WorldWideScience

Sample records for rf interference path

  1. Nonclassical paths in quantum interference experiments.

    Science.gov (United States)

    Sawant, Rahul; Samuel, Joseph; Sinha, Aninda; Sinha, Supurna; Sinha, Urbasi

    2014-09-19

    In a double slit interference experiment, the wave function at the screen with both slits open is not exactly equal to the sum of the wave functions with the slits individually open one at a time. The three scenarios represent three different boundary conditions and as such, the superposition principle should not be applicable. However, most well-known text books in quantum mechanics implicitly and/or explicitly use this assumption that is only approximately true. In our present study, we have used the Feynman path integral formalism to quantify contributions from nonclassical paths in quantum interference experiments that provide a measurable deviation from a naive application of the superposition principle. A direct experimental demonstration for the existence of these nonclassical paths is difficult to present. We find that contributions from such paths can be significant and we propose simple three-slit interference experiments to directly confirm their existence.

  2. Modeling and analysis of laser active interference optical path

    Science.gov (United States)

    Shan, Cong-miao; Sun, Hua-yan; Zhao, Yan-zhong; Chen, Jian-biao; Ren, Jian-ying

    2017-10-01

    By using the geometrical optics and physical optics method, the models of wedge plate interference optical path, Michelson interferometer and Mach Zehnder interferometer thus three different active interference pattern are built. The optical path difference (OPD) launched by different interference patterns, fringe spacing and contrast expression have been derived. The results show that far field interference peak intensity of the wedge plate interference is small, so the detection distance is limited, Michelson interferometer with low contrast affects the performance of detection system, Mach Zehnder interferometer has greater advantages in peak intensity, the variable range of interference fringe spacing and contrast ratio. The results of this study are useful for the theoretical research and practical application of laser active interference detection.

  3. Determination of path length difference by low coherence interference spectrum

    Science.gov (United States)

    Teng, Hui-Kang; Chang, Chia-Nan; Lang, Kuo-Chen

    2004-10-01

    Path length difference is the key parameter in two-beam interferometer, especially in low coherence interferometer. It determines the visibility of the interference fringes. In this study, we present a method to determine the path length difference between two arms of a fiber optic Mach-Zehnder interferometer by evaluating the peaks of power distribution of the interference spectrum with a wide band light source. The experimental results are in close agreement with the theoretical calculations.

  4. Phonon-mediated path-interference in electronic energy transfer.

    Science.gov (United States)

    Hossein-Nejad, Hoda; Olaya-Castro, Alexandra; Scholes, Gregory D

    2012-01-14

    We present a formalism to quantify the contribution of path-interference in phonon-mediated electronic energy transfer. The transfer rate between two molecules is computed by considering the quantum mechanical amplitudes associated with pathways connecting the initial and final sites. This includes contributions from classical pathways, but also terms arising from interference of different pathways. We treat the vibrational modes coupled to the molecules as a non-Markovian harmonic oscillator bath, and investigate the correction to transfer rates due to the lowest-order interference contribution. We show that depending on the structure of the harmonic bath, the correction due to path-interference may have a dominant vibrational or electronic character, and can make a notable contribution to the transfer rate in the steady state.

  5. An RF interference mitigation methodology with potential applications in scheduling

    Science.gov (United States)

    Wong, Yen F.; Rash, James L.

    1991-01-01

    Software tools for interference analysis and mitigation were developed in the Communications Link Analysis and Simulation System (CLASS) environment for: communications performance evaluation; and mission planning. Potential applications are seen in analysis, evaluation, and optimization of user schedules. Tools producing required separation angles and potential interference intervals can be used as an aid to mutual interference mitigation within a scheduling system.

  6. RF Self-Interference reduction techniques for compact full duplex radios

    NARCIS (Netherlands)

    Deballie, B.; van den Broek, Dirk-Jan; Lavin, C.; van Liempd, B.; Klumperink, Eric A.M.; Palacios, C.; Craninckx, J.; Nauta, Bram

    2015-01-01

    This paper describes three RF self-interference reduction techniques for full-duplex wireless links, which specifically target integration in compact radios. Concretely, a self-interference cancelling front-end, a dual-polarized antenna, and an electrical balance duplexer are proposed. Each

  7. Physical Layer Security Enhancement in Multiuser Mixed RF#x002F;FSO Relay Networks under RF Interference

    KAUST Repository

    El-Malek, Ahmed H. Abd

    2017-05-12

    In this paper, the impact of radio frequency (RF) co-channel interference (CCI) on the performance of multiuser (MU) mixed RF#x002F;free space optical (FSO) relay network with opportunistic user scheduling is studied. In the considered system, a user is opportunistically selected to communicate with a single destination through an amplify-and- forward (AF) relay in the presence of a single passive eavesdropper. The RF#x002F;FSO channel models are assumed to follow Rayleigh#x002F;Gamma-Gamma fading models, respectively with pointing errors and identical RF CCI signals. Exact closed-form expression for the system outage probability is derived. Then, an asymptotic expression for the outage probability is obtained at the high signal- to-interference-plus-noise ratio (SINR) regime. The asymptotic results are used to formulate a power allocation problem to obtain optimal RF transmission power. Then, the secrecy performance is studied in the presence of CCI at both the authorized relay and eavesdropper by obtaining exact and asymptotic closed-form expressions for the intercept probability. The derived analytical formulas herein are supported by numerical and simulation results to clarify the main contributions of the work.

  8. FPGA-based RF interference reduction techniques for simultaneous PET-MRI.

    Science.gov (United States)

    Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V

    2016-05-07

    The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II (D) PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field

  9. FPGA-based RF interference reduction techniques for simultaneous PET–MRI

    Science.gov (United States)

    Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V

    2016-01-01

    Abstract The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET–MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling–decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion IID PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field

  10. Realization and Modeling of Metamaterials Made of rf Superconducting Quantum-Interference Devices

    Directory of Open Access Journals (Sweden)

    M. Trepanier

    2013-12-01

    Full Text Available We have prepared meta-atoms based on radio-frequency superconducting quantum-interference devices (rf SQUIDs and examined their tunability with dc magnetic field, rf current, and temperature. rf SQUIDs are superconducting split-ring resonators in which the usual capacitance is supplemented with a Josephson junction, which introduces strong nonlinearity in the rf properties. We find excellent agreement between the data and a model that regards the Josephson junction as the resistively and capacitively shunted junction. A magnetic field tunability of 80  THz/G at 12 GHz is observed, a total tunability of 56% is achieved, and a unique electromagnetically induced transparency feature at intermediate excitation powers is demonstrated for the first time. An rf SQUID metamaterial is shown to have qualitatively the same behavior as a single rf SQUID with regard to dc flux and temperature tuning.

  11. Interference factors regarding the path of insertion of rotational-path removable partial dentures.

    Science.gov (United States)

    Huang, Chan-Te; Liu, Fang-Chun; Luk, Kwing-Chi

    2017-02-01

    The aims of this study were to evaluate the effect of the location of the rotational center and the morphology of teeth resulting in interference with the rotational path of insertion and to estimate when an interference test should be performed. A total of 400 dental radiograms of maxillary and mandibular first and second molars (100 for each position) were selected. The radiograms were used to hand-sketch the outlines on tracing paper. Then, an interference test was simulated using calipers. Mesial long occlusal rest seats with three different lengths were designed. A curve-simulated rotational path was drawn on the tracing paper showing the outline of a molar. If the curve was intersected by the mesial outline, interference was occurred. A total of 1200 tests were performed. A significant number of interference cases (18.5%, N = 400) occurred when the rotational center was placed at the most distal margin of the occlusal surface. The interference was reduced (2.75%, N = 400) but still present at the distal fourth of the occlusal surface. At the distal one-third of the occlusal surface, interference did not occur (0%, N = 400). There was a significant difference between the results of the three rotational centers (p < 0.0001). The interference test was not required for a rotational center at the distal third to half of the occlusal surface. However, if the length of the long occlusal rest extends beyond the distal third, an interference test is recommended before final impression. Copyright © 2017 Chang Gung University. Published by Elsevier B.V. All rights reserved.

  12. Ionization effects on spectral signatures of quantum-path interference in high-harmonic generation.

    Science.gov (United States)

    Holler, M; Zaïr, A; Schapper, F; Auguste, T; Cormier, E; Wyatt, A; Monmayrant, A; Walmsley, I A; Gallmann, L; Salières, P; Keller, U

    2009-03-30

    The interference between the emission originating from the short and long electron quantum paths is intrinsic to the high harmonic generation process. We investigate the universal properties of these quantum-path interferences in various generation media and discuss how ionization effects influence the observed interference structures. Our comparison of quantum-path interferences observed in xenon, argon, and neon demonstrates that our experimental tools are generally applicable and should also allow investigating more complex systems such as molecules or clusters.

  13. Outage Analysis of Mixed Underlay Cognitive RF MIMO and FSO Relaying with Interference Reduction

    KAUST Repository

    Al-Qahtani, Fawaz S.

    2017-03-22

    In this paper, we study the outage performance of multiuser mixed underlay radio frequency (RF)/multidestinations free-space optical (FSO) links. For RF links, we consider a secondary network with multiple users that can communicate with multiple destinations through a relaying node. The relay is equipped with an antenna array at the RF side, and it uses the amplify-and-forward (AF) protocol. The primary users (PUs) are equipped with multiple antennas at transmit and receive nodes. The RF link is subjected to the aggregate PUs interference effect on the secondary network. To reduce the effect of PUs interference on secondary network at the relay node, two interference cancellation (IC) schemes are adopted, which vary in terms of complexity and achieved performance. On the other hand, the multidestination FSO links can be exploited to further enhance the quality of the second hop, and their associated channel models account for pointing errors, intensity modulation/direct detection, and heterodyne detection. For the aforementioned system model, we obtain exact and asymptotic closed-form expressions for the end-to-end outage probability. To further enhance system performance, optimal power allocation between the two hops is obtained based on the derived asymptotic outage probability expressions.

  14. Interference factors regarding the path of insertion of rotational-path removable partial dentures

    Directory of Open Access Journals (Sweden)

    Chan-Te Huang

    2017-02-01

    Conclusions: The interference test was not required for a rotational center at the distal third to half of the occlusal surface. However, if the length of the long occlusal rest extends beyond the distal third, an interference test is recommended before final impression.

  15. Quantum path interferences of electron trajectories in two-center molecules.

    Science.gov (United States)

    Yang, Weifeng; Song, Xiaohong; Zeng, Zhinan; Li, Ruxin; Xu, Zhizhan

    2010-02-01

    We report a new quantum path interference effect of electron trajectories in high-order harmonic generation (HHG) from two-center molecules, in which the interference minima are mainly located in the high-energy portion of HHG spectrum. The quantum calculations of the time-frequency analyses and the classical results of the electron trajectories demonstrate very good agreement and reveal that the positions of the interference minima are associated with the cutoff of various kinds of molecular electron trajectories. The interference fringes within a half optical cycle can be clearly seen in the time-frequency analysis spectrum. Moreover, the characteristics of both the HHG in frequency domain and the corresponding attosecond pulse generation in time domain permit tracing back the interference information of these electron trajectories. These interference phenomena offer new possibilities for getting insight into the attosecond electronic dynamics in molecules.

  16. High-resolution, on-chip RF photonic signal processor using Brillouin gain shaping and RF interference.

    Science.gov (United States)

    Choudhary, Amol; Liu, Yang; Morrison, Blair; Vu, Khu; Choi, Duk-Yong; Ma, Pan; Madden, Stephen; Marpaung, David; Eggleton, Benjamin J

    2017-07-19

    Integrated microwave photonics has strongly emerged as a next-generation technology to address limitations of conventional RF electronics for wireless communications. High-resolution RF signal processing still remains a challenge due to limitations in technology that offer sub-GHz spectral resolution, in particular at high carrier frequencies. In this paper, we present an on-chip high-resolution RF signal processor, capable of providing high-suppression spectral filtering, large phase shifts and ns-scale time delays. This was achieved through tailoring of the Brillouin gain profiles using Stokes and anti-Stokes resonances combined with RF interferometry on a low-loss photonic chip with strong opto-acoustic interactions. Using an optical power of <40 mW, reconfigurable filters with a bandwidth of ~20 MHz and an extinction ratio in excess of 30 dB are synthesized. Through the concept of vector addition of RF signals we demonstrate, almost an order of magnitude amplification in the phase and delay compared to devices purely based upon the slow-light effect of Brillouin scattering. This concept allows for versatile and power-efficient manipulation of the amplitude and phase of RF signals on a photonic chip for applications in wireless communications including software defined radios and beam forming.

  17. Graphical and Statistical Analysis of Airplane Passenger Cabin RF Coupling Paths to Avionics

    Science.gov (United States)

    Jafri, Madiha; Ely, Jay; Vahala, Linda

    2003-01-01

    Portable wireless technology provides many benefits to modern day travelers. Over the years however, numerous reports have cited portable electronic devices (PEDs) as a possible cause of electromagnetic interference (EMI) to aircraft navigation and communication radio systems. PEDs may act as transmitters, both intentional and unintentional, and their signals may be detected by the various radio receiver antennas installed on the aircraft. Measurement of the radiated field coupling between passenger cabin locations and aircraft communication and navigation receivers, via their antennas is defined herein as interference path loss (IPL). IPL data is required for assessing the threat of PEDs to aircraft radios, and is very dependent upon airplane size, the interfering transmitter position within the airplane, and the location of the particular antenna for the aircraft system of concern. NASA Langley Research Center, Eagles Wings Inc., and United Airlines personnel performed extensive IPL measurements on several Boeing 737 airplanes.

  18. Effect of RF Interference on the Security-Reliability Trade-off Analysis of Multiuser Mixed RF/FSO Relay Networks with Power Allocation

    KAUST Repository

    Abd El-Malek, Ahmed

    2017-03-27

    In this paper, the impact of radio frequency (RF) cochannel interference (CCI) on the performance of multiuser mixed RF/free-space optical (FSO) relay network with opportunistic user scheduling under eavesdropping attack is studied. The considered system includes multiple users, one decode-and-forward relay, one destination, and an eavesdropper. In the analysis, the RF/FSO channels follow Nakagami-m/Gamma-Gamma fading models, respectively, with pointing errors on the FSO link. Exact closed-form expression for the system outage probability is derived. Then, an asymptotic expression for the outage probability is obtained at the high signal-to-interference-plus-noise ratio regime to get more insights on the system performance. Moreover, the obtained results are used to find the optimal transmission power in different turbulence conditions. The secrecy performance is studied in the presence of CCI at both the authorized relay and eavesdropper, where closed-form expressions are derived for the intercept probability. The physical layer security performance is enhanced using cooperative jamming models, where new closed-form expressions are derived for the intercept probability. Another power allocation optimization problem is formulated to find the optimal transmission and jamming powers. The derived analytical formulas are supported by numerical results to clarify the main contributions of this paper.

  19. The experiment to detect equivalent optical path difference in independent double aperture interference light path based on step scanning method

    Science.gov (United States)

    Wang, Chaoyan; Chen, Xin-yang; Zheng, Lixin; Ding, Yuanyuan

    2014-11-01

    Fringe test is the method which can detect the relative optical path difference in optical synthetic aperture telescope array. To get to the interference fringes, the two beams of light in the meeting point must be within the coherence length. Step scanning method is within its coherence length, selecting a specific step, changing one-way's optical path of both by changing position of micro displacement actuator. At the same time, every fringe pattern can be recorded. The process of fringe patterns is from appearing to clear to disappearing. Firstly, a particular pixel is selected. Then, we keep tract of the intensity of every picture in the same position. From the intensity change, the best position of relative optical path difference can be made sure. The best position of relative optical path difference is also the position of the clearest fringe. The wavelength of the infrared source is 1290nm and the bandwidth is 63.6nm. In this experiment, the coherence length of infrared source is detected by cube reflection experiment. The coherence length is 30μm by data collection and data processing, and that result of 30μm is less different from the 26μm of theoretical calculated. In order to further test the relative optical path of optical synthetic aperture using step scanning method, the infrared source is placed into optical route of optical synthesis aperture telescope double aperture. The precision position of actuator can be obtained when the fringe is the clearest. By the experiment, we found that the actuating step affects the degree of precision of equivalent optical path. The smaller step size, the more accurate position. But the smaller the step length, means that more steps within the coherence length measurement and the longer time.

  20. Data Set Simulation and RF Path Modeling of a QPSK Radio Communication System

    National Research Council Canada - National Science Library

    Fang, Ting-Kuo; Sun, Wei-Long

    2005-01-01

    ... and records the data for analysis. A computer with MATLAB Instrument-control Toolbox is used to generate a random-input data stream as an input to the signal generator, which modulates the RF signal...

  1. Interference stabilization and UV lasing in a plasma channel formed in gas by intense RF field

    Science.gov (United States)

    Bogatskaya, A. V.; Popov, A. M.

    2015-04-01

    The effect of interference stabilization of Rydberg atoms in a high-intensity IR laser field is proposed to create a plasma channel with population inversion for conversion of the input laser energy into the VUV and XUV frequency band.

  2. An enhanced common path interference optic measurement system for refractive indices and thickness

    Science.gov (United States)

    Jang, Ming-Jyi; Wang, Cheng-Chi; Wu, Cheng-Yu

    2007-04-01

    This study proposes a common path interference optical system for the measurement of refractive indices and thickness of uniaxial crystal material. The measurement system comprises an accurate Mach-Zehnder laser interferometer, a single-axis rotary stepping motor, and a computer. The laser interferometer is composed of a single-frequency He-Ne laser, two-beam splitters and two reflectors. The Mach-Zehnder laser interferometer measures the optical length difference by using its linear measurement accuracy. The proposed solution procedure enables both the refractive indices and the thickness of the optical waveplate to be obtained. The proposed design differs from conventional designs in that it does not use a heterodyne modulator with a lock-in technique. It is shown that the refractive indices and thickness of the tested optical elements can be measured rapidly and accurately.

  3. Quantum interferences induced by multiple scattering paths of the electron prior to emission in large molecules

    Science.gov (United States)

    Agueny, H.; Makhoute, A.; Tökési, K.; Dubois, A.; Hansen, J. P.

    2017-09-01

    We theoretically investigate electron emission process from a dimer generated by swift highly charged ions. The process under consideration is dealt with a non-perturbative approach by solving the time-dependent Schrödinger equation on a two-dimensional spatial grid. Numerical calculations show rich structures related to the multiple scattering paths of the electron prior to emission. This manifests by the emergence of additional oscillations with high-frequency superimposed on the Young-type oscillatory structure in the observed electron-ejected spectrum. This is not the case when calculations are performed based on the superposition principle, in which the final wave function is just a coherent sum of component wave functions described the electron emission from two-independent atoms. Within this assumption, only a direct electron emission process is taken into account. We find that contributions arising from these multiple scattering paths modify the dynamic electron emission process, and therefore, show the incorrect applicability of the above-mentioned principle, in concordance with the recent findings based on a simple three-slit interference experiment, reported in Sawant et al. (2014).

  4. Data Set Simulation and RF Path Modeling of a QPSK Radio Communication System

    National Research Council Canada - National Science Library

    Fang, Ting-Kuo; Sun, Wei-Long

    2005-01-01

    .... To simulate the transmission path in the real world a signal generator is used to create the QPSK I/Q signal at the HF operating frequencies and a digital sampling oscilloscope acts as a receiver...

  5. Atomic Magnetometer Multisensor Array for rf Interference Mitigation and Unshielded Detection of Nuclear Quadrupole Resonance

    Science.gov (United States)

    Cooper, Robert J.; Prescott, David W.; Matz, Peter; Sauer, Karen L.; Dural, Nezih; Romalis, Michael V.; Foley, Elizabeth L.; Kornack, Thomas W.; Monti, Mark; Okamitsu, Jeffrey

    2016-12-01

    An array of four 87Rb vector magnetometers is used to detect nuclear quadrupole resonance signals in an unshielded environment at 1 MHz. With a baseline of 25 cm, the length of the array, radio-frequency interference mitigation is also demonstrated; a radio-station signal is suppressed by a factor of 20 without degradation to the signal of interest. With these compact sensors, in which the probe beam passes through twice, the fundamental limit to detection sensitivity is found to be photon-shot noise. More passes of the probe beam overcome this limitation. With a sensor of similar effective volume, 0.25 cm3 , but 25 × more passes, the sensitivity is improved by an order of magnitude to 1.7 ±0.2 fT /√{Hz } .

  6. Mapping optical path length and image enhancement using quantitative orientation-independent differential interference contrast microscopy.

    Science.gov (United States)

    Shribak, Michael; Larkin, Kieran G; Biggs, David

    2017-01-01

    We describe the principles of using orientation-independent differential interference contrast (OI-DIC) microscopy for mapping optical path length (OPL). Computation of the scalar two-dimensional OPL map is based on an experimentally received map of the OPL gradient vector field. Two methods of contrast enhancement for the OPL image, which reveal hardly visible structures and organelles, are presented. The results obtained can be used for reconstruction of a volume image. We have confirmed that a standard research grade light microscope equipped with the OI-DIC and 100 × / 1.3 NA objective lens, which was not specially selected for minimum wavefront and polarization aberrations, provides OPL noise level of ? 0.5 ?? nm and lateral resolution if ? 300 ?? nm at a wavelength of 546 nm. The new technology is the next step in the development of the DIC microscopy. It can replace standard DIC prisms on existing commercial microscope systems without modification. This will allow biological researchers that already have microscopy setups to expand the performance of their systems.

  7. Mapping optical path length and image enhancement using quantitative orientation-independent differential interference contrast microscopy

    Science.gov (United States)

    Shribak, Michael; Larkin, Kieran G.; Biggs, David

    2017-01-01

    We describe the principles of using orientation-independent differential interference contrast (OI-DIC) microscopy for mapping optical path length (OPL). Computation of the scalar two-dimensional OPL map is based on an experimentally received map of the OPL gradient vector field. Two methods of contrast enhancement for the OPL image, which reveal hardly visible structures and organelles, are presented. The results obtained can be used for reconstruction of a volume image. We have confirmed that a standard research grade light microscope equipped with the OI-DIC and 100×/1.3 NA objective lens, which was not specially selected for minimum wavefront and polarization aberrations, provides OPL noise level of ˜0.5 nm and lateral resolution if ˜300 nm at a wavelength of 546 nm. The new technology is the next step in the development of the DIC microscopy. It can replace standard DIC prisms on existing commercial microscope systems without modification. This will allow biological researchers that already have microscopy setups to expand the performance of their systems.

  8. Interference Path Loss Prediction in A319/320 Airplanes Using Modulated Fuzzy Logic and Neural Networks

    Science.gov (United States)

    Jafri, Madiha J.; Ely, Jay J.; Vahala, Linda L.

    2007-01-01

    In this paper, neural network (NN) modeling is combined with fuzzy logic to estimate Interference Path Loss measurements on Airbus 319 and 320 airplanes. Interference patterns inside the aircraft are classified and predicted based on the locations of the doors, windows, aircraft structures and the communication/navigation system-of-concern. Modeled results are compared with measured data. Combining fuzzy logic and NN modeling is shown to improve estimates of measured data over estimates obtained with NN alone. A plan is proposed to enhance the modeling for better prediction of electromagnetic coupling problems inside aircraft.

  9. RF Path and Absorption Loss Estimation for Underwater Wireless Sensor Networks in Different Water Environments.

    Science.gov (United States)

    Qureshi, Umair Mujtaba; Shaikh, Faisal Karim; Aziz, Zuneera; Shah, Syed M Zafi S; Sheikh, Adil A; Felemban, Emad; Qaisar, Saad Bin

    2016-06-16

    Underwater Wireless Sensor Network (UWSN) communication at high frequencies is extremely challenging. The intricacies presented by the underwater environment are far more compared to the terrestrial environment. The prime reason for such intricacies are the physical characteristics of the underwater environment that have a big impact on electromagnetic (EM) signals. Acoustics signals are by far the most preferred choice for underwater wireless communication. Because high frequency signals have the luxury of large bandwidth (BW) at shorter distances, high frequency EM signals cannot penetrate and propagate deep in underwater environments. The EM properties of water tend to resist their propagation and cause severe attenuation. Accordingly, there are two questions that need to be addressed for underwater environment, first what happens when high frequency EM signals operating at 2.4 GHz are used for communication, and second which factors affect the most to high frequency EM signals. To answer these questions, we present real-time experiments conducted at 2.4 GHz in terrestrial and underwater (fresh water) environments. The obtained results helped in studying the physical characteristics (i.e., EM properties, propagation and absorption loss) of underwater environments. It is observed that high frequency EM signals can propagate in fresh water at a shallow depth only and can be considered for a specific class of applications such as water sports. Furthermore, path loss, velocity of propagation, absorption loss and the rate of signal loss in different underwater environments are also calculated and presented in order to understand why EM signals cannot propagate in sea water and oceanic water environments. An optimal solk6ution for underwater communication in terms of coverage distance, bandwidth and nature of communication is presented, along with possible underwater applications of UWSNs at 2.4 GHz.

  10. RF Path and Absorption Loss Estimation for Underwater Wireless Sensor Networks in Different Water Environments

    Directory of Open Access Journals (Sweden)

    Umair Mujtaba Qureshi

    2016-06-01

    Full Text Available Underwater Wireless Sensor Network (UWSN communication at high frequencies is extremely challenging. The intricacies presented by the underwater environment are far more compared to the terrestrial environment. The prime reason for such intricacies are the physical characteristics of the underwater environment that have a big impact on electromagnetic (EM signals. Acoustics signals are by far the most preferred choice for underwater wireless communication. Because high frequency signals have the luxury of large bandwidth (BW at shorter distances, high frequency EM signals cannot penetrate and propagate deep in underwater environments. The EM properties of water tend to resist their propagation and cause severe attenuation. Accordingly, there are two questions that need to be addressed for underwater environment, first what happens when high frequency EM signals operating at 2.4 GHz are used for communication, and second which factors affect the most to high frequency EM signals. To answer these questions, we present real-time experiments conducted at 2.4 GHz in terrestrial and underwater (fresh water environments. The obtained results helped in studying the physical characteristics (i.e., EM properties, propagation and absorption loss of underwater environments. It is observed that high frequency EM signals can propagate in fresh water at a shallow depth only and can be considered for a specific class of applications such as water sports. Furthermore, path loss, velocity of propagation, absorption loss and the rate of signal loss in different underwater environments are also calculated and presented in order to understand why EM signals cannot propagate in sea water and oceanic water environments. An optimal solk6ution for underwater communication in terms of coverage distance, bandwidth and nature of communication is presented, along with possible underwater applications of UWSNs at 2.4 GHz.

  11. n+ GaAs/AuGeNi-Au Thermocouple-Type RF MEMS Power Sensors Based on Dual Thermal Flow Paths in GaAs MMIC

    Science.gov (United States)

    Zhang, Zhiqiang; Liao, Xiaoping

    2017-01-01

    To achieve radio frequency (RF) power detection, gain control, and circuit protection, this paper presents n+ GaAs/AuGeNi-Au thermocouple-type RF microelectromechanical system (MEMS) power sensors based on dual thermal flow paths. The sensors utilize a conversion principle of RF power-heat-voltage, where a thermovoltage is obtained as the RF power changes. To improve the heat transfer efficiency and the sensitivity, structures of two heat conduction paths are designed: one in which a thermal slug of Au is placed between two load resistors and hot junctions of the thermocouples, and one in which a back cavity is fabricated by the MEMS technology to form a substrate membrane underneath the resistors and the hot junctions. The improved sensors were fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process. Experiments show that these sensors have reflection losses of less than −17 dB up to 12 GHz. At 1, 5, and 10 GHz, measured sensitivities are about 63.45, 53.97, and 44.14 µV/mW for the sensor with the thermal slug, and about 111.03, 94.79, and 79.04 µV/mW for the sensor with the thermal slug and the back cavity, respectively. PMID:28629144

  12. n⁺ GaAs/AuGeNi-Au Thermocouple-Type RF MEMS Power Sensors Based on Dual Thermal Flow Paths in GaAs MMIC.

    Science.gov (United States)

    Zhang, Zhiqiang; Liao, Xiaoping

    2017-06-17

    To achieve radio frequency (RF) power detection, gain control, and circuit protection, this paper presents n⁺ GaAs/AuGeNi-Au thermocouple-type RF microelectromechanical system (MEMS) power sensors based on dual thermal flow paths. The sensors utilize a conversion principle of RF power-heat-voltage, where a thermovoltage is obtained as the RF power changes. To improve the heat transfer efficiency and the sensitivity, structures of two heat conduction paths are designed: one in which a thermal slug of Au is placed between two load resistors and hot junctions of the thermocouples, and one in which a back cavity is fabricated by the MEMS technology to form a substrate membrane underneath the resistors and the hot junctions. The improved sensors were fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process. Experiments show that these sensors have reflection losses of less than -17 dB up to 12 GHz. At 1, 5, and 10 GHz, measured sensitivities are about 63.45, 53.97, and 44.14 µV/mW for the sensor with the thermal slug, and about 111.03, 94.79, and 79.04 µV/mW for the sensor with the thermal slug and the back cavity, respectively.

  13. Combined Effect of Random Transmit Power Control and Inter-Path Interference Cancellation on DS-CDMA Packet Mobile Communications

    Science.gov (United States)

    Kudoh, Eisuke; Ito, Haruki; Wang, Zhisen; Adachi, Fumiyuki

    In mobile communication systems, high speed packet data services are demanded. In the high speed data transmission, throughput degrades severely due to severe inter-path interference (IPI). Recently, we proposed a random transmit power control (TPC) to increase the uplink throughput of DS-CDMA packet mobile communications. In this paper, we apply IPI cancellation in addition to the random TPC. We derive the numerical expression of the received signal-to-interference plus noise power ratio (SINR) and introduce IPI cancellation factor. We also derive the numerical expression of system throughput when IPI is cancelled ideally to compare with the Monte Carlo numerically evaluated system throughput. Then we evaluate, by Monte-Carlo numerical computation method, the combined effect of random TPC and IPI cancellation on the uplink throughput of DS-CDMA packet mobile communications.

  14. SQIF Arrays as RF Sensors (Briefing Charts)

    National Research Council Canada - National Science Library

    Yukon, Stanford P

    2007-01-01

    ... (Superconducting Quantum Interference Filter) arrays may be employed as sensitive RF sensors. RF SQIF arrays fabricated with high Tc Josephson junctions can be cooled with small Sterling microcoolers...

  15. Multiple-path Quantum Interference Effects in a Double-Aharonov-Bohm Interferometer

    Directory of Open Access Journals (Sweden)

    Yang XF

    2010-01-01

    Full Text Available Abstract We investigate quantum interference effects in a double-Aharonov-Bohm (AB interferometer consisting of five quantum dots sandwiched between two metallic electrodes in the case of symmetric dot-electrode couplings by the use of the Green’s function equation of motion method. The analytical expression for the linear conductance at zero temperature is derived to interpret numerical results. A three-peak structure in the linear conductance spectrum may evolve into a double-peak structure, and two Fano dips (zero conductance points may appear in the quantum system when the energy levels of quantum dots in arms are not aligned with one another. The AB oscillation for the magnetic flux threading the double-AB interferometer is also investigated in this paper. Our results show the period of AB oscillation can be converted from 2π to π by controlling the difference of the magnetic fluxes threading the two quantum rings.

  16. NQR detection of explosive simulants using RF atomic magnetometers

    Science.gov (United States)

    Monti, Mark C.; Alexson, Dimitri A.; Okamitsu, Jeffrey K.

    2016-05-01

    Nuclear Quadrupole Resonance (NQR) is a highly selective spectroscopic method that can be used to detect and identify a number of chemicals of interest to the defense, national security, and law enforcement community. In the past, there have been several documented attempts to utilize NQR to detect nitrogen bearing explosives using induction sensors to detect the NQR RF signatures. We present here our work on the NQR detection of explosive simulants using optically pumped RF atomic magnetometers. RF atomic magnetometers can provide an order of magnitude (or more) improvement in sensitivity versus induction sensors and can enable mitigation of RF interference, which has classically has been a problem for conventional NQR using induction sensors. We present the theory of operation of optically pumped RF atomic magnetometers along with the result of laboratory work on the detection of explosive simulant material. An outline of ongoing work will also be presented along with a path for a fieldable detection system.

  17. Ultrasonic Phased Array Assessment of the Interference Fit and Leak Path of the North Anna Unit 2 Control Rod Drive Mechanism Nozzle 63 with Destructive Validation

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Susan L.; Cinson, Anthony D.; MacFarlan, Paul J.; Hanson, Brady D.; Mathews, Royce

    2012-08-01

    The objective of this investigation was to evaluate the efficacy of ultrasonic testing (UT) for primary water leak path assessments of reactor pressure vessel (RPV) upper head penetrations. Operating reactors have experienced leakage when stress corrosion cracking of nickel-based alloy penetrations allowed primary water into the annulus of the interference fit between the penetration and the low-alloy steel RPV head. In this investigation, UT leak path data were acquired for an Alloy 600 control rod drive mechanism nozzle penetration, referred to as Nozzle 63, which was removed from the North Anna Unit 2 reactor when the RPV head was replaced in 2002. In-service inspection prior to the head replacement indicated that Nozzle 63 had a probable leakage path through the interference fit region. Nozzle 63 was examined using a phased-array UT probe with a 5.0-MHz, eight-element annular array. Immersion data were acquired from the nozzle inner diameter surface. The UT data were interpreted by comparing to responses measured on a mockup penetration with known features. Following acquisition of the UT data, Nozzle 63 was destructively examined to determine if the features identified in the UT examination, including leakage paths and crystalline boric acid deposits, could be visually confirmed. Additional measurements of boric acid deposit thickness and low-alloy steel wastage were made to assess how these factors affect the UT response. The implications of these findings for interpreting UT leak path data are described.

  18. HYBRID SILICON-ON-SAPPHIRE/SCALED CMOS INTERFERENCE MITIGATION FRONT END BASED ON SIMULTANEOUS NOISE CANCELLATION, ACTIVE-INTERFERENCE CANCELLATION AND N-PATH-MIXER FILTERING

    Science.gov (United States)

    2017-04-01

    orthogonal frequency-division multiplexing (OFDM)-like modulated TX signal. Conventional reciprocal ANT interfaces, such as surface acoustic wave (SAW...RF interconnections at board-level. A wireless imaging demo shows two of the implemented ICs tiled on board to form an eight-element MIMO receiver...Measured spatial responses show >30dB of spatial notch suppression in the broadside direction. Two ICs can be tiled on printed circuit board (PCB) to

  19. VLF modal interference distance and nighttime D region VLF reflection height for west-east and east-west propagation paths to Fiji

    Science.gov (United States)

    Chand, Atishnal Elvin; Kumar, Sushil

    2017-08-01

    Very low frequency (VLF) signals from navigational transmitters propagate through the Earth-ionosphere waveguide formed by the Earth and the lower conducting ionosphere and show the pronounced minima during solar terminator transition between transmitter and receiver. Pronounced amplitude minima observed on 19.8 kHz (NWC transmitter) and 24.8 kHz (NLK transmitter) signals recorded at Suva (18.149°S, 178.446°E), Fiji, during 2013-2014, have been used to estimate the VLF modal interference distance (DMS) and nighttime D region VLF reflection height (hN). The NWC transmitter signal propagates mostly in west-east direction, and the NLK transmitter follows a transequatorial path propagating significantly in the east-west direction. The values of DMS calculated using midpath terminator speed are 2103 ± 172 km and 2507 ± 373 km for these paths having west-east and east-west components of VLF subionospheric propagation, respectively, which agree with previously published results and within 10% with theoretical values. We have also compared the DMS estimated using a terminator time method with that calculated using terminator speed for a particular day and found both the values to be consistent. The hN values were found to be maximum during winter of Southern Hemisphere for NWC signal and winter of Northern Hemisphere for NLK signal VLF propagation paths to Suva. The hN also shows significant day-to-day and seasonal variabilities with a maximum of about 10 km and 23 km for NWC and NLK signal propagation paths, respectively, which could be due to the atmospheric gravity waves associated with solar terminator transition, as well as meteorological factors such as strong lightnings.

  20. Inter-cell interference mitigation in multi-cellular visible light communications.

    Science.gov (United States)

    Jung, Sun-Young; Kwon, Do-Hoon; Yang, Se-Hoon; Han, Sang-Kook

    2016-04-18

    Inter-cell interference hinders multi-cellular optical wireless communication to support various applications. We proposed and experimentally demonstrated a multicarrier-based cell partitioning scheme, combined with frequency reuse, which could be effective in optical communications although it is inefficient in RF wireless communications. For multicarrier-based cell partitioning, Orthogonal frequency division multiplexing-based multiple access (OFDMA) was employed to accommodate multi-cellular optical wireless communications without a large guard band between adjacent cells and without additional RF components. Moreover, we employed filter bank-based multicarrier (FBMC) to mitigate inter-cell interference generated in OFDMA-based cell partitioning due to asynchronous signals originated from RF path difference. By using FBMC-based cell partitioning, inter-cell interference could be effectively mitigated as well as capacity and spectral efficiency were improved about 1.5 times compared to those of OFDMA. Because no cyclic prefix (CP) is required in FBMC, the improvement factor could be increased if there is a large RF path difference between lighting cells. Moreover, it could be a stronger solution when many neighboring cells exist causing large interference. The proposed multicarrier-based cell partitioning combined with FBMC will effectively support visible light communication (VLC)-based localization-based services (LBS) and indoor positioning system by transparently providing trilateration-based positioning method.

  1. Over-the-air in-band full-duplex system with hybrid RF optical and baseband digital self-interference cancellation

    Science.gov (United States)

    Zhang, Yunhao; Li, Longsheng; Bi, Meihua; Xiao, Shilin

    2017-12-01

    In this paper, we propose a hybrid analog optical self-interference cancellation (OSIC) and baseband digital SIC (DSIC) system for over-the-air in-band full-duplex (IBFD) wireless communication. Analog OSIC system is based on optical delay line, electro-absorption modulation lasers (EMLs) and balanced photodetector (BPD), which has the properties of high adjusting precision and broad processing bandwidth. With the help of baseband DSIC, the cancellation depth limitation of OSIC can be mitigated so as to achieve deeper total SIC depth. Experimental results show about 20-dB depth by OSIC and 10-dB more depth by DSIC over 1GHz broad baseband, so that the signal of interest (SOI) overlapped by wideband self-interference (SI) signal is better recovered compared to the IBFD system with OSIC or DSIC only. The hybrid of OSIC and DSIC takes advantages of the merits of optical devices and digital processors to achieve deep cancellation depth over broad bandwidth.

  2. RF MEMS

    Indian Academy of Sciences (India)

    bridges the gap in the signal line, thereby connecting the two ports of the device. This repre- ..... Packaging related parasitics tend to degrade RF performance, limiting the usage of the devices to much lower ... bonds are known to cause higher losses due to impedance mismatch with the 50 transmission lines. The RF bond ...

  3. Quantum Eraser for Three-Slit Interference

    OpenAIRE

    Shah, Naveed Ahmad; Qureshi, Tabish

    2016-01-01

    It is well known that in a two-slit interference experiment, if the information, on which of the two paths the particle followed, is stored in a quantum path detector, the interference is destroyed. However, in a setup where this path information is "erased", the interference can reappear. Such a setup is known as a quantum eraser. A generalization of quantum eraser to a three-slit interference is theoretically analyzed. It is shown that three complementary interference patterns can arise out...

  4. Inverse Compton scattering X-ray source yield optimization with a laser path folding system inserted in a pre-existent RF linac

    Energy Technology Data Exchange (ETDEWEB)

    Chaleil, A.; Le Flanchec, V.; Binet, A.; Nègre, J.P.; Devaux, J.F.; Jacob, V.; Millerioux, M.; Bayle, A.; Balleyguier, P. [CEA DAM DIF, F-91297 Arpajon (France); Prazeres, R. [CLIO/LCP, Bâtiment 201, Université Paris-Sud, F-91450 Orsay (France)

    2016-12-21

    An inverse Compton scattering source is under development at the ELSA linac of CEA, Bruyères-le-Châtel. Ultra-short X-ray pulses are produced by inverse Compton scattering of 30 ps-laser pulses by relativistic electron bunches. The source will be able to operate in single shot mode as well as in recurrent mode with 72.2 MHz pulse trains. Within this framework, an optical multipass system that multiplies the number of emitted X-ray photons in both regimes has been designed in 2014, then implemented and tested on ELSA facility in the course of 2015. The device is described from both geometrical and timing viewpoints. It is based on the idea of folding the laser optical path to pile-up laser pulses at the interaction point, thus increasing the interaction probability. The X-ray output gain measurements obtained using this system are presented and compared with calculated expectations.

  5. Digital RF delay line for ECM (electronic countermeasure) look-through

    Science.gov (United States)

    1984-12-01

    Jamming signals, when reflected from structure to receiver, produce unwanted reflected signal interference in a countermeasure system. Elimination of these reflections would increase look-through capability. It is the goal of this project to demonstrate Digital RF Memory (DRFM) techniques which would null these unwanted reflected signals. Controlled injection of a transmitter signal into a receiver is a method of nulling this interference. Successfull nulling requires control of delay, phase, and gain of the feedback signal. The feasibility of using sampling electronics for storage and delay control was demonstrated in this project. The DRFM was used to simulate the electronic countermeasure (ECM) transmitter. Delays in the injection path were generated with high rate shift registers. The phase and gain of the injection paths were set with linear elements. The results from the experiment include bandwidth and quality of available nulls, as well as recommendations for the selection of nulling strategy.

  6. Moscow Meson Factory DTL RF System Upgrade

    CERN Document Server

    Esin, S K; Kvasha, A I; Serov, V L

    2004-01-01

    The last paper devoted to description of the first part (DTL) RF system of Moscow Meson Factory upgrade was published in the Proceedings of PAC95 Conference in Dallas. Since then some new works directed at improvement of reliability and efficiency of the RF system were carried out. Among them there are a new powerful pulse triode “Katran” installed in the output RF power amplifiers (PA) of three channels, modifications of the anode modulator control circuit and crow-bar system, a new additional RF channel for RF supply of RFQ and some alterations in placing of the anode modulator equipment decreasing a level of interference’s at crow-bar circuits. Some new checked at MMF RF channels ideas concerning of PA tuning are of interest for people working in this sphere of activity.

  7. RF transformer

    Science.gov (United States)

    Smith, James L.; Helenberg, Harold W.; Kilsdonk, Dennis J.

    1979-01-01

    There is provided an improved RF transformer having a single-turn secondary of cylindrical shape and a coiled encapsulated primary contained within the secondary. The coil is tapered so that the narrowest separation between the primary and the secondary is at one end of the coil. The encapsulated primary is removable from the secondary so that a variety of different capacity primaries can be utilized with one secondary.

  8. Quantum eraser for three-slit interference

    Science.gov (United States)

    Shah, Naveed Ahmad; Qureshi, Tabish

    2017-12-01

    It is well known that in a two-slit interference experiment, if the information, on which of the two paths the particle followed, is stored in a quantum path detector, the interference is destroyed. However, in a set-up where this path information is `erased', the interference can reappear. Such a set-up is known as a quantum eraser. A generalization of quantum eraser to a `three-slit' interference is theoretically analysed. It is shown that three complementary interference patterns can arise out of the quantum erasing process.

  9. Cyber security with radio frequency interferences mitigation study for satellite systems

    Science.gov (United States)

    Wang, Gang; Wei, Sixiao; Chen, Genshe; Tian, Xin; Shen, Dan; Pham, Khanh; Nguyen, Tien M.; Blasch, Erik

    2016-05-01

    Satellite systems including the Global Navigation Satellite System (GNSS) and the satellite communications (SATCOM) system provide great convenience and utility to human life including emergency response, wide area efficient communications, and effective transportation. Elements of satellite systems incorporate technologies such as navigation with the global positioning system (GPS), satellite digital video broadcasting, and information transmission with a very small aperture terminal (VSAT), etc. The satellite systems importance is growing in prominence with end users' requirement for globally high data rate transmissions; the cost reduction of launching satellites; development of smaller sized satellites including cubesat, nanosat, picosat, and femtosat; and integrating internet services with satellite networks. However, with the promising benefits, challenges remain to fully develop secure and robust satellite systems with pervasive computing and communications. In this paper, we investigate both cyber security and radio frequency (RF) interferences mitigation for satellite systems, and demonstrate that they are not isolated. The action space for both cyber security and RF interferences are firstly summarized for satellite systems, based on which the mitigation schemes for both cyber security and RF interferences are given. A multi-layered satellite systems structure is provided with cross-layer design considering multi-path routing and channel coding, to provide great security and diversity gains for secure and robust satellite systems.

  10. RF transconductor linearization robust to process, voltage and temperature variations

    NARCIS (Netherlands)

    Kundur Subramaniyan, H.; Klumperink, Eric A.M.; Srinivasan, Venkatesh; Kiaei, Ali; Nauta, Bram

    2015-01-01

    Software-defined radio receivers increasingly exploit linear RF V-I conversion, instead of RF voltage gain, to improve interference robustness. Unfortunately, the linearity of CMOS inverters, which are often used to implement V-I conversion, is highly sensitive to Process, Voltage and Temperature

  11. Recycler barrier RF buckets

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C.M.; /Fermilab

    2011-03-01

    The Recycler Ring at Fermilab uses a barrier rf systems for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf system, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  12. Evolutionary Paths

    NARCIS (Netherlands)

    Assche, van K.; Beunen, R.; Duineveld, M.

    2014-01-01

    In this chapter we discuss the concept of governance paths and the forms of dependency marking paths. The forms of dependency constitute rigidities in governance evolution, but leave space for flexibility, for path creation.

  13. Rheumatoid factor and its interference with cytokine measurements

    DEFF Research Database (Denmark)

    Bartels, Else Marie; Falbe Wätjen, Inger; Littrup Andersen, Eva

    2011-01-01

    Use of cytokines as biomarkers for disease is getting more widespread. Cytokines are conveniently determined by immunoassay, but interference from present antibodies is known to cause problems. In rheumatoid arthritis (RA), interference of rheumatoid factor (RF) may be problematic. RF covers...... a group of autoantibodies from immunoglobulin subclasses and is present in 65-80% of RA patients. Partly removal of RF is possible by precipitation. This study aims at determining the effects of presence of RF in blood and synovial fluid on cytokine measurements in samples from RA patients and finding...

  14. Path Dependency

    OpenAIRE

    Mark Setterfield

    2015-01-01

    Path dependency is defined, and three different specific concepts of path dependency – cumulative causation, lock in, and hysteresis – are analyzed. The relationships between path dependency and equilibrium, and path dependency and fundamental uncertainty are also discussed. Finally, a typology of dynamical systems is developed to clarify these relationships.

  15. Low power microwave tests on RF gun prototype of the Iranian Light Source Facility

    Directory of Open Access Journals (Sweden)

    A Sadeghipanah

    2017-08-01

    Full Text Available In this paper, we introduce RF electron gun of Iranian Light Source Facility (ILSF pre-injection system. Design, fabrication and low-power microwave tests results of the prototype RF electron gun have been described in detail. This paper also explains the tuning procedure of the prototype RF electron gun to the desired resonant frequency. The outcomes of this project brighten the path to the fabrication of the RF electron gun by the local industries  

  16. Robust multiplatform RF emitter localization

    Science.gov (United States)

    Al Issa, Huthaifa; Ordóñez, Raúl

    2012-06-01

    In recent years, position based services has increase. Thus, recent developments in communications and RF technology have enabled system concept formulations and designs for low-cost radar systems using state-of-the-art software radio modules. This research is done to investigate a novel multi-platform RF emitter localization technique denoted as Position-Adaptive RF Direction Finding (PADF). The formulation is based on the investigation of iterative path-loss (i.e., Path Loss Exponent, or PLE) metrics estimates that are measured across multiple platforms in order to autonomously adapt (i.e. self-adjust) of the location of each distributed/cooperative platform. Experiments conducted at the Air-Force Research laboratory (AFRL) indicate that this position-adaptive approach exhibits potential for accurate emitter localization in challenging embedded multipath environments such as in urban environments. The focus of this paper is on the robustness of the distributed approach to RF-based location tracking. In order to localize the transmitter, we use the Received Signal Strength Indicator (RSSI) data to approximate distance from the transmitter to the revolving receivers. We provide an algorithm for on-line estimation of the Path Loss Exponent (PLE) that is used in modeling the distance based on Received Signal Strength (RSS) measurements. The emitter position estimation is calculated based on surrounding sensors RSS values using Least-Square Estimation (LSE). The PADF has been tested on a number of different configurations in the laboratory via the design and implementation of four IRIS wireless sensor nodes as receivers and one hidden sensor as a transmitter during the localization phase. The robustness of detecting the transmitters position is initiated by getting the RSSI data through experiments and then data manipulation in MATLAB will determine the robustness of each node and ultimately that of each configuration. The parameters that are used in the functions are

  17. Rf Feedback free electron laser

    Science.gov (United States)

    Brau, Charles A.; Swenson, Donald A.; Boyd, Jr., Thomas J.

    1981-01-01

    A free electron laser system and electron beam system for a free electron laser which use rf feedback to enhance efficiency. Rf energy is extracted from an electron beam by decelerating cavities and returned to accelerating cavities using rf returns such as rf waveguides, rf feedthroughs, etc. This rf energy is added to rf klystron energy to lower the required input energy and thereby enhance energy efficiency of the system.

  18. DNA-based frequency selective electromagnetic interference shielding

    Science.gov (United States)

    Grote, James; Ouchen, Fahima; Kreit, Eric; Buskohl, Phillip; Steffan, Thomas; Rogers, Charles; Salour, Michael

    2017-10-01

    A method of modeling RF properties of multilayered polymer host - metal nanoparticle guest composite films, using the transmission matrix method (TMM) model is presented. This is an alternate, pattern-less, dielectric approach to frequency selective surface electromagnetic interference shielding.

