferromagnetic phases with different resistivities, and the origin of the GER effect is the strain-mediated change in their relative proportions. The observed behavior is reminiscent of colossal magnetoresistance in perovskite manganites, and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation.

  2. Continuous-time cross-phase modulation and quantum computation

    CERN Document Server

    Shapiro, J H; Razavi, Mohsen; Shapiro, Jeffrey H.

    2006-01-01

    The weak nonlinear Kerr interaction between single photons and intense laser fields has been recently proposed as a basis for distributed optics-based solutions to few-qubit applications in quantum communication and computation. Here, we analyze the above Kerr interaction by employing a continuous-time multi-mode model for the input/output fields to/from the nonlinear medium. In contrast to previous single-mode treatments of this problem, our analysis takes into account the full temporal content of the free-field input beams as well as the non-instantaneous response of the medium. The main implication of this model, in which the cross-Kerr phase shift on one input is proportional to the photon flux of the other input, is the existence of phase noise terms at the output. We show that these phase noise terms will degrade the performance of the parity gate proposed by Munro, Nemoto, and Spiller [New J. Phys. 7, 137 (2005)].

  3. Emergence of Long Period Antiferromagnetic Orders from Haldane Phase in S=1 Heisenberg Chains with D-Modulation

    Science.gov (United States)

    Hida, Kazuo; Chen, Wei

    2005-07-01

    The effect of spatial modulation of the single-site anisotropy D on the ground state of the S=1 Heisenberg chains is investigated. In the case of period 2 modulation, it is found that the phase diagram contains the Haldane phase, large-D phase, Néel phase of udud-type and u0d0-type. It is shown that the hidden antiferromagnetic order in the Haldane phase compatible with the spatial modulation of D-term get frozen resulting in the emergence of various types of Néel orders. The investigation of the model with longer period D-modulation also confirms this picture.

  4. Modulation of auroral electrojet currents using dual HF beams with ELF phase offset

    Science.gov (United States)

    Golkowski, M.; Cohen, M.; Moore, R. C.

    2012-12-01

    The modulation of naturally occuring ionospheric currents with high power radio waves in the high frequency (HF, 3-10 MHz) band is a well known technique for generation of extremely low frequency (ELF, 3-3000 Hz) and very low frequency (VLF, 3-30 kHz) waves. We use the heating facility of the High Frequency Active Auroral Research Program (HAARP) to investigate the effect of using dual HF beams with an ELF/VLF phase offset between the modulation waveforms. Experiments with offset HF beams confirm the model of independent ELF/VLF sources. Experiments with co-located HF beams exhibit interaction between the first and second harmonics of the modulated tones when square and sine wave modulation waveforms are employed. Using ELF/VLF phase offsets for co-loacted beams is also shown to be a potential diagnostic for the D-region ionospheric profile.

  5. Study on 8DPSK of multi-phase modulation technology based on CSRZ

    Institute of Scientific and Technical Information of China (English)

    XU Heng-ying; NIU Hui-juan; ZHANG Min; WANG Fang; BAI Cheng-lin; ZHANG Xiao-guang

    2011-01-01

    A new modulation format in optical fiber communication system, the eight differential phase shift keying (8DPSK) of multi-phase modulation technology based on carrier-suppressed return-to-zero (CSRZ) is proposed in this paper. The formulae of CSRZ-8DPSK modem methods are derived theoretically and the methods are demonstrated. Spectra based on CSRZ and CSRZ-8DPSK modulation methods and their eye diagrams by simulation with MATLAB are obtained. The results show that the CSRZ-8DPSK modulation methods have narrower spectra with higher efficiency. The performance of eye diagrams is also much satisfactory after demodulation, suggesting some possible applications of the methods in the next generation of optical fiber communications.

  6. Hybrid Modulation of Bidirectional Three-Phase Dual-Active-Bridge DC Converters for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Yen-Ching Wang

    2016-06-01

    Full Text Available Bidirectional power converters for electric vehicles (EVs have received much attention recently, due to either grid-supporting requirements or emergent power supplies. This paper proposes a hybrid modulation of the three-phase dual-active bridge (3ΦDAB converter for EV charging systems. The designed hybrid modulation allows the converter to switch its modulation between phase-shifted and trapezoidal modes to increase the conversion efficiency, even under light-load conditions. The mode transition is realized in a real-time manner according to the charging or discharging current. The operation principle of the converter is analyzed in different modes and thus design considerations of the modulation are derived. A lab-scaled prototype circuit with a 48V/20Ah LiFePO4 battery is established to validate the feasibility and effectiveness.

  7. Tailor the functionalities of metasurfaces: From perfect absorption to phase modulation

    CERN Document Server

    Qu, Che; Hao, Jiaming; Qiu, Meng; Li, Xin; Xiao, Shiyi; Miao, Ziqi; Dai, Ning; He, Qiong; Sun, Shulin; Zhou, Lei

    2015-01-01

    Metasurfaces in metal/insulator/metal configuration have recently been widely used in photonics research, with applications ranging from perfect absorption to phase modulation, but why and when such structures can realize what kind of functionalities are not yet fully understood. Here, based on a coupled-mode theory analysis, we establish a complete phase diagram in which the optical properties of such systems are fully controlled by two simple parameters (i.e., the intrinsic and radiation losses), which are in turn dictated by the geometrical/material parameters of the underlying structures. Such a phase diagram can greatly facilitate the design of appropriate metasurfaces with tailored functionalities (e.g., perfect absorption, phase modulator, electric/magnetic reflector, etc.), demonstrated by our experiments and simulations in the Terahertz regime. In particular, our experiments show that, through appropriate structural/material tuning, the device can be switched across the functionality phase boundaries...

  8. Synchronization and Coherent Combining of Two Pulsed Fiber Ring Lasers Based on Direct Phase Modulation

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Lin; ZHOU Pu; MA Hao-Tong; CHEN Zi-Lun; LI Xiao; XU Xiao-Jun; LIU Ze-Jin

    2009-01-01

    We demonstrate a scalable architecture for coherent combining of pulsed fiber ring lasers based on mutual injection and direct phase modulation. By direct phase modulation in the common arm of two ring lasers, synchronous pulsed lasers can be generated and coherent combining of the two synchronous lasers is obtained. Two pulsed fiber ring lasers are coherently combined with 0.55 μJ pulse energy and 10μs pulse duration at a repetition rate of 27.5 kHz. Experimental results show that the two fiber ring lasers are phase locked with an invariable phase difference of π and have good temporal synchronization and spatial coherence. The combining efficiency of the two pulsed fiber laser reaches 90% and the fringe contrast is larger than 40%. Neither active phase control nor polarization control is used in our experiment and this method can be extended to combine more beams and higher repetition rate scaling up to higher power.

  9. High-Power Multimode X-Band RF Pulse Compression System for Future Linear Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Tantawi, S.G.; Nantista, C.D.; Dolgashev, V.A.; Pearson, C.; Nelson, J.; Jobe, K.; Chan, J.; Fant, K.; Frisch, J.; /SLAC; Atkinson, D.; /LLNL, Livermore

    2005-08-10

    We present a multimode X-band rf pulse compression system suitable for a TeV-scale electron-positron linear collider such as the Next Linear Collider (NLC). The NLC main linac operating frequency is 11.424 GHz. A single NLC rf unit is required to produce 400 ns pulses with 475 MW of peak power. Each rf unit should power approximately 5 m of accelerator structures. The rf unit design consists of two 75 MW klystrons and a dual-moded resonant-delay-line pulse compression system that produces a flat output pulse. The pulse compression system components are all overmoded, and most components are designed to operate with two modes. This approach allows high-power-handling capability while maintaining a compact, inexpensive system. We detail the design of this system and present experimental cold test results. We describe the design and performance of various components. The high-power testing of the system is verified using four 50 MW solenoid-focused klystrons run off a common 400 kV solid-state modulator. The system has produced 400 ns rf pulses of greater than 500 MW. We present the layout of our system, which includes a dual-moded transmission waveguide system and a dual-moded resonant line (SLED-II) pulse compression system. We also present data on the processing and operation of this system, which has set high-power records in coherent and phase controlled pulsed rf.

  10. Photonic technology for switched rf avionics networks

    Science.gov (United States)

    Hamilton, Michael C.; Thaniyavarn, Suwat; Abbas, Gregory L.; LaGasse, Michael J.; Traynor, Timothy; Lin, Jack P.

    1997-10-01

    The application of photonics technology in switched RF networks is discussed with emphasis on the benefits for avionics applications. System requirements and performance issues are addressed. A 16 X 16 photonic switch module prototype is described and results for RF fiber-optic links passing through the module are presented. RF channel isolation measured was at least 75 dB. A demonstration is described in which a photonic network using the switch module passed signals from a dynamic electromagnetic environment simulator to two radar warning systems under test. Demonstration modes included simulation of both aperture sharing and processor sharing. Finally, a novel alternative switch module architecture is described that is strictly non-blocking and has inherently better channel isolation.

  11. Design of an L-band normally conducting RF gun cavity for high peak and average RF power

    Science.gov (United States)

    Paramonov, V.; Philipp, S.; Rybakov, I.; Skassyrskaya, A.; Stephan, F.

    2017-05-01

    To provide high quality electron bunches for linear accelerators used in free electron lasers and particle colliders, RF gun cavities operate with extreme electric fields, resulting in a high pulsed RF power. The main L-band superconducting linacs of such facilities also require a long RF pulse length, resulting in a high average dissipated RF power in the gun cavity. The newly developed cavity based on the proven advantages of the existing DESY RF gun cavities, underwent significant changes. The shape of the cells is optimized to reduce the maximal surface electric field and RF loss power. Furthermore, the cavity is equipped with an RF probe to measure the field amplitude and phase. The elaborated cooling circuit design results in a lower temperature rise on the cavity RF surface and permits higher dissipated RF power. The paper presents the main solutions and results of the cavity design.

  12. Integrated DFB-DBR laser modulator grown by selective area metalorganic vapor phase epitaxy growth technique

    Science.gov (United States)

    Tanbun-Ek, T.; Chen, Y. K.; Grenko, J. A.; Byrne, E. K.; Johnson, J. E.; Logan, R. A.; Tate, A.; Sergent, A. M.; Wecht, K. W.; Sciortine, P. F.; Chu, S. N. G.

    1994-12-01

    A device quality of selective epitaxy growth of InGaAsP/InP multiple quantum well (MQW) structure using low-pressure metalorganic vapor phase epitaxy (MOVPE) technique is described. The technique is applied to a monolithically integrated electroabsorption modulator with distributed feedback (DFB) and distributed Bragg reflector (DBR) lasers. Superior device characteristics such as efficient modulation, low threshold current and high efficiency operation of the integrated devices are obtained.

  13. Stability of Phase-modulated Quantum Key Distribution System

    CERN Document Server

    Han, Z F; Gui, Y Z; Guo, G C; Han, Zheng-Fu; Mo, Xiao-Fan; Gui, You-Zhen; Guo, Guang-Can

    2004-01-01

    Phase drift and random fluctuation of interference visibility in double unbalanced M-Z QKD system are observed and distinguished. It has been found that the interference visibilities are influenced deeply by the disturbance of transmission fiber. Theory analysis shows that the fluctuation is derived from the envioronmental disturbance on polarization characteristic of fiber, especially including transmission fiber. Finally, stability conditions of one-way anti-disturbed M-Z QKD system are given out, which provides a theoretical guide in pragmatic anti-disturbed QKD.

  14. Recycler barrier RF buckets

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C.M.; /Fermilab

    2011-03-01

    The Recycler Ring at Fermilab uses a barrier rf systems for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf system, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  15. Phase-field modeling of submonolayer growth with the modulated nucleation regime

    Energy Technology Data Exchange (ETDEWEB)

    Dong, X.L.; Xing, H.; Chen, C.L., E-mail: chenchl@nwpu.edu.cn; Wang, J.Y.; Jin, K.X.

    2015-10-16

    In this letter, we perform the phase-field simulations to investigate nucleation regime of submonolayer growth via a quantified nucleation term. Results show that the nucleation related kinetic coefficients have changed the density of islands and critical sizes to modulate the nucleation regime. The scaling behavior of the island density can be agreed with the classical theory only when effects of modulations have been quantified. We expect to produce the quantitative descriptions of nucleation for submonolayer growth in phase-field models. - Highlights: • The phase-field simulations are systematically compared with the classical nucleation rate theory. • The modulations of nucleation regime by the different kinetic coefficients have been studied. • Appropriate kinetic coefficients contribute to the agreed nucleation regime with the scaling law.

  16. Acoustic holography based on composite metasurface with decoupled modulation of phase and amplitude

    Science.gov (United States)

    Tian, Ye; Wei, Qi; Cheng, Ying; Liu, Xiaojun

    2017-05-01

    Acoustic holography has extensive possibilities in acoustic sensing, acoustic illusion, contactless particle manipulation, and medical imaging. Based on coating unit cells and perforated panels, an acoustic composite metasurface is constructed with a decoupled modulation of phase and amplitude, which has been used to design acoustic holography. This proposal not only has lower complexity than conventional acoustic holography of active arrays due to the avoidance of complex structures and circuits but also provides more flexibility than acoustic holography based on the acoustic metasurface with phase-only modulation benefitting from the efficient decoupled modulation of phase and amplitude. We have further demonstrated three acoustic holographic applications, such as multi-directional transmission, multi-focal focusing, and holographic imaging. Due to the low complexity and the great flexibility, this proposal has potential to achieve the high-quality holograms with high information content, fine resolution, and large scale.

  17. High angle phase modulated low coherence interferometry for path length resolved Doppler measurements of multiply scattered light

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; Leeuwen, van Ton G.; Steenbergen, Wiendelt

    2008-01-01

    We describe an improved method for coherence domain path length resolved measurements of multiply scattered photons in turbid media. An electro-optic phase modulator sinusoidally modulates the phase in the reference arm of a low coherence fiber optic Mach–Zehnder interferometer, at a high phase modu

  18. RF breakdown by toroidal helicons

    Indian Academy of Sciences (India)

    S K P Tripathi; D Bora; M Mishra

    2001-04-01

    Bounded whistlers are well-known for their efficient plasma production capabilities in thin cylindrical tubes. In this paper we shall present their radio frequency (RF) breakdown and discharge sustaining capabilities in toroidal systems. Pulsed RF power in the electronmagnetohydrodynamic (EMHD) frequency regime is fed to the neutral background medium. After the breakdown stage, discharge is sustained by toroidal bounded whistlers. In these pulsed experiments the behaviour of the time evolution of the discharge could be studied in four distinct phases of RF breakdown, steady state attainment, decay and afterglow. In the steady state average electron density of ≈ 1012 per cc and average electron temperature of ≈ 20 eV are obtained at 10-3 mbar of argon filling pressure. Experimental results on toroidal mode structure, background effects and time evolution of the electron distribution function will be presented and their implications in understanding the breakdown mechanism are discussed.

  19. An Improved Modulation Strategy for the Three-Phase Z-Source Inverters (ZSIs)

    DEFF Research Database (Denmark)

    Abdelhakim, Ahmed; Davari, Pooya; Blaabjerg, Frede

    2017-01-01

    Z-source inverters (ZSIs), compared to the two-stage architecture, i.e. boost-converter (BC)-fed voltage source inverter (VSI), embrace some interesting features, like the reduced size and complexity of the entire conversion system. Several research activities have been established to improve...... the performance of the so-called ZSI since it has been proposed in 2003, and many modifications have been introduced accordingly. These modifications include the structure of the ZSI, i.e. modifying the topology itself, and its modulation. From the modulation prospective, all the modulation strategies of the ZSI......, as the added ST pulses are inserted inside the zero states. Hence, in this digest, an improved modulation strategy is proposed to enhance the performance of the three-phase ZSIs, including all the other improved topologies. The proposed modulation strategy, which is called high-boost-based modified space...

  20. A layered modulation method for pixel matching in online phase measuring profilometry

    Science.gov (United States)

    Li, Hongru; Feng, Guoying; Bourgade, Thomas; Yang, Peng; Zhou, Shouhuan; Asundi, Anand

    2016-10-01

    An online phase measuring profilometry with new layered modulation method for pixel matching is presented. In this method and in contrast with previous modulation matching methods, the captured images are enhanced by Retinex theory for better modulation distribution, and all different layer modulation masks are fully used to determine the displacement of a rectilinear moving object. High, medium and low modulation masks are obtained by performing binary segmentation with iterative Otsu method. The final shifting pixels are calculated based on centroid concept, and after that the aligned fringe patterns can be extracted from each frame. After performing Stoilov algorithm and a series of subsequent operations, the object profile on a translation stage is reconstructed. All procedures are carried out automatically, without setting specific parameters in advance. Numerical simulations are detailed and experimental results verify the validity and feasibility of the proposed approach.

  1. FERMILAB CRYOMODULE TEST STAND RF INTERLOCK SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Troy [Fermilab; Diamond, J. S. [Fermilab; McDowell, D. [Fermilab; Nicklaus, D. [Fermilab; Prieto, P. S. [Fermilab; Semenov, A. [Fermilab

    2016-10-12

    An interlock system has been designed for the Fermilab Cryo-module Test Stand (CMTS), a test bed for the cryo- modules to be used in the upcoming Linac Coherent Light Source 2 (LCLS-II) project at SLAC. The interlock system features 8 independent subsystems, one per superconducting RF cavity and solid state amplifier (SSA) pair. Each system monitors several devices to detect fault conditions such as arcing in the waveguides or quenching of the SRF system. Additionally each system can detect fault conditions by monitoring the RF power seen at the cavity coupler through a directional coupler. In the event of a fault condition, each system is capable of removing RF signal to the amplifier (via a fast RF switch) as well as turning off the SSA. Additionally, each input signal is available for re- mote viewing and recording via a Fermilab designed digitizer board and MVME 5500 processor.