  19. RF feedback for KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Ezura, Eizi; Yoshimoto, Shin-ichi; Akai, Kazunori [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    This paper describes the present status of the RF feedback development for the KEK B-Factory (KEKB). A preliminary experiment concerning the RF feedback using a parallel comb-filter was performed through a choke-mode cavity and a klystron. The RF feedback has been tested using the beam of the TRISTAN Main Ring, and has proved to be effective in damping the beam instability. (author)

  20. The quantum interference effect transistor.

    Science.gov (United States)

    Stafford, Charles A; Cardamone, David M; Mazumdar, Sumit

    2007-10-24

    We give a detailed discussion of the quantum interference effect transistor (QuIET), a proposed device which exploits the interference between electron paths through aromatic molecules to modulate the current flow. In the off state, perfect destructive interference stemming from the molecular symmetry blocks the current, while in the on state, the current is allowed to flow by locally introducing either decoherence or elastic scattering. Details of a model calculation demonstrating the efficacy of the QuIET are presented, and various fabrication scenarios are proposed, including the possibility of using conducting polymers to connect the QuIET with multiple leads.

  1. Cytokine measurements and possible interference from heterophilic antibodies--problems and solutions experienced with rheumatoid factor

    DEFF Research Database (Denmark)

    Bartels, Else Marie; Ribel-Madsen, Søren

    2013-01-01

    which can be present in both blood and synovial fluid. RF is present in some arthritic diseases as well as in some other medical conditions. When present, especially RF IgM is known to interfere with the immunometric measurements. A possible and affordable solution to diminish this interference is PEG...

  2. Prototype LHC RF cavity

    CERN Multimedia

    A radiofrequency (RF) cavity is a metallic chamber that contains an electromagnetic field. Its primary purpose is to accelerate charged particles. RF cavities can be structured like beads on a string, where the beads are the cavities and the string is the beam pipe of a particle accelerator, through which particles travel in a vacuum.

  3. 1.5 MW RF Load for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Ives, Robert Lawrence [Calabazas Creek Research, Inc., San Mateo, CA (United States); Marsden, David [Calabazas Creek Research, Inc., San Mateo, CA (United States); Collins, George [Calabazas Creek Research, Inc., San Mateo, CA (United States); Karimov, Rasul [Calabazas Creek Research, Inc., San Mateo, CA (United States); Mizuhara, Max [Calabazas Creek Research, Inc., San Mateo, CA (United States); Neilson, Jeffrey [Lexam Research, Redwood City, CA (United States)

    2016-09-01

    Calabazas Creek Research, Inc. developed a 1.5 MW RF load for the ITER fusion research facility currently under construction in France. This program leveraged technology developed in two previous SBIR programs that successfully developed high power RF loads for fusion research applications. This program specifically focused on modifications required by revised technical performance, materials, and assembly specification for ITER. This program implemented an innovative approach to actively distribute the RF power inside the load to avoid excessive heating or arcing associated with constructive interference. The new design implemented materials and assembly changes required to meet specifications. Critical components were built and successfully tested during the program.

  4. Indoor Wireless RF Energy Transfer for Powering Wireless Sensors

    Directory of Open Access Journals (Sweden)

    H. Visser

    2012-12-01

    Full Text Available For powering wireless sensors in buildings, rechargeable batteries may be used. These batteries will be recharged remotely by dedicated RF sources. Far-field RF energy transport is known to suffer from path loss and therefore the RF power available on the rectifying antenna or rectenna will be very low. As a consequence, the RF-to-DC conversion efficiency of the rectenna will also be very low. By optimizing not only the subsystems of a rectenna but also taking the propagation channel into account and using the channel information for adapting the transmit antenna radiation pattern, the RF energy transport efficiency will be improved. The rectenna optimization, channel modeling and design of a transmit antenna are discussed.

  5. Quantum eraser for three-slit interference

    Indian Academy of Sciences (India)

    Abstract. It is well known that in a two-slit interference experiment, if the information, on which of the two paths the particle followed, is stored in a quantum path detector, the ... Department of Physics, Jamia Millia Islamia, New Delhi 110 025, India; Centre for Theoretical Physics, Jamia Millia Islamia, New Delhi 110 025, India ...

  6. Microfluidic stretchable RF electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2010-12-07

    Stretchable electronics is a revolutionary technology that will potentially create a world of radically different electronic devices and systems that open up an entirely new spectrum of possibilities. This article proposes a microfluidic based solution for stretchable radio frequency (RF) electronics, using hybrid integration of active circuits assembled on flex foils and liquid alloy passive structures embedded in elastic substrates, e.g. polydimethylsiloxane (PDMS). This concept was employed to implement a 900 MHz stretchable RF radiation sensor, consisting of a large area elastic antenna and a cluster of conventional rigid components for RF power detection. The integrated radiation sensor except the power supply was fully embedded in a thin elastomeric substrate. Good electrical performance of the standalone stretchable antenna as well as the RF power detection sub-module was verified by experiments. The sensor successfully detected the RF radiation over 5 m distance in the system demonstration. Experiments on two-dimensional (2D) stretching up to 15%, folding and twisting of the demonstrated sensor were also carried out. Despite the integrated device was severely deformed, no failure in RF radiation sensing was observed in the tests. This technique illuminates a promising route of realizing stretchable and foldable large area integrated RF electronics that are of great interest to a variety of applications like wearable computing, health monitoring, medical diagnostics, and curvilinear electronics.

  7. Reconfigurable RF Filters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro proposes to build upon our existing space microelectronics and hardening technologies and products, to research and develop a novel rad hard/tolerant RF...

  8. RF Measurement Concepts

    CERN Document Server

    Caspers, F

    2014-01-01

    For the characterization of components, systems and signals in the radiofrequency (RF) and microwave ranges, several dedicated instruments are in use. In this article the fundamentals of the RF signal techniques are discussed. The key element in these front ends is the Schottky diode which can be used either as a RF mixer or as a single sampler. The spectrum analyser has become an absolutely indispensable tool for RF signal analysis. Here the front end is the RF mixer as the RF section of modern spectrum analyses has a ra ther complex architecture. The reasons for this complexity and certain working principles as well as limitations are discussed. In addition, an overview of the development of scalar and vector signal analysers is given. For the determination of the noise temperature of a one-port and the noise figure of a two-port, basic concepts and relations are shown as well as a brief discussion of commonly used noise-measurement techniques. In a further part of this article the operating principles of n...

  9. Connect Global Positioning System RF Module

    Science.gov (United States)

    Franklin, Garth W.; Young, Lawrence E.; Ciminera, Michael A.; Tien, Jeffrey Y.; Gorelik, Jacob; Okihiro, Brian Bachman; Koelewyn, Cynthia L.

    2012-01-01

    The CoNNeCT Global Positioning System RF Module (GPSM) slice is part of the JPL CoNNeCT Software Defined Radio (SDR). CoNNeCT is the Communications, Navigation, and Net working reconfigurable Testbed project that is part of NASA's Space Communication and Nav igation (SCaN) Program. The CoNNeCT project is an experimental dem onstration that will lead to the advancement of SDRs and provide a path for new space communication and navigation systems for future NASA exploration missions. The JPL CoNNeCT SDR will be flying on the International Space Station (ISS) in 2012 in support of the SCaN CoNNeCT program. The GPSM is a radio-frequency sampler module (see Figure 1) that directly sub-harmonically samples the filtered GPS L-band signals at L1 (1575.42 MHz), L2 (1227.6 MHz), and L5 (1176.45 MHz). The JPL SDR receives GPS signals through a Dorne & Margolin antenna mounted onto a choke ring. The GPS signal is filtered against interference, amplified, split, and fed into three channels: L1, L2, and L5. In each of the L-band channels, there is a chain of bandpass filters and amplifiers, and the signal is fed through each of these channels to where the GPSM performs a one-bit analog-to-digital conversion (see Figure 2). The GPSM uses a sub-harmonic, single-bit L1, L2, and L5 sampler that samples at a clock rate of 38.656 MHz. The new capability is the down-conversion and sampling of the L5 signal when previous hardware did not provide this capability. The first GPS IIF Satellite was launched in 2010, providing the new L5 signal. With the JPL SDR flying on the ISS, it will be possible to demonstrate navigation solutions with 10-meter 3-D accuracy at 10-second intervals using a field-program mable gate array (FPGA)-based feedback loop running at 50 Hz. The GPS data bits will be decoded and used in the SDR. The GPSM will also allow other waveforms that are installed in the SDR to demonstrate various GNSS tracking techniques.

  10. Optical path control in the MAM testbed

    Science.gov (United States)

    Regehr, M. W.; Hines, B.; Holmes, B.

    2003-01-01

    Future space-based optical interferometers will require control of the optical path delay to accomplish some or all of the three objectives: balancing the optical path in the two arms to within a tolerance corresponding to the coherence length of the star light being observed, modulating the optical path in order to observe the phase of the star light interference fringe, and modulating the path length in order to reduce the effect of cyclic errors in the laser metrology system used to measure the optical path length in the two arms of the interferometer.

  11. Improvement of RF Vector Modulator Performance by Feed-forward Based Calibration

    CERN Document Server

    Tosovsky, Petr

    2010-01-01

    RF Vector Modulator enables independent control of a narrowband RF signal amplitude and phase. Unfortunately practical realization of an analog vector modulator suffers from misbalances and imperfections in the I and Q signal paths. Use of a feed-forward based calibration can compensate for them and significantly improve RF performance and control accuracy of a real vector modulator. Achieved improvements and results on a small series of vector modulator based phase shifters using feed-forward calibration are presented.

  12. Second-Order Temporal Interference with Thermal Light: Interference beyond the Coherence Time

    Science.gov (United States)

    Ihn, Yong Sup; Kim, Yosep; Tamma, Vincenzo; Kim, Yoon-Ho

    2017-12-01

    We report the observation of a counterintuitive phenomenon in multipath correlation interferometry with thermal light. The intensity correlation between the outputs of two unbalanced Mach-Zehnder interferometers (UMZIs) with two classically correlated beams of thermal light at the input exhibits genuine second-order interference with the visibility of 1 /3 . Surprisingly, the second-order interference does not degrade at all no matter how much the path length difference in each UMZI is increased beyond the coherence length of the thermal light. Moreover, the second-order interference is dependent on the difference of the UMZI phases. These results differ substantially from those of the entangled-photon Franson interferometer, which exhibits two-photon interference dependent on the sum of the UMZI phases and the interference vanishes as the path length difference in each UMZI exceeds the coherence length of the pump laser. Our work offers deeper insight into the interplay between interference and coherence in multiphoton interferometry.

  13. RF kicker cavity to increase control in common transport lines

    Science.gov (United States)

    Douglas, David R.; Ament, Lucas J. P.

    2017-04-18

    A method of controlling e-beam transport where electron bunches with different characteristics travel through the same beam pipe. An RF kicker cavity is added at the beginning of the common transport pipe or at various locations along the common transport path to achieve independent control of different bunch types. RF energy is applied by the kicker cavity kicks some portion of the electron bunches, separating the bunches in phase space to allow independent control via optics, or separating bunches into different beam pipes. The RF kicker cavity is operated at a specific frequency to enable kicking of different types of bunches in different directions. The phase of the cavity is set such that the selected type of bunch passes through the cavity when the RF field is at a node, leaving that type of bunch unaffected. Beam optics may be added downstream of the kicker cavity to cause a further separation in phase space.

  14. ISR RF cavities

    CERN Multimedia

    1983-01-01

    In each ISR ring the radiofrequency cavities were installed in one 9 m long straight section. The RF system of the ISR had the main purpose to stack buckets of particles (most of the time protons)coming from the CPS and also to accelerate the stacked beam. The installed RF power per ring was 18 kW giving a peak accelerating voltage of 20 kV. The system had a very fine regulation feature allowing to lower the voltage down to 75 V in a smooth and well controlled fashion.

  15. Path Dependence

    DEFF Research Database (Denmark)

    Madsen, Mogens Ove

    Begrebet Path Dependence blev oprindelig udviklet inden for New Institutionel Economics af bl.a. David, Arthur og North. Begrebet har spredt sig vidt i samfundsvidenskaberne og undergået en udvikling. Dette paper propagerer for at der er sket så en så omfattende udvikling af begrebet, at man nu kan...... tale om 1. og 2. generation af Path Dependence begrebet. Den nyeste udvikling af begrebet har relevans for metodologi-diskusionerne i relation til Keynes...

  16. Remote RF Battery Charging

    NARCIS (Netherlands)

    Visser, H.J.; Pop, V.; Op het Veld, J.H.G.; Vullers, R.J.M.

    2011-01-01

    The design of a remote RF battery charger is discussed through the analysis and design of the subsystems of a rectenna (rectifying antenna): antenna, rectifying circuit and loaded DC-to-DC voltage (buck-boost) converter. Optimum system power generation performance is obtained by adopting a system

  17. AC/RF Superconductivity

    CERN Document Server

    Ciovati, G.

    2014-07-17

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  18. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [JLAB

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  19. Time-shaped RF brazing

    Science.gov (United States)

    Stein, J. A.; Vannasse, M. A.

    1980-01-01

    One RF generator is controlled from two independent work stations with aid of RF switch and simple control boxes. Brazing may be stopped manually or automatically by external brazing-temperature controller or timer in RF switch housing. Switch is air-operated with water-cooled contacts. If switch loses air pressure, generator stops transmitting power. Time-shared outlet increases utilization and productivity of costly RF generator.

  20. Introduction to RF linear accelerators

    CERN Document Server

    Pichoff, N

    2006-01-01

    After a short introduction to applications of RF linacs and their advantages and drawbacks as opposed to circular accelerators, the model of RF resonant cavities and their excitation by RF sources or beam is introduced. Then beam dynamics notions, essential to linacs, such as transit-time factor, synchronism, r.m.s. properties, matching and mismatching in linear or nonlinear forces, are presented.

  1. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  2. Microwave and RF engineering

    CERN Document Server

    Sorrentino, Roberto

    2010-01-01

    An essential text for both students and professionals, combining detailed theory with clear practical guidance This outstanding book explores a large spectrum of topics within microwave and radio frequency (RF) engineering, encompassing electromagnetic theory, microwave circuits and components. It provides thorough descriptions of the most common microwave test instruments and advises on semiconductor device modelling. With examples taken from the authors' own experience, this book also covers:network and signal theory;electronic technology with guided electromagnetic pr

  3. Path Creation

    DEFF Research Database (Denmark)

    Karnøe, Peter; Garud, Raghu

    2012-01-01

    . Competencies emerged through processes and mechanisms such as co-creation that implicated multiple learning processes. The process was not an orderly linear one as emergent contingencies influenced the learning processes. An implication is that public policy to catalyse clusters cannot be based......This paper employs path creation as a lens to follow the emergence of the Danish wind turbine cluster. Supplier competencies, regulations, user preferences and a market for wind power did not pre-exist; all had to emerge in a tranformative manner involving multiple actors and artefacts...

  4. Ruling out multi-order interference in quantum mechanics.

    Science.gov (United States)

    Sinha, Urbasi; Couteau, Christophe; Jennewein, Thomas; Laflamme, Raymond; Weihs, Gregor

    2010-07-23

    Quantum mechanics and gravitation are two pillars of modern physics. Despite their success in describing the physical world around us, they seem to be incompatible theories. There are suggestions that one of these theories must be generalized to achieve unification. For example, Born's rule--one of the axioms of quantum mechanics--could be violated. Born's rule predicts that quantum interference, as shown by a double-slit diffraction experiment, occurs from pairs of paths. A generalized version of quantum mechanics might allow multipath (i.e., higher-order) interference, thus leading to a deviation from the theory. We performed a three-slit experiment with photons and bounded the magnitude of three-path interference to less than 10(-2) of the expected two-path interference, thus ruling out third- and higher-order interference and providing a bound on the accuracy of Born's rule. Our experiment is consistent with the postulate both in semiclassical and quantum regimes.

  5. SPS RF cavity

    CERN Multimedia

    1974-01-01

    The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. A power of up to 790 kW can be supplied to each giving a total accelerating voltage of about 8 MV. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities.

  6. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  7. SPS RF Cavity

    CERN Multimedia

    1975-01-01

    The picture shows one of the two initially installed cavities. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also gradually increased: by end 1980 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412017X, 7411048X, 7505074.

  8. LANSCE RF System Refurbishment

    CERN Document Server

    Rees, Daniel; Kwon, Sung-il; Lyles, John T M; Lynch, Michael; Prokop, Mark; Reass, William; Tallerico, Paul J

    2005-01-01

    The Los Alamos Neutron Science Center (LANSCE) is in the planning phase of a refurbishment project that will sustain reliable facility operations well into the next decade. The LANSCE accelerator was constructed in the late 1960s and early 1970s and is a national user facility that provides pulsed protons and spallation neutrons for defense and civilian research and applications. We will be replacing all the 201 MHz RF systems and a substantial fraction of the 805 MHz RF systems and high voltage systems. The current 44 LANSCE 805 MHz, 1.25 MW klystrons have an average in-service time in excess of 110,000 hours. All 44 must be in service to operate the accelerator. There are only 9 spares left. The klystrons receive their DC power from the power system originally installed in 1960. Although this power system has been extremely reliable, gas analysis of the insulating oil is indicating age related degradation that will need attention in the next few years. This paper will provide the design details of the new R...

  9. A Micromechanical RF Channelizer

    Science.gov (United States)

    Akgul, Mehmet

    The power consumption of a radio generally goes as the number and strength of the RF signals it must process. In particular, a radio receiver would consume much less power if the signal presented to its electronics contained only the desired signal in a tiny percent bandwidth frequency channel, rather than the typical mix of signals containing unwanted energy outside the desired channel. Unfortunately, a lack of filters capable of selecting single channel bandwidths at RF forces the front-ends of contemporary receivers to accept unwanted signals, and thus, to operate with sub-optimal efficiency. This dissertation focuses on the degree to which capacitive-gap transduced micromechanical resonators can achieve the aforementioned RF channel-selecting filters. It aims to first show theoretically that with appropriate scaling capacitive-gap transducers are strong enough to meet the needed coupling requirements; and second, to fully detail an architecture and design procedure needed to realize said filters. Finally, this dissertation provides an actual experimentally demonstrated RF channel-select filter designed using the developed procedures and confirming theoretical predictions. Specifically, this dissertation introduces four methods that make possible the design and fabrication of RF channel-select filters. The first of these introduces a small-signal equivalent circuit for parallel-plate capacitive-gap transduced micromechanical resonators that employs negative capacitance to model the dependence of resonance frequency on electrical stiffness in a way that facilitates the analysis of micromechanical circuits loaded with arbitrary electrical impedances. The new circuit model not only correctly predicts the dependence of electrical stiffness on the impedances loading the input and output electrodes of parallel-plate capacitive-gap transduced micromechanical device, but does so in a visually intuitive way that identifies current drive as most appropriate for

  10. ELISA reader does not interfere by mobile phone radiofrequency radiation

    Directory of Open Access Journals (Sweden)

    Seyyed Mohammad Javad Mortazavi

    2016-01-01

    Conclusion: This study showed that ELISA reader does not interfere by mobile phone RF radiation at a closed contact (less than 5 cm distance. However, we recommend that medical institutions discuss these issues in the context of their specific use of technologies and frame a policy that is clear and straightforward to guide staff, patients, and visitors.

  11. IETS and quantum interference

    DEFF Research Database (Denmark)

    Jørgensen, Jacob Lykkebo; Gagliardi, Alessio; Pecchia, Alessandro

    2014-01-01

    Destructive quantum interference in single molecule electronics is an intriguing phenomenon; however, distinguishing quantum interference effects from generically low transmission is not trivial. In this paper, we discuss how quantum interference effects in the transmission lead to either low...... suppressed when quantum interference effects dominate. That is, we expand the understanding of propensity rules in inelastic electron tunneling spectroscopy to molecules with destructive quantum interference....

  12. RF breakdown by toroidal helicons

    Indian Academy of Sciences (India)

    Bounded whistlers are well-known for their efficient plasma production capabilities in thin cylindrical tubes. In this paper we shall present their radio frequency (RF) breakdown and discharge sustaining capabilities in toroidal systems. Pulsed RF power in the electronmagnetohydrodynamic (EMHD) frequency regime is fed to ...

  13. Circuit design for RF transceivers

    CERN Document Server

    Leenaerts, Domine; Vaucher, Cicero S

    2007-01-01

    Second edition of this successful 2001 RF Circuit Design book, has been updated, latest technology reviews have been added as well as several actual case studies. Due to the authors being active in industry as well as academia, this should prove to be an essential guide on RF Transceiver Design for students and engineers.

  14. Beam induced RF heating

    CERN Document Server

    Salvant, B; Arduini, G; Assmann, R; Baglin, V; Barnes, M J; Bartmann, W; Baudrenghien, P; Berrig, O; Bracco, C; Bravin, E; Bregliozzi, G; Bruce, R; Bertarelli, A; Carra, F; Cattenoz, G; Caspers, F; Claudet, S; Day, H; Garlasche, M; Gentini, L; Goddard, B; Grudiev, A; Henrist, B; Jones, R; Kononenko, O; Lanza, G; Lari, L; Mastoridis, T; Mertens, V; Métral, E; Mounet, N; Muller, J E; Nosych, A A; Nougaret, J L; Persichelli, S; Piguiet, A M; Redaelli, S; Roncarolo, F; Rumolo, G; Salvachua, B; Sapinski, M; Schmidt, R; Shaposhnikova, E; Tavian, L; Timmins, M; Uythoven, J; Vidal, A; Wenninger, J; Wollmann, D; Zerlauth, M

    2012-01-01

    After the 2011 run, actions were put in place during the 2011/2012 winter stop to limit beam induced radio frequency (RF) heating of LHC components. However, some components could not be changed during this short stop and continued to represent a limitation throughout 2012. In addition, the stored beam intensity increased in 2012 and the temperature of certain components became critical. In this contribution, the beam induced heating limitations for 2012 and the expected beam induced heating limitations for the restart after the Long Shutdown 1 (LS1) will be compiled. The expected consequences of running with 25 ns or 50 ns bunch spacing will be detailed, as well as the consequences of running with shorter bunch length. Finally, actions on hardware or beam parameters to monitor and mitigate the impact of beam induced heating to LHC operation after LS1 will be discussed.

  15. Generalized quantum interference of correlated photon pairs.

    Science.gov (United States)

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2015-05-07

    Superposition and indistinguishablility between probability amplitudes have played an essential role in observing quantum interference effects of correlated photons. The Hong-Ou-Mandel interference and interferences of the path-entangled photon number state are of special interest in the field of quantum information technologies. However, a fully generalized two-photon quantum interferometric scheme accounting for the Hong-Ou-Mandel scheme and path-entangled photon number states has not yet been proposed. Here we report the experimental demonstrations of the generalized two-photon interferometry with both the interferometric properties of the Hong-Ou-Mandel effect and the fully unfolded version of the path-entangled photon number state using photon-pair sources, which are independently generated by spontaneous parametric down-conversion. Our experimental scheme explains two-photon interference fringes revealing single- and two-photon coherence properties in a single interferometer setup. Using the proposed interferometric measurement, it is possible to directly estimate the joint spectral intensity of a photon pair source.

  16. Generalized quantum interference of correlated photon pairs

    Science.gov (United States)

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2015-01-01

    Superposition and indistinguishablility between probability amplitudes have played an essential role in observing quantum interference effects of correlated photons. The Hong-Ou-Mandel interference and interferences of the path-entangled photon number state are of special interest in the field of quantum information technologies. However, a fully generalized two-photon quantum interferometric scheme accounting for the Hong-Ou-Mandel scheme and path-entangled photon number states has not yet been proposed. Here we report the experimental demonstrations of the generalized two-photon interferometry with both the interferometric properties of the Hong-Ou-Mandel effect and the fully unfolded version of the path-entangled photon number state using photon-pair sources, which are independently generated by spontaneous parametric down-conversion. Our experimental scheme explains two-photon interference fringes revealing single- and two-photon coherence properties in a single interferometer setup. Using the proposed interferometric measurement, it is possible to directly estimate the joint spectral intensity of a photon pair source. PMID:25951143

  17. Temporal coherence requirement in a symmetric-path grating interferometer.

    Science.gov (United States)

    Cheng, Y S

    1997-02-01

    The depth of fringes is obtained for a polychromatic point source at an arbitrary incidence angle. The path difference, calculated by ray tracing, at the plane where the interference fringes vanish indicates that the temporal coherence length is the same as that in other interferometers. It is also found that the equivalent path difference, introduced by relative phase modulation on two interfering rays by two gratings, is as important as the actual path-length difference but in the opposite sign.

  18. Unobtrusive interferometer tracking by path length oscillation for multidimensional spectroscopy

    OpenAIRE

    Lee, Kevin; Bonvalet, Adeline; Nuernberger, Patrick; Joffre, Manuel

    2009-01-01

    International audience; We track the path difference between interferometer arms with few-nanometer accuracy without adding optics to the beam path. We measure the interference of a helium-neon beam that copropagates through the interferometer with midinfrared pulses used for multidimensional spectroscopy. This can indicate motion, but not direction. By oscillating the path length of one arm with a mirror on a piezoelectric stack and monitoring the oscillations of the recombined helium-neon b...

  19. Path-length-resolved optical Doppler perfusion monitoring

    OpenAIRE

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton; Steenbergen, Wiendelt

    2007-01-01

    We report the first path-length-resolved perfusion measurements on human skin measured with a phase-modulated low-coherence Mach-Zehnder interferometer with spatially separated fibers for illumination and detection. Optical path lengths of Doppler shifted and unshifted light and path-length-dependent Doppler broadening of multiply scattered light from skin are measured from the Doppler broadened interference peaks appearing in the power spectrum. Perfusion and its variations during occlusion ...

  20. Quantum interference fringes beating the diffraction limit.

    Science.gov (United States)

    Kawabe, Yoshio; Fujiwara, Hideki; Okamoto, Ryo; Sasaki, Keiji; Takeuchi, Shigeki

    2007-10-17

    Spatially formed two-photon interference fringes with fringe periods smaller than the diffraction limit are demonstrated. In the experiment, a fringe formed by two-photon NOON states with wavelength lambda=702.2 nm is observed using a specially developed near-field scanning optical microscope probe and two-photon detection setup. The observed fringe period of 328.2 nm is well below the diffraction limit (351 nm = lambda /2). Another experiment with a path-length difference larger than the coherent length of photons confirms that the observed fringe is due to two-photon interference.

  1. Novel Photonic RF Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Leveraging on recent breakthroughs in broadband photonic devices and components for RF and microwave applications, SML proposes a new type of broadband microwave...

  2. Unbalanced field RF electron gun

    Science.gov (United States)

    Hofler, Alicia

    2013-11-12

    A design for an RF electron gun having a gun cavity utilizing an unbalanced electric field arrangement. Essentially, the electric field in the first (partial) cell has higher field strength than the electric field in the second (full) cell of the electron gun. The accompanying method discloses the use of the unbalanced field arrangement in the operation of an RF electron gun in order to accelerate an electron beam.

  3. Assessment and Monitoring of RF Safety for Ultra-High Field MRI

    NARCIS (Netherlands)

    Restivo, MC

    2017-01-01

    The radio frequency (RF) energy deposited in a human subject undergoing a 7T MRI scan has the potential to cause localized tissue heating. The use of parallel transmit MRI at 7T increases the risk of localized heating due interference effects among the simultaneously transmitting channels. The

  4. Is single-particle interference spooky?

    OpenAIRE

    Blasiak, Pawel

    2017-01-01

    It is said about quantum interference that "In reality, it contains the only mystery". Indeed, together with non-locality it is often considered as the characteristic feature of quantum theory which can not be explained in any classical way. In this work we are concerned with a restricted setting of a single particle propagating in multi-path interferometric circuits, that is physical realisation of a qudit. It is shown that this framework, including collapse of the wave function, can be simu...

  5. Two-photon quantum interference in integrated multi-mode interference devices.

    Science.gov (United States)

    Poulios, Konstantinos; Fry, Daniel; Politi, Alberto; Ismail, Nur; Wörhoff, Kerstin; O'Brien, Jeremy L; Thompson, Mark G

    2013-10-07

    Multi-mode interference (MMI) devices fabricated in silicon oxynitride (SiON) with a refractive index contrast of 2.4% provide a highly compact and stable platform for multi-photon non-classical interference. MMI devices can introduce which-path information for photons propagating in the multi-mode section which can result in degradation of this non-classical interference. We theoretically derive the visibility of quantum interference of two photons injected in a MMI device and predict near unity visibility for compact SiON devices. We complement the theoretical results by experimentally demonstrating visibilities of up to 97.7% in 2×2 MMI devices without the requirement of narrow-band photons.

  6. On the performance of hybrid RF and RF/FSO fixed gain dual-hop transmission systems

    KAUST Repository

    Ansari, Imran Shafique

    2013-04-01

    In this work, we present the performance analysis of a dual-branch transmission system composed of a direct radio frequency (RF) link and a dual-hop relay composed of asymmetric RF and free-space optical (FSO) links and compare it without having a direct RF path to see the effects of diversity on our system. The FSO link accounts for pointing errors and both types of detection techniques (i.e. indirect modulation/direct detection (IM/DD) as well as heterodyne detection). The performance is evaluated under the assumption of selection combining diversity scheme. RF links are modeled by Rayleigh fading distribution whereas the FSO link is modeled by a unified Gamma-Gamma fading distribution. Specifically, we derive new exact closed-form expressions for the cumulative distribution function, probability density function, moment generating function, and moments of the end-to-end signal-to-noise ratio of these systems in terms of the Meijer\\'s G function. We then capitalize on these results to offer new exact closed-form expressions for the outage probability, higher-order amount of fading, average error rate for binary and M-ary modulation schemes, and ergodic capacity, all in terms of Meijer\\'s G functions. All our new analytical results are also verified via computer-based Monte-Carlo simulations. © 2013 IEEE.

  7. RF Group Annual Report 2011

    CERN Document Server

    Angoletta, M E; Betz, M; Brunner, O; Baudrenghien, P; Calaga, R; Caspers, F; Ciapala, E; Chambrillon, J; Damerau, H; Doebert, S; Federmann, S; Findlay, A; Gerigk, F; Hancock, S; Höfle, W; Jensen, E; Junginger, T; Liao, K; McMonagle, G; Montesinos, E; Mastoridis, T; Paoluzzi, M; Riddone, G; Rossi, C; Schirm, K; Schwerg, N; Shaposhnikova, E; Syratchev, I; Valuch, D; Venturini Delsolaro, W; Völlinger, C; Vretenar, M; Wuensch, W

    2012-01-01

    The highest priority for the RF group in 2011 was to contribute to a successful physics run of the LHC. This comprises operation of the superconducting 400 MHz accelerating system (ACS) and the transverse damper (ADT) of the LHC itself, but also all the individual links of the injector chain upstream of the LHC – Linac2, the PSB, the PS and the SPS – don’t forget that it is RF in all these accelerators that truly accelerates! A large variety of RF systems had to operate reliably, often near their limit. New tricks had to be found and implemented to go beyond limits; not to forget the equally demanding operation with Pb ions using in addition Linac3 and LEIR. But also other physics users required the full attention of the RF group: CNGS required in 2011 beams with very short, intense bunches, AD required reliable deceleration and cooling of anti-protons, Isolde the post-acceleration of radioactive isotopes in Rex, just to name a few. In addition to the supply of beams for physics, the RF group has a num...

  8. Additive manufacturing of RF absorbers

    Science.gov (United States)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  9. Unexpected reduction of rf spin resonance strength for stored deuteron beams

    Directory of Open Access Journals (Sweden)

    A. D. Krisch

    2007-07-01

    Full Text Available Stored beams of polarized protons, electrons, or deuterons can be spin flipped by sweeping an rf dipole’s or solenoid’s frequency through an rf spin resonance. Fitting such data to the modified Froissart-Stora equation’s spin resonance strength E_{FS} gave very large deviations from the ^{*}E_{Bdl} obtained from each rf magnet’s ∫B_{rms}dl. We recently varied an rf dipole’s frequency sweep range Δf, and the momentum spread Δp/p and betatron tune ν_{y} of stored 1.85  GeV/c polarized deuterons. We found a sharp constructive interference when ν_{y} was near an intrinsic spin resonance. Moreover, over large Δf and Δp/p ranges, E_{FS} was about 7 times smaller than the predicted ^{*}E_{Bdl}.

  10. Spatial light interference microscopy (SLIM).

    Science.gov (United States)

    Wang, Zhuo; Millet, Larry; Mir, Mustafa; Ding, Huafeng; Unarunotai, Sakulsuk; Rogers, John; Gillette, Martha U; Popescu, Gabriel

    2011-01-17

    We present spatial light interference microscopy (SLIM) as a new optical microscopy technique, capable of measuring nanoscale structures and dynamics in live cells via interferometry. SLIM combines two classic ideas in light imaging: Zernike's phase contrast microscopy, which renders high contrast intensity images of transparent specimens, and Gabor's holography, where the phase information from the object is recorded. Thus, SLIM reveals the intrinsic contrast of cell structures and, in addition, renders quantitative optical path-length maps across the sample. The resulting topographic accuracy is comparable to that of atomic force microscopy, while the acquisition speed is 1,000 times higher. We illustrate the novel insight into cell dynamics via SLIM by experiments on primary cell cultures from the rat brain. SLIM is implemented as an add-on module to an existing phase contrast microscope, which may prove instrumental in impacting the light microscopy field at a large scale.

  11. Standard/Handbook for RF Ionization Breakdown Prevention in Spacecraft Components

    Science.gov (United States)

    2015-06-19

    Preston T. Partridge Antenna Systems Department Communication and Cyber Division Prepared for: National Reconnaissance Office 14675 Lee Road...molecules is too short for electrons to gain sufficient energy to ionize neutral particles . At low pressures, there are too few neutral particles for...components may be connecting transmission lines, cable assemblies, filters, isolation devices, antenna , and other devices in the RF path. This

  12. A Wideband 2x13-bit All-Digital I/Q RF-DAC

    NARCIS (Netherlands)

    Alavi, S.M.; Staszewski, R.B.; De Vreede, L.C.N.; Long, J.R.

    2014-01-01

    This paper presents a wideband 2 13-bit in-phase/quadrature-phase (I/Q) RF digital-to-analog converter-based all-digital modulator realized in 65-nm CMOS. The isolation between I and Q paths is guaranteed employing 25% duty-cycle differential quadrature clocks. With a 1.3-V supply and an on-chip

  13. RF Reference Switch for Spaceflight Radiometer Calibration

    Science.gov (United States)

    Knuble, Joseph

    2013-01-01

    The goal of this technology is to provide improved calibration and measurement sensitivity to the Soil Moisture Active Passive Mission (SMAP) radiometer. While RF switches have been used in the past to calibrate microwave radiometers, the switch used on SMAP employs several techniques uniquely tailored to the instrument requirements and passive remote-sensing in general to improve radiometer performance. Measurement error and sensitivity are improved by employing techniques to reduce thermal gradients within the device, reduce insertion loss during antenna observations, increase insertion loss temporal stability, and increase rejection of radar and RFI (radio-frequency interference) signals during calibration. The two legs of the single-pole double-throw reference switch employ three PIN diodes per leg in a parallel-shunt configuration to minimize insertion loss and increase stability while exceeding rejection requirements at 1,413 MHz. The high-speed packaged diodes are selected to minimize junction capacitance and resistance while ensuring the parallel devices have very similar I-V curves. Switch rejection is improved by adding high-impedance quarter-wave tapers before and after the diodes, along with replacing the ground via of one diode per leg with an open circuit stub. Errors due to thermal gradients in the switch are reduced by embedding the 50-ohm reference load within the switch, along with using a 0.25-in. (approximately equal to 0.6-cm) aluminum prebacked substrate. Previous spaceflight microwave radiometers did not embed the reference load and thermocouple directly within the calibration switch. In doing so, the SMAP switch reduces error caused by thermal gradients between the load and switch. Thermal issues are further reduced by moving the custom, highspeed regulated driver circuit to a physically separate PWB (printed wiring board). Regarding RF performance, previous spaceflight reference switches have not employed high-impedance tapers to improve

  14. Ion bombardment in RF photoguns

    Energy Technology Data Exchange (ETDEWEB)

    Pozdeyev,E.; Kayran, D.; Litvinenko, V. N.

    2009-05-04

    A linac-ring eRHIC design requires a high-intensity CW source of polarized electrons. An SRF gun is viable option that can deliver the required beam. Numerical simulations presented elsewhere have shown that ion bombardment can occur in an RF gun, possibly limiting lifetime of a NEA GaAs cathode. In this paper, we analytically solve the equations of motion of ions in an RF gun using the ponderomotive potential of the Rf field. We apply the method to the BNL 1/2-cell SRF photogun and demonstrate that a significant portion of ions produced in the gun can reach the cathode if no special precautions are taken. Also, the paper discusses possible mitigation techniques that can reduce the rate of ion bombardment.

  15. Spying on photons with photons: quantum interference and information

    Science.gov (United States)

    Ataman, Stefan

    2016-07-01

    The quest to have both which-path knowledge and interference fringes in a double-slit experiment dates back to the inception of quantum mechanics (QM) and to the famous Einstein-Bohr debates. In this paper we propose and discuss an experiment able to spy on one photon's path with another photon. We modify the quantum state inside the interferometer as opposed to the traditional physical modification of the "wave-like" or "particle-like" experimental setup. We are able to show that it is the ability to harvest or not which-path information that finally limits the visibility of the interference pattern and not the "wave-like" or "particle-like" experimental setups. Remarkably, a full "particle-like" experimental setup is able to show interference fringes with 100% visibility if the quantum state is carefully engineered.

  16. EMC, RF, and Antenna Systems in Miniature Electronic Devices

    DEFF Research Database (Denmark)

    Ruaro, Andrea

    Advanced techniques for the control of electromagnetic interference (EMI) and for the optimization of the electromagnetic compatibility (EMC) performance has been developed under the constraints typical of miniature electronic devices (MED). The electromagnetic coexistence of multiple systems...... and their mutual interaction have been the underlying theme of the work. The research results concern different aspects related to the integration of radio-frequency (RF) electronics in MEDs and hearing instruments (HI). To control internal EMI, a novel near-field parasitic resonator (NFPR) has been researched...... electronics....

  17. Synchronization of multiple coupled rf-SQUID flux qubits

    Science.gov (United States)

    Harris, R.; Brito, F.; Berkley, A. J.; Johansson, J.; Johnson, M. W.; Lanting, T.; Bunyk, P.; Ladizinsky, E.; Bumble, B.; Fung, A.; Kaul, A.; Kleinsasser, A.; Han, S.

    2009-12-01

    A practical strategy for synchronizing the properties of compound Josephson junction (CJJ) radio frequency monitored superconducting quantum interference device (rf-SQUID) qubits on a multi-qubit chip has been demonstrated. The impact of small (~1%) fabrication variations in qubit inductance and critical current can be minimized by the application of a custom-tuned flux offset to the CJJ structure of each qubit. This strategy allows for a simultaneous synchronization of the qubit persistent current and tunnel splitting over a range of external bias parameters that is relevant for the implementation of an adiabatic quantum processor.

  18. RF Loads for Energy Recovery

    CERN Document Server

    Federmann, S; Caspers, F

    2012-01-01

    Different conceptional designs for RF high power loads are presented. One concept implies the use of solid state rectifier modules for direct RF to DC conversion with efficiencies beyond 80%. In addition, robust metallic low-Q resonant structures, capable of operating at high temperatures (>150 ◦C) are discussed. Another design deals with a very high temperature (up to 800 ◦C) air cooled load using a ceramic foam block inside a metal enclosure. This porous ceramic block is the microwave absorber and is not brazed to the metallic enclosure.

  19. Path-length-resolved optical Doppler perfusion monitoring.

    Science.gov (United States)

    Varghese, Babu; Rajan, Vinayakrishnan; Van Leeuwen, Ton G; Steenbergen, Wiendelt

    2007-01-01

    We report the first path-length-resolved perfusion measurements on human skin measured with a phase-modulated low-coherence Mach-Zehnder interferometer with spatially separated fibers for illumination and detection. Optical path lengths of Doppler shifted and unshifted light and path-length-dependent Doppler broadening of multiply scattered light from skin are measured from the Doppler broadened interference peaks appearing in the power spectrum. Perfusion and its variations during occlusion are measured in real time for a given optical path length, and the results are compared with the perfusion signal obtained with a conventional laser Doppler perfusion monitor.

  20. Conducted interference, challenges and interference cases

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2015-01-01

    Conducted interference has become increasingly problematic in the past few years, especially within the 2-150 kHz band. The high penetration of non-linear loads, combined with distributed generation, will influence the voltage profile, i.e. the power quality. New technologies will introduce new

  1. Dark Matter Interference

    DEFF Research Database (Denmark)

    Del Nobile, Eugenio; Kouvaris, Christoforos; Sannino, Francesco

    2012-01-01

    We study different patterns of interference in WIMP-nuclei elastic scattering that can accommodate the DAMA and CoGeNT experiments via an isospin violating ratio $f_n/f_p=-0.71$. We study interference between the following pairs of mediators: Z and Z', Z' and Higgs, and two Higgs fields. We show ...

  2. Quantum Interference of Molecules

    Indian Academy of Sciences (India)

    IAS Admin

    GENERAL │ ARTICLE. Quantum Interference of Molecules. Probing the Wave Nature of Matter. Anu Venugopalan. Keywords. Matter waves, wave-particle du- ality, electron interference, decoherence. Anu Venugopalan is on the faculty of the School of. Basic and Applied. Sciences, GGS. Indraprastha University,. Delhi.

  3. High visibility two-photon interference with classical light.

    Science.gov (United States)

    Hong, Peilong; Xu, Lei; Zhai, Zhaohui; Zhang, Guoquan

    2013-06-17

    Two-photon interference with independent classical sources, in which superposition of two indistinguishable two-photon paths plays a key role, is of limited visibility with a maximum value of 50%. By using a random-phase grating to modulate the wavefront of a coherent light, we introduce superposition of multiple indistinguishable two-photon paths, which enhances the two-photon interference effect with a signature of visibility exceeding 50%. The result shows the importance of phase control in the control of high-order coherence of classical light.

  4. Path-neighborhood graphs

    NARCIS (Netherlands)

    R.C. Laskar (R.C.); H.M. Mulder (Martyn)

    2013-01-01

    textabstractA path-neighborhood graph is a connected graph in which every neighborhood induces a path. In the main results the 3-sun-free path-neighborhood graphs are characterized. The 3-sun is obtained from a 6-cycle by adding three chords between the three pairs of vertices at distance 2. A Pk

  5. Reliability engineering in RF CMOS

    NARCIS (Netherlands)

    Sasse, G.T.

    2008-01-01

    In this thesis new developments are presented for reliability engineering in RF CMOS. Given the increase in use of CMOS technology in applications for mobile communication, also the reliability of CMOS for such applications becomes increasingly important. When applied in these applications, CMOS is

  6. Broadband direct RF digitization receivers

    CERN Document Server

    Jamin, Olivier

    2014-01-01

    This book discusses the trade-offs involved in designing direct RF digitization receivers for the radio frequency and digital signal processing domains.  A system-level framework is developed, quantifying the relevant impairments of the signal processing chain, through a comprehensive system-level analysis.  Special focus is given to noise analysis (thermal noise, quantization noise, saturation noise, signal-dependent noise), broadband non-linear distortion analysis, including the impact of the sampling strategy (low-pass, band-pass), analysis of time-interleaved ADC channel mismatches, sampling clock purity and digital channel selection. The system-level framework described is applied to the design of a cable multi-channel RF direct digitization receiver. An optimum RF signal conditioning, and some algorithms (automatic gain control loop, RF front-end amplitude equalization control loop) are used to relax the requirements of a 2.7GHz 11-bit ADC. A two-chip implementation is presented, using BiCMOS and 65nm...

  7. RF breakdown by toroidal helicons

    Indian Academy of Sciences (India)

    Bounded whistlers are well-known for their efficient plasma production capabilities in thin cylindrical tubes. ... evolution processes in a pulse RF plasma produced by toroidal helicons. 2. Experimental set-up and .... of probe potential to show initial hump and transient nature of sheath at the end of the pulse. It is to check the ...

  8. Portable 433 MHz RFQ linac RF system

    Energy Technology Data Exchange (ETDEWEB)

    Vorogushin, M.F. [Efremov Scientific Research Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation)

    1994-12-31

    Principle and experimental analysis of RF power feed system, based on 3 db directional couplers, for undesirable modes eliminating, divided power coupling with the RFQ accelerating structure, endotron type RF power source matching, are presented. The structure fine tuning and the system adjustment results and high-speed RF autocontrol system design are considered also.

  9. RF digital-to-analog converter

    Science.gov (United States)

    Conway, P.H.; Yu, D.U.L.

    1995-02-28

    A digital-to-analog converter is disclosed for producing an RF output signal proportional to a digital input word of N bits from an RF reference input, N being an integer greater or equal to 2. The converter comprises a plurality of power splitters, power combiners and a plurality of mixers or RF switches connected in a predetermined configuration. 18 figs.

  10. A neutron spin interferometer using two RF-pi/2 flippers

    CERN Document Server

    Yamazaki, D

    2002-01-01

    We have developed a neutron spin interferometer using radio frequency (RF) spin flippers. A polarized neutron is split or superposed in the spin space with an RF-pi/2 flipper. This interferometer provides three types of interference patterns with high visibility (> or approx. 0.9) and high phase resolution (<0.3%) in spite of its simple structure. The principle and structure of the spin interferometer are described and results of performance tests are presented and discussed. The non-homogeneity of an output beam which is expressed as a superposition of two energy eigenstates are demonstrated.

  11. Readout of the atomtronic quantum interference device

    Science.gov (United States)

    Haug, Tobias; Tan, Joel; Theng, Mark; Dumke, Rainer; Kwek, Leong-Chuan; Amico, Luigi

    2018-01-01

    A Bose-Einstein condensate confined in ring shaped lattices interrupted by a weak link and pierced by an effective magnetic flux defines the atomic counterpart of the superconducting quantum interference device: the atomtronic quantum interference device (AQUID). In this paper, we report on the detection of current states in the system through a self-heterodyne protocol. Following the original proposal of the NIST and Paris groups, the ring-condensate many-body wave function interferes with a reference condensate expanding from the center of the ring. We focus on the rf AQUID which realizes effective qubit dynamics. Both the Bose-Hubbard and Gross-Pitaevskii dynamics are studied. For the Bose-Hubbard dynamics, we demonstrate that the self-heterodyne protocol can be applied, but higher-order correlations in the evolution of the interfering condensates are measured to readout of the current states of the system. We study how states with macroscopic quantum coherence can be told apart analyzing the noise in the time of flight of the ring condensate.

  12. Electromagnetic compatibility management of wireless transceivers in electromagnetic-interference-sensitive medical environments.

    Science.gov (United States)

    Bit-Babik, Giorgi; Morrissey, Joseph J; Faraone, Antonio; Balzano, Quirino

    2007-01-01

    The diffusion of wireless technology has caused concerns about interference in the hospital environment. Most hospitals have banned the use of cell phones on their premises although wireless technology can help in delivering time critical help to patients. We discuss some factors of radio frequency (RF) near field interference. These phenomena do not lend themselves easily to theoretical evaluation. It is possible to avert medical equipment interference by performing ad hoc tests. The method requires measurements of electromagnetic fields and the observation of interference events with increasing distance between equipment and RF transmitters. The results are applicable only to the specific testing environment. The ad hoc proposed method can be found in the draft document C63.18 of the American National Standard Institute.

  13. Collectivity from interference

    Science.gov (United States)

    Blok, Boris; Jäkel, Christian D.; Strikman, Mark; Wiedemann, Urs Achim

    2017-12-01

    In hadronic collisions, interference between different production channels affects momentum distributions of multi-particle final states. As this QCD interference does not depend on the strong coupling constant α s , it is part of the no-interaction baseline that needs to be controlled prior to searching for other manifestations of collective dynamics, e.g., in the analysis of azimuthal anisostropy coefficients v n at the LHC. Here, we introduce a model that is based on the QCD theory of multi-parton interactions and that allows one to study interference effects in the production of m particles in hadronic collisions with N parton-parton interactions ("sources"). In an expansion in powers of 1/( N c 2 - 1) and to leading order in the number of sources N , we calculate interference effects in the m-particle spectra and we determine from them the second and fourth order cumulant momentum anisotropies v n {2} and v n {4}. Without invoking any azimuthal asymmetry and any density dependent non-linear dynamics in the incoming state, and without invoking any interaction in the final state, we find that QCD interference alone can give rise to values for v n {2} and v n {4}, n even, that persist unattenuated for increasing number of sources, that may increase with increasing multiplicity and that agree with measurements in proton-proton (pp) collisions in terms of the order of magnitude of the signal and the approximate shape of the transverse momentum dependence. We further find that the non-abelian features of QCD interference can give rise to odd harmonic anisotropies. These findings indicate that the no-interaction baseline including QCD interference effects can make a sizeable if not dominant contribution to the measured v n coefficients in pp collisions. Prospects for analyzing QCD interference contributions further and their possible relevance for proton-nucleus and nucleus-nucleus collisions are discussed shortly.

  14. RF Head Coil Design with Improved RF Magnetic Near-Fields Uniformity for Magnetic Resonance Imaging (MRI) Systems.

    Science.gov (United States)

    Sohn, Sung-Min; DelaBarre, Lance; Gopinath, Anand; Vaughan, John Thomas

    2014-08-01

    Higher magnetic field strength in magnetic resonance imaging (MRI) systems offers higher signal-to-noise ratio (SNR), contrast, and spatial resolution in MR images. However, the wavelength in ultra-high fields (7 tesla and beyond) becomes shorter than the human body at the Larmor frequency with increasing static magnetic field (B0) of MRI system. At short wavelengths, interference effect appears resulting in non- uniformity of the RF magnetic near-field (B1) over the subject and MR images may have spatially anomalous contrast. The B1 near-field generated by the transverse electromagnetic (TEM) RF coil's microstrip line element has a maximum near the center of its length and falls off towards both ends. In this study, a double trapezoidal shaped microstrip transmission line element is proposed to obtain uniform B1 field distribution by gradual impedance variation. Two multi-channel RF head coils with uniform and trapezoidal shape elements were built and tested with a phantom at 7T MRI scanner for comparison. The simulation and experimental results show stronger and more uniform B1+ near-field with the trapezoidal shape.

  15. Plasmonic optical interference.

    Science.gov (United States)

    Choi, Dukhyun; Shin, Chang Kyun; Yoon, Daesung; Chung, Deuk Seok; Jin, Yong Wan; Lee, Luke P

    2014-06-11

    Understanding optical interference is of great importance in fundamental and analytical optical design for next-generation personal, industrial, and military applications. So far, various researches have been performed for optical interference phenomena, but there have been no reports on plasmonic optical interference. Here, we report that optical interference could be effectively coupled with surface plasmons, resulting in enhanced optical absorption. We prepared a three-dimensional (3D) plasmonic nanostructure that consists of a plasmonic layer at the top, a nanoporous dielectric layer at the center, and a mirror layer at the bottom. The plasmonic layer mediates strong plasmonic absorption when the constructive interference pattern is matched with the plasmonic component. By tailoring the thickness of the dielectric layer, the strong plasmonic absorption can facilely be controlled and covers the full visible range. The plasmonic interference in the 3D nanostructure thus creates brilliant structural colors. We develop a design equation to determine the thickness of the dielectric layer in a 3D plasmonic nanostructure that could create the maximum absorption at a given wavelength. It is further demonstrated that the 3D plasmonic nanostructure can be realized on a flexible substrate. Our 3D plasmonic nanostructures will have a huge impact on the fields of optoelectronic systems, biochemical optical sensors, and spectral imaging.

  16. Protection of Accelerator Hardware: RF systems

    CERN Document Server

    Kim, S.-H.

    2016-01-01

    The radio-frequency (RF) system is the key element that generates electric fields for beam acceleration. To keep the system reliable, a highly sophisticated protection scheme is required, which also should be designed to ensure a good balance between beam availability and machine safety. Since RF systems are complex, incorporating high-voltage and high-power equipment, a good portion of machine downtime typically comes from RF systems. Equipment and component damage in RF systems results in long and expensive repairs. Protection of RF system hardware is one of the oldest machine protection concepts, dealing with the protection of individual high-power RF equipment from breakdowns. As beam power increases in modern accelerators, the protection of accelerating structures from beam-induced faults also becomes a critical aspect of protection schemes. In this article, an overview of the RF system is given, and selected topics of failure mechanisms and examples of protection requirements are introduced.

  17. SPS RF System a Tetrode

    CERN Multimedia

    1974-01-01

    The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also gradually increased: by end 1980 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X.

  18. Linearisation of RF Power Amplifiers

    DEFF Research Database (Denmark)

    Nielsen, Per Asbeck

    2001-01-01

    of circuitry such as the linearisation circuit. The amplifier has the highest output power compared to other published class B power in the same process. The design phase including the on-chip inductor and the lateral flux capacitors is described. The other test chips designed are envelope detectors. Three......This thesis deals with linearisation techniques of RF power amplifiers (PA), PA design techniques and integration of the necessary building blocks in a CMOS technology. The opening chapters introduces the theory of transmitter architectures, RF-signal representation and the principles of digital...... modulation. Furthermore different types of power amplifiers, models and measures of non-linearities are presented. A chapter is also devoted to different types of linearisation systems. The work carried out and described in this thesis can be divided into a more theoretical and system oriented treatment...

  19. Low jitter RF distribution system

    Science.gov (United States)

    Wilcox, Russell; Doolittle, Lawrence; Huang, Gang

    2012-09-18

    A timing signal distribution system includes an optical frequency stabilized laser signal amplitude modulated at an rf frequency. A transmitter box transmits a first portion of the laser signal and receive a modified optical signal, and outputs a second portion of the laser signal and a portion of the modified optical signal. A first optical fiber carries the first laser signal portion and the modified optical signal, and a second optical fiber carries the second portion of the laser signal and the returned modified optical signal. A receiver box receives the first laser signal portion, shifts the frequency of the first laser signal portion outputs the modified optical signal, and outputs an electrical signal on the basis of the laser signal. A detector at the end of the second optical fiber outputs a signal based on the modified optical signal. An optical delay sensing circuit outputs a data signal based on the detected modified optical signal. An rf phase detect and correct signal circuit outputs a signal corresponding to a phase stabilized rf signal based on the data signal and the frequency received from the receiver box.

  20. Transition path time distributions

    Science.gov (United States)

    Laleman, M.; Carlon, E.; Orland, H.

    2017-12-01

    Biomolecular folding, at least in simple systems, can be described as a two state transition in a free energy landscape with two deep wells separated by a high barrier. Transition paths are the short part of the trajectories that cross the barrier. Average transition path times and, recently, their full probability distribution have been measured for several biomolecular systems, e.g., in the folding of nucleic acids or proteins. Motivated by these experiments, we have calculated the full transition path time distribution for a single stochastic particle crossing a parabolic barrier, including inertial terms which were neglected in previous studies. These terms influence the short time scale dynamics of a stochastic system and can be of experimental relevance in view of the short duration of transition paths. We derive the full transition path time distribution as well as the average transition path times and discuss the similarities and differences with the high friction limit.

  1. Detection-dependent six-photon Holland-Burnett state interference

    OpenAIRE

    Rui-Bo Jin; Mikio Fujiwara; Ryosuke Shimizu; Collins, Robert J.; Buller, Gerald S.; Taro Yamashita; Shigehito Miki; Hirotaka Terai; Masahiro Takeoka; Masahide Sasaki

    2016-01-01

    The NOON state, and its experimental approximation the Holland-Burnett state, have important applications in phase sensing measurement with enhanced sensitivity. However, most of the previous Holland-Burnett state interference (HBSI) experiments only investigated the area of the interference pattern in the region immediately around zero optical path length difference, while the full HBSI pattern over a wide range of optical path length differences has not yet been well explored. In this work,...

  2. Breakdown of interference rules in azulene, a nonalternant hydrocarbon

    DEFF Research Database (Denmark)

    Xia, Jianlong; Capozzi, Brian; Wei, Sujun

    2014-01-01

    We have designed and synthesized five azulene derivatives containing gold-binding groups at different points of connectivity within the azulene core to probe the effects of quantum interference through single-molecule conductance measurements. We compare conducting paths through the 5-membered ri...

  3. A Microwave Photonic Interference Canceller: Architectures, Systems, and Integration

    Science.gov (United States)

    Chang, Matthew P.

    This thesis is a comprehensive portfolio of work on a Microwave Photonic Self-Interference Canceller (MPC), a specialized optical system designed to eliminate interference from radio-frequency (RF) receivers. The novelty and value of the microwave photonic system lies in its ability to operate over bandwidths and frequencies that are orders of magnitude larger than what is possible using existing RF technology. The work begins, in 2012, with a discrete fiber-optic microwave photonic canceller, which prior work had demonstrated as a proof-of-concept, and culminates, in 2017, with the first ever monolithically integrated microwave photonic canceller. With an eye towards practical implementation, the thesis establishes novelty through three major project thrusts. (Fig. 1): (1) Extensive RF and system analysis to develop a full understanding of how, and through what mechanisms, MPCs affect an RF receiver. The first investigations of how a microwave photonic canceller performs in an actual wireless environment and a digital radio are also presented. (2) New architectures to improve the performance and functionality of MPCs, based on the analysis performed in Thrust 1. A novel balanced microwave photonic canceller architecture is developed and experimentally demonstrated. The balanced architecture shows significant improvements in link gain, noise figure, and dynamic range. Its main advantage is its ability to suppress common-mode noise and reduce noise figure by increasing the optical power. (3) Monolithic integration of the microwave photonic canceller into a photonic integrated circuit. This thrust presents the progression of integrating individual discrete devices into their semiconductor equivalent, as well as a full functional and RF analysis of the first ever integrated microwave photonic canceller.

  4. Binaural Interference: Quo Vadis?

    Science.gov (United States)

    Jerger, James; Silman, Shlomo; Silverman, Carol; Emmer, Michele

    2017-04-01

    The reality of the phenomenon of binaural interference with speech recognition has been debated for two decades. Research has taken one of two avenues; group studies or case reports. In group studies, a sample of the elderly population is tested on speech recognition under three conditions; binaural, monaural right and monaural left. The aim is to determine the percent of the sample in which the expected outcome (binaural score-better-than-either-monaural score) is reversed (i.e., one of the monaural scores is better than the binaural score). This outcome has been commonly used to define binaural interference. The object of group studies is to answer the "how many" question, what is the prevalence of binaural interference in the sample. In case reports the binaural interference conclusion suggested by the speech recognition tests is not accepted until it has been corroborated by other independent diagnostic audiological measures. The aim is to attempt to determine the basis for the findings, to answer the "why" question. This article is at once tutorial, editorial and a case report. We argue that it is time to accept the reality of the phenomenon of binaural interference, to eschew group statistical approaches in search of an answer to the "how many" question, and to focus on individual case reports in search of an answer to the "why" question. American Academy of Audiology.

  5. Vibrational Scattering Anisotropy Generated by Multichannel Quantum Interference

    Science.gov (United States)

    Miron, Catalin; Kimberg, Victor; Morin, Paul; Nicolas, Christophe; Kosugi, Nobuhiro; Gavrilyuk, Sergey; Gel'Mukhanov, Faris

    2010-08-01

    Based on angularly and vibrationally resolved electron spectroscopy measurements in acetylene, we report the first observation of anomalously strong vibrational anisotropy of resonant Auger scattering through the C 1s→π* excited state. We provide a theoretical model explaining the new phenomenon by three coexisting interference effects: (i) interference between resonant and direct photoionization channels, (ii) interference of the scattering channels through the core-excited bending states with orthogonal orientation of the molecular orbitals, (iii) scattering through two wells of the double-well bending mode potential. The interplay of nuclear and electronic motions offers in this case a new type of nuclear wave packet interferometry sensitive to the anisotropy of nuclear dynamics: whether which-path information is available or not depends on the final vibrational state serving for path selection.

  6. Multi-Dimensional Path Queries

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    1998-01-01

    to create nested path structures. We present an SQL-like query language that is based on path expressions and we show how to use it to express multi-dimensional path queries that are suited for advanced data analysis in decision support environments like data warehousing environments......We present the path-relationship model that supports multi-dimensional data modeling and querying. A path-relationship database is composed of sets of paths and sets of relationships. A path is a sequence of related elements (atoms, paths, and sets of paths). A relationship is a binary path...

  7. Quantum interference fringes beating the diffraction limit

    OpenAIRE

    Kawabe, Yoshio; Fujiwara, Hideki; Okamoto, Ryo; Sasaki, Keiji; Takeuchi, Shigeki

    2007-01-01

    Spatially formed two-photon interference fringes with fringe periods smaller than the diffraction limit are demonstrated. In the experiment, a fringe formed by two-photon NOON states with wavelength λ=702.2 nm is observed using a specially developed near-field scanning optical microscope probe and two-photon detection setup. The observed fringe period of 328.2 nm is well below the diffraction limit (351 nm = λ/2). Another experiment with a path-length difference larger than the coherent lengt...

  8. Increased localization precision by interference fringe analysis

    Science.gov (United States)

    Ebeling, Carl G.; Meiri, Amihai; Martineau, Jason; Zalevsky, Zeev; Gerton, Jordan M.; Menon, Rajesh

    2015-06-01

    We report a novel optical single-emitter-localization methodology that uses the phase induced by path length differences in a Mach-Zehnder interferometer to improve localization precision. Using information theory, we demonstrate that the localization capability of a modified Fourier domain signal generated by photon interference enables a more precise localization compared to a standard Gaussian intensity distribution of the corresponding point-spread function. The calculations were verified by numerical simulations and an exemplary experiment, where the centers of metal nanoparticles were localized to a precision of 3 nm.

  9. On the performance of hybrid line of sight RF and RF-FSO fixed gain dual-hop transmission systems

    KAUST Repository

    Zedini, Emna

    2014-12-01

    In this work, we carry out a unified performance analysis of a dual-branch transmission system composed of a direct radio-frequency (RF) link and a dual-hop fixed gain relay over the asymmetric links composed of both RF and unified free-space optics (FSO) under the effect of pointing errors. RF links are modeled by the Nakagami-m fading channel and the FSO link by the Gamma-Gamma fading channel subject to both types of detection techniques (i.e. heterodyne detection and intensity modulation with direct detection (IM/DD)). Selection combining (SC) and maximum ratio combining (MRC) diversity schemes are investigated. More specifically, for the SC method, we derive new unified closed-form expressions for the cumulative distribution function (CDF), the probability density function (PDF), the moment generating function (MGF), the moments, the outage probability (OP), the average bit-error rate (BER) of a variety of binary modulations, and the ergodic capacity for end-to-end signal-to-noise ratio (SNR). Additionally, using the MGF-based approach, the evaluation of the OP, the average BER, and the ergodic capacity for the MRC diversity technique can be performed based entirely on the knowledge of the MGF of the output SNR without ever having to compute its statistics (i.e. PDF and CDF). By implementing SC or MRC diversity techniques, we demonstrate a better performance of our system relative to the traditional RF path only. Also, our analysis illustrates MRC as the optimum combing method. All the analytical results are verified via computer-based Monte-Carlo simulations.

  10. Unique Path Partitions

    DEFF Research Database (Denmark)

    Bessenrodt, Christine; Olsson, Jørn Børling; Sellers, James A.

    2013-01-01

    We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions.......We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions....

  11. Path dependence and creation

    DEFF Research Database (Denmark)

    Garud, Raghu; Karnøe, Peter

    the place of agency in these theories that take history so seriously. In the end, they are as interested in path creation and destruction as they are in path dependence. This book is compiled of both theoretical and empirical writing. It shows relatively well-known industries such as the automobile...

  12. A Software-Defined Radio Receiver Architecture Robust to Out-of-Band Interference

    NARCIS (Netherlands)

    Ru, Z.; Klumperink, Eric A.M.; Wienk, Gerhardus J.M.; Nauta, Bram

    2009-01-01

    In a software-defined radio (SDR) receiver it is desirable to minimize RF band-filtering for flexibility, size and cost reasons, but this leads to increased out-of-band interference (OBI). Besides harmonic and intermodulation distortion (HD/IMD), OBI can also lead to blocking and harmonic mixing. A

  13. Digitally Enhanced Software-Defined Radio Receiver Robust to Out-of-Band Interference

    NARCIS (Netherlands)

    Ru, Z.; Moseley, N.A.; Klumperink, Eric A.M.; Nauta, Bram

    2009-01-01

    Abstract—A software-defined radio (SDR) receiver with improved robustness to out-of-band interference (OBI) is presented. Two main challenges are identified for an OBI-robust SDR receiver: out-of-band nonlinearity and harmonic mixing. Voltage gain at RF is avoided, and instead realized at baseband

  14. Mitigating RF Front-End Nonlinearity of Sensor Nodes to Enhance Spectrum Sensing

    Directory of Open Access Journals (Sweden)

    Lin Hu

    2016-11-01

    Full Text Available The cognitive radio wireless sensor network (CR-WSN has gained worldwide attention in recent years for its potential applications. Reliable spectrum sensing is the premise for opportunistic access to sensor nodes. However, as a result of the radio frequency (RF front-end nonlinearity of sensor nodes, distortion products can easily degrade the spectrum sensing performance by causing false alarms and degrading the detection probability. Given the limitations of the widely-used adaptive interference cancellation (AIC algorithm, this paper develops several details to avoid these limitations and form a new mitigation architecture to alleviate nonlinear distortions. To demonstrate the efficiency of the proposed algorithm, verification tests for both simulations and actual RF front-end measurements are presented and discussed. The obtained results show that distortions can be suppressed significantly, thus improving the reliability of spectrum sensing. Moreover, compared to AIC, the proposed algorithm clearly shows better performance, especially at the band edges of the interferer signal.

  15. Mitigating RF Front-End Nonlinearity of Sensor Nodes to Enhance Spectrum Sensing.

    Science.gov (United States)

    Hu, Lin; Ma, Hong; Zhang, Hua; Zhao, Wen

    2016-11-25

    The cognitive radio wireless sensor network (CR-WSN) has gained worldwide attention in recent years for its potential applications. Reliable spectrum sensing is the premise for opportunistic access to sensor nodes. However, as a result of the radio frequency (RF) front-end nonlinearity of sensor nodes, distortion products can easily degrade the spectrum sensing performance by causing false alarms and degrading the detection probability. Given the limitations of the widely-used adaptive interference cancellation (AIC) algorithm, this paper develops several details to avoid these limitations and form a new mitigation architecture to alleviate nonlinear distortions. To demonstrate the efficiency of the proposed algorithm, verification tests for both simulations and actual RF front-end measurements are presented and discussed. The obtained results show that distortions can be suppressed significantly, thus improving the reliability of spectrum sensing. Moreover, compared to AIC, the proposed algorithm clearly shows better performance, especially at the band edges of the interferer signal.

  16. Retroactive Interference and Forgetting

    Directory of Open Access Journals (Sweden)

    Vinishaa Ankala

    2011-01-01

    Full Text Available Retroactive interference is the amount of information that can be forgotten by a person over time due to newly learned material. In this paper we establish a relationship between the amount of information forgotten by college students while they read and watch television and the time taken to forget it. We equate these numerical equations to solve for the unknown constants. By doing so, we can find the exact equation and also the amount of forgetting information due to retroactive interference.

  17. RF and microwave microelectronics packaging II

    CERN Document Server

    Sturdivant, Rick

    2017-01-01

    Reviews RF, microwave, and microelectronics assembly process, quality control, and failure analysis Bridges the gap between low cost commercial and hi-res RF/Microwave packaging technologies Engages in an in-depth discussion of challenges in packaging and assembly of advanced high-power amplifiers This book presents the latest developments in packaging for high-frequency electronics. It is a companion volume to “RF and Microwave Microelectronics Packaging” (2010) and covers the latest developments in thermal management, electrical/RF/thermal-mechanical designs and simulations, packaging and processing methods, and other RF and microwave packaging topics. Chapters provide detailed coverage of phased arrays, T/R modules, 3D transitions, high thermal conductivity materials, carbon nanotubes and graphene advanced materials, and chip size packaging for RF MEMS. It appeals to practicing engineers in the electronic packaging and high-frequency electronics domain, and to academic researchers interested in underst...

  18. Topology optimized RF MEMS switches

    DEFF Research Database (Denmark)

    Philippine, M. A.; Zareie, H.; Sigmund, Ole

    2013-01-01

    optimization for an RF MEM capacitive switch. Extensive experimental data confirms that the switches perform as designed by the optimizations, and that our simulation models are accurate. A subset of measurements are presented here. Broader results have been submitted in full journal format.......Topology optimization is a rigorous and powerful method that should become a standard MEMS design tool - it can produce unique and non-intuitive designs that meet complex objectives and can dramatically improve the performance and reliability of MEMS devices. We present successful uses of topology...

  19. Dual-Hop VLC/RF Transmission System with Energy Harvesting Relay under Delay Constraint

    KAUST Repository

    Rakia, Tamer

    2017-02-09

    In this paper, we introduce a dual-hop visible light communication (VLC) / radio frequency (RF) transmission system to extend the coverage of indoor VLC systems. The relay between the two hops is able to harvest light energy from different artificial light sources and sunlight entering the room. The relay receives data packet over a VLC channel and uses the harvested energy to retransmit it to a mobile terminal over an RF channel. We develop a novel statistical model for the harvested electrical power and analyze the probability of data packet loss. We define a system design parameter (α ∈ [0, 1)) that controls the time dedicated for excess energy harvesting and data packet retransmission. It was found that the parameter has an optimal value which minimizes the packet loss probability. Further more, this optimal value is independent of the RF channel path loss. However, optimal showed inverse dependence on the packet size.

  20. Ion tracking in photocathode rf guns

    Directory of Open Access Journals (Sweden)

    John W. Lewellen

    2002-02-01

    Full Text Available Projected next-generation linac-based light sources, such as PERL or the TESLA free-electron laser, generally assume, as essential components of their injector complexes, long-pulse photocathode rf electron guns. These guns, due to their design rf pulse durations of many milliseconds to continuous wave, may be more susceptible to ion bombardment damage of their cathodes than conventional rf guns, which typically use rf pulses of microsecond duration. This paper explores this possibility in terms of ion propagation within the gun, and presents a basis for future study of the subject.

  1. RF front-end world class designs

    CERN Document Server

    Love, Janine

    2009-01-01

    All the design and development inspiration and direction a harware engineer needs in one blockbuster book! Janine Love site editor for RF Design Line,columnist, and author has selected the very best RF design material from the Newnes portfolio and has compiled it into this volume. The result is a book covering the gamut of RF front end design from antenna and filter design fundamentals to optimized layout techniques with a strong pragmatic emphasis. In addition to specific design techniques and practices, this book also discusses various approaches to solving RF front end design problems and h

  2. Quantum interference in polyenes.

    Science.gov (United States)

    Tsuji, Yuta; Hoffmann, Roald; Movassagh, Ramis; Datta, Supriyo

    2014-12-14

    The explicit form of the zeroth Green's function in the Hückel model, approximated by the negative of the inverse of the Hückel matrix, has direct quantum interference consequences for molecular conductance. We derive a set of rules for transmission between two electrodes attached to a polyene, when the molecule is extended by an even number of carbons at either end (transmission unchanged) or by an odd number of carbons at both ends (transmission turned on or annihilated). These prescriptions for the occurrence of quantum interference lead to an unexpected consequence for switches which realize such extension through electrocyclic reactions: for some specific attachment modes the chemically closed ring will be the ON position of the switch. Normally the signs of the entries of the Green's function matrix are assumed to have no physical significance; however, we show that the signs may have observable consequences. In particular, in the case of multiple probe attachments - if coherence in probe connections can be arranged - in some cases new destructive interference results, while in others one may have constructive interference. One such case may already exist in the literature.

  3. Localization of Interference Fringes.

    Science.gov (United States)

    Simon, J. M.; Comastri, Silvia A.

    1980-01-01

    Discusses a proof for determining the localized fringes position arrived at when one considers the interference of two extended sources when one is able to observe fringes only at certain points in space. Shows how the localized fringes may be found in a device used to observe Newton's rings. (Author/CS)

  4. Laser Interference Lithography

    NARCIS (Netherlands)

    van Wolferen, Hendricus A.G.M.; Abelmann, Leon; Hennessy, Theodore C.

    In this chapter we explain how submicron gratings can be prepared by Laser Interference Lithography (LIL). In this maskless lithography technique, the standing wave pattern that exists at the intersection of two coherent laser beams is used to expose a photosensitive layer. We show how to build the

  5. RF/optical shared aperture for high availability wideband communication RF/FSO links

    Science.gov (United States)

    Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul

    2015-03-24

    An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.

  6. RF Power Generation in LHC

    CERN Document Server

    Brunner, O C; Valuch, D

    2003-01-01

    The counter-rotating proton beams in the Large Hadron Collider (LHC) will be captured and then accelerated to their final energies of 2 x 7 TeV by two identical 400 MHz RF systems. The RF power source required for each beam comprises eight 300 kW klystrons. The output power of each klystron is fed via a circulator and a waveguide line to the input coupler of a single-cell super-conducting (SC) cavity. Four klystrons are powered by a 100 kV, 40A AC/DC power converter, previously used for the operation of the LEP klystrons. A five-gap thyratron crowbar protects the four klystrons in each of these units. The technical specification and measured performance of the various high-power elements are discussed. These include the 400MHz/300kW klystrons with emphasis on their group delay and the three-port circulators, which have to cope with peak reflected power levels up to twice the simultaneously applied incident power of 300 kW. In addition, a novel ferrite loaded waveguide absorber, used as termination for port No...

  7. SPS RF System Amplifier plant

    CERN Multimedia

    1977-01-01

    The picture shows a 2 MW, 200 MHz amplifier plant with feeder lines. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X.

  8. Zero-Slack, Noncritical Paths

    Science.gov (United States)

    Simons, Jacob V., Jr.

    2017-01-01

    The critical path method/program evaluation and review technique method of project scheduling is based on the importance of managing a project's critical path(s). Although a critical path is the longest path through a network, its location in large projects is facilitated by the computation of activity slack. However, logical fallacies in…

  9. Interference enhancement in spectral domain interferometric measurements on transparent plate.

    Science.gov (United States)

    Zhang, Ke; Tao, Li; Cheng, Wenkai; Liu, Jianhua; Chen, Zhongping

    2014-09-10

    In spectral domain interferometry, the interference signal generated by directly reflected waves from the two surfaces of a sample plate under test is greatly enhanced by the blockage of those light waves reflected by the two arm mirrors in the Michelson interferometer. This sample surface-reflected interference signal, being the optical path length of the plate, is therefore identifiable directly from the Fourier-transformed interference spectrum. Consequently, the group refractive index and physical thickness of the plate can be obtained simultaneously without any prior information of them. Moreover, subsequent in situ angular scanning on the interference spectra helps to retrieve the wavelength-dependent phase refractive index and first-order dispersion. The order of magnitude of the relative error for the group refractive index is 10(-4), while that for the phase refractive index and the physical thickness is 10(-3).

  10. Ultraspectral: hyperspectral and rf features registered by IFSAR

    Science.gov (United States)

    Szu, Harold H.; Hsu, Charles C.

    2001-03-01

    , we present all digital version of FOPEN SAR, considered as one of RF channels in ultraspectral image processing. Taking the advantage of the high dynamic range ONR DAR VSR technology, we can measure both RF signatures and 3D terrain by means of Interferometric (IF) FOPEN SAR. We prefer a real-time one-path fly over using bi-static Interferometric SAR equipped with a Stokes polarization vector information that can provide us with not only the RF signatures but also terrain height for location ID (knowing terran contour map stored in the flight data basis). Such an ultraspectral imaging feature-fusion system can manage Forrest search and rescue when it is complement IFSAR FOPEN with high-resolution EO/IR signatures. Conclusion and discussion are given in the final section.

  11. Career Path Descriptions

    CERN Document Server

    Charkiewicz, A

    2000-01-01

    Before the Career Path system, jobs were classified according to grades with general statutory definitions, guided by the "Job Catalogue" which defined 6 evaluation criteria with example illustrations in the form of "typical" job descriptions. Career Paths were given concise statutory definitions necessitating a method of description and evaluation adapted to their new wider-band salary concept. Evaluations were derived from the same 6 criteria but the typical descriptions became unusable. In 1999, a sub-group of the Standing Concertation Committee proposed a new guide for describing Career Paths, adapted to their wider career concept by expanding the 6 evaluation criteria into 9. For each criterion several levels were established tracing the expected evolution of job level profiles and personal competencies over their longer salary ranges. While providing more transparency to supervisors and staff, the Guide's official use would be by services responsible for vacancy notices, Career Path evaluations and rela...

  12. Paths to Remarriage.

    Science.gov (United States)

    Spanier, Graham B.; Glick, Paul C.

    1980-01-01

    Presents a demographic analysis of the paths to remarriage--the extent and timing of remarriage, social factors associated with remarriage, and the impact of the event which preceded remarriage (divorce or widowhood). (Author)

  13. Detection-dependent six-photon Holland-Burnett state interference

    Science.gov (United States)

    Jin, Rui-Bo; Fujiwara, Mikio; Shimizu, Ryosuke; Collins, Robert J.; Buller, Gerald S.; Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Takeoka, Masahiro; Sasaki, Masahide

    2016-11-01

    The NOON state, and its experimental approximation the Holland-Burnett state, have important applications in phase sensing measurement with enhanced sensitivity. However, most of the previous Holland-Burnett state interference (HBSI) experiments only investigated the area of the interference pattern in the region immediately around zero optical path length difference, while the full HBSI pattern over a wide range of optical path length differences has not yet been well explored. In this work, we experimentally and theoretically demonstrate up to six-photon HBSI and study the properties of the interference patterns over a wide range of optical path length differences. It was found that the shape, the coherence time and the visibility of the interference patterns were strongly dependent on the detection schemes. This work paves the way for applications which are based on the envelope of the HBSI pattern, such as quantum spectroscopy and quantum metrology.

  14. Path planning in changeable environments

    NARCIS (Netherlands)

    Nieuwenhuisen, D.

    2007-01-01

    This thesis addresses path planning in changeable environments. In contrast to traditional path planning that deals with static environments, in changeable environments objects are allowed to change their configurations over time. In many cases, path planning algorithms must facilitate quick

  15. Lecture demonstrations of interference and quantum erasing with single photons

    Science.gov (United States)

    Dimitrova, T. L.; Weis, A.

    2009-07-01

    Single-photon interference is a beautiful manifestation of the wave-particle duality of light and the double-slit Gedankenexperiment is a standard lecture example for introducing quantum mechanical reality. Interference arises only if each photon can follow several (classical) paths from the source to the detector, and if one does not have the possibility to determine which specific path the photon has taken. Attaching a specific label to the photon traveling along a specific path destroys the interference. However, in some cases those labels can be erased from the photon between leaving the apparatus and being detected, by which interference can be restored, a phenomenon called quantum erasing. We present lecture demonstration experiments that illustrate the wave-particle duality of light and the phenomenon of quantum erasing. Both experiments are first shown with strong light and, in a second step, on a photon-by-photon basis. The smooth transition from the quantum to the classical case can be shown in real time by varying the incident light intensity.

  16. Paths to nursing leadership.

    Science.gov (United States)

    Bondas, Terese

    2006-07-01

    The aim was to explore why nurses enter nursing leadership and apply for a management position in health care. The study is part of a research programme in nursing leadership and evidence-based care. Nursing has not invested enough in the development of nursing leadership for the development of patient care. There is scarce research on nurses' motives and reasons for committing themselves to a career in nursing leadership. A strategic sample of 68 Finnish nurse leaders completed a semistructured questionnaire. Analytic induction was applied in an attempt to generate a theory. A theory, Paths to Nursing Leadership, is proposed for further research. Four different paths were found according to variations between the nurse leaders' education, primary commitment and situational factors. They are called the Path of Ideals, the Path of Chance, the Career Path and the Temporary Path. Situational factors and role models of good but also bad nursing leadership besides motivational and educational factors have played a significant role when Finnish nurses have entered nursing leadership. The educational requirements for nurse leaders and recruitment to nursing management positions need serious attention in order to develop a competent nursing leadership.

  17. LTE RF subsystem power consumption modeling

    DEFF Research Database (Denmark)

    Musiige, Deogratius; Vincent, Laulagnet; Anton, François

    2012-01-01

    This paper presents a new power consumption emulation model, for all possible scenarios of the RF subsystem, when transmitting a LTE signal. The model takes the logical interface parameters, Tx power, carrier frequency and bandwidth between the baseband and RF subsystem as inputs to compute...

  18. 47 CFR 101.1525 - RF safety.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false RF safety. 101.1525 Section 101.1525 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Service and Technical Rules for the 70/80/90 GHz Bands § 101.1525 RF safety. Licensees in the 70...

  19. 47 CFR 27.52 - RF safety.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false RF safety. 27.52 Section 27.52 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.52 RF safety. Licensees and manufacturers are subject to the...

  20. 47 CFR 90.1335 - RF safety.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false RF safety. 90.1335 Section 90.1335 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Wireless Broadband Services in the 3650-3700 MHz Band § 90.1335 RF safety...

  1. 47 CFR 95.1125 - RF safety.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false RF safety. 95.1125 Section 95.1125 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1125 RF safety. Portable devices...

  2. 17th International Conference on RF Superconductivity

    CERN Document Server

    Laxdal, Robert E.; Schaa, Volker R.W.

    2015-01-01

    RF superconductivity is the key technology of accelerators for particle physics, nuclear physics and light sources. SRF 2015 covered the latest advances in the science, technology, and applications of superconducting RF. There was also an industrial exhibit during the conference with the key vendors in the community available to discuss their capabilities and products.

  3. Binaural interference: effects of temporal interferer fringe and interstimulus interval.

    Science.gov (United States)

    Camalier, Corrie R; Grantham, D Wesley; Bernstein, Leslie R

    2014-02-01

    Binaural interference refers to the phenomenon in which the potency of binaural cues conveyed by a "target" stimulus occupying one spectral region is degraded by the presence of an "interferer" stimulus occupying a spectral region remote from the target. It is typified by conditions in which thresholds for detection of interaural temporal difference conveyed by a high-frequency target are elevated when the target is accompanied by a spectrally remote low-frequency interferer. This study explored effects of temporal relations between targets and interferers on binaural interference. In the first experiment, duration by which the interferer preceded and/or trailed the target (onset and offset "fringes") was varied. Results indicated binaural interference decreased with total duration of the temporal fringe, but did not depend on whether that duration was composed of onset, offset, or onset + offset fringes. In the second experiment, binaural interference was measured as a function of the interstimulus interval (ISI) between the two presentations of the target. Results indicated that shorter ISIs increased thresholds in both the interferer and no-interferer conditions, but did not affect binaural interference. These results suggest that the mechanisms underlying the effects of manipulations of the interferer temporal fringe and manipulation of the ISI are essentially independent.

  4. RF power generation for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fowkes, W.R.; Allen, M.A.; Callin, R.S.; Caryotakis, G.; Eppley, K.R.; Fant, K.S.; Farkas, Z.D.; Feinstein, J.; Ko, K.; Koontz, R.F.; Kroll, N.; Lavine, T.L.; Lee, T.G.; Miller, R.H.; Pearson, C.; Spalek, G.; Vlieks, A.E.; Wilson, P.B.

    1990-06-01

    The next linear collider will require 200 MW of rf power per meter of linac structure at relatively high frequency to produce an accelerating gradient of about 100 MV/m. The higher frequencies result in a higher breakdown threshold in the accelerating structure hence permit higher accelerating gradients per meter of linac. The lower frequencies have the advantage that high peak power rf sources can be realized. 11.42 GHz appears to be a good compromise and the effort at the Stanford Linear Accelerator Center (SLAC) is being concentrated on rf sources operating at this frequency. The filling time of the accelerating structure for each rf feed is expected to be about 80 ns. Under serious consideration at SLAC is a conventional klystron followed by a multistage rf pulse compression system, and the Crossed-Field Amplifier. These are discussed in this paper.

  5. RF Transceiver Design for MIMO Wireless Communications

    CERN Document Server

    Mohammadi, Abbas

    2012-01-01

    This practical resource offers a thorough examination of RF transceiver design for MIMO communications.  Offering a practical view on MIMO wireless systems, this book extends fundamental concepts on classic wireless transceiver design techniques to MIMO transceivers. This helps reader gain a very comprehensive understanding of the subject. This in-depth volume describes many theoretical and implementation challenges on MIMO transceivers and provides the practical solutions for these issues. This comprehensive book provides thorough descriptions of MIMO theoretical concepts, MIMO single carrier and OFDM modulation, RF transceiver design concepts, power amplifier, MIMO transmitter design techniques and their RF impairments, MIMO receiver design methods, RF impairments study including nonlinearity, DC-offset, I/Q imbalance and phase noise and their compensation in OFDM and MIMO techniques. In addition, it provides the most practical techniques to realize RF front-ends in MIMO systems. This book is supported wit...

  6. Magnetoplasmonic RF mixing and nonlinear frequency generation

    Energy Technology Data Exchange (ETDEWEB)

    Firby, C. J., E-mail: firby@ualberta.ca; Elezzabi, A. Y. [Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada)

    2016-07-04

    We present the design of a magnetoplasmonic Mach-Zehnder interferometer (MZI) modulator facilitating radio-frequency (RF) mixing and nonlinear frequency generation. This is achieved by forming the MZI arms from long-range dielectric-loaded plasmonic waveguides containing bismuth-substituted yttrium iron garnet (Bi:YIG). The magnetization of the Bi:YIG can be driven in the nonlinear regime by RF magnetic fields produced around adjacent transmission lines. Correspondingly, the nonlinear temporal dynamics of the transverse magnetization component are mapped onto the nonreciprocal phase shift in the MZI arms, and onto the output optical intensity signal. We show that this tunable mechanism can generate harmonics, frequency splitting, and frequency down-conversion with a single RF excitation, as well as RF mixing when driven by two RF signals. This magnetoplasmonic component can reduce the number of electrical sources required to generate distinct optical modulation frequencies and is anticipated to satisfy important applications in integrated optics.

  7. Interference Rejection and Management

    Science.gov (United States)

    2009-07-01

    there has been some work relating to NBI suppression in coded OFDM systems [12, 45, 57]. In this work, the prediction-error filter ( PEF ) [30, 60] is...error filter ( PEF ) is considered for this system as a means for removing the interference in the time domain, thereby avoiding the spectral leakage that...occurs after demodulation (see block diagram given in Fig. 9.6). The PEF is a well-studied structure that uses the correlation between past samples to

  8. Diboson interference resurrection

    Science.gov (United States)

    Panico, Giuliano; Riva, Francesco; Wulzer, Andrea

    2018-01-01

    High-energy diboson processes at the LHC are potentially powerful indirect probes of heavy new physics, whose effects can be encapsulated in higher-dimensional operators or in modified Standard Model couplings. An obstruction however comes from the fact that leading new physics effects often emerge in diboson helicity amplitudes that are anomalously small in the Standard Model. As such, the formally leading Standard Model/New Physics interference contribution cancels in inclusive measurements. This paper describes a solution to this problem.

  9. Femtosecond precision measurement of laser–rf phase jitter in a photocathode rf gun

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Libing; Zhao, Lingrong; Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhu, Pengfei; Xiang, Dao, E-mail: dxiang@sjtu.edu.cn

    2017-03-21

    We report on the measurement of the laser–rf phase jitter in a photocathode rf gun with femtosecond precision. In this experiment four laser pulses with equal separation are used to produce electron bunch trains; then the laser–rf phase jitter is obtained by measuring the variations of the electron bunch spacing with an rf deflector. Furthermore, we show that when the gun and the deflector are powered by the same rf source, it is possible to obtain the laser–rf phase jitter in the gun through measurement of the beam–rf phase jitter in the deflector. Based on these measurements, we propose an effective time-stamping method that may be applied in MeV ultrafast electron diffraction facilities to enhance the temporal resolution.

  10. New Driver For The Powerful Output Rf Amplifier Of Mmf Dtl Rf System

    CERN Document Server

    Kvasha, A I; Vassilyev, A G

    2004-01-01

    More than 30 years ago a few powerful vacuum tubes were specially designed and produced in the former design office Swetlana for the Moscow meson factory DTL RF system. Among them was tetrode GI-51A with output pulse RF power up to 300 kW at frequency 198.2 MHz, which was used as driver for RF power amplifier with output RF pulse power (2-3) MW. In connection with well-known events in our country manufacture of these tubes, including GI-51A was finished about 10 years ago. In "SED-SPb" (successor of the design office Swetlana) triode GI-57A was offered instead of GI-51A. In this paper results of calculations and design of RF amplifier with new triode are presented. Preliminary results of RF amplifier tests, also presented in the paper, showed that triode GI-57A will be able successfully used in the DTL RF system channels.

  11. Totally Asynchronous Interference Channels

    CERN Document Server

    Moshksar, Kamyar

    2010-01-01

    This paper addresses an interference channel consisting of $\\mathbf{n}$ active users sharing $u$ frequency sub-bands. Users are asynchronous meaning there exists a mutual delay between their transmitted codes. A stationary model for interference is considered by assuming the starting point of an interferer's data is uniformly distributed along the codeword of any user. The spectrum is divided to private and common bands each containing $v_{\\mathrm{p}}$ and $v_{\\mathrm{c}}$ frequency sub-bands respectively. We consider a scenario where all transmitters are unaware of the number of active users and the channel gains. The optimum $v_{\\mathrm{p}}$ and $v_{\\mathrm{c}}$ are obtained such that the so-called outage capacity per user is maximized. If $\\Pr\\{\\mathbf{n}\\leq 2\\}=1$, upper and lower bounds on the mutual information between the input and output of the channel for each user are derived using a genie-aided technique. The proposed bounds meet each other as the code length grows to infinity yielding a closed ex...

  12. Bounds of parameter estimation for interference signals.

    Science.gov (United States)

    Li, Chengshuai; Zhu, Yizheng

    2017-08-20

    Parameter estimation, especially frequency estimation, from noisy observations of interference is essential in optical interferometric sensing and metrology. The Cramer-Rao bound (CRB) of such estimation determines measurement sensitivity limit. Unlike the well-studied complex sinusoids in communication theory, an optical interference signal is distinctly different in its model parameters and noise statistics. The connection between these parameters and their estimation bounds has not been well understood. Here we propose a complete, realistic multiparameter interference model corrupted by a combination of shot noise, dark noise, and readout noise. We derive the Fisher information matrix and the CRBs for all model parameters, including intensity, visibility, optical path length (frequency), and initial phase. We show that the CRBs of frequency and phase are coupled but not affected by the knowledge of intensity and visibility. Knowing the initial phase offers significant sensitivity advantage, which is verified by both theoretical derivations and numerical simulations. In addition to the complete model, a shot noise-limited case is studied, permitting the calculation of the CRBs directly from measured data.

  13. A priori which-way information in quantum interference with unstable particles

    Energy Technology Data Exchange (ETDEWEB)

    Krause, D.E., E-mail: kraused@wabash.edu [Physics Department, Wabash College, Crawfordsville, IN 47933 (United States); Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907 (United States); Fischbach, E. [Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907 (United States); Rohrbach, Z.J. [Avon High School, 7575 East 150 South, Avon, IN 46123 (United States)

    2014-07-04

    If an unstable particle used in a two-path interference experiment decays before reaching a detector, which-way information becomes available that reduces the detected interference fringe visibility V. Here we argue that even when an unstable particle does not decay while in the interferometer, a priori which-way information is still available in the form of path predictability P which depends on the particle's decay rate Γ. We further demonstrate that in a matter-wave Mach–Zehnder interferometer using an excited atom with an appropriately tuned cavity, P is related to V through the duality relation P{sup 2}+V{sup 2}=1. - Highlights: • Even undecayed unstable particles exhibit novel interference effects. • Interference is studied in a Mach–Zehnder interferometer with a cavity. • More which-way information is available when using unstable particles. • A relation between which-way information and interference is satisfied.

  14. Interferometry through the turbulent atmosphere at an optical path difference of 354 m.

    Science.gov (United States)

    Herrick, R B; Meyer-Arendt, J R

    1966-06-01

    A modified Michelson interferometer with a stable He-Ne laser source has been used to study fluctuations in the mean refractive index over a long path through the turbulent atmosphere. Distinct interference fringes were obtained at mirror separations up to 177 m, corresponding to an optical path difference of 354 m. The spatial stability of the interference fringes was found to decrease with increasing optical path length, indicating an increasing contribution from the atmosphere. Details of the interferometer and the experimental procedure are given as well as a discussion of the fluctuations in the mean refractive index.

  15. Chosen sources of signal interference in HD-TVI technology

    Science.gov (United States)

    Królikowski, Marcin; Płaza, Mirosław; Szcześniak, Zbigniew

    2017-08-01

    The article presents characteristics of popular systems of CCTV and includes a description of basic groups of devices appearing in these systems. The research part contains analysis of interferences that may appear in HD-TVI technology which is one of the most modern technologies introduced in CCTV systems. There were examined video signal interferences caused by: impact of power supply, influence of the parameters of the transmission path and impact of external devices. There are discussed relevant methods of eliminating the examined irregularities.

  16. RF low power subsampling architecture for wireless communication applications

    National Research Council Canada - National Science Library

    Meng, Fanzhen; Liu, Hong; Wang, Mingliang; Zhang, Xiaolin; Tian, Tong

    2016-01-01

    ...) transmission devices, especially the RF receiver. In order to alleviate this problem, an RF low power subsampling architecture for wireless communication applications is proposed in this paper...

  17. MEMS-based, RF-driven, compact accelerators

    Science.gov (United States)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Breinyn, I.; Waldron, W. L.; Schenkel, T.; Vinayakumar, K. B.; Ni, D.; Lal, A.

    2017-10-01

    Shrinking existing accelerators in size can reduce their cost by orders of magnitude. Furthermore, by using radio frequency (RF) technology and accelerating ions in several stages, the applied voltages can be kept low paving the way to new ion beam applications. We make use of the concept of a Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) and have previously shown the implementation of its basic components using printed circuit boards, thereby reducing the size of earlier MEQALACs by an order of magnitude. We now demonstrate the combined integration of these components to form a basic accelerator structure, including an initial beam-matching section. In this presentation, we will discuss the results from the integrated multi-beam ion accelerator and also ion acceleration using RF voltages generated on-board. Furthermore, we will show results from Micro-Electro-Mechanical Systems (MEMS) fabricated focusing wafers, which can shrink the dimension of the system to the sub-mm regime and lead to cheaper fabrication. Based on these proof-of-concept results we outline a scaling path to high beam power for applications in plasma heating in magnetized target fusion and in neutral beam injectors for future Tokamaks. This work was supported by the Office of Science of the US Department of Energy through the ARPA-e ALPHA program under contracts DE-AC02-05CH11231.

  18. A performance study of two hop transmission in mixed underlay RF and FSO fading channels

    KAUST Repository

    Ansari, Imran Shafique

    2014-04-01

    In this work, we present the performance analysis of a dual-hop transmission system composed of asymmetric radio frequency (RF) and free-space optical (FSO) links in underlay cognitive networks. For the RF link, we consider an underlay cognitive network where the secondary users share the spectrum with licensed primary users, where indoor femtocells act as a practical example for such networks. More specifically, we assume that the RF link is subject to an interference constraint. The FSO link accounts for pointing errors and both types of detection techniques (i.e. intensity modulation/direct detection (IM/DD) as well as heterodyne detection). On the other hand, RF link is modeled by the Rayleigh fading distribution that applies power control to maintain the interference at the primary network below a specific threshold whereas the FSO link is modeled by a unified Gamma-Gamma fading distribution. With this model, we derive new exact closed-form expressions for the cumulative distribution function, the probability density function, the moment generating function, and the moments of the end-to-end signal-to-interference plus noise ratio of these systems in terms of the Meijer\\'s G functions. We then capitalize on these results to offer new exact closed-form expressions for the outage probability, the higher-order amount of fading, and the average error rate for binary and Mary modulation schemes, all in terms of Meijer\\'s G functions. All our new analytical results are verified via computer-based Monte-Carlo simulations and are illustrated by some selected numerical results.

  19. Single reflector interference spectrometer and drive system therefor

    Science.gov (United States)

    Schindler, R. A. (Inventor)

    1974-01-01

    In a Fourier interference spectrometer of the doublepass retroreflector type, a single mirror is employed in the path of both split beams of an incoming ray to cause them to double back through separate retroreflectors. Changes in optical path length are achieved by linear displacement of both retroreflectors using a motor driven lead screw on one for large, low frequency changes, a moving-coil actuator on the other for smaller, mid-frequency changes and a piezoelectric actuator on one of these two for small, high frequency changes.

  20. Leavitt path algebras

    CERN Document Server

    Abrams, Gene; Siles Molina, Mercedes

    2017-01-01

    This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and...

  1. Diboson interference resurrection

    Directory of Open Access Journals (Sweden)

    Giuliano Panico

    2018-01-01

    Full Text Available High-energy diboson processes at the LHC are potentially powerful indirect probes of heavy new physics, whose effects can be encapsulated in higher-dimensional operators or in modified Standard Model couplings. An obstruction however comes from the fact that leading new physics effects often emerge in diboson helicity amplitudes that are anomalously small in the Standard Model. As such, the formally leading Standard Model/New Physics interference contribution cancels in inclusive measurements. This paper describes a solution to this problem.

  2. RNA interference in Lepidoptera

    DEFF Research Database (Denmark)

    Terenius, Ole; Papanicolaou, Alexie; Garbutt, Jennie S.

    2011-01-01

    Gene silencing through RNA interference (RNAi) has revolutionized the study of gene function, particularly in non-model insects. However, in Lepidoptera (moths and butterflies) RNAi has many times proven to be difficult to achieve. Most of the negative results have been anecdotal and the positive...... is particularly successful in the family Saturniidae and in genes involved in immunity. On the contrary, gene expression in epidermal tissues seems to be most difficult to silence. In addition, gene silencing by feeding dsRNA requires high concentrations for success. Possible causes for the variability of success...

  3. Paths in hyperspaces

    Directory of Open Access Journals (Sweden)

    Camillo Constantini

    2003-10-01

    Full Text Available We prove that the hyperspace of closed bounded sets with the Hausdor_ topology, over an almost convex metric space, is an absolute retract. Dense subspaces of normed linear spaces are examples of, not necessarily connected, almost convex metric spaces. We give some necessary conditions for the path-wise connectedness of the Hausdorff metric topology on closed bounded sets. Finally, we describe properties of a separable metric space, under which its hyperspace with the Wijsman topology is path-wise connected.

  4. Path dependence and creation

    DEFF Research Database (Denmark)

    Garud, Raghu; Karnøe, Peter

    the place of agency in these theories that take history so seriously. In the end, they are as interested in path creation and destruction as they are in path dependence. This book is compiled of both theoretical and empirical writing. It shows relatively well-known industries such as the automobile......, biotechnology and semi-conductor industries in a new light. It also invites the reader to learn more about medical practices, wind power, lasers and synthesizers. Primarily for academicians, researchers and PhD students in fields related to technology management, this book is a research-oriented textbook...

  5. Nb-Pb superconducting RF-gun

    Energy Technology Data Exchange (ETDEWEB)

    Sekutowicz, J.; Iversen, J.; Kreps, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (DE)] (and others)

    2005-07-01

    We report on the status of an electron RF-gun made of two superconductors: niobium and lead. The presented design combines the advantages of the RF performance of bulk niobium superconducting cavities and the reasonably high quantum efficiency of lead, as compared to other superconducting metals. The concept, mentioned in a previous paper, follows the attractive approach of all niobium superconducting RF-gun as it has been proposed by the BNL group. Measured values of quantum efficiency for lead at various photon energies, analysis of recombination time of photon-broken Cooper pairs for lead and niobium, and preliminary cold test results are discussed in this paper. (orig.)