  2. Design of RF Power System for CPHS

    Science.gov (United States)

    Cheng, Cheng; Du, Taibin; Guan, Xialing

    The Compact Pulsed Hadron Source (CPHS) system has been proposed and designed by the Department of Engineering Physics of Tsinghua University in Beijing, China. It consists of an accelerator front-end-a highintensity ion source, a 3 MeV radiofrequency quadrupole linac (RFQ), and a 13 MeV drift-tube linac (DTL), a neutron target station, and some experimental stations. In design of our RF power supply, both RFQ and DTL share a single klystron which is capable of 2.5 MW peak RF power and a 3.33% duty factor. The 325 MHz klystron contains a modulating anode and has a 100 kW average output power. Portions of the RF power system, such as pulsed high voltage power supply, modulator, crowbar protection and RF power transmission are all presented in details in this paper.

  3. A Compact QPSK Modulator with Low Amplitude and Phase Imbalance for Remote Sensing Applications

    KAUST Repository

    Ghaffar, Farhan Abdul

    2012-09-30

    A new, compact and wide-band Quadrature Phase Shift Keying (QPSK) modulator is presented for remote sensing applications. The microstrip-based modulator employs quadrature hybrid coupler, Wilkinson divider, rat race coupler and GaAs MESFET switches. It is designed to be part of an X band remote sensing transmitter with a center frequency of 8.25GHz. The fabricated module demonstrates the lowest reported amplitude and phase imbalances (0.1dB and 0.4° respectively) around its center frequency. The modulation, tested up to 160 Mbps data rate, displays carrier suppression greater than 30 dB. With negligible DC power consumption and low insertion loss, it operates for a wide bandwidth of 3 GHz (7-10 GHz). The effect of amplitude and phase imbalance is investigated on the performance of the modulator. Finally, a transmitter employing this modulator exhibits an excellent overall Error Vector Magnitude (EVM) of around 8 % that is considerably low as compared to the typically obtained values for such transmitters.

  4. Double sinusoidal phase modulating laser diode interferometer for thickness measurements of transparent plates

    Institute of Scientific and Technical Information of China (English)

    Dailin Li(李代林); Xiangzhao Wang(王向朝); Yingming Liu(刘英明)

    2004-01-01

    A double sinusoidal phase modulating (SPM) laser diode interferometer for thickness measurements of a transparent plate is presented. A carrier signal is given to the interference signal by using a piezoelectric transducer, and the SPM interferometry is applied to measure the thickness of a transparent plate. By combining the double-modulation technique with the Bessel function ratio method, the measurement error originating from light intensity fluctuations caused by the modulation current can be decreased greatly.The thicknesses of a glass parallel plate and a quartz glass are measured in real time, and the corresponding experimental results are also given.

  5. View at the inside of the VELO-vessel: the RF-box with slots for the 2 Pile-Up and 21 VELO-modules. Also visible are the 2 ion getter pumps below the vessel and the belt that drives the x-movement of the module base.

    CERN Multimedia

    Jans, E

    2007-01-01

    Inside of the C-side of the VELO-vessel: the RF-box with slots for the 2 Pile-Up and 21 VELO-modules Interieur du cote C du vaisseau Velo.Transport in the pit towards the balcony.Lifting of the detector half out of the transport trolley.The detector half is being rotated over 90 degrees.The detector half ready to be lowered and mounted on the installation rail.Simultaneous fixation of the 3 bolts that connect the module base to the translation system.A-side of the VELO after installation of the detector half and before installation of the repeater crates.

  6. Modulation Schemes for Single-Phase B6 Converters With Two Asymmetrical Terminal Voltages

    DEFF Research Database (Denmark)

    Qin, Zian; Loh, Poh Chiang; Blaabjerg, Frede

    2016-01-01

    B6 converter uses six switches divided equally among three phase-legs. It has commonly been used as a three-phase rectifier or inverter, mostly under balanced conditions. Three-phase conversion is however not the only area, where B6 converter has been used. The same topology has been tried...... asymmetrical. How these asymmetrical references should be formulated to meet various performance specifications of a single-phase B6 converter is the theme of this paper. Simulation and experimental results have been obtained for verifying the modulation schemes proposed....

  7. Effective Simulation of Quantum Entanglement Based on Classical Fields Modulated with Pseudorandom Phase Sequences

    CERN Document Server

    Fu, Jian; Xu, Yingying; Dong, Hongtao

    2010-01-01

    We demonstrate that n classical fields modulated with n different pseudorandom phase sequences can constitute a 2^n-dimensional Hilbert space that contains tensor product structure. By using classical fields modulated with pseudorandom phase sequences, we discuss effective simulation of Bell states and GHZ state, and apply both correlation analysis and von Neumann entropy to characterize the simulation. We obtain similar results with the cases in quantum mechanics and find that the conclusions can be easily generalized to n quantum particles. The research on simulation of quantum entanglement may be important, for it not only provides useful insights into fundamental features of quantum entanglement, but also yields new insights into quantum computation.

  8. Robust BPSK Impulse Radio UWB-over-Fiber Systems Using Optical Phase Modulation

    DEFF Research Database (Denmark)

    Pham, Tien Thang; Guerrero Gonzalez, Neil; Yu, Xianbin

    2011-01-01

    The impact of fiber dispersion on the performance of optical phase modulated impulse-radio-ultrawideband (IR-UWB) signals is experimentally investigated. 2Gbps BPSK IR-UWB over 78km fiber transmission is successfully achieved by using digital coherent detection......The impact of fiber dispersion on the performance of optical phase modulated impulse-radio-ultrawideband (IR-UWB) signals is experimentally investigated. 2Gbps BPSK IR-UWB over 78km fiber transmission is successfully achieved by using digital coherent detection...

  9. In-vivo retinal imaging by optical coherence tomography using an RSOD-based phase modulator

    Institute of Scientific and Technical Information of China (English)

    Ling WANG; Zhi-hua DING; Guo-hua SHI; Yu-dong ZHANG

    2009-01-01

    Fourier-domain rapid scanning optical delay line (RSOD) was introduced for phase modulation and depth scanning in a time-domain optical coherence tomography (TD-OCT) system. Investigation of parameter optimization of RSOD was conducted.Experiments for RSOD characterization at different parameters of the groove pitch, focal length, galvomirror size, etc. were performed. By implementing the optimized RSOD in our established TD-OCT system with a broadband light source centered at 840 nm with 50 nm bandwidth, in vivo retina imaging of a rabbit was presented, demonstrating the feasibility of high-quality TD-OCT imaging using an RSOD-based phase modulator.

  10. L-Band Transmit/Receive Module for Phase-Stable Array Antennas

    Science.gov (United States)

    Andricos, Constantine; Edelstein, Wendy; Krimskiy, Vladimir

    2008-01-01

    Interferometric synthetic aperture radar (InSAR) has been shown to provide very sensitive measurements of surface deformation and displacement on the order of 1 cm. Future systematic measurements of surface deformation will require this capability over very large areas (300 km) from space. To achieve these required accuracies, these spaceborne sensors must exhibit low temporal decorrelation and be temporally stable systems. An L-band (24-cmwavelength) InSAR instrument using an electronically steerable radar antenna is suited to meet these needs. In order to achieve the 1-cm displacement accuracy, the phased array antenna requires phase-stable transmit/receive (T/R) modules. The T/R module operates at L-band (1.24 GHz) and has less than 1- deg absolute phase stability and less than 0.1-dB absolute amplitude stability over temperature. The T/R module is also high power (30 W) and power efficient (60-percent overall efficiency). The design is currently implemented using discrete components and surface mount technology. The basic T/R module architecture is augmented with a calibration loop to compensate for temperature variations, component variations, and path loss variations as a function of beam settings. The calibration circuit consists of an amplitude and phase detector, and other control circuitry, to compare the measured gain and phase to a reference signal and uses this signal to control a precision analog phase shifter and analog attenuator. An architecture was developed to allow for the module to be bidirectional, to operate in both transmit and receive mode. The architecture also includes a power detector used to maintain a transmitter power output constant within 0.1 dB. The use of a simple, stable, low-cost, and high-accuracy gain and phase detector made by Analog Devices (AD8302), combined with a very-high efficiency T/R module, is novel. While a self-calibrating T/R module capability has been sought for years, a practical and cost-effective solution has

  11. Enhanced nonlinear spectral compression in fiber by external sinusoidal phase modulation

    Science.gov (United States)

    Boscolo, S.; Mouradian, L. Kh; Finot, C.

    2016-10-01

    We propose a new, simple approach to enhance the spectral compression process arising from nonlinear pulse propagation in an optical fiber. We numerically show that an additional sinusoidal temporal phase modulation of the pulse enables efficient reduction of the intensity level of the side lobes in the spectrum that are produced by the mismatch between the initial linear negative chirp of the pulse and the self-phase modulation-induced nonlinear positive chirp. Remarkable increase of both the extent of spectrum narrowing and the quality of the compressed spectrum is afforded by the proposed approach across a wide range of experimentally accessible parameters.

  12. Optimization of phase contrast in bimodal amplitude modulation AFM

    Directory of Open Access Journals (Sweden)

    Mehrnoosh Damircheli

    2015-04-01

    Full Text Available Bimodal force microscopy has expanded the capabilities of atomic force microscopy (AFM by providing high spatial resolution images, compositional contrast and quantitative mapping of material properties without compromising the data acquisition speed. In the first bimodal AFM configuration, an amplitude feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM. Here we study the conditions to enhance the compositional contrast in bimodal AM while imaging heterogeneous materials. The contrast has a maximum by decreasing the amplitude of the second mode. We demonstrate that the roles of the excited modes are asymmetric. The operational range of bimodal AM is maximized when the second mode is free to follow changes in the force. We also study the contrast in trimodal AFM by analyzing the kinetic energy ratios. The phase contrast improves by decreasing the energy of second mode relative to those of the first and third modes.

  13. Optimization of phase contrast in bimodal amplitude modulation AFM.

    Science.gov (United States)

    Damircheli, Mehrnoosh; Payam, Amir F; Garcia, Ricardo

    2015-01-01

    Bimodal force microscopy has expanded the capabilities of atomic force microscopy (AFM) by providing high spatial resolution images, compositional contrast and quantitative mapping of material properties without compromising the data acquisition speed. In the first bimodal AFM configuration, an amplitude feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM). Here we study the conditions to enhance the compositional contrast in bimodal AM while imaging heterogeneous materials. The contrast has a maximum by decreasing the amplitude of the second mode. We demonstrate that the roles of the excited modes are asymmetric. The operational range of bimodal AM is maximized when the second mode is free to follow changes in the force. We also study the contrast in trimodal AFM by analyzing the kinetic energy ratios. The phase contrast improves by decreasing the energy of second mode relative to those of the first and third modes.

  14. Modulation of mixed-phase titania photoluminescence by oxygen adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Pallotti, D.; Orabona, E.; Amoruso, S.; Maddalena, P. [Dipartimento di Fisica, Universitá degli Studi di Napoli “Federico II,” Via Cintia, I-80126 Napoli (Italy); Institute for Superconductors, Oxides and Innovative Materials and Devices, CNR-SPIN, U.O.S. Napoli, Via Cintia, I-80126 Napoli (Italy); Lettieri, S., E-mail: stefano.lettieri@spin.cnr.it [Institute for Superconductors, Oxides and Innovative Materials and Devices, CNR-SPIN, U.O.S. Napoli, Via Cintia, I-80126 Napoli (Italy)

    2014-07-21

    We investigate the effect of oxygen (O{sub 2}) adsorption on photoluminescence properties of mixed-phase titania nanoparticle films deposited by femtosecond pulsed laser deposition, aiming to assess preliminary conclusions about the feasibility of opto-chemical sensing based on titania. We evidence that O{sub 2} produces opposite responses in rutile and anatase photoluminescence efficiency, highlighting interesting potentialities for future double-parametric optical sensing based on titania. The results evidence an important role of lattice oxygen atoms, suggesting that the standard Schottky barrier mechanism driving the response toward gas species in most used metal-oxide sensors (e.g., tin dioxide) is not the only active mechanism in titania.

  15. Reversible phase modulation and hydrogen storage in multivalent VO2 epitaxial thin films

    Science.gov (United States)

    Yoon, Hyojin; Choi, Minseok; Lim, Tae-Won; Kwon, Hyunah; Ihm, Kyuwook; Kim, Jong Kyu; Choi, Si-Young; Son, Junwoo

    2016-10-01

    Hydrogen, the smallest and the lightest atomic element, is reversibly incorporated into interstitial sites in vanadium dioxide (VO2), a correlated oxide with a 3d1 electronic configuration, and induces electronic phase modulation. It is widely reported that low hydrogen concentrations stabilize the metallic phase, but the understanding of hydrogen in the high doping regime is limited. Here, we demonstrate that as many as two hydrogen atoms can be incorporated into each VO2 unit cell, and that hydrogen is reversibly absorbed into, and released from, VO2 without destroying its lattice framework. This hydrogenation process allows us to elucidate electronic phase modulation of vanadium oxyhydride, demonstrating two-step insulator (VO2)-metal (HxVO2)-insulator (HVO2) phase modulation during inter-integer d-band filling. Our finding suggests the possibility of reversible and dynamic control of topotactic phase modulation in VO2 and opens up the potential application in proton-based Mottronics and novel hydrogen storage.

  16. Optimized generation of spatial qudits by using a pure phase spatial light modulator

    Science.gov (United States)

    Varga, J. J. M.; Rebón, L.; Solís-Prosser, M. A.; Neves, L.; Ledesma, S.; Iemmi, C.

    2014-11-01

    We present a method for preparing arbitrary pure states of spatial qudits, namely, D-dimensional (D≥slant 2) quantum systems carrying information in the transverse momentum and position of single photons. For this purpose, a set of D slits with complex transmission are displayed on a spatial light modulator (SLM). In a recent work we have shown a method that requires a single phase-only SLM to control independently the complex coefficients which define the quantum state of dimension D. The amplitude information was codified by introducing phase gratings inside each slit, and the phase value of the complex transmission was added to the phase gratings. After a spatial filtering process, we obtained in the image plane the desired qudit state. Although this method has proven to be a good alternative to compact the previously reported architectures, it presents some features that could be improved. In this paper we present an alternative scheme to codify the required phase values that minimizes the effects of temporal phase fluctuations associated to the SLM where the codification is carried out. In this scheme, the amplitudes are set by appropriate phase gratings addressed at the SLM, while the relative phases are obtained by a lateral displacement of these phase gratings. We show that this method improves the quality of the prepared state and provides very high fidelities of preparation for any state. An additional advantage of this scheme is that a complete 2π modulation is obtained by shifting the grating by one period; hence the encoding is not limited by the phase modulation range achieved by the SLM. Numerical simulations, that take into account the phase fluctuations, show high fidelities for thousands of qubit states covering the whole Bloch sphere surface. Similar analyses are performed for qudits with D = 3 and D = 7.

  17. RF multipole implementation

    CERN Document Server

    Latina, A

    2012-01-01

    The electromagnetic radio-frequency (RF) field of accelerating structures and crab-cavities can exhibit transverse field components due to asymmetries in the azimuthal direction of the element geometry. Tracking simulations must be performed to evaluate the impact of such transverse RF deflections on the beam dynamics. In an ultra-relativistic regime where the Panofsky-Wenzel theorem is applicable, these RF deflections can be modeled via a multipolar expansion of the generating RF field similarly to what is done with static magnetic elements. The element implementing such RF multipolar fields has been called RF multipole. In this note we present an analytical formulation of a thin RF multipole Hamiltonian, and we explicitly calculate the RF kick and the elements of its first- and second- order transfer matrices. Also, we present the implementation of the corresponding code in MAD-X, plus some tests of tracking, simplecticity, consistency, and reflected maps that we successfully applied to verify the correctne...

  18. LANSCE RF System Refurbishment

    CERN Document Server

    Rees, Daniel; Kwon, Sung-il; Lyles, John T M; Lynch, Michael; Prokop, Mark; Reass, William; Tallerico, Paul J

    2005-01-01

    The Los Alamos Neutron Science Center (LANSCE) is in the planning phase of a refurbishment project that will sustain reliable facility operations well into the next decade. The LANSCE accelerator was constructed in the late 1960s and early 1970s and is a national user facility that provides pulsed protons and spallation neutrons for defense and civilian research and applications. We will be replacing all the 201 MHz RF systems and a substantial fraction of the 805 MHz RF systems and high voltage systems. The current 44 LANSCE 805 MHz, 1.25 MW klystrons have an average in-service time in excess of 110,000 hours. All 44 must be in service to operate the accelerator. There are only 9 spares left. The klystrons receive their DC power from the power system originally installed in 1960. Although this power system has been extremely reliable, gas analysis of the insulating oil is indicating age related degradation that will need attention in the next few years. This paper will provide the design details of the new R...

  19. Phase-dependent spectral control of pulsed modulation instability via dichromatic seed fields

    CERN Document Server

    Brinkmann, Maximilian; Fallnich, Carsten

    2013-01-01

    We investigated experimentally and numerically the spectral control of modulation instability (MI) dynamics via the initial phase relation of two weak seed fields. Specifically, we show how second-order modulation instability dynamics exhibit phase-dependent anti-correlated growth rates of adjacent spectral sidebands. This effect enables a novel method to control MI-based frequency conversion: in contrast to first-order MI dynamics, which exhibit a uniform phase dependence of the growth rates, second-order MI dynamics allow to redistribute the spectral energy, leading to an asymmetric spectrum. Therefore, the presented findings should be very attractive to different applications, such as phase-sensitive amplification or supercontinuum generation initiated by MI.