  6. Nb-Pb superconducting RF gun

    Energy Technology Data Exchange (ETDEWEB)

    J. Sekutowicz; J. Iversen; G. Kreps; W.D. Moller; W. Singer; X. Singer; I. Ben-Zvi; A. Burrill; J. Smedley; T. Rao; M. Ferrario; P. Kneisel; J. Langner; P. Strzyzewski; R. Lefferts; A. Lipski; K. Szalowski; K. Ko; L. Xiao

    2006-04-14

    We report on the status of an electron RF-gun made of two superconductors: niobium and lead. The presented design combines the advantages of the RF performance of bulk niobium superconducting cavities and the reasonably high quantum efficiency of lead, as compared to other superconducting metals. The concept, mentioned in a previous paper, follows the attractive approach of all niobium superconducting RF-gun as it has been proposed by the BNL group. Measured values of quantum efficiency for lead at various photon energies, analysis of recombination time of photon-broken Cooper pairs for lead and niobium, and preliminary cold test results are discussed in this paper.

  7. Nb-Pb Superconducting RF Gun

    Energy Technology Data Exchange (ETDEWEB)

    Sekutowicz, J.; Iversen, J.; Kreps, G.; Moller, W.D.; Singer, W.; Singer, X.; /DESY; Ben-Zvi, I.; Burrill, A.; Smedley, J.; Rao, T.; /Brookhaven; Ferrario, M.; /Frascati; Kneisel, P.; /Jefferson Lab; Langner, J.; Strzyzewski, P.; /Warsaw, Inst. Nucl. Studies; Lefferts, R.; Lipski, A.; /SUNY, Stony Brook; Szalowski, K.; /Lodz U.; Ko, K.; Xiao, L.; /SLAC

    2006-03-29

    We report on the status of an electron RF-gun made of two superconductors: niobium and lead. The presented design combines the advantages of the RF performance of bulk niobium superconducting cavities and the reasonably high quantum efficiency of lead, as compared to other superconducting metals. The concept, mentioned in a previous paper, follows the attractive approach of all niobium superconducting RF-gun as it has been proposed by the BNL group. Measured values of quantum efficiency for lead at various photon energies, analysis of recombination time of photon-broken Cooper pairs for lead and niobium, and preliminary cold test results are discussed in this paper.

  8. Practical guide to RF-MEMS

    CERN Document Server

    Iannacci, Jacopo

    2013-01-01

    Closes the gap between hardcore-theoretical and purely experimental RF-MEMS books. The book covers, from a practical viewpoint, the most critical steps that have to be taken in order to develop novel RF-MEMS device concepts. Prototypical RF-MEMS devices, both including lumped components and complex networks, are presented at the beginning of the book as reference examples, and these are then discussed from different perspectives with regard to design, simulation, packaging, testing, and post-fabrication modeling. Theoretical concepts are introduced when necessary to complement the practical

  9. RF engineering basic concepts: S-parameters

    CERN Document Server

    Caspers, F

    2011-01-01

    The concept of describing RF circuits in terms of waves is discussed and the S-matrix and related matrices are defined. The signal flow graph (SFG) is introduced as a graphical means to visualize how waves propagate in an RF network. The properties of the most relevant passive RF devices (hybrids, couplers, non-reciprocal elements, etc.) are delineated and the corresponding S-parameters are given. For microwave integrated circuits (MICs) planar transmission lines such as the microstrip line have become very important.

  10. Transport through hybrid superconducting/ferromagnetic double-path junction

    Energy Technology Data Exchange (ETDEWEB)

    Facio, T.J.S. [Departamento de Física e Química, Universidade Estadual Paulista – UNESP, 15385-000, Ilha Solteira, SP (Brazil); Orellana, P.A. [Departamento de Física, Universidad Técnica Federico Santa Maria, Av. Vicuña Mackenna, 3939, Santiago (Chile); Jurelo, A.R. [Departamento de Física, Universidade Estadual de Ponta Grossa – UEPG, 84030-000, Ponta Grossa, PR (Brazil); Figueira, M.S. [Instituto de Física, Universidade Federal Fluminense, 24210-340, Niterói, RJ (Brazil); Cabrera, G.G. [Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas – UNICAMP, 13083-859, Campinas, SP (Brazil); Siqueira, E.C., E-mail: ecosta@utfpr.edu.br [Departamento de Física, Universidade Tecnológica Federal do Paraná – UTFPR, 84016-210, Ponta Grossa, PR (Brazil)

    2017-02-05

    In this paper we study a double-path junction formed by a ferromagnetic and a superconductor lead. The first path connects the superconductor and ferromagnet directly while the second path connects these metals through a quantum dot. The whole system works as an Aharonov–Bohm interferometer allowing the study of the interference between these two paths under the presence of spin imbalance and Andreev bound states. We considered the effect of Fano interference on the electronic transmittance through the quantum dot and observed two regimes of conduction depending on the strength of the direct coupling. For the weak coupling regime, the transmittance presented the usual four resonances due to the Andreev bound states whereas for the strong coupling regime the profile was inverted and resonances became anti-resonances. However, even in the strong coupling regime it was possible to observe a central resonance due to the interference between the Andreev bound states. We have also studied the signatures of Fano interference on the average occupation within the quantum dot. The spin accumulation was analyzed and how it depends on the direct coupling and an external magnetic field applied to the system. The results obtained may be used in a possible experimental implementation of this system in order to probe spin related effects in ferromagnetic superconductor nanostructures. - Highlights: • An Aharonov–Bohm interferometer composed by a quantum-dot coupled to a superconductor and ferromagnetic lead is studied. • The transmittance through the QD is determined by the interplay between Andreev and Fano interference. • Spin accumulation within the quantum dot is studied as a function of bias/gate voltages and an external magnetic flux.

  11. RF Tomography for Tunnel Detection: Principles and Inversion Schemes

    Science.gov (United States)

    Lo Monte, L.; Erricolo, D.; Inan, U. S.; Wicks, M. C.

    2008-12-01

    We propose a novel way to detect underground tunnels based on classical seismic tomography, Ground Penetrating Radar (GPR), inverse scattering principles, and the deployment of distributed sensors, which we call "Distributed RF Tomography". Tunnel detection has been a critical problem that cannot be considered fully solved. Presently, tunnel detection is performed by methods that include seismic sensors, electrical impedance, microgravity, boreholes, and GPR. All of these methods have drawbacks that make them not applicable for use in unfriendly environments, such as battlefields. Specifically, they do not cover wide surface areas, they are generally shallow, they are limited to vertical prospecting, and require the user to be in situ, which may jeopardize one's safety. Additional application of the proposed distributed RF tomography include monitoring sensitive areas, (e.g. banks, power plants, military bases, prisons, national borders) and civil applications (e.g. environmental engineering, mine safety, search and rescue, speleology, archaeology and geophysics). The novelty of a Distributed RF tomography system consists of the following. 1) Sensors are scattered randomly above the ground, thus saving time and money compared to the use of boreholes. 2) The use of lower operating frequency (around HF), which allows for deeper penetration. 3) The use of CW diffraction tomography, which increases the resolution to sub-wavelength values, independently from the sensor displacement, and increases the SNR. 4) Use of linear inversion schemes that are suited for tunnel detection. 5) The use of modulation schemes and signal processing algorithms to mitigate interferences and noise. This presentation will cover: 1. Current physical limits of existing techniques for tunnel detection. 2. Concept of Distributed RF Tomography. 3. Inversion theories and strategies a. Proper forward model for voids buried into an homogeneous medium b. Extended matched filtering inversion c. Near

  12. Potential GPRS 900/180-MHz and WCDMA 1900-MHz interference to medical devices.

    Science.gov (United States)

    Iskra, Steve; Thomas, Barry W; McKenzie, Ray; Rowley, Jack

    2007-10-01

    This study compared the potential for interference to medical devices from radio frequency (RF) fields radiated by GSM 900/1800-MHz, general packet radio service (GPRS) 900/1800-MHz, and wideband code division multiple access (WCDMA) 1900-MHz handsets. The study used a balanced half-wave dipole antenna, which was energized with a signal at the standard power level for each technology, and then brought towards the medical device while noting the distance at which interference became apparent. Additional testing was performed with signals that comply with the requirements of the international immunity standard to RF fields, IEC 61000-4-3. The testing provides a sense of the overall interference impact that GPRS and WCDMA (frequency division duplex) may have, relative to current mobile technologies, and to the internationally recognized standard for radiated RF immunity. Ten medical devices were tested: two pulse oximeters, a blood pressure monitor, a patient monitor, a humidifier, three models of cardiac defibrillator, and two models of infusion pump. Our conclusion from this and a related study on consumer devices is that WCDMA handsets are unlikely to be a significant interference threat to medical electronics at typical separation distances.

  13. UV laser long-path absorption spectroscopy

    Science.gov (United States)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  14. The intention interference effect.

    Science.gov (United States)

    Cohen, Anna-Lisa; Kantner, Justin; Dixon, Roger A; Lindsay, D Stephen

    2011-01-01

    Intentions have been shown to be more accessible (e.g., more quickly and accurately recalled) compared to other sorts of to-be-remembered information; a result termed an intention superiority effect (Goschke & Kuhl, 1993). In the current study, we demonstrate an intention interference effect (IIE) in which color-naming performance in a Stroop task was slower for words belonging to an intention that participants had to remember to carry out (Do-the-Task condition) versus an intention that did not have to be executed (Ignore-the-Task condition). In previous work (e.g., Cohen et al., 2005), having a prospective intention in mind was confounded with carrying a memory load. In Experiment 1, we added a digit-retention task to control for effects of cognitive load. In Experiment 2, we eliminated the memory confound in a new way, by comparing intention-related and control words within each trial. Results from both Experiments 1 and 2 revealed an IIE suggesting that interference is very specific to the intention, not just to a memory load.

  15. KSTAR RF heating system development

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, J. G.; Kim, S. K.; Hwang, C. K. (and others)

    2007-10-15

    Design, high-voltage test, and installation of 6 MW ICRF heating system for KSTAR is completed. The antenna demonstrated satisfactory standoff at high voltages up to 41 kV for 300 sec. The result indicates good power handling capabilities of the antenna as high as 10 MW/m2. This power density is equivalent to RF power coupling of 6 MW into a 4 {omega}/m target plasma, and is typical of advanced tokamak heating scenarios. In addition, vacuum feed through, DC break, and liquid stub developed for 300 sec operation are installed, as well as a 2 MW, 30-60MHz transmitter. The transmitter successfully produced output powers of 600 kW continuously, 1.5{approx}1.8 MW for 300 sec, and 2 MW for 100 msec or shorter pulses. A realtime control system based on DSP and EPICS is developed, installed, and tested on the ICRF system. Initial results from feasibility study indicate that the present antenna and the transmission lines could allow load-resilient operation on KSTAR. Until the KSTAR tokamak start to produce plasmas in 2008, however, hands-on operational experiences are obtained from participating in ICRF heating experiments at ASDEX and DIII-D tokamaks arranged through international cooperation.

  16. Modular open RF architecture: extending VICTORY to RF systems

    Science.gov (United States)

    Melber, Adam; Dirner, Jason; Johnson, Michael

    2015-05-01

    Radio frequency products spanning multiple functions have become increasingly critical to the warfighter. Military use of the electromagnetic spectrum now includes communications, electronic warfare (EW), intelligence, and mission command systems. Due to the urgent needs of counterinsurgency operations, various quick reaction capabilities (QRCs) have been fielded to enhance warfighter capability. Although these QRCs were highly successfully in their respective missions, they were designed independently resulting in significant challenges when integrated on a common platform. This paper discusses how the Modular Open RF Architecture (MORA) addresses these challenges by defining an open architecture for multifunction missions that decomposes monolithic radio systems into high-level components with welldefined functions and interfaces. The functional decomposition maximizes hardware sharing while minimizing added complexity and cost due to modularization. MORA achieves significant size, weight and power (SWaP) savings by allowing hardware such as power amplifiers and antennas to be shared across systems. By separating signal conditioning from the processing that implements the actual radio application, MORA exposes previously inaccessible architecture points, providing system integrators with the flexibility to insert third-party capabilities to address technical challenges and emerging requirements. MORA leverages the Vehicular Integration for Command, Control, Communication, Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR)/EW Interoperability (VICTORY) framework. This paper concludes by discussing how MORA, VICTORY and other standards such as OpenVPX are being leveraged by the U.S. Army Research, Development, and Engineering Command (RDECOM) Communications Electronics Research, Development, and Engineering Center (CERDEC) to define a converged architecture enabling rapid technology insertion, interoperability and reduced SWaP.

  17. MEASURING PATH DEPENDENCY

    Directory of Open Access Journals (Sweden)

    Peter Juhasz

    2017-03-01

    Full Text Available While risk management gained popularity during the last decades even some of the basic risk types are still far out of focus. One of these is path dependency that refers to the uncertainty of how we reach a certain level of total performance over time. While decision makers are careful in accessing how their position will look like the end of certain periods, little attention is given how they will get there through the period. The uncertainty of how a process will develop across a shorter period of time is often “eliminated” by simply choosing a longer planning time interval, what makes path dependency is one of the most often overlooked business risk types. After reviewing the origin of the problem we propose and compare seven risk measures to access path. Traditional risk measures like standard deviation of sub period cash flows fail to capture this risk type. We conclude that in most cases considering the distribution of the expected cash flow effect caused by the path dependency may offer the best method, but we may need to use several measures at the same time to include all the optimisation limits of the given firm

  18. An Unplanned Path

    Science.gov (United States)

    McGarvey, Lynn M.; Sterenberg, Gladys Y.; Long, Julie S.

    2013-01-01

    The authors elucidate what they saw as three important challenges to overcome along the path to becoming elementary school mathematics teacher leaders: marginal interest in math, low self-confidence, and teaching in isolation. To illustrate how these challenges were mitigated, they focus on the stories of two elementary school teachers--Laura and…

  19. Gas path seal

    Science.gov (United States)

    Bill, R. C.; Johnson, R. D. (Inventor)

    1979-01-01

    A gas path seal suitable for use with a turbine engine or compressor is described. A shroud wearable or abradable by the abrasion of the rotor blades of the turbine or compressor shrouds the rotor bades. A compliant backing surrounds the shroud. The backing is a yieldingly deformable porous material covered with a thin ductile layer. A mounting fixture surrounds the backing.

  20. Lexicographic Path Induction

    DEFF Research Database (Denmark)

    Schürmann, Carsten; Sarnat, Jeffrey

    2009-01-01

    an induction principle that combines the comfort of structural induction with the expressive strength of transfinite induction. Using lexicographic path induction, we give a consistency proof of Martin-Löf’s intuitionistic theory of inductive definitions. The consistency of Heyting arithmetic follows directly...

  1. High-visibility interference fringes with femtosecond laser radiation.

    Science.gov (United States)

    Martínez-Cuenca, Raúl; Martínez-León, Lluís; Lancis, Jesús; Mínguez-Vega, Gladys; Mendoza-Yero, Omel; Tajahuerce, Enrique; Clemente, Pere; Andrés, Pedro

    2009-12-07

    We propose and experimentally demonstrate an interferometer for femtosecond pulses with spectral bandwidth about 100 nm. The scheme is based on a Michelson interferometer with a dispersion compensating module. A diffractive lens serves the purpose of equalizing the optical-path-length difference for a wide range of frequencies. In this way, it is possible to register high-contrast interference fringes with micrometric resolution over the whole area of a commercial CCD sensor for broadband femtosecond pulses.

  2. Modelling of interference pattern produced by Michelson interferometer

    Science.gov (United States)

    Glebov, Victor; Lashmanov, Oleg

    2016-04-01

    Using of Michelson interferometer is shown in the field of measurement of periodical displacements of the con-trolled object. The foundations of optical interferometry are presented. The features of Michelson interferometer are described. The mathematical model of interference pattern produced by Michelson interferometer is created. It takes in consideration such parameters as the angles at which the mirrors are located and the lengths of two optical paths.

  3. Rapidly Tunable Dual-Comb RF Photonic Filter for Ultrabroadband RF Spread Spectrum Applications

    OpenAIRE

    Kim, Hyoung-Jun; Leaird, Daniel E.; Weiner, Andrew M.

    2016-01-01

    IEEE Transactions on Microwave Theory and Techniques The article of record as published may be found at http://dx.doi.org/10.1109/tmtt.2016.2599162 We demonstrate a rapidly frequency-tunable radio frequency (RF) filter using microwave photonics technology for ultrawideband RF spread spectrum applications. A pair of electro-optic frequency combs is arranged as a dispersive tapped delay line in a differential detection configuration to implement a programmable finite impulse response RF f...

  4. RF accelerating unit installed in the PSB

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    RF accelerating unit installed in the PSB ring between two bending magnets. Cool air from a heat exchanger is injected into the four cavities from the central feeder and the hot air recirculated via the lateral ducts.

  5. Degreasing and cleaning superconducting RF Niobium cavities

    Energy Technology Data Exchange (ETDEWEB)

    Rauchmiller, Michael; Kellett, Ron; /Fermilab

    2011-09-01

    The purpose and scope of this report is to detail the steps necessary for degreasing and cleaning of superconducting RF Niobium cavities in the A0 clean room. It lists the required equipment and the cleaning procedure.

  6. FERMILAB CRYOMODULE TEST STAND RF INTERLOCK SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Troy [Fermilab; Diamond, J. S. [Fermilab; McDowell, D. [Fermilab; Nicklaus, D. [Fermilab; Prieto, P. S. [Fermilab; Semenov, A. [Fermilab

    2016-10-12

    An interlock system has been designed for the Fermilab Cryo-module Test Stand (CMTS), a test bed for the cryo- modules to be used in the upcoming Linac Coherent Light Source 2 (LCLS-II) project at SLAC. The interlock system features 8 independent subsystems, one per superconducting RF cavity and solid state amplifier (SSA) pair. Each system monitors several devices to detect fault conditions such as arcing in the waveguides or quenching of the SRF system. Additionally each system can detect fault conditions by monitoring the RF power seen at the cavity coupler through a directional coupler. In the event of a fault condition, each system is capable of removing RF signal to the amplifier (via a fast RF switch) as well as turning off the SSA. Additionally, each input signal is available for re- mote viewing and recording via a Fermilab designed digitizer board and MVME 5500 processor.

  7. RF synchronized short pulse laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Fuwa, Yasuhiro, E-mail: fuwa@kyticr.kuicr.kyoto-u.ac.jp; Iwashita, Yoshihisa; Tongu, Hiromu; Inoue, Shunsuke; Hashida, Masaki; Sakabe, Shuji [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Okamura, Masahiro [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Yamazaki, Atsushi [Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603 (Japan)

    2016-02-15

    A laser ion source that produces shortly bunched ion beam is proposed. In this ion source, ions are extracted immediately after the generation of laser plasma by an ultra-short pulse laser before its diffusion. The ions can be injected into radio frequency (RF) accelerating bucket of a subsequent accelerator. As a proof-of-principle experiment of the ion source, a RF resonator is prepared and H{sub 2} gas was ionized by a short pulse laser in the RF electric field in the resonator. As a result, bunched ions with 1.2 mA peak current and 5 ns pulse length were observed at the exit of RF resonator by a probe.

  8. Prototype storage cavity for LEP accelerating RF

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The principle of an RF storage cavity was demonstrated with this prototype, working at 500 MHz. Ian Wilso seems to hold it in his hands. The storage cavities had 4 portholes, 1 each for: RF feed; tuning; connection to the accelerating cavity; vacuum pump. The final storage cavities were larger, to suit the lower LEP accelerating frequency of 352.2 MHz. See also 8002294, 8006510X, 8109346, 8407619X, and Annual Report 1980, p.115.

  9. Integrated Photonics Technology and RF over Fiber

    Science.gov (United States)

    2017-03-01

    lmco.com Abstract: Integrated photonics technology has the capability to enable the insertion of RF over Fiber into military platforms. This paper...significantly lower CSWaP [1]. A PIC based RF over Fiber solution could enable this technology to be inserted into many systems as an alternative to...This protection is usually provided via metallic shielding of the conductor. Unfortunately, this translates into cables that are larger and have a

  10. RF/Optical Demonstration: Focal Plane Assembly

    Science.gov (United States)

    Hoppe, D. J.; Chung, S.; Kovalik, J.; Gama, E.; Fernandez, M. M.

    2016-11-01

    In this article, we describe the second-generation focal plane optical assembly employed in the RF/optical demonstration at DSS-13. This assembly receives reflected light from the two mirror segments mounted on the RF primary. The focal plane assembly contains a fast steering mirror (FSM) to stabilize the focal plane spot, a pupil camera to aid in aligning the two segments, and several additional cameras for receiving the optical signal prior to as well as after the FSM loop.

  11. Vortex formation during rf heating of plasma

    Energy Technology Data Exchange (ETDEWEB)

    Motley, R.W.

    1980-05-01

    Experiments on a test plasma show that the linear theory of waveguide coupling to slow plasma waves begins to break down if the rf power flux exceeds approx. 30 W/cm/sup 2/. Probe measurements reveal that within 30 ..mu..s an undulation appears in the surface plasma near the mouth of the twin waveguide. This surface readjustment is part of a vortex, or off-center convective cell, driven by asymmetric rf heating of the plasma column.

  12. RF waveguide phase-directed power combiners

    Science.gov (United States)

    Nantista, Christopher D.; Dolgashev, Valery A.; Tantawi, Sami G.

    2017-05-02

    High power RF phase-directed power combiners include magic H hybrid and/or superhybrid circuits oriented in orthogonal H-planes and connected using E-plane bends and/or twists to produce compact 3D waveguide circuits, including 8.times.8 and 16.times.16 combiners. Using phase control at the input ports, RF power can be directed to a single output port, enabling fast switching between output ports for applications such as multi-angle radiation therapy.

  13. Overview of High Power Vacuum Dry RF Load Designs

    Energy Technology Data Exchange (ETDEWEB)

    Krasnykh, Anatoly [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-27

    A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is to use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.

  14. Low reflectance high power RF load

    Energy Technology Data Exchange (ETDEWEB)

    Ives, R. Lawrence; Mizuhara, Yosuke M.

    2016-02-02

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  15. Radio frequency superconducting quantum interference device meta-atoms and metamaterials: Experiment, theory and analysis

    Science.gov (United States)

    Zhang, Daimeng

    Metamaterials are 1D, 2D or 3D arrays of artificial atoms. The artificial atoms, called "meta-atoms", can be any component with tailorable electromagnetic properties, such as resonators, LC circuits, nano particles, and so on. By designing the properties of individual meta-atoms and the interaction created by putting them in a lattice, one can create a metamaterial with intriguing properties not found in nature. My Ph. D. work examines the meta-atoms based on radio frequency superconducting quantum interference devices (rf-SQUIDs); their tunability with dc magnetic field, rf magnetic field, and temperature are studied. The rf-SQUIDs are superconducting split ring resonators in which the usual capacitance is supplemented with a Josephson junction, which introduces strong nonlinearity in the rf properties. At relatively low rf magnetic field, a magnetic field tunability of the resonant frequency of up to 80 THz/Gauss by dc magnetic field is observed, and a total frequency tunability of 100% is achieved. The macroscopic quantum superconducting metamaterial also shows manipulative self-induced broadband transparency due to a qualitatively novel nonlinear mechanism that is different from conventional electromagnetically induced transparency (EIT) or its classical analogs. A near complete disappearance of resonant absorption under a range of applied rf flux is observed experimentally and explained theoretically. The transparency comes from the intrinsic bi-stability and can be tuned on/ off easily by altering rf and dc magnetic fields, temperature and history. Hysteretic in situ 100% tunability of transparency paves the way for auto-cloaking metamaterials, intensity dependent filters, and fast-tunable power limiters. An rf-SQUID metamaterial is shown to have qualitatively the same behavior as a single rf-SQUID with regards to dc flux, rf flux and temperature tuning. The two-tone response of self-resonant rf-SQUID meta-atoms and metamaterials is then studied here via

  16. Graphene quantum interference photodetector

    Directory of Open Access Journals (Sweden)

    Mahbub Alam

    2015-03-01

    Full Text Available In this work, a graphene quantum interference (QI photodetector was simulated in two regimes of operation. The structure consists of a graphene nanoribbon, Mach–Zehnder interferometer (MZI, which exhibits a strongly resonant transmission of electrons of specific energies. In the first regime of operation (that of a linear photodetector, low intensity light couples two resonant energy levels, resulting in scattering and differential transmission of current with an external quantum efficiency of up to 5.2%. In the second regime of operation, full current switching is caused by the phase decoherence of the current due to a strong photon flux in one or both of the interferometer arms in the same MZI structure. Graphene QI photodetectors have several distinct advantages: they are of very small size, they do not require p- and n-doped regions, and they exhibit a high external quantum efficiency.

  17. Graphene quantum interference photodetector.

    Science.gov (United States)

    Alam, Mahbub; Voss, Paul L

    2015-01-01

    In this work, a graphene quantum interference (QI) photodetector was simulated in two regimes of operation. The structure consists of a graphene nanoribbon, Mach-Zehnder interferometer (MZI), which exhibits a strongly resonant transmission of electrons of specific energies. In the first regime of operation (that of a linear photodetector), low intensity light couples two resonant energy levels, resulting in scattering and differential transmission of current with an external quantum efficiency of up to 5.2%. In the second regime of operation, full current switching is caused by the phase decoherence of the current due to a strong photon flux in one or both of the interferometer arms in the same MZI structure. Graphene QI photodetectors have several distinct advantages: they are of very small size, they do not require p- and n-doped regions, and they exhibit a high external quantum efficiency.

  18. Attosecond interference in strong-field nonsequential double ionization

    Science.gov (United States)

    Liao, Qing; Li, Ye; Qin, Meiyan; Lu, Peixiang

    2017-12-01

    Kinetic-energy spectra of a single electron from strong-field nonsequential double ionization are investigated in a high-intensity regime with a quantum mechanical model. We find interference fringes with large energy spacings, which increases with the electron kinetic energy. These interference fringes originate from the electronic wave packets born in the recollision by the returning electronic wave packets from the "short" and the "long" quantum paths. Since the recollision happens in a fraction of a near-infrared (NIR) optical cycle, i.e., in an attosecond time interval, the resulting interference fringes exhibit energy spacings much larger than the NIR photon energy. The comparison of the quantum mechanical results with a classical collision model suggests a near-equal energy sharing between two electrons during the recollision process at very high intensities, in contrast to the extremely unequal energy sharing at low intensities.

  19. Depth-filtering in common-path digital holographic microscopy.

    Science.gov (United States)

    Finkeldey, Markus; Göring, Lena; Brenner, Carsten; Hofmann, Martin; Gerhardt, Nils C

    2017-08-07

    We demonstrate a method to select different layers in a sample using a low coherent gating approach combined with a stable common-path quantitative phase imaging microscopy setup. The depth-filtering technique allows us to suppress the negative effects generated by multiple interference patterns of overlaying optical interfaces in the sample. It maintains the compact and stable common-path setup, while enabling images with a high phase sensitivity and acquisition speed. We use a holographic microscope in reflective geometry with a non-tunable low coherence light source. First results of this technique are shown by imaging the hardware layer of a standard micro-controller through its thinned substrate.

  20. Quantum interference between transverse spatial waveguide modes.

    Science.gov (United States)

    Mohanty, Aseema; Zhang, Mian; Dutt, Avik; Ramelow, Sven; Nussenzveig, Paulo; Lipson, Michal

    2017-01-20

    Integrated quantum optics has the potential to markedly reduce the footprint and resource requirements of quantum information processing systems, but its practical implementation demands broader utilization of the available degrees of freedom within the optical field. To date, integrated photonic quantum systems have primarily relied on path encoding. However, in the classical regime, the transverse spatial modes of a multi-mode waveguide have been easily manipulated using the waveguide geometry to densely encode information. Here, we demonstrate quantum interference between the transverse spatial modes within a single multi-mode waveguide using quantum circuit-building blocks. This work shows that spatial modes can be controlled to an unprecedented level and have the potential to enable practical and robust quantum information processing.

  1. Statistics of the uplink co-tier interference in closed access heterogeneous networks

    KAUST Repository

    Tabassum, Hina

    2013-09-01

    In this paper, we derive a statistical model of the co-tier interference in closed access two tier heterogeneous wireless cellular networks with femtocell deployments. The derived model captures the impact of bounded path loss model, wall penetration loss, user distributions, random locations, and density of the femtocells. Firstly, we derive the analytical expressions for the probability density function (PDF) and moment generating function (MGF) of the co-tier interference considering a single femtocell interferer by exploiting the random disc line picking theory from geometric probability. We then derive the MGF of the cumulative interference from all femtocell interferers considering full spectral reuse in each femtocell. Orthogonal spectrum partitioning is assumed between the macrocell and femtocell networks to avoid any cross-tier interference. Finally, the accuracy of the derived expressions is validated through Monte-Carlo simulations and the expressions are shown to be useful in quantifying important network performance metrics such as ergodic capacity. © 2013 IEEE.

  2. Outage performance analysis of underlay cognitive RF and FSO wireless channels

    KAUST Repository

    Ansari, Imran Shafique

    2014-09-01

    In this work, the outage performance analysis of a dual-hop transmission system composed of asymmetric radio frequency (RF) channel cascaded with a free-space optical (FSO) link is presented. For the RF link, an underlay cognitive network is considered where the secondary users share the spectrum with licensed primary users. Indoor femtocells act as a practical example for such networks. More specifically, it is assumed that the RF link applies power control to maintain the interference at the primary network below a predetermined threshold. While the RF channel is modeled by the Rayleigh fading distribution, the FSO link is modeled by a unified Gamma-Gamma turbulence distribution. The FSO link accounts for pointing errors and both types of detection techniques (i.e. heterodyne detection as well as intensity modulation/direct detection (IM/DD)). With this model, a new exact closed-form expression is derived for the outage probability of the end-To-end signal-To-noise ratio of these systems in terms of the Meijer\\'s G function and the Fox\\'s H functions under fixed amplify-and-forward relay scheme. All new analytical results are verified via computer-based Monte-Carlo simulations and are illustrated by some selected numerical results.

  3. BRS 369RF and BRS 370RF: Glyphosate tolerant, high-yielding upland cotton cultivars for central Brazilian savanna

    Directory of Open Access Journals (Sweden)

    Camilo de Lelis Morello

    2015-12-01

    Full Text Available BRS 369RF and BRS 370RF were developed by the EMBRAPA as a part of efforts to create high-yielding germplasm with combinations of transgenic traits. BRS 369RF and BRS 370RF are midseason cultivars and have yield stability, adaptation to the central Brazilian savanna, good fiber quality and tolerance to glyphosate herbicide.

  4. Quantum Interference in Graphene Nanoconstrictions.

    Science.gov (United States)

    Gehring, Pascal; Sadeghi, Hatef; Sangtarash, Sara; Lau, Chit Siong; Liu, Junjie; Ardavan, Arzhang; Warner, Jamie H; Lambert, Colin J; Briggs, G Andrew D; Mol, Jan A

    2016-07-13

    We report quantum interference effects in the electrical conductance of chemical vapor deposited graphene nanoconstrictions fabricated using feedback controlled electroburning. The observed multimode Fabry-Pérot interferences can be attributed to reflections at potential steps inside the channel. Sharp antiresonance features with a Fano line shape are observed. Theoretical modeling reveals that these Fano resonances are due to localized states inside the constriction, which couple to the delocalized states that also give rise to the Fabry-Pérot interference patterns. This study provides new insight into the interplay between two fundamental forms of quantum interference in graphene nanoconstrictions.

  5. Entanglement by Path Identity

    Science.gov (United States)

    Krenn, Mario; Hochrainer, Armin; Lahiri, Mayukh; Zeilinger, Anton

    2017-02-01

    Quantum entanglement is one of the most prominent features of quantum mechanics and forms the basis of quantum information technologies. Here we present a novel method for the creation of quantum entanglement in multipartite and high-dimensional systems. The two ingredients are (i) superposition of photon pairs with different origins and (ii) aligning photons such that their paths are identical. We explain the experimentally feasible creation of various classes of multiphoton entanglement encoded in polarization as well as in high-dimensional Hilbert spaces—starting only from nonentangled photon pairs. For two photons, arbitrary high-dimensional entanglement can be created. The idea of generating entanglement by path identity could also apply to quantum entities other than photons. We discovered the technique by analyzing the output of a computer algorithm. This shows that computer designed quantum experiments can be inspirations for new techniques.

  6. The effect of varying path properties in path steering tasks

    NARCIS (Netherlands)

    L. Liu (Lei); R. van Liere (Robert)

    2010-01-01

    textabstractPath steering is a primitive 3D interaction task that requires the user to navigate through a path of a given length and width. In a previous paper, we have conducted controlled experiments in which users operated a pen input device to steer a cursor through a 3D path subject to

  7. PATHS groundwater hydrologic model

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.W.; Schur, J.A.

    1980-04-01

    A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.

  8. Managing Vulnerabilities of Tactical Wireless RF Network Systems: A Case Study

    Directory of Open Access Journals (Sweden)

    Philip Chan

    2011-11-01

    Full Text Available Organisations and individuals benefit when wireless networks are protected. After assessing the risks associated with wireless technologies, organisations can reduce the risks by applying countermeasures to address specific threats and vulnerabilities. These countermeasures include management, operational and technical controls. While these countermeasures will not prevent all penetrations and adverse events, they can be effective in reducing many of the common risks associated with wireless RF networks. Among engineers dealing with different scaled and interconnected engineering systems, such as tactical wireless RF communication systems, there is a growing need for a means of analyzing complex adaptive systems. We propose a methodology based on the systematic resolution of complex issues to manage the vulnerabilities of tactical wireless RF systems. There are is a need to assemble and balance the results of any successful measure, showing how well each solution meets the system’s objectives. The uncertain arguments used and other test results are combined using a form of mathematical theory for their analysis. Systems engineering thinking supports design decisions and enables decision‐makers to manage and assess the support for each solution. In these circumstances, complexity management arises from the many interacting and conflicting requirements of an increasing range of possible parameters. There may not be a single ‘right’ solution, only a satisfactory set of resolutions which this system helps to facilitate. Smart and innovative performance matrixes are introduced using a mathematical Bayesian network to manage, model, calculate and analyse all the potential vulnerability paths in wireless RF networks

  9. Normalized GNSS Interference Pattern Technique for Altimetry

    Directory of Open Access Journals (Sweden)

    Miguel Angel Ribot

    2014-06-01

    Full Text Available It is well known that reflected signals from Global Navigation Satellite Systems (GNSS can be used for altimetry applications, such as monitoring of water levels and determining snow height. Due to the interference of these reflected signals and the motion of satellites in space, the signal-to-noise ratio (SNR measured at the receiver slowly oscillates. The oscillation rate is proportional to the change in the propagation path difference between the direct and reflected signals, which depends on the satellite elevation angle. Assuming a known receiver position, it is possible to compute the distance between the antenna and the surface of reflection from the measured oscillation rate. This technique is usually known as the interference pattern technique (IPT. In this paper, we propose to normalize the measurements in order to derive an alternative model of the SNR variations. From this model, we define a maximum likelihood estimate of the antenna height that reduces the estimation time to a fraction of one period of the SNR variation. We also derive the Cramér–Rao lower bound for the IPT and use it to assess the sensitivity of different parameters to the estimation of the antenna height. Finally, we propose an experimental framework, and we use it to assess our approach with real GPS L1 C/A signals.

  10. Normalized GNSS interference pattern technique for altimetry.

    Science.gov (United States)

    Ribot, Miguel Angel; Kucwaj, Jean-Christophe; Botteron, Cyril; Reboul, Serge; Stienne, Georges; Leclère, Jérôme; Choquel, Jean-Bernard; Farine, Pierre-André; Benjelloun, Mohammed

    2014-06-11

    It is well known that reflected signals from Global Navigation Satellite Systems (GNSS) can be used for altimetry applications, such as monitoring of water levels and determining snow height. Due to the interference of these reflected signals and the motion of satellites in space, the signal-to-noise ratio (SNR) measured at the receiver slowly oscillates. The oscillation rate is proportional to the change in the propagation path difference between the direct and reflected signals, which depends on the satellite elevation angle. Assuming a known receiver position, it is possible to compute the distance between the antenna and the surface of reflection from the measured oscillation rate. This technique is usually known as the interference pattern technique (IPT). In this paper, we propose to normalize the measurements in order to derive an alternative model of the SNR variations. From this model, we define a maximum likelihood estimate of the antenna height that reduces the estimation time to a fraction of one period of the SNR variation. We also derive the Cramér-Rao lower bound for the IPT and use it to assess the sensitivity of different parameters to the estimation of the antenna height. Finally, we propose an experimental framework, and we use it to assess our approach with real GPS L1 C/A signals.

  11. A robust, selective, and flexible RF front-end for wideband sampling receivers

    Directory of Open Access Journals (Sweden)

    Itamar Melamed

    2017-06-01

    Full Text Available In this paper, we describe the design and evaluation of a second-generation front-end unit for wideband sampling radio receivers. The unit contains a surface acoustic wave (SAW filter to protect the receiver from strong out-of-band signals, an RF limiter to protect both the filter and the receiver from physical damage due to strong signals, and a bias tee with a DC limiter to provide DC power to a masthead low-noise amplifier, if one is used. The unit allows receivers such as those of the universal software radio peripheral (USRP N-series type to be effectively used in RF environments with weak signals and strong in-band and out-of-band interferences.

  12. EPR experiment and 2-photon interferometry: Report of a 2-photon interference experiment

    Science.gov (United States)

    Shih, Y. H.; Rubin, M. H.; Sergienko, A. V.

    1992-01-01

    After a very brief review of the historical Einstein, Podolsky, and Rosen (EPR) experiments, a new two-photon interference type EPR experiment is reported. A two-photon state was generated by optical parametric down conversion. Pairs of light quanta with degenerate frequency but divergent directions of propagation were sent to two independent Michelson interferometers. First and second order interference effectors were studied. Different than other reports, we observed that the second order interference visibility vanished when the optical path difference of the interferometers were much less than the coherence length of the pumping laser beam. However, we also observed that the second order interference behaved differently depending on whether the interferometers were set at equal or different optical path differences.

  13. Shortest Paths and Vehicle Routing

    DEFF Research Database (Denmark)

    Petersen, Bjørn

    This thesis presents how to parallelize a shortest path labeling algorithm. It is shown how to handle Chvátal-Gomory rank-1 cuts in a column generation context. A Branch-and-Cut algorithm is given for the Elementary Shortest Paths Problem with Capacity Constraint. A reformulation of the Vehicle R...... Routing Problem based on partial paths is presented. Finally, a practical application of finding shortest paths in the telecommunication industry is shown....

  14. RF BREAKDOWN STUDIES USING PRESSURIZED CAVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland

    2014-09-21

    Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Part of the problem is that RF breakdown in an evacuated cavity involves a complex mixture of effects, which include the geometry, metallurgy, and surface preparation of the accelerating structures and the make-up and pressure of the residual gas in which plasmas form. Studies showed that high gradients can be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas, as needed for muon cooling channels, without the need for long conditioning times, even in the presence of strong external magnetic fields. This positive result was expected because the dense gas can practically eliminate dark currents and multipacting. In this project we used this high pressure technique to suppress effects of residual vacuum and geometry that are found in evacuated cavities in order to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. One of the interesting and useful outcomes of this project was the unanticipated collaborations with LANL and Fermilab that led to new insights as to the operation of evacuated normal-conducting RF cavities in high external magnetic fields. Other accomplishments included: (1) RF breakdown experiments to test the effects of SF6 dopant in H2 and He gases with Sn, Al, and Cu electrodes were carried out in an 805 MHz cavity and compared to calculations and computer simulations. The heavy corrosion caused by the SF6 components led to the suggestion that a small admixture of oxygen, instead of SF6, to the hydrogen would allow the same advantages without the corrosion in a practical muon beam line. (2) A

  15. Investigation of MIM Diodes for RF Applications

    KAUST Repository

    Khan, Adnan

    2015-05-01

    Metal Insulator Metal (MIM) diodes that work on fast mechanism of tunneling have been used in a number of very high frequency applications such as (Infra-Red) IR detectors and optical Rectennas for energy harvesting. Their ability to operate under zero bias condition as well as the possibility of realizing them through printing makes them attractive for (Radio Frequency) RF applications. However, MIM diodes have not been explored much for RF applications. One reason preventing their widespread RF use is the requirement of a very thin oxide layer essential for the tunneling operation that requires sophisticated nano-fabrication processes. Another issue is that the reliability and stable performance of MIM diodes is highly dependent on the surface roughness of the metallic electrodes. Finally, comprehensive RF characterization has not been performed for MIM diodes reported in the literature, particularly from the perspective of their integration with antennas as well as their rectification abilities. In this thesis, various metal deposition methods such as sputtering, electron beam evaporation, and Atomic Layer Deposition (ALD) are compared in pursuit of achieving low surface roughness. It is worth mentioning here that MIM diodes realized through ALD method have been presented for the first time in this thesis. Amorphous metal alloy have also been investigated in terms of their low surface roughness. Zinc-oxide has been investigated for its suitability as a thin dielectric layer for MIM diodes. Finally, comprehensive RF characterization of MIM diodes has been performed in two ways: 1) by standard S-parameter methods, and 2) by investigating their rectification ability under zero bias operation. It is concluded from the Atomic Force Microscopy (AFM) imaging that surface roughness as low as sub 1 nm can be achieved reliably from crystalline metals such as copper and platinum. This value is comparable to surface roughness achieved from amorphous alloys, which are non

  16. Industrial interference and radio astronomy

    Science.gov (United States)

    Jessner, A.

    2013-07-01

    The interferer - victim scenario is described for the case of industrial interference affecting radio astronomical observatories. The sensitivity of radio astronomical receivers and their interference limits are outlined. EMC above 30 MHz is a serious problem for Radio Astronomy. Interferer (CISPR) and victim (ITU-R RA 769) standards are not harmonised. The emissions from the interferer and their spectral characteristics are not defined sufficiently well by CISPR standards. The required minimum coupling losses (MCL) between an industrial device and radio astronomical antenna depends on device properties but is shown to exceed 140 dB in most cases. Spatial separation of a few km is insufficient on its own, the terrain must shield > 30-40 dB, additional mitigations such as extra shielding or suppression of high frequency emissions may be necessary. A case by case compatibility analysis and tailored EMC measures are required for individual installations. Aggregation of many weak rfi emitters can become serious problem. If deployment densities are high enough, the emission constraints can even exceed those for a single interferer at a short distance from the radio observatory. Compatibility studies must account not only for the single interferer but also for many widely distributed interference sources.

  17. Output Interference in Recognition Memory

    Science.gov (United States)

    Criss, Amy H.; Malmberg, Kenneth J.; Shiffrin, Richard M.

    2011-01-01

    Dennis and Humphreys (2001) proposed that interference in recognition memory arises solely from the prior contexts of the test word: Interference does not arise from memory traces of other words (from events prior to the study list or on the study list, and regardless of similarity to the test item). We evaluate this model using output…

  18. Simulation method for interference fringe patterns in measuring gear tooth flanks by laser interferometry.

    Science.gov (United States)

    Fang, Suping; Wang, Leijie; Komori, Masaharu; Kubo, Aizoh

    2010-11-20

    We present a ray-tracing-based method for simulation of interference fringe patterns (IFPs) for measuring gear tooth flanks with a two-path interferometer. This simulation method involves two steps. In the first step, the profile of an IFP is achieved by means of ray tracing within the object path of the interferometer. In the second step, the profile of an IFP is filled with interference fringes, according to a set of functions from an optical path length to a fringe gray level. To examine the correctness of this simulation method, simulations are performed for two spur involute gears, and the simulated IFPs are verified by experiments using the actual two-path interferometer built on an optical platform.

  19. The RNA interference revolution

    Directory of Open Access Journals (Sweden)

    G. Lenz

    2005-12-01

    Full Text Available The discovery of double-stranded RNA-mediated gene silencing has rapidly led to its use as a method of choice for blocking a gene, and has turned it into one of the most discussed topics in cell biology. Although still in its infancy, the field of RNA interference has already produced a vast array of results, mainly in Caenorhabditis elegans, but recently also in mammalian systems. Micro-RNAs are short hairpins of RNA capable of blocking translation, which are transcribed from genomic DNA and are implicated in several aspects from development to cell signaling. The present review discusses the main methods used for gene silencing in cell culture and animal models, including the selection of target sequences, delivery methods and strategies for a successful silencing. Expected developments are briefly discussed, ranging from reverse genetics to therapeutics. Thus, the development of the new paradigm of RNA-mediated gene silencing has produced two important advances: knowledge of a basic cellular mechanism present in the majority of eukaryotic cells and access to a potent and specific new method for gene silencing.

  20. Focusing properties of discrete RF quadrupoles

    Science.gov (United States)

    Li, Zhi-Hui; Wang, Zhi-Jun

    2017-08-01

    The particle motion equation for a Radio Frequency (RF) quadrupole is derived. The motion equation shows that the general transform matrix of a RF quadrupole with length less than or equal to 0.5βλ (β is the relativistic velocity of particles and λ is wavelength of radio frequency electromagnetic field) can describe the particle motion in an arbitrarily long RF quadrupole. By iterative integration, the general transform matrix of a discrete RF quadrupole is derived from the motion equation. The transform matrix is in form of a power series of focusing parameter B. It shows that for length less than βλ, the series up to the 2nd order of B agrees well with the direct integration results for B up to 30, while for length less than 0.5βλ, the series up to 1st order is already a good approximation of the real solution for B less than 30. The formula of the transform matrix can be integrated into linac or beam line design code to deal with the focusing of discrete RF quadrupoles. Supported by National Natural Science Foundation of China (11375122, 11511140277) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA03020705)

  1. Disentangling Intracycle Interferences in Photoelectron Momentum Distributions Using Orthogonal Two-Color Laser Fields

    Science.gov (United States)

    Xie, Xinhua; Wang, Tian; Yu, ShaoGang; Lai, XuanYang; Roither, Stefan; Kartashov, Daniil; Baltuška, Andrius; Liu, XiaoJun; Staudte, André; Kitzler, Markus

    2017-12-01

    We use orthogonally polarized two-color (OTC) laser pulses to separate quantum paths in the multiphoton ionization of Ar atoms. Our OTC pulses consist of 400 and 800 nm light at a relative intensity ratio of 10 ∶1 . We find a hitherto unobserved interference in the photoelectron momentum distribution, which exhibits a strong dependence on the relative phase of the OTC pulse. Analysis of model calculations reveals that the interference is caused by quantum pathways from nonadjacent quarter cycles.

  2. Characterizing Destructive Quantum Interference in Electron Transport

    OpenAIRE

    Sam-ang, Panu; Reuter, Matthew G.

    2017-01-01

    Destructive quantum interference in electron transport through molecules provides an unconventional route for suppressing electric current. In this work we introduce "interference vectors" for each interference and use them to characterize the interference. An interference vector may be an orbital of the bare molecule, in which case the interference is very sensitive to perturbation. In contrast, an interference vector may be a combination of multiple molecular orbitals, leading to more robus...

  3. Spectral correlation and interference in non-degenerate photon pairs at telecom wavelengths.

    Science.gov (United States)

    Kuo, Paulina S; Gerrits, Thomas; Verma, Varun B; Nam, Sae Woo

    2016-11-01

    We characterize an entangled-photon-pair source that produces signal and idler photons at 1533 nm and 1567 nm using fiber-assisted signal-photon spectroscopy. By erasing the polarization distinguishability, we observe interference between the two down-conversion paths. The observed interference signature is closely related to the spectral correlations between photons in a Hong-Ou-Mandel interferometer. These measurements suggest good indistinguishability between the two down-conversion paths, which is required for high entanglement visibility.

  4. Communications in interference limited networks

    CERN Document Server

    2016-01-01

    This book offers means to handle interference as a central problem of operating wireless networks. It investigates centralized and decentralized methods to avoid and handle interference as well as approaches that resolve interference constructively. The latter type of approach tries to solve the joint detection and estimation problem of several data streams that share a common medium. In fact, an exciting insight into the operation of networks is that it may be beneficial, in terms of an overall throughput, to actively create and manage interference. Thus, when handled properly, "mixing" of data in networks becomes a useful tool of operation rather than the nuisance as which it has been treated traditionally. With the development of mobile, robust, ubiquitous, reliable and instantaneous communication being a driving and enabling factor of an information centric economy, the understanding, mitigation and exploitation of interference in networks must be seen as a centrally important task.

  5. “Virtual IED sensor” at an rf-biased electrode in low-pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanova, M. A.; Zyryanov, S. M. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, SINP MSU, Moscow (Russian Federation); Faculty of Physics, Moscow State University, MSU, Moscow (Russian Federation); Lopaev, D. V.; Rakhimov, A. T. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, SINP MSU, Moscow (Russian Federation)

    2016-07-15

    Energy distribution and the flux of the ions coming on a surface are considered as the key-parameters in anisotropic plasma etching. Since direct ion energy distribution (IED) measurements at the treated surface during plasma processing are often hardly possible, there is an opportunity for virtual ones. This work is devoted to the possibility of such indirect IED and ion flux measurements at an rf-biased electrode in low-pressure rf plasma by using a “virtual IED sensor” which represents “in-situ” IED calculations on the absolute scale in accordance with a plasma sheath model containing a set of measurable external parameters. The “virtual IED sensor” should also involve some external calibration procedure. Applicability and accuracy of the “virtual IED sensor” are validated for a dual-frequency reactive ion etching (RIE) inductively coupled plasma (ICP) reactor with a capacitively coupled rf-biased electrode. The validation is carried out for heavy (Ar) and light (H{sub 2}) gases under different discharge conditions (different ICP powers, rf-bias frequencies, and voltages). An EQP mass-spectrometer and an rf-compensated Langmuir probe (LP) are used to characterize plasma, while an rf-compensated retarded field energy analyzer (RFEA) is applied to measure IED and ion flux at the rf-biased electrode. Besides, the pulsed selfbias method is used as an external calibration procedure for ion flux estimating at the rf-biased electrode. It is shown that pulsed selfbias method allows calibrating the IED absolute scale quite accurately. It is also shown that the “virtual IED sensor” based on the simplest collisionless sheath model allows reproducing well enough the experimental IEDs at the pressures when the sheath thickness s is less than the ion mean free path λ{sub i} (s < λ{sub i}). At higher pressure (when s > λ{sub i}), the difference between calculated and experimental IEDs due to ion collisions in the sheath is observed in the low

  6. Rf Station For Ion Beam Staking In Hirfl-csr

    CERN Document Server

    Arbuzov, V S; Bushuev, A A; Dranichnikov, A N; Gorniker, E I; Kendjebulatov, E K; Kondakov, A A; Kondaurov, M; Kruchkov, Ya G; Krutikhin, S A; Kurkin, G Ya; Mironenko, L A; Motygin, S V; Osipov, V N; Petrov, V M; Pilan, Andrey M; Popov, A M; Rashenko, V V; Selivanov, A N; Shteinke, A R; Vajenin, N F

    2004-01-01

    BINP has developed and produced the RF station for Institute of Modern Physics (IMP), Lanzhou, China, for multipurpose accelerator complex with electron cooling. The RF station will be used for accumulation of ion beams in the main ring of the system. It was successfully tested in IMP and installed into the main accelerator ring of the complex. The RF station includes accelerating RF cavity and RF power generator with power supplies. The station works within frequency range 6.0 - 14.0 MHz, maximum voltage across the accelerating gap of the RF cavity - 20 kV. In the RF cavity the 200 VNP ferrite is utilized. A residual gas pressure in vacuum chamber does not exceed 2,5E-11 mbar. Maximum output power of the RF generator 25 kW. The data acquisition and control of the RF station is based on COMPACT - PCI bus and provides all functions of monitoring and control.

  7. The Penetrability of a Thin Metallic Film Inside the RF Field

    CERN Document Server

    Zhao, Yongxiang; Beuttenmüller, Rolf H; Chang, Xiangyun; Chen Wei; Di Nardo, Robert; Rao, Triveni

    2005-01-01

    Thin metallic film was widely applied in varies area. Especially, recently we are planning to apply it in a "Secondary emission enhanced photo-injector," of which a diamond cathode is coated with a golden film or so on its back to serve as a current path. The thickness of the film is originally considered to be in the order of 10 nm, which is much less than the skin depth, say 1/200. Since it is so thin, that intuitively the RF filed is penetrable. However, we found it is not true. The film will block most of the field. This paper addresses theoretic analysis as well as the experimental results. All demonstrated that the penetrability of a thin film is very poor. Consequently, most of the RF current will flow on the thin film causing a serous heating problem.

  8. Integrating path dependency and path creation in a general understanding of path constitution

    OpenAIRE

    Meyer, Uli; Schubert, Cornelius

    2007-01-01

    Path dependency as it is described by Arthur and David portrays technological developments as historically embedded, emergent processes. In contrast, Garud and Karnøe's notion of path creation emphasises the role of strategic change and deliberate action for the development of new technologies. In this article, we integrate both concepts into a general understanding of path processes which accounts for emergent as well as deliberate modes of path constitution. In addition, we distinguish betw...

  9. Two Generations of Path Dependence

    DEFF Research Database (Denmark)

    Madsen, Mogens Ove

      Even if there is no fully articulated and generally accepted theory of Path Dependence it has eagerly been taken up across a wide range of social sciences - primarily coming from economics. Path Dependence is most of all a metaphor that offers reason to believe, that some political, social...... or economic processes have multiple possible paths of outcomes, rather than a unique path of equilibria. The selection among outcomes may depend on contingent choices or events - outcomes of path-dependent processes require a very relevant study - a perception of history....

  10. Path Through the Wheat

    Directory of Open Access Journals (Sweden)

    David Middleton

    2005-01-01

    Full Text Available The hillside’s tidal waves of yellow-green Break downward into full-grown stalks of wheat In which a peasant, shouldering his hoe Passes along a snaking narrow path -- A teeming place through which his hard thighs press And where his head just barely stays above The swaying grain, drunken in abundance, Farm buildings almost floating on the swells Beyond which sea gulls gliding white in air Fly down on out of sight to salty fields, Taking the channel fish off Normandy, A surfeit fit for Eden i...

  11. Rocket Flight Path

    Directory of Open Access Journals (Sweden)

    Jamie Waters

    2014-09-01

    Full Text Available This project uses Newton’s Second Law of Motion, Euler’s method, basic physics, and basic calculus to model the flight path of a rocket. From this, one can find the height and velocity at any point from launch to the maximum altitude, or apogee. This can then be compared to the actual values to see if the method of estimation is a plausible. The rocket used for this project is modeled after Bullistic-1 which was launched by the Society of Aeronautics and Rocketry at the University of South Florida.

  12. JAVA PathFinder

    Science.gov (United States)

    Mehhtz, Peter

    2005-01-01

    JPF is an explicit state software model checker for Java bytecode. Today, JPF is a swiss army knife for all sort of runtime based verification purposes. This basically means JPF is a Java virtual machine that executes your program not just once (like a normal VM), but theoretically in all possible ways, checking for property violations like deadlocks or unhandled exceptions along all potential execution paths. If it finds an error, JPF reports the whole execution that leads to it. Unlike a normal debugger, JPF keeps track of every step how it got to the defect.

  13. High RF Power Production for CLIC

    CERN Document Server

    Syratchev, I; Adli, E; Taborelli, M

    2007-01-01

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and delivered to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability and main linac RF power needs. Another requirement is to provide local RF power termination in case of accelerating structure failure (ON/OFF capability). Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design

  14. Investigation of RF Signal Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Soudeh Heydari Nasab

    2010-01-01

    Full Text Available The potential utilization of RF signals for DC power is experimentally investigated. The aim of the work is to investigate the levels of power that can be harvested from the air and processed to achieve levels of energy that are sufficient to charge up low-power electronic circuits. The work presented shows field measurements from two selected regions: an urbanized hence signal congested area and a less populated one. An RF harvesting system has been specifically designed, built, and shown to successfully pick up enough energy to power up circuits. The work concludes that while RF harvesting was successful under certain conditions, however, it required the support of other energy harvesting techniques to replace a battery. Efficiency considerations have, hence, placed emphasis on comparing the developed harvester to other systems.

  15. Long-Term Propagation Statistics and Availability Performance Assessment for Simulated Terrestrial Hybrid FSO/RF System

    Directory of Open Access Journals (Sweden)

    Fiser Ondrej

    2011-01-01

    Full Text Available Long-term monthly and annual statistics of the attenuation of electromagnetic waves that have been obtained from 6 years of measurements on a free space optical path, 853 meters long, with a wavelength of 850 nm and on a precisely parallel radio path with a frequency of 58 GHz are presented. All the attenuation events observed are systematically classified according to the hydrometeor type causing the particular event. Monthly and yearly propagation statistics on the free space optical path and radio path are obtained. The influence of individual hydrometeors on attenuation is analysed. The obtained propagation statistics are compared to the calculated statistics using ITU-R models. The calculated attenuation statistics both at 850 nm and 58 GHz underestimate the measured statistics for higher attenuation levels. The availability performance of a simulated hybrid FSO/RF system is analysed based on the measured data.

  16. Design of an L-band normally conducting RF gun cavity for high peak and average RF power

    Energy Technology Data Exchange (ETDEWEB)

    Paramonov, V., E-mail: paramono@inr.ru [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Philipp, S. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Rybakov, I.; Skassyrskaya, A. [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Stephan, F. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany)

    2017-05-11

    To provide high quality electron bunches for linear accelerators used in free electron lasers and particle colliders, RF gun cavities operate with extreme electric fields, resulting in a high pulsed RF power. The main L-band superconducting linacs of such facilities also require a long RF pulse length, resulting in a high average dissipated RF power in the gun cavity. The newly developed cavity based on the proven advantages of the existing DESY RF gun cavities, underwent significant changes. The shape of the cells is optimized to reduce the maximal surface electric field and RF loss power. Furthermore, the cavity is equipped with an RF probe to measure the field amplitude and phase. The elaborated cooling circuit design results in a lower temperature rise on the cavity RF surface and permits higher dissipated RF power. The paper presents the main solutions and results of the cavity design.

  17. Design of an L-band normally conducting RF gun cavity for high peak and average RF power

    Science.gov (United States)

    Paramonov, V.; Philipp, S.; Rybakov, I.; Skassyrskaya, A.; Stephan, F.

    2017-05-01

    To provide high quality electron bunches for linear accelerators used in free electron lasers and particle colliders, RF gun cavities operate with extreme electric fields, resulting in a high pulsed RF power. The main L-band superconducting linacs of such facilities also require a long RF pulse length, resulting in a high average dissipated RF power in the gun cavity. The newly developed cavity based on the proven advantages of the existing DESY RF gun cavities, underwent significant changes. The shape of the cells is optimized to reduce the maximal surface electric field and RF loss power. Furthermore, the cavity is equipped with an RF probe to measure the field amplitude and phase. The elaborated cooling circuit design results in a lower temperature rise on the cavity RF surface and permits higher dissipated RF power. The paper presents the main solutions and results of the cavity design.

  18. RF installation for the grain disinfestation

    CERN Document Server

    Zajtzev, B V; Kobetz, A F; Rudiak, B I

    2001-01-01

    The ecologically pure method of grain product disinfestations through the grain treatment with the RF electric field is described. The experimental data obtained showed that with strengths of the electrical RF field of E=5 kV/cm and frequency of 80 MHz the relative death rate is 100%.The time of the grain treatment it this case is 1 sec. The pulses with a duration of 600 mu s and repetition rate of 2 Hz were used, the duration of the front was 10 mu s. The schematic layout of installation with a productivity of 50 tones/h and power of 10 kW is given.

  19. RF MEMS theory, design, and technology

    CERN Document Server

    Rebeiz, Gabriel M

    2003-01-01

    Ultrasmall Radio Frequency and Micro-wave Microelectromechanical systems (RF MEMs), such as switches, varactors, and phase shifters, exhibit nearly zero power consumption or loss. For this reason, they are being developed intensively by corporations worldwide for use in telecommunications equipment. This book acquaints readers with the basics of RF MEMs and describes how to design practical circuits and devices with them. The author, an acknowledged expert in the field, presents a range of real-world applications and shares many valuable tricks of the trade.

  20. Fundamentals of RF and microwave transistor amplifiers

    CERN Document Server

    Bahl, Inder J

    2009-01-01

    A Comprehensive and Up-to-Date Treatment of RF and Microwave Transistor Amplifiers This book provides state-of-the-art coverage of RF and microwave transistor amplifiers, including low-noise, narrowband, broadband, linear, high-power, high-efficiency, and high-voltage. Topics covered include modeling, analysis, design, packaging, and thermal and fabrication considerations. Through a unique integration of theory and practice, readers will learn to solve amplifier-related design problems ranging from matching networks to biasing and stability. More than 240 problems are included to help read

  1. Lumped elements for RF and microwave circuits

    CERN Document Server

    Bahl, Inder

    2003-01-01

    Due to the unprecedented growth in wireless applications over the past decade, development of low-cost solutions for RF and microwave communication systems has become of great importance. This practical new book is the first comprehensive treatment of lumped elements, which are playing a critical role in the development of the circuits that make these cost-effective systems possible. The books offers you an in-depth understanding of the different types of RF and microwave circuit elements, including inductors, capacitors, resistors, transformers, via holes, airbridges, and crossovers. Support

  2. Internet's critical path horizon

    Science.gov (United States)

    Valverde, S.; Solé, R. V.

    2004-03-01

    Internet is known to display a highly heterogeneous structure and complex fluctuations in its traffic dynamics. Congestion seems to be an inevitable result of user's behavior coupled to the network dynamics and it effects should be minimized by choosing appropriate routing strategies. But what are the requirements of routing depth in order to optimize the traffic flow? In this paper we analyse the behavior of Internet traffic with a topologically realistic spatial structure as described in a previous study [S.-H. Yook et al., Proc. Natl Acad. Sci. USA 99, 13382 (2002)]. The model involves self-regulation of packet generation and different levels of routing depth. It is shown that it reproduces the relevant key, statistical features of Internet's traffic. Moreover, we also report the existence of a critical path horizon defining a transition from low-efficient traffic to highly efficient flow. This transition is actually a direct consequence of the web's small world architecture exploited by the routing algorithm. Once routing tables reach the network diameter, the traffic experiences a sudden transition from a low-efficient to a highly-efficient behavior. It is conjectured that routing policies might have spontaneously reached such a compromise in a distributed manner. Internet would thus be operating close to such critical path horizon.

  3. Interference in motor learning - is motor interference sensory?

    DEFF Research Database (Denmark)

    Jensen, Jesper Lundbye; Petersen, Tue Hvass; Rothwell, John C

    Skill gained after a short period of practice in one motor task can be abolished if a second task is learned shortly afterwards, but not all motor activities cause interference. After all it is not necessary to remain completely still after practicing a task for learning to occur. Here we ask which...... mechanisms determine whether or not interference occurs. We hypothesised that interference requires the same neural circuits to be engaged in the two tasks and provoke competing processes of synaptic plasticity. To test this, subjects learned a ballistic ankle plantarflexion task. Early motor memory...... learning of the primary task, no interference was observed. Previous studies have suggested that primary motor cortex (M1) may be involved in early motor memory consolidation. 1Hz Repetitive Transcranial Magnetic Stimulation (rTMS) of corticospinal motor output at intensities below ankle movement threshold...

  4. Cryoelectron Microscopic Structures of Eukaryotic Translation Termination Complexes Containing eRF1-eRF3 or eRF1-ABCE1

    Directory of Open Access Journals (Sweden)

    Anne Preis

    2014-07-01

    Full Text Available Termination and ribosome recycling are essential processes in translation. In eukaryotes, a stop codon in the ribosomal A site is decoded by a ternary complex consisting of release factors eRF1 and guanosine triphosphate (GTP-bound eRF3. After GTP hydrolysis, eRF3 dissociates, and ABCE1 can bind to eRF1-loaded ribosomes to stimulate peptide release and ribosomal subunit dissociation. Here, we present cryoelectron microscopic (cryo-EM structures of a pretermination complex containing eRF1-eRF3 and a termination/prerecycling complex containing eRF1-ABCE1. eRF1 undergoes drastic conformational changes: its central domain harboring the catalytically important GGQ loop is either packed against eRF3 or swung toward the peptidyl transferase center when bound to ABCE1. Additionally, in complex with eRF3, the N-terminal domain of eRF1 positions the conserved NIKS motif proximal to the stop codon, supporting its suggested role in decoding, yet it appears to be delocalized in the presence of ABCE1. These results suggest that stop codon decoding and peptide release can be uncoupled during termination.

  5. Simulations of S-band RF gun with RF beam control

    Science.gov (United States)

    Barnyakov, A. M.; Levichev, A. E.; Maltseva, M. V.; Nikiforov, D. A.

    2017-08-01

    The RF gun with RF control is discussed. It is based on the RF triode and two kinds of the cavities. The first cavity is a coaxial cavity with cathode-grid assembly where beam bunches are formed, the second one is an accelerating cavity. The features of such a gun are the following: bunched and relativistic beams in the output of the injector, absence of the back bombarding electrons, low energy spread and short length of the bunches. The scheme of the injector is shown. The electromagnetic field simulation and longitudinal beam dynamics are presented. The possible using of the injector is discussed.

  6. pathChirp: Efficient Available Bandwidth Estimation for Network Paths

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, Les

    2003-04-30

    This paper presents pathChirp, a new active probing tool for estimating the available bandwidth on a communication network path. Based on the concept of ''self-induced congestion,'' pathChirp features an exponential flight pattern of probes we call a chirp. Packet chips offer several significant advantages over current probing schemes based on packet pairs or packet trains. By rapidly increasing the probing rate within each chirp, pathChirp obtains a rich set of information from which to dynamically estimate the available bandwidth. Since it uses only packet interarrival times for estimation, pathChirp does not require synchronous nor highly stable clocks at the sender and receiver. We test pathChirp with simulations and Internet experiments and find that it provides good estimates of the available bandwidth while using only a fraction of the number of probe bytes that current state-of-the-art techniques use.

  7. Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices.

    Science.gov (United States)

    Bonneau, Damien; Lobino, Mirko; Jiang, Pisu; Natarajan, Chandra M; Tanner, Michael G; Hadfield, Robert H; Dorenbos, Sanders N; Zwiller, Val; Thompson, Mark G; O'Brien, Jeremy L

    2012-02-03

    We demonstrate fast polarization and path control of photons at 1550 nm in lithium niobate waveguide devices using the electro-optic effect. We show heralded single photon state engineering, quantum interference, fast state preparation of two entangled photons, and feedback control of quantum interference. These results point the way to a single platform that will enable the integration of nonlinear single photon sources and fast reconfigurable circuits for future photonic quantum information science and technology.

  8. Precoding Design for Single-RF Massive MIMO Systems: A Large System Analysis

    KAUST Repository

    Sifaou, Houssem

    2016-08-26

    This work revisits a recently proposed precoding design for massive multiple-input multiple output (MIMO) systems that is based on the use of an instantaneous total power constraint. The main advantages of this technique lie in its suitability to the recently proposed single radio frequency (RF) MIMO transmitter coupled with a very-high power efficiency. Such features have been proven using simulations for uncorrelated channels. Based on tools from random matrix theory, we propose in this work to analyze the performance of this precoder for more involved channels accounting for spatial correlation. The obtained expressions are then optimized in order to maximize the signalto- interference-plus-noise ratio (SINR). Simulation results are provided in order to illustrate the performance of the optimized precoder in terms of peak-to-average power ratio (PAPR) and signal-to-interference-plus-noise ratio (SINR). © 2012 IEEE.

  9. Pacemaker interference by magnetic fields at power line frequencies.

    Science.gov (United States)

    Dawson, Trevor W; Caputa, Kris; Stuchly, Maria A; Shepard, Richard B; Kavet, Robert; Sastre, Antonio

    2002-03-01

    Human exposure to external 50/60-Hz electric and magnetic fields induces electric fields within the body. These induced fields can cause interference with implanted pacemakers. In the case of exposure to magnetic fields, the pacemaker leads are subject to induced electromotive forces, with current return paths being provided by the conducting body tissues. Modern computing resources used in conjunction with millimeter-scale human body conductivity models make numerical modeling a viable technique for examining any such interference. In this paper, an existing well-verified scalar-potential finite-difference frequency-domain code is modified to handle thin conducting wires embedded in the body. The effects of each wire can be included numerically by a simple modification to the existing code. Results are computed for two pacemaker lead insertion paths, terminating at either atrial or ventricular electrodes in the heart. Computations are performed for three orthogonal 60-Hz magnetic field orientations. Comparison with simplified estimates from Faraday's law applied directly to extracorporeal loops representing unipolar leads underscores problems associated with this simplified approach. Numerically estimated electromagnetic interference (EMI) levels under the worst case scenarios are about 40 microT for atrial electrodes, and 140 microT for ventricular electrodes. These methods could also be applied to studying EMI with other implanted devices such as cardiac defibrillators.

  10. Suppression of stray interference peaks of optical joint in white light interferometer

    Science.gov (United States)

    Cheng, Yongqing; Yang, Jun; Yuan, Yonggui; Zhang, Haoliang; Yang, Zhe; Lv, Yan; Yuan, Libo

    2017-04-01

    The stray interference peaks (SIPs) are an important factor resulting in the misjudgment of measurement information in white light interferometer (WLI). SIPs are generated by the residual reflected light beams. We theoretically analyze the interference conditions of the SIP. The analysis shows that these SIPs are discrete main interference peak outside and have different orders. We present a stagger optical path (SOP) method for suppressing or eliminating these SIP which will appear in the interference pattern. The SOP means that there is an appropriate fiber length determined by the delay amount of delay line between each joint. Moreover, an experiment with two joints, for simplicity, is given as an example. Experimental results show that the high-order SIP from the joints can be suppressed by the SOP to obtain a clean interference pattern.

  11. Multipolar interference effects in nanophotonics

    CERN Document Server

    Liu, Wei

    2016-01-01

    Scattering of electromagnetic waves by an arbitrary nanoscale object can be characterized by a multipole decomposition of the electromagnetic field that allows to describe the scattering intensity and radiation pattern through interferences of dominating excited multipole modes. In modern nanophotonics, both generation and interference of multipole modes start to play an indispensable role, and they enable nanoscale manipulation of light with many related applications. Here we review the multipolar interference effects in metallic, metal-dielectric, and dielectric nanostructures, and suggest a comprehensive view on many phenomena involving the interferences of electric, magnetic and toroidal multipoles, which drive a number of recently discussed effects in nanophotonics such as unidirectional scattering, effective optical antiferromagnetism, generalized Kerker scattering with controlled angular patterns, generalized Brewster angle, and nonradiating optical anapoles. We further discuss other types of possible ...

  12. Quantum Erasure: Quantum Interference Revisited

    OpenAIRE

    Walborn, Stephen P.; Cunha, Marcelo O. Terra; Pádua, Sebastião; Monken, Carlos H.

    2005-01-01

    Recent experiments in quantum optics have shed light on the foundations of quantum physics. Quantum erasers - modified quantum interference experiments - show that quantum entanglement is responsible for the complementarity principle.

  13. Modeling and simulation for RF system design

    CERN Document Server

    Frevert, Ronny; Jancke, Roland; Knöchel, Uwe; Schwarz, Peter; Kakerow, Ralf; Darianian, Mohsen

    2005-01-01

    Focusing on RF specific modeling and simulation methods, and system and circuit level descriptions, this work contains application-oriented training material. Accompanied by a CD- ROM, it combines the presentation of a mixed-signal design flow, an introduction into VHDL-AMS and Verilog-A, and the application of commercially available simulators.

  14. RF Circuit Design in Nanometer CMOS

    NARCIS (Netherlands)

    Nauta, Bram

    2007-01-01

    With CMOS technology entering the nanometer regime, the design of analog and RF circuits is complicated by low supply voltages, very non-linear (and nonquadratic) devices and large 1/f noise. At the same time, circuits are required to operate over increasingly wide bandwidths to implement modern

  15. Experimental study of rf pulsed heating

    Directory of Open Access Journals (Sweden)

    Lisa Laurent

    2011-04-01

    Full Text Available Cyclic thermal stresses produced by rf pulsed heating can be the limiting factor on the attainable reliable gradients for room temperature linear accelerators. This is especially true for structures that have complicated features for wakefield damping. These limits could be pushed higher by using special types of copper, copper alloys, or other conducting metals in constructing partial or complete accelerator structures. Here we present an experimental study aimed at determining the potential of these materials for tolerating cyclic thermal fatigue due to rf magnetic fields. A special cavity that has no electric field on the surface was employed in these studies. The cavity shape concentrates the magnetic field on one flat surface where the test material is placed. The materials tested in this study have included oxygen free electronic grade copper, copper zirconium, copper chromium, hot isostatically pressed copper, single crystal copper, electroplated copper, Glidcop®, copper silver, and silver plated copper. The samples were exposed to different machining and heat treatment processes prior to rf processing. Each sample was tested to a peak pulsed heating temperature of approximately 110°C and remained at this temperature for approximately 10×10^{6} rf pulses. In general, the results showed the possibility of pushing the gradient limits due to pulsed heating fatigue by the use of copper zirconium and copper chromium alloys.

  16. RF building block modeling: optimization and synthesis

    NARCIS (Netherlands)

    Cheng, W.

    2012-01-01

    For circuit designers it is desirable to have relatively simple RF circuit models that do give decent estimation accuracy and provide sufficient understanding of circuits. Chapter 2 in this thesis shows a general weak nonlinearity model that meets these demands. Using a method that is related to

  17. Commissioning of the MICE RF System

    CERN Document Server

    Moss, A.; Stanley, T.; White, C.; Ronald, K.; Whyte, C.G.; Dick, A.J.; Speirs, D.C.; Alsari, S.

    2014-01-01

    The Muon Ionisation Cooling Experiment (MICE) is being constructed at Rutherford Appleton Laboratory in the UK. The muon beam will be cooled using multiple hydrogen absorbers then reaccelerated using an RF cavity system operating at 201MHz. This paper describes recent progress in commissioning the amplifier systems at their design operation conditions, installation and operation as part of the MICE project.

  18. Higher-order mode rf guns

    Directory of Open Access Journals (Sweden)

    John W. Lewellen

    2001-04-01

    Full Text Available Traditional photocathode rf gun design is based around the use of TM_{0,1,0}-mode cavities. This is typically done in the interest of obtaining the highest possible gradient per unit supplied rf power and for historical reasons. In a multicell, aperture-coupled photoinjector, however, the gun as a whole is produced from strongly coupled cavities oscillating in a π mode. This design requires very careful preparation and tuning, as the field balance and resonant frequencies are easily disturbed. Side-coupled designs are often avoided because of the dipole modes introduced into the cavity fields. This paper proposes the use of a single higher-order mode rf cavity in order to generate the desired on-axis fields. It is shown that the field experienced by a beam in a higher-order mode rf gun is initially very similar to traditional 1.5- or 2.5-cell π-mode gun fields, and projected performance in terms of beam quality is also comparable. The new design has the advantages of much greater ease of fabrication, immunity from coupled-cell effects, and simpler tuning procedures. Because of the gun geometry, the possibility also exists for improved temperature stabilization and cooling for high duty-cycle applications.

  19. Prototype storage cavity for LEP accelerating RF

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The principle of an RF storage cavity was demonstrated with this prototype, working at 500 MHz. The final storage cavities were larger, to suit the LEP accelerating frequency of 352.2 MHz. Cu-tubes for watercooling are brazed onto the upper half, the lower half is to follow. See also 8006061, 8109346, 8407619X, and Annual Report 1980, p.115.

  20. Sources of Emittance in RF Photocathode Injectors

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, David [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-12-11

    Advances in electron beam technology have been central to creating the current generation of x-ray free electron lasers and ultra-fast electron microscopes. These once exotic devices have become essential tools for basic research and applied science. One important beam technology for both is the electron source which, for many of these instruments, is the photocathode RF gun. The invention of the photocathode gun and the concepts of emittance compensation and beam matching in the presence of space charge and RF forces have made these high-quality beams possible. Achieving even brighter beams requires a taking a finer resolution view of the electron dynamics near the cathode during photoemission and the initial acceleration of the beam. In addition, the high brightness beam is more sensitive to degradation by the optical aberrations of the gun’s RF and magnetic lenses. This paper discusses these topics including the beam properties due to fundamental photoemission physics, space charge effects close to the cathode, and optical distortions introduced by the RF and solenoid fields. Analytic relations for these phenomena are derived and compared with numerical simulations.

  1. 47 CFR 101.1425 - RF safety.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false RF safety. 101.1425 Section 101.1425 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE... safety. MVDDS stations in the 12.2-12.7 GHz frequency band do not operate with output powers that equal...

  2. European Frontiers in RF GaN

    NARCIS (Netherlands)

    Vliet, F.E. van; Hek, P. de

    2015-01-01

    In this overview paper, a summary of the European academic and industrial status on RF GaN is given. The roles of EDA and ESA are highlighted, and examples of on-going research activities are presented. A set of HPAs over frequency, representative of today's European status, is discussed. © 2015

  3. RF Voltage Measurements on ICRF Antennas

    Science.gov (United States)

    Bell, G. L.; Goulding, R. H.; Hoffman, D. J.; Wilgen, J. B.; Zhang, H. M.; Ryan, P. M.; Syed, G. M. S.; Kaye, A. S.

    1996-11-01

    Particle and heat flux on the plasma facing surfaces of high-power RF antennas used in fusion devices can result in damage to the antenna structures. High impedance capacitive probe measurements of the RF voltages on Faraday shields of several loop antennas indicate that voltages as high as 30% of the drive voltage can exist for 0/0 phasing (D.J. Hoffman, et al., AIP Conf. Proc. 355), 368 (Palm Spgs., CA, 1995).. These voltages can contribute to increased energy deposition on the antenna owing to increased RF sheath voltages. We report on continued efforts to understand the source and to control these RF voltages. E and B field distributions have been measured on the mock-up of the JET A2 antenna using standard B-dot probes and novel E-field probes positioned with a new automated scanning system. These data are compared with calculated fields from 3-D antenna models. The measurements demonstrate the dependency of the surface E-fields on the phasing of the strap currents and show the charge accumulation at the antenna top and bottom predicted by the models.

  4. RF Design of the LCLS Gun

    Energy Technology Data Exchange (ETDEWEB)

    Limborg-Deprey, C

    2010-12-13

    Final dimensions for the LCLS RF gun are described. This gun, referred to as the LCLS gun, is a modified version of the UCLA/BNL/SLAC 1.6 cell S-Band RF gun [1], referred to as the prototype gun. The changes include a larger mode separation (15 MHz for the LCLS gun vs. 3.5 MHz for the prototype gun), a larger radius at the iris between the 2 cells, a reduced surface field on the curvature of the iris between the two cells, Z power coupling, increased cooling channels for operation at 120 Hz, dual rf feed, deformation tuning of the full cell, and field probes in both cells. Temporal shaping of the klystron pulse, to reduce the average power dissipated in the gun, has also been adopted. By increasing the mode separation, the amplitude of the 0-mode electric field on the cathode decreases from 10% of the peak on axis field for the prototype gun to less than 3% for the LCLS gun for the steady state fields. Beam performance is improved as shown by the PARMELA simulations. The gun should be designed to accept a future load lock system. Modifications follow the recommendations of our RF review committee [2]. Files and reference documents are compiled in Section IV.

  5. Status of RF superconductivity at Argonne

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.

    1989-01-01

    Development of a superconducting (SC) slow-wave structures began at Argonne National Laboratory (ANL) in 1971, and led to the first SC heavy-ion linac (ATLAS - the Argonne Tandem-Linac Accelerating System), which began regularly scheduled operation in 1978. To date, more than 40,000 hours of bean-on target operating time has been accumulated with ATLAS. The Physics Division at ANL has continued to develop SC RF technology for accelerating heavy-ions, with the result that the SC linac has, up to the present, has been in an almost continuous process of upgrade and expansion. It should be noted that this has been accomplished while at the same time maintaining a vigorous operating schedule in support of the nuclear and atomic physics research programs of the division. In 1987, the Engineering Physics Division at ANL began development of SC RF components for the acceleration of high-brightness proton and deuterium beams. This work has included the evaluation of RF properties of high-{Tc} oxide superconductors, both for the above and for other applications. The two divisions collaborated while they worked on several applications of RF SC, and also worked to develop the technology generally. 11 refs., 6 figs.

  6. Novel RF-MEMS capacitive switching structures

    NARCIS (Netherlands)

    Rottenberg, X.; Jansen, Henricus V.; Fiorini, P.; De Raedt, W.; Tilmans, H.A.C.

    2002-01-01

    This paper reports on novel RF-MEMS capacitive switching devices implementing an electrically floating metal layer covering the dielectric to ensure intimate contact with the bridge in the down state. This results in an optimal switch down capacitance and allows optimisation of the down/up

  7. Characterization of dielectric charging in RF MEMS

    NARCIS (Netherlands)

    Herfst, R.W.; Huizing, H.G.A.; Steeneken, P.G.; Schmitz, Jurriaan

    Capacitive RF MEMS switches show great promise for use in wireless communication devices such as mobile phones, but the successful application of these switches is hindered by the reliability of the devices: charge injection in the dielectric layer (SiN) can cause irreversible stiction of the moving

  8. RF MEMS Switches for Mobile Communication

    NARCIS (Netherlands)

    Steeneken, Peter; Herfst, R.W.; Suy, Hilco; Goossens, Martijn; van Beek, Joost; Bielen, Jeroen; Stulemeijer, Jiri; Schmitz, Jurriaan

    2008-01-01

    Switched capacitors based on radio frequency microelectromechanical systems (RF MEMS) can enable a breakthrough in radio technology. Their switching principle is based on the mechanical movement of the plates of a parallel plate capacitor using the electrostatic force. The resulting difference in

  9. RF Spectrum sensing in CMOS Exploiting Crosscorrelation

    NARCIS (Netherlands)

    Oude Alink, M.S.

    2013-01-01

    The introduction of new wireless services, the demand for higher datarates, and higher traffic volumes call for a more efficient use of the RF spectrum than what is currently possible with static frequency allocation. Dynamic spectrum access offers a more efficient use by allowing unlicensed users

  10. MRI compatibility study of an integrated PET/RF-coil prototype system at 3T.

    Science.gov (United States)

    Akram, Md Shahadat Hossain; Obata, Takayuki; Suga, Mikio; Nishikido, Fumihiko; Yoshida, Eiji; Saito, Kazuyuki; Yamaya, Taiga

    2017-10-01

    We have been working on the development of a PET insert for existing magnetic resonance imaging (MRI) systems for simultaneous PET/MR imaging, which integrates radiofrequency (RF)-shielded PET detector modules with an RF head coil. In order to avoid interferences between the PET detector circuits and the different MRI-generated electromagnetic fields, PET detector circuits were installed inside eight Cu-shielded fiber-reinforced plastic boxes, and these eight shielded PET modules were integrated in between the eight elements of a 270-mm-diameter and 280-mm-axial-length cylindrical birdcage RF coil, which was designed to be used with a 3-T clinical MRI system. The diameter of the PET scintillators with a 12-mm axial field-of-view became 255mm, which was very close to the imaging region. In this study, we have investigated the effects of this PET/RF-coil integrated system on the performance of MRI, which include the evaluation of static field (Bo) inhomogeneity, RF field (B1) distribution, local specific absorption rate (SAR) distribution, average SAR, and signal-to-noise ratio (SNR). For the central 170-mm-diameter and 80-mm-axial-length of a homogenous cylindrical phantom (with the total diameter of 200mm and axial-length of 100mm), an increase of about a maximum of 3μT in the Bo inhomogeneity was found, both in the central and 40-mm off-centered transverse planes, and a 5 percentage point increase of B1 field inhomogeneity was observed in the central transverse plane (from 84% without PET to 79% with PET), while B1 homogeneity along the coronal plane was almost unchanged (77%) following the integration of PET with the RF head coil. The average SAR and maximum local SAR were increased by 1.21 and 1.62 times, respectively. However, the SNR study for both spin-echo and gradient-echo sequences showed a reduction of about 70% and 60%, respectively, because of the shielded PET modules. The overall results prove the feasibility of this integrated PET/RF-coil system for

  11. RF Anechoic Chambers, Tri-Service Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — In collaboration with the Navy, there are 12 RF Anechoic and static free exposure chambers located at TSRL. These chambers cover the majority of the RF spectrum and...

  12. Steered transition path sampling.

    Science.gov (United States)

    Guttenberg, Nicholas; Dinner, Aaron R; Weare, Jonathan

    2012-06-21

    We introduce a path sampling method for obtaining statistical properties of an arbitrary stochastic dynamics. The method works by decomposing a trajectory in time, estimating the probability of satisfying a progress constraint, modifying the dynamics based on that probability, and then reweighting to calculate averages. Because the progress constraint can be formulated in terms of occurrences of events within time intervals, the method is particularly well suited for controlling the sampling of currents of dynamic events. We demonstrate the method for calculating transition probabilities in barrier crossing problems and survival probabilities in strongly diffusive systems with absorbing states, which are difficult to treat by shooting. We discuss the relation of the algorithm to other methods.

  13. Hybrid waveguide-bulk multi-path interferometer with switchable amplitude and phase

    Directory of Open Access Journals (Sweden)

    Robert Keil

    2016-11-01

    Full Text Available We design and realise a hybrid interferometer consisting of three paths based on integrated as well as on bulk optical components. This hybrid construction offers a good compromise between stability and footprint on one side and means of intervention on the other. As experimentally verified by the absence of higher-order interferences, amplitude and phase can be manipulated in all paths independently. In conjunction with single photons, the setup can, therefore, be applied for fundamental investigations on quantum mechanics.

  14. Hybrid waveguide-bulk multi-path interferometer with switchable amplitude and phase

    CERN Document Server

    Keil, Robert; Kauten, Thomas; Gstir, Sebastian; Dittel, Christoph; Heilmann, René; Szameit, Alexander; Weihs, Gregor

    2016-01-01

    We design and realise a hybrid interferometer consisting of three paths based on integrated as well as on bulk optical components. This hybrid construction offers a good compromise between stability and footprint on one side and means of intervention on the other. As experimentally verified by the absence of higher-order interferences, amplitude and phase can be manipulated in all paths independently. In conjunction with single photons, the setup can, therefore, be applied for fundamental investigations on quantum mechanics.

  15. Rf beam control for the AGS Booster

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, J.M.

    1994-09-26

    RF beam control systems for hadron synchrotrons have evolved over the past three decades into an essentially standard design. The key difference between hadron and lepton machines is the absence of radiation damping and existence of significant frequency variation in the case of hadrons. Although the motion of the hadron in the potential well of the rf wave is inherently stable it is not strongly damped. Damping must be provided by electronic feedback through the accelerating system. This feedback is typically called the phase loop. The technology of the rf beam control system for the AGS Booster synchrotron is described. First, the overall philosophy of the design is explained in terms of a conventional servo system that regulates the beam horizontal position in the vacuum chamber. The concept of beam transfer functions is fundamental to the mathematics of the design process and is reviewed. The beam transfer functions required for this design are derived from first principles. An overview of the beam signal pick-ups and high level rf equipment is given. The major subsystems, the frequency program, the heterodyne system, and beam feedback loops, are described in detail. Beyond accelerating the beam, the rf system must also synchronize the bunches in the Booster to the buckets in the AGS before transfer. The technical challenge in this process is heightened by the need to accomplish synchronization while the frequency is still changing. Details of the synchronization system are given. This report is intended to serve two purposes. One is to document the hardware and performance of the systems that have been built. The other is to serve as a tutorial vehicle from which the non-expert can not only learn the details of this system but also learn the principles of beam control that have led to the particular design choices made.

  16. Path integral in Snyder space

    Energy Technology Data Exchange (ETDEWEB)

    Mignemi, S., E-mail: smignemi@unica.it [Dipartimento di Matematica e Informatica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy); Štrajn, R. [Dipartimento di Matematica e Informatica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy)

    2016-04-29

    The definition of path integrals in one- and two-dimensional Snyder space is discussed in detail both in the traditional setting and in the first-order formalism of Faddeev and Jackiw. - Highlights: • The definition of the path integral in Snyder space is discussed using phase space methods. • The same result is obtained in the first-order formalism of Faddeev and Jackiw. • The path integral formulation of the two-dimensional Snyder harmonic oscillator is outlined.

  17. RF subsystem power consumption and induced radiation emulation

    DEFF Research Database (Denmark)

    Musiige, Deogratius; Anton, François; Mioc, Darka

    the study of the RF subsystem architectures revealed numerous architectures with different impacts on power consumption, we have decided to consider the RF subsystem as a black box. The RF subsystem power emulation has been studied for the telecommunication technology Long Term Evolusion (LTE). Given...

  18. Study of Control Grid Thermionic Cathode RF Gun

    CERN Document Server

    Xiao, Jin; Ming, Li; Xinfan, Yang; Xumin, Shen; Yanan, Chen; Zhou, Xu

    2004-01-01

    In this paper, the beam loading effect of RF Gun was analyzed. To minimize the energy spread, the grid control RF Gun was introduced. The result shows that the grid congrol RF Gun can increase electron beam within 1% energy spread.

  19. Long-working-distance incoherent-light interference microscope.

    Science.gov (United States)

    Sinclair, Michael B; de Boer, Maarten P; Corwin, Alex D

    2005-12-20

    We describe the design and operation of a long-working-distance, incoherent light interference microscope that has been developed to address the growing demand for new microsystem characterization tools. The design of the new microscope is similar to that of a Linnik interference microscope and thus preserves the full working distance of the long-working-distance objectives utilized. However, in contrast to a traditional Linnik microscope, the new microscope does not rely on the use of matched objectives in the sample and the reference arms of the interferometer. An adjustable optical configuration has been devised that allows the total optical path length, wavefront curvature, and dispersion of the reference arm to be matched to the sample arm of the interferometer. The reference arm configuration can be adjusted to provide matching for 5x, 10x, and 20x long-working-distance objectives in the sample arm. In addition to retaining the full working distance of the sample arm objectives, the new design allows interference images to be acquired in situations in which intervening windows are necessary, such as occur with packaged microsystems, microfluidic devices, and cryogenic, vacuum, or environmental chamber studies of microsystem performance. The interference microscope is compatible with phase-shifting interferometry, vertical scanning interferometry, and stroboscopic measurement of dynamic processes.

  20. Sustainable Energy Path

    Directory of Open Access Journals (Sweden)

    Hiromi Yamamoto

    2005-12-01

    Full Text Available The uses of fossil fuels cause not only the resources exhaustion but also the environmental problems such as global warming. The purposes of this study are to evaluate paths toward sustainable energy systems and roles of each renewable. In order to realize the purposes, the authors developed the global land use and energy model that figured the global energy supply systems in the future considering the cost minimization. Using the model, the authors conducted a simulation in C30R scenario, which is a kind of strict CO2 emission limit scenarios and reduced CO2 emissions by 30% compared with Kyoto protocol forever scenario, and obtained the following results. In C30R scenario bioenergy will supply 33% of all the primary energy consumption. However, wind and photovoltaic will supply 1.8% and 1.4% of all the primary energy consumption, respectively, because of the limits of power grid stability. The results imply that the strict limits of CO2 emissions are not sufficient to achieve the complete renewable energy systems. In order to use wind and photovoltaic as major energy resources, we need not only to reduce the plant costs but also to develop unconventional renewable technologies.

  1. Development of a Radio Frequency Space Environment Path Emulator for Evaluating Spacecraft Ranging Hardware

    Science.gov (United States)

    Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.

    2007-01-01

    The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and. control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for inter-spacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of medium, moving platforms, and radiated power. The Path Emulator for RF Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.

  2. Path integrals as discrete sums

    Science.gov (United States)

    Bitar, Khalil; Khuri, N. N.; Ren, H. C.

    1991-08-01

    We present a new formulation of Feynman's path integral, based on Voronin's theorems on the universality of the Riemann zeta function. The result is a discrete sum over ``paths,'' each given by a zeta function. A new measure which leads to the correct quantum mechanics is explicitly given.

  3. Rainbow paths with prescribed ends

    DEFF Research Database (Denmark)

    Alishahi, Meysam; Taherkhani, Ali; Thomassen, Carsten

    2011-01-01

    It was conjectured in [S. Akbari, F. Khaghanpoor, and S. Moazzeni. Colorful paths in vertex coloring of graphs. Preprint] that, if G is a connected graph distinct from C-7, then there is a chi(G)-coloring of G in which every vertex v is an element of V(G) is an initial vertex of a path P with chi...

  4. Chromatic roots and hamiltonian paths

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2000-01-01

    We present a new connection between colorings and hamiltonian paths: If the chromatic polynomial of a graph has a noninteger root less than or equal to t(n) = 2/3 + 1/3 (3)root (26 + 6 root (33)) + 1/3 (3)root (26 - 6 root (33)) = 1.29559.... then the graph has no hamiltonian path. This result...

  5. Quantitative SLM-based Differential Interference Contrast imaging.

    Science.gov (United States)

    McIntyre, Timothy J; Maurer, Christian; Fassl, Stephanie; Khan, Saranjam; Bernet, Stefan; Ritsch-Marte, Monika

    2010-06-21

    We describe the implementation of quantitative Differential Interference Contrast (DIC) Microscopy using a spatial light modulator (SLM) as a flexible Fourier filter in the optical path. The experimental arrangement allows for the all-electronic acquisition of multiple phase shifted DIC-images at video rates which are analyzed to yield the optical path length variation of the sample. The resolution of the technique is analyzed by retrieving the phase profiles of polystyrene spheres in immersion oil, and the method is then applied for quantitative imaging of biological samples. By reprogramming the diffractive structure displayed at the SLM it is possible to record the whole set of phase shifted DIC images simultaneously in different areas of the same camera chip. This allows for quantitative snap-shot imaging of a sample, which has applications for the investigation of dynamic processes.

  6. Integrated RF/Optical Interplanetary Networking Preliminary Explorations and Empirical Results

    Science.gov (United States)

    Raible, Daniel E.; Hylton, Alan G.

    2012-01-01

    Over the last decade interplanetary telecommunication capabilities have been significantly expanded--specifically in support of the Mars exploration rover and lander missions. NASA is continuing to drive advances in new, high payoff optical communications technologies to enhance the network to Gbps performance from Mars, and the transition from technology demonstration to operational system is examined through a hybrid RF/optical approach. Such a system combines the best features of RF and optical communications considering availability and performance to realize a dual band trunk line operating within characteristic constraints. Disconnection due to planetary obscuration and solar conjunction, link delays, timing, ground terminal mission congestion and scheduling policy along with space and atmospheric weather disruptions all imply the need for network protocol solutions to ultimately manage the physical layer in a transparent manner to the end user. Delay Tolerant Networking (DTN) is an approach under evaluation which addresses these challenges. A multi-hop multi-path hybrid RF and optical test bed has been constructed to emulate the integrated deep space network and to support protocol and hardware refinement. Initial experimental results characterize several of these challenges and evaluate the effectiveness of DTN as a solution to mitigate them.

  7. Rare Variants in Genes Encoding MuRF1 and MuRF2 Are Modifiers of Hypertrophic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ming Su

    2014-05-01

    Full Text Available Modifier genes contribute to the diverse clinical manifestations of hypertrophic cardiomyopathy (HCM, but are still largely unknown. Muscle ring finger (MuRF proteins are a class of muscle-specific ubiquitin E3-ligases that appear to modulate cardiac mass and function by regulating the ubiquitin-proteasome system. In this study we screened all the three members of the MuRF family, MuRF1, MuRF2 and MuRF3, in 594 unrelated HCM patients and 307 healthy controls by targeted resequencing. Identified rare variants were confirmed by capillary Sanger sequencing. The prevalence of rare variants in both MuRF1 and MuRF2 in HCM patients was higher than that in control subjects (MuRF1 13/594 (2.2% vs. 1/307 (0.3%, p = 0.04; MuRF2 22/594 (3.7% vs. 2/307 (0.7%; p = 0.007. Patients with rare variants in MuRF1 or MuRF2 were younger (p = 0.04 and had greater maximum left ventricular wall thickness (p = 0.006 than those without such variants. Mutations in genes encoding sarcomere proteins were present in 19 (55.9% of the 34 HCM patients with rare variants in MuRF1 and MuRF2. These data strongly supported that rare variants in MuRF1 and MuRF2 are associated with higher penetrance and more severe clinical manifestations of HCM. The findings suggest that dysregulation of the ubiquitin-proteasome system contributes to the pathogenesis of HCM.

  8. Microwave RF antennas and circuits nonlinearity applications in engineering

    CERN Document Server

    Aluf, Ofer

    2017-01-01

    This book describes a new concept for analyzing RF/microwave circuits, which includes RF/microwave antennas. The book is unique in its emphasis on practical and innovative microwave RF engineering applications. The analysis is based on nonlinear dynamics and chaos models and shows comprehensive benefits and results. All conceptual RF microwave circuits and antennas are innovative and can be broadly implemented in engineering applications. Given the dynamics of RF microwave circuits and antennas, they are suitable for use in a broad range of applications. The book presents analytical methods for microwave RF antennas and circuit analysis, concrete examples, and geometric examples. The analysis is developed systematically, starting with basic differential equations and their bifurcations, and subsequently moving on to fixed point analysis, limit cycles and their bifurcations. Engineering applications include microwave RF circuits and antennas in a variety of topological structures, RFID ICs and antennas, micros...

  9. Modeling and Manufacturing of Micromechanical RF Switch with Inductors

    Directory of Open Access Journals (Sweden)

    Ying-Liang Chen

    2007-11-01

    Full Text Available This study presents the simulation, fabrication and characterization ofmicromechanical radio frequency (RF switch with micro inductors. The inductors areemployed to enhance the characteristic of the RF switch. An equivalent circuit model isdeveloped to simulate the performance of the RF switch. The behaviors of themicromechanical RF switch are simulated by the finite element method software,CoventorWare. The micromechanical RF switch is fabricated using the complementarymetal oxide semiconductor (CMOS and a post-process. The post-process employs a wetetching to etch the sacrificial layer, and to release the suspended structures of the RF switch.The structure of the RF switch contains a coplanar waveguide (CPW, a suspendedmembrane, eight springs and two inductors in series. Experimental results reveal that theinsertion loss and isolation of the switch are 1.7 dB at 21 GHz and 19 dB at 21 GHz,respectively. The driving voltage of the switch is about 13 V.

  10. Differential Bearing Estimation for RF Tags

    Directory of Open Access Journals (Sweden)

    Lédeczi Ákos

    2009-01-01

    Full Text Available Fusing spatially distributed observations in wireless sensor networks or asset tracking in a shipyard are just two-example applications where the location of radio nodes needs to be known. Localization and tracking of wireless nodes have been an active research area, yet a universal solution has not emerged so far. This paper introduces a novel method for bearing estimation based on a rotating antenna generating a Doppler shifted RF signal. The small frequency change can be measured even on low-cost resource constrained nodes using a radio interferometric technique introduced previously. Bearing information between anchors nodes at known locations and RF tags at unknown positions can be derived. A few such measurements provide enough information to enable accurate node localization.

  11. Matching Parasitic Antenna for Single RF MIMO

    DEFF Research Database (Denmark)

    Han, Bo; Kalis, A; Nielsen, Rasmus Hjorth

    2012-01-01

    Single RF MIMO communication emerges a novel low cost communication method which does not consume as much power as the conventional MIMO. The implementation of such single RF MIMO system is done by mapping the weighting factors to the polarizations or the radiation patterns of the antennas....... In order to have such performance, an antenna with rich pattern modes is required by the system, thus the ESPAR antenna is investigated. The critical part on such antenna is parasitic element impedance matching. Unlike the conventional smith-chart matching method which assumes the minimal resistance...... is zero and with goal of 50 ohm or 75 ohm matching, matching on such parasitic antenna will adopt negative value as well. This paper presents a matching network with controllable impedance even to the range of negative values....