  20. Quantitative security evaluation of optical encryption using hybrid phase- and amplitude-modulated keys.

    Science.gov (United States)

    Sarkadi, Tamás; Koppa, Pál

    2012-02-20

    In the increasing number of system approaches published in the field of optical encryption, the security level of the system is evaluated by qualitative and empirical methods. To quantify the security of the optical system, we propose to use the equivalent of the key length routinely used in algorithmic encryption. We provide a calculation method of the number of independent keys and deduce the binary key length for optical data encryption. We then investigate and optimize the key length of the combined phase- and amplitude-modulated key encryption in the holographic storage environment, which is one of the promising solutions for the security enhancement of single- and double-random phase-encoding encryption and storage systems. We show that a substantial growth of the key length can be achieved by optimized phase and amplitude modulation compared to phase-only encryption. We also provide experimental confirmation of the model results.

  1. Preparing arbitrary pure states of spatial qudits with a single phase-only spatial light modulator

    Science.gov (United States)

    Varga, J. J. M.; Solís-Prosser, A. M. A.; Rebón, L.; Arias, A.; Neves, L.; Iemmi, C.; Ledesma, S.

    2015-04-01

    We present a new method for preparing multidimensional spatial qudits by means of a single phase-only spatial light modulator (SLM). This method improves previous ones that use two SLMs, one working in amplitude regime and the other in phase regime. To that end, we addressed diffraction gratings on the slits that define the state and then we performed a spatial filtering in the Fourier plane. The amplitude of the coefficients of the quantum state are determined by the modulation deep of the diffraction gratings, and the relative phase is the mean phase value of the diffraction gratings. This encoding result to be more compact, less expensive and use the photons more efficiently.

  2. Digital base-band rf control system for the superconducting Darmstadt electron linear accelerator

    Directory of Open Access Journals (Sweden)

    M. Konrad

    2012-05-01

    Full Text Available The accelerating field in superconducting cavities has to be stabilized in amplitude and phase by a radio-frequency (rf control system. Because of their high loaded quality factor superconducting cavities are very susceptible for microphonics. To meet the increased requirements with respect to accuracy, availability, and diagnostics, the previous analog rf control system of the superconducting Darmstadt electron linear accelerator S-DALINAC has been replaced by a digital rf control system. The new hardware consists of two components: An rf module that converts the signal from the cavity down to the base-band and a field-programmable gate array board including a soft CPU that carries out the signal processing steps of the control algorithm. Different algorithms are used for normal-conducting and superconducting cavities. To improve the availability of the control system, techniques for automatic firmware and software deployment have been implemented. Extensive diagnostic features provide the operator with additional information. The architecture of the rf control system as well as the functionality of its components will be presented along with measurements that characterize the performance of the system, yielding, e.g., an amplitude stabilization down to (ΔA/A_{rms}=7×10^{-5} and a phase stabilization of (Δϕ_{rms}=0.8° for superconducting cavities.

  3. In-Phase Wavelength Conversion Based On Cross-Gain Modulation in Semiconductor Optical Amplifier

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xinliang; HUANG Dexiu; SUN Junqiang; LIU Deming; YI Heqing

    2000-01-01

    In-phase wavelength conversion based on cross-gain modulation in a semiconductor optical amplifier biased around critical threshold current has been demonstrated. The converted signal and the pump signal have the same bit sequence 1101011000. The stimulated emission competition between the amplification of input signals and the amplified spontaneous emission was used to illustrate the conversion mechanism. Experiment results showed that in-phase wavelength conversion can be achieved with simple structure and high output extinction ratio.

  4. Cross-phase modulation-induced penalties in multichannel DWDM optical transport networks

    Institute of Scientific and Technical Information of China (English)

    Xu Zhu(朱栩); Qingji Zeng(曾庆济)

    2003-01-01

    In dense wavelength division multiplexing (DWDM) optical transmission systems, cross-phase modulation(XPM) due to Kerr effect causes phase shift on each channel, which will ultimately be transformed toamplitude noise that leads to power penalties. In this letter, the XPM-induced penalty in multi-channelDWDM systems is investigated theoretically and an applied algorithm that can be practically used inengineering design is proposed.

  5. A Novel Temperature-Compensated, Intensity-Modulated Fiber Bragg Grating Sensor System

    Institute of Scientific and Technical Information of China (English)

    Xin-Yong Dong; Hwa-Yaw Tam

    2008-01-01

    An intensity-modulated, fiber Bragg grating (FBG) sensor system based on radio-frequency (RF) signal measurement is presented. The RF signal is generated at a photodetector by two modulated optical signals reflected from the sensing FBG and a reference one. Bragg wavelength shift of the sensing FBG changes intensity of the RF signal by changing phase difference between the two optical signals, with temperature effect being compensated automatically by the reference FBG. Strain measurement with a maximum sensitivity of -0.34 μV/με has been achieved.

  6. Application of Phase Lock Loop in Superconducting RF Technology%锁相环在超导射频技术中的应用

    Institute of Scientific and Technical Information of China (English)

    常玮; 何源; 李春龙; 高郑; 朱正龙; 薛纵横; 宋玉; 张锐

    2014-01-01

    利用压控振荡器锁相环路(VCO-PLL)锁定超导射频谐振腔体的本征频率,使腔体稳定谐振。在原理验证阶段,利用NI-Labview对实验原理做了仿真。得到的仿真结果显示,环路增益选取的不同会直接影响整个系统的锁定状态。在实验测试阶段,根据原理和仿真结果搭建了相应的实验平台,从而得到环路锁定的测试结果。最后在低温超导态测试阶段,用经过验证的实验平台对IMP-HWR010超导腔体进行了频率锁定测试,并得到了腔体频率随氦压变化的实际测量结果,df/dp约为0.73 Hz/Pa。%The main issue of this paper is to introduce the application of phase lock loop (PLL) in supercon-ducting RF technology. The voltage-controlled oscillator phase lock loop (VCO-PLL) can be used for locking the eigen frequency of the superconducting cavity. It can keep superconducting cavity resonant stably. In this paper, the principle of the cavity locking by the VCO-PLL is verified by a simulation, which is done by using NI-Labview software. The simulation result shows that the different gain of the PLL system can impact the locking situation of the whole system. In the test stage, the locking test plant is set up and passed validation. Finally, at the low temperature test stage, the frequency of the IMP-HWR010 superconducting cavity is locked by the test plant. The frequency change with helium pressure of the cavity is about 0.73 Hz/Pa.

  7. The LHC Low Level RF

    CERN Document Server

    Baudrenghien, Philippe; Molendijk, John Cornelis; Olsen, Ragnar; Rohlev, Anton; Rossi, Vittorio; Stellfeld, Donat; Valuch, Daniel; Wehrle, Urs

    2006-01-01

    The LHC RF consists of eight 400 MHz superconducting cavities per ring, with each cavity independently powered by a 300 kW klystron, via a circulator. The challenge for the Low Level is to cope with very high beam current (more than 1 A RF component) and achieve excellent beam lifetime (emittance growth time in excess of 25 hours). Each cavity has an associated Cavity Controller rack consisting of two VME crates which implement high gain RF Feedback, a Tuner Loop with a new algorithm, a Klystron Ripple Loop and a Conditioning system. In addition each ring has a Beam Control system (four VME crates) which includes a Frequency Program, Phase Loop, Radial Loop and Synchronization Loop. A Longitudinal Damper (dipole and quadrupole mode) acting via the 400 MHz cavities is included to reduce emittance blow-up due to filamentation from phase and energy errors at injection. Finally an RF Synchronization system implements the bunch into bucket transfer from the SPS into each LHC ring. When fully installed in 2007, the...

  8. Two-dimensional refractive index modulation by phased array transducers in acousto-optic deflectors.

    Science.gov (United States)

    Wang, Tiansi; Zhang, Chong; Aleksov, Aleksandar; Salama, Islam; Kar, Aravinda

    2017-01-20

    Acousto-optic deflectors are photonic devices that are used for scanning high-power laser beams in advanced microprocessing applications such as marking and direct writing. The operation of conventional deflectors mostly relies on one-dimensional sinusoidal variation of the refractive index in an acousto-optic medium. Sometimes static phased array transducers, such as step configuration or planar configuration transducer architecture, are used to tilt the index modulation planes for achieving higher performance and higher resolution than a single transducer AO device. However, the index can be modulated in two dimensions, and the modulation plane can be tilted arbitrarily by creating dynamic phase gratings in the medium using phased array transducers. This type of dynamic two-dimensional acousto-optic deflector can provide better performance using, for example, a large deflection angle and high diffraction efficiency. This paper utilizes an ultrasonic beam steering approach to study the two-dimensional strain-induced index modulation due to the photoelastic effect. The modulation is numerically simulated, and the effects of various parameters, such as the operating radiofrequency of the transducers, the ultrasonic beam steering angle, and different combinations of pressure on each element of the transducer array, are demonstrated.

  9. Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser.

    Science.gov (United States)

    Ishizawa, Atsushi; Nishikawa, Tadashi; Mizutori, Akira; Takara, Hidehiko; Takada, Atsushi; Sogawa, Tetsuomi; Koga, Masafumi

    2013-12-02

    We investigated phase-noise characteristics of both a phase/intensity-modulated laser with 25-GHz mode spacing and a mode-locked fiber laser with carrier-envelope-offset (CEO) locking. As the separation from the frequency of the continuous wave (CW) laser diode (LD) for a seed light source increases, the integrated phase noise of each comb mode of both the phase/intensity-modulated laser and supercontinuum light originating from it increases with the same slope as a function of mode number. The dependence of the integrated phase noise on mode number with the phase/intensity-modulated laser is much larger than with the mode-locked fiber laser of the CEO locking. However, the phase noise of the phase/intensity-modulated laser is extremely lower than that of the mode-locked fiber laser with CEO locking in the frequency region around the CW LD. The phase noise of the phase/intensity-modulated laser with 25-GHz mode spacing and that of the mode-locked fiber laser with the CEO locking could be estimated and were found to be almost the same at the wavelengths required in an f-to-2f self-referencing interferometer. Our experimental results indicate the possibility of achieving an offset-frequency-locked frequency comb with the phase/intensity-modulated laser.

  10. Single pulse TMS-induced modulations of resting brain neurodynamics encoded in EEG phase.

    Science.gov (United States)

    Stamoulis, Catherine; Oberman, Lindsay M; Praeg, Elke; Bashir, Shahid; Pascual-Leone, Alvaro

    2011-06-01

    Integration of electroencephalographic (EEG) recordings and transcranial magnetic stimulation (TMS) provides a useful framework for quantifying stimulation-induced modulations of neural dynamics. Amplitude and frequency modulations by different TMS protocols have been previously investigated, but the study of stimulation-induced effects on EEG phase has been more limited. We examined changes in resting brain dynamics following single TMS pulses, focusing on measures in the phase domain, to assess their sensitivity to stimulation effects. We observed a significant, approximately global increase in EEG relative phase following prolonged (>20 min) single-pulse TMS. In addition, we estimated higher rates of phase fluctuation from the slope of estimated phase curves, and higher numbers of phase resetting intervals following TMS over motor cortex, particularly in frontal and centro-parietal/parietal channels. Phase changes were only significantly different from their pre-TMS values at the end of the stimulation session, which suggests that prolonged single-pulse TMS may result in cumulative changes in neural activity reflected in the phase of the EEG. This is a novel result, as prior studies have reported only transient stimulation-related effects in the amplitude and frequency domains following single-pulse TMS.

  11. Coherent Control of Photofragment Distributions Using Laser Phase Modulation in the Weak-Field Limit

    DEFF Research Database (Denmark)

    Garcia-Vela, Alberto; Henriksen, Niels Engholm

    2015-01-01

    The possibility of quantum interference control of the final state distributions of photodissociation fragments by means of pure phase modulation of the pump laser pulse in the weak-field regime is demonstrated theoretically for the first time. The specific application involves realistic wave pac...

  12. Self-phase modulation of a single-cycle THz pulse

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, M. C.

    2013-01-01

    We demonstrate self-phase modulation (SPM) of a single-cycle THz pulse in a semiconductor, using bulk n-GaAs as a model system. The SPM arises from the heating of free electrons in the electric field of the THz pulse. Electron heating leads to an ultrafast reduction of the plasma frequency, which...

  13. Effects of nonlinear phase modulation on Bragg scattering in the low-conversion regime

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; Cargill, D. S.; McKinstrie, C. J.

    2012-01-01

    In this paper, we consider the effects of nonlinear phase modulation on frequency conversion by four-wave mixing (Bragg scattering) in the low-conversion regime. We derive the Green functions for this process using the time-domain collision method, for partial collisions, in which the four fields...

  14. Multiband carrierless amplitude/phase modulation for ultra-wideband high data rate wireless communications

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Rommel, Simon; Altabas, Jose A.

    2016-01-01

    We report on the first experimental demonstration of carrierless amplitude/phase modulation in a flexible multiband approach for ultrawideband high-data-rate wireless communications. An effective bitrate of 2 GB/s is achieved while complying with the restrictions on the effective radiated power e...

  15. Sub-millisecond, high stroke phase modulation using polymer network liquid crystals.

    Science.gov (United States)

    Love, Gordon D; Kirby, Andrew K; Ramsey, Robert A

    2010-03-29

    We describe the production of a high speed, and high stroke, phase modulator using a polymer network liquid crystal device. We present data showing fast response times (sub millisecond) in a device which can operate at visible wavelengths with a simple electrical addressing scheme.

  16. Effects of nonlinear phase modulation on low-conversion four-wave mixing Bragg scattering

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; McKinstrie, C. J.; Rottwitt, Karsten

    We consider the effects of nonlinear phase modulation (NPM) on frequency converseon by Bragg scattering. Previously we found that arbitrary mode reshaping without temporal entanglement (separability) was possible. When NPM is included, the modes are chirped and the separability is no longer compl...

  17. Phase-dependent modulation of short latency cutaneous reflexes during walking in man.

    NARCIS (Netherlands)

    Baken, B.C.M.; Dietz, V.; Duysens, J.E.J.

    2005-01-01

    In reduced animal preparation (cat fictive locomotion) most of our knowledge on the phase-dependent modulation of cutaneous reflexes concerns early- (P1 responses) rather than medium-latency (P2) responses. In contrast, in humans, virtually only P2 responses have been studied because P1 responses ar

  18. Coherent control of quantum transport: modulation-enhanced phase detection and band spectroscopy

    CERN Document Server

    Tarallo, Marco G; Wang, F Y; Tino, Guglielmo M

    2012-01-01

    Amplitude modulation of a tilted optical lattice can be used to steer the quantum transport of matter wave packets in a very flexible way. This allows the experimental study of the phase sensitivity in a multimode interferometer based on delocalization-enhanced Bloch oscillations and to probe the band structure modified by a constant force.

  19. Methods, systems and apparatus for adjusting modulation index to improve linearity of phase voltage commands

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos-Lopez, Gabriel; Perisic, Milun; Kinoshita, Michael H.

    2017-03-14

    Embodiments of the present invention relate to methods, systems and apparatus for controlling operation of a multi-phase machine in a motor drive system. The disclosed embodiments provide a mechanism for adjusting modulation index of voltage commands to improve linearity of the voltage commands.

  20. Low Power Penalty Operation of a Wide Input Dynamic Range Cross-Phase Modulation Wavelength Converter

    Institute of Scientific and Technical Information of China (English)

    Jun; Endo; Akira; Ohki; Rieko; Sato; Toshio; Ito; Yuichi; Tohmori; Yasuhiro; Suzuki

    2003-01-01

    We successfully demonstrated low power penalty operation of a cross-phase modulated (XPM) wavelength converter using a semiconductor optical amplifier (SOA) power equalizer. We also clarified the SOA equalizing level for more adaptive wavelength conversion and achieved a power penalty of less than 1 dB over the wide input dynamic range of 15 dB.

  1. Digital coherent receiver for subcarrier multiplexed phase modulated radio-over-fibre signals

    DEFF Research Database (Denmark)

    Zibar, Darko; Larsen, Knud J.; Tafur Monroy, Idelfonso

    2009-01-01

    Digital coherent detection of multi-channel subcarrier multiplexed optically phase-modulated radio-over-fibre signals is experimentally demonstrated. Successful detection after transmission over a 40 km long fibre link of four or five 25 Mbaud BPSK/QPSK subcarrier channels in 5 GHz bandwidth...... is demonstrated using offline digital signal processing....

  2. High Capacity Phase/Amplitude Modulated Optical Communication Systems and Nonlinear Inter-Channel Impairments

    Science.gov (United States)

    Tavassoli, Vahid

    This thesis studies and mathematically models nonlinear interactions among channels of modern high bit rate (amplitude/) phase modulated optical systems. First, phase modulated analogue systems are studied and a differential receiving method is suggested with experimental validation. The main focus of the rest of the thesis is on digital advanced modulation format systems. Cross-talk due to fiber Kerr nonlinearity in two-format hybrid systems as well as 16-QAM systems is mathematically modelled and verified by simulation for different system parameters. A comparative study of differential receivers and coherent receivers is also given for hybrid systems. The model is based on mathematically proven assumptions and provides an intuitive analytical understanding of nonlinear cross-talk in such systems.

  3. Calibration of photoelastic modulator based dichrometers: maintaining constant phase across the spectrum

    Science.gov (United States)

    Sutherland, J. C.

    2016-07-01

    Photoelastic modulators can alter the polarization state of a beam of ultraviolet, visible or infrared photons by means of periodic stress-induced differences in the refractive index of a transparent material that forms the optical element of the device and is isotropic in the absence of stress. They have found widespread application in instruments that characterize or alter the polarization state of a beam in fields as diverse as astronomy, structural biology, materials science and ultraviolet lithography for the manufacture of nano-scale integrated circuits. Measurement of circular dichroism, the differential absorption of left- and right circularly polarized light, and of strain-induced birefringence of optical components are major applications. Instruments using synchrotron radiation and photoelastic modulators with CaF2 optical elements have extended circular dichroism measurements down to wavelengths of about 130 nm in the vacuum ultraviolet. Maintaining a constant phase shift between two orthogonal polarization states across a spectrum requires that the amplitude of the modulated stress be changed as a function of wavelength. For commercially available photoelastic modulators, the voltage that controls the amplitude of modulation required to produce a specified phase shift, which is a surrogate for the stress modulation amplitude, has been shown to be an approximately linear function of wavelength in the spectral region where the optical element is transparent. But, extrapolations of such straight lines cross zero voltage at a non-zero wavelength, not at zero-wavelength. For modulators with calcium fluoride and fused silica optical elements, the zero-crossing wavelength is always in the spectral region where the optical element of the modulator strongly absorbs the incident radiation, and at a wavelength less than the longest-wavelength apparent resonance deduced from experimental values of the refractive index fit to the Sellmeier equation. Using a model

  4. Superluminescent diode interferometer using sinusoidal phase modulation for step-profile measurement.

    Science.gov (United States)

    Sasaki, O; Ikeada, Y; Suzuki, T

    1998-08-01

    We propose an interferometer in which the relationship between the degree of coherence (DCH) and the optical path difference (OPD) is utilized for determining an OPD longer than a wavelength. A superluminescent diode is employed as the source of the interferometer, and sinusoidal phase-modulating interferometry is used to detect the DCH and the phase of the interference signal. The combination of the OPD determined from the DCH and the phase of an interference signal enables us to measure an OPD longer than a wavelength with a high accuracy of a few nanometers. Experimental results show clearly the usefulness of the interferometer for a step-profile measurement.

  5. Cross-phase modulation instability in mode-locked laser based on reduced graphene oxide

    CERN Document Server

    Gaol, Lei; Liu, Min; Huang, Wei

    2014-01-01

    Cross-phase modulation instability (XPMI) is experimentally observed in a fiber ring cavity with net normal dispersion and mode-locked by long fiber taper. The taper is deposited with reduced graphene oxide, which can decrease the threshold of XPMI due to the enhanced nonlinearity realized by 8 mm evanescent field interaction length and strong mode confinement. Experimental results indicate that the phase matching conditions in two polarization directions are different, and sidebands with different intensities are generated. This phase matching condition can be satisfied even the polarization state of the laser varies greatly under different pump strengths.

  6. Measurement of the amplitude and phase transfer functions of an optical modulator using a heterodyne technique

    DEFF Research Database (Denmark)

    Romstad, Francis Pascal; Birkedal, Dan; Mørk, Jesper

    2001-01-01

    We present a new technique that measures the full amplitude and phase transfer curves of the modulator as a function of the applied bias, from which the small signal α-parameter can be calculated. The technique measures the amplitude and phase transfer functions simultaneously and directly......, compared to techniques where a time-consuming data analysis is necessary to calculate the a-parameter and an additional measurement is necessary to estimate the phase. Additionally, the chirp profile for all operation points can be calculated....

  7. Development of the RF system for the KOMAC MEBT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong-Gu; Seol, Kyung-Tae; Kwon, Hyeok-Jung; Kim, Han-Sung; Song, Young-Gi; Cho, Yong-Sub [KOMAC, Gyeongju (Korea, Republic of)

    2015-05-15

    In the 100 MeV proton linear accelerator (Linac) for KOMAC, the RF source will power two-accelerator cavities (an RFQ, a DTL1) operated at a frequency of 350 MHz. The low level RF (LLRF) system for 100 MeV proton linear accelerator provides field control including an RFQ and a DTL at 350 MHz. In our system, an accelerating electric field stability of ±1% in amplitude and ±1° in phase is required for the RF system. Eleven radio-frequency (RF) systems are required for the 100 MeV accelerator, which are one RF system for the radio-frequency quadrupole (RFQ) cavity, one RF system for the 20 MeV drift tube linear accelerator (DTL) tanks, two RF systems for the medium-energy beam transmission (MEBT) tanks, and seven RF systems for the 100 MeV DTL tanks. Now a total of 9 RF systems are being operated. To improve the beam quality, the additional RF system for MEBT (Medium Energy Beam Transport) is needed. An addition of a MEBT RF system will reduce loss of beam quantity caused by gab between 20 MeV DTL tank and 100 MeV DTL tank. RF system for MEBT is being installed. The condition of the test is 350 MHz, 9% pulse duty (1.5 ms, 60 Hz), 4 kW(peak power). Perfecting an RF system of MEBT will reduce loss of beam quantity.

  8. APPLICATION OF SPATIAL LIGHT MODULATORS FOR GENERATION OF LASER BEAMS WITH A SPIRAL PHASE DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    A. A. Zinchik

    2015-09-01

    Full Text Available Subject of Research. This paper discusses numerical simulation of spiral beams. Spiral beams have been experimentally obtained with the use of liquid crystal spatial light modulators (LCD SLM. The ability of dynamical change for the laser beam parameters has been studied. Method. Spiral beams are traditionally obtained by means of static masks defining the amplitude and phase distribution of the beam. The paper deals with modernized method with the use of two LCD SLMs. Modulators form separately the amplitude and phase distribution of the laser beam. Main Results. Numerical modeling of space spiral beams with different amplitude and phase characteristics has been carried out with the use of VirtualLab 5.0 software package manufactured by LightTrans GmbH. Simulation results are compared to the results of a natural experiment. Experimental results are in good agreement with computer simulation. It is shown that LCD SLMs application gives the possibility for dynamical change of the spiral beam parameters, their structure and the dependence of rotation angle on the distance. Distribution phase inversion leads to a change in the rotation direction of the laser beam and, therefore, to a change in the direction of its orbital angular momentum. Practical Relevance. The use of spatial modulators makes it possible to change dynamically the beam parameters, including rotation direction change. The results can be applied for solution of problems related to laser manipulating of microparticles, as well as the problems of determining the phase inhomogeneities of transparent objects.

  9. Phase-modulated waveform design for extended target detection in the presence of clutter.

    Science.gov (United States)

    Gong, Xuhua; Meng, Huadong; Wei, Yimin; Wang, Xiqin

    2011-01-01

    The problem to be addressed in this paper is a phase-modulated waveform design for the detection of extended targets contaminated by signal-dependent noise (clutter) and additive noise in practical radar systems. An optimal waveform design method that leads to the energy spectral density (ESD) of signal under the maximum signal-to-clutter-and-noise ratio (SCNR) criterion is introduced first. In order to make full use of the transmission power, a novel phase-iterative algorithm is then proposed for designing the phase-modulated waveform with a constant envelope, whose ESD matches the optimal one. This method is proven to be able to achieve a small SCNR loss by minimizing the mean-square spectral distance between the optimal waveform and the designed waveform. The results of extensive simulations demonstrate that our approach provides less than 1 dB SCNR loss when the signal duration is greater than 1 μs, and outperforms the stationary phase method and other phase-modulated waveform design methods.

  10. Phase-Modulated Waveform Design for Extended Target Detection in the Presence of Clutter

    Directory of Open Access Journals (Sweden)

    Xiqin Wang

    2011-07-01

    Full Text Available The problem to be addressed in this paper is a phase-modulated waveform design for the detection of extended targets contaminated by signal-dependent noise (clutter and additive noise in practical radar systems. An optimal waveform design method that leads to the energy spectral density (ESD of signal under the maximum signal-to-clutter-and-noise ratio (SCNR criterion is introduced first. In order to make full use of the transmission power, a novel phase-iterative algorithm is then proposed for designing the phase-modulated waveform with a constant envelope, whose ESD matches the optimal one. This method is proven to be able to achieve a small SCNR loss by minimizing the mean-square spectral distance between the optimal waveform and the designed waveform. The results of extensive simulations demonstrate that our approach provides less than 1 dB SCNR loss when the signal duration is greater than 1 μs, and outperforms the stationary phase method and other phase-modulated waveform design methods.

  11. Spiral versus modulated collinear phases in the quantum axial next-nearest-neighbor Heisenberg model

    Science.gov (United States)

    Oitmaa, J.; Singh, R. R. P.

    2016-12-01

    Motivated by the discovery of spiral and modulated collinear phases in several magnetic materials, we investigate the magnetic properties of Heisenberg spin S =1 /2 antiferromagnets in two and three dimensions, with frustration arising from second-neighbor couplings in one axial direction [the axial next-nearest-neighbor Heisenberg (ANNNH) model]. Our results clearly demonstrate the presence of an incommensurate spiral phase at T =0 in two dimensions, extending to finite temperatures in three dimensions. The crossover between Néel and spiral order occurs at a value of the frustration parameter considerably above the classical value 0.25, a sign of substantial quantum fluctuations. We also investigate a possible modulated collinear phase with a wavelength of four lattice spacings and find that it has substantially higher energy and hence is not realized in the model.

  12. Spectral Phase Modulation and chirped pulse amplification in High Gain Harmonic Generation

    CERN Document Server

    Wu, Zilu; Krinsky, Sam; Loos, Henrik; Murphy, James; Shaftan, Timur; Sheehy, Brian; Shen, Yuzhen; Wang, Xijie; Yu Li Hua

    2004-01-01

    High Gain Harmonic Generation (HGHG), because it produces longitudinally coherent pulses derived from a coherent seed, presents remarkable possibilities for manipulating FEL pulses. If spectral phase modulation imposed on the seed modulates the spectral phase of the HGHG in a deterministic fashion, then chirped pulse amplification, pulse shaping, and coherent control experiments at short wavelengths become possible. In addition, the details of the transfer function will likely depend on electron beam and radiator dynamics and so prove to be a useful tool for studying these. Using the DUVFEL at the National Synchrotron Light Source at Brookhaven National Laboratory, we present spectral phase analyses of both coherent HGHG and incoherent SASE ultraviolet FEL radiation, applying Spectral Interferometry for Direct Electric Field Reconstruction (SPIDER), and assess the potential for employing compression and shaping techniques.

  13. Reducing coherent noise in interference systems using the phase modulation technique.

    Science.gov (United States)

    Cui, Ji-Wen; Tao, Zhang; Liu, Zhao-Bo; Tan, Jiu-Bin

    2015-08-20

    The phase modulation technique is adopted to reduce the coherent noise that arises from spurious interference. By choosing an appropriate driving signal, the method can reduce the coherent function of coherent noise to a great degree while keeping the coherent function of a coherent signal nearly unchanged. Simulation results show that for the grating interferometer, the phase error caused by coherent noise is reduced by 81.53% on average. For the Twyman interferometer, the fringe quality and contrast deteriorated by coherent noise are significantly improved. Furthermore, an experiment is set up in the phase-modulated Twyman interferometer to verify the feasibility of the principle. It is concluded that the method is effective to reduce the coherent noise in interference systems.

  14. Phase Noise Monitor and Reduction by Parametric Saturation Approach in Phase Modulation Systems

    Institute of Scientific and Technical Information of China (English)

    XU Ming; ZHOU Zhen; PU Xiao; JI Jian-Hua; YANG Shu-Wen

    2011-01-01

    Nonlinear phase noise (NLPN) is investigated theoretically and numerically to be mitigated by parametric saturation approach in DPSK systems.The nonlinear propagation equation that incorporates the phase of linear and nonlinear is analyzed with parametric saturation processing (PSP).The NLPN is picked and monitored with the power change factors in the DPSK system.This process can be realized by an optical PSP limiter and a novel apparatus with feedback MZI.The monitor range of phase noise is 0°-90°, which may be reduced to 0°-45°if the monitor factor is about the Stockes wave but not an anti-Stockes wave.It is shown that DPSK signal performance can be improved based on the parametric saturation approach.%@@ Nonlinear phase noise (NLPN) is investigated theoretically and numerically to be mitigated by parametric saturation approach in DPSK systems.The nonlinear propagation equation that incorporates the phase of linear and nonlinear is analyzed with parametric saturation processing (PSP).The NLPN is picked and monitored with the power change factors in the DPSK system.This process can be realized by an optical PSP limiter and a novel apparatus with feedback MZI.The monitor range of phase noise is 0°-90°, which may be reduced to 0°-45° if the monitor factor is about the Stockes wave but not an anti-Stockes wave.It is shown that DPSK signal performance can be improved based on the parametric saturation approach.

  15. 77 FR 35425 - Crystalline Silicon Photovoltaic Cells and Modules From China; Scheduling of the Final Phase of...

    Science.gov (United States)

    2012-06-13

    ... silicon photovoltaic cells, and modules, laminates, and panels, consisting of crystalline silicon... COMMISSION Crystalline Silicon Photovoltaic Cells and Modules From China; Scheduling of the Final Phase of... crystalline silicon photovoltaic cells and modules, provided for in subheadings 8501.31.80, 8501.61.00,...

  16. Single-Carrier Modulation for Neutral-Point-Clamped Inverters in Three-Phase Transformerless Photovoltaic Systems

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Cavalcanti, Marcelo C.; Farias, Alexandre M.;

    2013-01-01

    Modulation strategy is one of the most important issues for three-level neutral-point-clamped inverters in three-phase transformerless photovoltaic systems. A challenge for modulation is how to keep the common-mode voltages constant to reduce the leakage currents. A single-carrier modulation...

  17. Operation Mode on Pulse Modulation in Atmospheric Radio Frequency Glow Discharges

    Science.gov (United States)

    Zhang, Jie; Guo, Ying; Huang, Xiaojiang; Zhang, Jing; Shi, Jianjun

    2016-10-01

    The discharge operation regime of pulse modulated atmospheric radio frequency (RF) glow discharge in helium is investigated on the duty cycle and frequency of modulation pulses. The characteristics of radio frequency discharge burst in terms of breakdown voltage, alpha(α)-gamma(γ) mode transition voltage and current are demonstrated by the discharge current voltage characteristics. The minimum breakdown voltage of RF discharge burst was obtained at the duty cycle of 20% and frequency of 400 kHz, respectively. The α-γ mode transition of RF discharge burst occurs at higher voltage and current by reducing the duty cycle and elevating the modulation frequency before the RF discharge burst evolving into the ignition phase, in which the RF discharge burst can operate stably in the γ mode. It proposes that the intensity and stability of RF discharge burst can be improved by manipulating the duty cycle and modulation frequency in pulse modulated atmospheric RF glow discharge. supported by National Natural Science Foundation of China (Nos. 11475043 and 11375042)

  18. Broadband microwave phase shifter based on high speed cross gain modulation in quantum dot semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2009-01-01

    We present a scheme to achieve tunable ~180 degrees microwave phase shifts at frequencies exceeding 100 GHz based on high speed cross gain modulation in quantum dot semiconductor optical amplifiers.......We present a scheme to achieve tunable ~180 degrees microwave phase shifts at frequencies exceeding 100 GHz based on high speed cross gain modulation in quantum dot semiconductor optical amplifiers....

  19. Linearisation of RF Power Amplifiers

    DEFF Research Database (Denmark)

    Nielsen, Per Asbeck

    2001-01-01

    This thesis deals with linearisation techniques of RF power amplifiers (PA), PA design techniques and integration of the necessary building blocks in a CMOS technology. The opening chapters introduces the theory of transmitter architectures, RF-signal representation and the principles of digital...... modulation. Furthermore different types of power amplifiers, models and measures of non-linearities are presented. A chapter is also devoted to different types of linearisation systems. The work carried out and described in this thesis can be divided into a more theoretical and system oriented treatment...... the polar loop architecture and it’s suitability to modern digital transmitters is discussed. A proposal of an architecture that is suitable for digital transmitters, which means that it has an interface to the digital back-end, defined by low-pass signals in polar form, is presented. Simulation guidelines...

  20. A tunable and wideband microwave photonic phase shifter based on dual-polarization modulator

    Science.gov (United States)

    Peng, Zhengxue; Wen, Aijun; Gao, Yongsheng; Tu, Zhaoyang

    2017-01-01

    A microwave photonic phase shifter based on dual-polarization Mach-Zehnder modulator (DPol-MZM) is proposed and experimentally demonstrated in this paper. A polarization multiplexed double sideband (DSB) signal is produced by a DPol-MZM. An optical bandpass filter (OBPF) follows after the DPol-MZM to filter out the optical carrier and one sideband. The polarization multiplexed signal is converted into a linear polarization light by a polarizer (Pol), and then beat at a photodiode (PD) to obtain the phase shifted signal. Experiments are carried out, and a continuous phase shift from -180° to 180° over a wide microwave frequency range of 10-33 GHz can be achieved by changing the polarization state using a polarization controller (PC). We also studied the spurious free dynamic range (SFDR) in the experiments. The features of this proposed phase shifter are large operation bandwidth, full-range 360° phase shift, and simple structure.