  12. Cognitive Radio RF: Overview and Challenges

    Directory of Open Access Journals (Sweden)

    Van Tam Nguyen

    2012-01-01

    Full Text Available Cognitive radio system (CRS is a radio system which is aware of its operational and geographical environment, established policies, and its internal state. It is able to dynamically and autonomously adapt its operational parameters and protocols and to learn from its previous experience. Based on software-defined radio (SDR, CRS provides additional flexibility and offers improved efficiency to overall spectrum use. CRS is a disruptive technology targeting very high spectral efficiency. This paper presents an overview and challenges of CRS with focus on radio frequency (RF section. We summarize the status of the related regulation and standardization activities which are very important for the success of any emerging technology. We point out some key research challenges, especially implementation challenges of cognitive radio (CR. A particular focus is on RF front-end, transceiver, and analog-to-digital and digital-to-analog interfaces which are still a key bottleneck in CRS development.

  13. SPS RF System an Accelerating Cavity

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    The picture shows one of the two initially installed cavities. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also gradually increased: by end 1980 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412017X, 7411048X.

  14. Aluminum nitride for heatspreading in RF IC's

    Science.gov (United States)

    La Spina, L.; Iborra, E.; Schellevis, H.; Clement, M.; Olivares, J.; Nanver, L. K.

    2008-09-01

    To reduce the electrothermal instabilities in silicon-on-glass high-frequency bipolar devices, the integration of thin-film aluminum nitride as a heatspreader is studied. The AlN is deposited by reactive sputtering and this material is shown to fulfill all the requirements for actively draining heat from RF IC's, i.e., it has good process compatibility, sufficiently high thermal conductivity and good electrical isolation also at high frequencies. The residual stress and the piezoelectric character of the material, both of which can be detrimental for the present application, are minimized by a suitable choice of deposition conditions including variable biasing of the substrate in a multistep deposition cycle. Films of AlN as thick as 4 μm are successfully integrated in RF silicon-on-glass bipolar junction transistors that display a reduction of more than 70% in the value of the thermal resistance.

  15. PEP-II RF cavity revisited

    Energy Technology Data Exchange (ETDEWEB)

    Rimmer, R.A.; Koehler, G.; Li, D.; Hartman, N.; Folwell, N.; Hodgson, J.; Ko, K.; McCandless, B.

    1999-11-01

    This report describes the results of numerical simulations of the PEP-II RF cavity performed after the completion of the construction phase of the project and comparisons are made to previous calculations and measured results. These analyses were performed to evaluate new calculation techniques for the HOM distribution and RF surface heating that were not available at the time of the original design. These include the use of a high frequency electromagnetic element in ANSYS and the new Omega 3P code to study wall losses, and the development of broadband time domain simulation methods in MAFIA for the HOM loading. The computed HOM spectrum is compared with cavity measurements and observed beam-induced signals. The cavity fabrication method is reviewed, with the benefit of hindsight, and simplifications are discussed.

  16. Experimental study of rf pulsed heating

    CERN Document Server

    Laurent, L; Nantista, C; Dolgashev, V; Higashi, Y; Aicheler, M; Tantawi, S; Wuensch, W

    2011-01-01

    Cyclic thermal stresses produced by rf pulsed heating can be the limiting factor on the attainable reliable gradients for room temperature linear accelerators. This is especially true for structures that have complicated features for wakefield damping. These limits could be pushed higher by using special types of copper, copper alloys, or other conducting metals in constructing partial or complete accelerator structures. Here we present an experimental study aimed at determining the potential of these materials for tolerating cyclic thermal fatigue due to rf magnetic fields. A special cavity that has no electric field on the surface was employed in these studies. The cavity shape concentrates the magnetic field on one flat surface where the test material is placed. The materials tested in this study have included oxygen free electronic grade copper, copper zirconium, copper chromium, hot isostatically pressed copper, single crystal copper, electroplated copper, Glidcop (R), copper silver, and silver plated co...

  17. RF device forensics using passband filter analysis

    Science.gov (United States)

    King-Smith, Deen; Mikkilineni, Aravind K.; Gelfand, Saul; Delp, Edward J., III

    2009-02-01

    Given the wide use of Radio Frequency (RF) devices for applications ranging from data networks to wireless sensors, it is of interest to be able to characterize individual devices to verify compliance with FCC Part 15 rules. In an effort to characterize these types of devices we have developed a system that utilizes specially designed probe signals to elicit a response from the device from which unique characteristics can be extracted. The features that uniquely characterize a device are referred to as device signatures or device fingerprints. We apply this approach to RF devices which employ different bandpass filters, and construct training based classifiers which are highly accurate. We also introduce a model-based framework for optimal detection that can be employed to obtain performance limits, and to study model mismatch and probe optimization.

  18. Effectiveness of interactive tutorials in promoting "which-path" information reasoning in advanced quantum mechanics

    Science.gov (United States)

    Maries, Alexandru; Sayer, Ryan; Singh, Chandralekha

    2017-12-01

    Research suggests that introductory physics students often have difficulty using a concept in contexts different from the ones in which they learned it without explicit guidance to help them make the connection between the different contexts. We have been investigating advanced students' learning of quantum mechanics concepts and have developed interactive tutorials which strive to help students learn these concepts. Two such tutorials, focused on the Mach-Zehnder interferometer (MZI) and the double-slit experiment (DSE), help students learn how to use the concept of "which-path" information to reason about the presence or absence of interference in these two experiments in different situations. After working on a pretest that asked students to predict interference in the MZI with single photons and polarizers of various orientations placed in one or both paths of the MZI, students worked on the MZI tutorial which, among other things, guided them to reason in terms of which-path information in order to predict interference in similar situations. We investigated the extent to which students were able to use reasoning related to which-path information learned in the MZI tutorial to answer analogous questions on the DSE (before working on the DSE tutorial). After students worked on the DSE pretest they worked on a DSE tutorial in which they learned to use the concept of which-path information to answer questions about interference in the DSE with single particles with mass sent through the two slits and a monochromatic lamp placed between the slits and the screen. We investigated if this additional exposure to the concept of which-path information promoted improved learning and performance on the DSE questions with single photons and polarizers placed after one or both slits. We find evidence that both tutorials promoted which-path information reasoning and helped students use this reasoning appropriately in contexts different from the ones in which they had learned

  19. Hard paths, soft paths or no paths? Cross-cultural perceptions of water solutions

    Science.gov (United States)

    Wutich, A.; White, A. C.; White, D. D.; Larson, K. L.; Brewis, A.; Roberts, C.

    2014-01-01

    In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of interview data. Our results indicate clear differences associated with development status and, to a lesser extent, water scarcity. People in the two less developed sites were more likely to suggest hard path solutions, less likely to suggest soft path solutions, and more likely to see no path to solutions than people in the more developed sites. Thematically, people in the two less developed sites envisioned solutions that involve small-scale water infrastructure and decentralized, community-based solutions, while people in the more developed sites envisioned solutions that involve large-scale infrastructure and centralized, regulatory water solutions. People in the two water-scarce sites were less likely to suggest soft path solutions and more likely to see no path to solutions (but no more likely to suggest hard path solutions) than people in the water-rich sites. Thematically, people in the two water-rich sites seemed to perceive a wider array of unrealized potential soft path solutions than those in the water-scarce sites. On balance, our findings are encouraging in that they indicate that people are receptive to soft path solutions in a range of sites, even those with limited financial or water resources. Our research points to the need for more studies that investigate the social feasibility of soft path water solutions, particularly in sites with significant financial and natural resource constraints.

  20. Superconducting RF separator for Omega Spectrometer

    CERN Multimedia

    1977-01-01

    The photo shows an Nb-deflector for the superconducting RF separator ready for installation in its cryostat (visible at the back). Each deflector was about 3 m long. L. Husson and P. Skacel (Karlsruhe) stand on the left, A. Scharding (CERN) stands on the right. This particle separator, the result of a collaboration between the Gesellshaft für Kernforschung, Karlsruhe, and CERN was installed in the S1 beam line to Omega spectrometer. (See Annual Report 1977.)

  1. At the RF Lab, EF Division

    CERN Multimedia

    1980-01-01

    A four-cell superconducting RF cavity ready for installation in its cryostat, the first one at CERN. From bottom to top, on the right, Herbert Lengeler, Jean-François Malo, Enrico Chiaveri and François Grabowski, Albert Insomby. On the left, ..?, Ernst Ullrich Haebel, ..?, Jean-Marie Maugain, Artur Scharding, Hansuli Preis, R. Romjin. The place is the EF hall next to Bld. 13. (see Annual Report 1980 p. 71)

  2. Phase Noise in RF and Microwave Amplifiers

    OpenAIRE

    Boudot, Rodolphe; Rubiola, Enrico

    2010-01-01

    Understanding the amplifier phase noise is a critical issue in numerous fields of engineering and physics, like oscillators, frequency synthesis, telecommunications, radars, spectroscopy, in the emerging domain of microwave photonics, and in more exotic domains like radio astronomy, particle accelerators, etc. This article analyzes the two main types of phase noise in amplifiers, white and flicker. White phase noise results from adding white noise to the RF spectrum around the carrier. For a ...

  3. RF separator for cloud muons at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Blackmore, E.W.; Bryman, D.A.; Cresswell, J.V.; Doornbos, J.; Erdman, K.L.; MacDonald, J.A.; Poirier, R.L.; Pearce, R.M.; Poutissou, J.M.; Spuller, J. (British Columbia Univ., Vancouver (Canada). TRIUMF Facility)

    1985-02-01

    A particle separator utilizing crossed magnetic and RF electric fields has been incorporated into the TRIUMF M9 secondary channel to produce a clean negative muon beam at 77 MeV/c+-5%. The separator is driven at the main cyclotron frequency (23 MHz) and phase locked to the primary proton beam. The pion and electron contaminants in the beam are suppressed to <0.1% and <1%, respectively.

  4. RF separator for cloud muons at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Blackmore, E.W.; Bryman, D.A.; Cresswell, J.V.; Doornbos, J.; Erdman, K.L.; MacDonald, J.A.; Poirier, R.L.; Pearce, R.M.; Poutissou, J.M.; Spuller, J.

    1985-02-01

    A particle separator utilizing crossed magnetic and RF electric fields has been incorporated into the TRIUMF M9 secondary channel to produce a clean negative muon beam at 77 MeV/c +- 5%. The separator is driven at the main cyclotron frequency (23 MHz) and phase locked to the primary proton beam. The pion and electron contaminants in the beam are suppressed to <0.1% and <1%, respectively. (orig.).

  5. Modeling accelerator structures and RF components

    Energy Technology Data Exchange (ETDEWEB)

    Ko, K., Ng, C.K.; Herrmannsfeldt, W.B.

    1993-03-01

    Computer modeling has become an integral part of the design and analysis of accelerator structures RF components. Sophisticated 3D codes, powerful workstations and timely theory support all contributed to this development. We will describe our modeling experience with these resources and discuss their impact on ongoing work at SLAC. Specific examples from R&D on a future linear collide and a proposed e{sup +}e{sup {minus}} storage ring will be included.

  6. NSLS-II RF Cryogenic System

    Energy Technology Data Exchange (ETDEWEB)

    Rose, J.; Dilgen, T.; Gash, B.; Gosman, J.; Mortazavi, P.; Papu, J.; Ravindranath, V.; Sikora, R.; Sitnikov, A.; Wilhelm, H.; Jia, Y.; Monroe, C.

    2015-05-03

    The National Synchrotron Light Source II is a 3 GeV X-ray user facility commissioned in 2014. A new helium refrigerator system has been installed and commissioned to support the superconducting RF cavities in the storage ring. Special care was taken to provide very stable helium and LN2 pressures and flow rates to minimize microphonics and thermal effects at the cavities. Details of the system design along with commissioning and early operations data will be presented.

  7. RF transmission lines on silicon substrates

    OpenAIRE

    Ponchak, George E.

    1999-01-01

    A review of RF transmission lines on silicon substrates is presented. Through measurements and calculated results, it is shown that attenuation is dominated by conductor loss if silicon substrates with a resistivity greater than 2500 Q-cm are used. Si passivation layers affect the transmission line attenuation; however, measured results demonstrate that passivation layers do not necessarily increase attenuation. If standard, low resistivity Si wafers must be used, alternative transmission lin...

  8. Wireless RF communication in biomedical applications

    Science.gov (United States)

    Jones, Inke; Ricciardi, Lucas; Hall, Leonard; Hansen, Hedley; Varadan, Vijay; Bertram, Chris; Maddocks, Simon; Enderling, Stefan; Saint, David; Al-Sarawi, Said; Abbott, Derek

    2008-02-01

    This paper focuses on wireless transcutaneous RF communication in biomedical applications. It discusses current technology, restrictions and applications and also illustrates possible future developments. It focuses on the application in biotelemetry where the system consists of a transmitter and a receiver with a transmission link in between. The transmitted information can either be a biopotential or a nonelectric value like arterial pressure, respiration, body temperature or pH value. In this paper the use of radio-frequency (RF) communication and identification for those applications is described. Basically, radio-frequency identification or RFID is a technology that is analogous to the working principle of magnetic barcode systems. Unlike magnetic barcodes, passive RFID can be used in extreme climatic conditions—also the tags do not need to be within close proximity of the reader. Our proposed solution is to exploit an exciting new development in making circuits on polymers without the need for battery power. This solution exploits the principle of a surface acoustic wave (SAW) device on a polymer substrate. The SAW device is a set of interdigitated conducting fingers on the polymer substrate. If an appropriate RF signal is sent to the device, the fingers act as microantennas that pick up the signal, and this energy is then converted into acoustic waves that travel across the surface of the polymer substrate. Being a flexible polymer, the acoustic waves cause stresses that can either contract or stretch the material. In our case we mainly focus on an RF controllable microvalve that could ultimately be used for fertility control.

  9. Inductance mode characteristics of a ceramic YBa2Cu3O7-x radio-frequency superconducting quantum interference device at 77 K

    DEFF Research Database (Denmark)

    Il'ichev, E. V.; Andreev, A. V.; Jacobsen, Claus Schelde

    1993-01-01

    Experimental results on some radio-frequency superconducting quantum interference device (rf-SQUID) signal properties are presented. The quantum interferometer was made of ceramic YBa2Cu3O7−x and was due to a low critical current operated in the inductance or nonhysteretic mode. With bias current...

  10. Characterizing destructive quantum interference in electron transport

    Science.gov (United States)

    Sam-ang, Panu; Reuter, Matthew G.

    2017-05-01

    Destructive quantum interference in electron transport through molecules provides an unconventional route for suppressing electric current. In this work we introduce ‘interference vectors’ for each interference and use them to characterize the interference. An interference vector may be a combination of multiple molecular orbitals (MOs), leading to more robust interference that is likelier to be experimentally observable. In contrast, an interference vector may itself be a MO, in which case the interference is not robust and will be harder to detect. Our characterization scheme quantifies these two possibilities through the degree of rotation and also assigns an order to each interference that describes the shape of the Landauer-Büttiker transmission function around the interference. Several examples are then presented, showcasing the generality of our theory and characterization scheme, which is not limited to specific classes of molecules or particular molecule-electrode coupling patterns.

  11. The Murmansk Initiative - RF: Acceptance Testing

    Energy Technology Data Exchange (ETDEWEB)

    Czajkowski, C.; Wester, D. W.; Dyer, R. S.; Soerlie, A. A.; Moller, B.; Barnes, E.

    2002-02-26

    The Murmansk Initiative-RF (MI) was conceived to provide the Russian Federation (RF) with the capacity to manage low-level liquid radioactive waste (LLRW) and comply with the requirements of the London Convention that prohibit ocean dumping. The trilateral project among Norway, the RF, and the United States of America (U.S.) began in 1994 and was the first to utilize exclusively Russian subcontractors to upgrade and expand an existing LLRW treatment plant on the premises of RTP Atomflot in Murmansk, Russia. The project moved quickly through the design phase. Progress during the construction phase was somewhat slower because of difficulties with acquisition of hardware, inexperience with automated instrumentation and control equipment, and unexpected design changes in the cementation unit. The project advanced into the test-operation phase, which is currently underway, in June 2001. Initial runs with liquid waste have revealed that procedures for unloading spent ion-exchange sorbents could be improved and that sludges formed during removal of alkaline-earth metals should be compacted in order for the facility to operate at its full potential. Resolution of these issues is expected within the next few months.

  12. SPS RF system:Tetrodes and waveguides

    CERN Multimedia

    1974-01-01

    This picture shows one of the initially installed amplifier units of the SPS RF system. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also gradually increased: in 1980 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412017X, 7411048X.

  13. RF Gun Photocathode Research at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Jongewaard, E.; Akre, R.; Brachmann, A.; Corbett, J.; Gilevich, S.; Grouev, K.; Hering, P.; P.Krejcik,; Lewandowski, J.; Loos, H.; Montagne, T.; Sheppard, J.C.; Stefan, P.; Vlieks, A.; Weathersby, S.; Zhou, F.; /SLAC

    2012-05-16

    LCLS is presently operating with a third copper photocathode in the original rf gun, with a quantum efficiency (QE) of {approx}1 x 10{sup -4} and projected emittance {gamma}{var_epsilon}{sub x,y} = 0.45 {micro}m at 250 pC bunch charge. The spare LCLS gun is installed in the SLAC Accelerator Structure Test Area (ASTA), fully processed to high rf power. As part of a wider photocathode R and D program, a UV laser system and additional gun diagnostics are being installed at ASTA to measure QE, QE lifetime, and electron beam emittance under a variety of operating conditions. The near-term goals are to test and verify the spare photocathode production/installation sequence, including transfer from the final holding chamber to the rf gun. Mid- and longer-term goals include development of a rigorous understanding of plasma and laser-assisted surface conditioning and investigation of new, high-QE photocathode materials. In parallel, an x-ray photoemission spectroscopy station is nearing completion, to analyze Cu photocathode surface chemistry. In this paper we review the status and anticipated operating parameters of ASTA and the spectroscopy test chamber.

  14. SPS RF System:Tetrodes and Waveguides

    CERN Multimedia

    1977-01-01

    The picture shows part of a RF power generating plant. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also gradually increased: by end 1980 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X.

  15. Silicon on insulator MESFETs for RF amplifiers

    Science.gov (United States)

    Wilk, Seth J.; Balijepalli, Asha; Ervin, Joseph; Lepkowski, William; Thornton, Trevor J.

    2010-03-01

    CMOS compatible, high voltage SOI MESFETs have been fabricated using a standard 3.3 V CMOS process without any changes to the process flow. A 0.6 μm gate length device operates with a cut-off frequency of 7.3 GHz and a maximum oscillation frequency of 21 GHz. There is no degradation in device performance up to its breakdown voltage, which greatly exceeds that of CMOS devices on the same process. Other figures-of-merit of relevance to RF front-end design are presented, including the maximum stable gain and noise figure. An accurate representation of the device in SPICE has been developed using the commercially available TOM3 model. Using the SOI MESFET model, a source degenerated low noise RF amplifier targeting operation near 1 GHz has been designed. The amplifier was fabricated on a PCB board and operates at 940 MHz with a minimum NF of 3.8 dB and RF gain of 9.9 dB while only consuming 5mW of DC power.

  16. Beam-Based Procedures for RF Guns

    CERN Document Server

    Krasilnikov, Mikhail; Grabosch, H J; Hartrott, Michael; Hui Han, Jang; Miltchev, Velizar; Oppelt, Anne; Petrosyan, Bagrat; Staykov, Lazar; Stephan, Frank

    2005-01-01

    A wide range of rf photo injector parameters has to be optimized in order to achieve an electron source performance as required for linac based high gain FELs. Some of the machine parameters can not be precisely controlled by direct measurements, whereas the tolerance on them is extremely tight. Therefore, this should be met with beam-based techniques. Procedures for beam-based alignment (BBA) of the laser on the photo cathode as well as solenoid alignment have been developed. They were applied at the Photo Injector Test facility at DESY Zeuthen (PITZ) and at the photo injector of the VUV-FEL at DESY Hamburg. A field balance of the accelerating mode in the 1 ½ cell gun cavity is one of the key beam dynamics issues of the rf gun. Since no direct field measurement in the half and full cell of the cavity is available for the PITZ gun, a beam-based technique to determine the field balance has been proposed. A beam-based rf phase monitoring procedure has been developed as well.

  17. Studying the optical second-order interference pattern formation process with classical light in the photon counting regime.

    Science.gov (United States)

    He, Yuchen; Liu, Jianbin; Zhang, Songlin; Wang, Wentao; Bai, Bin; Le, Mingnan; Xu, Zhuo

    2015-12-01

    The formation process of the second-order interference pattern is studied experimentally in the photon counting regime by superposing two independent single-mode continuous-wave lasers. Two-photon interference based on the superposition principle in Feynman's path integral theory is employed to interpret the experimental results. The second-order interference pattern of classical light can be formulated when, with high probability, there are only two photons in the interferometer at one time. The studies are helpful in understanding the second-order interference of classical light in the language of photons. The method and conclusions can be generalized to the third- and higher-order interference of light and interference of massive particles.

  18. Interference in ballistic motor learning - is motor interference really sensory?

    DEFF Research Database (Denmark)

    Lundbye-Jensen, Jesper; Petersen, Tue Hvass; Rothwell, John C

    Skill gained after a short period of practice in one motor task can be abolished if a second task is learned shortly afterwards. We hypothesised that interference requires the same circuits to be engaged in the two tasks and provoke competing processes of synaptic plasticity. To test this, subjects...

  19. Commissioning of two RF operation modes for RF negative ion source experimental setup at HUST

    Science.gov (United States)

    Li, D.; Chen, D.; Liu, K.; Zhao, P.; Zuo, C.; Wang, X.; Wang, H.; Zhang, L.

    2017-08-01

    An RF-driven negative ion source experimental setup, without a cesium oven and an extraction system, has been built at Huazhong University of Science and Technology (HUST). The working gas is hydrogen, and the typical operational gas pressure is 0.3 Pa. The RF generator is capable of delivering up to 20 kW at 0.9 - 1.1 MHz, and has two operation modes, the fixed-frequency mode and auto-tuning mode. In the fixed-frequency mode, it outputs a steady RF forward power (Pf) at a fixed frequency. In the auto-tuning mode, it adjusts the operating frequency to seek and track the minimum standing wave ratio (SWR) during plasma discharge. To achieve fast frequency tuning, the RF signal source adopts a direct digital synthesizer (DDS). To withstand high SWR during the discharge, a tetrode amplifier is chosen as the final stage amplifier. The trend of maximum power reflection coefficient |ρ|2 at plasma ignition is presented at the fixed frequency of 1.02 MHz with the Pf increasing from 5 kW to 20 kW, which shows the maximum |ρ|2 tends to be "steady" under high RF power. The experiments in auto-tuning mode fail due to over-current protection of screen grid. The possible reason is the relatively large equivalent anode impedance caused by the frequency tuning. The corresponding analysis and possible solution are presented.

  20. Pathways with PathWhiz.

    Science.gov (United States)

    Pon, Allison; Jewison, Timothy; Su, Yilu; Liang, Yongjie; Knox, Craig; Maciejewski, Adam; Wilson, Michael; Wishart, David S

    2015-07-01

    PathWhiz (http://smpdb.ca/pathwhiz) is a web server designed to create colourful, visually pleasing and biologically accurate pathway diagrams that are both machine-readable and interactive. As a web server, PathWhiz is accessible from almost any place and compatible with essentially any operating system. It also houses a public library of pathways and pathway components that can be easily viewed and expanded upon by its users. PathWhiz allows users to readily generate biologically complex pathways by using a specially designed drawing palette to quickly render metabolites (including automated structure generation), proteins (including quaternary structures, covalent modifications and cofactors), nucleic acids, membranes, subcellular structures, cells, tissues and organs. Both small-molecule and protein/gene pathways can be constructed by combining multiple pathway processes such as reactions, interactions, binding events and transport activities. PathWhiz's pathway replication and propagation functions allow for existing pathways to be used to create new pathways or for existing pathways to be automatically propagated across species. PathWhiz pathways can be saved in BioPAX, SBGN-ML and SBML data exchange formats, as well as PNG, PWML, HTML image map or SVG images that can be viewed offline or explored using PathWhiz's interactive viewer. PathWhiz has been used to generate over 700 pathway diagrams for a number of popular databases including HMDB, DrugBank and SMPDB. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Joint Digital Self-interference Cancellation in Full-duplex Radios under IQ Imbalance and Transmitter Non-linearity

    Directory of Open Access Journals (Sweden)

    Zhou Meijing

    2018-01-01

    Full Text Available RF imperfections can significantly degrade the performance of full-duplex wireless communication system by introducing non-idealities and random effects, which make it difficult to cancel the self-interference completely. In this paper, we first address the adverse benefits of both the transmitter non-linearity and the IQ imbalance. Then on the basis of these, a joint digital self-interference cancellation scheme is proposed, in which not only the effect of IQ imbalance and power amplifier non-linearity individually, but also the comprehensive function of them are taken into account. Furthermore, the simulation is implemented in the MATLAB platform using standard WiFi 802.11ac PHYs. The results show that the proposed canceller can eliminate more compared with other cancellation schemes, and the overall self-interference attenuation can attain 108dB, which makes the residual self-interference closer to the noise floor.

  2. Robust Satellite Communications Under Hostile Interference

    Science.gov (United States)

    2016-05-20

    antifragile gain, as highlighted in yellow for the DRFM case...digital RF memory or digital RF memory ( DRFM ) jamming) in which the jammer retransmits the signal it receives with a possible transformation applied...consideration, the DRFM , is one that simply retransmits the target signal on a sample-by-sample basis [17, 18]: DRFM : The jammer retransmits the received

  3. Path integrals and quantum processes

    CERN Document Server

    Swanson, Marc S

    1992-01-01

    In a clearly written and systematic presentation, Path Integrals and Quantum Processes covers all concepts necessary to understand the path integral approach to calculating transition elements, partition functions, and source functionals. The book, which assumes only a familiarity with quantum mechanics, is ideal for use as a supplemental textbook in quantum mechanics and quantum field theory courses. Graduate and post-graduate students who are unfamiliar with the path integral will also benefit from this contemporary text. Exercise sets are interspersed throughout the text to facilitate self-

  4. Optical Scintillation on Folded Paths.

    Science.gov (United States)

    1982-03-01

    8 (+ boundazy conditions) (11-16) where # is the probability amplitude function. We know that for a free particle in a one dimension motion, 20 $1_...path. Since the total probability amplitude is the sum of the contributions from all possible paths, it is given by I. *(a,b) = JD (paths) exp[is(a,b...2 L = - - and the action integral is given by tb S - L dt (11-17) ta Starting from Feynman’s basic assumption, namely that the probability

  5. Design and manufacture of the RF power supply and RF transmission line for SANAEM project Prometheus

    Science.gov (United States)

    Turemen, G.; Ogur, S.; Ahiska, F.; Yasatekin, B.; Cicek, E.; Ozbey, A.; Kilic, I.; Unel, G.; Alacakir, A.

    2017-08-01

    A 1-5 MeV proton beamline is being built by the Turkish Atomic Energy Authority in collaboration with a number of graduate students from different universities. The primary goal of the project, is to acquire the design ability and manufacturing capability of all the components locally. SPP will be an accelerator and beam diagnostics test facility and it will also serve the detector development community with its low beam current. This paper discusses the design and construction of the RF power supply and the RF transmission line components such as its waveguide converters and its circulator. Additionally low and high power RF test results are presented to compare the performances of the locally produced components to the commercially available ones.

  6. RF design of a C-band compact spherical RF pulse compressor for SXFEL

    Science.gov (United States)

    Li, Zongbin; Fang, Wencheng; Gu, Qiang; Zhao, Zhentang

    2017-08-01

    A new C-band (5712 MHz) compact spherical radio frequency (RF) pulse compressor was designed for the Soft X-ray Free Electron Laser facility (SXFEL) at the Shanghai Institute of Applied Physics (SINAP), Chinese Academy of Sciences (CAS). Using only one high Q0 spherical RF resonant cavity which works on two TE113 modes and a dual-mode polarized coupler, this pulse compressor could achieve an average power gain of 3.8. Associated with the C-band accelerator, an energy gain of 1.85 with the coupling coefficient of 4.9 could be achieved. Particularly it could make the output power stable. This paper presents the scheme of the C-band spherical pulse compressor, as well as the RF design and details of the frequency sensitivities and machining considerations.

  7. Interference and memory capacity limitations.

    Science.gov (United States)

    Endress, Ansgar D; Szabó, Szilárd

    2017-10-01

    Working memory (WM) is thought to have a fixed and limited capacity. However, the origins of these capacity limitations are debated, and generally attributed to active, attentional processes. Here, we show that the existence of interference among items in memory mathematically guarantees fixed and limited capacity limits under very general conditions, irrespective of any processing assumptions. Assuming that interference (a) increases with the number of interfering items and (b) brings memory performance to chance levels for large numbers of interfering items, capacity limits are a simple function of the relative influence of memorization and interference. In contrast, we show that time-based memory limitations do not lead to fixed memory capacity limitations that are independent of the timing properties of an experiment. We show that interference can mimic both slot-like and continuous resource-like memory limitations, suggesting that these types of memory performance might not be as different as commonly believed. We speculate that slot-like WM limitations might arise from crowding-like phenomena in memory when participants have to retrieve items. Further, based on earlier research on parallel attention and enumeration, we suggest that crowding-like phenomena might be a common reason for the 3 major cognitive capacity limitations. As suggested by Miller (1956) and Cowan (2001), these capacity limitations might arise because of a common reason, even though they likely rely on distinct processes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Interference due to coherence swapping

    Indian Academy of Sciences (India)

    In quantum interference (first order) the important requirement is the coherence of a quantum state, which usually we tend to associate with a particle if it has come from a single source and made to pass through a double slit or through a suit- able device such as a beam splitter (as in a Mach–Zehnder interferometer).

  9. "Quantum Interference with Slits" Revisited

    Science.gov (United States)

    Rothman, Tony; Boughn, Stephen

    2011-01-01

    Marcella has presented a straightforward technique employing the Dirac formalism to calculate single- and double-slit interference patterns. He claims that no reference is made to classical optics or scattering theory and that his method therefore provides a purely quantum mechanical description of these experiments. He also presents his…

  10. The Interference of Polarised Light

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 4. The Interference of Polarised Light - The Pancharatnam Phase. Rajaram Nityananda. General Article Volume 18 Issue 4 April 2013 pp 309-322. Fulltext. Click here to view fulltext PDF. Permanent link:

  11. Conducted interference on smart meters

    NARCIS (Netherlands)

    Keyer, Cornelis H.A.; Leferink, Frank

    2017-01-01

    The increasing conducted interference caused by modern electronic equipment is causing more problems for electronic, or static, energy meters. These meters are called smart meters when equipped with a communication link, and are replacing the conventional electromechanical meters. It is known that

  12. Interference in Cellular Satellite Systems

    OpenAIRE

    Kilic, Ozlem; Zaghloul, Amir I.

    2010-01-01

    Co-channel beam interference in multi-beam satellite communications systems was investigated particularly for the downlink. Concept of frequency reuse was explained and the role of satellite antenna size and pattern was examined. Conventional spot beam coverage and its impact on determining the antenna size on board was discussed.

  13. [Surgical and interventional use of radiofrequency current: is there interference with implantable cardioverter/defibrillators?].

    Science.gov (United States)

    Fiek, M; Dorwarth, U; Durchlaub, I; Mayer, A; Steinbeck, G; Hoffmann, E

    2002-07-01

    During surgical and interventional procedures, interactions between implantable cardioverter defibrillators (ICD) and electrical cautery, respectively, application of radiofrequency (RF) energy may occur. Induction of inadequate shock therapies or device malfunction may result and represent a potential perioperative hazard for the patient. Hence, we analyzed the intraoperative interactions in 23 consecutive ICD patients with regard to different surgical and interventional procedures. Sixteen surgical operations (general surgery n = 7, urologic n = 5, abdominal n = 2, gynecological n = 1, thoracic n = 1) and 7 interventional therapies (RF catheter ablation n = 5, endoscopic papillotomy n = 2) were performed. The ICD devices were all located in the left pectoral position and consisted of 15 single and 8 dual chamber defibrillators. During the procedure tachyarrhythmia detection (VF 295 +/- 21 ms, VT 370 +/- 55 ms) of the devices was maintained active (monitoring mode); only ICD therapies were inactivated. The indifferent electrode of the electrical cauter/RF generator was placed in standard positions (right mid femoral position n = 18, thoracic spine area n = 5). After the procedure, the ICD memory was checked for detections, respectively, for changes of the programming. There was no misdetection or reprogramming of the ICD caused by electrical cautery or RF energy. Despite the lack of undesired interactions ICDs should be inactivated preoperatively to assure maximum patient safety. However, should inactivation be ineffective or not manageable, electromagnetic interference is highly unlikely.

  14. The effect of experimental balancing interferences on masticatory performance.

    Science.gov (United States)

    Eberhard, L; Braun, S; Wirth, A; Schindler, H-J; Hellmann, D; Giannakopoulos, N N

    2014-05-01

    Immediate adaptation to experimental-balancing interferences is known to affect jaw kinematics and electromyographic activity (EMG). However, little is known about the influence on masticatory performance parameters. This study hypothesises that balancing-side interferences significantly reduce the performance of the masticatory system. Twenty-one healthy subjects (eleven female, mean age: 24.1 ± 1.2 years) chewed standardised silicone cubes performing 15 masticatory cycles on the right side under three experimental conditions: (i) natural dentition (ND), (ii) splints with structured occlusal profiles (SS) (iii) splints with balancing interferences in the left molar region (OI). The particle size distribution was determined by a validated scanning procedure and curve fitted with the Rosin-Rammler function to determine X(50)-values. The EMG of both temporalis and masseter muscles was recorded simultaneously, and the total muscle work (TMW) was calculated. A jaw-tracking device recorded the incisal movement path (IMP). The functional parameters under the experimental conditions were compared by repeated-measures analysis of variance. The findings confirm our hypothesis. The X(50)-values differed significantly (P 0.05) were observed between SS and ND. There was no significant difference in both TMW (1269.0 vs. 1284.9 vs. 1193.9 μV*s) and IMP (720.2 vs. 735.3 vs. 723.1 mm) amongst the three conditions (P > 0.05). These findings confirm the assumption that the disturbance of the habitual chewing cycles by balancing-side interferences significantly reduces the masticatory performance in the short term. Occlusal balancing-side interferences are common technical failures of dental restorations. Simulation of this condition caused deterioration of masticatory performance in healthy young adults. Further studies should be carried out, on whether the observed effect is long-term and whether masticatory performance decreases even more in patients with reduced adaptive

  15. Effect of interference fit size on local stress in single lap bolted joints

    Directory of Open Access Journals (Sweden)

    Yunbo Bi

    2015-06-01

    Full Text Available The interference fit is an effective process technique to improve the fatigue life of aircraft structures. In this article, the experiments including the interference fit bolt installation and tensile loading in bolted joint were carried out. A three-dimensional finite element model was established to simulate the experimental process, and the finite element model was validated by comparing the simulated data with the experimental data of the squeeze forces and the strains. By finite element simulation and analysis, it can be concluded that the location of maximum value of the maximum principal stress on the upper plate faying surface is going far away from the hole edge with the increase in interference fit size. Furthermore, by analyzing the hoop stress variations along a prescribed path, the maximum value of the hoop tensile stress is smallest at the interference fit size of 1.5%.

  16. Shortest-Path Network Interdiction

    National Research Council Canada - National Science Library

    Israeli, Eltan; Wood, R. K

    2002-01-01

    We study the problem of interdicting the arcs in a network in order to maximize the shortest s-t path length "Interdiction" is an attack on an arc that destroys the arc or increases its effective length...

  17. Path-based Queries on Trajectory Data

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Pelekis, Nikos; Theodoridis, Yannis

    2014-01-01

    In traffic research, management, and planning a number of path-based analyses are heavily used, e.g., for computing turn-times, evaluating green waves, or studying traffic flow. These analyses require retrieving the trajectories that follow the full path being analyzed. Existing path queries cannot...... sufficiently support such path-based analyses because they retrieve all trajectories that touch any edge in the path. In this paper, we define and formalize the strict path query. This is a novel query type tailored to support path-based analysis, where trajectories must follow all edges in the path....... To efficiently support strict path queries, we present a novel NETwork-constrained TRAjectory index (NETTRA). This index enables very efficient retrieval of trajectories that follow a specific path, i.e., strict path queries. NETTRA uses a new path encoding scheme that can determine if a trajectory follows...

  18. Paths into Professional School: A Research Note

    Science.gov (United States)

    Helfrich, Margaret L.

    1975-01-01

    The literature of occupations and professions implies that there may be different paths into given work activities. Four different paths into dental school are described and illustrated, and different conditions are associated with each path. (Author/BP)

  19. Formal language constrained path problems

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, C.; Jacob, R.; Marathe, M.

    1997-07-08

    In many path finding problems arising in practice, certain patterns of edge/vertex labels in the labeled graph being traversed are allowed/preferred, while others are disallowed. Motivated by such applications as intermodal transportation planning, the authors investigate the complexity of finding feasible paths in a labeled network, where the mode choice for each traveler is specified by a formal language. The main contributions of this paper include the following: (1) the authors show that the problem of finding a shortest path between a source and destination for a traveler whose mode choice is specified as a context free language is solvable efficiently in polynomial time, when the mode choice is specified as a regular language they provide algorithms with improved space and time bounds; (2) in contrast, they show that the problem of finding simple paths between a source and a given destination is NP-hard, even when restricted to very simple regular expressions and/or very simple graphs; (3) for the class of treewidth bounded graphs, they show that (i) the problem of finding a regular language constrained simple path between source and a destination is solvable in polynomial time and (ii) the extension to finding context free language constrained simple paths is NP-complete. Several extensions of these results are presented in the context of finding shortest paths with additional constraints. These results significantly extend the results in [MW95]. As a corollary of the results, they obtain a polynomial time algorithm for the BEST k-SIMILAR PATH problem studied in [SJB97]. The previous best algorithm was given by [SJB97] and takes exponential time in the worst case.

  20. Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity

    Directory of Open Access Journals (Sweden)

    Xie Yiwei

    2017-12-01

    Full Text Available Integrated optical signal processors have been identified as a powerful engine for optical processing of microwave signals. They enable wideband and stable signal processing operations on miniaturized chips with ultimate control precision. As a promising application, such processors enables photonic implementations of reconfigurable radio frequency (RF filters with wide design flexibility, large bandwidth, and high-frequency selectivity. This is a key technology for photonic-assisted RF front ends that opens a path to overcoming the bandwidth limitation of current digital electronics. Here, the recent progress of integrated optical signal processors for implementing such RF filters is reviewed. We highlight the use of a low-loss, high-index-contrast stoichiometric silicon nitride waveguide which promises to serve as a practical material platform for realizing high-performance optical signal processors and points toward photonic RF filters with digital signal processing (DSP-level flexibility, hundreds-GHz bandwidth, MHz-band frequency selectivity, and full system integration on a chip scale.

  1. Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity

    Science.gov (United States)

    Xie, Yiwei; Geng, Zihan; Zhuang, Leimeng; Burla, Maurizio; Taddei, Caterina; Hoekman, Marcel; Leinse, Arne; Roeloffzen, Chris G. H.; Boller, Klaus-J.; Lowery, Arthur J.

    2017-12-01

    Integrated optical signal processors have been identified as a powerful engine for optical processing of microwave signals. They enable wideband and stable signal processing operations on miniaturized chips with ultimate control precision. As a promising application, such processors enables photonic implementations of reconfigurable radio frequency (RF) filters with wide design flexibility, large bandwidth, and high-frequency selectivity. This is a key technology for photonic-assisted RF front ends that opens a path to overcoming the bandwidth limitation of current digital electronics. Here, the recent progress of integrated optical signal processors for implementing such RF filters is reviewed. We highlight the use of a low-loss, high-index-contrast stoichiometric silicon nitride waveguide which promises to serve as a practical material platform for realizing high-performance optical signal processors and points toward photonic RF filters with digital signal processing (DSP)-level flexibility, hundreds-GHz bandwidth, MHz-band frequency selectivity, and full system integration on a chip scale.

  2. An Optimized Hybrid Approach for Path Finding

    OpenAIRE

    Ansari, Ahlam; Sayyed, Mohd Amin; Ratlamwala, Khatija; Shaikh, Parvin

    2015-01-01

    Path finding algorithm addresses problem of finding shortest path from source to destination avoiding obstacles. There exist various search algorithms namely A*, Dijkstra's and ant colony optimization. Unlike most path finding algorithms which require destination co-ordinates to compute path, the proposed algorithm comprises of a new method which finds path using backtracking without requiring destination co-ordinates. Moreover, in existing path finding algorithm, the number of iterations req...

  3. EM modeling of RF drive in DTL tank 4

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, Sergey S. [Los Alamos National Laboratory

    2012-06-19

    A 3-D MicroWave Studio model for the RF drive in the LANSCE DTL tank 4 has been built. Both eigensolver and time-domain modeling are used to evaluate maximal fields in the drive module and RF coupling. The LANSCE DTL tank 4 has recently been experiencing RF problems, which may or may not be related to its replaced RF coupler. This situation stimulated a request by Dan Rees to provide EM modeling of the RF drive in the DTL tank 4 (T4). Jim O'Hara provided a CAD model that was imported into the CST Microwave Studio (MWS) and after some modifications became a part of a simplified MWS model of the T4 RF drive. This technical note describes the model and presents simulation results.

  4. PEP-II RF feedback system simulation

    Energy Technology Data Exchange (ETDEWEB)

    Tighe, R. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    A model containing the fundamental impedance of the PEP-II cavity along with the longitudinal beam dynamics and RF feedback system components is in use. It is prepared in a format allowing time-domain as well as frequency-domain analysis and full graphics capability. Matlab and Simulink are control system design and analysis programs (widely available) with many built-in tools. The model allows the use of compiled C-code modules for compute intensive portions. We desire to represent as nearly as possible the components of the feedback system including all delays, sample rates and applicable nonlinearities. (author)

  5. RF microwave circuit design for wireless applications

    CERN Document Server

    Rohde, Ulrich L

    2012-01-01

    Provides researchers and engineers with a complete set of modeling, design, and implementation tools for tackling the newest IC technologies Revised and completely updated, RF/Microwave Circuit Design for Wireless Applications, Second Edition is a unique, state-of-the-art guide to wireless integrated circuit design that provides researchers and engineers with a complete set of modeling, design, and implementation tools for tackling even the newest IC technologies. It emphasizes practical design solutions for high-performance devices and circuitry, incorporating ample exa

  6. STUDIES ON THE RCMS RF SYSTEM.

    Energy Technology Data Exchange (ETDEWEB)

    ZHAO,Y.

    2003-01-22

    This note addresses the various options for the Rapid Cycling Medical Synchrotron (RCMS) RF. The study was divided into three cases, namely non-tuning, tuning and filter. Each case also includes a few options. The primary study was focused on the non-tuning options. However, it was found that it requires too much driver power to cover the wide band and thus causes the cost being too high to be competitive. The proposal of RCMS is not yet clear if it can be approved or not. The results of this study might be useful to other similar machines.

  7. RF and microwave coupled-line circuits

    CERN Document Server

    Mongia, R K; Bhartia, P; Hong, J; Gupta, K C

    2007-01-01

    This extensively revised edition of the 1999 Artech House classic, RF and Microwave Coupled-Line Circuits, offers you a thoroughly up-to-date understanding of coupled line fundamentals, explaining their applications in designing microwave and millimeter-wave components used in today's communications, microwave, and radar systems. The Second Edition includes a wealth of new material, particularly relating to applications. You find brand new discussions on a novel simple design technique for multilayer coupled circuits, high pass filters using coupled lines, software packages used for filter des

  8. RF Transmission Lines on Silicon Substrates

    Science.gov (United States)

    Ponchak, George E.

    1999-01-01

    A review of RF transmission lines on silicon substrates is presented. Through measurements and calculated results, it is shown that attenuation is dominated by conductor loss if silicon substrates with a resistivity greater than 2500 Ohm-cm are used. Si passivation layers affect the transmission line attenuation; however, measured results demonstrate that passivation layers do not necessarily increase attenuation. If standard, low resistivity Si wafers must be used, alternative transmission lines such as thin film microstrip and Co-Planar Waveguide (CPW) on thick polyimide layers must be used. Measured results presented here show that low loss per unit length is achievable with these transmission lines.

  9. RF & wireless technologies know it all

    CERN Document Server

    Fette, Bruce A; Chandra, Praphul; Dobkin, Daniel M; Bensky, Dan; Miron, Douglas B; Lide, David; Dowla, Farid; Olexa, Ron

    2007-01-01

    The Newnes Know It All Series takes the best of what our authors have written to create hard-working desk references that will be an engineer's first port of call for key information, design techniques and rules of thumb. Guaranteed not to gather dust on a shelf!RF (radio frequency) and wireless technologies drive communication today. This technology and its applications enable wireless phones, portable device roaming, and short-range industrial and commercial application communication such as the supply chain management wonder, RFID. Up-to-date information regarding software defined R

  10. Optical fibers and RF a natural combination

    CERN Document Server

    Romeiser, Malcolm

    2004-01-01

    The optical fiber industry has experienced a period of consolidation and reorganization and is now poised for a new surge in growth. To take advantage of that growth, and to respond to the demand to use fiber more efficiently, designers need a better understanding of fiber optics. Taking the approach that optical fibers are an extension of RF-based communications, the author explains basic optical concepts, applications, and systems; the nature and performance characteristics of optical fibers; and optical sources, connectors and splices. Subsequent chapters explore current applications of fib

  11. Dual RF Astrodynamic GPS Orbital Navigator Satellite

    Science.gov (United States)

    Kanipe, David B.; Provence, Robert Steve; Straube, Timothy M.; Reed, Helen; Bishop, Robert; Lightsey, Glenn

    2009-01-01

    Dual RF Astrodynamic GPS Orbital Navigator Satellite (DRAGONSat) will demonstrate autonomous rendezvous and docking (ARD) in low Earth orbit (LEO) and gather flight data with a global positioning system (GPS) receiver strictly designed for space applications. ARD is the capability of two independent spacecraft to rendezvous in orbit and dock without crew intervention. DRAGONSat consists of two picosatellites (one built by the University of Texas and one built by Texas A and M University) and the Space Shuttle Payload Launcher (SSPL); this project will ultimately demonstrate ARD in LEO.

  12. Integrated 60GHz RF beamforming in CMOS

    CERN Document Server

    Yu, Yikun; van Roermund, Arthur H M

    2011-01-01

    ""Integrated 60GHz RF Beamforming in CMOS"" describes new concepts and design techniques that can be used for 60GHz phased array systems. First, general trends and challenges in low-cost high data-rate 60GHz wireless system are studied, and the phased array technique is introduced to improve the system performance. Second, the system requirements of phase shifters are analyzed, and different phased array architectures are compared. Third, the design and implementation of 60GHz passive and active phase shifters in a CMOS technology are presented. Fourth, the integration of 60GHz phase shifters

  13. Asteroidal Quadruples in non Rooted Path Graphs

    Directory of Open Access Journals (Sweden)

    Gutierrez Marisa

    2015-11-01

    Full Text Available A directed path graph is the intersection graph of a family of directed subpaths of a directed tree. A rooted path graph is the intersection graph of a family of directed subpaths of a rooted tree. Rooted path graphs are directed path graphs. Several characterizations are known for directed path graphs: one by forbidden induced subgraphs and one by forbidden asteroids. It is an open problem to find such characterizations for rooted path graphs. For this purpose, we are studying in this paper directed path graphs that are non rooted path graphs. We prove that such graphs always contain an asteroidal quadruple.

  14. Progress on the MICE RF Module at LBNL

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Tianhuan [LBNL, Berkeley; Anderson, Terry [Fermilab; Bross, Alan [Fermilab; DeMello, Allan [LBNL, Berkeley; Lambert, Andrew [LBNL, Berkeley; Li, Derun [LBNL, Berkeley; Loew, Tim [LBNL, Berkeley; Palmer, Mark [Fermilab; Prestemon, Soren [LBNL, Berkeley; Torun, Yagmur [IIT, Chicago (main); Virostek, Steve [LBNL, Berkeley; Wallig, Joseph [LBNL, Berkeley

    2016-06-01

    The international Muon Ionization Cooling Experiment aims to demonstrate the transverse cooling of a muon beam by ionization in energy absorbers. The final MICE cooling channel configuration has two RF modules, each housing a 201 MHz RF cavity used to compensate the longitudinal energy loss in the absorbers. The assembly of MICE RF Module is being carried out at LBL. In this paper we will report the recent progress on the assembly work.

  15. RF power consumption emulation optimized with interval valued homotopies

    DEFF Research Database (Denmark)

    Musiige, Deogratius; Anton, François; Yatskevich, Vital

    2011-01-01

    This paper presents a methodology towards the emulation of the electrical power consumption of the RF device during the cellular phone/handset transmission mode using the LTE technology. The emulation methodology takes the physical environmental variables and the logical interface between...... consumption of the RF device operating at 5MHz using homotopy between 2 continuous power consumptions of the RF device operating at the bandwidths 3MHz and 10MHz....

  16. Studies of RF Breakdown of Metals in Dense Gases

    CERN Document Server

    Hanlet, Pierrick M; Ankenbrandt, Charles; Johnson, Rolland P; Kaplan, Daniel; Kuchnir, Moyses; Moretti, Alfred; Paul, Kevin; Popovic, Milorad; Yarba, Victor; Yonehara, Katsuya

    2005-01-01

    A study of RF breakdown of metals in gases has begun as part of a program to develop RF cavities filled with dense hydrogen gas to be used for muon ionization cooling. A pressurized 800 MHz test cell has been used at Fermilab to compare the conditioning and breakdown behavior of copper, molybdenum, chromium, and beryllium electrodes as functions of hydrogen and helium gas density. These results are compared to the predicted or known RF breakdown behavior of these metals in vacuum.