  1. Performance analysis of variable speed multiphase induction motor with pole phase modulation

    Directory of Open Access Journals (Sweden)

    Liu Huijuan

    2016-09-01

    Full Text Available The pole phase modulation (PPM technique is an effective method to extend speed range and torque capabilities for an integrated starter and hybrid electric vehicles applications. In this paper, the five pole-phase combination types of a multiphase induction motor (IM with 36 stator slots and 36 stator conductors are presented and compared quantitatively by using the time-stepping finite element method (TS-FEM. The 36 stator conductors of the proposed multiphase IM are fed by a 36 leg inverter and the current phase angle and amplitude of each stator conductor can be controlled independently. This paper focuses on the winding connection, the PPM technique and the performance comparative analysis of each pole-phase combination types of the proposed multiphase IM. The flux distribution, air-gap flux density, output torque, core losses and efficiency of five pole-phase combination types have been investigated.

  2. Operators Manual and Technical Reference for the Z-Beamlet Phase Modulation Failsafe System: Version 1.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Darrell J.

    2014-09-01

    The need for pulse energies exceeding 4 kJ and pulse lengths [?] 2 ns in Sandia's Z-Beamlet laser (ZBL) requires that the single-frequency spectrum of its fiber-laser master oscillator be converted to a phase modulated spectrum with a modulation in dex [?] 5. Because accidental injection of single-frequency light into ZBL could result i n damage to optical materials from transverse stimulated Brillouin scattering, the presence of phase modulated (PM) light must be monitored by a reliable failsafe system that can stop a las er shot within of a few 10's of ns following a failure of the PM system. This requirement is met by combining optical heterodyne detection with high-speed electronics to indicate the pres ence or absence of phase modulated light. The transition time for the failsafe signal resultin g from a sudden failure using this technique is approximately 35 ns. This is sufficiently short to safely stop a single-frequency laser pulse from leaving ZBL's regenerative amplifier with a n approximately 35 ns margin of safety. This manual and technical reference contains detai led instructions for daily use of the PM failsafe system and provides enough additional informat ion for its maintenance and repair.

  3. An investigation of the influence of residual amplitude modulation in phase electro-optic modulator on the signal of fiber-optic gyroscope

    Science.gov (United States)

    Pogorelaya, D. A.; Smolovik, M. A.; Strigalev, V. E.; Aleynik, A. S.; Deyneka, I. G.

    2016-08-01

    The investigation is devoted to residual amplitude modulation (RAM) of phase electro-optic modulator, which guides are made in LiNbO3 crystal by Ti diffusion technology. An analysis is presented that shows influence of RAM on the signal of fiber-optic gyroscope. The RAM compensation method is offered.

  4. Selectivity enhancement in photoacoustic gas analysis via phase-sensitive detection at high modulation frequency

    Science.gov (United States)

    Kosterev, Anatoliy (Inventor)

    2010-01-01

    A method for detecting a target fluid in a fluid sample comprising a first fluid and the target fluid using photoacoustic spectroscopy (PAS), comprises a) providing a light source configured to introduce an optical signal having at least one wavelength into the fluid sample; b) modulating the optical signal at a desired modulation frequency such that the optical signal generates an acoustic signal in the fluid sample; c) measuring the acoustic signal in a resonant acoustic detector; and d) using the phase of the acoustic signal to detect the presence of the target fluid.

  5. Performance Evaluation of Digital Coherent Receivers for Phase-Modulated Radio-Over-Fiber Links

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Zibar, Darko; Tafur Monroy, Idelfonso

    2011-01-01

    The performance of optical phase-modulated (PM) radio-over-fiber (RoF) links assisted with coherent detection and digital signal processing (PM-Coh) is analyzed and experimentally demonstrated for next-generation wireless-over-fiber systems. PM-Coh offers high linearity for transparent transport......-bandwidth electronics. Analytical assessment and simulations are used to determine the ultimate performance with respect to laser linewidth, modulation index, and receiver sensitivity. Then, two different scenarios are studied and experimentally demonstrated as an application of PM-Coh links: a high...

  6. High-Quality Ultrashort Pulse Generation Utilizing a Self-Phase Modulation-Based Reshaper

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An ultrashort 10-GHz pulse generation scheme was successfully demonstrated using a bulk material InGaAsP electroabsorption modulator to generate the seed pulse. A self-phase modulation-based reshaper was used after the adiabatic soliton compression in a comb-like dispersion profiled fiber. Experiments and simulations confirm that the reshaper effectively removes the pulse pedestal and improves the pulse extinction ratio. As a result, the 10-GHz pulse had no pedestal, a high extinction ratio, and a pulse width of only 1.4 ps.

  7. Prescaled phase-locked loop using phase modulation and spectral filtering and its application to clock extraction from 160-Gbit/s optical-time-division multiplexed signal.

    Science.gov (United States)

    Igarashi, Koji; Katoh, Kazuhiro; Kikuchi, Kazuro

    2006-05-01

    We propose a prescaled phase-locked loop (PLL) using a simple optoelectronic phase comparator based on phase modulation and spectral filtering. Our phase comparator has a high dynamic range of over 9 dB and a high sensitivity comparable to that using an electrical mixer. A PLL composed of our phase comparator enables to extract a low-noise 10-GHz clock from a 160-Gbit/s optical-time-division multiplexed (OTDM) signal.

  8. Colour hologram projection with an SLM by exploiting its full phase modulation range.

    Science.gov (United States)

    Jesacher, Alexander; Bernet, Stefan; Ritsch-Marte, Monika

    2014-08-25

    We demonstrate independent and simultaneous manipulation of light beams of different wavelengths by a single hologram, which is displayed on a phase-only liquid crystal spatial light modulator (SLM). The method uses the high dynamic phase modulation range of modern SLMs, which can shift the phase of each pixel in a range between 0 up to 10π, depending on the readout wavelength. The extended phase range offers additional degrees of freedom for hologram encoding. Knowing the phase modulation properties of the SLM (i.e. the so-called lookup table) in the entire exploited wavelength range, an exhaustive search algorithm allows to combine different independently calculated 2π-holograms into a multi-level hologram with a phase range extending over several multiples of 2π. The combined multi-level hologram then reconstructs the original diffractive patterns with only small phase errors at preselected wavelengths, thus projecting the desired image fields almost without any crosstalk. We demonstrate this feature by displaying a static hologram at an SLM which is read out with an incoherent red-green-blue (RGB) beam, projecting a color image at a camera chip. This is done for both, a Fourier setup which needs a lens for image focusing, and in a "lensless" Fresnel setup, which also avoids the appearance of a focused zero-order spot in the image center. The experimentally obtained efficiency of a two-colour combination is on the order of 83% for each wavelength, with a crosstalk level between the two colour channels below 2%, whereas a three-colour combination still reaches an efficiency of about 60% and a crosstalk level below 5%.

  9. System design of programmable 4f phase modulation techniques for rapid intensity shaping: a conceptual comparison

    Science.gov (United States)

    Roth, Matthias; Heber, Jörg; Janschek, Klaus

    2016-03-01

    The present study analyses three beam shaping approaches with respect to a light-efficient generation of i) patterns and ii) multiple spots by means of a generic optical 4f-setup. 4f approaches share the property that due to the one-to-one relationship between output intensity and input phase, the need for time-consuming, iterative calculation can be avoided. The resulting low computational complexity offers a particular advantage compared to the widely used holographic principles and makes them potential candidates for real-time applications. The increasing availability of high-speed phase modulators, e.g. on the basis of MEMS, calls for an evaluation of the performances of these concepts. Our second interest is the applicability of 4f methods to high-power applications. We discuss the variants of 4f intensity shaping by phase modulation from a system-level point of view which requires the consideration of application relevant boundary conditions. The discussion includes i) the micro mirror based phase manipulation combined with amplitude masking in the Fourier plane, ii) the Generalized Phase Contrast, and iii) matched phase-only correlation filtering combined with GPC. The conceptual comparison relies on comparative figures of merit for energy efficiency, pattern homogeneity, pattern image quality, maximum output intensity and flexibility with respect to the displayable pattern. Numerical simulations illustrate our findings.

  10. Topological phase transition in hexagonal boron-nitride bilayers modulated by gate voltage

    Science.gov (United States)

    Jin, Guojun; Zhai, Xuechao

    2013-03-01

    We study the gate-voltage modulated electronic properties of hexagonal boron-nitride bilayers with two different stacking structures in the presence of intrinsic and Rashba spin-orbit interactions. Our analytical results show that there are striking cooperation effects arising from the spin-orbit interactions and the interlayer bias voltage. For realizing topological phase transition, in contrast to a gated graphene bilayer for increasing its energy gap, the energy gap of a boron-nitride bilayer is significantly reduced by an applied gate voltage. For the AA stacking-bilayer which has the inversion symmetry, a strong topological phase is found, and there is an interesting reentrant behavior from a normal phase to a topological phase and then to a normal phase again, characterized by the topological index. Therefore, the gate voltage modulated AA-boron nitride bilayer can be taken as a newcomer of the topological insulator family. For the AB stacking-bilayer which is lack of the inversion symmetry, it is always topologically trivial, but exhibits an unusual quantum Hall phase with four degenerate low-energy states localized at a single edge. It is suggested that these theoretical findings could be verified experimentally in the transport properties of boron-nitride bylayers. This research was supported by the NSFC (Nos. 60876065, 11074108), PAPD, and NBRPC (Nos. 2009CB929504, 2011CB922102).

  11. A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light.

    Science.gov (United States)

    Zeringue, Clint; Dajani, Iyad; Naderi, Shadi; Moore, Gerald T; Robin, Craig

    2012-09-10

    Beam combining of phase-modulated kilowatt fiber amplifiers has generated considerable interest recently. We describe in the time domain how stimulated Brillouin scattering (SBS) is generated in an optical fiber under phase-modulated laser conditions, and we analyze different phase modulation techniques. The temporal and spatial evolutions of the acoustic phonon, laser, and Stokes fields are determined by solving the coupled three-wave interaction system. Numerical accuracy is verified through agreement with the analytical solution for the un-modulated case and through the standard photon conservation relation for counter-propagating optical fields. As a test for a modulated laser, a sinusoidal phase modulation is examined for a broad range of modulation amplitudes and frequencies. We show that, at high modulation frequencies, our simulations agree with the analytical results obtained from decomposing the optical power into its frequency components. At low modulation frequencies, there is a significant departure due to the appreciable cross talk among the laser and Stokes sidebands. We also examine SBS suppression for a white noise source and show significant departures for short fibers from analytically derived formulas. Finally, SBS suppression through the application of pseudo-random bit sequence modulation is examined for various patterns. It is shown that for a fiber length of 9 m the patterns at or near n=7 provide the best mitigation of SBS with suppression factors approaching 17 dB at a modulation frequency of 5 GHz.

  12. Enhanced wavefront reconstruction by random phase modulation with a phase diffuser

    DEFF Research Database (Denmark)

    Almoro, Percival F; Pedrini, Giancarlo; Gundu, Phanindra Narayan

    2011-01-01

    propagation in free space. The presentation of this technique is carried out using two setups. In the first setup, a diffuser plate is placed at the image plane of a metallic test object. The benefit of randomizing the phase of the object wave is the enhanced intensity recording due to high dynamic range...

  13. Real-time characterization of FM-AM modulation in a high-power laser facility using an RF-photonics system and a denoising algorithm.

    Science.gov (United States)

    Huang, Canhong; Lu, Xinghua; Jiang, Youen; Wang, Xiaochao; Qiao, Zhi; Fan, Wei

    2017-02-20

    FM-AM modulation of high-power lasers significantly affects laser performance. Therefore, precise measurement of the FM-AM modulation depth is necessary. The subsequent FM-AM modulation generated by group velocity dispersion when the laser pulse propagates through a fiber affects the measurement accuracy. In order to eliminate this effect, a waveform-acquisition module is proposed that converts a broad-spectrum pulse of 1053 nm to a narrow-spectrum pulse of 1550 nm, without affecting the waveform. In addition, a signal-processing algorithm based on the orthogonal matching pursuit method is implemented to remove the sampling noise from the waveform. In this way, the signal-to-noise ratio of the measurement can be readily improved. Both theoretical and experimental results indicate that the proposed FM-AM modulation detection system is effective and economical. It can measure the FM-AM modulation depth precisely, and therefore shows considerable promise for future applications in high-power lasers.

  14. RF MEMS reconfigurable triangular patch antenna.

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, Christos George (The University of New Mexico, Albuquerque, NM); Nordquist, Christopher Daniel; Feldner, Lucas Matthew

    2005-07-01

    A Ka-band RF MEMS enabled frequency reconfigurable triangular microstrip patch antenna has been designed for monolithic integration with RF MEMS phase shifters to demonstrate a low-cost monolithic passive electronically scanned array (PESA). This paper introduces our first prototype reconfigurable triangular patch antenna currently in fabrication. The aperture coupled patch antenna is fabricated on a dual-layer quartz/alumina substrate using surface micromachining techniques.

  15. RF MEMS reconfigurable triangular patch antenna.

    Energy Technology Data Exchange (ETDEWEB)

    Nordquist, Christopher Daniel; Christodoulou, Christos George (University of New Mexico, Albuquerque, NM); Feldner, Lucas Matthew

    2005-01-01

    A Ka-band RF MEMS enabled frequency reconfigurable triangular microstrip patch antenna has been designed for monolithic integration with RF MEMS phase shifters to demonstrate a low-cost monolithic passive electronically scanned array (PESA). This paper introduces our first prototype reconfigurable triangular patch antenna currently in fabrication. The aperture coupled patch antenna is fabricated on a dual-layer quartz/alumina substrate using surface micromachining techniques.

  16. Attention and temporal expectations modulate power, not phase, of ongoing alpha oscillations.

    Science.gov (United States)

    van Diepen, Rosanne M; Cohen, Michael X; Denys, Damiaan; Mazaheri, Ali

    2015-08-01

    The perception of near-threshold visual stimuli has been shown to depend in part on the phase (i.e., time in the cycle) of ongoing alpha (8-13 Hz) oscillations in the visual cortex relative to the onset of that stimulus. However, it is currently unknown whether the phase of the ongoing alpha activity can be manipulated by top-down factors such as attention or expectancy. Using three variants of a cross-modal attention paradigm with constant predictable stimulus onsets, we examined if cues signaling to attend to either the visual or the auditory domain influenced the phase of alpha oscillations in the associated sensory cortices. Importantly, intermixed in all three experiments, we included trials without a target to estimate the phase at target presentation without contamination from the early evoked responses. For these blank trials, at the time of expected target and distractor onset, we examined (1) the degree of the uniformity in phase angles across trials, (2) differences in phase angle uniformity compared with a pretarget baseline, and (3) phase angle differences between visual and auditory target conditions. Across all three experiments, we found that, although the cues induced a modulation in alpha power in occipital electrodes, neither the visual condition nor the auditory cue condition induced any significant phase-locking across trials during expected target or distractor presentation. These results suggest that, although alpha power can be modulated by top-down factors such as attention and expectation, the phase of the ongoing alpha oscillation is not under such control.

  17. Optimal RF Systems for Lightly Loaded Superconducting Structures

    CERN Document Server

    Zwart, Townsend; Graves, William S; Wang, D; Zolfaghari, Abbi

    2004-01-01

    Recent developments in the field of RF accelerators have created a demand for power amplifiers that can support very high accelerating gradients, 15-25 MV/m, in superconducting structures with extremely low losses. Free electron lasers (FEL’s) with modest beam current, I< 10 uA, or based on energy recovery linacs (ERL’s) may have intrinsic power demands of less than 1 kW/m. We present the design of an amplifier and external tuner system that will efficiently meet this requirement. The RF amplifier, an Inductive Output Tube (IOT), offers high AC/RF efficiency, flexible power output and switching capability without the need for external modulation. The tuner circuit makes use of low loss ferrite phase shifters to create a moderate quality standing wave (Q~100-1000) between the amplifier and the superconducting cavity. An alternative design based on a shorter cavity structure and employing solid state amplifiers is also presented. The expected performance characteristics of both systems are described.

  18. Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links

    DEFF Research Database (Denmark)

    Iglesias Olmedo, Miguel; Zuo, Tianjian; Jensen, Jesper Bevensee

    2014-01-01

    packaging. Therefore, increasing effort is now put into the possibility of exploiting higher order modulation formats with increased spectral efficiency and reduced optical transceiver complexity. As these type of links are based on intensity modulation and direct detection, modulation formats relying...... on optical coherent detection can not be straight forwardly employed. As an alternative and more viable solution, this paper proposes the use of carrierless amplitude phase (CAP) in a novel multiband approach (MultiCAP) that achieves record spectral efficiency, increases tolerance towards dispersion......Short range optical data links are experiencing bandwidth limitations making it very challenging to cope with the growing data transmission capacity demands. Parallel optics appears as a valid short-term solution. It is, however, not a viable solution in the long-term because of its complex optical...

  19. RF feedback for KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Ezura, Eizi; Yoshimoto, Shin-ichi; Akai, Kazunori [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    This paper describes the present status of the RF feedback development for the KEK B-Factory (KEKB). A preliminary experiment concerning the RF feedback using a parallel comb-filter was performed through a choke-mode cavity and a klystron. The RF feedback has been tested using the beam of the TRISTAN Main Ring, and has proved to be effective in damping the beam instability. (author)

  20. Few-Photon All-Optical {\\pi} Phase modulation Based on a Double-{\\Lambda} System

    CERN Document Server

    Chen, Yen-Chun; Lo, Hsiang-Yu; Tsai, Bing-Ru; Yu, Ite A; Chen, Ying-Cheng; Chen, Yong-Fan

    2013-01-01

    We propose an efficient all-optical phase modulation based on a double-{\\Lambda} system and demonstrate a {\\pi} phase shift of a few-photon pulse induced by another few-photon pulse in cold rubidium atoms with this scheme. By changing the phases of the applied laser fields, one can control the property of the double-{\\Lambda} medium. This phase-dependent mechanism makes the double-{\\Lambda} system different form the conventional cross-Kerr-based system which only depends on the applied laser intensities. The proposed scheme provides a new route to generate strong nonlinear interactions between photons, and may have potential for applications in quantum information technologies.

  1. Phase-dependent spectral control of pulsed modulation instability via dichromatic seed fields

    Science.gov (United States)

    Brinkmann, Maximilian; Kues, Michael; Fallnich, Carsten

    2014-09-01

    We investigated experimentally and numerically the spectral control of modulation instability (MI) dynamics via the initial phase relation of two weak seed fields. Specifically, we show how second-order MI dynamics exhibit phase-dependent anti-correlated growth rates of adjacent spectral sidebands. This effect enables a novel method to control MI-based frequency conversion: in contrast to first-order MI dynamics, which exhibit a uniform phase dependence of the growth rates, second-order MI dynamics allow to redistribute the spectral energy, leading to an asymmetric spectrum. Therefore, the presented findings should be very attractive to different applications, such as phase-sensitive amplification or supercontinuum generation initiated by MI.

  2. Fiber-optic project-fringe interferometry with sinusoidal phase modulating system

    Science.gov (United States)

    Zhang, Fukai; Duan, Fajie; Lv, Changrong; Duan, Xiaojie; Bo, En; Feng, Fan

    2013-06-01

    A fiber-optic sinusoidal phase-modulating (SPM) interferometer for fringe projection is presented. The system is based on the SPM technique and makes use of the Mach-Zehnder interferometer structure and Young's double pinhole interference principle to achieve interference fringe projection. A Michelson interferometer, which contains the detection of Fresnel reflection on its fiber end face and interference at one input port of a 3 dB coupler, is utilized to achieve feedback precise control of the fringe phase, which is sensitive to phase drifting produced by the nature of the fiber. The phase diversity for the closed-loop SPM system can be real-time measured with a precision of 3 mrad. External disturbances mainly caused by temperature fluctuations can be reduced to 57 mrad for the fringe map. The experimental results have shown the usefulness of the system.

  3. Phase Quantization Study of Spatial Light Modulator for Extreme High contrast Imaging

    CERN Document Server

    Dou, Jiangpei

    2016-01-01

    Direct imaging of exoplanets by reflected starlight is extremely challenging due to the large luminosity ratio to the primary star. Wave front control is a critical technique to attenuate the speckle noise in order to achieve an extreme high contrast. We present the phase quantization study of spatial light modulator for wave front control to meet the contrast requirement of detection of a terrestrial planet in the habitable zone of a solar-type star. We perform the numerical simulation by employing the SLM with different phase accuracy and actuator numbers, which are related to the achievable contrast. We use an optimization algorithm to solve the quantization problems that is matched to the controllable phase step of the SLM. Two optical configurations are discussed with the SLM located before and after the coronagraph focal plane mask, respectively. The simulation result has constrained the specification for phase accuracy of SLM in above two optical configurations. Finally, we have demonstrated that the S...

  4. All-optical short pulse translation through cross-phase modulation in a VO₂ thin film.

    Science.gov (United States)

    Fardad, Shima; Das, Susobhan; Salandrino, Alessandro; Breckenfeld, Eric; Kim, Heungsoo; Wu, Judy; Hui, Rongqing

    2016-01-15

    VO2 is a promising material for reconfigurable photonic devices due to the ultrafast changes in electronic and optical properties associated with its dielectric-to-metal phase transition. Based on a fiber-optic, pump-probe setup at 1550 nm wavelength window, and by varying the pump-pulse duration, we show that the material phase transition is primarily caused by the pump-pulse energy. For the first time, we demonstrate that the instantaneous optical phase modulation of probe during pump leading edge can be utilized to create short optical pulses at probe wavelength, through optical frequency discrimination. This circumvents the impact of long recovery time well known for the phase transition of VO2.

  5. Compound cavity theory of resonant phase modulation in laser self-mixing ultrasonic vibration measurement

    Science.gov (United States)

    Tao, Yufeng; Wang, Ming; Guo, Dongmei

    2016-07-01

    The theoretical basis of self-mixing interference (SMI) employing a resonant phase modulator is explored to prove its tempting advantages. The adopted method induces a pure phase carrier without increasing system complexity. A simple time-domain signal process is used to estimate modulation depth and precisely track vibrating trail, which promises the flexibility of measuring ultrasonic vibration regardless of the constraint of the Bessel functions. The broad bandwidth, low speckle noise, compact, safe, and easy operating SMI system obtains the best resolution of a poor reflection environment. Numerical simulation discusses the spectrum broadening and errors due to multiple reflections. Experimental results agree with theory coherently and are compared with laser Doppler vibration meter showing a dynamical error better than 20 nm in ultrasonic vibration measurement.

  6. Single phase-change analysis of two different PCMs filled in a heat transfer module

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Gyu; Kang, Chae Dong [Chonbuk National University, Jeonju (Korea, Republic of); Kim, Hyung Kuk [Hyundai Heavy Industries Co., Ulsan (Korea, Republic of)

    2014-07-15

    Phase change material(PCM) is tried to secondary heat source in solar heat pump system. A numerical study of the phase change dominant heat transfer is done with a heat transfer module, which consists of a water path(BRINE), heat transfer plates(HTP), and PCM layers of high-temperature one(HPCM, 78-79 .deg. C) and low-temperature one(LPCM, 28-29 .deg. C). There are five arrangements consisting of BRINE, HTP, HPCM, and LPCM layers in the heat transfer module. The time and heat transfer rate for PCM melting/solidification are compared between arrangements. And the numerical time without convection is compared to the experimental one for melting/solidification. From the numerical analysis, the time for melting/solidification is different to 10 hours, depending on the arrangement.

  7. The nature of relaxation processes revealed by the action signals of phase modulated light fields

    CERN Document Server

    Osipov, Vladimir Al; Hansen, Thorsten; Pullerits, Tõnu; Karki, Khadga Jung

    2016-01-01

    In the article we develop a theory of the action signals induced by the two-photon absorption of two phase modulated laser beams. In such experiments the phase of each laser beams is modulated at the frequencies $\\phi_1$ and $\\phi_2$, respectively, and the nonlinear signals are isolated at frequencies $m\\phi=m(\\phi_1-\\phi_2)$ ($m=0,1,2,\\dots$). We demonstrate that the ratio of the amplitudes of primary ($m=1$) and secondary ($m=2$) signals, $A_{\\phi}:A_{2\\phi}$, can be used as an indicator of the type of relaxation processes taking place in the material. The reference ratio value $4:1$ is achieved for the fast linear relaxation processes, and changes smoothly as the relaxation time increases. In case of bimolecular relaxation the ratio becomes a rapidly changing function of the excitation intensity. Our theoretical findings are supported by the experimental observations.

  8. Alternative approach of conducting phase-modulated all-optical logic gates

    Science.gov (United States)

    Chakraborty, Bikash; Mukhopadhyay, Sourangshu

    2009-03-01

    It is well established that optical devices and components are more advantageous than their electronic counterparts because of inherent parallelism in optics. Basically electronics are found to be very unsuitable in high speed (above gigahertz) data processing systems whereas tremendous operational speed (in the range of terahertz) can be achieved with the help of optics. The parallelism of optics and the properties of low loss transmission make optics a powerful technology for digital computing and processing and in long-range communications. Again it is well established that logic gates are the basic building blocks of any computing or data processing system. Therefore, any optical data processor needs suitable optically run logic gates. A method of conducting phase-modulated all-optical logic gates is proposed. Here we will exploit the advantages of phase modulation not only in processing but also in encoding as well decoding also.

  9. Error minimization method for spectroscopic and phase-modulated ellipsometric measurements on highly transparent thin films

    Energy Technology Data Exchange (ETDEWEB)

    Campmany, J.; Bertran, E.; Canillas, A.; Andujar, J.L.; Costa, J. (Universitat de Barcelona, Catalonia (Spain))

    1993-04-01

    The authors point out that there is an intrinsic magnification of error in the measurement of transparent or semitransparent thin films by the usual method of phase-modulated ellipsometry. This procedure is suitable for absorbing materials, but for nonabsorbing materials it gives a great amount of error in the measurement of ellipsometric angles at some critical values. A new methodology is proposed for the phase-modulated ellipsometric measurements that avoids this magnification. The advantages of this new method are illustrated by measuring the index of refraction of a low-pressure chemical-vapor-deposited SiO[sub 2] thin film with greater accuracy than that achieved by the usual method. 16 refs., 6 figs.

  10. Coherent x-ray diffraction imaging of paint pigmentparticles by scanning a phase plate modulator

    Energy Technology Data Exchange (ETDEWEB)

    Chu Y. S.; Chen B.; Zhang F.; Berenguer F.; Bean R.; Kewish C.; Vila-Comamala J.; Rodenburg J.; Robinson I.

    2011-10-19

    We have implemented a coherent x-ray diffraction imaging technique that scans a phase plate to modulate wave-fronts of the x-ray beam transmitted by samples. The method was applied to measure a decorative alkyd paint containing iron oxide red pigment particles. By employing an iterative algorithm for wave-front modulation phase retrieval, we obtained an image of the paint sample that shows the distribution of the pigment particles and is consistent with the result obtained from a transmission x-ray microscope. The technique has been experimentally proven to be a feasible coherent x-ray imaging method with about 120 nm spatial resolution and was shown to work well with industrially relevant specimens.

  11. Feasibility of a multipurpose transceiver module for phased array radar and EW applications using RFIC technology

    Science.gov (United States)

    Al-Sarawi, Said; Hansen, Hedley; Zhu, Yingbo

    2007-12-01

    Phased array antennas have a large number of civilian and military applications. In this paper we briefly review common approaches to an integrated implementation of radar and electronic warfare digital phase array module and highlight features that are common to both of these applications. Then we discuss how the promising features of the radio frequency integrated circuit (RFIC)-based technology can be utilized in building a transceiver module that meets the requirements of both radar and electronic warfare applications with minimum number of external components. This is achieved by researching the pros and cons of the different receiver architectures and their performance from the targeted applications point of view. Then, we survey current RFIC technologies and highlight the pros and cons of these technologies and how they impact the performance of the discussed receiver architectures.

  12. A novel binaural pitch elicited by phase-modulated noise: MEG and psychophysical observations.

    Science.gov (United States)

    Witton, Caroline; Hillebrand, Arjan; Furlong, Paul L; Henning, G Bruce

    2012-06-01

    Binaural pitches are auditory percepts that emerge from combined inputs to the ears but that cannot be heard if the stimulus is presented to either ear alone. Here, we describe a binaural pitch that is not easily accommodated within current models of binaural processing. Convergent magnetoencephalography (MEG) and psychophysical measurements were used to characterize the pitch, heard when band-limited noise had a rapidly changing interaural phase difference. Several interesting features emerged: First, the pitch was perceptually lateralized, in agreement with the lateralization of the evoked changes in MEG spectral power, and its salience depended on dichotic binaural presentation. Second, the frequency of the pure tone that matched the binaural pitch lay within a lower spectral sideband of the phase-modulated noise and followed the frequency of that sideband when the modulation frequency or center frequency and bandwidth of the noise changed. Thus, the binaural pitch depended on the processing of binaural information in that lower sideband.

  13. Versatile Low Level RF System For Linear Accelerators

    Science.gov (United States)

    Potter, James M.

    2011-06-01

    The Low Level RF (LLRF) system is the source of all of the rf signals required for an rf linear accelerator. These signals are amplified to drive accelerator and buncher cavities. It can even provide the synchronizing signal for the rf power for a synchrotron. The use of Direct Digital Synthesis (DDS) techniques results in a versatile system that can provide multiple coherent signals at the same or different frequencies with adjustable amplitudes and phase relations. Pulsing the DDS allows rf switching with an essentially infinite on/off ratio. The LLRF system includes a versatile phase detector that allows phase-locking the rf frequency to a cavity at any phase angle over the full 360° range. With the use of stepper motor driven slug tuners multiple cavity resonant frequencies can be phase locked to the rf source frequency. No external phase shifters are required and there is no feedback loop phase setup required. All that is needed is to turn the frequency feedback on. The use of Digital Signal Processing (DSP) allows amplitude and phase control over the entire rf pulse. This paper describes the basic principles of a LLRF system that has been used for both proton accelerators and electron accelerators, including multiple tank accelerators, sub-harmonic and fundamental bunchers, and synchrotrons.

  14. Efficient Simulation of Quantum States Based on Classical Fields Modulated with Pseudorandom Phase Sequences

    CERN Document Server

    Fu, Jian

    2010-01-01

    We demonstrate that a tensor product structure could be obtained by introducing pseudorandom phase sequences into classical fields with two orthogonal modes. Using classical fields modulated with pseudorandom phase sequences, we discuss efficient simulation of several typical quantum states, including product state, Bell states, GHZ state, and W state. By performing quadrature demodulation scheme, we could obtain the mode status matrix of the simulating classical fields, based on which we propose a sequence permutation mechanism to reconstruct the simulated quantum states. The research on classical simulation of quantum states is important, for it not only enables potential practical applications in quantum computation, but also provides useful insights into fundamental concepts of quantum mechanics.

  15. Optimization of a four-temporal phase lock for photoelastic-modulated polarimetry.

    Science.gov (United States)

    Tsai, Hsiu-Ming; Chao, Yu-Faye

    2009-08-01

    A set of four-temporal phases in photoelastic-modulated polarimetry is proposed to measure the Stokes parameters. In comparison with the conventional polarimetry, which uses a set of four-spatial angles by rotating a quarter-wave plate to obtain the polarimetric parameters, this temporal type polarimetry not only can reduce the time consumption but also can avoid the measurement error from the beam deviation. In addition, based on singular value decomposition, the figure of merit of this temporal phase technique can improve its signal-to-noise ratio by a factor of 2 in comparison with the rotating quarter-wave plate.

  16. Tight Focusing Properties of Phase Modulated Radially Polarized Laguerre Bessel Gaussian Beam

    Science.gov (United States)

    Prabakaran, K.; Sangeetha, P.; Karthik, V.; Rajesh, K. B.; Musthafa, A. M.

    2017-05-01

    We propose a new approach for generating a multiple focal spot segment of subwavelength size, by tight focusing of a phase modulated radially polarized Laguerre Bessel Gaussian beam. The focusing properties are investigated theoretically by vector diffraction theory. We observe that the focal segment with multiple focal structures is separated with different axial distances and a super long dark channel can be generated by properly tuning the phase of the incident radially polarized Laguerre Bessel Gaussian beam. We presume that such multiple focal patterns and high intense beam may find applications in atom optics, optical manipulations and multiple optical trapping.

  17. Modulated systems in external fields: Conditions for the presence of reentrant phase diagrams

    Science.gov (United States)

    Mendoza-Coto, Alejandro; Billoni, Orlando V.; Cannas, Sergio A.; Stariolo, Daniel A.

    2016-08-01

    We introduce a coarse-grained model capable of describing the phase behavior of two-dimensional ferromagnetic systems with competing exchange and dipolar interactions, as well as an external magnetic field. An improved expression for the mean-field entropic contribution allows us to compute the phase diagram in the whole temperature versus external field plane. We find that the topology of the phase diagram may be qualitatively different depending on the ratio between the strength of the competing interactions. In the regime relevant for ultrathin ferromagnetic films with perpendicular anisotropy we confirm the presence of inverse-symmetry breaking from a modulated phase to a homogeneous one as the temperature is lowered at constant magnetic field, as reported in experiments. For other values of the competing interactions we show that reentrance may be absent. Comparing thermodynamic quantities in both cases, as well as the evolution of magnetization profiles in the modulated phases, we conclude that the reentrant behavior is a consequence of the suppression of domain wall degrees of freedom at low temperatures at constant fields.

  18. Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation.

    Science.gov (United States)

    Tekavec, Patrick F; Lott, Geoffrey A; Marcus, Andrew H

    2007-12-07

    Two-dimensional electronic coherence spectroscopy (ECS) is an important method to study the coupling between distinct optical modes of a material system. Such studies often involve excitation using a sequence of phased ultrashort laser pulses. In conventional approaches, the delays between pulse temporal envelopes must be precisely monitored or maintained. Here, we introduce a new experimental scheme for phase-selective nonlinear ECS, which combines acousto-optic phase modulation with ultrashort laser excitation to produce intensity modulated nonlinear fluorescence signals. We isolate specific nonlinear signal contributions by synchronous detection, with respect to appropriately constructed references. Our method effectively decouples the relative temporal phases from the pulse envelopes of a collinear train of four sequential pulses. We thus achieve a robust and high signal-to-noise scheme for phase-selective ECS to investigate the resonant nonlinear optical response of photoluminescent systems. We demonstrate the validity of our method using a model quantum three-level system-atomic Rb vapor. Moreover, we show how our measurements determine the resonant complex-valued third-order susceptibility.

  19. Experimental Demonstration of Phase Modulation and Motion Sensing Using Graphene-Integrated Metasurfaces

    CERN Document Server

    Dabidian, Nima; Kholmanov, Iskandar; Lu, Feng; Lai, Jongwon Lee Kueifu; Jin, Mingzhou; Fallahazad, Babak; Tutuc, Emanuel; Belkin, Mikhail A; Shvets, Gennady

    2015-01-01

    Plasmonic metasurfaces are able to modify the wavefront by altering the light intensity, phase and polarization state. Active plasmonic metasurfaces would allow dynamic modulation of the wavefront which give rise to interesting application such as beam-steering, holograms and tunable waveplates. Graphene is an interesting material with dynamic property which can be controlled by electrical gating at an ultra-fast speed. We use a graphene integrated metasurface to induce a tunable phase change to the wavefront. The metasurface support a Fano resonance which produces high-quality resonances around 7.7 microns. The phase change is measured using a Michleson interferometry setup. It is shown that the reflection phase changes by about 55 degrees. In particular the phase can change by about 28 degrees while the amplitude is nearly constant. The asymmetric optical response of the metasurface is used to modulate the ellipticity of the reflected wave in response to an incident field at 45 degree. We finally show a pro...