  17. PEP-II RF System Operation and Performance

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, P.

    2005-01-18

    The Low Energy Ring (LER) and High Energy Ring (HER) RF systems have operated now on PEP-II since July 1998 and have assisted in breaking all design luminosity records back in June 2001. Luminosity on PEP-II has steadily increased since then as a consequence of larger e+ and e- beam currents being accumulated. This has meant that the RF systems have inevitably been driven harder, not only to achieve these higher stored beam currents, but also to reliably keep the beams circulating whilst at the same time minimizing the number of aborts due to RF system faults. This paper details the current PEP-II RF system configurations for both rings, as well as future upgrade plans spanning the next 3-5 years. Limitations of the current RF system configurations are presented, highlighting improvement projects which will target specific areas within the RF systems to ensure that adequate operating overheads are maintained and reliable operation is assured. The Low Energy Ring (LER) and High Energy Ring (HER) RF systems have operated now on PEP-II since July 1998 and have assisted in breaking all design luminosity records back in June 2001. Luminosity on PEP-II has steadily increased since then as a consequence of larger e+ and e- beam currents being accumulated. This has meant that the RF systems have inevitably been driven harder, not only to achieve these higher stored beam currents, but also to reliably keep the beams circulating whilst at the same time minimizing the number of aborts due to RF system faults. This paper details the current PEP-II RF system configurations for both rings, as well as future upgrade plans spanning the next 3-5 years. Limitations of the current RF system configurations are presented, highlighting improvement projects which will target specific areas within the RF systems to ensure that adequate operating overheads are maintained and reliable operation is assured.

  18. Decay properties of {sup 257}No, {sup 261}Rf, and {sup 262}Rf

    Energy Technology Data Exchange (ETDEWEB)

    Lazarev, Yu. A.; Lobanov, Yu. V.; Oganessian, Yu. Ts.; Utyonkov, V. K.; Abdullin, F. Sh.; Polyakov, A. N.; Rigol, J.; Shirokovsky, I. V.; Tsyganov, Yu. S.; Iliev, S. (and others)

    2000-12-01

    In bombardments of {sup 244}Pu targets with 114- and 120-MeV {sup 22}Ne projectiles we detected 69 {alpha}-{alpha} correlations linking {alpha} decays of {sup 261}Rf and {sup 257}No. We observed one {alpha} peak with E{sub {alpha}}=8.30{+-}0.06 MeV for {sup 261}Rf and peaks with {alpha}-particle energies 8.07--8.40 MeV for {sup 257}No. The half-life of {sup 257}No was measured to be 25{+-}3 s. No correlations were found between {alpha} decays and subsequent spontaneous fission events, from which we calculated an upper limit of 1.5% for the fission branch of {sup 257}No and estimated an upper limit of 3% for the {alpha}-decay branch of {sup 262}Rf. The cross section of the {sup 244}Pu({sup 22}Ne,5n){sup 261}Rf reaction was measured to be about 4 nb at both {sup 22}Ne energies used. We also report on some results from {sup 242}Pu+{sup 22}Ne and {sup 238}U+{sup 26}Mg bombardments.

  19. Electromagnetic compatibility and interference metrology

    Science.gov (United States)

    Ma, M. T.; Kanda, M.

    1986-07-01

    The material included in the report is intended for a short course on electromagnetic compatibility/interference (EMC/EM) metrology. The entire course is presented in nine chapters with the introductory part given as Chapter 1. The particular measurement topics to be covered are: (1) open sites (Chapters 2 and 6), (2) transverse electromagnetic cells (Chapter 3), (3) techniques for measuring the electromagnetic shielding of materials (Chapter 4), (4) anechoic chambers (Chapter 5), and (5) reverberating chambers (Chapter 8). In addition, since small probe antennas play an important role in some of the EMC/EMI measurements discussed, a separate chapter on various probe systems developed at NBS is given in Chapter 7. Selected contemporary EMI topics such as the characterization and measurement of a complex EM environment, interferences in the form of out-of-band receptions to an antenna, and some conducted EMI problems are also briefly discussed (Chapter 9).

  20. Investigation of Microscopic Materials Limitations of Superconducting RF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Anlage, Steven [Univ. of Maryland, College Park, MD (United States)

    2014-07-23

    The high-field performance of SRF cavities is often limited by breakdown events below the intrinsic limiting surface fields of Nb, and there is abundant evidence that these breakdown events are localized in space inside the cavity. Also, there is a lack of detailed understanding of the causal links between surface treatments and ultimate RF performance at low temperatures. An understanding of these links would provide a clear roadmap for improvement of SRF cavity performance, and establish a cause-and-effect ‘RF materials science’ of Nb. We propose two specific microscopic approaches to addressing these issues. First is a spatially-resolved local microwave-microscope probe that operates at SRF frequencies and temperatures to discover the microscopic origins of breakdown, and produce quantitative measurements of RF critical fields of coatings and films. Second, RF Laser Scanning Microscopy (LSM) has allowed visualization of RF current flow and sources of nonlinear RF response in superconducting devices with micro-meter spatial resolution. The LSM will be used in conjunction with surface preparation and characterization techniques to create definitive links between physical and chemical processing steps and ultimate cryogenic microwave performance. We propose to develop RF laser scanning microscopy of small-sample Nb pieces to establish surface-processing / RF performance relations through measurement of RF current distributions on micron-length scales and low temperatures.

  1. Adaptive RF front-ends for hand-held applications

    CERN Document Server

    van Bezooijen, Andre; van Roermund, Arthur

    2010-01-01

    The RF front-end - antenna combination is a vital part of a mobile phone because its performance is very relevant to the link quality between hand-set and cellular network base-stations. The RF front-end performance suffers from changes in operating environment, like hand-effects, that are often unpredictable. ""Adaptive RF Front-Ends for Hand-Held Applications"" presents an analysis on the impact of fluctuating environmental parameters. In order to overcome undesired behavior two different adaptive control methods are treated that make RF frond-ends more resilient: adaptive impedance control,

  2. Geometry Optimization of DC/RF Photoelectron Gun

    CERN Document Server

    Chen Ping; Yu, David

    2005-01-01

    Pre-acceleration of photoelectrons in a pulsed, high voltage, short, dc gap and its subsequent injection into an rf gun is a promising method to improve electron beam emittance in rf accelerators. Simulation work has been performed in order to optimize the geometric shapes of a dc/rf gun and improve electron beam properties. Variations were made on cathode and anode shapes, dc gap distance, and inlet shape of the rf cavity. Simulations showed that significant improvement on the normalized emittance (< 1 mm-mrad), compared to a dc gun with flat cathode, could be obtained after the geometric shapes of the gun were optimized.

  3. Method of electron emission control in RF guns

    CERN Document Server

    Khodak, I V

    2001-01-01

    The electron emission control method for a RF gun is considered.According to the main idea of the method,the additional resonance system is created in a cathode region where the RF field strength could be varied using the external pulse equipment. The additional resonance system is composed of a coaxial cavity coupled with a RF gun cylindrical cavity via an axial hole. Computed results of radiofrequency and electrodynamic performances of such a two-cavity system and results of the RF gun model pilot study are presented in. Results of particle dynamics simulation are described.

  4. CMOS RF circuit design for reliability and variability

    CERN Document Server

    Yuan, Jiann-Shiun

    2016-01-01

    The subject of this book is CMOS RF circuit design for reliability. The device reliability and process variation issues on RF transmitter and receiver circuits will be particular interest to the readers in the field of semiconductor devices and circuits. This proposed book is unique to explore typical reliability issues in the device and technology level and then to examine their impact on RF wireless transceiver circuit performance. Analytical equations, experimental data, device and circuit simulation results will be given for clear explanation. The main benefit the reader derive from this book will be clear understanding on how device reliability issues affects the RF circuit performance subjected to operation aging and process variations.

  5. Interference by amplitude division with extended sources by paraxial boundary conditions

    Science.gov (United States)

    Liñares, J.; Nistal, M. C.

    2014-07-01

    We present a wave-optics paraxial approach to the interference by amplitude division produced by plane-parallel films (or plates) and non-plane-parallel films, or by equivalent optical devices such as a Michelson interferometer, when they are illuminated with extended (spatially incoherent) quasi-monochromatic sources. To the best of our knowledge, the most common approaches to the study of interference are based, for simplicity, on the combined use of geometrical optics concepts, such as the optical path length along a ray, together with some wave-optics concepts such as optical phases. However, interference phenomena have been the means by which the wave nature of light has been established and therefore geometrical and wave concepts are so far-off that their simultaneous use can give rise to misleading concepts. Therefore, the primary aim of this work is to provide an analytical homogeneous description of interference by amplitude division using only paraxial spherical waves and boundary conditions at smooth interfaces or discontinuities in such a way that the calculation of the total optical field, interference irradiance, fringe visibility, coherence degree, localization of the interference and so on, can be made in a unified way by taking a fully wave-optics approach. The paraxial regime is enough in most cases and, moreover, interference is generally collected by an optical instrument such as a lens or the eye itself, in which a paraxial approximation is required. This work is particularly aimed at university physics teachers and undergraduate and first year postgraduate students.

  6. Image hiding using optical interference

    Science.gov (United States)

    Zhang, Yan; Wang, Weining

    2010-09-01

    Optical image encryption technology has attracted a lot of attentions due to its large capacitance and fast speed. In conventional image encryption methods, the random phase masks are used as encryption keys to encode the images into white noise distribution. Therefore, this kind of methods requires interference technology to record complex amplitude and is vulnerable to attack techniques. The image hiding methods which employ the phase retrieve algorithm to encode the images into two or more phase masks are proposed, the hiding process is carried out within a computer using iterative algorithm. But the iterative algorithms are time consumed. All method mentioned above are based on the optical diffraction of the phase masks. In this presentation, a new optical image hiding method based on optical interference is proposed. The coherence lights which pass through two phase masks are combined by a beam splitter. Two beams interfere with each other and the desired image appears at the pre-designed plane. Two phase distribution masks are design analytically; therefore, the hiding speed can be obviously improved. Simulation results are carried out to demonstrate the novelty of the new proposed methods. This method can be expanded for double images hiding.

  7. Quantum interference in plasmonic circuits.

    Science.gov (United States)

    Heeres, Reinier W; Kouwenhoven, Leo P; Zwiller, Valery

    2013-10-01

    Surface plasmon polaritons (plasmons) are a combination of light and a collective oscillation of the free electron plasma at metal/dielectric interfaces. This interaction allows subwavelength confinement of light beyond the diffraction limit inherent to dielectric structures. As a result, the intensity of the electromagnetic field is enhanced, with the possibility to increase the strength of the optical interactions between waveguides, light sources and detectors. Plasmons maintain non-classical photon statistics and preserve entanglement upon transmission through thin, patterned metallic films or weakly confining waveguides. For quantum applications, it is essential that plasmons behave as indistinguishable quantum particles. Here we report on a quantum interference experiment in a nanoscale plasmonic circuit consisting of an on-chip plasmon beamsplitter with integrated superconducting single-photon detectors to allow efficient single plasmon detection. We demonstrate a quantum-mechanical interaction between pairs of indistinguishable surface plasmons by observing Hong-Ou-Mandel (HOM) interference, a hallmark non-classical interference effect that is the basis of linear optics-based quantum computation. Our work shows that it is feasible to shrink quantum optical experiments to the nanoscale and offers a promising route towards subwavelength quantum optical networks.

  8. Interference graph-based dynamic frequency reuse in optical attocell networks

    Science.gov (United States)

    Liu, Huanlin; Xia, Peijie; Chen, Yong; Wu, Lan

    2017-11-01

    Indoor optical attocell network may achieve higher capacity than radio frequency (RF) or Infrared (IR)-based wireless systems. It is proposed as a special type of visible light communication (VLC) system using Light Emitting Diodes (LEDs). However, the system spectral efficiency may be severely degraded owing to the inter-cell interference (ICI), particularly for dense deployment scenarios. To address these issues, we construct the spectral interference graph for indoor optical attocell network, and propose the Dynamic Frequency Reuse (DFR) and Weighted Dynamic Frequency Reuse (W-DFR) algorithms to decrease ICI and improve the spectral efficiency performance. The interference graph makes LEDs can transmit data without interference and select the minimum sub-bands needed for frequency reuse. Then, DFR algorithm reuses the system frequency equally across service-providing cells to mitigate spectrum interference. While W-DFR algorithm can reuse the system frequency by using the bandwidth weight (BW), which is defined based on the number of service users. Numerical results show that both of the proposed schemes can effectively improve the average spectral efficiency (ASE) of the system. Additionally, improvement of the user data rate is also obtained by analyzing its cumulative distribution function (CDF).

  9. New phenomenology of gas breakdown in DC and RF fields

    Science.gov (United States)

    Petrović, Zoran Lj; Sivoš, Jelena; Savić, Marija; Škoro, Nikola; Radmilović Radenović, Marija; Malović, Gordana; Gocić, Saša; Marić, Dragana

    2014-05-01

    This paper follows a review lecture on the new developments in the field of gas breakdown and low current discharges, usually covered by a form of Townsend's theory and phenomenology. It gives an overview of a new approach to identifying which feedback agents provide breakdown, how to model gas discharge conditions and reconcile the results with binary experiments and how to employ that knowledge in modelling gas discharges. The next step is an illustration on how to record volt-ampere characteristics and use them on one hand to obtain the breakdown voltage and, on the other, to identify the regime of operation and model the secondary electron yields. The second aspect of this section concerns understanding the different regimes, their anatomy, how those are generated and how free running oscillations occur. While temporal development is the most useful and interesting part of the new developments, the difficulty of presenting the data in a written form precludes an easy publication and discussion. Thus, we shall only mention some of the results that stem from these measurements. Most micro discharges operate in DC albeit with complex geometries. Thus, parallel plate micro discharge measurements were needed to establish that Townsend's theory, with all its recent extensions, is still valid until some very small gaps. We have shown, for example, how a long-path breakdown puts in jeopardy many experimental observations and why a flat left-hand side of the Paschen curve often does not represent good physics. We will also summarize a kinetic representation of the RF breakdown revealing a somewhat more complex picture than the standard model. Finally, we will address briefly the breakdown in radially inhomogeneous conditions and how that affects the measured properties of the discharge. This review has the goal of summarizing (rather than developing details of) the current status of the low-current DC discharges formation and operation as a discipline which, in spite of

  10. Breakdown of interference rules in azulene, a nonalternant hydrocarbon.

    Science.gov (United States)

    Xia, Jianlong; Capozzi, Brian; Wei, Sujun; Strange, Mikkel; Batra, Arunabh; Moreno, Jose R; Amir, Roey J; Amir, Elizabeth; Solomon, Gemma C; Venkataraman, Latha; Campos, Luis M

    2014-05-14

    We have designed and synthesized five azulene derivatives containing gold-binding groups at different points of connectivity within the azulene core to probe the effects of quantum interference through single-molecule conductance measurements. We compare conducting paths through the 5-membered ring, 7-membered ring, and across the long axis of azulene. We find that changing the points of connectivity in the azulene impacts the optical properties (as determined from UV-vis absorption spectra) and the conductivity. Importantly, we show here that simple models cannot be used to predict quantum interference characteristics of nonalternant hydrocarbons. As an exemplary case, we show that azulene derivatives that are predicted to exhibit destructive interference based on widely accepted atom-counting models show a significant conductance at low biases. Although simple models to predict the low-bias conductance do not hold with all azulene derivatives, we demonstrate that the measured conductance trend for all molecules studied actually agrees with predictions based on the more complete GW calculations for model systems.

  11. Cooperative Algorithms for MIMO Interference Channels

    CERN Document Server

    Peters, Steven W

    2010-01-01

    Interference alignment is a transmission technique for exploiting all available degrees of freedom in the interference channel with an arbitrary number of users. Most prior work on interference alignment, however, neglects interference from other nodes in the network not participating in the alignment operation. This paper proposes three generalizations of interference alignment for the multiple-antenna interference channel with multiple users that account for colored noise, which models uncoordinated interference. First, a minimum interference-plus-noise leakage algorithm is presented, and shown to be equivalent to previous subspace methods when noise is spatially white or negligible. A joint minimum mean squared error design is then proposed that jointly optimizes the transmit precoders and receive spatial filters, whereas previous designs neglect the receive spatial filter. This algorithm is shown to be a generalization of previous joint MMSE designs for other system configurations such as the broadcast ch...

  12. Carbon nanostructure composite for electromagnetic interference ...

    Indian Academy of Sciences (India)

    2015-05-30

    based composite materials for electromagnetic interference (EMI) shielding. With more and more electronic gadgets being used at different frequencies, there is a need for shielding them from one another to avoid interference.

  13. Methylation of bacterial release factors RF1 and RF2 is required for normal translation termination in vivo.

    Science.gov (United States)

    Mora, Liliana; Heurgué-Hamard, Valérie; de Zamaroczy, Miklos; Kervestin, Stephanie; Buckingham, Richard H

    2007-12-07

    Bacterial release factors RF1 and RF2 are methylated on the Gln residue of a universally conserved tripeptide motif GGQ, which interacts with the peptidyl transferase center of the large ribosomal subunit, triggering hydrolysis of the ester bond in peptidyl-tRNA and releasing the newly synthesized polypeptide from the ribosome. In vitro experiments have shown that the activity of RF2 is stimulated by Gln methylation. The viability of Escherichia coli K12 strains depends on the integrity of the release factor methyltransferase PrmC, because K12 strains are partially deficient in RF2 activity due to the presence of a Thr residue at position 246 instead of Ala. Here, we study in vivo RF1 and RF2 activity at termination codons in competition with programmed frameshifting and the effect of the Ala-246 --> Thr mutation. PrmC inactivation reduces the specific termination activity of RF1 and RF2(Ala-246) by approximately 3- to 4-fold. The mutation Ala-246 --> Thr in RF2 reduces the termination activity in cells approximately 5-fold. After correction for the decrease in level of RF2 due to the autocontrol of RF2 synthesis, the mutation Ala-246 --> Thr reduced RF2 termination activity by approximately 10-fold at UGA codons and UAA codons. PrmC inactivation had no effect on cell growth in rich media but reduced growth considerably on poor carbon sources. This suggests that the expression of some genes needed for optimal growth under such conditions can become growth limiting as a result of inefficient translation termination.

  14. Extremely high frequency RF effects on electronics.

    Energy Technology Data Exchange (ETDEWEB)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  15. SPS RF System:Tetrodes and Waveguides

    CERN Multimedia

    1974-01-01

    The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X.

  16. Rf cavity primer for cyclic proton accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, J.E.

    1988-04-01

    The purpose of this note is to describe the electrical and mechanical properites of particle accelerator rf cavities in a manner which will be useful to physics and engineering graduates entering the accelerator field. The discussion will be limited to proton (or antiproton) synchrotron accelerators or storage rings operating roughly in the range of 20 to 200 MHz. The very high gradient, fixed frequency UHF or microwave devices appropriate for electron machines and the somewhat lower frequency and broader bandwidth devices required for heavy ion accelerators are discussed extensively in other papers in this series. While it is common pratice to employ field calculation programs such as SUPERFISH, URMEL, or MAFIA as design aids in the development of rf cavities, we attempt here to elucidate various of the design parameters commonly dealt with in proton machines through the use of simple standing wave coaxial resonator expressions. In so doing, we treat only standing wave structures. Although low-impedance, moderately broad pass-band travelling wave accelerating systems are used in the CERN SPS, such systems are more commonly found in linacs, and they have not been used widely in large cyclic accelerators. Two appendices providing useful supporting material regarding relativistic particle dynamics and synchrotron motion in cyclic accelerators are added to supplement the text.

  17. Pressurized rf cavities in ionizing beams

    Directory of Open Access Journals (Sweden)

    B. Freemire

    2016-06-01

    Full Text Available A muon collider or Higgs factory requires significant reduction of the six dimensional emittance of the beam prior to acceleration. One method to accomplish this involves building a cooling channel using high pressure gas filled radio frequency cavities. The performance of such a cavity when subjected to an intense particle beam must be investigated before this technology can be validated. To this end, a high pressure gas filled radio frequency (rf test cell was built and placed in a 400 MeV beam line from the Fermilab linac to study the plasma evolution and its effect on the cavity. Hydrogen, deuterium, helium and nitrogen gases were studied. Additionally, sulfur hexafluoride and dry air were used as dopants to aid in the removal of plasma electrons. Measurements were made using a variety of beam intensities, gas pressures, dopant concentrations, and cavity rf electric fields, both with and without a 3 T external solenoidal magnetic field. Energy dissipation per electron-ion pair, electron-ion recombination rates, ion-ion recombination rates, and electron attachment times to SF_{6} and O_{2} were measured.

  18. Liquid Metal Droplet and Micro Corrugated Diaphragm RF-MEMS for reconfigurable RF filters

    Science.gov (United States)

    Irshad, Wasim

    Widely Tunable RF Filters that are small, cost-effective and offer ultra low power consumption are extremely desirable. Indeed, such filters would allow drastic simplification of RF front-ends in countless applications from cell phones to satellites in space by replacing switched-array of static acoustic filters and YIG filters respectively. Switched array of acoustic filters are de facto means of channel selection in mobile applications such as cell phones. SAW and BAW filters satisfy most criteria needed by mobile applications such as low cost, size and power consumption. However, the trade-off is a significant loss of 3-4 dB in modern cell phone RF front-end. This leads to need for power-hungry amplifiers and short battery life. It is a necessary trade-off since there are no better alternatives. These devices are in mm scale and consume mW. YIG filters dominate applications where size or power is not a constraint but demand excellent RF performance like low loss and high tuning ratio. These devices are measured in inches and require several watts to operate. Clearly, a tunable RF filter technology that would combine the cost, size and power consumption benefits of acoustic filters with excellent RF performance of YIG filters would be extremely desirable and imminently useful. The objective of this dissertation is to develop such a technology based upon RF-MEMS Evanescent-mode cavity filter. Two highly novel RF-MEMS devices have been developed over the course of this PhD to address the unique MEMS needs of this technology. The first part of the dissertation is dedicated to introducing the fundamental concepts of tunable cavity resonators and filters. This includes the physics behind it, key performance metrics and what they depend on and requirements of the MEMS tuners. Initial gap control and MEMS attachment method are identified as potential hurdles towards achieving very high RF performance. Simple and elegant solutions to both these issues are discussed in

  19. PADF RF localization experiments with multi-agent caged-MAV platforms

    Science.gov (United States)

    Barber, Christopher; Gates, Miguel; Selmic, Rastko; Al-Issa, Huthaifa; Ordonez, Raul; Mitra, Atindra

    2011-06-01

    This paper provides a summary of preliminary RF direction finding results generated within an AFOSR funded testbed facility recently developed at Louisiana Tech University. This facility, denoted as the Louisiana Tech University Micro- Aerial Vehicle/Wireless Sensor Network (MAVSeN) Laboratory, has recently acquired a number of state-of-the-art MAV platforms that enable us to analyze, design, and test some of our recent results in the area of multiplatform position-adaptive direction finding (PADF) [1] [2] for localization of RF emitters in challenging embedded multipath environments. Discussions within the segmented sections of this paper include a description of the MAVSeN Laboratory and the preliminary results from the implementation of mobile platforms with the PADF algorithm. This novel approach to multi-platform RF direction finding is based on the investigation of iterative path-loss based (i.e. path loss exponent) metrics estimates that are measured across multiple platforms in order to develop a control law that robotically/intelligently positionally adapt (i.e. self-adjust) the location of each distributed/cooperative platform. The body of this paper provides a summary of our recent results on PADF and includes a discussion on state-of-the-art Sensor Mote Technologies as applied towards the development of sensor-integrated caged-MAV platform for PADF applications. Also, a discussion of recent experimental results that incorporate sample approaches to real-time singleplatform data pruning is included as part of a discussion on potential approaches to refining a basic PADF technique in order to integrate and perform distributed self-sensitivity and self-consistency analysis as part of a PADF technique with distributed robotic/intelligent features. These techniques are extracted in analytical form from a parallel study denoted as "PADF RF Localization Criteria for Multi-Model Scattering Environments". The focus here is on developing and reporting specific

  20. Controlling multimode optomechanical interactions via interference

    Science.gov (United States)

    Kuzyk, Mark C.; Wang, Hailin

    2017-08-01

    We demonstrate optomechanical interference in a multimode system, in which an optical mode couples to two mechanical modes. A phase-dependent excitation-coupling approach is developed, which enables the observation of destructive interference in dynamical backactions. The destructive interference prevents the coupling of the mechanical system to the optical mode, suppressing optically induced mechanical damping. These studies establish optomechanical interference as an essential tool for controlling the interactions between light and mechanical oscillators.

  1. Distributed Interference Alignment with Low Overhead

    CERN Document Server

    Ma, Yanjun; Chen, Rui

    2011-01-01

    Based on closed-form interference alignment (IA) solutions, a low overhead distributed interference alignment (LOIA) scheme is proposed in this paper for the $K$-user SISO interference channel, and extension to multiple antenna scenario is also considered. Compared with the iterative interference alignment (IIA) algorithm proposed by Gomadam et al., the overhead is greatly reduced. Simulation results show that the IIA algorithm is strictly suboptimal compared with our LOIA algorithm in the overhead-limited scenario.

  2. 47 CFR 24.237 - Interference protection.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Interference protection. 24.237 Section 24.237... SERVICES Broadband PCS § 24.237 Interference protection. (a) All licensees are required to coordinate their... proposed facilities will not cause interference to existing OFS stations within the coordination distance...

  3. 47 CFR 27.1221 - Interference protection.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Interference protection. 27.1221 Section 27... Technical Standards § 27.1221 Interference protection. (a) Interference protection will be afforded to BRS... station relative to a base station in another GSA, is equal to the distance, in kilometers, from the base...

  4. Interference mitigation techniques in wireless communications ...

    African Journals Online (AJOL)

    Co-Channel Interference, Intersymbol interference and fading are major impairment to the high-capacity transmission in power- and band-limited wireless communication channel. This paper presents an overview of interference mitigation techniques in wireless communications systems. Linear filtering, equalization, and ...

  5. Impact of MIMO Co-Channel Interference

    DEFF Research Database (Denmark)

    Rahman, Muhammad Imadur; De Carvalho, Elisabeth; Prasad, Ramjee

    2007-01-01

    to cellular interference of some specific Multiple Input Multiple Output (MIMO) schemes on the same and other MIMO schemes. The goal is to study the impact of interference from MIMO schemes at a user located in the cell edge. Semi-Analytical evaluations of Signal to Interference and Noise Ratio (SINR) is done...

  6. An accumulator model of semantic interference

    NARCIS (Netherlands)

    van Maanen, Leendert; van Rijn, Hedderik

    To explain latency effects in picture-word interference tasks, cognitive models need to account for both interference and stimulus onset asynchrony (SOA) effects. As opposed to most models of picture-word interference, which model the time course during the task in a ballistic manner, the RACE model

  7. Characterization of a Prototype Radio Frequency Space Environment Path Emulator for Evaluating Spacecraft Ranging Hardware

    Science.gov (United States)

    Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.

    2007-01-01

    The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for interspacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of the medium, moving platforms, and radiated power. The Path Emulator for Radio Frequency Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.

  8. Human nonsense-mediated mRNA decay factor UPF2 interacts directly with eRF3 and the SURF complex.

    Science.gov (United States)

    López-Perrote, Andrés; Castaño, Raquel; Melero, Roberto; Zamarro, Teresa; Kurosawa, Hitomi; Ohnishi, Tetsuo; Uchiyama, Akiko; Aoyagi, Kyoko; Buchwald, Gretel; Kataoka, Naoyuki; Yamashita, Akio; Llorca, Oscar

    2016-02-29

    Nonsense-mediated mRNA decay (NMD) is an mRNA degradation pathway that regulates gene expression and mRNA quality. A complex network of macromolecular interactions regulates NMD initiation, which is only partially understood. According to prevailing models, NMD begins by the assembly of the SURF (SMG1-UPF1-eRF1-eRF3) complex at the ribosome, followed by UPF1 activation by additional factors such as UPF2 and UPF3. Elucidating the interactions between NMD factors is essential to comprehend NMD, and here we demonstrate biochemically and structurally the interaction between human UPF2 and eukaryotic release factor 3 (eRF3). In addition, we find that UPF2 associates with SURF and ribosomes in cells, in an UPF3-independent manner. Binding assays using a collection of UPF2 truncated variants reveal that eRF3 binds to the C-terminal part of UPF2. This region of UPF2 is partially coincident with the UPF3-binding site as revealed by electron microscopy of the UPF2-eRF3 complex. Accordingly, we find that the interaction of UPF2 with UPF3b interferes with the assembly of the UPF2-eRF3 complex, and that UPF2 binds UPF3b more strongly than eRF3. Together, our results highlight the role of UPF2 as a platform for the transient interactions of several NMD factors, including several components of SURF. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Speckle Imaging Over Horizontal Paths

    Energy Technology Data Exchange (ETDEWEB)

    Carrano, C J

    2002-05-21

    Atmospheric aberrations reduce the resolution and contrast in surveillance images recorded over horizontal or slant paths. This paper describes our recent horizontal and slant path imaging experiments of extended scenes as well as the results obtained using speckle imaging. The experiments were performed with an 8-inch diameter telescope placed on either a rooftop or hillside and cover ranges of interest from 0.5 km up to 10 km. The scenery includes resolution targets, people, vehicles, and other structures. The improvement in image quality using speckle imaging is dramatic in many cases, and depends significantly upon the atmospheric conditions. We quantify resolution improvement through modulation transfer function measurement comparisons.

  10. Strings, paths, and standard tableaux

    CERN Document Server

    Dasmahapatra, S

    1996-01-01

    For the vacuum sectors of regime-III ABF models, we observe that two sets of combinatorial objects: the strings which parametrize the row-to-row transfer matrix eigenvectors, and the paths which parametrize the corner transfer matrix eigenvectors, can both be expressed in terms of the same set of standard tableaux. Furthermore, the momenta of the strings, the energies of the paths, and the charges of the tableaux are such that there is a weight-preserving bijection between the two sets of eigenvectors, wherein the tableaux play an interpolating role. This bijection is so natural, that we conjecture that it exists in general.

  11. Codebook-based interference alignment for uplink MIMO interference channels

    KAUST Repository

    Lee, Hyun Ho

    2014-02-01

    In this paper, we propose a codebook-based interference alignment (IA) scheme in the constant multiple-input multipleoutput (MIMO) interference channel especially for the uplink scenario. In our proposed scheme, we assume cooperation among base stations (BSs) through reliable backhaul links so that global channel knowledge is available for all BSs, which enables BS to compute the transmit precoder and inform its quantized index to the associated user via limited rate feedback link.We present an upper bound on the rate loss of the proposed scheme and derive the scaling law of the feedback load tomaintain a constant rate loss relative to IA with perfect channel knowledge. Considering the impact of overhead due to training, cooperation, and feedback, we address the effective degrees of freedom (DOF) of the proposed scheme and derive the maximization of the effective DOF. From simulation results, we verify our analysis on the scaling law to preserve the multiplexing gain and confirm that the proposed scheme is more effective than the conventional IA scheme in terms of the effective DOF. © 2014 KICS.

  12. Partial interference subspace rejection in CDMA systems

    DEFF Research Database (Denmark)

    Hansen, Henrik; Affes, Sofiene; Mewelstein, Paul

    2001-01-01

    Previously presented interference subspace rejection (ISR) proposed a family of new efficient multiuser detectors for CDMA. We reconsider in this paper the modes of ISR using decision feedback (DF). DF modes share similarities with parallel interference cancellation (PIC) but attempt to cancel...... interference by nulling rather than subtraction. However like the PIC they are prone to wrong tentative decisions. We propose a modification to DF modes that performs partial ISR instead of complete interference cancellation. When tentative decisions are correct, interference is therefore not perfectly...

  13. Quantum Interference and Coherence Theory and Experiments

    CERN Document Server

    Ficek, Zbigniew; Rhodes, William T; Asakura, Toshimitsu; Brenner, Karl-Heinz; Hänsch, Theodor W; Kamiya, Takeshi; Krausz, Ferenc; Monemar, Bo; Venghaus, Herbert; Weber, Horst; Weinfurter, Harald

    2005-01-01

    For the first time, this book assembles in a single volume accounts of many phenomena involving quantum interference in optical fields and atomic systems. It provides detailed theoretical treatments and experimental analyses of such phenomena as quantum erasure, quantum lithography, multi-atom entanglement, quantum beats, control of decoherence, phase control of quantum interference, coherent population trapping, electromagnetically induced transparency and absorption, lasing without inversion, subluminal and superluminal light propagation, storage of photons, quantum interference in phase space, interference and diffraction of cold atoms, and interference between Bose-Einstein condensates. This book fills a gap in the literature and will be useful to both experimentalists and theoreticians.

  14. Comparative studies of chemically synthesized and RF plasma ...

    Indian Academy of Sciences (India)

    silicon wafer substrates have been prepared by polymerizing o-toluidine monomer under radio frequency (RF) plasma discharge in a home-built set-up. This is a custom manu- factured glass deposition chamber, coupled to a vacuum system and an RF amplifier. For controlled feeding of monomer vapours, a special ...

  15. Characterization of Energy Availability in RF Energy Harvesting Networks

    Directory of Open Access Journals (Sweden)

    Daniela Oliveira

    2016-01-01

    Full Text Available The multiple nodes forming a Radio Frequency (RF Energy Harvesting Network (RF-EHN have the capability of converting received electromagnetic RF signals in energy that can be used to power a network device (the energy harvester. Traditionally the RF signals are provided by high power transmitters (e.g., base stations operating in the neighborhood of the harvesters. Admitting that the transmitters are spatially distributed according to a spatial Poisson process, we start by characterizing the distribution of the RF power received by an energy harvester node. Considering Gamma shadowing and Rayleigh fading, we show that the received RF power can be approximated by the sum of multiple Gamma distributions with different scale and shape parameters. Using the distribution of the received RF power, we derive the probability of a node having enough energy to transmit a packet after a given amount of charging time. The RF power distribution and the probability of a harvester having enough energy to transmit a packet are validated through simulation. The numerical results obtained with the proposed analysis are close to the ones obtained through simulation, which confirms the accuracy of the proposed analysis.

  16. Series-Tuned High Efficiency RF-Power Amplifiers

    DEFF Research Database (Denmark)

    Vidkjær, Jens

    2008-01-01

    An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits.......An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits....

  17. Correlates of the MMPI-2-RF in a College Setting

    Science.gov (United States)

    Forbey, Johnathan D.; Lee, Tayla T. C.; Handel, Richard W.

    2010-01-01

    The current study examined empirical correlates of scores on Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF; A. Tellegen & Y. S. Ben-Porath, 2008; Y. S. Ben-Porath & A. Tellegen, 2008) scales in a college setting. The MMPI-2-RF and six criterion measures (assessing anger, assertiveness, sex roles, cognitive…

  18. MMPI-2-RF Characteristics of Custody Evaluation Litigants

    Science.gov (United States)

    Archer, Elizabeth M.; Hagan, Leigh D.; Mason, Janelle; Handel, Richard; Archer, Robert P.

    2012-01-01

    The Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) is a 338-item objective self-report measure drawn from the 567 items of the MMPI-2. Although there is a substantial MMPI-2 literature regarding child custody litigants, there has been only one previously published study using MMPI-2-RF data in this population that…

  19. Predicting Drug Court Treatment Completion Using the MMPI-2-RF

    Science.gov (United States)

    Mattson, Curtis; Powers, Bradley; Halfaker, Dale; Akeson, Steven; Ben-Porath, Yossef

    2012-01-01

    We examined the ability of the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008) substantive scales to predict Drug Court treatment completion in a sample of individuals identified as being at risk for failure to complete the program. Higher scores on MMPI-2-RF scales…

  20. RF cavity using liquid dielectric for tuning and cooling

    Science.gov (United States)

    Popovic, Milorad [Warrenville, IL; Johnson, Rolland P [Newport News, VA

    2012-04-17

    A system for accelerating particles includes an RF cavity that contains a ferrite core and a liquid dielectric. Characteristics of the ferrite core and the liquid dielectric, among other factors, determine the resonant frequency of the RF cavity. The liquid dielectric is circulated to cool the ferrite core during the operation of the system.

  1. RF-MEMS capacitive switches with high reliability

    Science.gov (United States)

    Goldsmith, Charles L.; Auciello, Orlando H.; Carlisle, John A.; Sampath, Suresh; Sumant, Anirudha V.; Carpick, Robert W.; Hwang, James; Mancini, Derrick C.; Gudeman, Chris

    2013-09-03

    A reliable long life RF-MEMS capacitive switch is provided with a dielectric layer comprising a "fast discharge diamond dielectric layer" and enabling rapid switch recovery, dielectric layer charging and discharging that is efficient and effective to enable RF-MEMS switch operation to greater than or equal to 100 billion cycles.

  2. LTCC phase shifter modules for RF-MEMS-switch integration

    NARCIS (Netherlands)

    Bartnitzek, T.; Muller, E.; Dijk, R. van

    2005-01-01

    The European 1ST project ARHMS is covering a wide field of R&D activities with the final goal: a satellite based car communication system with a fiat electronically steerable roof antenna based on RF-MEMS. The required phase shift for beam steering will be done with MEMS switches and RF networks. An

  3. Performance Analysis of RF-FSO Multi-Hop Networks

    KAUST Repository

    Makki, Behrooz

    2017-05-12

    We study the performance of multi-hop networks composed of millimeter wave (MMW)-based radio frequency (RF) and free-space optical (FSO) links. The results are obtained in the cases with and without hybrid automatic repeat request (HARQ). Taking the MMW characteristics of the RF links into account, we derive closed-form expressions for the network outage probability. We also evaluate the effect of various parameters such as power amplifiers efficiency, number of antennas as well as different coherence times of the RF and the FSO links on the system performance. Finally, we present mappings between the performance of RF- FSO multi-hop networks and the ones using only the RF- or the FSO-based communication, in the sense that with appropriate parameter settings the same outage probability is achieved in these setups. The results show the efficiency of the RF-FSO setups in different conditions. Moreover, the HARQ can effectively improve the outage probability/energy efficiency, and compensate the effect of hardware impairments in RF-FSO networks. For common parameter settings of the RF-FSO dual- hop networks, outage probability 10^{-4} and code rate 3 nats-per-channel-use, the implementation of HARQ with a maximum of 2 and 3 retransmissions reduces the required power, compared to the cases with no HARQ, by 13 and 17 dB, respectively.

  4. IETS and quantum interference: propensity rules in the presence of an interference feature.

    Science.gov (United States)

    Lykkebo, Jacob; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C

    2014-09-28

    Destructive quantum interference in single molecule electronics is an intriguing phenomenon; however, distinguishing quantum interference effects from generically low transmission is not trivial. In this paper, we discuss how quantum interference effects in the transmission lead to either low current or a particular line shape in current-voltage curves, depending on the position of the interference feature. Second, we consider how inelastic electron tunneling spectroscopy can be used to probe the presence of an interference feature by identifying vibrational modes that are selectively suppressed when quantum interference effects dominate. That is, we expand the understanding of propensity rules in inelastic electron tunneling spectroscopy to molecules with destructive quantum interference.

  5. Detection of retinitis pigmentosa by differential interference contrast microscopy.

    Science.gov (United States)

    Oh, Juyeong; Kim, Seok Hwan; Kim, Yu Jeong; Lee, Hyunho; Cho, Joon Hyong; Cho, Young Ho; Kim, Chul-Ki; Lee, Taik Jin; Lee, Seok; Park, Ki Ho; Yu, Hyeong Gon; Lee, Hyuk-Jae; Jun, Seong Chan; Kim, Jae Hun

    2014-01-01

    Differential interference contrast microscopy is designed to image unstained and transparent specimens by enhancing the contrast resulting from the Nomarski prism-effected optical path difference. Retinitis pigmentosa, one of the most common inherited retinal diseases, is characterized by progressive loss of photoreceptors. In this study, Differential interference contrast microscopy was evaluated as a new and simple application for observation of the retinal photoreceptor layer and retinitis pigmentosa diagnostics and monitoring. Retinal tissues of Royal College of Surgeons rats and retinal-degeneration mice, both well-established animal models for the disease, were prepared as flatmounts and histological sections representing different elapsed times since the occurrence of the disease. Under the microscopy, the retinal flatmounts showed that the mosaic pattern of the photoreceptor layer was irregular and partly collapsed at the early stage of retinitis pigmentosa, and, by the advanced stage, amorphous. The histological sections, similarly, showed thinning of the photoreceptor layer at the early stage and loss of the outer nuclear layer by the advanced stage. To count and compare the number of photoreceptors in the normal and early-retinitis pigmentosa-stage tissues, an automated cell-counting program designed with MATLAB, a numerical computing language, using a morphological reconstruction method, was applied to the differential interference contrast microscopic images. The number of cells significantly decreased, on average, from 282 to 143 cells for the Royal College of Surgeons rats and from 255 to 170 for the retinal-degeneration mouse. We successfully demonstrated the potential of the differential interference contrast microscopy technique's application to the diagnosis and monitoring of RP.

  6. INTERFERENCE OF UNIDIRECTIONAL SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-05-01

    Full Text Available Subject of study.We consider interference of unidirectional shock waves or, as they are called, catching up shock waves. The scope of work is to give a classification of the shock-wave structures that arise in this type of interaction of shock waves, and the area of their existence. Intersection of unidirectional shock waves results in arising of a shock-wave structure at the intersection point, which contains the main shock wave, tangential discontinuity and one more reflected gas-dynamic discontinuity of unknown beforehand type. The problem of determining the type of reflected discontinuity is the main problem that one has to solve in the study of catching shock waves interference. Main results.The paper presents the pictures of shock-wave structures arising at the interaction of catching up shock waves. The areas with a regular and irregular unidirectional interaction of shocks are described. Characteristic shock-wave structures are of greatest interest, where reflected gas-dynamic discontinuity degenerates into discontinuous characteristics. Such structures have a number of extreme properties. We have found the areas of existence for such shock-wave structures. There are also areas in which the steady-state solution is not available. The latter has determined revival of interest for the theoretical study of the problem, because the facts of sudden shock-wave structure destruction inside the air intake of supersonic aircrafts at high Mach numbers have been discovered. Practical significance.The theory of interference for unidirectional shock waves and design procedure are usable in the design of supersonic air intakes. It is also relevant for application possibility investigation of catching up oblique shock waves to create overcompressed detonation in perspective detonation air-jet and rocket engines.

  7. Embracing interference in wireless systems

    CERN Document Server

    Gollakota, Shyamnath

    2014-01-01

    The wireless medium is a shared resource. If nearby devices transmit at thesame time, their signals interfere, resulting in a collision. In traditionalnetworks, collisions cause the loss of the transmitted information. For thisreason, wireless networks have been designed with the assumption thatinterference is intrinsically harmful and must be avoided.This book, a revised version of the author's award-winning Ph.D.dissertation, takes an alternate approach: Instead of viewing interferenceas an inherently counterproductive phenomenon that should to be avoided, wedesign practical systems that tra

  8. Interference Mitigation in Cognitive Femtocells

    DEFF Research Database (Denmark)

    Da Costa, Gustavo Wagner Oliveira; Cattoni, Andrea Fabio; Alvarez Roig, Victor

    2010-01-01

    , management and optimization can be prohibitive. Instead, self-optimization of an uncoordinated deployment should be considered. Cognitive Radio enabled femtocells are considered to be a promising solution to enable self-optimizing femtocells to effectively manage the inter-cell interference, especially...... in densely deployed femto scenarios. In this paper, two key elements of cognitive femtocells are combined: a power control algorithm and a fully distributed dynamic spectrum allocation method. The resulting solution was evaluated through system-level simulations and compared to the separate algorithms...

  9. RF Breakdown in Normal Conducting Single-cell Structures

    CERN Document Server

    Dolgashev, Valery A; Higo, Toshiyasu; Nantista, Christopher D; Tantawi, Sami G

    2005-01-01

    Operating accelerating gradient in normal conducting accelerating structures is often limited by rf breakdown. The limit depends on multiple parameters, including input rf power, rf circuit, cavity shape and material. Experimental and theoretical study of the effects of these parameters on the breakdown limit in full scale structures is difficult and costly. We use 11.4 GHz single-cell traveling wave and standing wave accelerating structures for experiments and modeling of rf breakdown behavior. These test structures are designed so that the electromagnetic fields in one cell mimic the fields in prototype multicell structures for the X-band linear collider. Fields elsewhere in the test structures are significantly lower than that of the single cell. The setup uses matched mode converters that launch the circular TM01 mode into short test structures. The test structures are connected to the mode launchers with vacuum rf flanges. This setup allows economic testing of different cell geometries, cell materials an...

  10. Wireless Communication Electronics Introduction to RF Circuits and Design Techniques

    CERN Document Server

    Sobot, Robert

    2012-01-01

    This book is intended for senior undergraduate and graduate students as well as practicing engineers who are involved in design and analysis of radio frequency (RF) circuits.  Detailed tutorials are included on all major topics required to understand fundamental principles behind both the main sub-circuits required to design an RF transceiver and the whole communication system. Starting with review of fundamental principles in electromagnetic (EM) transmission and signal propagation, through detailed practical analysis of RF amplifier, mixer, modulator, demodulator, and oscillator circuit topologies, all the way to the system communication theory behind the RF transceiver operation, this book systematically covers all relevant aspects in a way that is suitable for a single semester university level course.   Offers readers a complete, self-sufficient tutorial style textbook; Includes all relevant topics required to study and design an RF receiver in a consistent, coherent way with appropriate depth for a on...

  11. 5 MW 805 MHz SNS RF System Experience

    CERN Document Server

    Young, Karen A; Hardek, Thomas; Lynch, Michael; Rees, Daniel; Roybal, William; Tallerico, Paul J; Thomas Bradley, Joseph

    2005-01-01

    The RF system for the 805 MHz normal conducting linac of the Spallation Nuetron Source (SNS) accelerator was designed, procured and tested at Los Alamos National Laboratory(LANL) and then installed and commissioned at Oak Ridge National Laboratory (ORNL). The RF power for this room temperature coupled cavity linac (CCL) of SNS accelerator is generated by four pulsed 5 MW peak power klystrons operating with a pulse width of 1.25 mSec and a 60 Hz repetition frequency. The RF power from each klystron is divided and delivered to the CCL through two separate RF windows. The 5 MW RF system advanced the state of the art for simultaneous peak and average power. This paper summarizes the problems encountered, lessons learned and results of the high power testing at LANL of the 5 MW klystrons, 5 MW circulators, 5 MW loads, and 2.5 MW windows.*

  12. Alpha- and EC-decay measurements of {sup 257}Rf

    Energy Technology Data Exchange (ETDEWEB)

    Hessberger, F.P. [GSI - Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Helmholtz Institut Mainz, Mainz (Germany); Antalic, S.; Andel, B.; Kalaninova, Z. [Comenius University in Bratislava, Department of Nuclear Physics and Biophysics, Bratislava (Slovakia); Mistry, A.K.; Laatiaoui, M. [Helmholtz Institut Mainz, Mainz (Germany); GSI - Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Ackermann, D.; Kindler, B.; Kojouharov, I.; Lommel, B. [GSI - Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Block, M. [GSI - Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Helmholtz Institut Mainz, Mainz (Germany); Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Piot, J.; Vostinar, M. [GANIL, Caen (France)

    2016-07-15

    Alpha- and Electron capture (EC) decay properties of {sup 257}Rf were investigated by measuring α-γ coincidences and correlations between conversion electrons (CE) emitted during the process of EC decay of {sup 257}Rf and α decays of the daughter isotope {sup 257}Lr. So far, previously unobserved α (8296 keV)-γ (557 keV) coincidences were measured and interpreted as decays of {sup 257m}Rf (11/2{sup -}[725]) into the 7/2{sup -}[743] level in {sup 253}No. A search of delayed coincidences between α particles and signals at E ≤ 1000 keV, which are interpreted as being due to CE emission, revealed a clear correlation between CE and α particles from the decay of {sup 257}Lr, which is regarded as a direct proof of the EC decay of {sup 257g}Rf and {sup 257m}Rf. (orig.)

  13. Automated Hydroforming of Seamless Superconducting RF Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Tomohiko [ULVAC, Inc.; Shinozawa, Seiichi [ULVAC, Inc.; Abe, Noriyuki [ULVAC, Inc.; Nagakubo, Junki [ULVAC, Inc.; Murakami, Hirohiko [ULVAC, Inc.; Tajima, Tsuyoshi [Los Alamos National Laboratory; Inoue, Hitoshi [High Energy Accelerator Research Organization, KEK; Yamanaka, Masashi [High Energy Accelerator Research Organization, KEK; Ueno, Kenji [High Energy Accelerator Research Organization, KEK

    2012-07-31

    We are studying the possibility of automated hydroforming process for seamless superconducting RF cavities. Preliminary hydroforming tests of three-cell cavities from seamless tubes made of C1020 copper have been performed. The key point of an automated forming is to monitor and strictly control some parameters such as operation time, internal pressure and material displacements. Especially, it is necessary for our studies to be able to control axial and radial deformation independently. We plan to perform the forming in two stages to increase the reliability of successful forming. In the first stage hydroforming by using intermediate constraint dies, three-cell cavities were successfully formed in less than 1 minute. In parallel, we did elongation tests on cavity-quality niobium and confirmed that it is possible to achieve an elongation of >64% in 2 stages that is required for our forming of 1.3 GHz cavities.