  20. Injection of a Phase Modulated Source into the Z-Beamlet Laser for Increased Energy Extraction.

    Energy Technology Data Exchange (ETDEWEB)

    Rambo, Patrick K.; Armstrong, Darrell J.; Schwarz, Jens; Smith, Ian C; Shores, Jonathon; Speas, Christopher; Porter, John L.

    2014-11-01

    The Z-Beamlet laser has been operating at Sandia National Laboratories since 2001 to provide a source of laser-generated x-rays for radiography of events on the Z-Accelerator. Changes in desired operational scope have necessitated the increase in pulse duration and energy available from the laser system. This is enabled via the addition of a phase modulated seed laser as an alternative front-end. The practical aspects of deployment are discussed here.

  1. Second-Harmonic Generation in Optical Fibres Induced by a Cross-Phase Modulation Effect

    Institute of Scientific and Technical Information of China (English)

    CUI Wei-Na; HUANG Guo-Xiang

    2005-01-01

    @@ When two optical pulses copropagate inside a single-modefibre, intensity-dependent refractive index couples the pulses through a cross-phase modulation (XPM). We show that a second-harmonic generation (SHG) on a continuous-wave background is possible in the optical fibre induced by the XPM effect. By means of a multiscale method the nonlinearly coupled envelope equations for the SHG are derived and their explicit solutions are provided and discussed.

  2. On the application of neural networks to the classification of phase modulated waveforms

    Science.gov (United States)

    Buchenroth, Anthony; Yim, Joong Gon; Nowak, Michael; Chakravarthy, Vasu

    2017-04-01

    Accurate classification of phase modulated radar waveforms is a well-known problem in spectrum sensing. Identification of such waveforms aids situational awareness enabling radar and communications spectrum sharing. While various feature extraction and engineering approaches have sought to address this problem, the use of a machine learning algorithm that best utilizes these features is becomes foremost. In this effort, a comparison of a standard shallow and a deep learning approach are explored. Experiments provide insights into classifier architecture, training procedure, and performance.

  3. Mode-locking and Q-switching in multi-wavelength fiber ring laser using low frequency phase modulation.

    Science.gov (United States)

    Jun, Chang Su; Kim, Byoung Yoon

    2011-03-28

    We describe experimental investigation of pulsed output from a multi-wavelength fiber ring laser incorporating low frequency phase modulation with large modulation amplitude. The Erbium-doped fiber (EDF) ring laser generated more than 8 wavelength channels with the help of a phase modulator operating at 26.2 kHz and a periodic intra-cavity filter. For most cases, the laser output is pulsed in the form of mode-locking at 5.62 MHz and/or Q-switching at harmonic and sub-harmonic of the phase modulation frequency. Chaotic pulse output is also observed. The behavior of the output pulses are described as functions of pump power and phase modulation amplitude. The relative intensity noise (RIN) value of a single wavelength channel is measured to be under -100 dB/Hz (-140 dB/Hz beyond 1.5 GHz).

  4. 2D time domain spectral phase encoding/wavelength hopping coherent DPSK-OCDMA system using fiber Bragg gratings and phase modulator

    Science.gov (United States)

    Gao, Zhensen; Dai, Bo; Wang, Xu; Kataoka, Nobuyuki; Wada, Naoya

    2010-12-01

    We propose and experimentally demonstrate a reconfigurable two-dimensional (temporal-spectral) time domain spectral phase encoding (SPE) scheme for coherent optical code-division-multiple-access (OCDMA) application. The time-domain SPE scheme is robust to wavelength drift of the light source and is very flexible and compatible with the fiber optical system. In the proposed scheme, the ultra-short optical pulse is stretched by dispersive device and the SPE is done in time domain using high speed phase modulator. A Fiber Bragg Gratings array is used for generating the two-dimensional wavelength hopping pattern while the high speed phase modulator is used for generating the spectral phase pattern. The proposed scheme can enable simultaneous generation of the time domain spectral phase encoding and DPSK data modulation using only a single phase modulator. In the experiment, the two-dimensional SPE codes have been generated and modulated with 2.5-Gb/s DPSK data using a single phase modulator. Transmission of the 2.5-Gb/s DPSK data over 49km fiber with BER<10-9 has been demonstrated successfully. The proposed scheme exhibits the potential to simplify the architecture and improve the security of the OCDMA system.

  5. Design and implementation of FPGA-based phase modulation control for series resonant inverters

    Indian Academy of Sciences (India)

    N Gayathri; M C Chandorkar

    2008-10-01

    Owing to the tremendous advances in the digital technology, and improved reliability and performance of the digital control mechanisms, this paper focuses on design and implementation of digital controller using FPGA-based circuit design approach. The digital controller proposed is designed for series resonant inverter used in DC–DC converter applications. Phase modulation technique is proposed for the realization of digital controller on FPGA. The Series Resonant Converter (SRC) is considered in this paper as a preferred converter topology for high power, high voltage power supplies. This paper studies the implementation of phase shift modulation technique using FPGA. The inverter designed, is IGBT based, and Zero Voltage Switching (ZVS) technique is implemented due to reduced stresses on devices and increased efficiency. The phase modulated series resonant inverters (PM-SRC) promotes ZVS operation when its switching frequency is greater than resonant frequency. The designed PM controller is realized using FPGA on which control algorithm and other features of a controller are developed. The series resonant inverter is built and tested for full load under open loop and closed loop conditions at a switching frequency of 20 kHz. The results are presented under varying load conditions. The simulation and the experimental results were found to match closely.

  6. Rare Variants in Genes Encoding MuRF1 and MuRF2 Are Modifiers of Hypertrophic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ming Su

    2014-05-01

    Full Text Available Modifier genes contribute to the diverse clinical manifestations of hypertrophic cardiomyopathy (HCM, but are still largely unknown. Muscle ring finger (MuRF proteins are a class of muscle-specific ubiquitin E3-ligases that appear to modulate cardiac mass and function by regulating the ubiquitin-proteasome system. In this study we screened all the three members of the MuRF family, MuRF1, MuRF2 and MuRF3, in 594 unrelated HCM patients and 307 healthy controls by targeted resequencing. Identified rare variants were confirmed by capillary Sanger sequencing. The prevalence of rare variants in both MuRF1 and MuRF2 in HCM patients was higher than that in control subjects (MuRF1 13/594 (2.2% vs. 1/307 (0.3%, p = 0.04; MuRF2 22/594 (3.7% vs. 2/307 (0.7%; p = 0.007. Patients with rare variants in MuRF1 or MuRF2 were younger (p = 0.04 and had greater maximum left ventricular wall thickness (p = 0.006 than those without such variants. Mutations in genes encoding sarcomere proteins were present in 19 (55.9% of the 34 HCM patients with rare variants in MuRF1 and MuRF2. These data strongly supported that rare variants in MuRF1 and MuRF2 are associated with higher penetrance and more severe clinical manifestations of HCM. The findings suggest that dysregulation of the ubiquitin-proteasome system contributes to the pathogenesis of HCM.

  7. Research on Internal Connection Between Frequency Modulation and Phase Modulation in the Nonlinear Modulation%非线性调制中调频和调相内在联系的研究

    Institute of Scientific and Technical Information of China (English)

    陈皓; 桂伟

    2014-01-01

    从定义和角频率两个角度分析调相,同时从定义和相角两个角度分析调频。进而用数学公式对直接调相和利用调频间接调相、直接调频和利用调相间接调频进行比较,再定量的对调频和调相信号进行比较,从而阐述了调频与调相之间内在的联系。%The paper analyses phase modulation from two angles of definition and angular frequency,and analyses frequency modulation from two angles of definition and phase angle. And then uses a mathematical formula for the comparation between direct phase modulation and indirect phase modulation by frequency,for the comparation between direct frequency modulation and indirect frequency modulation by phase,and then the quantitative comparison of frequency modulation and phase modulation. Then elaborates the nternal connection between FM and PM.

  8. Superconductor Digital-RF Transceiver Components

    Science.gov (United States)

    2006-01-01

    high-power amplifier (HPA). The diagram also shows a dynamic digital equalizer, a digital predistortion module that is combined with the DAC to...intermodulation distortion, especially near their maximum output powers. Unlike conventional baseband or intermediate frequency (IF) predistorters ...which are limited to narrowband correction of slowly varying non- linearities, our RF predistorter can correct instantaneous, signal-dependent

  9. Chapter 5: Modulation Excitation Spectroscopy with Phase-Sensitive Detection for Surface Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shulda, Sarah; Richards, Ryan M.

    2016-02-19

    Advancements in in situ spectroscopic techniques have led to significant progress being made in elucidating heterogeneous reaction mechanisms. The potential of these progressive methods is often limited only by the complexity of the system and noise in the data. Short-lived intermediates can be challenging, if not impossible, to identify with conventional spectra analysis means. Often equally difficult is separating signals that arise from active and inactive species. Modulation excitation spectroscopy combined with phase-sensitive detection analysis is a powerful tool for removing noise from the data while simultaneously revealing the underlying kinetics of the reaction. A stimulus is applied at a constant frequency to the reaction system, for example, a reactant cycled with an inert phase. Through mathematical manipulation of the data, any signal contributing to the overall spectra but not oscillating with the same frequency as the stimulus will be dampened or removed. With phase-sensitive detection, signals oscillating with the stimulus frequency but with various lag times are amplified providing valuable kinetic information. In this chapter, some examples are provided from the literature that have successfully used modulation excitation spectroscopy with phase-sensitive detection to uncover previously unobserved reaction intermediates and kinetics. Examples from a broad range of spectroscopic methods are included to provide perspective to the reader.

  10. Nanoscale phase engineering of thermal transport with a Josephson heat modulator

    Science.gov (United States)

    Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco

    2016-03-01

    Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect, which manifests itself both in charge and energy transport. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid-state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Here, we show the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.

  11. PS-Module prototypes with MPA-light readout chip for the CMS Tracker Phase 2 Upgrade

    CERN Document Server

    Grossmann, Johannes

    2016-01-01

    During the HL-LHC era an instantaneous luminosity of $5\\times10^{34}\\,\\mathrm{cm}^{-2}\\mathrm{s}^{-1}$ will be reached and possibly $3000\\mskip3mu\\mathrm{fb} ^{-1}$ integrated luminosity will be delivered. This results in the requirement for a major upgrade of the CMS Outer Tracker detector. This contribution briefly reviews the module types and the front end readout electronics foreseen in the preparation program known as phase 2 upgrade. R\\&D towards the construction of full module prototypes for the Pixel-Strip (PS) module is ongoing. The module combines a macro-pixel sensor and a strip sensor and has $p_{\\mathrm{T}}\\,$-discrimination capability at module level. The current experience from module construction with a demonstrator assembly and initial laboratory testing with an alternative module concept for the PS-module is shown. A possible calibration method is introduced.

  12. PS-module prototypes with MPA-light readout chip for the CMS Tracker Phase 2 Upgrade

    Science.gov (United States)

    Grossmann, J.

    2017-02-01

    During the HL-LHC era an instantaneous luminosity of 5×1034 cm‑2s‑1 will be reached and possibly 3000 fb‑1 integrated luminosity will be delivered. This results in the requirement for a major upgrade of the CMS Outer Tracker detector. This contribution briefly reviews the module types and the front end readout electronics foreseen in the preparation program known as phase 2 upgrade. R&D towards the construction of full module prototypes for the Pixel-Strip (PS) module is ongoing. The module combines a macro-pixel sensor and a strip sensor and has pT -discrimination capability at module level. The current experience from module construction with a demonstrator assembly and initial laboratory testing with an alternative module concept for the PS-module is shown. A possible calibration method is introduced.

  13. Modulation Format Independent Joint Polarization and Phase Tracking for Coherent Receivers

    CERN Document Server

    Czegledi, Cristian B; Karlsson, Magnus; Johannisson, Pontus

    2016-01-01

    The state of polarization and the carrier phase drift dynamically during transmission in a random fashion in coherent optical fiber communications. The typical digital signal processing solution to mitigate these impairments consists of two separate blocks that track each phenomenon independently. Such algorithms have been developed without taking into account mathematical models describing the impairments. We study a blind, model-based tracking algorithm to compensate for these impairments. The algorithm dynamically recovers the carrier phase and state of polarization jointly for an arbitrary modulation format. Simulation results show the effectiveness of the proposed algorithm, having a fast convergence rate and an excellent tolerance to phase noise and dynamic drift of the polarization. The computational complexity of the algorithm is lower compared to state-of-the-art algorithms at similar or better performance, which makes it a strong candidate for future optical systems.

  14. Ferrimagnetic and Long Period Antiferromagnetic Phases in High Spin Heisenberg Chains with D-Modulation

    Science.gov (United States)

    Hida, Kazuo

    2007-02-01

    The ground state properties of the high spin Heisenberg chains with alternating single site anisotropy are investigated by means of the numerical exact daigonaization and DMRG method. It is found that the ferrimagnetic state appears between the Haldane phase and period doubled Néel phase for the integer spin chains. On the other hand, the transition from the Tomonaga-Luttinger liquid state into the ferrimagnetic state takes place for the half-odd-integer spin chains. In the ferrimagnetic phase, the spontaneous magnetization varies continuously with the modulation amplitude of the single site anisotropy. Eventually, the magnetization is locked to fractional values of the saturated magnetization. These fractional values satisfy the Oshikawa-Yamanaka-Affleck condition. The local spin profile is calculated to reveal the physical nature of each state. In contrast to the case of frustration induced ferrimagnetism, no incommensurate magnetic superstructure is found.

  15. Detection and processing of phase modulated optical signals at 40 Gbit/s and beyond

    DEFF Research Database (Denmark)

    Geng, Yan

    This thesis addresses demodulation in direct detection systems and signal processing of high speed phase modulated signals in future all-optical wavelength division multiplexing (WDM) communication systems where differential phase shift keying (DPSK) or differential quadrature phase shift keying...... labeling has been proposed as an efficient way to implement packet routing and forwarding functionalities in future IP-over-WDM networks. An in-band subcarrier multiplexing (SCM) labeled signal using 40 Gbit/s DSPK payload and 25 Mbit/s non return-to-zero(NRZ) SCM label, is successfully transmitted over 80...... noise, and consequently degrade the performance of systems making use of RZ-DPSK format. All-optical signal regeneration avoiding O-E-O conversion is desired to improve signal quality in ultra long-haul transmission systems. Proof-of-principle numerical simulation results are provided, that suggest...

  16. RF pulse compression for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, P.B.

    1995-05-01

    Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0--1.5 TeV, 5 TeV and 25 TeV. In order keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0--1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150--200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30--40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-11 system) can be used to reduce the klystron peak power by about a factor of two, or alternately, to cut the number of klystrons in half for a 1.0--1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.

  17. A two-Frequency RF Photocathode Gun

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, D.H. E-mail: dowell@slac.stanford.edu; Ferrario, M.; Kimura, T.; Lewellen, J.; Limborg, C.; Raimondi, P.; Schmerge, J.F.; Serafini, L.; Smith, T.; Young, L

    2004-08-01

    In this paper we resurrect an idea originally proposed by Serafini (Nucl. Instr. and Meth. A 318 (1992) 301) in 1992 for an RF photocathode gun capable of operating simultaneously at the fundamental frequency and a higher frequency harmonic. Driving the gun at two frequencies with the proper field ratio and relative phase produces a beam with essentially no RF emittance and a linear longitudinal phase space distribution. Such a gun allows a completely new range of operating parameters for controlling space charge emittance growth. In addition, the linear longitudinal phase space distribution aids in bunch compression. This paper will compare results of simulations for the two-frequency gun with the standard RF gun and the unique properties of the two-frequency gun will be discussed.

  18. A Two-Frequency RF Photocathode Gun

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, D.

    2004-11-05

    In this paper we resurrect an idea originally proposed by Serafini[1] in 1992 for an RF photocathode gun capable of operating simultaneously at the fundamental frequency and a higher frequency harmonic. Driving the gun at two frequencies with the proper field ratio and relative phase produces a beam with essentially no rf emittance and a linear longitudinal phase space distribution. Such a gun allows a completely new range of operating parameters for controlling space charge emittance growth. In addition, the linear longitudinal phase space distribution aids in bunch compression. This paper will compare results of simulations for the two-frequency gun with the standard rf gun, and the unique properties of the two-frequency gun will be discussed.

  19. Adaptive Bessel-autocorrelation of ultrashort pulses with phase-only spatial light modulators

    Science.gov (United States)

    Huferath-von Luepke, Silke; Bock, Martin; Grunwald, Ruediger

    2009-06-01

    Recently, we proposed a new approach of a noncollinear correlation technique for ultrashort-pulsed coherent optical signals which was referred to as Bessel-autocorrelator (BAC). The BAC-principle combines the advantages of Bessellike nondiffracting beams like stable propagation, angular robustness and self-reconstruction with the principle of temporal autocorrelation. In comparison to other phase-sensitive measuring techniques, autocorrelation is most straightforward and time-effective because of non-iterative data processing. The analysis of nonlinearly converted fringe patterns of pulsed Bessel-like beams reveals their temporal signature from details of fringe envelopes. By splitting the beams with axicon arrays into multiple sub-beams, transversal resolution is approximated. Here we report on adaptive implementations of BACs with improved phase resolution realized by phase-only liquid-crystal-on-silicon spatial light modulators (LCoS-SLMs). Programming microaxicon phase functions in gray value maps enables for a flexible variation of phase and geometry. Experiments on the diagnostics of few-cycle pulses emitted by a mode-locked Ti:sapphire laser oscillator at wavelengths around 800 nm with 2D-BAC and angular tuned BAC were performed. All-optical phase shift BAC and fringe free BAC approaches are discussed.