  14. RF applications in digital signal processing

    CERN Document Server

    Schilcher, T

    2008-01-01

    Ever higher demands for stability, accuracy, reproducibility, and monitoring capability are being placed on Low-Level Radio Frequency (LLRF) systems of particle accelerators. Meanwhile, continuing rapid advances in digital signal processing technology are being exploited to meet these demands, thus leading to development of digital LLRF systems. The rst part of this course will begin by focusing on some of the important building-blocks of RF signal processing including mixer theory and down-conversion, I/Q (amplitude and phase) detection, digital down-conversion (DDC) and decimation, concluding with a survey of I/Q modulators. The second part of the course will introduce basic concepts of feedback systems, including examples of digital cavity eld and phase control, followed by radial loop architectures. Adaptive feed-forward systems used for the suppression of repetitive beam disturbances will be examined. Finally, applications and principles of system identi cation approaches will be summarized.

  15. RF superconductivity for accelerators. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Padamsee, H. [Cornell Univ., Ithaca, NY (United States). Lab. of Nuclear Studies; Knobloch, J. [BESSY GmbH, Berlin (Germany); Hays, T. [Cosmic Consulting, Gore, VA (United States)

    2008-07-01

    This book introduces some of the key ideas of RF Superconductivity by using a pedagogic approach, and presents a comprehensive overview of the field. It is divided into four parts. The first part introduces the basic concepts of microwave cavities for particle acceleration. The second part is devoted to the observed behavior of superconducting cavities. In the third part, general issues connected with beam-cavity interaction and related issues for critical components are covered. The final part discusses applications of superconducting cavities to frontier accelerators of the future, drawing heavily on examples that are in their most advanced stage. Each part of the book ends in a problems section to illustrate and amplify text material as well as to draw on example applications of superconducting cavities to existing and future accelerators. From the Contents: - Basics - Performance of Superconducting Cavities - Couplers and Tuners - Frontier Accelerators. (orig.)

  16. LHC RF System Time-Domain Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Mastorides, T.; Rivetta, C.; /SLAC

    2010-09-14

    Non-linear time-domain simulations have been developed for the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC). These simulations capture the dynamic behavior of the RF station-beam interaction and are structured to reproduce the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They are also a valuable tool for the study of diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Results from these studies and related measurements from PEP-II and LHC have been presented in multiple places. This report presents an example of the time-domain simulation implementation for the LHC.

  17. A new technique for RF distribution

    Energy Technology Data Exchange (ETDEWEB)

    Madrak, Robyn; Wildman, David

    2014-07-01

    For independent phase and amplitude control, RF cavities are often driven by one power source per cavity. In many cases it would be advantageous in terms of cost to instead use one higher power source for many cavities. Vector modulators have been developed, which, when used with a single source provide for the independent phase and amplitude control which would have been otherwise lost. The key components of these vector modulators are a novel type of phase shifter — adjustable fast phase shifters with perpendicularly biased garnets. The vector modulators have been constructed and used with a single klystron in a 3.4 MeV test linac to successfully accelerate proton beam.

  18. Non-targeted metabolomics analysis of cardiac Muscle Ring Finger-1 (MuRF1), MuRF2, and MuRF3 in vivo reveals novel and redundant metabolic changes.

    Science.gov (United States)

    Banerjee, Ranjan; He, Jun; Spaniel, Carolyn; Quintana, Megan T; Wang, Zhongjing; Bain, James; Newgard, Christopher B; Muehlbauer, Michael J; Willis, Monte S

    2015-04-01

    The muscle-specific ubiquitin ligases MuRF1, MuRF2, MuRF3 have been reported to have overlapping substrate specificities, interacting with each other as well as proteins involved in metabolism and cardiac function. In the heart, all three MuRF family proteins have proven critical to cardiac responses to ischemia and heart failure. The non-targeted metabolomics analysis of MuRF1-/-, MuRF2-/-, and MuRF3-/- hearts was initiated to investigate the hypothesis that MuRF1, MuRF2, and MuRF3 have a similarly altered metabolome, representing alterations in overlapping metabolic processes. Ventricular tissue was flash frozen and quantitatively analyzed by GC/MS using a library built upon the Fiehn GC/MS Metabolomics RTL Library. Non-targeted metabolomic analysis identified significant differences (via VIP statistical analysis) in taurine, myoinositol, and stearic acid for the three MuRF-/- phenotypes relative to their matched controls. Moreover, pathway enrichment analysis demonstrated that MuRF1-/- had significant changes in metabolite(s) involved in taurine metabolism and primary acid biosynthesis while MuRF2-/- had changes associated with ascorbic acid/aldarate metabolism (via VIP and t-test analysis vs. sibling-matched wildtype controls). By identifying the functional metabolic consequences of MuRF1, MuRF2, and MuRF3 in the intact heart, non-targeted metabolomics analysis discovered common pathways functionally affected by cardiac MuRF family proteins in vivo. These novel metabolomics findings will aid in guiding the molecular studies delineating the mechanisms that MuRF family proteins regulate metabolic pathways. Understanding these mechanism is an important key to understanding MuRF family proteins' protective effects on the heart during cardiac disease.

  19. Estimation of the RF Characteristics of Absorbing Materials in Broad RF Frequency Ranges

    CERN Document Server

    Fandos, R

    2008-01-01

    Absorbing materials are very often used in RF applications. Their electromagnetic characteristics (relative permittivity εr, loss tangent tan δ and conductivity σ) are needed in order to obtain a high-quality design of the absorbing pieces in the frequency range of interest. Unfortunately, suppliers often do not provide these quantities. A simple technique to determine them, based on the RF measurement of the disturbance created by the insertion of a piece of absorber in a waveguide, is presented in this note. Results for samples of two different materials, silicon carbide and aluminum nitride are presented. While the former has a negligible conductivity at the working frequencies, the conductivity of the latter has to be taken into account in order to obtain a meaningful estimation of εr and tan δ. The equations of Kramers & Kronig have been applied to the data as a cross check, confirming the results.

  20. Charge-Domain Signal Processing of Direct RF Sampling Mixer with Discrete-Time Filters in Bluetooth and GSM Receivers

    Directory of Open Access Journals (Sweden)

    Ho Yo-Chuol

    2006-01-01

    Full Text Available RF circuits for multi-GHz frequencies have recently migrated to low-cost digital deep-submicron CMOS processes. Unfortunately, this process environment, which is optimized only for digital logic and SRAM memory, is extremely unfriendly for conventional analog and RF designs. We present fundamental techniques recently developed that transform the RF and analog circuit design complexity to digitally intensive domain for a wireless RF transceiver, so that it enjoys benefits of digital and switched-capacitor approaches. Direct RF sampling techniques allow great flexibility in reconfigurable radio design. Digital signal processing concepts are used to help relieve analog design complexity, allowing one to reduce cost and power consumption in a reconfigurable design environment. The ideas presented have been used in Texas Instruments to develop two generations of commercial digital RF processors: a single-chip Bluetooth radio and a single-chip GSM radio. We further present details of the RF receiver front end for a GSM radio realized in a 90-nm digital CMOS technology. The circuit consisting of low-noise amplifier, transconductance amplifier, and switching mixer offers dB dynamic range with digitally configurable voltage gain of 40 dB down to dB. A series of decimation and discrete-time filtering follows the mixer and performs a highly linear second-order lowpass filtering to reject close-in interferers. The front-end gains can be configured with an automatic gain control to select an optimal setting to form a trade-off between noise figure and linearity and to compensate the process and temperature variations. Even under the digital switching activity, noise figure at the 40 dB maximum gain is 1.8 dB and dBm IIP2 at the 34 dB gain. The variation of the input matching versus multiple gains is less than 1 dB. The circuit in total occupies 3.1 . The LNA, TA, and mixer consume less than mA at a supply voltage of 1.4 V.

  1. Charge-Domain Signal Processing of Direct RF Sampling Mixer with Discrete-Time Filters in Bluetooth and GSM Receivers

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available RF circuits for multi-GHz frequencies have recently migrated to low-cost digital deep-submicron CMOS processes. Unfortunately, this process environment, which is optimized only for digital logic and SRAM memory, is extremely unfriendly for conventional analog and RF designs. We present fundamental techniques recently developed that transform the RF and analog circuit design complexity to digitally intensive domain for a wireless RF transceiver, so that it enjoys benefits of digital and switched-capacitor approaches. Direct RF sampling techniques allow great flexibility in reconfigurable radio design. Digital signal processing concepts are used to help relieve analog design complexity, allowing one to reduce cost and power consumption in a reconfigurable design environment. The ideas presented have been used in Texas Instruments to develop two generations of commercial digital RF processors: a single-chip Bluetooth radio and a single-chip GSM radio. We further present details of the RF receiver front end for a GSM radio realized in a 90-nm digital CMOS technology. The circuit consisting of low-noise amplifier, transconductance amplifier, and switching mixer offers 32.5 dB dynamic range with digitally configurable voltage gain of 40 dB down to 7.5 dB. A series of decimation and discrete-time filtering follows the mixer and performs a highly linear second-order lowpass filtering to reject close-in interferers. The front-end gains can be configured with an automatic gain control to select an optimal setting to form a trade-off between noise figure and linearity and to compensate the process and temperature variations. Even under the digital switching activity, noise figure at the 40 dB maximum gain is 1.8 dB and +50 dBm IIP2 at the 34 dB gain. The variation of the input matching versus multiple gains is less than 1 dB. The circuit in total occupies 3.1 mm 2 . The LNA, TA, and mixer consume less than 15.3 mA at a supply voltage of 1.4 V.

  2. RF Phase Scan for Beam Energy Measurement of KOMAC DTL

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hansung; Kwon, Hyeokjung; Kim, Seonggu; Lee, Seokgeun; Cho, Yongsub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The energy gain through the drift tube linac is a function of the synchronous phase, therefore, the output beam energy from DTL can be affected by the RF phase setting in low-level RF (LLRF) system. The DTL at Korea Multi-purpose Accelerator Complex (KOMAC) consists of 11 tanks and the RF phase setting in each tank should be matched for synchronous acceleration in successive tanks. That means a proper setting of RF phase in each DTL tank is critical for efficient and loss-free operation. The matching RF phase can be determined based on the output energy measurement from the DTL tank. The beam energy can be measured by several methods. For example, we can use a bending magnet to determine the beam energy because the higher momentum of beam means the less deflection angle in the fixed magnetic field. By measuring the range of proton beam through a material with known stopping power also can be utilized to determine the beam energy. We used a well-known time-of-flight method to determine the output beam energy from the DTL tank by measuring beam phase with a beam position monitor (BPM). Based on the energy measurement results, proper RF operating point could be obtained. We performed a RF phase scan to determine the output beam energy from KOMAC DTL by using a time-of-flight method and to set RF operating point precisely. The measured beam energy was compared with a beam dynamics simulation and showed a good agreement. RF phase setting is critical issue for the efficient operation of the proton accelerator, we have a plan to implement and integrate the RF phase measurement system into an accelerator control system for future need.

  3. A simplified HTc rf SQUID to analyze the human cardiac magnetic field

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    2014-12-01

    Full Text Available We have developed a four-channel high temperature radio-frequency superconducting quantum interference device (HTc rf SQUID in a simple magnetically shielded room (MSR that can be used to analyze the cardiac magnetic field. It is more robust and compact than existing systems. To achieve the high-quality magnetocardiographic signal, we explored new adaptive software gradiometry technology constructed by the first-order axial gradiometer with a baseline of 80mm, which can adjust its performance timely with the surrounding conditions. The magnetic field sensitivity of each channel was less than 100fT/√Hz in the white noise region. Especially, in the analysis of MCG signal data, we proposed the total transient mapping (TTM technique to visualize current density map (CDM, then we focused to observe the time-varying behavior of excitation propagation and estimated the underlying currents at T wave. According to the clear 3D imaging, isomagnetic field and CDM, the position and distribution of a current source in the heart can be visualized. It is believed that our four-channel HTc rf SQUID magnetometer based on biomagnetic system is available to detect MCG signals with sufficient signal-to-noise (SNR ratio. In addition, the CDM showed the macroscopic current activation pattern, in a way, it has established strong underpinnings for researching the cardiac microscopic movement mechanism and opening the way for its use in clinical diagnosis.

  4. A simplified HTc rf SQUID to analyze the human cardiac magnetic field

    Science.gov (United States)

    Zhang, Chen; Tang, Fakuan; Ma, Ping; Gan, Zizhao

    2014-12-01

    We have developed a four-channel high temperature radio-frequency superconducting quantum interference device (HTc rf SQUID) in a simple magnetically shielded room (MSR) that can be used to analyze the cardiac magnetic field. It is more robust and compact than existing systems. To achieve the high-quality magnetocardiographic signal, we explored new adaptive software gradiometry technology constructed by the first-order axial gradiometer with a baseline of 80mm, which can adjust its performance timely with the surrounding conditions. The magnetic field sensitivity of each channel was less than 100fT/√Hz in the white noise region. Especially, in the analysis of MCG signal data, we proposed the total transient mapping (TTM) technique to visualize current density map (CDM), then we focused to observe the time-varying behavior of excitation propagation and estimated the underlying currents at T wave. According to the clear 3D imaging, isomagnetic field and CDM, the position and distribution of a current source in the heart can be visualized. It is believed that our four-channel HTc rf SQUID magnetometer based on biomagnetic system is available to detect MCG signals with sufficient signal-to-noise (SNR) ratio. In addition, the CDM showed the macroscopic current activation pattern, in a way, it has established strong underpinnings for researching the cardiac microscopic movement mechanism and opening the way for its use in clinical diagnosis.

  5. On the path to differentiation

    DEFF Research Database (Denmark)

    Martinsen, Dorte Sindbjerg; Uygur, Ayca

    2014-01-01

    by examining the ‘path to differentiation’ within EU working time regulation as it has unfolded over time. It identifies the ‘opt-out’ as a means of differentiation adopted to overcome policy deadlocks within collective decision-making, albeit one with unforeseen consequences. In particular, the contribution...

  6. How to measure path length?

    NARCIS (Netherlands)

    Stroeven, P.

    2015-01-01

    Path length measuring is a relevant engineering problem. Leonardo Da Vinci designed for the military appropriate equipment, the podometer, to do so. Modern equipment such as step meters and map meters are quite similar to Da Vinci?s design, despite geometrical statistical - stereological - methods

  7. Path integral for inflationary perturbations

    NARCIS (Netherlands)

    Prokopec, T.; Rigopoulos, G.

    2010-01-01

    The quantum theory of cosmological perturbations in single-field inflation is formulated in terms of a path integral. Starting from a canonical formulation, we show how the free propagators can be obtained from the well-known gauge-invariant quadratic action for scalar and tensor perturbations, and

  8. Compact Power Conditioning and RF Systems for a High Power RF Source

    Science.gov (United States)

    2008-12-01

    inductors LS1, LS2, and LS3 are saturating magnetic cores that sequentially switch the parallel inductors into the circuit . The MU simulator is...the high voltage stages of load operation. The capacitor charged to -190 kV before the oil spark gap closed to form an underdamped RLC circuit with...fuse. The RF source consists of a high voltage, low inductance capacitor and a low inductance closing switch and shunt. An antenna in parallel with

  9. Constructive quantum interference in a bis-copper six-porphyrin nanoring.

    Science.gov (United States)

    Richert, Sabine; Cremers, Jonathan; Kuprov, Ilya; Peeks, Martin D; Anderson, Harry L; Timmel, Christiane R

    2017-03-22

    The exchange interaction, J, between two spin centres is a convenient measure of through bond electronic communication. Here, we investigate quantum interference phenomena in a bis-copper six-porphyrin nanoring by electron paramagnetic resonance spectroscopy via measurement of the exchange coupling between the copper centres. Using an analytical expression accounting for both dipolar and exchange coupling to simulate the time traces obtained in a double electron electron resonance experiment, we demonstrate that J can be quantified to high precision even in the presence of significant through-space coupling. We show that the exchange coupling between two spin centres is increased by a factor of 4.5 in the ring structure with two parallel coupling paths as compared to an otherwise identical system with just one coupling path, which is a clear signature of constructive quantum interference.

  10. Interference between two resonant transitions with distinct initial and final states connected by radiative decay

    Science.gov (United States)

    Marsman, A.; Horbatsch, M.; Hessels, E. A.

    2017-12-01

    The resonant line shape from driving a transition between two states, |a 〉 and |b 〉 , can be distorted due to a quantum-mechanical interference effect involving a resonance between two different states, |c 〉 and |d 〉 , if |c 〉 has a decay path to |a 〉 and |d 〉 has a decay path to |b 〉 . This interference can cause a shift of the measured resonance, despite the fact that the two resonances do not have a common initial or final state. As an example, we demonstrate that such a shift affects measurements of the atomic hydrogen 2 S1 /2 -to-2 P1 /2 Lamb-shift transition due to 3 S -to-3 P transitions if the 3 S1 /2 state has some initial population.

  11. Study of Einstein-Podolsky-Rosen state for space-time variables in a two photon interference experiment

    Science.gov (United States)

    Shih, Y. H.; Sergienko, A. V.; Rubin, M. H.

    1993-01-01

    A pair of correlated photons generated from parametric down conversion was sent to two independent Michelson interferometers. Second order interference was studied by means of a coincidence measurement between the outputs of two interferometers. The reported experiment and analysis studied this second order interference phenomena from the point of view of Einstein-Podolsky-Rosen paradox. The experiment was done in two steps. The first step of the experiment used 50 psec and 3 nsec coincidence time windows simultaneously. The 50 psec window was able to distinguish a 1.5 cm optical path difference in the interferometers. The interference visibility was measured to be 38 percent and 21 percent for the 50 psec time window and 22 percent and 7 percent for the 3 nsec time window, when the optical path difference of the interferometers were 2 cm and 4 cm, respectively. By comparing the visibilities between these two windows, the experiment showed the non-classical effect which resulted from an E.P.R. state. The second step of the experiment used a 20 psec coincidence time window, which was able to distinguish a 6 mm optical path difference in the interferometers. The interference visibilities were measured to be 59 percent for an optical path difference of 7 mm. This is the first observation of visibility greater than 50 percent for a two interferometer E.P.R. experiment which demonstrates nonclassical correlation of space-time variables.

  12. Steady state RF facility for testing ITER ICRH RF contact component

    Energy Technology Data Exchange (ETDEWEB)

    Argouarch, A., E-mail: arnaud.argouarch@cea.fr [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Bamber, R. [Euratom/CCFE Association, Culham Science Centre, Abingdon, Oxon, OX143DB (United Kingdom); Bernard, J.M.; Delaplanche, J.M. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Durodié, F. [Laboratory for Plasmas Physics, 1000 Brussels (Belgium); Larroque, S.; Lecomte, P.; Lombard, G.; Hatchressian, J.C.; Mollard, P.; Mouyon, D.; Pagano, M.; Patterlini, J.C.; Rasio, S.; Soler, B.; Toulouse, L.; Thouvenin, D.; Verger, J.M.; Vigne, T.; Volpe, R. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2013-10-15

    After the installation and commissioning of the TITAN [1,2], test facility, a key element – the T resonator – was assembled in order to facilitate testing components at high RF voltages and currents. This work is within the CEA roadmap for testing ITER ICRH components in a relevant environment. Several components of the future ITER ICRH antenna have been targeted. The embedded RF contact within the ITER ICRH antenna appeared as a critical component for antenna performance, requiring extensive R and D. Therefore, CEA has proposed and subsequently prepared a platform to test and validate the anticipated RF contact. A steady state resonator with active water cooling has been manufactured and assembled within the TITAN facility, including a hot pressurized water loop. The program consists of testing the contact at 2.25 kA and 62 MHz in steady state conditions. Sliding tests are also performed at high temperature and vacuum to understand component aging, including wear. The equipment installed is consistent with that required to test an ITER ICRH extensively.

  13. On the performance of hybrid RF and RF/FSO dual-hop transmission systems

    KAUST Repository

    Ansari, Imran Shafique

    2013-10-01

    In this work, we present the performance analysis of a dual-branch transmission system composed of a direct radio frequency (RF) link and a dual-hop relay composed of asymmetric RF and free-space optical (FSO) links. The FSO link accounts for pointing errors and both types of detection techniques (i.e. intensity modulation/direct detection (IM/DD) as well as heterodyne detection). The performance is evaluated under the assumption of selection combining (SC) diversity scheme. RF links are modeled by Rayleigh fading distribution whereas the FSO link is modeled by a unified Gamma-Gamma fading distribution. Specifically, we derive new exact closed-form expressions for the cumulative distribution function, probability density function, moment generating function, and moments of the end-to-end signal-to-noise ratio of such systems in terms of the Meijer\\'s G function. We then capitalize on these results to offer new exact closed-form expressions for the outage probability, higher-order amount of fading, average error rate for binary and M-ary modulation schemes, and ergodic capacity, all in terms of Meijer\\'s G functions. © 2013 IEEE.

  14. Comparability of scores on the MMPI-2-RF scales generated with the MMPI-2 and MMPI-2-RF booklets.

    Science.gov (United States)

    Van der Heijden, P T; Egger, J I M; Derksen, J J L

    2010-05-01

    In most validity studies on the recently released 338-item MMPI-2 (Butcher, Dahlstrom, Graham, Tellegen, & Kaemmer, 1989) Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008; Tellegen & Ben-Porath, 2008), scale scores were derived from the 567-item MMPI-2 booklet. In this study, we evaluated the comparability of the MMPI-2-RF scale scores derived from the original 567-item MMPI-2 booklet with MMPI-2-RF scale scores derived from the 338-item MMPI-2-RF booklet in a Dutch student sample (N = 107). We used a counterbalanced (ABBA) design. We compared results with those previously reported by Tellegen and Ben-Porath (2008). Our findings support the comparability of the scores of the 338-item version and the 567-item version of the 50 MMPI-2-RF scales. We discuss clinical implications and directions for further research.

  15. Low Power Universal Direct Conversion Transmit and Receive (UTR) RF Module for Software Defined Radios Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Conventional software defined radio (SDR) backend signal processors are limited by apriori system definitions and respectively chosen RF hardware. Ideally, the RF...

  16. IIR filtering based adaptive active vibration control methodology with online secondary path modeling using PZT actuators

    Science.gov (United States)

    Boz, Utku; Basdogan, Ipek

    2015-12-01

    Structural vibrations is a major cause for noise problems, discomfort and mechanical failures in aerospace, automotive and marine systems, which are mainly composed of plate-like structures. In order to reduce structural vibrations on these structures, active vibration control (AVC) is an effective approach. Adaptive filtering methodologies are preferred in AVC due to their ability to adjust themselves for varying dynamics of the structure during the operation. The filtered-X LMS (FXLMS) algorithm is a simple adaptive filtering algorithm widely implemented in active control applications. Proper implementation of FXLMS requires availability of a reference signal to mimic the disturbance and model of the dynamics between the control actuator and the error sensor, namely the secondary path. However, the controller output could interfere with the reference signal and the secondary path dynamics may change during the operation. This interference problem can be resolved by using an infinite impulse response (IIR) filter which considers feedback of the one or more previous control signals to the controller output and the changing secondary path dynamics can be updated using an online modeling technique. In this paper, IIR filtering based filtered-U LMS (FULMS) controller is combined with online secondary path modeling algorithm to suppress the vibrations of a plate-like structure. The results are validated through numerical and experimental studies. The results show that the FULMS with online secondary path modeling approach has more vibration rejection capabilities with higher convergence rate than the FXLMS counterpart.

  17. Enzymatic reaction paths as determined by transition path sampling

    Science.gov (United States)

    Masterson, Jean Emily

    Enzymes are biological catalysts capable of enhancing the rates of chemical reactions by many orders of magnitude as compared to solution chemistry. Since the catalytic power of enzymes routinely exceeds that of the best artificial catalysts available, there is much interest in understanding the complete nature of chemical barrier crossing in enzymatic reactions. Two specific questions pertaining to the source of enzymatic rate enhancements are investigated in this work. The first is the issue of how fast protein motions of an enzyme contribute to chemical barrier crossing. Our group has previously identified sub-picosecond protein motions, termed promoting vibrations (PVs), that dynamically modulate chemical transformation in several enzymes. In the case of human heart lactate dehydrogenase (hhLDH), prior studies have shown that a specific axis of residues undergoes a compressional fluctuation towards the active site, decreasing a hydride and a proton donor--acceptor distance on a sub-picosecond timescale to promote particle transfer. To more thoroughly understand the contribution of this dynamic motion to the enzymatic reaction coordinate of hhLDH, we conducted transition path sampling (TPS) using four versions of the enzymatic system: a wild type enzyme with natural isotopic abundance; a heavy enzyme where all the carbons, nitrogens, and non-exchangeable hydrogens were replaced with heavy isotopes; and two versions of the enzyme with mutations in the axis of PV residues. We generated four separate ensembles of reaction paths and analyzed each in terms of the reaction mechanism, time of barrier crossing, dynamics of the PV, and residues involved in the enzymatic reaction coordinate. We found that heavy isotopic substitution of hhLDH altered the sub-picosecond dynamics of the PV, changed the favored reaction mechanism, dramatically increased the time of barrier crossing, but did not have an effect on the specific residues involved in the PV. In the mutant systems

  18. The drive beam pulse compression system for the CLIC RF power source

    CERN Document Server

    Corsini, R

    1999-01-01

    The Compact LInear Collider (CLIC) is a high energy (0.5 to 5 TeV) e ± linear collider that uses a high- current electron beam (the drive beam) for 30 GHz RF power production by the Two-Beam Acceleration (TBA) method. Recently, a new cost­effective and efficient generation scheme for the drive beam has been developed. A fully­loaded normal­conducting linac operating at lower frequency (937 MHz) generates and accelerates the drive beam bunches, and a compression system composed of a delay­line and two combiner rings produces the proper drive beam time structure for RF power generation in the drive beam decelerator. In this paper, a preliminary design of the whole compression system is presented. In particular, the fundamental issue of preserving the bunch quality along the complex is studied and its impact on the beam parameters and on the various system components is assessed. A first design of the rings and delay­line lattice, including path length tuning chicanes, injection and extraction regions is a...

  19. An inductorless multi-mode RF front end for GNSS receiver in 55 nm CMOS

    Science.gov (United States)

    Yanbin, Luo; Chengyan, Ma; Yebing, Gan; Min, Qian; Tianchun, Ye

    2015-10-01

    An inductorless multi-mode RF front end for a global navigation satellite system (GNSS) receiver is presented. Unlike the traditional topology of a low noise amplifier (LNA), the inductorless current-mode noise-canceling LNA is applied in this design. The high-impedance-input radio frequency amplifier (RFA) further amplifies the GNSS signals and changes the single-end signal path into fully differential. The passive mixer down-converts the signals to the intermediate frequency (IF) band and conveys the signals to the analogue blocks. The local oscillator (LO) buffer divides the output frequency of the voltage controlled oscillator (VCO) and generates 25%-duty-cycle quadrature square waves to drive the mixer. Our measurement results display that the implemented RF front end achieves good overall performance while consuming only 6.7 mA from 1.2 V supply. The input return loss is better than -26 dB and the ultra low noise figure of 1.43 dB leads to high sensitivity of the GNSS receiver. The input 1 dB compression point is -43 dBm at the high gain of 48 dB. The designed circuit is fabricated in 55 nm CMOS technology and the die area, which is much smaller than traditional circuit, is around 220 × 280 μm2.

  20. A K-Band RF-MEMS-Enabled Reconfigurable and Multifunctional Low-Noise Amplifier Hybrid Circuit

    OpenAIRE

    Malmqvist, R.; Samuelsson, C.; Gustafsson, A.; Rantakari, P.; Reyaz, S.; Vähä-Heikkilä, T.; Rydberg, A.; Varis, J.; Smith, D.; Baggen, R.

    2011-01-01

    A K-band (18–26.5 GHz) RF-MEMS-enabled reconfigurable and multifunctional dual-path LNA hybrid circuit (optimised for lowest/highest possible noise figure/linearity, resp.) is presented, together with its subcircuit parts. The two MEMS-switched low-NF (higher gain) and high-linearity (lower gain) LNA circuits (paths) present 16.0 dB/8.2 dB, 2.8 dB/4.9 dB and 15 dBm/20 dBm of small-signal gain, noise figure, and 1 dB compression point at 24 GHz, respectively. Compared with the two (fixed) LNA ...

  1. Direct Entry Minimal Path UAV Loitering Path Planning

    Directory of Open Access Journals (Sweden)

    Jay P. Wilhelm

    2017-04-01

    Full Text Available Fixed Wing Unmanned Aerial Vehicles (UAVs performing Intelligence, Surveillance and Reconnaissance (ISR typically fly over Areas of Interest (AOIs to collect sensor data of the ground from the air. If needed, the traditional method of extending sensor collection time is to loiter or turn circularly around the center of an AOI. Current Autopilot systems on small UAVs can be limited in their feature set and typically follow a waypoint chain system that allows for loitering, but requires that the center of the AOI to be traversed which may produce unwanted turns outside of the AOI before entering the loiter. An investigation was performed to compare the current loitering techniques against two novel smart loitering methods. The first method investigated, Tangential Loitering Path Planner (TLPP, utilized paths tangential to the AOIs to enter and exit efficiently, eliminating unnecessary turns outside of the AOI. The second method, Least Distance Loitering Path Planner (LDLPP, utilized four unique flight maneuvers that reduce transit distances while eliminating unnecessary turns outside of the AOI present in the TLPP method. Simulation results concluded that the Smart Loitering Methods provide better AOI coverage during six mission scenarios. It was also determined that the LDLPP method spends less time in transit between AOIs. The reduction in required transit time could be used for surveying additional AOIs.

  2. Duality relation between coherence and path information in the presence of quantum memory

    Science.gov (United States)

    Bu, Kaifeng; Li, Lu; Wu, Junde; Fei, Shao-Ming

    2018-02-01

    Wave-particle duality demonstrates a competition relation between wave and particle behavior for a particle going through an interferometer. This duality can be formulated as an inequality, which upper bounds the sum of interference visibility and path information. However, if the particle is entangled with a quantum memory, then the bound may decrease. Here, we find the duality relation between coherence and path information for a particle going through a multipath interferometer in the presence of a quantum memory, offering an upper bound on the duality relation which is directly connected with the amount of entanglement between the particle and the quantum memory.

  3. RF Design for the Linac Coherent Light Source (LCLS) Injector

    CERN Document Server

    Dowell, D H; Boyce, Richard F; Hodgson, J A; Li, Zenghai; Limborg-Deprey, C; Xiao, Liling; Yu, Nancy

    2004-01-01

    The Linac Coherent Light Source (LCLS) will be the world’s first free electron laser, and the successful operation of this very short-wavelength FEL will require excellent beam quality from its electron source. Therefore a critical component is the RF photocathode injector. This paper describes the design issues of the LCLS RF gun and accelerator structures. The injector consists of a 1.6 cell s-band gun followed by two 3-meter SLAC sections. The gun and the first RF section will have dual RF feeds both to eliminate transverse RF kicks and to reduce the pulsed heating of the coupling ports. In addition, the input coupler cavity of the first accelerator section will be specially shaped to greatly reduce the RF quadrupole fields. The design for the accelerator section is now complete, and the RF design of the gun’s dual coupler and the full cell shape is in progress. These and other aspects of the gun and structure designs will be discussed.

  4. Unexpected enhancements and reductions of rf spin resonance strengths

    Directory of Open Access Journals (Sweden)

    M. A. Leonova

    2006-05-01

    Full Text Available We recently analyzed all available data on spin-flipping stored beams of polarized protons, electrons, and deuterons. Fitting the modified Froissart-Stora equation to the measured polarization data after crossing an rf-induced spin resonance, we found 10–20-fold deviations from the depolarizing resonance strength equations used for many years. The polarization was typically manipulated by linearly sweeping the frequency of an rf dipole or rf solenoid through an rf-induced spin resonance; spin-flip efficiencies of up to 99.9% were obtained. The Lorentz invariance of an rf dipole’s transverse ∫Bdl and the weak energy dependence of its spin resonance strength E together imply that even a small rf dipole should allow efficient spin flipping in 100 GeV or even TeV storage rings; thus, it is important to understand these large deviations. Therefore, we recently studied the resonance strength deviations experimentally by varying the size and vertical betatron tune of a 2.1  GeV/c polarized proton beam stored in COSY. We found no dependence of E on beam size, but we did find almost 100-fold enhancements when the rf spin resonance was near an intrinsic spin resonance.

  5. Design of RF system for CYCIAE-230 superconducting cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhiguo, E-mail: bitbearAT@hotmail.com; Ji, Bin; Fu, Xiaoliang; Cao, Xuelong; Zhao, Zhenlu; Zhang, Tinajue

    2017-05-11

    The CYCIAE230 is a low-current, compact superconducting cyclotron designed for proton therapy. The Radio Frequency system consists of four RF cavities and applies second harmonic to accelerate beams. The driving power for the cavity system is estimated to be approximately 150 kW. The LLRF controller is a self-made device developed and tested at low power using a small-scale cavity model. In this paper, the resonator systems of an S.C. cyclotron in history are reviewed. Contrary to those RF systems, the cavities of the CYCIAE230 cyclotron connect two opposite dees. Two high-power RF windows are included in the system. Each window carries approximately 75 kW RF power from the driver to the cavities. Thus, the RF system for the CY-CIAE230 cyclotron is operated in driven push–pull mode. The two-way amplifier-coupler-cavity systems are operated with approximately the same amount of RF power but 180° out of phase compared with each other. The design, as well as the technical advantage and limitations of this operating mode, of the CYCIAE230 cyclotron RF system is analyzed.

  6. Design of RF system for CYCIAE-230 superconducting cyclotron

    Science.gov (United States)

    Yin, Zhiguo; Ji, Bin; Fu, Xiaoliang; Cao, Xuelong; Zhao, Zhenlu; Zhang, Tinajue

    2017-05-01

    The CYCIAE230 is a low-current, compact superconducting cyclotron designed for proton therapy. The Radio Frequency system consists of four RF cavities and applies second harmonic to accelerate beams. The driving power for the cavity system is estimated to be approximately 150 kW. The LLRF controller is a self-made device developed and tested at low power using a small-scale cavity model. In this paper, the resonator systems of an S.C. cyclotron in history are reviewed. Contrary to those RF systems, the cavities of the CYCIAE230 cyclotron connect two opposite dees. Two high-power RF windows are included in the system. Each window carries approximately 75 kW RF power from the driver to the cavities. Thus, the RF system for the CY-CIAE230 cyclotron is operated in driven push-pull mode. The two-way amplifier-coupler-cavity systems are operated with approximately the same amount of RF power but 180° out of phase compared with each other. The design, as well as the technical advantage and limitations of this operating mode, of the CYCIAE230 cyclotron RF system is analyzed.

  7. Effect of source spectral width and its temporal coherence in the interference pattern of a Mach-Zehnder interferometer

    Science.gov (United States)

    Suchita; Vijaya, R.

    2017-11-01

    A fiber-based Mach-Zehnder interferometer is designed and tested for its phase characteristics by using a CW tunable laser source. The total phase introduced by the interferometer is modeled by including the linewidth of the input source and the fluctuations of its center wavelength, apart from the path difference in the interferometer. The spectral linewidth of the input laser contributing to the observed interference is found to depend on this path difference. This emphasizes the need for optimal path differences to overcome the coherence limitations of the source. We are thus able to extract the extent of phase correlation present in the input source, and hence its temporal coherence characteristics, from the interference pattern.

  8. The Impact of Interference on GNSS Receiver Observables – A Running Digital Sum Based Simple Jammer Detector

    Directory of Open Access Journals (Sweden)

    M. Z. H. Bhuiyan

    2014-09-01

    Full Text Available A GNSS-based navigation system relies on externally received information via a space-based Radio Frequency (RF link. This poses susceptibility to RF Interference (RFI and may initiate failure states ranging from degraded navigation accuracy to a complete signal loss condition. To guarantee the integrity of the received GNSS signal, the receiver should either be able to function in the presence of RFI without generating misleading information (i.e., offering a navigation solution within an accuracy limit, or the receiver must detect RFI so that some other means could be used as a countermeasure in order to ensure robust and accurate navigation. Therefore, it is of utmost importance to identify an interference occurrence and not to confuse it with other signal conditions, for example, indoor or deep urban canyon, both of which have somewhat similar impact on the navigation performance. Hence, in this paper, the objective is to investigate the effect of interference on different GNSS receiver observables in two different environments: i. an interference scenario with an inexpensive car jammer, and ii. an outdoor-indoor scenario without any intentional interference. The investigated observables include the Automatic Gain Control (AGC measurements, the digitized IF (Intermediate Frequency signal levels, the Delay Locked Loop and the Phase Locked Loop discriminator variances, and the Carrier-to-noise density ratio (C/N0 measurements. The behavioral pattern of these receiver observables is perceived in these two different scenarios in order to comprehend which of those observables would be able to separate an interference situation from an indoor scenario, since in both the cases, the resulting positioning accuracy and/or availability are affected somewhat similarly. A new Running Digital Sum (RDS -based interference detection method is also proposed herein that can be used as an alternate to AGC-based interference detection. It is shown in this paper

  9. Suppression of Interference in Quantum Hall Mach-Zehnder Geometry by Upstream Neutral Modes.

    Science.gov (United States)

    Goldstein, Moshe; Gefen, Yuval

    2016-12-30

    Mach-Zehnder interferometry has been proposed as a probe for detecting the statistics of anyonic quasiparticles in fractional quantum Hall (FQH) states. Here, we focus on interferometers made of multimode edge states with upstream modes. We find that the interference visibility is suppressed due to downstream-upstream mode entanglement; the latter serves as a "which path" detector to the downstream interfering trajectories. Our analysis tackles a concrete realization of a filling factor of ν=2/3, but its applicability goes beyond that specific case, and encompasses the recent observation of the ubiquitous emergence of upstream neutral modes in FQH states. The latter, according to our analysis, goes hand in hand with the failure to observe Mach-Zehnder anyonic interference in fractional states. We point out how charge-neutral mode disentanglement will resuscitate the interference signal.

  10. Affect and Cognitive Interference: An Examination of Their Effect on Self-Regulated Learning

    Directory of Open Access Journals (Sweden)

    Georgia Papantoniou

    2012-01-01

    Full Text Available The present study examined the relationships among affect, self-regulated learning (SRL strategy use, and course attainment in the didactics of mathematics (teaching mathematics subject matter domain. The sample consisted of 180 undergraduate students attending a didactics of mathematics course (mean age = 21.1 years at the School of Early Childhood Education. The participants were asked to respond to the Positive and Negative Affect Schedule (PANAS and the Cognitive Interference Questionnaire (CIQ. They also completed the Learning Strategies Scales of the MSLQ. Examination grades were used as the measure of course attainment. Pearson correlations and path analysis revealed that negative affect was positively related to cognitive interference, and positive affect influenced positively the use of almost all of the SRL strategies. Elaboration was the only SRL strategy found to predict the didactics of mathematics course attainment. Finally, cognitive interference was found to negatively predict course attainment.

  11. Free Probability based Capacity Calculation of Multiantenna Gaussian Fading Channels with Cochannel Interference

    CERN Document Server

    Chatzinotas, Symeon

    2010-01-01

    During the last decade, it has been well understood that communication over multiple antennas can increase linearly the multiplexing capacity gain and provide large spectral efficiency improvements. However, the majority of studies in this area were carried out ignoring cochannel interference. Only a small number of investigations have considered cochannel interference, but even therein simple channel models were employed, assuming identically distributed fading coefficients. In this paper, a generic model for a multi-antenna channel is presented incorporating four impairments, namely additive white Gaussian noise, flat fading, path loss and cochannel interference. Both point-to-point and multiple-access MIMO channels are considered, including the case of cooperating Base Station clusters. The asymptotic capacity limit of this channel is calculated based on an asymptotic free probability approach which exploits the additive and multiplicative free convolution in the R- and S-transform domain respectively, as ...

  12. CDMA with interference cancellation for multiprobe missions

    Science.gov (United States)

    Divsalar, D.; Simon, M. K.

    1995-01-01

    Code division multiple-access spread spectrum has been proposed for use in future multiprobe/multispacecraft missions. This article considers a general parallel interference-cancellation scheme that significantly reduces the degradation effect of probe (user) interference but with a lesser implementation complexity than the maximum-likelihood technique. The scheme operates on the fact that parallel processing simultaneously removes from each probe (user) the total interference produced by the remaining most reliably received probes (users) accessing the channel. The parallel processing can be done in multiple stages. The proposed scheme uses tentative decision devices with different optimum thresholds at the multiple stages to produce the most reliably received data for generation and cancellation of probe/spacecraft interference. The one-stage interference cancellation was analyzed for two types of tentative decision devices, namely, hard and null zone decisions. Simulation results are given for one- and two-stage interference cancellation for equal as well as unequal received power probes.

  13. Filtering algorithm for dotted interferences

    Energy Technology Data Exchange (ETDEWEB)

    Osterloh, K., E-mail: kurt.osterloh@bam.de [Federal Institute for Materials Research and Testing (BAM), Division VIII.3, Radiological Methods, Unter den Eichen 87, 12205 Berlin (Germany); Buecherl, T.; Lierse von Gostomski, Ch. [Technische Universitaet Muenchen, Lehrstuhl fuer Radiochemie, Walther-Meissner-Str. 3, 85748 Garching (Germany); Zscherpel, U.; Ewert, U. [Federal Institute for Materials Research and Testing (BAM), Division VIII.3, Radiological Methods, Unter den Eichen 87, 12205 Berlin (Germany); Bock, S. [Technische Universitaet Muenchen, Lehrstuhl fuer Radiochemie, Walther-Meissner-Str. 3, 85748 Garching (Germany)

    2011-09-21

    An algorithm has been developed to remove reliably dotted interferences impairing the perceptibility of objects within a radiographic image. This particularly is a major challenge encountered with neutron radiographs collected at the NECTAR facility, Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II): the resulting images are dominated by features resembling a snow flurry. These artefacts are caused by scattered neutrons, gamma radiation, cosmic radiation, etc. all hitting the detector CCD directly in spite of a sophisticated shielding. This makes such images rather useless for further direct evaluations. One approach to resolve this problem of these random effects would be to collect a vast number of single images, to combine them appropriately and to process them with common image filtering procedures. However, it has been shown that, e.g. median filtering, depending on the kernel size in the plane and/or the number of single shots to be combined, is either insufficient or tends to blur sharp lined structures. This inevitably makes a visually controlled processing image by image unavoidable. Particularly in tomographic studies, it would be by far too tedious to treat each single projection by this way. Alternatively, it would be not only more comfortable but also in many cases the only reasonable approach to filter a stack of images in a batch procedure to get rid of the disturbing interferences. The algorithm presented here meets all these requirements. It reliably frees the images from the snowy pattern described above without the loss of fine structures and without a general blurring of the image. It consists of an iterative, within a batch procedure parameter free filtering algorithm aiming to eliminate the often complex interfering artefacts while leaving the original information untouched as far as possible.

  14. Topography and refractometry of nanostructures using spatial light interference microscopy.

    Science.gov (United States)

    Wang, Zhuo; Chun, Ik Su; Li, Xiuling; Ong, Zhun-Yong; Pop, Eric; Millet, Larry; Gillette, Martha; Popescu, Gabriel

    2010-01-15

    Spatial light interference microscopy (SLIM) is a novel method developed in our laboratory that provides quantitative phase images of transparent structures with a 0.3 nm spatial and 0.03 nm temporal accuracy owing to the white light illumination and its common path interferometric geometry. We exploit these features and demonstrate SLIM's ability to perform topography at a single atomic layer in graphene. Further, using a decoupling procedure that we developed for cylindrical structures, we extract the axially averaged refractive index of semiconductor nanotubes and a neurite of a live hippocampal neuron in culture. We believe that this study will set the basis for novel high-throughput topography and refractometry of man-made and biological nanostructures.

  15. Deconvolved spatial light interference microscopy for live cell imaging.

    Science.gov (United States)

    Haldar, Justin P; Wang, Zhuo; Popescu, Gabriel; Liang, Zhi-Pei

    2011-09-01

    Spatial light interference microscopy (SLIM) is a recently developed method for the label-free imaging of live cells, using the quantitative optical path length through the sample as an endogenous source of contrast. In conventional SLIM, spatial resolution is limited by diffraction and aberrations. This paper describes a novel constrained deconvolution method for improving resolution in SLIM. Constrained deconvolution is enabled by experimental measurement of the system point-spread function and the modeling of coherent image formation in SLIM. Results using simulated and experimental data demonstrate that the proposed method leads to significant improvements in the resolution and contrast of SLIM images. The proposed method should prove useful for high-resolution label-free studies of biological cells and subcellular processes.

  16. Exploiting quantum interference in dye sensitized solar cells.

    Science.gov (United States)

    Maggio, Emanuele; Solomon, Gemma C; Troisi, Alessandro

    2014-01-28

    A strategy to hinder the charge recombination process in dye sensitized solar cells is developed in analogy with similar approaches to modulate charge transport across nanostructures. The system studied is a TiO2 (anatase)-chromophore interface, with an unsaturated carbon bridge connecting the two subunits. A theory for nonadiabatic electron transfer is employed in order to take explicitly into account the contribution from the bridge states mediating the process. If a cross-conjugated fragment is present in the bridge, it is possible to suppress the charge recombination by negative interference of the possible tunnelling path. Calculations carried out on realistic molecules at the DFT level of theory show how the recombination lifetime can be modulated by changes in the electron-withdrawing (donating) character of the groups connected to the cross-conjugated bridge. Tight binding calculations are employed to support the interpretation of the atomistic simulations.

  17. Exploiting quantum interference in dye sensitized solar cells

    DEFF Research Database (Denmark)

    Maggio, Emanuele; Solomon, Gemma C.; Troisi, Alessandro

    2014-01-01

    A strategy to hinder the charge recombination process in dye sensitized solar cells is developed in analogy with similar approaches to modulate charge transport across nanostructures. The system studied is a TiO2 (anatase)-chromophore interface, with an unsaturated carbon bridge connecting the two...... subunits. A theory for nonadiabatic electron transfer is employed in order to take explicitly into account the contribution from the bridge states mediating the process. If a cross-conjugated fragment is present in the bridge, it is possible to suppress the charge recombination by negative interference...... of the possible tunnelling path. Calculations carried out on realistic molecules at the DFT level of theory show how the recombination lifetime can be modulated by changes in the electron-withdrawing (donating) character of the groups connected to the cross-conjugated bridge. Tight binding calculations...

  18. Bats jamming bats: food competition through sonar interference.

    Science.gov (United States)

    Corcoran, Aaron J; Conner, William E

    2014-11-07

    Communication signals are susceptible to interference ("jamming") from conspecifics and other sources. Many active sensing animals, including bats and electric fish, alter the frequency of their emissions to avoid inadvertent jamming from conspecifics. We demonstrated that echolocating bats adaptively jam conspecifics during competitions for food. Three-dimensional flight path reconstructions and audio-video field recordings of foraging bats (Tadarida brasiliensis) revealed extended interactions in which bats emitted sinusoidal frequency-modulated ultrasonic signals that interfered with the echolocation of conspecifics attacking insect prey. Playbacks of the jamming call, but not of control sounds, caused bats to miss insect targets. This study demonstrates intraspecific food competition through active disruption of a competitor's sensing during food acquisition. Copyright © 2014, American Association for the Advancement of Science.

  19. [Research on methane concentration monitoring system based on electro-optical modulation interference].

    Science.gov (United States)

    Yan, Jie; Meng, Peng-Hua

    2013-08-01

    Gas monitoring for methane concentration has been applied in many areas, while the vast majority of methods were based on the chemical reaction. There is a low security and poor stability shortcomings. In contrast, it is of high stability and strong anti-interference ability to monitor methane concentration using optical interferometry for quantitative analysis. As the system static interference limits the spectrcum resolution, we designed the electro-optical modulation interference system to further improve the detection accuracy for methane concentration. In the interferometer system, a variable refractive index crystal LiNbO3 was used for electro-optical modulation, and the static optical path length scan range was increased to improve the spectrum resolution. Both sides of the crystal were loaded with opposite phase modulated signal, so that it does not change the improved spectrum resolution interferometer size. By derivation of refractive index modulation as a function of optical path difference, the simulation found that the resolution was increased by nearly an order of magnitude than interference system spectrum resolution of the same size. The experiments used the SGT-3-type acousto-optical modulator and the 1 650 nm infrared lasers to detect different concentrations of methane gas. The experimental results show that the method is better than the traditional pyroelectric method in terms of accuracy and stability, and more suitable for application in the mine complex environment.

  20. Phase noise in RF and microwave amplifiers.

    Science.gov (United States)

    Boudot, Rodolphe; Rubiola, Enrico

    2012-12-01

    Understanding amplifier phase noise is a critical issue in many fields of engineering and physics, such as oscillators, frequency synthesis, telecommunication, radar, and spectroscopy; in the emerging domain of microwave photonics; and in exotic fields, such as radio astronomy, particle accelerators, etc. Focusing on the two main types of base noise in amplifiers, white and flicker, the power spectral density of the random phase φ(t) is Sφ(f) = b(0) + b(-1)/f. White phase noise results from adding white noise to the RF spectrum in the carrier region. For a given RF noise level, b(0) is proportional to the reciprocal of the carrier power P(0). By contrast, flicker results from a near-dc 1/f noise-present in all electronic devices-which modulates the carrier through some parametric effect in the semiconductor. Thus, b(-1) is a parameter of the amplifier, constant in a wide range of P(0). The consequences are the following: Connecting m equal amplifiers in parallel, b(-1) is 1/m times that of one device. Cascading m equal amplifiers, b(-1) is m times that of one amplifier. Recirculating the signal in an amplifier so that the gain increases by a power of m (a factor of m in decibels) as a result of positive feedback (regeneration), we find that b(-1) is m(2) times that of the amplifier alone. The feedforward amplifier exhibits extremely low b(-1) because the carrier is ideally nulled at the input of its internal error amplifier. Starting with an extensive review of the literature, this article introduces a system-oriented model which describes the phase flickering. Several amplifier architectures (cascaded, parallel, etc.) are analyzed systematically, deriving the phase noise from the general model. There follow numerous measurements of amplifiers using different technologies, including some old samples, and in a wide frequency range (HF to microwaves), which validate the theory. In turn, theory and results provide design guidelines and give suggestions for CAD and