  20. Non-photic modulation of phase shifts to long light pulses.

    Science.gov (United States)

    Antle, Michael C; Sterniczuk, Roxanne; Smith, Victoria M; Hagel, Kimberly

    2007-12-01

    Circadian rhythms can be reset by both photic and non-photic stimuli. Recent studies have used long light exposure to produce photic phase shifts or to enhance non-photic phase shifts. The presence or absence of light can also influence the expression of locomotor rhythms through masking; light during the night attenuates locomotor activity, while darkness during the day induces locomotor activity in nocturnal animals. Given this dual role of light, the current study was designed to examine the relative contributions of photic and non-photic components present in a long light pulse paradigm. Mice entrained to a light/dark cycle were exposed to light pulses of various durations (0, 3, 6, 9, or 12 h) starting at the time of lights-off. After the light exposure, animals were placed in DD and were either left undisturbed in their home cages or had their wheels locked for the remainder of the subjective night and subsequent subjective day. Light treatments of 6, 9, and 12 h produced large phase delays. These treatments were associated with decreased activity during the nocturnal light and increased activity during the initial hours of darkness following light exposure. When the wheels were locked to prevent high-amplitude activity, the resulting phase delays to the light were significantly attenuated, suggesting that the activity following the light exposure may have contributed to the overall phase shift. In a second experiment, telemetry probes were used to assess what effect permanently locking the wheels had on the phase shift to the long light pulses. These animals had phase shifts fully as large as animals without any form of wheel lock, suggesting that while non-photic events can modulate photic phase shifts, they do not play a role in the full phase-shift response observed in animals exposed to long light pulses. This paradigm will facilitate investigations into non-photic responses of the mouse circadian system.

  1. EM modeling of RF drive in DTL tank 4

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, Sergey S. [Los Alamos National Laboratory

    2012-06-19

    A 3-D MicroWave Studio model for the RF drive in the LANSCE DTL tank 4 has been built. Both eigensolver and time-domain modeling are used to evaluate maximal fields in the drive module and RF coupling. The LANSCE DTL tank 4 has recently been experiencing RF problems, which may or may not be related to its replaced RF coupler. This situation stimulated a request by Dan Rees to provide EM modeling of the RF drive in the DTL tank 4 (T4). Jim O'Hara provided a CAD model that was imported into the CST Microwave Studio (MWS) and after some modifications became a part of a simplified MWS model of the T4 RF drive. This technical note describes the model and presents simulation results.

  2. Spindle error motion measurement using concentric circle grating and phase modulation interferometers

    Science.gov (United States)

    Aketagawa, M.; Madden, M.; Uesugi, S.; Kumagai, T.; Maeda, Y.; Okuyama, E.

    2012-11-01

    In the conventional methods to measure radial, axial and angular motions of spindles, complicated artifacts with relative large volume (such as two balls linked with a cylinder) are required. Small volume artifact is favorable from the viewpoint of the accurate and practical measurement of the spindle motion. This paper describes a concurrent measurement of spindle radial, axial and angular motions using concentric circle grating and phase modulation interferometers. In the measurement, the concentric circle grating with fine pitch is installed on top of the spindle of interest. The grating is a reference artifact in the method. Three optical sensors are fixed over the concentric circle grating, and observe the proper positions of the grating. The optical sensor consists of a frequency modulated laser diode as a light source, and two interferometers. One interferometer observes an interference fringe between reflected light form a fixed mirror and 0-th order diffraction light from the grating to measure the axial motion. Another interferometer observes an interference fringe between +/-2nd diffraction lights from the grating to measure the radial motion. Using three optical sensors, three radial displacements and three axial displacements of the proper observed position of the grating can be measured. From these measured displacements, radial, axial and angular motions of the spindle can be calculated concurrently. In the paper, a measurement instrument, a novel fringe interpolation technique by sinusoidal phase modulation and experimental results are discussed.

  3. Phase-locked modulation delay between the poles of pulsar B1055-52

    CERN Document Server

    Weltevrede, Patrick; Johnston, Simon

    2012-01-01

    We present a detailed single pulse study of PSR B1055-52 based on observations at the Parkes radio telescope. The radio emission is found to have a complex modulation dominated by a periodicity of ~20 times its rotational period P (0.197s), whose phase and strength depends on pulse longitude. This periodicity exhibits a phase-locked delay of about 2.5P between the main pulse (MP) and interpulse (IP), presumed to be the opposite poles of the pulsar. This delay corresponds to a light travel distance of many times the light cylinder radius. More complex modulations are found within the MP on timescales down to about 9P, and both these and the principal modulation vary strongly across the (at least) 7 components which the MP and IP exhibit. The nature of the single pulse emission, which ranges from smooth and longitudinally extended to `spiky', is also component-dependent. Despite these disparities, the total pulse intensity distributions at the MP and IP are virtually identical in shape, suggesting a common emis...

  4. Control strategy for Single-phase Transformerless Three-leg Unified Power Quality Conditioner Based on Space Vector Modulation

    DEFF Research Database (Denmark)

    Lu, Yong; Xiao, Guochun; Wang, Xiongfei

    2016-01-01

    The unified power quality conditioner (UPQC) is known as an effective compensation device to improve PQ for sensitive end-users. This paper investigates the operation and control of a single-phase three-leg UPQC (TL-UPQC), where a novel space vector modulation method is proposed for naturally...... solving the coupling problem introduced by the common switching leg. The modulation method is similar to the well-known space vector modulation widely used with three-phase voltage source converters, which thus brings extra flexibility to the TL-UPQC system. Two optimized modulation modes with either...... reduced switching loss or harmonic distortion are derived, evaluated, and discussed, in order to demonstrate the flexibility brought by the space vector modulated TL-UPQC. Simulations and experimental results are presented to verify the feasibility and effectiveness of the proposed space vector modulation...

  5. High dynamic range low noise amplifier and wideband hybrid phase shifter for SiGe BiCMOS phased array T/R modules

    OpenAIRE

    2014-01-01

    Transmit/Receive Module (T/R Module) is one of the most essential blocks for Phased Array Radio Detection and Ranging (RADAR) system; due to being very influential on system level performance. To achieve high performance specifications, T/R Module structures are constructed with using III-V devices, which has some significant disadvantages; they are costly, and also consume too much area and power. As a result, application area of T/R Module is mainly restricted with the military and dedicate...

  6. Optimization of the sinusoidal phase modulation technique in resonant fiber optic gyro

    Science.gov (United States)

    Wang, Linglan; Li, Hanzhao; Zhang, Jianjie; Ma, Huilian; Jin, Zhonghe

    2017-03-01

    The sinusoidal wave phase modulation and demodulation have been widely used in the signal processing system of the resonant fiber optic gyro (RFOG). An appropriate selection of the modulation frequency is of great importance, for the frequency value directly affects the slope of the demodulation curve at the resonance point which carries the gyro output information. A large demodulation slope is pursued in a high-performance RFOG. In this paper, an analytical expression of the demodulation slope is for the first time deduced in both transmission-type and reflection-type fiber ring resonators without any approximation. The relationship between the slope value and the modulation frequency at the resonance point is accurately calculated. The calculated best modulation frequency maximizing the demodulation slope at the resonance point is different from previous widely used optimal frequency given by the Lorentzian approximation method. More importantly, both theoretical and experimental results indicate that the achieved maximal demodulation slope from the proposed analytical expression method is double of that obtaining from the Lorentzian approximation method.

  7. Laser beam shaping limitations for laboratory simulation of turbulence using a phase-only spatial light modulator

    CSIR Research Space (South Africa)

    Litvin, IA

    2007-09-01

    Full Text Available Recent approaches to demonstrating adaptive optics and atmospheric turbulence have made use of spatial light modulators (SLMs) as the active phase element. However, there are limitations in using SLMs as an accurate method of simulating turbulence...

  8. Effective nonlinearities and multi-wavelength second-harmonic generation in modulated quasi-phase-matching gratings

    DEFF Research Database (Denmark)

    Bang, Ole; Graversen, T. W.; Clausen, Carl A. Balslev

    2000-01-01

    Quasi-phase-matching gratings induces Kerr effects in quadratic nonlinear materials. We show analytically and confirm numerically how modulating the grating changes the effective quadratic and cubic nonlinearities and allows for multi-wavelength second-harmonic generation....

  9. Cross-phase modulational instability in an elliptical birefringent fiber with higher order nonlinearity and dispersion

    Indian Academy of Sciences (India)

    R Ganapathy; V C Kuriakose

    2002-04-01

    We obtain conditions for the occurrence of cross-phase modulational instability in the normal dispersion regime for the coupled higher order nonlinear Schrödinger equation with higher order dispersion and nonlinear terms.

  10. RF Pulse compression stabilization at the CTF3 CLIC test facility

    CERN Document Server

    Dubrovskiy, Alexey

    2010-01-01

    In the CTF3 accelerator, the RF produced by each of ten 3 GHz klystrons goes through waveguides, RF pulse compressors and splitters. The RF phase and power transformation of these devices depend on their temperature. The quantitative effect of the room temperature variation on the RF was measured. It is the major source of undesired changes during the CTF3 operation. An RF phaseloop and a compressor temperature stabilization are developed to suppress the phase fluctuation and the power profile change due to the temperature variation. The implementation is transparent for operators, it does not limit anyhow the flexibility of RF manipulations. Expected and measured suppression characteristics will be given.

  11. Analysis of the Crosstalk in WDM Systems Caused by Cross-phase Modulation in Erbium-doped Fiber Amplifiers

    Institute of Scientific and Technical Information of China (English)

    LIU Ning; LIAO Changjun; LIU Songhao; GUO Qi; XU Wengchen

    2001-01-01

    The crosstalk in WDM systems caused by cross-phase modulation (XPM) in erbium-doped fiber amplifiers(EDFA) was studied analytically. The results confirm that the EDFA induced phase shift does cause crosstalk in WDM systems. The crosstalk between two channels both with modulated pulse signals is studied for the first time. It was found that the EDFA induced phase shift will cause serious deterioration of the eye diagram when the optical signals continue to travel in the normal-dispersion regime of the transmission fiber, while in the anomalous-dispersion regime this phase shift will not cause much deterioration of the eye diagram.

  12. Ionization-induced asymmetric self-phase modulation and universal modulational instability in gas-filled hollow-core photonic crystal fibers

    CERN Document Server

    Saleh, Mohammed F; Travers, John C; Russell, Philip St J; Biancalana, Fabio

    2012-01-01

    We study theoretically the propagation of relatively long pulses with ionizing intensities in a hollow-core photonic crystal fiber filled with a Raman-inactive gas. Due to photoionization, previously unknown types of asymmetric self-phase modulation and `universal' modulational instabilities existing in both normal and anomalous dispersion regions appear. We also show that it is possible to spontaneously generate a plasma-induced continuum of blueshifting solitons, opening up new possibilities for pushing supercontinuum generation towards shorter and shorter wavelengths.

  13. Theoretical study on coupling effects of modulation depth between two photorefractive phase gratings with an external applied field

    Institute of Scientific and Technical Information of China (English)

    YUAN Baohong; ZHOU Zhongxiang; HOU Chunfeng; SUN Xiudong

    2001-01-01

    We used the perturbation expanding method to the hopping model and studied coupling effects of the modulation depth between two photorefractive phase gratings stored in one point with an external applied DC electric field . It has been found that the modulation depth of one of the two gratings seriously affects the spatial-charge field of the other grating.

  14. Simultaneous all-optical demultiplexing and regeneration based on self-phase and cross-phase modulation in a dispersion shifted fiber

    DEFF Research Database (Denmark)

    Yu, Jianjun; Jeppesen, Palle

    2001-01-01

    Simultaneous demultiplexing and regeneration of 40-Gb/s optical time division multiplexed (OTDM) signal based on self-phase and cross-phase modulation in a dispersion shifted fiber is numerically and experimentally investigated. The optimal walkoff time between the control pulse and OTDM signal...

  15. RF-dressed Rydberg atoms in hollow-core fibres

    CERN Document Server

    Veit, Christian; Kübler, Harald; Euser, Tijmen G; Russell, Philip St J; Löw, Robert

    2016-01-01

    The giant electro-optical response of Rydberg atoms manifests itself in the emergence of sidebands in the Rydberg excitation spectrum if the atom is exposed to a radio-frequency (RF) electric field. Here we report on the study of RF-dressed Rydberg atoms inside hollow-core photonic crystal fibres (HC-PCF), a system that enables the use of low modulation voltages and offers the prospect of miniaturised vapour-based electro-optical devices. Narrow spectroscopic features caused by the RF field are observed for modulation frequencies up to 500 MHz.

  16. Characterisation and efficient simulation of thermal phenomena in SIMOX thermo-optic phase modulators

    CERN Document Server

    Clark, S A

    2001-01-01

    device has been designed to minimize power requirements, 3dB bandwidths in excess of 1kHz have been achieved for less than 10mW of drive power. A basic set of design parameters is developed which allow estimation of bandwidth and power requirements based on an initial knowledge of the material system and the intended modulator architecture. Silicon can be very effectively exploited in integrated optics due to its well-defined process chemistry and the availability of techniques developed primarily for the semiconductor industry which allow control over dimensions and the creation of arbitrary two dimensional structures with great precision and repeatability. In this thesis the complete design and simulation of thermo-optic phase modulators, realised in silicon-on-insulator (SOI), is presented. Since material thermal and optical parameters vary with temperature, anomalous departure between first-order theory and experimentation can exist when operating under conditions whereby material parameters are markedly ...

  17. Current Status of the Pixel Phase I Upgrade in CMS: Barrel Module Production

    CERN Document Server

    Bartek, Rachel

    2015-01-01

    The silicon pixel detector is the innermost component of the CMS tracking system, providing high precision space point measurements of charged particle trajectories. Before 2018 the instantaneous luminosity of the LHC is expected to reach about 2~x~$10^{34}~\\rm{cm}^{-2}\\rm{s}^{-1}$, which will significantly increase the number of interactions per bunch crossing. To maintain a high tracking efficiency, CMS has planned to replace the current pixel system during phase I by a new lightweight detector, equipped with an additional 4th layer in the barrel, and one additional forward/backward disk. The present status of barrel modules production will be presented, including preliminary results from tests on the first production pixel modules of the new pixel tracker.

  18. Deterministic reshaping of single-photon spectra using cross-phase modulation

    CERN Document Server

    Matsuda, Nobuyuki

    2016-01-01

    The frequency conversion of light has proved to be a crucial technology for communication, spectroscopy, imaging, and signal processing. In the quantum regime, it also offers great potential for realizing quantum networks incorporating disparate physical systems and quantum-enhanced information processing over a large computational space. The frequency conversion of quantum light, such as single photons, has been extensively investigated for the last two decades using all-optical frequency mixing, with the ultimate goal of realizing lossless and noiseless conversion. I demonstrate another route to this target using frequency conversion induced by cross-phase modulation in a dispersion-managed photonic crystal fiber. Owing to the deterministic and all-optical nature of the process, the lossless and low-noise spectral reshaping of a single-photon wave packet in the telecommunication band has been readily achieved with a modulation bandwidth as large as 0.4 THz. I further demonstrate that the scheme is applicabl...

  19. Improved dichotomous search frequency offset estimator for burst-mode continuous phase modulation

    Institute of Scientific and Technical Information of China (English)

    翟文超; 李赞; 司江勃; 柏均

    2015-01-01

    A data-aided technique for carrier frequency offset estimation with continuous phase modulation (CPM) in burst-mode transmission is presented. The proposed technique first exploits a special pilot sequence, or training sequence, to form a sinusoidal waveform. Then, an improved dichotomous search frequency offset estimator is introduced to determine the frequency offset using the sinusoid. Theoretical analysis and simulation results indicate that our estimator is noteworthy in the following aspects. First, the estimator can operate independently of timing recovery. Second, it has relatively low outlier, i.e., the minimum signal-to-noise ratio (SNR) required to guarantee estimation accuracy. Finally, the most important property is that our estimator is complexity-reduced compared to the existing dichotomous search methods: it eliminates the need for fast Fourier transform (FFT) and modulation removal, and exhibits faster convergence rate without accuracy degradation.

  20. On network coding and modulation mapping for three-phase bidirectional relaying

    KAUST Repository

    Chang, Ronald Y.

    2015-12-03

    © 2015 IEEE. In this paper, we consider the network coding (NC) enabled three-phase protocol for information exchange between two users in a wireless two-way (bidirectional) relay network. Modulo-based (nonbinary) and XOR-based (binary) NC schemes are considered as information mixture schemes at the relay while all transmissions adopt pulse amplitude modulation (PAM). We first obtain the optimal constellation mapping at the relay that maximizes the decoding performance at the users for each NC scheme. Then, we compare the two NC schemes, each in conjunction with the optimal constellation mapping at the relay, in different conditions. Our results demonstrate that, in the low SNR regime, binary NC outperforms nonbinary NC with 4-PAM, while they have mixed performance with 8-PAM. This observation applies to quadrature amplitude modulation (QAM) composed of two parallel PAMs.